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Abstract

The precise relationship of electricity and magnetism to mechanics is be-
coming a critically important question in modern engineering. Although
well known engineering methods of modeling forces in electric and magnetic
systems have been adequate for bringing many useful technologies into our
everyday life, the further development of these technologies often seems to
require more extensive modeling. In the search for better modeling it is
relevant to examine the foundations of the classical models.

The classical point charge definitions of electric and magnetic field quan-
tities are not designed for the determination of forces in typical engineering
problems. In the approach of this thesis the relationship of electric and
magnetic field quantities to forces on macroscopic objects is built in the def-
initions. As a consequence, the determination of electrostatic and magneto-
static forces on macroscopic objects becomes a clear-cut issue. What makes
the approach work is that the system of interacting objects is considered as
a whole. This is contrary to the classical approach where an unrealistic test
object is used to define electric and magnetic fields as properties of the source
object only.

A limitation in the classical notions of electric field intensity and magnetic
induction is that they are sufficient to determine forces on only rigid objects.
To allow for deformable objects the model needs to be combined with that of
continuum mechanics. The notions suggested in this thesis are more general
as they allow rigidity to be considered with respect to the test object itself,
which may not be rigid in the usual sense.

The reguired generality is obtained by using the mathematics of differen-
tial geometry as the framework for the definitions. This has the additional
benefit of making clear the mathematical structures required for the defi-
nitions. Also, it allows the clear identification of the mathematical objects
involved. Both of these outcomes are important for creating efficient and
flexible computational codes for modeling.
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Ṽ Twisted 3-form related to a local 1-form basis

m 2-vector representing the value-part of m̃

U Small volume containing dipoles

mi Dipole moment 2-vector at ith point in U

vi Virtual displacement vector of ith dipole in U

q̃m Magnetic charge, a twisted scalar

H̃ext External magnetic field intensity, a twisted 1-form

C Path whose boundary points have magnetic charges ±q̃m

{C} The vector of path C

m̃ Magnetic dipole moment twisted vector

C̃12 Couple density of object o2, a covector-valued 3-form

C̃21 Couple density of object o1, a covector-valued 3-form

C̃2 Covector-valued twisted 3-form, see (6.31) or (6.46)

C̃22 Covector-valued twisted 3-form, see (6.32) or (6.47)

Chapter 7

d Separation parameter, non-negative real number
v|| Component of vector field v tangent to ∂o2

v⊥ Component of vector field v normal to ∂o2

xi



n Unit normal vector field of ∂o2

n2 Normal trace to ∂o2

⋆s Surfacic Hodge operator

M̃± The value of M̃ at ∂o2 from outside or from inside

M± The value of M at ∂o2 from outside or from inside

Chapter 8

J Cartesian proxy-vector field for current density

B Cartesian proxy-vector field for magnetic induction

× Cross product

∇× The curl operator in Cartesian coordinates

a, b Arbitrary Cartesian vector fields

∇· Divergence in Cartesian coordinates
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Chapter 1

Introduction

Modern engineering involves the designing of electromechanical equipment
more and more accurately. This trend is driven by economy: often even small
improvement in performance or efficiency can result in significant economic
benefit. This can be seen in the design of everyday equipment such as electric
motors, where efficiency improvement and noise level reduction have received
increasing attention in industry. The accurate design of electromechanical
equipment, in turn, calls for detailed computational modeling.

Although electricity and magnetism have been the subject of scientific
interest for millenia, the modeling of electric and magnetic forces in engi-
neering problems is still, surprisingly, a rather confusing one. Especially, the
modeling of electric and magnetic forces in systems where deformations occur
has remained an open question. In principle, there should be no problem in
determining forces from known electric and magnetic field quantities because
these quantities are defined in terms of forces in the first place; the defini-
tions should yield the forces directly. That this does not work in the usual
engineering tasks means the classical definitions of electric field intensity and
magnetic induction are not tailor-made for such purposes.

To clarify the situation we recall that in the classical definitions the ide-
alized notion of point charge is used. Also, to make the field quantities
independent of test charge (observer) the effect of the test charge on the
underlying charge and current distributions is removed by a limiting pro-
cess concerning the magnitude of the test charge. Consequently, the defining
equation (Lorentz force law) can be used directly only to determine forces on
small (test) particles whose charge magnitudes are also small so that they do
not affect the underlying charge and current distributions.

For the determination of electric and magnetic forces in most common
engineering applications (such as electromechanical actuators of finite size)
electric and magnetic field quantities will be defined here such that they
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take into account the effect of observer on the underlying charge and current
distributions. The observer here is taken to be an interacting object of finite
size (such as the rotor of an electric motor). Indeed, in practice we usually
want to determine forces on objects that are not infinitely small, and that
have a definite influence on the underlying charge and/or current distribution.
Once all concepts are properly defined the issue of electric and magnetic forces
is no longer a mystery.

We aim at a general framework that is applicable even when the objects
are deformable. Currently, the modeling of such systems relies on the classical
definition of electric field intensity and magnetic induction. In particular, this
means the following.

Classical modeling relies on the use of a Cartesian rigid body
(metric) as a reference.

Consequently, one ends up in a situation where the modeling of deformable
objects requires the coupling of electricity or magnetism with the continuum
mechanical model. This kind of modeling underlies the present-day technol-
ogy employing electromechanical equipment. However, the approach involves
inherent difficulties such as the ambiguous separation of local force into an
electromagnetic part, and a short-range part to be taken into account by
mechanical stresses. Here, the classical approach will not be followed.

In this thesis, we will not restrict ourselves to the use of a Carte-
sian rigid body as a reference.

Instead, the reference for rigidity will be adapted to the situation.

In this thesis, the interacting test object itself is used as a refer-
ence for rigidity.

The goal is to make known methods for rigid interacting objects applicable
also in nontrivial situations involving (Cartesian) deformable objects. This
would be a benefit compared to the classical modeling.

To achieve the desired generality the definitions will be given on an ab-
stract level (meaning that we consider the mathematical structures involved).
The stage for the definitions is provided by modern mathematics of differen-
tial geometry. To make different structure layers visible we will begin with a
differentiable manifold and add more structure when necessary. Eventually
we will have need of a metric structure, which leads us to Riemannian man-
ifold. This results in an axiomatic system where the instance of metric is
not specified. In the axiomatic system for electrostatics, for instance, charge
will be taken as an additional primary term. We will define force on a rigid
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body in terms of the primary terms charge and metric. In constructing the
definition we will introduce electric field intensity and electric displacement
as auxiliary terms with certain defining properties. The definition can be
roughly stated as follows.

A map taking constant vector fields (virtual displacements) to real
numbers (virtual works) on a Riemannian manifold is an electro-
static rigid-body force on the Riemannian manifold if there ex-
ists a piecewise smooth twisted 3-form (charge density), a twisted
2-form (electric displacement), and a 1-form (electric field inten-
sity), with the electrostatic laws, including a force law, as defining
properties.

This purely mathematical definition contains a clear predicate to test whether
a mathematical object satisfying the preliminary condition deserves to be
called electrostatic force.

In the above definition we talk of the constancy of vector fields – a notion
that is in general defined by using an independent structure. Here this notion
will be defined by using metric structure so that constancy of vector fields
will be taken relative to metric. Thus, the specification of an instance for
metric structure will give an instance for the axiomatic system. To make a
connection with observations we make the following definition.

An electrostatic rigid-body force on a specific Riemannian mani-
fold is a physical model if it correctly predicts virtual works ob-
served under constant virtual displacements.

The predicate of this physical definition involves observations with virtual
displacements that are constant in the specific metric. It provides a test of
whether a specific metric and charge fit the modeling of a physical situation.
When using the metric provided by a Cartesian coordinate system we get
the classical model for electrostatic forces on rigid objects.

By adding mathematical structure layer by layer we will clearly see which
structures are forced to us by the laws that govern electrostatic and mag-
netostatic forces on rigid objects. This question is relevant from both the
technical and philosophical points of view. The technical interest in this
question arises from the computational modeling of the natural phenomena
in question. Computer programs used to model the phenomena imitate the
underlying mathematical structures, so to write these programs it is essen-
tial to have a comprehensive understanding of the structures involved. On
the other hand, a specific question of philosophical interest is whether the
laws of electrostatics or magnetostatics really force us to use the structure
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of Euclidean space (affine space whose accociated vector space has an inner
product) in the formulation of these laws. We will see that Euclidean coor-
dinates only need to exist locally in the vicinities of the interacting objects
if we want to define torques on the objects. For the definition of forces on
rigid objects the vicinities of the objects only need to be parallelizable.

In the given definitions I will focus on the electrostatic and magneto-
static interactions between two material objects in free space. This abstract
situation is relevant for many practical engineering applications. The ac-
commodation of materials will be straightforward when charges and currents
are understood to include also equivalent charges and equivalent currents, as
referred to in the engineering community. Besides equivalent charges and
currents we will also examine the use of polarization and magnetization as
primary terms.

An aspect of the given definitions is that each of the two objects will be
provided with its own set of field quantities. Thus, from the point of view of
one of the objects the fields of the other object appear as external fields. The
external interactions will be taken as a primary notion to emphasize that they
constitute what is unambiguous in classical mesoscopic treatments of electric
and magnetic forces involving materials. The given definitions will be suitable
for modeling the behavior of rigid objects. By adding the fields of the two
objects we will obtain total fields, and all expressions involving total fields
will be taken as theorems derived from the starting points involving external
fields. This is a matter of taste, and the construction may be reversed if
preferred. However, there is a benefit by using the external fields, and this is
the fact that the fields of one of the objects will be smooth on the material
interfaces of the other object.

Most of the time we will assume that the interacting objects are separated
by free space. In these cases it will be seen that in electrostatics the forces
and torques on rigid objects may be defined in terms of equivalent charges
or in terms of electric polarization. The equivalence of these alternative
definitions is a theorem in the axiomatic system. In magnetostatics one can
use as primary terms either equivalent currents, equivalent magnetic charges,
magnetization, or magnetic polarization. Further theorems are that forces
and torques may also be determined from the total fields. Also, the Maxwell’s
stress tensor method of force calculation will appear as a theorem implied by
the used starting points. When the two objects are in contact there will be
some difficulties with surface terms, and thus we will be left with unproved
conjectures. The question of local forces inside deformable objects will be
touched upon, but it seems that one cannot unambiguously define the concept
of electric or magnetic force density in materials that will fit for the modeling
of deformations.
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The organization of this thesis is as follows. Chapter 2 introduces tensors
in abstract vector space. Here, emphasis is put on multivectors and mul-
ticovectors, as these antisymmetric tensors fit so naturally to the modeling
of electromagnetic phenomena. This chapter is a preliminary to the main
content of this thesis, and it is also there to serve the student of electromag-
netism in his or her beginning studies. If one is familiar with multivectors and
multicovectors it is possible to skip this chapter and start directly from Chap-
ter 3. (A review of twisted multivectors and multicovectors may still be in
order.) In Chapter 3 we construct the predicates definining electric and mag-
netic forces on objects with charge and current distributions. The required
differential geometric concepts will be introduced along the way, elucidating
the role of each concept in the axiomatic system. Providing the stage for
the definitions this general framework will appear as indentions to the main
text. Among the concepts encountered are covector-valued differential forms,
their integration and (covariant) exterior differentiation. In Chapter 4 the
concept of force will be generalized to account for rotations of the objects.
The description of rotations of the interacting objects by appropriate virtual
displacement vector fields will prove useful in our construction. These vec-
tor fields will be conveniently characterized by using the Lie derivative. In
chapters 5 and 6 we will consider forces and torques in the presence of ma-
terials, whereas in Chapter 7 situations in which the interacting objects are
in contact with each other will be examined. Chapter 8 is devoted to find-
ing direct engineering benefit from the given approach. Here, I will examine
magnetic forces by considering simple example arrangements, and suggest a
reinterpretation of the heuristic engineering rule that “magnetic field lines
tend to shorten themselves to produce forces”. This chapter does not build
on the earlier chapters, so it is possible to read this before going to the formal
treatment of the other chapters. Finally, conclusions are made in Chapter 9.

This thesis contains four appendices. The first three show how the classi-
cal vector analysis formulae for force densities, stresses, and torque densities
can be obtained from the expressions appearing in the text. Here, Cartesian
metric will be used for familiarity, and results given on a Cartesian coordi-
nate basis. Appendix D shows how force densities can be computed from
finite element approximations of electric and magnetic field quantities.
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Chapter 2

Mathematical preliminaries

A basic tool in modeling is linearization. For example, the notion of force
is obtained by linearizing energy, making force a linear operator that takes
in displacement vectors to produce small (infinitesimal) changes in energy.
Linear operators that take vectors to real numbers are in general called ten-
sors. In later chapters we will make use of linearity locally at the points of
the underlying physical space, that is, we will find it necessary to introduce
tensor fields. For this purpose we first introduce tensors in vector space.

A bare vector space structure is needed to define tensors. No metric
notions, such as an angle between vectors and the length of a vector, are
required. These notions will be taken relative to an inner product, which is
an additional structure that will be given for a vector space. Being aware of
which parts of the analysis call for metric is essential to achieve our techno-
logical goal.

2.1 Vectors and covectors

Vector space is the mathematical structure needed for the addition and scalar
multiplication of the elements of a set. The elements of vector space are called
vectors. Formally, a set V is called vector space (over real numbers) if there
is vector addition + : V × V → V and scalar multiplication · : R × V → V
satisfying the following axioms. The vector addition is commutative and
associative, that is,

u + v = v + u

(u + v) + w = u + (v + w)

for all u, v, w ∈ V . There is a zero element 0 ∈ V satisfying

u + 0 = u
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for all u ∈ V . Also, for all u ∈ V , there is an addition inverse −u ∈ V , such
that

u + (−u) = 0.

Scalar multiplication must distribute with both the vector addition and the
addition of real numbers, that is,

a · (u + v) = a · u + a · v

(a + b) · u = a · u + b · u

for all a, b ∈ R and u, v ∈ V . Scalar multiplication must also be compatible
with the multiplication of real numbers, that is,

a · (b · u) = (ab) · u

for all a, b ∈ R and u ∈ V . Finally, we must have

1 · u = u

0 · u = 0

for all u ∈ V . From now on the centered dot indicating the scalar multipli-
cation will be left out. The dimension of a vector space V is the number
of linearly independent vectors that span V . I will consider here only finite
dimensional vector spaces. A set of linearly independent vectors that span
V form a basis for V . Given a basis (u1, u2, . . . , un) for V any v ∈ V may be
given as the linear combination

v =
n

∑

i=1

viui,

where the vi’s are the components of v in the basis. In the following the
summation convention will be employed by which a summation is implied
when an index is repeated on upper and lower levels. Thus, the above may
be written as v = viui. One easily thinks of a vector space in terms of a basis.
However, there is no intrinsic significance to any basis. In the following one
objective will be to develop intuition that is invariant under general change
of basis, that is, under general linear transformation of basis vectors.

Given a vector space V we may consider linear maps from V to R. We
will use such a map, in particular, to associate a virtual work (real number)
to a given virtual displacement vector. We denote as V ∗ the vector space of
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linear maps V → R with vector addition and scalar multiplication defined
for arbitrary α, β ∈ V ∗ such that

(α + β)(v) = α(v) + β(v),

(aα)(v) = a
(

α(v)
)

for all a ∈ R and v ∈ V . The vector space V ∗ is called the dual space of
V , and its elements are called covectors. Given a basis (u1, u2, . . . , un) for V
there is the dual basis (α1, α2, . . . , αn) for V ∗ defined by αj(ui) = δj

i , where
δi
j = 1 when i = j and δi

j = 0 when i 6= j. The operation of αj on arbitrary
vector v is given as

αj(v) = αj(viui) = viαj(ui) = vj

so the above really defines the covectors α1, α2, . . . , αn. The operation of
β ∈ V ∗ on arbitrary vector v ∈ V may be given as

β(v) = β(viui) = viβ(ui) = β(ui)α
i(v).

Thus β is expressed in the dual basis as β = β(ui)α
i = βiα

i with the compo-
nents βi = β(ui). This shows that the αi’s span V ∗. To see that α1, α2, . . . , αn

are linearly independent we assume that βiα
i = 0. By giving the basis vector

uj to this covector we find that βj = 0, and the linear independence follows
by going through all the indices j. Thus, the dimension of V ∗ is the same as
the dimension of V .

Let V be an n-dimensional vector space and β a covector belonging to
V ∗. Those vectors of V that satisfy β(u) = 0 form an (n-1)-dimensional
vector subspace U of V . In a basis this equation is written as βiu

i = 0 which
is clearly an equation for (n-1)-dimensional plane in the ui-coordinates. In
general, those vectors that satisfy β(v) = a form an affine subspace of V
whose elements are of the form v+u, where u ∈ U , see Figure 2.1 left. Clearly
β does not make a distinction between vectors that belong to the same affine
subspace. This justifies the graphical representation of β as shown in the
2-dimensional case in Figure 2.1 right. Note also that the specification of p
covectors β1, . . . , βp yields an (n-p)-dimensional subspace of V composed of
vectors v that satisfy βi(v) = 0 for all i = 1, . . . , p.

The definition of V ∗ does not require a basis for the underlying vector
space V . Thus, for given v ∈ V and β ∈ V ∗ the number β(v) is independent
from the basis used to represent v and β. This means that when the basis
is changed the components of v and β must change in a consistent manner
to make β(v) = βiv

i invariant. Let us take two bases (u1, u2, . . . , un) and
(w1, w2, . . . , wn) for V such that the change of basis is given as wj = wi

jui for
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β = 1

β

β = 0

Figure 2.1: Left: vector subspace formed by those vectors v that satisfy
β(v) = 0 (written β = 0 in the figure), and affine subspace formed by those
vectors v that satisfy β(v) = 1. Some vectors of the affine subspace are also
shown. Right: the graphical representation of the covector β. Here V is
2-dimensional.

all j = 1, . . . , n, where the wi
j’s form a matrix with nonvanishing determinant.

A vector v may be given in the basis (w1, w2, . . . , wn) as v = vj
wwj with the

components vj
w. By changing the basis we get

v = vj
wwj = vj

w(wi
jui) = (vj

wwi
j)ui = vi

uui,

so the components of v in the basis (u1, u2, . . . , un) are given as vi
u = vj

wwi
j.

By denoting as vu and vw the column vectors containing the vi
u’s and vj

w’s,
respectively, and as W the transformation matrix with entries wi

j (j being
the row index and i the column index), we may write this as vu = Wvw. We
thus have

vw = W−1vu (2.1)

for the change of basis formula for the components of a vector v ∈ V .
This is called contravariant transformation. The elements of V are some-
times called contravariant vectors. Let us next examine how the components
of a covector transform. For this, we denote as (α1, α2, . . . , αn) the dual
basis of (u1, u2, . . . , un) as above, and as (γ1, γ2, . . . , γn) the dual basis of
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(w1, w2, . . . , wn). A covector β may be given in the basis (γ1, γ2, . . . , γn) as
β = βγ

i γi, where the components βγ
i are given as βγ

i = β(wi). By expressing
the wi’s in the other basis we get

βγ
i = β(wi) = β(wj

i uj) = wj
i β(uj) = wj

i β
α
j

where the βα
j ’s are the components of β in the basis (α1, α2, . . . , αn). By

denoting as βγ and βα the row vectors containing the βγ
i ’s and βα

j ’s, respec-
tively, we thus have

βγ = βαW. (2.2)

This is called covariant transformation, and the elements of V ∗ are sometimes
called covariant vectors. By the transformation rules (2.1) and (2.2) we may
write the number β(v) as

β(v) = βγ
i γi(vj

wwj)

= βγ
i vi

w

= βγvw

= βαWW−1vu

= βαvu

= βα
i vi

u,

so β(v) may be written either as βγ
i vi

w or as βα
i vi

u.
Because V ∗ is a vector space we may consider its dual space V ∗∗. We may

associate to each vector v ∈ V an element v∗∗ ∈ V ∗∗ by defining v∗∗(β) = β(v)
for all β ∈ V ∗. This correspondence is linear and bijective so V and V ∗∗ are
isomorphic [1]. In the following we will have some use for this identification,
and then we will denote v∗∗ simply as v. Because of this duality we will
sometimes talk of the pairing of a covector and a vector when we mean the
map V ∗ × V → R; (β, v) 7→ β(v).

2.2 Tensors

Given a vector space V and its dual space V ∗ we may consider multilinear
maps that take r covectors and s vectors to real numbers. Such a map is
thus of the type V ∗ × · · · × V ∗ × V × · · · × V → R, where we have r copies
of V ∗ and s copies of V . Multilinearity means that the map is linear in each
argument when the other arguments are held fixed. We denote as T r

s (V )
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the vector space of such maps with vector addition and scalar multiplication
defined for arbitrary t1, t2 ∈ T r

s (V ) such that

(t1 + t2)(β
1, . . . , βr, v1, . . . , vs) = t1(β

1, . . . , βr, v1, . . . , vs)+

t2(β
1, . . . , βr, v1, . . . , vs)

(at1)(β
1, . . . , βr, v1, . . . , vs) = at1(β

1, . . . , βr, v1, . . . , vs)

for all β1, . . . , βr ∈ V ∗ and v1, . . . , vs ∈ V . The elements of the vector space
T r

s (V ) are called tensors, contravariant of order r and covariant of order s, or
simply, of type

(

r
s

)

. Clearly, we have T 0
1 (V ) = V ∗. Also, by the identification

of V and V ∗∗, we have T 1
0 (V ) = V .

To construct new tensors from old ones we may use the tensor product.
For tensors t1 ∈ T r1

s1
(V ) and t2 ∈ T r2

s2
(V ) their tensor product is the tensor

t1 ⊗ t2 ∈ T r1+r2

s1+s2
(V ) defined by

t1 ⊗ t2(α
1, . . . , αr1 ,β1, . . . , βr2 , u1, . . . , us1

, v1, . . . , vs2
)

= t1(α
1, . . . , αr1 , u1, . . . , us1

)t2(β
1, . . . , βr2 , v1, . . . , vs2

)

for all α1, . . . , αr1 , β1, . . . , βr2 ∈ V ∗ and u1, . . . , us1
, v1, . . . , vs2

∈ V . From
the definition it follows that the tensor product ⊗ is associative and bilinear,
that is, for tensors t1, t2 and t3 of appropriate type it satisfies

t1 ⊗ (t2 ⊗ t3) = (t1 ⊗ t2) ⊗ t3,

t1 ⊗ (t2 + t3) = t1 ⊗ t2 + t1 ⊗ t3,

and further

t1 ⊗ (at2) = (at1) ⊗ t2 = a(t1 ⊗ t2)

for all a ∈ R.
To find out the dimension of T r

s (V ) we consider the operation of t ∈ T r
s (V )

on r covectors and s vectors. By using a basis (u1, u2, . . . , un) for V , and the
associated dual basis (α1, α2, . . . , αn), we have

t(β1, . . . , βr, v1, . . . , vs) = t(β1
i1
αi1 , . . . , βr

irα
ir , vj1

1 vj1 , . . . , v
js

s vjs
)

= β1
i1
· · · βr

irv
j1
1 · · · vjs

s t(αi1 , . . . , αir , vj1 , . . . , vjs
).

By further using

β1
i1
· · · βr

irv
j1
1 · · · vjs

s = β1(ui1) · · · β
r(uir)α

j1(v1) · · ·α
js(vs)

= ui1(β
1) · · ·uir(β

r)αj1(v1) · · ·α
js(vs)

= ui1 ⊗ · · · ⊗ uir ⊗ αj1 ⊗ · · · ⊗ αjs(β1, . . . , βr, v1, . . . , vs)
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we find that t may be given as

t = t(αi1 , . . . , αir , vj1 , . . . , vjs
)ui1 ⊗ · · · ⊗ uir ⊗ αj1 ⊗ · · · ⊗ αjs . (2.3)

There are nr+s terms to sum over in (2.3). The nr+s tensors ui1 ⊗ · · · ⊗ uir ⊗
αj1 ⊗ · · · ⊗ αjs thus span T r

s (V ). To see that these nr+s tensors are linearly
independent we assume that ti1···irj1···js

ui1 ⊗· · ·⊗uir ⊗αj1 ⊗· · ·⊗αjs = 0, and give

(αk1 , . . . , αkr , ul1 , . . . , uls) to this tensor to find that tk1···kr

l1···ls
= 0. The linear

independence follows because this holds for all permutations of the indices
k1 · · · kr, l1 · · · ls. Thus the dimension of T r

s (V ) is nr+s.

2.3 Multivectors and -covectors

We will have particular use for antisymmetric tensors of type
(

0
p

)

. Such
a tensor takes in p vectors to produce a real number in such a way that
when two of the vector arguments are interchanged the sign of the number
is changed. This is what is meant by antisymmetry. It implies that when
the same vector appears in two different argument places the tensor yields
zero. Antisymmetric tensors are also called skew symmetric or alternating.
The antisymmetric tensors of type

(

0
p

)

form a vector subspace of T 0
p (V ),

denoted as
∧

p(V ). The elements of this subspace are called p-covectors.
An important example is the magnetic induction 2-covector: it takes in a
virtual displacement vector and a velocity vector to produce, once multiplied
by charge magnitude, the virtual work done on the test charge. The above
definition of p-covectors only makes sense when p > 1. We define 1-covectors
to be just covectors of V ∗. Also, we define 0-covectors to be linear mappings
of type R → R, that is,

∧

0(V ) =
∧

1(R). We will often identify 0-covector
a ∈

∧

0(V ) with a real number by setting a = a(1). If a tensor is an element
of

∧

p(V ) for some p it is called a multicovector .
Let us find out, as an example, the dimension of

∧

2(V ). By using the
covector basis (α1, . . . , αn) we may give any 2-covector ω ∈

∧

2(V ) ⊂ T 0
2 (V )

as

ω = ωijα
i ⊗ αj. (2.4)

By antisymmetry we have ω(v, w) = −ω(w, v) for all v, w ∈ V . Using this to
the vectors of the basis (u1, . . . , un) whose dual basis is (α1, . . . , αn), we see
that ωij = −ωji for all i, j = 1, . . . , n. Because this holds also when i = j we
must have that ωii = 0 for all i = 1, . . . , n. We may thus write

ω =
∑

1≤i<j≤n

ωij(α
i ⊗ αj − αj ⊗ αi). (2.5)
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The terms αi ⊗αj −αj ⊗αi are 2-covectors because for vectors v, w we have

(αi ⊗ αj − αj ⊗ αi)(v, w) = αi(v)αj(w) − αi(w)αj(v)

= −
(

αi(w)αj(v) − αi(v)αj(w)
)

= −(αi ⊗ αj − αj ⊗ αi)(w, v).

These 2-covectors span
∧

2(V ), and their linear independence is shown in the
familiar way. For instance, when n = 3 we have three additive terms left
in (2.5) compared to the nine terms in (2.4). In general the antisymmetry
reduces the number of additive terms from n2 to n!

2!(n−2)!
[1, 2, 3]. Thus, in

general, the dimension of
∧

2(V ) is n!
2!(n−2)!

. Similarly, the dimension of
∧

p(V )

is n!
p!(n−p)!

[1, 2, 3].
We will need to construct new multicovectors from old ones. The tensor

product does not qualify for this because the tensor product of a p-covector
and a q-covector is a tensor of type

(

0
p+q

)

that is not antisymmetric in all its

p + q arguments (although it is antisymmetric in the first p arguments and
in the last q arguments). Thus we need an other kind of product to yield a
multicovector. With covectors we already know how this can be done. For
covectors α, β ∈

∧

1(V ) we define the 2-covector α ∧ β ∈
∧

2(V ) by

α ∧ β = α ⊗ β − β ⊗ α.

Note that (2.5) may now be written as

ω =
∑

1≤i<j≤n

ωijα
i ∧ αj. (2.6)

The generalization to multicovectors yields an operator that takes a p-covector
and a q-covector to a (p+q)-covector. For the definition of this operator we
let P (p, q) denote the set of all permutations σ of the index set {1, . . . , p+ q}
that satisfies σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(q). Then, for
ω ∈

∧

p(V ) and η ∈
∧

q(V ) their exterior product is the (p+q)-covector
ω ∧ η ∈

∧

p+q(V ) defined by

(ω ∧ η)(v1, . . . , vp+q) =
∑

σ∈P (p,q)

sgn(σ)ω(vσ(1), . . . , vσ(p))η(vσ(p+1), . . . , vσ(p+q)),

where sgn(σ) is the signature of the permutation σ. It is 1 when σ is an even
permutation and −1 when σ is an odd permutation. The exterior product ∧
is bilinear and associative like the tensor product [1, 3]. The property that
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is different from the tensor product is the graded anticommutativity, that is,
for ω ∈

∧

p(V ) and η ∈
∧

q(V ), we have

ω ∧ η = (−1)pqη ∧ ω,

as shown in [1, 3]. Similarly to (2.6) we may give a p-covector ω ∈
∧

p(V ) by

using the covector basis (α1, . . . , αn) as

ω =
∑

1≤i1<···<ip≤n

ωi1···ipα
i1 ∧ · · · ∧ αip (2.7)

as shown in [1, 3]. Finally, from the definition of exterior product it follows
that for covectors β1, . . . , βp and vectors v1, . . . , vp we have

(β1 ∧ · · · ∧ βp)(v1, . . . , vp) = det
(

βi(vj)
)

, (2.8)

the determinant of the matrix with entries βi(vj), see [3]. In particular, the
operation of the n-covector α1 ∧ · · · ∧ αn on n vectors gives the determinant
of the components of these vectors in the basis (u1, . . . , un).

We will also need antisymmetric tensors of type
(

p
0

)

called p-vectors.
These objects are dual to p-covectors, and we will use them to represet, for
instance, virtual surface and volume elements with orientation. They form
a subspace of T p

0 (V ) which we will denote as
∧p(V ). We define 1-vectors to

be just vectors of V . We also identify 0-vectors with real numbers so that
∧0(V ) = R. The operation of 0-covector b ∈

∧

0(V ) on 0-vector a ∈
∧0(V )

is thus b(a) = b(a1) = a(b(1)) = ab ∈ R. If a tensor belongs to
∧p(V ) for

some p it is called multivector . The exterior product may be defined for mul-
tivectors just as it was defined for multicovectors above. Thus, for instance,
two vectors v, w ∈ V may be used to construct a 2-vector

v ∧ w = v ⊗ w − w ⊗ v.

Thus we have

(v ∧ w)(β1, β2) = v(β1)w(β2) − w(β1)v(β2)

for covectors β1, β2. More generally, for vectors v1, . . . , vp and covectors
β1, . . . , βp we have

(v1 ∧ · · · ∧ vp)(β
1, . . . , βp) = det

(

vi(β
j)

)

(2.9)

in alignment with (2.8). By using (2.8) and (2.9) together with the identifi-
cation vi(β

j) = βj(vi) we get

(β1 ∧ · · · ∧ βp)(v1, . . . , vp) = det
(

βi(vj)
)

= det
(

vj(β
i)
)

= det
(

vi(β
j)

)

= (v1 ∧ · · · ∧ vp)(β
1, . . . , βp).
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w1

v1

v2

w2

Figure 2.2: Pairs of vectors (w1, w2) and (v1, v2) with unit area relative two
each other.

This shows that (β1 ∧ · · · ∧ βp)(v1, . . . , vp) depends only on the p-vector
v1 ∧ · · · ∧ vp (and not on the p individual vectors v1, . . . , vp). That is, if two
arrays of vectors (v1, . . . , vp) and (w1, . . . , wp) yield the same p-vector they
will be mapped to the same number by a p-covector. So when do (v1, . . . , vp)
and (w1, . . . , wp) yield the same p-vector? Before answering this question we
introduce two new notions. First, when (v1, . . . , vp) and (w1, . . . , wp) span
the same subspace of V we may express each of the wj’s in terms of the vi’s
as wj = wi

jvi, where the wi
j’s form a matrix with nonvanishing determinant.

In this case we define the p-volume of (w1, . . . , wp) relative to (v1, . . . , vp) as
the absolute value of the determinant det(wi

j). As an example case consider
p = 2 and (w1, w2) = (1

2
v2, 2v1). Clearly (w1, w2) and (v1, v2) have unit 2-

volumes (or areas) relative to each other, see Figure 2.2. This follows readily
from the above definition. We have

det(wi
j) = det

(

0 2
1
2

0

)

= −1.

The second notion that we introduce at this point is about orientation. We
say that (w1, . . . , wp) and (v1, . . . , vp) have the same orientation if det(wi

j) >
0, and opposite orientation if det(wi

j) < 0. In the example of Figure 2.2
the two pairs of vectors thus have opposite orientation. Now, to answer the
question raised above, we note that the p-vector formed by the wj’s may be
given as

w1 ∧ · · · ∧ wp = wi1
1 vi1 ∧ · · · ∧ wip

p vip

= wi1
1 · · ·wip

p vi1 ∧ · · · ∧ vip

= wi1
1 · · ·wip

p sgn(σi1...ip)v1 ∧ · · · ∧ vp,

where σi1...ip permutes (1, · · · , p) to (i1, · · · , ip). But wi1
1 · · ·w

ip
p sgn(σi1...ip) is
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the determinant of the matrix of wi
j’s [3]. We thus have

w1 ∧ · · · ∧ wp = det(wi
j)v1 ∧ · · · ∧ vp, (2.10)

and we see that (v1, . . . , vp) and (w1, . . . , wp) yield the same p-vector provided
that they have the same orientation and the same p-volumes relative to each
other, that is, det(wi

j) = 1. Indeed, simple multivectors such as v1 ∧ · · · ∧ vp

may be taken as equivalence classes of arrays of vectors spanning the same
subspace, two arrays being equivalent if the above determinant condition
holds. See [4] for the construction of multivectors from this point of view.
This is the intuitive picture of multivectors that we want to keep in mind.
Finally, because the operation of p-covector on p vectors depends only on the
p-vector formed by the p vectors, p-covectors may be taken as linear maps
from p-vectors to real numbers. The operation of ω ∈

∧

p(V ) on v ∈
∧p(V )

is given by using a basis (u1, . . . , un) for V , and its dual basis (α1, . . . , αn),
as

ω(v) =
∑

1≤i1<···<ip≤n

ωi1···ipα
i1 ∧ · · · ∧ αip

(

∑

1≤j1<···<jp≤n

vj1···jpuj1 ∧ · · · ∧ ujp

)

=
∑

1≤i1<···<ip≤n

∑

1≤j1<···<jp≤n

ωi1···ipv
j1···jpαi1 ∧ · · · ∧ αip(uj1 , . . . , ujp

).

2.4 Twisted multivectors and -covectors

Let us further develop the concept of orientation introduced above. Given two
bases (v1, . . . , vn) and (w1, . . . , wn) for the vector space V we can say whether
they have the same or opposite orientation by calculating the determinant
det(wi

j). The relation “have the same orientation” is an equivalence relation
in the set of all bases for V . The two equivalence classes are the two possible
orientations of V . Clearly orientation is an additional structure that may be
given for a vector space. To orient V one simply selects a basis from one of the
two equivalence classes. If a basis belongs to the selected orientation we say
it is positively oriented , otherwise it is negatively oriented . Having specified
orientation by the basis (v1, . . . , vn) we may use the covectors (α1, . . . , αn) of
the dual basis to test if (w1, . . . , wn) is positively oriented. We have

(α1 ∧ · · · ∧ αn)(w1, . . . , wn) = det(wi
j),

which must be positive for (w1, . . . , wn) to be positively oriented. Note how
the antisymmetry of the n-covector α1 ∧ · · · ∧ αn indicates the effect of per-
muting (w1, . . . , wn). When (w1, . . . , wn) is positively oriented so are its even
permutations. Odd permutations, on the other hand, are negatively oriented.
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Let us next consider a p-dimensional subspace U of V . As any vector
space we may orient U by taking p ordered vectors that form a basis for
the space. In many cases, however, the orientation of U is not relevant.
For instance, when n = 3 and p = 2 we may rather want to specify a
crossing direction through the plane U . Motivated by this we let U be an
(n-1)-dimensional subspace of the n-dimensional vector space V . We select
a nonzero covector α ∈ V ∗ such that α(u) = 0 for all u ∈ U . We say
that vectors v and w are on the same side of U if α(v) and α(w) have the
same sign. This is an equivalence relation in V . The two equivalence classes
of vectors are the two sides of U . As an example, let V be spanned by
(v1, v2, v2), and take U to be the subspace spanned by (v1, v2). Further, let
(α1, α2, α3) be the dual basis. Now we may use the basis covector α3 to tell us
whether two vectors are on the same side of U . One of the two sides is given
by the vectors w that satisfy α3(w) = α3(wivi) = w3 > 0. Note that not
all of the w’s are in the subspace spanned by v3. Let us next generalize this
to p-dimensional subspace U . Now we select n − p covectors α1, . . . , αn−p ∈
V ∗ each of which satisfies αi(u) = 0 for all u ∈ U . We further require
the covectors to be linearly independent so that α1 ∧ · · · ∧ αn−p is nonzero.
Now, the arrays of vectors (v1, . . . , vn−p) and (w1, . . . , wn−p) are taken to be
equivalent if (α1∧· · ·∧αn−p)(v1, . . . , vn−p) and (α1∧· · ·∧αn−p)(w1, . . . , wn−p)
have the same sign. The two equivalence classes of arrays of vectors are
called the transverse orientations of U . Clearly transverse orientation is an
additional structure that can be given for a subspace of a vector space. For
the vector space itself we take its transverse orientation to be just a sign (plus
or minus). As an example, let again V be spanned by (v1, v2, v2), but now
take U to be the subspace spanned by v1. We further let (α1, α2, α3) be the
dual basis. Now we may use the 2-covector α2∧α3 to tell us whether pairs of
vectors are equivalent. One of the transverse orientations are given by pairs
of vectors (w1, w2) that satisfy (α2 ∧ α3)(w1, w2) = w2

1w
3
2 − w2

2w
3
1 > 0.

Multivectors carry in them the notion of orientation. A p-vector of
the form u1 ∧ · · · ∧ up is positively oriented in the orientation specified by
(u1, . . . , up). This is convenient for some purposes. For instance, in the
case of a virtual displacement we are really interested in the direction of
the displacement in the subspace spanned by the virtual displacement vec-
tor. However, in many cases it is the transverse orientation of the subspace
spanned by (u1, . . . , up) that is relevant. For instance, to express the electric
current through a virtual surface element we need to take into account to
which direction the current passes through the surface element. Let us con-
sider the subspace U spanned by (u1, . . . , up), and form the equivalence class
of arrays of p vectors that has the same p-volume relative to (u1, . . . , up). We
denote this equivalence class as [(u1, . . . , up)]. We associate to [(u1, . . . , up)]
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Figure 2.3: 1-volume with transverse orientation in two dimensions (left) and
in three dimensions (right).

)( , ) ( ,
Figure 2.4: Two representations of the rightmost object of Figure 2.3.

a transverse orientation of U . The object of our interest is thus the p-volume
with transverse orientation given as the pair

(

[(u1, . . . , up)], T ransOr
)

, where
TransOr is the transverse orientation. Figure (2.3) shows the graphical rep-
resentations of a 1-volume with transverse orientation in 2-dimensional and
3-dimensional vector spaces. Note that we have not yet defined the addition
or scalar multiplication of these objects.

In a vector space V we will represent a p-volume with transverse ori-
entation by a pair consisting of a p-vector and an orientation for V . By
convention, the p-volume with transverse orientation represented by (u1 ∧
· · · ∧ up, Or) is

(

[(u1, . . . , up)], T ransOr
)

, where TransOr is determined by
an array of vectors (w1 . . . , wn−p) satisfying

(w1 . . . , wn−p, u1, . . . , up) ∈ Or. (2.11)

Note that the negative of u1 ∧ · · · ∧ up and the orientation opposite to Or
represents the same p-volume with transverse orientation, see Figure 2.4 as
an example. Addition and scalar multiplication of p-volumes with transverse
orientation may be defined in terms of these representatives. For instance, to
add

(

[(u1, . . . , up)], T ransOru

)

and
(

[(v1, . . . , vp)], T ransOrv

)

we first select
an orientation Or for V . Then we select arrays of vectors (u1, . . . , up) ∈
[(u1, . . . , up)] and (v1, . . . , vp) ∈ [(v1, . . . , vp)] both of which satisfy (2.11).
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Figure 2.5: Addition of twisted vectors in two dimensions in terms of repre-
sentative vectors.

Adding together the p-vectors u1 ∧ · · · ∧up and v1 ∧ · · · ∧ vp yields another p-
vector. Together with the orientation Or this p-vector represents the sum of
(

[(u1, . . . , up)], T ransOru

)

and
(

[(v1, . . . , vp)], T ransOrv

)

. See Figure 2.5 for
an example where p = 1. Note that the addition so defined does not depend
on the choice of orientation Or. With the vector space structure understood,
these objects are called twisted p-vectors. The used graphical representation
is from Burke [5].

We could have defined twisted p-vectors directly as equivalence classes of
pairs (v,Or) consisting of a p-vector v ∈

∧p(V ) and an orientation Or for V ,
two pairs (v1, Or1) and (v2, Or2) being equivalent if v1 = v2 and Or1 = Or2, or
if v1 = −v2 and Or1 = −Or2. As above the addition and scalar multiplication
are defined in terms of representatives whose orientations coincide.

The objects dual to twisted p-vectors are called twisted p-covectors. For
instance, current density will be modeled by a twisted 2-covector. It takes in a
twisted 2-vector modeling a surface element with crossing direction and gives
the current through the element in the specified direction. Similarly, surface
current density (current sheet) is modeled by a twisted covector defined on the
surface. For a twisted vector modeling a line element with crossing direction
it gives the current through the element to the specified direction. This
operation is shown in Figure 2.6. The twisted covector has its lines oriented
contrary to an ordinary covector whose line has transverse orientation, see
Figure 2.1. The graphical representation is from Burke [5].

In a vector space V twisted p-covectors may be formally defined as equiv-
alence classes of pairs (ω,Or) consisting of a p-covector ω ∈

∧

p(V ) and an
orientation Or for V , two pairs (ω1, Or1) and (ω2, Or2) being equivalent if
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= 2

Figure 2.6: The operation of a twisted covector on a twisted vector in two
dimensions.

ω1 = ω2 and Or1 = Or2, or if ω1 = −ω2 and Or1 = −Or2. Let us de-
note as [(ω,Or)] the twisted p-covector containing (ω,Or). In addition to
(ω,Or) it contains (−ω,−Or). The operation of [(ω,Or)] on a twisted p-
vector [(v,Or)] is well defined, that is, independent of the representatives. If
we select orientation Or the operation is realized as ω(v), and if we select
the opposite orientation −Or the operation is realized as −ω(−v), which is
the same number.

2.5 Further examples of tensors

There are also tensors that are antisymmetric in some of their arguments but
not in all of them. As an example, such a tensor may be used to model the
virtual work done under the virtual displacement of a volume element. The
tensor takes in one vector representing the virtual displacement and three
vectors representing the volume element. It is antisymmetric in the three
vectors of the volume element. Another example is the Maxwell’s stress ten-
sor. It is naturally a tensor of type

(

0
3

)

that takes in one vector modeling
virtual displacement and two vectors modeling virtual surface element. It is
antisymmetric in the vectors of the surface element. Let V be three dimen-
sional and t a tensor of T 0

3 (V ) that is antisymmetric in its last two arguments.
We may express t by using a covector basis (α1, α2, α3) as

t = tijkα
i ⊗ αj ⊗ αk.

There are 33 = 27 terms to add in this expression. But now t(u, v, w) =
−t(u,w, v) for all u, v, w ∈ V . Using this to the basis vectors dual to α1, α2, α3

we find tijkα
i(u) = −tikjα

i(u) for all u ∈ V . Thus tijk = −tikj for all indices
i, j, k. This also implies tijj = 0 for all i, j. Using this in the above expression
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for t we find

t =
∑

1≤j<k≤3

t1jkα
1 ⊗ (αj ⊗ αk − αk ⊗ αj)

+
∑

1≤j<k≤3

t2jkα
2 ⊗ (αj ⊗ αk − αk ⊗ αj)

+
∑

1≤j<k≤3

t3jkα
3 ⊗ (αj ⊗ αk − αk ⊗ αj),

where we have only 3 · 3 = 9 terms left to add. This may be written more
compactly by using the exterior product and the summation convention as

t =
∑

1≤j<k≤3

tijkα
i ⊗ (αj ∧ αk).

That the nine terms αi ⊗ (αj ∧ αk) are linearly independent is confirmed in
the familiar way. Thus, when V is three dimensional, the dimension of the
subspace of T 0

3 (V ) consisting of tensors that are antisymmetric in the last
two arguments is 9. Indeed, the matrix of Maxwell’s tensor has nine entries.
(In fact, Maxwell’s tensor will only be represented by a tensor such as t after
an orientation for V has been specified. This is because the 2-vector it takes
in is actually a twisted 2-vector.) Note that t may also be given in the form

t = αi ⊗ ti,

where the 2-covectors ti are given as

ti =
∑

1≤j<k≤3

tijkα
j ∧ αk.

2.6 Inner product

Before concluding this chapter let us examine how some of the above con-
structions appear when an inner product on V is given. An inner product
on V , denoted here as g, is an element of T 0

2 (V ) that satisfies the following
axioms. First, it is symmetric. That is,

g(v, w) = g(w, v)

for all vectors v, w. Second, it is positive definite, meaning that

g(v, v) ≥ 0

21



for all vectors v, with equality only if v = 0. Inner product allows us to
define the norm of a vector and angle between two vectors. The norm ||v||
of vector v is defined by

||v|| = g(v, v)1/2.

The angle u∠v between vectors u and v is defined by

||u||||v||cos(u∠v) = g(u, v).

Vectors u and v are said to be orthogonal if g(u, v) = 0, and orthonormal if
in addition they have unit norms.

Inner product is an additional structure that can be given for a vector
space. To specify the structure one can select a basis which is to be taken as
orthonormal. Let (e1, . . . , en) denote such a basis so that g(ei, ei) = 1 for all
i = 1, . . . , n, and g(ei, ej) = 0 if i 6= j. The specified inner product may thus
be given by using the dual basis (α1, . . . , αn) as

g =
n

∑

i=1

αi ⊗ αi.

This is how one constructs a Cartesian coordinate system in practice. One
uses a ruler and a square to specify line segments that are to be identified with
orthonormal vectors spanning a vector space. One then identifies points with
vectors and takes the components of the vectors in the orthonormal basis as
coordinates. In an arbitrary covector basis (β1, . . . , βn) an inner product g
is given as

g = gijβ
i ⊗ βj,

where the gij’s form a symmetric positive definite matrix.
An inner product allows the identification of vectors and covectors. Let

u be a vector of V . This vector defines a covector βu ∈ V ∗ by

βu(v) = g(u, v) (2.12)

for all v ∈ V . In any basis we have βu(v) = βu
j vj and g(u, v) = giju

ivj so the
components of βu are given as

βu
j = giju

i.

Note that in an orthonormal basis the components of u and βu are equal.
Now, because the matrix of gij’s is positive definite it has an inverse whose
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entries we may denote as gij. We may thus solve from the above equation
the ui’s in terms of the βu

j ’s, that is,

ui = gijβu
j .

This yields the conclusion that for a given covector βu ∈ V ∗ there exists a
unique vector u ∈ V such that (2.12) holds. However, we do not want to think
of the operation of a covector βu on a vector v in terms of a “proxy-vector”
u and an inner product as in (2.12) because this representation depends on
the chosen inner product. We rather want to rely on Figure 2.1 with our
intuition.

Now we turn to the modeling side from the abstract linear algebra con-
sidered so far. So let V be a 3-dimensional vector space and (e1, e2, e3) an
orthonormal basis defining a Cartesian coordinate system. Further, let the
orientation be specified by (e1, e2, e3), and let (α1, α2, α3) be the dual basis.
Evaluating α1 ∧ α2 on arbitrary vectors u, v ∈ V we get

(α1 ∧ α2)(u, v) = u1v2 − u2v1,

a component of the cross product of (u1, u2, u3) and (v1, v2, v3). It gives the
signed area of the parallelopiped formed by the projections of u and v into
the plane spanned by (e1, e2). The sign is plus if the projections form a pair
of vectors that has the same orientation as (e1, e2). Otherwise, the sign is
minus. If u and v belong to the subspace spanned by (e1, e2) this is plus or
minus the area of (u, v). The notion of relative area between pairs of vectors
is now changed to the notion of area of a pair of vectors (with respect to an
inner product). Similarly, evaluating α1∧α2∧α3 on vectors u, v, w ∈ V gives

(α1 ∧ α2 ∧ α3)(u, v, w) = det





u1 v1 w1

u2 v2 w2

u3 v3 w3





which is the scalar triple product of (u1, u2, u3), (v1, v2, v3) and (w1, w2, w3),
and is thus the signed volume of the parallelopiped formed by (u, v, w).
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Chapter 3

Forces in terms of charges and
currents

Let us begin the study of electric and magnetic forces by examining a system
of two interacting objects o1 and o2 in a vacuum. A relevant quantity in the
modeling of such a system is the work done on one of the objects under the
evolution of the system. The work done by object o1 when the center of mass
of object o2 moves along a path is a mapping W [o1, o2] that relates a real
number to the path of movement. In practice this mapping will be realized
by using another quantity that gives contributions to work of infinitesimal
displacements of o2 along its path. For this, let us assume that the evolution
of states occurs without fractures of the objects, and express the evolution
by a smooth one-parameter embedding that maps the objects o1 and o2 into
physical space Ω for each parameter value. That is, we assume that an
embedding

Ψt : o1 ∪ o2 → Ω

is given for all t ∈ T , where T is a real number interval. This makes sense as
the physical space is taken to be a manifold, and the two objects are taken
to be manifolds with boundaries. The images of the objects o1 and o2 under
the embedding are submanifolds with boundaries of Ω and they are denoted
as ot

1 and ot
2.

Manifolds. The idea of a differentiable manifold is to smoothly
patch together local entities on which differentiation is defined.
The resulting global entity will thus be more general than any
individual local entity, and will be useful in a wider range of
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modelings. An appropriate local entity is the vector space R
n.

The derivative of a differentiable mapping of type R
n → R

m

is given by the Jacobian matrix. For the patching together of
the local entities we assume an underlying point set S, and use
bijections χi : Ui ⊂ S → Vi ⊂ R

n, with Vi open, called charts.
A smooth atlas A on S is a collection of charts that satisfies the
axioms

(i) a collection of charts of A covers S, that is
⋃

i∈I Ui = S for
some index set I (existence of covering),

(ii) the charts of A are compatible, meaning that for any two
charts χi and χj with overlapping domains Ui and Uj their
transition map χj ◦ χ−1

i : χi(Ui ∩ Uj) → χj(Ui ∩ Uj) to-
gether with its inverse is infinitely many times differentiable
(smooth compatibility),

(iii) any chart compatible with all overlapping charts of A be-
longs to A (maximality).

A smooth manifold is a pair (S,A). It is n-dimensional if the
charts of A are mappings to R

n.

By axioms (i) and (ii) the differentiability of a mapping from S to
the underlying point set S ′ of another smooth manifold (S ′, A′)
has meaning as this notion does not depend on the charts selected
from A and A′ to represent the mapping. Axiom (iii) ensures
that all compatible charts are allowed (as they should if we are
to regard a smooth atlas as a differentiable structure).

Although S was just a point set to begin with it is given the
structure of topological space by the smooth atlas. We take W ⊂
S to be open if for each point x ∈ W there is a chart in A with
domain U such that x ∈ U ⊂ W [1, 3]. Thus topological notions
such as neighbourhoods of points have meaning on S. If S has the
further topological properties of being Hausdorff separable and
second countable (containing countable basis of open sets) we call
(S,A) a manifold . This definition that begins with a point set S
(rather than a second countable Hausdorff space) emphasizes the
modeling point of view. To specify a smooth atlas for a manifold
it is sufficient to specify a collection of charts satisfying axioms (i)
and (ii). The existence of a unique smooth atlas containing these
charts in then guaranteed [2]. We will often identify a manifold
M = (S,A) with its underlying point set S.
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For some purposes we need to allow the underlying point set S
to have boundary points. These are points that do not have a
neighbourhood diffeomorphic to an open set of R

n; instead we
require that they have a neighbourhood diffeomorphic to an open
set of the half-space Hn = {(x1, . . . , xn) ∈ R

n | xn ≥ 0}. The
half-space Hn has the relative topology induced from the open
sets of R

n. The open sets of Hn are thus of the form Hn ∩ V ,
where V is an open set of R

n. Now, by modifying the above
definition of manifold such that the codomains of the charts are
open sets of Hn results in the notion of manifold with boundary .
If M is a manifold with boundary, then a point x ∈ M is a
boundary point if its images under all charts belong to ∂Hn,
where ∂Hn = {(x1, . . . , xn) ∈ R

n | xn = 0} is the boundary of
Hn. The union of boundary points of M is the boundary of M ,
denoted as ∂M . If ∂M is empty then M is also a manifold. If M
is an n-dimensional manifold with boundary then ∂M is an (n-1)-
dimensional manifold whose boundary is empty [1]. Its smooth
atlas is obtained by restricting the charts of M to ∂M .

Often one needs to do analysis on subsets of a manifold. In the
following we will restrict analysis to subsets that are manifolds
themselves – with the differentiable structure obtained from the
background manifold. Let M be n-dimensional manifold. If there
is for each point of N ⊂ M a chart of M containing this point in
which N looks locally like R

p for some p ≤ n, then, for each such
chart χi with domain Ui, we may form the restriction χi|Ui ∩N :
Ui ∩ N → R

p to obtain an atlas that charts N by open subsets
of R

p. With these charts N becomes a p-dimensional manifold.
Such a subset is called a submanifold of M . In the inset there is
an example of a subset of the manifold R

2 that contains a point
whose neighbourhood, no matter how small, does not look like R

in the charts of R
2.

χ

R
2
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This “figure eight” is thus not a submanifold of R
2. An example

of a (1-dimensional) submanifold of R
2 is a circle in R

2. Note
that a submanifold N ⊂ M has the relative topology obtained by
taking the intersections of the open sets of M with N .

Let us denote as F [ot
1, o

t
2] the force covector at the center of mass of ot

2.
By definition, it gives the virtual work done by o1 on o2 for a tangent vector
describing the virtual displacement of the center of mass of o2.

Tangent vectors. Tangent vectors bring in linearity to the anal-
ysis on manifolds by taking what is common to parametrized
paths through a point on the manifold. Let M be a manifold
and τ : I → M a smooth map from an open interval I ⊂ R

to M such that 0 ∈ I. If τ(0) = x we call τ a trajectory at x.
Two trajectories τ1 and τ2 at x ∈ M are tangent at x if their
representations in a chart have the same derivatives at the origin,
that is, (χ ◦ τ1)

′(0) = (χ ◦ τ2)
′(0). The tangency of trajectories

at a point is well defined because it does not depend on the used
chart (just use another overlapping chart ϕ, apply the chain rule
to (ϕ ◦ τ1)

′(0) = (ϕ ◦ χ−1 ◦ χ ◦ τ1)
′(0), and use the tangency in

chart χ). It is an equivalence relation in the set of all trajectories
at the point. The equivalence class containing τ is denoted as
[τ ]. The set of all equivalence classes of trajectories at x ∈ M is
denoted as TxM .

By using a chart χ for M we may represent an equivalence class
of trajectories [τ ] ∈ TxM by the vector (χ ◦ τ)′(0) ∈ R

n sitting at
the point χ(x) ∈ R

n. In another overlapping chart ϕ, then, the
representation of [τ ] is given by the chain rule as Jϕ◦χ−1

(

χ(x)
)

(χ◦
τ)′(0), where Jϕ◦χ−1

(

χ(x)
)

is the Jacobian matrix of ϕ ◦ χ−1 at
χ(x). This vector is attached to the point ϕ(x). This is how the
representation of [τ ] changes when we change a chart. The above
association of elements of TxM and vectors of R

n can be shown to
be bijective [1]. Thus, we can make TxM an n-dimensional vector
space by defining the vector space operations for its elements in
terms of representative n-tuples by using the vector space struc-
ture of R

n. The resulting vector space structure of TxM is natural
in the sense that it does not depend on the used chart [1]. The
vector space TxM is called the tangent space of M at x, and its
elements are called tangent vectors. Note that it does not make
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(invariant) sense to add tangent vectors from tangent spaces at
different points of M .

The force 1-form F [oT
1 , oT

2 ] is a covector field on Ω that assigns to each
point in the path of movement of o2 a covector at the point. It may be
integrated over oriented 1-dimensional submanifolds of Ω modeling the paths
of movement. Its relation to the work done by o1 when o2 is moved along a
path γ is

W [o1, o2](γ) =

∫

γ

F [oT
1 , oT

2 ]. (3.1)

Orientation and integration. The idea in the integration of
a p-form (a p-covector field) over a p-dimensional submanifold is
to chop the submanifold into small pieces and feed the p-vectors
corresponding to these pieces to the p-covector values of the p-
form. Adding together the resulting numbers gives the value of
the integral. For this process to succeed we must have orientations
specified consistently for all tangent spaces of the submanifold.
The p-vectors we give to the p-covector values of the p-form are
chosen such that they are positively oriented in this orientation
system.

Not all manifolds can be given a consistent orientation system.
We say that a manifold is orientable if we can select an array of
smooth vector fields that form a basis for the tangent space at
each point of the manifold. Such an array defines the array of
smooth 1-forms that constitute the dual basis at each point of
the manifold. If (α1, . . . , αn) is an array of such 1-forms we have
the nonzero n-form α1 ∧ · · · ∧ αn defined on the manifold. An
orientation of a manifold is an equivalence class of arrays of basis
vector fields, two arrays being equivalent if each one of them is
mapped by α1 ∧ · · · ∧ αn to a function that is positive at each
point of the manifold.

Let now N be a p-dimensional submanifold of n-dimensional man-
ifold M . We have a natural inclusion i : N → M by which each
point of N is considered as a point of M . By using this map
we may also consider tangent vectors at points of N as tangent
vectors at points of M . The vector [τ ] ∈ TxN may be considered
as the vector [i ◦ τ ] ∈ Ti(x)M . We may also restrict a covector
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at i(x) ∈ M to a covector at x ∈ N by allowing it to operate
only on vectors of TxN (considered as vectors of Ti(x)M). Such a
restriction will be used to integrate a p-form defined on M over
N .

To chop the submanifold N into pieces we let s be an oriented
p-simplex on N . It is defined formally as an equivalence class
of pairs consisting of a chart for N and an oriented p-simplex in
the codomain of the chart (line segment, triangle, tetrahedron,
corresponding to p=1,2,3, respectively). Two pairs are taken as
equivalent if the change-of-chart map transforms the p-simplices
to each other such that the orientations are preserved (Jacobian
determinant is positive). We will often identify the p-simplex
containing (χ,△) with the preimage χ−1(△). Note that this
definition requires us to specify a class of charts in which each
change-of-chart map has constant Jacobian matrix; it is only the
codomains of these specific charts where the preimage χ−1(△)
appears as a p-simplex. (This will not be a serious drawback be-
cause eventually this structure will be needed for another reason.)
We associate to a p-simplex s containing (χ,△) a p-vector as fol-
lows. We first take an array of tangent vectors (v1, . . . , vp) whose
representation in the chart χ is an orientation defining array of
edge vectors of the simplex △, attached to the barycenter of △.
The p-vector v1 ∧ · · · ∧ vp contains all oriented parallelopipeds
with unit p-volume relative to (v1, . . . , vp). Multipyling it by 1/p!
we get the wanted notion of an “oriented infinitesimal p-simplex”.
The p-vector of s is defined to be 1/p!v1 ∧ · · · ∧ vp. It is denoted
as {s}.

A smooth manifold can always be covered by a family of simplices
that may overlap with each other only at their boundaries [6].
Thus we may assume that such a triangulation is given for the
p-dimensional submanifold N . Further, a triangulation can be
endlessly refined by subdivision procedures. Let k be the number
of p-simplices in the triangulation of N . At any value of k we
arrange all the simplices to be positively oriented in the given
orientation of N . Then, we define the integral of p-form ω over
N as

∫

N

ω = lim
k→∞

k
∑

i=1

ωi({si}),
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where ωi is the p-covector value of ω at the point of the p-vector
{si}. This definition of integration is in accordance with the one
given in [4].

Note that by taking the paths of movement as submanifolds (that do not
have a preferred parametrization) we assume that the rate of movement is
irrelevant. Thus, the evolution of the system may be considered to consist of
successive states of static objects. In the following some particular state of
the system will be taken into consideration. The force covector F [ot

1, o
t
2] at

such a state will be denoted simply as F12, whereas the submanifolds ot
1 and

ot
2 will be denoted as o1 and o2.

3.1 Electrostatic forces on objects with charge

distributions

Let us first examine situations where the source of the interaction under
study may be taken as static distribution of electric charges. I will consider
the charge distributions of the two objects separately by first introducing
volume charge density ρ̃1 of object o1 and volume charge density ρ̃2 of object
o2. The physical space and the two objects will be taken to be 3-dimensional
so that ρ̃1 and ρ̃2 are 3-forms, that is, 3-covector fields. They vanish outside
o1 and o2, respectively. I emphasize that ρ̃1 and ρ̃2 are functions of both o1

and o2, although this is not indicated in the notation. This concerns also all
other quantities that will be introduced. Then, to take into account charges
on the surfaces of the objects, I will use surface charge density σ̃1 of object
o1 and surface charge density σ̃2 of object o2. These are 2-forms that are
defined on ∂o1 ∪ ∂o2, and that vanish outside of ∂o1 and ∂o2, respectively.
For instance, the total charge Q1 of o1 is given as

Q1 =

∫

o1

ρ̃1 +

∫

∂o1

σ̃1. (3.2)

The charge densities are, in fact, twisted differential forms implying that the
signs of their integrals do not depend on the orientation of the underlying
space manifold. (I assume that the space manifold is orientable so that it
will be possible to represent a twisted form by an ordinary one whose sign
depends on the selected orientation.) As charge is conserved in a closed
system such as o1 and o2, the total charges Q1 and Q2 are independent of
the state of the system.
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Integration of twisted forms. The values of a twisted p-form
are twisted p-covectors that operate on twisted p-vectors to yield
numbers. This means that twisted p-forms are made to be in-
tegrated over submanifolds whose tangent spaces can be given
a consistent system of transverse orientations. Not all submani-
folds are of this kind. We call a p-dimensional submanifold N of
n-dimensional manifold M transverse orientable if we can select
an array (α1, . . . , αn−p) of linearly independent smooth 1-forms
each of which satisfies αi(u) = 0 for all tangent vector fields u on
N . One of the two transverse orientations of N is given by the
arrays (v1, . . . , vn−p) of smooth vector fields for which the (n-p)-
form α1 ∧ · · · ∧ αn−p gives a function that is positive everywhere.

Let us assume that M is orientable so we may represent a twisted
p-form by a pair consisting of an ordinary p-form ω and an orien-
tation Or for M . Thus, (−ω,−Or) represents the same twisted
p-form. We may also represent the transverse oriented subman-
ifold N , whose transverse orientation contains (v1, . . . , vn−p), by
the pair (N,Or), where N has an orientation specified by the
array (u1, . . . , up) satisfying

(v1, . . . , vn−p, u1, . . . , up) ∈ Or.

We define the integral of a twisted p-form over submanifold with
transverse orientation by using these representatives. We set

∫

(N,Or)

(ω,Or) =

∫

N

ω.

By using the representation (−ω,−Or) for the twisted p-form
we get the same number because in the representation (N,−Or)
of the transverse oriented submanifold the orientation of N is
reversed according to the above rule.

The charge densities of objects o1 and o2 may both be represented by an
auxiliary quantity. For instance, the quantity related to the charge densities
of o1 is the electric displacement D̃1 of object o1. It is a twisted 2-form whose
defining properties are given by using the exterior derivative d and tangential
trace t1 as

dD̃1 = ρ̃1, (3.3)

[t1D̃1]1 = σ̃1, (3.4)
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where [t1D̃1]1 is the discontinuity of t1D̃1 over ∂o1 (the value outside minus
the value inside). The exterior derivative is restricted to points where D̃1 is
smooth, whereas the tangential traces required to define the above discon-
tinuity restrict D̃1 to ∂o1 from the two sides by using the natural inclusion
map. The electric displacement D̃2 of object o2 is defined similarly.

Exterior derivative. The exterior derivative of a p-form is a
(p+1)-form that measures, when evaluated on the (p+1)-vector of
a given (p+1)-simplex, the integral of the p-form over the bound-
ary of the simplex when the simplex is made vanishingly small.
Given a p-form ω its exterior derivative is the (p+1)-form dω
whose value at arbitrary point x of the manifold is defined for
vectors v1, . . . , vp+1 by

(dω)x(v1, . . . , vp+1) = lim
t→0

(p + 1)!

tp+1

∫

∂st

ω,

where st is the (p+1)-simplex whose (p+1)-vector is tp+1/(p +
1)!v1 ∧ · · · ∧ vp+1. In the inset we show an example where p = 2.

v2

v1

tv1

tv2

tv3

v3

The above definition requires an orientation to be specified for
∂st. For this we first consider st as a (p+1)-dimensional sub-
manifold whose orientation is specified by the array (v1, . . . , vp+1)
(extended to be an array of smooth vector fields on st by us-
ing a chart). We further give ∂st a transverse orientation that
consists of all vectors pointing outside from st. This determines
an orientation for ∂st according to the familiar rule, and this is
the orientation used in the definition above. This definition of
exterior derivative is in accordance with the one given in [4].
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By the above definition we have for a 0-form f (that may be
identified with a function) the following expression for (df)x(v)
in chart χ. By using symbols f̂ , x and v for f ◦ χ−1, χ(x) and
(χ ◦ τ)′(0), where τ ∈ v, we have

(df)x(v) = lim
t→0

f̂(x + tv) − f̂(x)

t
.

Thus (df)x(v) is the directional derivative of f to the direction
of v.

For twisted forms the exterior derivative is defined in terms of
representatives. For the twisted p-form represented by (ω,Or)
its exterior derivative is the twisted (p+1)-form represented by
(dω,Or).

The defining properties of quantities D̃1 and D̃2 are designed to introduce
into the model the idea that the total charge of an object may be obtained
by integrating its electric displacement over any closed surface surrounding
the object. To see this, let us first select an observation surface surrounding
object o1. This surface is the boundary of o′1 that contains object o1 as its
subset. Then, since ρ̃1 vanish in o′1 − o1, the total charge of object o1 may be
given as

Q1 =

∫

o1

dD̃1 +

∫

o′
1
−o1

dD̃1 +

∫

∂o1

[t1D̃1]1.

By further requiring that the intersection of ∂o′1 and ∂o1 is empty, and by
using Stokes’ theorem to the first two terms we find that the term involving
the discontinuity of t1D̃1 vanishes. We thus have the desired property

Q1 =

∫

∂o′
1

D̃1

for all appropriate observation surfaces ∂o′1.

Stokes’ theorem. The exterior derivative is defined such that
for a p-form ω and a (p+1)-simplex s (whose (p+1)-vector resides
at point x) we have the approximate relation

(dω)x({s}) ≈

∫

∂s

ω.
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Thus, when we integrate dω over (p+1)-dimensional submanifold
N whose triangulation contains k simplices, we have, by endlessly
subdividing the triangulation,

∫

N

dω = lim
k→∞

k
∑

i=1

(dω)i({si}) = lim
k→∞

k
∑

i=1

∫

∂si

ω =

∫

∂N

ω,

where the last equality follows because each p-simplex (subset of
∂si) that is not a subset of ∂N appears twice, and with opposite
orientations. Here ∂N has an orientation determined from the
outward pointing transverse orientation for ∂N and the orienta-
tion of N by using the familiar rule. The second equality above
needs proving. For a rigorous treatment, see [4]. This is Stokes’
theorem, see also [1, 2, 3, 5].

When Stokes’ theorem is applied to twisted forms, the submani-
fold and its boundary must have transverse orientations. In terms
of representatives we have

∫

(N,Or)

d(ω,Or) =

∫

(N,Or)

(dω,Or) =

∫

N

dω =

∫

∂N

ω =

∫

(∂N,Or)

(ω,Or).

In the inset we clarify how the orientations work in case of a 2-
dimensional transverse oriented submanifold of a 3-dimensional
manifold. The dashed arrows indicate the orientations used to
represent the transverse orientations (shown in solid lines).

For a relation between charges and forces we will first express the force
on o2 by using local force densities. More precisely, the force covector F12

will be expressed by using volume force density F̃12 and surface force density
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f̃12 as

F12 =

∫

o2

F̃12 +

∫

∂o2

f̃12. (3.5)

The force F21 will be expressed similarly in terms of force densities F̃21 and
f̃21. Here, the force densities are taken as covector-valued differential forms.

Vector- and covector-valued forms. Covector-valued p-form
on a manifold is an object whose value at a point on the manifold
is a linear map from p-vectors at the point to covectors at the
point. For more precise definition, let us denote as T p

xM and T x
p M

the p-vector space and p-covector space at x ∈ M , respectively,
and consider the vector space of linear maps from T p

xM to T x
1 M .

This vector space is denoted as L(T p
xM ; T x

1 M). A covector-valued
p-form on M is a field of such objects defined at the points of M .

There is a dual point of view of covector-valued forms which is ob-
tained by identifying the space L(T p

xM ; T x
1 M) with L(T 1

xM ; T x
p M).

For this, let us consider ηx ∈ L(T p
xM ; T x

1 M), and notice that
for fixed vector vx ∈ T 1

xM the map that sends ux ∈ T p
xM to

ηx(ux)(vx) ∈ R is a p-covector at x. Let us denote this p-covector
as G(ηx, vx). By definition, it satisfies

G(ηx, vx)(ux) = ηx(ux)(vx).

Since the p-covector G(ηx, vx) depends linearly on vx it is ac-
tually the result of the operation of G(ηx, ·) ∈ L(T 1

xM ; T x
p M)

on vx. Thus, for given ηx ∈ L(T p
xM ; T x

1 M) we find G(ηx, ·) ∈
L(T 1

xM ; T x
p M) by the above procedure. This correspondence is

linear and bijective making the two spaces isomorphic [7]. De-
pending on the situation we will use both of these points of view
when working with covector-valued forms.

There is yet another point of view of covector-valued forms which
shows that we are dealing with tensor fields of specific type. For
this we consider the successive operations of ηx ∈ L(T p

xM ; T x
1 M)

on a p-vector and a vector. By similar arguments as above we find
that ηx may be identified with an element of L(T 1

xM × T p
xM ; R),

that is, with a covariant tensor of order p + 1 which is antisym-
metric in its last p arguments.
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A similar construction is behind vector-valued p-forms on M . The
value of a vector-valued p-form at x ∈ M is thus an element of
L(T p

xM ; T 1
xM).

To clarify the integration above, we first note that F̃12 being a covector-
valued 3-form means its operation on a vector field v (by using the dual point
of view) yields the 3-form G(F̃12, v) that may be integrated over 3-dimensional
submanifolds. Similarly, the operation of the covector-valued 2-form f̃12 on
a vector field v yields the 2-form G(f̃12, v). As was the case with the charge
densities these 3- and 2- forms are twisted differential forms. Then, following
the idea that the virtual displacement vector represents the displacements of
all the points of o2, we define the integral

∫

o2

F̃12 +
∫

∂o2

f̃12 to be the covector
whose value on vector v is given as

( ∫

o2

F̃12 +

∫

∂o2

f̃12

)

(v) =

∫

o2

G(F̃12, v) +

∫

∂o2

G(f̃12, v),

where v on the right hand side is extended to be a constant vector field. To
give meaning to the notion of constant vector field we assume a connection
on Ω.

Connection and covariant derivative. The concept of mani-
fold does not yet contain the idea of a constant vector field. The
additional structure needed is a connection. It may be defined as
a mapping ∇ that takes two smooth vector fields u and v on the
manifold M to a third smooth vector field on M . The resulting
vector field is denoted as ∇uv. For smooth functions f, g on M
and smooth vector fields u, v, w on M any connection ∇ satisfies
the axioms

(i) ∇fu+gvw = f∇uw + g∇vw (function-linearity in the first
argument),

(ii) ∇u(fv + gw) = f∇uv + df(u)v + g∇uw + dg(u)w (product
rule of derivatives and linearity in the second argument).

These two axioms state that ∇u is a first order derivative of vec-
tor fields. The resulting vector field ∇uv is called the covariant
derivative of v to the direction of u.

Covariant derivative generalizes to vector fields the directional
derivative of functions. Thus, the latter is sometimes denoted
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by the same symbol so that ∇uf = df(u). In particular, as is
the case with df(u), the value of ∇uv at a point depends on the
value of u only at this point (and not on its values at neighbouring
points). This is implied by axiom (i), and it gives meaning to the
covariant derivative of a vector field to the direction of a vector
at a point. A vector field being constant means its covariant
derivative to the direction of all vectors at a point vanishes for all
points. This is conveniently expressed as ∇v = 0. Note that ∇
being function-linear in the direction argument, we may view ∇v
as a vector-valued 1-form.

In general one cannot define a constant vector field on a manifold.
This is elucidated in the inset where we show a failed attempt to
draw a constant vector field over a loop on 2-dimensional sphere
embedded in 3-dimensional Euclidean space. The example is from
Burke [5]. Thus, the idea of general use is that of locally constant
vector field, that is, one whose first derivatives at a point vanish.

Having defined the covariant derivative for functions and vector
fields it may be uniquely extended to all smooth tensor fields
on M [1]. In particular, we then have for smooth 1-form ω and
smooth vector field v the relation ∇u(ω(v)) = (∇uω)(v)+ω(∇uv)
for all smooth vector fields u, and we see what it means for a 1-
form to be constant (meaning that ∇ω = 0). A similar relation
holds also for other types of tensor fields [1]. The covariant deriva-
tive is a tensor derivation, meaning, in particular, that for p-form
ω and q-form η we have ∇u(ω ∧ η) = ∇uω ∧ η + ω ∧∇uη [1].

An expression for ∇uv in a chart may be given in terms of basis
vector fields e1, . . . , en of the chart by first expressing u and v as
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u = uiei and v = viei. Here, I have made use of the summation
convention. Then, by defining smooth functions Γk

ij on the chart
by ∇ei

ej = Γk
ijek, and using axioms (i) and (ii), we have in the

chart

∇uv = (dvk(u) + uivjΓk
ij)ek.

The functions Γk
ij are called the Christoffel symbols of the connec-

tion in the given chart. They express how the basis vector fields
change to the direction of other basis vector fields, and thus make
sure that ∇uv does not depend on the basis used to represent u
and v. When the manifold may be covered by single chart, the
specification of the Christoffel symbols provides a convenient way
to specify a connection.

Although a connection provides us enough to say whether the extended
vector field in the above definition of integration is constant, we still need to
make sure that the assumed extension to a constant vector field is possible.
This is guaranteed by requiring that both o1 and o2 reside on neighbourhoods
that are parallelizable manifolds.

Parallelizable manifold. A manifold with connection is called
parallelizable if there is an array of constant basis vector fields
on the manifold. Note that given such a basis the 1-forms of
the associated dual basis are also constant. The collection of
all constant bases on the manifold is called a parallelism of the
manifold. Alternatively, parallelism may be taken as a collection
of all charts whose change-of-chart maps have constant Jacobian
matrices; when restricting to such charts the changing of chart
does not affect a vector field appearing constant.

To further clarify the integration of the force densities we first take v to
be the constant virtual displacement vector field. The operation of F̃12 and
f̃12 on v may be given in terms of basis 1-forms ω1, ω2, ω3 as

G(F̃12, v) = ωi(v)(F̃12)i,

G(f̃12, v) = ωi(v)(f̃12)i,

where (F̃12)i and (f̃12)i are twisted 3- and 2-forms for i = 1, 2, 3. Here we
have the summation convention in use again. When the basis 1-forms ωi are
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constant the components ωi(v) of v are also constant, and the information
on the distribution of forces is contained in the components (F̃12)i and (f̃12)i.
The integration may be performed as

∫

o2

G(F̃12, v) +

∫

∂o2

G(f̃12, v) =

∫

o2

ωi(v)(F̃12)i +

∫

∂o2

ωi(v)(f̃12)i

= ωi(v)

( ∫

o2

(F̃12)i +

∫

∂o2

(f̃12)i

)

,

so in practice we integrate the components (F̃12)i and (f̃12)i.
Our next goal will be to find a relation between charge densities and force

densities. For this, we introduce electric field intensity E1 of object o1. This
is a 1-form whose relation to the force densities F̃12 and f̃12 is written by
using the exterior product ∧ and the interior product iv as

G(F̃12, v) = ρ̃2 ∧ ivE1, (3.6)

G(f̃12, v) = σ̃2 ∧ t2ivE1. (3.7)

We require (3.6) and (3.7) for all vector fields v so they determine F̃12 and
f̃12. Here, I assume that o1 and o2 are distinct objects whose boundaries have
no common points, so t2ivE1 is well defined (E1 is continuous on ∂o2).

Interior product. The interior product of a p-form with a vector
field is the (p-1)-form obtained by putting the vector field in the
first argument place of the p-form. Formally, given a p-form ω its
interior product with vector field v is the (p-1)-form ivω defined
by

ivω(u2, . . . , up) = ω(v, u2, . . . , up)

for all vector fields u2, . . . , up. In addition to being linear in both
of its arguments the interior product satisfies ifvω = f ivω for all
functions f . Thus ivω may be viewed as the result of a covector-
valued (p-1)-form operating on the vector field v. An important
property of interior product is that for p-form ω and q-form η it
satisfies

iv(ω ∧ η) = ivω ∧ η + (−1)pω ∧ ivη,
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as proved in [1, 3]. Together with the linearity property this
states that iv is an antiderivation. The antiderivation property
will be used repeatedly when deriving basis representations in the
appendices.

Note that according to (3.7) the 2-form G(f̃12, v) takes in only tangent
vectors of ∂o2 whereas the vector field v is not a tangent vector field on
∂o2. Thus, although the two-form part of f̃12 is defined on ∂o2, the covector-
values of f̃12 are located at the points of the space manifold wherein ∂o2 is
embedded. This means f̃12 is a covector-valued form only in an extended
sense: its value at x ∈ ∂o2 is not an element of L

(

T 2
x∂o2; T

x
1 ∂o2

)

but an
element of L

(

T 2
x∂o2; T

x
1 Ω

)

(where in T x
1 Ω we mean the image point of x

under the natural inclusion map).
The defining properties of E1 may be given by using the exterior derivative

and tangential trace as

dE1 = 0, (3.8)

[t1E1]1 = 0, (3.9)

where the exterior derivative is restricted to points where E1 is smooth.
Finally, the last of the required defining properties of (E1, D̃1) is given by
using the Hodge operator ⋆ as

D̃1 = ǫ0 ⋆ E1, (3.10)

where ǫ0 is the permittivity of vacuum. The relations (3.3)-(3.10) constitute
an abstraction of Coulomb’s force law concerning the interaction of static
point charges (see [8, 9]). As a consequense of the Hodge operator the relation
between (ρ̃1, σ̃1) and E1, defined by (3.3), (3.4), (3.8), (3.9), and (3.10),
requires a Riemannian metric on Ω. The electric field intensity E2 of object
o2 is defined similarly.

Riemannian metric and Hodge operator. To give meaning
to metric notions (lengths, angles, etc) on a manifold an addi-
tional structure is needed. For this we need an inner product for
each tangent space of the manifold. A Riemannian metric g on
a manifold M is a smooth field of inner products on M . A pair
(M, g) is called a Riemannian manifold . Note that a Riemannian
metric may be taken as a covector-valued 1-form. This is eluci-
dated in the inset where we represent the value of g at a point by
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an ellipse showing the trajectory formed by the tip of all unit vec-
tors at the point. The parallel lines with the arrowhead on one of
them represent the covector gx(ux). The method of visualization
is from Burke [5].

gx(u)

u

With a Riemannian metric each tangent space of a manifold be-
comes an inner product space giving meaning to the norm of
vector and angle between vectors at a point. Also, the length of a
curve may be defined by taking a unit vector field u tangent to the
curve, and integrating the 1-form g(u) over the curve. Finally, the
distance between any two points is defined (on a connected man-
ifold) by taking the infimum of lengths of curves connecting the
points. The topology induced by this distance (metric) coincides
with the underlying manifold topology [1, 2].

A Riemannian metric gives rise to an important operator of mul-
tivector fields and differential forms. To obtain it we first note
that for each point x ∈ M the inner product on T 1

xM induces an
inner product on the p-vector spaces T p

xM . The inner product
of p-vectors u1 ∧ · · · ∧ up and v1 ∧ · · · ∧ vp is given by the de-
terminant of the matrix with entries g(ui, vj) [4, 11]. Then, we
take a p-vector ux ∈ T p

xM and consider the linear map that sends

an (n-p)-vector vx ∈ T
(n−p)
x M to the n-vector ux ∧ vx ∈ T n

x M .
Once a unit n-vector σx ∈ T n

x M has been selected for the basis of
T n

x M (T n
x M is 1-dimensional) this map may be identified with a

real-valued linear map on T
(n−p)
x M . It then follows from Riesz’s

representation theorem that there exists a unique (n-p)-vector

ûx ∈ T
(n−p)
x M , such that

ux ∧ vx =< ûx, vx > σx for all vx ∈ T (n−p)
x M,
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where < ·, · > denotes the inner product of T
(n−p)
x M . The sign

of ûx depends on the sign of σx, but the twisted (n-p)-vector
represented by (ûx, σx) (or (−ûx,−σx)) is uniquely determined by
ux. This twisted (n-p)-vector is denoted as ⋆ux, and the operator
thus obtained is the Hodge operator of multivectors. We also note
that the (n-p)-vector ûx is uniquely determined by the twisted p-
vector represented by (ux, σx), so we obtain the Hodge operator of
twisted multivectors. These operators may be used to define the
Hodge operator of p-covectors (twisted or not). For instance, the
Hodge operator of a p-covector ωx ∈ T x

p M is defined such that

(⋆ωx)(ṽx) = ωx(⋆ṽx) for all ṽx ∈ T̃ (n−p)
x M,

where T̃
(n−p)
x M is the space of twisted (n-p)-vectors at x ∈ M .

Finally, the Hodge operator of p-vector fields and p-forms may be
defined in a pointwise fashion [4].

Now we are in a position where the electric fields (E1, D̃1) and (E2, D̃2)
may be determined if the charge densities (ρ̃1, σ̃1) and (ρ̃2, σ̃2), and the metric
tensor g, are given beforehand. Also, the electric field intensities E1 and E2

are related to the force densities (F̃12, f̃12) and (F̃21, f̃21), and finally, once
also a connection is given, they determine the total forces F12 and F21 by
integration. By taking the objects o1 and o2 to be rigid these two quantities
will be observable. By calling an object rigid it is meant that the distances
between every two points of the object remain the same under the evolution
of the system. To make the constant virtual displacement vector field to
agree with this notion of rigidity we relate our connection to the used metric
in a specific way. This is achieved by requiring that the connection is metric
compatible, and that it is in a specific relation to the Lie bracket. The proof
that these properties guarantee a constant virtual displacement not to distort
distances will have to wait until the beginning of the next chapter.

Lie bracket. The Lie bracket arises from considering vector fields
as differential operators on functions. Given a smooth vector field
u on M , we define a first order differential operator on smooth
functions on M , denoted with the same symbol u, such that its
value u(f) for a function f is given as u(f) = df(u). The smooth
functions on M have the product of functions defined in a point-
wise fashion. That the operator u satisfies the Leibniz derivation
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rule with respect to this product ensures it is a differential opera-
tor of first order [1, 5]. Besides the above observation that vector
fields may be considered as such operators, it turns out that the
converse is also true [1, 2, 5]. Furthermore, this correspondence
between vector fields and first order differential operators (con-
sidered as vector spaces) is linear and bijective, making the two
isomorphic [1, 2]. In particular, the basis vector fields of a coor-
dinate chart correspond to partial derivatives with respect to the
coordinates.

By using the above isomorphism, we find that a pair of vector
fields may be used to obtain yet another vector field. For this,
we note that the operator u ◦ v − v ◦ u is a first order differential
operator as the involved second derivatives are canceled. This
may be verified by using a coordinate chart [1, 2, 5]. The vector
field corresponding to this new differential operator is the Lie
bracket of u and v, denoted as [u, v].

By the above definition of [u, v] we may determine its repre-
sentation in the basis of a coordinate chart. We denote the
coordinate functions as x1, . . . , xn, and take into account that
the basis vector fields e1, . . . , en correspond to partial derivatives
∂/∂x1, . . . , ∂/∂xn, to get

[u, v] = (uj ∂vi

∂xj
− vj ∂ui

∂xj
)

∂

∂xi
,

where the summation convention is in act. Thus, the Lie bracket
[u, v] is represented in the chart by the derivative of v to the di-
rection of u minus the derivative of u to the direction of v. This is
elucidated in the inset where the value of [u, v] at a point is rep-
resented by the bold arrow divided by t in the limit t → 0. Bold

−v(x)

v
(

x + tu(x)
)

u(x)

−u
(

x + tv(x)
)

symbols denote the arrays of components of vectors (whose base
points are adjusted for visual effect). In particular, for the basis
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vector fields e1, . . . , en of a coordinate chart, we have [ei, ej] = 0
for all indices i, j.

Taken together, the above requirements for our connection means we use
the Levi-Civita connection determined by the metric.

Levi-Civita connection. On a Riemannian manifold symmetric
and metric compatible connection is uniquely specified by the
metric tensor. This is called the Levi-Civita connection. Given
smooth vector fields u, v, w on a Riemannian manifold (M, g) the
Levi-Civita connection ∇ satisfies

(i) ∇uv −∇vu = [u, v] (symmetry),

(ii) ∇u(g(v, w)) = g(∇uv, w)+g(v,∇uw) (metric compatibility).

The existence and uniqueness of ∇ is guaranteed by the Funda-
mental theorem of Riemannian geometry [1, 2].

Applying property (i) to basis vector fields e1, . . . , en of a coor-
dinate chart, and taking into account that [ei, ej] = 0 for all i, j,
we see that this property is equivalent in the coordinate chart
to the symmetry of Christoffel symbols Γk

ij in the lower indices.
The property (ii) expresses the relation between connection and
metric, which appears in a coordinate chart as a relation between
Christoffel symbols and the components g(ei, ej) of the metric
tensor. By a property of the covariant derivative this condition is
equivalent to the metric tensor being constant, that is, ∇g = 0.

I emphasize a difference in the above definitions to classical textbook ap-
proaches (such as that in [10]). This can be seen most directly by taking one
of the objects, say o2, to be arbitrarily small, meaning that E1 is constant
on o2. Then, from (3.2), (3.5), (3.6) and (3.7), we have F12 = Q2E1, with E1

taken as a covector at the point of o2. Now, the covector E1 is determined by
the charge distribution of object o1, the effect of object o2 on the distribution
being taken into account. Since we allow for o2 to affect the charge distri-
bution behind E1 the total charge of o2 needs not to be (infinitely) small
in order to calculate the force on it by the above formula. This is contrary
to the electric field intensity of classical textbooks from which the effect of
the test charge (object o2 in this case) is removed by a limiting process con-
cerning the magnitude of the test charge. Thus, E1 is not the electric field
intensity of classical textbooks. We call it the electric field intensity of object
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o1, although a more descriptive name would be “the electric field intensity of
object o1 in the presence of object o2”.

To examine whether the above theory has Newton’s law of action and
reaction we first note that since F̃21 vanishes on o2, and since f̃21 vanishes on
∂o2, the force on o2 is given as

F12 =

∫

o2

(F̃12 + F̃21) +

∫

∂o2

(f̃12 + f̃21).

To transfer the integration above to integration over o1 we first require par-
allelizability from a sufficiently large neighbourhood containing both of the
objects o1 and o2. Then we express F̃12 and F̃21 as derivatives of other
covector-valued forms defined at least on this neighbourhood. That this will
be possible is guaranteed by the fact that the neighbourhood is parallelizable
and 3-dimensional: the components of F̃12 and F̃21 in a constant covector
basis are 3-forms that may be expressed as exterior derivatives of 2-forms.
Accordingly, we introduce the stress T̃12 as a covector-valued twisted 2-form.
It is defined by using the covariant exterior derivative d∇ such that

d∇T̃12 = F̃12, (3.11)

[t2T̃12]2 = f̃12, (3.12)

where the derivative is restricted to points where T̃12 is smooth, and the
tangential trace operates only on the 2-form part of T̃12. The stress T̃21 is
defined similarly.

Covariant exterior derivative. Covariant exterior derivative
extends the ordinary exterior derivative to the exterior derivative
of covector-valued differential forms. It makes use of a connec-
tion to apply the ordinary exterior derivative covariantly (inde-
pendently of basis representation) to the differential form -part of
the covector-valued differential form. To define it we first need a
generalization of the exterior product of differential forms [12, 13].
For covector-valued p-form η and vector-valued q-form ν their ex-
terior product η∧̇ν is the (p+q)-form obtained by using the pair-
ing of covector and vector values in the ordinary exterior prod-
uct (instead of the pointwise multiplication of real values). For
instance, in the case of a covector-valued 1-form η and a vector-
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valued 1-form ν we have

η∧̇ν(u1 ∧ u2) = η(u1)
(

ν(u2)
)

− η(u2)
(

ν(u1)
)

= −
(

η(u2)
(

ν(u1)
)

− η(u1)
(

ν(u2)
)

)

= −ν∧̇η(u1 ∧ u2)

for arbitrary vector fields u1, u2. Now, the covariant exterior
derivative of a covector-valued p-form η is the covector-valued
(p+1)-form d∇η, defined by

G(d∇η, u) = d
(

G(η, u)
)

−∇u∧̇η

for all vector fields u [12, 13]. Here, we consider ∇u as a vector-
valued 1-form. On the right hand side, the second term is there
to cancel the derivatives of u contained in the first term.

A local representation of G(d∇η, u) may be obtained by using
basis vector fields e1, . . . , en of a chart and the associated dual
basis 1-forms ω1, . . . , ωn. By expressing G(η, u) in this basis as
ωi(u)ηi we get

d
(

G(η, u)
)

= d(ωi(u)ηi)

= dui ∧ ηi + uidηi,

where we have used the product rule of derivative that applies
to d. To evaluate the term ∇u∧̇η it is convenient to use the
tensor point of view of ∇u and η. Thus we identify the covector-
valued p-form η with ωi ⊗ ηi and the vector-valued 1-form ∇u
with ek ⊗ αk, where αk = duk + Γk

iju
jωi. By using the above

definition of ∧̇, with P (1, p) the set of all permutations σ of the
index set {1, . . . , 1 + p} satisfying σ(2) < · · · < σ(1 + p), we have

(ek ⊗ αk)∧̇(ωi ⊗ ηi)(u1, . . . , u1+p)

=
∑

σ∈P (1,p)

sgn(σ)ηi(uσ(2), . . . , uσ(1+p))ω
i(αk(uσ(1))ek)

=
∑

σ∈P (1,p)

sgn(σ)ωi(ek)α
k(uσ(1))ηi(uσ(2), . . . , uσ(1+p))

= ωi(ek)
∑

σ∈P (1,p)

sgn(σ)αk(uσ(1))ηi(uσ(2), . . . , uσ(1+p))

= ωi(ek)α
k ∧ ηi(u1, . . . , u1+p)
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for arbitrary vector fields u1, . . . , u1+p. Thus, we get

∇u∧̇η = ωi(ek)α
k ∧ ηi

= αk ∧ ηk

= (duk + Γk
iju

jωi) ∧ ηk.

This yields for the covariant exterior derivative the basis repre-
sentation

G(d∇η, u) = ωi(u)(dηi − Γk
jiω

j ∧ ηk),

and we see the Christoffel symbols appearing to ensure that the
derivative does not depend on the used basis. In a constant basis
this is just the exterior derivative operating on the components ηi.
Note that in the general Riemannian case the covariant exterior
derivative that uses the Levi-Civita connection depends on the
metric of the manifold.

Relations (3.11) and (3.12) may be compared to (3.3) and (3.4). By
using an observation surface ∂o′2 surrounding o2 (similar to ∂o′1 used before,
see Figure 3.1) we may write

F12 =

∫

o2

d∇(T̃12 + T̃21) +

∫

o′
2
−o2

d∇(T̃12 + T̃21) +

∫

∂o2

[t2(T̃12 + T̃21)]2,

where we have made use of the linearity of covariant exterior derivative and
the trace operator. As the integrands operate on only constant vector fields,
Stokes’ theorem may be used to the first two terms. We find that the terms
involving the discontinuity of t2(T̃12 + T̃21) cancel out. We get

F12 =

∫

∂o′
2

(T̃12 + T̃21).

Stokes’ theorem for covector-valued forms. The definitions
of integration and exterior differentiation of covector-valued forms
are compatible in the sense of Stokes’ theorem. To see this, we
take a smooth covector-valued p-form η, and consider the integral
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v

o2

v

∂o′
2

o1

Figure 3.1: An example of valid observation surface ∂o′2 to obtain Newton’s
law of action and reaction. Since a neighbourhood containing o1 and o2 is
parallelizable, we may compare forces on the two objects by taking parallel
test displacements such as v.

of d∇η over (p+1)-dimensional submanifold N . By the definition
of integration, we have

(

∫

N

d∇η
)

(u) =

∫

N

G(d∇η, u),

where u is taken as a vector on the left hand side and as a constant
vector field on the right hand side. By the definition of covariant
exterior derivative, we have

∫

N

G(d∇η, u) =

∫

N

(

d
(

G(η, u)
)

−∇u∧̇η
)

=

∫

N

d
(

G(η, u)
)

,

where the last equality follows as u is constant. Then, by Stokes’
theorem for (ordinary) differential forms, we have

∫

N

d
(

G(η, u)
)

=

∫

∂N

G(η, u),

and, finally, by the definition of integration
∫

∂N

G(η, u) =
(

∫

∂N

η
)

(u),

where u is again taken as a vector on the right hand side. Since
u is arbitrary, we have the Stokes’ theorem

∫

N
d∇η =

∫

∂N
η.

Finally, by selecting the above discussed parallelizable neighbourhood,
denoted as o′12, to be large enough so that the integral of T̃12 + T̃21 over ∂o′12
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vanishes (the vanishing of fields at infinity), we get

F12 =

∫

∂o′
2

(T̃12 + T̃21) = −

∫

∂(o′
12
−o′

2
)

(T̃12 + T̃21) = −F21, (3.13)

where the final equality is obtained by using similar arguments as earlier, but
in reverse order (using the fact that ∂(o′12 − o′2) is a valid observation surface
for o1). By the equality in (3.13) of covectors at different points we mean
the equality of the numbers they yield for parallel vectors at the points, see
Figure 3.1. Note that this result also makes use of the symmetry of T̃12 + T̃21

in the subscript indices.
The weak point of the above theory is that it assumes that the charge

densities are known beforehand. Thus, our task of constructing a relation
between charges and forces is not yet complete: the charge densities corre-
sponding to given total charges still need to be determined. In an attempt
to deal with this difficulty, let us define E and D̃ by

E = E1 + E2,

D̃ = D̃1 + D̃2,

and call the pair (E, D̃) the total electric field . Note that we do not take
as starting points any additional defining properties of (E, D̃). Instead, they
are implied by the defining properties of (E1, D̃1) and (E2, D̃2).

An example case in which the above move is useful is obtained by as-
suming that (E, D̃) and the charge densities vanish inside of o1 and o2 (ideal
conductors). In this case the surface charge densities σ̃1 and σ̃2 may be de-
termined for the given total charges Q1 and Q2. To examine this in more
detail let us deduce the defining properties of (E, D̃) from those of (E1, D̃1)
and (E2, D̃2). This is done with a convenient notation if we restrict E and
D̃ outside of o1 and o2 where they are supported. Then, by the linearity of
exterior derivative and Hodge operator, we have

dE = 0, (3.14)

dD̃ = 0, (3.15)

D̃ = ǫ0 ⋆ E. (3.16)

In addition, we have
∫

∂o1

D̃ = Q1, (3.17)

∫

∂o2

D̃ = Q2, (3.18)
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and further

t1E = 0, (3.19)

t2E = 0, (3.20)

which follows by the linearity of tangential traces. Once (E, D̃) is determined
from the boundary value problem defined by (3.14)-(3.20) the surface charge
densities are given according to (3.4) as

σ̃1 = t1D̃, (3.21)

σ̃2 = t2D̃. (3.22)

Finally, by using σ̃1 (resp. σ̃2) as the source we may solve the pair (E1, D̃1)
(resp. (E2, D̃2)) from another boundary value problem, and determine the
surface force density f̃12 (resp. f̃21). This yields the force covector F12 (resp.
F21) by integration.

The above discussion raises a practical question of whether one could
avoid the task of solving (E1, D̃1) (or (E2, D̃2)) and obtain forces directly
from (E, D̃). To answer this, we first note that by (3.6) the decomposition
of E1 as E − E2 implies a decomposition of F̃12 as

F̃12 = F̃2 − F̃22,

where F̃2 and F̃22 are defined by

G(F̃2, v) = ρ̃2 ∧ ivE, (3.23)

G(F̃22, v) = ρ̃2 ∧ ivE2, (3.24)

for all vector fields v. This follows from the linearity of interior product
and the bilinearity of exterior product. In the decomposition of f̃12 we run
into the problem that E and E2 may not be continuous at the points of
∂o2. To overcome this problem we first express t2ivE1 by using the average
value (t2ivE1)

av = (t+
2 ivE1 + t−2 ivE1)/2, where t+

2 and t−2 restrict ivE1 to ∂o2

from the two sides (in the same way as with the terms [t2E2]2 and [t2D̃2]2).
Since v and E1 are continuous at the points of ∂o2 the average (t2ivE1)

av

may be calculated by just using the values of v and E1 on ∂o2. Thus the
average (t2ivE1)

av coincides with t2ivE1. Averages are needed only for the
decomposition of t2ivE1 on ∂o2, which now results in the decomposition of
f̃12 as

f̃12 = f̃2 − f̃22,
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where f̃2 and f̃22 are defined by

G(f̃2, v) = σ̃2 ∧ (t2ivE)av, (3.25)

G(f̃22, v) = σ̃2 ∧ (t2ivE2)
av, (3.26)

for all vector fields v. Here the terms (t2ivE)av and (t2ivE2)
av should be

understood in such a way that they require the values of v only at points of
∂o2 (and not on the two sides wherein E and E2 are evaluated). The force
on o2 may be written as

F12 =

∫

o2

F̃12 +

∫

∂o2

f̃12

=

∫

o2

(F̃2 − F̃22) +

∫

∂o2

(f̃2 − f̃22)

=

∫

o2

F̃2 +

∫

∂o2

f̃2 −

( ∫

o2

F̃22 +

∫

∂o2

f̃22

)

.

To see that the term in parenthesis vanishes, and thus may be called the
self-force of o2, we define a covector-valued twisted 2-form T̃22, such that

d∇T̃22 = F̃22, (3.27)

[t2T̃22]2 = f̃22, (3.28)

and proceed with the integration as before to get
∫

o2

F̃22 +

∫

∂o2

f̃22 =

∫

∂o′
2

T̃22.

The right hand side of this may be given as
∫

∂o′
2

T̃22 = −

∫

∂(o′
12
−o′

2
)

T̃22 = −

∫

o′
12
−o′

2

d∇T̃22 = −

∫

o′
12
−o′

2

F̃22 = 0,

since F̃22 vanishes outside of o2. Note that the vanishing of self-force re-
quires the use of a parallelizable neighbourhood o′12 whose boundary gives no
contribution to the integral of T̃22. We thus have

F12 =

∫

o2

F̃2 +

∫

∂o2

f̃2, (3.29)
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so that the force on o2 may be evaluated directly from (E, D̃). This process
may further be simplified by first defining covector-valued twisted 3- and
2-forms F̃ and f̃ by

F̃ = F̃1 + F̃2, (3.30)

f̃ = f̃1 + f̃2, (3.31)

and a covector-valued twisted 2-form T̃ , such that

d∇T̃ = F̃ , (3.32)

[tT̃ ] = f̃ , (3.33)

where the tangential trace of (the 2-form part of) T̃ and its discontinuity are
defined on ∂o1 ∪ ∂o2. Then, by taking into account that F̃1 and f̃1 vanish
outside of o1 and ∂o1, respectively, it follows from (3.29)-(3.33) (by using the
familiar integration argument involving the observation surface ∂o′2) that

F12 =

∫

∂o′
2

T̃ . (3.34)

In my view the natural way to determine forces is in terms of the force
densities F̃12 + F̃21 and f̃12 + f̃21, or in terms of the stress T̃12 + T̃21. In terms
of these quantities we have

F12 =

∫

o2

(F̃12 + F̃21) +

∫

∂o2

(f̃12 + f̃21)

=

∫

∂o′
2

(T̃12 + T̃21).

The force F21 may be determined from these same quantities. Basis repre-
sentations of the force densities and the stress are given in section A.1.1.

3.2 Magnetostatic forces on objects with cur-

rent distributions

A situation different from the previous one arises when the sources of the
interaction may be taken to be stationary electric currents. The construc-
tion of the theory is similar to the previous situation, and it begins with the
introduction of mathematical objects suitable for the modeling of stationary
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current distributions. For instance, the currents inside of o1 are modeled
by current density J̃1 of object o1. This is a twisted 2-form that vanishes
outside of o1. Its integration over 2-dimensional transverse oriented subman-
ifolds yields total currents through the surfaces modeled by the submanifolds.
Surface currents on ∂o1 are modeled by surface current density j̃1 of object
o1. This is a twisted 1-form on ∂o1 ∪ ∂o2 that vanishes outside of ∂o1. The
currents inside of o2 and on its boundary are modeled, respectively, by cur-
rent density J̃2 of object o2 and surface current density j̃2 of object o2. As in
the electric case these quantities are functions of both o1 and o2.

It is a property of stationary currents that the current through any surface
may be determined from the boundary of the surface. Accordingly, we may
introduce magnetic field intensity H̃1 of object o1 as a twisted 1-form with
the defining properties

dH̃1 = J̃1, (3.35)

[t1H̃1]1 = j̃1. (3.36)

Magnetic field intensity H̃2 of object o2 is defined similarly. Our next steps
in the construction of a relation between currents and forces consist of ex-
pressing the force F12 as

F12 =

∫

o2

F̃12 +

∫

∂o2

f̃12, (3.37)

and introducing quantities directly related to the force densities F̃12 and f̃12.
For instance, magnetic induction B1 of object o1 is a 2-form whose relation
to F̃12 and f̃12 is given as

G(F̃12, v) = J̃2 ∧ ivB1, (3.38)

G(f̃12, v) = j̃2 ∧ t2ivB1, (3.39)

for all vector fields v. The defining properties of B1 are

dB1 = 0, (3.40)

[t1B1]1 = 0, (3.41)

and the last of the required defining properties of (B1, H̃1) is

B1 = µ0 ⋆ H̃1, (3.42)

where µ0 is the permeability of vacuum. The operators in (3.40)-(3.42) are
defined in the same way as before. The relations (3.35)-(3.42) constitute an
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abstraction of the experimental force law concerning the interaction of current
carrying wires derived by Ampère in 1820 (see [8, 14]). Similar properties
concern the magnetic induction B2 of object o2. Having constructed relations
between (J̃1, j̃1) and B1, and between (J̃2, j̃2) and B2, we may determine
B1 (resp. B2) once the current densities (J̃1, j̃1) (resp. (J̃2, j̃2)) are given
beforehand. Magnetic inductions B1 and B2 are further related to the force
densities (F̃12, f̃12) and (F̃21, f̃21) which yield F12 and F21 by integration. The
analysis of Newton’s third law given in section 3.1 carries over to the present
situation.

To deal with the problem of not knowing the current densities (J̃1, j̃1)
and (J̃2, j̃2) we follow the familiar strategy and define the total magnetic field
(B, H̃) by

B = B1 + B2,

H̃ = H̃1 + H̃2.

The defining properties of (B, H̃) are implied by the defining properties of
(B1, H̃1) and (B2, H̃2), and by the above decomposition.

An example case where the total magnetic field is useful is when o1 and
o2 are two infinitely long parallel cylinders that carry current only on their
surfaces, and the surface currents are directed along the cylinders. Thus the
current densities and the magnetic field vanish inside of the objects. Such a
situation may be reduced to a 2-dimensional problem that is mathematically
the same as the electrostatic example of section 3.1. Accordingly, the speci-
fication of total currents through the cylinders is sufficient to determine the
pair (B, H̃). When (B, H̃) is known we get the surface current densities as

j̃1 = t1H̃, (3.43)

j̃2 = t2H̃, (3.44)

which may further be used separately as sources to solve for the fields (B1, H̃1)
and (B2, H̃2). Finally, we may determine the surface force densities f̃12 and
f̃21 that yield total forces by integration.

Regarding the practical question of determining forces directly from (B, H̃),
we note that the analysis of section 3.1 may be repeated with obvious changes.
However, as in the electric case the natural way to determine forces is in terms
of the force densities F̃12+F̃21 and f̃12+ f̃21, or in terms of the stress T̃12+T̃21.
Basis representations of the force densities and the stress are given in section
A.2.1.
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Chapter 4

Torques in terms of charges
and currents

In the previous chapter we considered situations in which the displacements
of the objects were described by constant virtual displacement vector fields.
Here, we will allow also non-constant virtual displacement vector fields with
the restriction that they should be compatible with the notion of rigidity of
the objects. This means the allowable virtual displacement vector fields will
be infinitesimal descriptions of transformations of space that preserve metric
notions such as distances of points. Such transformations are taken here as
flows of the corresponding vector fields.

Flows. A flow on a manifold is a parametrized transformation of
points defined on an open subset of the manifold. By denoting
as U an open subset of manifold M , and as I a real number
interval containing 0, a flow on M is a smooth map φ : I × U →
M ; (t, x) 7→ φt(x), with φ0 : U → U the identity, that satisfies
the conditions

(i) for each parameter t ∈ I the map φt : U → M is a diffeo-
morphism onto the open set φt(U),

(ii) φt+s(x) = φt

(

φs(x)
)

whenever t, s, t+s ∈ I and x, φs(x) ∈ U .

Condition (i) implies, in particular, that by using φt we may
transfer trajectories on U to trajectories on φt(U) and vice versa.
Because tangent vectors are defined by using trajectories we will
be able to transfer also tangent vectors to both of the above“direc-
tions”. Condition (ii) merely states that φ itself does not depend
on the parameter, that is, the flow is “time-independent” [1, 3].
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Given a smooth vector field v on M , and a point x ∈ M , we
may always find a flow φ : I × U → M , with x ∈ U , that is
described infinitesimally by v. By this we mean that the vector
field is tangent to the trajectories φ(y) : I → M corresponding
to each y ∈ U , or more precisely, the velocity vectors of these
trajectories coincide with the values of v. This is elucidated in
the inset, wherein the solid lines represent some of the trajectories
φ(y).

U

If we have two such flows with different domains these flows will
agree on the intersection of their domains [1]. We are thus entitled
to talk about the flow of a vector field at x ∈ M .

So in case of a rigid object the flow of a virtual displacement vector field
v must not change metric notions. This statement is conveniently expressed
by requiring that the Lie derivative of the metric tensor g with respect to v
vanishes, that is, Lvg = 0.

Lie derivative. The Lie derivative describes the rate of change
of a tensor when the tensor is transfered on a manifold by the
flow of a vector field. When the tensor to be transfered is a
function we may just use the ordinary directional derivative that
compares the values of the function at neighboring points. In case
of a vector we may realize the idea as follows. We assume that
there is a vector field u on a manifold M , and consider its flow
φ at x ∈ M . We further denote the point φt(x) as xt. We may
transfer a vector [τ ] ∈ T 1

xt
M to the tangent space T 1

xM by using
the inverse φ−1

t . The result is the vector [φ−1
t ◦ τ ] ∈ T 1

xM . This
linear map from T 1

xt
M to T 1

xM is called the push-forward by φ−1
t ,
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and is denoted as (φ−1
t )∗. Let us next define the Lie derivative of

vector field v with respect to u. The result will be a vector field,
denoted as Luv. Note that for each t ∈ I we can map the vector
vxt

∈ T 1
xt

M to the tangent space T 1
xM by using (φ−1

t )∗ wherein it
may be compared to vx. Let us define a map

c : I → T 1
xM ; c(t) = (φ−1

t )∗
(

vxt

)

.

This map is a trajectory at vx in the tangent space T 1
xM whose

values consist of vectors we have pushed against the flow from
points of φI(x). The tangent vector containing this trajectory is
the rate of change we are after. Thus, we define

(Luv)x = lim
t→0

(φ−1
t )∗(vxt

) − vx

t
.

It can be shown that the Lie derivative defined above coincides
with the Lie bracket, that is Luv = [u, v], see [2, 3]. Thus, from
the coordinate representation of the Lie bracket, we observe that
the value of Luv at a point depends on the derivative of u at the
point (and not only on its value at the point). This is reflected
to the fact that Luv is not function-linear in u.

The above procedure for transferring a vector may be used also to
transfer p-vectors and p-covectors along the flow of a vector field.
For a simple p-vector (that is of the form u1∧· · ·∧up) we just use
the push-forward map to the constituent vectors. This extends
to arbitrary p-vectors by the linearity of the push-forward map
because any p-vector may be expressed as a linear combination
of simple p-vectors. To deal with p-covectors we push vectors to
the opposite direction than above, that is, we push them to the
direction of the flow. To see how this happens, let us consider a
p-covector ω ∈ T xt

p M . We may define a p-covector in T x
p M whose

value on arbitrary p-vector in T p
xM is obtained by first pushing

the p-vector to T p
xt

M by (φt)∗ and then giving it to the p-covector
ω. This linear map from T xt

p M to T x
p M is called the pull-back

by φt, and is denoted as φ∗
t . The above view of the Lie derivative

may now be extended for an arbitrary p-form ω as follows. We
first use φ∗

t to pull back the p-covectors ωxt
corresponding to all

values of t, and then take the velocity vector of the resulting curve
in the p-covector space T x

p M . The Lie derivative of ω at x ∈ M
is defined as

(Luω)x = lim
t→0

φ∗
t (ωxt

) − ωx

t
.
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The Lie derivative may be defined in the above manner for arbi-
trary tensors fields [1, 2]. In particular, on a Riemannian manifold
we may take the Lie derivative of the metric tensor g as

(Lug)x = lim
t→0

φ∗
t (gxt

) − gx

t
,

where the pull-back φ∗
t (gxt

) is defined just as with differential
forms.

The Lie derivative is a tensor derivation just like the covariant
derivative. This means, in particular, that the two have the same
behavior with exterior product [1]. An example of this behavior
is the relation Lu(v ∧ w) = Luv ∧ w + v ∧ Luw, where u, v, w
are smooth vector fields on M . The two derivatives also have the
same behavior with interior product [1]. For instance, we have for
a smooth 1-form ω the relation Lu(ω(v)) = (Luω)(v) + ω(Luv).
Note that the Lie derivative does not require metric or connection
for its definition.

Vector fields that satisfy Lvg = 0, and thus describe the infinitesimal
displacements of rigid objects, are called Killing vector fields.

Killing vector fields. On a Riemannian manifold (M, g) con-
tinuous symmetries of g are described infinitesimally by vector
fields. These vector fields satisfy the equation Lug = 0, and they
are called Killing vector fields. From the definition of Lug it is
seen that the flow φ : I×U → M of u preserves the inner product,
that is, for each x ∈ U we have

gφt(x)

(

(φt)∗u, (φt)∗v
)

= gx(u, v)

for all u, v ∈ T 1
xM . This implies that all metric notions are pre-

served under φt [1].

The condition of Killing vector fields may be expressed in terms of
the Levi-Civita connection. It is a property of the Lie derivative
that

Lu(g(v, w)) = (Lug)(v, w) + g(Luv, w) + g(v,Luw),

so the condition Lug = 0 is equivalent to

Lu(g(v, w)) = g(Luv, w) + g(v,Luw)
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for all smooth vector fields v and w. The left-hand side Lu(g(v, w))
is just the directional derivative of g(v, w), whereas on the right
hand side the arguments Luv and Luw of g are the Lie brackets
[u, v] and [u,w]. By using the metric compatibility and symmetry
of the Levi-Civita connection the condition may be written as

g(∇uv, w) + g(v,∇uw) = g(∇uv −∇vu,w) + g(v,∇uw −∇wu)

for all smooth vector fields v and w. This yields to the condition
of Killing vector field

g(∇vu,w) + g(v,∇wu) = 0

for all smooth vector fields v and w. It is thus observed that a
constant vector field is a Killing vector field.

As already claimed in the previous chapter, constant virtual displacement
vector fields do not distort distances provided that the constancy is defined
with respect to the Levi-Civita connection of the used metric. To obtain
other allowable vector fields we need to solve the Killing equation Lvg = 0.
We want there to be Killing vector fields that describe rotation, so we assume
that both o1 and o2 reside on neighbourhoods that are Euclidean manifolds.

Euclidean manifold. A Riemannian manifold is called Euclidean
manifold if it may be covered by Euclidean coordinate chart. A
Euclidean coordinate chart is one whose basis vector fields are
constant and orthonormal (constant according to the Levi-Civita
connection). The metric tensor of Euclidean manifold is called
Euclidean metric, and its Levi-Civita connection is called Eu-
clidean connection. Clearly, in Euclidean coordinates the Christof-
fel symbols of Euclidean connection vanish, and the components
of Euclidean metric form an identity matrix.

A change from one Euclidean coordinate chart to another always consists
of a rotation and a translation of the coordinate axes. This is reflected to the
fact that on Euclidean manifold there are both translational and rotational
Killing vector fields. By using Euclidean coordinate chart with coordinate
0-forms x1, x2, x3, basis vector fields ∂/∂x1, ∂/∂x2, ∂/∂x3, and dual basis 1-
forms dx1, dx2, dx3 we may express the Euclidean metric g by using the tensor
product ⊗ as

g =
3

∑

i=1

dxi ⊗ dxi.
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By further expressing the vector field v in components as vi∂/∂xi we may
write Lvg as

Lvg = Lvi∂/∂xi(
3

∑

i=1

dxi ⊗ dxi).

By using the linearity of Lv and a product property of the Lie derivative, we
have

Lvg =
3

∑

i=1

Lvj∂/∂xj(dxi ⊗ dxi)

=
3

∑

i=1

(Lvj∂/∂xjdxi ⊗ dxi + dxi ⊗ Lvj∂/∂xjdxi).

The Lie derivative is not function-linear in the vector-argument, but satisfies
Lvj∂/∂xjdxi = vjL∂/∂xjdxi + dvj ∧ i∂/∂xjdxi. Using this, and taking into
account that

L∂/∂xjdxi = 0

i∂/∂xjdxi = δi
j,

for i, j = 1, 2, 3, we get

Lvg =
3

∑

i=1

(dvi ⊗ dxi + dxi ⊗ dvi).

To see that the terms L∂/∂xjdxi vanish, as claimed above, it is sufficient to
verify that the values of these 1-forms on arbitrary basis vector field ∂/∂xk

vanish. By a property of the Lie derivative we have (L∂/∂xjdxi)(∂/∂xk) =
L∂/∂xj

(

dxi(∂/∂xk)
)

−dxi(L∂/∂xj∂/∂xk), and this vanishes because dxi(∂/∂xk)
is the constant function δi

k, and because ∂/∂x1, ∂/∂x2, ∂/∂x3 is a coordinate
basis so that L∂/∂xj∂/∂xk = [∂/∂xj, ∂/∂xk] = 0. Finally, once the dvi’s are
given in components as ∂vi/∂xjdxj, we note that the components of Lvg are
given by

(Lvg)ij =
∂vi

∂xj
+

∂vj

∂xi

for i, j = 1, 2, 3. These components must vanish for v = vi∂/∂xi to be a
Killing vector field. Clearly, the matrix of (Lvg)ij’s is symmetric. There are
six equations for the unknowns v1, v2, v3. We see that both the translations

∂

∂x1
,

∂

∂x2
,

∂

∂x3
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and the rotations

x2 ∂

∂x3
− x3 ∂

∂x2
, x3 ∂

∂x1
− x1 ∂

∂x3
, x1 ∂

∂x2
− x2 ∂

∂x1

are solutions. Further, any solution is given as a linear combination of the
translations and rotations above.

Now we are ready to generalize the concept of force used in the previous
chapter. Instead of considering the force F12 as a covector we take it as
a map that takes specific Killing vector fields to real numbers. Because in
general the virtual displacement of o2 consists of a virtual translation, and of
a virtual rotation about its center of mass, the domain of this map consists
of vector fields v that are linear combinations of a constant vector field and
a rotational vector field with respect to the center of mass of o2. The map
will be realized by using the force densities such that the virtual work done
on o2 by o1 is

F12(v) =

∫

o2

G(F̃12, v) +

∫

∂o2

G(f̃12, v). (4.1)

The force F21 is generalized similarly. In case of a constant vector field this
will reduce to the familiar concept of force used in the previous chapter.
The integration in (4.1) does not concern the force densities as covector-
valued forms. This means that those results of the previous chapters that
are based on the Stokes’ theorem of covector-valued forms do not generalize
automatically. These results are the law of action and reaction, and the
possibility to determine forces from total fields. To obtain similar results in
the present case we will express a virtual rotation by a single vector. The rest
of the information in the rotational virtual displacement vector field will be
included in a covector that maps the virtual rotation vector to virtual work.

Let us consider the virtual rotation of object o2 about an axis containing
its center of mass so that v is a rotational vector field with respect to the
center of mass of o2. By using Euclidean coordinates, with the origin at the
center of mass, we have

v = θ1(x2 ∂

∂x3
− x3 ∂

∂x2
) + θ2(x3 ∂

∂x1
− x1 ∂

∂x3
) + θ3(x1 ∂

∂x2
− x2 ∂

∂x1
), (4.2)
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where θ1, θ2, θ3 are constants. By using the unit 3-vector field ∂/∂x1∧∂/∂x2∧
∂/∂x3 to specify orientation, we have

∂

∂x1
= ⋆(

∂

∂x2
∧

∂

∂x3
),

∂

∂x2
= ⋆(

∂

∂x3
∧

∂

∂x1
),

∂

∂x3
= ⋆(

∂

∂x1
∧

∂

∂x2
),

and we observe that (4.2) may be given as

v = ⋆(θ̃ ∧ r), (4.3)

where

θ̃ = θi ∂

∂xi
, (4.4)

r = xi ∂

∂xi
. (4.5)

When the opposite orientation is used, the sign of θ̃ is changed, and this
sign change is compensated by the change of signs of the basis vector fields
∂/∂x1, ∂/∂x2, ∂/∂x3 used in (4.2). Thus, the rotation may also be described
by using the twisted 2-vector field θ̃∧ r composed of the twisted angle vector
field θ̃ and the position vector field r. Note that θ̃ is a constant vector field.
Expression (4.3) suggests that we may give G(F̃12, v), for instance, by using
a 2-covector-valued differential form.

Multivector- and multicovector-valued forms. A q-covector-
valued p-form is an object whose value at a point on the man-
ifold is a linear map from p-vectors at the point to q-covectors
at the point. It is a generalization of a covector-valued p-form in
the sense that the values are multicovectors of arbitrary degree.
Let us denote as L(T p

xM ; T x
q M) the vector space of linear maps

from the p-vector space T p
xM to the q-covector space T x

q M . A
q-covector-valued p-form is a field of such objects defined at the
points of M .

The linear isomorphism between L(T p
xM ; T x

1 M) and L(T 1
xM ; T x

p M)
generalizes in a straightforward way to the present case. Thus,
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for each ηx ∈ L(T p
xM ; T x

q M) we find G(ηx, ·) ∈ L(T q
xM ; T x

p M),
such that

G(ηx, vx)(ux) = ηx(ux)(vx)

for all ux ∈ T p
xM , and for all vx ∈ T q

xM . We may also identify
these objects with covariant tensors of the order q+p that are an-
tisymmetric in the first q arguments and in the last p arguments.

The generalization is performed similarly for vector-valued forms.
Thus the value of a q-vector valued p-form at x ∈ M is an element
of the vector space L(T p

xM ; T q
xM).

Using (4.3) and the value-side Hodge operator, we obtain

G(F̃12, v) = G
(

F̃12, ⋆(θ̃ ∧ r)
)

= G(⋆F̃12, θ̃ ∧ r),

where ⋆F̃12 is a 2-covector-valued twisted 3-form whose 2-covector values are
also twisted. In the following I will not always say explicitly whether the
values of a multicovector-valued form are twisted or not.

Value-side Hodge operator. A Hodge operator may be de-
fined for q-covector-valued p-forms in two different ways. The
definition depends on whether we want it to operate on the q-
covector-values or the p-form-part of the object. Here we need the
version that operates on the q-covector-values. Let us consider
ηx ∈ L(T p

xM ; T x
q M) so we have G(ηx, ·) ∈ L(T q

xM ; T x
p M). When

the manifold M is n-dimensional, we define an element ⋆ηx ∈
L(T p

xM ; T̃ x
n−qM) by defining its dual G(⋆ηx, ·) ∈ L(T̃ n−q

x M ; T x
p M).

This is done by specifying the operation of G(⋆ηx, ·) on arbitrary
twisted (n-q)-vector ṽx ∈ T̃ n−q

x M . That is, we define

G(⋆ηx, ṽx) = G(ηx, ⋆ṽx)

for all ṽx ∈ T̃ n−q
x M . This defines an element of L(T̃ n−q

x M ; T x
p M)

because the Hodge operator for multivectors is linear. The Hodge
operator ⋆ defined above maps q-covector-valued p-forms to (n-
q)-covector valued p-forms with the (n-q)-covector-values twisted.
It is a linear isomorphism between the spaces L(T p

xM ; T x
q M) and

L(T p
xM ; T̃ x

n−qM).
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Finally, we use the value-side interior product to write

G(⋆F̃12, θ̃ ∧ r) = G(⋆F̃12,−r ∧ θ̃)

= G(−ir ⋆ F̃12, θ̃),

where we have the covector-valued twisted 3-form −ir ⋆ F̃12 operating on the
constant vector field θ̃.

Value-side interior product. The interior product may be de-
fined for multicovector-valued forms by letting it operate either
on the multicovector-values or on the differential form -part of
the object. For the version that performs with the multicovector-
values, let us consider ηx ∈ L(T p

xM ; T x
q M) and vx ∈ T 1

xM . We
define the element ivx

ηx ∈ L(T p
xM ; T x

q−1M) by defining its dual
G(ivx

ηx, ·) ∈ L(T q−1
x M ; T x

p M). This is done by specifying the op-
eration of G(ivx

ηx, ·) on an arbitrary (q-1)-vector ux ∈ T q−1
x M .

That is, we define

G(ivx
ηx, ux) = G(ηx, vx ∧ ux)

for all ux ∈ T q−1
x M . This defines an element of L(T q−1

x M ; T x
p M)

because the exterior product is bilinear. It follows from the def-
inition, in particular, that the value-side interior product, as a
map from L(T p

xM ; T x
q M) to L(T p

xM ; T x
q−1M), is linear.

Once the above steps are taken also with the surface term G(f̃12, v), re-
sulting in

G(f̃12, v) = G
(

f̃12, ⋆(θ̃ ∧ r)
)

= G(⋆f̃12, θ̃ ∧ r)

= G(−ir ⋆ f̃12, θ̃),

we may express the virtual work done on o2 under the virtual rotation as

F12(v) =

∫

o2

G(F̃12, v) +

∫

∂o2

G(f̃12, v)

=

∫

o2

G(−ir ⋆ F̃12, θ̃) +

∫

∂o2

G(−ir ⋆ f̃12, θ̃)

=
(

∫

o2

(−ir ⋆ F̃12) +

∫

∂o2

(−ir ⋆ f̃12)
)

(θ̃),
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where, on the last row, we have a twisted covector and a twisted vector at
the center of mass of o2. Thus, if we define the torque τ̃12 as the twisted
covector

τ̃12 =

∫

o2

(−ir ⋆ F̃12) +

∫

∂o2

(−ir ⋆ f̃12), (4.6)

we have

F12(v) = τ̃12(θ̃). (4.7)

The quantities −ir ⋆ F̃12 and −ir ⋆ f̃12 thus have interpretation as volume and
surface density of torque about the center of mass of o2.

To obtain some familiarity with the above construction let us derive a
Euclidean coordinate representation for −ir ⋆ F̃12. We use the coordinate
basis (∂/∂x1, ∂/∂x2, ∂/∂x3) to specify orientation. By using the dual basis
(dx1, dx2, dx3) we have

G(−ir ⋆ F̃12, θ̃) = G
(

F̃12, ⋆(θ̃ ∧ r)
)

= dxi
(

⋆ (θ̃ ∧ r)
)

(F̃12)i.

The twisted 3-forms (F̃12)i may be represented by using functions Fi as
Fidx1 ∧ dx2 ∧ dx3. We get

G(−ir ⋆ F̃12, θ̃) = (Fidxi)
(

⋆ (θ̃ ∧ r)
)

dx1 ∧ dx2 ∧ dx3

=
(

− ir ⋆ (Fidxi)(θ̃)
)

dx1 ∧ dx2 ∧ dx3.

By using the definition of Hodge operator, we have

⋆(Fidxi) = F1dx2 ∧ dx3 + F2dx3 ∧ dx1 + F3dx1 ∧ dx2.

Then, by using the antiderivation property of the interior product, and re-
assembling the terms, we get

−ir ⋆ (Fidxi) = (x2F3 − x3F2)dx1 + (x3F1 − x1F3)dx2 + (x1F2 − x2F1)dx3.

Finally, we may express G(−ir ⋆ F̃12, θ̃) as

G(−ir ⋆ F̃12, θ̃) = dx1(θ̃)(x2F3 − x3F2)dx1 ∧ dx2 ∧ dx3

+ dx2(θ̃)(x3F1 − x1F3)dx1 ∧ dx2 ∧ dx3

+ dx3(θ̃)(x1F2 − x2F1)dx1 ∧ dx2 ∧ dx3.

Thus, because the dxi(θ̃)’s are constant, we integrate the component 3-forms
(x2F3 − x3F2)dx1 ∧ dx2 ∧ dx3, etc.
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4.1 Torques in electrostatics

When the sources of the interaction are taken as charges, we have −ir ⋆ F̃12

given from (3.6) as

G(−ir ⋆ F̃12, θ̃) = G
(

F̃12, ⋆(θ̃ ∧ r)
)

= ρ̃2 ∧ i⋆(θ̃∧r)E1

= ρ̃2 ∧ E1(⋆(θ̃ ∧ r))

= ρ̃2 ∧ iriθ̃ ⋆ E1 (4.8)

for all vector fields θ̃. The surface term −ir ⋆ f̃12 is given similarly from (3.7),
that is,

G(−ir ⋆ f̃12, θ̃) = G
(

f̃12, ⋆(θ̃ ∧ r)
)

= σ̃2 ∧ t2i⋆(θ̃∧r)E1

= σ̃2 ∧ t2

(

E1(⋆(θ̃ ∧ r))
)

= σ̃2 ∧ t2iriθ̃ ⋆ E1 (4.9)

for all vector fields θ̃. The virtual work done on o2 is thus

τ̃12(θ̃) =

∫

o2

ρ̃2 ∧ iriθ̃ ⋆ E1 +

∫

∂o2

σ̃2 ∧ iriθ̃ ⋆ E1, (4.10)

where θ̃ is taken as a vector on the left hand side, and as a constant vector
field on the right hand side. For basis representations of −ir⋆F̃12 and −ir⋆f̃12

as defined in (4.8) and (4.9), see section B.1.1.

4.2 Torques in magnetostatics

When the sources of interaction are taken as currents, we have −ir ⋆F̃12 given
from (3.38) as

G(−ir ⋆ F̃12, θ̃) = G
(

F̃12, ⋆(θ̃ ∧ r)
)

= J̃2 ∧ i⋆(θ̃∧r)B1 (4.11)

for all vector fields θ̃. Similarly, the surface term −ir ⋆f̃12 is given from (3.39)
as

G(−ir ⋆ f̃12, θ̃) = G
(

f̃12, ⋆(θ̃ ∧ r)
)

= j̃2 ∧ t2i⋆(θ̃∧r)B1 (4.12)
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for all vector fields θ̃. The virtual work done on o2 is

τ̃12(θ̃) =

∫

o2

J̃2 ∧ i⋆(θ̃∧r)B1 +

∫

∂o2

j̃2 ∧ i⋆(θ̃∧r)B1, (4.13)

where θ̃ is taken as a vector on the left hand side, and as a constant vector
field on the right hand side. For basis representations of −ir⋆F̃12 and −ir⋆f̃12

as defined in (4.11) and (4.12), see section B.2.1.

4.3 The law of action and reaction

Having introduced the concept of torque we obtain the law of action and
reaction by similar calculation as was done in section 3.1. The following
applies to both electric and magnetic cases. Let us assume that the virtual
rotation of each of the objects takes place about an axis containing its center
of mass. We denote as v1 and v2 the rotational virtual displacement vector
fields of objects o1 and o2, and as r1 and r2 the associated position vector
fields, so that

v1 = ⋆(θ̃ ∧ r1),

v2 = ⋆(θ̃ ∧ r2).

Since F̃21 vanishes on o2, and since f̃21 vanishes on ∂o2, we may write the
torque on o2 as

τ̃12 =

∫

o2

(−ir2
⋆ F̃12 − ir1

⋆ F̃21) +

∫

∂o2

(−ir2
⋆ f̃12 − ir1

⋆ f̃21).

To transfer the integration above to an integration over o1 we assume a large
enough Euclidean (and thus parallelizable) neighbourhood containing both
of the objects o1 and o2, and express the volume torque densities ir2

⋆ F̃12 and
ir1

⋆ F̃21 in terms of covector valued twisted 2-forms by using the covariant
exterior derivative. For instance, we define a covector-valued twisted 2-form
K̃12 such that

d∇K̃12 = −ir2
⋆ F̃12, (4.14)

[t2K̃12]2 = −ir2
⋆ f̃12. (4.15)

Compare this to the definition of the stress T̃12. A covector-valued twisted
2-form K̃21 is defined similarly.
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θ̃θ̃

o1

o2

Figure 4.1: The comparison of torques on objects o1 and o2 is performed by
using parallel twisted vectors indicating the virtual displacement in rotation
angle.

Let us go through the calculation given in section 3.1. By using the
familiar observation surface ∂o′2 we may express the torque on o2 as

τ̃12 =

∫

o2

d∇(K̃12 + K̃21) +

∫

o′
2
−o2

d∇(K̃12 + K̃21) +

∫

∂o2

[t2(K̃12 + K̃21)]2,

and by the Stokes’ theorem for covector-valued forms we get

τ̃12 =

∫

∂o′
2

(K̃12 + K̃21).

Letting o′12 be the Euclidean neighbourhood containing o1 and o2, and taking
the integral of K̃12 + K̃21 over ∂o′12 to be zero, we get

τ̃12 =

∫

∂o′
2

(K̃12 + K̃21) = −

∫

∂(o′
12
−o′

2
)

(K̃12 + K̃21) = −τ̃21, (4.16)

where the final equality makes use of the fact that ∂(o′12 − o′2) is a valid
observation surface for o1. By the equality in (4.16) of twisted covectors at
different points we mean the equality of the numbers they yield for parallel
twisted vectors at the points, see Figure 4.1.

4.4 Torques from the total fields

Torques may also be determined directly from the total fields. Let us focus
on magnetostatics. From (3.38), the decomposition of B1 as B − B2 results
in the decomposition

F̃12 = F̃2 − F̃22,

68



where F̃2 and F̃22 are defined by

G(F̃2, v) = J̃2 ∧ ivB, (4.17)

G(F̃22, v) = J̃2 ∧ ivB2, (4.18)

for all smooth vector fields v. For the decomposition of the surface term f̃12

we use average values as we did with electric surface forces in section 3.1.
This yields, from (3.39), to the decomposition of f̃12 as

f̃12 = f̃2 − f̃22,

where f̃2 and f̃22 are defined by

G(f̃2, v) = j̃2 ∧ (t2ivB)av, (4.19)

G(f̃22, v) = j̃2 ∧ (t2ivB2)
av, (4.20)

for all vector fields v. The torque on o2 may now be written as

τ̃12 =

∫

o2

(−ir ⋆ F̃12) +

∫

∂o2

(−ir ⋆ f̃12)

=

∫

o2

(

− ir ⋆ (F̃2 − F̃22)
)

+

∫

∂o2

(

− ir ⋆ (f̃2 − f̃22)
)

.

By using the linearity of the value-side Hodge operator and interior product,
and reassembling the terms, we get

τ̃12 =

∫

o2

(−ir ⋆ F̃2) +

∫

∂o2

(−ir ⋆ f̃2) −

( ∫

o2

(−ir ⋆ F̃22) +

∫

∂o2

(−ir ⋆ f̃22)

)

.

To see that the term in parenthesis vanishes, and thus may be called the
self-torque of o2, we define a covector-valued twisted 2-form K̃22 such that

d∇K̃22 = −ir ⋆ F̃22, (4.21)

[t2K̃22]2 = −ir ⋆ f̃22, (4.22)

and proceed with the integration to get

∫

o2

(−ir ⋆ F̃22) +

∫

∂o2

(−ir ⋆ f̃22) =

∫

∂o′
2

K̃22.
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The right hand side may be given as

∫

∂o′
2

K̃22 = −

∫

∂(o′
12
−o′

2
)

K̃22 = −

∫

o′
12
−o′

2

d∇K̃22 = −

∫

o′
12
−o′

2

(−ir ⋆ F̃22) = 0,

since F̃22 vanishes outside of o2. Here, we need again the Euclidean neigh-
bourhood o′12 whose boundary does not contribute to the integration. We
thus have

τ̃12 =

∫

o2

(−ir ⋆ F̃2) +

∫

∂o2

(−ir ⋆ f̃2), (4.23)

so the torque on o2 may be evaluated directly from (B, H̃).
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Chapter 5

Forces and torques in terms of
equivalent charges and
equivalent currents

Here, we examine how the presense of materials affects the discussion of forces
and torques given in the previous chapters.

5.1 Forces and torques in electrostatics

To model the interaction between dielectric objects a relevant question is
whether the theory of previous chapters is applicable, that is, whether di-
electric objects may be considered as objects with charge distributions. To
examine this, let us pull together the starting points of the above theory. We
have

dE1 = 0, (5.1)

dD̃1 = ρ̃1, (5.2)

D̃1 = ǫ0 ⋆ E1, (5.3)

and

[t1E1]1 = 0, (5.4)

[t1D̃1]1 = σ̃1, (5.5)

and finally, the force densities F̃12 and f̃12 are determined by

G(F̃12, v) = ρ̃2 ∧ ivE1,

G(f̃12, v) = σ̃2 ∧ t2ivE1,
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for all vector fields v. The rest of the starting points are obtained by reversing
the roles of o1 and o2. Our aim here is to hold on to these starting points
while including the effect of dielectric materials in (ρ̃1, σ̃1) and (ρ̃2, σ̃2). As in
the previous section the main difficulty is the determination of (ρ̃1, σ̃1) and
(ρ̃2, σ̃2). To proceed with this objective, we first suppose that a modeling
decision has been made to separate charges into two different types called
free charges and polarization charges. By this it is meant that the charge
densities are decomposed as

ρ̃1 = ρ̃f
1 + ρ̃p

1, (5.6)

σ̃1 = σ̃f
1 + σ̃p

1, (5.7)

and

ρ̃2 = ρ̃f
2 + ρ̃p

2, (5.8)

σ̃2 = σ̃f
2 + σ̃p

2, (5.9)

where the superscripts refer to the two types of charges. Then, we express
the polarization charge densities (ρ̃p

1, σ̃
p
1) and (ρ̃p

2, σ̃
p
2) by using electric polar-

ization P̃1 of object o1 and electric polarization P̃2 of object o2. These are
twisted 2-forms defined such that

−dP̃1 = ρ̃p
1, (5.10)

−[t1P̃1]1 = σ̃p
1, (5.11)

and

−dP̃2 = ρ̃p
2, (5.12)

−[t2P̃2]2 = σ̃p
2, (5.13)

the minus sign being traditional. We also require that P̃1 and P̃2 vanish
outside of o1 and o2, respectively, implying that the total polarization charges
of the objects vanish. Relations (5.6)-(5.13) together with this requirement
are taken here as additional starting points of the theory. To see how they
help us determine (ρ̃1, σ̃1) and (ρ̃2, σ̃2), let us first define D̃′

1 and D̃′
2 by

D̃′
1 = D̃1 + P̃1, (5.14)

D̃′
2 = D̃2 + P̃2, (5.15)

and then consider the following implications of our starting points:

dE1 = 0, (5.16)

dD̃′
1 = ρ̃f

1 , (5.17)

D̃′
1 = ǫ0 ⋆ E1 + P̃1, (5.18)
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and

[t1E1]1 = 0, (5.19)

[t1D̃
′
1]1 = σ̃f

1 . (5.20)

Note that according to the usual naming convention, D̃′
1 would be called the

electric displacement of object o1. Our reservation of this name for D̃1 in the
present theory of dielectrics is justified by the role of polarization charges in
the theory. Similar implications concern the quantities related to o2. Then,
we define D̃′, P̃ , ρ̃f , and σ̃f by

D̃′ = D̃′
1 + D̃′

2,

P̃ = P̃1 + P̃2,

ρ̃f = ρ̃f
1 + ρ̃f

2 ,

σ̃f = σ̃f
1 + σ̃f

2 ,

to write down the implications we want, that is,

dE = 0, (5.21)

dD̃′ = ρ̃f , (5.22)

D̃′ = ǫ0 ⋆ E + P̃ , (5.23)

and

[tE] = 0, (5.24)

[tD̃′] = σ̃f . (5.25)

Finally, we take as an additional starting point a relation between P̃ and E.
This material dependent constitutive law is obtained by making the model
agree with experiments, and, consequently, the building up of polarization
charges is taken to be a material property.

To see that the above strategy has practical value let us consider an
example case of ideal dielectrics in which the free charge densities ρ̃f and
σ̃f vanish and the objects have known remanent polarization. We use the
constitutive law

P̃ = χ ⋆ E + P̃r, (5.26)

where χ is the electric susceptibility and P̃r is the remanent polarization given
beforehand. Having determined (E, D̃′) from the boundary value problem
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1

o2

o

Figure 5.1: A system of dielectric objects. Object o1 has a nonvanishing
upward directed remanent polarization, and both of the objects are char-
acterized by a constant electric susceptibility. The arrows show the vector
representation of the surface force density f̃12 on object o2, and the gray lines
with arrowheads visualize the electric field intensity E1 of object o1 (equiv-
alue lines of the potential of E1, the arrowheads indicating the direction of
the field).

defined by (5.21)-(5.26), we obtain P̃ from (5.23) so that we know P̃1 and P̃2.
Then, by using P̃1 as the source in the boundary value problem defined by
(5.16) - (5.20), we may solve for (E1, D̃

′
1). Finally, by determining the charge

densities ρ̃2 and σ̃2 from (5.8)-(5.9) and (5.12)-(5.13), we obtain the force
densities F̃12 and f̃12. A similar procedure yields F̃21 and f̃21. Surface force
density f̃12 in a 2-dimensional example geometry is visualized in Figure 5.1.
The used finite element approximation method, where fields are elementwise
constant, implies that volume force densities cannot be computed directly by
this strategy. This is because their computation requires the computation
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of the exterior derivative of P̃ whose approximation is elementwise constant.
We will return to this problem later.

5.2 Forces and torques in magnetostatics

Based on earlier discussion, an obvious strategy for the modeling of interac-
tions between magnetic objects is to examine whether they may be considered
as objects with current distributions. Another possibility is to use distribu-
tions of magnetic charges to describe the magnetic objects, see [8, 15]. In
the following subsections we discuss these two approaches in connection with
our example situation.

5.2.1 Electric current approach

That magnetic objects are taken as objects with current distributions means
we hold on to the starting points of section 3.2, and try to include the effect
of magnetic materials in (J̃1, j̃1) and (J̃2, j̃2). By a modeling decision to
decompose the current densities into free currents and magnetization currents
we have

J̃1 = J̃f
1 + J̃m

1 , (5.27)

j̃1 = j̃f
1 + j̃m

1 , (5.28)

and

J̃2 = J̃f
2 + J̃m

2 , (5.29)

j̃2 = j̃f
2 + j̃m

2 , (5.30)

where the superscripts refer to the types of currents. Following familiar
lines we represent the magnetization current densities by auxiliary quantities.
Magnetization M̃1 of object o1 and magnetization M̃2 of object o2 are twisted
1-forms defined such that

dM̃1 = J̃m
1 , (5.31)

[t1M̃1]1 = j̃m
1 , (5.32)

and

dM̃2 = J̃m
2 , (5.33)

[t2M̃2]2 = j̃m
2 . (5.34)
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We further require that M̃1 and M̃2 vanish outside of o1 and o2, respectively,
implying that the total magnetization current vanishes through any surface
whose boundary resides on the boundary of one of the objects. These quanti-
ties will be of use in the determination of the magnetization current densities
(J̃m

1 , j̃m
1 ) and (J̃m

2 , j̃m
2 ). In view of this, we first set

H̃ ′
1 = H̃1 − M̃1,

H̃ ′
2 = H̃2 − M̃2,

H̃ ′ = H̃ ′
1 + H̃ ′

2,

M̃ = M̃1 + M̃2,

J̃f = J̃f
1 + J̃f

2 ,

j̃f = j̃f
1 + j̃f

2 ,

and then note that our starting points imply

dB = 0, (5.35)

dH̃ ′ = J̃f , (5.36)

B = µ0 ⋆ (H̃ ′ + M̃), (5.37)

and

[tB] = 0, (5.38)

[tH̃ ′] = j̃f . (5.39)

By further taking as an additional starting point an experimental consti-
tutive law between M̃ and B, we arrive at a model that will be of practical
value. To elucidate this, let us consider an example case where free currents
vanish inside of o1 and o2 and on their surfaces. We use the constitutive law

M̃ = χm ⋆ B + M̃r, (5.40)

where M̃r is the remanent magnetization given beforehand, and χm is called
here the magnetic susceptibility (departing in units from the traditional mag-
netic susceptibility). Having arrived at a similar situation as in the case of
dielectric objects, we may use the familiar solution strategy. That is, we first
determine (B, H̃ ′) from (5.35) - (5.40) and then obtain M̃ from (5.37). By
knowing M̃1 and M̃2 we may use them separately as sources to obtain the
fields (B1, H̃

′
1) and (B2, H̃

′
2), and finally, we may determine the magnetiza-

tion current densities from (5.31) - (5.34). Then we have all that is required
to find the force densities according to (3.38) and (3.39) yielding the total
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1o

o2

Figure 5.2: A system of magnetic objects. Object o1 has a nonvanishing
upward directed remanent magnetization, and both of the objects are char-
acterized by a constant magnetic susceptibility. The arrows show the vector
representation of the surface force density f̃12 on object o2, and the gray lines
with arrowheads visualize the magnetic induction B1 of object o1 (field lines
of B1, the arrowheads indicating the direction of the field).

forces and torques by integration. Surface force density f̃12 in the familiar
example geometry is shown in Figure 5.2. As before, I will postpone con-
sidering the computational problem with volume force densities arising from
the used finite element approximation method.

5.2.2 Magnetic charge approach

In the alternative approach to magnetism it is supposed that forces on mag-
netic materials have a similar character to the electric forces described in
sections 3.1 and 5.1. This means magnetic charges are used to describe the
objects’ behavior. The distribution of magnetic charges inside of object o1,
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for instance, is modeled by magnetic charge density ρm
1 of object o1. The dif-

ference to the electric charge density is that this is an ordinary (as opposed
to twisted) 3-form supported in o1. In the same way as in the electric case,
the distribution of magnetic charges on the objects’ surfaces is taken into
account by magnetic surface charge densities σm

1 and σm
2 of objects o1 and

o2. These are 2-forms supported in ∂o1 ∪ ∂o2 that vanish outside of ∂o1 and
∂o2, respectively.

Contrary to the previous subsection, this time the theory of section (3.2)
is not used as such. Instead, the defining properties (3.38) - (3.41) are ac-
commodated to the present idea. For instance, the defining properties of
(B1, H̃1) become

dB1 = ρm
1 , (5.41)

dH̃1 = J̃1, (5.42)

B1 = µ0 ⋆ H̃1, (5.43)

and

[t1B1]1 = σm
1 , (5.44)

[t1H̃1]1 = j̃1, (5.45)

and finally, the force densities are determined by

G(F̃12, v) = J̃2 ∧ ivB1 + ρm
2 ∧ ivH̃1, (5.46)

G(f̃12, v) = j̃2 ∧ t2ivB1 + σm
2 ∧ t2ivH̃1, (5.47)

for all vector fields v. Similar properties concern (B2, H̃2). For basis rep-
resentations of the force densities F̃12 + F̃21 and f̃12 + f̃21, and the stress
T̃12 + T̃21, see section A.2.2. To deal with the difficulty of determining the
magnetic charge densities we use exactly the same strategy that was used for
determining the polarization charge densities in section 5.1. That is, we de-
fine the magnetic polarization M1 of object o1 and the magnetic polarization
M2 of object o2 such that

−dM1 = ρm
1 , (5.48)

−[t1M1]1 = σm
1 , (5.49)

and

−dM2 = ρm
2 , (5.50)

−[t2M2]2 = σm
2 , (5.51)
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and such that they vanish outside of o1 and o2, respectively, to yield zero
total magnetic charges of the objects. Then, by setting

B′
1 = B1 + M1,

B′
2 = B2 + M2,

B′ = B′
1 + B′

2,

M = M1 + M2,

J̃ = J̃1 + J̃2,

j̃ = j̃1 + j̃2,

we find that the used starting points imply

dB′ = 0, (5.52)

dH̃ = J̃ , (5.53)

B′ = µ0 ⋆ H̃ + M, (5.54)

and

[tB′] = 0, (5.55)

[tH̃] = j̃. (5.56)

Note that B′ is usually called the magnetic induction, whereas in the present
modeling the name is reserved for the unprimed quantities. Finally, by adding
to the theory a proper constitutive law between M and H̃ yields a useful
model of magnetic interactions.

To demonstrate the above model let us consider an example case in which
the current densities vanish, and employ the constitutive law

M = χ′
m ⋆ H̃ + Mr, (5.57)

where Mr is the given remanent magnetic polarization, and χ′
m is called

here magnetic susceptibility (departing in units from the traditional magnetic
susceptiblity). The problem may be solved by using the familiar solution
strategy, leading to the force densities of the same form as in the dielectric
case. Surface force density f̃12 of the example case is shown in Figure 5.3.

5.2.3 Relation between the two approaches

The two alternative approaches to magnetism yield the same integrated total
forces F12 and F21 once we set

M1 = µ0 ⋆ M̃1, (5.58)

M2 = µ0 ⋆ M̃2, (5.59)
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1o

o2

Figure 5.3: A system of magnetic objects. Object o1 has a nonvanishing
upward directed remanent magnetic polarization, and both of the objects
are characterized by a constant magnetic susceptibility. The arrows show
the vector representation of the surface force density f̃12 on object o2, and
the gray lines with arrowheads visualize the magnetic field intensity H̃1 of
object o1 (equivalue lines of the potential of H̃1, the arrowheads indicating
the direction of the field).

and further

J̃1 = J̃1
f
, (5.60)

J̃2 = J̃2
f
, (5.61)

j̃1 = j̃1
f
, (5.62)

j̃2 = j̃2
f
. (5.63)
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To verify this, let us begin with the electric current model of magnetic ma-
terials, and express the virtual work F12(v) as

F12(v) =

∫

o2

J̃f
2 ∧ ivB1 +

∫

∂o2

j̃f
2 ∧ ivB1 +

∫

o2

dM̃2 ∧ ivB1 +

∫

∂o2

[t2M̃2]2 ∧ ivB1,

(5.64)

where v is a Killing vector field describing the virtual displacements of the
points of o2. Focusing on the last two terms, and using the property of
exterior derivative that says d(M̃2∧ ivB1) = dM̃2∧ ivB1−M̃2∧divB1, we get

∫

o2

dM̃2 ∧ ivB1 +

∫

∂o2

[t2M̃2]2 ∧ ivB1 =

∫

o2

M̃2 ∧ divB1 +

∫

o2

d(M̃2 ∧ ivB1)

+

∫

∂o2

[t2M̃2]2 ∧ ivB1. (5.65)

Exterior derivative (continued). The exterior derivative is an
antiderivation, that is, for a p-form ω and a q-form η it satisfies

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη,

see [1, 3].

Next, we use the familiar integration argument (in which integration is
performed over o′2 and Stokes’ theorem is applied) to the second term on the
right hand side of (5.65), and take into account that M̃2 vanishes outside of
o2. Then, because ivB1 is smooth on ∂o2, it follows that the surface term in
(5.65) is canceled. We are left with

F12(v) =

∫

o2

J̃f
2 ∧ ivB1 +

∫

∂o2

j̃f
2 ∧ ivB1 +

∫

o2

M̃2 ∧ divB1. (5.66)

Thus, the contribution of magnetization currents to total force may be con-
sidered as the result of partial integration applied to the rightmost term of
(5.66).

On the other hand, according to the magnetic charge model the virtual
work done on o2 is

F12(v) =

∫

o2

J̃2 ∧ ivB1 +

∫

∂o2

j̃2 ∧ ivB1 −

∫

o2

dM2 ∧ ivH̃1 −

∫

∂o2

[t2M2]2 ∧ ivH̃1.

(5.67)
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By the antiderivation property of exterior derivative the last two terms may
be written as

−

∫

o2

dM2 ∧ ivH̃1 −

∫

∂o2

[t2M2]2 ∧ ivH̃1 =

∫

o2

M2 ∧ divH̃1 −

∫

o2

d(M2 ∧ ivH̃1)

−

∫

∂o2

[t2M2]2 ∧ ivH̃1. (5.68)

Finally, by using the familiar integration argument to the second term on the
right hand side, and taking into account that ivH̃1 is smooth on ∂o2, we get

F12(v) =

∫

o2

J̃2 ∧ ivB1 +

∫

∂o2

j̃2 ∧ ivB1 +

∫

o2

M2 ∧ divH̃1. (5.69)

We observe that the contribution of magnetic charges to total force may be
considered as the result of partial integration applied to the rightmost term
of (5.69).

To see that (5.69) coincides with (5.66) we first write the terms M̃2∧divB1

and M2 ∧ divH̃1 by using the Lie derivative as

M̃2 ∧ divB1 = M̃2 ∧ (LvB1 − ivdB1), (5.70)

M2 ∧ divH̃1 = M2 ∧ (LvH̃1 − ivdH̃1). (5.71)

Lie derivative (continued). The Lie derivative of a differential
form may be expressed by using exterior derivative and interior
product. For a smooth p-form ω and a smooth vector field u we
have

Luω = iudω + diuω,

as proved in [1, 3].

Then, by taking into account that dB1 and dH̃1 vanish outside of o1, we
have

M̃2 ∧ divB1 = M̃2 ∧ LvB1, (5.72)

M2 ∧ divH̃1 = M2 ∧ LvH̃1. (5.73)
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By using (5.59) in (5.73), we get

M2 ∧ LvH̃1 = µ0 ⋆ M̃2 ∧ LvH̃1

= M̃2 ∧ (µ0 ⋆ LvH̃1),

where the second equality follows by a property of the Hodge operator be-
cause M̃2 is a 2-form and LvH̃1 is a 1-form. Now, because v is a Killing
vector field, the Hodge operator commutes with the Lie derivative Lv, that
is

M̃2 ∧ (µ0 ⋆ LvH̃1) = M̃2 ∧ Lv(µ0 ⋆ H̃1).

Finally, the equivalence of the electric current model and magnetic charge
model with respect to total force is obtained by noticing that (5.58)-(5.63)
imply that the fields (B1, H̃1) given by the two models coincide outside of o1

and satisfy B1 = µ0 ⋆ H̃1.

Killing vector fields (continued). On a Riemannian manifold
(M, g) the Lie derivative with respect to a Killing vector field
commutes with the Hodge operator induced by the metric g. To
verify this, we recall that the condition of Killing vector field may
be given as

Lu(g(v, w)) = g(Luv, w) + g(v,Luw)

for all smooth vector fields v and w. Multiplying both sides by a
unit n-vector field σ, and using a property of the Lie derivative,
we get

Lu(g(v, w)σ) − g(v, w)Luσ = g(Luv, w)σ + g(v,Luw)σ

for all smooth vector fields v and w. Next, we take into account
that Luσ vanishes. Because much of this thesis will depend on
the result that follows, let us verify this claim in detail. Let us
denote as < ·, · >x the inner product of T n

x M . That σ is a unit
n-vector field means we have < σ, σ >= 1 on the neighbourhood
where σ is defined. We need to prove the second equality in

0 = Lu < σ, σ >=< Luσ, σ > + < σ,Luσ > .

Because T n
x M is 1-dimensional, we have Luσ = fσ for some func-

tion f , which must then be zero by the equality above. To prove
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the equality we express σ in terms of orthonormal basis vector
fields as σ = e1 ∧ · · · ∧ en. The inner product < σ, σ > is by
definition the determinant det

(

g(ei, ej)
)

, which reduces to

< σ, σ >= g(e1, e1)g(e2, e2) · · · g(en, en)

because e1, . . . , en are orthogonal. Accordingly, we have

Lu < σ, σ >=g(Lue1, e1) + g(e1,Lue1) + g(Lue2, e2) + g(e2,Lue2)

+ · · · + g(Luen, en) + g(en,Luen),

where we have used the product rule of derivatives, the definition
of Killing vector field, and taken into account that e1, . . . , en are
of unit length. But note then that < Luσ, σ > may be given as

< Luσ, σ >= < Lue1 ∧ e2 ∧ · · · ∧ en, σ >

+ < e1 ∧ Lue2 ∧ · · · ∧ en, σ >

...

+ < e1 ∧ e2 ∧ · · · ∧ Luen, σ > .

This makes use of a product property of the Lie derivative and
the bilinearity of the inner product < ·, · >. By further expressing
σ as e1 ∧ · · · ∧ en this yields

< Luσ, σ >= g(Lue1, e1) + g(Lue2, e2) + · · · + g(Luen, en),

and the claim follows by the symmetry of < ·, · > and g. Thus we
find that the defining condition for Killing vector field is equiva-
lent to

Lu(g(v, w)σ) = g(Luv, w)σ + g(v,Luw)σ

for all smooth vector fields v and w. Applying the definition of
the Hodge operator yields

Lu(⋆v ∧ w) = (⋆Luv) ∧ w + ⋆v ∧ Luw

for all smooth vector fields v and w. Finally, by a property of the
Lie derivative, this is equivalent to

(Lu ⋆ v) ∧ w = (⋆Luv) ∧ w

for all smooth vector fields v and w. This means that when
operating on vector fields the Lie derivative with respect to a
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Killing vector field commutes with the Hodge operator. This
commutation result holds also for general multivector fields and
differential forms. To derive it for 1-forms we use the definition
of Hodge operator and a property of the Lie derivative to write

(⋆Luω)(σ) = (Lu ⋆ ω)(σ) + ω(⋆Luσ − Lu ⋆ σ)

for all smooth 1-forms ω and (n-1)-vector fields σ. Thus, the
result for 1-forms follows from that for vector fields. To deal with
arbitrary p-forms one can use mathematical induction, see [5].

5.3 Conclusion

Forces and torques may be determined by using equivalent charges or equiva-
lent currents. In particular, the electric current and magnetic charge models
of magnetic materials give the same predictions for net forces and torques.
The result is not obvious because locally the force densities of the two models
are different. From a strictly mathematical point of view the situation with
dielectric objects is similar, as instead of polarization charges one may evoke
magnetic currents to describe the objects’ behavior.
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Chapter 6

Forces and torques in terms of
polarization and magnetization

So far we have used equivalent currents and equivalent charges to accom-
modate materials. For magnetic materials we have equivalent currents and
equivalent magnetic charges as alternative models. Because the two stand
as models for the same phenomenon (the interaction of rigid material body
with magnetic field) we wanted them to yield the same observable quanti-
ties, that is, the same forces and torques. This was achieved essentially by
using a metric by which the objects are seen as rigid to relate M̃2 and M2 by
M2 = µ0 ⋆ M̃2 (and similarly for M̃1 and M1). When proving the equivalence
of the two models with respect to total force, we observed that in the two
models the virtual work done on o2 by o1 may be given (in the absence of free
currents) by integrating either M̃2 ∧ LvB1 or M2 ∧ LvH̃1 over o2, and that
these 3-forms coincide at each point of o2. In the present chapter I will intro-
duce starting points that regard these 3-forms as densities of virtual work.
Before laying down the starting points in full I will motivate the expressions
M̃2 ∧LvB1 and M2 ∧LvH̃1 by considering basic microscopic models for mag-
netic materials. In the case of electrostatics the density of virtual work is
P̃2 ∧ LvE1, which is analogous to M2 ∧ LvH̃1.

6.1 Heuristic derivation of the density of vir-

tual work from microscopic material mod-

els

In classical electromagnetism the basic microscopic models for magnetic ma-
terials are virtual current loops (Ampèrian dipoles) and virtually displaced
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pairs of oppositely charged magnetic monopoles (Coulombian dipoles). Here,
we consider these two models separately. The quantities used in this section
are independent of those used elsewhere in this thesis. If a quantity of this
section is to be identified with a quantity used elsewhere it will be notified
explicitly.

6.1.1 Ampèrian dipoles

To determine the virtual work done on a virtual current loop in magnetic field
we begin with a rigid loop ∂S carrying current I and bounding a surface S
(the specification of the surface turns out to be irrelevant). In the following
we will use the Levi-Civita connection of the metric by which the loop is seen
as rigid. We first consider the virtual work done on the loop under a virtual
displacement given by a constant vector field v defined on a parallellizable
neighbourhood containing S. By denoting as Bext the magnetic induction
field caused by external sources (sources other than the current loop itself)
the virtual work done on the loop is given as I

∫

∂S
ivBext. The virtual work

F (v) done on a virtual loop is obtained by taking the limit of a sequence of
loops shrinking towards a point, that is

F (v) = lim
I→∞
S→0

I

∫

∂S

ivBext, IS = constant.

By using Stokes’ theorem the integration above may be transformed to an
integration over S. We have

F (v) = lim
I→∞
S→0

I

∫

S

divBext, IS = constant.

The integrand may be expressed by using the Lie derivative as divBext =
LvBext − ivdBext. Then, since dBext vanishes, we get

F (v) = lim
I→∞
S→0

I

∫

S

LvBext, IS = constant.

The integration above may be performed by using triangulations as

∫

S

LvBext = lim
k→∞

k
∑

i=1

(LvBext)i({si})

= (LvBext)x( lim
k→∞

k
∑

i=1

{si}),
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where the 2-vectors {si} to be added are first transported to the point x ∈
S from their original base points, while keeping them constant by using
the Levi-Civita connection. The existence of a point x ∈ S such that the
last equality above holds follows from the mean value theorem for multiple
integrals. We will denote the sum of the 2-vectors {si} as {S}. It can be
shown that {S} depends only on the boundary ∂S, see [6] (pp. 83-84). In
the above limiting process we in fact let {S} approach zero such that I{S}
is constant. We thus have

F (v) = (LvBext)x(m),

where m = I{S} is the magnetic dipole moment 2-vector . By using this
formula for virtual work we may define a covector Fx, whose value on vector
vx is given by

Fx(vx) = (LvBext)x(m) (6.1)

where v on the right-hand side is the constant vector field that coincides with
vx at x. This is the force on Ampèrian dipole at x (see [16]).

Ampèrian dipole cannot be taken as a point particle (although we have
just attempted to do so by describing it as 2-vector at a point). This is be-
cause to evaluate the virtual work (6.1) we need a vector field defined in a
neighbourhood of the dipole and not just a vector at the point of the dipole.
Another reason is that besides the translations described above also the ro-
tation of the dipole contributes to virtual work. To include the contribution
that comes from rotation we begin with the current loop ∂S as above, but
now take the virtual displacement vector field v to be rotational vector field
with respect to the center of mass of the loop defined on a Euclidean neigh-
bourhood containing the loop. So we have v = ⋆(θ̃∧ r), where r is a position
vector field with respect to the center of mass of the loop. Also now the vir-
tual work done on the loop is given as I

∫

∂S
ivBext. Note that for a tangent

vector ux of ∂S we have

(ivBext)x(ux) = −iux
(Bext)x(vx)

= iux
(Bext)x

(

⋆ (rx ∧ θ̃x)
)

= ⋆iux
(Bext)x(rx ∧ θ̃x)

= irx
⋆ iux

(Bext)x(θ̃x)

which gives the familiar expression irx
⋆ iIux

(Bext)x for the torque on current
element Iux. By considering a sequence of loops shrinking towards a point
we have for the virtual work done on a virtual current loop

F (v) = (LvBext)x(m),
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by just following the steps above. At this point, the peculiarity of the Lie
derivative becomes evident: although the vector field v = ⋆(θ̃ ∧ r) vanishes
at the point x of the dipole where r = 0, the Lie derivative LvBext does
not vanish at x. Thus, there will be a nonzero contribution to the virtual
work that comes from rotation. To find out this contribution we extract from
LvBext the part that has tensorial dependence on the derivatives of v (the
derivatives of v do not vanish at the point of the dipole). First note that we
may give an arbitrary 2-vector field w as ⋆u where u is a vector field. We
have

(LvBext)(w) = (LvBext)(⋆u)

= (⋆LvBext)(u)

= (Lv ⋆ Bext)(u)

= Lv(⋆Bext(u)) − (⋆Bext)(Lvu)

= Lv(⋆Bext(u)) − (⋆Bext)([v, u])

= ∇v(⋆Bext(u)) − (⋆Bext)(∇vu −∇uv)

= (∇v ⋆ Bext)(u) + (⋆Bext)(∇uv)

= (⋆∇vBext)(u) + (⋆Bext)(∇uv),

where the last equality follows because ∇ is metric compatible.

Levi-Civita connection (continued). On a Riemannian man-
ifold (M, g) the covariant derivative induced by the Levi-Civita
connection commutes with the Hodge operator induced by the
metric g. The situation may be contrasted with the Lie deriva-
tive with respect to Killing vector fields. The difference is that
this time the metric information is included in the connection –
not in the vector field appearing in the direction argument. Con-
sequently, the vector field in the direction argument is arbitrary.

The commutation result follows from the metric compatibility of
the Levi-Civita connection by exactly the same arguments as in
the case of the Lie derivative with respect to Killing vector fields.
This is because the metric compatibility means that

∇u(g(v, w)) = g(∇uv, w) + g(v,∇uw)

for all smooth vector fields u, v and w. Contrast this to the
Lie derivative of g(v, w) with respect to Killing vector field u.
Since the covariant derivative and the Lie derivative have similar
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behavior with respect to interior and exterior products we may
follow familiar steps to arrive at the commutation result. (The
result is independent from the symmetry property of the Levi-
Civita connection, and thus it holds for all connections that are
metric compatible.)

The term (⋆Bext)(∇uv) on the right hand side contains the dependence of
(LvBext)(w) on the derivatives of v. Now, in the case of a rotational vector
field v = ⋆(θ̃ ∧ r), we may express this dependence as

(⋆Bext)(∇uv) = (⋆Bext)
(

∇u ⋆ (θ̃ ∧ r)
)

= (⋆Bext)
(

⋆ ∇u(θ̃ ∧ r)
)

= (Bext)
(

∇u(θ̃ ∧ r)
)

= Bext(∇uθ̃ ∧ r + θ̃ ∧∇ur)

= Bext(θ̃ ∧∇ur),

where in the third equality we have taken into account that ⋆⋆ is the identity
map on 2-vector fields. The last equality uses the fact that θ̃ is constant.
Note now that ∇r is the identity on smooth vector fields, that is, in local
Euclidean coordinates x1, x2, x3 with the origin at the point of the dipole, we
have

∇ur = ∇ui ∂

∂xi

(

xj ∂

∂xj

)

= ui∇ ∂

∂xi

(

xj ∂

∂xj

)

= uidxj(
∂

∂xi
)

∂

∂xj
= uj ∂

∂xj
= u.

We get

Bext(θ̃ ∧∇ur) = Bext(θ̃ ∧ u)

= iθ̃Bext(u)

= ⋆iθ̃Bext(w).

Summing up, we have the decomposition

L⋆(θ̃∧r)Bext = ∇⋆(θ̃∧r)Bext + ⋆iθ̃Bext. (6.2)

At the point x of the dipole we have r = 0 so that

(L⋆(θ̃∧r)Bext)x = (⋆iθ̃Bext)x.

We thus have for the virtual work

F (v) = (⋆iθ̃Bext)x(m).
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F (v)

I

S

I

S

I

S

= +

Fx(vx) C̃x(θ̃x)

Figure 6.1: Decomposition of virtual work done on an Ampèrian dipole by
external magnetic field under rigid virtual displacement.

We may define a twisted covector C̃x whose value on vector θ̃x is defined by

C̃x(θ̃x) = ⋆iθ̃x
(Bext)x(m). (6.3)

This is called the couple (torque) on an Ampèrian dipole at x.
Let us return at this point to the force expression (6.1). Because of the

Lie derivative this expression requires a vector field v on the neighbourhood
of x. But since v is constant we may remedy this excess requirement by using
the covariant derivative, that is, we have

Fx(vx) = (LvBext)x(m) = (∇vx
Bext)(m). (6.4)

From this expression it is clearly visible that we only need the vector vx to
evaluate the virtual work. The metric information on the neighbourhood of
x that was before in the constant vector field v is now included in ∇.

Summing up, the virtual work done on an Ampèrian dipole in an external
magnetic field under a rigid virtual displacement is composed of force term
related to virtual translation and a couple term related to virtual rotation.
This is elucidated in Figure 6.1.

The above results may be used as an aid to suggest expressions for force
and couple densities in magnetic materials. We will follow the standard
approach, see [15]. To describe the density of magnetic dipole moments, that
is, the density of 2-vectors, we introduce magnetization m̃ as a 2-vector valued
twisted 3-form. We try to construct force and couple densities by giving the
2-vector values of m̃ to the 2-forms ∇vBext and ⋆iθ̃Bext in accordance with the
above dipole formulas. For this, we note that the 2-forms ∇vBext and ⋆iθ̃Bext

may also be taken as a 2-covector-valued 0-forms. By using this point of view,
we introduce force density F̃ and couple density C̃ by using the generalized
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exterior product ∧̇ such that

G(F̃ , v) = m̃∧̇∇vBext (6.5)

G(C̃, θ̃) = m̃∧̇ ⋆ iθ̃Bext (6.6)

for all vector fields v and θ̃. Both force and couple densities are thus taken as
covector-valued twisted 3-forms (with the difference that the covector values
of the couple density are twisted).

Generalized exterior product. The exterior product of vector-
valued p-form and covector-valued q-form defined earlier may be
generalized for r-vector valued p-form and r-covector-valued q-
form in a straightforward way. That is, we just use the pairing
of r-vector and r-covector values in the exterior product of real
valued objects to get a real-valued (p+q)-form. For instance, in
the case of a r-vector-valued 1-form ν and a r-covector-valued 2-
form η their exterior product is the (real valued) 3-form defined
by

ν∧̇η(u1 ∧ u2 ∧ u3) =η(u2 ∧ u3)
(

ν(u1)
)

+ η(u3 ∧ u1)
(

ν(u2)
)

+ η(u1 ∧ u2)
(

ν(u3)
)

for all vector fields u1, u2, u3. In the case of r-vector-valued 3-
form ν and r-covector-valued 0-form η we have for an arbitrary
3-vector field σ

ν∧̇η(σ) = ν∧̇η
(

σ ∧ 1
)

= η(1)
(

ν(σ)
)

= η
(

ν(σ)
)

,

where 1 is taken as a 0-vector field whose value at each point is
1 ∈ R, and in the last row η is identified with the r-form η(1).

To clarify the above, let us select local basis 1-forms ω1, ω2, ω3 and denote
as Ṽ the (locally defined) twisted 3-form represented by ±ω1 ∧ ω2 ∧ ω3. If
ω1, ω2, ω3 were dual to orthonormal basis vector fields, Ṽ would measure
volumes according to the used metric. By using Ṽ we may express the
magnetic dipole moments in an arbitrary virtual volume at point x as

m̃x(σ̃x) = mxṼx(σ̃x),
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where σ̃x is the virtual volume 3-vector, and mx is a 2-vector to be identified
with the magnetic dipole moment in expressions (6.3) and (6.4). The virtual
work done on the virtual volume σ̃x by forces is thus

G(F̃ , v)x(σ̃x) = (m̃∧̇∇vBext)x(σ̃x)

= (∇vBext)x

(

m̃x(σ̃x)
)

= (∇vBext)x(mx)Ṽx(σ̃x).

Similarly, the virtual work done on σ̃x by couples is

G(C̃, θ̃)x(σ̃x) = (⋆iθ̃Bext)x(mx)Ṽx(σ̃x).

We have thus constructed force and couple densities F̃ and C̃ from the
2-vector valued twisted 3-form m̃ and the 2-forms ∇vBext and ⋆iθ̃Bext. Now,
it should be possible to introduce a (twisted) 1-form that contains the same
information as m̃, and whose exterior product with ∇vBext and ⋆iθ̃Bext yield
G(F̃ , v) and G(C̃, θ̃), respectively. For this, we introduce a twisted 1-form M̃
by contracting m̃, that is, we set pointwise

M̃x(ũ) = Ṽx(mx ∧ ũ) (6.7)

for all (twisted) vectors ũ. We will identify this 1-form with the magnetization
of previous chapters, so we use the same symbol here. To see that M̃ has
the desired performance we first look for the operation of (M̃ ∧∇vBext)x on
an arbitrary (nonzero) 3-vector u1 ∧ u2 ∧ u3. Note first that we may give mx

as m1u2 ∧ u3 + m2u3 ∧ u1 + m3u1 ∧ u2 because u1, u2, u3 form a set of basis
vectors at x. We have

(M̃ ∧∇vBext)x(u1 ∧ u2 ∧ u3) = M̃x(u1)(∇vBext)x(u2 ∧ u3)

+ M̃x(u2)(∇vBext)x(u3 ∧ u1)

+ M̃x(u3)(∇vBext)x(u1 ∧ u2)

= (∇vBext)x(M̃x(u1)u2 ∧ u3)

+ (∇vBext)x(M̃x(u2)u3 ∧ u1)

+ (∇vBext)x(M̃x(u3)u1 ∧ u2)

= (∇vBext)x(m
1Ṽx(u1 ∧ u2 ∧ u3)u2 ∧ u3)

+ (∇vBext)x(m
2Ṽx(u1 ∧ u2 ∧ u3)u3 ∧ u1)

+ (∇vBext)x(m
3Ṽx(u1 ∧ u2 ∧ u3)u1 ∧ u2)

=
(

(∇vBext)x(m
1u2 ∧ u3) + (∇vBext)x(m

2u3 ∧ u1)

+ (∇vBext)x(m
3u1 ∧ u2)

)

Ṽx(u1 ∧ u2 ∧ u3)

= (∇vBext)x(mx)Ṽx(u1 ∧ u2 ∧ u3)

= (m̃∧̇∇vBext)x(u1 ∧ u2 ∧ u3).
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In the same way, we have

(M̃ ∧ ⋆iθ̃Bext)x(u1 ∧ u2 ∧ u3) = (m̃∧̇ ⋆ iθ̃Bext)x(u1 ∧ u2 ∧ u3).

Thus, when M̃ is obtained by contracting m̃, we have

G(F̃ , v) = m̃∧̇∇vBext = M̃ ∧∇vBext, (6.8)

G(C̃, θ̃) = m̃∧̇ ⋆ iθ̃Bext = M̃ ∧ ⋆iθ̃Bext. (6.9)

Finally, when v is a linear combination of a constant vector field vconst and a
rotational vector field ⋆(θ̃ ∧ r), we have

M̃ ∧∇vconst
Bext + M̃ ∧∇⋆(θ̃∧r)Bext + M̃ ∧ ⋆iθ̃Bext = M̃ ∧ LvBext

as may be verified by using similar calculation as that preceding (6.2).
Before concluding this subsection we note that the expressions (6.8) and

(6.9) do not yet have meaning since we have not specified what quantity
in our mesoscopic model should be used in place of Bext. Recently Bobbio
approached this question by modeling the magnetic material by finite number
of dipoles, and using average values to arrive at a formula for force on a small
(but not infinitesimal) volume, see [15]. (Actually Bobbio deals mainly with
the analogous situation of forces in dielectrics.) To arrive at his result, we
first assume that in a small (parallelizable) volume U containing point x
there are n dipoles with dipole moment 2-vectors {mi}

n
i=1. (The base points

of these 2-vectors will also be indexed by i = 1, . . . , n.) We describe the
virtual displacements of the dipoles in U by the point values vi of a constant
vector field v. To determine the force on the assembly of dipoles in U we
note that the assembly causes no net force to itself. (This follows from the
superposition principle and Newton’s law of action and reaction.) It follows
that the virtual work done on the assembly may be given as

n
∑

i=1

(∇vi
Bext)(mi),

where Bext is the magnetic induction field caused by sources outside of U . To
get mesoscopic quantities we define 2-vector field m and 2-form B̂ext pointwise
by

mx = lim
U→0

(

∫

U

Ṽ
)−1

n
∑

i=1

mi
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and

(B̂ext)x =
1

n

n
∑

i=1

(Bext)i,

where Ṽ now measures volumes according to the used metric. Here the
addition of 2-vectors and 2-covectors at different points of U is performed by
using the Levi-Civita connection ∇. According to Bobbio’s arguments this
leads to the result that the virtual work done on U is given as

(∇vx
B̂ext)(mx)

∫

U

Ṽ ,

and, again according to Bobbio’s arguments, the limit of this when U → 0
is not uniquely defined but depends on the shape of the limiting volume U .
More precisely, the limit value of B̂ext depends on the shape of the limiting
volume U . The shape dependence arises when one subtracts from the total
magnetic field the contribution caused by sources inside U . From this shape
dependence it follows that the modeling of the distribution of magnetic forces
inside materials by a density function is in contradiction with the basic dipole
formula (∇vx

Bext)(m), and thus with the basic model of magnetic materials.
See the discussion of Smith-White and Cade [17, 18, 19, 20]. Note that this
situation only becomes a problem when attempting to define force densities
that fit for determining deformations – in the case of a rigid body we may
take Bext to be the field caused by sources outside of the rigid body resulting
in a concept of force density suitable for total force and torque calculation.

6.1.2 Coulombian dipoles

When the model of magnetic materials is based on virtually displaced pairs
of oppositely charged magnetic monopoles, we will find very similar results
to those above . Let us consider a pair of magnetic monopoles with magnetic
charges ±q̃m sitting at the boundary points of a path C. We take this system
to be rigid, and describe its displacement by a constant vector field v. By
letting H̃ext be the external magnetic field intensity the virtual work done on
this system is q̃m

∫

∂C
ivH̃ext. The virtual work done on a virtually displaced

pair of magnetic charges is obtained by taking the limit of a sequence of paths
shrinking towards a point, that is

F (v) = lim
q̃m→∞
C→0

q̃m

∫

∂C

ivH̃ext, q̃mC = constant.
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Next, we use Stokes’ theorem to transfer the above integration to an inte-
gration over C, and express divH̃ext by using the Lie derivative as divH̃ext =
LvH̃ext − ivdH̃ext. Because dH̃ext vanishes on C, we get

F (v) = lim
q̃m→∞
C→0

q̃m

∫

C

LvH̃ext, q̃mC = constant.

By taking the limit we get

F (v) = (LvH̃ext)x(m̃),

where m̃ = q̃m{C} is the magnetic dipole moment (twisted) vector sitting at
point x. We define a covector Fx such that its operation on a vector vx is
given as

Fx(vx) = (LvH̃ext)x(m̃), (6.10)

where v on the right hand side is the constant vector field, whose value at x is
vx. This is the force on a Coulombian dipole at x. By using the Levi-Civita
connection we have

Fx(vx) = (∇vx
H̃ext)(m̃). (6.11)

Note that by setting m̃ = µ0 ⋆ m, where m is the magnetic dipole moment
2-vector of the previous subsection, we have

(∇vx
H̃ext)(m̃) = (∇vx

H̃ext)(µ0 ⋆ m)

= (µ0 ⋆ ∇vx
H̃ext)(m)

=
(

∇vx
(µ0 ⋆ H̃ext)

)

(m)

= (∇vx
Bext)(m).

Thus, because the field (Bext, H̃ext) of this subsection coincides at x with
the field (Bext, H̃ext) of the previous subsection, the two types of dipoles
experience the same force Fx.

To include the contribution to virtual work that comes from rotation we
take v to be a rotational vector field with respect the center of mass of the
charge pair, so we have v = ⋆(θ̃ ∧ r). The virtual work done on the system
of magnetic charges is given as q̃m

∫

∂C
ivH̃ext. Note that now we have for a

point x ∈ ∂C

(ivH̃ext)x = ivx
(H̃ext)x

= (H̃ext)x

(

⋆ (θ̃x ∧ rx)
)

= −irx
⋆ (H̃ext)x(θ̃x),
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which gives the familiar expression −irx
⋆q̃m(H̃ext)x for torque on the magnetic

charge q̃m at x. Next, by considering a shrinking sequence of paths as above,
we get

F (v) = (LvH̃ext)x(m̃).

Extracting from LvH̃ext the part that depends on the derivatives of v, we get

L⋆(θ̃∧r)H̃ext = ∇⋆(θ̃∧r)H̃ext + iθ̃ ⋆ H̃ext, (6.12)

which may be compared to (6.2). Since r = 0 at the point of the dipole, we
get

F (v) = (iθ̃ ⋆ H̃ext)x(m̃).

We define a twisted covector C̃x such that its operation on vector θ̃x is given
as

C̃x(θ̃x) = iθ̃x
⋆ (H̃ext)x(m̃). (6.13)

This is the couple on Coulombian dipole at x. Note that by setting m̃ = µ0⋆m
as above, we have

iθ̃x
⋆ (H̃ext)x(m̃) = iθ̃x

⋆ (H̃ext)x(µ0 ⋆ m)

= µ0 ⋆ iθ̃x
⋆ (H̃ext)x(m)

= ⋆iθ̃x
(µ0 ⋆ H̃ext)x(m)

= ⋆iθ̃x
(Bext)x(m),

so we may conclude that Ampèrian and Coulombian dipoles also experience
the same couple C̃x.

Expressions for force and couple densities in magnetic materials are de-
duced in the same way as in the previous subsection. This involves the de-
scription of the density of magnetic dipole moments by using a vector-valued
twisted 3-form (whose vector values are twisted). By contracting this object
to magnetic polarization 2-form M one ends up in defining the force density
F̃ and couple density C̃ by

G(F̃ , v) = M ∧∇vH̃ext (6.14)

G(C̃, θ̃) = M ∧ iθ̃ ⋆ H̃ext (6.15)

for all vector fields v and θ̃. The 2-form M is to be identified with the
magnetic polarization of previous chapters. When the virtual displacement
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vector field v is a linear combination of a constant vector field vconst and a
rotational vector field ⋆(θ̃ ∧ r) one has

M ∧∇vconst
H̃ext + M ∧∇⋆(θ̃∧r)H̃ext + M ∧ iθ̃ ⋆ H̃ext = M ∧ LvH̃ext. (6.16)

The problem with the quantity H̃ext to be used in (6.14) and (6.15) is the
same as before, and it concerns the modeling of deformable bodies only.

6.2 Forces and torques in electrostatics

Now we are ready to introduce a model for the behavior of rigid dielectric
objects that is based on the idea of distributed polarity in dielectric materials.
First, we take the free charge densities and polarizations of the objects o1

and o2 as primary quantities. Then, the defining properties of (E1, D̃
′
1) are

given as

dE1 = 0, (6.17)

dD̃′
1 = ρ̃f

1 , (6.18)

D̃′
1 = ǫ0 ⋆ E1 + P̃1, (6.19)

and

[t1E1]1 = 0, (6.20)

[t1D̃
′
1]1 = σ̃f

1 . (6.21)

In our previous treatment of dielectric objects these relations were taken as
implications of (5.1)-(5.5) when (5.6)-(5.15) are understood. The implication
also goes to the opposite direction so that (6.17)-(6.21) are equivalent to (5.1)-
(5.5). Similar defining properties concern (E2, D̃

′
2). In the present analysis

we call D̃′
1 (resp. D̃′

2) the electric displacement of object o1 (resp. object o2).
Based on the discussion of the previous section, by using the analogy be-

tween the electric charge and magnetic charge models, we know that besides
force density one also needs couple density to model the behavior of dielectric
objects. Like force density also couple density is a covector valued twisted
3-form. However, because couple density is related to torques on material
elements, its covector values are twisted (as notified in the previous section).
For the force density F̃12 we set

G(F̃12, v) = ρ̃f
2 ∧ ivE1 + P̃2 ∧∇vE1 (6.22)
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for all smooth vector fields v. For the couple density C̃12 we set

G(C̃12, θ̃) = P̃2 ∧ iθ̃ ⋆ E1 (6.23)

for all vector fields θ̃. For the surface force density there is only a contribution
from free surface charges, so we set

G(f̃12, v) = σ̃f
2 ∧ t2ivE1 (6.24)

for all smooth vector fields v. Similar expressions are used for the force densi-
ties F̃21 and f̃21, and for the couple density C̃21. For the basis representations
of force densities F̃12 + F̃21 and f̃12 + f̃21, and the stress T̃12 + T̃21, see section
A.1.2. Basis representation of the couple density C̃12 is given in section B.1.2.

The generalized force F12 is realized in terms of force and couple densities
as

F12(v) =

∫

o2

(

G(F̃12, v) + G(C̃12, θ̃)
)

+

∫

∂o2

G(f̃12, v), (6.25)

where v is a linear combination of a constant vector field and a rotational
vector field ⋆(θ̃ ∧ r) about the center of mass of o2. In the case of a constant
vector field v we have θ̃ = 0, resulting in the total force

F12 =

∫

o2

F̃12 +

∫

∂o2

f̃12,

and when v = ⋆(θ̃ ∧ r) we get the torque

τ̃12 =

∫

o2

(−ir ⋆ F̃12 + C̃12) +

∫

∂o2

(−ir ⋆ f̃12).

Here the quantity −ir ⋆ F̃12 is determined according to (6.22), such that

G(−ir ⋆ F̃12, θ̃) = G
(

F̃12, ⋆(θ̃ ∧ r)
)

= ρ̃f
2 ∧ iriθ̃ ⋆ E1 + P̃2 ∧∇⋆(θ̃∧r)E1 (6.26)

for all vector fields θ̃. The surface term −ir ⋆ f̃12 is determined according to
(6.24), such that

G(−ir ⋆ f̃12, θ̃) = G
(

f̃12, ⋆(θ̃ ∧ r)
)

= σ̃f
2 ∧ t2iriθ̃ ⋆ E1 (6.27)

99



for all vector fields θ̃. For basis representations of −ir ⋆ F̃12 and −ir ⋆ f̃12, see
section B.1.2.

Let us next verify that the present model of dielectric objects yields the
same forces and torques as the model based on equivalent charges. For this,
we first note that the volume integrand in (6.25) may be given by using the
Lie derivative as

G(F̃12, v) + G(C̃12, θ̃) = ρ̃f
2 ∧ ivE1 + P̃2 ∧∇vE1 + P̃2 ∧ iθ̃ ⋆ E1

= ρ̃f
2 ∧ ivE1 + P̃2 ∧ LvE1

as shown in section 6.1. We may thus apply partial integration as in subsec-
tion 5.2.3 to get

F12(v) =

∫

o2

(ρ̃f
2 ∧ ivE1 + P̃2 ∧ LvE1) +

∫

∂o2

σ̃f
2 ∧ ivE1

=

∫

o2

(ρ̃f
2 ∧ ivE1 − dP̃2 ∧ ivE1) +

∫

∂o2

(σ̃f
2 ∧ ivE1 − [t2P̃2]2 ∧ ivE1)

=

∫

o2

ρ̃2 ∧ ivE1 +

∫

∂o2

σ̃2 ∧ ivE1,

which is the virtual work according to the electric charge model of dielectric
objects.

As in our previous treatment of dielectric objects we will employ the total
field approach to determine the unknown source quantities. To obtain the
defining properties for the total field (E, D̃′) we first observe that the above
starting points imply properties (5.21)-(5.25), and then we add to the starting
points the constitutive law (5.26). In our example case, where free charge
densities vanish, we are thus led to the familiar solution strategy. That is, by
first determining the pair (E, D̃′) from the boundary value problem defined
by (5.21)-(5.26) we obtain P̃ from (5.23) so that we know P̃1 and P̃2. Then,
by using P̃1 as the source in the boundary value problem defined by (6.17)-
(6.21), we obtain the pair (E1, D̃

′
1). The pair (E2, D̃

′
2) is obtained similarly.

At this stage we have all that is needed to determine the force and couple
densities which yield forces and torques by integration. However, our earlier
problem remains as this strategy cannot be used directly to compute the
volume force densities from the finite element approximation of fields. This
is because the force density expression (6.22) includes the derivative of E1

whose approximation is elementwise constant. A method to circumvent this
problem is given in appendix D. The volume force density F̃12 of our example
case is visualized in Figure 6.2.
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1o

2o

Figure 6.2: The example system of dielectric objects. The arrows show the
vector representation of the volume force density F̃12 on object o2, and the
gray lines with arrowheads visualize the electric field intensity E1 of object o1

(equivalue lines of the potential of E1, the arrowheads indicating the direction
of the field).

6.2.1 Forces and torques from the total fields

The issue of determining forces and torques directly from the total fields is
somewhat different from our previous treatment of dielectric objects. One
reason for this is that now we need to include the couple density term. But
there is also another reason, and this is what easily causes confusion. The
other reason is that now there will be a surface contribution to the self-force
and self-torque of the dielectric object o2 even when the surface force density
f̃12 vanishes. This means (6.24) does not yield the correct decomposition
of f̃12 as f̃2 − f̃22. The situation may be clarified by looking for integrands
involving total fields that yield the correct generalized force F12. By the
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electric charge model of dielectric materials we have

F12(v) =

∫

o2

ρ̃f
2 ∧ ivE +

∫

∂o2

σ̃f
2 ∧ (t2ivE)av −

∫

o2

dP̃2 ∧ ivE

−

∫

∂o2

[t2P̃2]2 ∧ (t2ivE)av

because the self-force and self-torque of o2 vanish according to our previous
analysis. Taking under consideration the last two terms of this, and using
d(P̃2 ∧ ivE) = dP̃2 ∧ ivE + P̃2 ∧ divE, we get

−

∫

o2

dP̃2 ∧ ivE −

∫

∂o2

[t2P̃2]2 ∧ (t2ivE)av =

∫

o2

P̃2 ∧ divE −

∫

o2

d(P̃2 ∧ ivE)

−

∫

∂o2

[t2P̃2]2 ∧ (t2ivE)av.

Now, contrary to the situation with the field E1, the second volume integral
on the right hand side does not cancel the surface term because E is not
continuous at the points of ∂o2. Once the left-over surface term is figured
out, we get

F12(v) =

∫

o2

ρ̃f
2 ∧ ivE +

∫

∂o2

σ̃f
2 ∧ (t2ivE)av +

∫

o2

P̃2 ∧ divE

+

∫

∂o2

(t2P̃2)
av ∧ [t2ivE]2.

By further using divE = LvE − ivdE, and taking into account that LvE =
∇vE + iθ̃ ⋆ E, we get

F12(v) =

∫

o2

(ρ̃f
2 ∧ ivE + P̃2 ∧∇vE − P̃2 ∧ ivdE + P̃2 ∧ iθ̃ ⋆ E)

+

∫

∂o2

(

σ̃f
2 ∧ (t2ivE)av + (t2P̃2)

av ∧ [t2ivE]2
)

, (6.28)

where we have kept the zero term P̃2 ∧ ivdE to maintain an analogy with
the magnetic case. This is the expression for the virtual work done on o2

in terms of the total field as given by the electric polarization approach.
We have a similar expression for the (generalized) self-force of o2 – the only
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difference being that in place of E we have E2. Thus both (6.28) and this
self-force will contain a nonzero surface term even when σ̃f

2 vanishes, and
these surface terms will cancel each other to yield zero surface force density
f̃12 in accordance with (6.24).

For further clarification we repeat some of the analysis of section (3.1).
First, we have the decomposition of F̃12 as

F̃12 = F̃2 − F̃22,

where F̃2 and F̃22 are defined by

G(F̃2, v) = ρ̃f
2 ∧ ivE + P̃2 ∧∇vE − P̃2 ∧ ivdE, (6.29)

G(F̃22, v) = ρ̃f
2 ∧ ivE2 + P̃2 ∧∇vE2 − P̃2 ∧ ivdE2, (6.30)

for all vector fields v. Here, the derivatives are restricted to points where E
and E2 are smooth. The decomposition of C̃12 is

C̃12 = C̃2 − C̃22,

where C̃2 and C̃22 are defined by

G(C̃2, θ̃) = P̃2 ∧ iθ̃ ⋆ E, (6.31)

G(C̃22, θ̃) = P̃2 ∧ iθ̃ ⋆ E2, (6.32)

for all vector fields θ̃. The decomposition of f̃12 needs special care. By the
above discussion we have

f̃12 = f̃2 − f̃22,

where f̃2 and f̃22 are defined by

G(f̃2, v) = σ̃f
2 ∧ (t2ivE)av + (t2P̃2)

av ∧ [t2ivE]2, (6.33)

G(f̃22, v) = σ̃f
2 ∧ (t2ivE2)

av + (t2P̃2)
av ∧ [t2ivE2]2, (6.34)

for all vector fields v. The terms [t2ivE]2 and [t2ivE2]2 should be understood
in the same way as (t2ivE)av and (t2ivE2)

av so that they require the values
of v only at points of ∂o2 (and not on the two sides wherein E and E2 are
evaluated). Now the force (covector) on o2 may be written as

F12 =

∫

o2

F̃12 +

∫

∂o2

f̃12

=

∫

o2

(F̃2 − F̃22) +

∫

∂o2

(f̃2 − f̃22)

=

∫

o2

F̃2 +

∫

∂o2

f̃2 −

( ∫

o2

F̃22 +

∫

∂o2

f̃22

)

.
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By defining T̃22 in the familiar way, such that

d∇T̃22 = F̃22,

[t2T̃22]2 = f̃22,

and using the familiar observation surface ∂o′2, we get for the term in paren-
thesis

∫

o2

F̃22 +

∫

∂o2

f̃22 =

∫

o2

d∇T̃22 +

∫

o′
2
−o2

d∇T̃22 +

∫

∂o2

[t2T̃22]2 =

∫

∂o′
2

T̃22 = 0,

where the final equality follows in the same way as before because F̃22 vanishes
outside of o′2. Note now the necessity of the surface term f̃22 as defined in
(6.34). Without this term the discontinuity of T̃22 at points of ∂o2 would
not cancel as it does in the second equality above. Thus, when the correct
surface term is included, we have

F12 =

∫

o2

F̃2 +

∫

∂o2

f̃2,

so the force on o2 may be evaluated directly from (E, D̃′). As before, we may
also determine F12 by integrating T̃ over the observation surface ∂o′2. Similar
analysis concerns torques, resulting in

τ̃12 =

∫

o2

(−ir ⋆ F̃2 + C̃2) +

∫

∂o2

(−ir ⋆ f̃2).

6.3 Forces and torques in magnetostatics

Let us next use the idea of distributed polarity to model the behavior of
rigid magnetic objects. In the following we will use the magnetizations of the
objects as primary quantities. The other possible model (that takes magnetic
polarizations of the objects as primary) is analogous to the model of dielectric
objects given in the previous section. Now the defining properties for (B1, H̃

′
1)

are given as

dB1 = 0, (6.35)

dH̃ ′
1 = J̃f

1 , (6.36)

B1 = µ0 ⋆ (H̃ ′
1 + M̃1), (6.37)
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and

[t1B1]1 = 0, (6.38)

[t1H̃
′
1]1 = j̃f

1 . (6.39)

Similar properties concern (B2, H̃
′
2). We observe that (6.35)-(6.39) are equiv-

alent to (3.35), (3.36), and (3.40)-(3.42) when (5.27)-(5.34) are understood.
In the present theory we call H̃ ′

1 (resp. H̃ ′
2) the magnetic field intensity of

object o1 (resp. object o2).
Expressions for the force and couple densities are obtained based on sec-

tion 6.1. The force density F̃12 is determined by

G(F̃12, v) = J̃f
2 ∧ ivB1 + M̃2 ∧∇vB1 (6.40)

for all smooth vector fields v. For the couple density C̃12 we set

G(C̃12, θ̃) = M̃2 ∧ ⋆iθ̃B1 (6.41)

for all vector fields θ̃. For the surface force density there is only a contribution
from free surface currents. We set

G(f̃12, v) = j̃f
2 ∧ t2ivB1 (6.42)

for all smooth vector fields v. Similar expressions are used for the force den-
sities F̃21 and f̃21, and for the couple density C̃21. For basis representations,
see sections A.2.3 and B.2.2.

To verify that the present model of magnetic materials yields the same
forces and torques as the electric current model of magnetic materials we
proceed as in the previous section. We take a virtual displacement vector field
v that is a linear combination of a constant vector field and a rotational vector
field with respect to the center of mass of o2, and give it to the generalized
force F12. We have

F12(v) =

∫

o2

(

G(F̃12, v) + G(C̃12, θ̃)
)

+

∫

∂o2

G(f̃12, v)

=

∫

o2

(J̃f
2 ∧ ivB1 + M̃2 ∧∇vB1 + M̃2 ∧ ⋆iθ̃B1) +

∫

∂o2

j̃f
2 ∧ ivB1.
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By using our earlier results this may be given as

F12(v) =

∫

o2

(J̃f
2 ∧ ivB1 + M̃2 ∧ LvB1) +

∫

∂o2

j̃f
2 ∧ ivB1

=

∫

o2

(J̃f
2 ∧ ivB1 + dM̃2 ∧ ivB1) +

∫

∂o2

(j̃f
2 ∧ ivB1 + [t2M̃2]2 ∧ ivB1)

=

∫

o2

J̃2 ∧ ivB1 +

∫

∂o2

j̃2 ∧ ivB1,

which is the virtual work according to the electric current model of magnetic
objects.

Let us compare at this stage the force and couple densities of the present
model of magnetic materials to those of the alternative model in which mag-
netic polarizations are taken as primary quantities. Based on section 6.1
the alternative model has the force density M2 ∧ ∇vH̃1 and couple density
M2 ∧ iθ̃ ⋆ H̃1 (in the absence of free currents). Relating magnetization and
magnetic polarization by M2 = µ0 ⋆ M̃2, we have

M2 ∧∇vH̃1 = (µ0 ⋆ M̃2) ∧∇vH̃1

= M̃2 ∧ (µ0 ⋆ ∇vH̃1)

= M̃2 ∧∇v(µ0 ⋆ H̃1)

for all vector fields v. Also, we have

M2 ∧ iθ̃ ⋆ H̃1 = (µ0 ⋆ M̃2) ∧ iθ̃ ⋆ H̃1

= M̃2 ∧ ⋆iθ̃(µ0 ⋆ H̃1)

for all vector fields θ̃. Thus, because the field (B1, H̃1) given by the two
models of magnetic materials coincide outside of o1 and satisfy B1 = µ0 ⋆ H̃1,
we see that the two models are equivalent with respect to force and couple
densities. For demonstration we compute the force density F̃12 in the example
case considered in section 5.2. The method of computation is described in
appendix D, and the result is visualized in Figure 6.3. There is a small
difference in the force density pattern compared to that of Figure 6.2, which
is a consequence of using magnetic vector potential formulation of the field
problem (instead of magnetic scalar potential formulation).

6.3.1 Forces and torques in terms of total fields

The determination of forces directly from the total fields follows the lines
of the previous section. So let us look for integrands involving total fields
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1o

2o

Figure 6.3: The example system of magnetic objects. The arrows show the
vector representation of the volume force density F̃12 on object o2, and the
gray lines with arrowheads visualize the magnetic induction B1 of object o1

(field lines of B1, the arrowheads indicating the direction of the field).

that yield the correct generalized force F12. By the electric current model of
magnetic materials we have

F12(v) =

∫

o2

J̃f
2 ∧ ivB +

∫

∂o2

j̃f
2 ∧ (t2ivB)av +

∫

o2

dM̃2 ∧ ivB

+

∫

∂o2

[t2M̃2]2 ∧ (t2ivB)av,
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since the self-force and self-torque of o2 vanish. Considering the last two
terms, and using d(M̃2 ∧ ivB) = dM̃2 ∧ ivB − M̃2 ∧ divB, we get

∫

o2

dM̃2 ∧ ivB +

∫

∂o2

[t2M̃2]2 ∧ (t2ivB)av =

∫

o2

M̃2 ∧ divB +

∫

o2

d(M̃2 ∧ ivB)

+

∫

∂o2

[t2M̃2]2 ∧ (t2ivB)av.

The second term on the right hand side does not cancel the surface term
because B is not continuous at the points of ∂o2. Taking into account the
left-over surface term, we have for the virtual work

F12(v) =

∫

o2

J̃f
2 ∧ ivB +

∫

∂o2

j̃f
2 ∧ (t2ivB)av +

∫

o2

M̃2 ∧ divB

−

∫

∂o2

(t2M̃2)
av ∧ [t2ivB]2.

By further using divB = LvB − ivdB, and taking into account that dB = 0,
and that LvB = ∇vB + ⋆iθ̃B, we get

F12(v) =

∫

o2

(J̃f
2 ∧ ivB + M̃2 ∧∇vB + M̃2 ∧ iθ̃B)

+

∫

∂o2

(

j̃f
2 ∧ (t2ivB)av − (t2M̃2)

av ∧ [t2ivB]2
)

. (6.43)

This is the total field expression for virtual work in the present magnetiza-
tion approach. As in the electric case, we have a nonzero surface term in
the total field expression even when the surface force density f̃12 vanishes.
This surface term is canceled by the surface term in the (generalized) self-
force expression, which is obtained by using B2 in place of B in the above
calculation. Accordingly, F̃12 is decomposed as

F̃12 = F̃2 − F̃22,

where F̃2 and F̃22 are defined by

G(F̃2, v) = J̃f
2 ∧ ivB + M̃2 ∧∇vB, (6.44)

G(F̃22, v) = J̃f
2 ∧ ivB2 + M̃2 ∧∇vB2, (6.45)
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for all vector fields v. Again, the derivatives are restricted to points the fields
are smooth. The decomposition of C̃12 is

C̃12 = C̃2 − C̃22,

where C̃2 and C̃22 are defined by

G(C̃2, θ̃) = M̃2 ∧ ⋆iθ̃B, (6.46)

G(C̃22, θ̃) = M̃2 ∧ ⋆iθ̃B2, (6.47)

for all vector fields θ̃. Finally, the decomposition of f̃12 is

f̃12 = f̃2 − f̃22,

where f̃2 and f̃22 are defined by

G(f̃2, v) = j̃f
2 ∧ (t2ivB)av − (t2M̃2)

av ∧ [t2ivB]2, (6.48)

G(f̃22, v) = j̃f
2 ∧ (t2ivB2)

av − (t2M̃2)
av ∧ [t2ivB2]2, (6.49)

for all vector fields v. As before, these expressions require the values of v
only at the points of ∂o2 and not on its two sides. The rest of the analysis
of the previous section applies as such to the present magnetic case. Thus,
also the present model of magnetic materials allows us to determine forces
and torques directly from the total fields.

6.4 Discussion of force densities for determin-

ing deformations

At this point it is reasonable to further examine whether the material mod-
els of the present chapter allow us to define force densities that fit for the
determination of deformations of objects o1 and o2. We thus ask for the
distribution of forces given by these material models. The classical thinking
goes as follows. Because the objects are deformable it is necessary to take
into account the interactions between field sources that reside in one and
the same object. Based on the discussion of section 6.1 it seems that the
basic microscopic models of dielectric and magnetic materials do not allow
the definition of electric or magnetic force density that takes into account
these interactions. However, if the microscopic model is disregarded we may
ask for mesoscopic force density expression that is to be taken as a starting
point for modeling. The resulting model should be a generalization of the
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classical model of rigid objects. In electrostatics the obvious candidate for
volume force density is the quantity F̃ determined in terms of the total fields
(in the absence of free charges) by

G(F̃ , v) = P̃ ∧∇vE

for all vector fields v. The associated surface force density is the quantity f̃
determined by

G(f̃ , v) = (tP̃ )av ∧ [tivE]

for all vector fields v. In the case of rigid objects these quantities integrate
to the correct total force as shown above. However, this generalization is
questionable because it seems to contradict the basic microscopic model from
which these expressions were “derived” in the first place.

In magnetostatics there are two different candidates for volume and sur-
face force densities, corresponding to the two alternative models of magnetic
materials. One of the models regards magnetization as a primary quantity,
resulting in the volume and surface force densities F̃ and f̃ determined by

G(F̃ , v) = M̃ ∧∇vB

G(f̃ , v) = −(tM̃)av ∧ [tivB]

for all smooth vector fields v. The other model has magnetic polarization as
primary, resulting in the volume and surface force densities F̃ and f̃ deter-
mined by

G(F̃ , v) = M ∧∇vH̃ − M ∧ ivdH̃

G(f̃ , v) = (tM)av ∧ [tivH̃]

for all smooth vector fields v. As shown above, both of these force density
candidates integrate to the correct total force on rigid objects when M and
M̃ are related by M = µ0 ⋆ M̃ . Note that for the equivalence of the two
candidates with respect to total force we first need to subtract from F̃ and f̃
the integrands of the corresponding self-force expressions. The resulting local
quantities describing the left-over external interactions then coincide at each
point implying the total force equivalence. The difference in the above force
density candidates is thus a difference in the integrands of the corresponding
self-force expressions. The difference means that the two models could at
best be regarded as models for different phenomena, that is, as models for
the behavior of different deformable objects in a magnetic field.
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It seems that the distribution of electric and magnetic forces in materials
is not yet fully understood. A common opinion seems to be that of DiCarlo
(see [22]), who argues that“...to obtain a decent general theory of electromag-
netic forces in material media it is necessary to treat the material medium
as fundamentally as the electromagnetic field.” I understand this sentence
such that electromagnetic force density for the determination of deformations
cannot be uniquely defined, and different candidates for it need to be accom-
panied by additional terms that come from continuum mechanics. Recently,
Bossavit has shown how to formulate a coupled magnetoelastic problem for
determining deformations of magnetic objects, see [23].
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Chapter 7

Contact forces

This chapter deals with the limitation in the above construction, whereby
objects o1 and o2 are assumed to be distinct objects whose boundaries have
no common points. When considering objects in contact there will be an
immediate problem with the surface force density expressions. To elucidate
this, let us consider our example system of magnetic objects when the objects
are in contact. When considering the force on o2, for instance, it is clear that
the magnetic field intensity H̃1 of object o1 is not continuous at all points
of ∂o2, see Figure 7.1. At points of contact the tangential trace of the 2-
form ⋆H̃1 has discontinuity determined by magnetic surface charge density
σm

1 according to (5.43) and (5.44) as

[t2 ⋆ H̃1]2 = −[t1 ⋆ H̃1]1 = −
1

µ0

σm
1 .

Because of the discontinuity it is not possible to determine the surface force
density f̃12 from the expression σm

2 ∧t2ivH̃1 as was done earlier in the magnetic
charge starting point. The situation is similar with the electric current model
of magnetic materials. In Figure 7.2 the magnetic induction B1 of object o1 is
not continuous at all points of ∂o2. At points of contact the tangential trace
of the 1-form ⋆B1 has discontinuity determined by magnetization surface
current density j̃m

1 as

[t2 ⋆ B1]2 = −[t1 ⋆ B1]1 = −µ0j̃
m
1 .

We thus observe that the expression j̃m
2 ∧ t2ivB1 for the surface force den-

sity is not applicable. In the following I will approach the above problem
by considering a system of separate objects in the limit when the separa-
tion becomes infinitely small. Such an approach has been empoyed recently
in [24, 25, 26, 27]. I will focus on magnetostatics and leave the results of
electrostatics to be obtained by analogy.
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1o

o

Figure 7.1: Magnetic objects in contact. Object o1 has upward directed
remanent magnetic polarization. The magnetic field intensity H1 of object
o1 is not continuous at all points of ∂o2 as there are magnetic surface charges
of object o1 on the contact interface.

7.1 Contact forces in magnetostatics

To consider objects o1 and o2 in the limit of infinitely small separation we use
a real number parameter d to describe the smoothly varying separation, such
that for d = 0 the objects are in contact, and for d > 0 they are separated by
free space. This can be made more precise if needed, see [27]. Let us consider
the virtual work F12(v) in the various starting points introduced earlier as
a function of d. By the above discussion, F12(v) is defined in the electric
current and magnetic charge starting points only for positive values of d. We
define the virtual work at contact to be the limit value limd→0+ F12(v), given
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o1 o2

Figure 7.2: Magnetic objects in contact. Object o1 has upward directed
remanent magnetization. The magnetic induction B1 of object o1 is not
continuous at all points of ∂o2 as there are magnetization surface currents of
object o1 on the contact interface.

from (5.64) as

lim
d→0+

F12(v) = lim
d→0+

(

∫

o2

J̃f
2 ∧ ivB1 +

∫

∂o2

j̃f
2 ∧ ivB1 +

∫

o2

dM̃2 ∧ ivB1

+

∫

∂o2

[t2M̃2]2 ∧ ivB1

)

,
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or from (5.67) as

lim
d→0+

F12(v) = lim
d→0+

(

∫

o2

J̃2 ∧ ivB1 +

∫

∂o2

j̃2 ∧ ivB1 −

∫

o2

dM2 ∧ ivH̃1

−

∫

∂o2

[t2M2]2 ∧ ivH̃1

)

.

To further examine the limit, we restrict the analysis to situations in which
free surface currents vanish, that is, we require

j̃f
2 = j̃2 = 0

in the above expressions for F12(v). In this case the only terms in these
expressions that are not defined at d = 0 are the rightmost terms. Applying
the partial integration process of section 5.2.3 we get rid of these surface
terms, and have

lim
d→0+

F12(v) = lim
d→0+

∫

o2

(J̃f
2 ∧ ivB1 + M̃2 ∧ LvB1)

= lim
d→0+

∫

o2

(J̃2 ∧ ivB1 + M2 ∧ LvH̃1), (7.1)

which are the expressions for the virtual work at contact in the magnetiza-
tion and magnetic polarization starting points. Provided that F12(v) above,
considered as a function of d, is continuous at d = 0, the limit may be eval-
uated by evaluating F12(v) at the contact d = 0. Intuitively this seems to
be the situation because the above expression for F12(v) involves the values
of fields only inside of o2 (and not the values in the free space separation of
the objects). These values should depend continuously on d also in the limit
d = 0. I make the following conjecture.

Conjecture 1. The function F12(v) in (7.1) is continuous at d = 0, so that

lim
d→0+

F12(v)(d) = F12(v)(0).

Even if this conjecture is correct, a computational problem remains as
the method of appendix D cannot be used to compute the values of volume
force density (involving ∇B1 or ∇H̃1) near the contact interface.
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7.2 Contact forces from the total fields

To determine contact forces directly from the total fields we need to recon-
sider the above limiting process with the exception that now we use the
expressions for the virtual work F12(v) involving total fields. I will consider
separately the magnetization and magnetic polarization starting points.

7.2.1 Magnetization approach

In the magnetization starting point we have F12(v) given from (6.43) for
positive values of d. The virtual work at contact is thus

lim
d→0+

F12(v) = lim
d→0+

(

∫

o2

(J̃f
2 ∧ ivB + M̃2 ∧ LvB) −

∫

∂o2

(t2M̃2)
av ∧ [t2ivB]2

)

.

(7.2)

It seems clear that the integral expression on the right hand side of (7.2),
considered as a function of d, is not in general continuous at d = 0. This
is suggested by the example case shown in Figure 7.3 where two magnetic
bodies of the same magnetic susceptibility are in an initially homogeneous
magnetic field. In this case, the object o1 of our model is formed by one of the
magnetic bodies and the body generating the initially homogeneous magnetic
field (not shown in the figure). Since at the contact situation the magnetic
induction B is continuous at the contact interface there is no contribution to
the surface integral of (7.2) from the contact interface. On the other hand,
for positive values of d the magnetic induction field B is discontinuous at all
points of ∂o2 (including the part that approaches the contact interface). The
abrupt change in the surface contribution to F12(v) at d = 0 suggests that
F12(v) is discontinuous at d = 0.

To find an expression for F12(v) in terms of total fields that is continuous
at d = 0 we examine the surface term in (7.2) for positive values of d. We
expect some part of the 1-form [t2ivB]2 to vanish because the tangential trace
of B is continuous. To see what is left of this term, we first decompose v at
the points of ∂o2 into tangential and normal components as

v = v‖ + v⊥, (7.3)

where the normal component v⊥ is given by using the metric tensor g and
outward unit normal vector field n of ∂o2 as v⊥ = g(n, v)n. Since we have
assumed for the 1-form [t2ivB]2 to require the values of v only at points of
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2o 2o

Figure 7.3: Two bodies with equal magnetic susceptibilities in an initially
homogeneous magnetic field. The gray lines are field lines of B.

∂o2, we may use the above decomposition of v to decompose this 1-form as

[t2ivB]2 = [t2(iv‖B + iv⊥B)]2

= [t2iv‖B]2 + [t2iv⊥B]2,

where we have further used the linearity of interior product and tangential
trace. Because v‖ is tangent to ∂o2, it follows that [t2iv‖B]2 = iv‖ [t2B]2 (where
on the right hand side v‖ is taken as a tangent vector field on ∂o2). Then,
since [t2B]2 vanishes, we have

[t2ivB]2 = [t2iv⊥B]2.

We see that only the normal component of v contributes to the surface term
of (7.2). By expressing this normal component as g(n, v)n, and using the
function-linearity of the interior product in the vector argument, we get

[t2ivB]2 = [t2

(

g(n, v)inB
)

]2

= g(n, v)[t2inB]2.

This may further be written by using the normal trace n2, resulting in

[t2ivB]2 = g(n, v)[n2B]2. (7.4)

Normal trace. The normal trace of a p-form on a surface with
selected outward pointing crossing direction is obtained by putting
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the outward pointing unit normal vector in the first argument
place of the form and letting the resulting (p-1)-form operate only
on vectors tangent to the surface. Formally, given a p-form ω on
n-dimensional Riemannian manifold (M, g), its normal trace on
a transverse oriented (n-1)-dimensional submanifold N with con-
tinuous outward pointing normal vector field n is the (p-1)-form
nω on N defined at each point x ∈ N by

(nω)x(u2, . . . , up) = ωx(nx, u2, . . . , up)

for all u2, . . . , up ∈ T 1
xN . Note that we may express nω by using

the interior product and tangential trace as tinω.

The normal trace of B is certainly not continuous in general. To see that
here its discontinuity is determined by the discontinuity of magnetization M̃ ,
we first use B = µ0 ⋆ (H̃ ′ + M̃) in (7.4) to get

[t2ivB]2 = µ0g(n, v)[n2 ⋆ H̃ ′ + n2 ⋆ M̃ ]2

= µ0g(n, v)[n2 ⋆ H̃ ′]2 + µ0g(n, v)[n2 ⋆ M̃ ]2.

Then we note that the discontinuities [n2 ⋆ H̃ ′]2 and [n2 ⋆ M̃ ]2 above may be
given by using the tangential trace and surfacic Hodge operator ⋆s to get

[t2ivB]2 = µ0g(n, v) ⋆s [t2H̃
′]2 + µ0g(n, v) ⋆s [t2M̃ ]2

= µ0g(n, v) ⋆s [t2M̃ ]2, (7.5)

where the last equality follows because we have assumed free surface currents
to vanish so that [t2H̃

′]2 = 0.

Surfacic Hodge operator. Given an n-dimensional Rieman-
nian manifold (M, g) and its (n-1)-dimensional submanifold N
we can define a surfacic Hodge operator on N by first making
N a Riemannian manifold in its own right by restricting g to
N . The restriction is performed by using the natural inclusion
i : N → M in exactly the same way as when restricting a differ-
ential form. Thus, to evaluate the inner product of two tangent
vectors of TxN we just consider these vectors as tangent vectors
of Ti(x)M and give them to gi(x). When N is equipped with this
pull-back metric, we may define a Hodge operator on N in just
the same way as it was defined on M . This is called the surfacic
Hodge operator . Because we have defined twisted forms only on
orientable manifolds we need to require here that the submanifold
N is orientable.
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To verify that [n2 ⋆ M̃ ]2 = ⋆s[t2M̃ ]2 as claimed above, we first write this
claim in detail as

[n2 ⋆ M̃ ]2 = n+
2 ⋆ M̃ − n−

2 ⋆ M̃

= ⋆st
+
2 M̃ − ⋆st

−
2 M̃

= ⋆s[t2M̃ ]2.

Thus, it is left to be shown that n±
2 ⋆ M̃ = ⋆st

±
2 M̃ . For this, it is sufficient

to take two orthonormal vectors e1 and e2 at a point of ∂o2 that are tangent
to ∂o2, and show that the covector n±

2 ⋆ M̃ yields the same number for both
of these vectors as the covector ⋆st

±
2 M̃ . (Here I abuse the notation by using

the same symbol for a 1-form and its value at a point.) By denoting as M̃±

the limit value of M̃ from outside or from inside of ∂o2, we get

(n±
2 ⋆ M̃)(e1) = ⋆M̃±(n ∧ e1),

= M̃±
(

⋆ (n ∧ e1)
)

,

where on the right hand side e1 is taken as a vector on the space manifold Ω.
By using the unit 3-vector n ∧ e1 ∧ e2 to specify local orientation of Ω, the
twisted vector ⋆(n ∧ e1) will be represented by e2 (considered as a vector on
Ω). We have

M̃±
(

⋆ (n ∧ e1)
)

= M̃±(e2)

= t±2 M̃(e2),

where on the last row e2 is again taken as a vector on ∂o2. The transverse
oriented surface ∂o2 now has an induced orientation determined by e1 ∧ e2,
see Figure 7.4. Thus the vector that the surfacic Hodge maps to the twisted
vector represented by e2 is e1. This gives

t±2 M̃(e2) = t±2 M̃(⋆se1)

= (⋆st
±
2 M̃)(e1).

The equality (n±
2 ⋆ M̃)(e2) = (⋆st

±
2 M̃)(e2) can be shown similarly. We thus

have n±
2 ⋆M̃ = ⋆st

±
2 M̃ as promised, and this proves the claim that [n2⋆M̃ ]2 =

⋆s[t2M̃ ]2. Finally, by using (7.5), we may express the surface term in (7.2)
as

−(t2M̃2)
av ∧ [t2ivB]2 = −(t2M̃2)

av ∧
(

µ0g(n, v) ⋆s [t2M̃ ]2
)

=
t−2 M̃2

2
∧

(

µ0g(n, v) ⋆s t−2 M̃
)

(7.6)
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e2

e1

n

Figure 7.4: A piece of boundary ∂o2 with its orientation induced from the
right handed orientation of Ω. The surfacic Hodge operator turns tangent
vectors 90 degrees to the positive direction.

where we have taken into account that t+
2 M̃ vanishes because o2 is surrounded

by free space.
By using (7.6) in (7.2), and taking into account that M̃ coincides with

M̃2 on o2, we have

lim
d→0+

F12(v) = lim
d→0+

(

∫

o2

(J̃f
2 ∧ ivB + M̃2 ∧ LvB) +

∫

∂o2

µ0

2
g(n, v)t−2 M̃2 ∧ ⋆st

−
2 M̃2

)

(7.7)

for the virtual work at contact. This expression involves the values of B,
M̃2 and J̃f

2 only inside of o2 (and not in the free space separation of the
objects). These values should depend continuously on d even in the limit
d = 0, and thus we should be able to evaluate the limit by just evaluating
F12(v) corresponding to d = 0. I will make a similar conjecture as in the
previous section.

Conjecture 2. The function F12(v) in (7.7) is continuous at d = 0, so that

lim
d→0+

F12(v)(d) = F12(v)(0).

If the conjecture is correct, the virtual work done on o2 by o1 when the
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objects are in contact is thus given as

F12(v)(0) =

∫

o2

(J̃f
2 ∧ ivB + M̃2 ∧∇vB + M̃2 ∧ ⋆iθ̃B)

+

∫

∂o2

µ0

2
g(n, v)t−2 M̃2 ∧ ⋆st

−
2 M̃2, (7.8)

where the quantities on the right hand side are evaluated at the contact
situation. This gives the force and torque formulae that appear in the work
of Brown [14, 28]. For basis representation of the surface integrand in (7.8),
see Appendix C.

7.2.2 Magnetic polarization approach

To determine contact forces from the total fields in the magnetic polarization
approach we follow the steps of the previous subsection. Now the virtual work
at contact is given as the limit

lim
d→0+

F12(v) = lim
d→0+

(

∫

o2

(J̃2 ∧ ivB + M2 ∧ LvH̃ − M2 ∧ ivdH̃)

+

∫

∂o2

(t2M2)
av ∧ [t2ivH̃]2

)

. (7.9)

To obtain an expression that is continuous at d = 0 we consider the surface
term (t2M2)

av ∧ [t2ivH̃]2 corresponding to positive values of d. Let us first
examine what is left of the term [t2ivH̃]2 after we have taken into account
that the tangential traces of B′ and H̃ are continuous over ∂o2. By using the
decomposition of v into tangential and normal components, and following
the steps of the previous subsection, we get

[t2ivH̃]2 = [t2iv||H̃]2 + [t2iv⊥H̃]2

= iv|| [t2H̃]2 + [t2iv⊥H̃]2

= [t2iv⊥H̃]2

= g(n2, v)[t2in2
H̃]2

= g(n2, v)[n2H̃]2,

where in the third equality we have taken into account that the surface cur-
rents vanish so that [t2H̃]2 = 0. By further using H̃ = µ−1

0 ⋆ (B′ − M) this
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yields

[t2ivH̃]2 = µ−1
0 g(n2, v)[n2 ⋆ B′ − n2 ⋆ M ]2

= µ−1
0 g(n2, v) ⋆s [t2B

′]2 − µ−1
0 g(n2, v) ⋆s [t2M ]2

= −µ−1
0 g(n2, v) ⋆s [t2M ]2, (7.10)

where we have taken into account that [t2B
′]2 = 0.

In (7.10) we have made use of the fact that n±
2 ⋆ M = ⋆st

±
2 M so that

[n2 ⋆ M ]2 = n+
2 ⋆ M − n−

2 ⋆ M

= ⋆st
+
2 M − ⋆st

−
2 M

= ⋆s[t2M ]2.

To verify the claim n±
2 ⋆M = ⋆st

±
2 M we take a point on ∂o2, and look at the

operation of the twisted 0-covector n±
2 ⋆ M at the point on the unit 0-vector

at the point. (I abuse the notation by using the same symbol for differential
form and its value at a point.) We have

n±
2 ⋆ M(1) = ⋆M±(n2)

= M±(⋆n2).

Let us next take two orthonormal tangent vectors e1 and e2 of ∂o2 at the point
in question. As before we may consider these vectors as vectors on Ω, and
this way we can specify the local orientation of Ω by using the unit 3-vector
n ∧ e1 ∧ e2. With this orientation the twisted 2-vector ⋆n2 is represented by
e1 ∧ e2, so we have

n±
2 ⋆ M(1) = M±(e1 ∧ e2)

= t±2 M(e1 ∧ e2),

where on the last row e1 and e2 are again taken as vectors on ∂o2. Now ∂o2

has an induced local orientation defined by the 2-vector e1 ∧ e2. It follows
that the 0-vector which is mapped by ⋆s to the twisted 2-vector represented
by e1 ∧ e2 is 1. We thus have

n±
2 ⋆ M(1) = t±2 M(⋆s1)

= ⋆st
±
2 M(1).

This shows that n±
2 ⋆ M = ⋆st

±
2 M as claimed above.

By using (7.10) we may write the surface integrand in (7.9) as

(t2M2)
av ∧ [t2ivH̃]2 = −(t2M2)

av ∧
(

µ−1
0 g(n2, v) ⋆s [t2M ]2

)

=
t−2 M2

2
∧

(

µ−1
0 g(n2, v) ⋆s t−2 M

)

,
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where we have taken into account that t+
2 M = 0 because o2 is surrounded by

free space. Finally, the virtual work at contact may be given as

lim
d→0+

F12(v) = lim
d→0+

(

∫

o2

(J̃2 ∧ ivB + M2 ∧ LvH̃ − M2 ∧ ivdH̃)

+

∫

∂o2

1

2µ0

g(n2, v)t−2 M2 ∧ ⋆st
−
2 M2

)

. (7.11)

We make the following conjecture.

Conjecture 3. The function F12(v) in (7.11) is continuous at d = 0, so that

lim
d→0+

F12(v)(d) = F12(v)(0).

If the conjecture holds true, we have for the virtual work at contact

F12(v)(0) =

∫

o2

(J̃2 ∧ ivB + M2 ∧∇vH̃ − M2 ∧ ivdH̃ + M2 ∧ iθ̃ ⋆ H̃)

+

∫

∂o2

1

2µ0

g(n2, v)t−2 M2 ∧ ⋆st
−
2 M2, (7.12)

where all quantities on the right hand side correspond to the contact situation
d = 0. This is in accordance with the force and torque formulae appearing in
the work of Brown [14, 28]. For basis representation of the surface integrand
in (7.12), see Appendix C.
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Chapter 8

Geometric view of magnetic
forces

In this chapter I will use the methods of previous chapters to evaluate mag-
netic forces in example situations and try to find a usable engineering rule
by which the forces may be estimated from the field lines of the total fields.
If this can be done one does not need to know the field sources to estimate
forces. At the end of this chapter a new geometric view of magnetic forces will
be suggested. It is precisely this kind of geometric thinking that the meth-
ods introduced in the previous chapters help to develop. In the same spirit,
these methods constitute the tool for formalizing the developed geometric
intuition.

Let us examine magnetic forces in an example system where a current
carrying wire resides in the vicinity of a permanent magnet, see Figure 8.1.
The magnetic force on the wire tends to pull the wire towards the magnet.
How could this be seen from the magnetic field lines shown in the figure?
The field lines are not only bent (with respect to Cartesian straight lines)
but they also have density variations. In free space these two properties seem
to compensate each other such that the bending of field lines and the decrease
in density are always in opposite directions with the same magnitude. Inside
of the wire this is clearly not the case since both the bending and the decrease
in density is towards the magnet. It seems that forces arise from the combined
effect of the bending of field lines and decrease in their density.

The above reasoning is in accordance with the classical force density for-
mula J × B. By expressing J as µ−1

0 ∇ × B we may decompose this as
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Figure 8.1: Magnetic field lines in the example system consisting of a per-
manent magnet and a current carrying wire. Current in the wire is directed
out of the page and the permanent magnet has upward directed remanent
magnetization.

J × B =
1

µ0

(∇× B) × B

=
1

µ0

B · ∇B −∇(
1

2µ0

B · B), (8.1)

where for the last equality we have used the vector analysis formula a ·∇b+
b · ∇a + b × (∇ × a) = −a × (∇ × b) + ∇(a · b). (This formula follows
from the Lie derivative formula Lab = iadb + diab, where a is a vector field
with components a, and b is a 1-form whose proxy-vector has components
b.) The first term in (8.1) describes the contribution that comes from the
bending of field lines, whereas the second term describes the contribution that
comes from the density variations of field lines. If the field lines are straight
lines of Cartesian geometry, the first term vanishes and only the second term
contributes to forces. In [30] these two contributions are referred to tension
in the field lines and magnetic pressure gradient.
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When using the above reasoning to estimate the force on the permanent
magnet, we only expect the net effect on the magnet to be described correctly.
Equation 8.1 is valid also inside of the permanent magnet provided that
equivalent magnetization currents are included in J . At the leftmost and
rightmost parts of the permanent magnet the field lines bend to opposite
directions, suggesting forces that stretch the magnet horizontally. The net
effect cannot be easily seen from this in the example of Figure 8.1 because
the fields of the magnet are much stronger than the fields of the wire, so
the wire has only a very small effect on the field lines inside of the magnet.
For this reason we consider another example where the fields of the magnet
are weaker than above with respect to the fields of the wire, see Figure 8.2.
In this case we see that the field lines inside of the magnet are bent slightly
more to the left than to the right, suggesting a net force to the left. However,
the density of field lines decreases slightly more to the right than to the left,
so the net effect is still not clear. On the surface of the magnet the bending
of field lines and their density variation do not occur smoothly. In this case
the heuristic application of the above reasoning suggests that the force at
the leftmost surface is to the left and the force at the rightmost surface is to
the right. However, the net effect is still somewhat blurred as inside of the
magnet. The present method is clearly not optimal for figuring out the force
on the permanent magnet. Yet there is something in the field lines above,
giving the impression that the magnet is pulled to the left.

The properties of field lines inside of the magnet are reflected to their
properties in the neighbourhood of the magnet. Thus, it should be possible to
see the net effect on the magnet by looking at field lines in the neighbourhood
of the magnet. This is realized formally by integrating the Maxwell’s stress
tensor over an “observation surface” surrounding the magnet (but not the
wire). We may express J × B as

J × B = ∇ ·
( 1

µ0

BB −
1

2µ0

(B · B)Ī
)

(8.2)

as shown in Appendix A. Stoke’s theorem then implies that the net force on
the magnet is given by integrating the quantity in brackets over the obser-
vation surface. It is not easy to see the Maxwell’s tensor and its net effect
from the field lines, so we seek here a simple heuristic engineering rule that
yields the outcome of the above formal procedure. More to the point, we seek
to interpret in example situations Faraday’s suggestion rephrased by Cross
([30]) as follows: “...lines of magnetic force exist in a state of tension and
have a tendency to shorten themselves.”

For the interpretation of Faraday’s rule in the example of Figure 8.2 we
look at field lines that bypass the magnet from the left and from the right.
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Figure 8.2: Magnetic field lines in a system where the fields of the permanent
magnet are of the same order of magnitude as the fields of the wire.

Field lines passing by from the left bend to the left and field lines passing by
from the right bend to the right. Since the field lines bending to the left have
higher density than those bending to the right, the net force on the magnet is
to the left. Let us consider this same example when the direction of current
is reversed, see Figure 8.3. In this case the permanent magnet is pushed to
the right. To see this by using the above rule we look at (as above) those
field lines passing by the magnet that do not go through the magnet. On
the left hand side of the magnet these field lines bend to the right, whereas
on the right hand side the field lines bend to the left, and since the field
lines bending to the right are of higher density, the net force is to the right.
Let us consider yet another example where two permanent magnets of the
same magnitude are aligned such that their magnetizations point to opposite
directions, see Figure 8.4. Here, the two magnets tend to repel each other.
How should one interpret Faraday’s rule in this example? Which of the field
lines tend to shorten themselves to yield a repulsive force, for instance, to
the rightmost magnet? My suggestion is that, as above, those field lines
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Figure 8.3: Magnetic field lines in a system where the direction of current is
reversed with respect to the example of Figure 8.2.

passing by the rightmost magnet that do not go through the magnet tend to
shorten themselves to yield a net force to the right. (These are the field lines
going through the leftmost magnet.) However, the field lines do not tend
to shorten themselves in the usual Cartesian metric, but in another metric
defined by the fields of the leftmost magnet. In this other metric (defined
outside of the leftmost magnet) the field lines of the leftmost magnet give the
shortest paths between pairs of points and thus replace the straight lines of
Cartesian geometry, see Figure 8.5. The intuition is thus that the field lines
going through the leftmost magnet in Figure 8.4 tend towards the field lines
of the leftmost magnet shown in Figure 8.5, pushing the other magnet to
the right. This rule works in all the example cases above – in the examples
preceding the present one the two concepts of shortening field lines yield the
same conclusion about the net force.
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Figure 8.4: Magnetic field lines in a system of two permanent magnets.
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Figure 8.5: Field lines of the leftmost magnet in the system of Figure 8.4.
The effect of the rightmost magnet on the magnetization of the leftmost
magnet is included.
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Chapter 9

Conclusions

In this thesis we have given definitions of electrostatic and magnetostatic
forces that take into account the effect of finite test object on the charge
and current distributions of the source object. We have constructed these
definitions inside of an axiomatized geometry, or more precisely, inside of
Riemannian geometry. This is done with an aim to generalize the classical
methods for rigid objects to cover also situations where the interacting objects
are deformable in the usual sense.

By considering force on finite interacting object as a covector, one accepts
that the displacements of all the points of the object may be represented by
a single vector. To express this formally one uses a constant virtual displace-
ment vector field. Constancy of vector fields is taken to be a relative notion,
and thus it is included in the theory as a separate structure called connec-
tion. To ensure that a constant vector field exists we assume a neighbourhood
containing the object to be parallelizable. This is an additional requirement
for the underlying Riemannian manifold, and it is sufficient for expressing
the mathematical predicates defining electrostatic and magnetostatic forces.
Intuitively, by using a parallelism we may add up covector-valued contribu-
tions to total force from different points of the object. This requirement is
less stringent than the global parallelizability required by the Newton’s law
of action and reaction.

We have restricted the analysis to rigid objects, that is, objects whose
virtual displacements do not distort distances and angles. To ensure that
constant vector fields fullfill this property we have used a specific connection
that is symmetric, and that is compatible with metric. This is the Levi-
Civita connection. The virtual displacements of rigid objects are, in general,
described by Killing vector fields. These vector fields are infinitesimal descrip-
tions of continuous metric symmetries, which are translations and rotations
in the case of Euclidean manifolds. Thus, to consider rigid rotations of an
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object, we assume the existence of Euclidean coordinates on a neighbourhood
containing the object, and redefine force as a map taking Killing vector fields
to real numbers.

Forces on material objects may be defined by using equivalent charges and
equivalent currents. These terms describe the interacting objects as possess-
ing certain kind of polarity as a whole. The corresponding terms describing
distributed polarity inside of the objects are polarization and magnetization.
The situation with magnetic forces is interesting because we have equiva-
lent magnetic charges and equivalent electric currents as alternative primary
terms. Corresponding to equivalent magnetic charges, there is magnetic po-
larization describing the distributed polarity. Magnetization and magnetic
polarization have a different geometric character, and their relation requires
the Hodge operator.

Microscopic counterparts of magnetization and magnetic polarization are
virtual current loops and pairs of virtually displaced oppositely charged mag-
netic monopoles, respectively. That these are not pointlike particles is re-
flected to our analysis as the appearance of the Lie derivative – an operator
that has a peculiar non-tensorial character. We have seen that magnetiza-
tion and magnetic polarization yield equivalent definitions of magnetic force.
In an abstract level this equivalence corresponds to the commutation of the
Hodge operator and the Lie derivative with respect to a Killing vector field.
Formally, we have

Lv ◦ ⋆ = ⋆ ◦ Lv,

for all Killing vector fields v. The Hodge operator is needed for the relation
between the two kinds of primary terms, and Killing vector fields contain
the requirement of rigidity enforced for the equivalence. From this it follows
that also equivalent magnetic charges and equivalent electric currents yield
equivalent definitions of magnetic forces. The equivalence of the alternative
force definitions is thus structural. Although electric and magnetic forces on
rigid objects may be defined in terms of polarization and magnetization (and
magnetic polarization), the use of these primary terms does not solve the
remaining problem concerning the definition of electric and magnetic force
densities for the calculation of deformations.

We have attempted to extend the definitions of electric and magnetic
forces to situations where the interacting objects are in contact with each
other. We have approached such a contact situation by considering a se-
quence of situations where the separation of two distinct objects becomes
infinitely small. The force at contact is defined to be the limit of forces as
the separation parameter approaches zero. We have formulated conjectures
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that state how contact forces may be determined from quantities correspond-
ing to the contact situation of zero separation parameter.

Finally, this study has guided us towards methods that have not yet
been fully exploited in electromagnetic engineering. Namely, we aim to see
electrostatic and magnetostatic interactions as instances of geometry. Indeed,
we naturally have strong intuition about geometry, so thinking in geometric
terms should be profitable. In practice, this would mean taking advantage of
mathematical methods of Riemannian geometry in the computation of forces.
In chapter 8 we have suggested a basis for such a geometrization in the case
of magnetostatics.
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Appendix A

Basis representations of force
densities and stresses

In this appendix we derive local basis representations of the force densities
and the stress corresponding to electrostatic and magnetostatic cases. The
results are given by using the classical vector analysis notation. We assume
local Cartesian coordinates (holding both of the objects o1 and o2) with
basis vector fields e1, e2, e3 that are constant and orthonormal. The metric
tensor is given in this basis by using the dual basis 1-forms ω1, ω2, ω3 as
g =

∑3
i=1 ωi ⊗ ωi. Its matrix is thus the identity. For vector fields u and v

we thus have

g(u, v) =
3

∑

i=1

ωi(u)ωi(v) =
3

∑

i=1

uivi = u · v,

where u and v stand for the triplets of components of u and v. A 1-form such
as E1 is written in this basis as (E1)iω

i, and its proxy-vector field has the
components gij(E1)j = (E1)i. Because the components of the two coincide
in the Cartesian coordinate basis we will not keep up here with the index
placement.

We also specify orientation by the array (e1, e2, e3) such that all twisted
vectors and twisted forms will be represented by ordinary ones. In particular,
the 3-form ω1 ∧ ω2 ∧ ω3 represents the volume density that takes in vector
arrays such as (u, v, w) and produces their scalar triple product, that is

ω1 ∧ ω2 ∧ ω3(u, v, w) = u · (v × w).

When (u, v, w) is positively oriented (such as when integrating the 3-form over
a positively oriented submanifold) this is the volume of the parallelopiped
formed by u, v, w.
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We may represent a 2-form such as B1 by using the 3-form ω1 ∧ ω2 ∧ ω3

and a vector field b such that

B1 = ib(ω
1 ∧ ω2 ∧ ω3)

= ω1(b)ω2 ∧ ω3 + ω2(b)ω3 ∧ ω1 + ω3(b)ω1 ∧ ω2

= b1ω
2 ∧ ω3 + b2ω

3 ∧ ω1 + b3ω
1 ∧ ω2

where we have made repeated use of the antiderivation property of interior
product. We thus prefer to write B1 in the basis as (B1)1ω

2 ∧ω3 +(B1)2ω
3 ∧

ω1 + (B1)3ω
1 ∧ ω2 instead of the expression (B1)12ω

1 ∧ ω2 + (B1)13ω
1 ∧ ω3 +

(B1)23ω
2 ∧ ω3 (that stems from the tensor notation). Note then that the

1-form ⋆B1 is (B1)iω
i so the proxy-vector field of this 1-form has the com-

ponents gij(B1)j = (B1)i in the Cartesian coordinate basis. Thus b is the
proxy-vector field of ⋆B1.

We will also need a coordinate expression for the exterior derivative. For
this we use the antiderivation property of d. That is, for p-form ω and q-form
η we have d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη, see [1, 3]. Now, because dωi = 0
for i = 1, 2, 3, we have for a 1-form such as E1

dE1 = d
(

(E1)iω
i
)

= d(E1)i ∧ ωi + (E1)idωi

= d(E1)i(ej)ω
j ∧ ωi

=
∂(E1)i

∂xj
ωj ∧ ωi

=
(∂(E1)3

∂x2
−

∂(E1)2

∂x3

)

ω2 ∧ ω3 +
(∂(E1)1

∂x3
−

∂(E1)3

∂x1

)

ω3 ∧ ω1

+
(∂(E1)2

∂x1
−

∂(E1)1

∂x2

)

ω1 ∧ ω2,

where x1, x2, x3 stand for the Cartesian coordinates. Thus, denoting as E1

the triplet ((E1)1, (E1)2, (E1)3), the proxy-vector field of the 1-form ⋆dE1 has
components given by the triplet ∇× E1. In a similar fashion we have for a
2-form such as B1 the coordinate expression

dB1 =
(∂(B1)1

∂x1
+

∂(B1)2

∂x2
+

∂(B1)3

∂x3

)

ω1 ∧ ω2 ∧ ω3.

Thus, denoting as B1 the triplet ((B1)1, (B1)2, (B1)3), the component of the
3-form dB1 is ∇ · B1.
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A.1 Electrostatics

Here, we consider the two different expressions in electrostatics for the force
densities F̃12 + F̃21 and f̃12 + f̃21, and the stress T̃12 + T̃21.

A.1.1 Electric charge approach

To begin with, let us denote as E1 the triplet of components of E1. Also,
we use the notation dV for the volume 3-form ω1 ∧ ω2 ∧ ω3 and represent
the charge density ρ̃2 by the function ρ2 as ρ2dV . Note that dV is only a
notation for the volume form – with no exterior derivative there. Then, by
defining E2 and ρ1 in similar way, we have

G(F̃12 + F̃21, v) = G(F̃12, v) + G(F̃21, v)

= ρ̃2 ∧ ivE1 + ρ̃1 ∧ ivE2

= (E1)iv
iρ2dV + (E2)iv

iρ1dV

= (ρ2E1 · v)dV + (ρ1E2 · v)dV

= (ρ2E1 + ρ1E2) · vdV, (A.1)

Thus the proxy-vector field of the volume force density has the components
ρ2E1 + ρ1E2.

For the surface force density we first denote as n1 and n2 the outward
unit normal vector fields of the transverse oriented surfaces ∂o1 and ∂o2,
respectively. We further extend the domain of definition of n1 to ∂o2 by
setting it zero there, and similarly for n2. Then, we denote as n the sum
n1 + n2, and use the symbol dA for the area 2-form tindV . By representing
σ̃1 and σ̃2 as σ1dA and σ2dA, respectively, we get

G(f̃12 + f̃21, v) = G(f̃12, v) + G(f̃21, v)

= σ̃2 ∧ t2ivE1 + σ̃1 ∧ t1ivE2

= (σ2E1 · v)dA + (σ1E2 · v)dA

= (σ2E1 + σ1E2) · vdA, (A.2)

where in the second row we have extended t2ivE1 to ∂o1 by setting it zero
there, and similarly for t1ivE2. From now on I will make such an extension
whenever needed without separate notification. We thus find that the proxy-
vector field of the surface force density has the components σ2E1 + σ1E2.

The representation of T̃12 + T̃21 is not that straightforward. For this, we
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first express F̃12 + F̃21 as F̃ − F̃11 − F̃22 to get

G(F̃12 + F̃21, v) = G(F̃ − F̃11 − F̃22, v)

= G(F̃ , v) − G(F̃11, v) − G(F̃22, v)

= dD̃ ∧ ivE − dD̃1 ∧ ivE1 − dD̃2 ∧ ivE2. (A.3)

Let us concentrate on the first term

G(F̃ , v) = dD̃ ∧ ivE = d(ǫ0 ⋆ E) ∧ ivE. (A.4)

It turns out that this may be written in the standard basis as

G(F̃ , v) = G(d∇T̃ , v) = ωi(v)dT̃i = (∇ · T ) · vdV, (A.5)

where the matrix T is given in terms of the identity matrix Ī as

T = ǫ0EE −
ǫ0

2
(E · E)Ī , (A.6)

where E denotes the triplet of components of E. The calculation behind
(A.5) and (A.6) is troublesome. Let us go through it in detail. Beginning
from (A.4), and using the antiderivation property of d, we have

G(F̃ , v) = d(ǫ0 ⋆ E) ∧ ivE

= ωi(v)d(ǫ0 ⋆ E) ∧ Ei

= ωi(v)
(

d(ǫ0 ⋆ EEi) − ǫ0 ⋆ E ∧ dEi

)

. (A.7)

Note that here Ei is the ith component of the 1-form E, and not the electric
field intensity of object i. Let us take under consideration the term ǫ0 ⋆ E ∧
dE1. We try to give this as the exterior derivative of a 2-form. By expressing
the 2-form ǫ0 ⋆ E and the 1-form dE1 in components as

ǫ0 ⋆ E = ǫ0 ⋆ (Eiω
i)

= ǫ0(E1ω
2 ∧ ω3 + E2ω

3 ∧ ω1 + E3ω
1 ∧ ω2) (A.8)

and

dE1 = dE1(ei)ω
i,

we may write

ǫ0 ⋆ E ∧ dE1 = ǫ0(E1ω
2 ∧ ω3 ∧ dE1 + E2ω

3 ∧ ω1 ∧ dE1 + E3ω
1 ∧ ω2 ∧ dE1)

= ǫ0(E1dE1(e1)ω
2 ∧ ω3 ∧ ω1 + E2dE1(e2)ω

3 ∧ ω1 ∧ ω2

+ E3dE1(e3)ω
1 ∧ ω2 ∧ ω3)

= ǫ0

(

E1dE1(e1) + E2dE1(e2) + E3dE1(e3)
)

dV,
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where the second and third equalities make use of the antisymmetry property
of the exterior product. Let us next add and subtract the terms ǫ0E2dE2(e1)dV
and ǫ0E3dE3(e1)dV . We get

ǫ0 ⋆ E ∧ dE1 = ǫ0

(

E1dE1(e1) + E2dE2(e1) + E3dE3(e1))dV

+ ǫ0

(

E3dE1(e3) − E3dE3(e1) + E2dE1(e2) − E2dE2(e1)
)

dV.
(A.9)

In the first term we get the Ei’s inside the derivative by noticing that EidEi =
1
2
d(E2

i ). Thus, the first term is

ǫ0

(

E1dE1(e1) + E2dE2(e1) + E3dE3(e1))dV =
ǫ0

2
d(E2

1 + E2
2 + E2

3)(e1)dV.

The second term ǫ0

(

E3dE1(e3) − E3dE3(e1) + E2dE1(e2) − E2dE2(e1)
)

dV
may be written more compactly as ǫ0(E3ω

2 − E2ω
3) ∧ dE. To see this, we

give dE in the basis as dE = dEi ∧ ωi. In this way we get

ǫ0(E3ω
2 − E2ω

3) ∧ dE = ǫ0(E3dE1 ∧ ω1 ∧ ω2 − E3dE3 ∧ ω2 ∧ ω3

+ E2dE1 ∧ ω3 ∧ ω1 − E2dE2 ∧ ω2 ∧ ω3)

= ǫ0(E3dE1(e3)ω
3 ∧ ω1 ∧ ω2 − E3dE3(e1)ω

1 ∧ ω2 ∧ ω3

+ E2dE1(e2)ω
2 ∧ ω3 ∧ ω1 − E2dE2(e1)ω

1 ∧ ω2 ∧ ω3)

= ǫ0

(

E3dE1(e3) − E3dE3(e1) + E2dE1(e2)

− E2dE2(e1)
)

dV

as promised. Thus, because dE = 0, the second term in (A.9) vanishes, and
we have

ǫ0 ⋆ E ∧ dE1 =
ǫ0

2
d(E2

1 + E2
2 + E2

3)(e1)dV.

Finally, this may be written as

ǫ0 ⋆ E ∧ dE1 =
ǫ0

2
d(E2

1 + E2
2 + E2

3)(e1)dV

=
ǫ0

2
d(E2

1 + E2
2 + E2

3)(e1)ω
1 ∧ ω2 ∧ ω3

=
ǫ0

2
d(E2

1 + E2
2 + E2

3)(ei)ω
i ∧ ω2 ∧ ω3

=
ǫ0

2
d(E2

1 + E2
2 + E2

3) ∧ ω2 ∧ ω3

= d
(ǫ0

2
(E2

1 + E2
2 + E2

3)ω
2 ∧ ω3

)

.
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In the same way we have for the terms ǫ0 ⋆E ∧dE2 and ǫ0 ⋆E ∧dE3 in (A.7)

ǫ0 ⋆ E ∧ dE2 = d
(ǫ0

2
(E2

1 + E2
2 + E2

3)ω
3 ∧ ω1

)

,

ǫ0 ⋆ E ∧ dE3 = d
(ǫ0

2
(E2

1 + E2
2 + E2

3)ω
1 ∧ ω2

)

.

Using these and (A.8) in (A.7), we get

G(F̃ , v) = ωi(v)dT̃i,

where

T̃1 =
(

ǫ0E
2
1 −

ǫ0

2
(E2

1 + E2
2 + E2

3)
)

ω2 ∧ ω3 + ǫ0E2E1ω
3 ∧ ω1 + ǫ0E3E1ω

1 ∧ ω2,

T̃2 = ǫ0E1E2ω
2 ∧ ω3 +

(

ǫ0E
2
2 −

ǫ0

2
(E2

1 + E2
2 + E2

3)
)

ω3 ∧ ω1 + ǫ0E3E2ω
1 ∧ ω2,

T̃2 = ǫ0E1E3ω
2 ∧ ω3 + ǫ0E2E3ω

3 ∧ ω1 +
(

ǫ0E
2
3 −

ǫ0

2
(E2

1 + E2
2 + E2

3)
)

ω1 ∧ ω2.

By definition d∇T̃ = F̃ , so we have

G(d∇T̃ , v) = ωi(v)dT̃i,

and because the basis 1-forms are constant this implies that the T̃i’s are the
component 2-forms of T̃ . That is, we have

G(T̃ , v) = ωi(v)T̃i.

Finally, to get to the matrix notation above, we write T̃i = T̃ 1
i ω2 ∧ ω3 +

T̃ 2
i ω3 ∧ ω1 + T̃ 3

i ω1 ∧ ω2, and express the exterior derivative of this as

dT̃i = dT̃ 1
i ∧ ω2 ∧ ω3 + dT̃ 2

i ∧ ω3 ∧ ω1 + dT̃ 3
i ∧ ω1 ∧ ω2

=
(

dT̃ 1
i (e1) + dT̃ 2

i (e2) + dT̃ 3
i (e3)

)

ω1 ∧ ω2 ∧ ω3

= ∂jT̃
j
i dV,

where ∂j denotes the partial derivative with respect to the jth coordinate.
By further denoting as T the matrix T̃ j

i (i the row index and j the column
index), and using the notation (∇ · T )i for ∂jT̃

j
i , we may write

G(F̃ , v) = ωi(v)dT̃i

= ωi(v)(∇ · T )idV

= vi(∇ · T )idV

= (∇ · T ) · vdV
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where ∇·T is the triplet
(

(∇·T )1, (∇·T )2, (∇·T )3

)

. Note that the matrix
T used here is the transpose of that used, for instance, in [15, 16]. This
difference is accompanied by a difference in the definition of ∇ · T . Here we
have defined (∇ · T )i = ∂jT̃

j
i in contrast to the definition (∇ · T )i = ∂jT

i
j

used in the above references.
Going back to (A.3) we observe that also the elements of pairs (E1, D̃1)

and (E2, D̃2) are related by the Hodge operator, and that dE1 and dE2 vanish
just like dE. It follows that the above procedure may be carried out also for
the second and third terms on the right hand side of (A.3) to obtain matrices

T 11 = ǫ0E1E1 −
ǫ0

2
(E1 · E1)Ī , (A.10)

T 22 = ǫ0E2E2 −
ǫ0

2
(E2 · E2)Ī . (A.11)

Finally, by inserting the results back to (A.3), we find

G(F̃12 + F̃21, v) = G(d∇T̃ , v) − G(d∇T̃11, v) − G(d∇T̃22, v)

= G
(

d∇(T̃ − T̃11 − T̃22), v
)

=
(

∇ · (T − T 11 − T 22)
)

· vdV, (A.12)

and we observe that the stress T̃12 + T̃21 is represented by the matrix T −
T 11 − T 22.

It may be instructive to consider the basis representation of the tangential
trace of, for instance, T̃ . Since the tangential trace operates only on the 2-
form part of T̃ , we have

G(tT̃ , v) = t(ωi(v)T̃i).

This is a 2-form on ∂o1∪∂o2 so we may express it in the basis provided by the
area 2-form dA. For this, we take the outward unit normal n, and consider
the 2-vector field ⋆n. This is a 2-vector field defined at points of the space
manifold Ω. However, because it is tangent to ∂o1 ∪ ∂o2 we may consider it
as a 2-vector field on the surface ∂o1 ∪ ∂o2. To avoid confusion we denote as
σ the 2-vector field ⋆n considered as a 2-vector field on ∂o1∪∂o2. Let us give
σ to the 2-form dA. By making repeated use of the antiderivation property
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of the interior product we get

dA(σ) = tindV (σ)

= indV (⋆n)

= in(ω1 ∧ ω2 ∧ ω3)(⋆n)

=
(

inω
1 ∧ ω2 ∧ ω3 − ω1 ∧ in(ω2 ∧ ω3)

)

(⋆n)

= (inω
1 ∧ ω2 ∧ ω3 − ω1 ∧ inω

2 ∧ ω3

+ ω1 ∧ ω2 ∧ inω3)(⋆n)

= n1ω2 ∧ ω3(⋆n) + n2ω3 ∧ ω1(⋆n) + n3ω1 ∧ ω2(⋆n)

= n1ω1(n) + n2ω2(n) + n3ω3(n)

= n · n = 1.

We may thus express t(ωi(v)T̃i) as

t(ωi(v)T̃i) = t(ωi(v)T̃i)(σ)dA

= ωi(v)T̃i(⋆n)dA

= ωi(v)(T̃ 1
i ω2 ∧ ω3 + T̃ 2

i ω3 ∧ ω1 + T̃ 3
i ω1 ∧ ω2)(⋆n)dA

= ωi(v)(T̃ 1
i ω1(n) + T̃ 2

i ω2(n) + T̃ 3
i ω3(n))dA

=
(

v · (T · n)
)

dA.

Thus the matrix T takes in n from the right according to our convention.
Finally, we note that the Stokes’ theorem “

∫

V
d∇T̃ =

∫

∂V
T̃ for all volumes

V over which T̃ is smooth” translates to
∫

V

∇ · TdV =

∫

∂V

T · ndA (A.13)

for all volumes V over which T is smooth.

A.1.2 Electric polarization approach

When dielectric materials are modeled by electric polarization (section 6.2)
we have

G(F̃12 + F̃21, v) = G(F̃12, v) + G(F̃21, v)

= ρ̃f
2 ∧ ivE1 + P̃2 ∧∇vE1 + ρ̃f

1 ∧ ivE2 + P̃1 ∧∇vE2. (A.14)

For the basis representation, let us first consider the second term on the right
hand side. By representing the polarization P̃2 as (P̃2)1ω

2∧ω3+(P̃2)2ω
3∧ω1+
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(P̃2)3ω
1 ∧ ω2, and by using the symbol P 2 for the triplet of the components

(P̃2)i, we have in the standard basis

P̃2 ∧∇vE1 = P̃2 ∧
(

∇v

(

(E1)i

)

ωi + (E1)i∇vω
i
)

= P̃2 ∧ d
(

(E1)i

)

(v)ωi

= P̃2 ∧ vjd
(

(E1)i

)

(ej)ω
i

= P̃2 ∧ vj∂j

(

(E1)i

)

ωi

=
(

(P̃2)1v
j∂j

(

(E1)1

)

+ (P̃2)2v
j∂j

(

(E1)2

)

+ (P̃2)3v
j∂j

(

(E1)3

)

)

dV

=
(

P 2 · (v · ∇E1)
)

dV, (A.15)

where the last equality defines the notation such that (v·∇E1)i = vj∂j

(

(E1)i

)

.
Note that in the second equality we have taken into account that the basis
1-forms are constant. We thus have for (A.14) the basis expression

G(F̃12 + F̃21, v) =
(

ρf
2E1 · v + P 2 · (v · ∇E1)

+ ρf
1E2 · v + P 1 · (v · ∇E2)

)

dV. (A.16)

To find a convenient formula for the force density proxy-vector field we first
take under consideration the term P 2 ·(v ·∇E1). Since dE1 vanish (implying
that ∇× E1 vanish), we have

P 2 · (v · ∇E1) = (P 2 · ∇E1) · v − P 2 · (∇× E1) × v

= (P 2 · ∇E1) · v, (A.17)

where the first equality can be verified by direct calculation. Accordingly, we
may write (A.16) as

G(F̃12 + F̃21, v) =
(

ρf
2E1 + P 2 · ∇E1 + ρf

1E2 + P 1 · ∇E2

)

· vdV, (A.18)

so that the proxy-vector field of volume force density has the components
ρf

2E1 + P 2 · ∇E1 + ρf
1E2 + P 1 · ∇E2.

For the representation of the stress T̃12 + T̃21 we proceed in the same way
as in section A.1.1. That is, we first express F̃12 + F̃21 as F̃ − F̃11 − F̃22 to get

G(F̃12 + F̃21, v) = G(F̃ − F̃11 − F̃22, v)

= G(F̃ , v) − G(F̃11, v) − G(F̃22, v)

= dD̃′ ∧ ivE + P̃ ∧∇vE − (dD̃′
1 ∧ ivE1 + P̃1 ∧∇vE1)

− (dD̃′
2 ∧ ivE2 + P̃2 ∧∇vE2). (A.19)
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Then, by taking into account that dE, dE1 and dE2 vanish, we find that the
above may be written in the standard basis as

G(F̃12 + F̃21, v) = G
(

d∇(T̃ − T̃11 − T̃22), v
)

=
(

∇ · (T − T 11 − T 22)
)

· vdV, (A.20)

where

T = ED′ −
ǫ0

2
(E · E)Ī , (A.21)

T 11 = E1D
′
1 −

ǫ0

2
(E1 · E1)Ī , (A.22)

T 22 = E2D
′
2 −

ǫ0

2
(E2 · E2)Ī . (A.23)

A.2 Magnetostatics

For completeness, here we consider all four expressions for F̃12 + F̃21, f̃12 + f̃21

and T̃12 + T̃21 in magnetostatics.

A.2.1 Electric current approach

According to section 3.2 we have

G(F̃12 + F̃21, v) = G(F̃12, v) + G(F̃21, v)

= J̃2 ∧ ivB1 + J̃1 ∧ ivB2. (A.24)

Let us consider the term J̃2 ∧ ivB1. For the basis representation we represent
the current density J̃2 as (J̃2)1ω

2∧ω3+(J̃2)2ω
3∧ω1+(J̃2)3ω

1∧ω2, and denote
the triplet of the components as J2. We also represent B1 as (B1)1ω

2 ∧ω3 +
(B1)2ω

3∧ω1 +(B1)3ω
1∧ω2, and denote the triplet of the components as B1.
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We then have

J̃2 ∧ ivB1 = J̃2 ∧ iv
(

(B1)1ω
2 ∧ ω3 + (B1)2ω

3 ∧ ω1 + (B1)3ω
1 ∧ ω2

)

= J̃2 ∧
(

(B1)1ivω
2 ∧ ω3 − (B1)1ω

2 ∧ ivω
3

+ (B1)2ivω
3 ∧ ω1 − (B1)2ω

3 ∧ ivω
1

+ (B1)3ivω
1 ∧ ω2 − (B1)3ω

1 ∧ ivω
2
)

= J̃2 ∧
(

(

(B1)2v
3 − (B1)3v

2
)

ω1 +
(

(B1)3v
1 − (B1)1v

3
)

ω2

+
(

(B1)1v
2 − (B1)2v

1
)

ω3
)

=
(

(J̃2)1

(

(B1)2v
3 − (B1)3v

2
)

+ (J̃2)2

(

(B1)3v
1 − (B1)1v

3
)

+ (J̃2)3

(

(B1)1v
2 − (B1)2v

1
)

)

dV

= J2 · (B1 × v)dV

= J2 × B1 · vdV. (A.25)

By defining J1 and B2 in the same way as J2 and B1, we get for (A.24) the
basis expression

G(F̃12 + F̃21, v) = (J2 × B1 + J1 × B2) · vdV, (A.26)

so that the proxy-vector field of the volume force density has the components
J2 × B1 + J1 × B2.

For the basis representation of the surface force density j̃2 we first express
it in the form t2ĵ2, where ĵ2 is a 1-form on Ω. This 1-form is defined at
the points of ∂o2 (considered as points of Ω). We require that its normal
component vanishes, that is, in2

ĵ2 = 0. The surface current density j̃1 is
expressed similarly as t1ĵ1. Then, according to section 3.2, we have

G(f̃12 + f̃21, v) = G(f̃12, v) + G(f̃21, v)

= j̃2 ∧ t2ivB1 + j̃1 ∧ t1ivB2

= t2ĵ2 ∧ t2ivB1 + t1ĵ1 ∧ t1ivB2

= t2(ĵ2 ∧ ivB1) + t1(ĵ1 ∧ ivB2), (A.27)

where the last equality is a property of tangential trace [1, 3]. Let us focus
on the term t2(ĵ2 ∧ ivB1). We can express this 2-form by using the area form
dA and the unit 2-vector field σ as in section A.1.1 to get

t2(ĵ2 ∧ ivB1) = t2(ĵ2 ∧ ivB1)(σ)dA

= (ĵ2 ∧ ivB1)(⋆n)dA. (A.28)
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Next we use a triplet j2 to express the components of ĵ2 by the triplet −n×j2.
Thus

ĵ2 = (n3j2 − n2j3)ω1 + (n1j3 − n3j1)ω2 + (n2j1 − n1j2)ω3.

We can write the 2-form ĵ2 ∧ ivB1 as

ĵ2 ∧ ivB1 =
(

(n1j3 − n3j1)
(

(B1)1v
2 − (B1)2v

1
)

− (n2j1 − n1j2)
(

(B1)3v
1 − (B1)1v

3
)

)

ω2 ∧ ω3

+
(

(n2j1 − n1j2)
(

(B1)2v
3 − (B1)3v

2
)

− (n3j2 − n2j3)
(

(B1)1v
2 − (B1)2v

1
)

)

ω3 ∧ ω1

+
(

(n3j2 − n2j3)
(

(B1)3v
1 − (B1)1v

3
)

− (n1j3 − n3j1)
(

(B1)2v
3 − (B1)3v

2
)

)

ω1 ∧ ω2.

Using this in (A.28) we get

t2(ĵ2 ∧ ivB1) = (−n × j2) × (B1 × v) · ndA

= (B1 × v) × (n × j2) · ndA.

Finally, by using the vector analysis formula a× (b× c) = b(a · c)− c(a · b),
we have

t2(ĵ2 ∧ ivB1) =
(

n(B1 × v · j2) − (n × j2)(B1 × v · n)
)

· ndA

= B1 × v · j2dA

= j2 × B1 · vdA, (A.29)

where the second equality follows because n× j2 ·n = 0 (the normal compo-
nent of ĵ2 vanishes). By performing similar calculation with the second term
in (A.27), and defining j1 in the same way as j2, we have

G(f̃12 + f̃21, v) = (j2 × B1 + j1 × B2) · vdA, (A.30)

so that the proxy-vector field of the surface force density has the components
j2 × B1 + j1 × B2.

For the representation of the stress T̃12 + T̃21 we proceed on familiar lines
and first express F̃12 + F̃21 as F̃ − F̃11 − F̃22. This yields

G(F̃12 + F̃21, v) = G(F̃ − F̃11 − F̃22, v)

= G(F̃ , v) − G(F̃11, v) − G(F̃22, v)

= dH̃ ∧ ivB − dH̃1 ∧ ivB1 − dH̃2 ∧ ivB2. (A.31)
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By taking into account that dB, dB1 and dB2 vanish, we find that the above
may be written in the standard basis as

G(F̃12 + F̃21, v) = G
(

d∇(T̃ − T̃11 − T̃22), v
)

=
(

∇ · (T − T 11 − T 22)
)

· vdV, (A.32)

where

T =
1

µ0

BB −
1

2µ0

(B · B)Ī , (A.33)

T 11 =
1

µ0

B1B1 −
1

2µ0

(B1 · B1)Ī , (A.34)

T 22 =
1

µ0

B2B2 −
1

2µ0

(B2 · B2)Ī . (A.35)

A.2.2 Magnetic charge approach

In addition to our earlier notation, let us denote as H1 and H2 the triplets of
the components of H̃1 and H̃2, respectively. Further, I will abuse the notation
by denoting the functions that represent the 3-forms ρm

2 and ρm
1 by the same

symbols ρm
2 and ρm

1 . Then, we may write

G(F̃12 + F̃21, v) = G(F̃12, v) + G(F̃21, v)

= J̃2 ∧ ivB1 + ρm
2 ∧ ivH̃1 + J̃1 ∧ ivB2 + ρm

1 ∧ ivH̃2,

= (J2 × B1 · v)dV + (ρm
2 H1 · v)dV + (J1 × B2 · v)dV

+ (ρm
1 H2 · v)dV

= (J2 × B1 + ρm
2 H1 + J1 × B2 + ρm

1 H2) · vdV (A.36)

so that the proxy-vector field of the volume force density has the components
J2 × B1 + ρm

2 H1 + J1 × B2 + ρm
1 H2.

For the basis representation of the surface force density I will abuse the
notation by denoting the functions that represent the 2-forms σm

2 and σm
1 by

the same symbols σm
2 and σm

1 . Then, we have

G(f̃12 + f̃21, v) = G(f̃12, v) + G(f̃21, v)

= j̃2 ∧ t2ivB1 + σm
2 ∧ t2ivH̃1 + j̃1 ∧ t2ivB2 + σm

1 ∧ t2ivH̃2

= (j2 × B1 · v)dA + (σm
2 H1 · v)dA + (j1 × B2 · v)dA

+ (σm
1 H2 · v)dA

= (j2 × B1 + σm
2 H1 + j1 × B2 + σm

1 H2) · vdA, (A.37)

so that the proxy-vector field of the surface force density has the components
j2 × B1 + σm

2 H1 + j1 × B2 + σm
1 H2.
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For the representation of the stress T̃12 + T̃21 we proceed in the familiar
way. We first write

G(F̃12 + F̃21, v) = G(F̃ − F̃11 − F̃22, v)

= G(F̃ , v) − G(F̃11, v) − G(F̃22, v)

= dH̃ ∧ ivB + dB ∧ ivH̃ − (dH̃1 ∧ ivB1 + dB1 ∧ ivH̃1)

− (dH̃2 ∧ ivB2 + dB2 ∧ ivH̃2). (A.38)

By taking into account that dB′, dB′
1 and dB′

2 vanish, we find that the above
may be written in the standard basis as

G(F̃12 + F̃21, v) = G
(

d∇(T̃ − T̃11 − T̃22), v
)

=
(

∇ · (T − T 11 − T 22)
)

· vdV, (A.39)

where

T = µ0HH −
µ0

2
(H · H)Ī , (A.40)

T 11 = µ0H1H1 −
µ0

2
(H1 · H1)Ī , (A.41)

T 22 = µ0H2H2 −
µ0

2
(H2 · H2)Ī . (A.42)

A.2.3 Magnetization approach

When magnetic materials are modeled by magnetization (section 6.3), we
have

G(F̃12 + F̃21, v) = G(F̃12, v) + G(F̃21, v)

= J̃f
2 ∧ ivB1 + M̃2 ∧∇vB1 + J̃f

1 ∧ ivB2 + M̃1 ∧∇vB2.
(A.43)

Let us consider the second term on the right hand side. By representing the
magnetization M̃2 as (M̃2)iω

i, and by using the symbol M 2 for the triplet of
the components (M̃2)i, we have in the standard basis

M̃2 ∧∇vB1 = M̃2 ∧∇v

(

(B1)1ω
2 ∧ ω3 + (B1)2ω

3 ∧ ω1 + (B1)3ω
1 ∧ ω2

)

= M̃2 ∧
(

d
(

(B1)1

)

(v)ω2 ∧ ω3 + d
(

(B1)2

)

(v)ω3 ∧ ω1

+ d
(

(B1)3

)

(v)ω1 ∧ ω2
)

=
(

(M̃2)1v
i∂i

(

(B1)1

)

+ (M̃2)2v
i∂i

(

(B1)2

)

+ (M̃2)3v
i∂i

(

(B1)3

)

)

dV

=
(

M 2 · (v · ∇B1)
)

dV, (A.44)
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where the second equality follows because the basis 1-forms are constant.
The expression for (A.43) in the basis is

G(F̃12 + F̃21, v) =
(

J
f
2 × B1 · v + M 2 · (v · ∇B1) + J

f
1 × B2 · v

+ M 1 · (v · ∇B2)
)

dV. (A.45)

To find a convenient formula for the force density proxy-vector field we first
take under consideration the second term on the right hand side. Since d⋆B1

vanish on o2 where M̃2 is supported (implying that M 2 × (∇×B1) vanish),
we have

M 2 · (v · ∇B1) =
(

M 2 · ∇B1 + M 2 × (∇× B1)
)

· v

= (M 2 · ∇B1) · v, (A.46)

where the first equality may be verified by direct calculation. Accordingly,
we may write (A.45) as

G(F̃12 + F̃21, v) =
(

J
f
2 × B1 + M 2 · ∇B1 + J

f
1 × B2 + M 1 · ∇B2

)

· vdV,
(A.47)

so that the proxy-vector field of volume force density has the components
J

f
2 × B1 + M 2 · ∇B1 + J

f
1 × B2 + M 1 · ∇B2.

For the representation of the stress T̃12 + T̃21 we first write

G(F̃12 + F̃21, v) = G(F̃ − F̃11 − F̃22, v)

= G(F̃ , v) − G(F̃11, v) − G(F̃22, v)

= dH̃ ′ ∧ ivB + M̃ ∧∇vB − (dH̃ ′
1 ∧ ivB1 + M̃1 ∧∇vB1)

− (dH̃ ′
2 ∧ ivB2 + M̃2 ∧∇vB2). (A.48)

By taking into account that dB, dB1 and dB2 vanish, we find that the above
may be written in the standard basis as

G(F̃12 + F̃21, v) = G
(

d∇(T̃ − T̃11 − T̃22), v
)

=
(

∇ · (T − T 11 − T 22)
)

· vdV, (A.49)

where

T = H ′B −
µ0

2
(H ′ · H ′ − M · M )Ī , (A.50)

T 11 = H ′
1B1 −

µ0

2
(H ′

1 · H
′
1 − M 1 · M 1)Ī , (A.51)

T 22 = H ′
2B2 −

µ0

2
(H ′

2 · H
′
2 − M 2 · M 2)Ī . (A.52)
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A.2.4 Magnetic polarization approach

When magnetic materials are modeled by magnetic polarization, we have

G(F̃12 + F̃21, v) = G(F̃12, v) + G(F̃21, v)

= J̃2 ∧ ivB1 + M2 ∧∇vH̃1 + J̃1 ∧ ivB2 + M1 ∧∇vH̃2.
(A.53)

By employing the notation introduced earlier, with the exception of reusing
here the symbols M 1 and M 2 for the triplets of the components of the 2-
forms M1 and M2, respectively, this may be written in the standard basis
as

G(F̃12 + F̃21, v) =
(

J2 × B1 · v + M 2 · (v · ∇H1)

+ J1 × B2 · v + M 1 · (v · ∇H2)
)

dV. (A.54)

For a convenient formula for the force density proxy-vector field we look at
the second term on the right hand side. Since dH̃1 vanish on o2 where M2 is
supported (implying that M 2 × (∇× H1) vanish), we have

M 2 · (v · ∇H1) =
(

M 2 · ∇H1 + M 2 × (∇× H1)
)

· v

= (M 2 · ∇H1) · v. (A.55)

Accordingly, we may write (A.54) as

G(F̃12 + F̃21, v) = (J2 × B1 + M 2 · ∇H1 + J1 × B2 + M 1 · ∇H2) · vdV,
(A.56)

so that the proxy-vector field of volume force density has the components
J2 × B1 + M 2 · ∇H1 + J1 × B2 + M 1 · ∇H2.

For the representation of the stress T̃12 + T̃21 we first write

G(F̃12 + F̃21, v) = G(F̃ − F̃11 − F̃22, v)

= G(F̃ , v) − G(F̃11, v) − G(F̃22, v)

= dH̃ ∧ ivB + M ∧∇vH̃ − M ∧ ivdH̃

− (dH̃1 ∧ ivB1 + M1 ∧∇vH̃1 − M1 ∧ ivdH̃1)

− (dH̃2 ∧ ivB2 + M2 ∧∇vH̃2 − M2 ∧ ivdH̃2). (A.57)

Note that the terms M∧ivdH̃, M1∧ivdH̃1 and M2∧ivdH̃2 need to be included
here as shown in chapter 6. By taking into account that dB′, dB′

1 and dB′
2

vanish, we find that the above may be written in the standard basis as

G(F̃12 + F̃21, v) = G
(

d∇(T̃ − T̃11 − T̃22), v
)

=
(

∇ · (T − T 11 − T 22)
)

· vdV, (A.58)
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where

T = HB′ −
µ0

2
(H · H)Ī , (A.59)

T 11 = H1B
′
1 −

µ0

2
(H1 · H1)Ī , (A.60)

T 22 = H2B
′
2 −

µ0

2
(H2 · H2)Ī . (A.61)
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Appendix B

Basis representations of torque
densities

Here, we derive local basis representations the torque densities in electro-
static and magnetostatic cases. In general, a volume torque density involves
two terms. One is expressed by using the force densities while the other is
taken into account by the couple densities. We will use the conventions and
notations of Appendix A. In particular, we denote the triplets of components
of θ̃ and r in the Cartesian coordinate basis as θ and r.

B.1 Electrostatics

Here we consider the different expressions for −ir ⋆ F̃12 and C̃12 in electro-
statics.

B.1.1 Electric charge approach

According to (4.8) we have

G(−ir ⋆ F̃12, θ̃) = ρ̃2 ∧ iriθ̃ ⋆ E1. (B.1)
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Let us consider the term iriθ̃ ⋆ E1. We have

iriθ̃ ⋆ E1 = iriθ̃ ⋆
(

(E1)aω
a
)

= iriθ̃
(

(E1)1ω
2 ∧ ω3 + (E1)2ω

3 ∧ ω1 + (E1)3ω
1 ∧ ω2

)

= ir
(

(E1)1iθ̃ω
2 ∧ ω3 − (E1)1ω

2 ∧ iθ̃ω
3

+ (E1)2iθ̃ω
3 ∧ ω1 − (E1)2ω

3 ∧ iθ̃ω
1

+ (E1)3iθ̃ω
1 ∧ ω2 − (E1)3ω

1 ∧ iθ̃ω
2
)

= ir

(

(

(E1)2θ
3 − (E1)3θ

2
)

ω1 +
(

(E1)3θ
1 − (E1)1θ

3
)

ω2

+
(

(E1)1θ
2 − (E1)2θ

1
)

ω3
)

=
(

(E1)2θ
3 − (E1)3θ

2
)

r1 +
(

(E1)3θ
1 − (E1)1θ

3
)

r2

+
(

(E1)1θ
2 − (E1)2θ

1
)

r3

= (E1 × θ) · r

= (r × E1) · θ. (B.2)

Using this in (B.1) we get

G(−ir ⋆ F̃12, θ̃) =
(

r × (ρ2E1)
)

· θdV, (B.3)

so the proxy-vector field of the volume torque density has the components
r × (ρ2E1). The surface term is obtained similarly from (4.9), that is,

G(−ir ⋆ f̃12, θ̃) = σ̃2 ∧ t2iriθ̃ ⋆ E1

= σ2

(

(E1 × θ) · r
)

dA

= σ2

(

(r × E1) · θ
)

dA

=
(

r × (σ2E1)
)

· θdA, (B.4)

so the proxy-vector field of the surface torque density has the components
r × (σ2E1).

B.1.2 Electric polarization approach

According to (6.26) we have

G(−ir ⋆ F̃12, θ̃) = ρ̃f
2 ∧ iriθ̃ ⋆ E1 + P̃2 ∧∇⋆(θ̃∧r)E1. (B.5)

For the first term we may follow the steps of the previous subsection. For
the second term we first note that the rotational virtual displacement vector
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field v is given in the basis as

v = ⋆(θ̃ ∧ r)

= ⋆(θiei ∧ rjej)

= ⋆
(

(θ2r3 − θ3r2)e2 ∧ e3 + (θ3r1 − θ1r3)e3 ∧ e1

(θ1r2 − θ2r1)e1 ∧ e2

)

= (θ2r3 − θ3r2)e1 + (θ3r1 − θ1r3)e2

(θ1r2 − θ2r1)e3

so that we have v = θ × r. Using this and (A.17) in (A.15) we get

G(−ir ⋆ F̃12, θ̃) =
(

(

r × (ρf
2E1)

)

· θ + (P 2 · ∇E1) · (θ × r)
)

dV

=
(

(

r × (ρf
2E1)

)

· θ +
(

r × (P 2 · ∇E1)
)

· θ
)

dV

=
(

r × (ρf
2E1 + P 2 · ∇E1)

)

· θdV. (B.6)

According to the couple density expression (6.23) we have

G(C̃12, θ̃) = P̃2 ∧ iθ̃ ⋆ E1

=
(

P 2 · (E1 × θ)
)

dV.

= (P 2 × E1) · θdV. (B.7)

Combining (B.6) and (B.7) we observe that the proxy-vector field of the
volume torque density has the components r×(ρf

2E1 +P 2 ·∇E1)+P 2×E1.
The surface term is given from (6.27) as

G(−ir ⋆ f̃12, θ̃) = σ̃f
2 ∧ t2iriθ̃ ⋆ E1

=
(

r × (σf
2E1)

)

· θdA, (B.8)

so the proxy-vector field of the surface torque density has the components
r × (σf

2E1).

B.2 Magnetostatics

Here, we consider two different expressions for −ir ⋆ F̃12 and one for C̃12 in
magnetostatics.
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B.2.1 Electric current approach

From (4.11) we have

G(−ir ⋆ F̃12, θ̃) = J̃2 ∧ i⋆(θ̃∧r)B1.

We may use (A.26) together with v = θ × r. We get

G(−ir ⋆ F̃12, θ̃) = (J2 × B1) · (θ × r)dV

=
(

r × (J2 × B1)
)

· θdV, (B.9)

so the proxy-vector field of the volume torque density has the components
r × (J2 × B1). The surface term is given similarly from (4.12). By using
(A.30) together with v = θ × r, we have

G(−ir ⋆ f̃12, θ̃) = j̃2 ∧ t2i⋆(θ̃∧r)B1

= (j2 × B1) · (θ × r)dA

=
(

r × (j2 × B1)
)

· θdA, (B.10)

so the proxy-vector field of the surface torque density has the components
r × (j2 × B1).

B.2.2 Magnetization approach

According to (6.40) we have

G(−ir ⋆ F̃12, θ̃) = J̃f
2 ∧ i⋆(θ̃∧r)B1 + M̃2 ∧∇⋆(θ̃∧r)B1.

For the first term we follow the steps of the previous subsection. For the
second term we use (A.44) and (A.46) together with v = θ × r. We get

G(−ir ⋆ F̃12, θ̃) =
(

(

r × (J2 × B1)
)

· θ + (M 2 · ∇B1) · (θ × r)
)

dV

=
(

(

r × (J2 × B1)
)

· θ +
(

r × (M 2 · ∇B1)
)

· θ
)

dV

=
(

r × (J2 × B1 + M 2 · ∇B1)
)

· θdV. (B.11)

According to the couple density expression (6.41) we have

G(C̃12, θ̃) = M̃2 ∧ ⋆iθ̃B1

=
(

M 2 · (B1 × θ)
)

dV.

= (M 2 × B1) · θdV. (B.12)
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Combining (B.11) and (B.12) we find that the proxy-vector field of the volume
torque density has the components r × (J2 ×B1 + M 2 · ∇B1) + M 2 ×B1.

The surface term is given according to (6.42) as

G(−ir ⋆ f̃12, θ̃) = j̃f
2 ∧ t2i⋆(θ̃∧r)B1

=
(

r × (jf
2 × B1)

)

· θdA, (B.13)

so the proxy-vector field of the surface torque density has the components
r × (jf

2 × B1).
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Appendix C

Basis representations for
contact force calculation

When contact forces are determined directly from the total fields, one must
include the correct surface term on the boundary of the object in question.
Here, we derive basis representations of the two possible surface terms in
magnetostatics. We use the conventions and notations of Appendices A and
B.

C.1 Magnetization approach

According to (7.8) the surface contribution to the virtual work done on object
o2 by object o1 is given by integrating the 2-form µ0

2
g(n, v)t−2 M̃2 ∧ ⋆st

−
2 M̃2

over ∂o2. For the basis representation of this we first note that the term
t−2 M̃2 ∧ ⋆st

−
2 M̃2 may be given by using the outward unit normal n2 as

t−2 M̃2 ∧ ⋆st
−
2 M̃2 = t−2 M̃2 ∧ n−

2 ⋆ M̃2

= t−2 M̃2 ∧ t−in2
⋆ M̃2

= t−2 (M̃2 ∧ in2
⋆ M̃2)

as shown in section 7.2. We may express this 2-form by using the area form
dA2 = t2in2

dV and the unit 2-vector field σ2 (⋆n2 considered as a 2-vector
field on ∂o2) as

t−2 (M̃2 ∧ in2
⋆ M̃2) = t−2 (M̃2 ∧ in2

⋆ M̃2)(σ2)dA2

= M̃−
2 ∧ in2

⋆ M̃−
2 (⋆n2)dA2

=
(

(M̃−
2 )iω

i
)

∧ in2
⋆

(

(M̃−
2 )iω

i
)

(⋆n2)dA2. (C.1)
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But note that

in2
⋆

(

(M̃−
2 )iω

i
)

= in2

(

(M̃−
2 )1ω

2 ∧ ω3 + (M̃−
2 )2ω

3 ∧ ω1 + (M̃−
2 )3ω

1 ∧ ω2
)

=
(

(M̃−
2 )2(n2)3 − (M̃−

2 )3(n2)2

)

ω1

+
(

(M̃−
2 )3(n2)1 − (M̃−

2 )1(n2)3

)

ω2

+
(

(M̃−
2 )1(n2)2 − (M̃−

2 )2(n2)1

)

ω3,

where the second step follows by the antiderivation property of the interior
product. Using this in (C.1), we get

t−2 (M̃2 ∧ in2
⋆ M̃2) = M−

2 × (M−
2 × n2) · n2dA2,

where M−
2 denotes the triplet of components of M̃−

2 . By further using the
vector analysis formula a × (b × c) = b(a · c) − c(a · b) we get

t−2 (M̃−
2 ∧ in2

⋆ M̃−
2 ) =

(

M−
2 (M−

2 · n2) − n2(M
−
2 · M−

2 )
)

· n2dA2

= −
(

M−
2 · M−

2 − (M−
2 · n2)

2
)

dA2

= −M−
2t · M

−
2tdA2,

where M−
2t = M−

2 − (M−
2 · n2)n2 is the tangential component of M−

2 . We
thus have for the surface term µ0

2
g(n, v)t−2 M̃2 ∧ ⋆st

−
2 M̃2 the basis representa-

tion
µ0

2
g(n, v)t−2 M̃2 ∧ ⋆st

−
2 M̃2 = −

µ0

2
(n2 · v)(M−

2t · M
−
2t)dA2. (C.2)

This coincides with the result of Brown [14, 28].

C.2 Magnetic polarization approach

According to (7.12), the surface contribution to the virtual work done on
object o2 by object o1 is given by integrating the 2-form 1

2µ0

g(n, v)t−2 M2 ∧

⋆st
−
2 M2 over ∂o2. For the basis representation we first note that the term

t−2 M2 ∧ ⋆st
−
2 M2 may be given as

t−2 M2 ∧ ⋆st
−
2 M2 = t−2 M2 ∧ n−

2 ⋆ M2

= t−2 M2 ∧ t−in2
⋆ M2

= t−2 (M2 ∧ in2
⋆ M2).

By using the area form dA2 = t2in2
dV and the unit 2-vector field σ2 (⋆n2

considered as a 2-vector field on ∂o2) we get

t−2 (M2 ∧ in2
⋆ M2) = t−2 (M2 ∧ in2

⋆ M2)(σ2)dA2

= M−
2 ∧ in2

⋆ M−
2 (⋆n2)dA2

= (M−
2 · n2)

2dA2,
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where we have reused the symbol M−
2 of the previous subsection for the

triplet of components of M−
2 . We thus have for the surface term 1

2µ0

g(n, v)t−2 M2∧

⋆st
−
2 M2 the basis representation

1

2µ0

g(n, v)t−2 M2 ∧ ⋆st
−
2 M2 =

1

2µ0

(n2 · v)(M−
2 · n2)

2dA2, (C.3)

which coincides with the result of Brown [14, 28].
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Appendix D

Computation of force densities
from finite element
approximation of fields

The computation of electric and magnetic fields using finite element method
usually leads to elementwise constant approximations for the fields [29]. In
view of force calculation this is problematic because all our expressions for
volume force density contain derivatives of fields. Here, I will introduce a
computation method for volume force densities that avoids the problem of
computing the derivatives of elementwise constant fields. I will not consider
the issues of computational electromagnetics (such as weak formulations and
their discretization, see [29]) but assume that the approximate fields are given
on a Euclidean neighbourhood o′12 containing both of the objects o1 and o2.
I will use local Cartesian coordinates on this neighbourhood, and employ the
basis representations given in Appendix A.

In the following we will need to determine forces on macroscopic parts
of the interacting objects o1 and o2. We want to exclude parts consisting
of distinct pieces, and parts that contain pieces from both of the objects.
Let us denote as V1 the set of all 3-dimensional connected submanifolds with
boundaries of o′12 − o2, and as V2 the set of all 3-dimensional connected
submanifolds with boundaries of o′12 − o1. Further, let us denote as ∂V1

the set of all 2-dimensional submanifolds of o′12 − o2 that are boundaries
of elements of V1. Similarly, we denote as ∂V2 the set of all 2-dimensional
submanifolds of o′12 − o1 that are boundaries of elements of V2. Since we
use Cartesian coordinates on o′12 the elements of these sets may be taken
as submanifolds of R

3. Further, we may identify each tangent space of o′12
with R

3 by first transporting tangent vectors to some reference point by
keeping them constant, and then taking their Cartesian representations. Let
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us introduce maps

FORCE : V1 ∪ V2 → R
3,

STRESS : ∂V1 ∪ ∂V2 → R
3,

such that

FORCE(V ) = STRESS(∂V ) for all V ∈ V1 ∪ V2. (D.1)

Since the map FORCE cannot be directly realized by using the element-
wise constant field quantities, we focus in the following on the realization
of STRESS. Once STRESS is obtained from the fields FORCE is given
according to (D.1).

The value of STRESS on an arbitrary element ∂V ∈ ∂V1∪∂V2 is obtained
by integrating T 12 + T 21 over ∂V , that is,

STRESS(∂V ) =

∫

∂V

(T 12 + T 21) · ndA. (D.2)

By using (D.1) and (D.2), we get

FORCE(V ) =

∫

∂V

(T 12 + T 21) · ndA, (D.3)

where V ∈ V1 ∪V2. In practice T 12 + T 21 is determined from the total fields
so that

FORCE(V ) =

∫

∂V

(T − T 11 − T 22) · ndA, (D.4)

where V ∈ V1 ∪ V2. All quantities in the integal may be given in terms of
fields as shown in Appendix A. Note that no derivatives of fields occur in
(D.4).

To use the above in connection with the finite element method, we first as-
sume simplicial finite element mesh (triangulation) for o′12. The approximate
fields are assumed constant in each element (tetrahedron) of this mesh. We
will also need a dual mesh obtained by using a barycentric subdivision of the
original primal mesh (see [29]). Instead of the tetrahedrons of the barycentric
subdivision the elements of the dual mesh are 3-dimensional polyhedrons. To
each node (vertex) of the primal mesh there corresponds such a polyhedron;
it is obtained by taking the union of those tetrahedrons of the barycentric
subdivision that contain the selected node as a vertex. This correspondence
clearly goes to the opposite direction as well.
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o2

∂o2

Figure D.1: An element of the dual mesh corresponding to a node that
resides on the boundary of o2. Also in this case the integration of T 12 + T 21

is performed over the boundary of the polyhedral element (shown in gray).
However, the force on the element comes from part of the element only. In
the given analysis the geometric elements of the figure are 3-dimensional.

Let us denote as N ∗ the set of elements (3-dimensional polyhedrons)
of the dual mesh. Because objects o1 and o2 are separated by free space
it must be that the elements of N ∗ belong to V1 ∪ V2. Now, the values
of FORCE may be evaluated for arbitrary V ∈ N ∗ by using (D.4) since
there is never a discontinuity of T − T 11 − T 22 over ∂V . This is because
T − T 11 − T 22 is constant in each tetrahedron of the primal mesh. Finally,
given an element V ∈ N ∗ that intersects object o2, for instance, the force
density on the intersection is obtained by dividing FORCE(V ) by the volume
of the intersection. The intersection is needed to deal with elements of the
dual mesh corresponding to those nodes of the primal mesh that reside on
the boundary of one of the objects, see Figure D.1.

There is an easy method of evaluating the force value on any V ∈ N ∗

that is obtained by using an insight into the finite element method. For this,
let us first express the virtual work done on V ∈ N ∗ as

FORCE(V ) · v =

∫

∂V

(

v · (T − T 11 − T 22)
)

· ndA. (D.5)

Then, since v ·(T −T 11−T 22) is constant in each element of the primal mesh,
it follows from standard finite element analysis that the above integration
may be given by using the nodal function λ of the node dual to V . (This is
the piecewise affine function whose value is 1 at the node dual to V , and 0

164



at all other nodes of the primal mesh.) We have

∫

∂V

(

v · (T − T 11 − T 22)
)

· ndA = −

∫

o′
12

(

v · (T − T 11 − T 22)
)

· ∇λdV

= −

∫

o′
12

v ·
(

(T − T 11 − T 22) · ∇λ
)

dV,

(D.6)

because v · (T − T 11 − T 22) is constant in each element of the primal mesh,
and because we integrate over the boundary of an element of the barycentric
dual, see [29] (pp. 99-103). We thus have

FORCE(V ) = −

∫

o′
12

(T − T 11 − T 22) · ∇λdV,

where λ is the nodal function of the node dual to V ∈ N ∗. Since λ is
supported in the cluster of primal tetrahedra around its node the integration
above reduces to integration over the cluster.
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Index

Ampèrian dipole, 87
angle, 22
antiderivation, 81
antisymmetric, 12

basis
of dual space, 8
of vector space, 7

Cartesian coordinate system, 22
charge density of object, 30
chart, 25
Christoffel symbol, 38
connection, 36
constant

differential form, 37
vector field, 37

contravariant
of order, 11
vector, 9

Coulombian dipole, 95
couple

on Ampèrian dipole, 91
on Coulombian dipole, 97

covariant
derivative, 36
of order, 11
vector, 10

covariant exterior derivative, 46
covector, 8
covector-valued p-form, 35
current density of object, 53

dimension

of manifold, 25
of vector space, 7

dual space, 8

electric displacement of object, 31
electric field intensity of object, 39,

45
electric polarization of object, 72
Euclidean

connection, 59
coordinates, 59
manifold, 59
metric, 59

exterior derivative, 32, 81
exterior product, 13, 45, 92

flow, 55
flow of vector field, 56
force

as a covector, 27
as a map on Killing vector fields,

61
free charges, 72
free currents, 75

Hodge operator, 42

inclusion, 28
inner product, 21
inner product of multivectors, 41
interior product, 39

Killing vector field, 58, 83

Levi-Civita connection, 44, 89
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Lie bracket, 43
Lie derivative, 56, 82

magnetic charge density of object, 78
magnetic dipole moment, 88, 96
magnetic field intensity of object, 53
magnetic induction of object, 53
magnetic polarization of object, 78
magnetization currents, 75
magnetization of object, 75
manifold, 25
manifold with boundary, 26
Maxwell’s stress tensor, 20, 126
mesh

barycentric dual, 163
dual, 163
primal, 163

multicovector, 12
multicovector-valued form, 62
multivector, 14
multivector-valued form, 63

nodal function, 164
norm, 22
normal trace, 118

orientable manifold, 28
orientation

negative, 16
of manifold, 28
of vector space, 16
opposite, 15
positive, 16
same, 15

orthogonal, 22
orthonormal, 22

p-covector, 12
p-simplex, 29
p-vector, 14
p-vector of p-simplex, 29
p-volume

relative, 15
with transverse orientation, 18

pairing, 10
parallelism, 38
parallelizable, 38
polarization charges, 72
positive definite, 21
proxy-vector, 23
pull-back, 57
push-forward, 56

remanent
magnetic polarization, 79
magnetization, 76
polarization, 73

Riemannian
manifold, 40
metric, 40

rigid object, 42, 56, 58
rotational vector field, 61

self-force, 51
self-torque, 69
smooth atlas, 25
Stokes’ theorem

for covector-valued forms, 47
for differential forms, 34

submanifold, 26
summation convention, 7
surfacic Hodge operator, 118
susceptibility

electric, 73
magnetic, 76, 79

symmetric
connection, 44
tensor, 21

tangent space, 27
tangent vector, 27
tangential trace, 31
tensor, 11
tensor product, 11
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torque, 65
total electric field, 49
total magnetic field, 54
trajectory, 27
transverse orientation

of submanifold, 31
of vector subspace, 17

twisted p-covector, 19
twisted p-vector, 19

value-side Hodge operator, 63
value-side interior product, 64
vector space, 6
vector-valued p-form, 36
virtual displacement, 27
virtual work, 27
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