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Abstract

If an estimation problem can be modeled with linear equations and
normal distributed noise, it has closed form solutions that can be
computed efficiently. However, applicability of linear models is lim-
ited and when linear models cannot be used nonlinear models are
needed. For solving nonlinear models closed form algorithms do not
always exist and approximate methods have to be used.

This thesis considers linearity and nonlinearity and it is divided into
two main parts along with a background section. In the first part
of the thesis I investigate how the measurement nonlinearity can
be measured and how the nonlinearity can be reduced. I concen-
trate on nonlinearity within each prior component of a Gaussian
Mixture Filter. The Gaussian Mixture Filter uses a sum of normally
distributed components to represent a probability density function.
When a nonlinear measurement is used to update the estimate, a
local linearization of the measurement function is made within every
component. The update of a component results in a poor estimate
when nonlinearity within the component is high.

To reduce nonlinearity, the components can be split into smaller
components. The main contribution of the first part of the thesis
is a novel method for computing the directions of nonlinearity and
using this information in splitting a component in such a way that the
number of components is minimized while reducing the nonlinearity
to a set threshold and approximating the original component well.
The applicability of the novel methods introduced in the first part
is not restricted to the field of positioning, but they may be applied
generally to state estimation with Gaussian Mixture Filters.

In the second part, a different approach for reducing nonlinearity
is discussed. Instead of splitting a prior into smaller components
to mitigate the effect of nonlinearity, the whole problem is modeled
using a linear model. The performance of the linear models com-
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pared to nonlinear models is evaluated on three different real-world
examples. The linear models are coarser approximations of reality
than the nonlinear models, but the results show that in these real
world situations they can outperform their nonlinear counterparts.

The first considered problem is the generation of Wireless Local Area
Network (WLAN) maps with unlocated fingerprints. The nonlinear
models presented use distances between fingerprints and access
points, whereas the linear model uses only the information whether
a fingerprint and an access point can be received simultaneously.
It is shown that when noise level increases, the estimate computed
using an iterative method based on the nonlinear model becomes
less accurate than the linear model. The noise level resulting in
equal accuracies of the linear and nonlinear models is similar to
the noise level occurring usually when doing WLAN signal strength
measurements.

The second problem discussed is positioning using WLAN. Linear-
Gaussian coverage area models for WLAN access points are com-
pared with nonlinear parametric and nonparametric WLAN posi-
tioning methods. Results show that by using two linear-Gaussian
coverage area models for different received signal strengths values
the positioning performance is similar or slightly less accurate than
with nonlinear methods, but the database size is smaller and the
algorithm is computationally less demanding.

Third, I consider the use of linear-Gaussian coverage area models
in pedestrian dead reckoning with measurements from an inertial
measurement unit. The pedestrian movement is modeled with a
linear model and two nonlinear models. The linear model uses only
heading change information from an inertial measurement unit,
whereas the nonlinear model can use step length measurements
in addition. Pedestrian location estimates are solved for the linear
model with a Kalman Filter and for the nonlinear model with an
Extended Kalman Filter that linearizes the nonlinear state model at
the estimate mean. Results show that the linear model has a better
accuracy when the uncertainty of heading is large, which is usually
the case when the positioning is started.
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CHAPTER 1
Introduction

This thesis consists of an introduction, six articles published in scien-
tific conferences and journals, and one article that is under review for
a scientific journal. The purpose of this introductory chapter is not to
repeat the derivations or results given in the publications [P1]–[P7],
but rather to give a short unified background, and summarize the
contribution in context.

This introduction is divided into three parts. The first part presents
the background of personal positioning and algorithms for Bayesian
estimation. In the second part, situations where a nonlinear mea-
surement is used to update a prior are investigated. Measures for
determining the amount and direction of nonlinearity are presented.
These measures are used in Gaussian Mixture Filters (GMFs) to split
prior components into smaller components in such a way that non-
linearity is not high within them. The methods found in literature
are compared with the contribution of the author. In the third part,
positioning problems are modeled with linear and nonlinear models
and results are compared. It is shown that there are situations when a
nonlinear model can be replaced with a simpler linear model without
loss in accuracy.
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The contribution of my publications is presented in the different sec-
tions as follows: The model for presenting a range measurement as a
Gaussian Mixture (GM) from Publication [P1] is used as an example
of different GMFs in the background section (Section 1). The main
contributions of publications [P2] and [P7] are compared with the
existing methods in Section 2. The publication [P3] is presented in
Section 3.1. The linear Coverage Area (CA) models in Section 3.2 are
from [P4] and the evaluation of them with other Wireless Local Area
Network (WLAN) positioning methods is from [P6]. Publication [P5]
is presented in Section 3.3.
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1 Background

1.1 Personal positioning

Outdoors personal positioning is usually based on Global Navigation
Satellite Systems (GNSSs), such as Global Positioning System (GPS).
In GNSSs satellites emit signals that contain the information of when
and where the signal was emitted. The radio signals travel at the
speed of light and the distances to satellites depend on the time
difference between emitting and receiving times. The position can
be solved from a set of time difference equations.

Positioning indoors is more complex, because the GNSS signals are
too weak to penetrate into buildings or, if they are received, they can
be reflected. The time of flight of reflected signals is longer than the
shortest path to the satellites. Indoors movement is usually done
by foot, which is can be harder to predict compared to, for example,
car navigation where movement is confined on roads. There is no
globally working accurate indoor positioning system in use, although
cellular network protocols have support for positioning that works
also indoors [78]. The cellular positioning can achieve accuracy of
tens of meters [47, 51, 56], which is not accurate enough for a room-
level positioning. Some promising results for using Time Difference
of Arrival (TDoA) measurements in Long Term Evolution (LTE) cel-
lular system are introduced in [24]. In their tests median errors less
than 5m were achieved. In the test setup Base Stations (BSs) were
close to the test building, which may reduce noise in signals and
improve the accuracy.

In practice, there are three choices for providing location estimates
indoors:

1. Construct a dedicated positioning system
2. Use inertial navigation
3. Use available signals that are not designed for positioning

These options are not exclusive and can be used with each other.

The construction of a dedicated positioning system indoors requires
installation of positioning infrastructure. Dedicated positioning sys-
tem may also require specific hardware for users. Dedicated indoor
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positioning systems can be expensive to install and they cause main-
tenance costs. At least for now they do not have extensive coverage.

Positioning using inertial navigation is based on computing the user’s
route using information on orientation and relative movement. In-
ertial positioning is traditionally done using Inertial Measurement
Unit (IMU) that consists of accelerometers and gyroscopes [80].
Other measurements sources, such as magnetometer (compass) for
measuring heading and barometer for altitude estimation, can be
fused with an IMU [59]. Also a camera can be used to measure the
relative motion [36].

In indoor scenarios the user is usually pedestrian and specific in-
formation of pedestrian movement is exploited in Pedestrian Dead
Reckoning (PDR) [12, 38, P5]. In PDR steps and possibly step lengths
are detected and these are combined with heading change.

Positioning based on inertial navigation requires absolute position
estimates from other sources. If a GNSS location is available before
entering a building, the positioning can be done indoors for a while
based on IMU data only, but eventually the location estimate will
drift from the true location. The use of floor plans can help reduce
the drift, but the use of a floor plan requires knowledge on which
map (e.g. which building, which floor) the positioning is done. It is
also possible to generate a map from IMU measurements only [63].
In such case the obtained floor plan should still be matched to a
database of floor plans to obtain absolute position information.

Using available signals has the advantage that no additional equip-
ment is needed for positioning. Some available signals that can be
used as positioning measurements in smart phones are:

• Availability of telecommunications signals e.g. is a BS or an
Access Point (AP) receivable

• Time of flight e.g. Timing Advance (TA) of Global System for
Mobile Communications (GSM)

• Signal strength e.g. Received Signal Strength (RSS) from
Wireless Local Area Network (WLAN)

• Strength of the magnetic field e.g. steel structures of buildings
affect to the strength of the magnetic field
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• Images from camera e.g. shape of a room can be extracted from
an image and then matched to the floorplan

Because these signals are not intended for positioning they do not
contain position information and the use of these measurements
requires mapping of the signal environment. Generating and updat-
ing of radio maps require different amounts of work with different
signals. Smart phones contain also low-cost inertial sensors and it is
possible to combine positioning using radio signals with information
from inertial sensors [77].

The use of TA measurement requires localization of GSM BSs [P1].
The localization can be done with a device that is equipped with GSM
for receiving TA values and GPS for getting absolute positions. In
this case there is no need for user interaction in the mapping phase
and the solved BS locations can be later used in solving locations of
devices that do not have GPS available.

Making an indoor radio map of RSS values of WLAN APs for indoor
positioning requires significantly more work than locating GSM BSs.
For generating an indoor map for WLAN positioning Fingerprints
(FPs) are collected. A FP is a measurement report that contains RSS
values at a certain location. Because GPS is not available indoors, the
measurement locations have to be entered into the system manually
or an indoor positioning system has to be available when the mea-
surements are done. The density of FPs and measurement duration
at these locations affects the positioning accuracy. The deployment
of WLAN APs is not regulated and anyone can install an AP and they
can be moved. This generates a constant need for updating the radio
map.

In the location fingerprinting, positioning is done by comparing the
current RSS values to the RSS values in FPs stored in the database
[33]. Building radio maps for large areas for location fingerprint-
ing requires a huge amount of data, because every RSS value and
corresponding IDs of APs in every FP has to be stored. Parametric
methods, for example multilevel Coverage Areas (CAs) presented in
[P4], require only a fixed number of parameters for every AP, and
thus can be used to reduce the database size [P6]. Also the required

5



bandwidth for transmitting positioning data [79] may affect what
kind of radio maps can be used and, thus, the positioning accuracy.

A method for reducing the work needed in radio map generation
was presented in [P3]. The method generates a radio map for indoor
WLAN positioning using FPs collected outdoors with GPS locations
and FPs collected indoors without location information. This allows
automated radio map generation, but the positioning accuracy drops
from room-level accuracy, obtained with radio maps generated with
accurate indoor location data, to wing-level accuracy.

One approach for constructing radio maps (and other maps) of an
unknown environment is Simultaneous Localization and Mapping
(SLAM). In SLAM, the map of the environment is constructed while
exploring it. The relative motion is provided by sensors like IMU.
In some SLAM-based systems other measurement sources are used
to refine the whole track. In Graph SLAM [75], occasional GPS fixes
are used to improve the mapping results. In [34], the information
of WLAN is used. The use of WLAN is based on the assumption
that, when the RSS values are similar, the corresponding locations
on a track are close to each other. This helps SLAM to avoid drift
that would be present in an IMU only based system. Publication
[64] presents a method for constructing a map modeling pedestrian
movement possibilities within a building. The method requires a
foot mounted IMU as the only measurement source.

WLAN round trip times from a receiver to an AP can be also used
for positioning. The use of round trip time requires that the WLAN
APs are localized. WLAN based on IEEE 802.11b standard has a theo-
retical granularity of 6.8 m for measuring the range i.e. the distance
between WLAN AP and the user. Positioning based on WLAN round
trip times can achieve accuracy of a couple of meters [57]. A problem
with using WLAN round trip times in consumer devices is that the
common WLAN cards use timestamps with granularity of 1µs [27].
During that time the signal has traveled already 300 m, which is more
than the range of a normal WLAN AP and the round trip time does
not provide any information.

In addition to using camera as a gyroscope [36], the visual data can
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be used for absolute positioning. In this approach the image is seg-
mented and then matched to a map of the environment. The map
can be a floorplan [31] or it can contain other landmarks that can be
detected from images [46].

The ambient magnetic field changes within buildings, because con-
struction materials, e.g. steel structures, affect it. This can also be
used as a navigation aid. Positioning using magnetic fields require
also a mapping of the environment. [26, 29]

In addition to the already mentioned aspects also the computational
resources found in mobile devices may restrict the applicable algo-
rithms, e.g. in [53] a tablet computer could process in real time a
Particle Filter (PF) algorithm with 400 particles, which is still too few
to have same estimated route on every test run.

1.2 Estimation algorithms

Estimation in the context of this thesis is the process of finding an
estimate of a state given measurements and possibly a prior state.
In positioning the state x contains 2 or 3 position variables and
possibly other variables e.g. velocity. In this section a few commonly
used estimation algorithms are presented. The presented algorithms
will be used later in this introduction and Gaussian Mixture Filters
(GMFs) will be discussed in detail in Section 2.

Sequential Bayesian Filter

The estimation of the probability distribution of the state x at time t
can be done using a direct application of the Bayes’ rule

p (x (0:t )|y(1:t )) =
p (y(1:t )|x (0:t ))p (x (0:t ))

p (y(1:t ))
, (1)

where p (x (0:t )) is the prior probability density function (pdf) of the
state defined by a dynamic model, p (y(1:t )|x (0:t )) is the likelihood
model for the measurements y(1:t ) and p (y(1:t )) is the normalization
constant defined as

p (y(1:t )) =

∫

p (y(1:t )|x (0:t ))p (x (0:t ))dx (0:t ) [67]. (2)
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This formulation requires computation of the probability distribu-
tions of every time step at once. In the sequential estimation some
assumptions are made to make estimation more feasible. Accord-
ing to these assumptions, the predicted state depends only on the
previous state

p (x (t )|x (0:t−1)) = p (x (t )|x (t−1)) (3)

and the measurement likelihood depends only on the current state

p (y(t )|x (0:t )) = p (y(t )|x (t )). (4)

Using these assumptions, the marginal distribution of the state at
time step t can be obtained using the following recursion steps [18]:
Prediction:

p (x (t )|y(1:t−1)) =

∫

p (x (t )|x (t−1))p (x (t−1)|y(1:t−1))dx (t−1) (5)

Update:

p (x (t )|y(1:t )) =
p (y(t )|x (t ))p (x (t )|y(1:t−1))

∫

p (y(t )|x (t ))p (x (t )|y(1:t−1))dx (t )
(6)

These two steps form the Sequential Bayesian Filter.

Even though the recursion formulas are simpler than (1) they do not
have general analytic solutions. In the following some algorithms that
are either exact solutions to a special case or approximate algorithms
for estimation in more general situations are presented.

In the algorithm presentations the following shorthand notations are
used x−(t ) = x (t )|y(1:t−1) and x (t ) = x (t )|y(1:t ).

Weighted linear least squares

Weighted Linear Least Squares (WLLS) can be used in situations
where x is related to measurement y through a noisy set of linear
equations

y = J x + εy , (7)

where J is a Jacobian matrix and εy is a normal distributed zero
mean noise term with a nonsingular covariance matrix R . WLLS can
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be interpreted in the sequential Bayesian framework to be a single
update of an uninformative prior. The WLLS estimate of x is normal
distributed and has mean

µ= (J T R−1 J )−1 J T R−1y (8)

and covariance
P = (J T R−1 J )−1. (9)

If the rank of J is less than the dimension of the state, the system has
an infinite number of solutions and matrix (J T R−1 J ) is singular and
does not have an inverse.

Kalman Filter

The Kalman Filter (KF) is an algorithm for doing estimation in time
series. It was first proposed in [42] and its Bayesian filter interpreta-
tion in [32]. The estimate produced by the KF is the optimal Bayesian
estimate if the system is linear and noise terms are white and normal
distributed. In this kind of system the state evolution can be written
as

x−(t ) = F(t )x (t−1)+ εx , (10)

where x−(t ) is the prior state at time t , F(t ) is a state transition matrix
and εx is a zero mean normal distributed noise term that is indepen-
dent of the state or measurements at other time steps. The prior is
updated with linear measurements of the form

y(t ) = J(t )x (t )+ εy , (11)

where y(t ) is the measurement value, J(t ) is a measurement matrix
and εy is a normal distributed noise term that is independent of state.

The KF has two stages:

1. Prediction:

µ−(t ) = F(t )µ(t−1) (12)

P−(t ) = F(t )P(t−1)F
T
(t )+W(t ), (13)

where P is the covariance matrix of the state, W is the covari-
ance matrix of the state transition noise and the variables with
superscript − are parameters of the predicted state.
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2. Update:

y −(t ) = J(t )µ
−
(t ) (14)

S(t ) = J(t )P
−
(t ) J

T
(t )+R(t ) (15)

K (t ) = P−(t ) J
T
(t )S

−1
(t ) (16)

µ(t ) =µ−(t )+K (t )(y(t )− y −(t )) (17)

P(t ) = (I −K (t ) J(t ))P−(t ). (18)

Equation (14) gives the predicted measurement value y − at prior
mean µ−. The matrix S is called the innovation covariance and K
is the Kalman gain. The updated state mean and covariance are
computed in (17) and (18).

The prediction and update steps are not required to be done in order
and either step can be applied several times without the other. For
example, in situations where no new measurements are available,
the update steps can be repeated until a new measurement becomes
available. Compared to the static solution computed using the WLLS
the KF has the benefit that the state estimate contains information
from all measurements until time t instead of just from the current
time and the measurement matrix does not need to be full rank. For
example, it is possible to estimate a state containing location and
velocity variables using only location measurements.

Kalman Filter extensions

If the state or measurement model is nonlinear, the KF cannot be
applied directly, but there are several extensions of the KF that allow
the use of nonlinear state models or measurements [5, 37, 39]. These
extensions apply some kind of linearization to the nonlinear models
and then update the state similarly to the KF.

In the Extended Kalman Filter (EKF) the nonlinear state transition
and measurement functions are approximated using the first order
Taylor approximations [37]. The state transition model is

x−(t ) = f (t )(x (t−1))+ εx , (19)
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where f (t )(x ) is a nonlinear state transition function. The measure-
ment model is

y(t ) = h (t )(x (t ))+ εy , (20)

where h (t )(x ) is a nonlinear measurement function.

The EKF update is done by applying the following substitutions in
the KF equations:

µ−(t ) ≈ f (µ(t−1)) in (12) (21)

F(t ) ≈
∂ f (x )
∂ x

�

�

�

�

x=µ(t−1)

in (13) (22)

y −(t ) ≈ h(µ−(t )) in (14) (23)

J(t ) ≈
∂ h(x )
∂ x

�

�

�

�

x=µ−(t )

in (15 - 18). (24)

In some cases the analytical differentiation in (22) or (24) may be
difficult.

Figure 1 shows an update of a Gaussian prior with the EKF. The mea-
surement function applied to the prior is a second order polynomial

y = 2=
x 3

2
+x 2−x + εy . (25)

The true measurement likelihood and the posterior are multimodal.
The estimate computed with the EKF is unimodal and it is located at
the same position as the left peak of the true posterior, but the minor
peak on the right is not in the EKF estimate at all.

Another KF extension, the Unscented Kalman Filter (UKF) [39] does
not require analytical differentiation and can be used instead of the
EKF. In the UKF a set of sigma points is chosen so that they have the
same mean µ and variance P as the original distribution. The sigma
points are propagated through nonlinear functions and the estimate
is updated using the transformed sigma points. The UKF can be used
also in situations where the state transition and measurement noises
are non-additive, but here I present an UKF version for additive noise.

A popular choice of sigma points is [39]

χ0 =µ

11



Measurement function

 

 

Prior

Measurement likelihood

Posterior

True

EKF

Measurement value

Figure 1: Update of a prior with a nonlinear measurement using the
EKF. At the top the measurement function, its linearized ap-
proximation, and the measurement value are shown. In the
second plot the normal distributed prior pdf is shown. The
third plot shows the true likelihood and likelihood of the lin-
earized model used in the EKF. The likelihood has maximum
values at locations where the measurement function or its
approximation has the same value as the realized measure-
ment value is. In the bottom plot the true posterior pdf is
compared with the one obtained with the EKF.
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χi =µ+
p

n +ξUKFL (P)[:,i ] , 1≤ i ≤ n (26)

χi =µ−
p

n +ξUKFL (P)[:,i−n ] , n +1≤ i ≤ 2n ,

where n is the dimension of state, ξUKF is an algorithm parameter
and L (P) is a matrix square root for which

L (P)L (P)T = P. (27)

This matrix square root can be computed, for example, with Cholesky
decomposition. Parameter ξUKF is defined as

ξUKF =α2
UKF(n +κUKF)−n , (28)

where parameters αUKF and κUKF define how much the sigma points
are spread.

Assuming that the state transition noise is zero mean additive normal
with covariance W(t ), the prior mean and covariance computed using
sigma points are

µ−(t ) =
2n
∑

i=0

w s
i f (t )(χi ) (29)

P−(t ) =W(t )+
2n
∑

i=0

w c
i

h

f (t )(χi )−µ−(t )
ih

f (t )(χi )−µ−(t )
iT

, (30)

where the sigma points are computed from the posterior of the previ-
ous time step using (26) and the weights are

w s
0 =

ξUKF

n +ξUKF
(31)

w c
0 =

ξUKF

n +ξUKF
+(1−α2

UKF+βUKF) (32)

w s
i =w c

i =
1

2n +2ξUKF
, i > 0. (33)

The parameter βUKF is related to the distribution of the state. In the
case of Gaussian distribution βUKF = 2 is optimal. [76]

In the update step of the UKF the predicted measurement value and
innovation covariance are

y −(t ) =
2n
∑

i=0

w s
i h (t )(χi ) (34)
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S(t ) =R(t )+Py y =R(t )+
2n
∑

i=0

w c
i

h

h (t )(χi )− y −(t )

ih

h (t )(χi )− y −(t )

iT
. (35)

The sigma points for an update can be computed from a prior or the
propagated sigma points from the prior computation can be used.

The cross covariance matrix for the state and measurement is

Px y =
2n
∑

i=0

w c
i

h

χi −µ−(t )
ih

h (t )(χi )− y −(t )

iT
(36)

and the UKF Kalman gain is

K (t ) = Px y S−1
(t ) . (37)

The updated estimate mean and covariance are

µ(t ) =µ−(t )+K (t )(y(t )− y −(t )) (38)

P(t ) = P−(t )−K (t )S(t )K
T
(t ). (39)

Compared to the EKF, the UKF uses information of the state tran-
sition and measurement functions also in the neighborhood of the
mean, whereas EKF linearization is based only on the linearization
at the mean.

Among other KF extensions, the cubature Kalman Filters are simi-
lar to the UKF in the sense that they also use a set of sigma points,
but differ in the use of weights and the background theory [5]. The
second order EKF uses the second order Taylor approximation to
take also the second order terms into account. There is also a nu-
merical method for computing the second order EKF update [65].
Nonlinear functions can be also statistically linearized [23]. While the
statistically linearized KF has a good estimation accuracy, its major
disadvantage is the need of closed form formulas for certain expected
values. These expected values can be computed only in some simple
special cases [73].

Gaussian Mixture Filter

All filters that are based on only one normal (or other unimodal) dis-
tribution are unable to estimate multimodal posteriors well e.g. the
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situation in Figure 1. To overcome this problem the Gaussian Mixture
Filters (GMFs) use sums of normal distributions to approximate a
probability distribution [71].

The pdf of a Gaussian Mixture (GM) is

pGMF(x ) =
m
∑

i=1

w i pN(x |µi , Pi ), (40)

where m is the number of components and w i , µi and Pi are the
weight, mean and covariance of the i th component. The component
weights are non-negative and normalized so that

m
∑

i=1

w i = 1. (41)

The mean of the whole mixture is

µ=
m
∑

i=1

w iµi (42)

and the covariance is

P =
m
∑

i=1

w i

�

Pi +(µi −µ)(µi −µ)T
�

. (43)

This thesis considers probably the most used variant of the GMF,
where the prediction and update steps for each component mean
and covariance are done with a KF extension and the weights are
updated in the update step as

w+
i =w i pN(y |y −i ,Si ) (44)

and then normalized to satisfy (41). The components can be split
into smaller components before the update and merged again into
smaller number of components after the update step.

Figure 2 shows the same update as in Figure 1 done with a 3-
component GMF. In the figure, the red dashed GMF line is the
weighted sum of the components. The GMF prior is almost, but
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Measurement function and linearizations

Prior

 

 

Posterior

Measurement likelihood

True

GMF

Component 1

Component 2

Component 3

Figure 2: Update of a prior using the GMF. The top plot shows the mea-
surement function and its linearization for each GM com-
ponent. The second plot shows the prior pdf and the GM
approximation of it. In the third plot the true measurement
likelihood and linearized likelihoods of the GM components
are shown and in the bottom plot the resulting posteriors are
shown.

not exactly, Gaussian. In this example, the components are updated
using the EKF. Linearized likelihoods are computed separately for
each GMF component. Two of the likelihoods have the most likely re-
gion on the larger likelihood peak on the left, but the third is sharper
and located on the smaller peak on the right. The posterior estimate
produced with the 3-component GMF is much closer to the true
posterior than the single component EKF estimate in Figure 1.

The main problem with the GMFs is how to select the number of
components so that the estimate is good enough while keeping the
computation feasible. If the system is close to linear, fewer com-
ponents are needed, but, if there are several nonlinearities, more
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components are needed to achieve a good approximation.

Section 2 and publications [P2] and [P7] discuss how to compute
the amount of nonlinearity and split the prior so that the nonlinear-
ity is reduced to an acceptable level while keeping the number of
components low. Publication [P2] presents an algorithm for find-
ing the direction of maximum nonlinearity and doing the split in
that direction. In [P7] this is extended so that the splitting can be
done in multiple directions at once. The splitting is usually done
in such a way that the mean (42) and covariance (43) are preserved.
In [1], a mixture splitting algorithm that produces a mixture whose
cumulative distribution function (cdf) converges to the prior cdf is
presented. In [P7] the Binomial Gaussian Mixture (BinoGM) is pre-
sented, which has convergence of pdf as well as of cdf.

The number of components can be reduced by removing compo-
nents with low weights or by merging similar components so that the
mixture mean and covariance are preserved. In [P7] the merging is
done recursively using the algorithm presented in [66]. The merging
methods are not discussed more deeply in this thesis. A review of
merging algorithms can be found in [14].

In [P1] a GMF is applied in localization of a GSM BS using TA mea-
surements. A TA measurement defines roughly the range from a BS
to the mobile phone. The initial estimate of a BS location is con-
structed as a GM whose components form a circular pdf around the
GPS location of the mobile phone. The components are updated
using the EKF. Because the BS is assumed static, the components
are not split. In [P1] the number components is reduced when the
weight of a component becomes low or two components have similar
mean.

There are also other variants of GMFs. Instead of using a linearized
measurement, the measurement can be approximated as a mixture
of measurements. A component this kind of mixture is

y j = h j (x )+ εy ,j , (45)

where εy ,,j is a Gaussian noise term. For every measurement compo-
nent there is associated weight

∑

j wy ,j . Sum of weights is
∑

j wy ,j = 1

17



and wy ,j ≥ 0. Updates are done with a KF extension for each pair of
prior and measurement components. The number of components
after the update is the product of components in prior and compo-
nents in measurement. An updated weight for a component is

w+
i ,j ∝w i wy ,j pN(y |y −i ,j ,Si ,j ) (46)

One use case for this kind of measurement models is modeling a
non-Gaussian noise. In [11], a two-component GM is used to model
measurement noise under multipath conditions. The first compo-
nent has a zero bias and the second component that approximates
the possible multipath has a positive bias. Another use case for this
kind of GMs is approximating the likelihood of a non-linear measure-
ment function with multiple linear-Gaussian components.

This kind of measurement model could be applied in the GSM BS
positioning in [P1]. Every measurement could be approximated as a
similar GM as was used in forming of the prior and computing the
posterior using a set of linear measurements instead of updating
the components with the EKF. The number of components would
grow very fast in this application. If a measurement is approximated
using 8 components then the number of components after only 6
measurements is 262144 if no component reduction is applied.

In the Generalized Gaussian Mixture Filter (GGMF) the measurement
likelihood is also modeled using a GM [50, 49]. The GGMF allows the
component weights to be negative. This allows the modeling of ring
shaped distributions using only 2 components. These models cannot
approximate very accurate measurements. This method could also
be applied in the situation of [P1].

Figure 3 shows how the GMFs mentioned above update a range mea-
surement similar to TA measurements used in [P1]. In the first row
the exact prior, measurement likelihood, and posterior are shown.
In the second row the prior is initialized using a 6-component GM
and it is updated using the EKF. The third row uses a similar GM for
the update as was used as the prior. This generates posterior with 36
components. Compared to the first GM posterior, this posterior is
symmetric as is the true posterior. In the last row the computation
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Prior Measurement Optimal posterior

GM prior
Linearizations for

EKF update EKFGMF posterior

GM prior
GM measurement

likelihood GM*GM posterior

GGMF prior GGMF measurement GGMF posterior

Figure 3: An update of a range measurement prior using different types
of GMFs. The green dots show the component means.
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of posterior is done using the GGMF. The GGMF estimate has only
4 components, but the posterior has larger variance than the true
posterior or other GM estimates.

In [28], the GMF update is done using a progressive scheme, where
the progression starts from an update that can be analytically solved
and ends to the true update as a progression parameter approaches 1.
The update is formulated as a differential equation and components
are split while solving the differential equation, if necessary.

Usually and in the situations that are more thoroughly investigated
in this thesis, the component weights are updated only in the update
phase. It is also possible to update them in the prediction phase as is
done in [74].

Particle Filter

Particle Filters (PFs) are Monte Carlo methods that use point masses
to approximate the probability distribution of the state. In the litera-
ture there exist several different variants of the PF [62]. The PFs are
particularly useful with nonlinear and non-Gaussian problems [15].
Increasing the number of particles makes the particle approximation
closer to optimal. In [13], a survey of convergence results of the PFs
can be found.

The pdf of a PF can be written as

p (x ) =
m
∑

i=1

w iδ(µi −x ), (47)

where δ is the Dirac delta function, m is the number of particles, µi

is the location of i th particle and weights w i (w i ≥ 0) sum to one.
Here I present a variant called Bootstrap Particle Filter [25]. In the
prediction step the point masses are moved according to the state
transition model

µi ,(t ) = f (µi ,(t−1),εi ), (48)

where f (µi ,(t−1),εi ) is a general state transition function that does not
require state transition error to be additive and εi is a sample from
the distribution of state transition model noise. In the update step
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particles are reweighed according to the measurement likelihood

w i ,(t ) ∝w i ,(t−1)p (y(t )|µi ,(t )) (49)

and then normalized.

After some measurements, the weights of particles tend to concen-
trate on a few particles only. A few particles cannot usually approxi-
mate the true distribution well. To address this problem, resampling
is done. Resampling can be done at every time instance or when
the weight is concentrated on a small portion of particles. In resam-
pling a new set of particles is drawn from the distribution of the old
particles. All the new particles have equal weights.

A pseudocode of so-called systematic resampling (aka stratified re-
sampling) is shown in Algorithm 1. In systematic resampling a new
set of particles is selected from the old ones in such a way that there
is at least one new particle at the location of every old particle having
w ≥ 1

m
[10]. In [16], a review of different resampling algorithms and

their properties is presented.

Drawω∼U((0, 1
m ]) // Initial reference weight

i ← 1 // Index for new particle locations
j ← 1 // Index for old particle locations
while i ≤m do

// If the cumulative particle weight from 1st to
kth particles is more than reference weight,
add kth particle to the resampled set of
particles

if
∑i

k=1 wk ≥ω then
µ̂j ←µi // New particle location
ŵ j ← 1

m // New particle weight
ω←ω+ 1

m // Increase reference weight
j ← j +1

else
i ← i +1

end
end

Algorithm 1: Systematic resampling
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Figure 4 shows the same update example as in Figures 1 and 2 done
with a PF that uses 20 particles. Without resampling the posterior
would be the same as the particles updated with the likelihood func-
tion. In the particle cloud with resampled particles, more particles
are concentrated on the positions where the particle weights were
high. In this phase the non-resampled particles represent the true
posterior better, but after the prediction step the PF without resam-
pling has many low-weight particles at the area of the local minimum
in the center, whereas the resampled PF has more particles at the
peaks of the true posterior.

The problems with the PFs are similar to problems with the GMFs:
how to choose the number of particles so that the estimate is good
but without wasting computational resources. In [22], the number
of particles is adapted by dividing space into bins and adapting the
number of particles depending on how particles occupy bins. The
division of space into bins works in practice only in low dimensional
situations. In method proposed in [72] the amount of particles is
based on making a normal approximation of the particle cloud and
computing expected mean error. This approximation may be poor
when the estimated distribution is not normal distributed.

In [58], a rule for the number of particles in the initialization of a PF
by sampling particles from a normal distribution was given. If the
required number of particles m1 is known for covariance P1 e.g. from
previous experiments, then the required number of particles for P2 is

m2 =m1

r

det P2

det P1
. (50)

For the bootstrap PF the required number of particles is very high in
situations where the state has many dimensions, the state transition
model (48) has a lot of noise and the measurements are accurate. For
this kind of situations there exist PFs that take the measurements
into account already in the prediction phase. These filters are not
as simple as bootstrap PF and they require more computational
resources for a single particle, but require fewer particles for a good
approximation. This kind of PFs are, for example, Unscented Particle
Filter [48] and Auxiliary Particle Filter [55].
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Not Resampled

Figure 4: Update of a prior using a PF. In the first plot the prior is ap-
proximated with a cloud of equally weighted particles, whose
density is proportional to the probability density of prior. In
second plot the particle weights are updated with the mea-
surement likelihood. In the third plot the particles are re-
sampled so that all particles have equal weights, but there
are more particles located where the most probable particles
were. The last plot shows the state evolution of particles after
one prediction step with and without resampling. Particles
that were not resampled are more concentrated on less likely
regions, while the resampled particles are better distributed
on the likely areas of the true distribution.
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Rao-Blackwellized Particle Filter [17] can be used when a part of the
state is linear-Gaussian and a part is nonlinear. By using a KF for
the linear-Gaussian part the dimension of the nonlinear part can be
reduced and, thus, the required number of particles.
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2 Measuring nonlinearity and using
nonlinearity information in Gaussian
Mixture Filters

When a measurement model is almost linear and the measurement
error is additive and normally distributed, the Extended Kalman
Filter (EKF), the Unscented Kalman Filter (UKF), or other Kalman
Filter (KF) extensions can be used to update a Gaussian prior with-
out causing much error. In situations where nonlinearity is high the
linearization errors involved in the update are large. A question is
how to determine when the nonlinearity is high. If the nonlinearity
is high, the estimation can be done with a Particle Filter (PF) or, in
the case of the Gaussian Mixture Filter (GMF), the original Gaussian
can be split into smaller Gaussian components until the nonlinearity
within every component is at an acceptable level. In the GMFs a sec-
ond question is how to use the nonlinearity information to perform
the splitting in an efficient way.

In the following subsections, ways of measuring the amount of non-
linearity, finding the direction of nonlinearity, and using the nonlin-
earity measures for splitting Gaussian components are presented.
The discussion will consider only the nonlinearity of measurement
functions, but the methods can be also adapted for nonlinear state
transition models. In the following, the measurement error is as-
sumed to be additive and normally distributed.

2.1 Amount of nonlinearity

The purpose of measuring the amount of nonlinearity is to know
whether the posterior estimate provided by a KF extension is good.
The most straightforward way to do this would be a direct com-
parison of the true posterior and the approximated posterior. One
measure for comparing the difference of probability density func-
tions (pdfs) p (x ) and q (x ) is the Kullback-Leibler divergence [44]

ηKL =

∫

ln

�

p (x )
q (x )

�

p (x )dx . (51)
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When p (x ) is the pdf of the true posterior and q (x ) is the pdf of the ap-
proximated posterior estimate, the Kullback-Leibler divergence can
be interpreted as “information lost when q is used to approximate p ”
[9].

The problem with the Kullback-Leibler divergence is that an ana-
lytic solution exists only in special cases. Numerical computation
of the integral requires numerical computation of the true posterior
and, after the numerical estimate of the true posterior is computed,
there is no need of a Gaussian estimate in online estimation. The
computation of the true posterior numerically may require a lot of
computational resources. Of course, the Kullback-Leibler divergence
can be used offline to test the quality of estimates.

Next I will present approximate methods for evaluating the amount
of nonlinearity that should be easier to compute than the Kullback-
Leibler divergence. At the end of this subsection, the presented
methods will be compared by testing how often they agree with
the Kullback-Leibler divergence when comparing which one of two
updates is more difficult for the EKF.

In [61], a modified version of the Kullback-Leibler divergence (51) is
proposed

ηR&H =

∫

�

ln

�

q (x )
p (x )

��2i

q (x )dx , (52)

where i is an integer (only value i = 1 is used in [61]), p (x ) is the pdf
of the true posterior and q (x ) is the pdf of the normal approximation
computed with the EKF. This modification is done to make analytical
solutions available for a wider range of measurement functions. For
measurement functions that are polynomial or trigonometric involv-
ing sine and cosine the measure (52) can be expressed in terms of
moments of the updated Gaussian q (x ) [61]. Still this concerns only a
part of measurement functions and finding an analytical expression
for the nonlinearity measure may require a lot of work and numerical
integration of (52) is numerically similar problem to computing a
numerical estimate of the true posterior similarly as with computing
the Kullback-Leibler divergence.

In [30], Havlak and Campbell use the same sigma points as the UKF
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Figure 5: Variables used in the computation of the amount of nonlin-
earity according to ηH&C measure

in (26) in determining the degree of nonlinearity of a nonlinear state
transition model. Here the method is applied to nonlinear measure-
ment functions. The degree of nonlinearity ηH&C

i corresponding to
the i th sigma point χi is

ηH&C
i =





h(χi )−Aχi −b




 , (53)

where A and b are parameters of the linear model that is the least
squares fit to the measurement function at the sigma points, that is,

arg min
A,b

2n
∑

i=0





h(χi )−Aχi −b






2
. (54)

To determine whether a situation is nonlinear, the maximal ηH&C
i

is compared to a threshold value. A least squares fit and used
variables are shown in Figure 5. The used nonlinear function is
h(x ) = x 3

2
+x 2−x (25).

In [20], Faubel, McDonough, and Klakow propose a nonlinearity
measure that is computed also at UKF sigma points:

ηSM =
n
∑

i=1





h(χi )+h(χi+n )−2h(χ0)






2





h(χi )−h(χi+n )






2 . (55)
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Figure 6: Using a line fitted to h(χ1) and h(χ2) to compute nonlinearity
at h(χ0) for (56).

In this nonlinearity measure the division by




h(χi )−h(χi+n )






2
may

cause a division by zero.

Later in [19], Faubel and Klakow use a nonlinearity measure, which
is almost the same, but does no longer have the risk of a division by
zero. In this work, the amount of nonlinearity corresponding to each
sigma point pair is

ηF&K
i =





h(χi )+h(χi+n )−2h(χ0)






2

2
. (56)

The total amount of nonlinearity, which is compared to a threshold
value to determine whether the situation is nonlinear, is

ηF&K
TOT =

∑n
i=1η

F&K
i

n
. (57)

The nominator in ηSM (55) and ηF&K (56) can be interpreted as fitting
a line to go through sigma points χi and χi+n and then comparing
how much its residual is at mean χ0. This interpretation is illustrated
in Figure 6

In [35], the nonlinearity criterion is based on the statistical linear re-
gression of the measurement. The covariance matrix of the statistical
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linearization error is

Pε = Py y −PT
x y P−1

x x Px y , (58)

where the matrices come from the covariances of the augmented
state that contains the prior state x− and the predicted measurement
h (x−)

cov

�

x−

h(x−)

�

=

�

Px x Px y

PT
x y Py y

�

. (59)

The amount of nonlinearity corresponding to a Gaussian prior is
computed as

ηH = tr Pε (60)

In the general case, these covariances cannot be analytically com-
puted, but they may be approximated numerically. One possibility
presented in the paper [35] is to compute these matrices using same
unscented transform that is used in the UKF. The prior covariance
Px x is known and other matrices can be approximated using the
equations (35) and (36).

For a second order polynomial the statistical linearization can be
made analytically and the covariance of the statistical linearization
error is

Pε =
1

2









tr PH1PH1 tr PH1PH2 . . .
tr PH2PH1 tr PH2PH2 . . .

...
...

...









, (61)

where Hi is the Hessian of the i th component of the measurement
function evaluated at the prior mean. The nonlinearity measure ηH

for second order polynomials is

1

2

n
∑

i=1

tr PHi PHi . (62)

In [37], was proposed that for scalar measurements the measurement
function is considered nonlinear when

tr PHPH >R , (63)
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which is similar to (62), but the nonlinearity depends also on the
measurement variance R . In [3], this criterion was used for multidi-
mensional measurements in the form

p

tr PHi PHi
p

R[i ,i ]

> 1, for some i . (64)

Because the measure (64) uses only diagonal components of the
measurement covariance R , the nonlinearity values may be inconsis-
tent if the components of the measurement vector are correlated. In
[P7], this problem is solved by decorrelating the measurements by
applying a linear discrete Karhunen-Loève transformation

ŷ = L (R)−1 y = L (R)−1 h(x )+ L (R)−1 εy . (65)

The covariance of ŷ is an identity matrix and thus the transformed
measurements are independent and can be treated separately as
scalar measurements.

An example where (64) without decorrelation gives a poor estimate
of the nonlinearity has identity prior covariance matrix and measure-
ment

y = h(x ) =

�

100x [1]
100x [1]+x 2

[2]

�

+ εy ,εy ∼N

�

0,

�

10000 10000
10000 10001

��

(66)

These measurements are almost linear according to (64)

p

tr PH1PH1
p

R[1,1]

= 0 (67)

p

tr PH2PH2
p

R[2,2]

≈ 0.02. (68)

After decorrelating with

�

100 0
100 1

�−1

the measurement is

ŷ =

�

x [1]
x 2
[2]

�

+ εy ,εy ∼N

�

0,

�

1 0
0 1

��

(69)
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and the amounts of nonlinearities are
p

tr PH1PH1
p

R[1,1]

= 0 (70)

p

tr PH2PH2
p

R[2,2]

= 2> 1 (71)

and the second element of the decorrelated measurement function
is considered highly nonlinear. Before decorrelation a large amount
of correlated Gaussian noise affects both measurements. In (64) the
cross terms are not taken into account and the diagonal elements of
the covariance matrix have so large values that the nonlinearity is
deemed low, but when the measurements are decorrelated it can be
seen that there is a significant amount of nonlinearity.

In the decorrelation the choice of L (R) has an effect on the individual
nonlinearity values. However, the sum of squared decorrelated non-
linearities is independent of the choice of L (R), because the trace
term of the i th element of the decorrelated d -dimensional measure-
ment is

tr P

 

d
∑

i=1

L (R)−1
[j ,i ]Hi

!

P

 

d
∑

i=1

L (R)−1
[j ,i ]Hi

!

(72)

and the sum can be written as a new nonlinearity measure ηR:

ηR =
d
∑

j=1

tr P

 

d
∑

i=1

L (R)−1
[j ,i ]Hi

!

P

 

d
∑

i=1

L (R)−1
[j ,i ]Hi

!

=
d
∑

j=1

tr
d
∑

i=1

d
∑

k=1

L (R)−1
[j ,i ] L (R)

−1
[j ,k ]PHi PHk (73)

= tr
d
∑

i=1

d
∑

k=1

R−1
[k ,i ]PHi PHk .

Due to this, the larger nonlinearity value for decorrelated measure-
ment components of (66) is in the range from 1 to 2 depending on
choice of L (R).

In [P2], a squared version of (64) is used and a numerical approxi-
mation for computing tr PHPH is given. Matrix Q whose elements
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Figure 7: Second order polynomial fit to sigma-points

are

Q[i ,j ] =







�

h(µ+∆i )+h(µ−∆i )−2h(µ)
�

, i = j
�

h(µ+∆i +∆j )+h(µ−∆i −∆j )−
2h(µ)−Q[i ,i ]−Q[j ,j ]

�

, i 6= j
, (74)

where∆i = γL (P)[:,i ] and γ determines the spread of the evaluation
points, can be used as an approximation

Q ≈ γ2L (P)T H L (P) . (75)

This approximation is exact when the measurement function is a
second order polynomial [P2]. The trace can now be approximated
as

tr PHPH ≈ tr
QQ

γ4
. (76)

This can naturally be used also with multidimensional nonlinearity
measure (73)

tr PHi PH j ≈ tr
Q iQ j

γ4
, (77)

To reuse measurement function evaluations in the UKF, γ can be

chosen to be
p

n +ξUKF.

Figure 7 shows a second order polynomial fit to sigma-points. The
numerical computation of nonlinearity ηR using (74) uses this poly-
nomial approximation.
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The measures (76) and (56) are related: Q2
[i ,i ] = 2ηF&K

i and when Q is
diagonal

trQQ = 2nηF&K
TOT. (78)

This means that ηF&K
TOT does not take the non-diagonal terms of Q into

account and is not normalized in the sense of the sigma point spread.

The nonlinearity measure ηR has the following benefits over ηH, ηF&K

and ηH&C :

• The result is independent of chosen sigma points. In both
ηF&K and ηH&C the used matrix square root L (P) and the sigma
point spread affect the results. When using (76) to approximate
tr PHPH there may be some variation based on the chosen
sigma points.

• The result is independent of used units and the measure is
dimensionless

• The effect of measurement noise level is taken into account

Because of these properties the nonlinearity measure ηR can be used
with an absolute nonlinearity threshold e.g. 1 in (64) while thresholds
for ηH,ηF&K and ηH&C are case dependent. The drawback of measures
based on tr PHi PHi

R[i ,i ]
is that the Hi has to either be analytically com-

puted or, if it is approximated numerically with (74), the number of
required measurement function evaluations is increased from 2n+11

to n 2+n
2
+1.

The reason for taking the measurement covariance, R , into account
is that the nonlinearity affects more when measurements are more
accurate and then also the measure becomes independent of used
units. An example of the effect of measurement variance is shown
in Figure 8. The figure shows contours of exact posterior distribu-
tions compared to normal distributions having the same mean and
covariance. The measurement function used in the figure is

h(x ) = x 2
[1]−x [2]+ εy (79)

with realized value 0 and normal measurement noise with variance
R . The prior is zero mean normal with covariance P . Because the

1 ηH can be computed also with other number of measurement function evaluations
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Figure 8: Posteriors with different prior and measurement covariances
and the amount of nonlinearity computed with different
methods presented in this section.

measurement function is a second order polynomial, numerical com-
putation of ηR (76) would produce exact results. The black lines show
contours that contain 1/3 and 2/3 of the exact posterior probability.
The dashed red lines show corresponding lines for a normal distribu-
tion having the same mean and covariance as the true posterior. The
figure shows how the true posterior is closest to the normal distribu-
tion when the prior covariance is small and measurement covariance
is large and also then the nonlinearity ηR is smallest. The Kullback-
Leibler divergence ηKL and ηR&H give similar orders of the amounts
of nonlinearity as ηR, except that they consider the last plot slightly
less nonlinear than the first plot.
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The values of nonlinearity measures ηH,ηF&K
TOT, ηH&C

MAX are affected by
the prior covariance but are not affected by the measurement covari-
ance and the values will change if the sigma points are selected in
some other way. Both ηF&K and ηH&C could be improved by using
Mahalanobis distance with covariance R instead of the Euclidean
norm. Similarly ηH could be enhanced by using R to normalize it as
in (73).

The numerical methods that use UKF sigma points or the second
order polynomial approximation may fail in some special cases. For
example, consider a one-dimensional prior state with zero mean and
a measurement function

h(x ) = x 3. (80)

When this measurement function is evaluated at µ− = 0, the Hessian
is 0 and so tr PHPH = 0. The symmetric sigma points are: −χ , 0 and
χ . Because−χ3+χ3−2 · 03 = 0 bothηF&K (56) andηR

Q computed using
(74) indicate zero nonlinearity. The linear model (54) fits perfectly to
data points (A =χ2,b = 0) and so also (53) indicates zero nonlinearity.
Nonlinearity measure ηH (60) could detect nonlinearity depending
on the points used for the statistical linearization.

Next the different nonlinearity measures are tested by computing the
nonlinearity estimates when varying measurements are applied to
varying priors. The measured amounts of nonlinearity in different
test situations are compared pairwise and then compared if their
order agrees with the Kullback-Leibler divergence ηKL (51) of an EKF
update compared to the true posterior. To evaluate this I compute
the following measure

∑

i ,j

�

�

�sign
�

ηi −ηj

�

− sign
�

ηKL
i −ηKL

j

�

�

�

�

∑

i ,j 2
, (81)

where ηi and ηj are the amounts of nonlinearity in the i th and j th
case using the evaluated nonlinearity measure and ηKL

i and ηKL
j are

the amounts of nonlinearity according to the Kullback-Leibler diver-
gence. The two measures agree, if the signs of the differences are the
same. If a nonlinearity measure gives same nonlinearity value for

35



two situations, i.e. it is indecisive, it is considered to be half right by
the measure (81).

Because ηKL is not symmetric it is also tested with the distributions
exchanged. This is denoted with ηKL. Nonlinearity values for ηKL,
ηKL, and ηR&H are computed using numerical integration. ηR is tested
with analytical Hessians and with numerical computation of (76),
which is denoted with ηR

Q . ηH is computed using UKF sigma points.

In the test setup the prior was updated using two range measure-
ments from two Base Stations (BSs)

y = ||x − rBS||+ εy , (82)

where rBS is the location of a BS and x contains two position vari-
ables. Five parameters are varied between three possible values and
all the combinations are gone through. This results in 35 = 243 differ-
ent combinations and 59049 nonlinearity value comparisons. The
parameters and their values were:

• Prior means:

�

−2
0

�

,

�

0
0

�

,

�

2
0

�

• Prior covariances:

�

1 0
0 1

�

,

�

4 0
0 4

�

,

�

4 −1
−1 1

�

• BS locations:

��

−4
0

�

,

�

0
4

��

,

��

1
1

�

,

�

−1
−1

��

,

��

3
0.5

�

,

�

2
0.5

��

• Measurement values:

�

5
5

�

,

�

1
5

�

,

�

2
2

�

• Measurement covariances:

�

1 0
0 1

�

,

�

4 0
0 4

�

,

�

4 −1
−1 1

�

In Table 1 the agreement of different nonlinearity measures with the
Kullback-Leibler divergence is shown.

Among the tested nonlinearity measures (excluding ηKL), the mea-
sure ηR&H agrees most often from the tested methods with the
Kullback-Leibler divergence, but it cannot be analytically evaluated
in every situation e.g. it is unclear if it has an analytical solution in
the tested situations. It can also be noted that even though definition
of ηR&H (52) is almost same as ηKL (51) it agrees more rarely with ηKL.
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Measure ηKL ηR&H ηR ηR
Q ηF&K ηH&C ηH

Agreement % with ηKL 89 84 77 78 70 70 71

Table 1: The agreement percentage of the evaluated nonlinearity mea-
sures with the Kullback-Leibler divergence on 59049 compar-
isons.

From the fast numerical measures ηR and ηR
Q give similar results that

are better than results of ηF&K, ηH&C, and ηH, which are again quite
similar.

2.2 Direction of the maximum nonlinearity

In addition to determining the amount of nonlinearity, the direction
of nonlinearity can be estimated. This information is used later in
Section 2.3 for constructing a Gaussian Mixture (GM) so that the
number of components is higher and components are smaller in the
direction of nonlinearity.

In both [30] and [19], a similar approach is used for finding the direc-
tion of the maximum nonlinearity. In [30], the direction of maximum
nonlinearity is the eigenvector corresponding to the maximum eigen-
value of matrix C , which can be computed as

w i =
ηH&C

i
∑2n

i=0η
H&C
i

(83)

µ=
2n
∑

i=0

w iχi (84)

C =
2n
∑

i=0

w i (χi −µ)(χi −µ)T . (85)

In [19], the amounts of nonlinearity are computed for sigma point
pairs and the C matrix is

C =
n
∑

i=1

ηF&K
i

�

χi −χ0
��

χi −χ0
�T

�

�

�

�χi −χ0

�

�

�

�

2 . (86)
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To avoid the computation of the eigenvector corresponding to the
largest eigenvalue, [19] presents also an approximation for the direc-
tion of the maximum nonlinearity, which is

∑n
i=1η

F&K
i

�

χi −χ0
�

�

�

�

�

∑n
i=1η

F&K
i

�

χi −χ0
�

�

�

�

�

. (87)

In [35], the direction of the maximum nonlinearity is determined
by evaluating for which eigenvector u i of the prior covariance the
associated nonlinearity η̃H

i

η̃H
i =

∫

�

�

�

�h(xν )−A(µ+νu i )−b
�

�

�

�

2
pN(µ+νu i ,µ, P)dν (88)

is largest. This can detect the nonlinearity only in the directions of
the eigenvectors of the prior. Because this integral does not have
analytic solution in general, numerical integration has to be used.

In [P2], the direction of the maximum nonlinearity is computed as
the eigenvector of PH corresponding to the largest eigenvalue in
magnitude. In a set of equally probable state vectors

(x −µ)T P−1(x −µ) = constant (89)

the eigenvector of PH corresponding to the largest absolute eigen-
value maximizes (x − µ)T H (x − µ). This can be seen as finding a
vector that maximizes the second order term of the Taylor series of
the measurement function

h(x )≈ h(µ)+ J (x −µ)+
1

2
(x −µ)T H (x −µ)+ . . . . (90)

The eigendecomposition

L (P)T H L (P)≈Q =UΛU T (91)

can be used to numerically compute the direction vector of the maxi-
mum nonlinearity a as

a = L (P)U e i , (92)
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H&C [30] F&K [19] H [35] AS [P2]
αUKF = 0.5 22.3 22.3 22.3 3.53 · 10−6

αUKF = 10−3 22.3 22.3 22.3 0.762

Table 2: Average error on estimation of the direction of the maximum
nonlinearity in degrees.

where i is the index of the largest eigenvalue in magnitude and e i is
the i th column of an identity matrix.

This direction of nonlinearity was introduced only for one-
dimensional measurements and for multidimensional measurement
each measurement element has to be treated separately. If the mea-
surement errors are linearly dependent, decorrelation (65) should be
applied before this.

In [P7], the different nonlinearity direction estimation methods were
tested in a two-dimensional case where a scalar measurement func-
tion

h(x ) = e b T x , (93)

where b was randomly chosen, was evaluated with an isotropic prior.
This measurement function has all of the nonlinearity in the direction
of b , because the component of x that is perpendicular to b does
not affect the measurement function at all. Here I do the same test
and include also the direction computation proposed in [35]. The
test is done 10000 times with random b and with 2 different values
for αUKF = [0.5,10−3], which also affects the γ in (76). Table 2 shows
the mean errors of the computed direction of nonlinearity. Methods
H&C [30], F&K [19] and H [35] result in same error of to 22.3 degrees.
This is close to choosing the main axis, which is closer to the direction
of nonlinearity, as the direction of the maximum nonlinearity. The
method proposed in [P2] resulted in an error of less than a degree,
depending on the value of αUKF.

Figure 9 shows an example of the determining of the direction of
nonlinearity. The background shows the value of function (93). The
circles are the used sigma points and the diamonds the additional
points required for computation of Q. The nonlinearity direction
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True nonlinearity & [P2]

H&C, F&K & H
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sigma points

additional points used in [P2]

Figure 9: Different estimates of the direction of the maximum nonlin-
earity and the sigma points used to compute them

produced by the algorithm from [P2] and the true nonlinearity are so
close to each other that they are drawn with a single arrow. Similarly
estimates produced by algorithms from H&C, F&K and H produce
identical estimates, which are aligned with a sigma point pair.

2.3 Use of nonlinearity information in Gaussian
Mixture Filters

The amount of nonlinearity is used in GMFs to determine whether
a component update with a linearized KF produces a good enough
posterior estimate. If the nonlinearity is low, the update can be done
with a KF extension, but if the nonlinearity is considered high, the
prior component is split into smaller components.

Usually the amount of computational resources give some upper
limit for the number of components and in many GMF variants also
the component weight is used for choosing the next component
to be split. In some GMF algorithms found in the literature, the
split Gaussian mixture is generated without using the information
of the direction of nonlinearity. If the measurements are linear in
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some dimensions, this causes generation of an excessive number of
components in splitting, because the splitting is done also in linear
dimensions, which is unnecessary. Examples of this kind of GMFs
are Prior Density Splitting Mixture Estimator [61], Box GMF [1, 3],
Sigma Point GMF [4], Adaptive Gaussian sum squared-root cubature
Kalman filter [81], and Split and Merge Unscented GMF [20].

In [61], the nonlinearity measure ηR&H (52) is computed for every
resulting component and the prior is split into smaller components
until the maximal nonlinearity and the sum of nonlinearities of the
resulting components are below set thresholds. A component is split
along all the dimensions of the prior covariance (unless splitting di-
rections are manually determined). The splitting is based on precom-
puted parameters for 1-dimensional GM that approximates a normal
distribution with a zero mean and a unit variance. If the parame-
ters for the i th component of an m -component one-dimensional
mixture are denoted as weight wm ,i , mean µm ,i and variance σ2

m ,i .
Parameters for a resulting component are

w =w0

n
∏

i=1

wm ,c i (94)

µ= L (P0)









µm ,c1

...
µm ,cn









+µ0 (95)

P = L (P0)diag
�

σ2
m ,c1

, . . . ,σ2
m ,cn

�

L (P0)T , (96)

where w0 is the weight of split component, µ0 is its mean, L (P0) is
the Cholesky decomposition of the covariance of the split compo-
nent, c i is an index in range 1, . . . , m , and n is the dimension of the
state. For the complete mixture all combinations of c i are used. The
number of resulting components of a split of one component grows
exponentially as a function of the state dimension mTOT =m n .

In Box GMF [1, 3], the nonlinearity of a component is determined us-
ing the nonlinearity measure (64). A nonlinear component is divided
by a grid and each grid cell is replaced with a normal distribution hav-
ing the mean and covariance of the pdf inside the cell and a weight
equal to the amount of probability mass inside the cell. The resulting
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mixture converges weakly to the prior component i.e. the cumulative
distribution function (cdf) converges, but the pdf becomes more
peaky when number of components increases. To reduce the peaki-
ness of the prior approximation the component covariances can be
made larger, but then the covariance of the original component is no
longer preserved [3]. The number of components also in Box GMF
grows also exponentially.

In Sigma Point GMF, [4] only one-dimensional measurements were
considered and the amount of nonlinearity was computed with the
one-dimensional version of (64). Sigma Point GMF spreads the result-
ing components so that they have means similar to the UKF sigma
points in (26). This produces 2n + 1 components from every split.
Even though it is no longer an exponential number of components it
can still be very ineffective when the state dimension is high.

In [20], [81], [19], and [P2], a prior component is split into two equally
weighted components so that the mean and covariance of the mix-
ture do not change2. The parameters of new components are

µ+ =µ0+
p

βa (97)

µ− =µ0−
p

βa (98)

P = P0−βa a T (99)

w =
w0

2
, (100)

where µ+ and µ− are new component means, P0 is the component
covariance before splitting, P is the new component covariance, a is
the displacement vector of the mean that determines the direction
where new component means are located compared to the original
mean, and β determines the shape of the resulting components. The
parameter β is chosen from range [0,1], where 0 produces compo-
nents having same covariances as the original component and 1
singular components. Figure 10 shows the effect of the choice of β
on the shape of the resulting components.

In [20], the component to be split is chosen to be the one with high-
est posterior probability (44) that has the amount of nonlinearity

2 [19] presents also similar equations for splitting into three components at once
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Figure 10: The effect of the value β on the shape of resulting compo-
nents [P2]

according to the measure (55) above a set threshold. The direction
of splitting a is chosen to be the direction of the eigenvector, u MAX,
corresponding to the largest eigenvalue, λMAX:

a =
p

λMAXu MAX. (101)

In [81], the splitting direction the same, but the component to be
split is chosen using the nonlinearity measure ηF&K

TOT (57).

In [35], the vector a is computed as in (101), but instead using eigen-
vector corresponding to maximum eigenvalue, the eigenvector is
chosen to be the one that produces most nonlinearity according to
(88). The component to be split next is the component with highest
value of

w Γ
i

�

1− e−η
H
�1−Γ

, (102)

where Γ is a weighting factor. When Γ= 0 the value of the nonlinearity
measure ηH (60) determines which component is split and when
Γ= 1 the component with the largest weight is split.

In [19], a is chosen to be

a =
p

λu , (103)

where u the is eigenvector of P0 closest to the direction of the maxi-
mum nonlinearity computed using (86) and λ is the corresponding
eigenvalue.
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In [P2], a method called the Adaptive Splitting (AS) was presented. In
the AS the splitting is done in the direction of the maximum nonlin-
earity computed using (92). The change of the trace term tr PHPH
in this splitting can be computed. The trace term before splitting is

tr P0HP0H = tr L (P0)T H L (P0)L (P0)T H L (P0) =
∑

λ2
i , (104)

where λi is i th eigenvalue computed in (91), and after the split the
trace term becomes

tr PHPH = (1−β )2λ2
i +
∑

j 6=i

λ2
j . (105)

The components are split into two until the amount of nonlinearity
according to measure (64) is below 1 or the maximum number of
recursions is reached.

The division of the prior into two components recursively one compo-
nent at a time in the direction of the maximum nonlinearity preserves
the mean and covariance of the original distribution, but does not
converge to the original distribution in terms of the pdf or cdf.

In [30], the splitting is done by replacing the first dimension of an
n-dimensional standard normal distribution with a precomputed
mixture3. Then an affine transformation is applied to align the first di-
mension of the new components with the direction of the maximum
nonlinearity and to scale and transform the mixture to approximate
the original prior well. Precomputation of the mixture parameters
allows to use more computational resources in optimization than
computing the parameters during the estimation process. The pre-
computed mixtures require storing or transmitting mixtures with
different numbers of components to the positioning device. For one-
dimensional mixtures the storage requirements are rather small. This
method does the splitting only in one direction and so it does not
work well in situations where multiple dimensions are nonlinear.

In [P7], splitting of a prior component using weights of the binomial
distribution is presented. This kind of mixture is called the Binomial

3 [35] proposes similar procedure as an alternative to splitting into 2 components
recursively.
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Gaussian Mixture (BinoGM). When the number of components is
increased in the BinoGM the pdf and cdf converge to the pdf and cdf
of the prior component while preserving the mean and covariance.

In addition to the convergence results, [P7] presents algorithms and
rules for the practical use of the BinoGM in a filter called the Binomial
Gaussian Mixture Filter (BinoGMF). In the BinoGMF, measurements
are decorrelated (65) and each decorrelated measurement is treated
separately. The amount of nonlinearity for a component is tr PĤi PĤi ,
where Ĥi is the Hessian of the i th element of the decorrelated mea-
surement function. In the BinoGMF, the component splitting can
happen in multiple directions. Because the nonlinearity measure
can be written as a squared sum of eigenvalues of PH (104), each
squared eigenvalue can be seen as the amount of nonlinearity to the
direction of the corresponding eigenvector. The splitting in multiple
directions at once saves computational resources as the nonlinearity
measure is evaluated only once.

In the BinoGMF each new component has the same covariance

P = L (P0)Udiag

�

1

m1
, . . . ,

1

mn

�

U T L (P0)T , (106)

where U is computed using eigendecomposition (91) and m i is num-
ber of mixture components in the i th direction. The nonlinearity of
a resulting component is

tr PĤPĤ =
n
∑

i=1

λ2
i

m 2
i

, (107)

where λi is the i th eigenvalue computed with eigendecomposition
(91). It is shown in [P7] that if the required number of components for
achieving a desired nonlinearity level is minimized and the integer
nature of m i is neglected the optimal values for m i satisfy

λ2
i

m 2
i

=
λ2

j

m 2
j

∨m i = 1 (108)

on conditions m i ≥ 1 and
∑ λ2

i

m 2
i
=ηlimit, where ηlimit is the threshold

value for nonlinearity. The parameter value m i = 1 is used for direc-
tions which would otherwise have number of components m i < 1.
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The component mean is

µ= L (P0)Udiag

�

1
p

m1
, . . . ,

1
p

mn

�













2c1−m1−1
2c2−m2−1

...
2cn −mn −1













+µ0, (109)

where c i is an integer 1≤ c i ≤m i and the whole mixture contains all
combinations of c i . The weight of a component is

w =w0

n
∏

i=1

�

m i −1

c i

��

1

2

�m i−1

, (110)

where w0 is the component weight before splitting. Splitting in only
nonlinear directions helps to keep the number of components low.
In the BinoGMF the maximum number of resulting components of
splitting a component is defined to be proportional to the weight of
the component.

The above equations for splitting are similar to splitting done in
[61] (94)-(96). The main difference is that the BinoGM split assigns
the number of components for each dimension according to the
nonlinearity in that dimension and reduces the amount of required
components. When the number of dimensions, which are considered
almost linear, increases, the number of resulting components does
not change and in this kind of situations the BinoGMF can avoid the
exponential growth of the number of components.

Figure 11 shows the forming of the GM in the BinoGMF. The back-
ground contours of the top row show the second order term of a
measurement function, the arrows show the directions of eigenvec-
tors in (91), and the ellipse is the 2σ ellipse of the covariance matrix.
The top left plot shows the original component and the squared
eigenvalues are λ2

1 = 8 and λ2
2 = 2. According to the rule (108), the

resulting mixture will have 4 components in the direction of the first
eigenvector and 2 components in the direction of the second eigen-
vector. The resulting components will all have the same covariance.
The 2σ ellipse of this covariance is shown on the top right. The total
nonlinearity is reduced to 1. The bottom left plot shows the pdf of
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Figure 11: An example of nonlinearity reduction and a generation of a
BinoGM. The background of the top row shows the second
order term of a measurement function. The total nonlinear-
ity is reduced from 10 to 1 for the resulting component. The
bottom left plot shows the pdf of the original component
and the bottom right plot shows the pdf of the BinoGM.

the original component and the bottom right plot shows the pdf of
the resulting BinoGM.

Some of the component splitting methods presented in this section
are evaluated in Figure 12. The figure shows the mean residuals
of the estimated means to the mean of the true posterior in four
different scenarios. Markers show the 5%, 25%, 50%, 75%, and 95%
quantiles of the residuals. Each test scenario was run 400 times. The
different nonlinearity based limits for number of components were
not tested and the maximum number of components was limited to
16. All component updates were done using the UKF with parameters
αUKF = 1, κUKF = 0 and βUKF = 2. The methods that use the UKF sigma
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Figure 12: Quantiles of mean estimation errors of GMs generated with
different splitting strategies in four test scenarios. All GMs
are updated with the UKF.

points for nonlinearity evaluations used these same parameters. The
scenarios are:

• 2D range – a range measurement in two-dimensional position-
ing

• 2D 2nd order – measurement consists of a second order poly-
nomial term aligned with a random direction and a linear mea-
surement aligned with another random direction

• 4D speed – a speedometer measurement with a highly uncer-
tain prior

• 10D third order – a 3rd order polynomial measurement along a
random direction in a ten-dimensional state
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Detailed explanations of the test scenarios can be found in [P7].

In the figure, the method S&M is from [20]. The method F&K is
from [19] and splits each component every time into three. H&C
was implemented with different offline optimization than originally
presented in [30], but this should not affect the results. Rauh from
[61] used the same offline optimized mixtures as H&C but splits
the prior into multiple directions at once. Huber was implemented
according to [35]. AS is from [P2]with the alteration that it splits the
most nonlinear component into two instead of splitting components
recursively until the nonlinearity threshold is reached. The BinoGMF
is implemented according to [P7].

In these results, the use of the BinoGMF for splitting a prior com-
ponents results in the most accurate posterior. The method Rauh
that splits the prior along every direction is not shown in the 10D
scenario, because splitting the prior into two along 10 dimensions
would generate 1024 components. In this scenario the AS and the
BinoGMF were the only methods that improved the median error
compared to the UKF. This is due to the accurate estimation of the
direction of the maximum nonlinearity.

The AS has better accuracy than the BinoGMF sometimes when the
Hessian H changes much within the prior i.e. when the second order
approximation of the measurement function within the prior is inac-
curate. In [P7] it was found that in such cases the sigma point spread
in the BinoGMF should be larger in the nonlinearity computation
than commonly used in the UKF implementations. Figure 13 shows
a situation, where the AS has better accuracy than the BinoGMF.

On the left the background contours show the pdfs of different priors
used and on right the posterior pdfs are shown. The white dashed
line shows the maximum likelihood circle of the applied range mea-
surement and the green dots are the component means. αUKF defines
the sigma point spread in the numerical computation of nonlinearity.

In the figure titles, m is the number of components when the splitting
stopped. In the BinoGMF the nonlinearity value is not evaluated for
resulting components whereas AS does splits until the amount of
nonlinearity in every component is under a set threshold tr PHPH

R
≤ 1.
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Prior True posterior

KL=0.011 KL=1.189

B inoGMF αU KF= 0 .001 , m = 2

KL=0.016 KL=0.077
B inoGMF αU KF= 0 .5 , m = 10

KL=0.029 KL=0.040
AS αU KF= 0 .001 , m = 8

Figure 13: Comparison of priors and posteriors of the AS and the
BinoGMF with different parameters
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KL is the Kullback-Leibler divergence (51), which describes how good
is the GM approximation of the true distribution.

The BinoGMF that uses small αUKF values uses numerical approx-
imation of Hessian H that is close to the analytical Hessian at the
mean. The analytical solution has all the nonlinearity tangential to
the range measurement circle. This results in splitting only in that
direction. When the αUKF value is increased, the numerical approxi-
mation takes into account also the error in the direction of the range
measurement. This results in more components and more accurate
posterior estimate. The AS splits every time in the direction of the
maximum nonlinearity and because the amount of nonlinearity is re-
evaluated for new components the choice of the sigma point spread
is not as important as with the BinoGMF.
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3 Linear models for positioning problems

The previous section considered methods for evaluating the non-
linearity within a Gaussian component used in a Gaussian Mixture
Filter (GMF). When the amount of nonlinearity was small, the com-
ponent was updated with a Kalman Filter (KF) extension and when
nonlinearity was high the component was split into smaller compo-
nents. In this section a different approach is considered. Instead of
locally linearizing a nonlinear model, a globally linear model is used.

While the previous section considered general situation and can be
applied to various different estimation problems, the construction of
a globally linear model is case specific and in this thesis positioning
problems are considered. The problems considered are real-world
problems and the used models are only approximate models of true
phenomena. The solutions to the linear models are fast to com-
pute and thus they can be applied in real-world situations, where
computational capacity is limited.

The benefits of using linear models and assuming noise normally
distributed are as follows:

• Closed form solutions exist e.g. the KF and the Rauch-Tung-
Striebel smoother [60]

• Algorithms are fast

• The result is a normal distribution, which is unimodal and has
the mean and mode in the same point

The drawbacks are as follows:

• Models are more restricted, it is possible that some information
cannot be used

• Assumption of normally distributed noise is not always good

• There is no general algorithm for finding a linear model to be
used instead of a nonlinear model

• No good linear model exists for every problem

In some publications “tricks” are applied to make a linear model from
nonlinear, but the solutions computed are not solutions to original
problem [70, III-C].
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Figure 14 presents three situations of estimation with a linear
and nonlinear model. In every situation the nonlinear model is
y = x +2 sin(x ) and the linear model is y = x . The nonlinear model
is assumed to be the “true” model. Three different ways to compute
an estimate of state x given measurement y are discussed:

1. Solving x from the linear model

2. Solving the estimate from the nonlinear model using a lin-
earization

3. Solving the estimate from the nonlinear model using an itera-
tive solver that converges to a local optimum

In the first subplot, the linearization point is close enough to the true
state to produce a linearized estimate close to the true state. If the
linearization point is used as an initial state of the iterative solver, it
will most probably converge to the correct local optimum. In this
case the linear estimate has much larger error than the linearized
estimate.

In the subplot in the middle the situation changes. The true state is
further away from the linearization point. The estimate solved from
the linear model is now better than the estimate solved from the
linearized model. An iterative solver would have a risk of not finding
the global optimum, but converging to a local optimum, because
there are two local optima between the linearization point and the
true location.

In the bottom plot, noise is added to the measurement and the mea-
surement does not intersect with the true model in the location of
the true state. In this case all the local optima have more error than
the linear estimate and the linear estimate is the most accurate.

These examples show how an accurate nonlinear model can produce
better results than the linear model, but if there is no good prior infor-
mation of the state or if the measurements are noisy a linear model
may provide better results. Of course, not all nonlinear models have
this good linear counterpart, but in the following subsections three
real-world situations, where a linear model has benefits over a non-
linear model, are presented. The situations are based on publications
[P3] - [P6].

54



M
e

a
s
u

re
m

e
n

t

 

 

State

Nonlinear model

Linear model

Linearized model

Linearization point

True state

Measurement

Linear estimate

Linearized estimate

Local optimum

Figure 14: An example of estimates obtained from linear, and lin-
earized, and nonlinear models
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3.1 Generation of a radio map using unlocated
fingerprints

Generation of a radio map using unlocated Fingerprints (FPs) arises
in the situation when one wants to generate a radio map for Wireless
Local Area Network (WLAN) positioning indoors, where both Global
Positioning System (GPS) and manual position estimates are unavail-
able. This is the case when WLAN mapping is done by crowdsourcing
and has GPS position estimates only outdoors. This section is based
on publication [P3].

The problem at hand is shown in Figure 15. The FPs outside the
box have position information and the FPs inside are unlocated.
Connections show which WLAN Access Points (APs) were received
at a FP. The goal is to build a radio map of APs. Here I present
an overview of the algorithms in the context of the thesis. The full
algorithms and derivations can be found in [P3].

Figure 15: Unlocated and located fingerprints forming connections
with APs [P3]
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The first algorithm used is a very simple mean algorithm that is used
as a baseline in tests. The location of t th FP z t in this model is

z t =

¨

z GPS if GPS is available
∑

i∈FP
rAP,i ,t−1

M
if GPS is not available

, (111)

where z GPS is a location estimate provided by GPS, rAP,i ,t−1 is an old
estimate of the i th AP and M is the number APs in the t th FP. The
updated AP location is

rAP,i ,t =
(t −1)rAP,i ,t−1+ z t

t
, (112)

when i th AP is received t times.

In the second model a Pathloss (PL) model is used. In this model, the
distance to an AP is related to Received Signal Strength (RSS) at the
t th FP using model

RSSi ,t =RSS0−10α log10

�

�

�

�z t − rAP,i

�

�

�

�+ εy ,t , (113)

where RSS0 is the signal strength 1 meter from the AP, α is an attenu-
ation factor, z t is the location of t th FP , rAP,i is the location estimate
of i th AP and εy ,t is the measurement noise. Some of the z t are un-
known (unlocated FPs) and some are known. The map is generated
and positioning is done in two dimensions.

In [P3] the distance is solved from (113) without taking the measure-
ment error into account

�

�

�

�z t − rAP,i

�

�

�

�= 10
RSSi ,t −RSS0

10α .4 (114)

Estimates for locations of APs can be solved from a set of nonlinear
equations containing one equation (114) for every received AP in
every FP. This causes the system to become large when the number
of measurements grows.

To limit the number of equations it is possible to consider only the
positions of APs and not FPs. Because the distance between two APs

4 In [P3], this is equation (1) and has a sign error
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is less or equal than the sum of their distances to the location of a FP,
the following inequality holds

�

�

�

�z t − rAP,i

�

�

�

�+
�

�

�

�z t − rAP,j

�

�

�

�≥
�

�

�

�rAP,i − rAP,j

�

�

�

� . (115)

For each pair of APs received simultaneously in an unlocated FP only
one inequality is required

min
t

�

10
RSSi ,t −RSS0

10α +10
RSSj ,t −RSS0

10α

�

≥
�

�

�

�rAP,i − rAP,j

�

�

�

� , (116)

where the left hand side of the inequality is the smallest observed
upper limits for distance between the APs. Using only the upper
limits for distances between APs limits the number of equations to
be solved, but loses some information. But even though the number
of inequalities does not increase when new FPs, where APs i and j
are received, are added the upper limit may become lower and the
estimate can be thus improved.

The AP locations are solved from nonlinear a set of nonlinear
equations (114) or inequalities (116) using the Gauss-Newton al-
gorithm [7]. The Gauss-Newton algorithm is an iterative algorithm
that does not necessarily converge to a global minimum.

In addition to the nonlinear models, a linear model was introduced
in [P3]. The linear model employs the idea that the set of locations
where each pair of APs can be received simultaneously has its own
mean. Thus a FP, where APs i and j are received simultaneously, is
located at

z t = rAP,i +δi ,j + εz ,i ,j = rAP,j +δj ,i + εz ,j ,i , (117)

where δi ,j and δj ,i are translation vectors from the AP locations to a
virtual mean of FP locations and εz ,i ,j = εz ,j ,i is a translation vector
from this mean to the true FP location z t .

Because in the mapping phase, the user locations are not of interest,
they can be eliminated by taking a difference between locations of
two APs

rAP,i − rAP,j =δj ,i −δi ,j . (118)

58



If the translation vectors are assumed to be independent zero mean
random vectors, the variance of an AP location difference has zero
mean and covariance

cov
�

rAP,i − rAP,j

�

= covδj ,i + covδi ,j . (119)

The translation vectors are assumed to be time invariant, which
means that having multiple measurements where both APs were
received does not affect the estimate. The FPs with GPS locations are
used also as linear measurements

rAP,i =

∑M
i=1 z GPS,i

M
+ εGPS, (120)

where z GPS,i is a location of a FP where GPS was available and i th AP
was received and εGPS is a normal distributed noise term.

In simulated tests in [P3], the measurements were generated using
(113) with normal distributed noise. For APs a maximum range was
used to determine whether the signal was received at a FP. The
locations were solved using the mean model (111), the nonlinear
models (114), and (116) and linear model (117). The transformed
measurement noise is not anymore normal in the equations (114)
and (116), but this error was considered small compared to real-world
modeling errors. The linear model was tested also with variances of
(119) based on the signal strengths so that weak measurements were
transformed into large variances of δ and strong measurements to
small variances.

Figure 16 shows the simulated results for positioning APs as a func-
tion of measurement noise. Simulation was done by evaluating the
accuracy of each method for 11 levels of noise 864 times. The method
“Mean” is the algorithm that computes the weighted mean recursively
(111). The Access Point Least Squares (APLS) uses the linear model
(117) and Variance Access Point Least Squares (VARAPLS) is the lin-
ear model with variable weighting. Gauss-Newton (GN) uses (114)
and Gauss-Newton Max Range (GNMax) (116). GN and GNMax have
also versions with initial guess taken from the APLS, denoted with
“w prior” in the legend. Otherwise the initial guess for all the AP
locations in GN and GNMax was the mean of the located FPs i.e.
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Figure 16: Simulated results with different noise levels for locating APs
with unlocated FPs

in the first Gauss-Newton iteration all FPs had same location.. The
linear methods outperformed all the nonlinear methods when the
measurement noise level was over 9 dBm. The figure shows also that
the nonlinear methods were over 100 times slower than the linear.
The use of APLS as the initial guess for GN improved the accuracy,
but did not have a significant effect on the computation time.

In [40], the standard deviation for the RSS of a static receiver was
measured to be between 1 dB and 5 dB, but the mean was changing
up to 4dB depending on the orientation of the user. In [82], the
standard deviation of WLAN RSS values for the model (113) was
found to be usually more than 10 dB. In their tests the orientation of
the user changed RSS values up to 14 dB and state of a door (open or
closed) 5 dB. Due to these findings, even if the RSS signal strength is
attenuated according to (113), the linear models should outperform
the nonlinear models in real-world tests.

In [P3], the positioning using unlocated FPs was tested also in one
real-world scenario. The results showed that positioning using the
linear model produced better user location estimates than the non-
linear models. The absolute positioning accuracy was enough to
determine in which wing of the building the user is. This accuracy is
enough to show the user a floor plan from the correct part of building,
if the correct floor is not needed, but is not enough for plotting the
exact position on the floor plan.

The algorithms used in the article [P3] could be also used in the
Simultaneous Localization and Mapping (SLAM) framework. The
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algorithms can build automatically a WLAN map for positioning and
update it while moving in the mapping area.

The nonlinear model that uses equalities solves estimates for FP
locations and could be used directly for SLAM. The model could be
enhanced further by using a motion model for the FP locations. If the
other models are used for SLAM, the user locations has to be solved
separately.

3.2 Linear coverage area models

In this section I consider positioning using WLAN signals. The en-
vironment is first mapped and models are created by collecting FPs
with manually determined positions and the positioning phase hap-
pens after the map is created. This section is based on publications
[P4] and [P6].

Positioning with Coverage Area (CA) models is based on knowledge
of the geographical area where signals can be received. CAs can be
modeled as different geometrical or statistical objects. One could for
example construct a convex hull around all the FP locations where
an AP was received. In the positioning phase, the intersection of
the polygon models of all received APs can be used as the location
estimate. This approach has some drawbacks, for example, the stor-
age and memory requirement for a model is not bounded, because
number of vertices is not limited and the intersection of the convex
hulls may be empty. A geometrical intersection of convex hulls can
be formulated as

p (x )∝
∏

i

h i (x ), (121)

where

h i (x ) =

¨

1, x inside i th polygon
0, otherwise

(122)

In geometrical intersection state x is within the intersection when
p (x )> 0.

In [43], the CA of an AP was modeled as a two dimensional nor-
mal distribution. With this kind of model the CAs expand to whole
space, which means that their “statistical intersection” is not empty.
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input :M FPs locations z i where an AP was received
output :mean c and covariance Σ of a CA model
parameters :degrees of freedom ν

strength of the prior τ
prior radius l
number of iterations T

φ1:M ← 1 // Initialize weights
for t = 1 : T do

c ←
∑M

i=1φi z i
∑M

i=1φi
// CA mean estimate

S←
∑M

i=1φi (z i − c )(z i − c )T

Σ̃−1← (M +τ−n −1)
�

S+τl 2
�−1 // Shape matrix

for i = 1 : M do
φi ← n+ν

ν+(z i−c )T Σ̃−1(z i−c ) // Update weights
end

end
Σ= ν

ν−2 Σ̃ // Covariance estimate

Algorithm 2: CA model fitting to FP locations where an AP was
received [54]

In “statistical intersection” h i (x ) in (121) is the probability density
function (pdf) of the distribution of the i th CA model and (121) is
proportional to the pdf of the “statistical intersection”. The normally
distributed model also allows using a prior to represent the shape
of a typical CA. The prior affects the shape most when there is only
one measurement and the effect decreases as the number of FPs
increases. The use of a normal distribution as the estimate of a CA
also allows using fast linear algorithms in both generating the models
and in positioning.

When there are outliers in the FP data their impact on normal models
is large. In [54], Student-t models are fitted to the FP data instead of
normal models using iterative expectation-maximization algorithm
(Algorithm 2). When modeling the CA of an AP, the model is made
for 2-dimensional positioning i.e. n = 2. The FP locations are de-
noted with z and the number of FPs where the AP was received is M .
The resulting CA is parameterized with a mean c and a covariance
matrix Σ. When the degrees of freedom ν approaches infinity the
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distribution approaches normal distribution and the parameters for
a CA can be computed without iterations:

c =

∑M
i=1 z i

M
(123)

Σ=

∑M
i=1(z i − c )(z i − c )T +τl 2

M +τ−n −1
. (124)

Even though Algorithm 2 is not very complex, the computation of
linear-Gaussian model using formulas (123) and (124) is even simpler,
faster, and does not require iterations.

The positioning using statistical CA models can be done using the
Weighted Linear Least Squares (WLLS) (8)&(9). The WLLS produces
the parameters of the optimal “statistical intersection” of normal dis-
tributions. The CA models of received APs are assumed independent
and the WLLS algorithm can be simplified further: The mean of a
statistical intersection of CA models of the received APs in a FP is

µ=

 

∑

i∈FP

Σ−1
i

!−1
∑

i∈FP

Σ−1
i c i (125)

and the covariance matrix is

P =

 

∑

i∈FP

Σ−1
i

!−1

. (126)

In [52], the positioning with normal CA models had a mean error
of 8.8m in indoor WLAN positioning whereas PL-based method
reached a 6.9m mean error and Weighted k -nearest Neighbor
(WKNN) [33] had a 5.7 m error. In this comparison, the CA model was
the only method that did not take the value of the RSS into account.

In [P4], the statistical CA models are enhanced to take the RSS values
into account. This is achieved by making multiple models for a CA
of an AP based on the RSS values. In the article it was reported, that
two CA models for an AP improved positioning results indoors by
2 m and the accuracy was similar to WKNN. Increasing the number
of CA models to 3 for an AP did not further improve the estimate
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Figure 17: Comparison of a two-level CA model with a PL model when
modeling the FPs with different RSS values

significantly. The tests were done using real data measured indoors
and outdoors. In the indoor scenario Student-t (ν = 5) models were
better than the normal models (ν =∞), but outdoors the situation
was opposite.

Figure 17 shows a comparison of the 2-level CA model and a PL
model with two different measured RSS values for an AP. The PL
model is similar to (113), but takes also the model uncertainty into
account [52]. The black lines enclose 50% of the probability mass of
the models and the likely FPs are chosen according to RSS in such a
way that they have 50% of the probability mass. The used probability
for computing likely FPs is

p (FPi )∝ pN(RSSy |RSSi , 62 (dBm)2), (127)

where RSSy is the current measured RSS value and RSSi is the RSS
value at the i th FP.
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The figure shows how the models are different, but there is no clear
difference which method represents the distribution of likely FPs bet-
ter. The PL model extends to areas where the FPs were not collected,
whereas the CA model does not. The property of extrapolating data
may be desired if the FP data does not cover the whole interesting
positioning area, but it may also be undesired property. For example,
if a building is well mapped and outside the building GPS positions
are used, the position estimate, when only WLAN measurements are
available, should be indoors.

In [P6] the 1- and 2-level CA positioning is compared with other
WLAN positioning methods. Figure 18 shows the quantiles of po-
sitioning errors on true-data tests. WKNN is only non-parametric
method in comparison. It compares the received RSS values of APs
with a database of previously collected FPs. The location estimate
is computed as a weighted mean of the locations of k FPs that have
most similar RSS values [33]. The weights are determined by the
similarity of FPs. In the tests k = 5. CA 1-level and 2-level are normal
CA models with one and two CA models for an AP. PL [52] uses a PL
model similar to (114) to determine range to the APs. Generalized
Gaussian Mixture (GGM) uses a generalized version of Gaussian Mix-
tures (GMs) to estimate the ranges from the AP [49]. Gaussian Mix-
ture Expectation Maximization (GMEM) is a method that is based on
estimating the RSS map using a GM [41].

The tests were made in two buildings using 4 test tracks that con-
tained 308 test points in total. In these tests, 2-level CA positioning
has the best 95%-quantile error and the median is on the same level
as with other methods. Time is the computing time of methods in
milliseconds and is only suggestive as the different algorithms have
different optimization levels. The time does not take database access
into account. For static results the position is estimated without us-
ing time series and for filtering results time series are used. Figure 19
shows the sizes of compressed radio map databases required for each
method. Clearly the parametric models require less storage space
than the WKNN. A more detailed explanation on test setup and more
results can be found in [P6].
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Figure 18: Accuracy and time comparison of different WLAN position-
ing methods on true-data test tracks [P6]
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Figure 19: Database size comparison of different WLAN positioning
models [P6]
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3.3 Linear state model for Pedestrian Dead
Reckoning

In Pedestrian Dead Reckoning (PDR) the location of a pedestrian is
estimated using information on footsteps and heading change fused
with other measurements providing occasional absolute position
estimates. This section is based on publication [P5] and the absolute
position estimates are computed using the CA models presented in
previous section and in [P4].

Footsteps and heading changes can be obtained from an Inertial Mea-
surement Unit (IMU), which consists of gyroscopes and accelerome-
ters. The device’s heading change∆θ can be computed by projecting
the gyroscope measurements to a horizontal plane, which is esti-
mated using accelerometers [12]. Footsteps can be detected from
the accelerometer data. Often in literature the footstep length s is
integrated from the accelerometer data assuming that when the foot
hits the ground it is static [6]. This kind of footstep length estimation
requires the accelerometers to be mounted on a foot, which is im-
practical in many use cases. There are also other methods to estimate
the step length that are based on the time between steps [45] or the
time and variance of acceleration [68]. Methods based on time do
not require the sensors to be mounted on a foot, but they may have
some bias depending on the person’s physiological properties.

PDR systems in literature, for example in [45], are usually modeled
with two-dimensional position z , heading θ , and, if the footstep
length is estimated, the footstep length s . When a step is detected
the state transition is

x (t+1) =











z [1],(t+1)

z [2],(t+1)

θ(t+1)

s (t+1)











=











z [1],(t )+ s (t ) cosθ(t )
z [2],(t )+ s (t ) sinθ(t )

θt +∆θ(t )
s (t )











+ εx , (128)

where εx is a random vector containing the state noise for the state
variables. This state model is nonlinear. If the footstep length is
obtained directly from the IMU, then s can be dropped from the
state and instead the measured value of the s is used. In this and the
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following model, the step is assumed to be done at the heading in
time t and the heading change happens at the end of the step.

In [P5], a linear state model for PDR is proposed. In this model,
instead of estimating the heading and footstep length, a two-
dimensional step vector v is estimated. The model is

x (t+1) =











1 0 1 0
0 1 0 1
0 0 cos∆θ(t ) sin∆θ(t )
0 0 −sin∆θ(t ) cos∆θ(t )





















z [1],(t )
z [2],(t )
v[1],(t )
v[2],(t )











+ εx . (129)

At first glance it may seem that this model is also nonlinear as there
are trigonometric functions in the state transition. This is not the
case because the measured∆θ is used as a constant and errors are
assumed to be independent of the state and∆θ and they are modeled
with a normal distributed noise term εx .

If the estimated footstep length is needed, it can be computed from
the estimate as

s = ||v || . (130)

The linear model cannot use a prior footstep length (other than 0)
without having a prior knowledge of the heading. On the other hand
the linear model does not need to have a prior mean for the head-
ing, unlike the nonlinear model (128) (if used with a KF extension).
The linear model cannot use the footstep length measurement and
remain linear because (130) is a nonlinear relationship between the
variables.

Because PDR measurements themselves cannot give an absolute
position, other measurements giving absolute positions are required
to complement the method. To get all the benefits of using linear
model, the location measurements should also be linear. Outdoors
Global Navigation Satellite System (GNSS) location estimates can be
approximated as normal distributed location estimates and indoors
WLAN measurements with normally distributed CAs can be used as
in Section 3.2. The use of PDR improves the positioning accuracy
and the location can be updated more often, because PDR is used at
every footstep while WLAN scans take longer.
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In [P5], the accuracy of the linear model (129) is compared with the
nonlinear model (128) with and without footstep length measure-
ments. The KF is used for the linear model and the Extended Kalman
Filter (EKF) for the nonlinear models. The tests show that the lin-
ear model’s accuracy is similar to the nonlinear model’s accuracy
when the initial state is known, but better when the initial state is
unknown. Thus, the use of an estimated footstep length or a prior
footstep length in nonlinear models is not a significant reason to use
the nonlinear models.

Due to the good performance of the linear model when the initial
location and heading are not known, it can be used also as an initial-
ization filter, for example, for Particle Filters (PFs) as is done in [53].
In [53], the KF using the linear model was compared with a PF that
used wall information and a nonlinear state model. The PF with wall
information reduced the mean error of KF from 4.8 m to 2.0 m, while
the PF without wall information had slightly worse accuracy than the
KF.

Figure 20 shows the routes estimated with the linear model (129)
and with the traditional nonlinear models (128) in a real-world test.
The traditional model with footstep length uses footstep lengths es-
timated from the time interval of footsteps. The nonlinear models
require a value for the mean of initial heading to be used. In this case,
an initial heading with a 100-degree error and a large variance was
used. For the linear model the initial step vector is a zero vector. The
initial location used is the location of the first WLAN measurement.
In this test case WLAN measurements do not provide accurate po-
sition estimates. The figure shows how the route computed using
the linear model has the best accuracy in the first wing of the route.
The nonlinear models find the correct walking direction slower, but
eventually achieve similar accuracy as the linear model.
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Figure 20: Filtered routes using different models in a real-world test
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4 Conclusions and future work

There is a lot of future study left in the current GMF. For
example, how to build a more efficient partitioning of the
state space in BGMF, how many components are enough
for some given accuracy, how to reduce the number of
components more efficiently, and how to select what
kind of filter to use and to make this selection adaptively.

Simo Ali-Löytty [2]

The quote is from Simo Ali-Löytty’s PhD thesis that was done in our
research group. This thesis offers answers to some of the questions
above. Before the work presented in this thesis the state-of-the-
art partitioning methods split the state space along the direction
estimated to be most nonlinear. The accuracy of the estimation of
the most nonlinear direction was similar to choosing from the main
axes the one that causes the most nonlinearity. The algorithms did
not estimate how much the nonlinearity is reduced in the split.

An improved algorithm for finding the direction of the maximum
nonlinearity was presented in [P2]. The algorithm finds the direction
of the maximum nonlinearity of the second order approximation of
the measurement function within the prior using an eigendecom-
position. The method was found to be more accurate in estimat-
ing the direction of the maximum nonlinearity than the algorithms
published before it. The splitting direction is used in an algorithm
called the Adaptive Splitting (AS) that also quantified the reduction
of nonlinearity in the component splitting when the Hessian of the
measurement function is assumed constant.

The Binomial Gaussian Mixture Filter (BinoGMF) [P7] extends the
use of the nonlinearity information so that the nonlinearity into
multiple directions is handled at once in the splitting. Also the quan-
tification of the nonlinearity reduction is used so that the number
of required components is minimized to achieve a desired level of
nonlinearity. Due to its convergence properties, the BinoGMF is well
suited for situations where the number of resulting components in
a single direction is high, and the AS is suited better in situations
where the Hessian of the measurement function varies a lot within
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the prior. The tests show that the splitting schemes presented in this
thesis achieve better posterior estimation than other methods.

An idea to consider in the future is the construction of a Gaussian
Mixture Filter (GMF) that merges the good sides of the BinoGMF and
the AS without increasing the computational burden too much. A
straightforward way would be to test for each resulting component
of a BinoGMF split if the nonlinearity is still high. This could be
possibly done in a computationally lighter way by either computing
the nonlinearity only for selected components or by employing the
regular structure of Binomial Gaussian Mixtures (BinoGMs). The
regular structure could also be exploited in the sigma point based
update to reduce computational load. The idea of taking the poste-
rior probability of the components into account [20] could also be
merged into the BinoGMF to avoid splitting components that have
only a small effect on the posterior.

The BinoGMF makes multidimensional measurement updates by
decorrelating the measurement vector first and then updating prior
one element of a decorrelated measurement at a time. The order of
processing the measurements is not specified and the decorrelation
matrix is not unique. The decorrelation matrix could be chosen so
that the nonlinearity of the first measurement element is minimized
and thus a minimal number of components is required for the first
update. The update reduces the component covariance and thus
may reduce the nonlinearity of the remaining measurements. If
the amount of nonlinearity is reduced also the need of splitting of
remaining elements of the measurement function is reduced.

The methods discussed in this thesis can be used to determine
whether a measurement function is highly nonlinear and to ex-
ploit that information in situations where noise terms are additive
and Gaussian. Extending these measures for non-additive and non-
Gaussian noise and generating a Gaussian Mixture (GM) model for
the noise, if necessary, would be an interesting topic for further re-
search and make the GMFs a competitor for the Particle Filters (PFs)
also in that kind of problems. This could employ a statistical ap-
proach, similar to that presented in [35], to compute the amount of
nonlinearity.
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When building mathematical models of real-world prob-
lems, it is crucial to aim for the simplest and most general
form that still enables one to draw conclusions about the
model’s real-world counterpart. Another important con-
cept is to consider a question and its answer separately,
for the question might be very simple even when the an-
swer is prohibitively complex or intractable to compute.

Niilo Sirola [69]

The quote above is from the conclusions of Niilo Sirola’s PhD thesis,
which was also made in our research group. My thesis continues
the work on the same problems. The use of linear models instead of
nonlinear models can be seen as using models that are further away
from the real-world counterpart, but it is easier to find out whether
the model contains an answer to a question and what is the answer.

Nonlinear models can be easier to construct than their linear counter-
parts and they may be superior in accuracy in some cases. However,
the existence of noise in real-world situations can make finding the
desired answers from the nonlinear models much more difficult than
finding the solutions in a noiseless environment. These difficulties
can make linear models with easily solved answers superior com-
pared to nonlinear models.

The proposed linear models consider indoor positioning problems.
They have unique solutions that are fast to compute. The linear mod-
els sacrifice some information for linearity, but combined with the
optimal algorithms they perform well in real-world situations. Be-
cause the solutions are fast to compute from the linear models, they
may be also used as initialization points for solvers using nonlinear
models.

The first proposed linear model was used for construction of a ra-
dio map autonomously with a Global Positioning System (GPS) and
Wireless Local Area Network (WLAN) equipped mobile phone or
other device. The linear model produced as good maps as the nonlin-
ear models under realistic noise conditions. In the second proposed
model, WLAN Coverage Areas (CAs) were modeled using multiple
linear-Gaussian models. The positioning accuracy was in the tests
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on a similar level as for the tested nonlinear models and the position
estimates were faster to compute from the linear model than from
the nonlinear models. In the third model a nonlinear state transition
model used in Pedestrian Dead Reckoning (PDR) was replaced with
a linear model. The linear model performed especially well when the
initial heading was unknown.

In WLAN based Simultaneous Localization and Mapping (SLAM)
algorithms sets of nonlinear equations are solved to build the map
of the environment [8, 21, 34]. In future it would be an interesting
task to develop a linear SLAM based on the work presented in the
sections 3.2 and 3.3 and investigate under which conditions it can be
used instead of the existing SLAM algorithms.
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Abstract—Timing Advance is used in TDMA (Time Division 

Multiple Access) systems, such as GSM and LTE, to 

synchronize the mobile phone to the cellular BS (Base Station). 

Mobile phone positioning can use TA measurements if BS 

positions are known, but in many cases BS positions are not in 

the public domain. In this work we study how to use a set of 

TA measurements taken by mobile phones at known positions 

to estimate the position of a BS. This paper describes two 

methods -- GMF (Gaussian Mixture Filter) and PMF (Point 

Mass Filter) for estimation of the BS position. Positioning 

performance is evaluated using simulated and real 

measurements. In suburban field tests, TA measurements 

suffice to determine BS position with an error comparable to 

the TA granularity (550m).  GMF computes BS position much 

faster than PMF and is only slightly less accurate. 

Keywords - Timing advance; Nonlinear filters; Mobile 

communication; Position measurement; Positioning; GSM;  

 

I.  INTRODUCTION 

Mobile phone positioning may be done, for example, 
using GNSS (Global Navigation Satellite System) or using 
information of cellular network. Many mobile phones have 
an integrated GNSS receiver and in most cases GNSS 
position estimate is more accurate than positioning based on 
the network information. However, many low-end mobile 
phones do not have integrated GNSS receiver. Even for 
GNSS-equipped phones, cell based positioning has some 
advantages to GNSS. First position fix in GNSS may take a 
while or may be impossible due to signal blocking. Also the 
cellular positioning accuracy is good enough for some 
applications, for example, local weather information. 
Benefits of cellular methods in these cases compared to 
GNSS methods are the much lower power consumption, 
faster initial position fix and better availability. 
When the serving cell's geographical coverage area is 

known, the position of a mobile phone may be estimated e.g. 
as the coverage area centroid. If the handset is connected to 
several networks or can hear several BSs (Base Stations) the 
position can be estimated by consideration of the overlapping 
coverage areas [1]. In addition to the cell identity other 
network parameters may be used in positioning e.g. received 
signal strength, TA (Timing Advance) in GSM (Global 
System for Mobile Communications), LTE (Long Term 
Evolution) and TD-SCDMA (Time Division Synchronous 
Code Division Multiple Access) networks, AoA (Angle of 

Arrival), TDOA (Time Difference of Arrival), among others. 
For a comprehensive study of these methods see [2]. 
If the handset has WLAN (Wireless Local Area 

Network) capabilities, the cell positioning may be done 
exploiting heard WLAN stations. WLAN BS has a 
significantly smaller range than GSM BS, and this leads to 
better positioning accuracy. Problems with WLAN cell 
positioning are the scarcity of WLANs in rural areas and the 
possibility that WLAN BSs may be mobile. Mapping of 
personal WLAN access points also raises privacy issues. 
TA can be used to estimate the distance of mobile phone 

to BS and these range measurements can be used for mobile 
phone positioning, either standalone or combined with other 
measurements such as cell id [3]. TA-based mobile phone 
positioning can be appropriate in rural settings where cells 
are large and for some reason GNSS is not available. 
However, for the method to work, it is necessary to know the 
BS locations, and this information is not always in the public 
domain. For this reason, there is interest in methods to 
determine locations of BSs. 
In this paper we show how BS position can be estimated 

from a set of TA measurements taken by GNSS-equipped 
mobile phones. In the next section the TA is presented. In 
Section III methods for BS position estimation are presented. 
Results are presented in Section IV and future work in 
Section V. Section VI concludes the article. 

II. TIMING ADVANCE 

TA is the RTT (Round Trip Time) from mobile phone to 
BS. It is specified in [4] and is used to minimize interference 
in TDMA (Time-Division Multiple Access) systems. When 
multiple mobile phones are sending on the same physical 
channel they need to know the right time to send so that data 
arrives to BS antenna on the right timeslot. The mobile 
phone and BS do initial synchronization on RACH (Random 
Access Channel) using zero timing advance. After this the 
BS tells the mobile phone how much transmission has to be 
advanced.  Granularity of TA is a GSM bit (48/13µs). TA is 
not always available in mobile phone e.g. when the radio link 
is in idle-state TA is not available. 
TA measurement may be transformed to a discrete 

distance measurement with granularity of ∆TA=c⋅24/13µs≈ 
550m. In LTE networks TA will have much finer granularity 
of 16/(15000⋅2048)s that corresponds to ≈78m in range [5, 
6], but because the LTE networks and devices are not 
currently widespread we here will concentrate on GSM TA. 



A. Ideal Model 

The discrete TA measurement presented above may be 
also written as 

 TA = floor
x
M −xBS

∆
TA

 

 
 
 

 

 
 
 ,                          (1) 

where x
M
 is the position of the mobile phone and x

BS
 is the 

BS position. In this paper we assume that x
M
 is known (it is 

computed using mobile phone GNSS). Based on this model 
we can write the likelihood of the ideal TA measurement 

 p(TA | x
BS
) =

1, 0≤ xM −xBS −TA∆TA<∆TA
0, otherwise

 
 
 

  
.    (2) 

B. Measurement Model from Real Data 

In practice the ideal model presented above does not hold 
because of errors. TA measurement may have different 
values at same distance from the BS or even on the same 
spot at different times. Some TA values measured in 
different locations and the position of the BS are shown in 
Fig. 1. 
In this paper we assume that the real measurement model 

(likelihood) is rotationally symmetric. Using this assumption 
it is enough to approximate from the real data one-

dimensional likelihood p(TA|r), where r=||x
M
−x

BS
||. Note that 

the ideal likelihood p(TA|r) (see (2)) is proportional to pdf 
(probability density function) of uniform distribution 

 Uniform TA∆TA , (TA +1)∆TA( ) ,                     (3) 

whose mean is (2TA∆TA+∆TA)/2 and variance is (∆TA)
2
/12.  

One option to approximate likelihood is to use following 
algorithm. First the n measurements are sorted in ascending 

 

Figure 1.  TA-measurements from one base station in different positions. 

The circles are based on the ideal model (2). 

order by the distance to the BS. The weight of each 
measurement is then set to 

w
i
=

kTA
i
d2 , i =1

kTA
i
(d

i+1 − d i−1) ,1 < i < n

2kTA
i
(d

i
− d

i−1) , i = n

 

 
 

 
 

, (4) 

where k
TA

i
are such that w

i
= 1

TA
i
= ta

∑  for all received TA 

values (ta) and di is the distance from a measurement to the 
BS. Now we can approximate, that 

 p(TA = ta | r)∝N
σ ta
2

µ ta (r),                         (5) 

where N
σ ta
2

µ ta (r) is pdf of the one-dimensional Gaussian 

distribution N(µ, σ2) 

 µ
ta
= w

i
d
i

TA
i
= ta

∑  and                           (6) 

 σ
ta

2 = w
i
(d

i
− µ

ta
)
2

TA i = ta

∑ .                      (7) 

We consider two different Gaussian models for TA 
measurement. In the first model (5) the mean and variance 
are fitted for each separate TA measurement value 
independently. In the second model we subtract ta∆TA from 

each distance and use just a single measurement model for 

all different TA values. In positioning the variance σ
ta

2
 is the 

same for all TA measurements and the means are 

 µ
ta
= µ

0
+ ta∆

TA
.                              (8) 

III. BASE STATION POSITION ESTIMATION 

In following sections two different methods for estimating 
BS position are presented. The first method is PMF (Point 
Mass Filter) [7, 8] that is a quite simple and converges to the 
exact posterior distribution as the number of computation 
points increases. The second method is GMF (Gaussian 
Mixture Filter) [9-12] that estimates the probability 
distribution using multiple Gaussians and is faster than PMF 
[13]. Both of these filters, PMF and GMF are Bayesian 
filters, whose aim is to compute posterior distribution of the 
BS position p(x

BS
|TA1:n), given all available TA 

measurements TA1:n={TA1,TA2,…,TAn}. We assume: 
• TA measurements are conditionally independent 

given the x
BS
 

• BS position is static 

• The initial prior distribution p x t
0

BS
| TA

1:0( ) =  
p x t

0

BS( )  is uniform 
• Local 2D coordinate system is used 
• First measurement is at the origin of the coordinate 

system 
• Each measurement position has zero error (i.e. 

position error has been incorporated into the TA 
measurement model) 



The posterior distribution can be computed recursively: 

Prediction: p x tk
BS
| TA

1:k−1( ) = p x tk−1
BS
| TA

1:k−1( )             (9) 
Update: p x tk

BS
| TA

1:k( )∝ p TAk | x tk

BS( )p x tk
BS
| TA

1:k−1( ) (10) 

A. Point Mass Filter 

PMF approximates posterior distributions using convex 
combinations of delta functions (point masses) 

 p(xBS | TA1:k ) = ω jδ (xBS −x j
PMF )

j=1

NPMF

∑ ,               (11) 

where points x
j

PMF

are deterministically set. Here ω
j
≥ 0 and 

ω i =j=1

N
PMF∑ 1 . In this paper points are chosen on an 

equispaced grid.  

B. Gaussian Mixture Filter 

GMF approximates posterior distributions using convex 
combinations of Gaussian distributions: 

 p(x
BS
| TA1:k ) = α jNP

j

µ
j

j=1

NGMF

∑ (x
BS
) ,           (12) 

where N
P
j

µ
j
(x
BS
) is pdf of 2D Gaussian distribution N(µ,P) . 

Hereα
j
≥ 0 and α i =j=1

N
GMF∑ 1. We use abbreviation 

 M(α j ,µ j ,P j )( j,NGMF )                       (13) 

to present the full GMF. Algorithm of general GMF is given 
below. 

 
 

A specific GMF for BS position estimation is explained next:  

1) Initialization of GMF: 
The initialization is done using the first TA measurement. 
The idea is to compute Gaussian mixture approximation of 
the posterior distribution at time t1. Because the initial prior 
distribution is uniform, we can compute Gaussian mixture 
approximation of the first likelihood function p(TA1|x

BS
). In 

this case we use 

 M(α j,1,µ j,1,P j,1)( j,NGMF,1 ),                 (14) 

where 

α j,1 =
1

NGMF,1

µ j,1 =Q j

x
BS
p(TA1 |A∫ x

BS
)dx

BS

p(TA1 |A∫ x
BS
)dx

BS
≈Q j

µ ta

0

 

 
 

 

 
 

P j,1 =Q j

(x
BS − µ j,1)(x

BS − µ j,1)
T
p(TA1 |A∫ x

BS
)dx

BS

p(TA1 |A∫ x
BS
)dx

BS
Q j
T

Q j =

cos
2πj

NGMF,1
sin

2πj

NGMF,1

−sin
2πj

NGMF,1
cos

2πj

NGMF,1

 

 

 
 
 
 

 

 

 
 
 
 

A = x
x1

x
≥ cos

π

NGMF,1

 

 
 

 

 
 

 
 
 

  

 
 
 

  
.

 

In our implementation the number of components used is 
NGMF,1 and P j,1 is computed numerically. 

2) Update: 
Here we convert likelihood to the range measurement 

model (for simplicity we suppress the subscript k) 

 µ ta j
= ! j (x

BS
) + v j = x

BS + x j
M + v j ,      (15) 

where v ~ N(0,σ ta j

2
) . Now the posterior approximation is 

 M(α j
+
,µ j

+
,Pj

+
)( j,N

GMF
+ )
,                     (16) 

where 

H j =

(µ j
− − xM)T

µ j
− − xM

, if µ j
− − xM ≠ 0

0 0[ ] ,otherwise

 

 
 

 
 

K j =
1

H jP j
−
H j
T
P j
−
H j
T

α j
+ ∝α j

−
e

−
(µ ta j −h j (µ j

−
))
2

2(H jP j
−
H j
T +σ ta j

2
)

 

 

 

Algorithm 1 Gaussian Mixture Filter 
 

Initialization of GMF at time t1 (Sec. III-B1): 

M(α j,1,µ j,1,P j,1)( j,NGMF,1 ) 

for k = 2 to n do 

1. Prediction: 

M(α j,k
−
,µ j,k

−
,Pj,k

−
)( j,N

GMF
−
,k
) :=

M(α j,k−1,µ j,k−1,Pj,k -1)( j,N
GMF

−
,k-1
)

 

2. Update: Compute posterior approximation 

using a bank of EKFs (Sec. III-B2)  

M(α j,k
+
,µ j,k

+
,Pj,k

+
)( j,N

GMF
+
,k
) 

3. Reduce the number of components: (Sec. 

III-B3) 

M(α j,k ,µ j,k ,Pj,k )( j,N
GMF ,k

) 

endfor 



µ j
+ = µ j

− +K j (µ ta j
− h j (µ j

−
))

P j
+ = (I - K jH j )P j

−
.

 

 
After the above computations are done for each component, 

the weights are normalized so that α j
+ =

j=1

N
GMF+∑ 1 . 

3) Reduce the Number of Components: 
Components are reduced using two different methods 

[11, 14, 15]. In the first method, components having a weight 

α j
+
 less than some threshold are simply dropped and the 

weights of the other components are renormalized. In the 
second method components are merged, if they are close to 

each other i.e. µ i
+
� µ j

+
<θ , where θ  is the component 

merge distance. The parameters for the new merged 
component may be written as follows 

µ l =
α i
+µ i

+ +α j
+µ j

+

α i
+ +α j

+
                    (17) 

Pl =
�
i

+

�
i

+ +� j
+
P
i

+ + (µ
i

+
− µ l )(µ i

+
− µ l )

T[ ] +

� j
+

� i
+ +� j

+
P j
+ + (µ j

+
− µ l )(µ j

+
− µ l )

T[ ]
       (18) 

α l =α i
+
+α j

+   (19) 

IV. RESULTS 

A. Model Fitting 

In Fig. 2 the cumulative probability distributions of the 
measurements shown in Fig. 1 are plotted. Compared to the 
ideal model the TA measurements are clearly 

 

Figure 2.  Fitted CDF functions. Solid line is the Gaussian fit with separate 

mean and variance for each TA, dashed line is a single model fit, dotted 

line is the original cumulative density function and vertical dashed lines 
present the limits of the ideal model 

expanded to larger areas and have means close to upper limit 
of the ideal model.  

B. BS Positioning 

BS positioning is done using the PMF and GMF. The 

component merge distance is θ=100m and the component 

discard value is 10
-6
. 

1) Simulated Results: 
In simulations 20-100 TA measurements are simulated 

using likelihood 

 p(TA | x
BS
) =

1,0≤ xM −xBS −TA∆TA�∆TA

e

−

x
M −xBS −

TA∆
TA

2

2∆
TA
ta

,otherwise

 

 

 
 
 

 

 
 
 

,     (20) 

where �
TA

ta
≥ ∆

TA
is a width parameter that expands some 

TA measurements more than others. Exponential tails are 
also used to model measurement errors. 
Measurement models for GMF are fitted using 1000 

samples generated using random measurement positions and 
the likelihood above. The ideal model uses the mean and 
variance of (3). Single model is done using (8) and multiple 
models are computed with (6) and (7).  
Table I presents the simulation results. The reference 

solution is computed using PMF with the optimal model and 
90000 points ( 300× 300  grid).  

TABLE I.  SIMULATED BS POSITIONING RESULTS 

 

Filter 
Mean 

error [m] 
Mean reference 

error [m] 

Ideal model GMF 442 414 
Single model GMF 349 322 

Multiple model GMF 160 84 
PMF 141 0 

2) Real BS Positioning 
The real measurements were collected in a suburban area 

using a Nokia mobile phone that was calling all the time to 
get the TA measurements. 
In Fig. 3 the grid filter and GMF are compared. The 

probability distribution of estimated BS position is shown in 
red. The blue triangle is the true BS position.  In this case the 

likelihood given in (20) is used with ∆
TA

ta
= 550m for all TA 

measurement values and the GMF measurement model 
means were the ideal means but variance 4 times bigger. 
Fitted models are not used in this case to prevent filters from 
having any extra information of the BS position.  

V. FUTURE WORK 

In future the effect of base station position in user 
positioning should be evaluated. The effect of using TA 
measurement should be compared to cell model positioning 
without TA measurement.  
More measurements from different BSs would be needed 

to make a good model of real TA measurements and use that



 

 

Figure 3.  PMF (top) and GMF (bottom) distributions after 1, 10 and 30 real measurements

model in BS positioning case that is independent of the 
modeling case.  Also a measurement model should cover all 
63 TA values –we measured only 5 values. A measurement 
campaign should be done in rural environment to get 
measurements with higher TA values.   
Other things to do in future might be to account for the 

fact that most of cells are not round but more like sectors and 
to investigate the error models further. 

VI. CONCLUSIONS 

This paper showed that the BS position may be solved 
using TA measurements from known locations. Simulated 
results show that the accuracy of GMF is close to ideal when 
the measurement errors are well modeled. On other hand the 
real measurement case showed that even with a crude model 
the BS position may be estimated with accuracy close to the 
granularity of TA measurements. 
One problem with TA measurements is that they are not 

available when the radio link is in idle state. To avoid this 
phone may open a data connection before the positioning. 
Another issue is that the UMTS (Universal Mobile 
Telecommunications System) networks using WCDMA 
(Wideband Code Division Multiple Access) measure RTT, 
but the network does not provide RTT to mobile phone. So 
this feature can be used only on the network side. 
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An Adaptive Derivative Free Method for Bayesian
Posterior Approximation

Matti Raitoharju*, Simo Ali-Löytty

Abstract—In the Gaussian mixture approach a Bayesian pos-
terior probability distribution function is approximated using
a weighted sum of Gaussians. This work presents a novel
method for generating a Gaussian mixture by splitting the prior
taking the direction of maximum nonlinearity into account. The
proposed method is computationally feasible and does not require
analytical differentiation. Tests show that the method approxi-
mates the posterior better with fewer Gaussian components than
existing methods.

I. I NTRODUCTION

I N Bayes’ theorem ann-dimensional state vectorx is
estimated by updating its prior distribution using given

measurements. The posterior distribution given measurement
y is

p(x|y) =
p(y|x)p(x)

p(y)
, (1)

where p(x) is the prior probability density function (pdf)
of the state,p(y) is a normalizing constant,p(y|x) is the
measurement likelihood andp(x|y) is the posterior pdf. In
general the update cannot be done analytically.

In this paper the prior is assumed to be a Gaussian and the
measurementy to be a scalar that may be written in the form

y = h(x) + ε, (2)

whereh(x) is the measurement function andε is the measure-
ment error, assumed to be zero mean Gaussian independent of
the prior.

If the measurement function is linear, i.e.h(x) may be
written asJx, the posterior can be computed with the Kalman
update [1]

z = h(x) S = JPJT + R

C = PJT K = CS−1

x+ = x + K (y − z) P+ = P − KSKT

, (3)

wherex andx+ are the prior and posterior means,P andP+

are the prior and posterior covariances andR is the variance
of the measurement error. In this paper we assume thatP and
R are nonsingular.

If the measurement model is not linear the above update
cannot be used directly. For nonlinear cases one of the simplest
update methods is to compute the Jacobian of the measurement
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However, permission to use this material for any other purposes must be
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function in the prior mean and use it asJ in the Kalman
update (3). This is used in the Extended Kalman Filter (EKF)
[2, p. 278]. This requires analytical differentiation ofh(x),
which can be difficult or impossible to perform, also the
approximation may be poor if the JacobianJ varies a lot in
a small area around the prior mean.

The Unscented Kalman Filter (UKF) is an alternative to
EKF that does not require analytical differentiation. The UKF
update is based on the evaluation of the measurement function
at the so called sigma points. The computation of the sigma
points require the computation of a matrix square root of the
covariance matrix

P = LLT (4)

using, for example, Cholesky decomposition. The extended
symmetric sigma point set is

χ0 = x

χi = x + ∆i, 1 ≤ i ≤ n (5)

χi = x − ∆i−n, n < i ≤ 2n,

where∆i =
√

n + ξL:,i (L:,i is the ith column of L) and ξ

is an algorithm parameter. The prior is updated by using the
following approximations in the Kalman update (3)

z ≈
∑

Ωi,mh(χi)

S ≈R +
∑

Ωi,c (h(χi) − z) (h(χi) − z)T (6)

C ≈
∑

Ωi,c (χi − x) (h(χi) − z)
T

,

whereΩ0,m = ξ
n+ξ

, Ω0,c = ξ
n+ξ

+(1−α2
UKF +βUKF), Ωi,c =

Ωi,m = 1

2n+2ξ
, (i > 0) and ξ = α2

UKF(n + κUKF) − n. The
variables with subscript UKF are algorithm parameters [3],
[4]. Although the UKF update evaluates the measurement in
several points, the posterior distribution is approximated with
a single Gaussian. In many cases a single Gaussian is not
enough to give a good approximation of the posterior.

Gaussian mixture filters use a weighted sum of Gaussian
components to approximate the pdfs [5],

p(•) =
∑

wkpN(•|xk, Pk), (7)

wherewk is the component weight andpN(•|xk, Pk) is a pdf
of normal distribution with meanxk and covariancePk. This
allows better approximation of the posterior especially when
the true posterior is multimodal. The update of any single
component may be done using the EKF or UKF formula and
the weight of a component is multiplied by the innovation
likelihood

w+

k ∝ wkpN (y|zk, Sk), (8)
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and normalized so that the sum of weights is one.
Although this paper concentrates only on a single update

the proposed method is intended to be part of a GMF that
does the estimation of a time series. Usually GMFs do not
have a constant number of components and a critical issue is
to keep the number of components low while still estimating
the distributions well.

In algorithms found in the literature the splitting of the prior
component in case of nonlinearity into components depends
only on the prior distribution. Examples of this kind of GMFs
are Sigma Point GMF (SPGMF) [6], Box GMF (BGMF)
[7] and Split and Merge Unscented GMF [8]. The first two
algorithms require analytical differentiation of the measure-
ment equation and the third uses a simple numerical method
for testing if the measurement equation is nonlinear. In this
work we propose a new method for prior component splitting
that evaluates nonlinearity without the need for analytical
differentiation and does the component splitting by taking
into account both the prior distribution and the measurement
function. In contrast to the methods found in the literaturethe
proposed method does not add components in linear directions.

In the next section a measure of nonlinearity and a formula
for its estimation is discussed. Then the splitting of prior
according to nonlinearity is presented. In Section IV we show
test results of performance of the proposed method compared
to existing methods. The paper is concluded in Section V.

II. M EASURING NONLINEARITY

A second order Taylor series expansion of a scalar function
with a single vector parameter may be written as

h(x + ∆) = h(x) + J∆ +
1

2
∆T H∆ + ε(∆), (9)

whereH is the Hessian andε(∆) is the error caused by the
higher order components of the measurement equation. If the
quadratic term1

2
∆T H∆ and the higher order termε(∆) are

zero then the Kalman update (3) may be used directly. If the
quadratic and higher order terms are small the EKF and UKF
approximations should work well.

In GMF it is necessary to evaluate whether the nonlinearity
is large or small. In [6], it is proposed that a measurement
should be considered highly nonlinear if

tr PHPH > R. (10)

This criterion comes from the comparison of the EKF and the
Second Order Gaussian filter [2, pp. 345-349], [9, p. 385]. The
term tr PHPH is called nonlinearity in this paper.

Next we propose a numerical method for computing the
term PH . In this derivation the higher order termε(∆) is
assumed negligible and the matrixL in (4) is computed using
Cholesky decomposition ofP . We define matrixQ as

Qi,j =







h(x + ∆i) + h(x − ∆i) − 2h(x) , i = j
1

2
[h(x + ∆i + ∆j) + h(x − ∆i − ∆j)−
2h(x) − Qi,i − Qj,j ] , i 6= j

(11)
where∆i = γL:,i. If γ is chosen asγ =

√
n + ξ then the

computed values of the measurement equation in (11) may
also be used in the UKF component update (6).

Using (9) with (11) we get

Qi,i =h(x) + J∆i +
∆T

i H∆i

2
+ h(x) − J∆i

+
(−∆i)

T H(−∆i)

2
− 2h(x) = ∆T

i H∆i (12)

and

Qi,j =
1

2
[(∆i + ∆j)

T H(∆i + ∆j) − ∆T
i H∆i − ∆T

j H∆j ]

=∆T
j H∆i = ∆T

i H∆j , H is symmetric. (13)

Thus matrixQ may be written in matrix form

Q = γLT HγL, (14)

which implies that matrixPH may be computed by

PH =
1

γ2
γLLTHγLL−1 =

1

γ2
LQL−1. (15)

The computation of the nonlinearity value (10) does not need
the inverse ofL, because

tr PHPH = tr
1

γ2
LQL−1 1

γ2
LQL−1 =

∑

i,j Q2
i,j

γ4
. (16)

III. SPLITTING THE PRIOR

In this section we propose a novel method for choosing the
components of the Gaussian mixture formed from a Gaussian
prior by finding the direction of the maximum nonlinearity.
If the measurement is nonlinear according to criterion (10)
within a Gaussian component, the component is split into a
mixture of two Gaussians that preserves the mean and the
covariance of the original component. If the nonlinearity is
high in resulting components the split is done recursively for
the nonlinear components. The recursive splitting helps totake
higher order nonlinearities of the measurement equation into
account.

The split vectora is chosen from a set of vectors that have
the same probability density

p(a) =
1√

2π detP
e−

1

2
aT P−1a = constant (17)

that maximizes the absolute value of quadratic term in (9).
This may be written as

argmax
a

|aT Ha|, subject toaT P−1a = β, (18)

where β is a positive algorithm parameter. Using Lagrange
multipliers we see that critical points of the optimization
problem are vectors that satisfy the constraint and

2Ha = 2λP−1a ⇔ PHa = λa. (19)

Thus, the critical points are eigenvectors ofPH that are scaled
to satisfyaT P−1a = β. Using (19) with (18) we have

arg max
a

|aT Ha| = arg max
a

|aT λP−1a| = arg max
a

|λβ|,
(20)

from which it is seen that an eigenvectora corresponding
to the eigenvalue having the largest absolute value is in the
direction of maximum nonlinearity.
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Equation (14) may be rewritten

1

γ2
Q = LT HL. (21)

Because matrixLT HL is real and symmetric its eigenvalues
are real and eigenvectors may be chosen orthonormal. Now
the eigenvalue decomposition ofLT HL is

LT HLV = V Λ, (22)

where matrixV is orthonormal having the eigenvectors as its
columns; the diagonal elements of the diagonal matrixΛ are
the corresponding eigenvalues. Multiplying the above equation
from the left byL we have

LLT HLV = LV Λ ⇔ (PH)LV = LV Λ, (23)

from which we see that matricesPH and LT HL = 1

γ2 Q

have the same eigenvalues and that an eigenvector of1

γ2 Q

multiplied from the left byL is an eigenvector ofPH . Now
the split vector may be written as

a =
√

βLV ei, (24)

where ei is the ith column of the identity matrix andi is
the index of to the largest eigenvalue in magnitude. The
parameters of a two component mixture that preserves the
mean and covariance of the prior may be written

x̃+ = x + a x̃
−

= x − a

P̃ = P − aaT w̃ = 1

2
w

, (25)

where w is the weight of the original component and the
parameters marked with̃ are parameters of the new split
components [8]. To ensure that the covariance matrix stays
positive definite we have to ensure thatqT P̃ q > 0 for any
q 6= 0, that is,

qT P̃ q = qT (P − aaT )q = qT LLT q − βqT LV eie
T
i V T LT q

= ||LT q||2 − β cos2 θ||LT q||2||V ei||2 ≥ ||LT q||2(1 − β), (26)

whereθ is the angle betweenLT q andV ei. Thusβ must be
chosen from the range[0, 1[.

Because of the trace properties it holds thattrPHPH =
∑

λ2. The reduction of nonlinearity may be evaluated by
looking at the change of the eigenvalues in the resulting
component, assuming that the HessianH does not change.
Because

P̃HLV =
(

P −
√

βLV ei(
√

βLV ei)
T
)

HLV

=
(

LLT − βLV eie
T
i V T LT

)

HLV

=
(

L − βLV eie
T
i V T

)

LT HLV (27)

=
(

L − βLV eie
T
i V T

)

V Λ

= LV
(

Λ − λiβeie
T
i

)

.

it follows that the new matrix̃PH has the same eigenvectors as
the original matrixPH and only theith eigenvalue is changed,
from λi to (1 − β)λi. Thus the nonlinearity is reduced by
(2β − β2)λ2

i .
In Figure 1 the effect of parameterβ on the resulting

components is presented. The original Gaussian represented
by the dashed contour line is horizontally split into two new

β=0.25 β=0.5 β=0.75 β=1

Fig. 1. Effect ofβ on resulting components of splitting

components. Usingβ close to 1, the nonlinearity decreases
fast in splits, but the resulting approximation may be bad. On
other hand using a small value ofβ reduces the nonlinearity
more slowly. In our tests in Section IV we usedβ = 0.5 as a
compromise that gave good results in our test scenario.

If the measurement is not scalar the splitting could be done
for each measurement component separately. Further if the
measurements are independent then the update may be done
separately for each measurement component.

IV. RESULTS

Evaluation of the performance is done by comparing the
posterior distributions computed by several methods. The
proposed method is called adaptive splitting (AS) where
the prior is split until none of the mixture components is
considered highly nonlinear according to criterion (10). The
method is also tested in a variant where at most one split
is allowed (AS2). Other methods in comparison are single
component UKF, SPGMF [6] with parametersτSPGMF = 0.5
and κSPGMF = 4 and BGMF [7], with N = 1 and cΣ = 1.
SPGMF and BGMF use analytic computation of nonlinearity
to decide whether the prior shall be split. All tested methods
use UKF update (6) withαUKF = 10−3, κUKF = 0 and
βUKF = 2 [4]. The reference solution is computed using a
dense grid where the probability density function is evaluated
in each point using Bayes’ update formula (1).

Our simulation scenario was a two dimensional positioning
case. The measurement function used in simulations was a
range measurement from the origin,

h(x) = ||x|| + ε, (28)

whereε is a zero mean Gaussian error term with varianceR.
In the simulations the range measurement had mean chosen

randomly from a uniform distribution in[0, 10] and a unit
variance. The prior mean was uniformly distributed with both
dimensions in range[0, 10] and covariance matrix had all 10 on
diagonal and non diagonal elements were uniformly randomly
chosen from the range[−10, 10]. The split distance parameter
β used in simulations was set to0.5 i.e. the eigenvalue ofPH

in the split direction was halved in each split.
An example of a test is presented in Figure 2, where a

single 2D range measurement is applied to a Gaussian prior.
When comparing visually the true posterior and the different
posterior approximations it is seen that the single Gaussian of
UKF approximation is not enough in this case and that the
proposed method (AS) produces estimates at least as good as
the other methods.

In Table I are mean results from 10000 simulation runs.
”Time” is the relative time of the method compared to UKF.
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Prior Measurement likelihood True posterior UKF posterior

SPGMF posterior BGMF posterior AS posterior AS2 posterior

Fig. 2. Exemplary prior and posterior approximations in case of one range measurement. Pdfs are presented with contour maps and the component means
are shown as dots.

TABLE I
COMPARISON OF DIFFERENT POSTERIOR APPROXIMATION METHODS

Method Time K-L divergence Components
UKF 1.0 0.74 1

SPGMF 2.9 0.50 3.8
BGMF 12.5 0.47 6.6

AS 4.9 0.39 2.6
AS2 2.4 0.47 1.7

”K-L divergence” (Kullback-Leibler divergence [10]) is de-
fined as

DKL (p||q) =

∫

p(x) log
p(x)

q(x)
, (29)

where p(x) is the reference pdf andq(x) is the pdf of the
Gaussian mixture approximation. ”Components” is the number
of components in the posterior approximations.

Results show that the proposed method produces a posterior
that is clearly closer to the true posterior than UKF, SPGMF
or BGMF, and that performs at least as well as the other
methods even when the maximum number of components is
limited to two. This is a clear indication that the measurement
nonlinearity should be taken into account in splitting. Thetest
for nonlinearity (10) gave same result in all 10000 cases for
the analytical and numerical methods.

If the state would include more dimensions, for example,
the 2D velocity, the number of components of SPGMF and
BGMF would have increased from 5 to 9 and from 9 to 81 re-
spectively, whereas AS would not have any more components.
Although the SPGMF and BGMF could be programmed in a
such way that they do not do splitting in linear dimensions,
this would require manual work to customize the algorithms.

V. CONCLUSION

In this paper it was shown that the nonlinearity of a
measurement may be estimated numerically and that if the
prior is split in the direction of the maximum nonlinearity

the posterior approximation may be done accurately with a
relatively small number of components. The proposed method
produces better results with a smaller number of components
than existing methods and may be used when the measurement
equation is hard or even impossible to differentiate.
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Abstract—This paper presents five methods for generation

of WLAN maps for indoor positioning using crowdsourced

fingerprints. A fingerprint is assumed to contain identifiers of

WLAN access points, received signal strength values and, if the

fingerprint is collected outdoors, a GPS position. The proposed

methods use the fingerprints’ information to generate a WLAN

map that contains estimated access point locations. Two of

the proposed methods use RSS values in access point location

estimation. In our evaluation with simulations and with real data,

the Access Point Least Squares method, which does not use RSS

information, is the fastest and its accuracy is as good as more

complex methods that use RSS information.

I. INTRODUCTION

WLAN (Wireless Local Area Network) is the most com-
monly used method for enabling wireless network connections
in mobile devices. The coverage area of a single WLAN AP
(access point) is on the order of tens of meters. Although
WLAN was not designed for positioning purposes, the abun-
dance of APs and the prevalence of WLAN receivers in mobile
devices makes positioning using WLAN an alternative to GPS
(Global Positioning System), especially for positioning indoors
(airports, malls etc.) where GPS is often unusable.

Most of proposed WLAN positioning systems belong to
either of following two categories

1) Fingerprinting methods: In fingerprinting the area of
interest is mapped by identifying which WLAN stations
can be received and their signal strengths in known
positions; each such measurement is called a fingerprint
(FP). A mobile device’s position can then be computed
by comparing its received WLAN signals with those in
database. A survey of different fingerprinting methods
is done in [1].

2) Network topology modeling methods: In these methods
the measured FPs are processed to estimate parameters
of the network, for example coverage areas, AP positions
and signal attenuation models. An example of a coverage
area method is presented in [2].

The large scale collection of fingerprints may be done in
massive and expensive data collection campaigns. An alterna-
tive is for measurements to be collected by normal users with

their own equipment. This method is called crowdsourcing.
Crowdsourcing should require as little as possible user inter-
action and the data sent in by users may have a lot of errors.
The WLAN scans may be done automatically and GPS may
be used for receiving absolute position outdoors, but indoors
there usually is not position information available.

In this paper we study methods to generate WLAN maps
that contain estimated positions for WLAN APs for position-
ing using fingerprints collected with GPS enabled devices.
A FP is assumed to contain unique identifiers for WLAN
APs that are received, possibly received signal strength (RSS)
values and GPS positions when the measurements are done
outdoors. Figure 1 shows an example of a situation where
FPs contain a list of received APs located inside the square
building, and only the FPs outside the building have location
information. The goal of our methods is to estimate the AP
locations. The methods are developed considering that they
should be applicable to a building meaning that they can
handle some hundreds of APs simultaneously. This does not
restrict the applicability of the presented methods on global
scale as GPS is available between buildings and the mapping
may be then divided into building scale subproblems.

Figure 1. APs, located FPs and unlocated FPs in and around a square building



The problem is similar to localization of sensors in sensor
networks. These methods are covered for example in [3].
The main difference to sensor localization methods is that in
addition to AP locations we have significant numbers of FPs
that do not have location information and are not interesting
for us. Most of evaluated methods are designed to be such
that the distribution of FPs should not affect results e.g. in
buildings where there are more and less used areas.

The rest of the article is organized as follows. In Section II
the different sources of measurements (input data of algo-
rithms) are presented. In Section III the different algorithms
for doing AP positioning are presented. A simple positioning
method that uses AP locations is presented in Section IV.
In Section V the performance of algorithms in AP and user
positioning is evaluated and Section VI concludes the article.

II. MEASUREMENTS

In the following sub sections the used measurement sources
are presented. The measurements are related to WLAN and
GPS systems, which both are available in modern smart-
phones.

A. Absolute Position

Absolute position is assumed to be received using GPS. GPS
receivers provide position estimates with error of a couple of
meters in good signal conditions. In this paper we assume that
when the GPS position is available it is exact. In real situations
the GPS may have hundreds of meters of error, especially close
to buildings where only a few GPS signals are available. For
real use of the proposed methods we assume that the quality
of GPS is monitored and that bad GPS positions have been
discarded.

B. Connectivity

Connectivity is determined by checking which APs are
received at FPs. Any APs that are received simultaneously
have overlapping coverage areas.

C. Received Signal Strength

RSS (received signal strength) measurements are commonly
used to do localization. RSS measurements can be converted
to range measurements using a simple path loss model [4]

RSS = RSS0 + 10α log10 ||r − x||+ ε, (1)

where RSS0 is the signal strength at range of 1 m from the
AP, α is the attenuation factor, r is the receiver position, x the
AP location and ε is the measurement error. In vacuum the
value of α is 2, but in realistic situations it should be more.
The distance to AP can be explicitly solved from (1) and is

||r − x|| = 10
RSS−RSS0

10α . (2)

III. AP POSITIONING ALGORITHMS

The goal of AP positioning algorithms is to produce a
map of APs using FPs some of which do not have position
information. In our case we assume that the measurement
come in as a batch and may be treated simultaneously.

A. Mean

In the mean algorithm the position estimate of AP is
computed by taking the mean of the FP positions where AP
was received. If a FP does not have GPS information the
position is the mean of the estimates of the received APs.
Because the update is done one FP at a time the outcome of
algorithm is dependent on the order of FPs.

The update of a position of a AP location may be expressed
as follows

xi,t =
(t− 1)xi,t−1 + rt

t
, (3)

where xi,t is the position estimate of an AP when t measure-
ments have been processed. The position is

rt =

{

rGPS , if GPS available
∑

j∈FP

x
t−1
j

m
, if GPS not available

, (4)

where m is the number of APs that were in FP and already
had an estimated position. The position is not computed and
t is not updated if there is no GPS measurement or position
estimate for any AP in the FP. The Mean algorithm is simple
to implement and has fast runtime and as such it may be
considered to be a baseline method that other algorithms
should outperform in accuracy.

B. Gauss-Newton

The Gauss-Newton (GN) method is named after the Gauss-
Newton optimization algorithm [5]. In GN method we use all
the data to solve the AP positions and in addition to AP posi-
tions the actual FP positions are solved as a side product. The
model uses distances between FP and AP locations as given by
(2). The optimization goal is to find such locations to FPs and
APs that their distances are as close as possible to distances
computed by RSS values. This is done by minimizing the sum

∑

i,j

(

10
RSSi,j−RSS0

10α − ||xi − rj ||
)2

, (5)

where RSSi,j is the received signal strength of ith AP in
jth FP. The minimization is done using the Gauss-Newton
algorithm.

In Gauss-Newton optimization the sum of squares is mini-
mized iteratively by taking following steps

ẑi = ẑi−1 + βJẑi−1
\(y − h(ẑi−1)), (6)

where Jẑi−1
is the Jacobian of the measurement function

h(ẑi−1) and β is a positive scalar. The \ operator is used
as it is in Matlab i.e. if Jẑi−1

is fully determined it solves the



system of linear equations, if it is overdetermined the result
is the least squares solution and if it is underdetermined it
returns one of the solutions. The vector ẑ contains all AP and
FP location estimates concatenated and the vector y contains
all distances computed with (2) and the measurement function
has all the corresponding distances as functions of FP and AP
locations

||xi − rj || . (7)

The GN requires an initial value ẑ0 for AP and FP positions
and may converge to different local minima depending on the
initial value.

The part of the Jacobian corresponding to FP and AP parts
are

JFP
j =

(rj − xi)
T

||rj − xi||
(8)

JAP
i = −

(rj − xi)
T

||rj − xi||
. (9)

When the FP has a GPS position, the rj is fixed and the
Jacobian does not contain elements corresponding to this
variable and if ||rj − xi|| = 0 the corresponding Jacobian
element is assigned the value 0.

The parameter β is chosen at each iteration to ensure
that the sum of squares of y − h(ẑi−1) decreases. In our
implementation it is set to one at the beginning of each
iteration and halved until a value is found such that the
objective function decreases. We stop the iteration when all
corrections ‖xi,t − xi,t−1‖ are smaller than a predetermined
threshold.

C. Gauss-Newton Max Range

The Gauss-Newton max range (GNMax) method is based on
the same iterative optimization method as the GN method, but
the model is different. Whereas in Gauss-Newton the positions
of unlocated FPs are estimated and the number of equations
grows, as the number of FPs grows. In GNMax the number
of equations is limited to be the number of AP connections.
If two APs are received at once, then the distance between
APs is less than or equal to the sum of distances from the FP
location to both APs. This may be expressed with the triangle
inequality

||xi − xk|| = ||(xi − rj) + (rj − xk)||

≤ ||xi − rj ||+ ||rj − xk|| .
(10)

While the GN tries to find such APs and FPs that the distances
between those match as well as possible to measurement
values, the GNMax finds such locations of APs that they are
not too far away from each other.

If the FP and the APs are collinear then (10) is an equality. If
there are more than one FPs where we receive same APs then
the measurement used is the one where the sum of distances

computed with RSS values is smallest. In the optimization
phase we discard distances where estimates of APs are closer
to each other than the measurement indicates. This way the
estimation uses only the RSS measurements only to limit
the maximum distance between APs. The optimization of
measurements is done as in GN, but if two APs is current
estimate are closer than the sum of distances, the measurement
is neglected. The Jacobian between two APs are

JAP
k =

(xk − xi)
T

||xk − xi||
(11)

JAP
i = −

(xk − xi)
T

||xk − xi||
, (12)

if
||xk − xi|| > 10

RSSi,j−RSS0

10α + 10
RSSk,j−RSS0

10α (13)

otherwise the distance is not used in update (6).
The GPS measurements are taken into account by using

up to three FPs with location information. If there are more
than three FPs for an AP with GPS positions we choose three
points from the convex hull of the points that produce the
largest triangle. This should produce a good geometry for
measurements.

D. Access Point Least Squares

Access Point Least Squares (APLS) method may be thought
as a spring model, where two APs that are received simul-
taneously or a AP and a GPS location have a spring pulling
them together. The model behind the method is explained more
mathematically next.

If a device at r receives signals from two WLAN APs it is
located inside of the intersection of the coverage areas. This
may be written as

r = x̂i,j + εi,j , (14)

where x̂i,j = x̂j,i is the ”center” of the intersection area and
εi,j = εj,i is the position displacement from the center. The
center of the intersection may be written using translation
vectors vi,j and vj,i that represent the relative positions of the
intersections compared to APs positions. The variables used
in APLS are presented in Figure 2. By doing the following
subtraction, the FP location is eliminated

r =x̂i,j + εi,j = xi + vi,j + εi,j = xj + vj,i + εj,i (15)

⇒ 0 =xi − xj + vi,j − vj,i. (16)

If the translation vectors are independent random variables
then the variance of difference is

var(vi,j − vj,i) = var(vi,j) + var(vj,i). (17)

If we consider only pairwise relationships between the
positions of the APs, the AP locations may be estimated by
finding a least squares solution for the following equations:

xi − xj = 0, for all i and j connected

xi = ri, for all i with GPS positions, (18)



Figure 2. Variables used in APLS

where ri is the mean of GPS positions of FPs that has ith AP.

These equations may be written in matrix form
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, (19)

where D contains all the differences and G all the GPS
measurements. To find the least squares solution to this set
of equations assume that the equations are linearly indepen-
dent and let WD denote the diagonal matrix containing the
reciprocals of variance of AP location differences 1

σ2
i,j

on the
diagonal and similarly WG containing the reciprocals of GPS
variances. The weighted least squares solution is now


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xT
1

...
xT
n
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


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[

DT GT
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· . . .

. . .
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Figure 3. Effect of θ to AP positioning. Left θ too small, center θ too big
and right optimal θ

Because of the structure of the matrices, the terms of this
equation may be written as

DTWDD = A

=
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n
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j=2
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n
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j=1,j 6=2

ξ̃(2, j) . . .

...
. . .

. . .
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n−1
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ξ̃(n, j)














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
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


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(21)

,where

ξ̃(i, j) =

{

0, if i and j have never been received at once
1

σ2
i,j

, if i and j have been received at once

(22)

and

GTWGG = B = diag(φ1, . . . , φn),where (23)

φi =

{

1
σ2
i,gps

, if any FP has GPS position

0, otherwise
(24)

GT







rT1
...
rTk






= ỹ =







φ1r
T
1

...
φnr

T
k






(25)

The solution is now simply







xT
1

...
xT
n






= (A + B)

−1
ỹ. (26)

In APLS all the variances between APs are set to be
equal. We found that the AP positioning gives best results
when the GPS weight 1/σ2

i,gps is set to be θAi,i, where θ

is a scalar parameter. In Figure 3 the different weighting
schemes are evaluated. Dots represent the AP positions, stars
are GPS positions and circles are estimated AP positions. In
leftmost the weight between GPS measurement and APs is
low. In center the GPS weight is infinite and on right an
optimal weight is used. The optimal value of θ is discussed
in Section V.



E. Variance Access Point Least Squares

Variance APLS (VARAPLS) takes the RSS values between
APs into account when computing the variances, as follows

σ2
i,j = (min ||r − xj ||+ ||r − xi||)

2
. (27)

IV. USER POSITIONING

As the ultimate goal of the research is to position user and
not the AP we need to evaluate AP positioning algorithms in
user positioning. For user positioning we compute the mean
of the five strongest APs received

r =

∑

i∈five strongest xi

5
. (28)

This method is used as it uses only AP locations and in results
section we show that if the AP positions are correctly located
it provides rather good positioning performance.

V. RESULTS

First we look at finding the optimal θ for APLS and
VARAPLS. We varied the parameter value and did positioning
tests similar to one in Figure 3. In Figure 4 the effect of θ on
AP localization is presented. Optimal values were found to be
1.63 for APLS and 1.58 for VARAPLS.

In Figure 5 is shown the effect of different parameters
to runtime and accuracy of the methods in a simulated
environment. In simulations AP:s were randomized inside a
box of area 100 m × 100 m. The FPs were randomized on a
slightly larger box that exceeded the AP box by 10% in all
directions. The FPs that were located outside the AP box were
considered to have exact position information. We investigated
the influence of five parameters on the performance of the
presented methods. The tests were done using combinations
of different parameters. The GN methods require an initial
estimate of AP positions. As initial estimate we used the mean
position of all GPS FPs for all of APs and FPs. The methods
marked with prior in Figure 5 use APLS estimate as initial
estimate for APs. As the stopping condition for GN methods
we used that all APs move less than 10−4 m in (6).

In first row of Figure 5 parameter σ is the standard deviation
of RSS measurements. The errors were rounded samples from
zero mean normal distribution. In GN methods the RSS value
is transformed into distance. The error in distance does not
have zero mean. This bias is left uncompensated because
to simulate the modeling errors in path loss parameters.
The computation time of Gauss-Newton method increases
as measurement error increases, because the solution does
not have a clear optimum when error increases. In the error
dimension we see that GNMax gives worse results than APLS
when standard deviation is more than 5dBm and for GN with
prior this limit is 9 dBm. This implies that if the signals are
noisy or the RSS model is not accurate the APLS should be
used. On other hand, if accurate distance measurements are
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Figure 4. Effect of θ on AP positioning accuracy

available these methods have small errors. In [6] the standard
deviation of WLAN measurements is studied and results show
that the value varies between 1 and 5 when the device does not
move, but the received mean may change 4 dBm depending
on the orientation of user and in [7] the standard deviation
of WLAN measurements was found to be usually more than
10 dBm .

In the second row of Figure 5 the effect of the number
of APs is evaluated. In the third row the number of FPs is
evaluated. There one should note that the runtime of GNMax
gets smaller as the number of FPs increase. In fourth row the
range of an AP is evaluated. There we see that the APLS
based methods work better the smaller the range is, that is,
they work best if the building is big. On the other hand the
GN benefits from long ranges of measurements.

In the last row of Figure 5 the effect of nonuniform
distribution of FPs is analyzed. The abscissa is probability that
the FP, instead of being randomly located on whole area, is
located inside 20m wide corridor in the center of the building.
All proposed methods suffer from the nonuniform distribution
of FPs.

In general we see that GN benefits a lot from using APLS
as the prior, whereas GNMax is not so sensitive to the
initial condition. The accuracy of the Mean method is worse
than the accuracy of any other method. Also the time of
execution of GN methods is much greater than APLS and
Mean method and our APLS implementation is even faster
than the implementation of Mean algorithm.

In Figure 6 routes solved from AP locations estimated by
different methods are presented. The building was walked once
around outside and then some measurements were done inside
without GPS available. The grey dots in the figure represent
FPs with GPS positions. All the GPS measurements were
made outdoors and the points that are inside of building show
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Figure 5. Performance of different methods in simulated environment



Figure 6. Real data positioning done using radiomaps generated with different methods and error distributions



the effect of errors in GPS measurements. The data had 440
APs and 400 FPs in total of which 120 had GPS position and
280 were taken indoors without GPS. In GN methods we used
path loss parameters RSS0 = −40 dBm and α = 3.5. The
boxplots in the lower right corner show 5%, 25%, 75%, 95%
quantiles and the mean of error. For the reference track, the AP
locations were defined by making measurements in different
points inside the building and choosing the AP location to
be the mean of the five locations where the AP was received
with strongest RSS. APs for the reference map were located
using measurements in the same floor where the test track
was walked. The times that different methods used were less
than 0.05 s for Mean and both APLS variants, for GNMax
it took 260 seconds to find an estimate and for GN the time
was around 10000 seconds. For GN and GNMax the iterations
were stopped when all APs moved less than 2 meters on one
iteration. From these results we see that the Mean method does
not work at all. The GNMax gives estimates close to the center
of the building. APLS, VARAPLS and GN give quite similar
performance, where the right side of building was estimated
better and the left side worse. APLS had the best mean error
of 33 meters, while the reference mean was 11 meters.

VI. CONCLUSIONS

In this paper we presented five methods for localization APs
in cases where position information is not always available.
Our results show that proposed methods APLS and VARAPLS
perform quite similarly and perform well in realistic simulation
cases where noise is present. The positioning test with real

measurements showed that APLS may be used to generate a
map with 440APs in less than 0.05 s that may be used in
positioning at least on a rough scale or as a prior for more
complex methods.
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Abstract—Fingerprinting techniques provide good indoor and
urban user location estimates, but using them in large scale
requires an enormous radio map (RM) database. To reduce
the database size, we build a statistical model of the coverage
area (CA) of each wireless communication node (CN) using
“fingerprints” (FP), i.e. reception samples. In previous work we
modeled each CA as a single ellipse, so only 5 parameters need
to be stored in the RM for each CN. In this paper, we investigate
the use of multiple CAs for every CN. FPs are grouped based on
received signal strength (RSS) criteria and CA models are fitted
to different FP groups. Different choices of RSS boundaries are
examined with real data. We present a method for positioning
using the proposed “multilevel coverage area radio map”. The
proposed method is applied on real data sets. The positioning
results are compared with those of conventional single level
CA positioning and a basic location fingerprint methods. The
results show improvement of positioning accuracy compared with
positioning with a single level CA. The improvement is due to
better use of RSS level information in both the offline phase
(constructing the CA radio map) and in the online phase (user
positioning). The proposed multilevel CA positioning works with
a much smaller RM database than the basic location fingerprint
method, without degrading the positioning accuracy in indoor
positioning.

Radio map; Wireless LAN; RSS; Coverage area; Student-t

distribution; Normal distribution; Fingerprint; Positioning

I. INTRODUCTION

Location fingerprinting is a well-known positioning tech-
nique that determines user’s location using a database of
radio signal measurements. A “fingerprint” (FP) contains the
location of the user equipment (UE) and may include a
set of radio characteristics records from a variety of radio
networks, like received signal strength (RSS) and identifier of
the transmitter e.g. identity of a communication node (CN).
CN may be a radio station, a TV station, a cellular network
base station, a WLAN access point or some other sensor
node in a wireless network. In this work the CNs are WLAN
access points. A UE may be a laptop, a mobile phone, or
any other device connected to a wireless network. Location
fingerprinting consists of two phases, an offline data-collecting
phase and an online positioning phase. In the data-collecting
phase, FPs are measured at various locations using positioning-
capable UE [1–4]. The fingerprint database is processed and
used to generate a radio map, which provides information
about radio signal properties as a function of position. In the
positioning phase, the UE samples measurements from CNs
and computes user’s location using the radio map [5].

Location fingerprinting takes into account the effects that
buildings and environment have on radio signals. Hence, in
contrast to many other positioning methods, it does not require
line of sight conditions to ensure acceptable accuracy. This
makes the location fingerprinting method often precise and
reliable in complex environments such as indoor and urban
environments. A drawback of the fingerprinting method is
that, while accuracy may be good when the radio map is up-
to-date, it degrades with time because the radio environment
changes constantly [4, 6]. Moreover, performing extensive data
collecting is needed and storing a huge database (e.g. covering
an entire city or country) is costly.

To reduce the database size, we have used FP data to
construct a statistical model of the coverage area of a wireless
CN [5, 7]. Instead of raw FP data, the radio map consists
of the parameters of the coverage areas (CA). Here, a CA
means the region in the plane where signals from the CN can
be received by the network user. The CAs are modeled as
probability distributions whose parameters may be described
using the mean and the covariance; this CA model may be
visualized as an ellipse. Only five parameters have to be stored
in the radio map for each CA. In the online positioning phase
the CAs of the heard CNs are used to infer the position of the
user.

In [5], the CA is modeled by computing a posterior distribu-
tion using Bayes’ rule. The Bayesian prior models information
about “typical” CAs. This information is especially important
when the FP database contains only a few observations from
a CN. In [5], CAs are fitted by modeling fingerprints as
having a normal (Gaussian) distribution. However, the normal
regression model is well known to lack robustness, i.e. outliers
produce coverage areas that are too large. The Student-t
distribution is an alternative to the Normal distribution that,
due to its heavy tails, is better suited as a model of data that
may contain outliers. In this paper, CAs are modeled using
Student-t and normal distributions as explained in [7, 8].

In our previous works, only one coverage area for every CN
was stored in the radio map [5, 7]. In this paper we consider
the use of multilevel CAs for every CN in radio map. The
FPs are classified into different sets based on their RSS level,
and multilevel ellipse-shaped CAs are fitted to each set of FP
data. In this paper, different criteria for classifying FPs into
different sets are investigated.

A method to use the proposed so-called “multilevel cover-
age area radio map” for positioning is presented. The method
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is tested using real indoor and outdoor positioning data.
Positioning results are compared with conventional single-
level CA positioning and a basic location fingerprint method.
The results indicate the enhancement of positioning accuracy
compared to the positioning with one level CA. The proposed
multilevel CA positioning requires much smaller radio maps
than the basic location fingerprint method, without degrading
the positioning accuracy in our indoor tests.

The remainder of this paper is organized as follow: The
coverage area estimation model is presented in Section II.
Section III describes the coverage area positioning. The test
setup for evaluating positioning performance is described in
Section IV. The positioning results using multilevel coverage
areas are compared in Section V. Concluding remarks are
given in Section VI.

II. MULTILEVEL COVERAGE AREA MODELS

A. One-level coverage area models

In this section, a method for fitting an ellipse-shaped CA
to location FPs is presented. FPs are assumed to follow
multivariate Student-t distribution. The method is less sensitive
to outliers than existing smallest-enclosing ellipse and Normal-
distribution based methods [8].

Here, each observation is modeled as a bivariate (d = 2)
Student-t random vector zn with mean µ, shape Σ, and
ν degrees of freedom. When the degrees of freedom ν is
fixed the mean and shape parameters for the multivariate
Student-t distribution may be computed using Expectation-
Maximization algorithm [8]:

Algorithm for modeling the CA from FPs
initialize u1:N ← ones
for t = 1 to T do

µ←
∑

n unzn/
∑

n un

S←
∑

n un(zn − µ)(zn − µ)
T

Σ−1 ← (N + τ − d− 1) (S + σI)
−1

for n = 1 to N do

un ←
d+ν

ν+(zn−µ)TΣ−1(zn−µ)

end

end

In the algorithm τ is a weight parameter describing the
‘strength” of the prior and σ = τr2 where r represents a
typical range of a CA.

The relationship between covariance matrix P and the shape
matrix Σ is

P =
ν

ν − 2
Σ. (1)

When degrees of freedom ν →∞ the distribution approaches
to normal and P = Σ.

B. Multi-level coverage area models

To determine multi-level CAs of a specific CN, FPs are
classified into groups and a CA ellipse is fitted to each set
of FPs. Three different criteria for classifying the FPs are
proposed as follows:

Figure 1: Two-level coverage areas

1) RSS-level: a presumed RSS threshold value is used to
determine if a FP has strong signal strength.

2) n-strongest: the n fingerprints with the highest RSS
values are classified to the strong set.

3) x%-strongest: the x% strongest RSS-values of each FP
to belong to the strong set.

We also investigate two different ways to deal with the
“weak” area. In one case the RSS-values not considered to
be strong are used for the weak area and in the other method
all of the FPs are used to construct the ‘weak” area. Fig. 1
illustrates the basic idea of modeling two-level CAs, where
the strong CA is constructed using strong FPs (circles) and
weak CA using the weak FPs (asterisks).

III. POSITIONING

A. Positioning using CAs

Assuming a radio map containing multi-level CAs of CNs
is constructed, the goal is to estimate the user’s position using
the radio map and information that the user receives; the
identification codes of heard CNs and their RSS levels.

Let µ1, . . . , µn be the means of the CAs of the CNs that are
observed and P1, . . . ,Pn be the corresponding covariances. If
the CAs are assumed to be independent measurements, then
the best linear unbiased estimator (BLUE) of the user position
is

x =
(

LTWL
)−1

LTW
[

µT
1 , . . . , µ

T
n

]T
, (2)

where

L = [I, . . . , I]
T (3)

W = diag(P1, . . . ,Pn)
−1. (4)

This may be simplified into form

x =

(

∑

i

P−1
i

)−1
∑

i

P−1
i µi. (5)
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This is the same equation as derived in [5], where it was
shown to be the Bayesian estimate when the coverage areas
are modeled as Gaussians and the prior is uninformative.

As explained in Section II-B, the CAs were constructed
using different sets of FPs. The positioning phase uses the
same rules to choose which CA is used for each CN.

B. Positioning using fingerprints

As a reference method for positioning we used the weighted
k-nearest neighbor method (WKNN) [4]. In WKNN a FP
database is searched for k FPs that have the most similar
RSS values of CNs and then the user position is computed
as a weighted mean of the positions of FPs in the database.
In our implementation we used k = 5, the similarity of all
RSS values is computed using the 2-norm and the weight of
a FP is proportional to the inverse of the 2-norm. If a FP in
the database did not contain a CN that was in the positioning
measurement it is assumed to have a weak RSS value (-105
dBm).

IV. TEST SETUP

In our tests CA models were fitted using different parameter
values. We tested all combinations of the following values
of parameters: τ ∈ {5, 10, 20} and r ∈ {5, 10, 20, 40, 80}.
Degree of freedom for Student-t was set to ν ∈ {5,∞}, a
typical value for general-purpose robust regression and the
normal model.

A. Indoor

These tests were done inside a university building. The CAs
were fitted using 243 FPs and 331 CNs. Each CN is contained
on average in 28 FPs.

Examples of two-level CA ellipses of three specific trans-
mitters are shown in Fig. 2. The ground truth for our test route
was manually marked using a laptop during the measurement
session. The process of marking positions manually causes
some error to the true route but it should be on the order of a
meter or two.

B. Outdoor

In this test the data contained 26921 FPs collected mostly
on streets in a suburban area. Fingerprints in the test route
had 857 unique CN IDs that were found in the CA database.
On average a CN had 57 FPs containing it. The CA models
were constructed using the same rules and parameters as with
the indoor data. The ground truth was determined using GPS,
meaning that there is a couple of meters of error in the true
route.

V. RESULTS

Table I shows the positioning results on a route inside
a university building for positioning using different rules
for coverage areas. The CAs are constructed according to
rules given in the table. In the positioning phase the CA
corresponding to the first rule, which is true for the FP is
used. The parameters shown in the table are those that had
the smallest mean error for the rule. r1 is the prior ”range”

Figure 2: Three examples of two-level coverage area models
fitted using normal and Student-t regression. In the first
example the two strong FPs in left hand side affect strongly on
normal model while the Student-t is not affected that much.
The second and third examples show the difference of CAs if
the strong FPs are included or excluded from the weak CA.

for the CA generated by Rule 1 and r2,3 is for Rules 2 and 3.
Mean, Median and 95% columns are the mean, median and
95% quantile of the positioning errors given in meters. The
bold numbers are the smallest of each column.

Results show following

• Two CA models give better positioning performance than
one

• Student-t (ν = 5 always in Table I) outperform normal
models with all rules

• It is better to use all FPs for the ”weak” CA instead just
”not strongs”

• In most of cases it was best to use small and weak prior
for CAs (τ = 5, r = 5)

The Student-t models gave on average 0.7 meters better
accuracy than the normal models. We can also see that the use
of the third CA for a CN does not improve the performance
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Table I: Results for indoor positioning

CAs Rule 1 Rule 2 Rule 3 τ r1 r2,3 ν Mean Median 95%
1 all - - 20 5 5 5 11.6 9.8 23.0
2 1-strongest all - 5 5 5 5 10.9 10.2 18.8
2 1-strongest not 1-strongest - 5 5 5 5 11.0 10.5 19.1
2 3-strongest all - 5 5 5 5 9.7 9.6 16.3

2 3-strongest not 3-strongest - 5 5 5 5 9.9 9.9 16.5
2 5-strongest all - 5 5 5 5 9.5 8.9 17.4
2 5-strongest not 5-strongest - 5 5 5 5 9.8 9.3 18.4
2 7-strongest all - 5 5 5 5 10.2 9.5 23.0
2 7-strongest not 7-strongest - 5 5 5 5 11.4 9.9 28.4
2 10%-strongest all - 5 5 5 5 10.1 9.3 17.7
2 10%-strongest not 10%-strongest - 5 5 5 5 10.5 10.4 18.1
2 15%-strongest all - 5 5 5 5 9.6 9.1 18.4
2 15%-strongest not 15%-strongest - 5 5 5 5 10.3 10.6 18.2
2 20%-strongest all - 20 5 5 5 9.5 9.6 17.8
2 20%-strongest not 20%-strongest - 5 5 5 5 10.5 10.2 18.9
2 30%-strongest all - 20 5 5 5 9.9 10.0 18.8
2 30%-strongest not 30%-strongest - 20 5 40 5 11.0 10.0 24.3
2 40%-strongest all - 5 5 5 5 9.8 9.2 19.2
2 40%-strongest not 40%-strongest - 20 5 80 5 10.1 9.5 22.0
2 -75dBm all - 10 5 5 5 9.8 9.7 18.0
2 -75dBm not -75dBm - 5 5 5 5 10.7 10.5 19.3
2 -85dBm all - 5 5 10 5 9.6 9.2 19.4
2 -85dBm not -85dBm - 5 5 40 5 10.6 9.9 20.4
3 1-strongest 5-strongest all 5 5 5 5 9.5 9.0 17.8
3 3-strongest 7-strongest all 5 5 5 5 9.6 8.7 20.9
3 15%-strongest 30%-strongest all 5 5 5 5 9.3 9.1 17.0

Fingerprinting 9.9 8.1 25.1

One CA 1 3 5 7 1,3 3,7 Ref
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Figure 3: Indoor results with different rules for selecting the
strong CAs

much and the 2- and 3-level positioning is comparable to
fingerprinting in accuracy.

In Fig. 3 is a boxplot showing 5%, 25%, 50%, 75% and
95% error quantiles for different n-strongest rules in indoor
positioning. In cases where two values are given in the x-
axis we used three CA models. Used parameter values are
ν = 5, r1 = 5, r2 = 5 and τ = 5, which seemed to the best
for the indoor positioning. From this figure we can see that
the median error of all the methods is almost the same, but
the 75% and 95% error quantiles are smallest when using two
level coverage areas with n = 3 or n = 5 and three level areas
with limits 1 and 3. The reference fingerprinting method has

Figure 4: Comparison of routes

the best 5% and 25% errors, but worse 75% and 95% error
quantiles than the best multilevel models.

In Fig. 4 the routes given by our positioning algorithms
are illustrated. Stars show the reference locations used in
positioning. Dashed line presents the results computed using
a single Student-t CA model and the solid line is the route
computed using two CAs using 5-strongest rule. The 5-
strongest rule is close to accuracy of best methods by all
numbers in Table I.

The results for an outdoor scenario (Table II) show smaller
improvement of use of the multiple coverage areas compared
to the indoor tests. In Fig. 3 is a boxplot showing the error
quantiles for different n-strongest rules in outdoor positioning.
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Table II: Results for outdoor positioning

CAs Rule 1 Rule 2 Rule 3 τ r1 r2,3 ν Mean Median 95%
1 all - - 20 20 5 ∞ 51.9 45.7 103.4
2 1-strongest all - 20 20 20 ∞ 51.7 45.9 107.7
2 1-strongest not 1-strongest - 20 20 20 ∞ 52.0 46.4 107.9
2 3-strongest all - 20 5 10 ∞ 50.7 39.5 121.4
2 3-strongest not 3-strongest - 20 5 10 ∞ 52.0 42.0 121.9
2 5-strongest all - 20 10 20 ∞ 51.8 44.4 117.0
2 5-strongest not 5-strongest - 20 5 10 ∞ 51.5 43.7 116.9
2 7-strongest all - 20 5 20 ∞ 49.8 42.5 96.5

2 7-strongest not 7-strongest - 20 5 10 ∞ 48.5 41.7 103.1
2 10%-strongest all - 20 20 20 ∞ 51.6 45.1 111.2
2 10%-strongest not 10%-strongest - 20 20 20 ∞ 52.8 45.1 115.3
2 15%-strongest all - 20 10 20 ∞ 51.8 44.4 114.1
2 15%-strongest not 15%-strongest - 20 5 10 ∞ 51.1 42.1 113.1
2 20%-strongest all - 20 5 10 ∞ 50.7 43.7 113.2
2 20%-strongest not 20%-strongest - 20 5 10 ∞ 50.5 43.6 104.0
2 30%-strongest all - 20 10 20 ∞ 52.5 44.4 111.5
2 30%-strongest not 30%-strongest - 10 10 20 ∞ 52.7 44.8 107.5
2 40%-strongest all - 20 10 20 ∞ 51.5 43.7 102.7
2 40%-strongest not 40%-strongest - 20 10 40 ∞ 52.5 45.1 103.4
2 -75dBm all - 20 5 20 ∞ 51.0 45.7 102.7
2 -75dBm not -75dBm - 20 5 20 ∞ 52.8 46.8 111.8
2 -85dBm all - 20 20 20 ∞ 50.9 45.5 106.7
2 -85dBm not -85dBm - 20 20 40 ∞ 52.6 48.8 112.1
3 1-strongest 5-strongest all 20 20 20 ∞ 52.0 45.8 110.4
3 3-strongest 7-strongest all 20 5 10 ∞ 50.7 40.5 119.7
3 15%-strongest 30%-strongest all 20 5 10 ∞ 52.2 46.3 120.2

Fingerprinting 43.4 39.0 85.4
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Figure 5: Outdoor results with different rules for selecting the
strong CAs

Used parameter values are ν = ∞, r1 = 10, r2 = 20 and
τ = 20, which seemed to be good values for the outdoor
positioning. From this figure we can see that the use of
multilevel coverage areas does not improve the positioning
as much as in the indoor positioning case.

The normal distribution models outperform the Student-t
and optimal values for τ and r are larger than in our indoor
test. The mean difference between positioning error between
Student-t and normal models is 2.6 meters. The positioning
accuracy is somewhat worse than with the reference finger-
printing method. The reason why normal models are better
than the Student-t models in our outdoor test is illustrated in

Figure 6: An outdoor positioning example

Fig. 6. The dots show the locations of FPs that were used
for generating the CAs with thick lines. There are a few FPs
in lower right corner that are considered as outliers in the
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Student-t model. In the positioning phase this ellipse affects
more to the estimate than the normal ellipse.

VI. CONCLUDING REMARKS

This paper examines the use of multiple CA models for a
CN instead of one CA for positioning purposes. The proposed
positioning method, using multilevel CA models, is compared
with conventional CA positioning, using one-level CA models,
and reference fingerprinting method.

In our tests with real data we got results showing that
the use of multiple CA models for each CN improved the
positioning results. The proposed method was tested using real
indoor and outdoor positioning data. In indoor tests where
the FPs covered the building well the proposed positioning
method produced results that were even slightly better than
the reference fingerprinting method.

Furthermore, the results show that the CAs constructed
using Student-t regression provide better positioning results
compared to the CAs constructed with normal regression
indoors. In our test the use of three CA models did not give
significant improvement compared to 2-level models.

In outdoors test the improvement was smaller and the
positioning results were better for normal model. The normal
model outperformed the Student-t method because the FP
distribution was not uniform and some FPs that were inliers
were considered as outliers in Student-t regression. To enhance
the positioning accuracy of these cases a robust positioning
algorithm should be used.

Our research shows that when building a multilevel radio
map the following should be considered:

• Weak CAs should contain all FPs
• If collected data is nonuniform a larger τ and r values

should be used compared to uniform data
• RSS-level rule should be avoided because it does not

provide better accuracy than rules based on relative
strengths of RSS values and the absolute RSS value is
dependent of the UE used [9]

For the space requirements of multilevel CA models com-
pared to fingerprinting methods we can consider our outdoor
test case. There we had on average 57 FPs for each CN. For
fingerprinting at least two numbers have to be stored in the
FP for each CA (ID of the CA and the RSS). In our test case
we have to store at least 114 numbers on average for a CN.
The two level coverage areas require only 10 numbers for
a CN, 4 numbers for two means and 6 for two covariance
matrices. This simple calculation shows that a positioning

database containing two-level CA models require lot less space
than a fingerprinting database.
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Abstract—Indoor positioning based on WLAN signals is often
enhanced using pedestrian dead reckoning (PDR) based on an
inertial measurement unit. The state evolution model in PDR is
usually nonlinear. We present a new linear state evolution model
for PDR. In simulated-data and real-data tests of tightly coupled
WLAN-PDR positioning, we find that the positioning accuracy
with this linear model is almost as good as with traditional models
when the initial state is known, and better when the initial state
is not known. The proposed method is computationally light and
is also suitable for smoothing.

Keywords—Sensor based localization, Hybridization
approaches, Signals-of-Opportunity, Pedestrian dead reckoning

I. INTRODUCTION

Wireless Local Area Network (WLAN) access points (APs)
are numerous and ubiquitous in most indoor environments.
Although WLAN is meant for data transfer, the WLAN signals
may be used for user localization. Because the WLAN APs are
not meant for positioning, they do not usually send information
on their own location for clients. WLAN positioning therefore
makes use of a “radio map”, which describes certain features
of the WLAN signal characteristics at given locations. A radio
map is created and updated using data collected on site. These
data are called fingerprints (FP). A FP is a report that contains
at least the receiver location and the IDs and the received signal
strength (RSS) values of APs within reception range. A radio
map is constructed off-line based on the collected FPs. The
accuracy of positioning based on WLAN signals depends on
the model and environment. In small scale (a few buildings)
it is possible to achieve positioning results of the order of a
couple of meters [1]. For large scale positioning (a city or
larger) when the size of the database is a limiting factor the
positioning accuracy can be of the order of tens of meters [2].

Pedestrian dead reckoning (PDR) uses an inertial measure-
ment unit (IMU) to detect when a user takes footsteps and how
the direction changes between footsteps. The IMU has three
axis accelerometers and gyroscopes. The user heading change
is computed by projecting the gyroscope measurements to the
horizontal plane which is estimated from the accelerometer [3].
The footstep length may also be estimated from the IMU data.
If the sensor is mounted on the foot, it is possible to detect
when the foot is still and then integrate the footstep length from
the IMU data [4]. If the IMU is handheld the footstep length
can be inferred from the IMU data also by other methods, see
for example [5, 6]. A PDR system can greatly improve the
positioning locally as the position estimate may be updated
every footstep, but because the errors accumulate over time

PDR is often combined with other sensors that can, at least
occasionally, provide information of the absolute position.

In this paper we investigate models for fusing PDR
measurements with WLAN measurements. We propose a linear
state model for the state evolution, whereas in the literature the
state model used with PDR system is usually nonlinear [6–8].
For nonlinear estimation in general there is no closed form
optimal algorithm. In this paper we use Kalman and Extended
Kalman filters, which are computationally light algorithms.

Section II contains the filtering and smoothing algo-
rithms that are used to estimate the user’s kinematic state.
In Section III we present the WLAN model that is used
for positioning. The evaluated PDR models are presented in
Section IV. In Section V we evaluate the performance of
different models with real and simulated data and Section VI
concludes the paper.

II. FILTERING ALGORITHMS

The Kalman filter is an algorithm for estimating the state of
the system given a time-series of measurements in the case of
linear state-evolution and measurement models. If the measure-
ments and state transitions are also normally distributed, the
Kalman filter is optimal. The algorithm uses the following
update equations at each time index 𝑡 [9]

𝑥𝑡∣𝑡−1 = 𝐹𝑡𝑥𝑡−1∣𝑡−1 (1)

𝑃𝑡∣𝑡−1 = 𝐹𝑡𝑃𝑡−1∣𝑡−1𝐹
𝑇
𝑡 +𝑄𝑡 (2)

𝑆𝑡 = 𝐻𝑡𝑃𝑡∣𝑡−1𝐻
𝑇
𝑡 +𝑅𝑡 (3)

𝐾𝑡 = 𝑃𝑡∣𝑡−1𝐻
𝑇
𝑡 𝑆

−1
𝑡 (4)

𝑥𝑡∣𝑡 = 𝑥𝑡∣𝑡−1 +𝐾𝑘(𝑦𝑡 −𝐻𝑡𝑥𝑡∣𝑡−1) (5)

𝑃𝑡∣𝑡 = (𝐼 −𝐾𝑡𝐻𝑡)𝑃𝑡∣𝑡−1, (6)

where 𝑥 is the state vector, 𝑃 is the state covariance matrix,
𝐹 is the state transition matrix, 𝑄 is the state transition error
covariance matrix, 𝑅 is the measurement error covariance
matrix and

𝑦𝑡 = 𝐻𝑡𝑥𝑡 (7)

is the linear measurement equation. If the state model is
nonlinear then (1) has to be replaced with

𝑥𝑡∣𝑡−1 = 𝑓(𝑥𝑡−1∣𝑡−1) (8)

and 𝐹𝑡 in (2) with

𝐹𝑡 =
∂𝑓(𝑥𝑡−1∣𝑡−1)

∂𝑥𝑡−1∣𝑡−1
, (9)



to get the approximative nonlinear estimation algorithm known
as the Extended Kalman filter (EKF) [10].

The Rauch-Tung-Striebel smoother [11] may be used to
enhance the state estimates when measurements of future time
instants can also be used, for example when plotting the track
over a given time interval . The recursive smoothing equations
are

𝐶𝑡 = 𝑃𝑡∣𝑡𝐹𝑇
𝑡 𝑃−1

𝑡+1∣𝑡 (10)

𝑥𝑡∣𝑚 = 𝑥𝑡∣𝑡 + 𝐶𝑡(𝑥𝑡+1∣𝑚 − 𝑥𝑡+1∣𝑡) (11)

𝑃𝑡∣𝑚 = 𝑃𝑡∣𝑡 + 𝐶𝑡(𝑃𝑡+1∣𝑚 − 𝑃𝑡+1∣𝑡)𝐶𝑇
𝑡 , (12)

where 𝑚 is the last time index.

III. COVERAGE AREA POSITIONING

In its simplest form, probabilistic coverage area (CA)
positioning is a method for radio map construction in which
the reception area of each AP is modeled as a two-dimensional
normal distribution. The radio map does not contain any raw
RSS data, and thus computational, memory and communi-
cation complexity is much lower compared to conventional
FP positioning methods. The algorithm and derivations are
explained in [12] and here we only briefly present the algo-
rithm.

The coverage area estimate is

𝜇𝑛 =

∑
𝑧𝑖

𝑛
(13)

Σ𝑛 =

∑
𝑧𝑖𝑧

𝑇
𝑖 +𝐵 − 𝑛𝜇𝑛𝜇

𝑇
𝑛

𝑛+ 1
, (14)

where 𝜇𝑛 and Σ𝑛 are the mean and covariance of the CA
estimate based on 𝑛 FPs, 𝑧𝑖 is the location of the 𝑖th FP and
𝐵 is the prior covariance.

When a new measurement is received, these parameters
may be updated by

𝜇𝑛+1 =
𝑛𝜇𝑛 + 𝑧𝑛+1

𝑛+ 1
(15)

Σ𝑛+1 =
(𝑛+ 1)(Σ𝑛 − 𝜇𝑛+1𝜇

𝑇
𝑛+1) + 𝑧𝑛+1𝑧

𝑇
𝑛+1 + 𝑛𝜇𝑛𝜇

𝑇
𝑛

𝑛+ 2
(16)

Because the AP models are linear-Gaussian they may be used
in KF directly with

𝑦 = 𝜇 (17)

𝐻 = [𝐼 0] (18)
𝑅 = Σ. (19)

Here for 𝐻 it is assumed that the first variables in the state
are the position variables.

IV. PEDESTRIAN DEAD RECKONING

In most of the literature, the state model used in PDR is
nonlinear [6–8]. For comparison purposes, we consider two
traditional models. In the first one, the state contains the user
location and the direction of movement

𝑥𝑡∣𝑡−1 =

[
𝑟1,𝑡
𝑟2,𝑡
𝜃𝑡

]
=

[
𝑟1,𝑡−1 + 𝑠𝑡 cos 𝜃𝑡−1

𝑟2,𝑡−1 + 𝑠𝑡 sin 𝜃𝑡−1

𝜃𝑡−1 +Δ𝜃𝑡

]
, (20)

 

 Nonlinear model
Linearization point
Linearized model

Figure 1. Footstep propagation with nonlinear and linearized state models

where Δ𝜃𝑡 is the change of heading obtained from gyroscopes
and 𝑠𝑡 is the footstep length estimated from accelerometer data.
The linearized state transition matrix is

𝐹𝑡 =

[
1 0 −𝑠𝑡 sin 𝜃𝑡−1

0 1 𝑠𝑡 cos 𝜃𝑡−1

0 0 1

]
. (21)

and the linearized state transition noise covariance is

𝑄𝑡 =

⎡
⎣𝜎2

𝑠 cos
2 𝜃𝑡−1 0 0
0 𝜎2

𝑠 sin
2 𝜃𝑡−1 0

0 0 𝜎2
Δ𝜃

⎤
⎦ . (22)

In our second traditional model the footstep length is also
estimated:

𝑥𝑡∣𝑡−1 =

⎡
⎢⎣
𝑟1,𝑡
𝑟2,𝑡
𝜃𝑡
𝑠𝑡

⎤
⎥⎦ =

⎡
⎢⎣
𝑟1,𝑡−1 + 𝑠𝑡−1 cos 𝜃𝑡−1

𝑟2,𝑡−1 + 𝑠𝑡−1 sin 𝜃𝑡−1

𝜃𝑡−1 +Δ𝜃𝑡
𝑠𝑡−1

⎤
⎥⎦ , (23)

𝐹𝑡 =

⎡
⎢⎣
1 0 −𝑠𝑡−1 sin 𝜃𝑡−1 cos 𝜃𝑡−1

0 1 𝑠𝑡−1 cos 𝜃𝑡−1 sin 𝜃𝑡−1

0 0 1 0
0 0 0 1

⎤
⎥⎦ (24)

and

𝑄𝑡 =

⎡
⎢⎣
0 0 0 0
0 0 0 0
0 0 𝜎2

Δ𝜃 0
0 0 0 𝜎2

Δ𝑠

⎤
⎥⎦ . (25)

Figure 1 shows position estimates after taking one footstep
from known position using this model. The dashed line shows
how the state is propagated if the original nonlinear model is
used and the solid line shows the linearized state.

We propose the linear state model

𝑥𝑡∣𝑡−1 =

⎡
⎢⎣
𝑟1,𝑡
𝑟2,𝑡
𝑣1,𝑡
𝑣2,𝑡

⎤
⎥⎦ =

⎡
⎢⎣
1 0 1 0
0 1 0 1
0 0 cosΔ𝜃𝑡 − sinΔ𝜃𝑡
0 0 sinΔ𝜃𝑡 cosΔ𝜃𝑡

⎤
⎥⎦
⎡
⎢⎣
𝑟1,𝑡−1

𝑟2,𝑡−1

𝑣1,𝑡−1

𝑣2,𝑡−1

⎤
⎥⎦

= 𝐹𝑡𝑥𝑡−1∣𝑡−1 (26)
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Figure 2. Mean of errors at track end as the function of initial direction
estimate

where 𝑣 is the footstep vector estimate. The process noise
covariance matrix is

𝑄𝑡 =

⎡
⎢⎣
0 0 0 0
0 0 0 0
0 0 𝜎2

𝑣 0
0 0 0 𝜎2

𝑣

⎤
⎥⎦ . (27)

Compared to the traditional models the proposed model
has the benefit that the state transition matrix and the state
transition covariance matrix are independent of the state. To
keep those independent of the state estimate the state transition
error cannot have different variances for heading and footstep
length.

V. PERFORMANCE EVALUATION

A. Simulated Tests

In simulations we tested how the linear model performs
against the traditional models when the data is generated using
the traditional model. For the first simulation, the state model is
such that the standard deviations of footstep length is 𝜎Δ𝑠 =
0.01m and for the heading change is 𝜎Δ𝜃 = 0.01

0.7 rad. The
initial footstep length is set to 0.7m. If the footstep length
does not change much during the track, the linear model, where
𝜎𝑣 = 0.01m, has same amount of propagated error in position.
The simulated test track is 50 footsteps and at every time step
there is a 10% probability of receiving a location measurement
with variance 102 m2𝐼 . Initial covariance variance for location
dimensions is 102 m2 and for rest of variables 𝜎𝑠0 = 1m,
𝜎𝜃 = 1

0.7 rad and 𝜎𝑣0
= 1m.

Figure 2 shows the position errors of the last time step as
a function of initial state heading error. Methods tested are the
linear and traditional models that estimate both the heading
and the footstep length and also the traditional model that
gets accurate footstep lengths. From the figure we can see that
the linear and traditional models are almost equally accurate
when the angle error is small. On the other hand the method
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Figure 3. Mean of errors at track end as the function of heading change
error
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Figure 4. Model errors when 𝜎Δ𝜃 = 10 deg

with footstep length information works badly when the initial
heading error is large. The reason why the traditional method
with footstep length estimation is again good when the angle
approaches 180 degrees is that the footstep length estimate is
equivalent to the negative value of the estimate for 0 degrees.

In Figure 3 we investigate how the different methods
perform when the heading error (i.e. gyroscope accuracy) is
changed. The traditional models have the correct 𝜎𝜃 and 𝜎𝑠,
but the linear model is the same as in the first tests because
we want to keep the variance independent of the user state.
For this test the initial heading is accurate.

From the figure we see that if the heading error is small,
the traditional method with accurate footstep length estimates
has similar accuracy as the proposed method, but when the
angular error grows the model performs badly. The proposed
method performs somewhat worse than the traditional method
when the variance in angular direction is large, but slightly
better when it is small.

Figure 4 shows what kind of error estimates the different
methods produce when the 𝜎Δ𝜃 = 10 deg. At this point there
is not significant accuracy difference between the proposed
and traditional method. This shows how the error can be quite
asymmetric before the linear model has worse accuracy than
the traditional model. The figure also shows the difference
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between the traditional model with known footstep length
and how the error would be without linearization. The poor
accuracy of the traditional model with known footstep length
is caused by the linearization error, which is not taken into
account in the model error.

B. True Data

In the true data test the algorithm is tested in one floor
of a building in the Tampere University of Technology. The
radio map of the test floor contains approximately 200 WLAN
APs. The measurements were collected using a XSENS MTi
IMU and Acer Iconia tablet. Both devices were carried in hand
while doing measurements.

For the WLAN positioning we use the two-level coverage
area method proposed in [13]. We generate two coverage areas:
a weak CA that is constructed using all FPs, and a strong CA
that is constructed with only FPs that have signal strength
≥ −70dBm. The prior for weak CA is 𝐵 = 10002 m2𝐼
and for strong CA 𝐵 = 52 m2𝐼 . According to [13] the two-
level normal CA models have around 10% larger errors than
traditional location fingerprinting, but require only storage of
10 parameters for each AP. Also, the measurements can be
used as linear measurements in the Kalman filter.

Figure 5 shows filtered and smoothed tracks. The initial
heading for traditional models is 90 degrees off and the initial
footstep length estimate of the traditional model is 0.8m. The
traditional method is tested also with step lengths estimated
from the sensor data with 𝜎𝑠 = 0.3m. For the linear model
the initial footstep vector is 0 with variance 1m2𝐼 . The initial
position variance is large i.e. the prior is almost uninformative.
The smoothed routes have quite big difference in the right
hand side of the picture, where the route began. The traditional
models are more off than the linear model. This is caused from
the wrong linearization of the 𝐹 matrix in the beginning of the
track. The smoothing was done using these 𝐹 matrices in (10);
better results might be obtained with more complex methods
such as the Unscented Rauch-Tung-Striebel smoother [14].

Some error statistics are given in Table I. In the table
𝜃0 is the initial error on the heading. “Static” denotes the
WLAN-only position estimates without filtering. When there
is only footstep measurements without WLAN measurements,
the “Static” uses the last position computed from WLAN
measurements as the position estimate. When filtering the
proposed method has the best accuracy except when the
traditional methods are initialized with the correct initial
heading. In smoothing the traditional method with footsteps
estimated from sensor data has a slightly better accuracy also
when the initial heading is 45 degrees off. The more the
initial heading error is the worse the accuracy of traditional
methods get. When the initial heading is 180 degrees off
neither of traditional methods improve “Static” estimates and
the traditional model without footstep lengths from sensor data
has even larger errors than “Static”.

Footstep length approximations given by different methods
are shown in Figure 6. The footstep lengths are computed in
the case shown in Figure 5 (𝜃0 = 90∘). Here we see that the
footstep length estimated with the traditional model (𝑠) and
the proposed linear model (∣∣𝑣∣∣) are rather different in the
beginning of the track, but become similar towards the end

Table I. MEAN ERRORS [m] OF DIFFERENT METHODS AND DIFFERENT

INITIAL HEADING ERRORS

Method 𝜃0 Filtered Smoothed

Traditional w footstep length 0∘ 6.7 3.8
Traditional w/o footstep length 0∘ 7.4 4.3
Traditional w footstep length 45∘ 7.3 4.3
Traditional w/o footstep length 45∘ 9.2 5.1
Traditional w footstep length 90∘ 7.4 5.2
Traditional w/o footstep length 90∘ 10.7 6.9
Traditional w footstep length 135∘ 7.5 6.1
Traditional w/o footstep length 135∘ 13.4 9.7
Traditional w footstep length 180∘ 8.2 7.3
Traditional w/o footstep length 180∘ 12.1 8.0
Linear 6.8 4.6
Static 8.2
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Figure 6. Footstep length estimates

of the track. From 40s to 120s the linear step length is rather
constant whereas the estimates computed using the traditional
model varies from −0.1m to 1.1m. In the middle of the route
the footstep length estimates are shorter than the footsteps were
in reality. This is caused by the WLAN estimates in lower left
part of the Figure 5 that are all in same location whereas the
true route goes around the lecture hall.

VI. CONCLUSIONS

We proposed in this paper a novel linear model for PDR in
indoor personal positioning and compared it to models that are
common in the literature. The evaluation shows that although
the model is simpler than the traditional methods it performs
well and is especially suited for situations where the initial
heading and position are not known. As the proposed model
is linear it can also be smoothed with the Rauch-Tung-Striebel
smoother.
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Abstract—Fingerprint-based (FP) positioning methods deter-
mine a receiver’s position using a database of radio signal
strength measurements that were collected earlier at known
locations. For positioning with WLAN signals, nonparametric
methods such as the weighted 𝑘-nearest neighbour (WKNN)
method are widely used. Due to their large data storage and
transmission requirements those methods are infeasible for large-
scale mobile device services. In this paper we consider parametric
FP methods, which use model-based representations of the survey
data. We analyse the positioning performance of those methods
using real-world WLAN indoor data and compare the results to
those of the WKNN method.

I. INTRODUCTION

In the last decade indoor positioning techniques have re-
ceived extensive attention, and are nowadays an essential
feature of many commercial and public service networks.
Since many of these applications have to run on small
mobile devices, the positioning algorithms have strict limits
on allowed energy, memory, bandwidth, and computational
resources.

Positioning in indoor environments can rely on measure-
ments from e.g. an inertial measurement unit (IMU) or from
radio signals such as Bluetooth, wireless local area networks
(WLAN), or ultra-wideband (UWB). In contrast to Bluetooth
and UWB, the infrastructure required for WLAN-based posi-
tioning, namely WLAN access points (APs) and receivers in
user devices (UEs), is already in place. Instead of using signal
propagation time, most WLAN-based positioning algorithms
exploit the correlation between the received signal strength
(RSS) and the UE’s location (see e.g. [1, p. 47]). This choice
is supported by the fact that media access control (MAC)
addresses of APs and the corresponding RSS values are
already contained in transmission data [2, pp. 57 ff.], [3, 4],
so no changes to the AP software are required.

Because modelling signal propagation, especially in indoor
environments, is rather complex, (nonparametric) location
fingerprinting methods are widely applied for positioning [5].
Those methods estimate the UE’s position by comparing the
list of current AP RSS measurements to a database (called
a radio map) of information (called fingerprints) on APs and
their corresponding RSS values for known positions.

Fingerprints (also known as location reports, reception
reports, or observations) are collected in an offline phase
by site survey, war-driving or crowd-sourcing. In addition
to the UE’s current position, each fingerprint (FP) contains

radio characteristic records. When FPs are collected from
a WLAN they include, in general, at least identifiers (IDs)
for the APs from which the UE received a signal and their
corresponding RSS values. For localisation in the online phase,
a common approach is to use some variant of the weighted
𝑘-nearest neighbour (WKNN) method, a nonparametric esti-
mation method. The idea of the WKNN method is to compute
a location estimate as a weighted mean of the 𝑘 FP locations
from the radio map whose vectors of AP signal strength values
are in some sense closest to the vector of currently measured
AP signal strength values [5]. For overviews on nonparametric
location fingerprinting methods we refer the reader to [5, 6]
and references therein.

Nonparametric fingerprinting methods have the advantage
that modelling the signal propagation is not needed. These
algorithms have been shown to be reasonably precise and
reliable in indoor environments (see e.g. [5, 7]). Their dis-
advantage is that they work directly with the FP data, and the
size of this database can be a critical issue when FP-based
positioning is offered as a large-scale service for mobile de-
vices, especially in cellular telephone networks. For example,
the Third Generation (3G) system provides transmission rates
of 5 Mbit/s at most; for Second Generation (2G) systems those
rates are significantly lower [1, pp. 7 ff.]. For WLANs the size
of the database is less critical since these systems provide
sufficient data transmission rates. Thus, positioning in real
time on a mobile UE may be unfeasible since data transmission
from the server might be too time consuming or expensive [8].
In addition, large amounts of data have to be stored on the
server [9]. One approach for mitigating this problem is to
apply data-compression to the radio map [10, 11]. A more
fundamental way to address the issue is to use parametric
(model-based) FP methods. Those methods use models with
small numbers of parameters to describe the FP data, which
besides data transmission is also beneficial for the positioning.

In this paper we present an experimental comparison of
some of the parametric FP methods that have been proposed
in the literature. We start with a brief summary of the methods.
In Section II we look at a parametric FP approach that uses
elliptical probability distributions for modelling the area in
which an AP’s signal can be received. Section III is dedicated
to a signal propagation path loss model that is calibrated from
FP data. In Section IV we consider an approach that uses
mixtures of Gaussian distributions to approximate multimodal



distributions. This technique is useful for nonlinear and/or non-
Gaussian systems for which traditional approaches such as
Kalman filter (KF) and extended KF (EKF) perform poorly.
In Section V the performance of these different parametric
FP techniques, with and without filtering, is compared in
benchmark tests using real-world WLAN measurements in two
university buildings. Section VI summarises and concludes

II. COVERAGE AREA MODELS

In [6, 8] a computationally light method for parametric
fingerprinting is proposed. In order to reduce the size of the
FP radio map the authors represent the coverage area (CA;
aka reception region) of any AP by an elliptical probability
distribution, which can be represented by five parameters [12].
This probability distribution represents only the region in
which a signal from the AP can be received; other than an
implied reception strength threshold, it gives no information
about the RSS. The approach enables fast transmission of the
radio map to a UE [6, 8] and fast computation of the UE’s
position.

A. Coverage area estimation

The coverage area is modelled in [6, 8] by a posterior
distribution for the ellipse parameters 𝜃 given the FP locations
z = {z1, z2, .., z𝑛} where the AP was heard. The distribution
is given by Bayes’ rule

𝑝(𝜃∣z) ∝ 𝑝(z∣𝜃)𝑝(𝜃), (1)

where the likelihood and prior are Gaussian. In other words,
the CA is modelled by fitting the mean and covariance of a
multivariate Gaussian to the data. Alternatively, to obtain a
fit that is robust to outliers, the likelihood and prior could
be Student-t distributed [12, 13]. A Bayesian formulation
of the regression problem has two advantages. Firstly, the
Bayesian prior 𝑝(𝜃) allows one to exploit information about
“typical” coverage areas, which is crucial when only a few
FPs are available [6, 8]. Such information is available through
experimental studies. For example, the typical reception range
for WLAN in indoor environments is 20–50m [2, p. 9].
Secondly, using Bayes’ rule allows recursive estimation and
updating of estimates [8].

The CA method considered above ignores the specific
RSS values corresponding to IDs of observed APs. Hence
it is less sensitive to changes in the radio environment than
fingerprinting methods that use these values. This gain in
robustness, however, comes generally at the cost of lower
accuracy compared with nonparametric fingerprinting methods
(e.g. WKNN), which besides FP locations and IDs of APs
observed in each FP often1 also store corresponding RSS
values, and use them in the positioning phase.

A coverage area method that uses RSS information is
proposed in [6, 13]. Instead of storing only one CA per AP
in the database, several CAs per AP are stored, which are

1Some authors store RSS-based rankings of AP-IDs or RSS ratios or RSS
differences rather than the measured RSS values.

modeled from FP data that is grouped according to RSS.
In [13] the authors examine the use of one, two and three CAs
per AP assuming both Gaussian and Student-t distribution for
location reports. FPs are grouped based on their RSS values
and different CAs are generated using only location reports of
their corresponding group. An important feature is that any FP
can be part of more than one group. Three different grouping
rules are considered: RSS-level, 𝑛 strongest APs of each FP
and 𝑥% strongest APs of each FP; see [13] for details.

B. Positioning using coverage areas

A position estimate for a UE using coverage areas [6, 8, 13]
can be obtained by applying Bayes’ rule. The position estimate
and an uncertainty measure of the estimate can be extracted
from a Gaussian posterior probability density function 𝑝(x∣c)
of the UE position x given a list c = (𝑐1, 𝑐2, ..., 𝑐𝑁 )𝑇 of APs
observed by the UE in the current position. For the conjugate
(i.e. Gaussian) prior pdf of this position, a suitable mean and
covariance, which represent prior knowledge on UE’s position,
could be chosen. In case such information is unavailable,
setting the covariance very large is justified [6]. For computing
the likelihood 𝑝(c∣x) [6, 8, 13] it is assumed that prior
probabilities of observing 𝑐𝑛 are equal for all 𝑛 = 1, ..., 𝑁
and that observations are conditionally independent given x.

III. PATH LOSS MODELS

Path loss (PL) models refer to models of the signal power
loss 𝐿𝑃 or the received signal strength 𝑃RSS along a radio link,
averaged over large-scale and small-scale fading [1, p. 127].
In the simplest models the PL depends only on the transmit
power and the distance a radio wave travels; more complex
models take further factors into account. For an overview of
propagation mechanisms and PL models we refer the reader
to [1, 2, 14] and references therein.

The relation between the RSS and the radio wave’s traveled
distance can be used for positioning. From RSS measurements
and PL models the distances between a set of reference
nodes and the target node are estimated, which then enables
estimation of the target node’s position. However, the position
estimate is sensitive to signal noise and PL model parameter
uncertainties because the distance-power gradient is relatively
small [15]. Consequently, these estimates are generally less
accurate than radio-signal based estimates that are derived
using angle of arrival or time delay measurements.

A. Parameter estimation for PL models

It had been shown that it is ill-suited for several real-
world applications to assume the parameters of the PL models
to be known a-priori [3]. Therefore, the parameters should
be estimated, simultaneously with the AP positions (in case
they are unknown), from FP data consisting of AP-IDs and
corresponding RSS values.

A widely applied PL model (see e.g. Dil and Havinga [4])
that is used for describing the RSS dependency of distance



𝑑 between AP and UE in any indoor environment is the log-
distance model

𝑃RSS(𝑑) = 𝐴− 10𝑛 log10(𝑑) + 𝑤, (2)

where 𝐴 = 𝑃RSS(1) (apparent transmission power) and 𝑛
(PL exponent) are the unknown parameters, and 𝑤 is a zero-
mean Gaussian random variable with variance 𝜎2

𝑤 used for
modelling the shadow fading (aka slow fading). Nurminen et
al. [16] estimate Gaussian distributions for AP position as well
as 𝐴 and 𝑛 of the AP’s PL model simultaneously using the
Iterative Reweighed Least Squares (IRLS) method. Similarly
to the method introduced in Section II, the Bayesian approach
used in [16] permits updating AP position estimate and PL
model parameters as new fingerprint data becomes available.

The algorithm uses uninformative Gaussian priors. Nurmi-
nen at al. [16] argue that one can choose the valid prior mean
values for 𝐴 and 𝑛 arbitrarily, since for large numbers of FPs
the posterior distribution is typically unimodal, which is sup-
ported by Li’s findings [3]. Nevertheless, for cases with limited
data, a well-chosen informative prior is beneficial. Various
studies yielded values for the PL parameters (e.g. [17]). For the
prior AP position more care should be taken in order to prevent
IRLS placing the AP in an area of weak RSS values [16].
However, even with such measures it cannot be guaranteed
that the algorithm finds the correct AP position, but covariance
matrices yielded by the IRLS give the user a tool to distinguish
between reliable and unreliable AP position and PL parameter
estimates. To account for correlation in measurement errors
the authors add a small constant diagonal matrix for the AP
position’s covariance matrix. The cross-correlation between
AP position and PL model parameters is, however, neglected,
mainly to limit the number of parameters.

B. Positioning using PL models

Once the parameters of the PL model and the positions
for all APs are estimated, trilateration or some other nonlinear
estimation technique can be used to estimate the position of the
UE. In [16] Nurminen et al. test three different methods that
use the PL model (2) with real WLAN data in an indoor office
environment: a grid method that uses standard Monte Carlo
integration, the Metropolis-Hastings algorithm, and the IRLS.
All three methods are analysed using both point estimates
and Gaussian distributions for 𝐴 and 𝑛. The tests show that
assuming Gaussian distributions for the parameters rather than
point estimates is, in general, beneficial. These results are
not surprising, since the PL model contains approximation
errors [18]. If less FP data is available for estimating the PL
model those errors, in general, are larger. Therefore, in such
situations it should be beneficial, from a theoretical point of
view, to assume more uncertainty in the parameter estimates.
Furthermore, the PL exponent 𝑛 can be assumed constant only
for a limited time in an environment [3]. Since those changes
are minor as long as the environment stays the same, they can
be captured to some extent by assuming some uncertainty in
the PL exponent estimate.

In terms of computational demand the grid method and the
Metropolis-Hastings algorithm have no edge compared with
the WKNN that is used as reference, whereas the IRLS is
significantly faster and achieves running times close to those
of the CA method presented in Section II.

IV. GAUSSIAN MIXTURES MODELS

A known disadvantage of the CA approach discussed in
Section II is that most of the probability mass is located near
the centre of the ellipse that is used for describing an AP’s
coverage area. However, for weak signals the UE is more
likely to be close to the edge of the CA. Therefore, CAs yield
in such cases rather poor estimates in the positioning phase [6].
In the previous section we looked at approaches that address
such issues by taking into account the RSS in addition to
the AP-ID by using PL models. Alternatively, we could apply
Gaussian mixture (GM) models (aka Gaussian sum models).

A Gaussian mixture is a convex combination of Gaussian
density functions 𝒩 (x;𝝁,Σ), namely

𝑝(x) =

𝑁∑
𝑛=1

𝜔𝑛𝒩 (x;𝝁𝑛,Σ𝑛), (3)

where weights 𝜔𝑛 are nonnegative and sum to one. The main
theoretical motivation behind GM and filters based on it is
that any density function can be approximated, except at
discontinuities, by a convex combination of Gaussian densities
arbitrarily closely [19].

A. Representing FP data using GMs

In [20] Kaji and Kawaguchi introduce an approach that
represent an AP’s RSS distribution as a GM model. Although
this approach generally will require more data to be stored
in the radio map than the CA approach of Section II, it
should still require considerably less storage compared with
traditional FP databases.

In their algorithm the collected FP data is first transformed
into a point distribution, where the point density depends on
the signal strength received in a FP (the higher the RSS the
higher the point density). Then the parameters of the GM
model, namely mean values {𝝁𝑛}𝑁𝑛=1, covariance matrices
{Σ𝑛}𝑁𝑛=1 and component weights {𝝎𝑛}𝑁𝑛=1, are optimised by
expectation maximisation [21]. Kaji and Kawaguchi point out
that their approach allows updating the GM models as new
FP data becomes available. They do not provide an equation
or rule for determining the number of components 𝑁 . In our
tests in Section V we use 𝑁 = max([𝐾/40], 8), where 𝐾 is
the number of FPs in which the specific AP is observed.

B. Positioning using GM approximation of the PL model

In positioning tasks the statistical model is often non-
Gaussian and/or significantly nonlinear (see e.g. [22] for a
criterion for significant nonlinearity). Therefore the Bayesian
recursion is generally unsolvable in closed form [19]. Apply-
ing a GM to solve such generally multimodal systems has
the advantage that it can follow the multiple peaks of the
probability distribution function, unlike the EKF. However,



to ensure fast computing times, which would allow real-time
positioning on mobile devices, the number of components
should be kept small.

Therefore, Müller et al. [23] introduced a generalised ver-
sion of GM that relaxes the non-negativity restriction on com-
ponent weights (GGM). For more details see [24]. Assuming
isotropic ranging models, i.e. omni-directional AP antennas,
the GGM yields a satisfying approximation of the normalised
measurement likelihood with only two Gaussian components,
namely

𝑝(𝑑∣x) ≈ 𝒩 (x𝑢; 𝝁1,Σ1) ⋅ (1− 𝑐 ⋅ 𝒩 (x𝑢; 𝝁2,Σ2)) , (4)

with component 1 having positive weight and component 2
having negative weight, and x𝑢 being the position vector
contained in state x. Furthermore, the formula 𝑐 = 𝑐 ⋅
(2𝜋)

𝑛𝑢
2

√
det(Σ2), where 𝑐 ≤ 1 and 𝑛𝑢 is the dimension of

x𝑢, ensures nonnegativity of (4). To achieve similar approxi-
mation quality the traditional GM would require a significantly
larger number of components due to the infinite number of
peaks of the likelihood, which would prohibit its application
for real-time positioning.

The main principle of the GGM is to use the AP location
as mean values 𝝁1 and 𝝁2, rather than some of the nor-
malised likelihood’s peaks. It then uses the range measurement
𝑑, which in case of WLAN RSS measurements is derived
from the PL model (2) using the RSS, to determine the
components’ covariance matrices. Due to assuming isotropic
ranging models those covariance matrices are multiples of
the identity matrix, i.e. Σ1 = 𝜎2

1I and Σ2 = 𝜎2
2I with

𝜎2 < 𝜎1. The values 𝜎1 and 𝜎2 are determined using a
heuristic model, whose parameter(s) are optimised in the off-
line phase by either minimising the Lissack-Fu distance [23]
or the Kullback-Leibler divergence [24] between the exact
normalised likelihood and its GGM approximation.

For positioning a GGM for each observed AP is determined,
based on the AP’s RSS value. Those likelihood approximations
are then multiplied with the prior position estimate to get a
new Gaussian mixture. Finally, this mixture is collapsed to a
single Gaussian to obtain the posterior position estimate and
its covariance.

Kaji and Kawaguchi [20] use a particle filter for positioning
for their approach, which represents FPs by GM models.

V. COMPARATIVE TESTING

In this section we compare the performance of the paramet-
ric fingerprinting and positioning methods described in the pre-
vious sections. We evaluated these methods by analysing their
WLAN based positioning accuracy for six test tracks located
within two buildings of Tampere University of Technology. For
two of the tracks measurements were collected several months
later than for the other four tracks, which were collected at
the same time as the data used for generating the radio maps.
Some of the test tracks had floor changes, which were assumed
to be known. The radio maps were built separately for each
floor. Table I shows for each floor of the two buildings the
number of detected APs, the number of FPs, and the number

Building Floor APs FPs TPs
1 1 200 889 19
1 2 289 243 47
1 3 212 160 22
2 1 154 1 530 168
2 2 186 1 582 33
2 3 148 333 19

Table I
DATA SET SIZES. SOME APS COULD BE HEARD ON SEVERAL FLOORS.
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Figure 1. Data storage requirements for radio maps for tested methods in
our two test buildings. There were 1 292 FPs in building 1 and 3 445 FPs in
building 2

of test points (TP) for the four tracks collected at the same
time as the data used for the radio maps. TPs are points on
the test tracks that we positioned in our evaluation.

For comparison we implemented CA-based positioning with
single CA [8] and 2-level CAs with limit −70 dBm [13],
PL model [16], GGM approximation of the PL model [23]
and the signal strength estimation model from [20] (denoted
GMEM). The standard deviation for RSS based methods was
set to 6 dB. In addition to these parametric methods we used a
weighted 𝑘-nearest neighbours method (WKNN) with 𝑘 = 5
as a reference.

Figure 1 shows the sizes of radio maps for both buildings
for each method. The WKNN does not summarise the FPs
in any way, and therefore has the highest requirements. All
parametric methods reduce the size of the radio map consid-
erably. In our tests the radio map size is reduced between 30%
and 90%. However, because the size of the radio map used by
WKNN depends on the number of FPs and the size of the
radio map used by the other methods depend on the number
of APs those numbers cannot be generalised.

Detailed analysis of the radio maps revealed that the PL
exponent estimate 𝑛̂ of an AP tends to take values smaller
than 2 if the AP has been observed only in a small number of
FPs. If the AP has been observed in a larger number of FPs,
then a PL exponent estimate smaller 2 is less likely (68% of
all APs that were observed in fewer than 100 FPs have 𝑛̂ < 2,
but only 27% of all APs that were heard in more than 100
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Figure 2. Method performances with all data
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Figure 3. Method performances with five strongest measurements

FPs have 𝑛̂ < 2). PL exponents smaller 2 can be explained
by the fact that the corridors in which we collected our FPs
acted as waveguides [1, p. 66].

The true routes for all six test tracks were measured by
clicking a map plot on a touch screen while walking and
interpolating between the clicks, and were estimated for both
static case and filtered case (i.e. time series). For the filtering
we considered the state vector x𝑘 containing location and
velocity of the UE. Both CA-models and GGM were updated
using a plain Kalman filter. In addition, we collapsed the
GGM to a single component after 5 measurements and after
each time step. The GMEM used a grid for static position
estimation and a particle filter with 300 particles for the time
series estimation; the PL model method used Gauss-Newton
for static positioning and a GM filter [25] for time series.
In time series the effect of parameter uncertainties varied
depending on the location, and therefore was computed in the
prior mean of the estimate. The WKNN was given a standard
deviation of 10m for filtering with a Kalman filter.

The methods were tested in four different scenarios:
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Figure 4. Method performances with 90% of APs dropped
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Figure 5. Method performances when positioning done several months after
data for radio map generation was collected

Fig. 2: full data
Fig. 3:only the APs with five strongest signals were used

for positioning
Fig. 4:90% of APs were dropped pseudorandomly to check

how the methods perform in situations with low AP
density

Fig. 5:data for generating the radio maps and data for
positioning were collected with a time gap of sev-
eral months to evaluate the methods’ performance
degradation over time

In Figs. 2 – 5 we present quantiles with box plots for the
positioning errors, absolute time for one position estimate and
consistency values that can be used to evaluate the accuracy of
the estimated position’s covariance matrix that is reported by
a method. For the n-cons (normal consistency [26, p. 235 ff.])
values we assumed Gaussian distributed positioning errors,
and computed how often the errors were within the 50%
ellipse, i.e.

(x̂𝑢 − x𝑢)
𝑇P−1

𝑘 (x̂𝑢 − x𝑢) ≤ 𝜒2
2(0.5) = 1.3863, (5)
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Figure 6. Filtererd routes of selected methods when data for generating the radio map and data for positioning where collected with a time gap of several
months.
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Figure 7. Filtererd routes of selected methods when data for generating the radio map and data for positioning where collected within one month.



where x̂𝑢 is the estimated UE position, P𝑘 its covariance
matrix and x𝑢 the true UE position. This measure may be
used for checking the error estimate in both ways (if it is too
small or large) as long as the distribution is close to the normal
distribution. In g-cons (general consistency [27]) we computed
how often the errors were within 50% for any distribution
using the modified Chebyshev inequality, namely

(x̂𝑢 − x𝑢)
𝑇P−1

𝑘 (x̂𝑢 − x𝑢) ≤ 2

0.5
= 4. (6)

When using all of the data all parametric methods were
inconsistent, with n-cons values far from the desirable 50%
and g-cons values far from the 50% that can be interpreted
as minimum requirement (a g-cons of 60% is not necessarily
better/worse than 55%), and there are no significant differences
between the accuracies of the different methods, except for
filtered GMEM. The computation time for static GMEM is
higher than for filtered GMEM because it is computed on
a grid, whereas the filtered GMEM uses a particle filter.
The results suggest that the 300 particles proposed in [20]
was too few. Using only the five strongest measurements
improved the consistency and reduced the relative computing
time for all methods. The large time value for static PL
can be explained by the facts that in two (of 308) TPs the
convergence was extremely slow and that our implementation
did not restrict the number of iterations. Since the GGM’s
computational demand depends in exponential manner on
number of measurements [24] the reduction in computation
time for static and filtered GGM could be expected, although
in our tests the dependence is not exponential due to collapsing
a GGM after five measurements to a single Gaussian. At the
same time the positing accuracy degraded significantly only
for WKNN and the CA 1-level approach. This is evidence for
dependency of the measurements. In the test building there
were some Multiple Input Multiple Output (MIMO) APs that
produced dependent measurements.

Fig. 4 reveals that the more sophisticated approaches (PL,
GGM and WKNN) perform worse or similar than the relatively
simple CA methods for scenarios with low AP density. The
same holds for the scenario in which the radio map was
outdated (compare Fig. 5).

One possible reason for the static and the filtered GGM’s
poor performance in all four scenarios (compared with their
performance in [23] and in [24]) might be that we used a
different approach for determining the covariance matrices of
the GGM’s two Gaussian components, since our tests where
carried out in a WLAN rather than in cellular telephone or
UWB network. We believe that there exist better approaches
than the heuristic we used, but more research on this topic
will be necessary. A deeper analysis of the GGM can be found
in [24].

Fig. 6 shows an example for positioning with outdated
radio maps. None of the filtering methods provide satisfactory
positioning accuracy in the lower vertical corridor. One reason
for the poor performance in that area is that the radio maps
are missing FPs from the southern, central part of the building.

Another reason may be that the newer data used for positioning
contains weaker RSS values than the older data used for radio
map generation, which causes the distance from UE to APs to
be overestimated. This causes the PL approach, which relies
heavily on the RSS, to position the UE outside the building
at several occasions.

Using an up-to-date radio map (Fig. 7) the filtering methods
provide satisfying positioning accuracy with the PL approach
still struggling. This shows how critical it is to have accurate
PL model parameter estimates.

VI. CONCLUSION

In this paper we presented an overview of parametric
fingerprinting and positioning methods, and tested them with
real WLAN data for different test tracks and scenarios. Be-
sides their positioning accuracies and consistencies, we also
compared the storage requirements for their radio maps with
that of the WKNN (as an example of a nonparametric FP
method).

All parametric methods enable a significant reduction in
the size of the radio map used in the positioning phase. In
addition, our tests show that all parametric methods, except the
CA 1-level and the filtered GMEM method, provide similar
positioning accuracy as the nonparametric WKNN in case of a
high CN density and when using all available measurements.
When using only the five strongest measurements their com-
putation time drops significantly. Furthermore, all parametric
methods still show similar positioning performances, while
the WKNN’s performance degrades considerably. This means
that the parametric methods achieve satisfying positioning
accuracy even with few observable APs. When the AP density
is low or the mapping data is outdated then the simple CA
techniques achieve at least similar positioning accuracy than
the more sophisticated parametric techniques and the WKNN.
Thus, the CA technique gives the best trade-off between accu-
racy and computational demand. The other parametric methods
are, like the WKNN, more vulnerable to harsh environments.
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