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Abstract

A multilingual text-to-speech system is different from a collection of language-

specific synthesizers in the sense that it applies the same procedures and tech-

niques to all languages it supports. Ideally, all language specific information and

data should be stored in data tables and structures, and all algorithms should be

shared by all languages. However, in practice this is relatively hard to achieve

since many languages have quite different requirements for synthesis techniques

and e.g. for text analysis and it is not straightforward to extend a method that is

suitable for one language to new languages. Therefore, multilinguality in text-to-

speech presents a number of technical challenges when designing a new system.

One of the main problems in the current text-to-speech systems is the time

consuming internationalization process of the synthesis technology. Development

requires knowledge about the human speech production and about the languages

being developed. The development, implementation and integration work of a

fully functional system requires multidisciplinary skills, such as signal processing,

language processing and phonetics as well as software programming. Therefore,

it is important to separate the language creation from the actual speech synthesis

engine development. This thesis presents methods and techniques to improve the

language development process in a speech synthesis system. The main idea is

to separate the language independent synthesis engine and the language specific

data and also provide a framework and tools, including an integrated development

environment that can be used to ease the language creation process.

In multilingual text-to-speech, common algorithms and techniques should be

applicable for multiple languages. A multilingual rule-based number expansion

framework is proposed in the thesis. The framework is also extended to cover ad-

ditional text normalization tasks. The thesis also presents a text-to-speech frame-

work that has been successfully localized for over 40 languages. The system

consists of a language independent synthesizer, a rule interpreter and a data con-

figurable prosody model and language specific data that is used to control the

speech synthesis. The introduced text-to-speech system is especially suitable for

devices having limited memory resources, such as mobile phones.

The size of the synthesizer increases every time a new language is added. Fur-

thermore, the most memory intensive parts of the whole text-to-speech system are

i



the ones which contain the language specific information. Such components are

for example, lexicons and, in the case of concatenative speech synthesis, speech

databases. For devices having limited memory resources, support for multiple

languages is a major design and implementation challenge. The thesis presents

a novel technique to reduce memory consumption by using an existing synthe-

sis language to approximate a new language on a phonetic level. The presented

technique can also be useful if the language portfolio has to be rapidly increased.

The last part of this thesis discusses the application of a text-to-speech system

as part of the voice user interface. Moreover, the role of the automatic speech

recognition system in some applications is also briefly covered. A preliminary

usability study and evaluation of using a concatenative text-to-speech system to

read text messages is presented. The synthesis quality of the system is found to be

suitable for reading text messages. Furthermore, text-to-speech can be especially

useful in situations where eyes-free operation of the device is needed.
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Chapter 1

Introduction

Nowadays devices such as personal computers, mobile phones and even other do-

mestic appliances have become more complex and automated. Therefore, interac-

tion between humans and computers also becomes more demanding setting new

requirements for Human Computer Interaction (HCI). Human computer interac-

tion is a multidisciplinary area with various fields involving computer science,

psychology, anthropology, education, design and different fields of engineering,

which reflects the complicated nature of an individual’s interaction with a com-

puter. This includes factors such as an understanding of the user and the task the

user wants to perform with the system, understanding of the tools and techniques

that are needed to achieve this and also understanding the software engineering

tools.

In most of the devices requiring interaction with the user the interaction still

takes place in a traditional way taking advantage of displays and keyboards for

transferring the information between the user and the system. However, the de-

velopment in speech technology, both in automatic speech recognition and text-

to-speech side, has made it possible to consider alternative ways of interaction

between human beings and computers and other devices having computer-like ca-

pabilities. Speech is the most natural way for humans to communicate and it could

also be used as a mode of communication between human beings and computers.

This kind of modality in the user interface sets many demands on the device. The

system should be able to understand at least the key parts of the user’s speech and

also be able to generate speech output for the user in order to enable interaction.

Designing a voice user interface requires the use of Automatic Speech Recog-

nition (ASR) and Text-to-Speech (TTS) techniques in order to make the commu-

nication between users and devices possible. ASR is needed to give the machine

the ability to recognize the user’s commands. A TTS system on the other hand is

required to be able to provide speech output to the user of the system instead of

displaying the information on the device. This thesis discusses some techniques

and methods for multilingual text-to-speech and also presents some applications
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2 CHAPTER 1. INTRODUCTION

taking advantage of TTS in the user interface.

The goal of a text-to-speech system is to automatically produce speech output

from new, arbitrary sentences. The text-to-speech synthesis procedure consists of

two main phases. The first is text analysis, in which the input text is transcribed

into a phonetic or some other appropriate representation, and the second is the

actual generation of speech waveforms, in which the acoustic output is produced

from the information obtained from the first phase. A simplified version of the

synthesis procedure is presented in Figure 1.1.

Text
Text Analysis Synthesis Stage

Speech

Text-to-Speech System

Figure 1.1: Phases of a text-to-speech system

Mobile devices usually have a rather small display and they are also often

used in situations in which the user is not able to pay much attention to the screen.

Therefore, using voice user interfaces in such devices can provide several advan-

tages compared to the traditional input and output methods relying on keyboards

and displays. However, applying speech technologies, such as TTS, in mass pro-

duced mobile devices introduces some restrictions and requirements to the system

and technology used. For example, a memory consumption of several megabytes

is rarely acceptable, and for that reason support for multiple languages on a sin-

gle device with a limited memory resources is a major challenge. On the other

hand, the wide language support is considered to be important. If the language

support is not wide enough, the technology easily remains a niche feature that is

not widely used. It is also important to be able to provide all users with access to

the voice user interface regardless of their native tongue.

Because of these requirements, a text-to-speech system should be able to pro-

vide relatively easy and rapid language development and configurability to be able

to adjust in platforms having a small amount of memory and low computational

resources. In this thesis methods to achieve these requirements are presented. The

thesis also discusses the principles of applying a TTS system as part of the user in-

terface, and applications taking advantage of an available speech synthesis system

are introduced.
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1.1 Organization of the Thesis

The thesis consists of eight publications and an introductory review of relevant

speech processing and text-to-speech areas. The introductory part is organized

into seven chapters. In Chapter 2, the fundamentals of human speech production

and different properties of speech are presented. This introduction provides the

background information to understand the transformations required when convert-

ing from text to speech. Chapter 3 gives an overview of a text-to-speech system.

This chapter also includes a short introduction to the history of speech synthesis.

Two main stages, namely the text analysis and synthesis stage of a TTS system,

are presented and some main techniques are introduced. Also at the end of the

chapter, a brief overview of automatic speech recognition is given and some adap-

tation techniques improving robustness are mentioned. An ASR system can be

applied as a part of the voice user interface together with TTS.

Chapter 4 describes different speech synthesis techniques that can be used in

the synthesis stage. The main emphasis is on formant synthesis and concatena-

tive synthesis techniques. Other methods are also discussed. In Chapter 5, the

language dependent part of a TTS system is discussed and the concept of a mul-

tilingual TTS system framework is addressed. In Chapter 5, different procedures

and techniques included in the text analysis and prosody modeling are presented.

The chapter also presents some techniques for quickly adding a new language to

the TTS system.

Chapter 6 discusses the concept of a voice user interface and focuses on apply-

ing a TTS system as a part of a user interface. Some usability testing methods that

are normally applied during the development and evaluation of different applica-

tions are also presented. Finally, Chapter 6 discusses some practical applications

taking advantage of text-to-speech technology to provide voice interaction to the

user. Finally, the conclusions are drawn in Chapter 7.

1.2 Summary of the Publications

In Publication 1 [75], two intonation models are compared against a reference

created with natural intonation for synthesis of US English names. The models

developed are direct classification and regression tree (CART) based pitch estima-

tion and a simple superposition model where fundamental frequency contours are

generated by overlaying multiple components of different types.

Publication 2 [76] describes a method for rapidly increasing the language port-

folio of an existing TTS system with minimum effort and memory consumption.

The method is referred to as cross-lingual phoneme mapping and it modifies the

phonetic transcription of a new language by presenting it with the phoneme set

supported by an existing TTS system.

In Publication 3 [77], an integrated development environment for the language
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development of a formant synthesis based text-to-speech system is presented. The

development environment is capable of supporting platform independent develop-

ment of multiple synthesis languages using only data such as rules and parameters

and gives the user possibility to tune the TTS system without a deep knowledge

of the underlying implementation.

Publication 4 [93] presents a multilingual data configurable TTS framework

especially suitable for devices and applications where a low memory footprint

is required. In Publication 5 [92], the perceptual effect of reducing the number

of control points for formant contours in rule-based synthesis is discussed and

studied. Publication 6 [78] presents a novel method and a framework for mul-

tilingual rule-based number expansion. Possible extensions for normalizing also

other non-standard words such as different abbreviations by applying the same

rule-based framework are presented in Publication 6 [78].

Publication 7 [94] introduces a text message reader application for Nokia Se-

ries 60 mobile phones taking advantage of a state-of-the-art TTS system. The

user interface design and immediate usability test of the application are also dis-

cussed in the publication. Finally, in Publication 8 [96], three different adaptation

methods for noise robust automatic speech recognition are compared. These tech-

niques could be applied for example in a speech recognition system that is part

of a voice user interface. Furthermore, many of the algorithms that are applied in

speech recognition can also be utilized in Hidden Markov Model (HMM) based

speech synthesis. For example, the adaptation methods originally used in ASR

have also been applied in HMM synthesis.

1.2.1 The Author’s Contribution to the Publications

In Publication 1 [75], the author implemented the prosody models and tuned the

model parameters. The author also did extensive background research and helped

writing the publication. In Publication 2 [76], the author designed and imple-

mented the cross-lingual phoneme mapping in the TTS framework. The author

has also implemented some phoneme mappings and helped writing the publica-

tion. Publication 3 [77] was the result of collective efforts. The author helped and

supervised implementing the user interface of the language development tool. The

author also designed and implemented the multilingual TTS system that is used in

the language development tool. Publication 4 [93] presents a multilingual text-to-

speech system. The author designed and implemented the framework for language

specific rules and data, including the conversion tools, syntax and grammar of the

rules, and the interpreter of the rules. In Publication 5 [92], the author investigated

different interpolation techniques and implemented them in the TTS system. The

author also helped writing the publication. Publication 6 [78] presents a multi-

lingual number expansion framework. The author implemented the framework

including the extension and helped writing the publication. In Publication 7 [94],
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the author was responsible for the user interface of the application, helped in the

usability test and implemented the text-to-speech support in the application. The

author also drafted the manuscript. Publication 8 [96] compares different adap-

tation methods for noise robust speech recognition. The author developed and

implemented the modifications to the adaptation methods, performed the tests and

solely wrote the publication.
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Chapter 2

Human Speech Production and

Phonetics

This chapter discusses the physical mechanisms behind human speech production

and describes the general structure of the human articulatory system. Different

aspects and properties of human speech are also introduced in this chapter. This

includes the acoustic speech signal itself and the phonetic and higher level linguis-

tic information describing human speech. The purpose of this chapter is to give

the reader an understanding of how human speech is produced and how speech

can be analyzed. The aim of this chapter is also to provide the background infor-

mation on important concepts and terms related to speech synthesis discussed in

the following chapters.

2.1 Properties of Speech

Speech is the most natural way for human beings to communicate. Speech is

generated by human respiratory and articulatory systems that consist of different

organs and muscles. Coordinated action of these speech production organs result

in sound waves that propagate in the air. The information conveyed by speech

can be analyzed in many ways. In general, the following levels of description are

distinguished: acoustic, phonetic, phonological, morphological, syntactic, seman-

tic and pragmatic levels. These levels are mainly related to the transformations

required when converting text to speech. Furthermore, the information commu-

nicated in spoken language can be categorized as linguistic and paralinguistic.

Whereas the verbal content, the actual meaning of the words, is considered as

linguistic information, the paralinguistic channels contain information about the

speaker. Paralinguistics is concerned with factors of how words are spoken, i.e.

volume, intonation, speed, breathing, hesitation etc. [22, 111].

7



8 CHAPTER 2. HUMAN SPEECH PRODUCTION AND PHONETICS

2.1.1 Acoustic Level

Speech is physically produced by a variation of the air pressure, caused and emit-

ted by the articulatory system. Speech can be analyzed by first digitizing the

speech waveform and then applying various digital signal processing operations

in order to highlight its acoustic traits such as fundamental frequency, intensity

and spectral energy distribution. Each acoustic trait is related to a perceptual

quantity, in other words, pitch, loudness and timbre.

Speech signals have both deterministic and stochastic behavior. The stochastic

nature of speech can be seen when the same word is pronounced several times.

Even if the waveforms of different instances of the same word clearly share same

characteristics, there are still differences in the waveforms. This randomness is

caused by the fact that there are always small differences in the pronunciation of

a certain word. This happens because it is impossible to control the articulatory

system accurately enough to produce exactly the same waveform twice.

The deterministic behavior of speech is mainly due to short-time periodicity in

voiced sounds. In addition of being periodic in a short-time scale, speech signals

of voiced sounds also contain harmonic components. These harmonic components

can be seen as peaks in the speech spectrum. Although voiced sounds are deter-

ministic in their behavior, there is always a stochastic component present in speech

waveforms. The prosody independent randomness can be observed as differences

in the waveforms of the same sound pronounced several times and this stochastic

component can be usually modeled as spectrally shaped white noise [41, 111].

Human Speech Production System

Speech can be described as the result of the coordinated action of a number of

muscles. The respiratory organs provide the energy needed to produce speech

sounds forcing an air flow in the trachea and through vocal cords. Vocal cords

are composed of two contiguous membranes and the tension is controlled by the

neighboring muscles. Vocal cords provide an aperture in the larynx, called glottis.

The size of the glottis can be varied using the muscles in the larynx. In voiceless

sounds the glottis is open, resulting from the abduction of the vocal folds, see

Figure 2.1.

The glottis is open at between 60% and 95% of its maximal opening and the

air flows relatively freely through the larynx. If the flow of air has a low volume-

velocity (200-300 cc/sec) then the air flow is smooth [13]. This kind of airflow

is termed nil-phonation. Nil-phonation is used for many voiceless speech sounds

such as [f,s] in the English words "feet" and "seat".

On the other hand, if the volume-velocity is above the 300 cc/sec then turbu-

lence will occur as the air flows through the glottis. This is termed breath and is

found in the sound [h] and, in those languages that use them, in voiceless vowel

sounds.
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Figure 2.1: The human vocal organs

Voiced phonation is produced through the vibration of the vocal folds. The

vibratory cycles of the vocal folds are repeated on average about 120 times per

second for an adult male speaker, and about 220 times per second for an adult

female. However, these frequencies may be increased or decreased by speakers

when they raise and lower the pitch of their voice. Voiced phonation involves a

pulsing action that expels short puffs of air very rapidly, and this action creates a

humming noise at the larynx that adds to the perceptual salience of voiced sounds.

For example, when comparing sustained [z] to [s] one can feel the vibration of the

vocal folds within the larynx used with [z] by holding the fingers against one’s

Adam’s apple. The vibration of the vocal folds is produced with the cooperation

of both muscular and aerodynamic forces, with the balance of these forces altering

subtly during the vibration cycle. The length of the cycle defines the fundamental

frequency, F0, of the voiced sound. This ensues that the glottal waveform is com-

posed of a sequence of pulses when transmitted through the vocal tract [22, 111].

Vocal Tract and Formants

The human vocal tract, shown in Figure 2.1, is basically composed of certain

cavities and organs that are used to modify the excitation airflow from the lungs

and larynx. Modifying the airflow is performed by changing the shape of these

cavities and using articulatory organs to control the manner of articulation. The

main cavities of which the vocal tract is composed are the pharyngeal cavity, the
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oral cavity and the nasal cavity. Changing the shape of the cavities changes the

properties of the vocal tract and results in different sounds. The most important

articulatory organs are the tongue, lips and teeth.

The vocal tract is effectively an acoustic tube having certain physical proper-

ties. These physical properties can be varied by changing the shape of the vocal

tract. This can be understood as a speech processing filter having a certain fre-

quency response. The filter receives its excitation from the lungs and larynx and

the excitation signal is then filtered by the filter representing the properties of the

vocal tract. An example of the shape of the excitation is shown in Figure 2.2.

In Figure 2.2 Tp marks the time during which the vocal folds are opening, Tn is

the time between most excitation and vocal fold closure and T0 is the time during

which folds are open. Similarly, T is the total duration of the cycle and T −T0

marks the time when the vocal folds are closed. The average rate of air flow is

denoted as u0 and uac is the maximum rate of airflow. Similarly, T0/T is the per-

centage of time in each cycle that the vocal folds are open, often referred to as

Open Quotient. Filtering the excitation signal with the filter representing the vo-

cal tract modifies the spectral properties of the excitation signal resulting in the

produced output speech signal. Because the human vocal tract can be seen as an

u0
uac

T0
Tp Tn

T
t

u

Figure 2.2: Two cycles of glottal pulse waveform

acoustic tube whose shape can be altered, then depending on the current shape it

has a tendency to amplify signal components of certain frequencies. The vocal

tract therefore acts as a resonator whose behavior can be described by a transfer

function which is dependent on the shape of the vocal tract.

The resonator has certain frequencies which it tends to amplify over other

frequencies. These resonant frequencies are called formants. The formants can

be seen in the speech spectrum as visible peaks having certain amplitudes and

bandwidths. Formants can be seen very clearly in a wide band spectrogram in

Figure 2.3, where they are displayed as dark bands. The darker a formant is re-

produced in the spectrogram, the stronger it is (the more energy there is, or the
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more audible it is). The location of the formants in the spectrum is the main factor

Figure 2.3: Spectrogram of the word "appointment"

distinguishing different vowels and some other voiced sounds from each other.

The number of formants in human speech is not fixed but in general there are no

more than six formants present in the speech spectrum. In order to properly dis-

tinguish between different voiced sounds only two or three formants are needed.

Formants are often denoted by F1,F2, ..., Fn where the number indicates which

formant has the lowest frequency and which one has the highest. F1 stands for the

lowest frequency and for males it is usually located in the frequency range 300

Hz - 800 Hz. F2 in turn is located between frequencies 600 Hz - 2800 Hz, F3

between 1300 Hz - 3400 Hz. The higher formants have their own typical bands

in a similar manner. Similarly, the fundamental frequency that is used to measure

pitch is often denoted as F0 [111].

2.1.2 Phonetic and Phonological Level

Phonetics is a field of science that studies speech and the way speech signals are

produced by the articulatory system. In phonetics, different sounds are usually

marked by using International Phonetic Alphabet (IPA) symbols [44]. IPA is a

system of phonetic notation devised by linguists and it is intended to provide a

standardized, accurate and unique way of representing the sounds of any spoken

language. Phonetics can be divided into three different categories depending on

the emphasis of their research. These areas are articulatory phonetics, acoustic

phonetics and auditory phonetics. Auditory phonetics studies the human speech

perception and it will not be covered in this context.

Articulatory phonetics studies human speech articulation and its relation to

the production of different sounds. In articulatory phonetics speech sounds are

grouped into broad phonetic classes related to their articulation. Two parameters

can be employed to look at how sounds are articulated: sound type (manner of

articulation), and the sound position (place of articulation).
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The weakest manner of articulation is called as a vowel. Vowels are charac-

terized by two following properties. The first property is that vowels are voiced

sounds. This means that vowels are sounds containing voicing, which is gener-

ated by the periodical vibration of the vocal folds in the larynx. From the signal

processing point of view the speech signal segment containing a vowel sound

has a periodical waveform and harmonic spectrum. An example of a part of the

periodic waveform of vowel [@] can be seen in Figure 2.4. The second main prop-

erty of vowels is that during the pronunciation of a vowel sound the air can flow

completely unobstructed through the vocal tract. Vowels can be further divided

Figure 2.4: A part of the waveform of the sound [@]

into monophthongs and diphthongs. A monophthong or "pure vowel" maintains

the same articulatory positions throughout the sound, and so the perceived sound

quality is steady. On the other hand, diphthongs are vowels where the tongue po-

sition moves during the production of the vowel, so that two different qualities of

sound are perceived. This can also be seen in the spectrogram of sound [OI] shown

in Figure 2.3, where the formants have two targets instead of one. The English

language has 20 vowels out of which 12 are monophthongs and 8 diphthongs [4].

Whereas vowels are characterized by the fact that the vocal tract is open and

not obstructing the airflow in any way, consonants cover the other cases. Conso-

nants are sounds during which air is not allowed to flow freely through the vocal

tract. Instead, the vocal tract provides a partial or complete obstruction of the

airflow during the pronunciation of consonant sounds. Consonant sounds can be

divided into different classes and sub-classes based on the manner and place of

articulation. The two main classes of consonants are obstruents and sonorants.

Obstruents are consonant sounds during which the airflow in the vocal tract is

obstructed partially or completely by the articulatory organs. Based on whether

the obstruction is partial or if the vocal tract is completely blocked, obstruents can

be further divided into fricatives and plosives or stops. Fricatives are pronounced

with the articulators close together, but not so close as to block the airflow com-

pletely. This creates turbulence to the airflow, which has noise-like characteristics.
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In English there are the following pairs of fricatives, both voiceless and voiced: [f,

v, T, D, s, z, S, Z] [4]. When the articulators are brought close together so that they

make firm contact and the airflow in the oral cavity is completely blocked, the

resultant manner of articulation is termed a stop. Plosives are formed by creating

a complete closure somewhere in the upper vocal tract, for example by making a

firm contact between the tip of the tongue and the alveolar ridge shown in Fig-

ure 2.1. The stoppage of the airflow is quite short, approximately 40-150 ms, but

it results in a build-up of air pressure behind the closure so that, when the articu-

lators part, the air bursts out with a typical popping sound. Plosives are found in

all languages and in English there are six plosive sounds: [p, b, t, d, k, g] [4].

Sonorants form the second main class of consonant sounds. Sonorants are

voiced consonant sounds during which the vocal tract is not constricted in a way

that creates noise-like turbulence to the airflow. When considering the manner of

articulation, sonorants can be further divided into nasals and approximants. Nasal

sounds have a complete closure in the oral cavity but air is allowed to escape

freely through the nasal cavity. This means that no build-up of air pressure occurs,

and so these sounds do not have any plosion. English has three nasals: [m, n, N].

Approximants, on the other hand, are sounds during which some obstruction to the

airflow is created in the oral cavity by the lips and tongue. Approximants combine

features from both vowel and consonant sounds and can be further classified into

glides and liquids [4].

Consonant sounds can be further grouped by considering the place of artic-

ulation describing the place within the vocal tract where the articulators form a

stricture. Some categories of the place of articulation are briefly described in this

section. Articulations made with the two lips are called as bilabial. In these artic-

ulations the upper and lower lips are brought together. Labio-dental articulations

are produced with the lower lip approximating to the underside of the upper front

teeth. Dental fricatives occur in English as pronunciations of the "th" spellings.

For example, the voiceless dental fricative, [T] is the sound "th" in "thin" whereas

its voiced counterpart [D] is the sound "th" in "this". Alveolar sounds are all

formed by raising the tip and/or blade of the tongue up to the alveolar ridge to

form a contact or near contact. These sounds are common in English, for example

alveolar plosive stops, [t, d] and a nasal [n]. Another category of place of articula-

tion is palatal. In palatal sounds the front of the tongue dorsum is raised up to the

hard palate. English has sound [j] for example the "y" in word "yes". Similarly,

in velar sounds the back of the tongue dorsum is raised up to the soft palate (or

velum). The velar plosives and nasal are found in English: [k, g, N]. Uvular sounds

are made by raising and retracting the back of the tongue to the uvula [4].

Acoustic phonetics on the other hand studies the properties of acoustic sig-

nals that are related to different sounds. Different articulations result in different

kinds of acoustic signals that have their own characteristics to differentiate differ-

ent sounds. These characteristics can be examined for example by studying the
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waveform of the speech signal in the time domain or by analyzing its spectrum

[4].

Phonological Level

Phonology forms a bridge between phonetics and higher level linguistics. In pre-

vious sections speech sounds have been described from an acoustic or physiolog-

ical point of view as if it did not convey any information. Phonology introduces

abstract linguistic units as opposed to speech units referred to as phonemes. A

phoneme is the smallest unit in speech where substitution of one unit for another

might make a distinction of meaning. For example, in English the words "pick"

and "tick" differ in the initial phoneme. The same IPA symbols that can be used

for representing the sounds of any spoken language are also applied to mark the

phonemes. Therefore, in a way phonetics studies realizations of the abstract lin-

guistic units i.e. phonemes [4, 41].

Other ways to group speech into different segments which can be interpreted

as acoustically meaningful units have also been introduced. Such segments in-

clude for example diphones, triphones and demi-syllables. The reason to divide

speech into more complex segments than sounds representing the realizations of

the individual phonemes is to be able to include information about the transition

effects between different sounds into the segments. These more complex sound

segments are especially useful in the field of speech synthesis and recognition.

Diphones are speech segments containing the transients between two succes-

sive sound units. The diphone starts in the middle of the preceding sound and ends

in the middle of the following sound unit. Diphones are able to retain the tran-

sition information which is found to be useful especially in concatenative speech

synthesis. For example, in Figure 2.3 a diphone could start in the middle of [p]

and end in the middle of [OI].

Demi-syllables resemble diphones closely. The difference is in the segment

boundaries. While the start and end points of diphones are in general in the middle

of the sound units in demi-syllables these points are located in the places where

the transition between a consonant and a vowel ends and the steady state part of

the vowel begins.

Triphones are speech segments that contain information about three succes-

sive sounds. The start point of a triphone is located in the middle of the first sound

unit and the end point in the middle of the third sound unit [22]. In Figure 2.3

a triphone could start in the middle of [OI] and end in the middle of [t] contain-

ing totally two transitions compared to the diphone that contains one transition

between different sound units.
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Speech Prosody

Phonological description of speech is not complete if it does not include the du-

ration, pitch and intensity of the phonemes as they convey additional informa-

tion about speech. These three components are determined as prosody. In tonal

languages, for example Chinese, the pattern of pitch within a word is needed to

supplement knowledge of the phonemes to determine the identity of the word. In

most European languages pitch, intensity and timing do not normally affect the

identities of the words, but they provide useful information about what is being

said.

Prosodic features can be used to indicate the mood of the speaker and to em-

phasize certain words. Prosody is also the main factor determining which sylla-

bles are stressed. The most important prosodic feature indicating stress and word

prominence is pitch and especially the change of pitch on stressed syllables. Also,

the sound duration increases on stressed syllables but there also are many other

factors that affect the durations of sounds, e.g. their positions in a sentence and

the neighboring sounds.

The correct prosody is also helpful in the interpretation of spoken language.

Speech in which the prosody is significantly different from the one normally used

by a native speaker can be very difficult to understand [4].

2.2 Higher-level Linguistic Descriptions

Speech can be further analyzed at morphological, syntactic, semantic and prag-

matic levels. They form the higher level of speech analysis and are described here

in brief.

In most European languages the lexical richness is several hundred thousand

words. However, when studying a language it is easily noticed that although there

are numerous words they often share some parts of their spelling as if they were

formed from other smaller words or parts of words. Morphology is the part of

linguistics that describes word forms as a function of a reduced set of meaningful

units, called morphemes.

Morphemes are the minimum meaningful units of language. For example, the

word "played" contains two morphemes, "play" and a morpheme to account for

the past tense, "ed". Morphemes are abstract units that can appear in several forms

in the words they affect. When there is a direct mapping between abstract mor-

phemes and segments in the textual form of a word, these segments are referred

to as morphs. Morphs can further be categorized into roots and affixes and the

addition of common affixes can greatly increase the number of morphs in a word.

A high proportion of words in languages such as English can be combined with

prefixes and/or suffixes forming other words but the pronunciations of the derived

words are related to the pronunciations of the root words [54].
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Not all sequences of words listed in the lexicon of a language form a correct

sentence. The list of permissible sentences, although infinite in natural languages,

is restricted and defined by their syntax. Syntax should not be confused with the

rules that are used to describe it and are organized into grammars. Grammars can

also be used to describe the hierarchical structure of sentences, and the operation

of finding the syntactic structure of a sentence with respect to a given grammar is

called parsing.

Basically the syntax of the language can be described by using many different

grammars depending on the part of speech categories, the rule definitions and

the formalism chosen for the rules. Traditional grammars are only one of these

rules and are not particularly well suited for automated and computerized text

analysis as they assume prior knowledge and use of the language. In contrast

to traditional grammars, formal grammars, used to describe computer languages,

have also been applied in describing the syntax of natural languages. Formal

grammars can be directly applied with computerized text analysis. They have

also been extended with semantic features making them powerful tools for natural

language processing.

Although the syntax of the language restricts the set of well-formed sentences

it does not rule out sentences that have no real meaning at all. The study of word

meanings and how they relate to each other is called lexical semantics. When

semantic information is included in the lexicons the number of word classes in-

creases rapidly and the rules describing the relationship between different words

becomes complex. Usually, the distinction between semantics and syntax is not

very clear and the syntactic descriptions are often semantically bearing. Semantic

meaning is often viewed as context independent. In contrast to this, pragmatic

meaning is defined to be context dependent. Everything that refers to the context

and intentions of the speaker is related to pragmatics. Pragmatic analysis is much

less developed compared to the semantic analysis of speech [41].

When developing a text-to-speech system all these different properties and

levels of speech and human speech production should be taken into account. The

task becomes especially demanding if the same text-to-speech system has to be

able to support multiple languages, each having its own, very different character-

istics. These challenges and possible solutions and techniques are considered in

the following chapters.



Chapter 3

Text-to-Speech and System

Overview

Speech synthesis or artificial speech has been studied for centuries. In this section

a brief overview on the development of speech synthesis techniques is given as it

may give useful information and help understand the principles behind the present

TTS systems and how they have developed to their current form.

The earliest efforts made in speech synthesis were done over two hundred

years ago by a Russian professor Christian Kratzenstein in St. Petersburg 1779 [25,

26]. He explained the physiological differences between five long vowels and also

made an apparatus to produce them artificially. A few years later, in Vienna 1791,

Wolfgang von Kempelen introduced his acoustic machine that was able to produce

single sounds and some combinations [57, 101]. Both of these early speech syn-

thesizers were mechanical machines trying to mimic the human speech production

system. Research and experiments with mechanical and semi-electrical analogs

of vocal system continued until 1960s. Mechanical and semi-electrical experi-

ments conducted by known scientists e.g. Herman von Helmholz and Charles

Wheatstone are described in [25, 26, 101].

The first full text-to-speech system for English was developed by N. Umada

and his colleagues in 1968 [57]. It was based on an articulatory model and

included a syntactic analysis module with sophisticated heuristics. The speech

quality of the system was relatively intelligible but monotonous and far from the

quality of modern TTS systems. In mid 1960s the first speech synthesis exper-

iments with Linear Predictive Coding (LPC) based methods were made. Linear

prediction was first used in low-cost systems and its quality was quite poor com-

pared to present systems. However, with some modifications the method has been

successfully used in many present systems. In 1979 Allen, Hunnicutt and Klatt

presented the MITalk TTS system [2]. Two years later Klatt introduced his fa-

mous Klattalk system which used a new and more sophisticated voicing source

described in detail in [57]. The technology used in these systems forms the basis

17
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of many synthesis systems such as DECtalk [37] and is useful in applications and

devices where the memory footprint of the TTS system should be small.

Modern TTS systems involve quite sophisticated and complicated methods

and algorithms. One of the methods applied recently in speech synthesis is based

on concatenating small units of real human speech in order to form the synthe-

sized speech output [41, 43]. These systems take advantage of a large speech

database trying to find the optimal speech segments that would match the input

text. Another method is based on the use of Hidden Markov Models (HMMs)

to model the speech units and concatenating them accordingly, see for example

[131]. Both of these techniques are presented in more detail in Chapter 4.

As the early speech synthesizers were mainly focused on the actual synthe-

sizer part the biggest challenges nowadays are in the text analysis phase. The

system should be able to extract meaningful information from any given text to

be able to produce natural sounding synthesized speech output. One of the main

problems modern TTS systems face is the quality of prosody of synthetic speech.

When a human being reads aloud a certain text, one gathers contextual informa-

tion over the course of the text. In real life the prosody of a particular sentence

is often determined by information presented several sentences ago. However,

current TTS systems are not able to utilize this kind of information well, and the

synthetic speech still lacks the rhythm and other natural variations humans can

produce naturally.

The term TTS is used to describe the process of converting given raw text

into synthetic speech. Concept-to-Speech (CTS) is a term often used for speech

synthesis where the input is not text, but rather a machine generated message. A

TTS system usually comprises two main components, namely text analysis and

speech generation. The text analysis part has to resolve the ambiguities inherent

in written text and produce a clean linguistic representation of the sentence to be

spoken. In CTS, the situation is different. There is no prior input text as such,

but a system generates automatically some text that can be marked linguistically.

These linguistic markings are usually such that they are very difficult to estimate

from the input text. This generated linguistic information can then be used to

improve the prosodic properties of the synthetic speech. This kind of CTS system

can be used for example in dialog systems. The user could ask e.g. "Tell me

what time it is" and the CTS system would generate the answer. Therefore, in

the CTS case, there is not text ambiguity: the generator can annotate the text

it produces with the information needed to guide the synthesis. The synthesis

techniques that are applied in CTS systems have to be able to take advantage of

the linguistic information marked in the text. This means that the synthesizer has

to be able to modify the speech prosody accordingly. HMM synthesizers are found

to be especially useful, since speech parameters can be easily altered by modifying

HMM parameters by applying for example different adaptation techniques applied

commonly in automatic speech recognition [115, 122].
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In this chapter an overview of speech synthesis techniques is given. The chap-

ter will also briefly discuss automatic speech recognition techniques which can

be used when implementing a voice user interface taking advantage of a text-to-

speech system and automatic speech recognition.

3.1 Text-to-Speech System

A text-to-speech system synthesizes speech from a given text. Although TTS is

not yet able to replicate the quality of recorded human speech, it has improved

greatly in recent years. There exist different synthesis technologies suitable for

different applications. The systems differ for example by memory footprint, gen-

erality, language coverage, portability and speech quality. The memory footprint

can be determined to consist of both static and dynamic memory consumption.

The term generality indicates if the system is optimized for a certain specific do-

main. For example, a non-general system could have a limited vocabulary support

and limitations in the length of spoken utterances. Furthermore, a TTS system can

be multilingual or just monolingual. Portability describes how easy it is to trans-

fer the system to another implementation platform or operating system [22, 108].

Finally, the quality of a TTS system is often determined by using the following

four measures [18]:

• Intelligibility: How well the user can understand what is said. This is the

most important quality factor of synthesized speech.

• Naturalness: How much the synthesized speech sounds like real human

speech.

• Accuracy: Describes the correctness of what is synthesized. For example,

making correct choice between "British" and "Best regards" when the

input is "Br".

• Listenability: Describes how well the user is able to tolerate listening of

the synthetic speech without fatigue.

Having defined these four categories it is clear that they are not independent

from one another. For example serious errors in accuracy will lead to less intelli-

gible speech, and this will be perceived as less natural and the listenability of the

synthesized speech becomes worse.

Basically, there does not exist any simple metric that could be applied to any

TTS system and which would reveal the overall quality of the system. One reason

for this is that it is usually not very meaningful to assess TTS systems in isolation,

but it is often more useful to evaluate them in different applications in which the

system would be used in practice. Different applications have differing needs for
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a TTS system. A synthesized voice that is appropriate for a system intended to

entertain may not be the best for e.g. a mainstream application providing infor-

mation to the user [91].

Intelligibility tests are concerned with the ability to identify what was spo-

ken/synthesized. They are less concerned about the naturalness of the signal, al-

though naturalness is related to and influences intelligibility. One way to evaluate

intelligibility is the so called comprehension task in which the users are played

back passages related to the TTS application, e.g. e-mails or text messages, and

asked questions about the passage. For example, "What was the main point of

the passage?" and so on. Other possible tests of measuring intelligibility are re-

ferred to as phonetic tasks that deal with identifying the precise sounds within a

specific word that was synthesized. In the Diagnostic Rhyme Test (DRT) [42, 86],

the intelligibility of word-initial consonants is tested by playing back pairs of

words with a different first consonant. Another test is the Modified Rhyme Test

(MRT) [42, 86] which is similar to the DRT, but includes tests for word-final in-

telligibility (e.g. bath vs. bass). Other phonetic tasks that are used for measuring

intelligibility are for example the Standard Segmental Test, see [48], and the Clus-

ter Identification Test [48]. All these tests require that subjects identify specific

sounds within a signal. Transcription tasks are also used to measure the intelligi-

bility of the synthesized speech. In the Semantically Unpredictable Sentence Test

(SUS) [36] subjects are asked to transcribe sentences that have no inherent mean-

ing or context, and therefore do not afford the possibility of deriving phonetic

information from any source but the signal.

Naturalness of the synthetic speech can be assessed using various listening

tests. One well known subjective method is the Mean Opinion Score (MOS) test.

In the MOS test, listeners are asked to rate the speech quality of different sys-

tems, usually synthesizing the same set of utterances. Another possible test is,

for example, the Forced-Choice Ranking, in which subjects are asked to rank the

synthesized utterances [59].

Testing the accuracy of a TTS system is close to a truly objective test. In

the test, one should collect sentences that contain multiple examples in multiple

contexts of the types of text anomaly that the TTS system is likely to encounter,

and simply mark the wording of the output as correct or incorrect.

Some synthesis techniques may for example be more natural or more intel-

ligible and the goals of a synthesis system will often determine what approach

is used. However at the general block diagram level all modern TTS systems

regardless of the actual synthesis technology share the common basic high-level

structure shown in Figure 3.1.

The generation of synthetic speech is often viewed as a two-stage analysis-

synthesis process. The first part of this process involves analysis of the text to

determine the underlying linguistic structure. The abstract linguistic description

includes the phoneme sequence and other information such as the stress pattern
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Figure 3.1: Two-stage model of a text-to-speech system

and syntactic structure, which can influence the way the text should be spoken.

Furthermore, the analysis part also includes prosody modeling. The second part of

the TTS system is responsible for generating synthetic speech from the linguistic

description [41, 53].

The modular TTS system structure shown in Figure 3.1 is relatively straight-

forward to tailor a general TTS system for a specific application or even to a new

language [41, 53].

3.1.1 Text Analysis and Prosody Modeling

Text consists of alphanumeric characters, blank spaces and possibly a variety of

special characters. The first step in text analysis usually involves pre-processing

of the input text which includes expanding numerals, abbreviations etc. and con-

verting it to a sequence of words. The pre-processing module will also detect the

instances of punctuation and other relevant formatting information. The following

text normalization modules then convert the sequence of words into a linguistic

description. An important part of these modules is to determine the pronuncia-

tion of individual words. Word pronunciation is normally obtained using some

combination of a pronunciation dictionary and letter-to-sound rules. To reduce

the size of pronunciation dictionaries, most TTS systems include some kind of
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morphological analysis. This analysis module determines the root form of each

word and therefore avoids including all derived forms in the dictionary. Usually,

syntactic analysis is also required to be able to determine the pronunciation of

certain words. Once pronunciations have been determined for individual words

some adjustments are usually performed to incorporate phonetic effects occurring

across word boundaries [22, 41].

In addition to determining the pronunciation of the word sequence, the text

analysis module has to determine other relevant information, e.g., how the text

should be spoken including phrasing, lexical stress and the pattern of accentua-

tion of the different words, i.e., sentence-level stress. This information is then

used when generating the prosody for the synthesized speech. Text analysis and

prosody generation modules and different techniques applied there are described

in more detail in Chapter 5.

3.1.2 Synthesis Stage

The final modules in the TTS system perform the speech sound generation based

on the information obtained from the analysis part of the text-to-speech system.

The synthesis stage is usually achieved by applying concatenative synthesis tech-

niques, although formant synthesis is also used especially in devices in which low

memory footprint and consumption are important factors. Another important syn-

thesis technique suitable for devices having small amount of memory is HMM

synthesis. One advantage of the HMM-based synthesis is also that compared to

concatenative synthesis techniques, changing the prosodic and other properties

of the synthesized speech is much easier, which improves the understandability,

especially in noisy environments, see e.g. [72].

Concatenative synthesis is based on the concatenation of segments of recorded

speech. One well known concatenative synthesis method is usually referred to

as unit selection synthesis and it takes advantage of large speech databases of

recorded human speech [43]. Unit selection gives the greatest naturalness due to

the fact that it does not apply a large amount of digital signal processing to the

recorded speech, which often makes recorded speech sound less natural, although

some systems may use a small amount of signal processing at the point of con-

catenation to smooth the waveform. In fact, the output from the best unit-selection

systems is often indistinguishable from real human voices, especially in contexts

for which the TTS system has been tuned. However, maximum naturalness often

requires unit selection speech databases to be very large which makes them easily

impractical for devices having only a small amount of memory.

Another well-known concatenative speech synthesis technique is referred to

as diphone synthesis and it uses a minimal speech database containing all the

diphones occurring in a given language [22]. At runtime, the target prosody of a

sentence is superimposed on these minimal units by the means of digital signal
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processing techniques. The quality of the resulting speech is generally not as

good as that from unit selection but often more natural-sounding than the output

of formant synthesizers [22].

A third concatenative synthesis technique is called domain-specific synthesis

and it concatenates pre-recorded words and phrases to create complete utterances

[22]. It is used in applications where the variety of texts the system will out-

put is limited to a particular domain, such as transit schedule announcements or

weather reports. The naturalness of these systems can potentially be very high

because the variety of sentence types is limited and closely matches the prosody

and intonation of the original recordings. However, because these systems are

limited by the words and phrases in their databases, they are not general-purpose

and can only synthesize the combinations of words and phrases they have been

pre-programmed with [22].

Formant synthesis does not use any human speech samples at runtime. In-

stead, the synthesized speech is created using an acoustic model [41]. Parame-

ters such as fundamental frequency, formant frequencies and bandwidths, voic-

ing, and noise levels are varied over time to create a waveform of artificial speech.

Many systems based on formant synthesis techniques generate artificial, robotic-

sounding speech, and the output would not be mistaken for human speech [41].

However, maximum naturalness is not always the main goal of a speech synthesis

system, and formant synthesis systems have some advantages over concatenative

systems. Formant synthesized speech can be very reliably intelligible, even at very

high speed, avoiding the acoustic glitches that can often plague concatenative sys-

tems. High speed synthesized speech is often used by the visually impaired people

for quickly navigating computers using a screen reader. Also, formant synthesiz-

ers are often smaller systems than concatenative ones because they do not have a

database of speech samples. They can thus be used in embedded systems where

memory space and processor power are often scarce as mentioned earlier [41].

3.2 Automatic Speech Recognition System

Today most automatic speech recognition systems utilize a statistical approach for

speech recognition by applying Hidden Markov Models [97]. HMMs have been

actively studied since 1970s and they provide a framework for ASR. This frame-

work includes automatic training of the statistical parameters of the HMMs and

also decoding algorithms to perform the speech recognition. Several techniques to

improve the performance of the recognition systems have been introduced. These

include for example context-dependent modeling, dynamic feature parameters,

mixtures of Gaussian densities and different model adaptation techniques and fea-

ture normalization methods. Many of the algorithms that are applied in ASR can

also be utilized in HMM-based speech synthesis. For example, context dependent

modeling and various adaptation techniques for speaker and environment adapta-
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tion have been utilized also in speech synthesis [72, 113].
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Figure 3.2: Subword unit based speech recognition system

Figure 3.2 shows a simplified block diagram of an automatic speech recogni-

tion system. In this system, two main blocks can be separated, namely the feature

extraction unit, referred to as the front-end, and the unit performing the recogni-

tion, often referred to as the back-end. Although many different signal analysis

techniques have been proposed for ASR, the most commonly used front-end is

based on mel-frequency cepstral coefficients [97].

The back-end unit is a pattern classifier that tries to decide the correct order of

the pre-trained models that compose the observed speech patterns. The output of

the speech recognition system is the most likely word sequence [97]:

λ̂ = arg max
1≤v≤V

Prob(λv|O) = arg max
1≤v≤V

Prob(O|λv)Prob(λv) (3.1)

where O is a sequence of feature vectors produced by the front-end and λv is the

vth acoustic model corresponding to a word or a sentence. To perform a word level

match for the feature vectors, the word models are usually obtained by concatenat-

ing the subword models based on the rules determined in the lexicon. The recog-

nition of sentences is based on the word recognition and the rules provided by the

grammar that tells the possible words that can follow each other. The semantics

consists of rules and other information that can be used to discard meaningless

sentences [64]. Several techniques have been proposed to solve Equation 3.1. For

example, Prob(O|λ) can be solved by applying the Viterbi algorithm presented

in [123] or using the Forward-Backward algorithm described e.g. in [97]. Another

basic problem in ASR is that the model λ should be optimized to better match the

observation sequence during training of the pattern classifier. One way to do this is

to use iterative techniques such as the Baum-Welch algorithm [5]. This algorithm

is a version of the expectation maximization algorithm and it is able to find the

model parameters that are locally optimal in the maximum-likelihood sense [19].
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By collecting a large enough speech database one can train an HMM-based

speech recognition system which works reasonably well, if the testing conditions

approximately correspond to the training data. However, regardless of how large

the training database is, there will always be such speakers or noise conditions

whose characteristics do not appear during the training process. In real-world

conditions, both the environment and speech characteristics tend to vary contin-

uously in time. It is therefore obvious that a static speech recognizer can only

seldom meet the high requirements set for an ASR system.

Different methods have been developed to tackle the mismatch between the

training data and the operating environment and the speaker. A dynamic ASR

system allows its parameters to be adjusted so that the updated system better

matches the present conditions, and if the adaptation criteria are meaningful, dy-

namic recognition systems are able to outperform ASR systems which make no

use of adaptive methods. These methods can be split into two different groups

[32].

The first class of methods attempts to modify the acoustic models used in

the speech recognition stage in such a way that they better resemble the incom-

ing speech patterns. These techniques include model adaptation methods, such

as Maximum a Posteriori (MAP) Adaptation [35] and Maximum Likelihood Lin-

ear Regression (MLLR) [65] and for example Parallel Model Combination, see

e.g. [33, 34]. These algorithms, such as MAP and MLLR, have also been success-

fully used in HMM-based speech synthesis [72, 113].

In the second class, the corrupted waveform can be pre-processed such that the

resulting parameters are related closely to those of clean speech. The compensa-

tion can be based on the statistical information about the interfering noise source,

e.g. noise subtraction or such feature representation that is robust against noise.

Cepstral Mean Normalization (CMN) is by far the most popular feature normal-

ization method in speech recognition. In its classical form [3], the average of each

cepstral component is subtracted from the feature vectors representing speech.

Knowing that the channel effects introduce a bias in the cepstral domain [31],

CMN is an efficient method for compensating for the channel distortion, and sim-

ilar methods can also be used in HMM speech synthesis [127]. In Publication

8 [96], three different environment adaptation methods were compared using an

HMM-based recognition system. Several other adaptation methods have been

presented, see for example [32].
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Chapter 4

Speech Synthesis Techniques

The last stage in a TTS system is the actual synthesizer and it is responsible

for producing the actual synthesized speech output. Several different synthe-

sis techniques have been introduced and in this chapter concatenative synthe-

sis, rule based synthesis and some other important synthesis techniques, such as

HMM-based synthesis, are covered. In concatenative synthesis small units of

real recorded speech are concatenated after each other to form the final output.

The best concatenation based synthesizers are able to provide relatively natural

sounding synthetic speech. However, the drawback of this synthesis technique is

that since most of the contextual information of the speech units is embedded in

the data, the database size increases, when different phonetic contexts have to be

taken into account and stored in the database to be able to provide natural sound-

ing speech.

Rule based or formant synthesizers are mainly favored by phoneticians and

phonologists as they constitute a cognitive and generative approach of the phona-

tion mechanism. Formant synthesizers also have a much smaller memory foot-

print and requirements than concatenative systems making them suitable for de-

vices having small amount of memory. The drawback of rule based synthesis is

that the sound is usually quite mechanical since the rules controlling the synthesis

are very difficult to develop.

In HMM-based synthesis the speech spectrum and excitation parameters are

modeled by context dependent HMMs and during speech synthesis the HMMs

are concatenated according to the input text. HMM-based speech synthesizers are

able to produce natural sounding speech and their memory requirements are also

relatively small [22, 119].

4.1 Concatenative Synthesis

Connecting prerecorded natural utterances is probably the easiest way to produce

intelligible and natural sounding synthetic speech. However, the drawback is that

27
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the systems are usually limited to one voice and often require more memory ca-

pacity than other methods. One of the most important aspects of concatenative

synthesis is to find the correct sound unit length. The selection is usually a trade-

off between longer and shorter units. With longer units high naturalness, less con-

catenation points and good control of coarticulation are achieved but the amount

of required units and memory is increased. With shorter units, less memory is

needed but the sample collecting and labeling procedures become more difficult

and complex. In present systems units that are commonly used are words, sylla-

bles, demisyllables, phonemes, diphones and sometimes triphones [53].

In this section two well known concatenative synthesis strategies are pre-

sented, namely the unit selection synthesis and diphone synthesis. Unit selection

synthesis uses a large speech database with usually fixed unit size e.g. demisyl-

lables. The basic principle is to collect speech units in different phonetic and

prosodic contexts and find the best matching sequence of units given the textual

input. Another concatenative synthesis technique presented is based on concate-

nation of diphones and it uses a minimal speech database containing all the di-

phones occurring in a given language [22].

4.1.1 Unit Selection Synthesis

The basic idea in the unit selection technique is that one is able to synthesize new

naturally sounding utterances by selecting appropriate sub-words from a database

of natural recorded speech. There are many conditions that have to be met before

the unit selection system is able to work. In unit selection the system has to be

able to decide which units it should use for synthesis to maximize the quality of the

output speech in terms of intelligibility, naturalness and other criteria of quality

presented in the beginning of Chapter 3. Therefore, the systems are trying to find

the optimal sequence of units which minimizes the concatenation cost. Usually,

the cost is split into a target cost that describes how close a database unit is to the

desired unit and a continuity cost that describes how well two adjacently selected

units join together. The target cost is calculated during runtime and it exploits

only features that are computable from the text. Various features have been pro-

posed in the literature typically encoding the phonetic, metrical structure and the

prosodic context of the units. The continuity cost exploits all features of candidate

units and it is generally computed as the Euclidean or Mahalanobis distance be-

tween spectral features representing boundary frames of the corresponding units.

Determining continuity costs is usually computationally expensive, and therefore

it would be desired to be able to calculate the continuity costs offline and store

them into a lookup table. However, it is practically impossible to pre-compute

and store all possible unit combination costs due to the high number of units, but

since most of unit combinations are very rare, it has been shown that it is enough

to store continuity costs for a small subset of the total database without sacrificing
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the synthesis quality.

The overall unit selection process is designed to optimally minimize both of

these costs. This can be expressed more formally using the following notation for

the target cost Ct

Ct(ti,ui) =
P

∑
j=1

wt
jC

t
j(ti,ui), (4.1)

which is the weighted sum of differences of relevant features. In Equation 4.1 Ct

is defined as the target cost, ti is the ith target unit and ui denotes the ith unit in the

unit database. Similarly wt
j is the weight factor used for the jth target cost Ct

j and

P is the number of features compared. In addition, we can define continuity cost

Cc as a weighted sum of features’ differences between adjacent units. This can be

expressed more formally as

Cc(ui−1,ui) =
q

∑
k=1

wc
kC

c
k(ui−1,ui). (4.2)

In Equation 4.2 Cc is defined as the continuity cost, ui−1 is the (i−1)th unit and ui

denotes the ith unit in the unit database. Similarly wc
k is the weight factor used for

the kth continuity cost Cc
k and q is the number of different features compared. The

weighted sum of these two costs has to be minimized in order to find the string of

best matching units from the unit database [43].

Each unit ui in the database is represented by a state in a state transition net-

work and state occupancy costs are given by a measure of unit distortion i.e. tar-

get cost, and state transitions are given by a measure of the continuity distortion.

The unit selection process resembles the Hidden Markov Model based automatic

speech recognition, but instead of using probabilities as in ASR, unit selection

applies cost functions. The unit selection algorithm selects from the database an

optimal sequence of units by finding the path through the state transition network

that minimizes the combined target and continuity costs [43]. For example, if the

word to be synthesized is "appointment" and it is found in the unit database, the

algorithm can choose the whole word (if it minimizes the total cost) instead of

selecting individual units. The spectrogram of the word "appointment" is shown

in Figure 2.3. By selecting longer sequences the system is able to reduce the num-

ber of segment concatenation points and it does not have to take care of how to

smoothly combine say e.g. different diphones or triphones.

Speech Unit Database

Unit selection systems usually select from a finite set of units in the speech database

and try to find the best path through the given set of units. When there are no ex-

amples of units that would be relatively close to the target units, the situation can

be viewed either as lacking in the database coverage or that the desired sentence
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to be synthesized is not in the domain of the TTS system. Therefore, to achieve

good quality synthesis, the speech unit database should have a good unit coverage.

In the simplest sense, this means recording more data from the speaker since with

more data it is more likely that a database will contain a unit that is closer to the

target unit and also likely to have a better continuity.

On the other hand, the problem of increasing the database size is that there will

always be holes i.e. situations that there are no units that would be close to the

target unit in the database. This is due to the phenomenon of relatively frequently

occurring rare events in language [66]. In practice, this means that common events

in a language are very common but there are so many rare events that they are also

common. Also, covering for example all triphone contexts in even a few phrasal

conditions is impractical since the database size would increase too much for the

currently available mass storage systems. Therefore, rather than trying to collect

a very large database it is possible to try to select the "right" data. By "right"

data, we mean that the units in the database would cover the identified acoustic

and phonetic space of the language reasonably well. There are many suggestions

for designing the database inventory and utterances to be recorded. For example,

one solution is to first model the acoustic space of the speaker and find the units

that are acoustically distinct and frequent enough to deserve coverage. In this

method one first builds a cluster tree from a general speech database that has a

good phonetic coverage. After creating the tree, the number of uses of each cluster

is counted using typical utterances for the domain and finally utterances which

have the highest score and coverage are greedily selected [7]. This results in a

manageable set of utterances and the database provides better synthesis quality

(in terms of the database size) than databases that are not well constructed. Most

unit selection systems use a fixed unit size, but longer contiguous segments can be

selected due to the selection algorithm. Typically, the units are based on either e.g.

demisyllables, diphones or triphones but different size units can also be used [8,

11, 43].

The size of the speech database is often also reduced by utilizing various cod-

ing methods on stored speech units. Another option is to reduce the number of

units stored, and different unit selection methods can be used to find the balance

between the database size and the quality of synthesized speech [11, 15, 55].

4.1.2 Diphone Synthesis

Compared to the unit selection synthesis technique, diphone synthesis uses a min-

imal speech database containing all the diphones occurring in a given language.

In diphone synthesis, only one example of each diphone is contained in the speech

database. At runtime, the target prosody of a sentence is superimposed on these

minimal units by means of digital signal processing techniques such as linear pre-

dictive coding [69], Pitch Synchronous Overlap Add (PSOLA), see e.g. [14, 81],
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or MBROLA, see e.g. [23]. Diphone synthesis usually suffers from the sonic

glitches at concatenation points and the quality of the resulting speech is gener-

ally not as good as that from unit selection but more natural-sounding than the

output of formant synthesizers [41].

4.2 Formant Synthesis

Formant synthesis is based on the source-filter model of speech that is described

in [25]. In a formant synthesizer there exist two basic filter structures, namely

parallel and cascade, but for a better performance a combination of them is usually

applied. In theory, formant synthesis also provides an infinite number of sounds

(or sound units), which makes it flexible.

Usually, at least three formants are required to produce intelligible speech.

Each formant is modeled with a two-pole resonator which enables both the for-

mant frequency that is the pole-pair frequency and its bandwidth to be speci-

fied [20].

Rule-based formant synthesis is based on a set of language/sound unit specific

rules which are used to determine all the parameters required to synthesize the

desired utterance. Some typical parameters used in the current formant synthesis

systems include: fundamental frequency, voiced excitation open quotient, degree

of voicing in excitation, formant frequencies and their amplitudes, frequency of an

additional low frequency resonator and the intensity of the low and high frequency

region [2].

A cascade formant synthesizer is shown in Figure 4.1 and it consists of band-

pass resonators that are connected in series. In cascade structure there is only one

amplitude control (A), and the relative intensities of the formants are determined

by their frequencies (F1, F2, F3) and bandwidths (BW1, BW2, BW3). The output

of each formant resonator is then applied as an input of the following resonator.

The cascade structure has been found to be better for non-nasal voiced sounds.

However, the generation of fricatives and plosive bursts is difficult in a cascade

implementation [56].

F1 F2 F3

Formant 1 Formant 2 Formant 3

BW1 BW2 BW3
A

Excitation Speech

Figure 4.1: Basic structure of cascade formant synthesizer

A parallel formant synthesizer is shown in Figure 4.2 and it consists of res-
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onators connected in parallel. The excitation signal is applied to all formants

simultaneously and the outputs are summed together. Adjacent outputs of for-

mant resonators have to be summed in opposite phase to avoid unwanted zeros or

antiresonance in the frequency response. The parallel structure enables control-

ling of bandwidths (BW1, BW2, BW3) and gains (A1, A2, A3) for each formant

(F1, F2, F3) individually and it has been found to provide better quality for nasals,

fricatives and stop consonants [56].

F1

F2

F3

A1

A2

A3

BW1

BW2

BW3

Excitation Speech

Formant 1

Formant 2

Formant 3

Figure 4.2: Basic structure of parallel formant synthesizer

When formant synthesis is applied in a TTS system, cascade and parallel mod-

els are usually combined and tuned to provide better quality. A well known model

is the Klatt88 formant synthesizer that has been applied in several TTS systems,

such as MITalk, DECTalk and Klattalk [2, 20]. This model includes a more com-

plex formant synthesizer, applying both cascade and parallel models with addi-

tional resonances and anti-resonances for nasalized sounds and a sixth formant for

high frequency noise. The model also includes a bypass path to give a flat trans-

fer function and radiation characteristics. Klatt88 uses a rather complex excitation

model that is controlled using 39 different parameters that are updated every 5 ms.

These parameters can be controlled and modified by a set of rules that are applied

during synthesis. In Publication 4 [93], a low-footprint TTS system based on

formant synthesis is presented. During synthesis the parameters such as formant

values and transitions are modified according to the language specific rules. It has

been shown earlier that a coarse representation of formant contours for vowels, for

example, using 20% and 80% points of the phoneme duration, is adequate for their

correct identification and the increase in modeling complexity does not necessar-

ily improve the identification accuracy [40]. The best vowel identification rate is

obtained by determining the formant contours based on the onset, target and the

offset values of the formants [84]. Based on these results Publication 5 [92] stud-

ies the possibility to simplify the rules controlling formant contours by reducing

the number of control points that are used to define the formant contours during

speech synthesis from four to two control points. In the same publication the per-
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ceptual impact of various interpolation techniques between control points, e.g.,

linear interpolation, cubic spline interpolation and smoothing of the piecewise

linear interpolation, was also evaluated. Although formant synthesizers already

have a relatively small memory footprint, some other methods for optimizing the

footprint even further have also been presented in [80, 103].

A high level diagram of the Klatt88 formant synthesizer is shown in Fig-

ure 4.3. In Klatt88 three different voicing source models are available for the

S1

S2

S3

Glottal sound sources

Cascade vocal tract model

Parallel

vocal tract

model

(laryngeal)Parallel

vocal tract

model

(frication)

TL

AH

AF

Figure 4.3: Block diagram of Klatt88 formant synthesizer

user: the standard impulse source (S1) described in [56], the new Klatt88 glottal

model (S2) [58] and the modified Liljencrants-Fant model (S3) [24, 58]. In Fig-

ure 4.3 TL denotes the spectral tilt, AH is the amplitude of aspiration and AF is

used to control the amplitude of frication. An example of the the excitation pulse

produced by Liljencrants-Fant model is shown in Figure 2.2 in Chapter 2.

4.3 Other Synthesis Techniques

In addition to concatenative synthesis and formant synthesis, other speech synthe-

sis methods have been introduced and some of them are presented in this section.

One alternative synthesis technique is articulatory synthesis, which tries to

directly model the human speech production system [57]. Another speech syn-

thesis technique presented is based on linear predictive methods of representing

speech [69]. Linear predictive methods were originally designed for speech cod-

ing, but they have also been used for speech synthesis [101]. Although many

synthesis techniques can produce high quality speech, they are not able to syn-

thesize speech with various voice characteristics such as speaker individualities,

speaking styles, emotions etc. To obtain various voice characteristics in speech

synthesis based on the selection and concatenation of acoustical units, a large
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amount of speech data representing such variations is needed. In order to gener-

ate speech synthesis systems able to generate various voice characteristics with

relatively small amount of data, Hidden Markov Model (HMM) based synthesis

technique has been proposed [131].

4.3.1 Articulatory Synthesis

The basic idea behind articulatory synthesis is to produce synthetic speech by

modeling the human articulatory system directly. This means that a mathematical

model is defined for every organ of the human articulatory system. Thus, differ-

ent models exist for example for the lungs, vocal cords, vocal tract, tongue, lips

etc. and with the help of these models articulatory synthesis tries to model human

speech production as closely as possible. Because of the exact modeling of the hu-

man articulatory system, articulatory synthesis would in theory be a good method

to produce very natural sounding speech. However, the problem with articula-

tory synthesis is the complexity of the implementation, for example it is difficult

to obtain data for the development of articulatory synthesis, and requirements of

computational efficiency. Therefore, because of these requirements articulatory

synthesis has not been widely used in real systems to the present day [57].

4.3.2 Linear Predictive Based Methods

Similar to formant synthesis, basic linear predictive coding (LPC) is based on the

source-filter model of speech, and the filter coefficients are estimated automati-

cally from a frame of natural speech. The basis of linear prediction is that the

current speech sample y(n) can be estimated from a finite number p of previous

samples y(n−1) to y(n− p) by a linear combination with a small error e(n). This

results in that the speech sample y(n) can be presented as

y(n) =
p

∑
k=1

a(k)y(n− k)+ e(n) (4.3)

where p is the linear prediction order and a(k) are the linear prediction coefficients

that are found by minimizing the sum of squared errors over a frame. Two meth-

ods, namely the covariance method and autocorrelation method, are commonly

used to calculate these coefficients, but only with the autocorrelation the filter is

guaranteed to be stable [60, 125].

In the synthesis phase, the excitation used is approximated by a train of im-

pulses during voiced sounds and by a random noise during unvoiced sounds. The

excitation signal is amplified and filtered with a digital filter for which the coef-

ficients are a(k) and they are updated normally every 5-10 ms. The filter order is

typically between 10 and 12 at 8 kHz sampling rate, but for higher quality, at 22

kHz sampling rate, the order is typically between 20 and 24 [52, 60].
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The main deficiency of the ordinary LP method is that it represents an all-

pole model, which means that segments containing antiformants (e.g. nasals and

nasalized vowels) are poorly modeled. The quality is also relatively poor for short

plosives having a time scale event shorter than the frame size used for analysis.

However, modifications and extensions to the basic LP model have been intro-

duced improving the synthesis quality. One example is the Warped Linear Pre-

diction (WLP) model taking advantage of human hearing properties reducing the

needed filter order significantly from 20-24 for 22 kHz synthesis to 10-14 [61].

The basic idea is that the unit delays in the filter are replaced by all-pass sections.

Depending on the used warping function WLP provides a better frequency resolu-

tion at low frequencies and worse at high frequencies, which is however similar to

human hearing properties. Several other variations of linear prediction have been

developed to increase the quality compared to the basic model [17, 20]. With these

methods the excitation signal used is different from the ordinary LP method. Some

examples are e.g. Multi-pulse Linear Prediction (MLPC), where the excitation

is constructed from several pulses, Residual Excited Linear Prediction (RELP),

where the error signal or residual is used as an excitation signal and the speech

signal can be reconstructed exactly, and Code Excited Linear Prediction (CELP),

in which a finite number of excitations are stored in a finite codebook [12].

4.3.3 Hidden Markov Model Based Synthesis

Although many TTS systems can synthesize speech with acceptable quality, they

are not able to synthesize speech with various voice characteristics such as speaker

individualities and emotions. To obtain various voice characteristics in TTS sys-

tems based on the selection and concatenation of acoustical units, a large amount

of speech data is needed. However, it is relatively difficult to collect and seg-

ment large amount of speech data for different languages. Moreover, storing big

database in devices having only a small amount of memory is not possible. From

these points of view, in order to construct a speech synthesis system that can gen-

erate various voice characteristics without big speech databases, Hidden Markov

Model based speech synthesis has been proposed, see e.g. [119].

In HMM-based speech synthesis system, shown in Figure 4.4, the frequency

spectrum (vocal tract), fundamental frequency (vocal source, i.e. excitation), and

duration (prosody) of speech are modeled simultaneously by HMMs. During the

actual synthesis, speech waveforms are generated from HMMs themselves based

on maximum likelihood criteria.

The spectrum part of the HMM output vector is typically based on mel-cepstral

coefficients including zeroth coefficients and their first and second order deriva-

tives. Similarly, the temporal structure of speech, in other words HMM state

durations, is modeled by using multivariate Gaussian distributions [130]. During

speech synthesis the synthesis filter is controlled by the output vector of an HMM
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Figure 4.4: HMM-based speech synthesis system

i.e. mel-cepstral coefficients. One solution is to apply the mel-cepstral analy-

sis technique [119], which enables speech to be re-synthesized directly from the

mel-cepstral coefficients by using a Mel Log Spectrum Approximation (MLSA)

filter [30]. The HMMs are also used to model the fundamental frequency F0 and

the observation sequence for it is composed of one-dimensional continuous val-

ues and a discrete symbol which represents whether the phoneme is voiced or

unvoiced. Therefore, conventional discrete or continuous HMMs can not be used

for F0 modeling and to model such observation sequences, HMMs based on a

multi-space probability distribution (MSD-HMM) have been proposed [118].

Many contextual factors have an effect on the speech spectrum, fundamen-

tal frequency pattern and sound duration, and to capture all these effects context

dependent HMMs are used [118]. However, as the number of contextual fac-

tors increases the number of possible combinations also increases exponentially,

and therefore it is not possible to estimate all model parameters accurately with a

limited amount of training data. To overcome this problem similar decision tree

based context clustering techniques that have been applied in automatic speech

recognition have also been applied in HMM-based speech synthesis [87, 105].

Moreover, these techniques were extended for MSD-HMMs [128].

During speech synthesis an HMM corresponding to the input text is con-

structed by concatenating the context dependent HMMs. The state durations of

the constructed HMM are determined by maximizing the output probability of

the state durations [130]. Similarly, the sequence of mel-cepstral coefficients and

logF0 values including the discrete voiced/unvoiced parameter is determined by

maximizing the speech parameter generation algorithm described in [120]. Fi-
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nally, the speech waveform is generated directly from the mel-cepstral coefficients

and F0 values by applying the MLSA filter.

In HMM-based synthesis technique the speech characteristics can be altered

by modifying HMM parameters. In fact, it has been shown that voice charac-

teristics of synthesized speech can be changed by applying a speaker adaptation

technique [114], a speaker interpolation technique [129], or an eigenvoice tech-

nique [104]. Moreover, in HMM synthesis the adaptation techniques can also

be used for language adaptation. The HMMs can be trained by applying several

monolingual corpora from different languages resulting in a multilingual synthe-

sizer. During synthesis the models can then be adapted to a certain speaker by

applying for example MLLR model adaptation [63].
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Chapter 5

Multilingual Text-to-Speech:

Text Analysis and Prosody

Generation

Nowadays, a text-to-speech system is often applied in a mixed language environ-

ment in different applications. Therefore, the system should be able to support

a number of languages at the same time and also provide a framework for rapid

language and voice development. A multilingual TTS system can be defined as a

system that takes advantage of common algorithms for multiple languages. There-

fore, a collection of language specific synthesizers does not qualify as a Multilin-

gual Text-to-Speech (ML-TTS) system. Ideally, the language specific information

and knowledge should be stored as data and all languages should share the com-

mon algorithms. In practice, this type of model is difficult to achieve. One reason

is that many algorithms and methods applied in TTS systems are often developed

for a certain language, usually for Germanic or other Indo-European language,

and cannot always be, at least directly, applied to other languages, e.g. Japanese

or Chinese.

5.1 Multilingual Text-to-Speech System

A multilingual text-to-speech system can be defined as a TTS system that is able

to support multiple languages. The system should also provide a framework for

rapid language development. An ML-TTS has to also be able to carry out all the

synthesis tasks described in Chapter 3 for all languages the framework supports.

To achieve these requirements different approaches can be applied when designing

a ML-TTS system. First of all, to make the language development easier and also

faster the TTS system should be designed to have a modular structure instead of

implementing all sub-modules into a single monolithic system. In a modular TTS

39
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Pre-Processing

Morphological Analysis

Contextual Analysis

Syntactic Analysis

Grapheme-to-Phoneme

Prosody Model

Synthesizer

MLDS

or

FSs

Figure 5.1: Modular text-to-speech system in which MLDS stands for Multi-Level

Data Structure and FS stands for Feature Structure.

system, it is also possible to apply language specific processing modules e.g. for

text analysis and prosody modeling. However, the drawback of applying language

specific techniques in the sub-modules is that if the language specific modules do

not share the same computational framework and different languages apply com-

pletely different algorithms the system easily becomes complex and difficult to

maintain. Also, development of new languages is more difficult if the framework

lacks common techniques and basically only defines interfaces between different

modules. Therefore, it is desirable to apply methods that can be used for various

languages and ideally configured by data. An example of a low memory footprint

data configurable text-to-speech system is presented in Publication 4 [93]. The

TTS system introduced in Publication 4 consists of a completely language inde-

pendent engine and language specific data, and the system is currently localized

for over 40 languages. There exist also other TTS systems sharing the similar

kind of structure e.g. SVOX TTS system [112] and ETI Eloquence [39] and

its Delta programming language [38]. A high level block diagram of a modular
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text-to-speech system is shown in Figure 5.1.

In the text-preprocessing stage text is usually first divided into sentences and

then split into tokens that are separated by white space characters. The text-

preprocessing module is also responsible for handling non-standard words, such

as abbreviations and numbers. In the morphological analysis stage the input text is

analyzed to find the morphemes of each word. Similarly, in the contextual analysis

each word is assigned a word class tag and in the syntactic analysis stage the sen-

tence type, e.g. declarative or question, is determined. Finally, in the Grapheme-

to-Phoneme (G2P) module the correct pronunciation for the input words is defined

and the prosody model is responsible for generating proper prosody for the synthe-

sized speech. Each sub-module takes advantage of a Multi-Level Data Structure

(MLDS) or Feature Structure (FS) that are used to store different kinds of depen-

dencies and features describing the textual input. The different stages in Figure 5.1

are described in more detail in the following sections.

5.1.1 Multilingual Text-to-Speech System Framework

Modularity was defined to be one of the design principles of a ML-TTS system.

A modular structure can offer many advantages. The first advantage is a standard

observation about systems with a modular structure. When the modules of a TTS

system share a common interface and the input and output behavior of each mod-

ule is agreed, it can be easier for different people to work on different modules

independently. The second advantage is that pipelining the design makes it pos-

sible to stop the processing at any point of the TTS system. For example, when

designing a text pre-processing or a G2P module, one might test the sub-module

separately. Also, it is of course possible to initiate the processing sequence at any

point. For example, one might give a manually tuned phoneme sequence or sound

unit durations to the TTS system bypassing the specific modules [108, 110].

Nowadays, many TTS systems parse the text into a multi-level data structure

or feature structures as shown in Figure 5.1. The MLDSs and FSs can also be ex-

tended easily since it is possible to add extra layers to MLDSs or feature categories

in FSs without affecting the previous analysis modules. Furthermore, because the

data is made independent of the rule formalism, inter-language portability is better

ensured, and MLDS and FS are especially used in TTS systems supporting mul-

tiple languages. Another important fact is that if needed it is possible to replace

a given implementation of a certain processing block by another implementation

having the same functionality but using e.g. a different rule formalism, another

programming language or even algorithm [22].

The modular architecture is also an important aid when developing new lan-

guages. Some of the modules, for example the actual language independent syn-

thesizer, can be taken and re-used when developing a new language for the TTS

system. In the early phase of a development of a TTS system for a new language
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one usually lacks much of the detailed information about the language. For ex-

ample, initially one might only have the G2P conversion module and a speech

database or initial set of control parameters for a formant synthesizer available

for the new language. Text analysis and prosody modules would be implemented

later on. However, one would still be able to get reasonable speech output using

this basic or skeletal TTS system. Also the language development of a text-to-

speech system usually requires several steps and involvement of experts in various

fields. One possible solution to ease the process is an integrated environment for

language development e.g as shown in Publication 3 [77] and in [6, 102] provid-

ing the user possibility to tune the different synthesis parameters without a deep

knowledge of the underlying software implementation. There are also several

other tools for speech processing that can be utilized for different development

and analysis tasks, e.g. [62, 107].

5.2 Text Analysis

The text analysis module is the first part of a TTS system. This module can be

further divided into submodules, shown in Figure 5.1, handling sentence segmen-

tation, tokenizing and normalization of non-standard words. Also morphological

analysis and the assignment of word class features and syntactic analysis are in-

cluded in the text analysis module. Text analysis is a difficult task and it becomes

more challenging if the same framework should be able to support multiple, dif-

ferent languages, such as English, Finnish and Chinese.

5.2.1 Sentence Segmentation and Tokenization

In the sentence segmentation and tokenization stage the input text is first split

into sentences and after that the textual input is divided into tokens, usually sep-

arated by white space characters. A token can be seen as a categorized block of

text, usually consisting of indivisible parts known as lexemes. The main problem

in sentence segmentation is the ambiguity of the period that is marking sentence

boundaries or abbreviations, sometimes even both at the same time, e.g. "It is

6 a.m." Therefore, the correct function of a punctuation period must be identi-

fied. Furthermore, ambiguity regarding capitalized words, proper names vs. sen-

tence initial words must be resolved by the segmentation module. Difficulties

also arise from abbreviations that do not differ from normal sentence final words,

e.g. "no.", which is also an abbreviation for "number" in English. Several ap-

proaches to tackle segmentation problems have been presented. Rule based sys-

tems using heuristic period disambiguation operate on local grammars containing

abstract contexts for within-sentence periods and sentence boundaries [1, 16, 71].

There exist also automated methods for period disambiguation. Machine learn-

ing approaches such as decision tree classifiers use context features such as word
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lengths, capitalization and word occurrence probabilities on both sides of the pe-

riod in question as described in [99].

The simplest approach for tokenization is to split the text at white spaces and

punctuation marks, which do not belong to abbreviations identified in the preced-

ing step. However, for some languages, such as Chinese, splitting text into tokens

is not as straightforward a task but requires a different algorithm to be used. The

difficulty in Chinese is that there is no white space between words. One possible

solution is to apply a Finite-State Transducer (FST) to perform the segmentation.

FST is a finite state machine with two tapes. (An ordinary finite state automaton

has a single tape.) An automaton can be said to recognize a string if we view the

content of its tape as input. In other words, the automaton computes a function that

maps strings into the set {0,1}. Alternatively, one can say that an automaton gen-

erates strings, which means viewing its tape as an output tape. On this view, the

automaton generates a formal language, which is a set of strings. The two views

of automata are equivalent: the function that the automaton computes is precisely

the indicator function of the set of strings it recognized. The class of languages

generated by finite automata is known as the class of regular languages [50].

It has been shown that FST can also be used to model other text analysis

tasks such as handling of non-standard words, morphological analysis, word class

assignment and also grapheme-to-phoneme conversion providing a uniform com-

putational treatment of a wide variety of text analysis problems for multiple lan-

guages [108].

5.2.2 Handling Non-standard Words

Non-standard words are tokens that need to be expanded into an appropriate ortho-

graphic form before the text-to-phoneme module. Normalization of non-standard

words includes for example number expansion ("56" ⇒ "fifty six"), homograph

disambiguation, expansion of abbreviations and symbols ("Grant St" ⇒ "Grant

Street", "1$" ⇒ "one dollar"), appropriate handling of acronyms (whether they

are spelled letter by letter or pronounced as words), e.g. ("BBC" ⇒ "b" "b" "c",

NATO ⇒ "nato"), and also email and URL addresses. A token can be split into

several words in this module. In general, normalization is a difficult task. The nor-

malization of non-standard words is not solved by a simple table lookup solely.

For example, abbreviations can be context dependent and it also impossible to

know beforehand all possible abbreviations that can be used in the text. Further-

more, the phonetic representation is highly context dependent. While most of the

normalization systems try to cope with this problem using heuristic disambigua-

tion and expansion rules, there are also some language modeling and machine

learning techniques suitable for text normalization tasks, see for example [109].

Word normalization can be modeled by maximizing the conditional probability of

a normalized word sequence given the observed token sequence [109]. In Publi-
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cation 6 [78] a multilingual rule-based number expansion is presented. The same

framework has been successfully applied for over 40 languages, such as English,

Finnish and Chinese. The rule-based system is also able to handle additional text

normalization tasks described above.

5.2.3 Morphological Analysis

The task of determining word pronunciation is made easier if the structure, or

morphology, of the words is known, and most TTS systems include some mor-

phological analysis. This analysis determines the root form of each word, for

example, the root for "gives" is "give". The pronunciation of any derived word

can be determined from the pronunciation of the root morphs together with the

pronunciation of the affixes, and it is not necessary to include all derived forms in

the pronunciation dictionary [54]. Also, even if it is necessary to apply letter-to-

sound rules, the rules usually benefit from knowing the morph boundaries and the

extracted morphological information can also be utilized in the syntactic analysis

stage of a TTS system. In morphological analysis, rules can usually be created

to correctly decompose the majority of the words into their constituent morphs.

Other possible techniques for identification of morphemes is to apply a statistical

approach or e.g. FSTs as mentioned earlier [98, 126].

5.2.4 Word Class Assignment and Prosodic Phrasing

The purpose of the word class assignment module is to assign a word class tag

to each token based on its context. This is often referred to as Part-of-Speech

(POS) tagging and the input is the tokenized text from the previous module [22].

The tagger has to be able to cope with unknown words that are not found in the

dictionary and ambiguous word-tag mappings. For example, in English a word

having the exact same way of writing can be either a noun or a verb depending on

its role in the sentence [22, 41]. One example is the English word "row" which is

pronounced differently depending whether it is a noun or a verb. For example, "I

had a row with my friend." and "She told me to row the boat." In the first case the

"ow" in "row" is pronounced as in "ouch" and in the second case as in "show".

To cope with the word class assignment problem for different languages, sev-

eral solutions have been proposed. Rule based approaches operate on dictionaries

containing word forms with the associated POS labels and morphological and

syntactical features [22]. They also take advantage of context sensitive rules to

choose the correct word class labels during the synthesis process. In statistical

approaches the most probable POS tag sequence is estimated [9, 49]. In trans-

formation based tagging a hybrid approach is applied and the rules are derived by

statistical means [10]. The POS information assigned to each word can then fur-

ther be used in the TTS system when performing the text-to-phoneme conversion

and in the prosody model.
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Basic Markov POS Tagger

The principle of the basic classical Markov POS tagger was presented in [49]. In

a Markov POS tagger the aim is to estimate the probable tag sequence T̂ given the

word sequence W :

T̂ = argmaxT [Prob(T |W )]. (5.1)

To be able to estimate Prob(T |W ) one can apply the Bayes rule to Equation 5.1

and rewrite the equation, given that Prob(W ) is constant, as

T̂ = argmaxT [Prob(W |T )Prob(T )]. (5.2)

When further assuming that the probability of a word wi only depends on its tag

ti and that the probability of a tag ti only depends on a limited tag history the

resulting formula for T̂ can be given as

T̂ = arg max
t1,...,tn

n

∏
i=1

Prob(wi|ti)Prob(ti|t̃i), (5.3)

where t̃i is the history of the tag ti. Finally, T̂ given in Equation 5.3 is calculated

using the Viterbi algorithm presented in [97, 123].

Prosodic Phrasing

At this stage of the text normalization process, also referred to as syntactic anal-

ysis, individual words have been assigned adequate POS categories as the com-

bined result of the morphological analysis and word class assignment algorithm.

In order to be able to generate suitable prosody for the sentence, it is necessary to

determine the sentence type i.e. declarative, imperative or question and to identify

phrases and clauses. Some systems include a full syntactic parsing while others

perform a more superficial analysis locating noun and verb phrases and possibly

group these phrases into clauses. One possible crude algorithm is called Chinks

and Chunks algorithm. This approach divides the words of a given utterance into

two as content words and function words, named as chunks and chinks, respec-

tively. The phrases are assumed to begin with a chunk and continue by any number

of chinks [67]. For example, in sentence "[She read] [the important pages] [in the

park.]" the words "the" and "in" are function words, thus, according to Chinks

and Chunks algorithm the phrases are marked between the brackets. Although

this simple heuristic works fine on languages such English, it is not suitable for

languages having free word order structure, for example Finnish.

There exist also methods to perform statistical prosodic phrasing taking ad-

vantage of e.g. neural networks and classification and regression trees (CART).

These models try to predict the prosodic phrases based on the POS information,

stress, position in the sentence and other relevant features. The general purpose of

the module is to be able to produce a reasonable analysis for any text even if the

text has syntactic errors.
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5.3 Grapheme-to-Phoneme Conversion

The Grapheme-to-Phoneme (G2P) module finds the correct pronunciation for the

input words. The simplest approach for G2P conversion is to use a dictionary

based approach. In this method a large dictionary contains all the words and

their pronunciations. Determining the correct pronunciation of each input word

is simple since it only involves looking up each word in the dictionary and re-

placing it with the pronunciation defined in the dictionary (e.g. "appointment" ⇒
"@pointm@nt"). Another approach is a rule-based method where rules for the pro-

nunciation of the words are applied to words to find out their pronunciations based

on their spelling. Both of these two approaches have their pros and cons. The dic-

tionary based method is very simple and accurate. However, it fails completely if

the word is not found in the lookup dictionary. Also, as the dictionary size grows,

the memory requirements of the system also become more demanding. The rule

based approach is able to work with any input but the rules easily become very

complex. The manual creation of the rules is also a very time consuming and

language dependent process [22, 41, 53].

Nowadays, most G2P systems are data-driven and the same methods can be

applied for multiple languages [132]. For example, the conversion can be based

on statistical decision trees or artificial neural networks using different pools of

automatically extracted features. Typical features used are for example: the cur-

rent grapheme, morphological boundary information, morpheme class the current

grapheme belongs to, syllable boundary information, grapheme’s position in the

syllable and the phoneme history. When training the decision tree the features can

be extracted from the training material using for example a centered window of

length L for each grapheme at hand [132].

Although a modular multilingual text-to-speech framework can make TTS

language development process easier and faster it is still a considerable effort. In

addition to the development effort, the support for multiple languages consumes

significantly more memory. To speed up the development process and also ad-

dress the memory requirements in mobile devices it is possible to perform cross-

lingual phoneme mappings after G2P conversion. The idea is to model the new

language (source language) using an existing synthesis language (target language)

on a phonetic level. The cross-lingual phoneme mapping method provides rules

for presenting the sounds of the source language with the given set of phonemes

of the target language.

To achieve the best quality the target and source languages should be as similar

as possible. Because the target language is presented by using the phonemes of

the source language by applying a set of mapping rules, the languages should be

quite similar both in the prosodic and in the phonetic sense. For example, it is

more feasible to map Estonian or Hungarian to Finnish than to American English

since Estonian, Hungarian and Finnish all belong to the same language family.
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The cross-lingual phoneme mapping method is presented in Publication 2 [76].

5.4 Prosody Modeling

In linguistics, prosody includes the intonation, rhythm and lexical stress in speech.

The prosodic features of a unit of speech can be grouped into syllable, word,

phrase or clause level features. These features are manifested for example as

duration, F0 and intensity. Prosodic units do not need to necessarily correspond

to grammatical units. However, phrases and clauses are grammatical concepts

but they can also have prosodic equivalents often referred to as prosodic units or

intonation units. These units are characterized by several phonetic cues such as

certain type of pitch contour and lengthening of vowels within the unit, see for

example [4].

The perceived quality of synthetic speech is largely determined by the natural-

ness of the prosody generated during synthesis. The correct prosody also has an

important role in the intelligibility and especially listenability of synthetic speech.

Prosody can also convey paralinguistic information to the user, such as joy or

anger [4, 22].

In a TTS system, intonation and other prosodic aspects must be generated

from the plain textual input. The main challenge is to be able to provide mean-

ingful information for the particular prosody model that is applied in the TTS sys-

tem [22]. One approach is to parse the text into a tree like structure containing dif-

ferent layers or feature streams. In the lowest stream are the individual phonemes

and other phonetic information such as phoneme type, voicing and manner of

articulation, for example. The next layer in the tree contains the corresponding

graphemes i.e the textual input. Upper layers contain information about syllable

and word boundaries. Further on, the words can be grouped into tone groups.

Finally, the tree can contain phrase and clause boundary information.

The different level items or nodes in the tree usually contain relevant features

that are applied during the construction of the upper layers in the parse tree. Such

information includes e.g the lexical stress assigned to a syllable and word class

information assigned to word items. The lexical stress for each syllable can be

assigned using for example a dictionary or a rule based approach. Another pos-

sible solution is to use a statistical method such as classification and regression

trees that were trained using the features available in the lower layers of the tree.

The advantage of statistical methods is that they can be automatically trained for

different languages.

5.4.1 Fundamental Frequency Contour

The fundamental frequency of voiced speech is widely used by all languages to

convey information that supplements the sequence of phonemes. In tonal lan-
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guages, such as Mandarin and Cantonese, pitch changes are used to distinguish

different meanings for syllables being phonetically similar. The four Chinese

tones are (1) high level; (2) high rising; (3) low rising; (4) high falling to low. It is

not unusual for a syllable to be pronounced in each of the four tones, each yield-

ing a word with a completely different meaning. For example, the word "ma" in

tone one means "mother," while "ma2" means "hemp," "ma3" means "horse," and

"ma4" means "to curse." In most Western languages pitch does not help directly

in identifying words but provides additional information, such as which words in

the sentence are most prominent, whether the sentence is a question, statement

or command. Pitch also conveys paralinguistic information such as the speaker’s

mood etc.

Various models have been proposed to generate the fundamental frequency

contour. There exist differences between some of the models but the general char-

acteristic of many of the models is that they operate in two stages. The first stage

generates an abstract description of an intonation contour and the second stage

converts the abstract description into a sequence of F0 values [41].

Superposition models are hierarchically organized and generate F0 contours

by overlaying multiple components of different types [41]. One well-known su-

perposition model is the so called Fujisaki model [28] that has been successfully

applied to various languages [29, 74]. This model distinguishes between phrase

commands and accent commands. The commands are discrete events represented

as pulses for the phrase commands and step functions for accent commands. The

final F0 contour is obtained by filtering each sequence of commands and combin-

ing the output of the two filters with the baseline F0 value [28].

Tone sequence models generate the F0 contour from a sequence of discrete

tones that are locally determined and do not interact with each other. One well-

known model was developed by Pierrehumbert [90]. In this model tone is defined

to be either "high" or "low" and of a different type depending whether it is be-

ing associated with a pitch accent, phrase boundary or an intermediate position

between a pitch accent and a boundary tone. In synthesis this model is applied

by defining a time-varying F0 range and using rules to assign a high or low tone

within the range of the defined F0. The final F0 contour is obtained by interpolat-

ing between successive targets. Pierrehumbert’s model has formed a basis for the

intonation transcription system called TOBI (TOnes and Break Indices) [106].

Although the above mentioned intonation models are able to generate natu-

ral sounding utterances they require a very detailed specification of the utterance

structure. In other words, in superposition models the phrase and accent com-

mands have to be in correct places having a correct amplitude and duration, and

in tone sequence models, tone markers have to be defined accordingly. Auto-

matic methods have been proposed to provide information for the various into-

nation models. For example, CARTs have been used with different intonation

models, e.g, the tilt model [21] and PaIntE system [82], and also with Fujisaki
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model [73, 83, 100]. In the above mentioned systems, CARTs are used to provide

an estimate for features such as accent location and type which can be used in the

F0 estimation. It is also possible to apply statistical methods directly estimating

segment related pitch values as in the Festival speech synthesis system [8, 116].

An advantage of using statistical methods is that it is possible to automatically

extract significant features and dependencies for fundamental frequency contour

modeling without writing rules by hand for every new language. See for exam-

ple [121] that presents different prosody models for Finnish applying artificial

neural networks. Similarly, in Publication 1 [75] two different intonation models,

namely the Fujisaki model and CART based intonation model, were compared

against a natural intonation.
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Chapter 6

Text-to-Speech in Voice User

Interface

Multimodal systems provide two or more user input modes such as speech, pen,

touch, manual gestures, gaze and body and head movements in a coordinated man-

ner with multimedia system output. The growing interest in multimodal interface

design is inspired by the goal of supporting more transparent, flexible and efficient

expressive means of human-computer interaction.

Multimodal systems can have numerous advantages compared to traditional

interfaces. Multimodal interfaces permit flexible use of input and also output

modes. This includes the choice of which modality to use for conveying different

types of information, to use combined input and output modes or to alternate

between modes at any time. Since individual input and output modalities are

well suited in some situations and less or even inappropriate in others, modality

choice is an important design principle in a multimodal system. For example, as

systems become more complex, a single modality simply does not permit all users

to interact effectively across all tasks and environments.

Because there are large individual variations in the ability and preference to

use different methods of communication, a multimodal interface permits diverse

user groups to exercise selection and control of how they interact with the device.

In this respect multimodal interfaces have the potential to accommodate a broader

range of users including users of different ages, skill levels, cognitive styles, sen-

sory impairments and other temporary illness or permanent handicaps. For exam-

ple, a visually impaired user may prefer speech input and text-to-speech output. In

contrast, a user with a hearing impairment or accented speech may prefer touch,

gesture or pen input. Also, the natural alternation between different modes that is

permitted by the multimodal interface can also be an effective way of preventing

overuse and physical damage to any single modality, especially during extended

periods of using the device.

Multimodal interfaces also provide the adaptability that is needed to accom-
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modate the changing conditions of mobile use. In particular, systems involving

speech, pen or touch input are suitable for mobile use and when conditions change

users can switch between these modalities [68, 88].

This chapter focuses on using speech and especially text-to-speech output as

one mode of the user interface. In this chapter these types of interfaces are referred

to as voice user interfaces (VUIs). Voice user interfaces use speech technology to

provide users with access to information, allow them to perform operations and

also to support communications.

6.1 Voice User Interface

By definition a voice user interface is what the user interacts with when communi-

cating with a given device through speech. The elements of VUI include prompts,

grammars and dialog logic. The prompts, or system messages, are all the record-

ings or synthesized speech played to the user during the dialog. Grammars define

for example the possible words and sentences users can say in response to each

prompt. The dialog logic on the other hand defines the actions taken by the sys-

tem, for example responding to what the user has said by performing a certain

action or reading out information or text retrieved from a database or some other

information source.

VUI design is a multidisciplinary field and therefore designing a voice user

interface requires knowledge about various fields of science, for example speech

technology, user interface design, linguistics, cognitive psychology and software

development and design. All these fields have contributed to the current under-

standing of voice user interface design. Usability testing is also an important part

in any application design, and applications taking advantage of speech technolo-

gies are no exception. Currently many users are not very familiar with voice user

interfaces, and designing a working solution is not an easy task. Therefore, it is

important to include the target users in the design process of the application taking

advantage of speech input and output. In next section some basic usability testing

methods are presented and they can be applied when building a VUI [18, 51, 70].

Publication 7 [94] presents a text message reader application taking advantage of

a TTS system. Also the results of the immediate usability test of the user interface

of the application are discussed in the same publication.

6.1.1 Usability Testing

Usability testing is a means for measuring how well people can use some human-

made object (such as a web page, a computer interface, a document, or a device)

for its intended purpose, i.e., usability testing measures the usability of the object.

Many different methods to evaluate usability have been proposed. In this section
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some high level basics of usability testing are discussed in brief and some well

known methods are introduced.

Basically usability testing of any application should begin early in the design

process. One common approach enabling usability testing is referred to as a Wiz-

ard of Oz (WOZ) test and it is described in more details in [27]. The key idea in

the test is to simulate the behavior of the system by having a human acting as the

system performing virtual speech recognition and speech synthesis. The WOZ test

has several advantages such as early testing, testing is not subject to any software

and integration bugs as would be the case using a prototype system, and changes

and modifications are quick and easy to implement. Another approach is to run

the usability tests using a working prototype. Quite often this is done later in the

design cycle than WOZ testing. Naturally, the main advantage of using a proto-

type is realism. The behavior of the system is likely to more accurately resemble

the performance of the final system.

One well known method for quick and easy evaluation of the user interface de-

sign is the heuristic evaluation proposed by Jacob Nielsen [85]. Heuristic evalua-

tion is performed as a systematic inspection of a user interface design for usability.

The goal of heuristic evaluation is to find the usability problems in the design so

that they can be attended to as part of an iterative design process. Heuristic eval-

uation involves having a small set of evaluators, typically five to ten, to examine

the interface and judge its compliance with recognized usability principles (the

"heuristics"). There exist also many other methods to evaluate the usability of an

application, such as formal usability evaluation, standards inspection, consistency

inspection and cognitive walkthrough. These other methods all have their benefits

and are preferred under certain circumstances, but heuristic evaluation is the most

general of the usability inspection methods and relatively easy to apply [85].

6.2 TTS in Voice User Interface

A TTS system is able to offer a number of conveniences when designing voice

user interfaces. Because there is no need for prerecorded prompts, implementation

can be relatively easy and straightforward. Prompts can be produced quickly and

edited easily. More importantly, the content of TTS messages can be spontaneous

and can also be changed dynamically during run time. In contrast, applications

relying on prerecorded audio files alone are best suited for conveying information

that is static. When the information changes often or needs editing, the speaker

has to be asked to record the whole utterance or concatenation units that will in

turn form whole utterances. But when the textual content is unconstrained as in

the case of e-mail or text message reading it is impossible to use prerecorded audio

files.

However, despite the fact that the voice quality of the TTS systems has im-

proved during the last years and TTS as technology offers many conveniences
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there are also some drawbacks compared to recorded audio prompts. Users are

still aware that TTS is not real human speech. One area of dissatisfaction is that

TTS output is usually more difficult to understand compared to human speech.

One of the main problems is the quality of prosody in synthetic speech. The

prosody of messages is highly dependent on different contextual cues. When a

native speaker reads aloud certain text one gathers contextual information over

the course of the text, and in real life, the prosody of a particular sentence is often

determined by information that was presented several sentences earlier. However,

current TTS systems are still not able to produce rhythm that humans can adopt

naturally in sentences containing rhyming clauses, or to generate other systematic

variations related to meaning. Synthesized speech also usually lacks the pattern

of pauses that are found in speech produced by a human reader. These short-

comings in the prosody of synthetic speech increase the cognitive burden required

for comprehending TTS. Some of these issues are mitigated to the extent that lis-

teners seem to be able to adopt to the sound of the TTS and there is evidence that

repeated exposure to TTS improves comprehension. It is likely that the users learn

to lower their expectations towards phonetic and prosodic naturalness [18, 70].

Because human speech is generally preferred over TTS, audio recordings

should be used whenever possible. In some cases a single sentence may have

sections that are dynamic whereas other parts are static. For example, if the sys-

tem has to inform that the user has received a text message from a certain person

the name of the person is the dynamic part of the sentence. The question in these

cases is if the consistency of a TTS system is more important than combining

TTS with real recorded speech. Studies have shown that at least in some cases the

users prefer prompts that use both TTS and recorded speech rather than TTS for

the entire prompt. However, this result is likely to depend on the quality of the

TTS system used and should be evaluated case by case [18].

In some cases it is also possible to mark up the text to be given to TTS in order

to get as natural sounding a result as possible. For example, inserting short pauses

between sentences and major phrases can improve the naturalness and intelligi-

bility. In addition to the use of pauses, there exist prosodic mark-up strategies

aiming to make a TTS system simulate natural, human like intonation patterns. It

is also possible to add specific phonetic spellings for certain words that are con-

sistently pronounced incorrectly by the TTS system. There exist also a standard

markup language to improve the quality of the synthesized speech [117]. The

aim is to be able to improve the quality of the synthesized content by giving ad-

ditional information to the speech synthesis system. Speech Synthesis Markup

Language (SSML) [117] was designed to provide a rich, XML-based markup lan-

guage to give authors of synthesizable content a standard way to control aspects

of speech output such as pronunciation, volume, pitch, etc. across different syn-

thesis capable platforms. Nowadays, there is also an ongoing action to extend

the language support of the SSML. In Publication A [95], the development chal-
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lenges of a multilingual text-to-speech system are discussed and some ideas how

an SSML based markup language could be used and extended are presented. An

overview of methods for improving the quality of TTS for a given application is

presented in [45]. Another standard markup language for specifying interactive

voice dialogues between human and a computer is called VoiceXML. VoiceXML

has tags that instruct the voice browser to provide speech synthesis, automatic

speech recognition, dialog management, and sound file playback [124].

6.2.1 Applications of Text-to-Speech and Automatic Speech Recogni-

tion

Text-to-speech and automatic speech recognition techniques can be applied in

several applications, some of which are presented next.

Telecommunications services nowadays take advantage of TTS systems. TTS

can be used to convey information about e.g. timetables and different events and

to give access to huge databases that can hardly be read and stored as digitized

speech. Queries to such information retrieval systems can be made through the

user’s voice with the help of automatic speech recognition system or through the

telephone keyboard.

TTS can also be used to convey information when oral information is more

efficient than written messages shown e.g. on a computer display. The appeal is

stronger when the user has to be able to focus on other visual sources of informa-

tion. TTS systems have been incorporated in measurements and control systems

where the user is easily overwhelmed by visual information. One example is the

speaker independent name dialing system found in many cell phones, see e.g. [46].

The user is able to make a phone call by saying the person’s name which is recog-

nized by an automatic speech recognition system and hears the recognition veri-

fication using a TTS system. This is beneficial since voice dialing is likely to be

used in situations where the user is not able to pay attention to the mobile phone

display, for example when one is driving a car [68, 88]. In such situations, text-

to-speech systems can also be used to provide eyes free access to e.g. e-mails and

text messages. Publication 7 [94] presents an application using a unit selection

TTS system for reading text messages. Usually, when automatic speech recogni-

tion is used in applications the ASR system takes advantage of some adaptation

techniques improving noise robustness and also reducing the speaker variability.

Some of these methods were presented in Section 3.2 on page 23.

Text-to-speech and other voice techniques can also be used to aid people with

disabilities. For example, people having speech impairments can benefit from

TTS technology. Also visually impaired users can take advantage of a TTS sys-

tem combined with the optical character recognition technology. There also exist

many other cognitive, perceptual and physical impairments (PI) that can hinder

the traditional use of computing technologies. In situations where the PI is affect-
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ing the upper body, preventing the physical interaction with the application TTS

especially combined with the ASR system can greatly improve the usability of

the application. The solutions designed to improve the usability of a computing

system for people having impairments can also provide useful information when

designing applications for children and elderly people, two groups whose cogni-

tive, perceptual and physical capabilities may require special attention [47, 89].

It is also possible to apply TTS and ASR in many other applications such as

in talking books and toys, different multimedia applications and computer sys-

tems. Some applications of TTS and also ASR in mobile devices are presented in

Publication B [79].



Chapter 7

Conclusions

Currently, most interactions between a user and different devices still rely on tra-

ditional technologies such as keyboards and displays. In many cases these well

known input and output devices are well suitable for transferring information and

are also relatively hard to replace effectively. However, as devices become more

complex, interaction between humans and computers also becomes more demand-

ing and sets new requirements for the user interface. The development in speech

synthesis and automatic speech recognition has made it possible to consider using

speech in human computer interaction.

Mobile devices usually have a rather small display and also the physical size

of the keyboard or keypad can make the use of the device more difficult and de-

manding. Therefore, such devices can benefit from using speech as part of the

user interface. Today, automatic speech recognition and speech synthesis are al-

ready applied in different applications in mobile devices, such as name dialing

using ASR and screen readers based on TTS, and they can be beneficial espe-

cially when the user is not able to pay attention to the device, e.g. when driving a

car.

However, applying speech technologies, such as TTS, in mass produced mo-

bile devices introduces some limitations and restrictions on the technology and

system. For example, memory consumption of several megabytes is usually not

acceptable and therefore supporting multiple languages on a single device with

small memory resources becomes a major challenge. At the same time, wide lan-

guage support is considered to be important and a text-to-speech system should

be able to support all the user interface languages the operating system supports.

Because of these requirements the TTS system framework should be easily con-

figurable for different hardware resources and also provide a relatively easy and

rapid language development framework. This chapter summarizes the methods

presented in this thesis for improving the language development process and re-

ducing the memory footprint of a multilingual TTS system. Furthermore, the key

issues of applying a TTS system as part of a voice user interface are discussed and

57
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some possible extensions and ideas for future work are pointed out.

7.1 Some Methods for Multilingual Text-to-Speech in Mo-

bile Devices

The development of a TTS system is an interdisciplinary effort and it requires

knowledge about human speech production and about the languages being devel-

oped. The actual implementation work on the other hand requires software skills

and therefore it is often difficult to find a single person to master all the areas

of TTS development. Especially, the development of multiple languages usually

requires linguistic knowledge that can only be acquired by consulting the experts

familiar with the given language. Therefore, the separation of the actual language

creation process from the actual TTS engine development is beneficial when de-

veloping a multilingual TTS system. Multilingual TTS systems have been usually

designed so that the actual TTS engine and language specific modules and data

are completely separate and the addition of a new language is usually relatively

straightforward, especially, if the framework is designed so that the technologies

applied e.g. for text normalization and intonation modeling can be applied for a

wide range of languages. A novel multilingual number expansion framework is

presented and it has been successfully applied for over 40 languages. The same

framework is also able to support other text-normalization tasks such as process-

ing of context dependent abbreviations and interpretation of formatted text e.g.

date and time expressions. The further development of the multilingual data con-

figurable text processing framework would deserve more research efforts. It is

also possible to introduce specific development environments and tools to ease

the language creation process and one example of an integrated development en-

vironment is presented in this thesis.

However, the size of the system increases every time a new language is added.

The most memory intensive parts of the whole TTS system are just the ones con-

taining language specific information e.g. lexicons and speech databases. The

footprint of the system can be reduced by applying different coding methods on

stored speech units and other language specific data. Another alternative pre-

sented in the thesis is based on cross lingual phoneme mapping. In this method

the phonetic transcription of a new language is presented by using the phoneme

set supported by the existing TTS system. The synthesis output of the mapped

language is phonetically fairly accurate but the intonation is based on the existing

language and the method is best applied for the synthesis of short utterances and

isolated words when the language portfolio has to be rapidly expanded. In multi-

lingual TTS the attraction of HMM-based synthesis is that speech characteristics

can be altered by applying speaker adaptation techniques. The HMMs trained

with several monolingual corpora can be adapted to a certain speaker during the
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synthesis phase and the development of a truly multilingual text-to-speech system

that can be adapted to different languages deserves more research efforts.

7.2 Text-to-Speech in Voice User Interface

In principle, a TTS system is able to offer a number of advantages when design-

ing voice user interfaces. Because there is no need for prerecorded prompts, the

implementation can be relatively easy and straightforward. More importantly, the

content of TTS messages can be spontaneous and also changed dynamically dur-

ing run time. Therefore, TTS systems are able to enable applications such as

e-mail, news and screen reader applications and can greatly benefit users with

certain disabilities. In contrast, applications relying solely on prerecorded audio

prompts are best suited for conveying information that is static. Some applica-

tions for mobile devices taking advantage of speech technologies are presented

in Publication B [79]. Despite the fact that the voice quality of the TTS sys-

tems has improved during the last years and that TTS as technology is able to

offer many conveniences there are also some drawbacks compared to recorded

prompts. Users are still aware that TTS is not real human speech and TTS output

is usually more difficult to understand than real human speech. One of the main

problems is the quality of the prosody in synthetic speech. When a native speaker

reads aloud certain text one gathers contextual information over the course of the

text and in real life prosody of a sentence is often determined by information that

was available several sentences ago. Current TTS systems are not able to gather

such information and produce natural sounding prosody which increases the cog-

nitive load of the user. Another problem when applying a text-to-speech system

for reading unconstrained textual input is that if the text violates the official gram-

mar and for example makes extensive use of abbreviations omitting punctuation,

the text processing module of a TTS system is usually not able to process the input

correctly. This can result in for example wrong expansions of certain abbrevia-

tions and totally incorrect intonation. To overcome these problems, more research

work in natural language processing and prosody modeling techniques in speech

synthesis is required.
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