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Abstract

This thesis proposes a semi-analytical algorithm, named repetitive optimal open-loop
control (ROC), based on the Model Predictive Control (MPC) framework to generate
open-loop feedback control for solving dynamic nonlinear optimal control problems with
constraints. The algorithm is developed for the continuous-time NMPC. The generated
feedback law builds a semi-analytical solution between the optimal control variables and
states. The resulting optimal control trajectory is well defined in a “continuously” varied

sequence.

The optimal control problem is converted into a two-point boundary-value problem (TP-
BVP) form, and solved by a back-and-forth shooting method. State and output con-
straints are dealt with the penalty function approach. The Kalman filter is used for state
estimation. Implementation of ROC algorithm is done: algorithm competency testing
with a hydro-electric power plant chain experiment; and normal solution proposal for
optimal control problem with an exothermic chemical reactor application. Results prove
out without any doubt it is a promising optimal control algorithm for handling fairly

complicated constrained nonlinear dynamic systems.

Keywords: model predictive control (MPC), repetitive optimal open-loop control (ROC),
two-point boundary-value problem (TPBVP), back-and-forth shooting.
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Chapter

Introduction

This chapter provides a background and motivation of this research work, and the thesis’s

contributions as well as its content outlines.

1.1 Background and Motivation

Model Predictive Control (MPC), also known as a receding horizon control (RHC) or
moving horizon control (MHC), originally developed to meet the specifications of con-
trol needs to power plants and oil refineries [QB96], has become nowadays an attractive
feedback control strategy in a wide variety of application areas including chemicals, food
processing, automotive, aerospace, metallurgy, and pulp and paper industry, etc [QB96].
MPC refers to a class of control algorithms which use an explicit dynamic process model
to predict the plant’s future response and optimize its performance. Its concept of using
an open-loop optimal control computation to synthesize a feedback controller is so natu-
ral that it probably occurred to many researcher in the optimal control field during the

last two decades [Mac02, MR93].

The ideas of MPC can be traced back to the 1960s when research on open-loop optimal
control was a topic of significant interest [Mac02]. The idea of a receding horizon, which
is the core of all MPC algorithms, was proposed by [Pro63]. Another early work related
to MPC can be found in [LM67], however, the true birth of predictive control took place
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at the end of the 1970s with the first publication from Richalet et al. [RRTP78] about
model predictive heuristic control (MPHC). The main reasons for increasing acceptance

of MPC technology by the process industry since 1985 are clear [CB99]:

e MPC is a model based controller, which can handle processes with long time-delays,

non-minimum phase, unstable and nonlinear processes.

e [t is an easy-to-tune control method, in principle, there are only few basic param-

eters to be tuned.

e Industrial processes have their limitations in valve capacity, technological saturation
or requirements. MPC can handle such kinds of constraints in a systematic way

during the design and implementation for the controller.

There are a number of names for representing particular states of predictive control,

usually with corresponding product names and acronyms, such as:
e Model predictive heuristic control (MPHC)
e Dynamic matrix control (DMC)
e Extended prediction self-adaptive control (EPSAC)
e Generalized predictive control (GPC)
e Model algorithmic control (MAC)
e Predictive functional control (PFC)
e Quadratic dynamic matrix control (QDMC)
e Sequential open loop optimization (SOLO)

and so on. For more detailed information about those algorithms and their developments,
see [CB99, Mac02, MR93, QB96]. Generic names which have become widely used to de-
note the whole area of predictive control are finally named as model predictive control

(MPC) and model-based predictive control (MBPC).
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The success of MPC properties are well developed in the linear case with constraints,
see [MRO3|, the practices in industrial process control can refer to [RRTP78, QB96],
but fewer results are available for the nonlinear case. However, the processes nowadays
need to be operated under much tighter performance requirements to guarantee a safe
but efficient environment than ever before. The question arises because the linear MPC
(LMPC) is not suitable enough to satisfy the increasing requirements, and therefore a
nonlinear MPC (NMPC) approach has been carried out. NMPC control allows the ex-
plicit consideration of a nonlinear process model with the state and input constraints.
Many theoretical issues were published during the last twenty years, see [MM90, MM93,
RMM93, Hen98, ABQ199, QB00, BDLS00, KM00, May00, DBST02, DFB*04], etc. Al-
though NMPC achieved some progression, the high on-line computation load still cannot
be avoided, since at each sampling time the nonlinear optimal control problem has to be
solved. There are only a few methods that address the reduction of “computational bur-
den” from complex NMPC, see [BDLS99, DFB*04]. Quite often some parts of problems
have to be dealt with linearization [OKG00]. The interest in improving the efficiency and
accuracy of NMPC control of nonlinear system and rapidly solving on-line optimization

algorithm is the first reason for generating this work.

In addition, most of the MPC techniques have derived or focused on the discrete-time
models, such as [RRTP78, CMT87a, CMT87b, RRM03]. The corresponding continuous-
time approaches have still received relatively much less attention in the development
[Lu95]. The question arises as to whether the similar strategies, such as prediction cal-
culation, least-squares solutions which are applied in the discrete-time situation, can be
easily adopted into continuous-time case. It is fair to say that, it is much more com-
plicated and difficult to develop a continuous-time MPC in technique. The technical
difficulty comes from: unlike the discrete MPC who is a finite dimensional optimization
problem, the continuous-time MPC focuses on the infinite dimension which is always
computationally more demanding than the finite dimension issue. The interest of ex-
tending the development of MPC in the continuous-time approach and overcoming the

computational difficulty turn to be the second reason for generating this work.
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1.2 Contributions of the thesis

The main contributions of this thesis are described as follows:

e Along the general lines of the MPC algorithm in discrete-time issues, this research

has developed a derivation of the continuous-time approach.

e As we know, the discrete-time MPC is a finite dimensional decision optimization
problem while continuous-time MPC is the infinite dimensional decision optimiza-
tion problem. Normally, infinite decision needs heavier calculation than finite de-
cision. ROC control, which is proposed by the research work, has contributed in
handling nonlinear dynamics systems, and enhances the research extension of MPC

field in the continuous area.

The ROC algorithm was implemented in the MATLAB environment. The application ex-
periments with ROC control show quite good performance. The back-and-forth shooting
method for solving the two-point boundary-value problem (TPBVP) is presented. Dis-
cussion about handling nonlinear dynamic system with state and input constraints using
the ROC control optimization is also shown. And then studies of ROC control’s capa-
bility of dealing with the zero-mean white Gaussian distributed noise in both linear and

nonlinear dynamic systems using state estimation via Kalman filtering are also presented.

1.3 Contents of the thesis

The outline of this thesis is organized as follows:

Chapter 2 contains a description of the basic principle and algorithm of the standard
MPC, which is the theoretical framework of the ROC method. At the beginning, a feed-
back structure of MPC is illustrated and its attractive features are specified. Then the
most common components for building a MPC algorithm are introduced respectively.
Later the chapter mainly focuses on presenting the development of optimization algo-

rithm approaches based on MPC, and at the end of this chapter, the stability of MPC is
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described.

Chapter 3 provides the central idea of this thesis work. A semi-analytical form optimal
control method, based on the standard MPC scheme, is recommended for solving con-
strained dynamic nonlinear system, and calculating the future prediction in continuous-
time form. The method generates an optimal open-loop feedback control idea for the
controllable dynamic nonlinear system which allows the state and control variables to be
constrained. The chapter starts with an introduction of the main approaches of optimal
control theory built so far: the prescriptions of the principle of optimality, the mini-
mum principle of Pontryagin, the derived Hamilton-Jacobi-Bellman (HJB) equation, and
Bellman’s dynamic programming (DP) equations are expatiated, respectively. Then an
incorporation of optimal open-loop feedback control idea has been proposed, with a clear
explanation of the ROC algorithm principle. Since this method is built on the basis of
the standard MPC, the similarities and differences between them are compared (standard
MPC is based on the MPC Toolbox, version MATLAB 7.04). At the end, some examples

are introduced in for clearer illustration.

Chapter 4 reviews a numerical solution of the optimal control problem called back-and-
forth shooting, an very effective algorithm that the ROC method relies on for solving
special optimal control problem in this thesis. Algorithm convergence has been men-
tioned. And later two preliminary examples are given for illustration, which emphasizes
that this algorithm is quite promising compared with traditional shooting algorithms for

solving some special case.

Chapter 5 includes the application example’s implementation. The chapter starts with
an introduction of the first application: a hydro-electrical power plant chains, which has
the most difficult form for solving the optimal control problem, a fixed end point issue.
A continuous-time experimental mathematical model is built, a short-term optimization
problem is formulated and reduced via Pontryagin’s principle to a two-point boundary-

value problem (TPBVP). The TPBVP is solved with the aid of the back-and-forth shoot-
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ing algorithm. And the ROC controller is introduced for handling such continuous-time
optimal control problem. The effect of various situations and computational performance
are studied. The application study is meant to testify the capability of the ROC algo-
rithm for dealing the difficult and complex optimal control problem and at the same time
explicitly handling multiple constrained states and inputs very well. The second applica-
tion is a multivariable nonlinear reactor with two inputs, two outputs and multiple steady

states, which is a more industrial-like control problem well handled by the ROC algorithm.

Chapter 6 concludes the thesis with a summary and an outlook of interesting future

improvement and development.



Chapter

Model Predictive Control

Model predictive control (MPC), is a control scheme which the ROC method relies on in
this work, refers to a class of algorithms that calculate a sequence of manipulated variable

adjustments in order to optimize the future behavior of a plant [QB96].

This chapter starts with a brief review of the MPC principle, general algorithm, a basic
structure, and main features; in Section 2.2, the common components of the MPC setup
are introduced respectively; later some different perspectives of optimization algorithms
are studied in Section 2.3; and the stability of MPC is discussed in Section 2.4 as the end

of this chapter.

2.1 Principles of MPC

In general, a MPC problem is formulated by solving numerically, on-line, at each sampling
instant, in a finite horizon, a discrete-time optimal control problem subject to system dy-
namics and constraints of states and controls. A basic idea of the MPC scheme can be
illustrated in Figure 2.1: To determine a predictive controller at time k by solving an opti-
mal control problem over a prediction horizon [k, k+ H,|. The predicted output y(k+i|k)
(for i =1...H,) depend at the time k on the past input and output, and further on the
assumed input trajectory a(k +i|k) (for i = 0... H, — 1), which will be applied over the
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Figure 2.1: Basic principle of MPC strategy

prediction horizon [Mac02]. The path of future control variable movement is calculated
by optimizing some criterion in order to keep the process as close as possible to the pre-
defined reference trajectory. The criterion is commonly a form of quadratic function that
consists of two parts: one part is to penalize the predicted output signal deviation from
the reference trajectory, and the other part is to penalize the control variable movement
in order to minimize the control effort [Mac02]. The control sequence is calculated along
a certain control horizon H. (normally H. < H,,) to optimize a performance index, and
the control input is assumed to vary within the control horizon H. and remain constant

thereafter.

In the end, the first control variable @(k|k) in the optimal trajectory is taken into the
plant while the rest of the predicted control variable trajectories are discarded. The whole
cycle of output measurement, prediction, and input trajectory determination is repeated
one sampling interval forward [Mac02]. At next sampling instant k + 1, a new system
output y(k+1) is obtained, prediction is made over the horizon k+1+i (fori =1... H,),
and a new input trajectory u(k+1+i|k+1) (for i =0... H, — 1) is applied. The entire

procedure is repeated at subsequent control intervals in order to get an updated control
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Figure 2.2: Basic structure of MPC

sequence, and horizons forward-move one time-step further.

A Dbasic structure of MPC with feedback control loop is depicted by [ABQ199, FA02]
shown in Figure 2.2, where block Plant is the process to be controlled. Block Con-
troller, which consists of predictive model, optimizer, and cost function with constraints,
takes care of the solution of the open-loop optimal control problems over a prediction
horizon. Block FEstimator provides the controller with a feedback signal based on the
measurements of inputs and outputs of the process. Each of the blocks may be nonlin-
ear. The information provided by the feedback signal and how it is used to update the

open-loop optimization depend on the specific choice of the controller and the estimator

[ABQ*99, FA02].

Given some estimate of the process model, the entire algorithm starts to solve the open-
loop optimal control problem, and the manipulated/control variable sequences are de-
termined by minimizing some performance index over a prediction horizon. Controller
is implemented in, and outputs of the process are then obtained. The new information
got from the process is then used to update the open-loop optimization, and update is

completed by estimating states or disturbances.

The main features of an ordinary MPC strategy are the following [ABQ™99, Mac02]:
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[1] Explicit use of a model to predict the process output along a prediction horizon
H,, which in principle, allows the controller to handle process dynamics (e.g. dead

times and lags) directly;

[2] Insertion a state estimator into feedback loop which provides better predictions and

improves control performance;

[3] Consideration plant behavior (and the noise) over a future horizon and the formu-
lation of the cost-function to be minimized, so that the effects of feed-forward and

feedback disturbances can easily be anticipated and removed;

[4] Consideration of the process input, state and output constraints directly within the

optimization formulation.

2.2 MPC Setup

To setup a general MPC algorithm, some common components, which are illustrated in

Figure 2.2, have to be taken into account. These components are:
e Predictive model
e Optimization problem
e Constraints
e State and disturbance estimations

Hereafter, we will study these components respectively.

2.2.1 Predictive Model

MPC allows us to use the detailed knowledge of the process to construct a dynamic
mathematical model. A good process model is very necessary for obtaining a higher
performance control upon model-based algorithms. There are many different model forms

used in MPC algorithms, only some of the most commonly used forms are listed below:
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Finite Step Response (FSR) Model used by DMC [CB99]. For stable systems,
the truncated response is given as: (we assumed that the sum is truncated and only N

values are considered)

y(k) = Z GiAu(k — j) = G(q~") (1 — g "u(k) (2.1)

where y(k) € RP, u(k) € R™, and G; is the jth element of step response of the pro-

1 1

cess. A is the differencing operator A = 1 — ¢~ is the backward shift operator

» 4
¢ 'u(k) = u(k — 1), and G(¢™!) includes the step response coefficient of the system:

G(q_l) = qu_l + G2q_2 + 4 GNq_N (22)
where G; € RP*™. Then the predictor will be:
N
gk +ilk) =Y GiAu(k +i — j|k) (2.3)
j=1

Noise is handled by the DMC algorithm in a way that the current modeling error, which
is the difference between the predicted and measured output, is assumed to keep without
changing over the whole prediction horizon [Hen96]. Step-like disturbances at system
outputs are usually easy to handle because they enter into the controller in the same way

as the set-point.

Finite Impulse Response (FIR) Model known as a weighting sequence model, it
is used in MPHC [RRTP78]. The output is related to the input by:

N
y(k) =Y HjAu(k —j) = H(g ") (1 — g "u(k) (2.4)

j=1
where H; is the jth element of impulse response of process. And the predictor is given:

Gk +ilk) =Y HjAu(k +i— jlt) (2.5)

j=1
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The FIR model is related to FSR model when we treat it as the difference between
two steps with a lag of one sampling period through H; = G; — G;-1. FSR or FIR
model form is very intuitive because model parameters can be obtained from simple step
response experiments, which avoid the selection of model order and identification of dead
time [Ros03]. However, FSR and FIR models are not suitable if the system is unstable.
When the system has slow modes for convergence, the truncation order can be quite high

[Hen96].

Transfer Function Model Used in GPC [CB99] with the concept of transfer function

G = B/A, the plant can be described by a input-output difference equation as:
A(g™)y(k) = B(g~"u(k) (2.6)
where A, B are the polynomials given as:

A(q’l) =1+4+aqg +ayq?+-+ an,q " (2.7)

B(q_l) =1+ blq_1 + bgq_2 + 4 b, g™ (2.8)

where n,, ny are the orders of A(¢~') and B(q™'). So the predictor will be given:

Sy

@) ik + ik (2.9)

ik +ilk) =

This representation can be used for both stable and unstable process. Note that both
FSR and FIR models can be seen as subsets of the transfer function model. This model
requires less parameters than FSR or FIR, but prior knowledge of the process, especially

the assumptions about the order of the A and B polynomials has to be made [CB99).

ARIMAX Model Described by an auto-regressive integrated moving average with
exogenous inputs, ARIMAX model is used in GPC [CMT87a, CMT87b]. The output is
given by:

Alg™")Ay(k) = B(q™")Au(k) + C g )e(k) (2.10)
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where A, B are same as before, and C' is a polynomial like
Clg)=1+cqg +eqg?+ +cnqg "™ (2.11)

with the order of nc. e(k) is assumed to be white noise with zero mean and variance o..

Thus the prediction is given:

Gk + ik) = iéz_lsAu(kJ k) + %6(/{3) (2.12)

The term A ensures integral action in the controller. The controller is therefore able to
remove offset caused by step-like disturbance at the system output. The ARIMAX model

can also be written in a state-space form.

State Space Model Used in RHTC [KB89], a general discrete-time linear time-invariant
(LTT) state space model has been presented [CB99]:

(2.13)

where z(k) € R™ is a vector of n state variables, u(k) € R™ is a vector of m,, process
inputs or manipulated variables, and y(k) € RP is a vector of p process outputs or

controlled variables. Then prediction for this model is given:

gk +ilk) = C | A'2(klk) + > A Byu(k +i — jlk) (2.14)
j=1
One of the advantages of the state-space representation is that it simplifies the prediction,

however, system identification is more complex for a state-space model than for a transfer

function model [CB99].

Nonlinear Model Normally linear models are used to be considered despite a fact
that all industrial processes exhibit some degree of nonlinear behavior. This is due to

the significant increase in complexity of the predictive control problem resulting from
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the use of a nonlinear model. LMPC employs models which are linearized about the
operating point to predict the response of the controlled process. This strategy proved to
be quite successful even in controlling some moderate nonlinear processes [QB96, QB00).
However, the higher the degree of nonlinearity, the greater the level of mismatch between
the actual process and the predictive model, thus resulting in the direct deterioration of
the controller performance. Many industrial processes with high nonlinearities, have to
ask for a more accurate description of the system dynamics and more precise control of

process behaviors, the nonlinear model is built up in order to meet those specific demands

[Hen98, QBOO).

Nonlinear model, in general, is either based on fundamental principles or empirical obser-
vations or in the hybrid case with a mixture of both. The fundamental model is actually
based on the conservation principles of mass, momentum and energy. Its advantage, well
concluded by [Hen98] is that, as long as the underlying assumptions remain valid, the
fundamental model can be expected to extrapolate to new operating regions where no
data sets are available; however its drawback, pointed out by [Hen98] as well, is that
the resulting dynamic model may be too complex and computationally time-consuming.
The empirical model built from available process data may be more convenient in some
cases since a detailed process understanding is not required for the model design, but a

suitable model structure is still needed [Hen98|.

Some of the recently published nonlinear model types used in NMPC include: Hammer-
stein and Wiener models [FPM97], Volterra models [POD96], polynomial ARX [SA97], ar-
tificial neural network models [CBG90, WMM™00, SM97] and fuzzy logic models [TS85],
which will be reviewed below, respectively, in order to demonstrate their most outstanding

characteristics.

* Hammerstein and Wiener Model For extending LMPC to the control of
nonlinear processes, a model is required that can represent the nonlinearities but possibly

without the complications associated with general nonlinear models. In order to fulfill
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this need, some model structures which contain a static nonlinearity in series with a linear
dynamic system have been developed in [FPM97]. When the nonlinear element proceeds

the linear block, it is called the Hammerstein model as shown in Figure 2.3:

Nonlinearity Dynamics

| I
| I
I I
I I
| |
: u(k) Static X(K) Linear y(k) |
| —P |
I |
I |
| |
| |

Figure 2.3: The Hammerstein model structure

Mathematically, the Hammerstein model is represented by the following equations:

y(k) = x(k) + d(k) (2.15)

where A, B are the polynomials given as:

A(q_l) =1+ alq_1 + (12(]_2 +--+aq "™ (2.16)

Blg ) =14big " +byq >+ 4 byg ™ (2.17)
the non-measured intermediate variable is given by:

z(k) = f(0,u(k)) (2.18)

' is the unit delay operator, n,, n, are the orders of A(¢™!) and B(q™!), u(k)

where ¢~
is the input, y(k) is the output, d(k) is the measured noise, f(-) is a static nonlinear

function and 6 is a set of parameters describing the nonlinearity.

If the linear and nonlinear blocks change the order, one obtains Wiener model, see figure

2.4. The Wiener model is represented by the following equations:

(k) = u(k) (2.19)
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Nonlinearity

|
|

|

|

u(k) Linear x(k) Static y(K) :
o |

|

|

|

|

Figure 2.4: The Wiener model structure

and now the non-measured intermediate variable x(t) is the input to the static nonlin-
earity given by:
y(k) = f(0, (k) + d(k) (2.20)

Both the Hammerstein model and Wiener model consist of a process with linear dynamics
but a nonlinear gain, and can represent many of the nonlinearities commonly encountered
in industrial processes. Such models are particularly well suited for NMPC because LMPC

is applied directly by transforming the input signal inverted into the static nonlinearity

[FPMO7].

* Volterra Model Volterra models can be treated as natural extensions of linear
FIR models to nonlinear FIR models by introducing cross products and polynomials of

the inputs up to some order [SJ98]. This feature makes it particularly interesting for

NMPC.

y(k) =y + Y _ aju(k —j +Zzbuu —iyu(k — j)
7=0

=0 7=0

(2.21)

oo oo o0

+ A criju(k — Du(k — )u(k —j) + ...

However, the input prediction based on Volterra model keeps a nonlinearity, and therefore
the NMPC optimization problem has to be solved by nonlinear programming (NLP). The
NMPC algorithm based on second-order Volterra model has been applied in [DAOP95,
MDOP96], with some comments about the model’s performance as well. An obstacle

of this model type to be an ideal choice for general nonlinear control problems is that
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the large number of parameters explodes with the system’s input dimension, therefore

Volterra models beyond second order seem impractical [DAOP95].

* Polynomial ARX Model Based on polynomial nonlinearities, a black-box iden-
tification of ARX model from designed experiments, is a fairly well developed technology
[SJ98]. The nonlinear polynomial terms are determined by the structural identification,

and the model based on a polynomial ARX model is given as
Nao ng
y(k) =y + > _ajy(k—j)+ > Bu(k — j)
j=1 j=1

+ Za Z pijy(k —)y(k — j) + Z Z dijulk — i)u(k —7) (2.22)

Na N

j=1 i=1
Although the NMPC optimization problem is non-quadratic and maybe non-convex in
general, the polynomial structure of the model can be applied to compute the global
optimum in some very special cases [SA97]. An experimental study of NMPC based on

such a model, the waste water neutralization process, is described in [PK94].

Polynomial ARX model is improved than Volterra model in sense that the number of
parameters needed for approximating a system in polynomial ARX model is generally
much less than in the Volterra model because its previous output values can be used
[SA97]. However, most process systems contain varying degrees of nonlinearity that
may cause the accuracy reduction in this kind of model [SA97]. In order to overcome this
accuracy loss shortcoming, many researchers in recent years have focused on implementing

the neural networks as a tool of system identification.

* Artificial Neural Networks (ANN) Model The most expensive part of the
realization of a NMPC scheme is the derivation of an appropriate mathematical model.
In many cases it is even impossible to obtain a suitable physically founded process model

due to the complexity of the dynamic processes or the lack of knowledge about some
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critical parameters of the models, such as temperature- and pressure-dependent mass
transfer coefficients or viscosities, etc. To overcome these obstacles, an artificial neural
network model is generated, just as a kind of nonlinear black-box model of the dynamic
process, in order to modelling those unknown or poorly known systems. The ANN model
can effectively model the complex characters of the nonlinear process and arbitrarily ap-
proximate nonlinear functions, particularly useful in dealing with a complex relationship

between inputs and outputs.

In [LKB98], a concept of affine nonlinear predictors based on neural network is introduced
so that predictive control algorithm is simple and easy to implement. They suggests a
set of non-recursive predictors, which can compensate the influence of the time delay,
to predict approximately the future output. These predictors use available sequences of
past inputs and outputs of the process up to the sampling time to construct the predic-
tive models, therefore the use of NLP technique for solving the nonlinear optimization

problem is avoided.

[SA98] points out that the popular feed-forward neural networks show little robustness
to disturbance, measurement noise, and changing operating regimes due to their high-
order noise-sensitive input-output mapping. Therefore, they suggest the development of
a reliable long-range predictor, comprising two neural networks with an external feedback
in series. One network is used to predict the system state and output at the next sampling
instant. The other network yields long-range predictions of the state and output, based on
the state prediction from the first network. This modeling approach has the advantage
that the prediction capability of the network model is improved by allowing efficient
modeling of high-order input-output systems and incorporation of available analytical

state-space models.

* Fuzzy Logic Model Based on a smooth interpolation (fuzzy inference) between
various pieces of data and models, Fuzzy model multiples local linear models valid in

different operating regimes [SA97]. It provides a nonlinear mapping from input to output
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with the capability of handling information presented in numerical or linguistic form. It
can represent highly nonlinear processes and can smoothly integrate a priori knowledge
with information obtained from process data. Therefore, an attempt to develop NMPC

based on the fuzzy logic model has been tried by some researchers in recent years.

In [FJS95] a nonlinear fuzzy logic model based on interpolation of multiple local linear
models is applied for on-line optimization using NLP technique. Some different approach
is used in [FQ97] which suggests the interpolation of the solutions of multiple LMPC
optimizations to approximate NMPC. Since it relies on multiple linear models, the fuzzy
logic model is considered simpler than the ANN model. And in [JNSO1] where an NMPC
algorithm based on fuzzy logic model of Takagi-Sugeno type is taken and the fuzzy model
interpolates between LTI models. The proposed NMPC strategy is based on linearizing
the nonlinear product-sum fuzzy model around the current operating point, and compen-

sate nonlinearity in process dynamics.

Regardless of the model forms and identification methods, the general nonlinear state-
space model based on the form of previously introduced state-space model has also been
taken into account frequently in NMPC field. In this thesis work, the state-space model

is the mainly used model form for building the system processes.

2.2.2 Optimization Problem

Consider a general discrete-time nonlinear model based on the form of previously intro-

duced state-space model:

z(k+1)
y(k)

fla(k),u(k),v(k)) (2.23)
g

(x(k))

where f and g are some nonlinear functions, and z(k) € R" is a vector of n state variables,
u(k) € R™ is a vector of m,, process inputs or manipulated variables (MVs), y(k) € RP

is a vector of p process outputs or controlled variables (CVs), v(k) € R™ is a vector
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of m, measured disturbance variables (MDs). And then a prototypical expression of
optimization problem for NMPC can be stated as [MRI7]:
Hy—1

J(k) = ¢ [§(k + Hlk)+ > LIk + ilk), alk + ilk), Aa(k + i|k)]

min
u(klk),u(k+1|k),...,u(k+H.—1|k) P

(2.24)
where ¢ and L are the nonlinear functions of their arguments. g(k + ilk) are the
predicted controlled outputs at time k, @(k + i|k) are the predicted inputs which are
calculated at time k, and u(k + H.|lk) = a(k + H. + 1|k) = ... = u(k + H, — 1|k).
Au(k + i|k) = a(k + i|k) — a(k + i — 1]k) are the incremental values of the manipulated

variables. The length of the prediction horizon is H, and the control horizon is H..

The function of ¢ and L can be chosen to satisfy a wide variety of requirements, in-
cluding minimization of the overall process cost. However, economic optimization may
be achieved by a higher-level system which determines the appropriate set-point of the
NMPC controller [Hen98]. Therefore, in general, it is meaningful to consider quadratic

functions formed as follows:

¢ = [§(k + Hylk) — ys(k)]" Q [§(k + Hylk) — ys(k)] (2.25)
L = [j(k +ilk) — ys(k)]" Q [9(k + i[k) — ys(k))]
+ [a(k + k) — ug(k)]" R[a(k + ilk) — uy(k))] (2.26)

+ Ad(k +ilk)T SAu(k +i|k)

where ug(k) and y4(k) are steady-state targets for u and y, respectively. @ > 0, R > 0
and S > 0 are the weights on tracking errors, controls, and control movements, and only
the first H, control movements are non-zero, Au(k + i — 1|k) = 0 for all i > H,. (assume

H. < H,) [Mac02].

The output predictions are generated by setting inputs beyond the control horizon equal
to the last computed values: u(k +ilk) = u(k + H. — 1]k), for H. < i < H,. Note that

the system model used to predict the future in the controller is initialized by the actual
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system state, thus MPC requires measurements or estimates of the state variables, which

will be discussed more in detail in Section 2.2.4.

2.2.3 Constraints

In practice, all processes are limited by some kind of constraints on inputs and outputs.
The ability to explicitly handle constraints also makes MPC an attractive control method.
Typical examples which have to consider input constraints are: a valve opening positions
from fully open to fully close, the actuator limitations such as saturation and rate-of-

change restrictions. Such input constraints have a general form

Umin S u(k) S Umaz (227)

Aumin S AU(k’) S AU'ma:z: (228)

where U, and U,,q, are the minimum and maximum values of the inputs; and Aty

and At,q, are the minimum and maximum values of the rate-of-change of the inputs.

Outputs constraints are usually related to some operational limitations. Therefore, the
consideration of safety and performance may let it turn to be necessary to set constraints
on the system outputs. Normal examples like the levels in tanks, maximum pressure of
boiler and temperature of chemical reactor, etc. Such constraints can be represented in

a form as

Ymin < Y(k) < Ymaa (2.29)

where Yin and Y. are the minimum and maximum values of the outputs.

State variable constraints (which is based on physical considerations) may also be specified

if needed with a general form as

Lmin S $(/{3) S Tmaz (230)

By including constraints in the optimization problem, the controller can predict future
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constraint violations and respond accordingly [QB96]. Solving the optimization problem

with inequality constraints of inputs and outputs as the following:

Unnin < U(k +i|k) < Unae, 0<i<H.—1 (2.31)
Atppin < AUk +ilk) < A, 0<i<H -1 (2.32)
Ymin < Gk + 1K) < Ymaa, 0<i<H, (2.33)

Hard input and output constraints are handled within the general framework MPC algo-
rithms based on the solution of a normal quadratic programming (QP) or a NLP problem
[Hen98]. However, it is well known that hard output constraints can cause problems be-
cause the optimization may become infeasible and some of the constraints must then be
relaxed or eliminated. And even in the case of a feasible solution the system may still

become unstable due to active output constraints.

To cope with these problems and improve the constraint handling capabilities of MPC,
[dOB94] introduces soft constraints by adding slack variables to the inequality constraints,
and then the added the slack variables are treated as a penalty to the objective function
to be minimized. In addition, [dOB94] also compares the use of quadratic and linear
penalty formulations for dealing with hard constraints. The result shows that the use of
a linear penalty formulation leads to the preferred stability properties compared to using
quadratic penalty formulation with hard constraints in the optimization. Moreover, if the
hard constrained controller is stable, the linear penalty formulation requires only finite
penalty parameters to get the solution of the controller with hard output constraints.
This characteristic allows better control of the errors resulting from constraint relaxation

by using soft constraints.

2.2.4 State and Disturbance Estimation

The NMPC strategy follows the usual decomposition into: (a) an estimation problem,
where states and (if desired) disturbances are estimated, and (b) a problem where the

manipulated variables are computed by using the estimated states (and disturbances) as
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the true initial states.

Estimation of states: MPC is an open-loop optimization strategy unless the state
variables x are measurable [Mac02]. For many real systems, the state variable x cannot
be measured explicitly. Therefore a standard approach in estimating the state of a dy-
namic system from input-output measurements is to use a state estimator to estimate
the state variables, which is required to implement state feedback control strategies, see
[Mac02]. The prediction of the future plant behavior is built upon the current available
state variable values at time k. In practice, MPC techniques in particular require a pre-
cise knowledge of the state estimation of the system in order to solve the optimal control
problem. The estimation of initial states is important for obtaining the correct estimates
of the model parameters, especially in the nonlinear system, the output and the controller
depend on the result of state estimation for good performance [RRMO03], so if the state

estimate is poor, both of them may fail.

The state estimator equation that is used for implementing to the discrete-time MPC is
given by
#(k + 1|k) = Az (k|k) + Bu(k) + Lest [y(k) — C2(k[F)] (2.34)

where Z(k + 1|k) is the estimate of x(k + 1) and L.y is the estimator gain. wu(k) is
determined from the optimal solution of the MPC scheme. The pair of (C,A) is de-
tectable. In practice, the estimator gain L. is often limited by the existence of mea-
surement noise and has to be selected based upon the disturbance characteristics of the
process [Mac02]. If statistical information is available about disturbances and measure-
ment noise, then optimal estimate of state x can be obtained by using the Kalman filter
(KF) [BH75, LR94, KS72, Mac02]. KF is an optimal estimator for unconstrained linear
dynamic systems with Gaussian noise. It is popular due to its optimality and availabil-
ity of a closed-form solution that makes estimation extremely efficient. The extended
Kalman filter (EKF) is by far one of the most popular solution for on-line state estima-
tion in nonlinear practical applications. It extends KF to nonlinear dynamic systems by

linearizing the model at each time step, while assuming the noise and prior to be Gaus-
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sian. State estimates are computed in nonlinear model and Kalman gain is calculated by
linearizing the nonlinear system model. When a nonlinear continuous-time system model

is defined as

= f(x,u)+mng (2.35)

y=9(x)+ny (2.36)

where n; and ny are random white Gaussian noises. With the initial system output
measurement y(k), the initial state estimate Z(k|k—1), the input control variable u(k—1),
and the covariance matrices of process noise @, and R,, an EKF algorithm for (2.35)-

(2.36) can be given [Hen96, LR94] as:

[1] calculate the prediction error at time k

d(k|k) = y(k) — g(E(k|k — 1)) (2.37)

[2] linearize and discretize the nonlinear continuous-time system at the current control

and previous state estimate and obtain the system matrices Aq4(k), Bq(k) and Cy(k);

[3] calculate the steady-state Kalman gain K(k) with the linearized and discretized

system matrices A4(k), Ba(k), Cy(k) and covariance matrices @, and Ry;

[4] update the state estimate by

Bk +1|k) = f(@(klk — 1), u(k — 1)) + &(k|k — 1) + K (k)d(k|k) (2.38)

Since EKF extends the application of KF to estimate nonlinear dynamic systems by lin-
earizing the nonlinear process model at each time step, it implements the same solution
strategy as KF does, thus EKF also inherits all KF’s merits. EKF' is favorable mainly
because of its simple algorithm and efficient computation characters, but it may diverge

from the true state and cannot satisfy the process constraints [CBG05, Jaz70, May79].
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When the disturbances of system input and outputs are step-like disturbances, which can
be modelled like [Hen96]
Zu = &u (2.39)

Zy =&y (2.40)

where £, is a zero-mean uncorrelated normally distributed random variable with the

covariance matrix ()¢,. Then the system model for the estimator is formed as [Hen96]

= flr,u+z,)+m
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Generally, the combined number of components in the vectors z, and z, cannot be greater
than the number of system outputs since the states z, and z, must be observable. The

states of z, and z, are uncontrollable [Hen96.

Moving horizon estimation (MHE) approach to on-line state estimation is an extension
of the least-square batch estimation algorithm [RLR96]. Its properties have been widely
studied, see [RLR96, Rao00, TR02, RRM03, LKHBO05] and it has been shown to outper-
form extended Kalman filtering (EKF') by avoiding divergence and constraint violation. A
general formulation of the moving horizon estimator was presented and an algorithm was
developed with a fixed-size estimation window and constraints on states, disturbances,
and measurement noise, see [Rao00, TR02]. MHE based on NMPC model is formed with
a form [LKHBO5]

2(k + 1) = f(a(k), u(k), d(k)) (2.45)
y(k) = h(z(k), u(k), d(k)) (2.46)

Note that it is not restricted to this type form of models. Here x(k) represent the states
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of the model, u(k) are the inputs or MVs, d(k) are the disturbances and y(k) are the

measured outputs or CVs.

The basic strategy of moving horizon estimation (MHE) is to estimate the state vector
based on a finite number of past measurement samples. The oldest measurement sample
is discarded when a new sample becomes available [Rao00, RRMO03]. Assume that an
optimal estimate for the states x(k+ 1) at time k + 1 is desired. From (2.45) the optimal
estimate denoted as z(k + 1|k) can be obtained by

2k + 1|k) = f(@(k|K), u(k), d(k|k)) (2.47)

if the optimal estimates for #(k|k) and d(k|k) are given. Following the same way of
thought, an optimal estimate for #(k|k) can be obtained then by

Bk —1) = f(@(k =1k — 1), u(k — 1),d(k — 1|k — 1)) (2.48)

if the optimal estimates for Z:(k—1|k—1) and d(k—1|k—1) are given. Repeating this way of
thought H,, times, then the optimal estimate #(k+1|k) can be obtained from integrating
those state equations when z(k — H,,|k — H,,,) and {ci(k: — Hy|k— Hy), ... ,d(k|k5)} are
known [LKHBO05]. To obtain these latter estimates, we minimize a criterion that is
a function of the difference between the measured outputs y(k — i) and the predicted

outputs

Gk — i|k) = h(@(k — ilk), u(k — i), d(k — i|k)) (2.49)

at the time instants ¢ =0, ..., H,,. Choosing an least-square formulations, the following

dynamic optimization problem derived for MHE has to be solved [Rao00, LKHBO5]:

Hy,
min S (k= alk) = gk — itk I
i(kam\kam),{d(kam|kam) ..... d(k\k)} i=0 (2.50)

o+ a4 ilk) = Fa(kIR), u(k), d(kIR))

y

After obtaining the estimates &(k — Hy |k — Hy,) and {d(k — Hp|k — Hy), ..., d(k|k)},
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an estimate of Z(k + 1|k) can then be obtained via integrating the model equations. For
obvious computational reasons the time horizon H,, cannot be chosen arbitrarily large.
Instead, a moving horizon formation is taken where the dynamic optimization problem

is solved repeatedly at every sampling instant for a fixed time horizon H,, [LKHBO5].

A very important characteristic of the MHE approach in contrast to EKF is that the
constraints in the estimation of linear and nonlinear dynamic systems can be involved
in, see [Rao00, RRM03, HR05|. For example, [RRMO3] investigates MHE as an on-line
optimization strategy for estimating the states of a constrained discrete-time system.
The estimated states are determined on-line by solving a finite horizon state estimation
problem. When the new solutions become available, the old solutions are discarded from
the estimation window, and the finite horizon state estimation problem is resolved to
determine the new estimate of the state. Results show the significant improvement in
estimation performance by including constraints into the estimation. However, since
MHE has to solve a constrained optimization problem over each moving window, a much

heavier computational expense is required [HR05].

Estimation of disturbances: In practice, the mismatch between the actual measured
and the predicted values of the controlled variables, which is often referred to as model
mismatch, is regarded as the influence of output disturbances [Mac02]. The disturbance
estimation problem is to predict future plant output over the prediction by using the es-
timated output disturbance from the difference between the actual and predicted output
[Raw99], and the effects of the disturbance estimates is to shift the steady-state target of
the regulator [MRI7].

The simplest way is to generate the output targets ys(k) from the differences between
the setpoints y,,(k) and the disturbance estimates [MR97]. In this method, the penalty

on the inputs is eliminated (R = 0), so that the quadratic function L becomes:

L= [k +ilk) — ys(B)]" Q[i(k + ilk) — ys(k))] + At(k + i|k)TSAU(k + i|k) (2.51)
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the output targets are calculated as follows

ys(k) = yop (k) — d(k) (2.52)
d(k) = y(k) = §(k|k) (2.53)

where y,(k) are setpoints for the output variables, y(k) are the actual measured out-
puts, §(k|k) are the predicted outputs, and d(k) are the estimated disturbances. This
disturbance model assumes plant/model mismatch caused by a step disturbance in the
output and the disturbance remains constant over the prediction horizon. Although
these assumptions rarely hold in practice, the disturbance model really eliminates offset

for asymptotically constant setpoints under most conditions [MR97].

2.3 Optimization Algorithms in MPC

For the case of a LTI process model, with a quadratic cost function and without con-
straints, an analytical solution to the optimization problem can be established; and in
case there are constraints presented, but those constraints are convex, then the quadratic
optimization problem which we have to solve is convex and can still be solved easily
[Mac02]. When a nonlinear system with non-convex constraints is considered, a non-
convex optimization problem has to be solved iteratively at every sampling time, which
is the most common ways in NMPC. Several different attempts for solving nonlinear op-

timization problems in MPC have been released during the last thirty years.

[GMS86] uses a successive linearization method to linearize the nonlinear models at the
current operating point. The future process behavior is predicted based on the linearized
model, while the effect of past input movements is computed by its original nonlinear
model. [LR94] develops the method by re-linearizing the process model iteratively in

each control interval in order to improve the accuracy of the linear model.

A Newton-type NMPC algorithm, corresponding to a constrained Gauss-Newton method,



2.3. Optimization Algorithms in MPC 29

has been developed by [LB88, LB89, dOB95]. They proposed to linearize a nonlinear
state-space model, and the nominal input trajectory (or reference trajectory) is deter-
mined by the computation of the input trajectory from the previous sampling time. A
new input trajectory is computed by solving a quadratic program once over the predic-
tion horizon, and the quadratic optimization problem is solved based on the linearized
model. In [LB89], it was assumed that the states are available or measurable, thus the
state estimation was not considered there. In addition, the optimization method used in
[LB88, LB89] is a kind of sequential quadratic programming (SQP) strategy, because only
the inputs appear directly in the optimization problem, however, its poor initial guess
may lead the predicted trajectories far away from desired reference trajectories [dOB95].
This often causes a strong nonlinearity in NLP and poor convergence behavior, especially

to those unstable systems [LB89].

Some researchers also proposed NMPC algorithm by using general nonlinear program-
ming (NLP) techniques for solving the optimization problems, see [ER90, Beq91]. They
use the nonlinear, continuous-time state-space models and solve model equation in some
specific optimization, i.e., SQP algorithm is often considered in solving these kinds of
NLP problems. The shortcoming is that these algorithms are always computationally

heavier than the previous methods.

[BDLS99, BDLS00] propose a multiple shooting approach based on a simultaneous ap-
proach to solve NMPC problems, taking the numerical integration into account, in par-
ticular by suitable adaptations of the SQP algorithm. The prediction horizon is divided
into a number of smaller subintervals, and integrates with each of them so that a con-
tinuous input trajectory is obtained as the solution. Because the continuity of the state
trajectory from one interval to the other is enforced on the NLP level only, dealing with

unstable and strongly nonlinear system models are possible.

We can notice that many optimization algorithm solutions for NMPC have been investi-

gated lately, however, an analytical solution in NMPC approach is usually impossible to
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find , and normally a numerical optimization method has to be taken instead.

2.4 Stability of MPC

MPC is an open-loop optimal control incorporated feedback policy via the receding hori-
zon idea and the state (and disturbance) estimates. The stability is almost impossible
to guarantee because of the very complicated feedback structure of MPC. Different pos-
sibilities to achieve closed-loop stability are proposed in many well written surveys, see
[ABQ'99, ANMS00, MRRS00]. Here only some of the main approaches for MPC are

presented and no detailed proofs are given.

To achieve closed-loop stability for MPC using a finite horizon length have been pro-
posed in [KG88, MM90, MHERO95]. Most of these approaches modify the MPC setup
so that stability of the closed-loop can be guaranteed independently for the plant and
performance specifications. This is usually achieved by adding suitable equality or in-
equality constraints, and suitable additional penalty terms to the cost function. These
additional constraints are usually not motivated by physical restrictions or desired perfor-
mance requirement but only used to enforce stability of the closed-loop, therefore named

as stability constraint [May00, MRRSO00].

Zero terminal equality constraint The simplest way to enforce stability with a finite

prediction horizon is to add a zero terminal equality constraint at the end of the prediction

horizon [KG88, MM90, FA02, MHER95], i.e. to add an equality constraint as
z(t+ H,) =0 (2.54)

The stability of the closed-loop can be achieved if the optimal control problem has a
solution at ¢ = 0. From Bellman’s Principle of Optimality, we know that the feasibility
at one sampling instance can also lead to feasibility at the following sampling instances
and a decrease in the value function [Bel57]. The main advantages of the zero terminal

constraint are: the concept is quite simple and the application is then straightforward.
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However, the disadvantage is that the system must be brought to the origin in finite time,

which may cause the problem if the short prediction horizon lengths is used [FA02].

Infinite horizon MPC The specific approach to achieve stability is to consider an
infinite horizon (H, — o00). Since the feasibility at one sampling time also implies feasi-
bility and optimality at the next sampling time [Bel57], the input and state trajectories
computed as the solution of the MPC optimization at each specific instance, are equal to
the closed-loop system trajectories. The remaining part of the trajectories after one sam-
pling instance are the optimal solution at the next sampling instance. This fact implies

a closed-loop stability [FA02].

Terminal region constraint In order to overcome the use of a zero terminal con-
straint, some researchers suggest the use of a terminal region constraint [FA02, MM90,
CA9g]:

z(t+ H,) € (2.55)

where H), is the prediction horizon, and v is the terminal region. Or to add a terminal

penalty term ¢(x(t + H,)) into the cost function as:

min J(z(t),u(-)) = min <¢(:c(t + H,)) + /t ’ L(s,z(s), u(s))ds) (2.56)

where u(-) on [t,t + H,|. Note that the terminal penalty term is not a performance
specification that can be chosen freely. Rather ¢ and terminal region v are determined

off-line such that stability has to be enforced [CA98, FA02].

Quasi-infinite horizon NMPC For nonlinear systems, the quasi-infinite horizon ap-
proach of [CA98] as well as the approach of [ANMS98] use a terminal cost in the objective
function as a key element to achieve stability. When ¢ € [t, 00), the cost function can be

split up into two parts

+H)p

min J*(z(t), u(-)) = min (/t ’ L(s,z(s),u(s))ds + /too L(s,x(s),u(s))ds) (2.57)
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where u(-) on [t,00). When the trajectories of the closed-loop system remain within some
neighborhood of the origin (terminal region) for the time interval [t + H,, c0), an upper
approximation of the second term can be made. [CA98] suggests that to determine a
terminal region 1 so that a local feedback law u(t) = Kxz(t) asymptotically stabilizes
the nonlinear system and makes v positively invariant for the closed-loop; and also add
an additional terminal inequality constraint z(¢ + H,) € 9, so that the second term of
equation can be upper bounded by the cost function caused by the application of the
local controller u(t) = Kuz(t). The predicted state will not leave 1 after ¢ + H, since
u(t) = Kz(t) gives ¢ a positive invariant [CA98, FA02]. Furthermore, the feasibility at
the next sampling instance is guaranteed to dismiss the first part of u(¢) and replace it
by the open-loop input. Therefore, by using the local controller for ¢ € [t + H), 00) and
x(t + H,) € v, we obtain:

min J*(z(t), u(-)) < min </t ’ L(s,z(s),u(s))ds + /t:OH L(s,w(s),Kw(s))ds)
’ (2.58)

and by choosing the terminal region 1 and the terminal penalty term in order to leads

/t T Ls,als), Ka(s))ds < ot + H,)) (2.59)

Substituting (2.59) into (2.58), we obtain
min J* < min J(z(t + Hy),u(+))) (2.60)

which implies that optimal value of the finite horizon problem bounds that of the corre-
sponding infinite horizon problem. Therefore, the prediction horizon can be treated as

extending quasi to infinity [CA98, FA02].



Chapter

Semi-analytical Optimization Method based
on MPC Scheme

In this chapter, an efficient semi-analytical optimization method is proposed to generate
an optimal open-loop feedback control law for controlling dynamic nonlinear systems. The
method is based on the MPC framework and allows explicit dealing with constraints. The
chapter is organized with four main sections. First, we introduce some main approaches
of optimal control theory built so far, then the principle of optimality which is the key
idea behind optimal feedback control is presented, after then, the minimum principle
of Pontryagin, Bellman’s dynamic programming (DP) equations, and Hamilton-Jacobi-
Bellman (HJB) equation are specified respectively as well. In the following section, an
optimal feedback control principle has been brought in. Based on those theoretical foun-
dations presented, an efficient semi-analytical optimization algorithm named Repetitive
optimal Open-loop Control (ROC) is finally carried out, and the similarities and differ-
ences between the standard MPC and ROC algorithm are compared. At the end, some

numerical examples are presented for illustration.

3.1 Introduction to Optimal Control

Optimal control theory can be regarded as a generalization of the calculus of variation

which was initiated in 1696, with Bernoulli’s Brachystochrone problem [Bry96]. The



34 Chapter 3. Semi-analytical Optimization Method based on MPC' Scheme

calculus of variation has, since then, been built up by numerous famous mathematicians.
The most influential contributions, like those of Euler, Langrange, Legendre, Hamilton,
Jacobi, and Weierstrass, etc can still be found in modern optimal control problems, which
are identified by the names of their creators [SW97]. In the 1950s Bellman developed
the concept of dynamic programming (DP) which can be used to solve discrete optimal
control problems [Bel57]. Later Kalman solved a problem with linear dynamics and
integral quadratic cost function, showing that the optimal control is a linear feedback
[Kal60]. This valuable example of the optimal control problem has been later named
as the Linear Quadratic Regulator (LQR). In 1956, Pontryagin et al. published the
first necessary conditions of optimality for nonlinear optimal control problem, known as
the Minimum (or Maximum) Principle [PBGM62]. These conditions are subsequently

generalized in many ways for dealing optimal control problems with dynamic systems.

3.1.1 Optimal Control Problem

The optimal control problem considered here is defined in terms of a general nonlinear
dynamic system modeled on the time interval [ty,?;], and suppose that ¢, is the initial

time, so that

@(t) = f(t x(t), ult)) (3.1)
with an initial time that
z(to) = zo, (3.2)
and
u(t) € Q (3-3)

where ty and ¢y are fixed initial and terminal times of optimization, ¢ is a fixed state
initial point and z(t) € R", t € R and u(t) € R™. The state trajectory x is assumed
to be a continuous function of time on ¢ € [to,ts], and input u is a bounded piecewise

continuous function, which satisfies the constraints u(t) € § for t € [to, ty].

To solve this problem and guarantee the steady state in the end, we have to add the
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penalty function for that, therefore a performance index is given as

J:Mﬂwﬂ+/fuuﬂmu@Mt (3.4)

to

where ¢ is a function of the terminal state, L is a function of the state and control.
Thus, the optimal control problem is to determine an admissible control u(t) € € which

minimizes the performance index above.

Note that the above mentioned optimal control problem is the most common and simplest
type of such kinds of problems we can form and solve, but actually there are plenty of
other initial setting formats, for more details see [PBGM62, AF66]. And the most difficult
formation among is to solve a situation with the fixed state end point z(¢¢), i.e., the initial

condition like

z(lo) = mo, x(ty) = xy, (3.5)

and its corresponding performance index looks like

J:/Wu@amu@mt (3.6)

to

The proposed ROC algorithm will be used to testify its capability for handling the most
difficult forms of optimal control problem with an application in the later chapter. How-
ever most optimal control problems in real industry can be described using free end points
formulation, so the ROC algorithm will also show its capability to deal with those kinds

of problems in later chapter as well.

3.1.2 Minimum Principle of Pontryagin

The minimum principle of Pontryagin, under smoothness hypotheses, gives the necessary
conditions for optimal control problem [AFG66]. The Hamiltonian function (or simply

Hamiltonian) is defined as

H(t,z,u,p) =p" f(t,z,u) + L(t, z,u) (3.7)
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where z € R, u € R™ and adjoint (or costate) vector p satisfying p € R™. f is a function
determining the system, L is the integrand of cost function, and t € [to, t¢]. The optimal

solution must be satisfy

(1) = G (0" (0), 0 (0,07 (0), (33)
5(0) =~ (2" (0,0 (1), () 3.9)

with the boundary conditions from initial condition (3.2)

vt = a0, 1= (505) (3.10)

Note that in this kind of optimal control problem the boundary condition has a special
form. Because the initial state z(tg) should be known, the half of differential equations
for state have fixed boundary conditions at the starting point. If the terminal state
x(ts) is not fixed at the end, which is typical in most control problems, the other half of
differential equations for adjoint state (or costate) p(ty) has to be fixed at the endpoint,
this feature is utilized in this thesis. And if concerning the most difficult formation with
the fixed state end point z(¢s), then boundary conditions from initial condition (3.5) have
to be satisfied instead

" (to) = xo, x*(ty) =y, (3.11)

The function H (¢, x*, u, p*) has an absolute minimum as a function of u over € at u = u*

that is
migrzl H(t,x" u,p*) = H(t,z*,u", p") (3.12)
ue
or equivalently,
H(t,z*,u*,p*) < H(t,x*,u,p*), forallueQ (3.13)

Thus, the optimal problem we faced above is reduced to a two-point boundary-value
problem (TPBVP), which can be solved with variety of numerical methods. Sometimes

it is notoriously difficult to solve even with a high-speed computer. One of its numerical
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solution algorithms will be well studied in next chapter.

3.1.3 Dynamic Programming

DP is a simple mathematical technique that has been used for many years by mathe-
maticians, scientists and engineers in a variety of context. Bellman developed DP in
conjunction with the appearance of digital computer into a systematic technique for op-
timal control theory. It is regarded as more universal than the calculus variations and
the minimum principle of Pontryagin because of its power and simplicity based on the

principle of optimality [Bel57], which states:

Theorem 3.1 (The Principle of Optimality) An optimal control sequence has the
property that, whatever the initial state and the optimal first control variable may be,
the remaining controls (or decision variables) constitute an optimal control sequence with

regard to the state resulting from the first control.

The principle of optimality suggests that an optimal policy can be constructed in piecewise
style that first to construct an optimal policy for the “subproblem” involving the last
stage, and then extend the optimal policy to the “subproblem” involving the last two
stages, and continue in this manner until an optimal policy for the entire problem is solved
[BH75]. The DP algorithm is based on this principle so that it proceeds sequentially, by
solving all subproblems in a given time length. So suppose that the system starts at
(t,x) : [to,tf] x R™ and proceeds for a short time At, then the optimal cost function

becomes

u

J*(t,z(t)) = min (/t L(s,z(s),u(s))ds + J*(t+At,x(t+At))> (3.14)

This is the DP equation which shows that the optimal control problem can be computed
recursively backwards [Ber95]. By taking one more step, we derive a Hamilton-Jacobi-
Bellman (HJB) equation, which in general gives a more constructive way to determine
the optimal cost function J*. HJB equation is a central result in optimal control theory.

Many other principles and design techniques follow from the HJB equation, which itself
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is in fact just a statement of the DP principle in continuous-time with a general form as

*

0J (t,x) = min <L(t,:c, u) + 0J

o ; () f (o) (3.15)

where all (t,z) € [to,tf] x R", and the boundary condition to HJB equation is

J*(tp,x) = Pp(x(ty)) (3.16)

In DP approach, when the optimal control u*(t) trajectory is got, the solution of all
states x(t) has to be found. An optimal state feedback law is then generated in a form
of u*(t) = a(t,z, %~ (t,z)) and can be valid for any initial condition, however a really
“complete” solution under such state feedback law, in fact, is computationally very heavy

to obtain and may cause the curse of dimension [Bel57, AF66]. In practice, only very low

dimension system can be solved within a reasonable time.

3.2 Optimal Feedback Control

Iteration principle of optimality enables a recursive solution to the optimal control prob-
lem, known as optimal feedback control, which is based on the DP and HJB equations
[Bel57, AF66]. The DP equation defines an optimal control problem in feedback or closed-

loop form.

Reconsider the common form of optimal control problems from the nonlinear system
(3.1) - (3.4). By solving a HJB partial differential equation, the optimal feedback control
principle is implemented. Normally, the following steps are taken [AF66):

[1] Define the Hamiltonian
H(t, @ u,p) = p" f(t,2,u) + L(t,z,u) (3.17)

where p € R™ is a adjoint (or costate) vector.
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[2] Optimize pointwise over u to obtain

u(t,x,p) = miggl H(t,z,u,p)
ue

(3.18)
— mi T
= min {p" f(t, 2, u) + L(t,z,u)}
[3] Solve the partial differential equation
0J* _ aJ* 0J*

subject to the initial condition J*(tf, ) = ¢(x(ts)).

Then the obtained u*(t) = a(t, z, 22(t,z)) is the optimal feedback control law.
We can clearly notice that the solution of HJB equation is usually pre-calculated for
states at each time instant, thus an analytical solution, in general, is impossible to get
(an exception is the Linear Quadratic Regulator (LQR)), and a numerical solution is
also computationally very hard. In practice, only very low dimensional problems can be
solved in reasonable time [Bel57, AF66], and HJB partial differential equation is normally
difficult and may impossible to solve for the nonlinear system with inequality constraints

[BHT5).

3.3 Repetitive Optimal Open-loop Control

In previous sections, we have introduced two different approaches for solving the optimal

control problem:

e Minimum principle of Pontryagin: a solution of the time-based piecewise constant
optimal control is obtained, but it’s only valid for the specified initial conditions.
The solution of the optimal control problem can be reduced into a TPBVP prob-
lem, which sometimes is quite difficult to solve numerically even with a high-speed

computer [FA02][;
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e DP and HJB partial differential equation: in order to get the optimal control tra-
jectory, a solution for all states has to be found [Bel57]. The advantage is that it
derives an optimal state feedback law which is valid for any initial condition; but
the drawback is that to obtain a “complete” solution under such state feedback
law, actually is computationally heavy and may cause the curse of dimensionality

[Bel57], only very low dimension system can be solved in a reasonable time.

MPC algorithm uses an iterative on-line solution of open-loop optimal control problem.
For LMPC, the solution of the optimal control problem can be converted into a solution
of a convex, quadratic problem, which can be solved easily. This is one of the reasons
why LMPC was widely used in many industry areas [MR93]. However, NMPC has to
consider the nonlinear optimal control problem which is in general non-convex, and an
analytical solution is very difficult to find, instead a numerical optimization solution has

to be generated.

An idea comes up whether we can improve NMPC control by developing a new algorithm,
which can hold the merits from both Minimum principle of Pontryagin and DP approaches
but try to get an approximately analytical, or we say a semi-analytical solution to optimal
control problems. Repetitive optimal open-loop control (ROC) is generated for such
purpose by using an open-loop feedback laws to build a semi-analytical form relationship

between the optimal control variables and states.

3.3.1 Optimal Trajectory Calculation for Dynamic Systems

Normally an optimal control problem can always be derived into a form of TPBVP via
Pontryagin’s minimun principle [PBGM62]. The relationship between control variables,
states, and adjoint states is specified by the classical calculus of variation. Studies for
this area have been extended to those problems containing inequality constraints on the
control and state variables [RSR95]. And some efficient technical methods are introduced
in [Hen96| for specifying the optimal control method into a TPBVP form by the aid of
the MATLAB Symbolic Toolbox.
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Consider the common optimal control problem of the Bolza form in [Hen96]

minJ = min( (L), g (1)) + /t L) u(t) 0 () 1) (3.20)
where
i(t) = f(z,u), x(to) = o (3.21)
y(t) = g(x) (3.22)
u(t) € Q (3.23)

where y,.5 is the output reference trajectory, ¢ is a function of the terminal state, L is a
function of the state and control, and both ¢ and L have continuous partial derivatives
to x. Equation f(z,u) and g(x) are assumed to have continuous partial derivatives of
their arguments. Input u is a bounded piecewise continuous function, which satisfies the
constraints u(t) € €2 for ¢ € [to,tf]. to is the fixed initial time of optimization, and ¢, is
the terminal time of optimization. The state trajectory x is supposed to be continuous

on t € [to,ty] [Hen96].

Function ¢ in (3.20) is introduced to ensure that the optimal solution will approach the
reference trajectory y,.s in the end t;. It has to be differentiable and a common form
for the terminal output penalty with the terminal reference value from the reference

trajectory y,.r(ty) is given as

D((ty), yres(ty)) = [97 (@(tr)) = Yros (1) ] Q9 (x(ts)) — yres(ts)] (3.24)

where () is a positive definite matrix. The reference trajectories in the numerical examples
of this thesis are all set directly to constant initial setpoint values, i.e. y,er(t) = yres(to),
where ¢ € [to, tf]. Reducing (3.20) - (3.23) into a TPBVP via the minimum principle of

Pontryagin. The L is formed as

L<x7u7yref) = [g(.%’) - yref]TQ [g(x) - yref] + UTRU (325)
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The predicted output is penalized with (3.24). The Hamiltonian function of the optimal

problem is

H(z, 0, p, Yres) = [9(2) = Yres] Q[(x) = yres] + u Ru+ p” f(z,u) (3.26)

where p € R" is the adjoint state. The optimal control u* is obtained by minimizing the
Hamiltonian function H. If the control variables are not constrained, the gradient of H

with respect to u

However if control constraints exist, the optimal control u* still has to minimize the

Hamiltonian function H [Hen96|
H(x",p" 0", Yrer) < H(x,p, U, Yrer), for u*, u e (3.28)

If the cost function is quadratic and control enters linearly into the system, then state x

and adjoint state p in TPBVP has the form given by [Hen96]:

&= f(z,u’(z,p)) (3.29)
b= OH
T o
(3.30)
019(x) — Yrer |\ T T x,u(z, T
=—< o )&E & f]> (Q+ Q") [9(x) = yres] — <8f( ax( p))> p

and the boundary conditions like:

z(to) = xo, (3.31)
~0(x(ty), Yres (tr))

P = ) 52
_ <8[9(x(tf)29x_ yref(tf)] )T(Q 4 QT) [g(x(tf)) . yref(tf)}

where u°(z, p) is derived from either (3.27) or (3.28).
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However in true reality the control derivatives may have to be taken into account instead

of control in optimal control problem

min J = min(qb(x(tf),ymf) + / ' L(m(t),u(t),u(t),yref(t))dt> (3.33)

to

where

i(t) = flz,u), z(to) = 29 (3.34)
y(t) = g(x) (3.35)
u(t) € Q2 (3.36)

where () is control derivative. Reducing (3.33) - (3.36) into a TPBVP via the minimum

principle of Pontryagin. The L is formed as
. T T
L(x, U, U, Z/ref) = [g(x) - y?‘ef] Q [g(:(]) - y?‘ef] + u’ Ru + ul S (3'37)

where the weight of control R is zero. Since the Hamiltonian function cannot have the
derivatives, when 17 S,..u is needed to be taken into cost function, then the system model

has to be extended to

= f([x ul, U) (3.38)
y(t) = g([z u)) (3.39)
7

where the new state is e, = [ u|T and input is v = [0 I]T. And Hamiltonian function

is built up like

H(xnewa v, P, yref) - |:g<xnew> - yTef] TQ [g(xnew) - yref] =+ UTSU + pr<Inew> U) (340)
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Minimizing the Hamiltonian function H and the gradient of H with respect to v is

OH Of (Tnew, v)\T
T

If the cost function is quadratic and control enters linearly into the system, then new

state x,e, and adjoint state p in TPBVP has the form given:

jfnew - f(xnewa U(xnewap» (342)
. oH
b= _al‘new
a new/) — Yre T
= _< [g(xax:ew Y f]) Q+ QT) [g(xnew) _ yref] (3.43)
8f<$new7 Uo<xnewyp)) T
B ( 0T pew > b

and the boundary conditions like:

Tnew(to) = [0, uo)" (3.44)
_ aqb(x"“” (tf>7 Yref (tf))
p(tf) - a(xnew(tf)) (3.45)
- (Aeleenl) =0V 4 1) gren) — )]

where v is an initial value of input v and the optimal control is got from e, (2, :).

Generally, when we have a linear optimization problem with a quadratic form cost func-
tion, the optimal control u* can be solved in an analytical form paralleling with the TP-
BVP and a minimization of Hamiltonian function H. When the optimization problem is
nonlinear but the cost function is still in quadratic form, if some fixed or distinguished
local minimum can be still found because of min/max constraints, then the global min-
imum is guaranteed, and the optimal control «* in some cases can be also solved in an
analytical form. When the optimization problem is nonlinear and the cost function turns
to be non-quadratic, without a guaranteed global minimum, then the optimal control u*

has to be solved numerically. In practice, when we have a one-dimensional optimization
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problem, a numerical and linearized solution is possible to get with a reasonable compu-
tation time, however when the dimension is increasing, the computation is getting heavier

and heavier and causes a dimension curse.

3.3.2 Introducing Feedback to Open-loop Optimization

Based on the principle of optimal feedback control, ROC drives the process inputs and
outputs to their target values by introducing a feedback idea into the open-loop opti-
mization manner. Feedback is inserted into ROC by solving repetitively the sequence of
on-line open-loop optimal control problem Equations (3.20) - (3.23) with the aid of state
(and disturbance) estimation and obtained optimal control trajectory is valid until next
new system measurement becomes available. The whole procedure which includes both
optimization and prediction is repeated to find a new input with the prediction horizons

forward-moving.

Consider a sequence of sampling instants {¢;},,, with a sampling interval ¢, > 0 (note
that ¢4 is not necessary a constant value but definitely much smaller than the prediction
horizon H,), so that t;+; = t; +t, for all ¢ > 0. The feedback control is obtained by
repeatedly solving an open-loop optimal control problem at each sampling instant ¢;,
and the current state estimation x(t;) of the plant is used. Illustrated in Figure 3.1, the
principle of ROC is specified in following steps, where £° and u® are the state trajectory
and control solutions to an open-loop optimal control problem, and x* and u* are the

optimal state trajectory and optimal control resulted from ROC strategy.:

[1] estimate or measure an initial state of the plant x(¢;) at the current time point ¢;

(the first initial index ¢ = 0);

[2] calculate the open-loop optimal control w® at [t;,¢; + H,) — R" (current initial

index ¢ = 0) and get the solution from TPBVP-form optimization problem;

[3] apply the open-loop optimal control u*(t) = u°(t) immediately at the time interval
t € [t;,t; + ts) to the plant;
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Figure 3.1: Principle of repetitive optimal open-loop control (ROC)

[4] repeat the procedure from step [1] for the next sampling interval ¢;;1 (the index
i is incremented by one unit in each repetition), and move the prediction horizon

forwardly one time-step further.

The optimal control u*(t), t € [t;,t; + ts) is applied until the next sampling instant ¢;,;
is achieved and at that time a new optimal control problem is solved. Note although
the control variables are stored on discrete-time intervals, the optimal control variables

can be approximated at intermediate time values via for example spline interpolation

[Hen96.

3.3.3 State Estimation based on ROC

Since it is normally impossible to measure the whole system states, an estimator is used
for estimating the state variables of a dynamic system from input-output measurements

based on the state feedback control strategies.

EKF Estimation based on ROC Extended Kalman filter (EKF) is used here for

on-line state estimation in nonlinear practical applications. The EKF estimation is to
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calculate the state estimates in nonlinear model while compute Kalman gain by a lin-
earized discretized nonlinear continuous-time system model. At the initial time ¢; (the
first initial index ¢ = 0), the system output measurement y(¢;), the initial state estimate
Z(t;|t;i—1), the input control variable u(¢;_1), and the covariance matrices of process noise

Qra and Ry,;, the EKF estimation algorithm based on the ROC control can be given as:

[1] linearize and discretize the nonlinear continuous-time system at the control u(t; ;)
and previous state estimate and obtains the system matrices A4(t;), Ba(t;) and

Ca(ts);

[2] calculates the steady-state Kalman gain K (¢;) with the linearized discrete system

matrices A4(t;), Bq(t;) and Cy(t;) and covariance matrices Qg and Ryq;

[3] calculate the prediction error at time ¢;
d(tilt:) = y(t:) — g(@(tilti 1)) (3.46)

[4] solve the optimal control variables from the open-loop optimization problem Equations(3.20)
- (3.23) and (2.35)-(2.36). The initial state estimation solution is done by
a) the initial state estimate Z(¢;|t;_1)
b) assume that the prediction error is constant over the prediction horizon H,

c) solve the system over the prediction horizon

B(ti+ jltic) = F(@(tim + jltima), w(tion + 5)) + &ty + jltio1) + K(&)d(t|t:)
(3.48)
The control variable values u(t;47) are provided by the optimization algorithm.

The output prediction is obtained from

y(t; +7) = g(@(t; + jltir) + d(tilt;) (3.49)
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[5] apply to get new control variable u(t;)

[6] estimate the next initial state Z(t;41|t;) by
Btialts) = F(@(talt), u(t:) + @ (talt) + K (6)d(tt:) (3.50)

where the index ¢ is incremented by one unit in each repetition.

Based on local linear approximations of state/measurement equations computed at each
sample time, a recursive state estimator providing the minimum-variance state estimates,

known as the extended Kalman filter (EKF) is derived.

MHE Estimation based on ROC Moving horizon estimation (MHE) approach to
on-line state estimation is an extension of the least-square batch estimation algorithm
[RLR96]. The state estimation problem is formed within a finite moving horizon win-
dow and to find the values of the unknown sequences (e.g. initial condition, state noise,
measurement noise) in the least-square formulation [ML99]. When the unknowns are
estimated, the states can be reconstructed by using the model. In the linear system
with no constraints, the MHE is equivalent to the Kalman filter for choosing the certain
weighting matrices [ML99]. Moving horizon estimation (MHE) is favored because: First,
a nonlinear model can be used directly; at least within the estimation window, which
improves the accuracy of estimation. Second, the constraints in the estimation of nonlin-
ear dynamic systems is involved [ML99]|. Adopted scheme proposed by Section 2.2.4 and

minimizing the cost function

Hp,
. . ~ . 2
min Y (= 1) — 9t — eIl

#(ti— Honlti—Hin) { d(ti— Honlts— Hin),ood(tilt) } 50
~ 2
||t 4 g1t = @ttt uit), deie))| )

(3.51)

After obtaining the estimates (t; — H,,|t; — H,,) and {cf(tl — Hplti — Hp), - .. ,CZ(ti\ti)},

an estimate of Z(¢;11|t;) can then be obtained via integrating the model equations. The
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time horizon H,, cannot be chosen arbitrarily large because of the heavier computational

expense, so a fixed time horizon H,, is required.

Extended Kalman filter (EKF) is favored mainly because of its simplicity and efficient
computation characters for handling the nonlinear dynamic systems, examples of imple-
mentation included estimation for the polymerization reactions, the production of sili-
con/germanium alloy films and the fermentation processes [HR05], however it may diverge
from the true state and cannot satisfy the process constraints [CBG05, Jaz70, May79].
Moving horizon estimation (MHE) is famous because of its capability for handling the
constraints in the estimation of nonlinear dynamic systems, examples of implementa-
tion included estimation for the chemical reaction systems, the batch reactor and CSTR
[HRO05], however because MHE has to solve a constrained optimization problem over each
moving window, the heavy computational expense is obvious. In this thesis, the states
from all experimental applications are assumed to be measurable. However when ROC
control is implemented in some real industrial applications where normally all states
cannot be measured, the EKF or MHE will be chosen depends on the exactly practical

situation.

3.3.4 Comparison with General MPC

The general MPC mentioned here means the MPC Toolbox in MATLAB on the version
7.04. To compare the characteristics between these two predictive control approaches,

the similarities are firstly considered to be emphasized:

e Both the ROC and the general MPC’s framework are based on a relatively simple
idea called receding horizon strategy as well as on their practical properties, namely

the capability to cope with constraints and nonlinearities;

e Both of them use a dynamical model of the plant to predict the future behavior of
the process based on the available data at the current time, and a future control

signal is calculated so that the predicted output is as close as possible to the desired
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reference trajectory;

e Both of them are carried out in an open-loop status, and this open-loop is “closed”
by applying the feedback control law during each sampling interval, with a form of

a function of states at some time instant.

e Both of them are formulated as the repeated solution of a finite horizon open-
loop optimal control problem subject to system dynamics and input and state

constraints.

The difference in the control performance between the ROC and the general MPC ap-
proaches is small when the constraints and disturbances acting on the plant to be con-
trolled are not significant. Generally, most industrial systems are continuous-time form
in nature, the advantage of ROC is that it allows flexibility to handle the continuous sys-
tem with large variability in practice, and explicitly handle constraints and disturbances.
Although the computational burden and complexity are arise, it is still quite applicable
with the present day high-speed computation and powerful computer. Hereafter a few

differences between them are specified respectively:

e In the ROC control approach, the model representing the dynamic process to be
controlled, is exactly a nonlinear model while the general MPC prefers to use a

linearized model from the original nonlinear dynamic process;

e ROC has a capability to explicitly deal with the continuous-time model while the
general MPC only handles the discrete-time model, so if the continuous-time models
are supplied in the general MPC, they are internally sampled with the controller’s

sampling time into discrete-time models;

e The performance index functions between them are different. Since the ROC is
based on continuous-time form, the performance function is obtained with a con-
tinuous area, while the general MPC is based on discrete-time form, thus its per-

formance index function is calculated as a connected stair-size field.



3.3. Repetitive Optimal Open-loop Control 51

e In the ROC control strategy, the control horizon H. is not used (or we say that
the control horizon always equals to the prediction horizon, i.e. H. = H,); and
actually in the general MPC scheme, the control horizon H. has to be chosen
carefully in order to maintain a good balance between the performance of control
and the burden of computation: With the fixed prediction horizon, the smaller
control horizon yields a more sluggish output response and more conservative input
movements but computation won’t be so heavy; a large control horizon has the

opposite effect on performance [Hen98|.

Also, when the control horizon H,. is increased, more degrees of freedom have to
be available for optimization, which is often translated into tighter control of the
processes. Therefore, increasing the H,. may result in a better control system per-
formance, but at the expense of larger changes in the manipulated variables and a
reduction in the controller robustness, and an increase of heavier on-line computa-

tion [LHI3J;

e The control signal obtained from the ROC approach has not to be assumed as a form
of piecewise constant between each sampling interval as the general MPC assumed.
Instead, by calculating exactly according to the corresponding “approximately”
continuous state (and the adjoint state) via spline interpolation, it has a form of
piecewise varied sequence, which describes optimal control trajectory in continuous-

time;

e Using zero-terminal equality constraint to achieve stability in the general MPC or
ROC, which enforces the state at the end of the horizon to the desired steady-state,
results the boundary condition for TPBVP reduced from the nonlinear optimal
control problem. In practice, it is computationally expensive to be solved by the
general MPC, but in ROC, a method called back-and-forth shooting is used to solve
efficiently such TPBVP-formed optimization problem, thus the computation load

is decreased.
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Generally speaking, both ROC and general MPC are predictive control approaches based
on the principle to solve iteratively on-line open-loop optimal control problem, however,
they are quite different algorithms in the way of derivation, in the predictive model to
be handled, in the cost function to be formulated and in the optimization freedoms to be

concerned, etc.

3.4 Numerical Examples

In this section we would like make a comparison between ROC and general MPC more
clearly by providing some illustrative numerical experiments. Note that the optimiza-
tion problems considered are reduced into TPBVP-forms solved by the back-and-forth
shooting method, which will be studied deeper in the next chapter. In addition, the opti-
mal control problems concerned are converted into the solution of the convex, quadratic

problems.

Example 1: Unconstrained Linear System In order to illustrate how ROC may
be used to control system behavior, we firstly provide a very basic and simple example,

an unconstrained linear system. The system is described with a transfer function as:

U(s) ~ sG+1) (3:52)

where the manipulated variable is U(s) and the controlled variable is Y(s). Then the

discretized model for a sampling time of T, = 1.0 second is given

Y(z)  0.3679z +0.2642 (3.53)
U(z) 22— 1.368z + 0.3679 ‘

The output reference trajectory is defined as constant 0.2 for the simulation. The initial

time is set ¢y = 0 seconds and the end time is £y = 15 seconds.

In ROC control, a prediction horizon is set to H,, = 5 seconds, and the control horizon is

not used (or we say that the control horizon always equals to the prediction horizon in
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ROC principle, i.e. H. = H)), and sampling time is 75 = 1.0 second. Since the system is
integrating so the control trajectory will be trended to zero, so we could directly concern
the weight of control instead of concerning the weight of control derivative here, and the

weights of the output and the control are defined as
Qroc = 107 Rroc = 0017 (354)

Note that the control weight in ROC cannot be zero otherwise the optimal control is

infinite. The cost function in continuous-time is:

Jroc = /tf [(y — Yres) QY — Yres) + uTRu] dt (3.55)

to

In order to compare the result with ROC under the same condition, to general MPC
control, the prediction horizon and control horizon are chosen the same as ROC, i.e.,
H, = 5 seconds and H. = 5 seconds, sampling time is also Ty = 1.0 second. The output

weight and the control weight are defined as
Qmpc = 107 Rmpc = 07 (356)

From the comparison point of view, the control weight should be R,,,. = 0.01, the same
value as R,,.. However as we know that when the weight of control is equal to zero, the
system output can perform the fastest response in general MPC, therefore, to be fair to
the general MPC, the weight of control is chosen R,,,. = 0. Then its cost function based
on discrete-time is formed as:

ty

Jmpc = Z |:<y - yref)TQ(y - yref) + UTRU (357)

to
Applying ROC and general MPC to the system with both output tracking reference tra-
jectories y,.r(t) = 0.2. Results are illustrated in Figure 3.2. It can be seen clearly that
both approaches can solve the “nearly” equivalent problem, as we have to notify that

there are still some differences between the problems precisely solved by ROC and gen-
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output trajectories with reference by ROC Output trajectories with reference by MPC
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Figure 3.2: Unconstrained linear system controlled by ROC and general MPC

eral MPC: first, the differences between their performance index formulations, since one
is built based on continuous-time and the other one is based on discrete-time, although
by minimizing the stepsize in discrete-time can get very close cost function area as the
continuous-time has, however they are not exactly the same; second, the freedom of the
optimization is not equal, the ROC control horizon is defined in continuous-time and
concerned with infinite variables, thus its freedom of the optimization is normally much
higher than general MPC, whose control horizon is in discrete-time and concerned finite

variables.

It can also be easily noticed that the start of the ROC optimal control trajectory is
much higher than MPC control trajectory does because of the control weight. Although

R,oc = 0.01 seems to be a quite small weight, however compared to R,,,. = 0, it is quite
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a big value. Note that, hereafter, we will always compare these two control approaches
based upon this principle. In addition, both variables, shown in the Figure 3.2, reach
their set-points exactly while exhibiting some very small overshoot. Since without con-
straints and with linear dynamics, both algorithms perform nicely and efficiently. Hence
the contributions of ROC and general MPC for unconstrained linear system are quite
similar, but the system behaves smoother by ROC control than general MPC control in

continuous-time.

As we know, in practice, the state variable x usually cannot be measured. The optimal
control needs an initial state, which can be provided by a standard approach to estimate
the state of a dynamic system from input-output measurements, and a Kalman filter
K.s is used for estimating the state variables . Applying ROC principle with state

estimation is as follows:
[1] estimate the state by Z(k|k) for optimization using y(k), uw(k—1) and &(k—1|k—1);
[2] calculate the optimal control over prediction horizon H,;
[3] use the optimal control u(k|k) in the plant;
[4] repeat the procedure from step [1] for the next sampling iteration.

Note in this case, although all data used are in discrete-time, the ROC control is still in
a continuous-time form. Extending the state estimation to contain the white Gaussian
distributed noise, the controller can cope with independent randomly with zero-mean
white Gaussian distributed noise both at process input and output, etc. The covariance

tuning parameters are defined as

Qra = 0.01, Ry =0.01 (3.58)

The initial state of the plant is xy = [0, 0], and the estimator is Z(k|k) = [0, 0]. Then
the optimal input trajectory and output trajectory turn to be as Figure 3.3, where the

input disturbance is zero-mean white gaussian distributed noise with variance equals to
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Output trajectories by ROC with state estimation Control trajectories by ROC with state estimation
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Figure 3.3: Unconstrained linear system controlled by ROC with state estimation

0.05, and output disturbance is zero-mean white gaussian distributed noise and variance
equals to 0.1. Note that the pair (C, A) describing the overall state-space realization
of the combination of plant and disturbance models has to be observable or detectable
for a successful state estimation design. The model has been converted to discrete-time

state-space form for obtaining the Kalman gain.

Example 2: Non-minimum Phase System In the second example, we consider a

linear, stable non-minimum phase system given by the following transfer function:

—s+0.5
s24+5s5+6

G(s) = (3.59)

If the system is sampled at 1.0 second, the discrete transfer function is given by

—0.02775 + 0.09622z 1
—1y __
Gz = 1 —0.18512=1 4+ 0.00674z1 (3.60)

The reference trajectory is defined as constant to y,.; = 1.0 for the simulation, and initial

time is ¢y = 0 second, the end time is ¢y = 20 seconds.

In ROC control, the prediction horizon (and control horizon) is chosen as H, = 10 seconds
(default H. = H,). When there is no integrator and the control derivative (or control

movement to general MPC) won’t turn to zero, we have to concern the weight of control
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derivative instead of simple weight of control. The chosen output weight and the control

derivative weight are as:

Qroc = 10; Sroc = 0017 (361)

and the cost function forms in continuous-time is:

ty
Jroc - / [(y - yref>TQroc(y - yref) + uTSmcu dt (362)

to

with the state-space model & = Az + Bu. As Hamiltonian function cannot take the
derivative, so when 47 S, is taken into cost function, then the system model has to be

extended to

T A Bl |z 0
- + | | (3.63)
U 0 0 U I

where the new state is e, = [ u|T and input is v. And Hamiltonian function is
H = (Cnewxnew - yref)TQroc(Cnewxnew - yref) + UTSrocU +pT(Anewxnew + Bnew”) (364)

where matrices A, cw, Bnew, and Che, are

A B 0
Anew - ) Bnew = 5 Cnew = [C O} (365)
0 O I

the derived TPBVP is written now like

jcne’w = Anewxne’w - Bne’w(SToc _'_ 5120)7132@11)2?
: 0H
p=—75"
oz (3.66)

T T T
= _(Cnew mchew + CnerTOCCnew)xnew

+ (Orj;ew Z-IOC + Orj;erTOC) * Yref — A;{ewp

In order to compare the result with ROC under the same condition, to general MPC

control, the prediction horizon and control horizon are chosen the same as ROC, i.e.,
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H, = 10 seconds and H, = 10 seconds, sampling time is also the same as ROC’s,
ie. Ty = 1.0 second. The weighting factors applied to the system output and control

movement are

Qmpc = 107 Smpc = 0017 (367)
and its corresponding cost function based on discrete-time forms as:

ty
Jmpe = Z [(y - yref)TQmPC(y = Yref) + A7“‘T‘SvmpcAu] (3.68)

to
In the first case, applying the ROC and the general MPC to the system with sampling
time Ty = 1.0 second without output constraint, then their closed loop behaviors exhibit
the typical non-minimum phase behavior with an initial peak in the opposite direction

to the set-point change in Figure 3.4.
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Figure 3.4: Non-minimum phase system controlled by ROC and general MPC
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In addition, since the weight of the control derivative is taken into account here instead of
a weight of control, the responses of output and control trajectories in the ROC control
perform slower than in the general MPC, where a weight of the control movement is used

instead.

As we know, the control of non-minimum phase systems remains an important problem
in optimal control, one wishes to let the output of a dynamical system track a desired
trajectory while trying to avoid inverse peak behavior, therefore the output constraint
has to be concerned. If the response is preferred to obtain under a circumstance that the
inverse peaks can be decreased, then a penalty function of output is required in ROC

optimization control problem. The continuous-time cost function is built now as:

ty C
Jyoe = / (O = 1) Quo O = ) i St 52— = 1) ar - (3.69)
to max
with the state-space model
&= Ax + Bu (3.70)

Since 17 S,oc0 is also taken into the cost function, the system model has to be extended
as Equation (3.63) as well, where the new state is Z,e = [ u]? and input is v. And

Hamiltonian function is

H = (Cnewxnew - yref)TQroc(Cnewxnew - yref) + UTSrocU

Onew$new

(3.71)

+ 8(2 - 1)N + pT(Anewxnew + Bnewv)

ymax

where matrices A,ew, Bpew, and Che, are the same as (3.65). The derived TPBVP is

written now as

inew = Anewmnew - Bnew(sroc + SZ;C)_lBgewp
. 0H
' (3.72)
= _(Cz;ew foccnew + Cgerrochew)xnew + (Cgew ’ITOC + CgerTOC) * yT@f
2N Onew new —
- AZewp - chew(2—m - 1)N !

max ymaax
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where s is a “small” positive constant and N is the penalty exponent with even integer
values up to 12. In general, there are many possibilities to choose the form of the penalty
terms. Note normally when outer penalty approach is used, the constraints are usually
violated, because the small penalty may be at or near the border. The penalty grows
only if the constraint is being violated. So if responses are preferred such no constraint
violation happens, the tighter constraints have to be taken into account where in both
ROC and general MPC optimal control problems, the minimum of output is chosen to
be Ymin = —0.1 and then give in ROC Ypin,o. = 0 and in general MPC ypminypy,. = —0.1.
Another approach is the inner penalty approach, but the results are about the same and

shown in Figure 3.5.
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Figure 3.5: Non-minimum phase system with constraints controlled by ROC and MPC

It can be seen clearly that the system is getting slower and the peak is tried to be avoided

in ROC control. The result shows that the inverse peak is reduced obviously, however
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it cannot be totally eliminated because then the controller should cancel the right hand
side poles of the system and this would make the closed loop system internally unstable.
In the commercial MPC-package, the hard output constraint is violated quite obviously
although the system tries to decrease the inverse peak, and as a matter of fact, the inverse
peak cannot be avoided easily in general MPC control. It can be also noticed in Figure
3.5 that the control signal generated some backward response in order to get bigger steps
to avoid the inverse peaks in ROC control, but because the weight of the control deriva-
tive is used, the sluggish responses of output and control trajectories are still presented

in ROC control.

As the state variable z is not measured in practice. Using Kalman filtering techniques
on the extended disturbance model of the non-minimum phase system from input-output
measurements, to estimate the state variables (k|k). The covariance tuning parameters
used are Qra = 0.01 and Ry, = 0.01. The initial state of the plant is xy = [0, 0],
and the estimator is #(k|k) = [0, 0]. The input disturbance is zero-mean white Gaussian
distributed noise with variance equals to 0.05, and output disturbance is zero-mean white
Gaussian distributed noise with variance equals to 0.1. Then the optimal input trajectory

and output trajectory are plotted as Figure 3.6.

Output trajectories by ROC with state estimation Control trajectories by ROC with state estimation
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Figure 3.6: Non-minimum phase system controlled by ROC with state estimation

The pair (C, A) describing the overall state-space realization of the combination of plant
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and disturbance models has to be detectable. The current state estimates are obtained
from the Kalman filter, where the model has been converted to discrete-time state-space
form, and the ROC algorithm uses these estimates in future state and controlled output

predictions.

Concluding Remarks: The numerical examples in this section are implemented in
both the ROC algorithm and the general MPC. The comparison between them is dis-
cussed from results. They show clearly that although both ROC and general MPC are the
on-line open-loop optimal prediction control approaches, they are quite different control
algorithms from the way of derivation, from the predictive model to be handled, from the

cost function to be formulated and from the optimization freedoms to be concerned.



Chapter

Back-and-Forth Shooting Method

In this chapter, we will present an efficient method called back-and-forth shooting. The
solution of TPBVP-form optimization problems derived from the optimal control prob-
lems is based on this method. Back-and-forth shooting, originally proposed and named
by [OL76], is based on the invariant embedding principle and certain Riccati-type trans-
formations which reduce the TPBVP approximately to the consecutive initial-value prob-
lems of ODEs. In these kinds of problems the TPBVP has a special form. Because the
initial state should be known, half of the differential equations about state have fixed
boundary conditions at the starting point. If the state is not fixed at the end, which is
typical in most optimal control problems, the other half of the differential equations about
adjoint state (or costate) is fixed at the endpoint, this feature is utilized in the method.
Since then the method has been applied with a success to various problems of dynamical
optimization, see [Eir85] and resulted in being one of the most efficient alternatives in

solving the difficult boundary-value problems.

The chapter starts with a brief introduction to the optimal control problem in a TPBVP
form and a scheme for generating the back-and-forth shooting method in an iterative
principle is described; after that the detailed algorithm of this method has been specified
and its convergence property has been presented; at the end, some numerical examples

are given as good illustrations.
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4.1 Introduction

As we all know, conventionally an optimal control problem can commonly be presented
as an optimization problem with a TPBVP form via Pontryagin’s minimum principle

[PBGM62|. Consider a linear or nonlinear TPBVP which has a general form:

p(t) = g(t, x(t), p(t)) (4.2)

for ¢ € [tg,ts], subject to the boundary conditions

h(z(to), p(to)) = 0 (4.3)
e(z(ty), p(ty)) =0 (4.4)

where f and h are continuous n-vector-value mappings, g and e are continuous m-vector-
value mappings, t, and ¢y are the fixed initial and final times. Many problems, e.g., in
the optimal control and estimation theory, can be reduced to this form via variational

calculus or Portryagin’s maximum principle.

The numerical solution to TPBVP of ODEs has been studied widely during the period
of highly increasing computation facilities, under the needs of optimal control problems,
including simple shooting, multiple shooting, collocation and finite difference methods.
The simple shooting is to convert the optimization problem into an initial-value problem
of ODEs. The ODEs are integrated from ¢, to ¢, and the initial values are varied in
order to satisfy the desired end conditions [RVDO03a]. The advantage is that the derived
solution is a continuously differentiable function, but it has a difficulty to converge for

problems whose solutions are very sensitive to initial conditions [RVDO03b];

Then a more reliable method, multiple shooting, is developed. This method does not
integrate the equations over the full interval in one step, instead it is applied to split up

the whole time interval [ty, ty] into several smaller segments [AMR95]. The “segment”
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from an adaptive shooting node on the reference path is solved continuously for numerical
integration, and the integration is stopped when the segment exceeds a tolerance value.
Then, one starts the integration again from the next adaptive shooting node on the ref-
erence path and the previous step is repeated, until the system is integrated to the final
time ¢y [RVDO03a]. An advantage of this method is that the convergence can be obtained
for a larger class of TPBVPs [AMRO95], however its disadvantage is that the number of
parameters to be updated in each iteration can be very large, causing fairly large com-
putation times [RVDO03al, and during each iteration, one has to invert matrices row and
column dimensions of which are linear functions of the number of shooting nodes. The
number of nodes can be quite large depending on the guesses for the initial estimates
[RVDO03b]. Another disadvantage of this method is that if the differential equations are
re-integrated to result in one continuous trajectory for the system, the actual final values
may not be close to the desired final values. This is a common problem when solving
TPBVPs that result from optimal control, due to instability of the systems in the forward
direction [AMR95].

The collocation and finite difference methods are far more complex to set up. Some good
discussion about these two approaches can be also found in [AMR95]. However bup/c
algorithm in MATLAB R14 based on the routine of collocation method will be imple-
mented into some numerical examples as a comparison method to the back-and-forth

shooting.

In 1976, [OL76] tried to develop an iterative method from the Equations (4.1)-(4.4) via a
minimal number of approximations, which adopts the merits from the multiple shooting
method but avoids the instability of the systems in the forward direction by shifting the
integration in both the backward and forward direction. They succeeded very well and
ended up with an method called back-and-forth shooting, a very effective method
we will rely upon in this thesis work for solving TPBVPs derived from general optimal

control problems.
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Algorithm Scheme 4.1 The optimal problem Equations (4.1)-(4.4) is considered as the
following primitive iteration scheme att € [to, t¢] in this thesis fitting for the time-varying

system [OL76]:

T (t) = f(tziga(t),pi(t),  h(xiva(to), pi(to)) =0 (4.5)

Pir1(t) = g(t, 21 (8), pir1(t),  e(xira(ty), pira(ty)) =0 (4.6)

for the iteration indices © > 0, based on a suitable initial guess py (or alternatively,

FEquations (4.5) and (4.6) in reverse order, based on an initial x ).

4.2 Back-and-Forth Shooting Algorithm

Roughly speaking, this method involves the forward integration of Equation (4.1) and the
backward integration of Equation (4.2), by turns, with the aid of certain correction terms
and auxiliary functions. Suppose that pair (Z,p) is a desired solution of the problem
Equations (4.1)-(4.4) and that an initial guess for it is available, then based on the
primitive iteration Algorithm Scheme 4.1, the algorithm proposed by [OL76] can be

given as follows:

Algorithm Scheme 4.2 (back-and-forth shooting)

[1] Given an initial guess (xg, po), set the initial index ¢ = 0.

[2] By numerical integration solve the following initial-value problem of the Riccati

equation, for the n x m matrix valued function K; on t € [to,t]:
Ki(t) = folt, 2:(t), pi(0) Ki(t) — Ki(t)gp(t 2:(t), pi(1))
= Ki(t)go (8, 24(2), pi(1)) + fo(t, (1), pi(t)),

with
Ki(to) = —ha(xi(to), pi(to)) ™" hy(ai(to), pi(to)), (4.8)

then store Kj;.
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(3]

Solve the following n-vector initial-value problem for 7,4 over [to,tf]:
Fipr(t) = f(E riga(8), pi(t)) — Ki(t) [g(E, riga (£), pi(E)) — pi(t)] (4.9)
with
h(ris1(to), pi(to)) = 0, (4.10)

then store r;;;.

By numerical integration backwards solve m-vector terminal-value problem for p;,

over [to,ts]:

Div1(t) = g(t, riga(t) + Ki(t) [pira(t) — pi(t)], pira(t)), (4.11)
with
e(riva(ty) + Ki(ts) [piva(ty) — pity)] pisa(ty)) = 0, (4.12)
then set
Tiy1(t) = riga(t) + Ki(t) [pira(t) — pi()], (4.13)

then store z;,1 and p;y1.

If the difference between p;, 1 and p; is less than a prescribed tolerance, Stop. Oth-

erwise replace ¢ by i + 1, and repeat steps [2] -[5].

To let this algorithm work, some solvability conditions must be fulfilled: 7;,1(tg) can

be solved uniquely from Equation (4.10) and also p;+1(ty) can be solved uniquely from

Equation (4.12) [OL76]. Note that with regard to Equation (4.12), the present Algo-

rithm Scheme 4.2 is also applicable to fixed-endpoint problems in optimal control, if

the matrix K;(t) is invertible [OL76]. Most of the nonlinearity properties of Equations

(4.1)-(4.4) are maintained in the algorithm, the only approximation is for the determina-

tion of K;’s by the Riccati equation in the linearized case [OLT76].
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Generally speaking, the main steps when applying the back-and-forth shooting method
in the numerical solution of optimal control problems are: the derivation of the necessary
conditions (e.g., the adjoint state differential equations); the estimation of an appropriate
initial guess of the unknown state and adjoint variables in order to start the iteration
process, and a good initial estimation of optimal solution is very necessary for fast conver-
gence, especially in some nonlinear constrained optimal control problems, e.g. cascaded
hydro-electric power plant chain system, which will be studied deeply in the next chap-
ter. The great advantage of the back-and-forth shooting method is that the adjoint state
differential equations are re-integrated to result a continuous trajectory for the system in
the backward direction when instability of the systems in the forward direction is caused,

then a stability of the systems in the backward direction can be guaranteed.

4.3 Algorithm Convergence

The complete convergence analysis or detail proofs of the method will not be performed
here, only some main results are reviewed. For further information, we refer the readers
to [Eir83, Eir85|. It is easy to see that if the sequence (z;, p;) generated by the back-and-
forth shooting method convergences uniformly and the K; sequence is bounded, then the

limit will be a solution for Equations (4.1)-(4.4). It is approved in [Eir85]:

Theorem 4.1 Let f, g, h,e be twice continuously differentiable. Suppose that (Z,p) is a
solution to optimal problem Equations (4.1)-(4.4), such that

e h.(z(0),p(0)) is invertible,

e Riccati Equation (4.7), with initial condition Equation (4.8), has a solution K along

(z,p) on [to, ty];
o . (Z(ty),p(t))K(tr) +e,(T(ty), plts)) is invertible.

Then the sequence ((z;,p;)) e, generated by the back-and-forth shooting method converges
to (z,p), provided (xq,po) is sufficiently close to (Z,p).
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Under the assumption of Theorem 4.1, the norm of the convergence is firstly defined by
[Eir85] as:
1(z, p)I| = |2(0)] + |p(0)] + supseito.e1(|2(2)] + [P(2)]) (4.14)

where | - | is the Euclidean norm. Further, if the second derivatives of f, g, h and e are
uniformly Lipschitzian in  and p argument positions, in a neighborhood of the trajectory
of (z,p), then there exists M such that, for all ¢ > 0, the convergence is quadratic [Eir85],
ie.

(s, p) = (2, D) < M ||(zi-1.pi-1) — (7, D) (4.15)

If the assumptions of the previous theorem is fulfilled, then for linear problems (f, g, h
and e are linear) one-step convergence is guaranteed, i.e., (z;, p;) = (Z, p) for any (4, s, )-
The proof of this local convergence theorem is based on the Fréchet differentiability of
the mapping assigning (z;41,pi+1) to (24, p;) and a version of the fixed point theorem.
Furthermore, the rate of convergence is also shown to be quadratic, which is the best way
achieved with linear approximation [Eir85]. Once this numerical method has converged,
the norm of the difference between the desired final adjoint states and the actual final
adjoint states obtained after a re-integration of the equation is our criterion for accuracy

of the solution.

4.4 Numerical Examples

Example 4.1: The example to be considered here is a continuous-time MIMO model

from a linear dynamic system, its transfer function is given as:

0.5s54+1 2541

g(s) _ 232—(4)-?;s+1 s2+?s+1 (416)
3s+1 25+1

with the cost function forms:

ty
J = /0 (:cTQ:U + uTRu> dt + 27 (tp)Fa(ty) (4.17)
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where 5 = 25 is final time. R is the weight matrix of inputs:

0.1000 0
R= (4.18)
0 0.1000

and @) is weight matrix of system outputs:

0.6250 1.2500 0 25000 1.2500 0
1.2500 2.5000 0 5.0000 25000 O
0 0 07111 0 0 26667
Q- (4.19)
2.5000 5.0000 0  10.0000 5.0000 0
1.2500 2.5000 0 5.0000 2.5000 0

0 0 2.6667 0 0 10.0000

and F'is the weight matrix of terminal states:

-0.1000 0 0 0 0 0 ]
0 0.1000 0 0 0 0
P 0 0 0.1000 0 0 0 (4.20)
0 0 0 0.1000 0 0
0 0 0 0 0.1000 0
0 0 0 0 0 0.1000 |
Then a reduced linear TPBVP via Pontryagin’s principle is presented below:
= Ar — B(R+ R")"'Bp (4.21)
p=—(Q+Q"z—ATp (4.22)

for ¢t € [0,ty], subject to the boundary conditions

2(0) =0, plty) = (F + F')alty). (4.23)
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via the back-and-forth shooting Algorithm 4.2, above TPBVP problem is solved with
the results illustrated in Figure 4.1. Since the system has linear dynamics, only one
iteration is needed for obtaining the solution. The accuracy ||p;+1 — pi|| is better than six
decimal digits.

State trajectories State trajectories
15 T T T T 15 T T

10

-10 I I I I ~10 I I I I
0 5 10 15 20 25 0 5 10 15 20 25

(a) back-and-forth shooting (b) bupde

Adjoint state trajectories Adjoint state trajectories

(c) back-and-forth shooting (d) bupde

Figure 4.1: Solution of a quadratic optimal control problem

As a comparison, the typical algorithm for solving boundary-value problem method bup4c
in MATLAB is also implied. Under same accuracy requirement, bvpdc algorithm obtains

the same result as the back-and-forth shooting algorithm does.
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Example 4.2: Consider a simplified model from [OL76], a daily optimal discharge

control of a hydroelectric power plant (time constants are expressed in days in this case):
(t) =3 —u(t), x(0)=1, (4.24)

The variable z is the volume of the water storage in the forebay, and the variable u is
the discharge through the turbines. The possible is to determine a control variable u on

[0, 7] and the corresponding motion z which minimize the cost function
T
J= / {—b(t) [+ 0.22(£) — 0.025u(t)] u(t) + 50 [x(t) — ().5]10}dt —a(T)  (4.25)
0

where

b(t) = 1 — acos(6.28318t), T = 3.25, (4.26)

where the variable b is the price of the electric power generated, and a is a constant
nonnegative parameter with value 0,...,0.7. The period length 1 corresponds to one
day [OL76]. The expression within the first brackets in Equation (4.25) represents the
net pressure of water (or head) in the turbines; e.g. the term of —0.025u(t) represents
roughly the head losses due to the tailwater flow. The latter term in the integrand is
an artificial penalty cost, where the approximate constraints 0 < x < 1 are taken into
account as |z(t) — 0.5 < 0.5. Then the optimization problem in TPBVP is obtained at
te0,7]:

#(t) = —4a(t) — [20/b(t)]p(t) — 17 (4.27)
() = 0.8b(t)2(t) + 4p(t) + 4b(t) — 500[z(t) — 0.5]° (4.28)

subject to boundary conditions
#(0) =1, p(T)=—1, (4.29)

Equation (4.28) is highly nonlinear with regard to its last term. Following the back-and-
forth shooting Algorithm 4.2, algorithm above has been used and K;’s in the algorithm
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are given by the differential equation:

K;(t) = —8K;(t) — (0.8b(t) — 4500(x;(t) — 0.5)%) K2(t) — % (4.30)

where K;(t) = 0, the differential equations are integrated using fixed-step fourth-order
Runge-Kutta method (ODE4) [ODE] with the fixed time stepsize 0.00625. Results are
illustrated in Figure 4.2. Varied with different values of a, the time function of state
trajectories x are shown on the left side, and the adjoint state trajectories p are on the

right side of the figure.

The behavior of the solutions is satisfied and the constraints requirements of state con-
straints are fulfilled quite well, and all results were the same as in [OL76]. Figure 4.2 gives
the solution of Equations (4.27) - (4.29) only after five iterations, so the convergence is
quite fast and the accuracy ||p;+1 — pi|| is better than six decimal digits. As a comparison,
the bupdc algorithm is also implemented, however, the solution unfortunately overflows

because of the high nonlinearity from the last term of Equation(4.28).

Concluding Remarks: The entire computations were performed on the CPU 2.8GHz
and the algorithm was programmed in MATLAB. In these two preliminary test examples,
the algorithm gives very promising results. The accuracy ||p;+1 — pi|| is better than six
decimal digits. The convergence speed is very fast: one iteration for the first linear exam-
ple with the computation time is about 0.007 seconds; and only five iterations are needed
for second nonlinear example with computation time is about 0.056 seconds to achieve
the solution of the problems. As a matter of fact, the experiments also showed that in a
case like the second example, the conventional shooting methods cannot solve it reason-
ably. Therefore in the next chapter, this proposed back-and-forth-shooting method will
be used in the ROC algorithm for handling all TPBVP-form optimal control problems,
some of them are quite complicated so that the general MPC with its related optimal

control algorithms may be unable to solve easily in both cases.
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Figure 4.2: Solution of a simplified hydro-power plant model
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Chapter

Semi-analytical Solution to Applications via

ROC control

In this chapter, the ROC algorithm is implemented to two application examples. The first
one is a cascaded hydro-electric power plant chain, which has the most difficult form for
solving the optimal control problem as we mentioned at the beginning of Chapter 3, the
fixed end point issue. The application system dealt with is dynamically nonlinear, and
the application study involves multivariable control, state and input constraint handling,
and optimization. The application study is mainly used to testify the powerful capability
of ROC algorithm for dealing fairly difficult and complex optimal control problem and
at the same time explicitly handling multiple constrained states and inputs very well.
The second application is a multivariable nonlinear reactor with two inputs, two outputs
and multiple steady states. It is intended to show how the ROC algorithm works in
some industrial-like control problems. All application algorithms are implemented in the

MATLAB environment.

The chapter starts with a brief introduction to the first application example and a dy-
namic mathematical model is built for testing or demo purpose. The controlled hydro-
power plant chain problem is then formulated as an optimal control problem reduced into
TPBVP-form. The back-and-forth shooting method to TPBVP forms an “inner loop”

for differential solution and ROC optimization control algorithm forms an “outer loop”
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for optimal control of the system. The results are presented and the algorithm control
capability is proved. Then a more industrial practical example is given, the application

is a two-dimensional exothermic chemical reactor.

5.1 Cascaded Hydro-electric Power Plant Chain

5.1.1 Introduction

The application example used here is referred to the part of cascaded hydro-electric power
plant chain along the river Oulujoki in Finland given in [Lau79]. It is mainly taken for
testing or demo purpose. The map and corresponding height profile of the cascaded

hydro-electric power plant chain is depicted in Figure 5.1:

Lake
Oulujarvi

Utanen

Jylhama
Nuojua [
Utanen —100m
oA
- 60
40
20
0
10 20 30 40 km
15.7m 22.0m 11.0-14.0m
55MW 8OMW 50MW

Figure 5.1: Map and height profile of a part of the river Oulujoki

The average discharge of one plant is about 230 m?/s, and every plant has three turbines

with maximum total discharge of 450 m3/s. The heads of the plants are relatively low as
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can be seen in the figure, and the maximum power of the system is 185 MW. The areas of
the forebays in the river are only some quadrat-kilometers and the allowable ranges of the
level heights are 2.2 m and 1.25 m. This means that the ranges may be crossed during
few hours even in quite reasonable operation of the chain. It also means that in daily
operation the level constraints must be taken into account carefully, and this difficulty
is also present in the optimization. On the contrary, the first forebay in the cascaded

chains, Lake Oulujérvi is so big that its level can be considered as fixed [Lau79].

5.1.2 Mathematical Model

When building the model, the following assumptions had been done in [Lau79]: the rate
of change of the discharge is so low, that the acceleration forces of flow can be neglected,
the friction forces follow the Manning formula, and the reservoire have vertical walls in
the level variations in question. In addition, by zero discharge the level in the forebay
can be at the same height as the tailwater of the preceding hydro-plant. The cascaded
hydro-electric power plant chain system in Figure 5.1, is then approximated to a lumped

parameter model by [Lau79] illustrated in Figure 5.2:

Figure 5.2: Model of the hydro-electric power plant chain

The P; are active powers, u; are discharges, ¢3 is a flow and z; are the height deficits of
the water levels except x1, which is a volume variable. The model equations can now

be derived from mass balance, friction law and experimentally measured functions. The
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storage equations are given by [Lau79]

By = ag(ug — uy) (5.1)
iy = az(y/g(ws — x3)[1 — hizs + 24)] — u)
Ty =ay (U4 - \/9@4 —3)[1 — h(zs + $4)])

where a; is the inverse of the effective area of the storage. The experimentally defined
power conversion function includes also the head loss in the tailwater channel, and then

the overall active power conversion function of each plant is given by [Lau79]

P = —€1 — €y — €4 + C1U1 + CoUg + C4qlUy
(5.2)

— dluf — dgug — d4Ui + kzla:gul + kg(l’g — JZQ)UQ — ]{?4.2?4U4

For the sake of convenience, the state variable of Equations (5.1) and (5.2) are scaled
in [Lau79] as: The unit of the time is 1 hour, and the unit of the flow rates is the
maximum discharge 450 m?/s. By preserving the first equation in (5.1), the unit of the
volume variable x; corresponds to 1,620,000 m?, i.e., the water amount by the maximum
discharge during an hour. The unit of the deficit variables xs, x3, and x4 is 1 meter. The

unit of the power P is 1 MW and thereby the following values of parameters are used:

a, =11, a3 =0.55, a4 =0.55, g=0.67, h=0.4, (5.3)
€1 = 07, €9 = ]_37 €4 = 14, C1 = 55, Co = 96, Cqy = 70, (54)

dy =10, dy=83, dy=133, Kk =405 ky=374, ks=2340. (5.5)

The “river parameters” like a;, g and h are chosen after physical realities as areas of the

water surfaces and measured friction heights in some typical operation conditions.

5.1.3 Optimization Problem Formulation

The whole power generating system has been arranged in a way that the water consump-

tion in the optimization is fixed, and a marginal price curve is taken into consideration
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and the optimization problem is then formulated as follows [LO76, Lau79] :

To = ag(us —uy)

iy = az(y/g9(zs — x3)[1 — hzs + x4)] — u2)

iy = as(ug — \/9(zs — 23)[1 — h(zs + 24)])

yi, z(ty) = yo,

To(t) < Tomazr = 2.2, (5.6)

(L’4(t) < Tymaz = 1257

8
=
o ~—
IA

o
IA

o
A

Uimin < uz<t) < Upmaz < 1a 1= 172747

Jio= [ [-b(t) P((t), u(t))]dt,

to

|
I

—e1] — €9 — €4 + C1Uy + CoUg + C4Uy

—dlu% — dQU% — d4ui + k1x2u1 + k2($3 — CL’Q)UQ — k‘4l’4U4

where x denotes the state vector, y; and y» are fixed initial and terminal states, b(t) is
a given price curve and .J; is the cost function to be minimized. The range constraints
on the water storages, which are here state quantities, poses a difficult question on the
implementation of solution methods for the equation induced by variational calculus
[LO76]. Here the state constraints are relaxed by a method of penalty functions. It is a
well-known approach, where the original cost function is replaced by an augmented cost

function [Lau79]. In this case

J:Jl—l—/tf {52 {29[;2—@—1]]\[—1—54 {2$4—<t)—1:|N}dt (5.7)
to To2mazx Tomaz

where s; are “small” positive constants and N is a penalty exponent with even integer
value. In general, there are many possibilities to choose the form of the penalty terms.
The augmented part in expression (5.7) gives very small contribution to the integral if
the state constraints are not violated, and the contribution increased rapidly, if violations
occur. This feature is common for all penalty functions. It is then important that in the

optimum obtained the contribution of the penalty terms is negligible. In this case a high

value of N and low values of s;’s guarantee a good approximation of the solution of the



80 Chapter 5. Semi-analytical Solution to Applications via ROC control

original problem [LO76]. Anyhow, when a candidate for the optimum is available, the
correctness of the solution can easily be checked. With the given boundary conditions, the
dynamical equations and the state and control constraints, etc, the above optimization
problem can now be reduced to a TPBVP via the Pontryagin’s minimum principle. In a

detailed expression, the TPBVP is given as:

iii’l = UT
Ty = az(uy — uj)
iy = az(\/g(zs — x3)[1 — hlzs + z4)] — ub)

Ty =ay (Uﬁ — V(x4 — 23)[1 — b2z + 374)])

p =0 (5.8)
. _ * * 2N so x2(t) N-1
P2 = bklul — kaUQ — —IQmM —Izmaz —1
Ps = bkoub + (paaa — p3az)(2ghzs — 9)/(24/g(w4 — x3)[1 — h(xs + 24)])
D1 = —bkyuj + (paaq — p3a3)(9 - 29h334)/(2\/9($4 - 353)[1 — h(z3 + 354)])
N-1
2Ns 24(t)
_x4ma41 <3744'1muz o 1)
where

(

: o
Uimin lf ui < Uimin

u;k = 9 UZQ if Uimin S u;‘) S WUimaz (59)

Uimaz if U;-) > Uimaz 1= 17 27 47
\

w§ = (c1 + kize — pi1/b+ aspa/b) /24
uy = (02 + ko(xg — 29) — agpa/b+ a3p3/b)/2d2 (5.10)
uf = (ca+ kazy — asps/b) /2d,

subject to the one of the most difficult boundary condition forms in optimal control

problem: the fixed terminal state z(¢s), so

I(to) = Y1, x(tf) = Y2, (511)
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However most optimal control problems in real industry can be described using free end
points formulation, in that conditions, the terminal state z(¢) is not fixed. The following
special form of TPBVP mentioned in previous chapters, the adjoint state p(t;) has to be

fixed at the endpoint instead, and the boundary conditions turn to be

x(to) =y, plty) =ys (5.12)

In the later section of this chapter, numerical experiments based on both of these two

different forms of TPBVP will be studied for ROC algorithm testing purpose.

5.1.4 Semi-analytical Solutions via ROC Control

In this section, we implement ROC control into this hydro-power plant system, by solv-
ing its TPBVP form on-line open-loop optimal control problem Equations (5.8)-(5.11)
repetitively with the aid of state (and disturbance) estimation and obtain the required

constrained optimal control trajectory.

We consider a sequence of sampling instants {#;},,, with a constant sampling interval
ts > 0 (note that t, is set much smaller than the prediction horizon H,, i.e. t, << H,),
so that t;,1 = t; + t; for all « > 0. Then ROC control solve repeatedly the on-line open-
loop optimal control problem Equations (5.8)-(5.11) at each sampling instant ¢;. In every
iteration using the current state estimations of the plant z(¢;) to compute the optimal
controls u*(t;, z(¢;)) from equations (5.9) and (5.10). The measurable control function u
and the corresponding state trajectory x, which satisfy the constraints of optimal control
problem, are obtained from the model of the system. z° and u° denote the state trajectory
and optimal control solution to an open-loop optimal control problem, and z* and u* are

the optimal state trajectory and control resulted from the ROC control scheme.

Hlustrated in Figure 5.3, the following steps in controlling of the hydro-electric power

plant chain system with ROC strategy are applied:

[1] estimate the first initial states x(t;) of the plant at the initial time ¢; (current ini-
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Figure 5.3: Principle of ROC control for hydro-electric power plant chain

tial index 7 = 0). Note that although in practice, the measurements of states are
not available, this hydro-electric power plant chain system is an application mainly
used for ROC algorithm testing purpose, so we suppose that the initial states can
be measured in the rest of repetition, but in practice, the measurements of states

are not always available.

Furthermore, a good guess of the first initial states is very important for fast con-
vergence, especially in this nonlinear hydro-power plant chain system, which is
very difficult to be solved by normal optimization method, even the back-and-forth
shooting method needs a quite moderate first initial state guess to solve it, and the
rest of initial guesses are always suitable for optimization solution according to the

Theorem 3.1 Belman’s optimal principle [Bel57];

compute the open-loop optimal controls u® from the reduced TPVBP-form opti-
mization problem at [t;,t; + H,) — R" (current initial index i = 0), with the

constraint requirements fulfilled;
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[3] apply the optimal controls u* = u° at the time interval [t;,t; + t5) to the hydro-

electric power plant chain system;

[4] repeat the procedure from step [1] for the next sampling instant ¢;,; (the index 7 is
incremented by one unit in each repetition), and prediction horizon moves forwardly

one tg time-step further.

Therefore a semi-analytical solution of feedback control is obtained during the each sam-
pling interval, as a function of states at each sampling instant. The optimal control u*(t),
t € [t;,t; + ts) is applied until the next sampling instant ¢, is achieved and at that time
a new optimal control problem is solved. The optimal control variables are stored on
discrete-time instants first, and then approximated to the intermediate time values via
spline interpolation. The whole procedure which includes both optimization and predic-
tion is repeated to find a new input with the prediction horizons forward-moving, where
the back-and-forth shooting solution of TPBVP forms an “inner loop” for optimization

and the ROC optimal control algorithm forms an “outer loop” for prediction.

Note that in the back-and-forth shooting optimization problems solution, the TPBVP
has a special form: If the state x is not fixed at the end, the other half of the differential
equations about adjoint state p has to be fixed at the endpoint and the values of z(ty)
and p(ty) are used as initial guesses for p and z; If both initial and final values of the
states = are fixed, then the initial guess of the final value of p(¢;) is required and the rest

final values of adjoint states are calculated in every iteration by

it () = Ki() 7" [2(ty)" = riga(t)] + pi(t) (5.13)

The whole computations were performed on the CPU 2.8GHz and the algorithm was
programmed in MATLAB. The differential equations are integrated by using a modified
Runge-Kutta method (ODE4). The price curve b(t) for weekdays used in optimization
calculations is depicted by [LO76] as Figure 5.4. The curve repeats the first 24 hours
behaviors day by day and only for Saturday it varies only from 90 FM/MWh to 125 FM/MWh
with the same shape and for Sunday it is near constant 90 FM/Mwh [LO76].
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Figure 5.4: Marginal price b for a day

5.1.5 Implementation Cases

In all the following implementation cases, the optimization intervals are chosen to be
either one day (24 hours) or one week (168 hours). The sampling time is defined as
T, = 1 hour and the prediction horizon is defined the same as its minimum optimization
interval length, i.e. H, = 24 hours because in all cases of this application, prediction
with nonlinear TPBVP model requires to solve approximately the consecutive initial-
value ODE problems. The first initial guess of states (and adjoint states), which are used
for starting the algorithm for solving the optimization problem, are defined in each case,
respectively. And the rest of the initial guess of states are chosen from the measured states
at each iteration. A good initial estimation of the optimal solution is very necessary for

fast convergence.

Case 1: In this example, we firstly give a simple optimization problem with a boundary

condition that only the initial state is known without a fixed-end point [LO76], so:

x(ty) = [0, 1, 0.2, 0.5]%, (5.14)

p(ty) = [23800, 16200, 12800, 12800]” (5.15)

As we mentioned in the previous chapter, in this kind of optimization problems the
TPBVP has a special form. If the state is not fixed at the end, the other half of the

differential equations about adjoint state has to be fixed at the endpoint. So in this case
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both the initial value of the state and final value of the adjoint state are fixed and these

values are also used as initial guesses for p and .

The estimation of initial states and adjoint states is very important for fast convergence,
especially in this nonlinear hydro-power plant chain system, which is very difficult to be
solved by normal optimization method, even the back-and-forth shooting method needs
the fairly moderate first initial state (and adjoint) guess to solve it, and the rest of initial
guesses, which are got from the measurement are always suitable for optimization solution
according to the Theorem 3.1 Belman’s optimal principle [Bel57]. For convenience, we
adopt the existing good initial guesses of p and z provided in [LO76] for the optimization
solution and ROC control in this section. Then the optimal control problem (5.8)-(5.11)

is solved according to previous general parameters settings Equations (5.3)-(5.5) and

Uimin = 0.15, Ujpmaw = 0.15, i=1,2,4
T =24, N=30, sy=s3=05

(5.16)

The result is shown in Figure 5.5 when the norm of the error-array ||p;+1 — p;|| is smaller
than 1le-5. The left-side three pictures in Figure 5.5 illustrate an open-loop optimization
solution via the back-and-forth shooting method. It demanded 7 iterations and calcula-
tion time was about 2.218 seconds for each iteration. Step size was set as 0.25. Results
were also compared with my colleague (Juha Lassila)’s and the final results were the
same. There is a very slight difference in some elements of the partial derivatives matri-
ces K;’s calculation because we chose different ODE solvers, but it does not affect the

final result as both algorithms reached the convergence quickly.

And the right-side three pictures show the measured states, the optimal discharges (in-
puts) and total active power (output) performances under the ROC control with a pre-
diction horizon H, = 24 hours. The predictive controller u* is determined at sampling
interval [t;,t; +t;) — R™, by solving a free-endpoint open-loop optimal control prob-
lem over a prediction horizon [t;,t; + H,| (the index ¢ is incremented with one unit in

each iteration) with the constraint requirements fulfilled. Then the whole cycle of output
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Figure 5.5: ROC Optimal control solution of Case 1

measurement, prediction, and input trajectory determination is repeated one sampling in-
terval ¢t forward, and the prediction horizon H, moves also one ¢, time-step ahead. Then
a new input trajectory is applied at next sampling interval [t;;1,t;11 + t5), by solving a
free-endpoint open-loop optimal control problem over a prediction horizon [t; 11, t;41+H,),
and a new system output is obtained, the prediction horizon is moved over the horizon
[tit1,tiy1 + Hp|. The entire procedure is repeated at subsequent control intervals in order
to get an updated control sequence, and horizons forward-move one t, time-step further.

Since in this case, the TPBVP ODEs model has a free-endpoint formulation, the values of
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the terminal states z(¢;) = z(t;4+H,) may vary in each open-loop optimal control problem.

The optimal control variables are stored on discrete-time instants first, and then approx-
imated to the intermediate time values via spline interpolation. It can be seen clearly
that the state constraints of x5 and x4 are not violated in both optimization solution and

ROC control, the optimal discharge u;, us, and u4 are also saturated all the time.

Case 2: Same as Case 1, only the whole optimization interval is changed to one week, i.e.
T = 168. Its open-loop optimization solution is presented in the left-side three pictures
of Figure 5.6, and ROC optimal control is shown in the right-side three pictures of Figure
5.6. Prediction horizon is H, = 24 hours. State and control constraints are not violated
in both optimization solution and ROC control. The entire procedure is repeated at each
subsequent control intervals in order to get an updated control sequence, and horizons

forward-move one ¢, time-step further.

Case 3: In this case, one of the most difficult boundary-values optimization problem
formulations is concerned, the end-point of state is fixed, i.e. the initial states x(t¢),
terminal states x(¢;) are fixed and V' is given only for initial guess of the final values of

adjoint states. The boundary conditions are set in [LO76] as:

x(ty) = [0, 0.5, —0.2, 0.1]7, (5.17)
x(ts) = [16, 0.5, —0.2, 0.1]7, (5.18)
V = [20000, 15000, 10000, 10000]" (5.19)

So both initial and final values of the states = are fixed but the final value of adjoint

states p(ts) has to be calculated in every iteration by

pira(t) = Ki(t) 7 [2(ty)" — ripa(8)] + pi(t) (5.20)

Juha and I had a lot of difficulties in this case because the initial guess V' from [LO76]

did not work both in our codes even though it had been done a successful calculations
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Figure 5.6: ROC Optimal control solution of Case 2

with this initial guess in [LO76]. We started with initial guess trials with lazier penalty
term N at the beginning and later managed to raise it to be equal to 30. And Juha found

another good initial guess to replace the original V' with:
V = [20800, 15000, 10000, 10000]* (5.21)

Although only a tiny change has to be done, we can notice that how important it is to

get the moderate guesses for the first initial states and adjoint states estimation in order
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to solve such a complicated nonlinear hydro-power plant chain system optimal control
problem, even with the aid of the back-and-forth shooting method, and again the rest of
initial guesses, which are got from the measurement are always suitable for optimization
solution according to the Theorem 3.1 Belman’s optimal principle [Bel57]. The other
parameters are the same as the Case 1 has. The result is shown in Figure 5.7 when the

norm of the error-array ||p;+1 — pi|| is smaller than le-5.
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Figure 5.7: ROC Optimal control solution of Case 3
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10 iterations and the calculation time was about 2.317 seconds, the step size is set as 0.25.
The results are same as Juha’s but there are some differences between Figure 5.7 and
figures plotted in [LO76] and it maybe caused because the initial guess for adjoint states
p in [LO76] was chosen differently from Juha’s and mine; in addition, the price curve b(t)
data was not given in [LO76], we have to manually measure it from the original figure,
this also be the cause of some differences. And ROC control is shown in the right-side
three pictures of Figure 5.7, prediction horizon is H, = 24 hours. The state and control

constraints did not violated in both optimization solutions and ROC control.

In this case, the predictive controller u* is determined at sampling interval [t;,t; + t5) —
R™, by solving a fixed-endpoint open-loop optimal control problem (the final value of
adjoint states p(t;) has to be calculated in every iteration) over a prediction horizon
[ti,t;+ H,) (the index i is incremented with one unit in each iteration) with the constraint
requirements fulfilled. Then the whole cycle of output measurement, prediction, and input
trajectory determination is repeated one sampling interval ¢, forward, and the prediction
horizon H, moves also one t, time-step ahead. Then a new input trajectory is applied at
the next sampling interval [¢;11,t;41 + t5), by solving a free-endpoint open-loop optimal
control problem over a prediction horizon [t;11,%4+1 + H,], and a new system output is
obtained, the prediction horizon is moved over the horizon [t;y1,t;+1 + Hp|. The entire
procedure is repeated at subsequent control intervals in order to get an updated control
sequence, and horizons forward-move one t, time-step further. In addition, because the
TPBVP ODEs model has a fixed-endpoint formulation, the values of the terminal states

x(ty) = x(t; + H,) are always kept the same in each open-loop optimal control problem.

Case 4: It is also a fixed end point of state example, where the initial state z(tg),

terminal state x(ty) are defined as:

x(ty) = [0, 0.5, —0.2, 0.1]%, (5.22)

z(ts) = [13, 0.5, —0.2, 0.1]7, (5.23)
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In this case, the required initial guess for adjoint states p were not given in [LO76]. It
was not that easy to find an good initial guess for it, the lazier penalty term N has to
be considered, i.e., started from N = 2 and and tried to raise the value of N till 30. My

colleague Juha firstly managed to find one suitable initial guess as

p(t) = [20700, 13300, 12700, 12660])" (5.24)
and I managed to find some other possiblities like

p(t) = [20800, 15000, 12500, 12500)" (5.25)

So both initial and final values of the states z are fixed also in this case and the final

value of adjoint states p(t;) has to be also calculated in every iteration by

pia(t) = Ki(t) ™ [a(t)" — ria(D)] + pil0) (5.26)
constraints of inputs are:

Uimin — 015, 1= 1, 2, 4
(5.27)

Uimar — ]., 1= 1, 27 Usmaxr — 067,

Other parameters are the same as in Case 1. The result is shown in Figure 5.8 when the

norm of the error-array ||p;41 — p;|| is smaller than le-5.

The optimal solution is presented in the left-side three pictures of Figure 5.8, it demanded
10 iteration turns and calculation time was about 2.292 seconds. Step size is set as 0.25.
The results are the same as Juha got and also almost the same as the figures plotted in
[LO76] with some small differences existing and it maybe caused because the initial guess
for adjoint states p in [LOT76] was chosen differently from Juha’s and mine; in addition,
the price curve b(t) data was not given in [LO76|, we have to manually measure it from

the original figure, it maybe also cause some differences.
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ROC control is shown in the right-side three pictures of Figure 5.8, prediction horizon
is H, = 24 hours. It can be easily seen that because TPBVP ODEs model also has
a fixed-endpoint formulation, the values of the terminal states x(t;) = x(t; + H,) are
kept the same in each open-loop optimal control problem as well. The states and control

constraints of o and x4 are not violated in both optimization solution and ROC control,

and the optimal discharge uy, us, and uy are also saturated all the time.
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Figure 5.8: ROC Optimal control solution of Case 4
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5.1.6 Remarks

The prediction H, = 24 hours is used in all cases of this application, since the pre-
diction with nonlinear TPBVP model requires to solve approximately the consecutive
initial-value ODE problems, so the prediction horizon is chosen of the same length as the
minimum optimization interval (24 hours). In Case 1, we solved the simplest situation
that the initial value of state z(ty) is fixed without a fixed value of terminal state z(ty)
at the end, so the fixed terminal adjoint state p(¢;) is provided. In Case 2 we extended
the simplest situation’s optimization interval to one week, which only intends to exem-
plify the weekly optimization. The two cases because the TPBVP ODEs model has a
free-endpoint formulation, the value of the terminal states z(t;) = z(¢; + H,) may vary in
each open-loop optimal control problem. In Case 3, we start to test the ROC algorithm
with one of the most difficult TPBVP optimization problems, especially in this kind of
constrained cased, where both the initial state x(to) and the terminal state z(t;) are fixed,
an adjoint state p(t) is given for initial guess, which can vary in the whole optimization
interval. The Case 4 exemplifies a case where one of the three turbine-generators of the
Plant 4 is out of use. In these two cases, since the TPBVP ODEs model has a fixed-
endpoint formulation, the values of the terminal states x(t;) = x(¢t; + H,) are kept the

same in each open-loop optimal control problem.

It can be easily noticed from the above figures that the state constraints of x5 and x4 are
not violated in both optimization solutions and ROC control, and thus the contribution
of the penalty terms to the cost function is feasible. The optimal discharges uy, us, and uy
seen in every figure, are saturated all the time. The whole computations were performed
on the CPU 2.8GHz and the algorithm and all application examples are implemented in
the MATLAB environment. The differential equations are integrated by using fixed-step
fourth-order Runge-Kutta method (ODE4) [ODE] with fixed step size 0.0625. The norm
of the error-array ||p;+1 — pil|, set the same in every case, is smaller than le — 5. The
convergence speed is quite fast and normally only few iterations are needed to achieve

the solution of the problems, and the average computation time is normally around 2.275
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seconds for back-and-forth shooting solution. The computation time of ROC control is
roughly proportional to the number of repetitions (or the length of prediction horizon) of
“inner loop” from the back-and-forth shooting solution. Hence, in a H, = 24 hours ROC

optimization control, the computation time normally requires about 63 seconds.

The ROC control seems to be a very effective control method for handling specially com-
plex dynamic nonlinear system, and back-and-forth shooting method is also very powerful
for the solution of TPBVP-form reduced from such a kind of optimization problem in
spite of steep nonlinear penalty functions. The convergence of the algorithm is fast, and
the speed of the program can still be increased considerably by compiling MEX files
for further research. The results prove it a very promising algorithm in handling both

controlling and the optimal solutions.

5.2 Exothermic Chemical Reactor

A MIMO-model exothermic chemical reactor is introduced in [LH93]. The process to be

controlled is presented in Figure 5.9.

Q Co To
Ta
Vv
— Q CT
— S

Figure 5.9: Exothermic chemical reactor

The mass M in the reactor and flow () through the reactor are constants. The surface
temperature of the heat exchanger 7} is one controlled variable and the conductance F' is
constant. The temperature of the input flow T} is constant and the concentration of the

substance A (Cp) is the second controlled variable. The reactor is an ideal mixer where
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the temperature T" and the concentration C' are varying and the volume V' is constant.
The reaction produces energy (AH > 0) and the balance equation was given by [LLH93|

as:

MC =Q(Cy—C)— MCkeP/ET

: (5.28)
caMT = AHMCke®/ET — ¢, Q(T — Ty) — F(T — T1)

where the specific heat of the material is ¢, and k, £ and R are thermo-dynamical

constants, and the numerical values of the parameters are defined as

M =10ton, k=0.0021/s, E/R=3000°K,
cn =025 keal /°Kkg, AH = 2500 kcal/kg, (5.29)
F =0.1...1.0 kcal /°K s

For convenience the equation was scaled in a way that all variables become dimension-
less and the equation becomes as simple as possible in [LH93|, and then the dynamical

equation was reformed as follows:

¢ =q(co—c)—ce”l/®
‘ q(co ) (5.30)
O =ce /O —g(0-6,) - f(O-6))
and the numerical values of the parameters are defined like [LH93|
=14, ¢=0.07, f=0.13, ©9=0.1, 6;=0.023 (5.31)

The output reference trajectories are defined as constant to yef1(t) = 1.0 and y,cra(t) =

0.6 for the simulation with the initial time ¢y = 0 seconds and end time ¢y = 5 seconds.

In ROC control, the prediction horizon (and control horizon) is chosen as H, = 5 seconds

(default H. = H,,). The weight factors of outputs and controls are defined as:

10 0 0.001 0
Qroc - ) Rroc - (532)
0 10 0 0.001
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The cost function is in continuous-time as:

tf
Jroc = / |:<y - yref)TQroc(y - yref> + UTRrocu] dt (533)

to

Note that in true reality the weight of control derivatives (4-dimensional) will be taken
into account, however in this academy experiment case, we just simply choose the weight

of control to be concerned in the cost function.

In order to compare the result with ROC under the same condition, for general MPC
control, the same prediction horizon and control horizon are chosen, i.e. H, = H. = 5

seconds. The output and control weights are

10 0 0 0
Qmpc = 5 Rmpc = (534)
0 10 0 0

and its cost function based on discrete-time is formed as:

ty

Jmpc = Z [(y - yref)TQmpc(y - yref) + UTRmpcu (535)

to

Applying the ROC and the general MPC to the system with output tracking reference
trajectories y,.r(t) = [1; 0.6], sampling time is Ty = 0.1 seconds for both ROC and
general MPC, and results are illustrated in Figure 5.10.

It can be seen clearly that both approaches can solve the “nearly” equivalent problem,
however ROC performs much precisely approaching to the target, but general MPC,
although it responds also rapidly at the start, its activities to reach the set-points seem
much more sluggish. In addition, the system behaves smoother by ROC control than
general MPC control in continuous-time. Furthermore, the start of ROC optimal control
trajectory shows higher than MPC control trajectory because of its control weight setting,
as comparing to Ry, = 0, Ry, = 0.001 is still a big enough value. For illustration

purpose, we change the control weight with one example to R,,. = 0.01, and the other
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Figure 5.10: Exothermic chemical reactor controlled by ROC and general MPC

case to R,.,. = 0.0001, the different control performance results are shown in Figure 5.11.

It can be clearly seen that when the weight of control in ROC is chosen to be some

smaller value as R,,. = 0.01 (shown in left-side of the figure), the start of ROC optimal

control trajectory shows smoother but the system yields more sluggish output response,

and there is some error between system output and setpoint, however when the weight of

control in ROC is R,,. = 0.0001 (shown in rght-side of the figure), opposite effect is given.

The all computations were performed on the CPU 2.8GHz and the application is imple-

mented in the MATLAB environment. The differential equations are integrated by using

a Runge-Kutta method (ODE45). The norm of the error-array ||p;+1 — pil|, is smaller

than le — 5. The convergence speed is very fast with only 3 iterations are needed to



98

Chapter 5. Semi-analytical Solution to Applications via ROC control

0.8

0.6

0.4

0.2

160

Output trajectories with reference by ROC, control weight = 0.01

yl
—
refl

ref2

i i i i
1 2 3 4
Time (seconds)

Control trajectories by ROC, control weight = 0.01
T T T T

140

120

100

80

60 -

40

20

ul
u

1 2 3 4 5

Time (seconds)

Output trajectories with reference by ROC, control weight = 0.0001

yl
—
refl
ref2

1
0.8 //

06|
(
0.4r

0.2

i i i i
0 1 2 3 4
Time (seconds)

Control trajectories by ROC, control weight = 0.0001
T T T T

160

ul
u

140
120
100
80
60
40

20

0 1 2 3 4
Time (seconds)

Figure 5.11: Exothermic chemical reactor controlled by ROC, control weight changing

achieve the solution of the problems, and the computation time is 1.611 seconds for back-
and-forth shooting solution. The computation time of ROC control requires about 9

seconds.

Extending the states to contain a disturbance model, the covariance tuning parameters
used are Qry = 0.01, and Ry, = 0.01. The initial state of the plant is zy = [0, 0], and of
the estimator #(k|k) = [0, 0]. Then the optimal input trajectory and output trajectory
turn to be as in Figure 5.12. The input disturbances are zero-mean white Gaussian
distributed noise with variance equals to 0.05, and output disturbances are zero-mean
white Gaussian distributed noise with variance equals to 0.1. Note that the linearized
pair (C, A) describing the overall state-space realization of the combination of plant and

disturbance models is observable or detectable for the state estimation design to succeed.
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Figure 5.12: Exothermic chemical reactor controlled by ROC with state estimation

The model has been converted to discrete-time state-space form.

Concluding Remarks: The application studies in this chapter are firstly to testify the
powerful capability of the ROC algorithm for dealing with fairly difficult and complex
optimal control problems and at the same time explicitly handling multiple constrained
states and inputs; and then a more practical industrial application is given as a nonlinear
MIMO model. The control performance of ROC algorithm is evaluated by illustrative
comparison with general MPC. All the results prove that ROC algorithm is a fairly
promising algorithm in handling both controlling and the optimal solutions in continuous-

time NMPC control field.






Chapter

Conclusions

This chapter summarizes the thesis work and also outlines some of the future develop-

ments this research suggests.

6.1 Conclusions

This thesis presents an efficient semi-analytical method, called repetitive optimal open-
loop control (ROC), which is based on the model predictive control (MPC) strategy
and allows explicit dealing with the optimization of constrained nonlinear processes in
continuous-time. The whole structure of algorithm is built with an “inner loop” of TP-
BVP optimization solution solved by the back-and-forth shooting method and an “outer
loop” optimal control the system handled by ROC controller. The ROC algorithm and

all applications are implemented in the MATLAB environment.

Discussion about handling nonlinear dynamic system with state and input constraints
using the ROC algorithm of optimization is shown. The performance and theoretical
properties of the ROC algorithm have been investigated and some attractive features are

described as follows:

e Based on the framework of MPC in the general lines of the discrete-time, ROC

algorithm extends a derivation to continuous-time field.
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e In general NMPC, the considered nonlinear optimal control problem is normally
non-convex, and an analytical solution is very difficult to find, instead a numerical
optimization solution has to be generated. However, by using an open-loop feedback
law, ROC algorithm builds an approximately analytical, or we say a semi-analytical
solution between the optimal control variables and states. The resulting optimal

control trajectory is well defined in a “continuously” varying sequence.

e ROC algorithm has a fairly powerful capacity in handling the practical dynamic

systems with large variability and nonlinearity in practice with constraints.

The recommended back-and-forth shooting method for solving the reduced TPBVP opti-
mization problem with the states and inputs constraints is included. This kind of TPBVP
has a special form that the initial state is known, and half of the differential equations
about state have fixed boundary conditions at the starting point. However if the terminal
state is not fixed, then the other half of the differential equations about adjoint state has
to be fixed at the endpoint. The differences and similarities between MPC and ROC have

been also compared.

The study also extends to ROC control with state estimation (disturbance estimation).
When perfect measurements of the current states are not available, an estimation of the
initial state has to be done in the optimal control problem. An output feedback control,
where a state estimator is used to obtain the current state from the output measurements,
was constructed. Some zero-mean white Gaussian distributed noises are introduced to
both controller and output measurements with linear and nonlinear dynamic systems
using state estimation via Kalman filtering. Some numerical experiments are given for

clear illustration.

Application studies are implemented in the end the research work, where the ROC al-
gorithm is firstly be testified as an efficient algorithm for dealing with fairly difficult
and complex optimal control problems and at the same time explicitly handling multiple

constrained states and inputs. And the other application is an industrial MIMO exother-
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mic chemical reactor. Solution proposal for universal control problem including reference
tracking, input/output disturbance compensation, control weight changing is given. It is
clearly shown by the results ROC algorithm achieves a good controller performance for

solving general industrial optimization problems on-line.

6.2 Future development

The research described here naturally leads to several open questions and suggests some
future developments. Because of the use of nonlinear models, the optimal control problem
concerned in the ROC algorithm is usually a non-convex nonlinear problem, the analyti-

cal solution of which is very challenging to get.

In addition, although the disturbance models used for state estimation in ROC algo-
rithm are studied, but in implementation there is only white Gaussian noise inserted in
applications issues are concerned in both linear and nonlinear numerical examples, the
work of either extended Kalman filters/linearized Kalman filters or moving horizon esti-
mation (MHE) with unmeasured load-type disturbance model for nonlinear models are
remained for further research interest. Also, since the ROC algorithm and applications
are implemented with the MATALB code-language, the speed of programming can still

be increased considerably by compiling MEX files for future research work.
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