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Abstract

Signal processing methods for audio classification and music content
analysis are developed in this thesis. Audio classification is here un-
derstood as the process of assigning a discrete category label to an un-
known recording. Two specific problems of audio classification are con-
sidered: musical instrument recognition and context recognition. In the
former, the system classifies an audio recording according to the instru-
ment, e.g. violin, flute, piano, that produced the sound. The latter task
is about classifying an environment, such a car, restaurant, or library,
based on its ambient audio background.

In the field of music content analysis, methods are presented for mu-
sic meter analysis and chorus detection. Meter analysis methods con-
sider the estimation of the regular pattern of strong and weak beats in
a piece of music. The goal of chorus detection is to locate the chorus seg-
ment in music which is often the catchiest and most memorable part of
a song. These are among the most important and readily commercially
applicable content attributes that can be automatically analyzed from
music signals.

For audio classification, several features and classification methods
are proposed and evaluated. In musical instrument recognition, we con-
sider methods to improve the performance of a baseline audio classifica-
tion system that uses mel-frequency cepstral coefficients and their first
derivatives as features, and continuous-density hidden Markov models
(HMMs) for modeling the feature distributions. Two improvements are
proposed to increase the performance of this baseline system. First,
transforming the features to a base with maximal statistical indepen-
dence using independent component analysis. Secondly, discriminative
training is shown to further improve the recognition accuracy of the
system.

For musical meter analysis, three methods are proposed. The first
performs meter analysis jointly at three different time scales: at the
temporally atomic tatum pulse level, at the tactus pulse level, which cor-
responds to the tempo of a piece, and at the musical measure level. The
features obtained from an accent feature analyzer and a bank of comb-
filter resonators are processed by a novel probabilistic model which rep-



resents primitive musical knowledge and performs joint estimation of
the tatum, tactus, and measure pulses.

The second method focuses on estimating the beat and the tatum.
The design goal was to keep the method computationally very efficient
while retaining sufficient analysis accuracy. Simplified probabilistic
modeling is proposed for beat and tatum period and phase estimation,
and ensuring the continuity of the estimates. A novel phase-estimator
based on adaptive comb filtering is presented. The accuracy of the
method is close to the first method but with a fraction of the compu-
tational cost.

The third method for music rhythm analysis focuses on improving
the accuracy in music tempo estimation. The method is based on esti-
mating the tempo of periodicity vectors using locally weighted k-Nearest
Neighbors (k-NN) regression. Regression closely relates to classifica-
tion, the difference being that the goal of regression is to estimate the
value of a continuous variable (the tempo), whereas in classification the
value to be assigned is a discrete category label. We propose a resam-
pling step applied to an unknown periodicity vector before finding the
nearest neighbors to increase the likelihood of finding a good match
from the training set. This step improves the performance of the method
significantly. The tempo estimate is computed as a distance-weighted
median of the nearest neighbor tempi. Experimental results show that
the proposed method provides significantly better tempo estimation ac-
curacies than three reference methods.

Finally, we describe a computationally efficient method for detect-
ing a chorus section in popular and rock music. The method utilizes a
self-dissimilarity representation that is obtained by summing two sep-
arate distance matrices calculated using the mel-frequency cepstral co-
efficient and pitch chroma features. This is followed by the detection of
off-diagonal segments of small distance in the distance matrix. From
the detected segments, an initial chorus section is selected using a scor-
ing mechanism utilizing several heuristics, and subjected to further pro-
cessing.

Keywords Audio signal analysis, audio classification, audio-based
context recognition, musical instrument recognition, music meter anal-
ysis, chorus detection.
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Chapter 1

Introduction

Imagine walking on a street and listening to your favorite string quartet
from the head phones of your portable music device. As you are walk-
ing towards the city center, the traffic gets harder and the noise level in
the surrounding environment increases. At some point you may need to
switch from classical music to something "louder’ such as heavy metal
as the quiet nuances of the violin performance are barely audible any-
more.

We are starting to have more and more devices that automatically
adapt to the situation and adjust their behavior accordingly. In the
above case, for example, the device might use its microphone to sense
the increased noise level and make a decision to adjust the current
playlist to incorporate music that is better audible in the loud environ-
ment. Modern hearing aids already adapt their behavior according to
the environmental noise levels. As another example, consider a device
which would automatically detect that the user goes jogging and select
the playlist accordingly. The individual songs in the playlist could be se-
lected to provide suitable motivation for different parts of the exercise,
so that songs with slower tempo are played when the pace is slower and
songs with faster tempo when running faster.

To be able to make sophisticated decisions on what music to select
in each context, the system needs information on the user’s context and
music content. Context information may include e.g. recognizing the
location, such as in a car or at home. Many sensors are available for
context sensing including acceleration, illumination, global positioning
system (GPS) location, temperature, camera, or microphone. Each sen-
sor type has its own benefits regarding power consumption, cost, and
type of information it provides. Context recognition using using audio is
attractive since microphones are already available in many portable de-
vices such as mobile phones, and audio provides a rich source of context
information. Automatic audio content analysis methods can be used



to provide information on and categorize audio signals captured by the
built-in microphone.

Music content information includes for example genre, style, release
year, mood, harmony, melody, rhythm and timbre. Some of these at-
tributes such as the genre and release year are usually available as tex-
tual metadata. By employing a number of music experts it is possible to
categorize even large catalogues of music with regard to several musical
attributes and use this information in making music recommendations,
as is done e.g. by the personalized radio service Pandora.com. How-
ever, using human experts is costly and slow, making the development
of automatic music content analysis methods attractive. Compared to
human abilities, machine analysis of music content is only in its infancy.
In some applications, such as tempo estimation or chorus detection from
popular and rock music, machines obtain accuracies up to 90% which
makes building practical applications possible. In addition, music con-
tent information such as tempo and timbre can combined with textual
metadata such as genre and release year to improve the performance
e.g. in content-based retrieval.

The following lists some other applications of audio content analysis.

e Multimedia information retrieval and indexing is facilitated by au-
tomatic analysis of e.g. events in a video soundtrack or attributes
of a musical piece [32].

e Content modification and active listening can be enabled with con-
tent data describing the beats and measures [83]. For example,
consecutive tracks can be mixed in a beat-synchronous fashion to
make a smooth transition. Music player interfaces may provide
novel functionality such as looping or skipping to musically mean-
ingful locations such as the beginning of the next chorus [66].

e Music transcription means transforming an acoustic music signal
into written music, a score [99]. Amateur musicians would ben-
efit from applications which would reliably convert their favorite
music collections to notated form.

e Object-based audio coding aims at using high-level objects such as
musical notes as a basis for compression [174]. Being able to en-
code and represent sound producing objects separately would en-
able e.g. changing the lead instrument to something else or chang-
ing its playback style during resynthesis.

e Automatic accompaniment systems make it possible for soloists to
practice with a virtual accompaniment which follows the soloist [169,
151].



1.1 Terminology

1.1.1 Musical terminology

A musical sound is often characterized with four main perceptual at-
tributes: pitch, loudness, duration and timbre. These four attributes
make it possible for a listener to distinguish musical sounds from each
other. Pitch, loudness and duration are better understood than tim-
bre and they have clear physical counterparts. For musical sounds,
pitch is usually well defined and is almost equal to inverse of the pe-
riod for sounds that are periodic or nearly periodic. Fundamental fre-
quency Fj is the corresponding physical term and is measured in Hertz
(Hz). Pitched musical sounds usually consist of several frequency com-
ponents. A perfectly harmonic sound with fundamental frequency Fy
has harmonics at integer multiples of the fundamental frequency.

According to Shephard, the perception of musical pitch can be graph-
ically represented using a continually cyclic helix having two dimen-
sions: chroma and height [164]. Chroma refers to the position of a
musical pitch within an octave, i.e., a cycle of a helix, when seen from
above. Pitch height refers to the vertical position of the helix seen from
the side.

The physical counterpart of loudness is intensity, which is propor-
tional to the power of an acoustic waveform. The third dimension, per-
ceived duration, corresponds quite closely to the physical duration for
tones that are not very short.

Timbre is the least understood among the four attributes. It is some-
times referred as sound ”color” and is closely related to the recognition
of sound sources [71]. When two musical sounds have equal pitch, loud-
ness and duration, timbre is the property which makes it possible to
distinguish the sounds from each other. Timbre is a multidimensional
concept and depends mainly on the coarse spectral energy distribution
and its temporal evolution.

Musical meter relates to rhythmic aspects of music. Perceiving the
meter can be characterized as a process of detecting moments of mu-
sical stress from the signal and inferring the underlying periodicities.
Pulse sensations at different levels together constitute the meter [99].
The most distinct level is the one corresponding to individual beats, and
is called the beat or tactus. This is the rate at which most people tend
to tap their foot on the floor while listening to music. The tempo of a
piece is defined as the rate of the tactus pulse. It is typically repre-
sented in units of beats per minute (BPM), with a typical tempo being
of the order of 100 BPM. The sequence of musical measures relates to
harmonic changes or the length of musical patterns. Bar lines separate
the measures in musical notation. Typically, every Nth beat coincides



with the beginning of a measure. In a 4/4 time signature typical for
Western popular music, every 4th beat coincides with the beginning of
a measure, and is called a downbeat. The shortest meaningful dura-
tion encountered in music is called temporal atom or tatum and often
coincides with the duration of 8th or 16th note.

On a larger timescale than the measure, the form of Western popular
and rock music pieces often consists of distinguishable sections such as
intro, verse, bridge, chorus, and outro [121]. The different sections may
repeat and a typical structure of a musical work consists of one or more
repetitions of a verse and chorus. The chorus is often the "catchiest” and
most memorable part of the song and is thus good to be used for music
previewing, as a so-called music thumbnail [16]. Another use for the
chorus section is as a mobile phone ring tone.

1.1.2 Context and metadata

Moran and Dourish define context as the physical and social situation in
which computational devices are embedded [129]. In its general sense,
context can describe the state of the environment, the user, and the de-
vice. For the purposes of this study, context describes the situation or
physical location around an entity. The basic goal in context aware com-
puting is to acquire and utilize information on the context of a device to
provide better services for the user [129]. For example, a mobile phone
may automatically go into a silent mode when it detects that the user
sits in a meeting or in a concert.

Context information can also be used as an automatically created
metadata for media such as music: for example when the device detects
that the user is in a car and listens to music, it may automatically tag
the played songs as suitable for the car environment and provide simi-
lar songs to the car environment later on [80, 162]. On a general level,
metadata can be defined as data which describes data. Typical meta-
data for a music file includes information on the artist, composer, track
and album title, genre, and beats-per-minute (BPM).

1.2 Related research fields

1.2.1 Computational auditory scene analysis, speech pro-
cessing, multimedia content description, and audio
fingerprinting

This thesis falls within the broad field of audio content analysis. This
section briefly introduces some related research fields and provides ref-
erences to more detailed overviews.



Audio content analysis is related to computational auditory scene
analysis (CASA) [48, 176]. In this field, the ultimate goal is to analyze
and interpret complex acoustic environments, including the recognition
of overlapping sound events, and thus their sources.

Some related fields are more developed than e.g. those presented in
this thesis, and can be used a source of methods and techniques. The
speech and speaker recognition field is well developed although still un-
der extensive research efforts. Many feature extraction and statistical
modeling techniques used nowadays for environmental sound classifi-
cation or music content analysis were first developed for speech. For
overviews of speech and speaker recognition see [88, 61, 149, 148].

Query-by-example of audio is an important application for audio con-
tent analysis. Here, the goal is to find items with similar attributes from
audio catalogues [72]. A special requirement in this area is to be able to
efficiently compute distances between the audio samples in a database.

Audio fingerprinting, music recognition, or content-based audio iden-
tification is a well matured technology based on automatic analysis of
audio content. Here, the goal is to link an unlabeled audio file to its
metadata (artist, album, title) for the purposes of broadcast station
monitoring, cleaning up metadata in music collections, or discovering
the identity of a song heard in a bar. For overviews on audio finger-
printing see [30, 29, 175].

The multimedia description standard MPEG-7, developed by the
Moving Pictures Expert Group standardizes the representation of con-
tent descriptive metadata, such as musical instrument parameters [122,
95]. Reference content analysis methods are given, but new content
analysis methods can be developed to automatically produce this meta-
data. A more comprehensive review of audio content analysis is given
in Chapter 2.

1.2.2 Music information retrieval

The field of music information retrieval (MIR) considers technologies
to enable access to music collections [32]. MIR is a multidisciplinary
field drawing from music perception, cognition, musicology, engineering,
and computer science. The growth of research interest in the field is
evident e.g. from the number of papers published in the Proceedings of
the International Conference on Music Information Retrieval. The first
conference was held in 2000 and the proceedings included 35 papers,
whereas in 2008 the number of papers had grown to 111 [2].

Most commonly, digital music catalogues are accessed with the help
of textual metadata [32]. As the metadata may be rich and descriptive,
this provides efficient ways to access and find music. However, a prob-
lem is how to obtain high quality metadata for large music catalogues.



Companies such as Pandora.com ([5]) and AllMusic ([1]) use human ex-
perts to annotate descriptive terms for large catalogues of songs and are
able to provide high quality search and music recommendation services.
However, annotating a song e.g. at Pandora.com takes an estimated 20
to 30 minutes ([3]), which leads to large costs. Moreover, concerns raise
of the consistency of metadata as large populations of people are needed
to annotate collections of several million sound tracks.

An alternative for expert annotated metadata is to collect tags from
users, as done by social music websites such as last.fm [4]. However,
this leads to problems on how to mine high quality information from
noisy tag clouds as typically users are allowed to assign whatever tags
they desire for the music. There are also approaches where analysis of
freeform text content on the Web is used to derive descriptions for music
content. Brian Whitman describes pioneering work on this area in his
thesis [179]. A more comprehensive review on music content analysis is
given in Chapter 3.

1.2.3 Context awareness

Context recognition is defined as the process of automatically deter-
mining the context around a device. In addition to being a promising
source of automatic metadata for music or other media types, informa-
tion about the context would enable wearable devices to provide better
service to users’ needs, e.g., by adjusting the mode of operation accord-
ingly. Recent overviews on context awareness can be found in [77] and
[101].

Compared to image or video sensing, audio has certain distinctive
characteristics [50]. Audio captures information from all directions and
is more robust than video to sensor position and orientation. In addi-
tion, the nature of information is different from that provided by vi-
sual sensors. For example, what is said is better analyzed from audio
but the presence of nonspeaking individuals cannot be detected. Audio
can provide a rich set of information which can relate to location, ac-
tivity, people, or what is being spoken [50]. The acoustic ambiance and
background noise characterizes a physical location, such as inside a car,
restaurant, or church. Different activities such as typing a keyboard or
talking can be distinguished based on the sound they create.

1.2.4 Applications of audio-based context awareness and
automatic music content analysis

Applications based on audio-based context awareness are still very much
work in progress, and general environmental awareness based on au-
dio input remains a difficult research problem. However, in some very



narrow fields commercial applications are emerging. For example, the
smart alarm clock by Smart Valley Software detects the optimal mo-
ment to wake up by monitoring the quality of your sleep using the mi-
crophone of a mobile phone [6]. Modern hearing aids optimize their
performance according to the noise quality of the environment [19].

Context-aware music services are at research prototype stage. For
example, Lehtiniemi describes an user evaluation of a prototype context-
aware music recommendation service in [109]. A high-level architecture
of the service is described in [162].

Some fields of automatic music content analysis have reached suf-
ficient maturity for practical applications. For example, the Nokia PC
Suite software contains functionality to calculate the tempo from user’s
own music files. In professional applications, tempo analysis has existed
for long. However, the analysis is not faultless and in (semi)professional
applications the user may be able to fix the analysis errors e.g. by tap-
ping the correct tempo, such as in the Music Maker music editing soft-
ware by MAGIX. In amateur applications we cannot expect the user to
be able to fix tempo estimation errors by tapping and work on robust
tempo analysis methods is thus needed. In addition, some aspects of
music meter are more difficult to analyze than others. For example,
analyzing the average tempo can be done robustly, but positioning the
beats or beat phase estimation is much more challenging. Estimating
the bar line positions is also challenging but important for many prac-
tical applications, such as seamless beatmixing of tracks.

1.3 Scope and purpose of the thesis

This thesis considers methods for automatic content analysis of music
and audio. Common to the selected methods is that they can be used
for automatic metadata generation for music. The metadata can relate
to the content, i.e. which instruments are used, what is the tempo of
the piece, or where is the chorus section. Automatic music content de-
scriptors provide an efficient means for automatically deriving content
descriptive metadata from multimillion music track collections. Besides
the actual music content, the metadata can relate to the usage or con-
text, i.e. in which situation has the music been listened to. Examples
include in a car, bus, outdoors jogging, or at home with friends. In
the latter scenario, a mobile music player collects context information
and automatically associates information describing the situation to the
played music.

More specifically, methods are proposed to address different sub-
problems in music and audio content analysis. Publications [P1], [P2],
[P3], and [P4] consider audio classification. In the first three publi-



cations the task is the classification of musical instruments, and [P4]
considers the classification of the environment or device context based
on the background sound ambiance.

Methods for musical instrument recognition have been originally
proposed in [P1], [P2], and [P3]. The methods focus on classifying the
instrument based on monophonic, single note recordings. The method
proposed in [P1] suggests several frequency and time domain features
that are useful for musical instrument recognition, and presents exper-
iments using a hierarchical classification scheme utilizing the natural
taxonomy of musical instrument families. In [P2] a very pragmatic ap-
proach is taken and an analysis is made of the efficiency of different
features in the musical instrument classification task, and the problem
of generalizing across different environments. Publication [P3] proposes
the use of hidden Markov models with a left-right topology for instru-
ment recognition and studies the use of linear feature transforms to
transform concatenated MFCC and delta MFCC features.

Publication [P4] presents a method for recognizing the context based
on audio. Similar techniques are applied as in [P3]. The paper focuses
on techniques that could be used to improve the system’s performance
with negligible increase in the computational load at the on-line classi-
fication stage.

In music content description, the focus is on music meter analysis
and chorus detection. Music meter analysis is considered in publica-
tions [P5], [P6], and [P7]. The method presented in [P5] is a complete
meter analysis system capable of jointly estimating the tatum, beat (tac-
tus), and bar level pulses in musical signals. However, when large music
catalogues are processed or an algorithm should be run on an embed-
ded device such as mobile phone, computational complexity becomes an
issue. In publication [P6] a computationally very efficient method is
proposed for beat tracking. The method runs faster than real-time on
a mobile phone. The method presented in publication [P7] focuses on
the most important subtask, tempo estimation, and significantly out-
performs the previous methods in accuracy.

Finally, publication [P8] describes a method for chorus detection
from music files. The method is computationally efficient while main-
tains sufficient accuracy for practical applications.

This research originated from the need to build a functional block
into an automatic transcription system being constructed at the De-
partment of Signal Processing at Tampere University of Technology.
This work was originated by Anssi Klapuri who describes the work in
more details in his Ph.D. thesis [99]. The latter part of the research
has been done with Nokia Research Center, where the research is cur-
rently related to the development of a context aware mobile music ser-
vice, which requires technologies for context sensing and music content
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analysis [162].

1.4 Main results of the thesis

This section describes the main novel results and contributions of this
thesis.

1.4.1 Publication 1

Publications [P1] to [P3] consider the problem of musical instrument

recognition. In publication [P1], several features are proposed to de-

scribe each musical instrument note. A hierarchical classification scheme
was implemented which utilizes the natural taxonomy of instrument

families. The main results were:

e Novel features were proposed for musical instrument classifica-
tion.

e Combining cepstral coefficients with other spectral and temporal
features was proposed to effectively take into account both spec-
tral and temporal information found important in human timbre
perception experiments.

e Segmenting the note to attack and steady state segments and sep-
arately extracting features from both were proposed.

e The use of a manually-designed hierarchical classification taxon-
omy was evaluated and found not to improve the performance
which contradicts with the earlier results of Martin [124].

1.4.2 Publication 2

Publication [P2] presents a detailed evaluation of several features for
musical instrument recognition, and studies the problem of generaliz-
ing across different instances of the same instrument, e.g. different
violin pieces played by different performers at different locations. The
simulations were performed on a database larger than any study had
used by that time. The main results were:

e When more than one example of an instrument is included in
the evaluation, the performance of the system significantly drops.
Generalizing across instruments and recording locations is identi-
fied as the key problem in instrument classification.

e The effectiveness of different features in instrument classification
was analyzed.



e Different cepstral features were evaluated, and cepstral coefficients
based on warped linear prediction were proposed. Mel-frequency
cepstral coefficients were found to be the best choice considering
classification accuracy and computational complexity.

e The effect of using one or several notes for instrument classifica-
tion was tested.

1.4.3 Publication 3

In publication [P3], the use of hidden Markov models with a left-right
topology for instrument note modeling is proposed. The motivation for
using hidden Markov models for instrument notes is that the model
may be able to learn the different spectral characteristics during the
onset and steady states, removing the need for manual segmentation
as was done in [P2]. In addition, the use of discriminative training and
linear feature transforms to transform the catenated static and dynamic
cepstral coefficients is proposed. The main results were:

e The use of left-right hidden Markov models for instrument note
modeling was proposed.

e Transforming the features to a base with maximal statistical inde-
pendence using independent component analysis can give an im-
provement of 9 percentage points in recognition accuracy in musi-
cal instrument classification.

e Discriminative training is shown to improve the performance when
using models with a small number of states and component densi-
ties.

e The effect of varying the number of states and component densities
in the HMMs is studied.

1.4.4 Publication 4

Publication [P4] presents a method for recognizing the context based on
audio. Similar techniques are applied as in [P3]. The paper focuses on
techniques that could be used to improve the system’s performance with
negligible increase in the computational load in the on-line classification
stage. The main results were:

e Building context aware applications using audio is feasible, espe-
cially when high-level contexts are concerned.

e Discriminative training can be used to improve the accuracy when
using very low-order HMMs as context models.
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e Using PCA or ICA transformation of the mel-cepstral features does
not significantly improve the accuracy, contrary to the case of mu-
sical instruments.

e In comparison with the human ability, the proposed system per-
forms rather well (58% versus 69% for contexts and 82% versus
88% for high-level classes for the system and humans, respec-
tively). Both the system and humans tend to make similar con-
fusions mainly within the high-level categories.

e The recognition rate as a function of the test sequence length ap-
pears to converge only after about 30 to 60 s. Considering practical
applications on mobile devices this poses challenges as we would
like to use much less audio for performing the recognition to save
energy.

1.4.5 Publication 5

Publications [P5], [P6], and [P7] present several methods for music me-
ter analysis. Publication [P5] presents a complete meter analysis sys-
tem which performs the analysis jointly at three different time scales:
at the temporally atomic tatum pulse level, at the tactus pulse level,
which corresponds to the tempo of a piece, and at the musical measure
level. Acoustic signals from arbitrary musical genres are considered.
The main results were:

e A probabilistic model representing primitive musical knowledge
and capable of performing joint estimation of the tatum, tactus,
and measure pulses was presented.

e The model takes into account the temporal dependencies between
successive estimates and enables both causal and noncausal esti-
mation.

e To overcome the problems of having very limited amount of train-
ing data, an approximation for the state-conditional observation
likelihoods was presented.

e The transition probabilities were proposed to be modeled as a prod-
uct of the prior probability of the period and a term describing the
tendency of the periods to be slowly varying.

e In simulations, the method worked robustly for different types of
music and improved over two state-of-the-art reference methods.
The method ranked first in the ISMIR 2004 beat induction contest.
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1.4.6 Publication 6

Publication [P6] presents the second method for music meter analysis,
and focuses on estimating the beat and the tatum. The design goal was
to keep the method computationally very efficient while retaining suf-
ficient analysis accuracy. The paper presents a simplified back-end for
beat and tatum tracking and describes its implementation on a mobile
device. The main results were:

e The computationally intensive bank of comb-filter resonators was
substituted with a discrete cosine transform periodicity analysis
and adaptive comb filtering.

e The back-end incorporates similar primitive musicological knowl-
edge as the method presented in [P5], but with significantly smaller
computational load.

¢ A method based on adaptive comb filtering was proposed for beat
phase estimation.

e Complexity evaluation showed that the computational cost of the
method was less than 1% of the method presented in [P5] and
the one by Scheirer [158]. However, it should be noted that the
method [P5] was implemented as a combination of Matlab/C++,
whereas the proposed method and Scheirer’s method were imple-
mented fully in C++. A real-time implementation of the method
for the S60 smartphone platform was written.

1.4.7 Publication 7

The last publication ([P7]) in music meter analysis focuses on improving
the performance in tempo estimation. The tempo is the most important
metrical attribute in practical applications. The main results were:

¢ A method for measuring musical accentuation based on the chroma
features was presented.

e A method for tempo estimation using locally weighted £-NN re-
gression was presented. The method involves a resampling step
which gives a significant improvement in performance.

e A method to compute the tempo estimate as a weighted median of
nearest neighbor tempi was proposed.

e Experimental results show that the proposed method provides sig-
nificantly better tempo estimation accuracies than three reference
methods.
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e The method is straightforward to implement and requires no ex-
plicit prior distribution for the tempo as the prior is implicitly in-
cluded in the distribution of the k-NN training data vectors. The
accuracy degrades gracefully when the size of the training data is
reduced.

1.4.8 Publication 8

Publication [P8] presents a computationally efficient chorus detection
method. This subproblem in music structure analysis was chosen as it
seemed possible to obtain good accuracies and many potential applica-
tions exist. The main results were:

e A method for analyzing song self distance by summing the self-
distance matrices based on the MFCC and chroma features was
proposed.

e A scoring method for selecting the chorus section from several can-
didates was proposed.

e A method utilizing matched filter for refining the location of the
final chorus section was proposed.

e The method provides a good chorus detection accuracy while being
fast to compute.

1.5 OQOutline of the thesis

This thesis is organized as follows. Chapter 2 presents the relevant
background information on feature extraction, classification, regression,
and statistical modeling needed to understand the contents of the the-
sis. In addition, we discuss relevant research on musical instrument
recognition, environmental audio classification, and relevant fields. Chap-
ter 3 discusses relevant research on automatic music content analysis,
focusing on music meter and music structure analysis. Chapter 4 dis-
cusses some new applications made possible by automatic audio content
analysis techniques. Finally, Chapter 5 summarizes the observations
made in this study and suggests some directions for future work.
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Chapter 2

Audio classification

This Chapter provides the necessary background for audio classification
and serves as an overview for publications [P1], [P2], [P3], and [P4].
We first discuss methods for feature extraction and classification, and
conclude with a sections summarizing relevant research on these fields.

2.1 Overview

Figure 2.1 presents a block diagram of the main components of a generic
audio classification system. The preprocessing stage consists of opera-
tions such as mean removal and scaling the amplitude to a fixed range,
such as between -1 and 1. The feature extraction stage transforms the
input signal into a low-dimensional representation which contains the
information necessary for the classification or content analysis task. In
practise, however, they also contain extra information since it is diffi-
cult to focus only on a single aspect of audio [32]. Model training either
stores the feature vectors corresponding to the class of the labeled input
signal as a finite number of templates, or trains a probabilistic model
based on the observations of the class. In the classification step, the
feature stream of the input signal is compared to the stored templates,
or a likelihood value is calculated based on the probabilistic models of
the trained classes. The recognition result is given as the class giving
the best match. The following sections examine the techniques needed
in different parts of this general system in more detail.

2.2 Feature extraction and transformation

2.2.1 Features

In this part, a selection of acoustic features for audio classification and
music content analysis are presented.
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Figure 2.1: A block diagram of a generic audio classification system.

Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients ([40, 148]) and their time deriva-
tives are the de-facto front-end feature-extraction method in automatic
speech recognition systems. They have also become the first choice
when building music or general audio content analysis systems. We
will use here the conventional Discrete Fourier Transform (DFT)-based
method utilizing a mel-scaling filterbank. Figure 2.2 shows a block dia-
gram of the MFCC feature extractor. The input signal may be first pre-
emphasized to flatten the spectrum. Pre-emphasis is typically used in
speech and speaker recognition systems; for other types of signals such
as environmental sounds or music it may not always be helpful. Next,
a filterbank consisting of triangular filters spaced uniformly across the
mel-frequency scale and their heights scaled to unity, is simulated. The
mel-scale is given by

where f is the linear frequency value in Hz [148]. The mel-scale is a
perceptually motivated frequency scale. It is approximately linear up
to 1000 Hz and logarithmic thereafter. To implement this filterbank, a
window of audio data is transformed using the DFT, and its power spec-
trum is calculated by squaring the absolute values of DFT output. By
multiplying the power spectrum with each triangular filter and sum-
ming the values at each channel, a spectral energy value for each chan-
nel is obtained. The dynamic range of the spectrum is compressed by
taking a logarithm of the energy at each filterbank channel. Finally,
cepstral coefficients are computed by applying a discrete cosine trans-
form (DCT) to the log filterbank energies. DCT decorrelates the cepstral
coefficients, thereby making it possible to use diagonal covariance ma-
trices in the statistical modeling of the feature observations.
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Figure 2.2: Block diagram of the MFCC analysis. Optional or new
blocks are denoted with dashed lines.

In most cases, it is possible to retain only the lower order cepstral
coefficients to obtain a more compact representation. The lower coeffi-
cients describe the overall spectral shape, whereas pitch and spectral
fine structure information is included in higher coefficients. The zeroth
cepstral coefficient is normally discarded, as it depends on the signal
gain, and often we wish to ignore gain differences. The dynamic, or tran-
sitional properties of the overall spectral envelope can be characterized
with delta cepstral coefficients [167, 149]. Usually the time derivative
is obtained by polynomial approximation over a finite segment of the
coefficient trajectory.

Linear prediction

Linear prediction (LP) analysis is another way to obtain a smooth ap-
proximation of the sound spectrum. Here, the spectrum is modeled with
an all-pole function, which concentrates on spectral peaks. Linear pre-
diction is particularly suitable for speech signals, but can be applied also
to other sound source recognition tasks. Schmid applied LP analysis to
musical instrument recognition already in 1977 [159].

In classical forward linear prediction, an estimate for the next sam-
ple of a linear, discrete-time system, is obtained as a linear combination
of p previous output samples:

p
g(n) = aiy(n — i), (2.2)
=1
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where a; are the predictor coefficients, or linear prediction coefficients.
They are fixed coefficients of a predictor all-pole filter, whose transfer

function is
1 1

A(2) 1o P aizT
The set of predictor coefficients {a1,a2,...,a,} can be solved using the
autocorrelation method [149]. The linear prediction cepstral coefficients

can be efficiently calculated from the linear prediction coefficients using
the recursion

1 n—1
Cp = —Qp — — kepQy—k 2.4)

for n > 0, where ag = 1 and a;, = 0 for k£ > p.

The conventional LP-analysis suffers from a uniform frequency res-
olution. Especially in wideband audio applications, poles are wasted
to the higher frequencies [79]. The technique of warped linear pre-
diction was first proposed by Strube in 1980 [168]. In wideband au-
dio coding, WLP has proved out to outperform conventional LP based
codecs especially with low analysis orders [79]. Motivated by this, in
[P2] we proposed to use cepstral coefficients based on linear prediction
on a warped frequency scale. The frequency warping transform was
obtained by replacing the unit delays of a discrete, linear system with
first-order all-pass elements. In practice, we used the WarpTB toolbox
by Harma and Karjalainen for implementing the warped linear predic-
tion calculation [78]. It consists of Matlab and C implementations of
the basic functions, such as the warped autocorrelation calculation. The
cepstral coefficients were calculated from the warped linear prediction
coefficients using the recursion 2.4.

Other instantaneous features

Spectral centroid (SC) is a simple but useful feature. The spectral cen-
troid correlates with the subjective qualities of "brightness” or "sharp-
ness”. It can be calculated from different mid-level representations,
commonly it is defined as the first moment with respect to frequency
in a magnitude spectrum. Let X;(k) be the be the kth frequency sample
of the discrete Fourier transform of the ¢tth frame. The spectral centroid
at frame ¢ is computed as

K KXk
Yo [ Xe(R)]
where K is the index of the highest frequency sample.

Zero crossing rate (ZCR) is defined as the number of zero-voltage
crossings within a frame.

SCy (2.5)
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Short-time average energy is the energy of a frame, and is computed
as the sum of squared amplitudes within a frame.

Band-energy. The band-energy at the ith band at frame ¢ is com-
puted as
_ Ties X ()12

Yiico | Xe(k)[?
where S; denotes the set of power spectrum samples belonging to the ith
frequency band. The number of subbands can be defined according to
the application. In [P4] we experimented with 4 and 10 logarithmically-
distributed subbands.

Bandwidth measures the width of the range of frequencies the input
signal occupies. In publication [P4], bandwidth is calculated as

BE,(i) (2.6)

Shco(k = SC2 - | Xy (k)|?
BW; = 2.7
t J S [ X (k) 2

where SC; is the spectral centroid measured at the frame ¢.

Spectral roll-off measures the frequency below which a certain amount
of spectral energy resides. It measures the "skewness” of the spectral
shape. It is calculated as

P K
SR; = arg m}z}x[z 1 X:(m)]? <TH - Z | X:(k)?] (2.8)
m=0 k=0

where T H is a threshold between 0 and 1. In our experiments, the value
used was 0.93.

Spectral flux (SF) measures the change in the shape of the magni-
tude spectrum by calculating the difference between magnitude spectra
of successive frames. The spectral flux is calculated as

K
SFy = |IXe(k)] = | Xe-1(k)]. (2.9)
k=0

Before the low level features are fed to a classifier, certain normaliza-
tions may be applied. Especially when several different features are
concatenated to a single vector, it is necessary to normalize the mean
and variance using global estimates measured over the training data.
This makes the contribution of different features equal. The input to the
classifier is a sequence of feature vectors x;, where ¢ is the frame index,
and where the components of x; are the values of different features.

Features for describing musical instrument notes

The previous features are instantaneous, meaning that they can be ex-
tracted from short frames of the input signal. When isolated notes
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are considered, there are features that can characterize the note as a
whole. The amplitude envelope of a note contains information for in-
stance about the type of excitation; e.g. whether a violin has been bowed
or plucked. Tight coupling between the instrument excitation and res-
onance structure is indicated by short onset durations. The amplitude
envelope of a sound can be calculated by half-wave rectification and low-
pass filtering of the signal. Another means is the calculation of the short
time root-mean-square (RMS) energy of the signal, which we found to
be a more straightforward way of obtaining a smooth estimate of the
amplitude envelope of a signal. Features such as onset duration, decay-
time, strength and frequency of amplitude modulation, crest factor, and
detection of exponential decay can be analyzed from an RMS-energy
curve. We calculated the RMS energy curve in 50% overlapping 10 ms
long hanning-windowed frames.

Onset duration is traditionally defined as the time interval between
the onset and the instant of maximal amplitude of a sound. Decay
time is correspondingly the time it takes the sound to decay a certain
amount, e.g. -10dB from a level corresponding to -3dB of the maximum.
To measure the slope of amplitude decay after the onset, in publica-
tions [P1] and [P2] we proposed a method where a line is fitted into the
amplitude envelope on a logarithmic scale. The fitting was done for the
segment of the energy envelope that was between the maximum and the
-10 dB point after that. Also, the mean square error of that fit is used
as a feature describing exponential decay. Crest factor, i.e. the maxi-
mum of amplitude envelope divided by the RMS level of the amplitude
envelope is also used to characterize the shape of the amplitude enve-
lope. These three features aim at discriminating between the pizzicato
and sustained tones: the former ones decay exponentially, and have a
higher crest factor than sustained tones. Figure 2.3 depicts two example
amplitude envelopes and the line fit used for feature extraction.

The RMS-energy envelope, now on a linear scale, can also be used
to extract features measuring amplitude modulation (AM) properties.
Strength, frequency, and heuristic strength (term used by Martin [124])
of amplitude modulation is measured at two frequency ranges. Rates
from 4 to 8 Hz measure tremolo, i.e. AM in conjunction with vibrato,
and rates between 10-40 Hz correspond to "graininess” or "roughness”
of the tone. The RMS-energy envelope is first windowed with a hanning
window. Then, FFT analysis is performed on the windowed envelope,
and maxima are searched from the two frequency ranges. The frequency
of AM is the frequency of the maximum peak. The amplitude features
are calculated as the difference of the peak amplitude and the average
amplitude, and the heuristic amplitude is calculated as the difference of
the peak amplitude and the average amplitude of the frequency range
under consideration.
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Figure 2.3: Short-time RMS-energy envelopes for guitar (left) and violin
tones (right). Post-onset decay is measured by fitting a line on dB-scale.
The different onset durations, slight beating in the guitar tone, and am-
plitude modulation in the violin tone are clearly visible.

Onset asynchrony refers to the differences in the rate of energy de-
velopment of different frequency components. In [P1] and [P2] we used
a ”sinusoid envelope” representation (see details in [51]) to calculate the
intensity envelopes for different harmonics, and the standard deviation
of onset durations for different harmonics is used as one feature. See
Figure 2.4 for a depiction of sinusoid envelope representations calcu-
lated for a flute and clarinet sounds. For the other feature measuring
this property, the intensity envelopes of individual harmonics were fit-
ted into the overall intensity envelope during the onset period, and the
average mean square error of those fits was used as feature. A similar
measure was calculated for the rest of the waveform. The last feature
calculated is the overall variation of intensities at each band. These
features suffer from the difficulty of obtaining a robust representation
for the development of individual partials of a tone. The sinusoidal en-
velope depends on obtaining an accurate estimate of the fundamental
frequency and the sounds to be perfectly harmonic which is not the case
for real musical instruments. A better approach would be e.g. to use a
filterbank to decompose the signal into individual partials.

2.2.2 Feature transformations

The main idea of linear data-driven feature-transformations is to project
the original feature space into a space with lower dimensionality and
more feasible statistical properties, such as uncorrelatedness. We tested
the effectiveness of some feature transformations in publications [P3]
and [P4]. In order to obtain the transform matrix W, the features
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Figure 2.4: Sinusoid envelope representations for flute (left) and clar-
inet (right), playing the note C4, 261 Hz. Reprinted from [P1]. ©2000
IEEE.

extracted from the training data samples of all classes were gathered
into a matrix X = [x1, X2, ..., x7] where each column represents the n-
dimensional feature vector measured in an analysis frame. The scalar
T denotes the total amount of feature vectors from all recordings of all
the classes in the training set. The transform matrix W of size m x n is
applied on X producing the transformed m x T' dimensional observation
space O = WX. In this work, three different techniques were used.
The principal component analysis (PCA) finds a decorrelating trans-
form ([44, p. 115]), independent component analysis (ICA) results in
a base with statistical independence ([82][44, p. 570]), which is a much
stronger condition than uncorrelatedness, and the linear discriminant
analysis (LDA) tries to maximize class separability ([44, p. 120]).

Principal component analysis

Principal component analysis projects the original data into a lower-
dimensional space such that the reconstruction error is as small as pos-
sible, measured as the mean-square error between the data vectors in
the original space and in the projection space. The rows of the trans-
form matrix consist of the m eigenvectors corresponding to the m largest
eigenvalues of the covariance matrix of the training data. Projection
onto a lower-dimensional space reduces the amount of parameters to be
estimated in the classifier training stage, and uncorrelated features are
efficiently modeled with diagonal-covariance Gaussians.
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Independent component analysis

The goal of independent component analysis is to find directions of min-
imum mutual information!, i.e., to extract a set of statistically inde-
pendent vectors from the training data X. Statistical independence is
a stronger condition than uncorrelatedness. Whereas PCA results in
uncorrelated variables whose covariance is zero, ICA methods consider
also higher-order statistics, i.e., information not contained in the covari-
ance matrix [82, p. 10]. The linear ICA assumes that linear mixing of a
set of independent sources generates the data. More precisely, the data
model is x = As, where x is the original feature vector, A is a mixing
matrix, and s are the underlying independent sources. The goal of ICA
is to estimate both A and s using the observed x. After estimating A,
the transformation matrix is obtained as W = A~!. Here, the efficient
iterative FastICA algorithm was used for finding the ICA basis trans-
formation [81].

Salam and Erten have suggested the use of ICA in context recogni-
tion by motivating that information on the movements of the user and
the state of the environment is mixed in the measured signals [154].
Himberg et al. have used PCA and ICA to project multidimensional
sensor data from different contexts into a lower dimensional represen-
tation, but reported only qualitative results [76].

In speech recognition, the use of an ICA transformation has been re-
ported to improve the recognition accuracy [146]. In the MPEG-7 gen-
eralized audio descriptors, ICA is proposed as an optional transforma-
tion for the spectrum basis obtained with singular value decomposition
to ensure maximum separability of features, and Casey’s results have
shown the success of this method on a wide variety of sounds [31].

There are various alternatives on how the features are input to the
feature transform. In this thesis, we perform ICA on concatenated
MFCC and AMFCC features, see Figure 2.2. Including the delta coeffi-
cients is a way to include information on temporal-dependencies of fea-
tures, which is ignored if the transform is applied on static coefficients
only. The results are reported in publications [P3] and [P4]. In [31]
and [146] delta coefficients were not considered, and in [100] logarith-
mic energies and their derivatives were used. Somervuo has applied
ICA on five-frame "context windows” in phoneme recognition [166].

Linear discriminant analysis

Linear discriminant analysis differs from PCA and ICA by utilizing the
class labels. In this thesis, class is synonymous to an audio context or a

!The mutual information between two independent random variables is zero [20, p.
57]
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musical instrument category. Thus, whereas PCA and ICA do not make
distinction between feature vectors belonging to different classes, LDA
tries to maximize the separability of data from different classes. The
goal is to find basis vectors that maximize the ratio of between-class
variance to within-class variance. Finding the transform matrix in-
volves computing two covariance matrices: the within-class covariance
matrix S,, and the between-class covariance matrix S, ([44, p. 120]).
The rows of the transform matrix are the m eigenvectors corresponding
to the m largest eigenvalues of the matrix S;,'S;. An additional limit
for the dimension of the resulting features is presented by the fact that
for C classes there are at most C' — 1 linearly independent eigenvectors
([44, p. 124]).

It should be noted that the extra computational load caused by ap-
plying any of these transformations occurs mainly in the off-line train-
ing phase. The test phase consists of computing the features in the
usual way plus an additional multiplication once per analysis frame
with the m x n matrix W derived off-line using the training data. Thus,
these transforms are particularly attractive in resource-constrained con-
text recognition applications.

2.3 Classification and acoustic modeling

2.3.1 k-Nearest Neighbors

The k-nearest-neighbors (k-NN) classifier performs a class vote among
the k nearest training-data feature vectors to a point to be classified
([44, p. 182][20, p. 125]). In our implementation, the feature vectors
were first decorrelated using principal component analysis and the Eu-
clidean distance metric was used in the transformed space. When the
k-NN classifier is used, it is usually not feasible to perform classification
on an individual frame basis, but the information of frames is usually
accumulated over a certain time period by averaging. For example, in
audio-based context recognition we estimated the mean and standard
deviation (std) of the features over one-second windows with an inten-
tion to model the slowly-changing attributes of environmental audio,
such as finite-length acoustic events, and to reduce the computational
load at the classification stage. These values were used as new feature
vectors. For musical instruments, we have used e.g. averaging over the
onset and steady state segments separately, and then catenating the
features from the different segments into a long feature vector.

The k-NN algorithm can be applied also to regression problems. The
difference is that in regression the output value to be predicted is contin-
uous in opposite to being discrete as in classification tasks. In a typical

23



scenario of k-NN regression the property value of an object is assigned to
be the average of the values of its k nearest neighbors. The average can
also be a distance weighted average, in which case the method is an ex-
ample of locally weighted learning [12]. The distance function must ful-
fill the following requirements: the maximum value is at zero distance,
and the function decays smoothly as the distance increases [12]. In [P7]
we compute the tempo as a weighted median of the nearest neighbor
tempi, which increases the robustness compared to a weighted average.

2.3.2 Hidden Markov and Gaussian mixture models

A hidden Markov model (HMM) ([149, pp. 321-386]), is an effective
parametric representation for a time-series of observations, such as fea-
ture vectors measured from natural sounds. In this work, HMMs are
used for classification by training a HMM for each class, and by select-
ing the class with the largest posterior probability.

In each of our classification tasks, our acoustic data comprises a
training set that consists of the recordings O = (O!,...,0%) and their
associated class labels L = (I!,...,1%). Depending of the application, "
can express the context where the recording has been made or the mu-
sical instrument playing on the musical excerpt r. To be more specific,
O" denotes the sequence of feature vectors measured from recording r.
The purpose of the acoustic models is to represent the distribution of
feature values in each class in this training set.

Description of a HMM

A continuous-density hidden Markov model (HMM) with N states con-
sists of a set of parameters 6 that comprises the N-by-N transition ma-
trix, the initial state distribution, and the parameters of the state densi-
ties [88]. In the case of Gaussian mixture model (GMM) state emission
densities ([148]), the state parameters consist of the weights, means
and diagonal variances of the state GMMs. The possibility to model
sequences of states with different statistical properties and transition
probabilities between them makes intuitively sense in our applications,
since sounds are dynamic phenomena. For instance, one can imagine
standing next to a road, where cars are passing by. When a car ap-
proaches, its sound changes in a certain manner, and after it has passed
there is a clear change in its sound due to the Doppler effect. Naturally,
when no cars are passing by the sound scene is rather quiet. Hopefully,
the different states in the model are able to capture the different stages,
and the statistical variation between different roads, cars, and record-
ing times is modeled to some extent by the different components in the
GMM state densities.
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The HMM parameters can be iteratively optimized with the Baum-
Welch algorithm [149]. This algorithm iteratively finds a local maxi-
mum of the maximum likelihood (ML) objective function ([18])

R C
F(©) =logp(O|L) = Y Jlogp(O7|I") =Y > logp(O”lc),  (2.10)

r=1 c=1recA,

where O denotes the entire parameter set of all the classesc € {1,...,C},
and A. is the subset of [1, R] that denotes the recordings from the class
c. The optimization can be done for each class separately. The opti-
mization starts with an initial set of values for the model parameters
(the initial state distribution, transition probabilities, and parameters
of the state densities), and then iteratively finds a better set of model
parameters. The re-estimation equations are omitted here due to space
reasons and since standard formulae were used in this thesis. See the
details in [149].

In the recognition phase, an unknown recording O is classified using
the maximum a posteriori rule:

p(c)p(O|c)
p(0)

where we used the Bayes’ rule. Since p(O) does not depend on ¢, and
if we assume equal priors p(c) for all classes, we can maximize p(O|c).
The needed likelihoods can be efficiently computed using the forward-
backward algorithm, or approximated with the likelihood of the single
most likely path given by the Viterbi-algorithm [149][88].

(2.11)

¢ = arg max p(c|O) = arg max
(& (&

Model initialization

Careful initialization is essential for the Baum-Welch algorithm to be
able to find good model parameters. This is especially true for com-
plex models with several states (NS) and component densities per state
(NC). A useful heuristic to train models so that the amount of states and
component densities is iteratively increased is the following: The mod-
els are initialized with a single Gaussian at each state. The component
with the largest weight is split until the desired value of NC is obtained.
Each component split is followed by a specified number of Baum-Welch
iterations (e.g. 15), or until the likelihood converges. There are several
ways for initializing the state means and variances. One is based on
using global estimates over the whole training data of each class. E.g.,
for each class ¢ a three-state HMM is initialized with means p. — 0.10,
e, and p. +0.10., where p. is the mean vector computed from the train-
ing data of class ¢, and o is the corresponding standard deviation vector.
The three variances can be set equal to 02. Another method is to use the
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the k-means clustering algorithm to cluster the data into as many seg-
ments as there are states in the model and estimate the initial means
and variances from the cluster populations.

Sometimes it may be possible to initialize the states using various
heuristics. For example, when training HMM models with a left-right
topology? for musical instrument notes we may segment the note into as
many segments as there are states in the model, and then estimate the
initial state parameters from these segments. The Baum-Welch itera-
tions are then performed during which the algorithm essentially finds
the optimal segment boundaries.

In practice we need to do experimentation to determine the suitable
method of initialization. Especially the k-means clustering initializa-
tion leads to models of varying quality, and often it is necessary to re-
peat the initialization a few times, and perform cross-validation on a
validation set to determine the quality of the resulting models.

What do HMM state densities model for non-speech sounds?

To gain insight into the properties of sounds modeled by different HMM
states it is useful to visually study the Viterbi segmentations after train-
ing, or in the test stage. In Figure 2.5, a three-state HMM has been
trained using a recording of the sound next to a road. The top panel
shows the amplitude of the signal as a function of time. The high am-
plitude peaks correspond to passing cars. The bottom panel shows the
resulting Viterbi segmentation through the three states. The state num-
ber one models the silent periods when there are no cars passing; the
second state the transition periods when a car is either approaching or
getting farther, and the third state the period when the car is just pass-
ing or is very close to the recording place. A similar example with a mu-
sical sound is depicted in Figure 2.5. A three-state HMM was trained on
trumpet recordings, and the segmentation is shown for a melody phrase
of 15 seconds in duration. By listening it was found that state one rep-
resents high-pitched notes and pauses between notes, low-pitched notes
are modeled with state three. Interestingly, state two models the initial
transients.

A discriminative training algorithm

Maximum Likelihood estimation is well justified if the observations are
distributed according to the assumed statistical model. In our applica-
tions, it is unlikely that a single HMM could capture all the statistical
variation of the observations from an arbitrary audio environment or

2In a model with left-right topology, state transitions to the previous state are not
allowed but the process must either proceed to the next or remain in the same state.
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amplitude

index of HMM state

Figure 2.5: The top panel shows the amplitude of a recording made
next to a road with passing cars. The bottom panel shows the Viterbi
segmentation through a three-state HMM trained using the recording.
The length of the analysis window is 30 ms.

all the articulation and nuances of a musical instrument, for instance.
Moreover, the training databases are much smaller than for example
the available speech databases, preventing the reliable estimation of
parameters for complex models with high amounts of component densi-
ties. In applications where computational resources are limited such as
context-awareness targeted for embedded applications, we may have to
use models with as few Gaussians as possible, since their evaluation is
one of the computational bottlenecks in the recognition phase. In these
cases a model mismatch occurs and other approaches than ML may
lead into better recognition results. Discriminative training methods
such as the maximum mutual information (MMI) aim at maximizing
the ability to distinguish between the observation sequences generated
by the model of the correct class and those generated by models of other
classes [149].

Different discriminative algorithms have been proposed in the liter-
ature. The algorithm used in this thesis has been presented recently,
and one of its benefits is a straightforward implementation. The algo-
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Figure 2.6: The top panel shows the amplitude of a solo melody played
with a trumpet. The bottom panel shows the Viterbi segmentation
through a three-state HMM trained for the trumpet class. The length
of the analysis window is 30 ms.

rithm was proposed by Ben-Yishai & Burshtein, and is based on an ap-
proximation of the maximum mutual information criterion [18]. Their
approximated maximum mutual information (AMMI) criterion is:

C
J(©) =D _{ > loglp(c)p(07[e)] = A Y loglp(c)p(O7[e)]},  (2.12)

c=1 reA. reB.

where B, is the set of indices of training recordings that were recognized
as class c. The set B, is obtained by maximum a posteriori classification
performed on the training set. The parameter 0 < A < 1 controls the
“discrimination rate”. The prior probabilities p(c) do not affect the max-
imization of J(©), thus the maximization is equivalent to maximizing
the following objective functions:

Je(©) = ) logp(O”lc) — A Y logp(O”[c), (2.13)
reAc reB.

for all the classes 1 < ¢ < C. Thus, the parameter set of each class can be
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Figure 2.7: A possible taxonomy of Western orchestral instruments.

estimated separately, which leads to a straightforward implementation.
The authors give the re-estimation equations for HMM parameters [18].

This discriminative re-estimation can be iterated. We used typically
5 iterations, since the improvement in recognition accuracy was only
minor beyond that. In many cases, using just one iteration would be
enough since it sometimes gave the greatest improvement. The recog-
nition was done only at the first iteration, after which the set B, stayed
fixed. The following iterations still increase the AMMI objective func-
tion and increase the accuracy at least in the training set. However,
according to our experience, continuing iterations too long causes the
algorithm to overfit the training data, leading into poor generalization
on unseen test data. Maximum of 5 iterations with A = 0.3 was ob-
served to give an improvement in most cases without much danger of
overfitting.

2.4 Methods for musical instrument recognition

This section describes relevant research on the classification of musi-
cal instrument sounds and is background for publications [P1], [P2],
and [P3].

There exists a large variety of musical instruments in the world. In
practical applications, we naturally train the system with the classes of
instruments that are most likely for that particular application. In this
thesis, Western orchestral instruments are considered. This is done for
two reasons. First, the timbre of these instruments has been extensively
studied, providing insights into the information that makes recognition
possible and should therefore be attempted to extract from the sounds.
Second, recordings of these instruments are easily available, whereas
in the cases of more exotic instruments we would first have to make the
databases. Figure 2.7 presents a possible taxonomy of Western musical
instruments.
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In defining the musical instrument recognition task, several levels
of difficulty can be found. Monophonic recognition refers to the recog-
nition of solo music or solo notes, and is the most often studied. This
study also uses isolated notes as test material mainly because sam-
ples with annotations were available with a reasonable effort, and there
were published isolated note recognition systems with which the perfor-
mance could be compared. However, this can be generalized to mono-
phonic phrases by introducing a temporal segmentation stage. Poly-
phonic recognition has received fewer attempts. The following sections
review the relevant research in these areas. For other reviews see [75,
74].

2.4.1 Monophonic recognition

Most systems have operated on isolated notes, often taken from the
same, single source, and having notes over a very small pitch range.
The most recent systems have operated on solo music taken from com-
mercial recordings. The studies using isolated tones are most relevant
for the results presented in publications [P1], [P2] and [P3].

Studies not testing generalization across databases

Table 2.1 presents examples of studies on classifying isolated notes on a
single collection of sounds, or where examples of an instrument within
the same collection may have existed both in the training and test set.
As we will see later, this makes the results too optimistic. Thus, the
following studies are interesting mainly from the methods point of view.

Kaminskyj and Materka used features derived from a root-mean-
square (RMS) energy envelope via PCA and used a neural network or a
k-nearest neighbor (k-NN) classifier to classify guitar, piano, marimba
and accordion tones over a one-octave band [90]. More recently, Kamin-
skyj ([89]) has extended the system to recognize 19 instruments over a
three-octave pitch range.

Fujinaga trained a k-NN with features extracted from 1338 spec-
tral slices of 23 instruments playing a range of pitches [57]. A genetic
algorithm was used for finding good feature combinations. When the
authors added features relating to the dynamically changing spectral
envelope, and velocity of spectral centroid and its variance, the accu-
racy improved [56]. Their latest study incorporated small refinements
and added spectral irregularity and tristimulus features [58].

Martin and Kim reported a system operating on full pitch ranges
of 14 instruments [125]. The best classifier was the £-NN, enhanced
with the Fisher discriminant analysis to reduce the dimensions of the
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Table 2.1: Summary of selected earlier research on musical instrument
recognition on isolated notes with a single example of each instrument,
or where the same instrument may be present in the test and train sets.

Author year ref. H Accuracy H Number of instruments

Kaminskyj 1995 [90] 98 4
Jensen 1999 [85] 100 5
Kaminskyj 2000 [89] 82 19
Fujinaga 1998 [57] 50 23
Fraser & Fujinaga 1999 [56] 64 23
Fujinaga 2000 [58] 68 23

Martin & Kim 1998 [125] 72(93) 14(5 families)
Kostek 1999 [103] 97 4
81 20

Eronen & Klapuri 2000 [P1] 80(94) 30(6 families)

Agostini et al. 2003 [9] 70(81) 27(6 families)
Kostek 2004 [104] 71 12
Chetry et al. 2005 [130] 95 11

Park & Cook 2005 [133] 71(88) 12(3 families)

data, and a hierarchical classification architecture for first recognizing
the instrument families. Jensen used a Gaussian classifier and 16 pa-
rameters from his timbre model developed mainly for sound synthesis
for classifying between five instruments [85].

Kostek has calculated several different features relating to the spec-
tral shape and onset characteristics of tones taken from chromatic scales
with different articulation styles [103]. A two-layer feed-forward neural
network was used as a classifier. Later, Kostek and Czyzewski also tried
using wavelet-analysis based features for musical instrument recogni-
tion, but their preliminary results were worse than with the earlier fea-
tures [105]. In [104], Kostek reports that a combination of wavelet and
MPEG-7 based features improved upon either of the features alone.

Agostini et al. [9] use spectral features and compare different classi-
fiers in classifying between 27 instruments from the McGill University
Master Samples collection. Support vector machines and quadratic dis-
criminant analysis are the most successful classifiers. They report that
most relevant features are inharmonicity, spectral centroid, and the en-
ergy contained in the first partial. The inharmonicity was measured
as a cumulative distance between the first four estimated partials and
their theoretical values.

Park and Cook extract several features from harmonic components
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Table 2.2: Summary of selected research on musical instrument recog-
nition on isolated notes across different recording conditions.

Author year ref. H Accuracy H Number of instruments
Martin 1999 [124] 39(76) 27(8 families)
Eronen 2001 [P2] 35(77) 29(6 families)

Eggink & Brown 2003 [46] 66(85) 5(2 families)
Eronen 2003 [P3] 68 7
Livshin et al. 2003 [115] 60(81) 8-16(3-5 families)
Peeters 2003 [137] 64(85) 23(7 families)

and use these to train a neural network classifier [133]. Their features
included spectral shimmer, spectral jitter, spectral spread, spectral cen-
troid, LPC noise, inharmonicity, attack time, harmonic slope, harmonic
expansion/contraction, spectral flux shift, temporal centroid, and zero-
crossing rate. Chetry et al. use line spectral frequencies (LSF) as fea-
tures and train a codebook for each instrument using the k-means clus-
tering method [130].

A common limitation of all these studies is that they often used only
one example of each instrument, or when several databases are used,
allow samples of an instrument from a database be present in both the
test and training set. This significantly decreases the generalizabil-
ity of the results, as we will demonstrate with our system in publica-
tion [P2], where the results are significantly worse than in [P1] where
we used only samples from the McGill University Master Samples col-
lection. Generalizing across databases is difficult.

Studies testing generalization across databases

Table 2.2 lists research which test generalization across databases. An
important point is that examples of an instrument recorded in certain
condition, or from a single database, are included either in the test or
training set, but not both. This way, we get some evidence that the
system is learning to classify an instrument (such as a violin), and not
just the audio samples of a certain violin played by a certain performer
in a particular acoustic place.

Martin used a wide set of features calculated from the outputs of a
log-lag correlogram [124]. The classifier used was a Bayesian classifier
within a taxonomic hierarchy, enhanced with context dependent feature
selection and rule-one-category-out decisions.

Livshin et al. present an explicit test classifying instrument sam-
ples across databases [115]. It is shown how the generalization across
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databases lowers the recognition accuracy. In addition, the authors re-
port that using LDA is helpful for obtaining features that help the gen-
eralization across databases.

Peeters starts with a large set of acoustic features and then performs
iterative feature selection to arrive at an optimal set of features for each
part of a hierarchical classifier [137, 143]. The classifier is either £&-NN
or a Bayesian classifier with each class modeled as a Gaussian den-
sity. The presented results, 64% correct for 23 instruments and 85 %
for families are done across databases providing a realistic estimate of
the performance. The hierarchical classifiers perform better than direct
classification. Although the results cannot be directly compared to our
results in [P2], it is likely that his system is performing better and rep-
resents the state-of-the-art in isolated note classification. Peeters does
report excluding some articulations which we did keep in our database,
such as muted sounds, which probably increases the performance in his
simulations. In addition, we used also synthetic notes for which the
classification accuracy was very poor. However, it seems advantageous
to start with a very large set of features and then perform automatic
feature selection to reduce the feature set as proposed by Peeters. The
feature set that was used in [P2] was smaller, and we did not fully ex-
plore the set of possible feature combinations.

Recognition of monophonic phrases

Table 2.3 presents examples of systems evaluated on monophonic phrases.
On one hand, monophonic phrases are easier to classify than isolated
notes as there are more than one note to be used for recognition. Pub-
lication [P2] analyzes the recognition rate as the number of notes given
to the system for classification is varied. On the other hand, being able
to measure onset characteristics will require a note segmentation or on-
set detection step, and may often be impossible when consecutive notes
overlap.

Marques built a system that recognized eight instruments based on
short segments of audio taken from two compact disks [123]. They used
16 mel-frequency cepstral coefficients and a support vector machine as
a classifier.

Brown has used speaker recognition techniques for classifying be-
tween oboe, saxophone, flute and clarinet [26]. She used independent
test and training data of varying quality taken from commercial record-
ings. By using bin-to-bin differences of constant-Q coefficients she ob-
tained an accuracy of 84 %, which was comparable to the accuracy of
human subjects in a listening test conducted with a subset of the sam-
ples. Other successful features in her study were cepstral coefficients
and autocorrelation coefficients. In an earlier study, her system classi-
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Table 2.3: Summary of selected research on musical instrument recog-
nition on monophonic phrases.

Author year ref. H Accuracy H Number of instruments
Dubnov & Rodet 1998 [43] not given 18
Brown 1999 [25] 94 2
Marques & Moreno 1999 [123] 83 8

Martin 1999 [124] 57(75) 27(8 families)

Brown 2001 [26] 84 4
Krishna & Shreenivas 2004 [8] 74 3
Livshin & Rodet 2004 [116] 88 7
Essid et al. 2006 [53] 93 10

fied between oboe and saxophone samples [25].

Krishna & Shreenivas train a GMM with line spectral frequencies
(LSF) as features from individual notes of three instruments, and then
classify monophonic phrases using the models [8].

Livshin and Rodet start with a very large initial set of features and
then perform iterative feature selection to arrive at a feature set that
classifies monophonic phrases at almost the same accuracy as the com-
plete feature set [116].

Essid et al. adopt a pairwise classification strategy with GMMs or
SVMs as classifiers [563]. An optimized subset of features was found
for each pair of classes using a feature selection method. The authors
perform pairwise classification between instrument pairs, and choose
the final result as the class that wins most pairwise classifications. The
authors demonstrate that the system outperforms a baseline system
where a GMM is trained for each class.

Content based retrieval of instrument samples

The MPEG-7 standard presents a scheme for instrument sound descrip-
tion, and it was evaluated in a retrieval task as a collaboration between
IRCAM (France) and IUA/UPF (Spain) in [142]. The evaluated features,
or descriptors in MPEG-7 terminology, were calculated from a repre-
sentation very similar to our sinusoid envelopes, which were discussed
in 2.2. The authors performed an experiment, where random notes were
selected from a database of sound samples, and then similar samples
were searched using the descriptors, or just random selection. The sub-
jects were asked to give a rating for the two sets of samples selected
in the alternative ways. A "mean score” of approximately 60 % was ob-
tained using one descriptor, and approximately 80 % when using five
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Table 2.4: Summary of selected research on musical instrument recog-
nition on polyphonic material.

Author year ref. H Number of instruments H Polyphony
Eggink & Brown 2003 [46] 5 2
Livshin & Rodet 2004 [116] n/a 2
Essid 2005 et al. [562] 5 max 4
Leveau 2007 et al. [110] 10 4
Kitahara 2007 et al. [97] 5 max 4
Little & Pardo 2008 [114] 4 4
descriptors.

2.4.2 Polyphonic recognition

Polyphonic instrument recognition, i.e., recognition of instruments on
sound mixtures has received less research interest than monophonic
instrument classification. The problem is substantially more difficult
than the monophonic case. In addition to labeling the instruments,
the method needs to estimate the number of instruments in the mix-
ture. The main difficulty lies in the fact that feature extraction for
each instrument is the mixture is very difficult since the harmonic par-
tials overlap. The methods may either try to separate individual notes
or instruments from the mixture and apply techniques developed for
monophonic recognition, or alternatively try to extract robust features
directly from the polyphonic mixture. Table 2.4 lists some approaches
trying to cope with the polyphonic situation.

Godsmark and Brown used a "timbre track” representation, in which
spectral centroid was presented as a function of amplitude to segregate
polyphonic music to its constituent melodic lines [60]. In assigning pi-
ano and double bass notes to their streams, the recognition rate was
over 80 %. With a music piece consisting of four instruments, the pi-
ano, guitar, bass and xylophone, the recognition rate of their system
decreased to about 40 %.

The work of Kashino et al. in music transcription involves also in-
strument recognition. In [93], a system transcribing random chords
of clarinet, flute, piano, trumpet and violin with some success was pre-
sented. Later, Kashino and Murase have built a system that transcribes
three instrument melodies [91, 92]. Using adaptive templates and con-
textual information, the system recognized three instruments, violin,
flute and piano with 88.5 % accuracy after the pitch of the note was pro-
vided. The work was continued by Kinoshita et.al. [96]. The authors
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presented a system that could handle two note chords with overlapping
frequency components using weighted template-matching with feature
significance evaluation. They reported recognition accuracies from 66
% to 75 % with chords made of notes of five instruments.

Eggink & Brown utilize the missing feature theory by marking fre-
quency regions with overlapping partials as unreliable, assuming nearly
harmonic spectra and known fundamental frequencies [46]. The fea-
tures are logarithmic energies at 60Hz wide spectral bands spanning
the frequency range from 50Hz to 6kHz, with 10Hz overlap between
adjacent bands. Instruments are modeled with a GMM, and a binary
mask is used to exclude unreliable feature components from the cal-
culation of the GMM likelihood. A potential problem here is that the
method assumes independence of feature components which does not
hold for spectral energies. In the tests, the fundamental frequency was
supplied to the system. The authors tested the system in a more realis-
tic condition with analyzed FOs, but reported only preliminary results.

Essid et al. [52] apply their pairwise classification strategy also for
recognition of polyphonic mixtures. They train pairwise classifiers be-
tween all possible instrument combinations and show promising results
in recognizing typical instrument combinations for jazz music.

Leveau et al. [110] decompose the signal using instrument specific
harmonic atoms. The authors report that classifying the instrument
label without knowing the number of instruments can be done only with
17% accuracy.

Kitahara et al. apply linear discriminant analysis to find a feature
set which is little affected by overlapping. The authors quantitatively
evaluate the influence of the overlapping on each feature as the ratio
of the within class variance to the between-class variance in the dis-
tribution of training data obtained from polyphonic sounds [97]. The
motivation for this is the assumption that if a feature greatly suffers
from the overlapping, it will have a large variation.

Livshin and Rodet report preliminary experiments on instrument
recognition on duets [116]. They demonstrate that their recognizer de-
veloped for monophonic phrases performs rather well in recognizing the
dominant instrument in duets when applied directly on the two-note
mixtures. They also develop a system that uses an FO estimator to find
the harmonic partials in a frame, and then generate two filtered sam-
ples for recognition: one retaining only the harmonic partials and the
other only the residual. The monophonic recognizer is applied sepa-
rately to the samples. This latter method is more accurate in recogniz-
ing the weaker instrument.

Little and Pardo present a very interesting approach for labeling the
presence of an instrument where the learning done is done on weakly
labeled mixtures [114]. This means that the system is presented with
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examples where only the presence of a target instrument is indicated,
but the exact times during which it is active is not needed. The authors
report that the system trained with weakly labeled mixtures performs
better than one trained with isolated examples, and suggest that this is
because the training data, in the mixed case, is more representative of
the testing data, even when the training mixtures do not use the same
set of instruments as the testing mixtures.

2.5 Methods for audio-based context recognition

In this section, we review some research results relevant for audio-
based context recognition and especially publication [P4]. We start by
briefly discussing context awareness in general without limiting to au-
dio input only. This because the methods used for other sensory types
are sometimes quite similar to those used in the audio domain, although
specialized features can be developed for audio. One of the reasons for
this is that since we are dealing with environmental sounds, the in-
put can contain practically any sounds, which makes the utilization of
highly specialized feature extractors a difficult task and favors generic,
possibly data-driven feature extraction methods.

The second field to be reviewed is context recognition based on audio
which is most relevant for us. When publication [P4] was written, there
were few publications on the topic. Recently, it has started to attract in-
creasingly more research interest. In addition, we review some results
on domains which have a different problem formulation but bear simi-
larity with regard to data or methods used. These include audio classi-
fication and retrieval, personal audio archiving, and video sound track
segmentation.

2.5.1 Context awareness

In many cases the context-awareness functionality is build upon an ar-
ray of different sensors sensing the context. In [106], the set of sen-
sors included accelerometers, photodiodes, temperature sensors, touch
sensors, and microphones. Low level features were then extracted from
these sensor data inputs. The purpose of the feature extraction step is to
transform the (often high dimensional) input data into a more compact
representation while keeping sufficient amount of information for sepa-
rating the different classes. As an alternative to extracting features de-
signed using domain expertice or heuristics, blind, data driven transfor-
mations can be used. For example, principal component analysis (PCA)
or independent component analysis (ICA) can be used to transform the
raw input into a low dimensional representation [76, 154].
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In general, the process of context recognition is very similar regard-
less of the sensors or data sources used for the recognition. The fea-
ture vectors obtained from sensors are fed to classifiers that try to iden-
tify the context the particular feature vectors present. As classifiers,
e.g. hidden Markov models (HMMs) [35], or a combination of a self-
organizing map and a Markov chain have been used [106].

2.5.2 Audio-based context awareness

Recognizing the context or environment based on audio information has
started to attract increasing amount of research interest. One of the ear-
liest studies was done by Clarkson, who classified seven contexts using
spectral energies from the output of a filter bank and a HMM classi-
fier [35]. In [155], Sawhney describes preliminary experiments with dif-
ferent features and classifiers in classifying between voice, traffic, sub-
way, people, and other. The most successful system utilized frequency-
band energies as features and a nearest-neighbor classifier. Kern clas-
sifies between street, restaurant, lecture, conversation, and other using
a set of low-level features transformed using Linear Discriminant Anal-
ysis (LDA) and a Bayes classifier with HMM class models [94].

In publication [P4], we compared various features and classifiers in
recognizing between 24 everyday contexts, such as restaurant, car, li-
brary, and office. The final system used catenated MFCCs and their
first-order derivatives as features and hidden Markov model with dis-
criminative training for classification. In addition, a listening test was
made to compare the system’s performance to the human abilities. The
average recognition accuracy of the system was 58% against 69% ob-
tained in the listening tests in recognizing between 24 everyday con-
texts. The accuracies in recognizing six high-level classes were 82% for
the system and 88% for the subjects.

More recent studies have reported sometimes high performance fig-
ures with various methods and also concrete implementations on mobile
devices. On a set of 27 contexts, Bonnevier has reported an accuracy
of 69% with a Bayesian classifier and a subset of features obtained by
running a feature selection algorithm on an initial set of MPEG-7 fea-
tures, MFCCs, and zero-crossing rate [21]. Note that the method was
allowed to pick individual features from a feature vector such as the
MFCC which may raise concerns about overfitting the training data.

Ma et al. presented a HMM based environmental noise classifica-
tion system and reported over 91% accuracy in ten-way classification
of contexts bar, beach, bus, car, football match, launderette, lecture, of-
fice, railway station and street using three second test excerpts [120].
MFCCs augmented with the energy term and their first and second or-
der derivatives were used as features. The authors also performed a
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listening test on the same data. The listener’s performance was signif-
icantly worse than the system’s; this is probably due to the fact that
only 3 seconds of test data was given for them. The context aware sys-
tem was implemented as a client-server system where the server used
an offline database to produce the noise models which were then used
for online noise classification. Using the same database, Perttunen et
al. [145] computed the averaged Mel scale spectrum over three second
segments and used a Support Vector Machine (SVM) classifier and re-
ported further improvement in the classification accuracy.

Aucouturier et al. have analyzed the typical Bag-of-frames (BOF)
approach, where framewise features such as MFCCs are modeled with
GMDMs. A limitation of this approach is that the it ignores the tempo-
ral sequencing of the feature vectors: the likelihood of a feature vector
sequence given the GMM parameters is the same irrespective of the
temporal ordering of the feature vectors. In [13], they report on a listen-
ing test where human subjects are made to listen to "spliced” and not-
spliced versions of environmental audio recordings. Spliced versions
are done by splitting the audio into short frames, scrambling the or-
der of the frames and concatenating again. The authors conclude that
splicing has a significant but relatively small effect on the human per-
formance on audio context recognition, and that the BOF approach is
rather sufficient approach for audio context recognition in opposite to
music similarity where the drop in recognition ability is larger. The au-
thors also report that their result is in contradiction to our earlier study
in human perception of audio environments where identification of indi-
vidual sound events has been reported as a cue for identification [144].

In[14], Aucouturier et al. report a 90% precision in query-by-example
of audio from four environmental sound classes after retrieving the five
first recordings. The precision is measured as the ratio of returned
recordings from the correct class to the number of retrieved recordings.
The signal is modeled with MFCC coefficients and each recording with
a GMM, and their distance is measured with the Kullback-Leibler (KL)
divergence ([20, p. 55]) using Monte Carlo simulation. An interesting
result is that, according to the authors, in environmental sounds major-
ity of the frames are important for classification whereas in polyphonic
music a minority of the frames differentiate the music from other music
pieces, and majority of the frames is in fact detrimental for the perfor-
mance of music similarity.

2.5.3 Audio classification and retrieval

The features typically used for audio-based context awareness are simi-
lar to those used in different audio information retrieval tasks [55]. The
earliest approaches were done on classifying only a few types of envi-
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ronmental noises. El-Maleh et al. classified five environmental noise
classes (a car, street, babble, factory, and bus) using line spectral fea-
tures and a Gaussian classifier [47]. Vehicle sound classification was ap-
proached using discrete hidden Markov models by Couvreur et al. [37].
They used linear prediction cepstral coefficients as features. The au-
thors also described an informal listening test, which showed that, on
the average, humans were inferior in classifying these categories com-
pared to their system.

Speech/music discrimination is a typical example and the paper by
Scheirer and Slaney describes a basic approach using a combination
of several features [156]. In some studies environmental noise is in-
cluded as one of the categories. See for example the papers by Lu et al.
([119]), and Liet al. ([113]). Various granularities of the task description
are possible by further subdividing the classes. Zhang and Kuo ([181])
classified between harmonic environmental sound, non-harmonic envi-
ronmental sound, environmental sound with music, pure music, song,
speech with music, and pure speech. Biichler et al. report on classifying
clean speech, speech in noise, noise, and music in hearing aids with very
high accuracy except for the "speech in noise category” [19].

The MPEG-7 standard by the Moving Picture Experts Group presents
methods for multimedia content description and also for describing gen-
eral sound sources. Casey has used a front-end where log-spectral ener-
gies are transformed into a low-dimensional representation with singular-
value decomposition and independent component analysis [31]. The
proposed classifier uses single-Gaussian continuous-density HMMs with
full covariance matrices trained with Bayesian maximum a-posteriori
(MAP) estimation. Casey has reported impressive performance figures
using the system on a database consisting e.g. of musical instrument
sounds, sound effects, and animal sounds.

In a realistic audio retrieval system we need to be able to efficiently
compute distances between models of audio clips in a audio database.
Helen and Virtanen present various similarity measures between GMM
or HMM models of features for audio retrieval of speech, music, and
environmental sounds [72].

2.5.4 Analysis of video soundtracks

Analyzing and categorizing video soundtracks is a related research field
to audio-based context recognition. Describing soundtracks using key
audio effects is an interesting approach used for sound track catego-
rization. In [28], Cai et al. propose a framework for detecting key audio
effects and describing an audio scene. They use a hierarchical proba-
bilistic model, where an HMM is first built for different audio effects
based on sound samples, and then a higher level model is used to con-
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nect the individual models. The optimal key effect sequence is searched
through the candidate paths with the Viterbi algorithm. This approach
is interesting since individual sound events have been found to be a
strong cue for audio context identity [144], although the complexity of
the system is likely to be too large for context awareness applications.
More recently, the authors have proposed an unsupervised co-clustering
approach for the same task [27].

2.5.5 Personal audio archiving

Ellis and Lee have worked on an application to record personal expe-
rience as continuous, long audio recordings [50]. Automatic analysis of
the content for indexing purposes is an essential requirement as it is ex-
pected that only a fraction of the material is of any value. The authors
performed automatic segmentation and labeling of 62 hours of recorded
personal audio. They used the Bayesian Information Criterion (BIC)
([20, p. 216]) as a segmentation criterion, as earlier used in speaker
segmentation. The distance matrix between various segments was cal-
culated using the Kullback-Leibler divergence ([20, p. 57]) between sin-
gle diagonal-covariance Gaussians fitted to the spectral features, and
spectral clustering was performed on the similarity matrix to group the
segments. The most successful features were average log-domain audi-
tory spectrum, normalized entropy deviation, and mean entropy.

2.5.6 Discussion

In recent years, progress has been made in audio-based context recogni-
tion. Very good performance has been reported e.g. in [14, 120, 145],
although the set of used recordings has been smaller than we have
used in publication [P4]. Moreover, the database presented in [120]
provides only little variation between the different recordings from the
same environment and thus leads to high recognition percentages. This
was tested by repeating the experiments of [120] using their publicly
available data. We used a simple approach where each recording was
modeled with a Gaussian fitted to its features, and classification was
done with a k-Nearest Neighbor classifier with symmetrized Kullback-
Leibler divergence as the distance metric. This lead to over 90% accu-
racy on the dataset of [120].
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Chapter 3

Music content analysis

Music content analysis is a broad field covering tasks such as
e transcription of melody, bass, or chords
e analysis of meter and structure
e classification of music by genre, artist, or mood
¢ finding remix or cover versions of original songs.

This chapter reviews relevant research on meter and structure analysis
as background for publications [P5], [P6], [P7], and [P8].

3.1 Meter analysis

Musical meter is a hierarchical structure, which consists of pulse sen-
sations at different time scales. The most prominent level is the tactus,
often referred as the foot tapping rate or beat. Here, we use the word

Tatum -
Tactus
Measure

96 o7 98 99 100 101 102
Time (seconds)

Figure 3.1: A musical signal with the tatum, tactus (beat), and measure
levels illustrated. Reprinted from [P5]. ©2006 IEEE.
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Figure 3.2: Overview of the beat and tatum analysis system of [P6],
which is a good representative of the main modules in a meter analysis
system. Reprinted from [P6]. ©2006 University of Victoria.
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beat to refer to the individual elements that make up a pulse. Figure 3.1
illustrates a musical meter where the dots denote individual beats and
each sequence of dots corresponds to a particular metrical level. We use
the term period of a pulse to refer to the time duration between succes-
sive beats and phase to refer to the time when a beat occurs with respect
to the beginning of a piece. The tempo of a piece is defined as the rate
of the tactus pulse. In a musically meaningful meter, the pulse periods
are slowly varying and each beat at the larger levels must coincide with
a beat at the smaller levels.

3.1.1 Overview

Meter analysis involves estimating the possibly time-varying period of
one or more metrical levels, and the locations of each beat. A full meter
analysis system can estimate the periods and locations at the three most
prominent metrical levels (measure, tactus, and tatum), whereas beat
tracking involves estimating the time-varying tempo and the locations
of the beats at the tactus level. In some applications it is sufficient to
perform tempo estimation, i.e., to estimate the rate of the tactus pulse
ignoring the phase.

Automatic rhythm analysis often entails the steps of measuring mu-
sical accentuation, analyzing the periodicity in the accent signals, and
determining the period corresponding to one or more metrical levels.
Figure 3.2 depicts an overview of the beat and tatum analysis system
in [P6].

3.1.2 Musical accent analysis

The purpose of musical accent analysis is to extract features that corre-
late with the beginnings of sounds and discard information irrelevant
for tempo estimation. The purpose is to device a feature that reacts to
events that give emphasis to a moment in music, such as beginnings of
all discrete sound events, especially the onsets of long pitched events,
sudden changes in loudness or timbre, and harmonic changes. Fig-
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Figure 3.3: 10 second excerpt of the audio waveform of the song ”25 or 6
to 4” by Chicago (top panel), and the corresponding accent signal (lower
panel).

ure 3.3 depicts an example of a musical waveform and extracted accent
signal which reacts to spectral changes in the piece. Bello et al. divide
the features used in onset detection to two broad groups: methods based
on the use of signal features and methods based on probabilistic signal
models [17]. The signal features include e.g. temporal features such
as amplitude envelope, spectral features such as spectral difference or
spectral flux, spectral features using phase such as the mean absolute
phase deviation, and time-frequency and time-scale analysis based on
e.g. wavelet decomposition of the signal. Another group of features is
based on an assumption that the signal can be described by some prob-
abilistic model. For example, a statistical measure of "surprise” may
consist of adapting some signal model based on incoming data, and an-
alyzing when incoming data in a short window no longer fits the model.
Another example is the log-likelihood ratio test, which entails training
two probabilistic models with data on both sides of a time instant, and
computing the likelihood ratio of these models.

In publications [P5], [P6], and [P7] we apply various spectral fea-
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tures for musical accent analysis. The main steps in the methods are
decomposing the signal into frequency bands and measuring the degree
of change in the bands. The frequency decomposition can be done with
the help of the DFT ([P5]), using a multirate filterbank ([P6]), or using a
chroma analyzer or the mel-frequency filterbank [P7]. Chroma features
will be described in more detail in section 3.2.2. In publication [P5],
an accent feature extractor is presented which utilizes 36 logarithmi-
cally distributed subbands for accent measurement and then folds the
results down to four bands before periodicity analysis. The benefit of
using a wide range of subbands is that it is possible to detect also har-
monic changes in classical or vocal music which do not have a strong
beat. The method in [P6] is designed with the goal of keeping the com-
putational cost low. The accent feature extractor based on the chroma
features in [P7] can be considered to further emphasize the onsets of
pitched events and harmonic changes in music. Measuring the degree
of change consists of half-wave rectification (HWR) and weighted differ-
entiation of an accent band envelope.

3.1.3 Pulse periodicity and phase analysis

Musical accent analysis is followed by periodicity analysis, since musi-
cal meter concerns the periodicity of the accent, not the onsets them-
selves. A natural choice is to apply a periodicity estimator, such as
autocorrelation, to the accent signal to find intrinsic repetitions. The
autocorrelation is defined as

N-1
p(l) = Z a(n)a(n—1), 0<I<N-1 (3.1)

n=0

for a frame of length N of the accent signal a(n). The autocorrelation
may be applied separately for a set of subbands, in which case a(n) rep-
resents the accent signal from a single subband. Performing periodicity
analysis directly on half-wave rectified differentials of subband power
envelopes was proposed by Scheirer ([158]), and was an important ad-
vance compared to earlier methods based on discrete onset detection.
Figure 3.4 depicts an example periodicity measurement from a signal
using autocorrelation. Offset and scale variations have been normal-
ized from the autocorrelation, see details in [P6]. The autocorrelation
will show peaks at the lag corresponding to the basic periodicity of the
accent signal, and its integer multiples.

A straightforward solution for beat or tatum period estimation con-
sist of weighting the autocorrelation or other periodicity observation
with a prior, and selecting the period corresponding to the maximum
peak. This is the principle used e.g. in [P5], [P6] and [49].
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Figure 3.4: (a) autocorrelation and (b) summary periodicity, with beat
(B) and tatum (T) periods shown. Reprinted from [P6]. ©2006 Univer-
sity of Victoria.

When an estimate of the period has been obtained, the remaining
task is to position the individual beats to the timeline. This often en-
tails making a prediction to the next beat location given the location
of the previous beat and the new period estimate, and finding a local
maximum of the accent signal near the predicted position. At the end of
the signal, the best path through the accent signal may be searched. A
good example of such a method is the dynamic programming approach
presented by Ellis [49].

Some periodicity estimators provide an estimate of the phase in ad-
dition to period. Scheirer proposed the use of a bank of comb-filter res-
onators with constant half-time for beat tracking [158]. The accent sig-
nals are fed to a bank of comb-filter resonators with delays tuned across
the range of beat periods to be measured. The energy at each band in-
dicates the strength of periodicity in the signal corresponding to that
particular delay. The delays of the comb-filter give an estimate for the
beat phase. This is equivalent to using the latest = outputs of a res-
onator with delay 7. The phase estimation in [P5] and [P6] is based on
examining resonator outputs and defining a weight for the deviation of
the phase from an ideal beat location. Ideally, the location of a beat is
characterized by a large value on all accent channels, and the location
does not deviate much from the ideal location obtained by adding the
current period estimate to the previous beat location.

46



Table 3.1: Summary of selected research on music meter analysis. The
values in the column Input denote A=audio, S=symbolic or MIDI.

Author year ref. Approach H Input H Output
Allen multiple agent S beat
& Dannenberg 1990 [10]
Rosenthal 1992 [153] multiple agent S beat, measure,
time signature
Brown 1993 [24] autocorrelative S tempo, measure period
Parncutt 1994 [134] rule-based S measure, beat
Large 1995 [107] oscillator S beat
McAuley 1995 [126] oscillator S beat
Scheirer 1998 [157] oscillator A beat
Toiviainen 1998 [169] oscillator S beat
Goto 1999 [64] multiple-agent S beat, half-note, measure
Eck 2000 [45] rule-based S tempo
Raphael 2001 [150] probabilistic S+A transcription
Seppénen 2001 [160] histogramming A tatum+beat
Wang & Vilermo 2001 [177] histogramming A beat
Goyon et al. 2002 [67] histogramming A tatum
Cemgil & Kappen [33] probabilistic S beat
Jensen and Andersen [87] histogramming A beat
Laroche [108] probabilistic A beat
Uhle and Herre [173] histogramming A tatum period, tempo,
time signature
Hainsworth & probabilistic A beat
Macleod 2004 [70]
Klapuri et al. 2006 [P5] probabilistic A measure, beat, tatum
Seppénen et al. 2006 [P6] autocorrelative A beat, tatum
Alonso et al. 2007 [11] autocorrelative A tempo
Davies & Plumbley 2007 [39] || autocorrelative A beat
Dixon 2007 [42] multiple agent A beat
Ellis 2007 [49] autocorrelative A beat
Peeters 2007 [140] autocorrelative A measure, beat, tatum
Seyerlehner et al. 2007 [163] regression A tempo
Shiu & Kuo 2008 [165] probabilistic A beat
Eronen & Klapuri 2008 [P7] regression A tempo

3.1.4 Methods for music meter analysis

This section reviews previous work on music meter analysis and serves
as an introduction to publications [P5], [P6], and [P7]. Tempo estima-
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tion methods can be divided into two main categories according to the
type of input they process. The earliest ones processed symbolic (MIDI)
input or lists of onset times and durations, whereas others take acous-
tic signals as input. Examples of systems processing symbolic input
include the ones by Rosenthal [153], Dixon [41], Brown [24] and Toivi-
ainen and Eerola [170]. Some of the systems such as the one by Dixon
([41]) can be extended to process acoustic signals by employing an onset
detector as a preprocessing step.

The best performance on realistic, acoustic music material is typi-
cally obtained with systems that have originally been designed to pro-
cess acoustic signals. One approach to analyze acoustic signals is to
perform discrete onset detection and then use e.g. inter onset interval
(IOI) histogramming to find the most frequent periods, see e.g. [161].
However, it has been found better to measure musical accentuation in a
continuous manner instead of performing discrete onset detection [68].

The broad approaches of meter analysis systems could include

e rule-based

e autocorrelative
e oscillating filters
e histogramming
e multiple agent

e probabilistic

e regression

This is the categorization proposed by Hainsworth ([69]) with the ad-
dition of the regression category. There are methods that do not nicely
fit into any of these categories, but we consider the categorization to be
useful anyway for characterizing some of the most prominent aspects of
the systems.

Another method of classifying meter analysis systems is by causal
operation [69]. If a system is causal, the meter estimate at a given
time depends only on past and present data. A noncausal system can
use future data and backward decoding. In some applications, such as
automatic accompaniment, causal operation is essential. In others, such
as producing rhythm related metadata for digital music archives, the
methods can be noncausal.

Table 3.1 presents a hopefully representative set of the various ap-
proaches.
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Rule-based

Rule-based approaches tend to be simple and encode sensible music-
theoretic rules [69]. They were among the first approaches to meter
analysis. An example of a rule-based system is the one by Parncutt
who devised a model to predict the tactus and measure for a series of
repeated rhythms [134]. A simpler model for tempo prediction from
symbolic data was presented by Eck [45].

Autocorrelation

Autocorrelation is a method for finding periodicities in data and has
been applied in many meter analysis systems [69]. The autocorrelation
provides information only on the periods, therefore phase estimation re-
quires further processing. The lag which maximizes the autocorrelation
value often coincides with the beat, although there are peaks at inte-
ger multiples of the beat. Davies and Plumbley try to explicitly model
the ideal outputs of an autocorrelation function to different metrical
structures using comb filter templates [39]. Brown used the autocorre-
lation to predict the beat and measure period from single melodic lines
in symbolic format [24]. Ellis first estimates the beat period using auto-
correlation and then finds the individual beats using dynamic program-
ming [49]. Alonso et al. use a subspace analysis method to perform
harmonic+noise decomposition before accent feature extraction and pe-
riodicity analysis using autocorrelation or other related periodicity esti-
mators [11]. Peeters proposes the combination of DFT and autocorrela-
tion for period estimation to suppress the harmonics in the periodicity
observation [140].

Oscillating filters

Two distinct approaches can be found in oscillating filter methods for
meter analysis [69]. One is based on exciting an adaptive oscillator
by an input signal and, if successful, the oscillator starts to resonate
at the frequency of the beat. Large used a single nonlinear oscillator
with adaptive phase and period to track the beat of piano performances
represented in symbolic format [107]. In his method, a sequence of im-
pulses at note onsets acted as a driver and perturbed both the period
and phase of an oscillator. Other examples of methods using an adap-
tive oscillator include those by McAuley [126] and Toiviainen [169]. The
input to the systems by Large ([107]) and McAuley ([126]) consisted of
series of impulses each corresponding to an onset of an individual note.
The goal of Toiviainen was to build an interactive MIDI accompanist
that tracks the performance in real time and plays back a predefined
accompaniment in synchrony with the performance [169].
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The second approach of oscillating filters is based on using a bank of
comb filter resonators with delays spanning the range of periods to be
estimated. This approach was pioneered by Scheirer who implemented
one of the first successful methods for beat tracking from audio [157].
The output of a comb filter with delay 7 for input v(n) is given by

r(t,n) = a;r(r,n—7)+ (1 — a;)v(n) (3.2)

where the feedback gain o, = 0.57/To ig calculated based on a selected
half-time T in samples. The comb filters have an exponentially decay-
ing impulse response and the half-time refers to the delay during which
the response decays to half of its initial value. Scheirer used a half-time
equivalent to 1.5-2 seconds in his beat tracking system [157]. In pub-
lication [P5] we use a half-time equivalent to 3 seconds since the goal
is to analyze also longer, measure level pulses. A bank of comb filters
can be used as a periodicity estimator when the delays 7 are set so that
they get values across the range of possible periods to be estimated. The
comb filter which gives the most energetic output is likely to correspond
to the beat period or its multiple or sub-division. Moreover, an estimate
of the phase is available by examining the internal state of the delay
of the most energetic comb filter [157]. This method is well suited for
causal beat tracking. A disadvantage of this method that it is compu-
tationally intensive, especially if the comb filter bank is used to process
several frequency bands separately as proposed by [157]. McKinney and
Moelants compared the tempo histograms obtained from tempo tapping
data of human subjects and periodicity outputs of a comb filterbank,
autocorrelation, and an IOI histogram, and concluded that the output
of a comb filterbank was closest to the tempo histogram obtained from
human subjects [127].

A bank of comb-filters performs well in period and phase estima-
tion [P5], but is computationally intensive. In publication [P6] a com-
putationally lighter solution combining autocorrelation and discrete co-
sine transform is used for periodicity estimation. For phase estimation,
we still use comb-filters but now in an adaptive manner, tuning the
comb-filter parameters according to the current and previous period es-
timates.

Histogramming

Histogramming methods are based on detecting discrete onsets from the
input signal and histogramming the inter-onset-intervals of detected
onsets to find the most prominent periodicity. A good example of this
category of methods is the one by Seppénen [160]. He first performed
onset detection followed by tatum period estimation by IOI histogram-
ming. Several acoustic features were then extracted at locations defined
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by the tatum signal and used in a pattern recognition system to classify
which of the tatum instances corresponded to beats. Seppénen reports
that the method did not match the Sheirer method in beat tracking per-
formance. Other examples of histogramming methods include the ones
by Goyon et al. [67], Wang and Vilermo [177], Uhle and Herre [173], and
Jensen and Andersen [87].

Multiple agent

The basic idea of multiple agent methods is that there are multiple
agents or hypotheses independently tracking the beat [69]. Each agent
receives scores based on how well it fits to the data. Low scoring agents
may be killed during the process. At the end of the signal, the agent
with the highest score wins and determines the beat. Early methods
operating on symbolic or MIDI input include e.g. the ones by Allen and
Dannenberg [10] and Rosenthal [153]. Later methods operating on au-
dio signals include those by Goto [64] and Dixon [42]'.

Goto first performs onset detection on several frequency ranges [64].
The onsets are then fed to multiple agents which make parallel pulse
hypotheses based on the onset time vectors. The agents calculate the
inter-beat interval and predict the next beat time. Information on har-
monic changes is used to determine the type of the pulse (beat, half note,
or measure) and estimate the hypothesis reliability [64].

Dixon has developed a method called BeatRoot which uses a multiple
agent architecture [42]. The first versions of the method processed MIDI
input. In the latest version a spectral-flux based onset detector is used
to make the system applicable for beat tracking on audio.

Probabilistic

Probabilistic methods define a model for the meter process whose pa-
rameters are then estimated. The basic idea here is that the under-
lying meter process goes through a sequence of states, and generates
a sequence of observations such as periodicity vectors or onset times.
Cemgil and Kappen ([33]) formulated a linear dynamic system for beat
tracking which has since been used by other authors such as Shiu and
Kuo ([165]) and Hainsworth and Macleod ([70]). The beat process is
modeled as a linear dynamic system as follows:

Xp+1 = ®(n+ 1|n)x, + €,, (transition equation) (8.3)

yn = M(n)x, + v,, (observation equation) (3.4)

!Goto and Dixon have written many early papers on the topic: we selected here the
most recent and representative articles.
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where x,, is the hidden state variable and y,, the observation, and ¢,
and v,, are noise terms. The state variable is

Xn = [(bnyTn]Ta (3.5)

where ¢, and 7,, are the phase (temporal location) and period of the
current beat, respectively. The next beat location is predicted as

¢n+1 = gbn + Th (36)

and the next period as the previous period, i.e., 7,1 = 7,. Consequently,
the state transition matrix ®(n + 1|n) can be written as

B(n+1[n) = “ ” (3.7)

Shiu and Kuo ([165]) and Hainsworth and Macleod ([70]) observe only
onsets and not the period. Then,

M(n)=[1 0]. (3.8)

Thus, the observation y, is the nth observed onset time and corresponds
to the ¢, in x,. Beat tracking according to this model consist of the
sequential estimation of the state trajectory between times 0 and n.
This is solved with Kalman filtering in ([165]) and with particle filtering
in [70].

A different probabilistic formulation is presented in [P5]. There, the
meter process is modeled as a hidden Markov model depicted in Fig-
ure 3.5. The hidden variables are the tatum, beat (tactus), and mea-
sure periods, denoted by 74, 75, and ¢, respectively. The observation
is the periodicity vector (output of the resonance filterbank) s. Arrows
indicate dependencies between the variables. The transition probabil-
ities of the model are designed to impose smoothness on the adjacent
period estimates, and to model the dependencies of the different pulse
levels. The optimal sequence of period estimates is found by Viterbi
decoding through the model. Thus, the model estimates the periods of
the three pulses simultaneously. The phase estimation is done after
period estimation. Two separate hidden Markov models are evaluated
in parallel, one for the beat phase and another for the measure phase.
In both models, the observation consists of the bandwise output of the
resonator corresponding to the found pulse period. Transition proba-
bilities are designed to impose smoothness between successive phase
estimates. Phase estimates are obtained by Viterbi decoding through
the beat and measure phase models. Hainsworth ([69]) reports that the
method in [P5] outperforms his method in [70]. However, since the ob-
servations fed to these two probabilistic models are different, we cannot
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Figure 3.5: Hidden Markov model for the temporal evolution of the
tatum, beat, and measure pulse periods. Reprinted from [P5]. ©2006
IEEE.

yet draw general conclusions on what is the best probabilistic model for
the meter process.

Other approaches for meter analysis which could be categorized as
probabilistic include those by Raphael ([150]), who performed rhythm
transcription with a hidden Markov model that described the simul-
taneous evolution of three processes: a rhythm process, a tempo pro-
cess, and an observable process. The rhythm process modeled the posi-
tion within a measure a note can have. The observation was IOI data
measured from MIDI or from audio with the help of an onset detec-
tor. Laroche modeled an ideal accent signal as a sequence of discrete
pulses, which was then correlated with the measured accent signal to
determine a set of beat period candidates. Based on the beat period can-
didates, dynamic programming was applied to find the beat phase [108].

Regression

We add here a new category of tempo estimators which is based on us-
ing regression. Seyerlehner et al. proposed the k-Nearest Neighbor
algorithm as an interesting alternative to peak picking from periodic-
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ity functions [163]. Peak picking stages are error prone and one of the
potential performance bottlenecks in rhythm analysis systems. For ex-
ample, an autocorrelation type beat tracker may select the beat period
by picking the maximum peak from the autocorrelation function, pos-
sibly weighted by the beat prior. Using the k-Nearest Neighbor was
motivated based on the observation that songs with close tempi have
similar periodicity functions. The authors searched the nearest neigh-
bors for a periodicity vector and predicted the tempo according to the
value that appeared most often within the k£ songs but did not report
significant performance improvement over reference methods. Publica-
tion [P7] studies this approach further and shows significant improve-
ment in tempo estimation accuracy over the method presented in [P5].

3.2 Structure analysis and music thumbnailing

This section describes the necessary background and related research
for the chorus detection method presented in publication [P8].

3.2.1 Overview

Music thumbnailing refers to the extraction of a characteristic, repre-
sentative excerpt from a music file. Often the chorus or refrain is the
most representative and “catchiest” part of a song. A basic application
is to use this excerpt for previewing a music track. This is very useful if
the user wishes to quickly get an impression of the content of a playlist,
for example, or quickly browse the songs in an unknown album. In ad-
dition, the chorus part of a song would often make a good ring tone for a
mobile phone, and automatic analysis of the chorus section would thus
facilitate automatical extraction of ring tone sections from music files.

Western popular music is well suited for automatic thumbnailing as
it often consists of distinguishable sections, such as intro, verse, chorus,
bridge, and outro. For example, the structure of a song may be intro,
verse, chorus, verse, chorus, chorus. Some songs do not have as clear
verse-chorus structure but there still often exist separate sections, such
as section A and section B which repeat. In this case the most often re-
peating and energetic section is likely to contain the most recognizable
part of the song.

The goal of music structure analysis is to analyze the location of one
or more sections from the music file. The methods typically start by
computing features from the signal using either fixed-length frames or
beat-synchronous frames. Next, the goal is to find the segment bound-
aries and to group repeating segments, such as all choruses. Peeters
et al. ([141]) divide the methods into two main categories: the “state”
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Figure 3.6: Self-distance matrix of the song "Superstar” by Jamelia.
The ellipses mark the diagonal stripes of low-distance corresponding to
chorus repetitions. This particular song has four choruses marked with
1, 2, 3, and 4. The notation x-y indicates that the particular diagonal
stripe is caused by a low distance between the chorus instances x and y.
The dashed ellipses indicate low distance stripes caused by matching a
chorus to itself which are hidden by the main diagonal.

approach and the “sequence” approach. The state approach considers
each part of a music track to be generated by a state. Each state has
characteristic acoustic information which separates the parts generated
by different states from each other. A part does not have to be repeated
later in the track. Representing musical parts as states with different
acoustic properties is motivated by the knowledge that in popular mu-
sic the different parts often have a characteristic accompaniment which
stays constant during the part. In this case, the goal of the structure
analysis is to find the most likely state sequence that could have gener-
ated the acoustic features. A good example of the state approach is the
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Figure 3.7: A schematic view of a music structure analyzer.

work by Logan and Chu who used agglomerative clustering or a hidden
Markov model and Viterbi decoding to assign feature frames to different
segments [117]. A basic problem especially with the HMM based seg-
mentation is how to constrain the temporal span of the segmentation
to be long enough. When a HMM is trained using short-time features
for a music file, similar low-level feature vectors may be grouped to the
same state but it is unlikely that this would match with high-level song
segment structure. For example, in Figure 2.6 different states model dif-
ferent parts of the trumpet notes. One solution is to use a large number
of states in the HMM model, and then histogram the decoded sequence
of states and use the histograms as new features [112].

The sequence approach assumes that there exist repeating sequences
in the music track. A sequence is defined as a time interval with cer-
tain succession of musical properties, such as notes or chords. Different
repeats of a sequence are not necessarily identical but similar. These
sequences are visible in a self-distance matrix (SDM) as off-diagonal
stripes indicating a succession of pairs of times with high similarity.
Figure 3.6 shows an example SDM for the song "Superstar” by Jamelia.

We will give here a short introduction to the steps of a music struc-
ture analysis method which is based on the sequence approach and SDM
processing. This serves as an introduction to [P8]. Figure 3.7 depicts
the basic operations of a music structure analyzer that is based on self-
distance analysis [65, 136]. The method starts with feature extraction
and SDM calculation. This is followed by finding repeated sections from
the SDM, grouping repeated sections belonging to the same high-level
segment (e.g. verse), and selecting the chorus sections. The following
sections describe these steps in more detail.

3.2.2 Chroma feature extraction

Whereas MFCCs are applicable to a wide variety of sounds such as
speech, music, and environmental sounds, chroma is a music-specific
feature for describing the spectral content of musical sounds. The chroma
is motivated by the Shephard helix ([164]) of musical pitch perception [66].
Chroma features are typically used for music structure analysis ([16,
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Figure 3.8: A schematic view of chroma feature analysis. The top panel
shows the magnitude spectrum of a note A4 with fundamental fre-
quency 440 Hz. The energy corresponding to the same pitch class is
accumulated over several octaves on the same pitch class bin.

66]), key estimation (e.g. [62, 138]), cover song identification ([84]), or
detecting harmonic changes for bar line analysis [83]. Figure 3.8 depicts
a schematic view of the chroma feature analysis. Energy at a musical
semitone scale is accumulated to twelve pitch classes over a range of oc-
taves [16]. In the figure, the note frequency is represented as MIDI note
number. The conversion from frequency in Hertz to MIDI note number
is done using the equation

MIDI note number = 69 + round(12 log(ﬁ)/ log(2)), (3.9
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where round denotes rounding to nearest integer. Note that using MIDI
note numbers is not necessary for chroma feature analysis but is used
in the figure for the convenience of representing the x-axis.

A straightforward way of calculating the chroma features is to map
each bin of a short-time discrete Fourier transform to exactly one of the
twelve pitch classes C, C#, D, D#, E, F, F#, G, G#, A, A#, B, with no
overlap. A relatively long analysis frame is needed to get sufficient res-
olution for the lower notes. In [P8] we use 186 ms frames. The energy is
calculated from a range of six octaves from C3 to B8 and summed to the
corresponding pitch classes. The chroma vectors are often normalized
by dividing each vector by its maximum value.

Another alternative for calculating the the chroma features is to use
a multiple fundamental frequency estimator to estimate the strength of
a range of FO candidates, which are then folded to chroma bins. This
kind of approach was proposed by Paulus and Klapuri for music struc-
ture analysis in [136]. We apply their chroma analysis method as a
first step in musical accent feature estimation in [P7]. The input sig-
nal sampled at 44.1 kHz sampling rate and 16-bit resolution is first di-
vided into 93 ms frames with 50% overlap. In each frame, the salience,
or strength, of each FO candidate is calculated as a weighted sum of
the amplitudes of its harmonic partials in a spectrally whitened signal
frame [98]. The range of fundamental frequencies used here is from
80 Hz to 640 Hz. Next, a transform is made into a musical frequency
scale having a resolution of 1/3rd of a semitone (36 bins per octave).
For each bin, only the maximum-salience fundamental frequency com-
ponent is retained. Finally the octave equivalence classes are summed
over the whole pitch range using a resolution of three bins per semitone
to produce a 36 dimensional chroma vector z;(k), where & is the frame
index and b = 1,2, ..., by is the pitch class index, with by = 36.

There exist several variants for measuring information similar to
the chroma feature. The pitch class profile (PCP) is a synonym for the
chroma features [59]. Gomez calls her variant of the chroma feature
analysis the harmonic pitch class profile (HPCP) [63]. Purwins et al.
compute a twelve-dimensional chroma representation from the constant
Q transform ([23]) and call the features constant-Q profiles [147]. The
constant-Q transform achieves a constant-Q resolution whereby time
resolution increases and frequency resolution decreases with increas-
ing frequency (Q denotes the ratio of frequency to resolution). Moreover,
the frequencies of the transform bins can be made to coincide with mu-
sical frequencies. The pitch histogram by Tzanetakis and Cook, which
is based on detecting and histogramming dominant pitches from the
output of a multiple FO estimator, is also a closely related feature [172].

In music structure analysis, it is desired that the distance would
be high between different song segments (e.g. verse and chorus) and
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small between instances of the same segment (e.g. different repetitions
of the chorus). The chroma features reveal similarities in melody and
harmonic accompaniment between different sections of the song even
if the used instrumentation or lyrics would change between sections.
The MFCC features are sensitive for changing accompaniment between
different choruses and differences in lyrics at different instances of the
verse. Bartsch and Wakefield reported that chroma features outperform
MFCC features in music thumbnailing [16]. Most current structure
analysis methods use chroma features and optionally augment them
with MFCC features or features describing the rhythm. Paulus and
Klapuri have presented a detailed study of the suitability of different
features for music structure analysis [135].

3.2.3 Self-similarity analysis

The next step is to calculate song self-similarity (or equivalently self-
distance). Various distance functions such as the Euclidean distance or
the cosine distance (inner product) can be used. Specialized distance
functions have been presented by Goto ([66]) and Lu et al. [118]. Before
distance calculation, the feature vectors are usually normalized, e.g., to
a mean of zero and standard deviation of one, or to a maximum element
of one.

The self-distance measurements can be represented in a self-distance
matrix (SDM). Figure 3.6 shows an example SDM for the song "Super-
star” by Jamelia. Each entry D(i,j) in the SDM represents the dis-
tance of the beat synchronous features of two time instances ¢ and j
of the music file. See details in publication [P8]. The song has four
choruses, which repeat with almost the same melodic, harmonic, and
instrumentation content, resulting in strong diagonal segments of low
self-distance into the SDM. A diagonal segment which starts at the
point (i,j) and ends at (4, j) indicates that the musical segment which
starts at time i and ends at 7 repeats starting at time j and ending at
time j. The diagonal stripe is created to the SDM since the feature
vector sequences during these time intervals are similar.

There are also diagonal segments of low self similarity correspond-
ing to the verse, see e.g. the diagonal stripe before the stripe corre-
sponding to the repetition of choruses 1 and 2. In addition, there are
usually many short segments of low self-distance corresponding to re-
peated melodic and/or rhythmic phrasing.

If a song has varying tempo and constant-length analysis frames are
used, the diagonal stripes in the self-distance matrix will not be diag-
onal anymore but curved according to the tempo changes. Beat syn-
chronous feature segmentation will keep the stripes diagonal.

Bartsch and Wakefield ([16]) and Goto ([66]) used a representation
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equivalent to the SDM called time-lag triangle. In the SDM both axes
represent time, in the time-lag triangle the axes are time and lag. The
matrix D(i, j) can be converted to a time-lag triangle L(l;;, j) with [;; =
1 — j. The time-lag triangle transforms a diagonal repetition into a hor-
izontal constant-lag line.

3.2.4 Detecting repeating sections

The next step is to detect repeating segments from the SDM or time-lag
triangle. This is not a straightforward task since the diagonal stripes
corresponding to repetitions can be very weak when the features are
extracted from realistic audio recordings. A straightforward method
would be to binarize? the SDM using some known methods for image
binarization. However, the problem is that this will create many er-
roneous detected regions of small self-distance in locations where just
a few feature vectors happen to be similar to each other. A better al-
ternative is to utilize the knowledge that we are looking for diagonal
stripes of low self-distance. Bartsch and Wakefield proposed to calcu-
late moving averages of the SDM values [16]. Goto proposed a two-stage
adaptive thresholding method where sums are calculated across the di-
agonals of the SDM, and adaptive thresholding is then applied to detect
a certain number of diagonals to be searched for repetitions [66]. The
final repetitions are searched using another adaptive thresholding on
the selected one-dimensional diagonal segments of the SDM. A slightly
varied version of this method is used in [P8]. Note that both Bartsch
and Wakefield and Goto proposed the methods for the time-lag triangle,
but this is an equivalent representation to the SDM [65].

3.2.5 Grouping and labeling sections

Each diagonal segment in the SDM represents just a pair of repeated
sections. If a complete description for the musical pieces is desired,
next it is necessary to group the segments representing the same mu-
sical section. Cooper and Foote construct a segment level distance ma-
trix and apply the Singular Value Decomposition to cluster similar seg-
ments [36]. Goto groups together segments detected from the time-lag
triangle having close starting and ending points, and in addition uti-
lizes knowledge of already found segments to search for missing seg-
ments [66].

The remaining problem is how to assign meaningful labels to the
sections. Most studies have considered only labeling the chorus, and

Binarization is an image processing operation during which an image consisting of
multiple shades of gray is converted to one having only two levels, black and white.
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used various heuristics, such as selecting the most often repeating sec-
tion as a chorus [66]. Ong presents an extension of the Goto method
to obtain a more complete segmentation [131]. Only few studies have
attempted full description including segmentation and assigning musi-
cally meaningful labels for the segments. Examples include Maddage
et al. who perform explicit segmentation into vocal & nonvocal sections
to aid structure analysis [121], and Paulus and Klapuri who proposed
using N-grams for automatic segment labeling [136].

3.2.6 Methods for music structure analysis

Table 3.2 summarizes selected research on music structure analysis and
chorus detection. This is not a complete listing but hopefully a repre-
sentative set of the various approaches. The methods are categorized
according to the features used and the main approach, "sequence” or
“state”. In addition, the table lists the information produced by the sys-
tem. “Thumbnail” means that the system produces a single representa-
tive section to be used as a thumbnail. Methods that produce segmen-
tation information return the boundaries of all musical parts, but with-
out musically meaningful labels such as intro, verse, chorus, bridge, or
outro. Some methods produce the boundaries of all parts but label only
e.g. the chorus, or the chorus and verse. The methods that produce a
complete description including segment boundaries and musical labels
for the parts can be considered the most advanced.

One of the first examples music thumbnail extraction using cluster-
ing was that of Logan and Chu [117]. Levy et al. propose a hierarchical
timbre model where a large HMM modeling different "timbre types” of
music is first trained, and the most likely sequence of states is obtained
for a music file by Viterbi decoding through this model [112, 111]. His-
tograms of the decoded sequence of states are then used to characterize
different musical sections. Rhodes et al. also use state occupancy his-
tograms as features and propose an explicit prior probability distribu-
tion for the section durations in a Bayesian structure analysis frame-
work [152].

Cooper & Foote [36] first calculate a self-distance matrix. Segment
boundaries are found by correlating a kernel along the diagonal of the
matrix. A segment-level SDM is them computed, and segments are clus-
tered by applying singular value decomposition (SVD) on the segment-
level SDM. Paulus and Klapuri present a related method where ini-
tial segments are first found by kernel correlation [136]. They define
the probability that two segments belong to the same musical part as
a function of distances between segments, and then try to optimize a
probabilistic fitness measure for different segment description candi-
dates using these probabilities. Jensen solves the problem using the
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shortest path algorithm for the directed acyclic graph [86].

The use of the self-similarity representation for music structure anal-
ysis was proposed by Foote, who first considered using the matrix for
visualizing music and audio content [54]. Several methods have been
proposed to automatically extract structural information from the self-
distance matrix. Wellhausen & Crysandt used the MPEG-7 spectral
envelope features to calculate a similarity matrix and detected diagonal
line segments from it [178]. Chai used chroma features and proposed
distance function to overcome variations in the key between different oc-
currences of the same part [34]. Bartsch & Wakefield [16] and Goto [66]
operated on an equivalent time-lag triangle representation.

Some methods apply classification of music segments to help label-
ing. Lu et al. ([118]) and Maddage ([121]) use classification between
instrumental / vocal sections as further cues for segment labeling. For
example, Lu et al. classify a segment as intro, bridge, or outro if it is
classified as instrumental and depending on the temporal position.
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Table 3.2: Summary of selected research on music structure analysis
and chorus detection.

Author year ref. H Features H Approach H Output
Foote 1999 [54] MFCC sequence visualization
Logan & Chu 2000 [117] MFCC state thumbnail
Dannenberg & Hu chroma or sequence segmentation
2002 [38] transcription
Peeters et al. 2002 [141] bandwise state segmentation
FFT
Cooper & Foote 2003 [36] MFCC state segmentation+
verse+chorus
Wellhausen & MPEG-7 sequence choruses
Crysandt 2003 [178] spect. env.
Lu et al. 2004 [118] CcQT sequence || segmentation+
intro+bridge+
outro
Bartsch & chroma sequence thumbnail
Wakefield 2005 [16]

Chai 2005 [34] chroma sequence segmentation
Goto 2006 [66] chroma sequence choruses
Maddage 2006 [121] chroma+octave- state full description

scale cepstral
coefficients
Eronen 2007 [P8] MFCC+chroma | sequence thumbnail
Jensen 2007 [86] rhythmogram+ state segmentation
PLP+
chroma
Ong 2007 [131] HPCP sequence || segmentation
Peeters 2007 [139] MFCC+ sequence segmentation
spect. contrast+
chroma
Levy & MPEG-7 state segmentation
Sandler 2008 [111] AudioSpec.Proj.
Paulus & MFCC+chroma+ state full description
Klapuri 2008 [136] rhythmogram
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Chapter 4

Applications

This Chapter discusses some applications of music content analysis, fo-
cusing on applications that can utilize the methods presented in this
thesis. We conclude with a brief discussion on where the analysis al-
gorithms should be run in a practical environment where the user has
computing devices connected to an online music service.

4.1 Music recommendation and search

Most of the commercial interest in the music information retrieval field
is probably targeted towards the problems of music recommendation
and automatic playlist generation. Here, the task can be defined for
example as follows: given an example song, return a list of songs with
similar characteristics. A question raises how well do methods based on
audio content only perform in returning similar songs. Finding similar
music based on content attributes has received plenty of research inter-
est, see e.g. [132]. A certain level of performance can be obtained using
audio information for music recommendation. However, there seems
to exist a "glass ceiling” above which it is difficult to get using only
low-level signal features. The performance seems to saturate around
60%-70% of good matches [15].

Similar conclusions were obtained in a user study reported by Lehtiniemi
in [109]. For that study, the author of this thesis implemented a content-
based music recommendation method which utilized a similarity met-
ric proposed by Pampalk [132]. Mel-frequency cepstral coefficients are
extracted from music files and modeled with single-Gaussian densi-
ties with full covariance matrices. Song distance is calculated with
the Kullback-Leibler (KL) divergence between the Gaussian distribu-
tions. In addition, the rhythmic aspects of signals are modeled and com-
pared with the so-called fluctuation pattern feature which measures the
strength of amplitude modulation on a set of frequency bands. The final
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distance between music files is a weighted sum of the timbral distance
returned by the KL divergence and the distance of the fluctuation pat-
tern features. To make the system scale to large music collections, a
clustering scheme was implemented where the distance between songs
is computed only within songs in the same cluster. The author imple-
mented the method into a prototype end-to-end mobile music service.
The users of the service were able to select a seed song and request
playlists of similar music to their mobile phone and stream the songs
over a network connection. The users were requested to vote whether
the returned song was similar to the seed song. On the average, 63%
of the songs were considered acceptable. The most annoying errors are
cross-genre confusions the system makes: e.g. some classical and jazz
songs are confused by the system, sometimes also music from the rap
and rock genres. Within some music types such as metal, the recom-
mendations based on content attributes only can be surprisingly good.
The general conclusion is that the content attributes need to be aug-
mented with higher level metadata such as genre and release year to
make the recommendations acceptable. This kind of song similarity is
not expected to suffice as the only source of music recommendations, but
can be used to e.g. provide recommendations to new content for which
there are not yet enough material to train a collaborative-filtering ([73])
based music recommender.

4.2 Active music listening

Active music listening can be defined as a form of music enjoyment
where the listener has some control over the content besides basic trans-
port controls of play, stop, rewind, forward, and changing the song. For
example, in seamless playback or beat mixing the user may make tran-
sitions from one song to another while the system takes care of mixing
the song in a continuous fashion. Beat and possibly measure level anal-
ysis is utilized to time-synchronize the beats, and time stretching (or
pitch shifting) to align the tempos during the transition. In clubs and
discos professional DdJs vary music tracks also by looping and rearrang-
ing them. However, DJ devices are expensive and have complicated
user interfaces making them unattractive for the public. The devices
may require manual preparation by adding loop points or segmenting
the music in advance. Some computer applications may offer a semi-
automatic approach consisting of automatic beat tracking followed by
a step where the user taps in the downbeats (for example, in Magix
Music Maker 10). The availability of fully automatic methods for ex-
tracting music rhythm information such as beats and measures from
musical files can bring these functionalities to amateur listeners.
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Figure 4.1: A prototype music player interface with buttons for looping
and skipping measures in a beat synchronous manner.

One novel example of active music listening is presented here. The
ideas were originally presented by Timo Kosonen and the author in [102].
The idea in this music player concept is to allow the user to repeat parts
of the music file in an easy manner. The user interface is depicted in Fig-
ure 4.1. A loop button has been included in addition to the traditional
music player controller buttons. When the user presses the loop button,
the system starts to loop the currently playing measure of the music.
The end result is an entertaining music listening experience especially
with electronic music, where the user may easily repeat parts of the file
in order to e.g. make the music file longer. For example, when a user
wishes to entertain his guests in a home party, he may make simple
DJ-like effects such as looping portions of music in an easy way.

Another technique examined in this prototype was to study whether
the listening experience during fast forward and rewind can be made
more pleasing by utilizing rhythm information. When the user enables
fast forward or rewind, the system will proceed as follows: it will first
render the currently playing beat until the end, and then skip to the
beginning of the next measure in the case of fast forward, or in the
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beginning of the previous measure if the user initiated rewind, and play
the first beat. Then it jumps again to another measure, plays the first
beat, and so on. The audible effect of this compared to the conventional
method of fast forward or rewind is that the user is able to hear the
tempo of the piece during fast forward or rewind.

Tzanetakis and Cook ([171]), Goto ([66]), and Boutard et al. ([22])
have studied a skip to section functionality for efficient music brows-
ing. Displaying musical sections with different colors and allowing the
user to skip between the sections help the user find a section of inter-
est within a music track. Wood and O’Keefe extended an open source
music player with a "mood bar” that presents a graphical mapping of
a low-level feature along the music timeline [180]. However, their pub-
lications do not discuss using musical meter for intra-track skipping.
Moreover, their implementations do not keep the music playback con-
tinuous when the user presses a skip button; their implementations
may be good choices, if the goal is only to allow the user to locate a sec-
tion of interest quickly. The focus of the presented active music listening
interface is more on entertainment; we want to make intra-track music
browsing more pleasing by preserving the rhythm sensation, and allow
the user to focus on a particular section by a looping functionality.

4.3 Music variations and ring tone extraction

Jehan has presented methods to manipulate music recordings, for ex-
ample, by creating "music textures” that continue infinitely by concate-
nating music track segments, pieces of music tracks between onsets,
with a similar metrical location [83]. For example, a music track seg-
ment occurring on a downbeat is a candidate for occurring on a down-
beat in the extended music texture. The presented music player inter-
face did not utilize segmentation into the sound onset level but created
longer versions of music tracks by repeating full measures or varied ver-
sions of music tracks by changing the playback order of measures or full
beats.

The bottom part of the user interface in Figure 4.1 has simple con-
trols for recording the playback order of the song. During or before
playback, the user may press record and the system records which mu-
sical segments (beats and measures) are rendered and in which order.
This allows the user to record a personalized version of a song by loop-
ing some segments, or to record only a part of the song to be used as
a personalized ring tone. The idea in the player interface is that the
variation is not stored as audio file but as metadata: a simple metadata
format indexing the beats, measures, and sections of the songs can be
used to store the variations in a compact way.
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Figure 4.2: A prototype tool for visualizing, listening, and fixing auto-
matically analyzed chorus segments for ring tone use.

One of the interesting uses for chorus detection is automatic extrac-
tion of ring tone segments from arbitrary music files. The chorus is
often the most catchiest and memorable part of a song and thus suit-
able to be used as a ring tone. However, as the analysis methods are
not perfect and especially determining the accurate boundaries of the
chorus start and end section is challenging (see details in [P8]), there
may be a need for tools to perform further adjustments to the analyzed
chorus section. Figure 4.2 presents a prototype user interface developed
by Timo Kosonen and the author which can be used to visualize, listen
to, and correct chorus section analysis results. The motivation of this
interface was twofold: to operate as a chorus annotation tool to pro-
vide evaluation material for the algorithm, and to test the feasibility of
a semiautomatic ring tone creation scheme where an algorithm is run
first and then a manual inspection is done to verify the result.

The user interface provides mechanisms to make checking the suit-
ability of the chorus section as a ring tone very fast. With the press
of the space bar, the operator can start playing the chorus section from
the beginning. Special buttons exist to adjust the beginning and end of
the chorus section backward and forward. Moreover, when moving the
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location of the chorus section, the system automatically quantizes the
start to the nearest beat. This makes it possible to very fast adjust the
location so that the sample beginning remains continuous and does not
cause clicks: the playback can often be started in the beginning of a full
beat in a smooth manner.

4.4 A note on practical implementations

Considering practical mobile music services and applications that use
automatically analyzed music metadata, there are several alternatives
on where the analysis algorithms should be run. It is possible to run
analysis the on the mobile device for the user’s music files. The benefit
of this is that it does not matter where the material has come from,
the same analysis can be performed for over-the-air (OTA) downloaded
content or content transferred from a PC, or even content recorded with
the mobile computer. However, the analysis consumes battery power,
more complex algorithms are slow to run on current devices, and, if
the content is protected with some digital rights management (DRM)
technology, the audio waveform may not be accessible.

There are certain applications where it is convenient to perform the
analysis on the mobile computer. One example are various beat syn-
chronized visualizations where changes in the graphics are synchro-
nized to the beat of the music. In this case the beat tracking can be
performed in real time during the music playback and rendering of the
visualization. For beat tracking this is feasible as it can be performed
computationally efficiently while maintaining sufficient analysis accu-
racy, as is demonstrated in publication [P6].

Another alternative is to run analyzers on the user’s personal com-
puter (PC). There we have more computing power than on the mobile
terminal. However, the disadvantage is that songs downloaded OTA to
the mobile device would have to be separately transferred to the PC for
analysis, and then the analysis results synchronized back to the mobile
device. In addition, this requires that the user has an additional device
in addition to the mobile phone to be able to use those features of the
application that require the metadata.

A good place to run the analysis is on the servers of a music service
or a specific metadata provider. This has the benefit of having to run
the analysis only once on each music file, and the analysis results can
be delivered to each user needing the file metadata. The metadata can
be downloaded specifically to the mobile computer or PC, or it can be
attached to the header section when downloading the files. On a ser-
vice, we can utilize parallelism and huge computer farms to run even
complex analyzes to large catalogues. In addition, since many music
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feature extractors are still in their very early stages and provide in-
formation that is semantically on a low level, there is the possibility
to create part of the metadata manually by employing human experts.
The process could even be a semiautomatic one where an automatic an-
alyzer is run first, and then a human operator checks the results. One
of the purposes of the tool presented in figure 4.2 was to test this kind
of a semiautomatic process. The problem is, however, that the cost will
be at a significantly higher level compared to fully automatic processes
if we need to include a step where a human operator is needed.

A challenge when providing metadata from a service is that one
needs a reliable mechanism to identify user’s own music files such that
metadata can be downloaded for those. Audio fingerprinting ([301[29])
is the only reliable solution, but this again consumes battery power. A
problem occurs with non-commercial content such as user-created mixes
or amateur production that are not found in the catalogue. A solution
to this would be to send the content from the mobile terminal to the ser-
vice for analysis but this consumes the scarce upstream network band-
width. However, we have already seen the first services that provide
analyses for user’s own files, see The Analyze API by the Echonest cor-
poration [7].
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Chapter 5

Conlusions and future
work

5.1 Conclusions

This thesis presented several methods for audio classification and mu-
sic content analysis. As suggested by human timbre perception experi-
ments, utilizing both spectral and temporal information is beneficial in
musical instrument classification. A wide set of features was proposed
and implemented in publication [P1] resulting in very good performance
on the McGill University Master samples collection. Furthermore, ex-
periments were carried out to investigate the potential advantage of a
hierarchically structured classifier, from which we could not obtain ben-
efits in terms of classification performance.

In [P2], we studied the importance of different features for musi-
cal instrument recognition in detail. Warped linear prediction based
features proved to be successful in the automatic recognition of musi-
cal instrument solo tones, and resulted in better accuracy than what
was obtained with corresponding conventional LP based features. The
mel-frequency cepstral coefficients gave the best accuracy in instrument
family classification, and would be the selection also for the sake of
computational complexity. The best overall accuracy was obtained by
augmenting the mel-cepstral coefficients with features describing the
type of excitation, brightness, modulations, synchronity and fundamen-
tal frequency of tones. However, a problem remains on how to gener-
alize across instruments and recording locations: as more than one ex-
ample of an instrument are included in the evaluation the performance
of the system significantly drops. This effect is evident from the per-
formance evaluations in [P2] where the overall accuracy is significantly
lower than in [P1].

The use of left-right hidden Markov models for instrument note mod-

71



eling was proposed in publication [P3]. In addition, we studied two
computationally attractive methods to improve the performance of the
system: using linear transforms to transform catenated MFCC and
AMFCC coefficients and discriminative training of the HMMs. Trans-
forming the features to a base with maximal statistical independence
using independent component analysis can give an improvement of 9
percentage points in recognition accuracy in musical instrument classi-
fication. Discriminative training of HMMSs can improve the performance
when using models with a small number of states and component den-
sities.

The audio classification system proposed in [P3] is generic and was
applied to audio-based context recognition in [P4]. Contrary to musi-
cal instrument sounds, no clear benefit is obtained by using linear fea-
ture transforms when classifying environmental sounds. Discrimina-
tive training can be used to improve the accuracy when using very low-
order HMMs as context models, which may be necessary on resource
constrained mobile devices.

The general conclusion from [P4] is that building context aware ap-
plications using audio is feasible, especially when high-level contexts
are concerned. In comparison with the human ability, the proposed sys-
tem performs rather well (568% versus 69% for contexts and 82% versus
88% for high-level classes for the system and humans, respectively).
Both the system and humans tend to make similar confusions mainly
within the high-level categories. The recognition rate as a function of
the test sequence length appears to converge only after about 30 to 60s.
This poses a challenge for automatic systems since we would like to
minimize the amount of time the feature extractor is running to save
the battery power.

Publications [P5] to [P7] present several methods for music meter
analysis. Publication [P5] presents a complete meter analysis system
which performs the analysis jointly at three different time scales. The
probabilistic model represents primitive musical knowledge and is ca-
pable of performing joint estimation of the tatum, tactus, and measure
pulses. Several assumptions and approximations were presented to ob-
tain reasonable model parameters with limited amount of training data.
The system won the ISMIR 2004 and MIREX 2006 tempo induction con-
tests.

Publication [P6] presented a computationally efficient method for
beat and tatum estimation. A simplified back-end for beat and tatum
tracking was presented. The computationally intensive bank of comb-
filter resonators was substituted with a discrete cosine transform peri-
odicity analysis and adaptive comb filtering. The back-end incorporated
similar primitive musicological knowledge as the method presented in
cite [P5], but with significantly less computational load. A novel method
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based on adaptive comb-filtering was presented for beat phase estima-
tion. Complexity evaluation showed that the computational cost was
less than 1% of two reference methods. A real-time implementation of
the method for the S60 smartphone platform was written.

The regression approach for tempo estimation proposed in [P7] was
found to be superior compared to peak picking techniques applied on
the periodicity vectors as is done e.g. in [P5] and [P7]. We conclude that
most of the improvement is attributed to the regression based tempo es-
timator with a smaller contribution to the proposed F0-salience chroma
accent features and GACF periodicity estimation, as there is no statis-
tically significant difference in error rate when the accent features used
in [P5] are combined with the proposed tempo estimator. In addition,
the proposed regression approach is straightforward to implement and
requires no explicit prior distribution for the tempo as the prior is im-
plicitly included in the distribution of the £-NN training data vectors.
The accuracy degrades gracefully when the size of the training data is
reduced.

In publication [P8] we presented a computationally efficient and ro-
bust method for chorus section detection. The method analyzed song
self distance by summing the self-distance matrices based on the MFCC
and chroma features. A scoring method for selecting the chorus section
from several candidates was proposed. In addition, a method utilizing
a matched filter for refining the location of the final chorus section was
proposed. The method provides accuracies sufficient for practical appli-
cations while being fast to compute.

A motivation for our research has been to study which music descrip-
tors can be estimated robustly enough for practical applications. Tempo
and chorus section estimation accuracies reach a level of 80% or beyond
which starts to be sufficient for practical applications, such as active lis-
tening or music search. Music tempo perception is ambiguous also for
human subjects which makes it possible that we are approaching the
practical limits of obtainable performance. The chorus detector is ap-
plicable to music preview and thumbnailing for popular and rock music
especially if a fade-in and fade-out is applied at the chorus boundaries.
For automatic ring tone segment analysis there are more strict require-
ments for the beginning and end of the segment, and the performance is
not yet sufficient. A semiautomatic annotation interface was presented
in section 4.3 as one possible solution.

In many methods special emphasis was put on keeping the meth-
ods computationally efficient. In section 4.4 we discussed the benefits
and disadvantages of alternative locations for running automatic music
content analyzers: these are a mobile device, a PC computer, or a ded-
icated centralized server. Irrespective of where the analyzers are run,
computational efficiency is important. On a mobile device it is vital in
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order to keep the battery consumption low, on a PC computer an impor-
tant part of the user experience is created by the application responding
fast, and on a server we need to analyze catalogues of several million
files. Publications [P3] and [P4] proposed the linear feature transforms
and discriminative training of HMMs as potential sources for improve-
ment in non-speech audio classification tasks with negligible additional
computational cost in the on-line classification stage. Publication [P6]
demonstrated how the performance of a beat tracking system can be
kept at a good level while making a drastic reduction in computational
cost. Publication [P8] presents a method for chorus detection which per-
formed well and runs fast enough for processing catalogues of music of
the size of several million tracks.

5.2 Future work

The music content analysis methods presented in this thesis, as most
other methods developed to date, operate only on the audio signal. We
expect that subdomain specific music content descriptors, e.g. special
methods for jazz, classical, pop and rock genres may be necessary to
further boost the performance to a level needed by practical applica-
tions. On a general level, we should study ways to leverage existing
textual metadata such as genre, style, or textual information from e.g.
record reviews to obtain more robust analysis of music content. In ad-
dition, automatic synchronization of MIDI files to corresponding audio
files may be an interesting approach to e.g. perform tempo analysis for
classical music.

Context-awareness using audio is a challenging topic but automatic
systems can approach the human ability as was demonstrated in [P4].
Future research will need to answer the question on whether audio-
based context sensing is useful in more general use cases and appli-
cation scenarios, implementing the methods in power-efficient ways on
mobile devices, and combining the various sensory information in an
optimal manner. In addition, we need to solve the problems related to
frictional noises when the device is being carried in bags and purses.
So far the research has been done on clean recordings, next we need to
analyze the performance on audio collected in realistic usage scenarios.

In musical instrument recognition, the challenge is to perform reli-
able recognition or instrument labeling in polyphonic mixtures. We be-
lieve that one of the most potential research directions is using partially
labeled data as suggested by [114]. This stems mainly from the practi-
cal difficulty of obtaining fully segmented and labeled training material.
An interesting approach would be to test this approach on really large
databases where the presence of a certain instrument is indicated in the
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title of the track or album, or collect this information as user tags from a
music service. In addition, considering practical applications being able
to label the most dominant instrument may be sufficient, without hav-
ing to identify all the instruments in a mixture. This would facilitate
finding music with piano, or music with blues guitar and so on.

In music meter analysis, algorithm accuracy in tempo estimation
starts to be sufficient for practical applications. Remaining main chal-
lenges are in beat phase estimation, and especially measure phase es-
timation. Estimation of the phase is important in applications where
something needs to be synchronized to the tempo. One approach to im-
prove phase estimation is the utilization of harmonic information in an
efficient manner. The regression approach proposed in [P7] might be
applicable to phase estimation as well.
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Errata and Clarifications
for the Publications

5.3 Publication [P1]

In Chapter 3: "Traditionally, the features provided by the timbre re-
search can be divided into spectral and temporal ones. In instrument
recognition systems reported so far, only features of either type have
been used.” The latter sentence is not correct. At that point, earlier re-
search had used both spectral and temporal features, see e.g. [85, 103].
But to our knowledge, none of the systems had combined cepstral coef-
ficients with other spectral and temporal features, which is proposed in
the paper.

In Figure 3, the saxophones are erroneously depicted as brass in-
struments. Although nowadays made of brass, the saxophones are sin-
gle reed instruments with a conical bore. The family classification re-
sults in Table 2 are also done with saxophones in the brass family. This
does not change the conclusions based on the paper.

5.4 Publication [P6]

In the Abstract, the sentence "Complexity evaluation showed that the
computational cost is less than 1% of earlier methods.” should be changed
to "Complexity evaluation showed that the computational cost is less
than 1% of two earlier methods.”.

5.5 Publication [PS8]

In the Introduction, the sentence “Similarity-matrix based approaches
include the ones by Wellhausen & Crysandt [5] and Cooper & Foote [6].”
should be changed to ”An example of a similarity-matrix based approach
is the one by Wellhausen & Crysandt [5]”. The Cooper & Foote method
should be categorized as “state” approach, see 3.2.
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ABSTRACT ant. However, even the recent systems are characterized either by
a limited application context or by a rather unsatisfactory per-

In this paper, a system for pitch independent musical instrumentfgrmance.
recognition is presented. A wide set of features covering both . . o .
spectral and temporal properties of sounds was investigated, andn th"_s paper, we aim at utlllzmg a widest range Of feature_s char-
their extraction algorithms were designed. The usefulness of the@cterizing the dlffferent propertles of s_ounds. This is done in or_der
features was validated using test data that consisted of 1498 sam(® handle a certain defect in the earlier proposed systems: failure
ples covering the full pitch ranges of 30 orchestral instruments 1© Make simultaneous and effective use of both spectral and tem-
from the string, brass and woodwind families, played with differ- POral features, which is suggested by the work in psychoacous-
ent techniques. The correct instrument family was recognized tics. Signal processing methods were implemented that attempt to

with 94% accuracy and individual instruments in 80% of cases. SXIract cues about the temporal development, modulation proper-

These results are compared to those reported in other work. AIso,t'eS' |r_r§gular|t|es, formant structure, brlghtness,_ and spectral syn-
chronicity of sounds. Although all the factors in sound source

utilization of a hierarchical classification framework is consid- s h @ ;
identification, and especially their interrelations are not known, a

ered.
large number of them have been proposed. Thus it looked particu-
larly attractive for us to utilize as much as possible of that infor-
1. INTRODUCTION mation simultaneously in a recognition system, and to see if that

Music content analysis in general has many practical applications,WOUId allow us _to bu.'ld amore robust instrument recognition sys-
tem than described in experiments so far.

including e.g. structured coding, database retrieval systems, auto-
matic musical signal annotation, and musicians’ tools. A subtask Our current implementation handles the isolated tone condition
of this, automatic musical instrument identification, is of signifi- well, and we are hoping that it will generalize to still more realis-
cant importance in solving these problems, and is likely to pro- tic contexts. A practical goal of our research is to build an instru-
vide useful information also in other sound source identification ment recognition module that can be integrated to an automatic
applications, such as speaker recognition. However, musical sig-transcription system [6].

nal analysis has has not been able to attain as much commercia.ll.

interest as, for instance, speaker and speech recognition. This is his paper is organized as follows. In Section 2, we shortly
' + SP P . 9 ) .review the literature in sound source identification and perception.

commercially applicable, although both areas are considered asyn Sect!c_)n 3, we first take a look at the features used in_ inst_rument

being highly complicated recognition sys_tems and discuss the _approach taken in th|s_paper.
: Then we describe our feature extraction algorithms. In Section 4,

First attempts in musical instrument recognition operated with a the selected features are validated with thorough simulations and

very limited number of instruments and note ranges. De Poli and the classification results are compared to those of earlier studies.

Prandoni used mel-frequency cepstrum coefficients calculated

from isolated tones as an inputs to a Kohonen self-organizing 2. DIMENSIONS OF TIMBRE

map, in order to construct timbre spaces [2]. Kaminsky and ) ) ]

Materka used features derived from an rms-energy envelope and® con5|derab_|e amount of effort has been done in order to find the

used a neural network or a k-nearest neighbour classifier to clasPerceptual dimensions aimbre, the ‘colour’ of a sound. Often

sify guitar, piano, marimba and accordion tones over a one-octavethese studies have involved multidimensional scaling experi-
band [5]. ments, where a set of sound stimuli is presented to subjects, who

) then give a rating to their similarity or dissimilarity. On the basis
The recent systems have already shown a considerable level ofy these judgements a low-dimensional space, which best accom-
performance, but have still been able to cope with only a quite modates the similarity ratings, is constructed and a perceptual or

limited amount of test data. In [7], Martin reported a system that 50qstic interpretation is searched for these dimensions.
operates on single isolated tones played over the full pitch ranges o ) ) ] )

of 15 orchestral instruments and uses a hierarchical classificationTW0 of the main dimensions described in these experiments have
framework. Brown [1] and Martin [8] have managed to build clas- usually been spectral centroid and rise time [3][9]. The first meas-
sifiers that are able to operate on test data that include sampledires the spectral energy distribution in the steady state portion of
played by several different instruments of a particular instrument @ tone, which corresponds to perceived brightness. The second is
class, and recorded in environments which are noisy and reverberine time between the onset and the instant of maximal amplitude.



Table 1: Feature descriptions -
1 [Risetime, i.e., the duration of attack ©
2 |Slope of line fitted into rms-energy curve after aftack
3 |Mean square error of line fit in 2
4
5

Decay time

Time between the end of attack and the maximum of
rms-energy

6 |Crest factor, i.emax / rmsof amplitude

7 | Maximum of normalized spectral centroid

8 |Mean of normalized spectral centroid

9 |Mean of spectral centroid Bark frequency o : Time [sec]
10 | Standard deviation of spectral centroid
11 | Standard deviation of normalized spectral centrp
12 |Frequency of amplitude modulation, range 4-8H
13 | Strength of amplitude modulation, range 4-8Hz
14 | Heuristic strength of the amplitude modulation in

Intensity [dB]

Figure 1. Flute tone: intensities as a function of Bark fre-
d quency. Especially amplitude modulation can be seen clearly.

N

40

range 4-8Hz s
15 | Frequency of amplitude modulation, range 10-4pHz @zz
16 | Strength of amplitude modulation, range 10-40Hlz 2
17 | Standard deviation of rise times at each Bark band %15

c 10

18 | Mean error of the fit between each of steady stgte
intensities and mean steady state intensity

19 | Mean error of fit between each of onset intensities
and mean onset intensity

20 | Overall variation of intensities at each band

21 | Fundamental frequency

22 | Standard deviation of fundamental frequency
23-33| Average cepstral coefficients during onset
34-44| Average cepstral coefficients after onset

The psychophysical meaning of the third dimension has varied, extra discriminating power needed for instrument recognition
but it has often related to tempora| variations or irregularity in the with a wider set of instruments. The feature set we used is pre-
spectral envelope. A good review over the enormous body of tim- sented in Table 1.

bre perception literature can be found in [4]. These available .

results provide a good starting point for the search of features to3.1 Feature extraction methods

be used in musical instrument recognition systems.

@

oo

20
Bark frequency 0

Time [sec]

Figure 2. Clarinet tone: intensities as a function of Bark fre-
quency plot. At the low end of clarinet playing range the
odd partials are much stronger than the even partials.

The short-time rms-energy envelope contains information espe-
cially about the duration of excitation. We estimated rise-time,
3. CALCULATION OF FEATURES decay-time, strenght and frequency of amplitude modulation,
crest factor and detected exponential decay from the rms-energy

Traditionally, the features provided by the timbre research can be X .
curve calculated in 50% overlapping 10ms frames.

divided into spectral and temporal ones. In instrument recognition
systems reported so far, only features of either type have beernThe spectral centroid of the signal is calculated over time in 20ms
used. For instance, Kaminsky and Materka used temporal featuresvindows. At each window, the rms-energy of the spectrum is esti-
derived from a short time rms-energy envelope [5]. In the researchmated using logarithmic frequency resolution. After that, the
of Martin [7][8], a selection of temporal features calculated from spectral centroid is calculated. We use both the absolute value of
the outputs of a log-lag correllogram was used, but the spectralspectral centroid and a normalized value, which is the absolute
shape was not considered at all. Brown reports good results beervalue divided by the fundamental frequency. The fundamental
achieved with cepstral coefficients calculated from oboe and sax-frequency estimation method used here is the one presented by
ophone samples [1]. She used mel-frequency cepstrum coeffi-Klapuri in [6].

cients from 23 ms frames, which were then grouped into one or

Sinusoid track representation provides many useful temporal fea-
three clusters.

tures. We first calculate the harmonic amplitude on each of Bark
We wanted to test if combining the two types of features, cepstral scale bands, which resemble the frequency resolution of the coch-
coefficients and temporal features, would yield the necessarylea. Knowledge about the fundamental frequency is applied in



order to resolve whether any harmonics are found on each band. Table 2: Classification results
The amplitude envelopes of single harmonic frequencies can be
calculated efficiently with a®(n) algorithm, wheren is the sam- Hierarchy 1 |Hierarchy 2 | . No
ple length. If more than one harmonic frequencies are found, then hierarchy
amplitude envelopes are calculated separately and the resultingPizzicato / sustained 99.0% 99.0% 99.09
band-amplitude is the mean of these. The band-wise intensity is [|nstrument families 93.0% 94.0% 94.7%
calculated by multiplying the amplitude by the center frequency Individual 74.9% 75 8% 80.6%
of the band. .

instruments

The intensities are decimated by a factor of about 5ms to ease the
following computations and smoothed by convolving with a 40ms In our system, at each node a Gaussian or a k-NN classifier was
half-hanning (raised-cosine) window. This window preserves sud- used with a fixed set of features. The Gaussian classifier turned
den changes, but masks rapid modulation. Figures 1 and 2 displayout to yield the best results at the highest level, where the number
intensity versus Bark frequency plots for 261Hz tones produced of classes is two. At the lower levels, k-NN classifier was used.
by flute and clarinet, respectively. Bad features are likely to decrease classifying performance,
. . o which makes evaluating the salience of each feature essential. The
When the intensity matrix is calculated, a number of features can .
. A ) . features used at a node were selected manually by monitoring fea-
be easily extracted. The similarity of shape between intensity . .
envelobes is measured by fitting the envelopes into a mean enVeture values of possible subclasses. This was done one feature at a
P . y 9 P S time, and only the features making clear distinction were included
lope and calculating the mean of mean squre errors. This is done
. into the feature set of the node.
separately for the onset period and the rest of the waveform. The
error value of the onset period, accompanied with the standardWe implemented a classification hierarchy similar to that pre-
deviation of bandwise rise times, can be considered as a measuréented by Martin in [7], with the exception that his samples and
of onset asynchrony. Another measure that can be extracted frontaxonomy did not include piano. In our system the piano was
the intensity envelope curves is the overall variation of intensities assigned to an own family node because of having a unique set of
at each band. some features, especially cepstral coefficients. According to Mar-
tin, classification performance was better if the reeds and the
‘brass were first processed as one family and separated at the next
stage. We wanted to test this with our own feature set and test data
and tried the taxonomy with and without the Brass or Reeds node,
which is marked with a *" in Figure 3.

The spectral shape of tones is modelled with cepstral coefficients
which are calculated with a method adapted from an automatic
speech recognition system described in [11]. Calculation proce-
dure is done in 25% overlapping windowed frames of size
approximately 20ms. Autocorrelation sequence is calculated first
and then used for LPC coefficient calculation with Levinson-

Durbin algorithm. LPC coefficients are then converted into ceps- 5. RESULTS

tral coefficients, which have been found to be a robust feature setour validation database consisted of 1498 solo tones covering the
for use in speech and instrument recognition [1]. We used two setsentire pitch ranges of 30 orchestral instruments with several artic-
of 11 coefficients, averaged over the onset and the rest of the samy|ation styles (e.g. pizzicato, martele, bowed, muted, flutter), as
ple. illustrated in Figure 3. All tones were from the McGill Master
Samples collection [10], except the piano and quitar tones which
4. CLASSIFICATION were played by amateur musicians and recorded with a DAT
Musical instruments form a natural hierarchy, which includes dif- recorde_r. I_n order_to_achieve Comparable. res_,ults tp those described
ferent instrument families. In many applica{tions classification by _Martln " [7], similar way of cross vallde_mon with 70% / 30%

- ) A L . splits of train and test data was used. A difference to the method
down to the level of instrument families is sufficient for practical f Martin was to estimate the fundamental frequency of the test
needs. For example, searching a database to find string music. e . q Y
would make sense. In addition to that, a classifier may utilize a sgmple before cle.tssmcatllon, which was Fhen compared to. the

. . ' - . o . pitch ranges of different instruments, taking only the possible
hierarchical structure algorithmically while assigning a sound into . I
LY ) . ones into classification.

a lowest level class, individual instrument. This has been pro-

posed and used by Martin in [7][8]. In the following, we give a In Table 2, we present the classification results made in the three

short review of his principles. At the top level of the taxonomy, different ways. Hierarchy 1 is the taxonomy of Figure 6 without

instruments are divided into pizzicato and sustained. Second levelthe Brass or Reeds node. In the No-hierarchy experiment classifi-

comprises instrument families, and the bottom level individual cation was made separately for each classification level. The Hier-

instruments. Classification occurs at each node, applying knowl-archy 2 proved out to yield slightly better results, like Martin

edge of the best features to distinguish between possible sub+eported in [7]. But interestingly, in our experiments, the direct

classes. This way of processing is suggested to have sometlassification at each level performed best at both tasks, which

advantages over direct classification at the lowest end of the tax-was not the case in Martin's experiments where the Hierarchy 2

onomy, because the decision process may be simplified to takeyielded the best results. At the current implementation, classifica-

into account only the small number of possible subclasses. tion result at the lower level of hierarchy is totally dependent on
the results of the higher levels, and the error cumulates as the clas-
sification proceeds.



Instrument
Pizzicato Sustained
Brass or *
Reeds
Piano Strings Strings Flute or Reeds Brass

A A A A

French Horn

Piano Guitar Violin Bass Flute Contra Bassoon Bass Trombone
Violin Viola Alto Flute Bassoon Alto Trombone
Viola Cello Flute Contrabass Clarinet Tenor Trombone
Cello Double Piccolo Bass Clarinet Trumpet
Double Bb Clarinet Bach Trumpet
Eb Clarinet Tuba
Oboe Bass Sax

Baritone Sax
Figure 3. The taxonomy presented by Martin in [7] with the exception that the Piano node is added.  Tenor Sax

Instrument families are bolded, and individual instruments are listed at the bottom level. Alto Sax
Soprano Sax
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ABSTRACT . .
ments. The performance of the system and the confusions it

Several features were compared with regard to recognition per-makes are compared to the results reported in a human perception
formance in a musical instrument recognition system. Both mel- experiment, which used a subset of the same data as stimuli [2].
frequency and linear prediction cepstral and delta cepstral coeffi-
cients were calculated. Linear prediction analysis was carried out 2. FEATURE EXTRACTION
both on a uniform and a warped frequency scale, and reflectionp 1. cepstral features
coefficients were also used as features. The performance of earlier

. . For isolated musical tones, the onset has been found to be
described features relating to the temporal development, modula-, o : .
. . . . important for recognition by human subjects [4]. Motivated by
tion properties, brightness, and spectral synchronity of sounds

was also analysed. The data base consisted of 5286 acoustic antdhls’ the cepstral analyses are made separately for the onset and

. . . ments of ne. B n the r mean r
synthetic solo tones from 29 different Western orchestral instru- steady state segments of a tone. Based on the root mean square

ments, out of which 16 instruments were included in the test set. E)I?]';Aest)a;ﬁjn;rgg dle\slte;tgfst:emsé?]?salirﬁgit:efgesfatz elg??:;ev?hgothe
The best performance for solo tone recognition, 35% for individ- y 9 . y 9

ual instruments and 77% for families, was obtained with a feature signal achieves its average RMS-engrgy level for the. first time,
L e and the onset segment is the 10 dB rise before this point.
set consisting of two sets of mel-frequency cepstral coefficients

: For the onset portion of tones, both LP and filterbank analyses
and a subset of the other analysed features. The confusions made ; . . ;
were performed in approximately 20 ms length hamming win-

by the system were anaI)_/sed and compared to results reported in %owed frames with 25% overlap. In the steady state segment

human perception experiment. frame length of 40 ms was used. If the onset was shorter than 80
1. INTRODUCTION ms, the beginning of steady state was moved forward so that at

least 80 ms was analysed. Prior to the analyses, each acoustic sig-

Automatic musical instrument recognition is a fascinating and nal was preemphasized with the high pass fitte+-0 977 to
essential subproblem in music indexing, retrieval, and automaticflatten the spectrum ’

transcription. It is closely related to computational auditory scene The LP coefficients were obtained from an all-pole approxi-

a”a'YS'S- However, mu3|cal_ instrument  recognition h"_’l_s not mation of the windowed waveform, and were computed using the
received as much research interest as speaker recognition, fOElutocorrelation method. In the calculation of the WLP coeffi-

instance. cients, the frequency warping transformation was obtained by

t_”'lr']he ||mp_|ter2ente(:_ rnlusmz;l)l_l_ltnstéumen';] recognlilo(? syst<tems replacing the unit delays of the predicting filter with first-order
still have imited practical usabiiity. Brown has reported a system all-pass elements. In thedomain this can be interpreted by the
that is able to recognize four woodwind instruments from mono-

: . . mappin
phonic recordings with a performance comparable to that of pping .
human’s [1]. Martin’s system recognized a wider set of instru- ;1 51_ 2 —A _ (1)
ments, although it did not perform as well as human subjects in a 1-rz1

similar task [2]. _ ) In the implementation this means replacing the autocorrela-
This paper continues the work presented in [3] by using New yjon network with a warped autocorrelation network [5]. The
cepstral features and introducing a significant extension to theparamete?\ is selected in such a way that the resulting frequency
evaluation data. The research focuses on comparing different fea’mapping approximates the desired frequency scale. By selecting
tures with regard of recognition accuracy in a solo tone recogni- ) - 7564 for 44.1 kHz samples, a Bark scale approximation was
tion task. First, we analyse different cepstral features that are jpiained [6]. Finally, the obtained linear prediction coefficients

based either on linear prediction (LP) or filterbank analysis. Both .« transformed into cepstral coefficientawith the recursion [7,
conventional LP having uniform frequency resolution and more pp. 163]

psychoacoustically motivated warped linear prediction (WLP) are
used. WLP based features have not been used for musical instru-
ment recognition before. Second, other features are analysed that

are related to the temporal development, modulation properties, . .
P P prop The number of cepstral coefficients was equal to the analysis

brightness, and spectral synchronity of sounds. . . .
9 ! . P Y . y . order after the zeroth coefficient, which is a function of the chan-
The evaluation database is extended to include several exam-

ples of a particular instrument. Both acoustic and synthetic iso- nel gain, was discarded. -
: For the mel-frequency cepstral coefficient (MFCC) calcula-
lated notes of 16 Western orchestral instruments are used for,. . . ! -
. o ; . tions, a discrete Fourier transform was first calculated for the win-
testing, whereas the training data includes examples of 29 instru-

n-1
1
Ch = _an_ﬁ Z I(Ckan—k' (2)
k=1
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dowed waveform. The length of the transform was 1024 or 2048

point for 20 ms and 40 ms frames, respectively. 40 triangular — WLP cepstra
— — Refl. coeffs. (WLP)

bandpass filters having equal bandwith on the mel-frequency 70+ LP cepstra

scale were simulated, and the MFCCs were calculated from the Refl. coeffs. (LP)

log filterbank amplitudes using a shifted discrete cosine transform - 60/ —

(7, p.189]. . - § S0r u P & _Family recognition
In all cases, the median values of cepstral coefficients were 5 wl Tl

stored for the onset and steady state segments. Delta cepstral 2

coefficients were calculated by fitting a first order polynomial § 3071

over the cepstral trajectories. For the delta-cepstral coefficients, @ ,ql = =~ === -~ =~ Instrument recognition

the median of their absolute value was calculated. We also experi- o T EPE A i S

mented with coefficient standard deviations in the case of the 10

MFCCs. 0

0O 5 10 15 20 25 30 35 40 45
LP analysis order

Calculation of the other features analysed in this study has giq e 1 Classification performance as a function of analysis
been des_,cnbed in [3] and W|_II bg only sh_ortly summarized here.  j4ar for different LP based features.

Amplitude envelopeontains information e.g. about the type
of excitation; i.e. whether a violin has been bowed or plucked. samples are recorded in studios with different acoustic character-
Tight coupling between the excitation and the resonance structureistics and recording equipment, and the samples from lowa Uni-
is indicated by a short onset duration. To measure the slope of theversity are recorded in an anechoic chamber. The samples from
amplitude decay after the onset, a line was fitted over the ampli- the Roland synthesizer were played on the keyboard and recorded
tude envelope on a dB scale. Also, the mean square error of the fithrough analog lines into a Silicon Graphics Octane workstation.
was used as a feature. Crest factor, i.e. maximum / RMS value The synthesizer has a dynamic keyboard, thus these samples have
was also used to characterize the shape of the amplitude envelop&/arying dynamics. The samples from SOL include only the first

Strength and frequency of amplitude modulation (AMgs 1.5 seconds of the played note.
measured at two frequency ranges: from 4_8 HZ to measure trem- CrOSS Validation aimed at as realistic Conditions as pOSSible
olo, i.e. AM in conjunction with vibrato, and 10-40 Hz for graini-  With this data set. On each trial, the training data consisted of all
ness or roughness of tones. the samples except those of the particular performer and instru-

Spectral centroid (SCrorresponds to perceived brightness ment being tested. In this way, the training data is maximally uti-
and has been one of the interpretations for the dissimilarity rat- lized, but the system has never heard the samples from that
ings in many multidimensional scaling studies [4]. SC was calcu- Particular instrument in those circumstances before. There were
lated from a short time power spectrum of the signal using 16 instruments that had at least three independent recordings, so
logarithmic frequency resolution. The normalized value of SC is these instruments were used for testing. The instruments can be
the absolute value in Hz divided by the fundamental frequency. Seen in Figure 4. A total of 5286 samples of 29 Western orchestral
The mean, maximum and standard deviation values of SC Wereinstruments were included in the data set, out of which 3337 sam-
used as features. ples were used for testing. The classifier made its choice among

Onset asynchronyefers to the differences in the rate of the the 29 instruments. In these tests, a random guesser would score
energy deve|opment of different frequency Componentsl A sinu- 3.5% in the individual instrument recognition task, and 16.7% in
soid envelope representation was used to calculate the intensitfamily classification.
envelopes for different harmonics, and the standard deviation of ~ In each test, classifications were performed separately for the
onset durations for different harmonics was used as a one featureinstrument family and individual instrument cases kAearest
Another feature measuring this property is obtained by fitting the neighbours (kNN) classifier was used, where the valudsndre
intensity envelopes of individual harmonics into the overall inten- 11 for instrument family and for 5 individual instrument classifi-
sity evelope during the onset period, and the average mean squargation. The distance metric was Mahalanobis with equal covari-
error of those fits was used as a feature. ance matrix for all classes, which was implemented by using the

Fundamental frequency (f@)f tones is measured using the discrete form of the Karhunen-Loeve transform to uncorrelate the
algorithm from [8], and used as a feature. Also, its standard devi- features and normalize the variances, and then by using the eucli-

2.2. Spectral and temporal features

ation was used as measure for vibrato. dean distance metric in the normalized space.
3. EXPERIMENTAL SETUP 4. RESULTS
Samples from five different sources were included in the vali- Different orders of the linear prediction filter were used to see

dation database. First, the samples used in [3] consisted of thethe effect of that on the performance of several LP and WLP
Samp|es from the McGill University Master Samp|es Collection based features. The results for instrument famlly and individual
(MUMS) [9], as well as recordings of an acoustic guitar made at instrument recognition are shown in Figure 1. The feature vector
Tampere University of Technology. The other sources of Samp|esat all points consisted of two sets of coefficients: medians over the
were the University of lowa website, IRCAM Studio Online ©onset period and medians over the steady state. The optimal anal-
(SOL), and a Roland XP-30 synthesizer. The MUMS and SOL Ysis order was between 9 and 14, above and below which per-
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[ Individual instrument 100
Il Instrument family

Random guess (instrument) k3] 80
Random guess (family) 2
23 : std of MFCCs of steady state g 60
== std of MFCCs of onset IS
2] DMFCCs of steady state 8 40
L DMFCCs of onset &
19 = MFCCs of steady 20 [ Individual instrument
! MECCs of onset Il Instrument family
17 =g std of f0 S 3 5 - o 1
== fundamental frequency (f0)
o O
S 15 _—1 onset duration Note sequence length
§ = error of fit between onset intensities Figure 3.Classification performance as a function of note
13 == std of component onset durations
L= strength of AM, range 10-40Hz sequence length.
11 e ::Sﬁ:t'l‘ccit‘:;:é‘t"h range 12;‘;‘;“42_%2 backward select algorithm. If the MFCCs were replaced with
o = strength of AM, range 4-8Hz order 13 WLPCCs, the accuracy was 35% (72%). _
= frequency of AM, range 4-8Hz In practical situations, a recognition system is likely to have
U= szo;g‘gma"zedsc more than one note to use for classification. A simulation was
t , . . . . .
5 , S ean of SC made to test the system’s behaviour in this situation. Random
== mean of normalized SC sequences of notes were generated and each note was classified
3= crest factor individually. The final classification result was pooled across the
£ mean square error of line fit : [y i :
1 slope of line fit (post onset decay) sequence by using the majority rule. The rt_ecognltlon accuracies
i i i i ‘ were averaged over 50 runs for each instrument and note

0 10 20 30 40 50 60 sequence length. Figure 3 shows the average accuracies for indi-
Percent correct ; ; ; et ;
vidual instrument and family classification. With 11 random
Figure 2.Classification performance as a function of features.  notes, the average accuracy increased to 51% (96%). In instru-
The features printed in italics were included in the best per- ment family classification, the recognition accuracy for the tenor
forming configuration. saxophone was the worst (55% with 11 notes), whereas the accu-

i 0,
formance degrades. The number of cepstral coefficients was onéac.y _for th_e all other instruments was over 90%. In the case of
individual instruments, the accuracy for the tenor trombone, tuba,

less than the analysis order. WLP cepstral and reflection coeffi- llo. violin. viol 4 auit th ith o th
cients outperformed LP cepstral and reflection coefficients at all ceflo, Violin, viola and guitar was poorer than with one note, the
accuracy for the other instruments was higher.

analysis orders calculated. The best accuracy with LP based fea- o . .
The recognition accuracy depends on the recording circum-

tures was 33% for individual instruments (66% for instrument ‘ b tod. The individual inst t .
families), and was obtained with WLP cepstral coefficients stances, as may be exptgce o € ID vidua IDS rument recogni-
(WLPCC) of order 13. tion accuracies were 32%, 87%, 21% and 37% for th_e samples

In Figure 2, the classification accuracy is presented as a func-];rom MUMIS’ Ipwla,nglantlj ?ﬁd SOIasgu(jrces,dr?;pe':ctlvelyr/]. Jhe
tion of features. The cepstral parameters are mel-frequency ceps-OV\./a samples included only the woodwinds and the Frénch hom,
which were on the average recognized with 49% accuracy. Thus,

tral coefficients or their derivatives. The optimal number of th i is clearly better for the | |

MFCCs was 12, above and below which the performance slowly € rzczgf“ 1on accuLac_y |shc eiry T?w er tor | € fowa f:mptﬁs

degraded. However, optimization of the filter bank parameters recorded in an anechoic chamber. The sampies Irom the other
three sources are comparable with the exception that the samples

should be done for the MFCCs, but was left for future research.f SOL did not include t With thesized
By using the MFCCs both from the onset and steady state, the rom Id hot Include tenor or soprano sax. WIth synthesize
samples the performance is clearly worse, which is probably due

accuracies were 32% (69%). Because of computational cost con- . - . .
siderations the MFCC were selected as the cepstrum features fo}0 both the varying quality of the synthetic tones and the varying

the remaining experiments. Adding the mel-frequency delta cep- dynamics.

str_um coefficients (DMFCC) slightly improved the performancez 5 DISCUSSION

using the MFCCs and DMFCCs of the steady state resulted in ) ) o

34% (72%) accuracy. The confusion matrix for the feature set giving the best accu-

The other features did not alone prove out very successful. "acy is presented in Figure 4. There are large differences in the
Onset duration was the most successful with 35% accuracy inrecognition accuracies of different instruments. The soprano sax
instrument family classification. In individual instruments, spec- IS recognized correctly in 72% of the cases, while the classifica-
tral centroid gave the best accuracy, 10%. Both were clearly infe- tion accuracies for the violin and guitar are only 4%. French horn
rior to the MFCCs and DMFCCs. It should be noted, however, 1S the most common target for misclassifications.
that the MFCC features are vectors of coefficients, and the other It is interesting to compare the behaviour of the system to
features consist of a single number each. human subjects. Martin [2] has reported a listening experiment

The best accuracy 35% (77%) was obtained by using a featurehere .fourteen subjects recognized 137 samples from the MF:GiII
vector consisting of the features printed in italics in Figure 2. The collection, a subset of the data used in our evaluations. The differ-

feature set was found by using a subset of the data and a simplé&nces in the instrument sets are small, Martin’s samples did not
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French horn 50 3 > 12 18 1 3 1 5 1
Trumpet 8 23 7 24 2 11 2 2 3 5 1 3 1 4 4 1
Tenor tromb. (371 17 24 10 6 6 5 1
Tuba 76 8 4 7 3 2
Tenor sax 6 2 2 2 9 15 22 2 6 4 2 7 6 17
Alto sax 8 1 1 64 5|2 1 3 1 1 2 1 12
Soprano sax 4 3 4 2 72 2 5 10
Oboe 3 7 1 6|3 68 3 3 2 3
B-flat clar. 6 4 1 1 2 11 16 4 1 17 30 1 5 1 1 3
Bassoon 16 1 3 1 1 1 70 3 1
Flute 1 1 8 6 2 1 4 1 1 1 2 3 1 4 59 2 1 1 2
Double bass 2 1 2 56 31 2 5
Cello 1 1 4 1 31 30 5 28
Violin 1 1 2 3 3 1 2 4 1 3 8 4 67
Viola 1 2 4 1 1 11 6 25 45 13
Guitar 2 8 1 1 1 2 1 43 38 1 1 4

Figure 4.Confusion matrix for the best performing feature set. Entries are expressed as percentages and are rounded to the nearest
integer. The boxes indicate instrument families.

include any sax or guitar samples, but had the piccolo and the 7. ACKNOWLEDGEMENT

English horn, which were not present in our test data. In his test, The available samples in the web by the University of lowa
the subjects recognized the individual irystrument correctly in (http://theremin.music.uiowa.edu/~web/) and IRCAM (http:/
45.9% of cases (9.1'7% for {nstrument fam|||e.s). Ogrsystgnj madesoleil.ircam.fr/) helped greatly in collecting our database. The
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I.t was not able to generallz_e into more abstract |r_15trum(_an,t fami- tics.hut.fi/software/warp/) was used for the calculation of WLP
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ABSTRACT

In this paper, we describe a system for the recognition of
musical instruments from isolated notes or drum samples.
We first describe a baseline system that uses uses mel-
frequency cepstral coefficients and their first derivatives as
features, and continuous-density hidden Markov models
(HMMs). Two improvements are proposed to increase the
performance of this baseline system. Firgt, transforming
the features to a base with maximal statistical
independence using independent component analysis can
give an improvement of 9 percentage points in recognition
accuracy. Secondly, discriminative training is shown to
further improve the recognition accuracy of the system.
The evaluation material consists of 5895 isolated notes of
Western orchestral instruments, and 1798 drum hits.

1 INTRODUCTION

Earlier work on musical instrument recognition has mainly
used classifiers that are not able to effectively model the
temporal evolution of spectra features. The Gaussian
mixture model (GMM) ([1]) is able to effectively
parameterize the distribution of observations. However, it
does not explicitly model the dynamic evolution of feature
values within a played note. One approach is to extract
features that explicitly try to measure the tempora
characteristics of isolated notes [2], or to manually
segment the notes and use averages of cepstral coefficients
during the onset (the beginning of a note) and steady state
as features [3]. However, this has only a limited ability to
model the temporal evolution even if feature variances
were also used as features. Moreover, often the extraction
of temporal features is computationally rather demanding
and the effect is even greater if this is combined with the
use of a nearest-neighbour classifier, for instance.

Hidden Markov models (HMM) are the mainstream
dtatistical model used in the speech recognition
community, and are now becoming increasingly popular
also in non-speech applications. To our knowledge, Casey
is the only researcher who has used HMMs to model
musical instrument samples [4]. As a pat of the
development of the generalized audio descriptors for the
MPEG-7 standard, he has evaluated the proposed methods
using a database consisting of a wide variety of audio,
including music, speech, environmental sounds, and
different musical instrument sounds.

However, Casey's evaluation data has included
examples of only a few instruments. In addition, little
detail has been given on the difficulty of the evaluation

material, making assessing the accuracy of his method in
instrument recognition difficult. Moreover, no details were
given on the topology of the resulting models, since their
algorithm attempts to force some of the transition
probabilitiesto zero during training [4].

In this paper, we take a different approach. Based on
the knowledge of physical properties of musica
instruments, and on the other hand the psychological
studies on timbre perception, there is a clear motivation for
using HMMs with a left-right topology to model isolated
notes. Most musical instruments have a distinctive onset
period, followed by a steady state, and finally decay (or
release). For instance, some instruments are characterized
by onset asynchrony, which means that the energy of
certain harmonics rises more quickly than the energy at
some other frequencies. Also the decay is often
characterised by the prominence of certain frequencies
with respect to others. This causes the features relating to
the spectral shape to have different value distributions
during the onset, steady state, and decay. Thus, aleft-right
HMM with three states might well model this temporal
evolution.

This paper first describes the development of a
baseline instrument recognizer that uses mel-frequency
cepstrum (MFCC) and delta cepstrum (AMFCC)
coefficients as features, and HMMs to model the feature
distributions. The system is evaluated using a database
consisting of isolated notes of 27 Western orchestra
instruments, and a smaller database of drum hits. We
propose two improvements to improve the performance of
the system. First, we use the independent component
analysis (ICA) to transform the feature vector consisting of
catenated MFCC and AMFCC features to a basis with
maximal statistical independence. This transform is shown
to give an amost consistent improvement in recognition
accuracy over the baseline with no rotation. Second, we
propose using discriminative training of the HMMs.
Especialy with computationally attractive models with
low number of components in state densities,
discriminative training gives an improvement over the
baseline maximum likelihood (ML) training using the
Baum-Welch re-estimation a gorithm.

2 FEATURE EXTRACTION

2.1 Feature extraction

Mel-frequency cepstral coefficients (MFCC) were found
to be a well-performing feature set in musical instrument
recognition [3], and are used as the front-end parametersin



our system. The input signal is first pre-emphasized with

an FIR filter having the transfer function 1- az_l, where a
was between 0.97 and 0.99 in our simulations. MFCC
analysisis performed in 30 ms windowed frames advanced
every 15 ms for the orchestral instruments. For the
analysis of short drum sounds, the frame length was
reduced into 20 ms, and the hop size was 4 ms. The
number of triangular filters was 40, and they occupied the
band from 30Hz to half the sampling rate. For the drum
sounds, the lowest frequency was 20Hz. The number of
cepstral  coefficients was 12 after the zeroth coefficient
was discarded, and appending the first time derivatives
approximated with a 3-point first-order polynomia fit
resulted in a feature vector size of n = 24. The resulting
features were both mean and variance normalized.

2.2 Transforming features using independent
component analysis (ICA)

Independent component anaysis (ICA) has recently
emerged as an interesting method for finding decorrelating
feature transformations [4][5][6]. The more well-known
methods for include the principal component analysis and
linear discriminant analysis. The goal of ICA is to find
directions of minimum mutual information, i.e. to extract a
set of statistically independent vectors from the training
data X. The use of an ICA transformation has been
reported to improve the recognition accuracy in speech
recognition [5]. In the MPEG-7 generalized audio
descriptors, ICA is proposed as an optiona transformation
on the spectrum basis obtained with singular value
decomposition [4], and Casey’'s results have shown the
success of this method on a wide variety of sounds. Our
approach is dightly different from all these studies. We
perform ICA on concatenated MFCC and AMFCC
features. In [4] and [5] only static features were used, and
in [6] logarithmic energies and their derivatives were used.

In order to construct the m-by-n ICA transform matrix
W, the extracted MFCC and AMFCC coefficients from the
training data samples are gathered into a matrix
X = [xl,xz,...,xT] where each column represents the

catenated MFCC (s) and AMFCC (d) features from the
analysis frame t, i.e xt=[xsl,x52 ..... Xs(ni2y» Xd1 - Xd(nrzy | -

The total amount of feature vectors from all recordings of
all the classes in the training set is denoted by T. The class
and recording indices are omitted here since ICA does not
utilize class information. The ICA demixing matrix W is
applied on X producing the transformed observation space
O = WX, which is of dimenson mby-T, wherem<n.
The inequality is due to possible dimensionality reduction
in the preprocessing step, which consists of a whitening
transform.

The efficient FastiCA agorithm was used for finding
the ICA basis transformation [7]. It should be noted that
the extra computational load caused by applying the ICA
transformation occurs mainly in the off-line training phase.
The test phase consists of computing the MFCC and
AMFCC features in the usual way plus an additiona

multiplication with the m-by-n matrix W derived off-line
using the training data.

3 CLASSIFICATION
3.1 Thehidden Markov model

Hidden Markov models with a left-right topology are used
to model the distribution of feature vectors from each
instrument category, and the classification is made with
the maximum-a-posteriori rule. A continuous density
hidden Markov model (HMM) with N states consists of a
set of parameters 6 that comprises the N-by-N transition
matrix, the initia state probabilities, and the parameters of
the state densities. We use diagonal-covariance Gaussian-
mixture state densities which are parameterized by the
weights, means, and diagona variances. The model
parameters are estimated using a training set that consists

of the recordings O:[Ol,...,OR] and their associated

denotes the sequence of feature vectors measured from the

recording r. The length of the observation sequence O" is
T, . In this paper, each recording represents a single note
played by an orchestral instrument, or a drum hit.

In our baseline system, the HMM parameters are
iteratively optimized using the Baum-Welch re-estimation
that finds a local maximum of the maximum likelihood
(ML) objective function

F©)=3 logpO' [0),

c=1r0A
where © denotes the entire parameter set of al the classes
c0{1,...,C} ,and A, denotesthe recordings from the class

c. In the recognition phase, an unknown recording Y is
classified using the maximum a posteriori rule:

¢=argmax p(Y |c)

which is due to the Bayes' rule and assuming equal priors
for al classes c. In this paper, the Viterbi-algorithm was
used to approximate the above likelihoods.

3.2 Discriminativetraining

In the case that a statistical model fits poorly the data,
training methods other than ML may lead into better-
performing models. Discriminative training methods such
as the maximum mutual information (MMI) am at
maximizing the ability to distinguish between the
observation sequences generated by the model of the
correct class and those generated by models of other
classes[8]. The MMI objective function is given as

M(©)=logp(L|0) =Y logp(I" |O")

:Z{Iog[p(mp(Of 1] -10g Y p() p(O’ |c)}

r=1 c=1

and
this

where  p(")
Unfortunately,

are prior
rather

probabilities.
complicated

p(c)
reguires



optimization involving the entire model set even if
observations from a single class were used.

In this paper, a recently-proposed discriminative
training algorithm is used. The algorithm was proposed by
Ben-Yishai and Burshtein, and is based on an
approximation of the maximum mutual information [9].
Their approximated maximum mutual information
(AMMI) criterionis:

30)= Z{ > loglp(c)p(o’[c] - 4 %'og[p(C) plor IC)]} ,

c=1 | rOA
where B, is the set of indices of training recordings that
were recognized as c. B, is obtained by maximum a

posteriori classification performed on the training set,
using initid models trained with the Baum-Welch
algorithm. The “discrimination rate” is controlled using
the parameter 0< A <1.

The prior probabilities p(c) do not affect the
maximization of J(©), thus the maximization is
equivalent to maximizing for all the classes 1<c<C the
following objective functions:

J.(0)= r%Iog p(O’|c)—/1rDzB:Iog p(0'[c).

Thus, the parameter set of each class can be estimated
separately, which leads to a dsraightforward
implementation. Ben-Yishai and Burshtein have derived
the re-estimation equations for HMM parameters [9]. Due
to space restrictions, we present only the re-estimation
equation for the transition probability from state i to state

it
7 = 2o X 60 0) A% T 400 )
J ZrD/Ac thi_lyt(i)_AZrDBc thl_lyt(l)
where &(,1)= p(@ =16, =1107,0) and =Y &)
The state &t time t is denoted by ¢, , and the length of the

observation sequence O" is T,. In a genera form, for
each parameter v the re-estimation procedureis

L = NW) - ANp ()

D(v) - ADp (v)
where N(v) and D(v) are the accumulated statistics
computed according to the set A, and Np(v) and Dp(v)
are the dtatistics computed according to the set B,

obtained by recognition on the training set. Thus, in a
typical situation the set B, includes examples from the

class ¢ and some other confusing classes. This
discriminative re-estimation can be iterated in a manner
similar to the standard expectation-maximisation. We
typically used 5 iterations, athough using just one
iteration seemed to be sufficient in many situations, since
the recognition accuracy did not improve much after the
first iteration.

4 VALIDATION EXPERIMENTS
4.1 Validation database

Our experimental setup aimed at testing the system’'s
generalization ability across significant variations in
recording setup and instrument instances. Samples from
five different sources were used in the validation database.
The sources were the McGill University Master Samples
collection (MUMS) [10], the University of lowa
Electronic Music Studios website [11], IRCAM Studio
Online [12], a Roland XP-30 synthesizer, and recordings
arranged by Keith Martin at MIT MediaLab [2]. A total of
5895 samples of 27 Western orchestral instruments were
included in the database, of which 4940 were included in
the training set and 955 were tested. The division into
training and test sets was done so that all the samples from
a particular instrument instance in a certain recording
session were either in the training or test set, i.e. the
recognition was done across recordings and different
instrument pieces. The recognition was performed at an
intermediate level of abstraction using seven classes,
which were the brass, saxophones, single reed clarinets,
double reed oboes, flutes, bowed strings, and plucked
strings. A random guesser would score 14% correct in
these conditions. The drum database consisted of samples
from 8 different synthesizer sound banks and the MUMS
collection [10]. Samples of two sound banks were used in
the training set (total of 1123 drum hits), and the samples
of the seven remaining sources were used for testing (a
total of 675). The five possible categories were bass drum,
cymbal, hi hat, snare, and tom-tom.

4.2 Results

The Baum-Welch algorithm was used to train the baseline
HMMs. The number of states (NS) and component
densities per state (NC) was varied. Increasing the number
of components in each state was obtained by gradually
increasing the model order until the desired order NC was
obtained by splitting the component with the largest
weight. The state means and variances were initialized
using a heuristic segmentation scheme, where each sound
was segmented into as many adjacent segments as there
were states in the model. The initial mean and variance for
each state were estimated from the statistics accumulated
from the different segments of al samples. During
training, a straightforward form of regularization was
applied by adding a small constant to the variance
elements falling below a predetermined threshold.

Table 1 presents the results obtained using the baseline
system using MFCC plus AMFCC features and HMMs
trained using the Baum-Welch algorithm. In Table 2, the
features have been ICA transformed; the HMM training is
similar to the baseline. Table 3 shows the results using the
MFCC plus AMFCC front-end, but using discriminative
training of HMMs. In Table 4, both enhancements have
been combined and the ICA transformed input is modelled
with discriminatively trained HMMs. It can be observed



Table 1. Percentage correct in instrument identification,
baseline system with MFCC plus AMFCC features and ML
training.

% correct | NC=1 | NC=2 | NC=4 | NC=6 | NC=8
NS=2 44 47 57 60 59
NS=3 53 59 60 58 58
NS=4 59 57 60 62 62
NS=5 56 60 60 60 62

Table 2. Percentage correct in instrument identification, ICA-
based transformation applied and ML training of HMMs.

% correct | NC=1 | NC=2 | NC=4 | NC=6 | NC=8
NS=2 48 56 60 63 66
NS=3 57 62 63 65 67
NS=4 58 61 66 60 61
NS=5 63 66 64 66 62

Table 3. Percentage correct in instrument identification,
baseline features and discriminative training of HMMs.

% correct | NC=1 | NC=2 | NC=4 | NC=6 | NC=8
NS=2 45 51 59 61 62
NS=3 58 63 59 59 58
NS=4 58 61 60 61 64
NS=5 58 62 62 61 62

Table 4. ICA-based transformation applied and discriminative
training of HMMs.

% correct | NC=1 | NC=2 | NC=4 | NC=6 | NC=8
NS=2 51 57 61 65 66
NS=3 57 64 64 66 68
NS=4 60 60 65 61 61
NS=5 65 67 63 65 62

that using the ICA transform gives an amost consistent
improvement in recognition accuracy across the set of
model orders tested. Using discriminative training
improves the accuracy mainly with models having low
number of components in state densties. This is
understandable since low-order models give relatively low
recognition accuracy in the training set, and there is not so
much danger of over-fitting due to discriminative training
as with higher order models. Different values of A were
tested, and the results are shown for A =0.3.

Tables 5 and 6 show the results for the drum database
using the baseline system and the ICA transformation.
Here the improvement is not consistent across the different
model orders evaluated, which may be partly due to the
larger mismatch in training and testing conditions in this
database, and the relatively smaller size of training data
where examples from only two sound banks are included.

5 CONCLUSION

A system for the recognition of musica instrument
samples was described. Applying an ICA-based transform
of features gave an amost consistent improvement in
recognition accuracy compared to the baseline. The

Table 5. Percentage correct in drum recognition, MFCC plus
AMFCC features.

NC=1 | NC=2 | NC=3 | NC=4
NS=2 79 79 80 78
NS=3 76 77 79 81

Table 6. Percentage correct in drum recognition, |CA-based
transformation applied.

NC=1 | NC=2 | NC=3 | NC=4

NS=2 80 80 78 78
NS=3 78 81 85 85
accuracy could be further improved by using

discriminative training of the hidden Markov models.
Future work will consider the extension of these methods
for monophonic phrases.
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Audio-Based Context Recognition

Antti J. Eronen, Vesa T. Peltonen, Juha T. Tuomi, Anssi P. Klapuri, Seppo Fagerlund, Timo Sorsa, Gagtan Lorho, and
Jyri Huopaniemi, Member, IEEE

Abstract—The aim of this paper is to investigate the feasibility
of an audio-based context recognition system. Here, context
recognition refers to the automatic classification of the context
or an environment around a device. A system is developed and
compared to the accuracy of human listeners in the same task.
Particular emphasis is placed on the computational complexity
of the methods, since the application is of particular interest in
resource-constrained portable devices. Simplistic low-dimensional
feature vectors are evaluated against more standard spectral
features. Using discriminative training, competitive recognition
accuracies are achieved with very low-order hidden Markov
models (1-3 Gaussian components). Slight improvement in recog-
nition accuracy is observed when linear data-driven feature
transformations are applied to mel-cepstral features. The recog-
nition rate of the system as a function of the test sequence length
appears to converge only after about 30 to 60 s. Some degree of
accuracy can be achieved even with less than 1-s test sequence
lengths. The average reaction time of the human listeners was
14 s, i.e., somewhat smaller, but of the same order as that of the
system. The average recognition accuracy of the system was 58 %
against 69 %, obtained in the listening tests in recognizing between
24 everyday contexts. The accuracies in recognizing six high-level
classes were 82 % for the system and 88 % for the subjects.

Index Terms—Audio classification, context awareness, feature
extraction, hidden Markov models (HMMs).

I. INTRODUCTION

ONTEXT recognition is defined as the process of auto-
matically determining the context around a device. Infor-
mation about the context would enable wearable devices to pro-
vide better service to users’ needs, e.g., by adjusting the mode
of operation accordingly. A mobile phone can automatically go
into an appropriate profile while in a meeting, refuse to receive
calls, or a portable digital assistant can provide information cus-
tomized to the location of the user [1].
Many sources of information for sensing the context are avail-
able, such as luminance, acceleration, or temperature. Audio
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provides arich source of context-related information, and recog-
nition of a context based on sound is possible for humans to
some extent. Moreover, there already exist suitable sensors, i.e.,
microphones, in many portable devices.

In this paper, we consider context recognition using acoustic
information only. Within this scope, a context denotes a loca-
tion with different acoustic characteristics, such as a restaurant,
marketplace, or a quiet room. Differences in the acoustic char-
acteristics can be due either to the physical environment or the
activity of humans and nature. We describe the collection of
evaluation data representing the common everyday sound en-
vironment of urban people, allowing us to assess the feasibility
of building context aware applications using audio. Using this
data, a comprehensive evaluation is made of different features
and classifiers. The main focus is on finding methods suitable
for implementation on a mobile device. Therefore, we evaluate
linear feature transforms and discriminative training to improve
the accuracy obtained with very low-order HMMs.

An experiment was conducted to facilitate the direct compar-
ison of the system’s performance with that of human subjects.
A forced-choice test with identical test samples and reference
classes for the subjects and the system was used. We also made
a qualitative test to assess the information on which the human
subjects base their decision. To our knowledge, this study is the
first attempt to present a comprehensive evaluation of a com-
puter and human performance in audio-based context recog-
nition. Some preliminary results on context recognition using
audio have been described in [2], [3].

This paper is organized as follows. Section II reviews
previous work. Section III presents the feature extraction al-
gorithms used in this study. In Section IV, the classification
methods are described. Section V presents an assessment of the
computer system. In Section VI, a test on human perception
of audio contexts is described. Finally, in Section VII, these
results are compared to the performance of the system.

II. PREVIOUS WORK

The research on context awareness is still at its early stages
and very few applications have been constructed that make use
of other context information than global positioning system
(GPS) location [4]. One of the earliest prototypes of a con-
text-aware system was the ParcTab developed at the Xerox
Palo Alto Research Center [S]. The ParcTab featured, e.g.,
contextual information and commands, automatic contextual
reconfiguration and context-triggered actions.

In many cases, the context-awareness functionality is build
upon an array of different sensors sensing the context. In [6], the
authors used accelerometers, photodiodes, temperature sensors,
touch sensors, and microphones, from which simple low-level
features were extracted. Another approach is to transform the

1558-7916/$20.00 © 2006 IEEE
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raw input into a low-dimensional representation using principal
component analysis (PCA) or independent component analysis
dca) [71, 81

In general, the process of context recognition is very similar
regardless of the sensors or data sources used for the recogni-
tion. The feature vectors obtained from sensors are fed to classi-
fiers that try to identify the context the particular feature vectors
present. As classifiers, e.g., hidden Markov models (HMMs) [9],
or a combination of a self-organizing map and a Markov chain,
have been used [6].

Only few studies have attempted to classify contexts using
acoustic information. Clarkson has classified seven contexts
using spectral energies from the output of a filter bank and a
HMM classifier [9]. In [10], Sawhney describes preliminary
experiments with different features and classifiers in classifying
between voice, traffic, subway, people, and others. The most
successful system utilized frequency-band energies as features
and a nearest-neighbor classifier.

El-Maleh et al. classified five environmental noise classes (a
car, street, babble, factory, and bus) using line spectral features
and a Gaussian classifier [11]. Couvreur et al. used HMMs to
recognize five types of environmental noise events: car, truck,
moped, aircraft, and train, using linear prediction cepstral coef-
ficients as features and discrete HMMs [12]. The authors also
described an informal listening test, which showed that, on the
average, humans were inferior in classifying these categories
compared to the system.

The features we are using are similar to those used in different
audio information retrieval tasks [13]. Scheirer and Slaney de-
scribed a speech/music discrimination system, which used a
combination of several features [14]. More recent studies in-
clude that of Lu et al. [15] and Li et al. [16] who also included
environmental noise as one of the categories. Zhang and Kuo
[17] classified between harmonic environmental sound, nonhar-
monic environmental sound, environmental sound with music,
pure music, song, speech with music, and pure speech.

Casey has used a front-end where log-spectral energies
are transformed into a low-dimensional representation with
singular-value decomposition and ICA [18]. The classifier uses
single-Gaussian continuous-density HMMs with full covari-
ance matrices trained with Bayesian maximum a posteriori
(MAP) estimation. Casey’s system was evaluated on a database
consisting e.g., of musical instrument sounds, sound effects,
and animal sounds.

To our knowledge, context recognition using audio has not
been studied to this extent before. The results existing in the
literature have used only a limited number of categories, often
focusing into a certain noise type such as vehicle sounds.
In this paper, we present results using comprehensive data
measured from several everyday contexts. The most promising
features presented in the literature are compared on this data.
We propose a linear transformation of the concatenated cepstral
and delta cepstral coefficients using PCA or ICA and show that
this slightly improves the classification accuracy. Moreover,
we demonstrate that compact diagonal-covariance Gaussian
HMMs and discriminative training are an effective classifier for
this task. To our knowledge, discriminatively trained HMMs
have not been used for audio-based context recognition before.

III. ACOUSTIC MEASUREMENTS AND FEATURE EXTRACTION
A. Recording Procedure

To obtain a realistic estimate of the feasibility of building
context-aware applications using audio input, we paid special
attention to gathering a data set that would be representing of
the everyday sound environment encountered by urban people.
The recording procedure has been described in [19] and is
summarized here. A total of 225 real-world recordings from
a variety of different contexts were made using two different
recording configurations. The first configuration has been
developed by Zacharov and Koivuniemi [20]. It consists of a
head-and-torso simulator with multiple microphones and is
capable of storing multiple audio formats simultaneously. For
the purpose of this study, we only utilized the binaural record-
ings (two channels) and stereo recordings (two channels). The
microphones mounted in the ears of the dummy head enable a
realistic binaural reproduction of an auditory scene. The stereo
setup consisted of two omnidirectional microphones (AKG
C460B), separated by a distance of one meter. This construction
was attached to the dummy head. The acoustic material was
recorded into a digital multitrack recorder in 16-bit and 48-kHz
sampling rate format. A total of 55 recordings were made with
this setup. The remaining measurements were made with an
easily portable stereo setup using AKG C460B microphones.

The recording of spatial sound material was done for sub-
jective evaluations. In computer simulations, we only used the
left channel from the stereo setup. Table I shows the division of
recordings into different categories.

B. Feature Extraction

A wide set of feature extractors was implemented for this
study in order to evaluate the accuracy obtained with each, and
to select a suitable feature set for the system.

All features are measured in short analysis frames. A typ-
ical analysis frame length in this study was 30 ms with 15-ms
overlap. The hanning window function was used. The following
features were evaluated in this study.

Zero-crossing rate (ZCR) is defined as the number of zero-
voltage crossings within a frame.

Short-time average energy is the energy of a frame and
is computed as the sum of squared amplitudes within a
frame.

Mel-frequency cepstral coefficients (MFCC) are a percep-
tually motivated representation of the coarse shape of the
spectrum [21]. We used 11 or 12 MFCC coefficients cal-
culated from the outputs of a 40-channel filterbank.
Mel-frequency delta cepstral coefficients (AMFCC) are
used to describe the dynamic properties of the cepstrum.
We used a three-point linear fit to approximate the first
time derivative of each cepstral coefficient.

Band-energy refers to the energies of subbands normal-
ized with the total energy of the signal. We experimented
with four and ten logarithmically-distributed subbands.
Spectral centroid represents the balancing point of the
spectral power distribution.

Bandwidth is defined as the estimated bandwidth of the
input signal [16].
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TABLE 1
STATISTICS OF THE AUDIO MEASUREMENTS

. Number of
High level category Context Recordings
Outdoors Street 16
Road 13
Nature 12
Construction 11
Marketplace 1
Fun Park 1
Vehicles Car 27
Bus 11
Train 10
Subway Train 6
Public / Social Restaurant 13
Places Cafeteria 10
Pub 1
Shop 13
Lecture Pause 1
Offices / Meetings / Office 12
Quiet Places Lecture 12
Meeting 4
Library 11
Home Living Room 2
Kitchen 4
Bathroom 6
Music 2
Reverberant Places Church 4
Railway Station 11
Subway Station 7
Hall 4
Total 225

Spectral roll-off [16] measures the frequency below which
a certain amount of spectral energy resides. It measures
the “skewness” of the spectral shape.
Spectral flux (SF) is defined as the difference between the
magnitude spectra of successive frames [14].
Linear prediction coefficients (LPCs) were extracted
using the autocorrelation method [22, p. 103]. The
number of LPC coefficients extracted was 12.
Linear prediction cepstral coefficients are obtained using
a direct recursion from the LPC coefficients [22, p. 115].
The number of cepstral coefficients was 12 after dis-
carding the zeroth coefficient.

All the features were mean and variance normalized using

global estimates measured over the training data.

C. Feature Transforms

The main idea of linear data-driven feature-transformations
is to project the original feature space into a space with a lower
dimensionality and more feasible statistical properties, such as
uncorrelatedness. In this work, three different techniques were
used. The PCA finds a decorrelating transform [25, p. 115], ICA
results in a base with statistical independence [25, p. 570], and
the linear discriminant analysis (LDA) tries to maximize class
separability [25, p. 120].

PCA projects the original data into a lower dimensional
space such that the reconstruction error is as small as possible,
measured as the mean-square error between the data vectors in
the original space and in the projection space. Projection onto
a lower dimensional space reduces the amount of parameters
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to be estimated in the classifier training stage, and uncorrelated
features are efficiently modeled with diagonal-covariance
Gaussians.

The goal of ICA is to find directions of minimum mutual in-
formation, i.e., to extract a set of statistically independent vec-
tors from the training data. Here, the FastICA algorithm was
used for finding the ICA basis transformation [23].

Himberg et al. have used PCA and ICA to project multidi-
mensional sensor data from different contexts into a lower di-
mensional representation, but reported only qualitative results
[4]. In speech recognition, the use of an ICA transformation
has been reported to improve the recognition accuracy [24]. In
the MPEG-7 generalized audio descriptors, ICA is proposed as
an optional transformation for the spectrum basis obtained with
singular value decomposition, and Casey’s results have shown
the success of this method on a wide variety of sounds [18]. Our
approach is different from all these studies, since we perform
ICA on concatenated MFCC and AMFCC features. Including
the delta coefficients is a way to include information on tem-
poral dependencies of features, which is ignored if the transform
is applied on static coefficients only. In [18] and [24], delta co-
efficients were not considered.

The third feature transform technique tested here, LDA, dif-
fers from PCA and ICA by utilizing class information. The goal
is to find basis vectors that maximize the ratio of between-class
variance to within-class variance.

It should be noted that the extra computational load caused
by applying any of these transformations occurs mainly in the
off-line training phase. The test phase consists of computing the
features in the usual way plus an additional multiplication once
per analysis frame with the transform matrix derived off-line
using the training data.

IV. CLASSIFICATION METHODS
A. K-Nearest Neighbors

The most straightforward classification method is nearest
neighbor classification. The K -nearest-neighbors (K -NN) clas-
sifier performs a class vote among the %k nearest training-data
feature vectors to a point to be classified [25, p. 182]. In our
implementation, the feature vectors were first decorrelated
using PCA and the Euclidean distance metric was used in the
transformed space. Averaging over 1-s-long segments was used
to reduce the amount of calculations and required storage space.

B. HMM

1) Description of the Model: A HMM [22, pp. 321-386] is
an effective parametric representation for a time-series of obser-
vations, such as feature vectors measured from natural sounds.
In this work, HMMs are used for classification by training a
HMM for each class, and by selecting the class with the largest
a posteriori probability.

2) Model Initialization: We used the maximum-likelihood
based Baum—Welch algorithm to train the “baseline” HMMs
for each class separately. The number of states (NS) and the
number of component densities per state (NC) was varied. The
models were initialized with a single Gaussian at each state, and
the component with the largest weight was then split until the
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desired value of NC was obtained. Each component split was
followed by 15 Baum—Welch iterations, or until the likelihood
converged.

3) Discriminative Training of HMMs: In applications
where computational resources are limited, we are forced to
use models with as few Gaussians as possible, since their
evaluation poses the computationally most demanding step in
the recognition phase. In these cases the HMM is not able to
fully represent the feature statistics and other approaches than
maximum likelihood parameter estimation may lead into better
recognition results. Discriminative training methods such as
the maximum mutual information (MMI) aim at maximizing
the ability to distinguish between the observation sequences
generated by the model of the correct class and those generated
by models of other classes [22, p. 363].

We used a discriminative training algorithm recently pro-
posed by Ben-Yishai and Burshtein [26]. The algorithm
is based on an approximation of the MMI. It starts from a
“baseline” model set trained with the Baum—Welch algorithm,
followed by an iterative discriminative training phase. At each
discriminative training iteration, new statistics for the model
parameters are accumulated not only from the observations
of the correct class, but also from a set of confusing classes.
The set of confusing classes is obtained by MAP classification
performed on the training set. An interested reader should refer
to [26] for more details of the algorithm.

V. EVALUATION
A. Experimental Setup

Two training and testing setups were formed from the sam-
ples. Setup 1 consisted of 155 recordings of 24 contexts that
were used for training and 70 recordings of 16 contexts were
tested. Random division of recordings into the training and tests
sets was done 100 times. The contexts selected into the test set
had to have at least five recordings from different locations at
different times. Setup 2 was used in the listening test and in the
direct comparison, and had two nonoverlapping sets of 45 sam-
ples from 18 different contexts in the test set.

Recognition accuracy obtained with different features using the GMM and 1-NN classifiers and 30 s of each test signal.

A higher level of abstraction may be sufficient for some
applications. Hence, the recordings were also categorized
into six high-level classes that are more general according to
some common characteristics. These classes are: 1) outdoors,
2) vehicles, 3) public/social, 4) offices/meetings/quiet, 5) home,
and 6) reverberant places. It should be noted that the allocation
of individual contexts into high-level classes is ambiguous;
many contexts can be associated with more than one high-level
class.

B. Results

1) Comparison of Features: In the first experiment, we com-
pared the accuracy obtained with different features. In this ex-
periment, classification performance was evaluated using leave-
one-out cross-validation on all the recorded data. The classifiers
were trained with all recordings except the one that was left out
for classification. In this way, the training data is maximally uti-
lized but the system has never heard the test recording before.
The overall recognition rate was calculated as the sample mean
of the recognition rates of the individual contexts.

The recognition rates obtained at the context level using in-
dividual features with two different classifiers, the 1-NN and
a one-state HMM (a GMM), are shown in Fig. 1. The test se-
quence duration was 30 s taken from the beginning of each test
recording and the duration of each training recording was 160 s.
The random guess rate for 24 classes is shown with the dashed
line in Fig. 1. The 1-NN classifier performs on the average better
than the GMM. This is indicative of complicated distributions
of many features, which are not well modeled with a GMM with
five diagonal-covariance Gaussians. The MFCC coefficients are
well modeled with a GMM. With 12 MFCC features, we ob-
tained a recognition accuracy of 63% using the GMM classifier,
and with ten band-energy features the recognition accuracy was
61% using the 1-NN classifier.

2) Discriminative Training: The second experiment studied
the HMM and the MFCC features in more detail. The MFCC
coefficients were augmented with the delta coefficients. We
trained models with different NSs and NCs, and varied the
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TABLE 1II

RECOGNITION ACCURACY USING ONE-STATE HMMs
WITH VARYING NUMBER OF COMPONENT DENSITIES

# Components Baum-Welch Discriminative
NC=1 57+4 60+4
NC=2 62+4 63+4
NC=3 64+4 65+4
NC=4 65+4 66+ 4
NC=5 65+4 66 +4

TABLE III

RECOGNITION ACCURACY (%) AND STANDARD DEVIATION USING
HMMs WITH VARYING TOPOLOGIES AND NUMBER OF STATES

Fully-Connected

Left-Right with Skips

# Stat Baum- Discriminati Baum- Discriminati
ates Welch ve Welch ve
NS=2 60 +4 62+4 -2 -2
NS=3 61 +5 64+5 62+ 4 64 +5
NS=4 63+5 65+5 63+5 65+5

“This topology is identical to the fully-connected with two states.

TABLE IV
RECOGNITION ACCURACY (%) AND STANDARD DEVIATION WHEN
CONFUSIONS WITHIN THE S1X HIGHER LEVEL CLASSES ALLOWED

# States Baum-Welch Discriminative
NS=2 75+£3 77+3
NS=3 VEX] 79+3
NS=4 77+4 79 +4

model topology. The second aim was to compare the baseline
maximum-likelihood training using the Baum-Welch algo-
rithm and discriminative training. The division into training
and test data was done according to Setup 1. The amount of
training data used from each recording was 160 s. In order to
obtain reliable accuracy estimates and to utilize the test data
efficiently, the recognition was performed in adjacent 30-s
windows with 25% overlap, and the final recognition result has
been averaged over the different train/test divisions, recognition
windows, recordings, and classes.

Tables II-IV show the results from this experiment. The base-
line models were obtained after 15 Baum—Welch iterations.
Three iterations of discriminative training were then applied on
the models obtained from Baum—Welch re-estimation. Using
an HMM with two or three states, or a one-state HMM with
two or three component densities gives acceptable accuracies
especially when discriminative training is used, taking into
account the low computational demand of having to evaluate
just a few diagonal covariance Gaussians.

3) Linear Feature Transforms: In the next experiment, we
evaluated the use of the three linear feature transforms: PCA,
ICA, and LDA. Table IV shows the recognition accuracies when
the different transforms were applied on a feature vector con-
sisting of concatenated MFCCs and their derivatives. On the
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TABLE V
RECOGNITION ACCURACY USING LINEAR FEATURE TRANSFORMS

No PCA ICA LDA
Transform
Context 61+3 62+3 62 +4 60+ 4
Higher 75+3 76+2 77+3 76+3
level
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Fig. 2. Recognition accuracy as a function of test sequence length for the
individual contexts and the six high-level classes. The left panel shows details
of a test sequence length less than 1 s; the shortest length 0.03 corresponds to a
single frame.

average, applying the ICA or PCA transforms gives a slight im-
provement in recognition accuracy (Table V). In these experi-
ments, we used a two-state HMM with one component density
per state.

In [24], the authors reported improvements in speech recogni-
tion over the baseline using MFCC coefficients without a trans-
form when these same transforms were applied either to the
log-energy outputs of the MFCC filter bank, or the static MFCC
coefficients. We made experiments also with these methods but
improvement over the baseline was observed only when the con-
catenated MFCCs and deltas were transformed.

4) Effect of Test Sequence Length: In Fig. 2, the recognition
rates obtained using the ICA transformed MFCC features and
two-state HMMs are presented when the length of the test se-
quence was varied. The results for the six high-level classes have
been derived from the results at the context level when confu-
sions within the higher level categories are allowed.

As expected, increasing the length of test sequence improves
the overall recognition rate. However, it takes rather long for
the result to converge (around 60 s). With less than 20 s of test
data, the recognition accuracy drops fast. Thus, this amount can
be regarded as the lower limit for reliable recognition. The left
panel shows the details with very short recognition sequence
lengths ranging from just a single frame (30 ms) to 1 s. Even
with these very short analysis segments some degree of accuracy
can be obtained.
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Fig. 3.

Confusion matrix of the listening test experiment using stereo samples.

The boxes indicate the high-level classes, which are (from left to right, top to

bottom) outdoors, vehicles, public/social, offices/meetings/quiet, home, and reverberant.

VI. HUMAN PERCEPTION OF AUDIO CONTEXTS

A. Setup of the Experiment

We also carried out an experiment on human recognition of
audio contexts in order to obtain a performance baseline for
the assessment of the system. This experiment was organized
in three listening tests.

1) Stimuli, Reproduction System, and Listening Conditions:
The stimuli for the listening tests were the recordings from the
Setup 2 as described in Section V-A. All stimuli employed in
this experiment were 1-min-long samples and were defined
using two levels of categorization: context and high-level
context.

All tests were performed in an ITU-R BS.1116-1 compliant
listening room [27]. Audio samples were reproduced at a nat-
ural sound level over a stereophonic setup using Genelec 1031A
loudspeakers placed at £30° in front of the listener. The test de-
sign and administration were performed using the Presentation
software [28]. This system allows very accurate monitoring of
the reaction time between sample replay and subject responses.

2) Description of the Three Listening Tests: The focus of
the main test was in studying the accuracy and reaction time
of humans in audio context recognition. The second test com-
pared the human ability in recognition with three different sound
configurations, namely, the monophonic, stereophonic, and bin-
aural reproduction techniques, in an assumed order of increasing
degree of spaciousness. A subset of 18 samples from nine dif-
ferent contexts was selected for each configuration in this part
of the experiment. For the binaural samples, crosstalk cancel-
lation filters were designed based on the MIT KEMAR HRTF
measurements [29] in order to obtain appropriate reproduction
of the signal over loudspeakers (i.e., a binaural to transaural
conversion).

The aim of the third test was to obtain a qualitative descrip-
tion of the recognition of auditory scenes. Subjects were asked
to listen to nine samples and rate the information they used in

the recognition process. After each stimulus, listeners filled in a
form in which they were asked to evaluate and rate on a six-point
discrete scale, how important different cues were in recognition
(0 accounted for a cue not used and 5 for a cue considered very
important).

In the three tests, subjects were instructed to try to recognize
the context as fast as possible. A list of possible contexts was
given to the test subjects. The list included also contexts not pre-
sented during the test. Recognition time was measured from the
starting time of the stimulus presentation to the first keyboard
press, after which the subject could select the context recog-
nized by an additional keyboard press.

Eighteen subjects participated in the test, which was designed
for two groups, each including the same number of stimuli and
identical contexts. This permitted the use of more samples from
the database, still keeping the total duration of the test within
1 h. The listening test started with a training session including
nine samples not included in the actual test to familiarize the
subjects with the user interface and the test setup.

B. Results of the Listening Test

Two measures were analyzed from this listening test, the
recognition rate and the reaction time for each stimulus. Sta-
tistical methods employed were different due to the different
nature of the two measures. First, recognition rate was analyzed
as a set of right or wrong answers using a nonparametric sta-
tistical procedure, i.e., the Friedman and Kruskal-Wallis tests.
For the reaction time, the statistical analysis was performed
with a classical parametric statistical procedure (ANOVA),
after discarding data considered as outliers.

1) Stereo Test: Rate was calculated for both context and
high-level context recognition. As a result, the average recog-
nition rate was 69% for contexts and 88% for the high-level
contexts. Fig. 3. presents the confusion matrix for this experi-
ment averaged over all listeners (differences between the two
groups are not significant). Context and high-level context with
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Fig. 4. Confusion matrix when the system was tested on the samples from the listening test. Compare this to Fig. 3. The boxes indicate the high-level classes,
which are (from left to right, top to bottom): Outdoors, vehicles, public/social, offices/meetings/quiet, home, and reverberant.

TABLE VI
RECOGNITION ACCURACY (%) FOR THE DIFFERENT
PRESENTATION TECHNIQUES

TABLE VII
CUES USED FOR AUDIO CONTEXT RECOGNITION

[}
(=1 - 2] 7]
S =} = B
Mono Stereo Binaural Average §2 =% g = S o = ]
Ez EE E2 E3 2 s £
Context 63 70 62 66 £ a8 £° - 2 Z 5
Higher-level 86 89 90 88 & © =
Cues used 67% 67% 64% 47% 32% 8%
Importance of 2.55 1.88 2.50 1.89 1.77 2.26
the cue

the highest recognition rate were respectively nature (96%) and
outdoors (97%), whereas those with the lowest rate were library
(35%) and office/other quiet places (76%). Reaction time was
also compared for the 18 contexts. Overall, the average reaction
time was 13 s, ranging from 5 s (nature) to 21 s (library).

2) Mono/Stereo/Binaural Test: In the analysis of the second
test, recognition rates were compared for monophonic, stereo-
phonic, and binaural presentations. The average rate for con-
text recognition with the three presentation techniques is shown
in Table VI. The recognition rate averaged over the three tech-
niques was 66% for context and it increased to 88% for high-
level contexts. Differences in recognition accuracy can be ob-
served between the different presentation techniques, especially
with the stereo configuration in the case of context recognition,
but this is not statistically significant overall. An average recog-
nition time of 14 s was found for all stimuli. Comparing now the
three presentation techniques, a significant difference was found
with lower average recognition time for the stereo and binaural
presentation (13 s) than the mono one (15 s).

3) Qualitative Test: In the last test, data on the qualitative
assessment of recognition cues was collected and analyzed.
The two measures computed from the questionnaire were a per-
centage of specific cues used in recognition (i.e., cue not used
for a 0 rating and cue used otherwise) and its importance for
the recognition process (i.e., an average of rates over subjects),
as shown in Table VII. As a result, it was found that human
activity and spatial information cues are most often used (67%

of cases), with a lower importance for spatial information, how-
ever (1.88 rating against 2.55 for human activity). Prominent
events were also mentioned as an important cue for recognition
with a rate of 2.50.

C. Conclusion of the Subjective Test

This listening test showed that humans are able to recognize
contexts in 69% of cases. The recognition rate increases to
88%, when considering high-level categorization of contexts
only. Recognition time was 13 s on average. It should be noted,
however, that reaction time for high-level context detection
alone would probably be significantly faster. Indeed, some of
the subjects reported that they could exclude most of the con-
texts fast, but the final decision between specific contexts from
the same high-level context class took more time. Differences
between the different reproduction techniques were also found,
but these were not statistically significant. The presentation
technique was only found to be significant for the reaction time.

D. Performance Comparison Between the System
and Human Listeners

A direct comparison between the system and the human
ability was made using exactly the same test samples and
reference classes as in the listening test. Figs. 3 and 4 show the
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averaged confusion matrices for the subjects and the system
on this test setup, respectively. The boxes indicate the six
high-level categories. The amount of test data given to the
system was 30 s, since the human subjects did not usually listen
through the whole 60 s. The averaged recognition accuracies of
the computer system are 58% and 82% against the accuracies
69% and 88% obtained in the listening test for contexts and
high-level classes, respectively.

VII. CONCLUSION

Building context aware applications using audio is feasible,
especially when high-level contexts are concerned. In com-
parison with the human ability, the proposed system performs
rather well (58% versus 69% for contexts and 82% versus 88%
for high-level classes for the system and humans, respectively).
Both the system and humans tend to make similar confusions
mainly within the high-level categories.

Computationally efficient recognition methods were eval-
uated. Quite reliable recognition can be achieved using only
a four-dimensional feature vector that represents subband
energies, and even simplistic one-dimensional features achieve
recognition accuracy significantly beyond chance rate. Dis-
criminative training leads to slightly but consistently better
recognition accuracies particularly for low-order HMM models.
Slight increase in recognition accuracy can also be obtained by
using PCA or ICA transformation of the mel-cepstral features.

The recognition rate as a function of the test sequence length
appears to converge only after about 30 to 60 s. Some degree of
accuracy can be achieved even in analysis frames below 1 s. The
average reaction time of human listeners was 14 s, i.e., some-
what smaller but of the same order as that of the system.
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Analysis of the Meter of Acoustic Musical Signals

Anssi P. Klapuri, Antti J. Eronen, and Jaakko T. Astola, Fellow, IEEE

Abstract—A method is decribed which analyzes the basic pat-
tern of beats in a piece of music, the musical meter. The analysis
is performed jointly at three different time scales: at the tempo-
rally atomic tatum pulse level, at the tactus pulse level which cor-
responds to the tempo of a piece, and at the musical measure level.
Acoustic signals from arbitrary musical genres are considered. For
the initial time-frequency analysis, a new technique is proposed
which measures the degree of musical accent as a function of time
at four different frequency ranges. This is followed by a bank of
comb filter resonators which extracts features for estimating the
periods and phases of the three pulses. The features are processed
by a probabilistic model which represents primitive musical knowl-
edge and uses the low-level observations to perform joint estima-
tion of the tatum, tactus, and measure pulses. The model takes into
account the temporal dependencies between successive estimates
and enables both causal and noncausal analysis. The method is val-
idated using a manually annotated database of 474 music signals
from various genres. The method works robustly for different types
of music and improves over two state-of-the-art reference methods
in simulations.

Index Terms—Acoustic signal analysis, music, musical meter
analysis, music transcription.

1. INTRODUCTION

ETER analysis, here also called rhythmic parsing, is an

essential part of understanding music signals and an in-
nate cognitive ability of humans even without musical educa-
tion. Perceiving the meter can be characterized as a process of
detecting moments of musical stress (accents) in an acoustic
signal and filtering them so that underlying periodicities are dis-
covered [1], [2]. For example, tapping a foot to music indicates
that the listener has abstracted metrical information about music
and is able to predict when the next beat will occur.

Musical meter is a hierarchical structure, consisting of pulse
sensations at different levels (time scales). Here, three metrical
levels are considered. The most prominent level is the tactus,
often referred to as the foot tapping rate or the beat. Following
the terminology of [1], we use the word beat to refer to the in-
dividual elements that make up a pulse. A musical meter can
be illustrated as in Fig. 1, where the dots denote beats and each
sequence of dots corresponds to a particular pulse level. By the
period of a pulse we mean the time duration between succes-
sive beats and by phase the time when a beat occurs with re-
spect to the beginning of the piece. The fatum pulse has its name
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Tatum .............................................
Tactus
Measure .
161 162 163 164 165 166 167
Time (seconds)
Fig. 1. Music signal with three metrical levels illustrated.

stemming from “temporal atom” [3]. The period of this pulse
corresponds to the shortest durational values in music that are
still more than incidentally encountered. The other durational
values, with few exceptions, are integer multiples of the tatum
period and the onsets of musical events occur approximately at
a tatum beat. The musical measure pulse is typically related to
the harmonic change rate or to the length of a rhythmic pattern.
Although sometimes ambiguous, these three metrical levels are
relatively well-defined and span the metrical hierarchy at the au-
rally most important levels. The tempo of a piece is defined as
the rate of the tactus pulse. In order that a meter would make
sense musically, the pulse periods must be slowly varying and,
moreover, each beat at the larger levels must coincide with a
beat at all the smaller levels.

The concept phenomenal accent is important for meter anal-
ysis. Phenomenal accents are events that give emphasis to a
moment in music. Among these are the beginnings of all dis-
crete sound events, especially the onsets of long pitched events,
sudden changes in loudness or timbre, and harmonic changes.
Lerdahl and Jackendoff define the role of phenomenal accents
in meter perception compactly by saying that “the moments of
musical stress in the raw signal serve as cues from which the
listener attempts to extrapolate a regular pattern™ [1, p. 17].

Automatic rhythmic parsing has several applications. A met-
rical structure facilitates cut-and-paste operations and editing
of music signals. It enables synchronization with light effects,
video, or electronic instruments, such as a drum machine. In
a disc jockey application, metrical information can be used
to mark the boundaries of a rhythmic loop or to synchronize
two audio tracks. Provided that a time-stretching algorithm is
available, rhythmic modifications can be made to audio signals
[4]. Rhythmic parsing for musical instrument digital interface
(MIDID)! data is required for time quantization, an indispensable
subtask of score typesetting from keyboard input [5]. The
particular motivation for the present work is to utilize metrical
information in further signal analysis and in music transcription

[6]-[8].

IA standard interface for exchanging performance data and parameters be-
tween electronic musical devices.

1558-7916/$20.00 © 2006 IEEE



KLAPURI et al.: ANALYSIS OF THE METER OF ACOUSTIC MUSICAL SIGNALS

A. Previous Work

The work on automatic meter analysis originated from algo-
rithmic models that attempted to explain how a human listener
arrives at a particular metrical interpretation of a piece. An ex-
tensive analysis of the early models has been given by Lee in [9]
and later augmented by Desain and Honing in [10]. In brief, the
early models performed meter analysis for symbolic data (im-
pulse patterns) and can be seen as being based on a set of rules
that were used to define what makes a musical accent and to
infer the most natural meter.

More recently, Rosenthal proposed a system to emulate the
human rhythm perception for piano performances, presented
as MIDI files [11]. Parncutt developed a detailed algorithmic
model of meter perception based on systematic listening tests
[12]. Brown analyzed the meter of musical scores by processing
the onset times and durations of note events using the autocorre-
lation function [13]. Large and Kolen used adaptive oscillators
which adjust their period and phase to an incoming pattern of
impulses, located at the onsets of musical events [14].

Temperley and Sleator [15] proposed a meter analysis algo-
rithm for arbitrary MIDI files by implementing the preference
rules that were described in verbal terms by Lerdahl and Jack-
endoff in [1]. Dixon proposed a rule-based system to track the
tactus pulse of expressive MIDI performances and introduced a
simple onset detector to make the system applicable for audio
signals [16]. The source codes of both Temperley’s and Dixon’s
systems are publicly available for testing.

Cemgil and Kappen developed a probabilistic generative
model for the timing deviations in expressive musical perfor-
mances [5]. Then, the authors used Monte Carlo methods to
infer a hidden continuous tempo variable and quantized ideal
note onset times from observed noisy onset times in a MIDI
file. A similar Bayesian model was independently proposed by
Raphael [17].

Goto and Muraoka were the first to achieve a reasonable
meter analysis accuracy for audio signals [18], [19]. Their
system operated in real time and was based on an architecture
where multiple agents tracked competing meter hypotheses.
Beat positions at the larger levels were inferred by detecting
certain drum sounds [18] or chord changes [19].

Scheirer proposed an approach to tactus tracking where no
discrete onsets or sound events are detected as a middle-step, but
periodicity analysis is performed directly on the half-wave recti-
fied (HWR) differentials of subband power envelopes [20]. The
source code of Scheirer’s system is publicly available. Sethares
and Staley took a similar approach, but used a periodicity trans-
form for periodicity analysis instead of a bank of comb filters
[21]. Laroche proposed a noncausal algorithm where spectral
change was measured as a function of time, the resulting signal
was correlated with impulse trains of different periods, and dy-
namic programming was used to find a continuous time-varying
tactus pulse [22].

Hainsworth and Macleod [23] developed a method which is
loosely related to that of Cemgil et al. [5]. They extracted dis-
crete onsets from an audio signal and then used particle filters to
associate the onsets to a time-varying tempo process and to find
the locations of the beats. Gouyon et al. proposed a system for
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detecting the tatum pulse in percussive audio tracks of constant
tempo [24].

In summary, most of the earlier work on meter analysis has
concentrated on symbolic (MIDI) data and typically analyzed
the tactus pulse only. Some of the systems [5], [14], [16], [17]
can be immediately extended to process audio signals by em-
ploying an onset detector which extracts the beginnings of dis-
crete acoustic events from an audio signal. Indeed, the authors
of [16] and [17] have introduced an onset detector themselves.
Elsewhere, onset detection methods have been proposed that are
based on using subband energies [25], an auditory model [26],
support vector machines [27], independent component analysis
[28], or a complex-domain distance measure [29]. However,
if a rhythmic parser has been originally developed for sym-
bolic data, the extended system is usually not robust to diverse
acoustic material (e.g., classical versus rock music) and cannot
fully utilize the acoustic cues that indicate phenomenal accents
in music signals.

There are a few basic problems that need to be addressed in
a successful meter analysis system. First, the degree of musical
accentuation as a function of time has to be measured. Some sys-
tems do this in a continuous manner [20], [21] whereas others
extract discrete onsets from an audio signal [18], [22], [24].
Second, the periods and phases of the underlying metrical pulses
have to be estimated. The methods which detect discrete events
as a middle-step have often used inter-onset-interval histograms
for estimating the periods [16], [18], [19], [24]. Third, a system
has to choose the metrical level which corresponds to the tactus
or some other specially designated pulse level. This may take
place implicitly, or by using a prior distribution for pulse pe-
riods [12] or by rhythmic pattern matching [18].

B. Proposed Method

The aim of this paper is to describe a method which analyzes
the meter of acoustic musical signals at the tactus, tatum, and
measure pulse levels. The target signals are not limited to any
particular music type but all the main Western genres, including
classical music, are represented in the validation database.

An overview of the method is shown in Fig. 2. For the
time-frequency analysis part, a technique is proposed which
aims at measuring the degree of accentuation in a music signal.
The technique is robust to diverse acoustic material and can be
loosely seen as a synthesis and generalization of two earlier
state-of-the-art methods [18] and [20]. Feature extraction for
estimating the pulse periods and phases is performed using
comb filter resonators very similar to those used by Scheirer in
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[20]. This is followed by a probabilistic model where the pe-
riod-lengths of the tactus, tatum, and measure pulses are jointly
estimated and temporal continuity of the estimates is modeled.
At each time instant, the periods of the pulses are estimated
first and act as inputs to the phase model. The probabilistic
models encode prior musical knowledge and lead to a more
reliable and temporally stable meter tracking. Both causal and
noncausal algorithms are presented.

This paper is organized as follows. Section II will describe the
different elements of the system shown in Fig. 2. Section III will
present experimental results and compare the proposed method
with two reference methods. The main conclusions will be sum-
marized in Section IV.

II. METER ANALYSIS MODEL

This section will describe the different parts of the meter anal-
ysis method illustrated in Fig. 2. Section II-A will describe the
time-frequency analysis part. In Section II-B, the comb filter
resonators will be introduced. Sections II-C and II-D will de-
scribe the probabilistic models which are used to estimate the
periods and phases of the three pulse levels.

A. Calculation of Bandwise Accent Signals

All the phenomenal accent types mentioned in the introduc-
tion can be observed in the time-frequency representation of a
signal. Although an analysis using a model of the human audi-
tory system might seem theoretically advantageous (since meter
is basically a cognitive phenomenon), we did not manage to ob-
tain a performance advantage using a model similar to [26] and
[30]. Also, the computational complexity of such models makes
them rather impractical.

In a time-frequency plane representation, some data reduc-
tion must take place to discard information which is irrelevant
for meter analysis. A big step forward in this respect was taken
by Scheirer who demonstrated that the perceived rhythmic con-
tent of many music types remains the same if only the power en-
velopes of a few subbands are preserved and then used to mod-
ulate a white noise signal [20]. Approximately five subbands
were reported to suffice. Scheirer proposed a method where pe-
riodicity analysis was carried out within the subbands and the
results were then combined across bands.

Although Scheirer’s method was indeed very successful,
a problem with it is that it applies primarily to music with a
“strong beat.” Harmonic changes for example in classical or
vocal music go easily unnoticed using only a few subbands.
In order to detect harmonic changes and note beginnings in
legato? passages, approximately 40 logarithmically-distributed
subbands would be needed.? However, this leads to a dilemma:
the resolution is sufficient to distinguish harmonic changes
but measuring periodicity at each narrow band separately is
no longer appropriate. The power envelopes of individual
narrow bands are not guaranteed to reveal the correct metrical

2A smooth and connected style of playing in which no perceptible gaps are
left between notes.

3In this case, the center frequencies are approximately one whole tone apart,
which is the distance between, e.g., the notes ¢ and d.

periods—or even to show periodicity at all, because individual
events may occupy different frequency bands.

To overcome the previous problem, consider another state-of-
the-art system, that of Goto and Muraoka [18]. They detect
narrow-band frequency components and sum their power dif-
ferentials across predefined frequency ranges before onset de-
tection and periodicity analysis takes place. This has the advan-
tage that harmonic changes are detected, yet periodicity analysis
takes place at wider bands.

There is a continuum between the previous two approaches.
The tradeoff is: how many adjacent subbands are combined be-
fore the periodicity analysis and how many at the later stage
when the bandwise periodicity analysis results are combined.
In the following, we propose a method which can be seen as a
synthesis of the approaches of Scheirer and Goto et al..

Acoustic input signals are sampled at 44.1-kHz rate and 16-b
resolution and then normalized to have zero mean and unity
variance. Discrete Fourier transforms (DFTs) are calculated in
successive 23-ms time frames which are Hanning-windowed
and overlap 50%. In each frame, 36 triangular-response band-
pass filters are simulated that are uniformly distributed on a crit-
ical-band scale between 50 Hz and 20 kHz [31, p. 176]. The
power at each band is calculated and stored to z;(k), where k
is the frame index and b = 1,2, ..., by is the band index, with
bo = 36. The exact number of subbands is not critical.

There are many potential ways of measuring the degree of
change in the power envelopes at critical bands. For humans,
the smallest detectable change in intensity AT is approximately
proportional to the intensity I of the signal, the same amount of
increase being more prominent in a quiet signal. Thatis, AT/T,
the Weber fraction, is approximately constant perceptually
[31, p. 134]. This relationship holds for intensities from about
20 dB to about 100 dB above the absolute hearing threshold.
Thus, it is reasonable to normalize the differential of power
with power, leading to (d/dt)zy(k)/xp(k) which is equal to
(d/dt) In(zy(k)) . This measures spectral change and can be
seen to approximate the differential of loudness, since the
perception of loudness for steady sounds is rougly proportional
to the sum of log-powers at critical bands.

The logarithm and differentiation operations are both repre-
sented in a more flexible form. A numerically robust way of
calculating the logarithm is the p-law compression

In(1 + s ()

ey

which performs a logarithmic-like transformation for (k) as
motivated above but behaves linearly near zero. The constant z
determines the degree of compression and can be used to adjust
between a close-to-linear (1 < 0.1) and a close-to-logarithmic
(> 10%*) transformation. The value p = 100 is employed, but
all values in the range [10, 10°] were found to perform almost
equally well.

To achieve a better time resolution, the compressed power en-
velopes y, (k) are interpolated by factor two by adding zeros be-
tween the samples. This leads to the sampling rate f,. = 172 Hz.
A sixth-order Butterworth low-pass filter with frp = 10 Hz
cutoff frequency is then applied to smooth the compressed and
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Fig. 3. Illustration of the dynamic compression and weighted differentiation
steps for an artificial signal. Upper panel shows x;, (k) and the lower panel shows
up(n).

interpolated power envelopes. The resulting smoothed signal is
denoted by z,(n).

Differentiation of z,(n) is performed as follows. First, an
HWR differential of z,(n) is calculated as

2’ (n) = HWR(zp(n) — zp(n — 1)) 2)

where the function HWR(z) = max(z, 0) sets negative values
to zero and is essential to make the differentiation useful. Then
a weighted average of z;(n) and its differential z;,’(n) is formed
as

up(n) = (1 — X)zp(n) + )\f{TP 2 (n) 3)

where 0 < A < 1 determines the balance between z;(n) and
2’ (n), and the factor f,./frp compensates for the fact that the
differential of a low-pass-filtered signal is small in amplitude. A
prototypical meter analysis system and a subset of our acoustic
database (see Section III) were used to thoroughly investigate
the effect of A. Values between 0.6 and 1.0 performed well and
A = 0.8 was taken into use. Using this value instead of 1.0
makes a slight but consistent improvement in the analysis accu-
racy.

Fig. 3 illustrates the described dynamic compression and
weighted differentiation steps for an artificial subband-power
signal z;(k). Although the present work is motivated purely
from a practical application point of view, it is interesting to
note that the graphs in Fig. 3 bear considerable resemblance
to the response of Meddis’s auditory-nerve model to acoustic
stimulation [32].

Finally, each mg adjacent bands are linearly summed to get
co = [bo/mq] accent signals at different frequency ranges ¢

cmo

>

b=(c—1)mo+1

ve(n) = up(n), c¢=1,...,co. 4

The accent signals v.(n) serve as an intermediate data repre-
sentation for musical meter analysis. They represent the degree
of musical accent as a function of time at the wider frequency
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bands (channels) c. We use by = 36 and mg = 9, leading to
Co = 4.

It should be noted that combining each m adjacent bands at
this stage is not primarily an issue of computational complexity,
but improves the analysis accuracy. Again, a prototypical meter
analysis system was used to investigate the effect of different
values of my. It turned out that neither of the extreme values
mqg = by or my = 1 is optimal, but using a large number of ini-
tial bands bg > 20 and three or four “accent bands” (channels)
co leads to the most reliable meter analysis. Other parameters
were re-estimated in each case to ensure that this was not merely
a symptom of parameter couplings. Elsewhere, at least Scheirer
[20] and Laroche [22] have noted that a single accent signal (the
case my = by) appears not to be sufficient as an intermediate
representation for rhythmic parsing.

The presented form of calculating the bandwise accent sig-
nals is very flexible when varying u, A, bg, and mg. A repre-
sentation similar to that used by Scheirer in [20] is obtained by
setting p = 0.1, A = 1, by = 6, my = 1. A representation
roughly similar to that used by Goto in [18] is obtained by set-
ting p = 0.1, A = 1, by = 36, my = 6. In the following, the
fixed values p = 100, A = 0.8, by = 36, mg = 9 are used.

B. Bank of Comb Filter Resonators

Periodicity of the bandwise accent signals v.(n) is analyzed
to estimate the salience (weight) of different pulse period can-
didates. Four different period estimation algorithms were eval-
uated: a method based on autocorrelation, another based on the
method of de Cheveigné and Kawahara [33], different types
of comb-filter resonators [20], and banks of phase-locking res-
onators [14].

As an important observation, three of the four period estima-
tion methods performed equally well after a thorough optimiza-
tion. This suggests that the key problems in meter analysis are in
measuring the degree of musical accentuation and in modeling
higher level musical knowledge, not in finding exactly the cor-
rect period estimator. The period estimation method presented in
the following was selected because it is by far the least complex
among the three best-performing algorithms, requiring only few
parameters and no additional postprocessing steps.

Using a bank of comb-filter resonators with a constant
half-time was originally proposed for tactus tracking by
Scheirer [20]. The comb filters that we use have an exponen-
tially-decaying impulse response where the half-time refers
to the delay during which the response decays to a half of its
initial value. The output of a comb filter with delay 7 for input
ve(n) is given by

re(r,n) = arre(r,n — 1) + (1 — ar)ve(n) (5)
where the feedback gain a., = 0.57/To is calculated based on a
selected half-time 7 in samples. We used a half-time equivalent
to3s,i.e., 7y = 3.0 s- f,., which is short enough to react to tempo
changes but long enough to reliably estimate pulse-periods of up
to 4 s in length.

The comb filters implement a frequency response where the
frequencies k f,./7,k = 0,..., |7/2] have a unity response and
the maximum attenuation between the peaks is ((1 — ;) /(1 +
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Fig. 4. Resonator energies for an impulse train with a period-length of 24
samples (left) and for white noise (right). Upper panels show the energies
7o(7,n) and the lower panels normalized energies s.(7, n).

- ))%. The overall power y(c,) of a comb filter with feedback
gain «, can be calculated by integrating over the squared im-
pulse response, which yields

Ylar) = = (©6)

A bank of such resonators was applied, with 7 getting values
from 1 to Typax, Where Tynax = 688 corresponds to 4 s. The
computational complexity of one resonator is O(1) per input
sample, and the overall resonator filterbank requires of the order
¢o frTmax Operations per second, which is not too demanding for
real-time applications.

Instantaneous energies 7. (7, n) of each comb filter in channel
c at time n are calculated as

n

flrm =1 3 rni)? )

i=n—1+1

These are then normalized to obtain

el = = (S0 )@

S 1=(ar) \ e(n)

where 9.(n) is the energy of the accent signal v.(n), calculated
by squaring v.(n) and by applying a leaky integrator, i.e., a res-
onator which has 7 = 1 and the same three-second half-time
as the other resonators. Normalization with () compensates
for the differences in the overall power responses for different
a.. The proposed normalization is advantageous because it pre-
serves a unity response at the peak frequencies and at the same
time removes a 7-dependent trend for a white-noise input.

Fig. 4 shows the resonator energies 7.(7,n)/9.(n) and the
normalized energies s.(7,n) for two types of artificial input
v.(n): an impulse train and a white-noise signal. It is important
to notice that all resonators that are in rational-number relations
to the period of the impulse train (24 samples) show response
to it. In the case of the autocorrelation function, for example,
only integer multiples of 24 come up and an explicit postpro-
cessing step was necessary to generate responses to the subhar-
monic lags and to achieve the same meter analysis performance.

This step is not needed for comb filter resonators where the con-
ceptual complexity and the number of free parameters, thus, re-
mains smaller.

Finally, a function s(7,n) which represents the overall
saliences of different metrical pulses at time 7 is obtained as

Co

8(7—7 n) = Z SC(T7 TL) 9

c=1

This function acts as the observation for the probabilistic
model that estimates the pulse periods.

For tatum period estimation, the discrete power spectrum
S(f,n) of s(r,n) is calculated as

2

1 Tmax

> (s(rom)c(r)em s =D/

Tmax =1
(10)
where the emphasis with f compensates for a spectral trend and
the window function () is half-Hanning

¢(r) =05 <1 — cos (—”(T _Ti;TmaX)>> .

The rationale behind calculating the DFT in (10) is that, by
definition, other pulse periods are integer multiples of the tatum
period. Thus, the overall function s(7,n) contains information
about the tatum and this is conveniently gathered for each
tatum-frequency candidate f using the DFT as in (10). For
comparison, Gouyon et al. [24] used an inter-onset-interval
histogram and Maher’s two-way mismatch procedure [34]
served the same purpose. Their idea was to find a tatum period
which best explained the multiple harmonically related peaks in
the histogram. Frequencies above 20 Hz can be discarded from
S(f,n), since tatum frequencies faster than this are very rare.

It should be noted that the observation s(7,7n) and its spec-
trum S(f,n) are zero-phase, meaning that the phases of the
pulses at different metrical levels have to be estimated using
some other source of information. As will be discussed in Sec-
tion II-D, the phases are estimated based on the states of the
comb filters, after the periods have been decided first.

S(fin)=f

Y

C. Probabilistic Model for Pulse Periods

Period-lengths of the metrical pulses can be estimated inde-
pendently of their phases and it is reasonable to compute the
phase only for the few winning periods.* Thus, the proposed
method finds periods first and then the phases (see Fig. 2). Al-
though estimating the phases is not trivial, the search problem
is largely completed when the period-lengths have been found.

Musical meter cannot be assumed to remain static over the
whole duration of a piece. It has to be estimated causally at suc-
cessive time instants and there must be some tying between the
successive estimates. Also, the dependencies between different
metrical pulse levels have to be taken into account. These re-
quire prior musical knowledge which is encoded in the proba-
bilistic model to be presented.

“4For comparison, Laroche [22] estimates periods and phases simultaneously,
at the expense of a larger search space. Here three pulse levels are being esti-
mated jointly and estimating periods and phases separately serves the purpose
of retaining a moderately-sized search space.
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For period estimation, a hidden Markov model that describes
the simultaneous evolution of four processes is constructed. The
observable variable is the vector of instantaneous energies of the
resonators, s(7,n), denoted s,, in the following. The unobserv-
able processes and the corresponding hidden variables are the
tatum period 7, tactus period 7>, and measure period 7C. As
a mnemonic for this notation, recall that the tatum is the tem-
porally atomic (A) pulse level, the tactus pulse is often called
“beat” (B), and the musical measure pulse is related to the har-
monic (i.e., chord) change rate (C). For convenience, we use
g, = [j, k1] to denote a “meter state,” equivalent to 7' = j,
7B = k,and 7¥ = 1. The hidden state process is a time-homoge-
nous first-order Markov model which has an initial state distri-
bution P(gq,) and transition probabilities P(q,, | ¢,_;)- The
observable variable is conditioned only on the current state, i.e.,
we have the state-conditional observation densities p(s, | g,,)-

The joint probability density of a state sequence ) =

(¢19> - - - q) and observation sequence O = (8181 ...8y) can
be written as
N
p(Q,0) = P(q)p(s1 | @) [[ P(an | €0_1)p(s5n | €)
n=2
(12)

where the term P(q,, | g,,_,) can be decomposed as

P(qn | qn—l)

=P(7) |0 P(7 |77 4o (7 | 70 70 4mn). (13)

It is musically meaningful to assume that
P(TS|TE7T:1\7qn—1):P( Tn | n?qn—l) (14)

i.e., given the tactus period, the tatum period does not give ad-
ditional information regarding the measure period. We further
assume that given B "1, the other two hidden varlables at time
n—1 give no additional information regarding 72. For the tatum
and measure periods 7¢,i € {A, C}, we assume that given 7 _,
and 72, the other two hldden Varlables at time n — 1 give no
addrtronal information regarding ¢ . It follows that (13) can be
written as

P(qn |qn 1)

=P(rp | P | mo i )P |y, q)- (15)

Using the same assumptions, P(q, ) is decomposed and simpli-
fied as

P(q)) = PP | P)P(C | 7P). (16)

The described modeling assumptions lead to a structure
which is represented as a directed acyclic graph in Fig. 5.
The arrows in the graph represent conditional dependencies
between the variables. The circles denote hidden variables and
the observed variable is marked with boxes. The tactus pulse
has a central role in meter perception and it is not by chance

that the other two variables are drawn to depend on it [1, pp.
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Fig. 5. Hidden Markov model for the temporal evolution of the tatum, beat,
and measure pulse periods.

73-74]. The assumption in (14) is not valid if the variables are
permuted.

1) Estimation of the State-Conditional Observation Likeli-
hoods: The remaining problem is to find reasonable estimates
for the model parameters, i.e., for the probabilities that appear
in (12)—(16). In the following, we ignore the time indexes for
a while for simplicity. The state-conditional observation likeli-
hoods p(s | q) are estimated from a database of musical record-
ings where the musical meter has been hand-labeled (see Sec-
tion IIT). However, the data is very limited in size compared to
the number of parameters to be estimated. Estimation of the state
densities for each different ¢ = [j, k, (] is impossible since each
of the three discrete hidden variables can take on several hun-
dreds of different values. By making a series of assumptions we
arrive at the following approximation for p(s | q):

ssla=Lik ) osis0s(5)  an
where s(7) and S(f) are as defined in (9)—(10), omitting the
time indexes. The Appendix presents the derivation of (17) and
the underlying assumptions in detail. An intuitive rationale of
(17) is that a truly existing tactus or measure pulse appears as a
peak in s(7) at the lag that corresponds to the pulse period. Anal-
ogously, the tatum period appears as a peak in S(f) at the fre-
quency that corresponds to the inverse of the period. The product
of these three values correlates approximately linearly with the
likelihood of the observation given the meter.

2) Estimation of the Transition and Initial Probabilities: In
(15), the term P(7* | 72, 77*_ ) can be decomposed as

P(TA|TB 7_A ):P( | ) ( Tn s T, |T’;L\ 1)
n ny'n=1 Tn -1 ( | )P<TT]1_3,|7_A )
(18)

where the first factor represents transition probabilities between
successive period estimates and the second term represents the
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the periods are slowly-varying.

7i/7i ) which describes the tendency that

relation dependencies of simultaneous periods, 7* and 72, in-
dependent of their actual frequencies of occurrence (in practlce
7B tends to be integer multiple of 7). Similarly

P(ry, 7 | 7i1)
P Cc|.B . C -p Cc,.C n Tn— .
(Tn |Tn 7Tn—1) (Tn |Tn_1)P(TS|’Tn_1)P( T]L3|TS 1)
(19)
The transition probabilities P(7¢ | 7¢_;), i € {A,B,C}

between successive period estimates are obtarned as follows.
Again, the number of possible transitions is too large for any rea-
sonable estimates to be obtained by counting occurrences. The
transition probability is modeled as a product of the prior proba-
bility for a certain period, P(7}), and a term f (7. /7% _,) which
describes the tendency that the periods are slowly-varying

P(7y, 1) i ( uf )
— =~ P(7 :
P(r)P(7, 1) )] 743_1(20)

n—1
. : 2
T 1 1 T
g = exp |——= [In | =2 21
1) v () | @

implements a normal distribution as a function of the logarithm
of the ratio of successive period values. It follows that the like-
lihood of large changes in period is higher for long periods, and
that period doubling and halving are equally probable. The pa-
rameter 0; = 0.2 was found by monitoring the performance of
the system in simulations. The distribution (21) is illustrated in
Fig. 6.5

Prior probabilities for tactus period lengths, P(72), have
been measured from actual data by several authors [12], [35],
[36]. As suggested by Parncutt [12], we apply the two-param-
eter lognormal distribution

i\ __ 1 1 Ti 2
10 = o g (0 () ) | @

where m and o' are the scale and shape parameters, respec-
tively. For the tactus period, the values m = 0.55 and 0B =
0.28 were estimated by counting the occurrences of different
period lengths in our hand-labeled database (see Section III)
and by fitting the lognormal distribution to the histogram data.
The parameters depend somewhat on genre [35], [36] but since
the genre is generally not known, common parameter values are
used here. Fig. 7 shows the period-length histograms and the
corresponding lognormal distributions for the tactus, measure,

P(7y | Tyy) = P(ri)

where i € {A, B, C}. The function f

SFor comparison, Laroche uses a cost function where tempo changes ex-
ceeding a certain threshold are assigned a fixed cost and smaller tempo changes
cause no cost at all [22].
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Fig. 8. Distribution g(x) which models the relation dependencies of

simultaneous periods [see (25)].

and tatum periods. The scale and shape parameters for the tatum
and measure periods are m® = 0.18, o = 0.39, m© = 2.1,
and o€ = 0.26, respectively. These were estimated from the
hand-labeled data in the same way.

The relation dependencies of simultaneous periods are mod-
eled as follows. We model the latter terms in (18)—(19) as

P A B
(Tn7 Tn 1) ~g T_ (23)
P(r | 7k )P(TBI 1) 4
C
PSP ne) (O o
P(Tnc | 7—7'1,—1)}—)(7—1]13 | 7—n—l) TB
where g(z) is a Gaussian mixture density of the form
9
z) =Y wN(z;l,00) (25)
1=1

where w; are the component weights and sum to unity, [ are
the component means, and oo = 0.3 is the common variance.
The function models the relation dependencies of simultaneous
periods, independent of their actual frequencies of occurrence.
The exact weight values are not critical, but are designed to re-
alize a tendency toward binary or ternary integer relationships
between concurrent pulses. For example, it happens quite often
that one tactus period consists of two, four, or six tatum periods,
but multiples five and seven are much less likely in music and,
thus, have lower weights. The distribution is shown in Fig. 8.
The Gaussian mixture model was employed to allow some de-
viation from strictly integral ratios. In theory, the period-lengths
should be precisely in integral ratios but, in practice, there are in-
accuracies since the period candidates are chosen from discrete
vectors s,, and S,,. These inaccuracies are conveniently handled
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by choosing an appropriate value for o2 in the previous model.
The weights w; were obtained by first assigning them values
according to a musical intuition. Then the dynamic range of the
weights was found by raising them to a common power which
was varied between 0.1 and 10. The value which performed best
in small-scale simulations was selected. Finally, small adjust-
ments to the values were made.

It should be noted that here the model parameters were spec-
ified in part by hand, considering one probability distribution at
atime. It seems possible to devise an algorithm that would learn
the model parameters jointly by Bayesian optimization, that is,
by maximizing the posterior probability of training data given
the prior distributions. However, even after all the described
modeling assumptions and simplifications, deriving an expecta-
tion-maximization algorithm [37] for the described model, for
example, is not easy and such an algorithm does not exist at the
present time.

3) Finding the Optimal Sequence of Period Estimates: Now
we must obtain an estimate for the unobserved state variables
given the observed resonator energies and the model parameters.
We do this by finding the most likely sequence of state variables
Q = (¢145 - - - q) given the observed data O = (s181...8n).
This can be straighforwardly computed using the Viterbi algo-
rithm widely applied in speech recognition [38]. Thus, we seek
the sequence of period estimates

Q = arg max (r(Q,0)) (26)

where p(Q,O) denotes the joint probability density of the
hidden and observed variables (see (12)).

In a causal model, the meter estimate g,, at time n is deter-
mined according to the end-state of the best partial path at that
point in time. A noncausal estimate after seeing a complete se-
quence of observations can be computed using backward de-
coding.

Evaluating all the possible path candidates would be compu-
tationally very demanding. Therefore, we apply a suboptimal
beam-search strategy and evaluate only a predefined number of
the most promising path candidates at each time instant. The se-
lection of the most promising candidates is made using a greedy
selection strategy. Once in a second, we select K best can-
didates independently for the tatum, tactus, and measure pe-
riods. The number of candidates K = 5 was found to be safe
and was used in simulations. The selection is made by maxi-
mizing p(7)p(s, | 7i) for i € {A,B,C}. The probabilities
in (23)—(24) could be included to ensure that the selected can-
didates are consistent with each other, but in practice this is
unnecessary. After selecting the best candidates for each, we
need only to compute the observation likelihoods for K? =
125 meter candidates, i.e., for the different combinations of the
tatum, tactus, and measure periods. This is done according to
(17) and the results are stored into a data vector. The transi-
tion probabilities are computed using (15) and stored into a
125-by-125 matrix. These data structures are then used in the
Viterbi algorithm.
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Fig. 9. Rectangle indicates the observation matrix RE for tactus phase
estimation at time n (here period T2 is 0.51 s.). Dashed line shows the correct
phase in this case.

D. Phase Estimation

The phases of the three pulses are estimated at successive time
instants, after the periods have been decided at these points. We
use 71,4 € {A,B,C} to refer to the estimated periods of the
tatum, tactus, and measure pulses at time n, respectively. The
corresponding phases of the three pulses, !, are expressed as
“temporal anchors,” i.e., time values when the nearest beat unit
occurs with respect to the beginning of a piece. The periods and
phases 7 and ¢! completely define the meter at time 7.

In principle, the phase of the measure pulse, S, determines
the phases of all the three levels. This is because in a well-
formed meter each measure-level beat must coincide with a
beat at all the lower metrical levels. However, determining the
phase of the measure pulse is difficult and turned out to require
rhythmic pattern matching techniques, whereas tactus phase es-
timation is more straightforward and robust. We therefore pro-
pose a model where the tactus and measure phases are estimated
separately using two parallel models. For the tatum pulse, phase
estimation is not needed but the tactus phase can be used.

Scheirer proposed using the state vectors of comb filters to
determine the phase of the tactus pulse [20]. This is equivalent
to using the latest 7 outputs of a resonator with delay 7. We have
resonators at several channels ¢ and, consequently, an output
matrix r.(7,j) where ¢ = 1,2,. .., ¢q is the channel index and
the phase index j takes on values between n — 7+ 1 and n» when
estimation is taking place at time n. For convenience, we use R,
to denote the output matrix (7%, j) of a found pulse period 7%
and the notation (RY).. ; to refer to the individual elements of
Ri . The matrix R acts as the observation for phase estimation
at time n.

Fig. 9 shows an example of the observation matrix R2 when
tactus phase estimation is taking place 20 s after the beginning of
a piece. The four signals at different channels are the outputs of
the comb filter which corresponds to the estimated tactus period
#B = 0.51 s. The output matrix RZ contains the latest 0.51 s of
the output signals, as indicated with the rectangle. The correct
phase (7 is marked with a dashed line.

Two separate hidden Markov models are evaluated in parallel,
one for the tactus phase and another for the measure phase. No
joint estimation is attempted. The two models are very similar
and differ only in how the state-conditional observation densi-
ties are defined. In both models, the observable variable is the
output matrix R of the resonator 72 which corresponds to the
found pulse period. The hidden variable is the phase of the pulse,
¢!, taking on values between n— 7% + 1 and n. The hidden state
process is a time-homogenous first-order Markov model which
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has an initial state distribution P(7) and transition probabili-
ties P(¢,, | ¢n—1). The observable variable is conditional only
on the current state, thus, we have the state-conditional obser-
vation densities p(R¢, | ).

Again, the remaining problem is to find reasonable estimates
for the model parameters. State-conditional observation likeli-
hoods p(RE | ©2) for the tactus pulse are approximated as

co

p(RY | o = 35) o< Y (co = ¢+ 2)(R2)e

c=1

27)

where ¢ = 1 corresponds to the lowest frequency channel. That
is, the likelihood is proportional to a weighted sum of the res-
onator outputs across the channels. Across-band summing is in-
tuitively meaningful and earlier used in [20] and [30]. Empha-
sizing the low frequencies is motivated by the “stable bass” rule
as stated in [1], and improved the robustness of phase estimation
in simulations. The exact weight values are not critical.

For the purpose of estimating the phase of the measure pulse,
a formula for the state-conditional observation likelihoods anal-
ogous to that in (27) is derived, but so that different channels are
weighted and delayed in a more complex manner. It turned out
that rhythmic pattern matching of some kind is necessary to an-
alyze music at this time scale and to estimate the measure phase
©C based on the output matrix RS. That is, no simple formula
such as (27) exists. The drawback of this is that rhythmic pat-
tern matching is more genre-specific than for example the stable
bass rule which appears to be quite universal. In the case that the
system would have access to the pitch content of an incoming
piece, the points of harmonic change might serve as cues for es-
timating the measure phase in a more straightforward manner.
However, this remains to be proved. Estimation of the higher
level metrical pulses in audio data has been earlier attempted by
Goto and Muraoka who resorted to pattern matching [18] or to
straightforward chord change detection [19]. The method pre-
sented in the following is the most reliable that we found.

First, a vector h, () is constructed as

co 3
h(1) =3 ek (RS )e ik t.m)

c=1 k=0

(28)

where
1=0,1,...,75 -1 (29)
~C

k
Gk n)=n—7S+1+ <<l+ %) mod %,S?) (30)

and (z mod y) denotes modulus after division. The scalars 7, x
are weights for the resonator outputs at channels ¢ and with de-
lays k. The weights 7., are used to encode a typical pattern
of energy fluctuations within one measure period, so that the
maximum of h,,(l) indicates the measure phase. The delay £ is
expressed in quarter-measure units so that k& corresponds to the
delay k7€ /4. For example, a simple pattern consisting of two
events, a low-frequency event (at channel ¢ = 1) in the begin-
ning of a measure (k = 0) and a loud event in the middle of the
measure (k = 2), could be represented by defining the weights
71,0 = 3 (low), 10,2 = 1 forall ¢ (loud), and 7, . = 0 otherwise.

Two rhythmic patterns were found that generalized quite well
over our database. The weight matrices 77£1’2 and 7752,3 of these
patterns are given in the Appendix and lead to the corresponding
s (1) and S (1). The patterns were found by trial and error,
trying out various arrangements of simple atomic events and
monitoring the behavior of h,,(l) against manually annotated
phase values. Both of the two patterns can be characterized as a
pendulous motion between a low-frequency event and a high-in-
tensity event. The first pattern can be summarized as “low, loud,
—, loud,” and the second as “low, —, loud, —” The two patterns
are combined into a single vector to perform phase estimation
according to whichever pattern matches better to the data

h3D(1) = max (hgﬁ(l), h§3>(1)) . 31)
The state-conditional observation likelihoods are then defined
as

P(RS | 8 =) oc AP (j = (n— 75 +1)).  (32)

Obviously, the two patterns imply a binary time signature: they
assume that one measure period consists of two or four tactus
periods. Analysis results for ternary meters will be separately
discussed in Section III-C.

Other pattern-matching approaches were evaluated, too. In
particular, we attempted to sample RS at the times of the tactus
beats and to train a statistical classifier to choose the beat which
corresponds to the measure beat (see [36] for further elaboration
on this idea). However, the methods were basically equivalent to
that described previously, yet less straightforward to implement
and performed slightly worse.

Transition probabilities P(¢f, | ¢¢ _;) between successive
phase estimates are modeled as follows. Given two phase esti-
mates (i.e., beat occurrence times), the conditional probability
which ties the successive estimates is assumed to be normally
distributed as a function of a prediction error e which measures
the deviation of !, from the predicted next beat occurence time
given the previous beat time ¢!, _; and the period 7!

P(g | ¢ ) = ——e ( —62) (33)
Qan wn—l o3 27‘(’ p 2J§

where

1 i i 7 i T
6:7@_13{[0(’0"_@”_1'-1_?) mod'rn] —7} (34)

and o3 = 0.1 is common for ¢ € {B, C}. In (34), it should be
noted that any integer number of periods 7% may elapse between
¢!, and ¢, Since estimates are produced quite frequently
compared to the pulse rates, in many cases ¢!, = ¢! ;. The
initial state distributions P((!) are assumed to be uniform.
Using (27), (32), and (33), causal and noncausal computation
of phase is performed using the Viterbi algorithm as described
in Section II-C. Fifteen phase candidates for both the winning
tactus and the winning measure period are generated once in
a second. The candidates are selected in a greedy manner by
picking local maxima in p(R!, | ¢, = j). The corresponding
probability values are stored into a vector and transition proba-
bilities between successive estimates are computed using (33).
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E. Sound Onset Detection and Extrametrical Events

Detecting the beginnings of discrete acoustic events
one-by-one has many uses. It is often of interest whether
an event occurs at a metrical beat or not, and what is the exact
timing of an event with respect to its ideal metrical position.
Also, in some musical pieces there are extrametrical events,
such as triplets, where an entity of, e.g., four tatum periods is
exceptionally divided into three parts, or grace notes which
are pitched events that occur shortly before a metrically stable
event.

In this paper, we used an onset detector as a front-end to one
of the reference systems (designed for MIDI input) to enable
it to process acoustic signals. Rather robust onset detection is
achieved by using an overall accent signal v(n) which is com-
puted by setting mg = bg in (4). Local maxima in v(n) represent
onset candidates and the value of v(n) at these points reflects the
likelihood that a discrete event occurred. A simple peak-picking
algorithm with a fixed threshold level can then be used to dis-
tinguish genuine onsets from the changes and modulations that
take place during the ringing of a sound. Automatic adaptation
of the threshold would presumably further improve the detec-
tion accuracy.

III. RESULTS

This section looks at the performance of the proposed method
in simulations and compares the results with two reference sys-
tems. Also, the importance of different processing elements will
be validated.

A. Experimental Setup

Table I shows the statistics of the database® that was used to
evaluate the accuracy of the proposed meter analysis method
and the two reference methods. Musical pieces were collected
from CD recordings, downsampled to a single channel, and
stored to a hard disc using 44.1-kHz sampling rate and 16-b
resolution. The database was created for the purpose of musical
signal classification in general and the balance between genres
is according to an informal estimate of what people listen to.

The metrical pulses were manually annotated for approxi-
mately one-minute long excerpts which were selected to rep-
resent each piece. Tactus and measure-pulse annotations were
made by a musician who tapped along with the pieces. The tap-
ping signal was recorded and the tapped beat times were then
detected semiautomatically using signal level thresholding. The
tactus pulse could be annotated for 474 of a total of 505 pieces.
The measure pulse could be reliably marked by listening for 320
pieces. In particular, annotation of the measure pulse was not at-
tempted for classical music without the musical scores. Tatum
pulse was annotated by the first author by listening to the pieces
together with the annotated tactus pulse and by determining the
integer ratio between the tactus and the tatum period lengths.
The integer ratio was then used to interpolate the tatum beats
between the tapped tactus beats.

Evaluating a meter analysis system is not trivial. The issue
has been addressed in depth by Goto and Muraoka in [39]. As

%Details of the database can be found online at URL

http://www.cs.tut.fi/~klap/iiro/meter.

TABLE 1
STATISTICS OF THE EVALUATION DATABASE

# Pieces with annotated pulses

Genre Tatum  Tactus Measure
Classical 69 84 0
Electronic / dance 47 66 62
Hip hop / rap 22 37 36
Jazz / blues 70 94 71
Rock / pop 114 124 101
Soul / RnB / funk 42 54 46
Unclassied 12 15 4
Total 376 474 320

suggested by them, we use the longest continuous correctly an-
alyzed segment as a basis for measuring the performance. This
means that one inaccuracy in the middle of a piece leads to
50% performance. The longest continuous sequence of correct
pulse estimates in each piece is sought and compared to the
length of the segment which was given to be analyzed. The
ratio of these two lengths determines the performance rate for
one piece and these are then averaged over all pieces. However,
prior to the meter analysis, all the algorithms under considera-
tion were given a 4-s “build-up period” in order to make it the-
oretically possible to estimate the correct period already from
the beginning of the evaluation segment. Also, it was taken care
that none of the input material involved tempo discontinuities.
More specifically, the interval between two tapped reference
beat times (pulse period) does not change more than 40% at a
time, between two successive beats. Other tempo fluctuations
were naturally allowed.

A correct period estimate is defined to deviate less than 17.5%
from the annotated reference and a correct phase to deviate from
an annotated beat time less than 0.175 times the annotated pe-
riod length. This precision requirement has been suggested in
[39] and was found perfectly appropriate here since inaccuracies
in the manually tapped beat times allow meaningful comparison
of only up to that precision. However, for the measure pulse, the
period and phase requirements were tightened to 10% and 0.1,
respectively, because the measure-period lengths are large and
allow the creation of a more accurate reference signal. For the
tatum pulse, tactus phase is used and, thus, the phase is correct
always when the tactus phase is correct, and only the period has
to be considered separately.

Performance rates are given for three different criteria [39].

e Correct: A pulse estimate at time n is accepted if both its
period and phase are correct.

e Accept d/h: Consistent period doubling or halving is
accepted. More exactly, a pulse estimate is accepted if
its phase is correct, the period matches either 0.5, 1.0, or
2.0 times the annotated reference, and the factor does not
change within the continuous sequence. Correct meter
analysis is taking place but a wrong metrical level is
chosen to be, e.g., the tactus pulse.

* Period correct: A pulse estimate is accepted if its period
is correct. Phase is ignored. For the tactus pulse, this can
be interpreted as the tempo estimation accuracy.

Which is the single best number to characterize the perfor-

mance of a pulse estimator? This was investigated by auralizing
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TABLE 1I
TACTUS ANALYSIS PERFORMANCE (%) OF DIFFERENT METHODS

Continuity required Individual estimates

Method Correct Accept d/h Period c. Correct Accept d/h Period c.
Causal 57 68 74 63 78 76
Noncausal 59 73 74 64 80 75
Scheirer [20] 27 31 30 48 69 57
Dixon [16] 7 26 10 15 53 25
O+Dixon 12 39 15 22 63 30

meter analysis results.” It was observed that temporal continuity
of correct meter estimates is indeed very important aurally [1,
pp. 74,104]. Second, phase errors are very disturbing. Third, pe-
riod doubling or halving is not very disturbing; tapping consis-
tently twice too fast or slow does not matter much and selecting
the correct metrical level is in some cases ambiguous even for
a human listener [12]. In summary, it appears that the “accept
d/h” criterion gives a single best number to characterize the per-
formance of a system.

B. Reference Systems

To put the results in perspective, two reference methods are
used as a baseline in simulations. This is essential because the
principle of using a continuous sequence of correct estimates for
evaluation gives a somewhat pessimistic picture of the absolute
performance.

The methods of Scheirer [20] and Dixon [16] are very dif-
ferent, but both systems represent the state-of-the-art in tactus
pulse estimation and their source codes are publicly available.
Here, the used implementations and parameter values were
those of the original authors. However, for Scheirer’s method,
some parameter tuning was made which slightly improved the
results. Dixon developed his system primarily for MIDI-input,
and provided only a simple front-end for analyzing acoustic
signals. Therefore, a third system denoted “O+Dixon” was
developed where an independent onset detector (described
in Section II-E) was used prior to Dixon’s tactus analysis.
Systematic phase errors were compensated for.

C. Experimental Results

In Table II, the tactus tracking performance of the proposed
causal and noncausal algorithms is compared with those of the
two reference methods. As the first observation, it was noticed
that the reference methods did not maintain the temporal conti-
nuity of acceptable estimates. For this reason, the performance
rates are also given as percentages of individual acceptable esti-
mates (right half of Table II). Dixon’s method has difficulties in
choosing the correct metrical level for tactus, but performs well
according to the “accept d/h” criterion when equipped with the
new onset detector. The proposed method outperforms the pre-
vious systems in both accuracy and temporal stability.

Table III shows the meter analysis performance of the pro-
posed causal and noncausal algorithms. As for human listeners,
meter analysis seems to be easiest at the tactus pulse level. For
the measure pulse, period estimation can be done robustly but

7Samples are available at URL http://www.cs.tut.fi/~klap/iiro/meter.

TABLE III
METER ANALYSIS PERFORMANCE OF THE PROPOSED METHOD

Continuity required Individual estimates

Method Pulse  Correct Accept d/h Period Correct Accept d/h Period

Causal Tatum 44 57 62 51 72 65
Tactus 57 68 74 63 78 76
Measure 42 48 78 43 51 81

Non- Tatum 45 63 62 52 74 65

causal  Tactus 59 73 74 64 80 75
Measure 46 54 79 47 55 81

estimating the phase is difficult. A reason for this is that in a
large part of the material, a drum pattern recurs twice within
one measure period and the system has difficulties in choosing
which one is the first. In the case that 7-phase errors (each beat is
displaced by a half-period) would be accepted, the performance
rate would be essentially the same as for the tactus pulse. How-
ever, m-phase errors are disturbing and should not be accepted.

For the tatum pulse, in turn, deciding the period is difficult.
This is because the temporally atomic pulse rate typically comes
up only occasionally, making temporally stable analysis hard
to attain. The method often has to halve its period hypothesis
when the first rapid event sequence occurs. This appears in the
performance rates so that the method is not able to produce a
consistent tatum period over time but alternates between, e.g.,
the reference and double the reference. This degrades the tem-
porally continuous rate, although the “accept d/h” rate is very
good for individual estimates. The produced errors are not very
disturbing when listening to the results.

As mentioned in Section II-D, the phase analysis of the mea-
sure pulse using rhythmic patterns assumes a binary time signa-
ture. Nine percent of the pieces in our database have a ternary
(3/4) meter but, unfortunately, most of these represent the clas-
sical genre where the measure pulse was not annotated. Among
the other genres, there were only five pieces with ternary meter.
For these, the measure-level analysis was approximately twice
less accurate than for the rest of the database. For the tactus and
tatum, there were 41 and 30 annotated ternary pieces, respec-
tively, and no significant degradation in performance was ob-
served. On the contrary, the ternary pieces were rhythmically
easier than the others within the same genre.

Fig. 10 shows the “accept d/h” (continuity required) perfor-
mance rates for the proposed causal system within different
musical genres. For classical music, the proposed method is
only moderately successful, although, e.g., the tactus estima-
tion error rate still outperforms the performance of the reference
methods for the whole material (31% and 26% for Scheirer’s
and Dixon’s methods, respectively). However, this may suggest
that pitch analysis would be needed to analyze the meter of clas-
sical music. In jazz music, the complexity of musical rhythms
is higher on the average and the task, thus, harder.

D. Importance of the Different Parts of the Probability Model

Table IV shows the performance rates for different system
configurations. Different elements of the proposed model were
disabled in order to evaluate their importance. In each case, the
system was kept otherwise fixed. The baseline method is the
noncausal system.
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Hip hop / rap
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Fig. 10. Performance of the proposed causal system within different musical
genres. The “accept d/h” (continuity required) percentages are shown for the
tatum (white), tactus (gray), and measure pulses (black).

TABLE IV
METER ANALYSIS PERFORMANCE (%) FOR DIFFERENT
SYSTEM CONFIGURATIONS

Continuity required,  Individual estimates,

accept d/h accept d/h
Method Tatum Tactus Measure Tatum Tactus Measure
0. Baseline 63 73 54 74 80 55
1. No joint estim. 58 68 49 71 75 50

2. No temporal proc. 45 54 31 72 77 50
3. Neither of the two 41 50 25 70 72 44

In the first test, the dependencies between the different pulse
levels were broken by using a noninformative (flat) distribution
for g(z) in (25). This slightly degrades the performance in all
cases. In the second test, the dependencies between temporally
successive estimates were broken by using a noninformative dis-
tribution for the transition probabilities between successive pe-
riod and phase estimates, P(7% | 7¢ ;) and P(¢¢, | @i 1), re-
spectively. This degrades the temporal stability of the estimates
considerably and, hence, collapses the performance rates which
use the longest continuous correct segment for evaluation. In
the third case, the both types of dependencies were broken.
The system still performs moderately, indicating that the initial
time-frequency analysis method and the comb-filter resonators
provide a high level of robustness.

IV. CONCLUSION

A method has been described which can successfully analyze
the meter of acoustic musical signals. Musical genres of very di-
verse types can be processed with a common system configura-
tion and parameter values. For most musical material, relatively
low-level acoustic information can be used, without the need to
model the higher level auditory functions such as sound source
separation or multipitch analysis.

Similarly to human listeners, computational meter analysis
is easiest at the tactus pulse level. For the measure pulse, pe-
riod estimation can be done equally robustly but estimating the
phase is less straightforward. Either rhythmic pattern matching
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or pitch analysis seems to be needed to analyze music at this
time scale. For the tatum pulse, in turn, phase estimation is not
difficult at all, but deciding the period is very difficult for both
humans and a computational algorithm. This is because the tem-
porally atomic pulse rate typically comes up only occasionally.
Thus, causal processing is difficult and it is often necessary to
halve the tatum hypothesis when the first rapid event sequence
occurs.

The critical elements of a meter analysis system appear to
be the initial time-frequency analysis part which measures mu-
sical accentuation as a function of time and the (often implicit)
internal model which represents primitive musical knowledge.
The former is needed to provide robustness for diverse instru-
mentations in classical, rock, or electronic music, for example.
The latter is needed to achieve temporally stable meter tracking
and to fill in parts where the meter is only faintly implied by the
musical surface. A challenge in this part is to develop a model
which is generic for jazz and classical music, for example. The
proposed model describes sufficiently low-level musical knowl-
edge to generalize over different genres.

APPENDIX

This appendix presents the derivation and underlying as-
sumptions in the estimation of the state-conditional observation
likelihoods p(s | q). We first assume that the realizations of
A are independent of the realizations of 7B and 7€, that is,
P(d = j | ™8 = k,7¢ = 1) = P(* = j). This violates
the dependencies of our model but significantly simplifies
the computations and makes it possible to obtain reasonable
estimates. Using the assumption, we can write

C
_ Ps| P = k7 = )P(s | 7 = j)
= Pls) . (35

Furthermore, tatum information is most clearly visible in the
spectrum of the resonator outputs. Thus, we use

P(s|t =4)=P(S | =) (36)
where S is the spectrum of s, according to (10). We further as-

sume the components of s and S to be conditionally independent
of each other given the state, and write the nominator of (35) as

P(s | =k, 7€ =D)P(S | " =)
Tmax Tmax 1 /

=[] Ps(¥) | =k, =) [] P <S <—, ) |TA:j> .
k=1 j'=1 J

(37)

We make two more simplifying assumptions. First, we as-
sume that the value of s and S at the lags corresponding to a
period actually present in the signal depends only on the par-
ticular period, not on other periods. Second, the value at lags
where there is no period present in the signal is independent of
the true periods 7, 7B, and 7, and is dominated by the fact
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that no period corresponds to that particular lag. Hence, (35) can
be written as

P(s|q=1[jk1])

_L S TB =
P(s(D) |79 =10) T PG 757 # &)

k' #k,1
-P<S <1> |74 :j) HP (S <i,> | TA;éj’) (38)
J it J

where P(s(7) | 78 = 7) denotes the probability of value s(7)
given that 7 is a tactus pulse period and P(s(7) | 75 # 7) de-
notes the probability of value s(7) given that 7 is not a tactus
pulse period. These conditional probability distributions (tactus,
measure, and tatum each have two distributions) were approxi-
mated by discretizing the value range of s(7), s(7) € [0, 1], and
by calculating a histogram of s(7) values in the cases that 7 is
or is not an annotated metrical pulse period.
Then, by defining

1 e !/ /
86) = g 1L P 1727 28

62
j'=1

(39)
Equation (38) can be written as
o _ P(s(k) | 7° = k)
P(S | q= []/k7l]) - /6(8) ) P(S(k) | TB77_C # k)
Cc_ P(S(L)|r2 =3

PEOTCED p (s (1) v #4)

where the scalar 3(s) is a function of s but does not depend on
q.

By using the two approximated histograms for the tactus,
measure, and tatum pulses, each of the three terms of the form
P(s(t) | 78 = 7)/P(s(t) | 7° # 7) in (40) can be repre-
sented by a single discrete histogram. These were modeled with
first-order polynomials. The first two terms depend linearly on
the value s(7) and the last term depends linearly on the value
S(1/7). Thus, we can write

psla=Lik ) xsis0s (3). @

The histograms could be more accurately modeled with third-
order polynomials, but this did not bring performance advantage
over the simple linear model in (41).

Numerical values of the matrices used in Section II-D

12 1.0 0 57 10 0 1.4 13
w_ |0 200 20 @ |0 0 28 08
k=10 30 0 30[°Tk=|0 0 43 1.2
0 40 0 4.0 0 0 58 15

(1]
(2]
31

(4]

(5]
(6]

(7]

(8]

[91

[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]
[21]
[22]

[23]

[24]

Here channel c determines the row and delay k the column. The
first row corresponds to the lowest-frequency channel.
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Abstract

This paper presents a method for extracting two key met-
rical properties, the beat and the tatum, from acoustic sig-
nals of popular music. The method is computationally very
efficient while performing comparably to earlier methods.
High efficiency is achieved through multirate accent analy-
sis, discrete cosine transform periodicity analysis, and phase
estimation by adaptive comb filtering. During analysis, the
music signals are first represented in terms of accentuation
on four frequency subbands, and then the accent signals are
transformed into periodicity domain. Beat and tatum peri-
ods and phases are estimated in a probabilistic setting, incor-
porating primitive musicological knowledge of beat-tatum
relations, the prior distributions, and the temporal continu-
ities of beats and tatums. In an evaluation with 192 songs,
the beat tracking accuracy of the proposed method was found
comparable to the state of the art. Complexity evaluation
showed that the computational cost is less than 1% of earlier
methods. The authors have written a real-time implementa-
tion of the method for the S60 smartphone platform.

Keywords: Beat tracking, music meter estimation, rhythm
analysis.

1. Introduction

Recent years have brought significant advances in the field
of automatic music signal analysis, and music meter estima-
tion is no exception. In general, the music meter contains
a nested grouping of pulses called metrical levels, where
pulses on higher levels are subsets of the lower level pulses;
the most salient level is known as the beat, and the lowest
level is termed the tatum [1}, p. 21].

Metrical analysis of music signals has many applications
ranging from browsing and visualization to classification
and recommendation of music. The state of the art has ad-
vanced high in performance, but the computational require-
ments have also remained restrictively high. The proposed
method significantly improves computational efficiency while
maintaining satisfactory performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

(© 2006 University of Victoria

The technical approaches for meter estimation are vari-
ous, including e.g. autocorrelation based methods [6], inter-
onset interval histogramming [5], or banks of comb filter
resonators [4], possibly followed by a probabilistic model [3].
See [2]] for a review on rhythm analysis systems.

2. Algorithm Description

The algorithm overview is presented in Fig. [I} the input is
audio signals of polyphonic music, and the output consists
of the times of beats and tatums. The implementation of the
beat and tatum tracker has been done in C++ programming
language in the S60 smartphone platform. The algorithm
design is causal and the implementation works in real time.

The operation of the system can be described in six stages

(see Fig. [T):
1. Resampling stage,
2. Accent filter bank stage,
3. Buffering stage,
4. Periodicity estimation stage,
5. Period estimation stage, and
6. Phase estimation stage.

First, the signal is resampled to a fixed sample rate, to
support arbitrary input sample rates. Second, the accent
filter bank transforms the acoustic signal of music into a
form that is suitable for beat and tatum analysis. In this
stage, subband accent signals are generated, which consti-
tute an estimate of the perceived accentuation on each sub-
band. The accent filter bank stage significantly reduces the
amount of data.

Then, the accent signals are accumulated into four-second
frames. Periodicity estimation looks for repeating accents
on each subband. The subband periodicities are then com-
bined, and summary periodicity is computed.

Next, the most likely beat and tatum periods are esti-
mated from each periodicity frame. This uses a probabilistic
formulation of primitive musicological knowledge, includ-
ing the relation, the prior distribution, and the temporal con-
tinuity of beats and tatums. Finally, the beat phase is found
and beat and tatum times are positioned. The accent signal
is filtered with a pair of comb filters, which adapt to different
beat period estimates.



Audio Audio Subband Accent Summary Beat and Beat and
signal signal accent frames periodicity tatum tatum
signals periods times
. Accent > . ' Periodicity Period Phase
> Resampling 7 filter bank » Buffering ﬂj\;: estimation | estimation "] estimation
Figure 1. Beat and tatum analyzer.
(a) (b) (c)
24 kHa > 2 } 4 (»Comp» Diff | Rect 125 H
% amF s [OKHAl 2 L LPF 1 Im, ?QSH‘T 5 [0
X | > | | ; | : a;
! QMF | | | | !
L » V2 1,5 kH 125 H
QMF i B () J— 05— 3
a
4 quF ?
p V2 75 H 125 H
“awr j : P ®) - - ©- - r
A ouF 375 Hz 125 Hz
—————— L A <

Figure 2. Accent filter bank overview. (a) The audio signal is first divided into subbands, then (b) power estimates on each subband
are calculated, and (c) accent computation is performed on the subband power signals.

2.1. Resampling

Before any audio analysis takes place, the signal is con-
verted to a 24 kHz sample rate. This is required because
the filter bank uses fixed frequency regions. The resampling
can be done with a relatively low-quality algorithm, linear
interpolation, because high fidelity is not required for suc-
cessful beat and tatum analysis.

2.2. Accent Filter Bank

Figure[2]presents an overview of the accent filter bank. The in-
coming audio signal x[n] is (a) first divided into subband au-
dio signals, and (b) a power estimate signal is calculated for
each band separately. Last, (c) an accent signal is computed
for each subband.

The filter bank divides the acoustic signal into seven fre-
quency bands by means of six cascaded decimating quadra-
ture mirror filters (QMF). The QMF subband signals are
combined pairwise into three two-octave subband signals,
as shown in Fig. 2[a). When combining two consecutive
branches, the signal from the higher branch is decimated
without filtering. However, the error caused by the alias-
ing produced in this operation is negligible for the proposed
method. The sampling rate decreases by four between suc-
cessive bands due to the two QMF analysis stages and the
extra decimation step. As a result, the frequency bands are
located at 0-190 Hz, 190-750 Hz, 750-3000 Hz, and 3—
12 kHz, when the filter bank input is at 24 kHz.

There is a very efficient structure that can be used to im-

plement the downsampling QMF analysis with just two all-
pass filters, an addition, and a subtraction. This structure is
depicted in Fig. 5.2-5 in [[7, p. 203]. The allpass filters for
this application can be first-order filters, because only mod-
est separation is required between bands.

The subband power computation is shown Fig. [2[b). The
audio signal is squared, low-pass filtered (LPF), and dec-
imated by subband specific factor M; to get the subband
power signal. The low-pass filter is a digital filter having
10 Hz cutoff frequency. The subband decimation ratios M; =
{48, 12, 3, 3} have been chosen so that the power signal sam-
ple rate is 125 Hz on all subbands.

The subband accent signal computation in Fig. J[c) is
modelled according to Klapuri et al. 3| p. 344-345]. In the
process, the power signal first is mapped with a nonlinear
level compression function labeled Comp in Fig. 2Jc),

)= {

Following compression, the first-order difference signal is
computed (Diff) and half-wave rectified (Rect). In accor-
dance with Eq. (3) in [3]], the rectified signal is summed to
the power signal after constant weighting, see Fig.[2[c). The
high computational efficiency of the proposed method lies
mostly in the accent filter bank design. In addition to effi-
ciency, the resulting accent signals are comparable to those
of Klapuri et al., see e.g. Fig. 3 in [3].

x > 0.0001
otherwise.
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Figure 3. (a) Normalized autocorrelation and (b) summary pe-
riodicity, with beat (B) and tatum (T) periods shown.

2.3. Buffering

The buffering stage implements a ring buffer which accu-
mulates the signal into fixed-length frames. The incoming
signal is split into consecutive accent signal frames of a fixed
length N = 512 (4.1 seconds). The value of N can be mod-
ified to choose a different performance—latency tradeoff.

2.4. Accent Periodicity Estimation

The accent signals are analyzed for intrinsic repetitions. Here,
periodicity is defined as the combined strength of accents
that repeat with a given period. For all subband accent sig-
nals, a joint summary periodiciIEfy vector is computed.

Autocorrelation p[f] = an_ol alplaln — 4], 0 < £ <
N —1, is first computed from each N-length subband accent
frame a[n]. The accent signal reaches peak values whenever
there are high accents in the music and remains low other-
wise. Computing autocorrelation from an impulsive accent
signal is comparable to computing the inter-onset interval
(IOI) histogram as described by Seppénen [5], with addi-
tional robustness due to not having to discretize the accent
signal into onsets.

The accent frame power p[0] is stored for later weight-
ing of subband periodicities. Offset and scale variations are
eliminated from autocorrelation frames by normalization,

o p[¢] — min,, p[n]
p[ﬂ] = N1 B . 2
Zn:O p[n] — N min, p[n]

See Fig.[3(a) for an example normalized autocorrelation frame.

The figure shows also the correct beat period B, 0.5 seconds,
and tatum period T, 0.25 seconds, as vertical lines.

Next, accent periodicity is estimated by means of the V-
point discrete cosine transform (DCT)

= 2n + 1)k
Rk = ckngoﬁ[n] COS% 3)
co = 1/N (4)
c, = 2/N, 1<k<N-1. 5)
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Figure 4. The period estimator.

Similarly to an IOI histogram [5], accent peaks with a period
p cause high responses in the autocorrelation function at lags
{ =0, ¢ = p (nearest peaks), ¢ = 2p (second-nearest peaks),
¢ = 3p (third-nearest peaks), and so on. Such response is ex-
ploited in DCT-based periodicity estimation, which matches
the autocorrelation response with zero-phase cosine func-
tions; see dashed lines in Fig. a).

Only a specific periodicity window, 0.1 s < p < 25, is
utilized from the DCT vector R[k]. This window specifies
the range of beat and tatum periods for estimation. The sub-
band periodicities R;[k] are combined into an M -point sum-
mary periodicity vector, M = 128,

4
Skl => pil0)Rilk] 0<k<M-1,  (6)
=1

where R;[k] has interpolated values of R;[k] from 0.5 Hz
to 10 Hz, and the parameter v = 1.2 controls weighting.
Figure[3[b) shows an example summary periodicity vector.

2.5. Beat and Tatum Period Estimation
The period estimation stage finds the most likely beat pe-
riod 72 and tatum period 7 for the current frame at time n
based on the observed periodicity S[k] and primitive mu-
sicological knowledge. Likelihood functions are used for
modeling primitive musicological knowledge as proposed
by Klapuri et al. in [3, p. 344-345], although the actual
calculations of the model are different. An overview of the
period estimator are depicted in Fig. ]

First, weights f?(7;}) for the different beat and tatum pe-
riod candidates are calculated as a product of prior distribu-
tions p*(7%) and “continuity functions’:

P ( 7 ) 1 1 (1 7 )2 o
: = exp |—=— (In ="~ ,
“\ri, o1V 2m P 207 Th—1

as defined in Eq. (21) in [3] p. 348]. Here, i = A denotes
the tatum and 7 = B denotes the beat. The value o1 = 0.63
is used. The continuity function describes the tendency that
the periods are slowly varying, thus taking care of “tying”
the successive period estimates together. 7% _; is defined as
the median of three previous period estimates. This is found
to be slightly more robust than just using the estimate from
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occur jointly.

the previous frame. The priors are lognormal distributions
as described in Eq. (22) in [3| p. 348].

The output of the Update beat and tatum weights step in
Fig. [] are two weighting vectors containing the evaluated
values of the functions fZ(7.5) and f4 (7). The values
are obtained by evaluating the continuity functions for the
set of possible periods given the previous beat and tatum
estimates, and multiplying with the priors.

The next step, Calculate final weight matrix, adds in the
modelling of the most likely relations between simultaneous
beat and tatum periods. For example, the beat and tatum are
more likely to occur at ratios of 2, 4, 6, and 8 than in ratios
of 1, 3, 5, and 7. The likelihood of possible beat and tatum
period combinations 72, 74 is modelled with a Gaussian

mixture density, as described in Eq. (25) in [3} p. 348]:

wa Tiiloz) ®)

where [ are the component means and o5 is the common
variance. Eq. (§) is evaluated for the set of M x M period
combinations. The weights w; were hand adjusted to give
good performance on a small set of test data. Fig. [5] de-
picts the resulting likelihood surface g(72,74). The final
weighting function is

8 =\ R o ). ©)

Taking the square root spreads the function such that the
peaks do not become too narrow. The resultis a ﬁnal MxM
likelihood weighting matrix H with values of h(7.2, 74) for
all beat and tatum period combinations.

The Calculate weighted periodicity step weights the sum-
mary periodicity observation with the obtained likelihood
weighting matrix H. We assume that the likelihood of ob-
serving a certain beat and tatum combination is proportional
to a sum of the corresponding values of the summary peri-
odicity, and define the observation O(72,74) = (S[kp] +

n
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Figure 6. The phase estimation stage finds the phase of the beat
and tatum pulses, and may also refine the beat period estimate.

S[ka])/2, where the indices kp and k4 correspond to the
periods 7.5 and 7}, respectively. This gives an observation
matrix of the same size as our weighting matrix. The ob-
servation matrix is multiplied pointwise with the weighting
matrix, giving the weighted M >< M periodicity matrix P
with values P(7.2,72) = h(rB,7)O(rB,7/}). The fi-
nal step is to Find the maximum from P. The indices of
the maximum correspond to the beat and tatum period es-
timates 72, 724, The period estimates are passed on to the
phase estlmator stage.

2.6. Beat Phase Estimation

The phase estimation stage is depicted in Fig.[6] The tatum
phase is the same as the beat phase and, thus, only the beat
phase is estimated. Phase estimation is based on a weighted
sum v[n| = Zle(fi — 4)a;[n] of the observed subband ac-
cent signals a;[n], 0 < n < N —1. Compared to Eq. (27) in
[3 p. 350], the summation is done directly across the accent
subbands, instead of resonator outputs.

A bank of comb filters with constant half time 7j and de-
lays corresponding to different period candidates have been
found to be a robust way of measuring the periodicity in ac-
centuation signals [3] [4]. Another benefit of comb filters
is that an estimate of the phase of the beat pulse is read-
ily obtained by examining the comb filter states [4} p. 593].
However, implementing a bank of comb filters across the
range of possible beat and tatum periods is computationally
very expensive. The proposed method utilizes the benefits
of comb filters with a fraction of the computational cost of
the earlier methods. The phase estimator implements two
comb filters. The output of a comb filter with delay 7 and



gain «, for the input v[n] is given by
r[n] = a;rln — 7]+ (1 — a;)v[n]. (10)

The parameter 7 of the two comb filters is continuously
adapted to match the current (77) and the previous (72 ;)
period estimates. The feedback gain a, = 0.57/70, where
the half time Tj corresponds to three seconds in samples.

The phase estimation starts by finding a prediction én for
the beat phase ¢,, in this frame, the step Phase prediction in
Fig.[6] The prediction is calculated by adding the current
beat period estimate to the time of the last beat in the previ-
ous frame. Another source of phase prediction is the comb
filter state, however, this is not always available since the
filter states may be reset between frames.

The accent signal is passed through the Comb filter 1,
giving the output r [n]. If there are peaks in the accent sig-
nal corresponding to the comb filter delay, the output level
of the comb filter will be large due to a resonance.

We then calculate a score for the different phase candi-
dates ! = 0,...,7g — 1 in this frame. The score is

pll] = ﬁ > il (11)

where I; is the set of indices {l,! + 7p5,l + 27p,...} be-
longing to the current frame, Vi € I; : 0 < ¢ < N — 1.
The scores are weighted by a function which depends on the
deviation of the phase candidate from the predicted phase
value. More precisely, the weight is calculated according to
Eq. (33) in [3| p. 350]:

L ()
w[l]g3mexp( 27 ) (12)

but the distance is calculated in a simpler way: d[l] = (I —
¢n)/7B. The phase estimate is the value of [ maximizing
pll]w(i].

If there are at least three beat period predictions avail-
able and the beat period estimate has changed since the last
frame, the above steps are mirrored using the previous beat
period as the delay of comb filter 2. This is depicted by the
right hand side branch in Fig.[6] The motivation for this is
that if the prediction for the beat period in the current frame
is erroneous, the comb filter tuned to the previous beat pe-
riod may indicate this by remaining locked to the previous
beat period and phase, and producing a more energetic out-
put and thus larger score than the filter tuned to the erro-
neous current period.

In the final step, the best scores delivered by both branches
are compared, and the one giving the largest score deter-
mines the final beat period and phase. Thus, if the comb
filter branch tuned to the previous beat period gives a larger
score, the beat period estimate is adjusted equal to the pre-
vious beat period. The state of the winning comb filter is
stored to be used in the next frame as comb filter 2.

After the beat period and phase are obtained, the beat
and tatum locations for the current audio frame are inter-
polated. Although this reduces the ability of the system to
follow rapid tempo changes, it reduces the computational
load since the back end processing is done only once for
each audio frame.

3. Implementation

The authors have written a real-time implementation of the
proposed method for the S60 smartphone platform. The im-
plementation uses fixed-point arithmetic, where all signals
are represented as 32-bit integers and coefficients as 16-
bit integers. The power estimation low-pass filter is imple-
mented simply as a first-order IIR due to the arithmetic used.
Increasing the filter order would have a positive impact on
performance, but the given filter design causes that the co-
efficients exceed 16-bit dynamic scale. Naturally, the accent
power compression is realized by a 200-point lookup table.
Tables are used also in the period and phase estimation for
efficiently computing weight function values. The continu-
ity function, the priors, and the likelihood surface shown in
Fig. [5] are stored into lookup tables. Lookup tables are also
utilized for storing precalculated feedback gain values for
the comb filters. For efficiency, both the autocorrelation and
discrete cosine transform processes are implemented on top
of a fast Fourier transform (FFT).

For low-latency real-time implementation, the algorithm
is split into two execution threads. Referring to Fig. [I] a
high-priority “front-end” thread runs the resampling and ac-
cent filter bank stages, feeding their results into a memory
buffer. The front-end runs synchronously with other au-
dio signal processing. Periodicity estimation and following
stages are run in a low-priority “back-end” thread, which is
signaled when a new accent frame is available from buffer-
ing stage. The lower priority allows the back-end processing
to take a longer time without interrupting the audio process-
ing, unlinking audio frame length and accent frame length.

4. Evaluation

The proposed algorithm is evaluated in two aspects, beat
tracking performance and computational complexity. The
methods of Klapuri et al. [3] and Scheirer [4]] are used as a
comparison, using the original authors’ implementations[l-]

4.1. Performance

The performance was evaluated by analyzing 192 songs in
CD audio quality. Songs with a steady beat were selected
from various genres. The majority of songs were rock/pop
(43%), soul/R&B/funk (18%), jazz/blues (16%), and elec-
tronic/dance (11%) music, and all except two songs were in
4/4 meter. The beats of approximately one minute long song

I'We wish to thank Anssi Klapuri and Eric Scheirer for making
their algorithm implementations available for the comparison.



Table 1. Beat tracking accuracy scores.

Continuity required ~ Individual estimates
Method Correct Accept d/h Period Correct Accept d/h Period

Proposed 60% 70%  76% 64% 76%  T9%
Klapuri 66%  76% 73% 72%  85% 81%
Scheirer 29%  34% 30% 53% 65% 59%

excerpts were annotated by tapping along with the song play-
ing. The evaluation methodology followed the one proposed
in [3l], assessing both the period and phase estimation accu-
racy of the proposed method. A correct period estimate is
defined to deviate less than 17.5% from the annotated refer-
ence, and the correct phase to deviate less than 0.175 times
the annotated beat time. The following scores were calcu-
lated and averaged over the duration of the excerpts and over
all 192 songs:

e Correct: Beat estimate with correct period and phase.

e Accept d/h: Beat estimate with period matching either
0.5, 1.0, or 2.0 times the correct value, and correct
phase.

e Period: Beat estimate with correct period, phase is
ignored.

We calculated the scores for both the longest continuous
correctly analyzed segment and individual estimates without
continuity requirement. For comparison, the methods pro-
posed in [3] and [4] were run on the same data. The results
are shown in Table[I]} In summary, the proposed method ap-
proaches the Klapuri et al. method performance in all of the
cases. The biggest deviations are in the Scheirer method
scores with continuity requirement, reflecting the lack of
beat period smoothing in the Scheirer method.

4.2. Complexity

We compared the computational complexity of the three al-
gorithms on a PC having 1.86 GHz Pentium M processor
and 1 GB of memory. The proposed and Scheirer methods
were implemented in C++ in floating point and compiled
with the same compiler settings; function inlining intrinsics
were added into Scheirer’s original algorithm. The Klapuri
method is a combination of MATLAB and C++ code.

A 300-second audio clip was processed five times with
each of the three methods and the algorithm CPU time was
measured (excluding file access and decoding). The median
CPU cycles of the five runs are shown in Table 2] divided by
108 (Mcycles), and normalized with audio clip length (Mcy-
cles/s). The Klapuri method is not strictly comparable to the
others because it is mostly MATLAB processing: 61% of
the CPU is used in MATLAB code. The Scheirer method
cycles break down into 82% for comb filtering and 13% for

Table 2. Processor usage profiles.

Method Mcycles Mcycles/s
Proposed 678 2.3
Klapuri (MATLAB) 125000 420
Scheirer 136000 450
Scheirer without mallocetc. 119000 390

runtime functions (e.g. malloc). A second Scheirer pro-
file in Table 2] has the runtime functions subtracted. The
proposed algorithm is found over 170 times more efficient.

We also evaluated the computational complexity of the
proposed method on a Nokia 6630 smartphone having a
220 MHz ARMO processor. An instruction profiler was
configured to sample the processor program counter on a
1 kHz rate, yielding 302500 data points in total. During
playback, 13% of processor time was spent in the beat and
tatum tracker implementation and 8% in MP3 format de-
coding. The profile shows the algorithm to perform very ef-
ficiently, comparable to the complexity of the MP3 decoder.

5. Conclusion

A beat and tatum tracker algorithm can be made computa-
tionally very efficient without compromising beat tracking
performance. We introduced a novel beat and tatum tracker
for music signals, consisting of multirate accent analysis,
discrete cosine transform periodicity analysis, and phase es-
timation by adaptive comb filtering. The complexity of the
proposed method is less than 1% of Scheirer’s method, and
its beat tracking accuracy approaches Klapuri’s method. The
authors have created a real-time implementation of the pro-
posed method for the S60 smartphone platform.
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Music Tempo Estimation with £-NN Regression

*Antti Eronen and Anssi Klapuri

Abstract—An approach for tempo estimation from musical pieces
with near-constant tempo is proposed. The method consists of three
main steps: measuring the degree of musical accent as a function of
time, periodicity analysis, and tempo estimation. Novel accent features
based on the chroma representation are proposed. The periodicity of the
accent signal is measured using the generalized autocorrelation function,
followed by tempo estimation using k-Nearest Neighbor regression. We
propose a resampling step applied to an unknown periodicity vector
before finding the nearest neighbors. This step improves the performance
of the method significantly. The tempo estimate is computed as a distance-
weighted median of the nearest neighbor tempi. Experimental results
show that the proposed method provides significantly better tempo
estimation accuracies than three reference methods.

Index Terms—Music tempo estimation, chroma features, k-Nearest
Neighbor regression.

I. INTRODUCTION

Musical meter is a hierarchical structure, which consists of pulse
sensations at different time scales. The most prominent level is the
tactus, often referred as the foot tapping rate or beat. The fempo
of a piece is defined as the rate of the tactus pulse. It is typically
represented in units of beats per minute (BPM), with a typical tempo
being of the order of 100 BPM.

Human perception of musical meter involves inferring a regular
pattern of pulses from moments of musical stress, a.k.a. accents [1,
p.17]. Accents are caused by various events in the musical surface,
including the beginnings of all discrete sound events, especially the
onsets of long pitched sounds, sudden changes in loudness or timbre,
and harmonic changes. Many automatic tempo estimators try to
imitate this process to some extent: measuring musical accentuation,
estimating the periods and phases of the underlying pulses, and
choosing the level corresponding to the tempo or some other metrical
level of interest [2].

Tempo estimation has many applications, such as making seamless
“beatmixes” of consecutive music tracks with the help of beat
alignment and time stretching. In disc jockey applications metrical
information can be used to automatically locate suitable looping
points. Visual appeal can be added to music players with beat
synchronous visual effects such as virtual dancing characters. Other
applications include finding music with certain tempo from digital
music libraries in order to match the mood of the listener or to
provide suitable motivation for the different phases of a sports
exercise. In addition, automatically extracted beats can be used to
enable musically-synchronized feature extraction for the purposes of
structure analysis [3] or cover song identification [4], for example.

A. Previous work

Tempo estimation methods can be divided into two main categories
according to the type of input they process. The earliest ones
processed symbolic (MIDI) input or lists of onset times and durations,
whereas others take acoustic signals as input. Examples of systems
processing symbolic input include the ones by Rosenthal [S] and
Dixon [6].

One approach to analyze acoustic signals is to perform discrete
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onset detection and then use e.g. inter onset interval (IOI) histogram-
ming to find the most frequent periods, see e.g. [7], [8]. However,
it has been found better to measure musical accentuation in a
continuous manner instead of performing discrete onset detection [9].
A time-frequency representation such as energies at logarithmically
distributed subbands is usually used to compute features that relate
to the accents [2], [10]. This typically involves differentiation over
time within the bands. Alonso ef al. use a subspace analysis method
to perform harmonic+noise decomposition before accent feature
analysis [11]. Peeters proposes the use of a reassigned spectral
energy flux [12], and Davies and Plumbley use the complex spectral
difference [3].

Accent feature extraction is typically followed by periodicity
analysis using e.g. the autocorrelation function (ACF) or a bank
of comb-filter resonators. The actual tempo estimation is then done
by picking one or more peaks from the periodicity vector, possibly
weighted with the prior distribution of beat periods [2], [13], [10].
However, peak picking steps are error prone and one of the potential
performance bottlenecks in rhythm analysis systems.

An interesting alternative to peak picking from periodicity vectors
was proposed by Seyerlehner et al., who used the k-Nearest Neighbor
algorithm for tempo estimation [14]. Using the k-Nearest Neighbor
algorithm was motivated based on the observation that songs with
close tempi have similar periodicity functions. The authors searched
the nearest neighbors of a periodicity vector and predicted the tempo
according to the value that appeared most often within the & songs but
did not report significant performance improvement over reference
methods.

It should be noted that in the tempo estimation task, the temporal
positions of the beats are irrelevant. In this sense, the present task dif-
fers from full meter analysis systems, where the positions of the beats
need to be produced for example with dynamic programming [2],
[10], [12], [15], [11] or Kalman filtering [16]. A full review of meter
analysis systems is outside the scope of this article due to space
restrictions. See [17] and [18] for more complete reviews.

B. Proposed method

In this paper, we study the use of the k-Nearest Neighbor algorithm
for tempo estimation further. This is referred as k-NN regression as
the tempo to be predicted is continuous-valued. Several improvements
are proposed that significantly improve the tempo estimation accuracy
using k-NN regression compared to the approach presented in [14].
First, if the training data does not have instances with very close tempi
to the test instance, the tempo estimation is likely to fail. This is a
quite common situation in tempo estimation because the periodicity
vectors tend to be sharply peaked at the beat period and its multiples
and because the tempo value to be predicted is continuous valued.
With distance measures such as the Euclidean distance even small
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differences in the locations of the peaks in the periodicity vectors
can lead to a large distance. We propose here a resampling step to
be applied to the unknown test vector to create a set of test vectors
with a range of possible tempi, increasing the likelihood of finding a
good match from the training data. Second, to improve the quality of
the training data we propose to apply an outlier removal step. Third,
we observe that the use of locally weighted k-NN regression may
further improve the performance.

The proposed k-NN regression based tempo estimation is tested
using five different accent feature extractors to demonstrate the
effectiveness of the approach and applicability across a range of
features. Three of them are previously published and two are novel
ones and use pitch chroma information. Periodicity is estimated
using the generalized autocorrelation function which has previously
been used for pitch estimation [19], [20]. The experimental results
demonstrate that the chroma accent features perform better than
three of the four reference accent features. The proposed method
is compared to three reference methods and is shown to perform
significantly better.

An overview of the proposed method is depicted in Figure 1. First,
chroma features are extracted from the input audio signal. Then,
accentuation is measured at different pitch classes, and averaged over
the pitch classes to get a single vector representing the accentuation
over time. Next, periodicity is analyzed from the accent signal. The
obtained periodicity vector is then either stored as training data
to be used in estimating tempo in the future (training phase), or
subjected for resampling and tempo estimation (estimation phase).
The following sections describe the various phases in detail.

II. METHOD
A. Musical accent analysis

1) Chroma feature extraction: The purpose of musical accent
analysis is to extract features that effectively describe song onset
information and discard information irrelevant for tempo estimation.
In our earlier work [2], we proposed an accent feature extractor
which utilizes 36 logarithmically distributed subbands for accent
measurement and then folds the results down to four bands before
periodicity analysis.

In this work, a novel accent analysis front end is described which
further emphasizes the onsets of pitched events and harmonic changes
in music and is based on the chroma representation used earlier for
music structure analysis in [21]. Figure 2 depicts an overview of the
proposed accent analysis. The chroma features are calculated using
a multiple fundamental frequency (FO) estimator [22]. The input
signal sampled at 44.1 kHz sampling rate and 16-bit resolution is
first divided into 93 ms frames with 50% overlap. In each frame, the
salience, or strength, of each FO candidate is calculated as a weighted
sum of the amplitudes of its harmonic partials in a spectrally whitened
signal frame. The range of fundamental frequencies used here is
80 — 640 Hz. Next, a transform is made into a musical frequency
scale having a resolution of 1/3rd-semitone (36 bins per octave).
This transform is done by retaining only the maximum-salience
fundamental frequency component for each 1/3rd of a semitone range.

Finally the octave equivalence classes are summed over the whole
pitch range using a resolution of three bins per semitone to produce
a 36 dimensional chroma vector zp(k), where k is the frame index
and b = 1,2,...,b is the pitch class index, with by = 36. The
matrix xp(k) is normalized by removing the mean and normalizing
the standard deviation of each chroma coefficient over time, leading
to a normalized matrix 7y (k).

2) Musical accent calculation: Next, musical accent is estimated
based on the normalized chroma matrix zp(k), & = 1,..,K,
b =1,2,...,bp, much in a similar manner as proposed in [2], the
main difference being that frequency bands are replaced with pitch
classes. First, to improve the time resolution, the chroma coefficient
envelopes are interpolated by a factor eight by adding zeros between
the samples. This leads to the sampling rate f, = 172 Hz. The
interpolated envelopes are then smoothed by applying a sixth-order
Butterworth low-pass filter (LPF) with frp = 10 Hz cutoff. The
resulting smoothed signal is denoted by z(n). This is followed by
half wave rectification and weighted differentiation steps. A half-wave
rectified (HWR) differential of z,(n) is first calculated as

25(n) = HWR(2p(n) — zp(n — 1)), ¢))

where the function HWR(z) = max(x,0) sets negative values to
zero and is essential to make the differentiation useful. Next we form
a weighted average of 2;(n) and its differential z;(n):

fr/

2z
fLP

where 0 < X < 1 determines the balance between z,(n) and z;,(n),
and the factor f,/fip compensates for the small amplitude of the
differential of a low-pass-filtered signal [2].

Finally, bands are linearly averaged to get a single accent signal
a(n) to be used for periodicity estimation. It represents the degree
of musical accent as a function of time.

up(n) = (1= Nzp(n) + A (n), (@)

B. Periodicity analysis

Periodicity analysis is carried out on the accent signal. Several
periodicity estimators have been proposed in the literature, such as
the inter-onset interval histogramming [7], autocorrelation function
(ACF) [23], or comb filter banks [24]. In this paper, we use
the generalized autocorrelation function (GACF) which is compu-
tationally efficient and has proven to be a robust technique in
multipitch analysis [20]. The GACF is calculated without windowing
in successive frames of length W and 16% overlap. The input vector
am,, at the mth frame has the length of 2W after zero padding to
twice its length:

a, = [a((m — )W), ...,a(mW —1),0,...,0]", 3)
where T denotes transpose. The GACF is defined as ([19]):
pm (1) = IDFT(|DFT(an)|"), “)

where DFT stands for Discrete Fourier Transform and IDFT its
inverse. The coefficient p controls the frequency domain compression.
pm (7) gives the strength of periodicity at period (lag) 7. The GACF
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Fig. 3. Upper panel: periodicity vectors of musical excerpts in our evaluation
dataset ordered in ascending tempo order. The shape of the periodicity vectors
is similar across pieces, with the position of the peaks changing with tempo.
Lower panel: corresponding annotated tempi of the pieces.

was selected because it is straightforward to implement as usually
the fast Fourier transform routines are available, and it suffices to
optimize the single parameter p to make the transform optimal for
different accent features. The conventional ACF is obtained with
p = 2. We optimized the value of p for different accent features
by testing a range of different values and performing the tempo
estimation on a subset of the data. The value that led to the best
performance was selected for each feature. For the proposed chroma
accent features, the value used was p = 0.65.

At this step we have a sequence of periodicity vectors computed
in adjacent frames. If the goal is to perform beat tracking where the
tempo can vary in time, we would consider each periodicity vector
separately and estimate the tempo as a function of time from each
vector separately. In this paper, we are interested in getting a single
representative tempo value for each musical excerpt. Therefore, we
obtain a single representative periodicity vector pmeq(7) for each
musical excerpt by calculating point-wise median of the periodicity
vectors over time. This assumes that the excerpt has nearly constant
tempo and is sufficient in applications where a single representative
tempo value is desired. The median periodicity vector is further
normalized to remove the trend due to the shrinking window for
larger lags

1

ﬁmed(T) = ﬁpmed('r)- (5)

The final periodicity vector is obtained by selecting the range of bins
corresponding to periods from 0.06 s to 2.2 s, and removing the mean
and normalizing the standard deviation to unity for each periodicity
vector.

The resulting vector is denoted by s(7). Figure 3 presents the
periodicity vectors for the songs in our evaluation database, ordered
in ascending tempo order. Indeed, the shape of the periodicity vectors
is similar across music pieces, with the position of the peaks changing
with tempo.

C. Tempo estimation by k-NN regression

The tempo estimation is formulated here as a regression problem:
given the periodicity observation s(7), we estimate the continuous
valued tempo 7. In this paper, we propose to use locally weighted
learning ([25]) to solve the problem. More specifically, we use k-
Nearest Neighbors regression and compute the tempo as a weighted

median of the nearest neighbor tempi. In conventional k-NN regres-
sion, the property value of an object is assigned to be the average
of the values of its k nearest neighbors. The distance to the nearest
neighbors is typically calculated using the Euclidean distance.

In this paper, several problem-specific modifications are proposed
to improve the performance of tempo estimation using k-NN regres-
sion. First, a resampling step is proposed to alleviate problems caused
by mismatches of the exact tempo values in the testing and training
data. Distance measures such as the Euclidean distance or correlation
distance are sensitive to whether the peaks in the unknown periodicity
vector and the training vectors match exactly. With the resampling
step it is more likely that similarly shaped periodicity vector(s) with
a close tempi are found from the training set. Resampling is applied
to “stretch” and “shrink” the unknown test vectors to increase the
likelihood of a matching training vector to be found from the training
set. Since the tempo values are continuous, the resampling ensures
that we do not need to have a training instance with exactly the same
tempo as the test instance in order to find a good match.

Thus, given a periodicity vector s(7) with unknown tempo 7', we
generate a set of resampled test vectors s, (7), where subscript 7 indi-
cates the resampling ratio. A resampled test vector will correspond to
a tempo of T'/r. We tested various possible ranges for the resampling
ratio, and 15 linearly spaced ratios between 0.87 and 1.15 were taken
into use. Thus, for a piece having a tempo of 120 BPM the resampled
vectors correspond to a range of tempi from 104 to 138 BPM.

When receiving an unknown periodicity vector, we first create the
resampled test vectors s,(7). The Euclidean distance between each
training vector ¢, (7) and the resampled test vectors is calculated as

dm,7) ﬁ:

where m = 1, ..., M is the index of the training vector. The minimum
distance d(m) = min, d(m, r) is stored for each training instance m,
along with the resampling ratio that leads to the minimum distance
7(m) = argmin,. d(m, r). The k nearest neighbors that lead to the k
lowest values of d(m) are then used to estimate the unknown tempo.
The annotated tempo Tum(7) of the nearest neighbor 4 is now an
estimate of the resampled test vector tempo. Multiplying the nearest
neighbor tempo with the ratio gives us an estimate of the original
test vector tempo: 7(7) = Tun (4)7(4).

The final tempo estimate is obtained as a weighted median of
the nearest neighbor tempo estimates 7°(z), ¢ = 1, ..., k. Due to the
weighting, training instances close to the test point have a larger
effect on the final tempo estimate. The weights w; for the k£ nearest
neighbors are calculated as

—sr(7))? (©)

by — XD (=7d(0) -

S exp (—yd(i)

where the parameter ~ controls how steeply the weighting decreases
with increasing distance d, and ¢ = 1, ..., k. The value v = 40 was
found by monitoring the performance of the system with a subset
of the data. The exponential function fulfils the requirements for a
weighting function in locally weighted learning: the maximum value
is at zero distance, and the function decays smoothly as the distance
increases [25]. The tempo estimate is then calculated as a weighted
median of the tempo estimates 7'(¢) using the weights w; with the
procedure described in [26]. The weighted median gives significantly
better results than a weighted mean. The difference between weighted
median and unweighted median is small but consistent in favor of
the weighted median when the parameter ~y is properly set.

In addition, the use of an outlier removal step is evaluated to
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improve the quality of the training data. We implemented leave-
one-out outlier removal as described in [27]. It works within the
training data by removing each sample in turn from the training data,
and classifying it by all the rest. Those training samples that are
misclassified are removed from the training data.

III. RESULTS

This section looks at the performance of the proposed method in
simulations and compares the results to three reference systems and
three accent feature extractors.

A. Experimental setup

A database of 355 musical pieces with CD quality audio was used
to evaluate the system and the three reference methods. The musical
pieces were a subset! of the material used in [2]. The database
contains examples of various musical genres whose distribution
is the following: 82 classical pieces, 28 electronic/dance, 12 hip
hop/rap, 60 jazz/blues, 118 rock/pop, 42 soul/RnB/funk, and 13
world/folk. Full listing of the database is available at www.cs.tut.
fi/~eronen/taslp08-tempo-dataset.html. The beat was annotated from
approximately one-minute long representative excerpts by a musician
who tapped along with the pieces. The ground truth tempo for each
excerpt is calculated based on the median inter-beat-interval of the
tapped beats. The distribution of tempi is depicted in figure 4.

We follow here the evaluation presented in [14]. Evaluation is done
using leave-one-out cross validation: the tempo of the unknown song
is estimated using all the other songs in the database. The tempo
estimate is defined to be correct if the predicted tempo estimate is
within 4% of the annotated tempo.

Along with the tempo estimation accuracy, we also report a
tempo category classification accuracy. Three tempo categories were
defined: from 0 to 90 BPM, 90 to 130 BPM, and above 130 BPM.
Classification of the tempo category is considered successful if the
predicted tempo falls within the same category as the annotated
tempo. This kind of “rough” tempo estimate is useful in applications
that would only require e.g. classifying songs to slow, medium, and
fast categories.

The decision whether the differences in error rates is statistically
significant is done using McNemar’s test [28]. The test assumes
that the trials are independent, an assumption that holds in our case
since the tempo estimation trials are performed on different music
tracks. The null hypothesis Hy is as follows: given that only one of
the two algorithms makes an error, it is equally likely to be either
one. Thus, this test considers those trials where two systems make
different predictions, since no information on their relative difference
is available from trials in which they report the same outcome. The
test is calculated as described in [28, Section 3], and Hj is rejected
if the P-value is less than a selected significance level ov. We report
the results using the following significance levels and wordings:
P > 0.05, not significant (NS); 0.01 < P < 0.05, significant (S);
0.0001 < P < 0.01, very significant (VS); and P < 0.0001, highly
significant (HS).

B. Reference methods

To put the results in perspective, the results are presented in
comparison to three reference methods. The first was described by
Ellis [10], and is based on an accent feature extractor using the
mel-frequency filterbank, autocorrelation periodicity estimation, and
dynamic programming to find the beat times. The implementation

IThe subset consisted of all music tracks to which the first author had
access.

Count

60 80 100 120 140 160 180 200 220
Tempo (BPM)

Fig. 4. Distribution of the annotated tempi in the evaluation database.

is also provided by Ellis [29]. The second reference method was
proposed by ourselves in [2] and was the best performing method
in the Music Information Retrieval Evaluation eXchange (MIREX
2006) evaluations [9]. The third has been described in [13] and is
based on a computationally efficient accent feature extraction based
on multirate analysis, discrete cosine transform periodicity analysis,
and period determination utilizing simplified musicological weight
functions. The comparison against the Ellis method may not be
completely fair as it has not received any parameter optimization on
any subset of the data used. However, the two other methods have
been developed on the same data and are thus good references.

In addition to comparing the performance of the proposed method
to the complete reference systems, we also evaluate the proposed
musical accent measurement method against four other features. This
is done by using the proposed k-NN regression tempo estimation with
accent features proposed elsewhere. Comparisons are presented to
two auditory spectrogram based accent features: first using a critical
band scale as presented in [2] (KLAP) and the second using the Mel-
frequency scale (MEL). Another two accent features are based on the
quadrature mirror filter bank of [13] (QMF), and a straightforward
chroma feature analysis (SIMPLE). The main difference between the
various methods is how the frequency decomposition is done, and
how many accent bands are used for periodicity analysis. In the
case of the MEL features, the chroma vector x[k] is replaced with
the output band powers of the corresponding auditory filterbank. In
addition, logarithmic compression is applied to the band envelopes
before the interpolation step, and each nine adjacent accent bands
are combined into one resulting into four accent bands. Periodicity
analysis is done separately for four bands, and final periodicity vector
is obtained by summing across bands. See the details in [2]. In the
case of the QMF and KLAP front ends, the accent feature calculation
is as described in the original publications [13] and [2]. The method
SIMPLE differs from the method proposed in this paper in how the
chroma features are obtained: whereas the proposed method uses
saliences of FO estimates mapped on a musical scale, the method
SIMPLE simply accumulates the energy of FFT bins to 12 semitone
bins. The accent feature parameters such as A\ were optimized for
both the chroma accent features and the MEL accent features using
a subset of the data. The parameters for the KLAP and QMF methods
are as presented in the original publications [13] and [2]. The frame
size and frame hop for the methods MEL and SIMPLE is fixed
at 92.9 ms and 46.4 ms, respectively. The KLAP feature extractor
utilizes a frame size of 23 ms with 50% overlap.

C. Experimental results

1) Comparison to reference methods: Table I shows the results of
the proposed method in comparison with the reference systems. The
statistical significance is reported under each accuracy percentage
in comparison to the proposed method. All the reference systems
output both the period and timing of the beat time instants and the
output tempo is calculated based on the median inter beat interval. We
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TABLE I
RESULTS IN COMPARISON TO REFERENCE METHODS. THE STATISTICAL
TESTS ARE DONE IN COMPARISON TO THE PROPOSED METHOD IN THE
LEFTMOST COLUMN.

Proposed || Ellis [10] Seppénen Klapuri
et al. [13] et al. [2]
Tempo 79% 45% 64% 71%
Significance - HS HS HS
Tempo category 77% 52% 64% 68%
Significance - HS HS VS
TABLE II

RESULTS WITH DIFFERENT ACCENT FEATURE EXTRACTORS.

| Proposed || KLAP [| SIMPLE [[ MEL [[ QMF |

Tempo 79% 76% 73% 75% 63%
Significance - NS S HS HS
Tempo category 77% 75% 75% 74% 72%
Significance - NS NS VS S
TABLE III

RESULTS WHEN DISABLING CERTAIN STEPS. COMPARE THE RESULTS TO
THE COLUMN “"PROPOSED” OF TABLES I AND II.

H No resamp. H No outlier rem. H Plain median

Tempo 75% 78% 77%
Significance S NS NS
Tempo category 72% 79% 76%
Significance VS NS NS

observe a highly significant or very significant performance difference
in comparison to all the reference methods in both tasks.

2) Importance of different elements of the proposed method: The
following experiments study the importance of different elements of
the proposed method in detail. Table II presents the results obtained
using different accent feature extractors. The performance of a certain
accent feature extractor depends on the parameters used, such as
the parameter A controlling the weighted differentiation described
in section II-A2. There is also some level of dependency between
the accent features and periodicity estimation parameters, i.e. the
length of the GACF window, and the exponent used in computing
the GACF. These parameters were optimized for all accent features
using a subset of the database, and the results are reported for the
best parameter setting.

The proposed chroma accent features based on FO salience es-
timation perform best, although the difference is not statistically
significant in comparison to the accent features proposed earlier
in [2]. The difference in comparison to the three other front ends in
tempo estimation is statistically significant. The accent features based
on the QMF-decomposition are computationally very attractive and
may be a good choice if the application only requires classification
into rough tempo categories, or if the music consists mainly of
material with a strong beat.

Table III shows the results when the resampling step in tempo
regression estimation or the outlier removal step is disabled, or
when no weighting is used when computing the median of nearest
neighbor tempo estimates. The difference in performance when the
resampling step is removed is significant. Our explanation for this is
that without the resampling step it is quite unlikely that similarly
shaped example(s) with close tempi are found from the training
set, and even small differences in the locations of the peaks in the

TABLE IV
CONFUSION MATRIX IN CLASSIFYING INTO TEMPO CATEGORIES SLOW (0
TO 90 BPM), MEDIUM (90 TO 130 BPM), AND FAST (OVER 130 BPM)
FOR THE PROPOSED METHOD. ROWS CORRESPOND TO ANNOTATED TEMPO
CATEGORIES, COLUMNS TO ESTIMATED TEMPO CATEGORIES.

’ H slow H medium H fast ‘

slow 76% 16% 8%
medium 4% 96% 0%
fast 28% 14% 58%
TABLE V

CONFUSION MATRIX IN CLASSIFYING INTO TEMPO CATEGORIES FOR THE
REFERENCE METHOD KLAPURI ef al. [2]. ROWS CORRESPOND TO
ANNOTATED TEMPO CATEGORIES, COLUMNS TO ESTIMATED TEMPO

CATEGORIES.
H slow H medium H fast ‘
slow 60% 30% 10%
medium 1% 99% 0%
fast 32% 24% 44%

periodicity vector can lead to a large distance.

The outlier removal step does not have statistically significant
effect on the performance when using the chroma features. However,
this is the case only with the chroma features for which the result
is shown here. The accuracy obtained using the chroma features
is already quite good and the outlier removal step is not able to
improve from that. For all other features the outlier removal improves
the performance in both tempo and tempo category classification
by several percentage points (the results in Table II are calculated
with outlier removal enabled). Using distance based weighting in
the median calculation gives a small but not statistically significant
improvement in the accuracy.

3) Performance across tempo categories: Examining the perfor-
mance across in classifying within different tempo categories is
illustrative of the performance of the method, showing how evenly
the method performs with slow, medium, and fast tempi. Tables IV
and V depict the confusion matrices in tempo category classification
for the proposed method and the best performing reference method,
respectively. Rows correspond to presented tempo, columns to the
estimated tempo category. Errors with slow and fast tempi cause
the accuracy of tempo category classification to be generally smaller
than that of tempo estimation. Both methods perform very well in
classifying the tempo category within the medium range of 90 to
130 BPM. However, especially fast tempi are often underestimated
by a factor of two: the proposed method would still classify 28% of
fast pieces as slow. Very fast tempi might deserve special treatment
in future work.

4) Effect of training data size: The quality and size of the training
data has an effect on the performance of the method. To test the effect
of the training data size, we ran the proposed method while varying
the size of the training data. The outlier removal step is omitted.
Figure 5 shows the result of this experiment. Uniform random
samples with a fraction of the size of the complete training data were
used to perform classification. A graceful degradation in performance
is observed. The drop in performance becomes statistically significant
at training data size of 248 vectors, however, over 70% accuracy
is obtained using only 71 reference periodicity vectors. Thus, good
performance can be obtained with small training data sizes if the
reference vectors span the range of possible tempi in a uniform
manner.
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Fig. 5. Effect of training data size (number of reference periodicity vectors)
on tempo estimation accuracy.

5) Using an artist filter: There are some artists in our database
which have more than one music piece. We made a test using the so-
called artist filter to ensure that this does not have a positive effect on
the results. Pampalk has reported that using an artist filter is essential
for not to overtrain a musical genre classifier [30]. We reran the
simulations of the proposed method and, in addition to the test song,
excluded all songs from the same artist. This did not have any effect
on the correctly estimated pieces. Thus, musical pieces from the same
artist do not overtrain the system.

6) Computational complexity: To get a rough idea of the com-
putational complexity of the method, a set of 50 musical excerpts
were processed with each of the methods and the total run time
was measured. From fastest to slowest, the total run times are 130
seconds for Seppdnen et al. [13], 144 seconds for the proposed
method, 187 seconds for Ellis [10], and 271 seconds for Klapuri et
al. [2]. The Klapuri et al. method was the only one that was
implemented completely in C++. The Seppédnen et al. and Ellis
methods were Matlab implementations. The accent feature extraction
of the proposed method was implemented in C++, the rest in Matlab.

IV. DISCUSSION AND FUTURE WORK

Several potential topics exist for future research. There is some
potential for further improving the accuracy by combining different
types of features as suggested by one of the reviewers. Figure 6
presents a pairwise comparison of the two best performing accent
front ends: the F0O-salience based chroma accent proposed in this
paper and the method KLAP. The songs have been ordered with
respect to increasing error made by the proposed method. The error
is computed as follows ([9]):

computed tempo

= |log2
e = llog2( correct tempo

)l ®
The value O corresponds to correct tempo estimates, and the value 1
to tempo halving or doubling. Out of the 355 test instances, 255
instances were correctly estimated using both accent features. 60
instances were incorrectly estimated using both accent features. At
indices between 310 and 350 the method KLAP correctly estimates
some cases where the proposed method makes tempo doubling or
halving errors. But at the same range there are also many cases where
the estimate is wrong using both accent features. Nevertheless, there
is some complementary information in these accent feature extractors
which might be utilized in the future.

Second direction is to study whether a regression approach can
be implemented for beat phase and barline estimation. In this case,
a feature vector is constructed by taking values of the accent signal
during a measure, and the beat or measure phase is then predicted
using regression with the collected feature vectors. Chroma is gen-
erally believed to highlight information on harmonic changes ([31]),
thus the proposed chroma accent features would be worth testing in
barline estimation.

15F
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Fig. 6. Comparison of errors made by the proposed method using the chroma
accent features (solid line) and the KLAP accent features (dot). The excerpts
are ordered according to increasing error made by the proposed method, thus
the order is different than in figure 3.

V. CONCLUSION

A robust method for music tempo estimation was presented. The
method estimates the tempo using locally weighted k-NN regression
and periodicity vector resampling. Good performance was obtained
by combining the proposed estimator with different accent feature
extractors.

The proposed regression approach was found to be clearly superior
compared to peak picking techniques applied on the periodicity
vectors. We conclude that most of the improvement is attributed to the
regression based tempo estimator with a smaller contribution to the
proposed FO-salience chroma accent features and GACF periodicity
estimation, as there is no statistically significant difference in error
rate when the accent features used in [2] are combined with the
proposed tempo estimator.

In addition, the proposed regression approach is straightforward to
implement and requires no explicit prior distribution for the tempo as
the prior is implicitly included in the distribution of the £-NN training
data vectors. The accuracy degrades gracefully when the size of the
training data is reduced.
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ABSTRACT

A computationally efficient method for detecting a chorus section in
popular and rock music is presented. The method utilizes a distance
matrix representation that is obtained by summing two separate
distance matrices calculated using the mel-frequency cepstral coef-
ficient and pitch chroma features. The benefit of computing two
separate distance matrices is that different enhancement operations
can be applied on each. An enhancement operation is found benefi-
cial only for the chroma distance matrix. This is followed by detec-
tion of the off-diagonal segments of small distance from the dis-
tance matrix. From the detected segments, an initial chorus section
is selected using a scoring mechanism utilizing several heuristics,
and subjected to further processing. This further processing involves
using image processing filters in a neighborhood of the distance
matrix surrounding the initial chorus section. The final position and
length of the chorus is selected based on the filtering results. On a
database of 206 popular & rock music pieces an average F-measure
of 86% is obtained. It takes about ten seconds to process a song
with an average duration of three to four minutes on a Windows XP
computer with a 2.8 GHz Intel Xeon processor.

1. INTRODUCTION

Music thumbnailing refers to the extraction of a characteristic, rep-
resentative excerpt from a music file. Often the chorus or refrain is
the most representative and “catchiest” part of a song. A basic ap-
plication is to use this excerpt for previewing a music track. This is
very useful if the user wishes to quickly get an impression of the
content of a playlist, for example, or quickly browse the songs in an
unknown album. In addition, the chorus part of a song would often
make a good ring tone for a mobile phone, and automatic analysis
of the chorus section would thus facilitate extraction of ring tone
sections from music files.

Western popular music is well suited for automatic thumbnailing as
it often consists of distinguishable sections, such as intro, verse,
chorus, bridge, and outro. For example, the structure of a song may
be intro, verse, chorus, verse, chorus, chorus. Some songs do not
have as clear verse-chorus structure but there still are separate sec-
tions, such as section A and section B that repeat. In this case the
most often repeating and energetic section is likely to contain the
most recognizable part of the song.

Peeters et al. ([1]) divide the methods for chorus detection and mu-
sic structure analysis into two main categories: the “state approach”
which is based on clustering feature vectors to states having distinc-
tive statistics, and the “sequence approach” which is based on com-

puting a self-similarity matrix for the signal. One of the first exam-
ples of the state approach was that of Logan and Chu [2]. Recently,
e.g. Levy et al. [3] and Rhodes et al. [4] have studied this approach.
Similarity-matrix based approaches include the ones by Wellhausen
& Crysandt [5] and Cooper & Foote [6]. Bartsch & Wakefield [7]
and Goto [8] operated on an equivalent time-lag triangle representa-
tion. There are also methods utilizing many different cues, including
e.g. segmentation into vocal / nonvocal sections, such as [9], or
methods that iteratively try to find an optimal segmentation [10].

Here we present a method for detecting the chorus or some other
often repeating and representative section from music files. The
method is based on the self-similarity (distance) representation. The
goal was to device a computationally efficient method that still
would produce high quality music thumbnails for practical applica-
tions. Thus, iterative methods based on feature clustering or compu-
tationally intensive optimization steps could not be used. The fol-
lowing summarizes the novel aspects of the proposed method:

The self-distance matrix (SDM) used in the system is ob-
tained by summing two distance matrices calculated using MFCC
and chroma features. This improves the performance compared to
the case when either of the features would be used alone. Although
the MFCC features are sensitive to changing instrumentation be-
tween the occurrences of the chorus, the fact that the instrumenta-
tion and expression during the chorus is often different than in other
parts of the song seems to overweigh this, at least with our pop &
rock dominated data. The benefit of the proposed distance-matrix
summing approach instead of merely concatenating the features into
one, longer vector is that different enhancement operations can be
applied for each matrix.

An initial chorus section is obtained from the repetitions
detected from the SDM by utilizing a novel heuristic scoring
scheme. The heuristics consider aspects such as the position of a
repetition in the self-distance matrix (SDM), the adjustment of a
repetition in relation to other repetitions in the SDM, average en-
ergy and average distance in the SDM during the repetition, and
number of times the repetition occurs in the musical data.

The system performs the chorus determination in two
steps: first a preliminary candidate is found for the chorus section,
and then its final location and duration is determined by filtering
with a set of image processing filters, selecting the final chorus
position and duration according to the filter which gives the best fit.

Evaluations are presented on a database of 206 popular and rock
music pieces. The method is demonstrated to provide sufficient
accuracy for practical applications while being computationally
efficient.
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2. METHOD

2.1. Overview

Figure 1 shows an overview of the proposed method, which consists
of the following steps. First the beats of the music signal are de-
tected. Then, beat synchronous mel-frequency cepstral coefficient
(MFCC) and pitch chroma features are calculated. This results in a
sequence of MFCC and chroma feature vectors. Next, two self-
distance matrices (SDM) are calculated, one for the MFCC features
and one for the chroma features. Each item in the SDM represents
the distance of feature vector at beat 7 to a feature vector at beat j. In
the distance matrix representation, choruses or other repeating sec-
tions are shown as diagonal lines of small distance. The diagonal
lines of the chroma distance matrix are then enhanced. Next we
obtain a summed distance matrix by summing the chroma and
MFCC distance matrices. This is followed by binarization of the
summed distance matrix, which attempts to detect the diagonal
regions of small distance (or high similarity). From the detected
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Figure 1: Overview of the proposed method.

diagonal segments, the most likely chorus section candidate (diago-
nal stripe) is selected, and subjected to further processing. This
further processing involves using image processing filters in a
neighbourhood of the similarity matrix which surrounds the most
likely chorus candidate. The final position and length of the chorus
is selected based on the image processing results.

2.2. Beat tracking

The feature extraction step begins by finding the beats in the acous-
tic music signal. We utilize the efficient beat tracking method de-
scribed in [11] to produce an initial set of beat times and an accent
signal v(n) . The accent signal measures the change in the spectrum
of the signal and exhibits peaks at onset locations. An additional,
non-causal postprocessing step was implemented to prevent the beat
interval from changing significantly from one frame to another,
which might cause problems with the beat synchronous self-
distance matrices. The postprocessing is performed with a dynamic
programming method described by Ellis [12]. The dynamic pro-
gramming step takes as input the accent signal and median beat
period produced by the method described in [11], performs smooth-
ing of the accent signal with a Gaussian window, and then finds the
optimal sequence of beats through the smoothed accent signal. The
method iterates through each sample of the smoothed accent signal,
and finds the best previous beat time for each time sample. The
selection is affected by the strength of the accent signal at the previ-
ous beat position, and the difference to the ideal beat interval. The
indices of best previous beats are stored for each time sample, and
in the end the single best sequence is obtained by backtracking
through the previous beat records. For more details see [12].

2.3. Feature calculation

Next, beat synchronous MFCC and chroma features are calculated.
Analysis frames are synchronized to start at a beat time and end
before the next beat time, and one feature vector for each beat is
obtained as the average of feature values during that beat. Beat
synchronous frame segmentation has been used earlier e.g. in [7]. It
has two main advantages: it makes the system insensitive to tempo
changes between different chorus performances, and significantly
reduces the size of the self-distance matrices and thus computational
load. Prior to the analysis, the input signal is downsampled to
22050 kHz sampling rate.

The MFCC features are calculated in 30 ms hamming windowed
frames during each beat, and the average of 12 MFCC features
(ignoring the zeroth coefficient) for each beat is stored. We use 36
frequency bands spaced evenly on the mel-frequency scale, and the
filters span the frequency range from 30Hz to the nyquist frequency.
Chroma features are calculated in longer, 186 ms frames to get a
sufficient frequency resolution for the lower notes. In our imple-
mentation, each bin of the discrete Fourier transform is mapped to
exactly one of the twelve pitch classes C, C#, D, D#, E, F, F#, G,
G#, A, A#, B, with no overlap. The energy is calculated from a
range of six octaves from C3 to B8 and summed to the correspond-
ing pitch classes. The chroma vectors are normalized by dividing
each vector by its maximum value.

After the analysis, each inter-beat interval is represented with a
MFCC vector and chroma vector, both of which are 12-
dimensional.
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2.4. Distance matrix calculation

The next step is to calculate the self-distance matrix (SDM) for the
signal. Each entry D(i, j) in the distance matrix indicates the dis-
tance of the music signal at time i to itself at time j. As we are using
beat synchronous features, time is measured in beat units. Two
distance matrices are used, one for the MFCC features and one for
the chroma features. The entry D, (i, j) of the MFCC distance
matrix is calculated as the Euclidean distance of MFCC vectors of
beats i and j. Correspondingly, in the chroma distance matrix
D .jroma(i, ) €ach entry corresponds to the Euclidean distance of the
chroma vectors of beats i and ;. Figures 2 and 3 show examples of a
chroma and MFCC distance matrices, respectively. As the Euclid-
ean distance is symmetric, the distance matrix will also be symmet-
ric. Thus, the following operations consider only the lower triangu-
lar part of the distance matrix.

Alternatives to calculating two different distance matrices would be
to concatenate the features before calculating the distances, or com-
bine the features in the distance calculation step. The benefit of
keeping the distance matrices separate is that different enhancement
operations can be applied to the chroma and MFCC matrices. Based
on our experiments, it seems beneficial to apply an enhancement
only for the chroma distance matrix and not for the MFCC distance
matrix. When long chords or notes are played during several adja-
cent beats, the chroma distance matrix will exhibit a square area of
small distance values. An enhancement operation similar to the one
described in [8] was found to be beneficial in removing these. The
MFCC distance matrix does not exhibit similar areas as the MFCC
features are insensitive to pitch information, so this would explain
the MFCC distance matrix does not benefit from the enhancement.
Moreover, summing the distance matrices first and then enhancing
the summed matrix did not perform as well as enhancing the
chroma matrix only and then summing with the MFCC matrix. The
next section describes the used enhancement and SDM summing
steps.

2.5. Enhancing and summing the distance matrices

Ideally, the distance matrix should contain diagonal stripes of small
distance values at positions corresponding to repetitions of the cho-
rus or refrain section. However, due to variations in the perform-
ance of the chorus at different times (articulation, improvisation,
changing instrumentation), the diagonal stripes are often not very
well pronounced. In addition, there may be additional small distance
regions which do not correspond to chorus sections. To make di-
agonal segments of small distance values more pronounced in the
distance matrix, an enhancement method similar to the one pre-
sented in [8] is utilized.

The chroma distance matrix D,,,q(i, /) 1s processed with a 5 by 5
kernel. For each point (7, j) in the chroma distance matrix, the kernel
is centred to the point (7, j). Six directional local mean values are
calculated along the upper-left, lower-right, right, left, upper, and
lower dimensions of the kernel. If either of the means along the
diagonal is the minimum of the local mean values, the point (7, j) in
the distance matrix is emphasized by adding the minimum value. If
some of the mean values along the horizontal or vertical directions
is the smallest, it is assumed that the value at (i, ;) is noisy and it is
suppressed by adding the largest of the local mean values. After the
enhancement the diagonal lines corresponding to repeating sections
are more pronounced.
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a virgin” by Madonna obtained after summing the en-
hanced chroma distance matrix and MFCC distance ma-
trix.
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After the enhancement step the chroma and MFCC distance matri-
ces are summed. This gives the final distance matrix D, where the

is the

entries D(la ]) = Dchroma (i’ ]) + Dmfcc (i’ ]) ’ where Dchrama
chroma distance matrix after the above described enhancement
operation. Figure 4 shows the summed distance matrix for
Madonna’s “Like a virgin”. Weighted summation was also at-
tempted for the different matrices with certain weight combinations,
but equal weights (i.e. no weighting) seem to perform well. A
slightly related approach to our distance matrix summing was pre-
sented by Marolt [13]. He constructed several beat synchronous
melodic representations by comparing excerpts of different length,
and then combined the representations by pointwise multiplication.
This was reported to help in reducing noise in the self-similarity
representation.

2.6. Detecting repetitions from the self-distance matrix

The following step attempts to detect which parts of the distance
matrix correspond to a repetitive segment and which do not. The
binarization method used here is similar to the one presented by
Goto in [8], except that we operate on the low-triangular part of a
distance matrix whereas Goto operated on the time-lag triangle. In
addition, the filtering operations are simplified here and the thresh-
old selection operations differ slightly.

When a sum is calculated along a diagonal segment of the distance
matrix, a smaller value indicates a larger likelihood that the particu-
lar diagonal contains one or more line segments with small similar-
ity values. A sum is calculated along the low-left diagonals & of the
distance matrix, giving the values

M-k
F(k)= ! D D(c+kie), k=1,..M -1 1)
c=1

M-k ©

where M is the number of beats in the song. Thus, F(1) corre-
sponds to the first diagonal below the main, F(2) to the second
below the main diagonal, and so on. The values of k corresponding
to the smallest values of F(k) indicate diagonals which are likely to
have repetitions in them. With Eq. 1 there exists a possibility that
some small-distance values are masked by high distance values that
happen to locate at the same diagonal. Thus, it might be worth
studying whether special methods to remove the effect of high-
distance values would improve the performance. However, this was
left for future research as the simple summing seems to work well.

A certain number of diagonals corresponding to minima in F(k) are
then selected. Before looking for minima in F(k), it is “detrended”
to remove cumulative noise from it. This is done by calculating a
lowpass filtered version of F(k), using a FIR lowpass filter with 50
taps, the value of each coefficient being 1/50. The lowpass filtered
version of F(k) is subtracted from F(k).

The minima correspond to zero-crossings in the differential of F(k).
The smoothed differential of F(k) is calculated by filtering F(k) with
an FIR filter having the coefficients b,(i) = K-i, i = 0, ..., 2K, with
K=1. The minima candidates are obtained by finding the points
where the smoothed differential of F(k) changes its sign from nega-
tive to positive. The values of the minima are dichotomized into two
classes with the Otsu method presented in [14], and the values
smaller than the threshold are selected. We observed that sometimes
it may happen that only a few negative peaks are selected using this

threshold. This would mean that the following binarization would
examine only a few diagonals of the distance matrix, increasing the
possibility that some essential diagonal stripes are left unnoticed. To
overcome this, we raise the threshold gradually until at least 10
minima (and thus diagonals) are selected. The subset of indices
selected from all the diagonal indices & e [l,M —1] to search for

line segments is denoted by Y.

The diagonals of the SDM selected for the line segment search are
denoted by

g,(0)=D(c+y,c),c=L.. M-y 2)
where yeY. The diagonals g, (c) of the distance matrix are

smoothed by filtering with a FIR with coefficients b,(i) = %, i =
1, ...,4. Goto ([8]) performed another threshold selection with the
Otsu method ([14]) to select a threshold to be used for detecting the
line segments from the diagonals. However, we found it better to
define a threshold such that 20% of the values of the smoothed
diagonals g, (c) are left below it, and thus 20% of values are set to

correspond to diagonal repetitive segments. This threshold is ob-
tained in a straightforward manner by concatenating all the values
of g,(c), c=1,..,M~y and yeY intoa long vector, sorting the

vector, and selecting the value such that 20 % of the values are
smaller. Points where §y (c) exceeds the threshold are then set to

one, others are set to zero. This gives the binarized distance matrix.

Next the binarized matrix is enhanced, such that diagonal segments
where most values are ones (i.e. detected small distance segments)
are enhanced to be all ones under certain conditions. This is done in
order to remove gaps of few beats in such diagonal segments that
are long enough. These kinds of gaps occur if there is a point of
high distance within a diagonal segment (due to e.g. a variation in
the musicians’ performance). The enhancement process processes
the binarized distance matrix with a kernel of length 25 (beats).
Thus, at the position (i, j) of the binarized distance matrix B(i, /), the
kernel analyzes the diagonal segment from B(Z, ;) to B(i+25-1, j+25-
1). If at least 65 % of the values of the diagonal segment are ones,
B(i, j) = 1 and either B(i+25-2, j+25-2) = 1 or B(i+25-1, j+25-1) =1,
all the values in the segment are set to one. This removes short gaps
in the diagonal segments. The length of the kernel is a parameter to
the system, the value 25 was found to work well. Goto ([8]) did not
report a need for such an enhancement process but we found it nec-
essary.

2.7. Locating interesting segments

The result of the previous steps is an enhanced binarized matrix
B,(i, j) where the value one indicates that that point corresponds to a
repetitive section and zero corresponds that there is no repetition at
that point. The next step is to find diagonal segments that are inter-
esting, i.e. likely correspond to a chorus.

There may be repetitions that are too short to correspond to a cho-
rus, such as those that occur e.g. when the same pattern of notes are
repeatedly played with some instrument. By default, segments
longer than four seconds are searched and used for further process-
ing. In the case no segments longer than four seconds are found, the
system tries to extend the segments until at least some segments
longer than four seconds are detected. If this does not help, the
length limit is relaxed and all segments are used.
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With some songs there may be a very large number of repetitive
diagonal segments at this point. Therefore, some of the segments
are removed. For each diagonal segment found in the binarized
matrix, the method looks for diagonal segments which are located
close to it. Let us denote a diagonal segment which starts at (i, )

and ends at (/,j") withx, :[i,j,i’,j’]. Furthermore, the length
A(gp) =j'—j+1 is the duration of the segment in beats. Given
two segments x, and x,, the segment x, is defined to be close to
x, iff

2,2 (x,(1)-5) and x,(3) < (x,(3)+20) and

|6, (2)~x,(2) £20 and x,(4) < (x,(4) +5)

where |.| denotes absolute value. The parameters were obtained by
experimentation and may be changed.

For each segment, the method then lists its close segments fulfilling
the conditions above, finds the segments that have more than three
close segments, and removes the extra segments. If some segment
with more than three close segments is in the removal list of some
other segment, then it is not removed. The result of this step is a
collection of the diagonal segments X, p= 1,..., P in the binarized

matrix.

2.8. Selecting the diagonal segment most likely corresponding
to a chorus

Next the method selects the segment most likely corresponding to a
chorus. This is done by utilizing a novel heuristic scoring scheme
which considers aspects such as the position of a repetition in the
self distance matrix, the position of a repetition in relation to other
repetitions in the SDM, average energy and average distance in the
SDM during the repetition, and number of times the repetition oc-
curs in the musical data.

»
>

Column index
(beats)

(1), x.(2))

(x.3), x(4))

Alx,)
(x5(1), x4(2))

(xA1), x(2))

Xp X,
v . =

Row index (x5(3), x5(4))

(beats) x(3), x.(4))

A(xy) Alx)

Figure 5: Notations when giving scores to a group of three diagonal
segments (detected stripes of small distance of the distance matrix).
The units are measured in beats.

2.8.1. Position of a repetition in the distance matrix

The first criterion used in making the decision is how close a diago-
nal segment is to an expected chorus position in the song. This is
based on the observation that often in pop music there is a chorus at
time corresponding to approximately one quarter of the song length.
A partial score s, ()_cp) measures the difference of the middle col-

umn of segment X, = [i,j,i',j'] to one quarter of the song length:

|( J+AGx,)/2)- mund(M/q
- round (M / 4)
where M is the length of the song in beats. The partial score s, (x,)

, 3)

Sl(ﬁ,,)=1

measures the difference of the middle row of segment x  to three

quarters of the song length:

|(i+ A(x,)/2) - round (3 .M/4j
round (M / 4)

With sl()_cp) and sz()_cp) we give more weight to such segments

“)

Sz(Ip)=1—

that are close to the position of the diagonal stripe on the low left
hand corner of Figure 4, which corresponds to the first occurrence
of a chorus (and match to the third occurrence) and is often the most
prototypically performed chorus, i.e. no articulation or expression.

2.8.2. Adjustment in relation to other repetitions

The second criterion relates to the adjustment of a segment within
the distance matrix in relation to other repetitions. Motivated by the
approach presented in [5], we look for possible groups of three
diagonal stripes that might correspond to three repetitions of the
chorus. See Figure 5 for an example of an ideal case. The search for
possible groups of three stripes is done as follows: the method goes
through each found diagonal segment x, , and looks for possible

diagonal segments below it. If a segment below x,, b#u, is
found, it looks for a segment x, r=#u, r#b, on the right from
the segment x, . In order to qualify as a below segment, we require
that x,(1)>x,(3), and that there must be some overlap between
the column indices of x, and x, . To qualify as a right segment
x, , there must be some overlap between the row indices of seg-
ments x, and x, . The groups of three segments fulfilling the
above criteria are denoted with m_ = [u,b,r] , z=1,...,Z . In theory

there could be at maximum of P(P—1)(P—2) such groups of

three segments, in practice the number is much less. An arbitrary
segment may belong to zero or several groups.

The groups of three stripes are then scored based on how close to
ideal the group of three stripes is. This scoring affects the scores of
some of the segments belonging to these groups. Four partial scores
are calculated to measure the quality of each group of three stripes
m_= [u,b,r]. The first partial score measures how close is the end

point of the above segment x, and below segment x, :

a(2) :1—2§u(4)—5,,(4)|/(A()_cb)+A(§u)), (&)
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where x (4)and x,(4) are the column indices of the end points of

upper and below segments, respectively. The second partial score
depends on the vertical alignment of upper and below segments:

1-(x,2)-x,2)/Ax,) i x,(2)<x,(2)
0,(2)=91-(x,(2)~x, () Ax,) i x,(2)>x,(4) (6)
1 otherwise
The next score measures whether the segments x, and x, are of
equal length:
o3(2) = 1-|Ax,) ~ Ax, |/ AGx,) - )

The final partial score depends on the difference in the position of
left and right segments:

2-min(x, (1) - x, (O] |x,3) -2, 3))
Ax,)+A(x,) ’

®)

o4(2)=1-
where ‘min’ denotes minimum operator.

The final score for the group of three segments m_ = [u,b,r] is the
average of o,(z), 0,(z), 03(z), and o,(z) denoted &(z).

Since this score considers a segment group, we need to decide
whether all the segments in the group receive a score, or whether
only certain segments. It was found beneficial to give the score to
segment x, . The score could also be given to segment x  as it

may also correspond to the first instance of the chorus. However,
the diagonal stripe corresponding to x  is often longer than the

actual chorus, it often consist e.g. of the repeating verse and chorus.
It was observed that it gives better results to score the segment x,

as its length often more closely corresponds to the correct chorus
length. Thus, depending on whether each found segment belong to
at least one group of three segments, it will receive a score

s3(£p) =max&(y), {¥ |m (2)= p}. The maximum is taken as
each segment may belong to more than one group. If a segment X,

does not belong to any group of three segments, s, ()_cp) =0.

2.8.3. Average energy and distance of a segment

The next criterion s, (x,) is the average logarithmic energy of the

portion of the music signal defined by the column indices of seg-
ment x normalized with the average energy over the whole signal.

Using the energy as one criterion gives more weight to such seg-
ments that have high average energy, which is often a characteristic
of chorus sections. The partial score s (E,,) takes into account the

average distance value during the segment: the smaller the distance
during the whole segment the more likely it is that the segment
corresponds to a chorus:

ss(x,)=1-¢(x,)/ D, ©)
where ¢Qcp) is the median distance value of the diagonal segment
X, in the distance matrix, and ® is the average distance value

over the whole distance matrix.

2.8.4. Number of times the repetition occurs

The last partial score S6(£p) considers the number of times the

repetition occurs. Other diagonal segments locating on top of or
below segment X, are indications that the segment defined by the

column indices of x, is repeating more than once. To get a score
for this, a search is done for all segment candidates X, and a count

is made of all those other segments x_which fulfill the condition
gp(Z) -X, 2)<0.2- Ach) and 5p(4) -X, 4)<0.2- Ach) .
The count of other segments X, fulfilling the above criterion is

stored as the score for all segment candidates x . When these

counts for all segment candidates have been obtained, the values are
normalized by dividing with the maximum count, giving the final
values for a score s (I,,) for each segment.

2.8.5. Selecting the most likely chorus segment

The remaining task is to select the most likely chorus segment based
on the various criteria. For each segment X, ,ascore is given as

S(zl,):0-5‘51(£p)+0'5‘52(5p) (10)

855(x,) 0.5 5,(x,) +55(x,) +0.5-5,(x).

There is a possibility to optimize the weights in Eq. 10, which we
did not fully explore in the fear of over fitting data but just manually
selected weights that gave good performance on a small set of mu-
sic files. The segment X, maximizing the score S is selected as the

most likely chorus segment. If at least one group of three diagonal
stripes fulfilling the criteria of section 2.8.2 has been found, the
choice is made among such segments x for which s;(x,)#0,i.e.

those that have been at an appropriate position in at least one group
of three diagonal stripes. If no sets of three stripes is found, the
selection is made among all the segments by maximizing S. In this
case the group score s, (x,)=0 for all segment candidates. The

result of this step is an initial chorus segment x_ .

2.9. Finding the exact location of the chorus

Next the exact location and length of the chorus section is refined
using filtering in two or one dimensions. 2D kernels have earlier
been used by Shiu et al. to analyze local similarity of the signal by
detecting repeated chord successions from a measure-level self-
similarity matrix [15]. Here, we use 2D filters to get the exact posi-
tion for a chorus segment. Often, the time signature in western pop
and rock music has a 4/4 time signature, and the length of a chorus
section is 8 or 16 measures (32 or 64 beats, respectively) [9]. In
addition, the chorus may consist of two repeating subsections of
equal length. Two dimensional filter kernels are constructed to
model the pattern of ideal small-distance stripes that would be
caused by a chorus of 8 or 16 measures long, with two repeating
subsections. Figure 6 shows the filter of dimension 32 by 32 beats,
with two 16 by 16 beats long repeating subsections. This is the
idealized shape of the small-distance stripes occurring in the dis-
tance matrix if the song has this kind of chorus. The second filter is
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similar but of dimension 64 by 64, and with diagonals modeling the
32 beat long subsections.

The area of the distance matrix surrounding the chorus candidate is
filtered with these two kernels. The chorus candidate start column is
denoted with x_(2) and the end column x_(4) . The columns of the

low triangular distance matrix starting from max(l,x_(2) - N,/2)
to min(x (4)+ N,/2,M) are selected as the area from which to

search for the chorus. N is the dimension of the filter kernel, either
32 or 64, and M is the length of the song in beats. min and max are
applied to prevent over indexing. If the length of the area above in
the column dimension is shorter than the filter dimension, this step
is omitted. The area is limited to lessen the computational load and
to prevent the refined chorus section from departing too much from
the initial chorus candidate.

When the upper left-hand side corner of the filter with dimension N,
is positioned in (i, j) at the distance matrix, the following values are
calculated: mean distance a(i,j,N ;) along the diagonals (marked

with black color in Figure 6), mean distance A(i, j,N ) along the
main diagonal and mean distance A(i,j,N ) of the surrounding

area (white color in Figure 6). The ratio
Puis jsNp)=a(i,j,N )/ Ai,j,N ;) indicates how well the posi-
tion matches with a chorus with two identical repeating subsections,
and the ratio p;(i,j,N )= p(i,j,N )/ A, j,N,) how well the
position matches a strong repeating section of length N, with no
subsections. The smaller the ratio, the smaller the values on the
diagonal compared to the surrounding area. The smallest value of
P, j,N,) and pg(i, j,N,) and the corresponding indices are

stored for both filters, i.e. with N;=32 and N, =64. These smallest
values are denoted by p;, (N,) and pj(N,).

Several heuristics are then used to select the final chorus position
and length based on the filtering results, or if the conditions are not
met then another filtering in one dimension along the initial chorus
segment is performed. The final chorus section is selected according
to the two dimensional filtering, if the smallest ratios are small
enough. The following heuristics are used, although many other
alternatives would be possible. These rules below have been ob-
tained via trial and error by experimenting with a subset of 50 songs
from our music collection.

If p,(64)<p,(32), it indicates a good match with the 64 beat

long chorus with two 32 beat long subsections. The chorus starting
point is selected according to the column index of the point which
minimized p,,(64), and its length is taken as 64 beats. Else, if the
length of the initial chorus section is less than 32, the chorus section
is adjusted according to the point minimizing p,, (32) only if the
chorus beginning would change at maximum one beat from the
initial location. Finally, if the length of the initial chorus section is
closer to 48 than 32 or 64 and p,(32) < p,(64) and

pp(32) < pjs(64)and the column index of the point minimizing
P (32) is the same as the point minimizing pj(32) , the chorus is

beat index

5 0 5w ®
beat index

Figure 6. Two dimensional filter kernel modelling the
stripes occurring if the song has a chorus of 32 beats in
length with two 16 beat repeating subsections. The average
distance is calculated along the entries marked with black
colour, and compared to the average distance of locations
corresponding to rest of the kernel (white entries).

set to start at the point minimizing both p;,(32) and pj(32) and

its length is set to 32. Thus, these are special rules to adjust the
chorus section if it seems likely that there song has either a 32 or 64
beats long chorus with identical subsections half its size.

In many cases, the above conditions are not met, and the chorus
section is adjusted by performing filtering along the diagonal values
of the initial chorus section and a small offset of five beats before
and after its beginning and end. Thus, if the row and column indices
of the initial chorus section are denoted with (x_(1),x.(2)) (the

beginning) and (x,(3),x,.(4)) (the end), the values to be filtered are

found along the line from (x.(1)-5x.(2)-5) to

(x,(3)+5x,(H+5).

The filtering is done with two kernels of length 32 and 64, but now
on one dimension along the diagonal distance values of the initial
chorus section and its immediate surroundings. The ratio (32) is the
smallest ratio of mean of distance values on the 32 point kernel to
the values outside the kernel. If #(32) < 0.7 and the length of the
initial chorus section is closer to 32 than 64, the chorus starting
point is set according to the location minimizing 7(32) and its length
is set to 32. If the length of the initial chorus section is larger than
48, the final chorus start location and length is selected according to
the one giving the smaller score. This step in our method looks for
the best position of the chorus section e.g. in the case the diagonal
stripe selected as the chorus section consists of a longer repetition of
a verse and chorus, for example. Note that the method is not limited
to 4/4 time signature and chorus lengths of 32 or 64: if the condi-
tions above are not met, the chorus section is kept as the one re-
turned from the binarization process. In these cases its length does
not have to be 32 or 64.

3. EVALUATION

The method was evaluated on database consisting of 206 popular
and rock music pieces. Most of the pieces have a clear verse-chorus
structure, although there are some instances where the structure is
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less obvious. The chorus sections were annotated manually from the
pieces. The annotations were made with a dedicated tool, which
showed the beat synchronized SDM of the signal aligned with the
signal itself. The self-distance matrix visualization significantly
speeded up the annotation work as the different sections were more
easily found.

Performance of the system is measured with the F-measure, defined
as the harmonic mean of the recall rate (R) and precision rate (P):
F= (2RP) / (R + P). To calculate R and P, we find the annotated
chorus section with maximum overlap with the detected chorus
section, and calculate the length /., of the section where the de-
tected chorus section overlaps with the annotated section. R is cal-
culated as the ratio /., to the length of the annotated chorus section,
and P is the ratio of /,,, to the length of the detected chorus section.
The F-measure is calculated for each track, and the reported overall
F-measure is the average of the F-measures over all tracks.

Table 1 shows the chorus detection results. Baseline is the normal
system. The most common error is small offsets in the beginning
and/or end locations of the chorus section that reduce the score. The
second row represents the results when the output chorus section
length is fixed to 30 seconds. Being able to output a fixed length
segment may be desirable in some applications, such as music pre-
view. If the initial chorus section is shorter than 30 seconds, ex-
panding is done by following the diagonal chorus segment into the
direction of minimum distance in the SDM. Correspondingly, short-
ening is done by dropping in turn the point with larger distance
value from either end. As the recall rate increases when the 30 s
limit is applied, the method has not always captured the whole cho-
rus section. If it is desirable that the thumbnail section captures the
chorus and it’s acceptable if the section extends beyond the chorus,
the 30s option can be used. The method is efficient; it takes about
ten seconds to process a song with an average duration of three to
four minutes on a Windows XP computer with a 2.8 GHz Intel
Xeon processor.

Method P R F
Baseline 89% 83% 86%
30s length 70% 92% 79%

Table 1: Chorus detection results.

4. CONCLUSIONS

A method for chorus detection from popular and rock music was
presented. The method utilizes a novel feature analysis front-end
where the MFCC and chroma distance matrices are summed and a
two step procedure of initial chorus selection and section refine-
ment. A novel heuristic scoring scheme was proposed to select the
initial chorus candidate from the binarized distance matrix, and a
novel approach utilizing image processing filters is used to refine
the final position and length of the chorus candidate. Evaluations on
a manually annotated database of 206 songs demonstrate that the
performance of the method is sufficient for practical applications,
such as previewing playlists of popular and rock music. Moreover,
the method is computationally efficient.
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