

Tampereen teknillinen yliopisto. Julkaisu 970
Tampere University of Technology. Publication 970

Antti Välimäki

Pattern Language for Project Management in Global
Software Development

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 10th of June 2011, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2011

ISBN 978-952-15-2581-0 (printed)
ISBN 978-952-15-2616-9 (PDF)
ISSN 1459-2045

i

ABSTRACT

Globalization is a general trend in the world which will also affect the way software is developed
and the kinds of organization which will make this development. Global Software Development
(GSD) offers new benefits but also new challenges which make the work more difficult than
earlier. This thesis tries to find solutions to these challenges from the viewpoint of project
management. Rather than developing a totally new GSD process that addresses these problems, I
try to come up with solutions to specific problems, and present these solutions in such a way that
they can be easily integrated with existing processes. An attractive way to document proven
solutions to specific development process problems is to use process patterns as done in this
work.

Pattern mining is not an easy task and different methods have been used to mine patterns. In
this thesis, a pattern mining method has been developed which is applied in case projects. The
solutions in these patterns have been mined from the practices that have been found to work well
in a case organization.

How to apply patterns is not always clear, because usually there are different kinds of
patterns for different purposes. Patterns should be organized in a way which makes it easier to
use them. In this work a process view of project management has been used to organize the
found process patterns.

When patterns are found, it is not always easy to tell if they are good or not. In this work, a
new approach to evaluate process patterns was developed. The resulting patterns have been
evaluated by using the proposed scenario-based assessment method.

To summarize, the main contributions of this thesis consist of a method to find GSD process
patterns, a collection of process patterns for project management in GSD, a pattern language
organization based on the structure of the PRINCE2 project management process, and finally, a
new assessment method to evaluate process patterns.

Keywords: Process patterns, Global software development, Agile project management

ii

iii

Preface

The work was carried out at Metso Automation as part of the EU ITEA/ITEA2 research projects
TWINS (Optimizing HW-SW Co-Design Flow for Software Intensive System Development)
and ITEI (Information Technologies supporting the Execution of Innovation Projects) during
2006-2011.

I wish to thank my supervisor, Professor Kai Koskimies for his excellent guidance and
encouragement during these years. I also wish to thank PhD Ita Richardson and Professor Ilkka
Tervonen for reviewing the thesis and giving constructive feedback. I would also like to thank
Professor Ilkka Haikala in memoriam for his valuable feedback and support of my thesis. I am
grateful to Jukka Kääriäinen, Minna Pikkarainen and Sari Vesiluoma, who provided valuable
support and cooperation during the research work, and to Sara Verville who reviewed the
language of all my papers and the thesis. Furthermore, many thanks to my colleagues Mika
Vanne, Jukka Ylijoki, Pekka Kimpimäki, Paavo Parkkonen, Juha Viljamaa and many other
persons at Metso Automation and other companies who made this work possible.

I would also like to acknowledge the financial support provided by Metso Automation and
the Academy of Finland and the research support provided by SoSE (The Graduate School on
Software Systems and Engineering).

Finally, I would like to extend my gratitude to my wife Merja, and my children Matti and
Mika and my parents Mirja and Esko Välimäki.

Tampere, April 2011

Antti Välimäki

iv

 Contents

Abstract i
Preface iii
List of Figures vii
List of Tables viii
List of Publications ix

1 Introduction 1
1.1 Context ..1
1.2 Problem Statement ...2
1.3 Research Approach and Methods ...3
1.4 Contributions ...6
1.5 Structure of the Thesis ...7

2 Background 9
2.1 Global Software Development ...9

2.1.1 Definition of GSD ..9
2.1.2 Different GSD Co-Operation Models and Team Setups .. 10
2.1.3 Communication, Coordination, and Control in GSD ... 11
2.1.4 Challenges in GSD ... 12
2.1.5 PRINCE2 ... 15

2.2 Agile Methods ... 16
2.2.1 Agile Values .. 16
2.2.2 Lean Principles .. 17
2.2.3 Scrum .. 19
2.2.4 Agile and Scrum in GSD .. 20

2.3 Application Lifecycle Management .. 20
2.3.1 ALM and Project Management ... 21
2.3.2 Application Lifecycle Management Framework ... 22
2.3.3 ALM in GSD ... 23

2.4 Patterns .. 24
2.4.1 The Idea of a Pattern .. 24
2.4.2 Formats of Patterns .. 24
2.4.3 Pattern Languages .. 25
2.4.4 Evaluation of a Pattern Language ... 26

3 Pattern Mining in GSD 27
3.1 Pattern Mining Method .. 27
3.2 Applying Pattern Mining Method to GSD Patterns ... 30
3.3 Industrial Context and Case Studies ... 33

v

4 GSD Pattern Language 37
4.1 GSD Patterns ...37
4.2 Pattern Format ...40
4.3 Pattern Language Organization with PRINCE2 ..41
4.4 ALM Framework and Related GSD Patterns ..48

5 Evaluation of GSD Pattern Language 49
5.1 Relations between GSD Challenges and GSD Pattern Language ...49

5.1.1 GSD Challenges Related to Temporal Distances ...49
5.1.2 GSD Challenges Related to Geographical Distances ...50
5.1.3 GSD Challenges Related to Socio-Cultural Distances ...50
5.1.4 Relations Between GSD Challenges and GSD Pattern Language51

5.2 Q-PAM ..53
5.2.1 Motivation ...53
5.2.2 Method Overview ..54
5.2.3 Creating Quality Profile ...55
5.2.4 Constructing Scenarios ...55
5.2.5 Analysis ...56

5.3 Evaluation of GSD Pattern Language ...57
5.3.1 Applying Q-PAM ...57
5.3.2 Analysis of Results ...58

5.4 Summary of Q-PAM Evaluation ..61

6 Related Work 63
6.1 Analysis between GSD Pattern Language and Related Research ...63

6.1.1 Agile Software Patterns ..63
6.1.2 GSD Handbook ..64
6.1.3 MaPIT Practices for GSD ...64
6.1.4 Distributed Scrum Practices..65
6.1.5 BTH Review on GSE ...65
6.1.6 GSE: A Software Process Approach ...66
6.1.7 Summary of Analysis ...66

6.2 General Issues Related to Patterns ..72
6.2.1 Pattern Mining ...72
6.2.2 Organizing Pattern Languages ..73

7 Introduction to the Included Publications 74
7.1 Requirements Management Practices as Patterns for Distributed Product Management74
7.2 Patterns for Distributed Scrum – a Case Study ..74
7.3 Get a Grip on your Distributed Software Development with Application Lifecycle Management
(co-author) ...75
7.4 Scenario-Based Assessment of Process Pattern Languages ...76
7.5 Global Software Development Patterns for Project Management ..76
7.6 Applying Application Lifecycle Management for the Development of Complex Systems:
Experiences from Automation Industry (co-author) ..77

8 Conclusions 78
8.1 Answers to Research Questions ..78
8.2 Limitations and Threats ..79

vi

8.3 Future Research ... 80
References 82

Appendices:
Appendix A: Questions of a case: GSD in the work of product managers
Appendix B: Questions of a case: GSD project management in Agile projects
Appendix C: Global Software Development Pattern Language for Project Management
Papers I-VI

vii

List of Figures

Figure 1. The main contributions of the thesis... 7
Figure 2. The four cooperation models according to company relationship and team setup
adapted from [Kobitzsch et al. 2001] .. 10
Figure 3. Process overview of PRINCE2 [Bentley 2005] .. 15
Figure 4. Scrum overview [Abrahamsson et al. 2002] ... 19
Figure 5. Application Lifecycle Management facilitates project cooperation and communication
[Kääriäinen 2011] ... 21
Figure 6. Principal elements of Application Lifecycle Management [Kääriäinen 2011] 23
Figure 7. Pattern mining method ... 27
Figure 8. Question derivation framework .. 28
Figure 9. The pattern mining framework .. 30
Figure 10. A framework for data collection for Distributed Scrum .. 31
Figure 11. GSD Pattern Language Organization with PRINCE2 ... 42
Figure 12. ISO 9126 quality attributes [ISO/IEC 9126-1:2001] ... 54
Figure 13. Evaluation Indicators ... 60

viii

List of Tables

Table 1. An analysis of Design Science Research Guidelines [Hevner et al. 2004]4
Table 2. The overall flow of the research ...5
Table 3. GSD challenges adapted from [Ågerfalk 2005] .. 13
Table 4. Lean manufacturing principles relate to Agile Software Development [Leffingwell
2007] .. 18
Table 5. Seven Principles of Lean Software Development [Poppendieck M. and T. 2006] 18
Table 6. Elements of a pattern [Appleton 1997] .. 25
Table 7. The summary table with pattern hints .. 29
Table 8. The summary table with pattern hints and pattern proposals .. 29
Table 9. The summary table for Product Backlog with potential pattern proposals 32
Table 10. GSD patterns for project management ... 38
Table 11. An example of a GSD pattern .. 41
Table 12. Relations between GSD patterns and PRINCE2 major processes 47
Table 13. Mapping between ALM elements and related GSD patterns [Kääriäinen et al. 2009] 48
Table 14. Relations between GSD challenges and GSD Pattern Language 52
Table 15. The quality profile used in the evaluation. The explanations are modified from ISO
9126. ... 58
Table 16. Example analysis of a scenario ... 59
Table 17. Summary of the analysis of scenarios for GSD Pattern Language 60
Table 18. Analysis of GSD Pattern Language with [Coplien and Harrison 2005] and [Sangwan et
al. 2006] .. 66
Table 19. Analysis of GSD Patterns with [Paasivaara et al. 2010] and [Woodward et al. 2010] . 68
Table 20. Analysis of GSD Pattern Language with [Richardson et al. 2010] 70

ix

List of Publications

I. Välimäki, A., Kääriäinen, J. Requirements Management Practices as Patterns
for Distributed Product Management. In: Munch, Abrahamsson, . (ed.),
Product-Focused Software Process Improvement, PROFES 2007, Riga,
Latvia, July 2007, LNCS 4589, Springer (2007), pp. 188-200.

II. Välimäki, A., Kääriäinen, J. Patterns for Distributed Scrum – a Case Study.
International Conference on Interoperability of Enterprise, Software and
Applications (I-ESA). Berlin, German. March 25th – 28th 2008. Mertins K.
et al. (Eds.): Enterprise Interoperability III –New Challenges and Industrial
Approached. Springer (2008), pp. 85 – 97.

III. Kääriäinen, J.; Välimäki, A. Get a grip on your distributed software
development with Application Lifecycle Management. International Journal of
Computer Applications in Technology (IJCAT), InderScience Publishers,
Vol. 40, No. 3 (2011), pp. 181-190.

IV. Välimäki, A., Vesiluoma, S. and Koskimies, K. Scenario-Based Assessment
of Process Pattern Languages. In: Proceedings of Profes 2009, June 2009,
(Eds). Springer (2009), pp. 246 – 260.

V. Välimäki, A., Kääriäinen, J and Koskimies, K. Global Software Development
Patterns for Project Management. 16th European Conference, EuroSPI 2009,
Alcala (Madrid), Spain, 2 - 4 Sept. 2009, Communications in Computer and
Information Science. Volume 42. Eds: R.V. O’Connor et al. (Eds.): EuroSPI
2009, Springer, Berlin - Heidelberg (2009), pp. 137 – 148.

VI. Kääriäinen, J, Välimäki, A. Applying Application Lifecycle Management for
the Development of Complex Systems: Experiences from Automation
Industry, 16th European Conference, EuroSPI 2009, Alcala (Madrid), Spain,
2 - 4 Sept. 2009, Communications in Computer and Information Science.
Volume 42. Eds: R.V. O’Connor et al. (Eds.): EuroSPI 2009, Springer, Berlin
- Heidelberg (2009), pp. 149 – 160.

1

1 INTRODUCTION

This chapter gives a general introduction to the setup and results of the thesis. The context,
problem statement and approach of this research are first discussed. The research method and
contributions are briefly described and finally, the structure of the thesis is presented. I assume
that the reader is familiar with project management in software development.

1.1 Context

Globalization is a general trend in the world and it will also affect the way software is developed
in companies. Global Software Development (GSD) can be defined as software development that
uses teams from multiple geographic locations [Sangwan et al. 2006, p.3]. GSD offers new
motivators but also new challenges which make development of software more difficult than
earlier. The research of GSD tries to find solutions to address these challenges.

The motivation for using GSD in companies is that it brings benefits such as access to cost
savings, worldwide talent, knowledge networks, and follow-the-sun development [Carmel and
Tija 2005, pp. 94-100]. Other reasons for GSD implementation are mergers and acquisitions
made by companies and companies’ need to be close to a local market. Enablers for GSD are
advances in infrastructure and software development tools. However, GSD is also a challenge
for software corporations because there are breakdowns of communication, coordination and
control and also cohesion barriers between different groups during the development and project
management [Carmel and Tija 2005, pp. 12-13]. Other challenge categories are legal issues,
knowledge transfer, quality management as well as culture, language and time differences and
infrastructure [Kobitzsch et al. 2001].

Project management is one of the key software development processes to cope with these
challenges. In fact, it has a central role in coordinating and controlling how software is
developed. Project management is a process which strives to ensure that tasks are done within a
given budget and time schedule. Project management is a challenging activity in the best of
circumstances, and it has become even more challenging in distributed scenarios [Kock 2008,
p.315].

Different kinds of development models can be used in GSD such as plan-driven models,
Agile models, or a combination of these. Agile development methods include e.g. Extreme
Programming (XP) [Beck et al. 2004], Feature Driven Development (FDD) [Palmer and Felsing
2002], and Scrum [Schwaber and Beedle 2002]. Agile methods have been originally planned to
be used in collocated projects [Abrahamsson et al. 2002]. However, there is an increasing trend
of using some of the Agile practices to improve the efficiency and quality of GSD project
management ([Ramesh et al. 2006], [Sutherland et al. 2007], and [Farmer 2004]).

 GSD is becoming more and more common in the software development industry ([Conchuir
et al. 2009], and [Šmite et al. 2010]) due to the various GSD benefits mentioned earlier.

2

However, there are still many problems to be solved in complex, distributed software
development environments. In this thesis I adopt the viewpoint that many of these problems can
be alleviated by improved project management. In particular, I argue that GSD practitioners and
researchers need to identify better project management practices in order to address the
distribution challenges both in traditional plan-driven and in Agile processes. The identification
of such practices is the main objective of this work. I expect that the application of the identified
practices provide improvements in functionality, efficiency and adaptability in the GSD process.

There is also a presentation problem involved: how to present the knowledge of good
practices in a way that is easy to access, understand and reuse? In this thesis, I explore the use of
the pattern concept [Alexander et al. 1977] for presenting the recommended practices in project
management in GSD, originally introduced for the design of building architecture [Alexander et
al. 1977]. According to Alexander, each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solution to that problem in such a
way that this solution can be used when the problem reappears. [Alexander et al. 1977]. Patterns
have been applied in various contexts of software engineering, also for describing process
practices e.g. [Coplien and Harrison 2005].

Patterns are not isolated solutions but they are often applied in concert to solve a larger
problem. A pattern language is a collective of patterns which, at every level of scale, work
together to resolve a complex problem into an orderly solution according to a pre-defined goal
[Appleton 1997]. The central aim of this work is to develop a comprehensive pattern collection
and a pattern language for project management in GSD. In the next section I discuss the problem
statement in more detail.

1.2 Problem Statement

GSD offers many new possibilities to improve the efficiency of software development but it is
much more difficult to implement than collocated development. GSD usually involves
geographical, temporal and socio-cultural distances that may create a number of challenges and
may restrict project communication, coordination and control processes [Ågerfalk et al. 2005].
Thus, it is necessary for GSD project managers to mitigate project management challenges by
introducing better processes, practices or tools that will ensure effective project communication,
coordination and control processes. GSD challenges can be studied on various levels, but in this
thesis the focus is on the project level.

The primary objective of this thesis is to find and represent effective practices that enable to
minimize project distribution challenges and also provide better GSD project management. A
sub-problem related to the primary objective is to represent these practices in a systematic and
easily understandable form. Another sub-problem is the definition of a method for finding good
practices in research projects, and literature. Finally, the resulting representation of the practices
has to be evaluated systematically to ensure that it fulfills its purpose.

Thus, the broad objective of this research is to address the following research questions:
RQ1: How should good project management practices in GSD projects be presented?

3

RQ2: How can good project management practices be found in GSD projects?
RQ3: What are the good project management practices in GSD projects?
RQ4: How can these practices be evaluated?

1.3 Research Approach and Methods

Information concerning challenges and solutions of GSD in this thesis is gathered both from
industry and literature. Information from industry is gathered by questionnaires and interviews
from GSD projects which have been managed using either the traditional plan-driven method or
a combination of plan-driven and Agile methods. Project Management practices are studied from
the client perspective in which the case company is a client and its subcontractors are vendors
located in different sites. Good project management practices are reviewed and improved in
interviews and workshops. Literature plays a corroborating role for identifying good practices:
the appearance of a similar practice recommendation in the literature confirms the justification
for the practice.

Gathered information is presented in the form of patterns. A collection of process patterns for
project management in GSD is organized into a pattern language (GSD Pattern Language) based
on the project management processes of PRINCE2 (PRojects IN Controlled Environments2)
[Bentley 2005]. Process patterns are in general difficult to evaluate empirically in a real
environment because it would mean time and resource consumption monitoring of the effect of
the patterns in different projects, possibly in different companies. Even the “effect” is difficult to
define and measure. Thus it was necessary in this work to develop a more feasible method for
evaluating the resulting pattern language. The evaluation is carried out here using a scenario-
based assessment method which is derived from ATAM (Architecture Tradeoff Analysis
Method) [Clements et al. 2002].

The industrial context in this research is a company which operates in the automation
industry. The company produces complex automation systems where software development is a
part of system development. Product development in the case company is organized according to
product lines. Most of the research focused on two product lines consisting of several products
that were partly developed in different sites. The cases were further focused on two teams each
having 5 to 6 projects running in parallel. The projects were geographically distributed over 2 or
3 sites. The industrial context is described in more detail in Section 3.3.

In this thesis the research approach is based on design science [Hevner et al. 2004] and case
studies [Yin 2003].

Design science has two parts: to build and to evaluate [Hevner et al. 2004]. The build part
was implemented by the case study approach, resulting in a pattern language that reflects the
problems and solutions in a representative GSD environment. In general, case studies are useful
when research data is collected through observations [Yin 2003]. Case study research was
implemented based on Yin’s steps in case study research methods, i.e. preparing data collection,
collecting evidence, analysing evidence and reporting case studies. The evaluation part of the

4

pattern language was implemented both by the new process pattern assessment method and by
literature-based GSD challenges.

Hevner et al. [2004] have described seven guidelines for design science in information
systems research. The seven guidelines and how these guidelines are covered in this thesis are
presented in Table 1.

Guideline Description How covered in this thesis?

Guideline 1:
Design as an
Artifact

Design-science research must
provide a viable artifact in the
form of a construct, a model, a
method or an instantiation.

In this thesis, the artifact is GSD
Pattern Language.

Guideline 2:
Problem Relevance

The objective of design-science
research is to develop technology-
based solutions to important and
relevant business problems.

The business problems are related
to project management in agile
GSD projects.

Guideline 3:
Design Evaluation

The utility, quality, and efficacy
of a design artifact must be
rigorously demonstrated via well-
executed evaluation methods.

Evaluation is made using a new
process pattern assessment method,
Quality-oriented Process
Assessment Method (Q-PAM).

Guideline 4:
Research
Contributions

Effective design-science research
must provide clear and verifiable
contributions in the areas of the
design artifact, design
foundations, and/or design
methodologies.

This thesis provides GSD Pattern
Language.

Guideline 5:
Research Rigor

Design-science research relies
upon the application of rigorous
methods in both the construction
and the evaluation of the design
artifact.

Construction is carried out using a
Pattern mining method and
evaluation is based on Q-PAM.

Guideline 6:
Design as a Search
Process

The search for an effective artifact
requires utilizing available means
to reach desired ends while
satisfying laws in the problem
environment.

Construction relies on the Pattern
mining method which aims at
systematic search.

Guideline 7:
Communication of
Research

Design-science research must be
presented effectively both to
technology-oriented as well as
management-oriented audiences.

This thesis describes results at a
project management level which
takes into account both technology
and management audiences.

Table 1. An analysis of Design Science Research Guidelines [Hevner et al. 2004]

5

The overall flow of the research conducted is presented in Table 2 which describes each step of
the research. For each research step, the associated paper or an action, the research theme, and
the research questions are given, as well as a classification of the nature of the research work.
The first three steps introduce pattern mining methods and results of the case studies applying
the methods. The fourth step gives information for a specific Application Lifecycle Management
(ALM) pattern. In steps five and six GSD Pattern Language is created. Step seven concerns the
development of a new process pattern assessment method (Q-PAM), while in step eight this
method is used to evaluate GSD Pattern Language. Finally, step nine, gives updated information
for ALM patterns.

Research
step

Theme Research interest Research
method

1) [Välimäki
and
Koskimies
2006]

The best practices of project
managers in plan-driven
projects in a GSD
environment.

What are best practices in a form
of process patterns for project
managers?

Case study

2) Paper I /
2007

Requirements management
practices as patterns for
distributed product
Management

What are the best practices to
support distributed business
requirements management
during the early phases of
product development?
What is the process of mining
requirements management
process patterns?

Case study

3) Paper II /
2008

The best practices of project
managers in a distributed
Agile development
environment.

What are project management
patterns in a distributed Agile
development environment? How
could the pattern mining
method be improved?

Case study

4) Paper III /
2008 (co-
author)

ALM related best practices What is the content of ALM
related pattern?

Case study

5) Study of
research
material /
2008

GSD Patterns for project
managers

Which patterns are chosen to
GSD patterns for project
managers?

Design
meetings

6) Review
workshops /
2008

Review of GSD Patterns Which patterns are chosen to
GSD patterns for project
managers?

Workshops

Table 2. The overall flow of the research

6

7) Paper IV /
2009

Scenario-Based Assessment
of Process Pattern Languages

What kind of light-weight
method can be used for
assessing pattern-based
processes and how can such a
method be applied?

Workshops

8)Paper V /
2009

Introduction of GSD Pattern
Language and its validation
using the validation method
described in Paper IV.

What is the content of GSD
Patterns and what are the results
of validation of GSD Pattern
Language by Q-PAM method?

Workshops

9)Paper VI /
2009 (co-
author)

An update to ALM related
best practices

What is updated information
about the ALM-related process
pattern?

Case study

1.4 Contributions

The main contributions of this thesis are the following:

1. A method to find process patterns, based on identifying and analyzing challenges, current
practices and ideas to improve current practices in case projects.

2. A collection of process patterns for project management in GSD.

3. GSD Pattern Language for project management organization based on the structure of the
PRINCE2 project management process. (GSD Pattern Language)

4. A new Quality-oriented Process Assessment Method (Q-PAM) to evaluate process
patterns.

7

GSD challenges

PRINCE2

1.
Pattern mining

method
2.

A collection of
process patterns

3.
GSD Pattern

Language
4.

Q-PAM

Evaluate
Relate to

Give data to

Organize

Forms

Evaluate

Produces

Case projects

Figure 1. The main contributions of the thesis

The main contributions, the related elements and the relations between them are illustrated in
Figure 1. The related elements which are not regarded as contributions to this research are
literature based GSD challenges, PRINCE2, and Case projects.

The main contributions are presented as numbers in Figure 1. A pattern mining method (1st

contribution) is used to find a collection of process patterns for project management in GSD (2rd

contribution) from Case projects. PRINCE2 is used to organize the collection of process patterns
for GSD Pattern Language for project management (3th contribution). Quality-oriented Process
Assessment Method (4th contribution) is used to evaluate GSD Pattern Language. Also the
literature-based GSD challenges are used as the basis of another evaluation of GSD Pattern
Language.

1.5 Structure of the Thesis

This thesis includes an introduction, six previously published articles, and one appendix. The
introduction consists of eight chapters. Chapter 1 gives a brief introduction to the motivation and
contents of this thesis and Chapter 2 gives background information about the relevant research
areas. In Chapter 3, the pattern mining method is presented and in Chapter 4 the GSD Process
Pattern Language for project management in GSD is presented. In Chapter 5, the new evaluation
method and its application to the GSD Process Pattern Language are presented. Chapter 6
discusses related work, Chapter 7 gives an introduction to the included publications. Finally, in
Chapter 8 are the conclusions.

The thesis is based on six publications. Paper I discusses pattern mining (Chapter 3). This
paper includes also process patterns which are needed when the fuzzy front end of a

8

development project is clarified by product managers in GSD (Chapter 4). Paper II also discusses
pattern mining (Chapter 3) and presents the first project management patterns in a distributed
Agile development environment (Chapter 4). Paper III introduces the framework for project
management and development tools and processes in the form of the Application Lifecycle
Management (ALM) concept and gives information about ALM-related patterns (Chapter 4).
Paper IV describes a new scenario-based assessment method for evaluating process pattern
languages (Chapter 5). Paper V presents both the first version of Global Software Development
Patterns for Project management (Chapter 4) and evaluation of these patterns (Chapter 5). Paper
VI presents the latest ALM framework and updated information about the ALM-related process
pattern (Chapter 4).

The first contribution is presented in Papers I and II. The first parts of the second
contribution are presented in Papers I and II and related information for the second contribution
is presented in III and VI. The third contribution is presented in Paper V. Finally, the fourth
contribution is presented in Papers IV and V.

9

2 BACKGROUND

This chapter discusses the relevant background information related to this research. Section 2.1
introduces Global Software Development and PRINCE2. Section 2.2 discusses Agile Methods
and Agile Project Management in GSD, in particular Scrum [Schwaber and Beedle 2002].
Section 2.3 briefly presents Application Lifecycle Management (ALM). ALM-based approaches
are often exploited in a GSD environment. Finally, patterns and pattern languages are discussed
in Section 2.4. Patterns are a central utility in this work, enabling the presentation of the results
in a systematic form.

2.1 Global Software Development

This section discusses GSD as far as it is related to this research. Subsection 2.1.1 discusses GSD
definitions and presents the definition used in this thesis. Subsection 2.1.2 discusses different
GSD co-operation models. Subsection 2.1.3 discusses CCC definitions in GSD and broad
categorization of GSD challenges in general. The project management process PRINCE2 is used
later to organize a pattern language from a collection of process patterns for project management.
Subsection 2.1.4 summarizes GSD challenges discussed in literature. Subsection 2.1.5 introduces
briefly PRINCE2.

2.1.1 Definition of GSD

The concept of Global Software Development (GSD) is very broad and can be used to define any
contemporary form of software development where project stakeholders are dispersed in
distributed locations. One example of a GSD definition is by Sangwan stating that GSD is
software development that uses teams from multiple geographical locations. In some cases, these
teams may be from the same organization, in other cases, there may be collaboration or
outsourcing that involves different organizations. These teams could be within one country or on
the other side of the world. [Sangwan et al. 2006, pp. 3-4]. Another GSD definition is according
to Wiredu defining GSD as a contemporary form of software development undertaken in
globally distributed locations and facilitated by advanced information and communication
technology (ICT), with the predominant aim of rationalizing the development process [Wiredu
2006]. Yet another GSD definition is according to Conchuir et al. [2006] saying that GSD is
characterized by stakeholders from different national and organizational cultures, located in
separate geographic- locations and time-zones, using information and communication
technologies to collaborate. Based on these definitions, GSD is defined in this thesis as follows:

10

GSD is a software engineering approach where stakeholders from
different national and organizational cultures, located in separate
geographic locations and possibly different time zones, use
information and communication technologies to collaborate on
implementing needed products.

GSD is defined in a slightly new way in this thesis to emphasize that GSD is a software
engineering approach and that the results are software or system products.

2.1.2 Different GSD Co-Operation Models and Team Setups

GSD development can be organized based on different models which affect not only the
challenges related to GSD organization but also the solutions to solve these challenges. In Figure
2, it is possible to see different organization models related to GSD. One organizational criterion
is how GSD companies relate to each other. They can be different companies or different sites of
the same company. Another criterion is what the team setup is. Teams can be separate or they
can constitute one virtual team.

Figure 2. The four cooperation models according to company relationship and team setup
adapted from [Kobitzsch et al. 2001]

The first model covers separate teams which are in different companies. This is a normal
contractor-subcontractor relationship between two separate companies. The second model also
covers separate teams, but these teams are in different sites of the same company. Holmström
Olsson et al. [2008] note that separate teams (i.e. loosely coupled teams) work more
independently than a virtual team. Communication and day-to-day management between teams
can be kept to a minimum.

The third model covers one virtual team which is distributed across multiple sites of different
sites of the same company. The fourth model covers one virtual team which is also distributed
across multiple sites of at least two different companies. This means that there can be e.g. one

11

team in a main company and at least one team in another company which also constitute the
same virtual team. Holmström Olsson et al. [2008] note that virtual teams (i.e. tightly coupled
teams) facilitate organizational unity and “teamness”, but tightly coupled teams also create
additional communication and managerial overhead.

2.1.3 Communication, Coordination, and Control in GSD

In this subsection CCC (Communication, Coordination, and Control) is discussed in the context
of GSD. CCC has been used as a framework to study GSD challenges, proposed by Ågerfalk
[Ågerfalk et al. 2005]. I also use CCC in this thesis for classifying GSD challenges, which are
presented in more detail in Subsection 2.1.4.

Communication is sending, giving, or exchanging information and ideas, which is often
expressed nonverbally and verbally. Communication can also be defined as the exchange of
complete and unambiguous information in which the sender and receiver can reach a common
understanding [Carmel and Agarwal 2001]. Project members’ distribution usually changes the
communication context away from an “ideal” face to face setting into a more restricted
technology-oriented environment [Holmström et al. 2006]. According to Mockus and Herbsleb
[2001] factors like time zone differences, language and cultural differences, communication
bandwidth, and multi-site development have an impact on GSD communication processes.

Communication problems are e.g. the loss of communication richness with tools such as e-
mail or telephone, difficulties to understand each other over distance [Carmel and Tija 2005].
The frequency of communication between team members may decrease with distance. It has
been observed that the frequency of communication is almost the same when members are about
30 meters or many miles from each other. [Allen 1984]. These problems lead to delays and to
rework. Delays are created because messages need to be clarified and reworked and because they
were not really understood in the first place. This miscommunication leads in turn to conflicts
and decreased trust between members of a project in different sites [Carmel and Tija 2005].

Coordination is the act of integrating each task with each organizational unit so the unit
contributes to the overall objective [Carmel and Agarwal 2001]. Coordination is also usually
defined as managing dependencies among various software development tasks. In GSD projects,
tasks are distributed over time, space and across cultural borders; this increases the need for
coordination processes [Herbsleb and Moitra 2001]. Factors like increased number of distributed
sites and lack of tool support may have an impact on GSD coordination processes. A
coordination problem is e.g. the difficulty to make fast, small or large adjustments to the work by
members of a project because of distance and differences in time zones. Adjustments are made
by e.g. questions, requests for clarification or fast ad hoc meetings and these are easier and faster
to implement in collocated development because one is aware of who to contact for help. This
coordination problem creates delays with problem solving and projects often head in the wrong
direction due to lack of proper coordination information. [Carmel and Tija 2005].

Control is the process of adhering to goals, policies and standards, or quality levels [Carmel
and Agarwal 2001]. Control is difficult in GSD basically because a project manager cannot
implement Management by Walking Around (MBWA) [Carmel and Tija 2005]. Another

12

problem is that managers usually pay more attention to those who are near. These problems with
control also increase delays and make it more difficult to find problems early enough.

2.1.4 Challenges in GSD

GSD challenges have an impact on communication, coordination and control (CCC) in software
development processes. These arise due to the distances involved in three dimensions –
temporal, geographical and socio-cultural. In the following I will briefly describe GSD
challenges related to distances and CCC. After that, I will present GSD challenges according to
the framework proposed by Ågerfalk. [Ågerfalk et al. 2005].

Temporal distance across multiple time zones reduces the number of overlapping working
hours between two or more distributed parties. Geographical distance is related to the
accessibility of locations between collaborating parties which includes physical distance and
issues related to transportation or political border controls [Lane and Ågerfalk 2009]. Socio-
cultural distance is related to the people from different countries who have different
backgrounds, values, work habits, language etc. [Ågerfalk et al. 2005].

There are many challenges with communication. Carmel [1999] mentioned that a major
challenge for GSD teams is the lack of informal communication which is very important in any
software development process. Also Conchuir et al. [2009] note that it is difficult to increase
communication between team members because geographical distance makes it more difficult to
meet colleagues from other locations. Although face-to-face meetings are very important for
team members, it is often too expensive for everyone to travel from one site to another to meet
each other. This makes it difficult to organize face-to-face meetings in GSD.

 Other challenges for communication are lack of overlapping working hours which can also
lead to delays in feedback thus decreasing the effectiveness of the development process
[Conchuir et al. 2009]. Also Herbsleb and Mockus [2003] claim that modification requests
(MRs) involving multiple sites took 2,5 longer to resolve and usually need more people to solve
modification requests, compared to single-site MRs. One solution is to increase asynchronous
communication. Kobitzsch et al. [2001] note that an advanced communication infrastructure is a
key component for GSD because team communication becomes much more difficult when the
participants are geographically dispersed but there is a risk with communication dependency on
ICT tools [Hossain et al. 2009]. Mockus and Herbsleb [2001] also claim that one potentially
serious issue is that project participants have backgrounds that are different in each site. They
have not been in the same projects, have used different processes, come from different cultures
and speak different native languages which all make communication more difficult.

Key risks of using different coordinating mechanisms in GSD projects are also presented in
[Hossain et al. 2009]. Hossain et al. [2009] divide coordination into three basic coordination
mechanisms according to [Mintzberg 1989] mutual adjustment, direct supervision and
standardization. Risks are presented from the viewpoint of GSD distances (temporal,
geographical and socio-cultural) and three coordination mechanisms.

Different distances in GSD are described to impact negatively for key variables for success in
GSD. These variables are effective coordination, visibility, communication and cooperation

13

[Casey and Richardson 2006]. Another analysis from the viewpoint of GSD distances is in Table
3. It presents GSD challenges which have an impact on communication, coordination and control
due to geographical, temporal and socio-cultural distance adapted from [Ågerfalk et al. 2005].
As Ågerfalk et al. [2005] describe, GSD challenges are related to each other and the positioning
used in the table can be questioned. However, Table 3 aims to bring a primary order to the
complex interrelationship between the challenges.

CCC/Distances Temporal Distance Geographical
Distance

Socio-cultural Distance

Communication Reduced synchronous
communication (1)

Face-to-face
meetings difficult
(4)

Cultural misunderstandings
(9)

Coordination Typically increased
coordination costs (2)

Reduced trust (5)
and
A lack of critical
task awareness (6)

Inconsistent work practices
(10) and
Reduced cooperation (11)

Control Management of project
artifacts (3)

Difficult to convey
strategy (7) and
 Low-cost “rivals”
(8)

Different perceptions of
authority (12) and
Managers must adapt to
local regulations (13)

Table 3 is organized based on the GSD project distances which are broadly classified as
temporal, geographical and socio-cultural distances that have an impact on communication,
coordination and control in software development processes.
The first challenge is Reduced opportunities for synchronous communication (1). GSD teams
often suffer response delays due to the unavailability of remote team members in different time
zones. Further delays were incurred due to the misinterpretation of emails or voicemails [Lane
and Ågerfalk 2009].

Typically increased coordination costs (2) challenge is related to temporal distance and
coordination: GSD teams do not have as many overlapping working hours as in collocated
teams. This can mean e.g. that there can be coordination meetings which are late at night or early
in the morning depending on the time zone difference between different sites [Battin et al. 2001].

Management of project artifacts may be subject to delays (3) challenge is related to
challenges with temporal distance and control because e.g. scheduling of certain artifact review
meetings is difficult due to the reduced availability of different GSD team members [Lane and
Ågerfalk 2009]. Lane and Ågerfalk [2009] also note that many project dependencies are
seriously impacted when additional review meetings are required due to the failure of an artifact
to pass its review. One day of rework could result in a two-week delay due to scheduling
difficulties. Evaristo et al. [2004] also note that distributed development may cause difficulties in
maintaining standard project artifacts throughout the sites.

Table 3. GSD challenges adapted from [Ågerfalk 2005]

14

Travel difficulties due to geographical distance create a Face-to-face meetings difficult (4)
challenge between distributed project stakeholders. This situation leads to a communication
breakdown [Carmel and Tija 2005] and there is e.g. loss of communication richness with tools
like e-mail or telephone and difficulties to understand each other over distance [Carmel and Tija
2005]. Communication problems lead to delays and to rework. Delays are created because
messages need to be clarified. Rework is needed because it was not really understood what was
meant the first time round. [Carmel and Tija 2005].

Reduced informal contact can lead to reduced trust (5) challenge is related to geographical
distance and coordination. Lack of informal communication due to geographical distance is one
of the major obstacles in building trust among distributed project stakeholders. As described
earlier, there can be problems with communication which can lead to miscommunication and
which can lead to further conflicts and decrease of trust between members of a project in
different sites ([Carmel and Tija 2005] and [Moe and Šmite 2008]) Problems with
communication can also lead to A lack of critical task awareness (6) challenge.

Difficult to convey vision and strategy (7) challenge is mainly due to the project’s
geographical distance and impact on the project’s control process. GSD strategy can be
implemented with different phase-based process structures which can have different benefits and
difficulties [Lane and Ågerfalk 2009].

Perceived threats from training low-cost “rivals” (8) is another challenge related to
geographical issues caused by the syndrome “My job went to India and all I got was this lousy
T-shirt” which can lead to unwillingness to facilitate knowledge transfer from the main site to
other sites [Holmström Olsson et al. 2008]

Cultural misunderstanding (9) challenge due to socio-cultural distance may have an impact
on the project communication process. This challenge leads to poor depth of communication
caused by dilution and communication errors due to cultural differences [Carmel and Tija 2005].
Although English is a common language in projects, there are differences with language
competency between team members and also different dialects and local accents can make
communication inefficient [Ågerfalk et al. 2005].

Inconsistent work practices can impinge on effective coordination(10) challenge is related to
socio-cultural distance and coordination. Usually different sites have different processes and
templates which make it difficult to understand different sites process and result deliverables
[Battin et al. 2001]. These problems increase coordination work with different sites. Also
Reduced cooperation arising from misunderstandings (11) challenge increases coordination
work [Herbsleb and Grinter 1999]

Different perceptions of authority can undermine morale (12) challenge is related to socio-
cultural distance and control. For this reason, management control over the team highly depends
on the culture and also geography.

Managers must adapt to local regulations (13) challenge is also related to socio-cultural
distance and control. This challenge emphasizes the fact that management of different teams
with a different culture is an important issue to solve in order to establish an efficient GSD
project.

15

2.1.5 PRINCE2

PRINCE2 version 2005 includes three parts which are processes, components and techniques
[Bentley 2005]. PRINCE2 is a project management method which is in use in over 50 countries
around the world and over 20 000 organizations utilizes the method guidelines of PRINCE2
[Smith 2009].

PRINCE was established in 1989 by CCTA (the Central Computer and Telecommunications
Agency), since renamed the OGC (the Office of Government Commerce). PRINCE was
originally based on PROMPT, a project management method created by Simpact Systems Ltd in
1975. PROMPT was adopted by CCTA in 1979 as the standard to be used for all Government
information system projects. When PRINCE was launched in 1989, it effectively superseded
PROMPT within Government projects. It remains in the public domain and copyright is retained
by the Crown. It is a registered trademark of OGC. PRINCE2 was published in 1996, having
been contributed to by a consortium of some 150 European organizations. In 2002 and 2005
PRINCE2 was updated in consultation with the international user community. PRINCE2 was
updated in 2009 to make it simpler and easier to customize. [Haughey 2010].

The PRINCE2 version 2005 (hereafter called PRINCE2) project management process
overview is presented in Figure 3. PRINCE2 is comprised of eight major processes which are
collections of subprocesses. PRINCE2 will be used later to organize a pattern language from a
collection of process patterns for project management in Section 4.3.

Figure 3. Process overview of PRINCE2 [Bentley 2005]

16

2.2 Agile Methods

The objective of this chapter is to discuss Agile concepts related to this research. Subsection
2.2.1 discusses Agile values and 2.2.2 discusses Lean principles in general. Subsection 2.2.3
briefly presents Scrum and finally Subsection 2.2.4 discusses Agile and Scrum in GSD with
some examples.

2.2.1 Agile Values

One response to an ever-complicated environment is the rise of Agile methods [Abrahamsson et
al. 2002]. These methods or approaches value the following [AgileAlliance 2009]:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

The explanations have been given e.g. by Ambler [Ambler 2010] and by Ryder [Ryder
2005]. According to Ambler [Ambler 2010] it is important to understand that the concepts on
the left hand side are not alternatives to the concepts on the right hand side. One should
preference things on the left hand side, but concepts on the right hand side are also important in
Agile development.

Individuals and interactions over processes and tools: Teams of people build software
systems, and to do that they need to work together effectively. People in Agile development are
developers, testers, managers, customers, other stakeholders etc. The most important factors that
you need to consider are the people and how they work together; if you do not get that right the
best tools and processes will not be of any use. Tools and processes are important, but they are
not as important as teams of skillful people.

Working software over comprehensive documentation: The most important goal of software
development is to create software, not documents. In any case, documentation has its place,
written properly it is a valuable guide for people’s understanding of how and why a system is
built and how to work with the system.

Customer collaboration over contract negotiation: Successful developers work closely with
their customers, invest the effort to discover what their customers need, and educate their
customers along the way. Working together with your customers is hard, but it is important to
understand what they really need. Having a contract with your customers is important, having an
understanding of everyone’s rights and responsibilities may form the foundation of that contract,
but a contract is not a substitute for communication.

Responding to change over following a plan: People change their priorities for a variety of
reasons. Change is a reality of software development, a reality that your software process must
reflect. It is important to have a project plan but there must be room to change it as your situation
changes, otherwise your plan quickly becomes irrelevant.

17

2.2.2 Lean Principles

Agile methods are partly based on Lean Software Development [Poppendieck M. and T. 2003]
which is in turn based on Lean manufacturing thinking [Ohno 1988]. Lean manufacturing
thinking was developed at Toyota in Japan. According to Leffingwell [Leffingwell 2007, pages
63-65] the Lean approach from the view point of manufacturing decreases cycle times and
manufacturing costs in four different ways:

Reduced work in process and inventory
Reduced cycle times
Cross-training and cell-based manufacturing
Continuous process improvement

Reduced work in process and inventory: Years of manufacturing cost analysis showed that
almost all inventory and related work to inventory were fundamentally bad. Inventory tended to
become obsolete before it was shipped or needed to be reworked before it could be used. Also,
owning inventory meant maintaining it and substantial personnel and administrative costs were
needed to do the counting, moving, storing, and otherwise maintaining it prior to production.
Over time, manufacturers came to understand that all of this work is not value-added activity;
there is no value to the customer in the manufacturer owning a piece of inventory that it does not
need or to which it has no access.

Reduced cycle times: By building smaller lots in a factory tuned for rapid flow, cycle times
are dramatically reduced. The ability to fill customer orders more quickly is a hallmark of a Lean
enterprise.

Cross-training and cell-based manufacturing: In Lean manufacturing, workers are cross-
trained to be able to play multiple roles. Cross-training is required by Lean because leaner
factories sometimes have bottlenecks that must be solved with additional cross-trained workers.

Continuous process improvement: In Lean, there is no such thing as “too short a cycle time”
or “too much reduction in waste and overhead”. Therefore, Lean principles drive teams to a need
for continuous and self-directed process improvements. Because bottlenecks and inefficiencies
are continually exposed by leaner thinking, continuous improvement is always on the forefront
of Lean and Six Sigma initiatives. Table 4 shows how Lean manufacturing principles relate to
Agile Software Development.

18

Lean
Manufacturing
Principles

Relate to Agile Software Development

Reduced work in
process and
inventory

Reduced investment in elaborated requirement, documented designs.
Reduced process overhead, compliance checks, audits etc.

Reduced cycle
times

Build all software in much smaller lots (chunks, stories, use cases).

Cross-training
and cell-based
manufacturing

Increase cross-training with pair programming and shared code assets.
Have developers write tests as part of their code.
Move entire teams to test and test automation.
Collocate team commits to delivering the iteration.
Entire team commits to delivering the iteration.

Continuous
process
improvement

Continuous reflection and adaptation.
Self-organizing, self-managing software development teams.

Another view to implement Lean principles in software development is presented in
[Poppendieck M. and T. 2006]. Table 5 briefly describes the seven principles of Lean software
development according to [Poppendieck M. and T. 2006].

Principles of
Lean Software
Development

Description

Eliminate Waste Focus on removing all nonvalue adding wastes such as extra features
which are not needed by customers or partially made software or delays in
the software development process.

Build Quality In Goal is to build quality into the code from the start, not test it later. This
goal is possible to reach using test-driven approach.

Create
Knowledge

Software development is a knowledge-creating process. It is important to
gather new knowledge through projects and provide this new information
to the whole organization.

Defer
Commitment

Schedule irreversible decisions for the last responsible moments and
maintain options at the points of software where change is likely to occur.

Deliver Fast Rapid delivery, high quality, and low costs are the main goals. Make
small batches with fast cycle time to have fewer things in the works.
Limit amount of work according to capacity of your team.

Respect People Respect people in your and your partners’ team and empower the team.

Table 4. Lean manufacturing principles relate to Agile Software Development [Leffingwell
2007]

Table 5. Seven Principles of Lean Software Development [Poppendieck M. and T. 2006]

19

Optimize the
Whole

Focus on the entire value stream and deliver a complete product to
customers. Measure UP which is meant to find a higher-level
measurement that will drive the right results for the lower level metrics.

2.2.3 Scrum

A popular Agile project management method which is based on Agile values and Lean
principles, is Scrum. The Scrum approach is presented in Figure 4. It is an approach applying the
ideas of industrial process control theory to a development process resulting in an approach that
reintroduces the ideas of flexibility, adaptability and productivity. In the development phase the
product is developed in sprints. Sprints are iterative cycles where the functionality is developed
or enhanced to produce new increments. Each sprint includes the traditional phases of software
development: requirements, analysis, design, evolution and delivery phases. [Abrahamsson et al.
2002]

Priorities Effort estimates

PREGAME
PHASE

DEVELOPMENT
PHASE

POSTGAME
PHASE

Sprint
backlog

list
Planning

High level design/
Architecture

Product
backlog

list

Regular
updates

Goals of
next

Sprint

Standards
Conventions
Technology
Resources
Architecture

SPRINT

Requirements

Analysis
Design

Evolution
Testing
Delivery

No more requirements

New product
increment

Final release

Documentation

System
testing

Integration

Figure 4. Scrum overview [Abrahamsson et al. 2002]

20

2.2.4 Agile and Scrum in GSD

At first glance, Agile methods seem to be only suitable for small teams operating in a local
environment. Agile methods were usually applied just for local development but nowadays their
potential for supporting more effective global development environments has been detected. The
usage of Agile methods in a distributed development environment has been studied and reported
e.g. in [Ramesh et al. 2006], [Sutherland et al. 2007] and [Farmer 2004].

Ramesh et al. [2006] report case studies conducted in three companies. Companies combined
Agile methods for distributed development environments. Ramesh et al. [2006] list the
challenges in Agile distributed development that relate to the aspects of communication, control
and trust. Then Ramesh et al. [2006] report successful practices observed in three organizations
that address these challenges. As a conclusion, the success of distributed Agile development
relies on the ability to blend the characteristics of both Agile and distributed environments.
Sutherland et al. [2007] report a case study of a distributed Scrum project where they analyze
and recommend best practices for distributed Agile teams. They report integrated Scrum as a
solution to distributed development in which a Scrum team was formed by the distributed project
stakeholders. Farmer [2004] reports experiences when developing software in a large, distributed
team. The team worked according to slightly modified Extreme Programming (XP) practices.
Farmer [2004] states that the major factors that contributed to their success were that the team
consisted of some of the top people in the company, that it was permitted to find its own way and
that management support was available.

The usage of Agile methods in large-scale level development has been discussed e.g. in
[Leffingwell 2007] and [Leffingwell and Aalto 2009]. Leffinwell [2007] describes practices
which have been derived from experiences in applying agile practices in large companies. They
include seven scalability agile team practices which can be used as building blocks to create an
enterprise level agile development process including agile project management.

2.3 Application Lifecycle Management

The objective of this section is to discuss Application Lifecycle Management (ALM) issues
related to this research. ALM is related to some of the most important GSD patterns to
implement a GSD environment. Subsection 2.3.1 discusses ALM and project management in
general. Subsection 2.3.2 briefly presents the elements of ALM. Subsection 2.3.3 discusses ALM
in GSD with some examples. Mr. Jukka Kääriäinen is mainly responsible for the ALM research
briefly described in the following Subsections.

21

2.3.1 ALM and Project Management

 Schwaber [2006] states that the three pillars of ALM are process automation, traceability, and
reporting. ALM is quite a new term even though tool vendors have used it to indicate tool suites
or their approaches that provide support for the various phases of the software development
lifecycle. In many scientific articles, the term ALM has been treated only cursory, e.g. in [Shroff
et al. 2005], [Dearle 2007] and [Heindl et al. 2007]. However, issues that relate to ALM such as
traceability, tool integration, communication and reporting have already been studied for a long
time by the scientific community. In ALM, these issues are considered in the context of the
whole development lifecycle.

Some kind of solutions for ALM, manual or tool-supported, exist in every company
developing software even though toolsets that are marketed specifically as ALM suites were
introduced just a few years ago. The role of ALM is to act as a coordination and product
information management discipline. The purpose of ALM is to provide integrated tools and
practices that support project cooperation and communication through a project’s lifecycle
(Figure 5) [Kääriäinen 2011]. It breaks the barriers between development activities with
collaboration and fluent information flow. According to [Doyle 2007], a proper ALM system
provides strong support for project management. For management, ALM provides an objective
means to monitor project activities and generate real-time reports from project data.

Application Lifecycle Management

Traceability
Reporting
Process automation, tool integration

Application Lifecycle Management

Traceability
Reporting
Process automation, tool integration

R
equirem

ents definition
Requirem

ents definition

D
esign

D
esign

C
oding and unit testing

C
oding and unit testing

Integration &
 verification

Integration &
 verification

R
elease

R
elease

M
aintenance

M
aintenance

Project management

Requirements management

Configuration management

Product manager

Project manager

Developer

Tester
Architect

Figure 5. Application Lifecycle Management facilitates project cooperation and communication
[Kääriäinen 2011]

The roots of ALM tools are in Configuration Management (CM) and Integrated Development
Environments (IDEs) [Weatherall 2007]. CM solutions are usually the foundations of ALM
infrastructures providing storage, versioning and traceability between all lifecycle artifacts
[Schwaber 2005].

22

Shaw [2007] argues that with traditional toolsets, traceability and reporting across disciplines
is extremely difficult. The same data is often duplicated in various applications (e.g. separate
databases for requirements, source code, and documents) that complicate the traceability and
maintenance of data. According to [Doyle and Lloyd 2007], having a central repository makes it
easier to produce a relevant set of related metrics that span the various development phases of
the lifecycle.

There are tool vendors whose target is to provide support for the lifecycle activities of
software development. Examples of commercial ALM solution providers are Borland Software
Corporation, IBM, Microsoft, Serena Software, and Polarion Software. Basically, ALM
solutions provide development environments integrating various lifecycle applications such as
requirements management, project management, configuration management and design and
development tools. ALM suites provide features such as traceability, reporting, process support,
tool integration possibilities and information visibility. Pesola et al. [2008] state that one
limitation with existing ALM solutions is that many of them lock a company into one vendor and
limit the choice of tools for different project phases. In some cases the company might need to
replace a number of development tools because a certain ALM solution does not integrate with
all the existing tools. This may require lots of effort and money. Another approach that aims to
be more vendor-independent is called an “Application integration framework”. These are used as
platforms to integrate several applications needed during the software development lifecycle.
Examples of this kind of framework are Eclipse [Eclipse 2010] and the Application Lifecycle
Environment (ALF) [Eclipse 2010] projects.

Although tools are important for efficient ALM, Schwaber [2006] states that ALM does not
necessarily require tools. Traditionally, lifecycle activities have been handled by partly using
manual operations and solutions. For example, distribution of documents between different
functions can be controlled by using a paper-based approval process. However, these activities
can be made more efficient through tool integration with process automation.

2.3.2 Application Lifecycle Management Framework

The need to better understand the elements of ALM in order to support the development of ALM
in an organization has emerged [Kääriäinen 2011]. In these studies Mr. Jukka Kääriäinen
developed a framework consisting of six principal elements that characterize ALM. This
framework can be used for documenting and analyzing organizations’ ALM solutions and thus
support the practical development of ALM in an organization. This framework was constructed
and successfully applied in an automation company to support its ALM documentation and
improvement efforts. The current framework version contains six elements as presented in
Figure 6.

23

Traceability of lifecycle artefacts

Reporting of lifecycle artefacts

CommunicationTool integration

Process support

Creation and management of
lifecycle artefacts

Creation and management of
lifecycle artefacts

Application Lifecycle Management

T raceabili ty
Reporting
Process supp ort, too l integration

Application Lifecycle Management

Traceabil ity
Reporting
Process suppor t, tool integ ration

R
equirem

ents d
efinition

R
equirem

ents defin
ition

D
esign

D
esign

C
oding and u

nit testing
C

oding and unit testing

Integration &
 verification

In
tegration

 &
 verification

R
elease

R
elease

M
aintenance

M
ainten

ance

Project man ag ement
Requirements management

Con figuratio n managemen t

Product manager

Project manager

Developer

T ester
Architect

Figure 6. Principal elements of Application Lifecycle Management [Kääriäinen 2011]

“Creation and management of lifecycle artifacts” is the foundation for ALM. The product
information collected and managed by this element is needed, for instance, for traceability and
reporting activities. “Traceability of lifecycle artifacts” provides a means to identify and
maintain relationships between managed lifecycle artifacts and therefore, facilitates reporting,
change impact analysis and information visibility throughout the development lifecycle.
“Reporting of lifecycle artifacts” utilizes managed lifecycle artifacts and traceability information
to generate needed reports from the lifecycle product information to support software
development and management. “Communication” provides communication tools (e.g. chat) as
well as channels for distributing information about product lifecycle artifacts, links and reports
and thus facilitates product information visibility for the whole software project. “Process
support” and “Tool integration” are the elements that are used to configure the ALM solution to
support software development procedures, to guide the user through development activities and
to facilitate a productive development environment by enabling the user to easily launch tools
and transfer information between different tools and databases.

2.3.3 ALM in GSD

Modern approaches for product development need to take into account the global development
environment and the product’s whole development lifecycle must be covered, from the initial
definition right up to maintenance. Such a holistic viewpoint means the efficient deployment of
lifecycle management: Product Lifecycle Management (PLM) and from a software development
point of view, Application Lifecycle Management (ALM). Furthermore, product development is
often distributed over multiple sites and customers might also operate globally. Globalization
forces companies to find ways to overcome geographical barriers and modern information
technology offers an excellent means to achieve this goal. Recently, ALM solutions have been
introduced as the means to tackle the challenges of global development (see e.g. [Doyle and
Lloyd 2007] and [Kääriäinen 2011]).

The promise of ALM to support distributed development has been treated in [Doyle and
Lloyd 2007]. Doyle and Lloyd [2007] argue that geographically distributed development

24

introduces communication and coordination challenges for ALM. They continue that one
possibility is to use a central secure repository with acceptable network performance and
implemented work procedures in order to provide real-time information about changes and task
assignments to support working in a distributed development environment.

2.4 Patterns
The objective of this chapter is to discuss patterns from the viewpoint of this work. Subsection
2.4.1 discusses the pattern concept in general. Subsection 2.4.2 briefly presents formats of
patterns. Finally, Subsection 2.4.3 discusses pattern languages.

2.4.1 The Idea of a Pattern

The idea of a pattern was first introduced by Alexander et al. [1977] in the context of building
architecture. According to this definition, a pattern is a context-dependent construct which
includes a problem and a reproducible solution to that problem [Alexander et al. 1977]. Patterns
are trusted because each one has been used several times in real projects. Patterns are not one-off
solutions or good ideas that might or might not work. Patterns are discovered, not created.
[Elssamdisy 2008].

The idea of a pattern was applied later in software development processes, leading to the
most famous pattern approach in software development, design patterns [Gamma et al. 1995].
These patterns can be used to develop more flexible and reusable software products and
applications. Another view for patterns is to use them to describe best practices of human
organizations as described in organizational patterns ([Coplien 1996]; [Coplien and Harrison
2005]). Process patterns can also be used to describe best practices as they have been used in this
thesis. The process of finding patterns has often been referred to as pattern mining [Appleton
1997].

2.4.2 Formats of Patterns

There are different formats of patterns such as the Alexandrian format [Alexander et al. 1997],
the Gang of Four format [Gamma et al. 1995], the Coplien format [Coplien 1996], the Appleton
format [Appleton 1997] etc. All these pattern formats have a certain structure and their content is
described by informal text. The Coplien format [Coplien 1996] and the Appleton [Appleton
1997] format are almost the same and have been used as a model for GSD patterns format. The
Appleton format has the elements described in Table 6.

25

Field of a pattern Description
Name Name must be meaningful.
Problem Problem describes the goals and objectives for the pattern within the

given context and forces.
Context Context describes preconditions under which a problem and its solution

seem to recur and for which a solution is desirable
Forces Forces describe relevant forces and constraints and how they interact or

conflict with one another and with goals of the pattern.
Solution Solution describes how to realize the desired outcome.
Examples Examples describe the use and applicability of the pattern.
Resulting context Resulting context describes consequences and side-effects of applying

the pattern and other problems and patterns that may arise from the new
context. It describes the post conditions and side-effects of the pattern.

Rational Rational describes why the pattern resolves its forces in a particular way.

Related patterns Related patterns describe the relationships between this and other
patterns.

Known uses Known uses describe known occurrences of the pattern.

2.4.3 Pattern Languages

The concept of a pattern language has been defined in slightly different ways. Coplien [1996]
defines a pattern language as a collection of patterns which generate a system. A pattern in
isolation solves an isolated design problem, but a pattern language builds a system. It is through
pattern languages that patterns achieve their fullest power. On the other hand, Appleton [1997]
defines a pattern language to be a collection of patterns which forms a vocabulary for
understanding and communicating ideas. Such a collection may be skillfully woven together into
a cohesive "whole" that reveals the inherent structures and relationships of its constituent parts
toward fulfilling a shared objective. This is close to what Alexander calls a pattern language. If a
pattern is a recurring solution to a problem in a context given by some forces, then a pattern
language is a collection of such solutions which, at every level of scale, work together to resolve
a complex problem into an orderly solution according to a pre-defined goal [Appleton 1997].

Different ways of organizing a pattern language can be divided into problem-centered and
solution-centered approaches [Eloranta et al. 2009]. In the problem-centered approach, the
domain can be used as the structure of the language. The solution-centered approaches for
organizing a pattern language are based on the relationships between the solutions rather than on
structuring the problem domain.

Table 6. Elements of a pattern [Appleton 1997]

26

In this study, a pattern language is organized according to a process phase structure which is
one example of the problem-centered approach. A process phase structure is chosen to make it
easier to find a suitable pattern or patterns for a user’s specific problems. The pattern language of
this thesis will be presented in Chapter 4.

2.4.4 Evaluation of a Pattern Language

Usually a pattern describes both best practice solutions and discussion when it is suitable to use
with some known uses in a certain context. Since patterns are not invented but rather discovered
from existing systems, these known uses serve as a proof that the pattern is a working solution
[Kirchner and Völter 2007].

Patterns are typically improved and reviewed in dedicated conferences organized by the
pattern community. The pattern community has organized several PLoP (Pattern Languages of
Programs) conferences in order to elaborate patterns to ensure their correctness and usefulness.
[Kirchner and Völter 2007].

In this work, GSD Pattern Language has been reviewed and improved by persons from case
projects. After that GSD Pattern Language was also reviewed by GSD specialists and managers
from different GSD companies and a research center (VTT). These persons also gave valuable
feedback for improving GSD Pattern Language. However, GSD Pattern Language is still
evolving and has not been used in many projects. For this reason, I have also evaluated GSD
Pattern Language using a new evaluation method for patterns which will be described in Chapter
5.

27

3 PATTERN MINING IN GSD

The objective of this chapter is to describe the pattern mining method which was used to collect
patterns in this thesis. Section 3.1 describes the pattern mining method at a general level. Section
3.2 describes how this process was applied in this thesis and finally, Section 3.3 describes the
industrial context of the pattern mining.

3.1 Pattern Mining Method

Pattern mining can be viewed as exploratory case study research. This kind of case study
research is meant to produce new theoretical ideas and proposals by analyzing certain practices.
The improved ideas or proposals can be tested in the same or in the following case studies.
Exploratory case study research is the first step to create generalizations and theory ([Ryan et al.
1992 p. 115] and [Yin 2003]).

The pattern mining method developed and implemented in this work is based on Yin’s steps
of case study research, i.e., preparing data collection, collecting evidence, analyzing evidence
and reporting [Yin 2003]. Figure 7 describes the overview of the developed pattern mining
method.

M
ai

n
St

ep
s

D
oc

um
en

te
d

O
ut

pu
t

Figure 7. Pattern mining method

28

The first step in the pattern mining method is preparing a data collection which includes the
choosing of a problem domain for patterns and refining it.

Each separate case study is started by choosing a certain problem domain for patterns (e.g.
Distributed Scrum) in which good practices and problems are collected. The problem domain is
further refined into a refined problem domain which can be e.g. different phases (e.g. Sprint
planning, Sprint review) or artifacts (e.g. Product backlog, Sprint backlog) depending on which
details need to be researched.

The refined problem domain can also be researched from different views (e.g. people,
process, tools). For each view there is a questions template consisting of three open-formed
questions for data collection. Question derivation framework is depicted in Figure 8.

 Figure 8. Question derivation framework

The second step in the pattern mining method is collecting evidence for patterns. This is
implemented by choosing how to get answers to the questions in the framework and who will
participate in this case. Answers can be gathered e.g. by the use of questionnaires and interviews
for some key participating team members.

The questionnaire consists of questions about background information of participants and
questions in the created framework. The questionnaires are sent to participants of a case project.
Answers can be gathered e.g. by e-mails or query tools.

After questionnaires, there are interviews of key persons in this case. Key persons are
interviewed in order to get more detailed information about the case. Interviews are organized
either face to face or implemented by net meeting and conference phone techniques. In the
interview meetings, the framework is used as a checklist to make sure that all related areas are
covered. As a result of this step, the questionnaires and interviews produce raw data for analysis
according to the used framework. The raw data is gathered in a summary table which is based on
the used framework as presented in Table 7.

29

Viewpoints Pattern hints

Viewpoint
one (e.g.
people)

- Pattern hint one
- Pattern hint two
- Pattern hint three

… …

 The third step in the pattern mining method is to analyze evidence. In this method it means
making an analysis for data from the summary table by using coding methods [Miles and
Huberman 1994]. In the first analysis of the summary table (Table 7), the names of pattern
proposals are chosen. In the second analysis the names of pattern proposals are used to mark
pattern hints in the summary table for each pattern proposal. Pattern hints in the summary table
could be related to pattern proposals such as problems, forces, solution etc. Table 8 shows one
example of the summary tables with pattern proposals. Pattern hints are marked with pattern
proposals. The whole pattern mining framework is depicted in Figure 9.

Viewpoints Pattern hints Pattern proposals

Viewpoint
one (e.g.
people)

- Pattern hint one
- Pattern hint two
- Pattern hint three

Pattern A name
Not Applicable
Pattern B name

… … …

Table 7. The summary table with pattern hints

Table 8. The summary table with pattern hints and pattern proposals

30

 Figure 9. The pattern mining framework

After making the summary table, pattern proposals are formed in a pattern format. The
contents of pattern proposals can be based on both pattern mining workshops and related
literature. The names of patterns proposals are important because they will be part of the
vocabulary which is used when related processes or actions are implemented. To ensure that the
patterns are feasible, the proposed process patterns are reviewed by discussing them with the
project’s key persons. As a result of this step, the patterns are created for the problem domain.
These patterns can be further reviewed and improved in other workshops. It should be noted that
new patterns can also be introduced in these workshops.

The fourth step in the pattern mining method is reporting case studies. Reporting can be
internal in a company or external such as meetings with other companies or presentations in
international conferences.

3.2 Applying Pattern Mining Method to GSD Patterns

Pattern mining method which is presented in Section 3.1 is used to find GSD patterns in this
thesis. The research conducted in Paper II is an example about applying the pattern mining
process to GSD patterns. This method is also used in [Välimäki and Koskimies 2006] and Paper
II to mine patterns for GSD patterns. [Välimäki and Koskimies 2006] and Papers II and III are
based on three case studies which will be described in more detail in Section 3.3.

As a result of the first step the problem domain was chosen to be Distributed Scrum. This
problem domain was further refined to include Scrum practices and artifacts which were Product
Backlog, Sprint Planning, Sprint Backlog, Daily Scrum, Sprint Review and Scrum of Scrums.

31

The details were researched from different views: people, process, tools. For each view there
were three open-formed questions for data collection as presented in Section 3.1. A framework
for data collection for Distributed Scrum is depicted in Figure 10.

Figure 10. A framework for data collection for Distributed Scrum

The second step in the pattern mining method was collecting evidence for patterns. This was
implemented with questionnaires and interviews as described in Section 3.1. As a result of this
step, the questionnaires and interviews produced raw data for analysis according to the used
framework. The raw data was gathered in a summary table.

 The third step in the pattern mining method was to analyze evidence. In the first analysis of
summary table, the names of pattern proposals were chosen. In the second analysis the names of
pattern proposals were used to mark pattern hints in the summary table for each pattern
proposals. The names of the pattern proposals can be changed during the second analysis. Table
9 shows summary table of gathered data for Product Backlog after the third step.

32

Viewpoints Pattern hints Pattern proposals
People In distributed development the replication of

Scrum roles through sites is essential to ensure
fully functional Scrum teams at every site.

Organize needed Scrum
roles at each sites

Knowledge transfer is especially important in a
distributed environment. More detailed
information about domain and product backlog
items is needed to ensure understanding in a
global environment.

Knowledge transfer

In a global environment, team members have to
rely on more formal communication and IT means

Establish efficient
communication methods

Process Product backlog process should allow collecting
and processing ideas. Ideas, if accepted for
development, will be used for creating backlog
items.

Establish Application
Lifecycle Management tool

Tools Common secure and integrated repositories for all
project data.

Establish Application
Lifecycle Management tool

Process support should enable the process and
form tailoring, e.g., new item attributes, tailored
status models, adding hierarchy, etc.

Establish Application
Lifecycle Management tool

Infrastructure and efficient as well as reliable
network connections are a must when using a
central project database in a distributed
environment

Establish a fast and reliable
infrastructure

After making the summary table, pattern proposals were formed in a pattern format. The
contents of pattern proposals were based on both the pattern mining workshops and related
literature. To ensure that the patterns were feasible, the proposed process patterns were reviewed
by discussing them with the project’s key persons. As a result of this step, the patterns were
created for the chosen problem domain.

The described Pattern mining method was applied in three case studies which will be
described in more detail in Section 3.3. The patterns from these case studies were further
reviewed and improved in other interviews and workshops. These interviews and workshops
were organized with GSD specialists and managers from different GSD companies and a
research centre (VTT). It should be noted that new patterns were also introduced in these
workshops. The current version of GSD Pattern Language will be presented in Chapter 4.

The fourth step in the pattern mining method is reporting case studies. In this research it
meant making an internal and external presentation of the results of this research.. The internal
presentation was implemented by publishing results in the internal document management tool.
The external presentations were implemented by [Välimäki and Koskimies 2006], Paper I and II,
and finally Paper V which also includes the research conducted in Papers III and VI.

Table 9. The summary table for Product Backlog with potential pattern proposals

33

3.3 Industrial Context and Case Studies

The target company operates in the automation industry, being a global supplier of technology
and services for the power generation, oil and gas, pulp and paper industries. The company has
engineering, production, procurement, service, sales and other operations in over 100 units in
approximately 40 countries and employs about 3 800 professionals. The company is the world's
leading supplier of automation solutions for the pulp and paper industry. It designs, develops
and delivers automation and information management application networks and systems,
intelligent field control solutions, and support and maintenance services.

This work is divided into three case studies in which each case study has included certain
projects and persons. They have been used for pattern mining and elaboration from certain areas
of project management in GSD.

GSD Project management in plan-driven projects
The purpose of the first case study was to explore the work of project managers in plan-driven
projects in a GSD environment. This case study was implemented in February, March and April,
2006. Different GSD projects were carried out between the main company and subcontractors.
Four sites of the target companies were in Finland and two subcontractors in Finland and one in
Canada. In this case model 1 and 2 were used. The models are described in Figure 2 on page 10.
The interviewed nine project managers and two other project members were especially familiar
with the challenges in distributed development and gave valuable information in questionnaires
and through discussions in personal interviews. In this case, the query was answered by eleven
participants who were also briefly interviewed. These persons were in nine projects. The results
of this case are presented in [Välimäki and Koskimies 2006] and the main result was a
preliminary group of project management patterns in plan-driven projects in a GSD environment.

Some examples of answers from questionnaires related to In the beginning of a project.
“The most important issue in GSD is communication. This makes it sure that we are
making right things. This means e.g. more specific and frequent control by project
managers.”

“In the beginning of a project it is important to have a common meeting face to face
in which the whole project will be described as exactly as possible. There is need for
clear goal setting and division of responsibilities and tasks for all participants in
different sites. The project rules need to be agreed (tools, reporting, configuration
management, documentation and other guidelines, frequent meetings, reporting etc.)”

Some examples of answers from questionnaires related to In the middle of the project
“There is a need for common process and tools, e.g. project work desk, project
reporting. Communication tools must be as good as possible e.g. mail, telephone, net
meeting tools. Unfortunately, changes need always bureaucratic change management
which is usually much slower with persons in other sites than the main site.”

34

“It is important to have regular meetings with subcontractors in the main site.
Communication need to be implemented with e.g. task tracking, net meeting, instant
messaging, mail, conference phones. Tool to help planning and controlling of tasks is
also needed”

Some examples of answers from questionnaires related to If there are no constraints, what kind
of best practices would you choose?

“A good, detailed process description with roles. What are the roles used in a project
in different sites and what are the tasks of each role?”

“Tools which support the whole lifecycle of a software project. Tools for
configuration management, build management, task management, communication
and project management which are integrated with each other very well.”

GSD in the work of product managers
The purpose of the second case was to explore the work of product managers in the target
company. This case study was implemented in December 2006 and January 2007. In the future,
the work of product managers will globalize even more, covering several countries. Therefore,
the challenges of the global development environment were studied and suggested solutions to
overcome the challenges were defined. Product development in the target company is organized
according to product lines. This research focuses on two product lines that consist of several
products that are partly developed in different sites. As it is no longer competitive to develop
multiple products one at a time, the case company has adopted a product platform approach.
Therefore, the product is based on a product platform where the customer-specific features are
configured. The product line evolves when new versions of the products are produced containing
whole new features or improvements to the existing features. The management of features and
requirements is complex since even one product version can contain dozens of features that are
further divided into hundreds of requirements.

In this case a query was answered by 12 product managers. Based on the query, four
experienced product managers were selected for further interviews. The results of this case are
presented in Paper I. The main results were the process of mining requirements management
process patterns and a preliminary group of product management patterns in a GSD
environment. The used query form is presented in Appendix A.

Some examples of answers from questionnaires related to Collecting and processing product
ideas.

“Everybody needs to have access for a tool to create idea. We need more ideas and
strict filtering of these ideas. We need a systematic process for idea management.”
“We need a better process and a common tool which can be easily used inside the
company.”

35

Some examples of answers from questionnaires related to Collecting and processing business
and customer requirements.

“All requirements from all stakeholders need to be gathered to the same common tool
as for gathering ideas”
“Different phases need to be integrated with each other in the same tool and there is a
need for bidirectional links between different artifacts”

Some examples of answers from questionnaires related to Feature creation
 “Analyzing of ideas are made by product managers but their need help form
architects and other specialists.”
“Product managers make feature proposals after analyzing ideas and requirements”

GSD project management in Agile projects
The purpose of the third case was to explore the work of team members in Agile GSD projects.
This case study was implemented in August, September and October, 2007. The geographic
distribution as well as increasing complexity and efficiency demands forced the target company
to seek more integrated solutions and practices to coordinate distinct project phases and to
provide centralized project database applications for all project-related data.

This case focused on two product lines consisting of several products that were partly
developed in different sites. The case was further focused on two teams each having 3 to 6
projects running in parallel. The projects were geographically distributed over 2 or 3 sites in two
countries. Each project had typically less than 10 team members. In this case the model 3 and 4
was used. The models are described in Figure 2 on page 10. In this case the query was answered
by eight participants and two of them were also interviewed. The results of this case are
presented in Paper II. The main results were the process of mining agile project management
process patterns and a preliminary group of agile project management patterns in a GSD
environment. The used query form is presented in Appendix B.

Some examples of answers from questionnaires related to Product Backlog.
“Product owner role is very important and he/she must have time to make and update
product backlog.”
“There is a need for product owners or persons who can clarify specifications in every
site. Also scrum masters for every site is needed.”

Some examples of answers from questionnaires related to Sprint Planning.
“According Scrum team members must be skilful persons which can plan a Sprint
after a product owner has presented the contents of Product Backlog items.”
“Currently the Sprint planning meetings require constant travelling. “
“Set up more advanced communication software to provide remote all-together
meetings”

Some examples of answers from questionnaires related to Sprint and Daily Scrum.

36

“Daily Scrum increases information flow between different team members. Problems
can be solved or at least presented quickly in a short meeting by discussions between
team members.
“If distributed Daily scrum is practiced then adequate IT means are needed to
facilitate communication.”

The research of Paper V is also about GSD patterns and based on research conducted in
[Välimäki and Koskimies 2006], Paper I, and Paper II. In addition, patterns have been further
evaluated in pattern review meetings and workshops. Pattern review meetings have also been
organized with other companies to improve contents of GSD Pattern Language. GSD Pattern
Language is also evaluated as will be presented in Chapter 5.

37

4 GSD PATTERN LANGUAGE

The objective of this chapter is to introduce the GSD Pattern Language. Section 4.1 gives a short
introduction to the GSD patterns. Section 4.2 describes the used pattern format. Section 4.3
presents the organization of the GSD patterns based on PRINCE2 which is a project
management method. This kind of organization makes it easier to understand patterns and to
facilitate the usage of patterns. Finally, Section 4.4 describes mapping between ALM elements
and some GSD patterns. The ALM framework describes some important aspects of GSD and
mapping of ALM elements with related GSD patterns shows how an ALM element could be
implemented with GSD patterns.

4.1 GSD Patterns

The purpose of the GSD Pattern Language is to enhance performance of project management
work through improved global software project management practices. The GSD Pattern
Language includes 18 process patterns which have been found to be important in the area of
project management in GSD. Of course, there are process patterns which are suitable both in
collocated and distributed project management, but in this work the main interest has been with
process patterns in GSD.

Whether a plan driven or an Agile process model is used, the problems related to the nature
of GSD have to be dealt with. Rather than developing a totally new GSD process that addresses
these problems, a more appropriate approach is to try to come up with solutions to specific
problems, and present these solutions in such a way that they can be easily integrated with
existing processes. An obvious advantage of this approach is that a company need not adopt a
new process model, but merely tune the existing process for GSD. In the third case study (GSD
project management in Agile projects), Scrum is applied which has affected some patterns.
However, the patterns do not directly refer to Scrum concepts but they are described in more
general terms and can be applied even if Scrum is not used.

An attractive way to document proven solutions to specific development process problems is
to use organizational patterns [Coplien and Harrison 2005] or process patterns [Ambler 1998]. A
collection of such solutions can be further organized into process pattern languages [Alexander
et al. 1977]. A process pattern language need not cover the entire process, but it can concentrate
on a certain viewpoint of the software development process. In this work the viewpoint is GSD: I
derive a pattern language for project management in GSD. The solutions in these patterns have
been mined from the practices that have been found to work well in a large company operating in
the field of process automation.

In general, patterns represent knowledge that is validated by previous experience. However,
if patterns are mined from a limited environment, as in my case, this argument does not hold. In

38

this work I have evaluated the resulting patterns by using a scenario-based technique introduced
in Section 5.1.

The identified GSD patterns are presented in Table 10. The first column contains the name of
the pattern, the second describes the problem the pattern is supposed to solve, and the last
column gives a brief summary of the solution of the pattern.

ID-Name Problem(s) Solution outline
GSD1-GSD
Strategy

How to organize
GSD in a company?

List the reasons and motivation to start GSD-based
development in a company. Make a short and long term plan
about GSD. Find out the competence of different sites and
make a SWOT and risk analysis for GSD strategy. Also
measure the real costs of GSD.

GSD2-Fuzzy
Front End

How to gather
demands (i.e. ideas,
needs, requirements
etc.) from external
and internal
customers and how
to form plans and
change requests from
these needs for GSD
development?

The needs of different customers will be gathered to a
global database. It is also important to have the possibility
for global access regardless of time and place as well as
have the possibility to use a discussion forum inside the
tool. Product managers will go through gathered needs and
make decisions about them with e.g. architects. A new
feature or requirement will be made if it is accepted in a
decision meeting. Product managers will make a Road Map
and a Business plan for a product including many features.
These features will be realized in development projects.

GSD3-Collocated
Kick-Off

What is the goal of a
GSD project and
who are the members
of a project? How to
build trust between
team members?

Arrange kick-off meeting for all relevant members. Present
common goal and motivation of this project and present
release plan made by Divide and Conquer with Iterations
pattern. Present responsibilities of each site and team
members, if possible. Briefly introduce tools and
repositories which are chosen for a project. Briefly present
common processes in a project. Also train cultural issues for
team members. Organize leisure activities for teams to
improve team spirit.

GSD4-Divide and
Conquer with
Iterations

How to make a
project plan which is
manageable in a GSD
project?

Plan several iterations to describe the project plan. Develop
new application architecture and module structure during
first iterations, if needed. Explore the biggest risks (e.g. new
technologies) in the beginning of a project. The length of
iteration can be e.g. 2-4 weeks to improve control and
visibility. Main site can have 4 weeks iteration and other
sites 2 weeks to improve visibility.

GSD5-Choose
Roles in Sites

How to know who to
contact in different
sites with your
questions?

A project manager will have negotiations with site managers
or other supervisors about team members before final
decisions. Also needed roles will be formed in every site
(e.g. Site project Manager, Architect, IT Support, Quality
assurance etc.) The main site person is in a leading position
and the persons from other sites will help to take care of the
issues, tasks and responsibilities in their sites. Publish the
whole project organization with roles for every site to
improve communication. One person can have many roles
in a project.

Table 10. GSD patterns for project management

39

GSD6-
Communication
Tools

How to choose
communication
methods and tools in
GSD?

Have reliable and common communication methods and
tools in every site. Use different tools at the same time as
net meeting to show information and project data,
conference phones to have good sound and chat tool to
discuss in written form if there are problems to understand
e.g. English language used in other sites.

GSD7- Common
Repositories and
Tools

How to share
different artifacts
between sites
efficiently?

Provide a common Application Lifecycle Management
(ALM) tools for all project artifacts (documents, source
code, bugs, guidelines etc.) ALM provides almost real-time
traceability, reporting, visualization and access to needed
information etc. for all users in different sites. It can be
implemented as a single tool or it can be a group of different
tools which has been integrated with each other. ALM tools
can include means to support operation according to the
organisation’s processes and development methods (state
models, process templates, workflows). Use different levels
(team, project, and program) reports to improve visibility of
status of projects.

GSD8-Work
Allocation

How work is divided
between sites?

Find out what the GSD Strategy is in your company and
check competence information of persons in each site with
help of site managers. Make Architectural Work Allocation
and/or make Phase- Based Work Allocation and/or make
Feature Based Work Allocation and/or other allocation
according to some other criteria. Make a decision about
division of work between sites according to a company’s
GSD Strategy and the above analysis.

GSD9-
Architectural
Work Allocation

How work is divided
between sites with
architectural criteria?

Check architectural analysis of your product and plan which
site will be responsible to maintain and increase knowledge
in some architectural area. Architectural area can also be a
whole subsystem or part of a subsystem.

GSD10-Phase-
Based Work
Allocation

How work is divided
between sites with
phase-based criteria?

Check how phase- based work allocation will be made. Also
check which site is possibly responsible to maintain and
increase knowledge in some phase-based area e.g. testing or
requirements engineering in a certain product area.

GSD11-Feature-
Based Work
Allocation

How work is divided
between sites with
feature-based
criteria?

Check the GSD Strategy how feature- based work allocation
strategy has been described. Form a group of members
from different sites to realize the features, if needed.

GSD12-Common
Processes

How to implement an
efficient process in a
GSD project?

Choose common upper level processes and allow local
processes if they do not cause problems with upper level
processes.

GSD13-Iteration
Planning

How to choose which
features will be
implemented in a
GSD project?

Project manager will present prioritized features and other
tasks. Team members will participate in a planning meeting
either personally or by communication tools. The team
members will estimate amount of work for features and
tasks. If needed, more detailed discussion can be arranged in
sites with participants’ mother language. In the end of a
planning meeting, a list of selected features and tasks are
created and is visible by the common repository.

40

GSD14-Multi-
Level Daily
Meetings

How to share project
status information
between team
members in each
site? Lack of trust
and long feedback
loops.

Organize many daily meetings and organize another daily or
weekly meeting between project managers from different
sites to exchange information about the results of daily
meetings. With foreigners, written logs can be one solution
to ensure that communication messages are understood
correctly in every site.

GSD15-Iteration
Review

How to check status
of a GSD project and
give and get feedback
frequently?

Check the project status by a demo and present results to all
relevant members and stakeholders from different sites.
Gather comments and change requests for further measures
for both product and process. Make frequent deliveries to
improve visibility of the status of the product.

GSD16-Organize
Knowledge
Transfer

How to transfer a
huge amount of
knowledge for team
members in a GSD
project?

Make sure that there is a product knowledge repository
available for team members. Train the product and get
members also to use it, if possible. Specification with use
cases will be presented in the iteration planning meetings or
separate meetings. Also earlier customer documentation and
demo will be presented in some cases. The team members’
network will be utilized by trying to find solutions for
problems. Use frequent or longer visits to enhance
knowledge transfer and be sure that there are good
communication channels between team members.

GSD17-Manage
Competence

How to know what
the competence of
each team member is
in a GSD project?

Create a competence database for gathering information of
members’ competence levels at different sites. At least site
manager and/or project manager knows the competence of
team members. Define the areas of competence you want to
monitor. Define competence levels and criteria for them.
Ask site managers and or project managers to gather
information about their team members.

GSD18-Notice
Cultural
Differences

How to notice
cultural differences
and increase cultural
knowledge in team
members in a GSD
project?

Raise the awareness of your team nations’ culture for team
members. Use site visits, ambassadors and liaisons, if
possible. Notice cultural differences when you are applying
different patterns such as GSD Strategy, Work Allocation,
Common Processes, Communication Tools and Common
Repositories and Tools etc. Allow local approaches in
processes, tools, meeting methods etc. to decrease problems
with cultural differences, if they do not disturb common
processes etc.

4.2 Pattern Format

The used pattern format is based on Appleton’s pattern format, which is described in more detail
in Subsection 2.4.2. The aim was to use a minimum format to make it easier to understand the
idea of each pattern. The used fields are name, problem, initial context, forces, solution, and
resulting context as presented in Table 8. These patterns have been used in internal projects
according to the industrial context in Section 3.3, but information about examples or known uses
have not been gathered, although there were also reviews with other companies about the

41

goodness of patterns. These patterns have not been presented at any PLOP conferences but they
are evaluated as described in Section 5.

Other differences with the GSD pattern format and Appleton’s pattern format are the fields
roles, rational and related patterns. The field roles describe the roles implementing the pattern.
The content of rational is combined in the field resulting context, and related patterns
information is described in the organization of the pattern language in Section 4.3.

Name: GSD4- Divide and Conquer with Iterations
Problem: How to make a project plan which is manageable in a GSD project?
Initial
context:

In the beginning of a project only the main features are known.

Roles: Project manager.
Forces: A big project plan is difficult to manage in a GSD project.

Difficult to know the whole contents and the work estimations of a
project in the start of a project.
Visibility of project status is poor in GSD.
Possible new application architecture, technologies etc. are
unknown.

Solution: Project manager will split a project plan into several iterations.

Implement the following actions:
Plan several iterations to describe the project plan because iterations
are easier to control and it is easier to make changes to a plan.
Develop new application architecture and module structure in the
main site during first iterations, if needed.
Explore the biggest risks (e.g. new technologies) in the beginning of
a project.
The length of iteration can be e.g. 2-4 weeks to improve control and
visibility. Main site can have 4 weeks iteration and other sites 2
weeks to improve visibility.

Resulting
Context:

Iterations improve the visibility of a project and motivation of team members
in a GSD project. Iterations also make it easier to control a project when you
split the whole project into many manageable parts. Iterations also provide
feedback and the possibility to learn from earlier iterations. However,
administration work is increased with several iterations.

4.3 Pattern Language Organization with PRINCE2

In this section the pattern language organization is described based on the PRINCE2 project
management method. The PRINCE2 process overview was presented in Figure 3 on page 15.
PRINCE2 is a process-driven project management method with a stage-based process structure
which makes it easy to use as a basis for organizing process patterns. Here I organize the pattern
language by attaching the patterns to the main processes of PRINCE2.

Table 11. An example of a GSD pattern

42

Figure 11. GSD Pattern Language Organization with PRINCE2

The analysis of GSD Pattern Language Organization with PRINCE2 is made by making an
analysis for each pattern, one at a time.

GSD Strategy pattern can be used with Main Processes of PRINCE2 (hereafter called Main
Processes) Directing a Project (DP) and Starting up a Project (SU). If this is the first GSD project
it is important to list the reasons and motivation to start GSD-based development in a company
and in this project. One way to make a vision of development strategy is to make a short and
long term plan about GSD in a company. For that, it is needed to find out the competence of
different sites and make a SWOT and risk analysis for GSD strategy. One important issue is also

43

to measure the real costs of GSD in the short and long term. In the next projects, the results of
GSD Strategy can be used to motivate and clarify reasons to start a new GSD project.

Fuzzy Front End pattern can also be used with Main Processes Directing a Project (DP) and
Starting up a Project (SU). Before a new project is started, the needs of different customers can
be gathered to a global database according to the Common Repositories and Tools pattern. It is
also important that everyone in a company has the possibility for global access regardless of time
and place as well as the possibility to use a discussion forum inside the tool. After that, product
managers will go through gathered demands and make decisions about them with e.g. architects.
A new feature or requirement will be made from a new demand if it is accepted in a decision
meeting by product managers and architects. This new change request will be implemented in a
new or existing project if it is accepted in a decision meeting by product and project managers.
New features are usually difficult to implement in the middle of a current projects and that is
why product managers will gather and group features with requirements together. With these
new features, product managers will update current Road Maps or Business plans or make new
ones. After that, the chosen features will be realized in new starting development projects which
will be made according to the decisions related to Business plans. Related decision meetings can
be implemented either as face to face meetings or distributed meetings with Communication
Tools.

Collocated Kick-Off pattern can be used with Main Process Initiating a Project (IP). In the
beginning of a project there are many open issues and often the team members do not know each
other. Also the reason why this project will be done is not clear. A project manager will arrange
a kick-off meeting for all relevant members. They will also present common goals and why this
project is needed. Not only work allocation between GSD sites will be presented, but also who
the members of a project are and what the responsibility of each participant with this project is.
Also development tools such as Common Repositories and Tools and processes as Common
Processes will be presented briefly and the schedule of the next meetings will be agreed with
participants. In the beginning or in the end of meetings some team games will be arranged to
increase team spirit among team members.

Divide and Conquer with Iterations pattern can be used with Main Processes Directing a
Project (DP), Initiating a Project (IP), and Planning (PL). One big project plan is a risk in GSD,
because the visibility of the project is usually poor. To improve visibility, a project manager can
split a project into several iterations. An iteration plan can be planned according to the PL
process and the plan can be presented to GSD participants according to the IP process. The
iteration plan also helps to direct a project in the DP process. Finally, the iteration plan will also
be updated according to the PL process.

Choose Roles in Sites pattern can be used with Main Processes Directing a Project (DP),
Initiating a Project (IP), and Planning (PL). A project manager will have negotiations with site
managers or other supervisors about project participants. Also, the needed roles in different sites
will be decided. These project participants will be approved in a DP meeting. When a project is
started the whole project organization will be published in an IP meeting. Possible changes in a
project organization will be decided in PL meetings.

Communication Tools pattern can be used with Main Processes Initiating a Project (IP),
Controlling a Stage (CS), Managing Stage Boundaries (SB) and Planning (PL). Communication

44

is a key challenge in GSD and it is important that a project has as good communication tools as
possible. A project manager organizes communication methods and tools and presents them
briefly in an IP meeting. These tools are used in SB, CS and PL meetings when team members in
other sites are participating these meetings.

Common Repositories and Tools pattern can be used with Main Processes Initiating a Project
(IP), Controlling a Stage (CS), Managing Product Delivery (MP), Managing Stage Boundaries
(SB) and Planning (PL). In the beginning of a project it is important to make a decision how e.g.
documents, source codes and process guidelines are stored and distributed efficiently for
different sites. This decision is made in the first PL meetings. A project manager presents these
tools briefly in an IP meeting for project participants. These tools are used in IP, CS, MP, SB and
PL meetings or other project tasks when e.g. project artifacts, reports or process guidelines are
needed.

Work Allocation pattern can be used with Main Processes Directing a Project (DP), Starting
up a Project (SU), and Planning (PL). Work Allocation pattern consists of three other patterns
which are Architectural Work Allocation, Phase-Based Work Allocation and Feature-Based
Work Allocation. All of these are related in how to allocate and divide work between each site,
but the criteria of allocation is different. In the beginning of a project it is not clear how to divide
responsibilities between sites. The main site manager is a key person to divide responsibilities in
sites according to a company’s GSD Strategy in DP meetings. A project manager will apply
GSD Strategy in his/her project in SU meetings, will check GSD Competence information of
persons in each site with the help of site managers and make a decision as to what kind of work
allocation is used in his project. After that, a project manager will make a decision about more
detailed division of work.

Common Processes pattern can be used with almost all Main Processes. In the beginning of a
project there are often different processes in every site. A project manager chooses common
upper level processes for the project to have e.g. same phases, concepts and document templates
to improve communication. It may be useful to allow local processes if they do not cause
problems with upper level processes because local processes might be efficient to use in a certain
site. Processes can be tuned at the end of an iteration to make a project more effective, if a
project has a meeting on how to improve or change current processes.

Iteration Planning pattern can be used with Main Processes Directing a Project (DP),
Managing Stage Boundaries (SB), and Planning (PL). In the beginning of a project there are
many features to be implemented. Different persons in a DP meeting have different views about
which are the most important features. Also project participants do not know what kinds of
features are needed for a project. The project manager is the key person to tell what the most
important features to be implemented are. The project manager will present prioritized features
and others in the beginning of each iteration planning meeting. Project participants will
participate in planning meetings either personally or by Communication Tools. Project
participants from different sites will estimate tasks which are needed to deliver selected features
after discussions about their contents. If needed, more detailed discussion can be arranged in
sites in the participants’ mother tongue, if the native language of participants is different. In the
end of planning meetings, the selected features are created and are visible by GSD Common
Repositories and Tools for all project participants.

45

Multi-Level Daily Meetings pattern can be used with Main Processes Controlling a Stage
(CS), and Managing Product Delivery (MP). After each iteration planning meeting, project
groups in different sites have started to implement iteration and there is a need to communicate
between groups in different sites. If everybody in the project does not speak the same language
then separate daily meetings in every site can be a more efficient way of working. Another
reason to have separate daily meetings can be the size of teams. If the whole team is bigger than
seven participants, separate meetings can be more efficient. Other reasons to have common or
separate meetings with project participants is related to companies’ relationships and team setups
as presented in Figure 2 on page 10. If there are separate daily meetings, then organize another
daily or weekly meeting between project managers from different sites to change information
about the results of daily meetings. Add more levels of meetings if needed. With foreigners,
written logs can be one solution (e.g. chat logs or common documents) to ensure that
communication messages are understood correctly at every site. In the meetings the status of
planned tasks are checked and discussed as well as how to organize product delivery of
developed products.

Iteration Review pattern can be used with PRINCE2 Main Processes Directing a Project
(DP), Managing Product Delivery (MP), and Managing Stage Boundaries (SB). In a project it is
difficult to know what its status is. During the project, participants have done a lot of work and
there is a need to check status and give feedback about the results and products made. The
project manager will organize a review meeting in which team members will show the current
status of their work. It is difficult to get everyone to participate in the meeting, but all the
relevant participants should attend. If all participants are not able to attend the meeting it can also
be arranged by using different communication tools. In this way information can be shared with
participants communicating over a remote connection. The results of the iteration will be
presented and comments will be gathered from participants which will be managed later by the
change management process. This pattern will bring visibility to work done and provides
feedback of what has gone well and what could be done better. Also team members focus on
their tasks because they have to present their work in the meetings and decisions related to
product delivery of developed products can be made there.

Organize Knowledge Transfer pattern can be used with Main Processes Starting up a Project
(SU), Initiating a Project (IP), Controlling a Stage (CS), and Managing Stage Boundaries (SB).
In the beginning of a project it’s difficult to transfer a huge amount of knowledge to often new
project participants. In the beginning of a project it is important to choose common repositories
and tools to manage not only information about a project but also information about domain
knowledge. Training of the product to be developed as well as using the product is needed for all
project participants. Specification will be presented in the Iteration Planning meeting or separate
meetings before development work. Also earlier customer documentation and demos will be
presented in some cases. Knowledge transfer is possible through documents and tools, but
especially through people. Choose Roles in Sites networks will be utilized by trying to find
solutions to problems. Also frequent or longer visits to enhance knowledge transfer and to make
sure that there are good communication channels between team members.

Motivation to make knowledge transfer is very important in the main site because knowledge
transfer puts a load on especially that site from which knowledge is to be transferred. Also, if

46

work moves along with knowledge transfer to the other site it will reduce motivation for
knowledge transfer work.

Manage Competence pattern can be used with Main Processes Starting up a Project (SU),
Initiating a Project (IP), Planning (PL), and Closing Project (CP). In the beginning of a project it
is difficult to know what the competence of each team member is. Site managers can create
competence databases for gathering information of members’ competence levels at different
sites. If databases are not possible to create, then at least site managers and/or project managers
know the competence of team members. Site managers or project managers define levels for
competence and criteria for each competence level and define the areas of competence you want
to monitor. Site managers or project managers can gather information about their team members.
Site managers or project managers go through competence information with each team member
and make a training plan for obtaining the needed competence levels. In the end of a project,
competence updates are needed on a competence database or another document of competence.

Notice Cultural Differences pattern can be used with Main Processes Starting up a Project
(SU), Initiating a Project (IP), Controlling a Stage (CS), and Managing Stage Boundaries (SB).
In the beginning of a project, a nation’s cultural differences and/or differences between different
companies are not understood. There may be a lot of difficulties and inefficiency if cultures are
very different from each other and the cultural differences are not understood. A project manager
should raise the awareness of his/her team nation’s culture for team members and use site visits
and liaisons, if possible. A project manager can also notice cultural differences in every
communication situation and try to increase awareness in all team members in different sites.
With these actions team spirit, trust between team members and efficiency of teams can be
improved because differences between nations are easier to understand. Cultural differences are
also important and must be taken into consideration when GSD Strategy and Work Allocation are
applied. Cultural differences can also affect the use of Common Processes, Communication
Tools and Common Repositories and Tools. A project manager can also use Iteration
retrospective to increase cultural awareness and to improve the process if cultural differences
seem to add barriers to communication, coordination and control. Common Repositories and
Tools will improve the visibility of a project. A project manager can allow local approaches in
processes, tools, meeting methods etc. to decrease problems with cultural differences if they do
not disturb common processes etc. Of course cultural issues will affect more if your project
teams are forming one virtual team than separate teams, as presented as two examples of team
setups in Figure 2 on page 10.

In Table 9 the GSD Pattern Language organization with PRINCE2 is presented in a matrix
form according to the above analysis. The eight PRINCE2 major processes are rows and the
GSD patterns are columns. An x in the matrix means that the column pattern is related to the row
process.

47

From Table 9 can be seen that GSD6 (Communication Tools), GSD7 (Common Repositories
and Tools), GSD12 (Common Processes), GSD16 (Organize Knowledge Transfer), GSD17
(Manage Competence) and GSD18 (Notice Cultural Differences) have a strong relationship with
PRINCE2 processes, because these patterns have four or more x marks with PRINCE2
processes. GSD6, GSD7 and GSD12 are important when implementing an efficient global
software environment. GSD6 provides tools for communication between team members. GSD7
provides almost real time access to the needed information from each team member. GSD12
provides common artifacts and methods at least for high level processes between team members
to improve communication and understanding between team members. GSD16 is also important
because often employees in other sites have no earlier experience about domain knowledge at all,
especially if they are starting the co-operation with the main site. GSD17 is needed in order to
know what the competence of each employee is, especially for the planning phase of a project.
GSD18 is also a fundamental practice to achieve efficient co-operation with employees from
different countries.

From Table 9 can also be seen that processes of Directing a Project (DP), Starting up a
Project (SU), Initiating a Project (IP) and Planning (PL) all have nine or ten marks. This is
because GSD patterns are mainly related with starting, initiating, high level directing, and
planning of a GSD project. Also DP and PL are processes which continue from the start up to the
closing of a project. The next highest numbers of marks have processes of Controlling a Stage
(CS) and Managing Stage Boundaries (SB) which are related to iterations and are in an important

Table 12. Relations between GSD patterns and PRINCE2 major processes

1
 G

SD
 S

tr
at

eg
y

2
 F

uz
zy

 F
ro

nt
 E

nd

3
 C

ol
lo

ca
te

d
K

ic
k-

O
ff

4
 D

iv
id

e
an

d
C

on
qu

er
 w

ith
 It

er
at

io
ns

5
 C

ho
os

e
R

ol
es

 in
 S

ite
s

6
 C

om
m

un
ic

at
io

n
T

oo
ls

7
 C

om
m

on
 R

ep
os

ito
ri

es
 a

nd
 T

oo
ls

8
 W

or
k

A
llo

ca
tio

n

9
 A

rc
hi

te
ct

ur
al

 W
or

k
A

llo
ca

tio
n

10
 P

ha
se

- B
as

ed
 W

or
k

A
llo

ca
tio

n

11
 F

ea
tu

re
- B

as
ed

 W
or

k
A

llo
ca

tio
n

12
 C

om
m

on
 P

ro
ce

ss
es

13
It

er
at

io
n

Pl
an

ni
ng

14
M

ul
ti-

Le
ve

l D
ai

ly
 M

ee
tin

gs

15
It

er
at

io
n

R
ev

ie
w

16
O

rg
an

iz
e

K
no

w
le

dg
e

Tr
an

sf
er

17
 M

an
ag

e
C

om
pe

te
nc

e

18
N

ot
ic

e
C

ul
tu

ra
l D

iff
er

en
ce

s

N
um

be
r

of
 x

-m
ar

ks

DP x x x x x x x x x x 10
SU x x x x x x x x x x 10

IP x x x x x x x x x 9
CS x x x x x x 6
MP x x x x 4
SB x x x x x x x 7
PL x x x x x x x x x x 10
CP x x 2

48

role in iterative and Agile project management methods. Finally, the process Managing Product
Delivery (MP) has only four marks and Closing a Project (CP) is used only twice in my analysis.
The MP process has not yet had such an important role in GSD patterns in my cases because the
product delivery has mainly been out of scope in my studies. MP is an important process and is
one important area for further research in future. Also CP is an area to be analysed in more detail
in future studies.

4.4 ALM Framework and Related GSD Patterns

ALM elements and framework are presented in Figure 6 on page 23. ALM support for GSD can
be analysed by using GSD Pattern Language for Project Management which is described in
Section 4.1. This GSD Pattern Language includes 18 process patterns which have been found to
be important in the area of project management in GSD. If these GSD patterns are compared to
ALM elements in Subsection 2.3.2, it can be noticed that some patterns were related to ALM
elements as presented in Table 13 [Kääriäinen et al. 2009]. Patterns named “Communication
Tools” and “Common Repositories and Tools” relate to ALM elements. Furthermore, “Common
Processes” relates to an ALM element called “Process support”. This shows that ALM databases
could be used as solutions to meet the problems indicated in GSD patterns. Further analysis
about ALM in the context of GSD is presented in Section 5.4.

Table 13. Mapping between ALM elements and related GSD patterns [Kääriäinen et al. 2009]

ALM elements Related GSD patterns How GSD patterns cover ALM elements
Creation and
management
of lifecycle artifacts

Common Repositories
and Tools

Global databases to support the
management and visibility of lifecycle
artifacts.

Traceability of
lifecycle artifacts

Common Repositories
and Tools

Traceability of lifecycle artifacts in GSD
environment.

Reporting of
lifecycle artifacts

Common Repositories
and Tools

Reporting of lifecycle artifacts and traces
in GSD environment.

Communication

Common Repositories
and Tools

Asynchronous communication (visibility
of lifecycle artifacts)

Communication Tools
Synchronous/asynchronous
communication tools (e.g. net meeting,
chat, conference phone, discussion forum)

Process support

Common Repositories
and Tools

Process support features such as state
models, workflows or process templates.

Common Processes
Common upper level GSD process and
ability to tailor the process support for a
project or a team on site level.

Tool integration Common Repositories
and Tools

In practice, common repository can be a
single central database or several
integrated databases.

49

5 EVALUATION OF GSD PATTERN LANGUAGE

The objective of this chapter is to introduce the evaluation of the GSD Pattern Language. Section
5.1 discusses the coverage of GSD Pattern Language in terms of GSD challenges described in
Subsection 2.1.4. Section 5.2 presents the scenario-based assessment method Q-PAM (Quality-
oriented Process Assessment Method) as a whole, and then explains the individual steps in more
detail. Q-PAM is used as an evaluation method in this work. Section 5.3 describes how Q-PAM
was applied in the evaluation of the GSD Pattern Language. Finally, Section 5.4 presents a
summary of the Q-PAM evaluation.

5.1 Relations between GSD Challenges and GSD Pattern
Language

In this section the relationship between GSD challenges from literature and GSD Pattern
Language are analyzed. The analysis of GSD challenges and GSD Pattern Language is created
by making an analysis for each GSD challenge at a time. The aim is to analyze the coverage of
GSD Pattern Language in terms of GSD challenges. Subsections 5.1.1, 5.1.2, and 5.1.3 discuss
the relationship between GSD Language and GSD challenges related to temporal, geographical
and socio-cultural distance, respectively. GSD challenges were presented in Table 3 on page 13.
Finally, Subsection 5.1.4 summarizes this discussion.

5.1.1 GSD Challenges Related to Temporal Distances

Reduced opportunities for synchronous communication (Challenge 1). Patterns GSD6
(Communication Tools) and GSD7 (Common Repositories and Tools) give solutions by
providing means for asynchronous communication, increased availability awareness by shared
calendars and shared documentation which is visible to all team members. If temporal distance
of projects is significant, such as eight hours, then GSD Pattern Language need updates about
enlarging overlap hours by working longer ([Lane and Ågerfalk 2009], [Battin et al. 2001] and
[Carmel and Tija 2005]) or to have an individual liaison role who enlarges their own working
hours [Carmel and Tija 2005].

Typically increased coordination costs (2). Patterns GSD6 (Communication Tools) and
GSD7 (Common Repositories and Tools) give solutions as above. Again, if temporal distance is
significant, such as eight hours then Lane and Ågerfalk [2009] propose using overlap hours for
remote communication and not to have local meetings during these hours.

Management of project artifacts may be subject to delays (3). Patterns GSD7 (Common
Repositories and Tools) and GSD12 (Common Processes) give solutions by providing e.g.
shared documentation and common processes and artifacts. Also Evaristo et al. [2004] says to

50

enforce process and artifact standards to maintain consistency between project artifacts. Lane
and Ågerfalk [2009] also remind to notice a risk of e.g. a two-week delay if there was a need for
a second review meeting of an artifact for some reason.

5.1.2 GSD Challenges Related to Geographical Distances

Face-to-face meetings difficult (4). GSD6 (Communication Tools), GSD7 (Common Repositories
and Tools) and GSD12 (Common Processes) give solutions by providing e.g. shared
documentation and groupware tools to manage reviews and artifacts with communication tools.
Also GSD3 (Collocated Kick-Off) and GSD5 (Choose Roles in Sites) give solutions by getting
team members to meet face-to-face and by giving information about who is responsible for
certain information.

Reduced informal contact can lead to reduced trust (5). GSD3 (Collocated Kick-Off),
GSD13 (Iteration Planning), GSD14 (Multi-Level Daily Meetings) and GSD15 (Iteration
Reviews) give solutions for this challenge. GSD3 (Collocated Kick-Off) can be used to organize
e.g. face-to-face meetings and to understand what each team member’s responsibilities are.
GSD14 provides daily meetings which increase trust with each other. Also Lane and Ågerfalk
[2009] suggest using daily meetings to increase trust. GSD13 and GSD14 provide meetings in
order to know what each members have done and to have the opportunity to discuss with other
team members.

A lack of critical task awareness (6). This challenge can be solved with the same GSD
patterns as in the earlier challenge.

Difficult to convey vision and strategy (7). GSD1 (GSD Strategy), GSD3 (Collocated Kick-
Off), GSD8 (Work Allocation), GSD9 (Architectural Work Allocation), GSD10 (Phase Based
Work Allocation), GSD11 (Feature Based Work Allocation) and GSD13 (Iteration Planning) can
be used to solve this challenge. GSD1 is used not only to make a strategy but also to
communicate the strategy to team members in order to understand and make it clear what each
responsibility is. GSD13 helps to update implementation of strategy in the beginning of each
iteration. GSD8, GSD9, GSD10, and GSD11 are solutions for work allocation decisions and use
of them is related to implementation of strategy.

Perceived threat from training low-cost “rivals” (8). GSD1 (GSD Strategy) can give a
solution to this challenge. A clear and communicated strategy helps to understand the decisions
of the management of a company.

5.1.3 GSD Challenges Related to Socio-Cultural Distances

Cultural misunderstandings (9). GSD18 (Notice Cultural Differences) suggest raising the
awareness of project teams cultural understanding in national culture. Also company-related
cultural differences need to be updated in this pattern. Remote leaders and other roles are needed
as presented in GSD5 (Choose Roles in Sites) to increase co-operation. Communication and
meetings with partners can increase cultural understanding as presented in patterns GSD3
(Collocated Kick-Off), GSD13 (Iteration Planning), GSD14 (Multi-Level Daily Meetings) and

51

GSD15 (Iteration Review). Lane and Ågerfalk [2009] also suggest using a temporary co-location
of remote team members in the beginning of a project.

Inconsistent work practices can impinge on effective coordination (10). GSD12 (Common
Processes) suggest decreasing the differences in process, at least at a high level. Also GSD7
(Common Repositories and Tools) with common repositories and tools make coordination more
effective.

Reduced cooperation arising from misunderstandings (11). GSD16 (Organize Knowledge
Transfer) at least increases common understanding about all knowledge related to a project. Also
meetings, which are organized according to patterns GSD3 (Collocated Kick-Off), GSD13
(Iteration Planning), GSD14 (Multi-Level Daily Meetings), and GSD15 (Iteration Review),
increase understanding project knowledge between team members in different sites.

Different perception of authority can undermine morale (12). GSD5 (Choose Roles in Sites)
and GSD18 (Notice Cultural Differences) will help with this challenge as well as Managers must
adapt to local regulations challenges (13).

5.1.4 Relations Between GSD Challenges and GSD Pattern Language

This subsection presents the results of the analysis made in Subsections 5.1.1, 5.1.2, and 5.1.3. In
Table 14 the analysis is presented in a matrix form. The thirteen GSD challenges are rows and
the patterns of the GSD Pattern Language are columns. An x in the matrix means that a GSD
Pattern provides solutions to a GSD challenge, but usually a GSD pattern does not usually solve
all the issues of each challenge.

52

From the results presented in Table 14, can be concluded that the coverage of GSD Pattern
Language is reasonable from the viewpoint of GSD challenges. However, GSD challenges
concentrate mainly on phases which are in use when a project is ongoing. E.g. GSD2 (Fuzzy
Front End), GSD4 (Divide and Conquer with Iterations) and GSD17 (Manage Competences) are
mainly related to the starting of a project which is not in the scope of GSD challenges.

Table 14. Relations between GSD challenges and GSD Pattern Language

1
R

ed
uc

ed
 sy

nc
hr

on
ou

s c
om

m
un

ic
at

io
n

2
 T

yp
ic

al
ly

 i
nc

re
as

ed
 c

oo
rd

in
at

io
n

co
st

s

3
M

an
ag

em
en

t o
f p

ro
je

ct
 a

rt
ifa

ct
s

4
Fa

ce
-t

o-
fa

ce
 m

ee
tin

gs
 d

iff
ic

ul
t

5
R

ed
uc

ed
 tr

us
t

6
A

 la
ck

 o
f c

ri
tic

al
 ta

sk
 a

w
ar

en
es

s

7
D

iff
ic

ul
t t

o
co

nv
ey

 st
ra

te
gy

8
L

ow
-c

os
t “

ri
va

ls
”

9
C

ul
tu

ra
l m

is
un

de
rs

ta
nd

in
gs

10
 In

co
ns

is
te

nt
 W

or
k

pr
ac

tic
es

11
 R

ed
uc

ed
 c

oo
pe

ra
tio

n

12
 D

iff
er

en
t p

er
ce

pt
io

ns
 o

f a
ut

ho
ri

ty

13
 M

an
ag

er
s m

us
t a

da
pt

 to
 lo

ca
l r

eg
ul

at
io

ns
GSD1 x x
GSD2
GSD3 x x x x x x
GSD4
GSD5 x x x x
GSD6 x x x
GSD7 x x x x x
GSD8 x
GSD9 x
GSD10 x
GSD11 x
GSD12 x x x
GSD13 x x x x x
GSD14 x x x x
GSD15 x x x x
GSD16 x
GSD17
GSD18 x

53

5.2 Q-PAM

In this section the Q-PAM evaluation method is introduced. Subsection 5.2.1 gives a short
motivation for Q-PAM. Subsection 5.2.2 gives an overview of the method. Subsection 5.2.3
describes creating a quality profile for specifying the aims of the evaluation. Subsection 5.2.4
describes how to construct scenarios which are used to perform the analysis discussed in
Subsection 5.2.4. The Q-PAM method has been introduced in Paper IV. The method has also
been used to evaluate a knowledge-sharing pattern language [Vesiluoma 2009].

5.2.1 Motivation

How can a collection of process practices be evaluated? In many ways a process model can be
compared to system architecture. The implementation of a process model is a concrete process
instance, in the same way as the implementation of system architecture is the actual system. The
system architecture determines the major quality attributes of the system, and the process model
determines the major quality attributes of its instances realized in software development projects.
The problem of determining the quality of a process model also resembles the problem of
determining the quality of software architecture: in both cases, there are certain solutions
supposedly contributing to some quality attributes, but the actual effect of these solutions to the
quality is unclear. A further similarity is that in both cases, quality assessment is difficult on the
basis of the general process or architecture model only, without considering the actual concrete
realization of these models.

In the context of system architecture, a popular technique to assess the quality of software
architecture is to apply scenario-based approaches, like ATAM (Architecture Tradeoff Analysis
Method) [Clements et al. 2002]. In ATAM, the quality requirements are first derived from
business goals and concretized using scenarios. That is, for each quality requirement (say, UI
portability), a concrete situation testing the quality requirement is given, related to an imaginary
implementation of the system (say, “the GUI of the system is made browser-based in a month”).
Such scenarios are then analyzed against the solutions in the architecture, trying to identify those
solutions which affect the realization of the scenario. If the scenario is considered realizable, the
solutions contributing to this quality attribute are identified and marked as “safe”. If the scenario
is considered unrealizable, the solutions making the scenario difficult or impossible are identified
as “risks”. The general idea of ATAM is to create in this way links between the quality attributes
and solutions in the architecture. To focus the assessment on the most important requirements,
the scenarios are prioritized so that less essential scenarios can be ignored in the analysis.

I argue that a similar method can be applied to the quality assessment of software
development processes as well. That is, the practices in a software process model (solutions) can
be analyzed against concrete situations (scenarios) testing certain desired quality attributes in an
imaginary instance of the process model. In that way, I can infer not only the overall quality
level of a process model, but also get a detailed explanation about which quality attributes are
weak or strong in the process model, and why. I can also make observations on “safe” and
“risky” practices in general: if a certain practice often appears as a “safe” solution, this practice

54

is obviously beneficial, if another practice is frequently labeled “risky”, the value of the practice
should be clearly questioned. The assessment process can be adjusted according to chosen goals
or needs in a company, and carried out as lightly as possible.

The elements describing the quality of a piece of software have usually been referred to as
quality attributes. Different software quality models have introduced selected sets of these
quality attributes [Miller 2001]. ISO 9126 standard [ISO/IEC 9126-1:2001] is one example. ISO
9126 includes three perspectives of software product quality: internal quality, external quality
and quality in use. Internal quality can be measured during development of the product, and
external quality can be measured when the product is executed. Quality in use can be seen by the
user while the product is applied in the intended fashion. The quality attributes, or, as the
standard calls, quality characteristics, of external and internal quality are introduced in Figure 12
as an example.

Figure 12. ISO 9126 quality attributes [ISO/IEC 9126-1:2001]

In this study I will exploit ISO 9126 to derive quality attributes for processes as part of the
construction of quality profiles discussed in Subsection 5.2.3. However, this is only one possible
technique of deriving process quality attributes, and the Q-PAM method does not take a
standpoint on the technique. Indeed, a company could come up with the desired quality attributes
as a result of an internal discussion on the goals of the assessment.

5.2.2 Method Overview

The first step in Q-PAM is to create a quality profile for the process (here, a process pattern
language). The quality profile is a set of quality attributes considered essential in the assessment
of the process. The quality profile thus depends not only on the quality requirements of the
process, but also on the purpose of the assessment: the same process may be assessed with
different profiles. Quality profiles are assumed to be obtained by extracting them from quality
attribute lists available in standards. The construction of the quality profile is discussed in more
detail in Subsection 5.2.3.

When the quality profile has been constructed, each quality attribute is associated with
scenarios that serve as test cases for the quality attribute. A scenario is a concrete, desired
situation in an imaginary instance of the process where the existence or non-existence of the

55

required quality attribute can be verified. The construction of the scenarios is discussed in
Subsection 5.2.4. Scenarios can be prioritized for more focused processing, if needed.

The next step is the actual quality analysis. Each (possibly prioritized) scenario is analyzed
against the process patterns: which patterns (if any) support the realization of the scenario, and
which patterns counteract against the scenario (if any). A tag is attached to the scenario,
characterizing the extent to which the pattern language is considered to pass the scenario test, on
the basis of the analysis. The analysis step is discussed in more detail in Subsection 5.2.5.

5.2.3 Creating Quality Profile

A quality profile is a (possibly hierarchically structured) set of quality attributes. The term
quality profile has been used here in a similar meaning as Bosch [2000] has used it in the context
of software architectures. In both cases, a profile is a means to capture a covering set of scenarios
for a particular assessment purpose. A quality profile can be created on the basis of the
requirements of a software development process (if such exist), a company’s business goals, the
purpose of the assessment, and/or a common quality framework. Here, I will use the quality
attributes of ISO 9126 associated with external and internal quality as a basic source of the
quality profile, interpreting and transforming the quality attributes for the context of processes.
Also quality in use could be used but in my case I have not used them because they are less
suitable. This is a straightforward technique that can be recommended in many cases, but I
emphasize that other techniques could be used as well.

Let us consider a sample quality attribute in ISO 9126, efficient time behavior (that is, sub
attribute of Time behavior under Efficiency). The standard defines this as “the capability of the
software product to provide appropriate response and processing times and throughput rates
when performing its function, under stated conditions”. If I replace the words product and
function with words process and task, respectively, this definition can be applied for processes as
well, resulting in: the capability of the process to provide appropriate response and processing
times and throughput rates when performing its tasks, under stated conditions. This kind of
adaption is possible and reasonable to nearly all of the quality attributes in ISO 9126 regarding
external and internal quality.

A quality profile obtained from a general quality model can be refined according to process-
specific characteristics or purpose of the assessment. For example, Efficiency could be refined as
Project manager time usage if the company is particularly interested in the efficient use of
project manager resources. A more refined profile makes it easier to find scenarios related to the
quality attribute.

5.2.4 Constructing Scenarios

The general idea of a scenario is to serve as a test case that can be run against the process
patterns. For this purpose, a scenario should describe a concrete and measurable situation in an
imaginary process instance (project). If the scenario represents a typical situation, a succeeding
test suggests that the process pattern language normally supports the situation of the scenario. If

56

the scenario represents a stress situation trying the limits of the process, a succeeding test gives
an upper bound for the capacity of the process. A scenario can also test some specific part of the
process that is of particular interest. Scenarios are found during a workshop by different
stakeholders. I describe in Subsection 5.3.1 how the scenarios were found in our case.

Each quality attribute in the quality profile should be associated with at least one scenario.
For example, assume that I am assessing a process pattern language for requirements analysis,
and the quality profile contains quality attribute Changeability (as a sub attribute of
Maintainability). This quality attribute could be further refined as Organizational changeability.
A scenario could be then given for this quality attribute as follows:

Company X buys our company and wants to make our
development process compatible with theirs. The requirements
analysis part of our process is made compatible with X’s
process within half a year using nine person-months.

Note that this kind of a change scenario requires exact time specifications to be analyzable.
All the implications or assumptions need not be visible in the scenario, but they must be
reasonably inferable on the basis of the scenario. In the example, company X should refer to an
actual company, with known process practices.

Scenarios are as valuable assets for processes as test cases are for systems, recording
important information related to the process. Thus, all scenarios given for a quality profile
should be documented and preserved. However, scenarios may have different weight in an
assessment project, and there may be limited resources to carry out the assessment. To be able to
concentrate on the essential ones among a large set of scenarios, the scenarios can be prioritized
according to their importance.

5.2.5 Analysis

During the analysis phase, each of the (highly prioritized) scenarios is considered, and the
involved process patterns are identified. The involved patterns are those patterns that potentially
have affect on the scenario. Essentially, the analysis means that the effect of these patterns on the
scenario is studied. For each pattern involved in the scenario, a positive conclusion is that the
scenario situation is supported by the pattern, so that the application of the pattern helps to
realize the scenario. A negative conclusion is that the pattern either does not provide support for
handling a situation that it is supposed to support, or it hinders or complicates the situation
described by the scenario. A rationale explaining either a positive or negative conclusion is
associated with the scenario. In the case studies I have marked positive and negative conclusions
with N (non-risk) or R (risk), respectively.

Sometimes it may be difficult to conclusively argue that a scenario is realizable using the
process patterns, but there are patterns that provide some assistance in the scenario. Similarly,
there may be patterns which do not prohibit a scenario, but may be to some extent counteracting

57

against it. In these cases, it would be sensible to use a more fine-grained result than just a binary
tag.

After each scenario has been analyzed and tagged, the assessment data is in principle
available. However, if there are several quality attributes (with analyzed scenarios), it may be
difficult to present this data in a condensed, complete form. For this purpose, the quality
attributes can be grouped and each group can be characterized with a ratio of succeeded and
failed scenarios. In this way, it is possible to find larger “problem areas” in the process. For
example, if many scenarios related to different sub-attributes of Efficiency fail, it seems
reasonable to suggest that efficiency is a problem area in the process. A summary of the analysis
of scenarios can also be presented by a table.

5.3 Evaluation of GSD Pattern Language

In this section evaluation of GSD Pattern Language is described. Subsection 5.3.1 discusses how
to apply Q-PAM for this purpose and Subsection 5.3.2 describes analysis of the results.

5.3.1 Applying Q-PAM

Three faculty members from the Tampere University of Technology, three employees from
Metso Automation and one employee from Teleca Inc. participated in the evaluation workshop
along with the author. Three out of seven participants did not have any prior knowledge about
the GSD Pattern Language and three out of seven participants did not have prior experience
using the ATAM method in an industrial context.

The author introduced a candidate quality profile in the first evaluation session based on ISO
9126. Because of the limited time available, only a subset of quality factors from the ISO 9126
quality factors were used. A candidate quality profile was accepted with some changes after
discussion. At the highest level, the chosen quality profile consisted of Functionality, Efficiency
and Portability. Functionality was refined as Suitability, Accuracy and Security. Efficiency was
refined as Time Behaviour and Resource Utilization. Portability was refined as Adaptability. The
final quality profile is presented in Table 15.

58

Quality Factor Explanation
Suitability (Functionality) The capability of GSD Pattern Language to provide an appropriate set of

phases for specified tasks and user objectives.

Accuracy (Functionality) The capability of GSD Pattern Language to provide the right or agreed
results or effects with the needed degree of precision.

Security (Functionality) The capability of GSD Pattern Language to protect information and data so
that unauthorized persons or systems cannot read or modify them and
authorized persons or systems are not denied access to them

Time Behaviour (Efficiency) The capability of GSD Pattern Language to provide appropriate response
and processing times and throughput rates when performing its tasks, under
stated conditions.

Resource Utilization
(Efficiency)

The capability of GSD Pattern Language to use appropriate amounts and
types of resources when the process performs its tasks under stated
conditions.

Adaptability (Portability) The capability of GSD Pattern Language to be adapted for different
specified environments without applying actions or means other than those
provided for this purpose for the process considered.

After choosing of the quality profile, the participants in the assessment workshop created
scenarios and prioritized the most important of the scenarios. There were 57 different scenarios
which were prioritized by participants by voting, resulting in 10 prioritized scenarios to be
analyzed. The next subsection discusses the analysis of the results.

5.3.2 Analysis of Results

This subsection presents the results obtained from workshops of assessing GSD Pattern
Language. The analysis of one of the resulting scenarios is introduced in Table 16. The patterns
referred to in Table 16 are Iteration Review, Multi-Level Daily Meetings, Common Repositories
and Tools and finally, Common Processes, which were presented in Table 10 on page 38.

Table 15. The quality profile used in the evaluation. The explanations are modified from ISO
9126.

59

I illustrate the results of the analysis with a scenario-pattern matrix (Table 17), where for
each scenario the involved patterns are marked with an N (non-risk) or R (risk). I have computed
certain indicator values suggesting problematic scenarios or patterns. These indicators are
intended only as hints; the actual conclusions can be made only after studying the seriousness of
each risk separately. I have used the following indicators: IR (involvement ratio) = (N+ R)/

S indicating the potential applicability scope of the pattern with respect to this set of scenarios,
RR (risk ratio) = R/(N+ R) indicating the total degree of risk of the pattern with respect to
the scenario set, and SI (support index) = (N- R)/ P indicating the level of support the
pattern language provides for a scenario. Here N and R denote the number of N’s and R’s in
a row/column, respectively, S denotes the number of scenarios and P the number of patterns.
If IR is low, the pattern seems to be less relevant for the scenario set, if RR is close to 1, the
pattern may cause more problems than benefits, if SI is negative the pattern language may
counteract the scenario. The indicators are presented in Figure 13.

Table 16. Example analysis of a scenario

Scenario S12 An offshore designer decides to decrease the contents of a feature by 50%.
In this way, he/she can get the feature to suit one iteration but the problem
is that he/she does not talk with the product manager. This problem should
be visible in two weeks.

Response A problem need to be solved in GSD as fast as in centralized development.

Quality Main Attribute Accuracy (Functionality), Time Behaviour (Efficiency)
Pattern Analysis of Pattern Application R N
Iteration
Review

The pattern ensures that the change can be found at the latest in the next
Iteration Review.

N

Multi-Level
Daily Meetings

As a result of using this pattern, a project manager might also notice the
change during daily meetings

N

Common
Repositories
and Tools

Common repositories and reports will improve visibility of a project between
different sites and from repositories it is possible to find task lists and
reports e.g about remaining work, in which it is possible to notice the
change by this pattern.

N

Communication
Tools

Communication tools make it easier to clarify change when it has been
found.

N

Common
Processes

With Common processes, there can be a risk if there is not specific
process guidelines to make a decision about making changes, and all
project members have not been trained well.

R

Result Some Support: The implementation of the scenario S12 is supported through four patterns in
the language and one pattern can have a risk.

60

Figure 13. Evaluation Indicators

S12 S3 S22 S16 S25 S31 S17 S19 S24 S28 IR RR
GSD1
GSD2 R 0,1 1,0
GSD3 R N N R N N 0,6 0,3
GSD4 N 0,1 0,0
GSD5 R R R R 0,4 1,0
GSD6 N N N N N N 0,6 0,0
GSD7 N N N R N N N 0,7 0,1
GSD8 R N N N 0,4 0,3
GSD9 N 0,1 0,0
GSD10
GSD11
GSD12 R N N N 0,4 0,3
GSD13 N N 0,2 0,0
GSD14 N N N N N N R 0,7 0,1
GSD15 N N N N 0,4 0,0
GSD16 R 0,1 1,0
GSD17 N N R N 0,4 0,3
GSD18 N N N N N N 0,6 0,0

SI 0,2 0,1 0,3 0,1 0,3 0,3 0 0,3 0,1 0,1

From Table 17 can be seen that IR (involvement ratio) was at least 0,6 with the following
patterns: GSD3 (Collocated Kick-Off), GSD6 (Communication Tools), GSD7 (Common
Repositories and Tools), GSD14 (Multi-Level Daily Meetings) and GSD18 (Notice Cultural
Differences). These patterns seem to be the most important ones for GSD and they give good
support with the set of scenarios used in this assessment.

Table 17. Summary of the analysis of scenarios for GSD Pattern Language

61

Suspicious patterns were GSD2, GSD5 and GSD16 in which RR (risk ratio) was 1,0. GSD
02 (Fuzzy Front End) has a risk because the pattern did not include a proper change management
process. GSD5 (Choose Roles in Sites) was interesting because it has only risks, but one main
problem with this pattern was that there was not mentioned deputy persons to ensure
communication if the main responsible person is not available and it was noticed in three
scenarios. GSD16 (Organize Knowledge Transfer) has a risk because it did not include process
knowledge which is also a key area to train, although training of common processes was
mentioned in GSD3 (Collocated Kick-Off).

It can also be noticed that GSD1, GSD10, GSD11 do not have any marks. GSD1 is a GSD
strategy pattern which is used mainly before the start of a project. GSD10 and GSD11 as well as
GSD9 are patterns for different types of work allocation and the main work allocation pattern
was GSD8 which was mainly used instead of GSD9, GSD10 and GSD11 in the assessment.

The index SI (support index) was from 0 to 0.3 and for five scenarios from ten this index was
at least 0.2. Support index is at a relatively low level but it is understandable because a scenario
is only one test case which cannot be supported by all patterns. On the other hand, if the SI is
very low the result indicates that patterns need to be checked and analyzed to find possible
improvement actions for them.

5.4 Summary of Q-PAM Evaluation

In this case I can conclude that although there are some suspicious patterns (GSD2, GSD5 and
GSD16), as a whole the pattern language provides good support for the scenarios. For instance,
patterns that relate to the application lifecycle management (GSD6 and GSD7) indicate strong
support for the selected scenarios.

During the workshop, several improvement possibilities for GSD Pattern Language were
found and the analysis resulted in a better understanding of the limits of the GSD Pattern
Language. For example, the analysis resulted in the finding that GSD Pattern Language does not
include all needed practices in critical fault management or knowledge transfer areas. GSD
Pattern Language also assumes that the development environment is in a good shape and that the
communication network is working at a reasonable level. Some patterns originally intended for
the beginning of a project were also found useful during a project.

The results obtained from the evaluation of GSD Pattern Language also indicate important
issues for GSD. One of the issues is secure shared GSD7 (Common Repositories and Tools) as
an ALM solution: electronic connections (e-meetings, teleconferencing, web cameras, chat, wiki
etc.) were seen as essential solutions to support a collaborative mode of work. This has also been
indicated in other case studies related to global product development, for instance, in [Battin et
al. 2001] and [Ramesh et al. 2006] (e.g. intranet data sharing, teleconferencing). The
applicability of ALM was also studied to support the management of distributed software
development projects in Paper III. The results showed that ALM supported the operation in a
global development environment. The results of Q-PAM analysis support this claim, too. From
all GSD process patterns presented in Subsection 5.3.2, GSD6 (Communication Tools) and

62

GSD7 (Common Repositories and Tools) are related to ALM. Analysis results indicate that both
ALM related patterns support the selected scenarios. Only one risk issue was found to be related
to the analysis of pattern GSD7 against scenario S16.

The results from earlier work in [Välimäki and Koskimies 2006], Paper I, II and V show that
the most successful global software development issues have been improvements in visibility,
management of features, communication, and commitment to the goals of the project. The
importance of these issues for global software development has also been discussed in
[Leffingwell 2007].

Communication problems have been resolved by utilizing for example GSD14 (Multi-Level
Daily Meetings), GSD13 (Iteration Planning), and GSD15 (Iteration Review). These issues have
also been discussed both in [Schwaber 2004] and [Schwaber 2007].

63

6 RELATED WORK

The objective of this chapter is to present existing work related to the main contributions in this
thesis. Section 6.1 presents an analysis between GSD Pattern Language and related research and
Section 6.2 discusses pattern mining and organizing pattern languages.

6.1 Analysis between GSD Pattern Language and Related
Research

GSD has brought many benefits but also challenges. Solutions to these challenges have been
investigated by several authors like [Coplien and Harrison 2005], [Sangwan et al. 2006],
[Paasivaara et al. 2010], [Woodward et al. 2010], [Šmite et al. 2010], and [Richardson et al.
2010]. Subsection 6.1.1 discusses the similarities and differences between studies in [Coplien
and Harrison 2005] and GSD Pattern Language. Respectively, Subsections 6.1.2, 6.1.3, 6.1.4,
6.1.5, and 6.1.6 discuss the similarities and differences between studies in [Sangwan et al. 2006],
in [Paasivaara et al. 2010], in [Woodward et al. 2010], in [Šmite et al. 2010], in [Richardson et
al. 2010], and GSD Pattern Language. Subsection 6.1.7 presents a summary of these subsections.

6.1.1 Agile Software Patterns

Coplien and Harrison [2005] include four pattern languages which are based on in-depth
research of over 100 software development organizations. These four pattern languages are
Project Management, Piecemeal Growth of the Organization, Organizational Style, and People
and Code.

Coplien and Harrison [2005] concentrate mainly on collocated Agile projects, but it also
includes some interesting patterns for GSD. Also the viewpoint of these patterns is much more
detailed than in GSD Pattern Language. As an example, I discuss about the most important GSD-
related patterns in the form of a patlet [Coplien and Harrison 2005, p. 26]. A patlet is a short
summary of a patterns’s problem and solution. Coplien and Harrison [2005] emphasize that
communication is key in GSD and it is important to sustain communication in a distributed
project. In Coplien and Harrison’s Project Management pattern language, one example of an
important communication-related pattern is Community of Trust which describes: If you are
building any human organizations Then you must have a foundation of trust and respect for
effective communication [Coplien and Harrison 2005, p. 349]. Although a trust issue is partly
included in GSD Pattern Language, this pattern could be one additional GSD Pattern to
emphasize the importance of trust as a foundation for co-operation between different sites.
Another example of a communication-related pattern can be found from Organization Style
pattern language as Face-to-Face before Working Remotely. This pattern describes that If a

64

project is divided Then begin the project by inviting everyone to a meeting at a single place
[Coplien and Harrison 2005, p. 358]. This pattern has the same idea as the GSD Pattern
Collocated Kick-Off.

6.1.2 GSD Handbook

Sangwan et al. [2006] study GSD practices originating from Siemens Corporate Research (SCR).
Siemens has more than 30 000 software engineers in many offices in most countries around the
globe. SCR started this research program in 2003 SCR with different universities around the
world. Many GSD projects from Siemens and by persons from eight schools in five nations
across four continents participated in this research. It had three objectives: to find the best
practices from project experiences, intensive literature analysis and experimental research which
had never been done before in GSD.

Sangwan et al. [2006] introduce Model-Drive Rapid Application Development which is a
high-level process framework that balances agility and discipline for GSD. The process
framework includes a planning phase both for product development and for project management.
The process framework describes suggestions for an organizational structure as well as how to
monitor and control a project. Also some case studies are presented in a GSD environment.
Sangwan et al.[2006] have quite many practices similar to GSD patterns. The format of
presentation of Sangwan’s practices is textual and these practices do not have any structure as a
process pattern has. The organization of practices is made by a process framework and different
workflows which help to find needed practices. One example of a similarity between practices of
Sangwan et al. [2006] and GSD Pattern Language is Feature Release Planning practice in the
former and Divide and Conquer with Iterations in the GSD Pattern Language. The goal in both is
to make a feature release plan to manage development of a product. Also the implementation and
result parts have similarities.

6.1.3 MaPIT Practices for GSD

Paasivaara et al. [2010] give a collection of best practices. The best practices are based on the
experiences of companies, collected from research in MaPIT (Management, Processes and IT
Support for Globally Distributed Software Development). The research project started in 2007
and ended in March 2010. The goals of that research were to present the challenges of GSD
projects and to find solutions and useful practices for managing and working in GSD projects.

 The research of Paasivaara et al. [2010] includes three parts. The first part is Planning and
Practices which describes practices related to communication, collaboration and project ramp-up
activities. It includes chapters Initiating GSD, Communication and Collaboration Practices and
Using Scrum Practices in GSD Projects. The second part is Team and Individuals, which
presents the problems and solutions behind group dynamics. It includes the chapters Trust and
Distrust in GSD Projects, GSD Projects and Organizational Change, Structuring the Teamwork
for GSD Projects, Commitment in GSD Projects and finally, Managing Cultural Differences in
GSD Projects. The last part is Tools and Infrastructure which discusses the findings and theories

65

behind the choice of collaboration tools. It includes the chapters Choosing Communication
Media for GDS, Communication Tools for GSD Projects and Physical Workspaces and
Distributed Teams. Chapters are written by different participants in a MaPIT research project.

Paasivaara et al. [2010] describe quite similar practices with GSD Pattern Language. One
example of a similarity between practices of Paasivaara et al. [2010] and GSD Pattern Language
is Sprint demos practice in the former and Iteration Review in the GSD Pattern Language. The
goal in both of them is to check the results at the end of iteration.

6.1.4 Distributed Scrum Practices

Woodward et al. [2010] describe how to use Scrum in a globally-distributed company. This work
proposes best practices which are founded in distributed projects both in IBM and other
companies. The research was started in 2008 and ended in 2010. The goal of this research was to
capture experience and helpful recommendations not only from IBM but also from
knowledgeable Scrum Team members, coaches and consultants outside of IBM.

 The work of Woodward et al. [2010] describes quite extensively the best practices for
distributed Scrum. Best practices are presented for each phase of Scrum as Starting a Scrum
project, Sprint Planning, Distributed Daily Scrum etc. Woodward et al. [2010] describe quite
similar practices with GSD patterns. One example of a similarity between practices of
Woodward et al. [2010] and GSD patterns is Starting a Scrum project practice in the former and
Divide and Conquer in GSD Pattern Language. The goal in both of them is to plan the start of a
project.

6.1.5 BTH Review on GSE

An investigation of empirical evidence in global software engineering (GSE) related literature
has been carried out at BTH (Blekinge Institute of Technology) [Šmite et al. [2010]. Šmite et al.
[2010] report their finding from investigating empirical evidence in global software engineering
(GSE) related research literature. Šmite et al. [2010] report that the benefits of GSE are difficult
to reach in companies. Šmite et al. [2010] also say that GSE research is still immature, because
the number of empirical studies is still relatively small. The systematic review consists of a
review of 59 papers which are published after the year 2000. The results of the systematic review
are several descriptive classifications of the papers on empirical studies in GSE and also reports
on some best practices identified from literature. Practices of Šmite et al. [2010] are partly
similar to GSD patterns.

 One example of a similarity between practices of Šmite et al. [2010] and GSD patterns is
Centralized project repository in the former and Common Repositories and Tools in GSD Pattern
Language. The goal in both of them is the possibility for global access to project data regardless
of time and place.

66

6.1.6 GSE: A Software Process Approach

A study of three case studies in global software engineering (GSE) during nine year period has
been carried out by a group of researchers at Lero research center, University of Limerick
[Richardson et al. 2010]. The main result of this research is Global Teaming which is a software
process for implementing GSE process efficiently in a company. Global Teaming has two
specific goals which are Define Global Project Management and Define Management between
Locations. These goals are further divided in practices and sub practices. These practices of
Richardson et al. [2010] are quite similar to GSD patterns.

One example of a similarity between practices of Richardson et al. [2010] and GSD patterns
is Identify Communication Skills for GSE in the former and Communication Tools in GSD
Pattern Language. The goal in both of them is to find suitable communication methods and tools.

6.1.7 Summary of Analysis

Tables 18, 19, and 20 present an analysis between GSD Pattern and related research. In Table 18
GSD Pattern Language are compared with [Coplien and Harrison 2005] and [Sangwan et al.
2006].

ID-Name [Coplien and
Harrison 2005]

[Sangwan et al. 2006]

GSD1-GSD Strategy No corresponding
practice

Critical success factors (p.10)
Structure of a GSD project (p.113)
Offshoring should be viewed as a long-term strategy in which
the remote supplier develops a competence center, not as a
short term cost reduction (p.233)

GSD2-Fuzzy Front
End

No corresponding
practice

Elicitation in Requirements engineering workflow (p.26)

GSD3-Collocated
Kick-Off

Face to Face before
Working Remotely
(p.199)
Community of
Trust (p.102)

Team-building workshop (p.208)

GSD4-Divide and
Conquer with
Iterations

No corresponding
practice

Feature release planning (p. 81)

GSD5-Choose Roles in
Sites

No corresponding
practice

Supplier manager is a member of the central team who
manages developers at remote development (p.123)
Exchange of people (p.175)
Both project and local site managers (p.206)
Chief architect was responsible for decision making for the
application package (p. 206)

Table 18. Analysis of GSD Pattern Language with [Coplien and Harrison 2005] and [Sangwan et
al. 2006]

67

GSD6-Communication
Tools

No corresponding
practice

Communication and Collaboration Infrastructure (p.155)

GSD7- Common
Repositories and Tools

No corresponding
practice

Knowledge Management Infrastructure (p.160)

GSD8-Work
Allocation

Distribute Work
Evenly (p.206)

Understand dependencies (p.231)

GSD9-Architectural
Work Allocation

Conway’s Law
(p.192),
Organization
Follows Location
(p.194)

Architecture design workflow (p.54)
For each module there will be a focus group formed, such that
the remote teams work with multifunctional experts from
central team (p.114)
Minimize communication (p.176)
Early phase activities are critical to provide understanding
and divide the work package for remote teams (p.232)

GSD10-Phase- Based
Work Allocation

No corresponding
practice

Structure of a GSD project (p.113)

GSD11-Feature-
Based Work
Allocation

Feature
Assignment (p.
264)

Technical activities are controlled by the functional team
leaders within the central teams (p.129)

GSD12-Common
Processes

No corresponding
practice

Balance flexibility and rigidity (p.232)

GSD13-Iteration
Planning

Distribute Work
Evenly (p.206)

Planning during the Elaboration and Construction Phases
(p.89)
Bottom-Up Estimate (p.103)
The goals of each sprint are planned centrally using the build
plan. Detailed planning should be done by each development
team for each sprint, with the support of the supplier manager
(p.129)
Frequent trips by a supplier manager will be made to the
remote sites, especially for the kick-off meeting for a new
iteration and to view the results of each sprint (p.130)

GSD14-Multi-Level
Daily Meetings

No corresponding
practice

Project status tracking was done during weekly
teleconferences (p.207)

GSD15-Iteration
Review

No corresponding
practice

Planning during the Construction Phase (p. 89)
Frequent trips by a supplier manager will be made to the
remote sites, especially for the kick-off meeting for a new
iteration and to view the results of each sprint (p.130)

GSD16-Organize
Knowledge Transfer

No corresponding
practice

The time spent at the central site is used to train the future
remote team members (p.112)
Delegate trusted staff to new remote sites (p.131)
Technical training (p.210)

GSD17-Manage
Competence

No corresponding
practice

No corresponding practice

GSD18-Notice
Cultural Differences

No corresponding
practice

Multicultural workshop (p.208)

From Table 18 can be seen that Coplien and Harrison [2005] describe only few similar
patterns with GSD patterns. One reason is that Coplien and Harrison [2005] concentrate mainly
on collocated Agile projects and not the distributed ones. However, Coplien’s and Harrison’s
more detailed patterns could be studied as candidates to increase the level of details in GSD
patterns.

68

Sangwan et al. [2006] have quite many practices similar to GSD patterns but the level of
abstraction is different. Usually practices are also not easy to identify, because they are part of
textual descriptions. Some practices are described at a more detailed level than in GSD patterns.
The contents of Sangwan et al. [2006] could be utilized to improve GSD patterns not only to
increase details in project management patterns but also to broaden the scope of GSD Pattern
Language for the development of a product as well.

In Table 19, GSD Pattern Language is compared with [Paasivaara et al. 2010], [Woodward et
al. 2010], and [Šmite et al. 2010].

ID-Name [Paasivaara et al. 2010] [Woodward et al. 2010] [Šmite et al. 2010]
GSD1-GSD Strategy GSE Strategy (p.3) No corresponding practice No corresponding practice
GSD2-Fuzzy Front
End

No corresponding
practice

Starting a Scrum project (p.
39)

No corresponding practice

GSD3-Collocated
Kick-Off

Kick off (p.8) Communicate with
distributed team members
(p.20)

Partly: Face to Face
meetings

GSD4-Divide and
Conquer with
Iterations

Involve the whole team
in planning (p.12)

Release Planning (p. 39)
Create the Release Plan
(p.56)

Incremental short-cycle
development

GSD5-Choose Roles in
Sites

Define clear roles and
responsibilities (p.7)
Define and communicate
a clear organizational
structure (p.20)
Frequent visits (p.48)

No corresponding practice No corresponding practice

GSD6-Communication
Tools

Agree on
communication practices
and tools (p.22)
Multiple communication
modes (p.50)
Communication Tools
for GSD projects (p.127)

Tools - p.26 Reliable infrastructure,
rich communication media

GSD7- Common
Repositories and Tools

Agree on
communication practices
and tools (p.22)
Issue trackers (p.141)

Tools & File Sharing – p.26 Centralized project
repository, common
configuration management
tool support

GSD8-Work
Allocation

Division of work (p.5) Starting a Scrum project (p.
39)

Task distribution based on
architectural decoupling
and low dependencies
across remote locations

GSD9-Architectural
Work Allocation

No corresponding
practice

Starting a Scrum project (p.
39)

Task distribution based on
architectural decoupling
and low dependencies
across remote locations

Table 19. Analysis of GSD Patterns with [Paasivaara et al. 2010] and [Woodward et al. 2010]

69

GSD10-Phase- Based
Work Allocation

Division of work (p.5) Starting a Scrum project (p.
39)

No corresponding practice

GSD11-Feature-
Based Work
Allocation

No corresponding
practice

Starting a Scrum project (p.
39)

No corresponding practice

GSD12-Common
Processes

Implement good
working practices and
processes (p.13)

No corresponding practice No corresponding practice

GSD13-Iteration
Planning

Involve the whole team
in planning (p.12)
Sprint planning
meetings (p.42)

Sprint Planning (p 85) Partly: Effective and
frequent synchronous
communication

GSD14-Multi-Level
Daily Meetings

Arrange frequent status
meetings (p.25) and
Arrange weekly
meetings across teams
(p.26)

Distributed Daily Scrum
Meetings (p.97)

Effective and frequent
synchronous
communication

GSD15-Iteration
Review

Sprint demos (p.44) End of Sprint Reviews (p.
147)

Partly: Effective and
frequent synchronous
communication

GSD16-Organize
Knowledge Transfer

Invest in knowledge
transfer (p.9)
Arrange training (p.24)

No corresponding practice Partly: Temporal
collocation, Exchange
visits

GSD17-Manage
Competence

No corresponding
practice

No corresponding practice No corresponding practice

GSD18-Notice
Cultural Differences

Cultural sensitivity
training (p.103)

Cultural Differences p. 21 No corresponding practice

From Table 19 can also be seen that the practices of Paasivaara et al. [2010] describe clear
correspondences with GSD patterns. Practices are analyzed and described at a more detailed
level than in GSD patterns. The practices of Paasivaara et al. [2010] could be utilized to improve
GSD patterns both to increase details in the current GSD patterns and to add some interesting
patterns to the current GSD Pattern Language. However, there are four GSD patterns which are
not in [Paasivaara et al. 2010]: Fuzzy Front End, Architectural Work Allocation, Feature- Based
Work Allocation,and Manage Competence.

Also Woodward et al. [2010] describe quite similar practices with GSD patterns.
Furthermore, these practices include more details than GSD patterns. However, there are some
patterns which are not included in [Woodward et al. 2010], such as GSD Strategy, Choose Roles
in Sites, Organize Knowledge Transfer and Manage Competence.

Šmite et al. [2010] describe names, benefits and constraints of practices, but these practices
do not have detailed descriptions at all. All of these practices can be found from GSD Patterns.
However, there are some patterns which are not included in [Šmite et al. 2010], such as GSD
Strategy, Fuzzy Front End, Choose Roles in Sites, Phase-Based Work Allocation, Common
Processes, Manage Competence or Notice Cultural Differences.

70

In Table 20, GSD Pattern Language is compared with [Richardson et al. 2010].

ID-Name [Richardson et al. 2010]

GSD1-GSD Strategy SP 1.1 Global Task Management (1): Determine Team and Organizational Structure
Between Locations

GSD2-Fuzzy Front
End

-

GSD3-Collocated
Kick-Off

SP 2.1 Operating Procedures (4): Implement Strategy for Conducting Meetings
Between Locations

GSD4-Divide and
Conquer with
Iterations

SP 1.3 Global Project Management (4): Establish Cooperation and Coordination
Procedures Between Locations

SP 2.2 Collaboration Between Locations (4): Collaboratively Develop, Communicate
and Distribute Among Interfacing Teams the Commitment Lists and Work Plans that
are Related to the Work Product or Team Interfaces

GSD5-Choose Roles in
Sites

SP 2.1 Operating Procedures (3): Establish Communication Interface Points Between
the Team Members

GSD6-Communication
Tools

SP 1.2 Knowledge and Skills (3): Identify Communication Skills for GSE

SP 1.3 Global Project Management (4): Establish Cooperation and Coordination
Procedures Between Locations

SP 2.1 Operating Procedures (2): Implement a Communication Strategy for the Team
GSD7- Common
Repositories and Tools

SP 1.3 Global Project Management (4): Establish Cooperation and Coordination
Procedures Between Locations

GSD8-Work
Allocation

SP 1.3 Global Project Management (2): Assign Tasks to Appropriate Team Members

SP 2.2 Collaboration Between Locations (2): Collaboratively Establish and Maintain
the Work Product Ownership Boundaries Among Interfacing Locations Within the
Project or Organization

GSD9-Architectural
Work Allocation

SP 1.3 Global Project Management (2): Assign Tasks to Appropriate Team Members

GSD10-Phase- Based
Work Allocation

SP 1.1 Global Task Management (2): Determine the Approach to task Allocation
Between Locations

SP 1.3 Global Project Management (2): Assign Tasks to Appropriate Team Members
GSD11-Feature-
Based Work
Allocation

-

GSD12-Common
Processes

SP 2.2 Collaboration Between Locations (3): Collaboratively Establish and Maintain
Interfaces and Processes Among Interfacing Locations for the Exchange of Inputs,
Outputs, or Work Products

GSD13-Iteration
Planning

SP 1.3 Global Project Management (1): Identify GSE Project Management Tasks

SP 2.2 Collaboration Between Locations (1): Identify Common Goals, Objectives and
Rewards for the Global Team

Table 20. Analysis of GSD Pattern Language with [Richardson et al. 2010]

71

GSD14-Multi-Level
Daily Meetings

SP 1.3 Global Project Management (6): Establish a Risk Management Strategy

SP 2.1 Operating Procedures (1): Define How Conflicts and Differences of Opinion
Between Locations are Addressed and Resolved

GSD15-Iteration
Review

SP 1.3 Global Project Management (1): Identify GSE Project Management Tasks

SP 1.3 Global Project Management (5): Establish Reporting Procedures Between
Locations

SP 2.2 Collaboration Between Locations (1): Identify Common Goals, Objectives and
Rewards for the Global Team

GSD16-Organize
Knowledge Transfer

SP 1.2 Knowledge and Skills (4): Establish Relevant Criteria for Training Teams

GSD17-Manage
Competence

SP 1.2 Knowledge and Skills (1): Identify Business Competencies Required by Global
Team Members in Each Location

SP 1.2 Knowledge and Skills (4): Establish Relevant Criteria for Training Teams

SP 1.3 Global Project Management (1): Identify GSE Project Management Tasks
GSD18-Notice
Cultural Differences

SP 1.2 Knowledge and Skills (2): Identify the Cultural Requirements of Each Local
Sub-team

SP 1.3 Global Project Management (3): Ensure Awareness of Cultural Profiles by
Project Managers

From Table 20 can be seen that the practices of Richardson et al. [2010] describe clear
correspondences with GSD patterns. Practices are analyzed and described at a more detailed
level, especially related to cultural aspect, than in GSD patterns. The practices of Richardson et
al. [2010] are also grouped according to specific goals. The practices of Richardson et al. [2010]
could be utilized to improve GSD patterns to increase details in the current GSD patterns.
However, there are two GSD patterns which are not in [Richardson et al. 2010]: Fuzzy Front
End, and Feature- Based Work Allocation.

72

6.2 General Issues Related to Patterns

In this section, two areas related to patterns are discussed and mapped to my work: pattern
mining, and organizing a pattern language.

6.2.1 Pattern Mining

Patterns can be roughly divided into two groups which are system and process patterns. Pattern
mining has been mainly carried out for system patterns [Buschmann et al. 2007]. In the area of
process patterns especially Coplien and Harrison [2005] have done this kind of research.

Pattern mining refers to the activity of finding and identifying good practices from systems or
processes. Patterns are generally applied instances of solutions in systems or processes. One
example of the results of pattern mining is [Gamma et al. 1995] which contains a pattern found
by analyzing one sizeable banking system. Most of the patterns were generally known but
Gamma [1995] discovered existing solutions and gave them a semi-formal description.

A method for pattern mining is presented in [Buschmann et al. 2007]. In this method,
patterns are mined from best practices which are presented by an expert from an industry partner.
This expert tries to share all knowledge with an interviewer who collects the most important
information to pattern drafts which are improved in workshops with domain area experts.

A pattern mining method based on architectural analysis sessions is presented in [Leppänen
et al. 2009]. The architecture analysis method is based on the architecture trade-off analysis
method, ATAM [Clements et al. 2002]. According to [Leppänen et al. 2009], the ATAM method
begins with architecture presentations and the proceeds to analyze architectural solutions using
probable use cases and scenarios that add business value to software. If the architecture
presentation or the scenario analysis shows traits of patterns, then a pattern draft is written down
by the members of the assessment team. Finally, the identified patterns are finalized in pattern
writers’ workshops. [Leppänen et al. 2009].

A pattern mining method based on team interviewing is described in [Coplien and Harrison
2005]. This method begins with team interviews to gather data. The next step is to analyze data
using social network techniques to build organizational models. After that the results will be
presented to the team and the model will be adjusted if necessary. The next step is to catalog the
analysis results and look for common patterns, identifying the problem, forces, and solution for
each pattern. After that the patterns will be captured in pattern form. The final steps are to look
for links between patterns to form sequences for applying the patterns and organize the
sequences into pattern languages.

A pattern mining method to mine inspection improvement patterns is described in [Harjumaa
2005]. These patterns are mined from inspection literature, research articles related to utilizing
inspections and observations during industrial experiments. After that the first version of a
pattern catalogue is formed. The next step is to refine the pattern catalogue with other
experiments in an industrial environment.

In this study, the mining of patterns is implemented according to a case study approach, as
described in Section 3.

73

6.2.2 Organizing Pattern Languages

Definitions of pattern languages were presented in Subsection 2.3.4. Pattern languages can be
divided into two groups which are problem and solution-centered approaches [Eloranta et al.
2009]. In problem-centered approach, the language’s domain can define the structure of the
language. For example in the pattern language of Alexander [Alexander 1997] the domain is
building of cities, houses etc. In this case, the domain is very hierarchical which can be utilized
to also make the pattern language more hierarchical. Problem-centered languages can also be
organized by a multi-dimensional space. In this space, one pattern can be located according to
different dimensions. For example, in the pattern language of Vesiluoma [Vesiluoma 2007]
dimensions are knowledge-sharing interfaces (e.g. project, organization etc.), software
engineering activity types (e.g. managing, value adding etc.) and project lifecycle phases (e.g.
establishment, realization etc.) and a pattern of this language is defined according to some of
these dimensions. Similarly, in this study the patterns are organized by project lifecycle phases
based on PRINCE2 process description (e.g. starting up a project, initiating a project etc.).

The organization of the solution-centered languages is based on the relationships between
solutions. Usually these solutions are organized according to the application order if the former
pattern solution assumes the latter. [Eloranta et al. 2009] In this case, pattern organization can be
presented as a graph. The organization of patterns in this study is also possible to present as a
graph if I start from the beginning of the PRINCE2 process description in Figure 11 on page 42
and list all patterns as a graph when each pattern is reached for the first time. One example of
this approach will be in Appendix C.

74

7 INTRODUCTION TO THE INCLUDED PUBLICATIONS

The following chapters describe the research contributions and key findings for each paper. In
addition to the Papers included in this thesis, the author has co-authored three papers related to
the topic [Välimäki and Koskimies 2006], [Kääriäinen and Välimäki 2008], and [Kääriäinen et
al. 2009].

7.1 Requirements Management Practices as Patterns for
Distributed Product Management

The focus of Paper I is to study and find the best practices to support distributed business
requirements management during the early phases of product and project development. This
paper also describes the first version of the mining process for process patterns.

The experiences and improvement ideas of requirements management have been collected
from the case GSD in the work of product managers. The starting point of this paper was that
system products need to be developed faster in a global development environment. A more
efficient user requirements collection and product feature analysis becomes more important to
meet strict time-to-market and quality constraints. This information is needed when the goals and
features to be created in a project are planned.

The first key result of Paper I is the improved process of mining requirements management
process patterns. The pattern mining method was described in more detail in Section 3 (Pattern
Mining in GSD). The second key result is the first version of product management patterns
which were described in more detail in Section 4 (GSD Pattern Language and Patterns). Both of
the above key results are contributions of the author of this thesis.

7.2 Patterns for Distributed Scrum – a Case Study

Paper II continues the work started in Paper I. Paper II focuses on two key elements of the thesis:
the pattern mining method for process patterns and GSD process patterns for Agile project
management. The paper is based on data collected from one of the cases of GSD Project
management in Agile projects and literature study of the main writer. The starting point of this
paper was that one response to an ever-complicated environment is the rise of Agile methods
[Abrahamsson et al. 2002]. One Agile project management, which is based on Agile values and
Lean principles, is Scrum. Usually Agile methods are applied just to local development but their
potential for supporting more effective GSD environments has been studied. One example of this
kind of research is Paper II.

75

The first key result of Paper II is the second version of the pattern mining method which was
described in more detail in Section 3 (Pattern Mining in GSD). The second key result is the first
version of Agile project management patterns which were described in more detail in Section 4
(GSD Pattern Language and Patterns). Both of the above key results are contributions of the
author of this thesis.

7.3 Get a Grip on your Distributed Software Development
with Application Lifecycle Management (co-author)

Paper III continues the work started in [Kääriäinen and Välimäki 2008]. Paper III focuses on
building the second version of the Application Lifecycle Management framework, analyzing the
case company’s ALM solutions and continuing the collection of information for GSD patterns
from an ALM tools point of view.

In this paper, we study the applicability of Application Lifecycle Management (ALM) for the
management of distributed software development projects. The research analyses the ALM
solutions of the case company against the ALM framework and further considers on how the
solutions meet the functions of the triple C-model (Communication, Cooperation and
Coordination). [Anderl et al. 2008]. The research also collected distribution-related issues based
on ALM framework elements. Software teams that were the subject of this study were operating
in a geographically-distributed development environment and were the same teams as in
[Kääriäinen and Välimäki 2008]. According to our results, ALM can support the management of
a distributed project by facilitating communication, cooperation and coordination. In our case, a
central ALM database with common processes and tools enabled central orchestration for the
software project that operated in a global development environment.

The first key result of Paper III is the second version of the Application Lifecycle
Management framework, which was described in more detail in Subsection 2.3.2 (Application
Lifecycle Management Framework). The second key result is the analysis of the case company’s
ALM solution. The third key result is mapping how ALM framework elements support the
elements of a 3C-model. In this case, 3C comes from the words Communication, Cooperation
and Coordination. One result was that ALM supports GSD from a 3C-model point of view.
These results were used in the elaboration of GSD Pattern Language which were presented in
Section 4. This is a different 3C model used in this thesis with GSD project management. The 3C
model used with GSD project management comes from the words Communication, Coordination
and Control which better suits a project management approach.

These key results are mainly contributions of Mr. Jukka Kääriäinen. The author of this thesis
also participated in making the second and third key result and also gathered information for
GSD Pattern Language which is presented in Paper V.

76

7.4 Scenario-Based Assessment of Process Pattern
Languages

The focus of Paper IV is to describe a more light-weight method for assessing processes and to
make assessments of two process pattern languages.

Current standards and models for the quality of software development processes lead to a
coarse-grained quality model which is heavy and difficult to focus for specific purposes. There is
a need for a more light-weight method for assessing processes that can be expressed as process
pattern languages. The method is based on imitating an existing software architecture evaluation
method, ATAM, in the context of processes. The main advantages of the method are more fine-
grained assessment in terms of quality attributes, the possibility to tune the assessment for a
certain purpose, and a more light-weight assessment procedure. In Paper IV the assessment
method is illustrated in the case of two process pattern languages.

The first key result of Paper IV is a more light-weight method for assessing processes that
can be expressed as process pattern languages which is described in more detail in Section 5
(Evaluation of GSD Pattern Language). The second key result is the evaluation results of two
process pattern languages. The author of this thesis participated in making an ATAM-based
evaluation method and also made the evaluation of another pattern language which was an
earlier version of GSD Pattern Language. The evaluation of GSD Pattern Language was
presented in Section 5 (Evaluation of GSD Pattern Language).

7.5 Global Software Development Patterns for Project
Management

Paper V focuses on the introduction of GSD Pattern Language and its validation using the
validation method described in Paper IV.

Global software development with the Agile or plan-driven development process has been
taken into use in many companies. GSD offers benefits but also new challenges without known,
documented solutions. The goal of this research is to present the current best practices for GSD
in the form of process patterns for project management, evaluated by using a scenario-based
assessment method. The best practices have been collected from case studies GSD Project
management in plan-driven projects, GSD in the work of product managers and GSD project
management in Agile projects which were described in Section 3.3 (Industrial Context and Case
Studies). It is expected that the resulting pattern language will help other companies to improve
their GSD processes by incorporating the patterns in the processes.

The first key result of Paper V is the introduction of GSD Pattern Language which is
described in more detail in Section 4 (GSD Pattern Language and patterns). The second key
result is the evaluation results of GSD Pattern Language. Both of the above key results are
contributions of the author of this thesis. This paper was granted the best paper award in EuroSPI
2009.

77

7.6 Applying Application Lifecycle Management for the
Development of Complex Systems: Experiences from
Automation Industry (co-author)

Paper VI continues the work started in [Kääriäinen and Välimäki 2008] and Paper III. Paper VI
focuses on using the second version of the Application Lifecycle Management framework to
analyze the main company’s ALM solutions. This paper also presents the third version of the
Application Lifecycle Management framework, and continued the collection of information for
GSD Pattern Language from an ALM tools point of view.

In this paper we present an industrial study about the history of Application Lifecycle
Management (ALM) improvement in the main company. The study is part of broader research
with the aim to improve global development in the main company. The improvement of the
ALM started in 2006 when the company decided to acquire a commercial ALM solution. Two
software teams started to pilot the solution and after various steps ended up fairly different ALM
solutions. This paper concludes the history and experiences of ALM improvement and discusses
the reasons why two teams ended up to different solutions. The improvement of ALM solutions
has been facilitated with the use of ALM framework.

The first key result of Paper VI is an application of the second version of an ALM framework
for documenting and analyzing the case company’s ALM solutions. The second key result is a
description of the history of ALM development in the main company and how and why ALM
solutions evolved in the context of the main company. The third key result is a description of the
third version of an ALM framework which was described in more detail in Subsection 2.3.2
(Application Lifecycle Management Framework). An ALM framework was complemented with
the relations between framework elements.

These key results are mainly the contributions of Mr. Jukka Kääriäinen. The author of this
thesis also participated in making the second key result and also gathered information for GSD
Pattern Language which was presented in Paper V and in Section 4 (GSD Pattern Language).

78

8 CONCLUSIONS

This section describes answers to research questions, limitations and future research needs.

8.1 Answers to Research Questions

RQ1: How should good project management practices in GSD projects be presented?
Presentation form of project practices should be easy to understand and apply. It is important

to understand what the solution is, and to find out if this practice is useful in a certain project. It
is important to understand what kind of problem needs to be solved, what is the context, and
what are the forces which need to be taken care of before trying to apply new practices in a
certain project. The format of a pattern has been found to be a useful aid to present essential parts
of best practices and patterns have been used in this work.

Another view of presentation of project practices is how these practices should be organized
because only a group of patterns does not help to use them as a whole. There are different ways
to organize a group of patterns to a pattern language. In this work, project management patterns
are organized by PRINCE2 which is a process-driven project management method. This kind of
structure helps a project manager to find which patterns could be used in a certain main process
in PRINCE2.

RQ2: How can good project management practices be found in GSD projects?
To increase the understanding of a project management process, a pattern mining method has

been developed. The results clearly indicate that the pattern mining method is a technique for
finding good process patterns within GSD projects. The pattern mining method is also useful
because the process patterns have been observed to be good in an evaluation workshop.

RQ3: What are the good project management practices in GSD projects?
As a result of the pattern mining in case projects and related literature analysis, good project

management practices for GSD have been discovered and described. Of course project
management practices depend on project contextual factors. These factors are e.g. size,
collaboration modes, type of project and number of distributed sites. That is why it is important
to check which project management practices are suitable for a certain project. Project
management practices for GSD have been found useful not only in researched projects but also
in some other companies during different workshops. As a conclusion, good project management
practices for GSD is credited for increasing the understanding of GSD project management and,
as such, for supporting GSD project management analysis and providing a basis for GSD project
management improvement within GSD projects.

79

RQ4: How can these practices be evaluated?
A novel scenario-based evaluation method for process patterns (Q-PAM) has been developed

as part of this work. Q-PAM method is inspired by ATAM (Architecture Tradeoff Analysis
Method) [Clements et al. 2002]. Q-PAM method includes three phases: creating a quality
profile, constructing scenarios, and analysis. The evaluation of GSD Pattern Language gave both
valuable information about limitations of GSD patterns and improvement ideas to further
improve GSD patterns.

8.2 Limitations and Threats

The limitations of this work are discussed here. The main limitations are related to the
generalization of the results, coverage of GSD Pattern Language, and a maturity of GSD Pattern
Language.

Generalization of the results is demanding because research of this work has been
conducted in one company with case studies. The results of case studies are difficult to
generalize. Also, the researched projects had their own project factors which have affected the
results of this research. Additionally, patterns proposals were created by the author of this thesis
and the reviewers of these patterns have been persons from the same company which could
affect which patterns were discovered. To overcome this limitation with GSD Pattern Language,
literature is also used when GSD Pattern Language has been made. Additionally, the evaluation
of GSD Pattern Language has been organised as presented in Section 5. Reviews of GSD Pattern
Language have also been made by persons from different companies and this has also been a
way to get validation from other companies and a way to improve GSD Pattern Language.
Additionally, GSD Pattern Language was also published in an international conference.

Another limitation related to GSD Pattern Language is the coverage of GSD Pattern
Language. The GSD Pattern Language was developed by research of case studies, reviewed with
representatives from different companies and evaluated by the Q-PAM method. GSD Pattern
Language cover quite a lot with respect to PRINCE2 processes, but as reviews, the Q-PAM
evaluation and the analysis of related research has shown, more research is needed to improve
the coverage of GSD Pattern Language.

Maturity of GSD Pattern Language is also one limitation. GSD Pattern Language is still
evolving and has not been applied as a whole in any other company. To overcome this limitation,
reviews of GSD Pattern Language have also been made by persons from different companies as
described earlier.

The limitation of research can also be evaluated through threats to the validity (construct,
internal, and external) and reliability [Yin 2003]. According to Runeson and Höst [Runeson and
Höst 2009] Construct validity means an aspect of validity which reflects to what extent the
operational measures that are studied really represent what the researcher has in mind and what
is investigated according to the research questions. Runeson and Höst [Runeson and Höst 2009]
also describe as an example that if questions are not interpreted in the same way by the
researcher and the interviewee, there is a threat to the construct validity. To overcome this threat,

80

questions of the questionnaire and the interviews were piloted by one project manager in a case
company to ensure that used terms and questions were understandable for the case. Also, the
researcher was working in the same company when the terms and concepts were understood in
the same way.

Internal validity [Runeson and Höst 2009] means an aspect of validity which is of concern
when causal relations are examined. When the researcher is investigating whether one factor
affects an investigated factor there is a risk that the investigated factor is also affected by a third
factor. If the researcher is not aware of the third factor and/or does not know to what extent it
affects the investigated factor, there is a threat to the internal validity. To overcome this threat,
the different patterns can be partly conducted from case data, but the affects of literature and
different workshops and reviews for GSD Pattern Language are not so clearly described and
written down.

External validity [Runeson and Höst 2009] means an aspect of validity which is concerned
with to what extent it is possible to generalize the findings, and to what extent the findings are of
interest to other people outside the investigated case. During analysis of external validity, the
researcher tries to analyze to what extent the findings are of relevance to other cases. There is no
population from which a statistically representative sample has been drawn. However, for case
studies, the intention is to enable an analytical generalization where the results are extended to
cases which have common characteristics and hence for which the findings are relevant, i.e.
defining a theory. External validity is already discussed in the second paragraph of this section.

Reliability [Runeson and Höst 2009] means an aspect which is concerned with to what extent
the data and the analysis are dependent on the specific researchers. Hypothetically, if another
researcher conducts the same study later on, the result should be the same. Threats to this aspect
of validity are, for example, that it is not clear how to code collected data or if questionnaires or
interview questions are unclear. To overcome this threat, the pattern mining method is described
in Section 3.1. In any case, the analysis of literature and the results of reviews might be
dependent on the specific researchers and participants in reviews because different researchers
and participants in reviews could have different kinds of experience and knowledge about the
research area.

8.3 Future Research

Future research directions include the analysis of experiences with the current patterns in other
development projects, the improvement of the patterns and the creation of new patterns
according to the feedback gained from different projects or other related research. Case studies
of other development projects could give new views of GSD Pattern Language because project
factors can be different. One example of a project factor is team structure. In this work patterns
have been found cases which are mainly organized according model 3 and 4 as described in
Figure 2 on page 10. Patterns can also be mined not only from the level of a project but also from
the level of a large-scale organization.

81

This work has also concentrated on project management practices. Another research direction
is to identify patterns from other processes of GSD such as development, support processes or
maintenance processes. Also, new patterns can be mined from the hardware development
process.

GSD Pattern Language can also be further researched to form a maturity model of GSD
Pattern Language for analysing a GSD project against this maturity model. The analysis can
present an analysis and propose some best practices or patterns to make the implementation of
the GSD project more efficient.

How to integrate GSD Pattern Language efficiently in used project management tools and
guidelines can also be one direction of future research. It is important that GSD patterns can be
used easily when a GSD project is ongoing.

Also the improvement of the pattern mining method is one possible future research direction.
How can pattern mining methods be provided with a tool which supports the management of
gathered data, creates summary tables, and finally, forms pattern proposals?

Finally, the evaluation method for patterns can also be one future research direction. Possible
research challenges include finding methods to create scenarios more easily and supporting
evaluation methods with a tool to improve the efficiency of the evaluation process.

82

References

Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J. (2002). Agile software development
methods: Review and Analysis. Espoo, Finland: Technical Research Centre of Finland, VTT
Publications 478, http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf.

[AgileAlliance 2009] www.agilealliance.org, (available 24.05.2009).

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, M. and Angel, S.
(1977). A Pattern Language: Towns, Buildings, Construction. Oxford University Press, New
York.

Allen, T.J. (1984). Managing the Flow of Technology: Technology Transfer and the
Dissemination of Technological Information within the R&D Organization. Cambridge: The
MIT Press.

[Ambler 2010] Examing the Agile manifesto.
http://www.ambysoft.com/essays/agileManifesto.html (available 10.4.2010).

 Ambler, S. (1998). Process Patterns – Building Large-Scale Systems Using Object Technology.
Cambridge University Press/SIGS Books.

Anderl, R., Völz, D., and Rollmann, T. (2008). Knowledge integration in global engineering,
International Conference on Interoperability of Enterprise, Software and Applications.
Berlin, German, March 25th – 28th 2008.

Appleton, B. (1997). Patterns and Software – Essential Concepts and Terminology. Object
Magazine Online, Vol. 3, No. 5. http://www.cmcrossroads.com/bradapp/docs/patterns-
intro.html (available 5.1.2010).

 Battin, RD., Crocker, R., Kreidler, J., Subramanian, K. (2001). Leveraging resources in global
software development. IEEE Software, Vol. 18, Issue 2, pp. 70 – 77.

Beck, K. and Andres, C. (2004). Extreme Programming Explained, 2nd ed. Addison-Wesley
Longman.

Bentley C. (2005). The Essence of the Prince2: Project Management Method, 2005 Revision.
Protec.

Bosch, J. (2000). Design and use of software architectures. ACM Press, Addison-Wesley.

Buschmann, F., Henney, K., Schmidt, D.C. (2007). Pattern Oriented Software Architecture
Volume 5: On Patterns and Pattern Languages. John Wiley & Sons.

Carmel, E. (1999). Global Software Teams, Collaborating Across Borders and Time Zones.
Prentice Hall.

Carmel, E., Agarwal, R. (2001). Tactical Approaches for Alleviating Distance in Global
Software Development. IEEE SOFTWARE, March/April 2001, pp.22-29.

Carmel, E., Tjia, P. (2005) Offshoring information technology, Sourcing and Outsourcing to a
Global Workforce. Cambridge University Press.

http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf.
http://www.agilealliance.org
http://www.ambysoft.com/essays/agileManifesto.html
http://www.cmcrossroads.com/bradapp/docs/patterns-

83

Casey, V, Richardson, I. (2006) Uncovering the reality within virtual software teams. In
Proceedings of the 2006 international workshop on Global software development for the
practitioner (GSD '06). ACM, New York, NY, USA, 66-72.

Clements, P., Kazman, R., Klein, M. (2002). Evaluating Software Architectures: Methods and
Case Studies. Addison Wesley.

Conchuir, E., Ågerfalk, P., Olsson, H., Fitzgerald, B. (2009). Global Software Development:
Where are the benefits? Comm. of the ACM. 52, 8 pp.127-131.

Conchuir, E., Holmström, H., Ågerfalk, P., Fitzgerald, B. (2006). Exploring the Assumed
Benefits of Global Software Development. In Proceedings of the IEEE international
Conference on Global Software Engineering (October 16 - 19, 2006). ICGSE. IEEE
Computer Society, Washington, DC, 159-168.

Coplien, J.O. (1996). Software Patterns. SIGS Books, New York.

Coplien, J. O., Harrison, N. B. (2005). Organizational Patterns of Agile Software Development.
Lucent Technologies, Pearson Prentice Hall.

Dearle, A. (2007). Software Deployment, Past, Present and Future, Future of Software
Engineering (FOSE '07), pp. 269-284.

Doyle, C. (2007). The importance of ALM for aerospace and defence (A&D). Embedded System
Engineering (ESE magazine), June 2007, Volume 15, Issue 5, pp.28-29.

Doyle, C. and Lloyd, R. (2007). Application lifecycle management in embedded systems
engineering. Embedded System Engineering (ESE magazine), March 2007, Volume 15, Issue
2, pp.24-25.

 [Eclipse 2010] Eclipse web-pages, www.eclipse.org (available 19.3.2010).

Eloranta, V-P, Leppänen, M. and Koskimies, K. (2009). Using Domain Model for Structuring
Pattern Language. Nw-Mode ’09.

 Elssamadisy, A. (2008). Agile Adoption Patterns: a roadmap to organizational success. Addison
Wesley Professional.

Evaristo, J.R., Scudder, R., Desouze, K.C. and Sato, O. (2004). A dimensional analysis of
geographically distributed project teams: a case study. Journal of Engineering and
Technology Management, Vol. 21, No. 3, pp. 175-189.

Farmer, M, (2004). Decision Space Infrastructure: Agile Development in a Large, Distributed
Team. Proceedings of the Agile Development Conference (ADC’04).

Gamma, E., Helm, R., Johnson, R., and Vlissides J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Professional Computing Series.

Haughey, D, (2010). http://www.projectsmart.co.uk/history-of-prince2.html (available
25.11.2010).

Harjumaa, L. (2005). A Pattern Approach to Software Inspection Process Improvement, In
Software Process: Improvement and Practice. Volume 10, Issue 4, pp. 455-465, 2005.

http://www.eclipse.org
http://www.projectsmart.co.uk/history-of-prince2.html

84

Heindl, M., Reinisch, F. and Biffl, S. (2007). Requirements Management Infrastructures in
Global Software Development - Towards Application Lifecycle Management with Role-
based In-time Notification. International Conference on Global Software Engineering
(ICGSE), Workshop on Tool-Supported Requirements Management in Distributed Projects
(REMIDI), Munich.

Herbsleb, J.D., Grinter, R.E. (1999). Splitting the organization and integrating the code:
Conway’s law revisited. Proceedings of the 1999 International Conference on Software
Engineering, 16-22 May 1999, pp. 85 – 95.

Herbsleb, J.D., Moitra ,D. (2001). Guest Editors’ Introduction: Global Software Development.
IEEE Software, Vol. 18, No. 2, pp. 16-20.

Herbsleb, J.D., Mockus ,A. (2003). An Empirical Study of Speed and Communication in
Globally Distributed Software Development. IEEE Transactions on Software Engineering,
pp. 481-494.

Hevner, A. R., March, S. T., Park, J. and Ram, S. (2004). Design Science in Information Systems
Research. MIS Quarterly, 28(1), 75-105.

Holmström, H., Fitzgerald, B., Ågerfalk, P. J. & Conchúir, E. (2006). Agile Practices Reduce
Distance in Global Software Development. Information Systems Management, 23(3), pp. 7-
18.

Holmström Olsson, H., Ó Conchúir, E., Ågerfalk, P., and Fitzgerald, B. (2008). Two-Stage
Offshoring: An Investigation of the Irish Bridge. MIS Quarterly, Vol. 32, No. 2, pp. 257-279.

Hossain, E., Muhammad, A.B., Verner J. (2009). How Can Agile Practices Minimize Global
Software Development Co-ordination Risks? EuroSPI 2009, Springer, Berlin Heidelberg
(2009). pp. 81 – 92.

International Organization for Standardization (2001). Software engineering - Product quality -
Part 1: Quality model. ISO/IEC 9126-1:2001.

Kock, N. (2008). Virtual Team Leadership and Collaborative Engineering Advancements:
Contemporary Issues and Implications. Idea Group Inc (IGI), Chapter XXII.

Kobitzsch W., Rombach D., and Feldmann R. L. (2001). Outsourcing in India [software
development]. IEEE Software, vol.18, no.2, pp.78-86.

 Kirchner, M., and Völter, M.(2007). Guest Editors' Introduction: Software Patterns. IEEE
Software, 24 (4)9, pp. 28-30.

Kääriäinen, J., Eskeli, J., Teppola, S., Välimäki, A., Tuuttila, P., Piippola, M. (2009). Extending
Global Tool Integration Environment Towards Lifecycle Management. International
Workshop on Information System in Distributed Environment (ISDE 2009), Vilamoura,
Algarve-Portugal, November 2009. Lecture Notes in Computer Science (LNCS) : 5872,
Meersman, R. et al. (Eds.) On the Move to Meaningful Internet Systems: OTM 2009
Workshops, Springer (2009), pp. 238–247.

85

Kääriäinen, J., (2011). Towards an Application Lifecycle Management Framework. Espoo,
Finland: Technical Research Centre of Finland, VTT Publications 759.

Kääriäinen, J. and Välimäki, A. (2008). Impact of Application Lifecycle Management – a Case
Study. International Conference on Interoperability of Enterprise, Software and Applications.
Berlin, German. March 25th – 28th 2008. Enterprise Interoperability III - New Challenges
and Industrial Approaches. Mertins K., Ruggaber R., Popplewell K., Xu X., (Eds). Springer,
pp. 55 – 67.

Lane, M. T. and Ågerfalk, P. J. (2009). Experiences in Global Software Development - A
Framework-Based Analysis of Distributed Product Development Projects. In Proceedings of
the 2009 Fourth IEEE international Conference on Global Software Engineering (July 13 -
16, 2009), ICGSE. IEEE Computer Society, Washington, DC, pp. 244-248.

Leffingwell, D. (2007). Scaling Software Agility. Addison-Wesley.

Leffingwell, D., Aalto, J-M. (2009). A Lean and Scalable Requirements Information Model for
the Agile Enterprise, Modern Analyst.com, posted 2 July 2009
http://www.modernanalyst.com/Resources/Articles/tabid/115/articleType/ArticleView/article
Id/982/A-Lean-and-Scalable-Requirements-Information-Model-for-the-Agile-
Enterprise.aspx (available 27.11.2010).

Leppänen, M., Koskinen, J., Mikkonen, T. (2009). Discovering a pattern language for embedded
machine control systems using architecture evaluation methods. SPLST'09, Tampere,
Finland.

Miller, D. (2001). Choice and Application of Software Quality Model. In book: Daughtrey, T.
(Ed.) Fundamental Concepts for the Software Quality Engineer. American Society for
Quality.

Mintzberg, H. (1989). Mintzberg on Management: Inside Our Strange World of Organizations.
Free Press, New York.

Miles, M., Huberman, A. (1994). Qualitative Data Analysis: An Expanded Sourcebook. 2nd
edition. Thousand Oaks, California: Sage.

Mockus, A., Herbsleb, J. (2001). Challenges of global software development. Software Metrics
Symposium, 2001. METRICS 2001. Proceedings. Seventh Inter-national, pp. 182-184.

Moe, N. B., Šmite, D. (2008). Understanding a Lack of Trust in Global Software Teams: A
Multiple-Case Study. Software Process Improvement and Practice, Volume 13, Issue 3, pp.
217-231.

Ohno, T. (1988). Toyota Production System: Beyond Large Scale Production, Productivity
Press.

Paasivaara, M., Hiort af Ornäs, N., Hynninen, P., Lassenius C., Niinimäki, T. Piri, A. (2010).
Practical Guide to Managing Distributed Software Development Projects. Aalto University
School of Science and Technology.

http://www.modernanalyst.com/Resources/Articles/tabid/115/articleType/ArticleView/article

86

Palmer S. and Felsing J. (2002). A Practical Guide to Feature-Driven Development. Upper
Saddle River, New York: Prentice-Hall.

Pesola, J., Eskeli, J., Parviainen, P., Kommeren, R., Gramza, M. (2008). Experiences of tool
integration: development and validation. International Conference on Interoperability of
Enterprise, Software and Applications, 25–28 March, Berlin, German, pp. 499–510.

Poppendieck M. and Poppendieck T. (2003). Lean Software Development: An Agile Toolkit for
Software Development Managers. Boston, Massachusetts: Addison-Wesley.

Poppendieck M. and Poppendieck T. (2006). Implementing Lean Software Development: From
Concept to Cash. Addison-Wesley.

Ramesh, B., Cao, L., Mohan, K., Xu, P. (2006). Can Distributed Software Development Be
Agile? Communications of the ACM, Vol. 49, No. 10.

Richardson, I., Casey, V., Burton, J., McCaffery, F. (2010). Global software engineering: A
software process approach. In I. Mistrik, J. Grundy, A. van der Hoek, and J. Whitehead,
editors, Collaborative Software Engineering, Springer- Verlag/Computer Science Editorial,
pp. 35–56.

Runeson, P., Höst, M. (2009). Guidelines for Conducting and Reporting Case Study Research in
Software Engineering, Empirical Software Engineering, Vol. 14, Iss. 2, pp. 131-164.

Ryan B, Scapens RW, Theobald, M (1992) Research Method and Methodology in Finance and
Accounting. Academic Press. London.

Ryder, P. (2005). The Agile Manifesto Explained. CVu - The ACCU (Association of C and C++
Users) magazine. Volume 17, No 5.

Sangwan, R., Bass, M., Mullick, N., Paulish, D.J., Kazmeier, J. (2006). Global Software
Development Handbook. Auerbach Publications.

Schwaber, C. (2005). The Expanding Purview Of Software Configuration Management.
Forrester Research Inc., White paper.

Schwaber, C. (2006). The Changing Face of Application Life-Cycle Management’. Forrester
Research Inc., White paper.

Schwaber, K. (2004). Agile Project Management with Scrum. Microsoft Press.

Schwaber K., Beedle, M. (2002). Agile Software Development with Scrum. Prentice Hall Series
on Agile Software Development, Upper Saddle River, New Jersey.

Schwaber, K. (2007). Agile The Enterprise and Scrum. Microsoft Press.

Shaw, K. (2007). Application lifecycle management for the enterprise, Serena Software, White
Paper, April, http://www.serena.com/Docs/Repository/company/Serena_ALM_2.0_For_t.pdf
(available 18.10.2007).

Shroff, G., Mehta, A., Agarwal, P. and Sinha, R. (2005). Collaborative development of business
applications. International Conference on Collaborative Computing: Networking,
Applications and Worksharing, pp.19-21.

http://www.serena.com/Docs/Repository/company/Serena_ALM_2.0_For_t.pdf

87

[Smith 2009] http://www.best-management-practice.com/Knowledge-Centre/News/Prince2-
News/?DI=616423 (available 24.1.2010).

Šmite, D., Wohlin, C., Gorschek, T., and Feldt, R. (2010). Empirical Evidence in Global
Software Engineering: A Systematic Review. Empirical Software Engineering: An
International Journal, Vol. 15, Nr. 1, pp. 91-118, 2010.

Sutherland, J., Viktorov, A., Blount, J., Puntikov, J. (2007). Distributed Scrum: Agile Project
Management with Outsourced Development Teams. Proceedings of the 40th Annual Hawaii
International Conference on System Sciences (HICSS).

Vesiluoma, S. (2007). Knowledge Sharing Pattern Language. (Eds. Berki, E., Nummenmaa, J.,
Sunley, I., Ross, M. and Staples, G.). Software Quality in the Knowledge Society. The
British Computer Society.

Vesiluoma, S. (2009). Understanding and supporting knowledge sharing in software engineering.
PhD thesis, Publication 843, Tampere University of Technology.

Välimäki, A., Koskimies K. (2006). Mining best practices of project management as patterns in
distributed software development. EuroSPI 2006, Finland, Joensuu, October 2006, EuroSPI
2006 Industrial Proceedings, pp.6.27-6.35.

Weatherall, B. (2007). Application Lifecycle Management - A Look Back, CM Journal, CM
Crossroads – The configuration management community. January,
http://www.cmcrossroads.com/articles/cm-journal/application-lifecycle-management-%11-a-
look-back.html (available 18.10.2007).

Wiredu, G. O. (2006). A framework for the analysis of coordination in global software
development. In Proceedings of the 2006 international Workshop on Global Software
Development For the Practitioner (Shanghai, China, May 23 - 23, 2006). GSD '06. ACM,
New York, NY, pp.38-44.

Woodward, E., Surdek, S., and Ganis, M. (2010). A Practical Guide to Distributed Scrum, IBM
Press.

Yin, R. K. (2003). Case study research: Design and methods. 2nd edition. Sage, Newbury Park,
CA.

Ågerfalk, P.J, Fitzgerald, B., Holmstrom, H., Lings, B., Lundell, B., and Conchuir, E.O. (2005).
A framework for considering opportunities and threats in distributed software development,
Proc. International Workshop on Distributed Software Development, Paris, France: Austrian
Computer Society, pp. 47-61.

http://www.best-management-practice.com/Knowledge-Centre/News/Prince2-
http://www.cmcrossroads.com/articles/cm-journal/application-lifecycle-management-%11-a-

Appendix A: Questions of a case: GSD in the work of product
managers

Intro:
The goal of this questionnaire is to find the best practices, good properties of tools and artifacts
for the product manager’s work in a distributed environment.

This questionnaire is based on the phases of product management work related to idea and
feature management.

Would you answer the following questions related to your product area, please?

Questions:

1. Collecting and processing product ideas
- What are good properties in tools and possible problems with them?
- What are good practices in processes and possible problems with them?
- What are good properties in artifacts and possible problems with them?
- What are the requirements of working in the distributed environment?
- If there are no constraints, what kind of tools, best practices, artifacts and support for
working in a distributed environment would you choose?

2. Collecting and processing business and customer requirements
< the same questions as above>

3. Feature creation
< the same questions as above>

4. Feature prioritization and selection
< the same questions as above>

5. Adding features to product roadmap
< the same questions as above>

6. From product roadmap to business plan
< the same questions as above>

Appendix B: Questions of a case: GSD project management in
Agile projects

Concepts in a questionnaire:
What is meant by “previous practices” and “new practices”?
- Previous practices/procedures: the practices we had prior to 2007, i.e. before Scrum and
TFS.
- New practices/procedures: the practices we are now introducing/using (Scrum/TFS)

Part I
How familiar are you with practices related to Scrum?
1=Not at all 2=I have some knowledge 3=I know the basic concepts 4=I know Scrum well 5=I
know Scrum thoroughly

What is your opinion of the Product Backlog procedure?
What are the pros and cons of the procedure with regard to (project) personnel? How would
you improve the current procedure?

What are the pros and cons of the procedure with regard to the (project management)
process? How would you improve the current procedure?

What are the pros and cons of the procedure with regard to tools? How would you improve
the current procedure?

What are the pros and cons of the procedure with regard to distributed development? How
would you improve the current procedure?

How well has the prioritization of requirements and features succeeded?

What is your opinion of the Sprint Planning procedure?
< the same What - questions as above>

How well has the selection of features for a sprint succeeded?

What is your opinion of the Sprint Backlog procedure?
< the same What - questions as above>

Has the team been able to split the features under development? How has the definition of
feature-related subtasks succeeded?

What is your opinion of the Sprint and Daily Scrum procedures?
< the same What - questions as above>

Has the project been able to stick to the Sprint schedule?

How well has the work estimates succeeded? What is the success based on?

What problems have occurred with respect to estimating Sprint work amounts or sticking to
estimates?

Has all project personnel been available for meetings?

Has the communication of realized work amounts, plans and problems succeeded as
planned?

What is your opinion of the Sprint Review procedure?
< the same What - questions as above>

Has the team been able to develop what has been intended? Have there been any
shortcomings?

What is your opinion of the Scrum of Scrums procedure?
< the same What - questions as above>

Has enough information concerning site-specific Scrum meetings been communicated in the
Scrum of Scrums?

Have you created supplementary practices for Distributed Scrum with respect to “standard
Scrum”?

What are these supplementary practices? What are the pros and cons of the practices? How
would you further improve the practices?

How would you rate the previous and current procedures? (On a 1-5 scale (1=poor 2=fair
3= adequate 4=good 5=very good))

Previous procedure (prior to Scrum and TFS):
Current procedure (with Scrum and TFS):

How would you rate the used tools? (On a 1-5 scale (1=poor 2=fair 3= adequate 4=good
5=very good))

Previous procedure (prior to Scrum and TFS):

Current procedure (with Scrum and TFS):
Part II
In the next section, the effects of Distributed Scrum and related practices in your project
are assessed. In this context, Distributed Scrum refers to a procedure that has been selected
in your projects.

What is meant by “previous practices” and “new practices”?
- Previous practices/procedures: the practices we had prior to 2007, i.e. before Scrum and
TFS.
- New practices/procedures: the practices we are now introducing/using (Scrum/TFS)

Claim:
Distributed Scrum improves the visibility of the project status in relation to the previous
procedure.
(On a 1-5 scale (1= not applicable 2=I disagree 3=I partially agree 4=I mostly agree 5=I fully
agree)) Add comments to clarify your answers.

Distributed Scrum accelerates the handling of changes in relation to the previous
procedure.

Distributed Scrum improves the management of features through the entire project
lifecycle in relation to the previous procedure.

Distributed Scrum improves the understanding of requirements in relation to the previous
procedure.

Distributed Scrum improves the team communication in relation to the previous
procedure.

Distributed Scrum improves the utilization of the knowledge possessed by the entire team
in relation to the previous procedure.

Distributed Scrum improves the commitment to the goals of the project in relation to the
previous procedure.

Any other comments?

Appendix C 1 (21)

Global Software Development Pattern Language for
Project Management

CONTENTS

1. INTRODUCTION ...2
1.1 A Template of GSD Process Patterns..3

2. GSD PROCESS PATTERNS ..4
2.1 GSD1 - GSD Strategy ..4
2.2 GSD2 - Fuzzy Front End ..5
2.3 GSD3 – Collocated Kick-Off..6
2.4 GSD4 - Divide and Conquer with Iterations ...7
2.5 GSD5 - Choose Roles in Sites ..8
2.6 GSD6 - Communication Tools ...9
2.7 GSD7 - Common Repositories and Tools ... 10
2.8 GSD8 - Work Allocation .. 11
2.9 GSD9 - Architectural Work Allocation ... 12
2.10 GSD10 - Phase- Based Work Allocation .. 13
2.11 GSD11 - Feature- Based Work Allocation .. 14
2.12 GSD12 - Common Processes .. 15
2.13 GSD13 - Iteration Planning .. 16
2.14 GSD14 - Multi-Level Daily Meetings ... 17
2.15 GSD15 - Iteration Review .. 18
2.16 GSD16 - Organize Knowledge Transfer ... 19
2.17 GSD17 - Manage Competence ... 20
2.18 GSD18 - Notice Cultural Differences ... 21

Appendix C 2 (21)

1. INTRODUCTION
Global Software Development (GSD) Pattern Language for Project Management includes 18 process
patterns which have been found to be important in the area of project management in GSD. The GSD
Patterns are presented in Figure 1. The content of each GSD Pattern is presented in the following
chapters.

Figure 1. GSD Patterns

Appendix C 3 (21)

1.1 A Template of GSD Process Patterns

Name: The name of the pattern.
Problem: A brief description of the problem.
Initial
context:

The situation to which the pattern solution applies.

Roles: The roles implementing the pattern.

Forces: Forces that affect the situation.

Solution: The required instruction to solve the problem in the context.

Resulting
Context:

The situation/context which will result from performing the pattern
solution.

Appendix C 4 (21)

2. GSD PROCESS PATTERNS

2.1 GSD1 - GSD Strategy

Name: GSD Strategy
Problem: How to organize GSD in a company?
Initial
context:

Before start of GSD in R&D department.

Roles: Management of a company and the management of R&D department.

Forces: GSD benefits which can be e.g. cost savings, possibility to use talent
from different countries, to use some specific knowledge, follow-the-
sun development, and presence in local markets.

GSD challenges such as communication, coordination, co-operation,
control breakdowns, and culture differences are easily ignored

Usually many partners are involved in GSD which requires contracts e.g.
about work allocation between partners.

Solution: Management of a company is responsible for making decisions when a GSD-
based development model is taken into use. Management of a company will
create a strategy to implement GSD with the management of R&D department.

Implement the following actions:
List the reasons and motivation to start GSD-based development in a

company.
Find out the competence and cost level of your own company, your

partners and other related partners. Manage Competence pattern can be
used with this action.

Make a SWOT (Strengths, Weaknesses, Opportunities and Threats) for a
preliminary GSD strategy.

Make a short and long term plan to implement GSD strategy in your
R&D, e.g. for make work allocation by Work Allocation pattern.

Make also a separate risk plan to manage risk with GSD. This is very
important because GSD brings a lot of new risks to manage, e.g.
intellectual property risk, loss of proprietary knowledge risk, product
security risk, and infrastructure risk.

Plan measurements for the real costs of GSD.
Resulting
Context:

Result is GSD strategy which can be used to manage different sites and e.g.
high level work allocation between them.

Appendix C 5 (21)

2.2 GSD2 - Fuzzy Front End

Name: GSD Strategy
Problem: How to gather demands (i.e. ideas, needs, requirements etc.) from external and

internal customers and how to form plans and change requests from these needs
for GSD development?

Initial
context:

Before the start of a development decisions about new projects in R&D
department.

Roles: Management of R&D department, product managers, architects and project
managers.

Forces: It is important to gather information from both outside a company as
well as inside a company. The needs of different customers are
important to gather, analyze and to develop a product which will fulfill
the needs of different customers.

Solution: Director of R&D is a key person to start a new development according to
company strategy and contents of Road Maps and related Business plans made
by product managers. Project managers will make e.g. project plans

Implement the following actions:
The needs and demands of different customers will be gathered to a

common repository by product managers. For distributed demands
management, it is also important to have the possibility for global
access regardless of time and place as well as have the possibility to
use a discussion forum inside the tool.

Product managers will go through gathered demands and they will make
decisions about them with e.g. architects and project managers. A new
feature or requirement will be made from a new demand if it is
accepted in a decision meeting. This meeting can be distributed by
communication tools. Other possible statuses for demands are e.g.
cancelled or stored for later analysis. Feature size can vary from a new
business idea or a new project idea to a new function in an application.

Product managers will make a Road Map for a product which will
include many features. From the Road Map product managers will
create Business plans which will include a group of selected features.
From this Business plan one or several project plans will be made.
These documents will be managed by common repositories.

Project managers will participate in making a Business plan and finally
they will make a project plan to implement the group of selected
features. The Project plan will include goals, resources, budget, risks
analysis, work allocation etc.

Resulting
Context:

R&D has Road Maps which include plans for future development. New
demands and needs are gathered in a common repository from both external and
internal customers around the world. Finally, project plans are made according
to information and related decisions about Road Maps, Business plans, features,
work allocation, risk evaluation etc.

Appendix C 6 (21)

2.3 GSD3 – Collocated Kick-Off

Name: Collocated Kick-Off
Problem: What is the goal of a GSD project and who are the members of a project? How

to build trust between team members?
Initial
context:

In the beginning of the project there are many open issues which need to be
clarified.

Roles: Project manager, product mangers and architects.

Forces: In the beginning of a project there are many open issues and often the
team members do not know each other.

Also the reason why this project will be done is not clear.
Cultural differences need to be taken into consideration, too.

Solution: Project manager is the chairman of the kick-off meeting and he/she can get help
e.g. from product managers and architects. This meeting is the first step of
pattern Organize Knowledge Transfer.

Implement the following actions:
Arrange a kick-off meeting for all relevant team members to meet face to

face.
Everybody presents himself / herself.
Present common goal and motivation of this project.
Present release plan which is made by Divide and Conquer with

Iterations pattern.
Present responsibilities of each site and team members, if possible. The

result of Choose Roles in Sites pattern can be used with this action.
Briefly introduce tools and repositories which are chosen for a project by

Communication Tools and Common Repositories and Tools patterns.
Briefly present common processes in a project which are specified by

Common Processes pattern.
Also train cultural issues for team members according Notice Cultural

Differences pattern.
Organize leisure activities to increase trust between team members.

Resulting
Context:

A common goal will be known by every relevant team member. Also common
processes and tools for every site are briefly introduced. Efficient
communication channels can be created between team members when they
learn to know each other better. Team members are now ready to start a project.

Appendix C 7 (21)

2.4 GSD4 - Divide and Conquer with Iterations

Name: Divide and Conquer with Iterations
Problem: How to make a project plan which is manageable in a GSD project?
Initial
context:

In the beginning of a project only the main features are known.

Roles: Project manager.

Forces: A big project plan is difficult to manage in a GSD project.
Difficult to know the whole contents and the work estimations of a

project in the start of a project.
Visibility of project status is poor in GSD.
Possible new application architecture, technologies etc. are unknown.

Solution: Project manager will split a project plan into several iterations.

Implement the following actions:
Plan several iterations to describe the project plan because iterations are

easier to control and it is easier to make changes to a plan.
Develop new application architecture and module structure in the main

site during first iterations, if needed.
Explore the biggest risks (e.g. new technologies) in the beginning of a

project.
The length of iteration can be e.g. 2-4 weeks to improve control and

visibility. Main site can have 4 weeks iteration and other sites 2 weeks
to improve visibility.

Resulting
Context:

Iterations improve the visibility of a project and motivation of team members in
a GSD project. Iterations also make it easier to control a project when you split
the whole project into many manageable parts. Iterations also provide feedback
and the possibility to learn from earlier iterations. However, administration
work is increased with several iterations.

Appendix C 8 (21)

2.5 GSD5 - Choose Roles in Sites

Name: Choose Roles in Sites
Problem: How to know who to contact in different sites with your questions?
Initial
context:

In the beginning of the project the roles of team members are not defined.

Roles: Project manager, site managers and other supervisors.

Forces: It is difficult to communicate if you do not know who to ask
GSD needs clear communication organization.
Possible turnover of team members.

Solution: Project manager together with Site managers are key persons to choose roles of
different team members in different sites..

Implement the following actions:
Project manager will have negotiations with site mangers or other

supervisors about team members before final decisions.
Other needed roles will be formed in every site (e.g. Project manager,

Architect, Developer, IT support, Quality assurance etc.). The needed
roles in each site depend on how work is divided between sites.

E.g. usually the main site project manager is in a leading position and
project managers from other sites will help to take care of the issues,
tasks and responsibilities in their sites.

Publish the whole project organization with roles for every site to
improve communication.

One team member can have many roles in a project. Also many persons
can have the same roles.

To manage turnover of team members, deputy persons can also be
chosen. Also shared code owner ship or pair programming are possible
solutions for turnover of developers.

Resulting
Context:

Team members who have same roles can communicate efficiently between sites
because they have same responsibilities. Team members with same roles can
have regular meetings to check what the results are, plans and possible
problems to be solved in their responsible area. Finally, the whole project
organization with roles is published in a common repository of a GSD project.

Appendix C 9 (21)

2.6 GSD6 - Communication Tools

Name: Communication Tools
Problem: How to choose communication methods and tools in GSD?
Initial
context:

In the beginning of a project it is not clear which communication tools and
methods should be used.

Roles: Project manager and team members.

Forces: It is difficult to communicate if you do not have good communication
tools which are in use with every team member.

Usually different sites have different tools and methods for
communication.

Cultural differences and different native languages also affect the
efficiency of communication.

For team members it is much easier to communicate with each other if
they have met face to face as suggested in Collocated Kick-Off pattern.

Solution: Project manager is a key person to choose communication methods and tools
and how team members can use them. Of course it is important that team
members can participate in decision making.

Implement the following actions:
Have reliable and common communication methods and tools in every

site.
Use of video conferences, web cameras, net meeting applications, chat,

conference phones, Skype, mobile phones, electronic calendars,
discussion tools, wiki tools etc. improves the efficiency of
communication.

Use different tools at the same time as a net meeting application to show
information and project data, conference phones to have good sound
and chat tool to discuss in written form if there are problems to
understand e.g. English language used in other sites.

Record e.g. meetings and key presentations to improve knowledge
sharing. Records of meetings or presentations make it possible to listen
to them once again, if needed.

Use common repositories to share artifacts, which can be implemented
by Common Repositories and Tools pattern.

Publish availability of team members, common working times, holidays
etc. to help communication and coordination of different meetings.

Also notice cultural differences which also affect communication
methods and use of tools.

Resulting
Context:

It costs money to establish common communication tools and common
repositories for a GSD project. It saves money to use communication tools
because there is no need to travel so much. Published availability information
makes it easier to have net meetings and ad-hoc discussions. Communication
tools changes distributed development partly back to centralized development.
Finally, a project has common communication methods and tools in use.

Appendix C 10 (21)

2.7 GSD7 - Common Repositories and Tools

Name: Common Repositories and Tools
Problem: How to share different artifacts between sites efficiently?
Initial
context:

In the beginning of the project it is not clear how to share documents or source
code or process guidelines between team members in different sites.

Roles: Project manager and team members.

Forces: Separate files are difficult to manage and synchronize between many
sites.

Chosen tools should be efficient, easy to use, and integrated with each
other.

To improve information security, only needed information can be visible
to team members in each site.

Solution: A project manager is a key person to organize common development,
documentation and process guidelines tools and how team members can use
them.

Implement the following actions:
Provide a common Application Lifecycle (ALM) Management tool for
o all project artifacts (e.g. Product and Sprint backlog items, source

code, development documents, faults descriptions etc.),
o reports,
o process guidelines (workflow, guidelines),
o process information (e.g. who does what and when),
o traceability (e.g. which information is related with each other),
o communication tools (discussion forum, chat, visualize

information, notifications to users etc.).
ALM tool can be implemented as a single tool set or it can be a group of

different tools which has been integrated with each other.
Use different levels (team, project, and program) reports to improve

visibility of status of projects.
Effective access right control i.e. user rights methods and role-based

views in use to see certain data.
Resulting
Context:

ALM provides almost real-time traceability, reporting, visualization and access
to needed information etc. for all users in different sites. ALM tools can include
a means to support operation according to the organisation’s processes and
development methods (state models, process templates, workflows). ALM tools
can cost a lot of money. Time is saved when information is found more quickly.
Common processes also make work more efficient. ALM also facilitated
communication with communication tools. As a result, ALMbased tool is taken
into use in a project. All project artifacts, which are needed, are shared by ALM
among all team members.

Appendix C 11 (21)

2.8 GSD8 - Work Allocation

Name: Work Allocation
Problem: How work is divided between sites?
Initial
context:

In the beginning of a project it is not clear how to divide responsibilities
between sites.

Roles: Main site manager and project manager.

Forces: GSD Strategy in a company has a main impact on work allocation.

Solution: Main site manager is a key person to divide responsibilities in sites according to
a company’s GSD Strategy. A project manager will apply GSD Strategy in
his/her project with architects.

Implement the following actions:
Check competence information of team members in each site with help

of site managers.
Use Architectural Work Allocation pattern or/and
Use Phase- Based Work Allocation pattern or/and
Use Feature- Based Work Allocation pattern or other allocation

according to some other criteria.
Make a decision about division of work between sites according to a

company’s GSD Strategy and the above analysis.
Resulting
Context:

Work is divided between sites to enable efficient development and
implementation of tasks in a project according to a company’s GSD Strategy.

Appendix C 12 (21)

2.9 GSD9 - Architectural Work Allocation

Name: Architectural Work Allocation
Problem: How work is divided between sites with architectural criteria?
Initial
context:

In the beginning of a project it is not clear how to divide responsibilities
between sites.

Roles: Main site manager, project manager and architect.

Forces: One goal in GSD is to minimize communication problems between sites.
Software architecture and coupling and interfaces between modules
will affect the amount of communication. If coupling between modules
is tight it is difficult to divide work between different sites. Also
difficult and complicated interfaces between modules will make it
difficult to divide work between different sites.

According to Conway’s law, “Organizations which design systems are
constrained to produce designs which are copies of the communication
structures of these organizations.” That is one reason to think carefully
about how to make work divisions.

Solution: Main site manager is a key person to divide responsibilities in sites according to
a company’s GSD strategy. A project manager will apply GSD strategy in
his/her project with architects.

Implement the following actions:
Check architectural analysis of your product and plan which site will be

responsible to maintain and increase knowledge in some architectural
area. Architectural area can also be a whole subsystem or part of a
subsystem.

Make a decision about division of work between sites about architectural
work allocation according to GSD Strategy and above analysis.

Resulting
Context:

Work is divided between sites according to architectural criteria to enable
efficient development and implementation of tasks in a project.

Appendix C 13 (21)

2.10 GSD10 - Phase- Based Work Allocation

Name: Phase- Based Work Allocation
Problem: How work is divided between sites with phase-based criteria?
Initial
context:

In the beginning of a project it is not clear how to divide responsibilities
between sites.

Roles: Main site manager and project manager.

Forces: A company’s GSD Strategy can give a certain main phase responsibility
or responsibilities to a certain site.

GSD Strategy describes which know-how is needed and will be created
or maintained in each site and team members now and in future.

E.g. a system test laboratory can be very expensive to create and this
responsibility might be nominated to a certain site.

Solution: Main site manager is a key person to divide responsibilities in sites according to
a company’s GSD Strategy. A project manager will apply GSD Strategy to
his/her project.

Implement the following actions:
Check the GSD Strategy how phase- based work allocation will be made.
Check also which site is possibly responsible for maintaining and

increasing knowledge in some phase-based area e.g. testing or
requirements engineering in a certain product area.

Make a decision about division of work between sites about phase-based
work allocation according to GSD Strategy and above analysis.

Resulting
Context:

Work is divided between sites according to phase -based criteria to enable
efficient development and implementation of tasks in a project.

Appendix C 14 (21)

2.11 GSD11 - Feature- Based Work Allocation

Name: Feature- Based Work Allocation
Problem: How work is divided between sites with feature-based criteria?
Initial
context:

In the beginning of a project it is not clear how to divide responsibilities
between sites.

Roles: Main site manager and project manager.

Forces: A company’s GSD Strategy can give certain responsibilities to different
sites.

When a system level feature affects the whole product, e.g.a security-
based feature will be developed. Then there is the need to form a group
of team members from different sites to implement this system level
feature.

Solution: Main site manager is a key person to divide responsibilities in sites according to
a company’s GSD Strategy. A project manager will apply GSD Strategy to
his/her project.

Implement the following actions:
Check the GSD Strategy how feature- based work allocation strategy has

been described.
Form a group of members from different sites to realize the features, if

needed.
Resulting
Context:

Work is divided between sites according to feature-based criteria to enable
efficient development and implementation of tasks in a project.

Appendix C 15 (21)

2.12 GSD12 - Common Processes

Name: Common Processes
Problem: How to implement an efficient process in a GSD project?
Initial
context:

In the beginning of a project there are often different processes in every site.

Roles: Quality manager and project manager.

Forces: Different processes and templates at different sites make communication
inefficient.

Different sites often have different processes.
 Processes often include local optimizations.

Solution: Quality manager is a key person to specify global processes for a company or
R&D department. Project manager is a key person to choose global processes
for a project.

Implement the following actions:
Choose common upper level processes for the project, e.g. gateway

model, project management main practices (Iteration Planning,
Iteration Review, etc.), main templates etc.

Allow local processes if they do not cause problems with upper level
processes, e.g. project management site specific implementation and
development methods etc.

Tune the processes at the end of iteration to make project work more
efficient, e.g. with iteration retrospective which is used to check what
went well and what to improve in processes in the next iteration.

Resulting
Context:

Upper level processes are common and thus make the whole project work more
efficiently. However, lower level processes might have been implemented
differently in different sites to reduce cultural or language difficulties. Every
change in common processes needs to be communicated and taken into use in
different sites which increase work amount. That is why big changes to
common processes are not so usual. Finally, common processes are taken into
use in each site, at least upper level.

Appendix C 16 (21)

2.13 GSD13 - Iteration Planning

Name: Iteration Planning
Problem: How to choose which features will be implemented in a GSD project?
Initial
context:

Team members are starting a new iteration to produce new features for a
project.

Roles: Project manager, product manager and team members.

Forces: There are many features to be implemented.
Different team members have a different view about which are the most

important features.
If team members do not meet each other face to face at all, it might

decrease trust between team members.
Dividing work in a GSD project is challenging because features have

dependencies on each other.
Solution: A project manager is a key person to tell what the most important features to be

implemented are after he/she has discussed with a product manager.

Implement the following actions:
Project manager will present prioritized features and other tasks which

are made by a project manager or team members.
Team members will participate in a planning meeting either personally

or by communication tools. Communication Tools pattern can be used
with this action.

The team members will estimate amount of work for features and tasks
and add more detailed level tasks. If needed, more detailed discussion
can be arranged in sites in participants’ mother language.

In the end of a planning meeting, a list of selected features and tasks is
created and is visible by the common repository. Common Repositories
and Tools pattern can be used with this action.

Resulting
Context:

The prioritized feature and task list will help team members to concentrate on
the most important features and tasks. After planning meeting, there will be
estimated features and tasks which will be implemented during iteration. For
community spirit and cooperation, it is important that team members meet each
other as often as possible to maintain communication and confidence. Finally,
the selected features and tasks are visible by common repository for GSD team
members.

Appendix C 17 (21)

2.14 GSD14 - Multi-Level Daily Meetings

Name: Multi-Level Daily Meetings
Problem: How to share project status information between team members in each site?

Lack of trust and long feedback loops.
Initial
context:

Project groups in different sites have started to implement iteration and there is
a need to communicate between groups.

Roles: Project manager and team members.

Forces: Size of group should be from 3 to 7 to be efficient.
If everybody does not speak the same language then separate meetings

can be a more efficient way of working.
Solution: Project manager and team members will participate in meetings in different

sites.

Implement the following actions:
Organize daily meetings in every site if a common meeting with all team

members is not efficient enough.
Organize another daily or weekly meeting between project managers

from each site to change information about the results of team
members’ meeting.

Use communication tools and common repositories in meetings.
Communication Tools and Common Repositories and Tools patterns
can be used with this action.

With foreigners, written logs can be one solution (e.g. chat logs or
common documents) to ensure that communication messages are
understood correctly in every site.

Resulting
Context:

Communication between sites is improved and language problems have been
tried to be solved. Daily or weekly meetings between team members and project
managers will increase trust and shorten long feedback loops.

Appendix C 18 (21)

2.15 GSD15 - Iteration Review

Name: Iteration Review
Problem: How to check status of a GSD project and give and get feedback frequently?
Initial
context:

Team members have implemented tasks and features during iteration.

Roles: Project manager and team members.

Forces: It is difficult to get everyone to participate in the meeting.
There is a need to check status and give and get feedback about the

results and solutions made.
Solution: Project manager will organize an iteration review meeting but team members

will show the current status of their work.

Implement the following actions:
Check the project status by a demo and present results to all relevant

members and stakeholders from different sites by team members.
Gather comments and change requests for further measures for both

product and process.
Make frequent deliveries to improve visibility of the status of the

product.
If all team members are not able to attend the meeting it can also be

arranged using communication tools. This way information can be
shared with team members communicating over a remote connection.
Communication Tools pattern can be used with this action.

Resulting
Context:

This solution brings visibility to work done and provides feedback of what has
gone well and what could be done better in a GSD project. Team members
focus on their tasks because they have to present their work in the meeting.

Appendix C 19 (21)

2.16 GSD16 - Organize Knowledge Transfer

Name: Organize Knowledge Transfer
Problem: How to transfer a huge amount of knowledge for team members in a GSD

project?
Initial
context:

GSD project often has new or inexperienced team members who need to find
out a lot of information about domain and the project itself.

Roles: Project manager and team members.

Forces: It is difficult to find needed information
When there is a turnover of workers, a large portion of knowledge is lost

from that site.
If work moves along with knowledge transfer from the main site to the

other sites it reduces motivation for knowledge transfer work.
The need for knowledge transfer depends on how great portion of

responsibilities is transferred to the other sites.
Solution: Project manager will organize tools to manage information and take care that

the information will be updated to information management tools.

Implement the following actions:
Make sure that there is knowledge repository of project’s domain

available for team members.
Train the earlier version of product and get members also to use it, if

possible.
Also earlier customer documentation and demo will be presented in

some cases.
Specification with e.g. use cases will be presented in iteration planning

meetings or separate meetings before development work.
The team members’ network will be utilized by trying to find solutions

for problems.
Frequent or longer visits to enhance knowledge transfer and to make sure

that there are good communication tools and channels between team
members.

Resulting
Context:

Knowledge transfer is possible through documents and especially through
people. Knowledge transfer and providing support increase work at main site
and reduces time that can be used for actual development. New team members
can participate faster in project work and improve the productivity of a GSD
project.

Appendix C 20 (21)

2.17 GSD17 - Manage Competence

Name: Manage Competence
Problem: How to know what the competence of each team member is in a GSD project?
Initial
context:

In the beginning of a project the competence of team members is not known.

Roles: Project manager and team members.

Forces: Difficult to know competence level of a team member.
Competence estimation is sensitive information about a team member.

Solution: Project manager will organize tools to manage competence information if
organization does not offer support for that.

Implement the following actions:
Create a competence database for gathering information of members’

competence levels at different sites. At least site manager and/or
project manager knows the competence of team members.

Define the areas of competence you want to monitor.
Define competence levels and criteria for them.
Ask site managers and or project managers to gather information about

their team members.
Go through competence information with each team member yearly and

make a training plan for obtaining the wanted competence levels.
Resulting
Context:

Project manager knows competence levels of team members. After going
through competence levels of each team member with a project manager or a
site manager everyone will be assigned to a certain role with specific
responsibilities. If needed, everyone will also have their own personal training
plan.

Appendix C 21 (21)

2.18 GSD18 - Notice Cultural Differences

Name: Notice Cultural Differences
Problem: How to notice cultural differences and increase cultural knowledge in team

members in a GSD project?
Initial
context:

In the beginning of a project, a nation’s cultural differences are not understood.

Roles: Project manager and team members.

Forces: Every nation has its own culture and culture is very difficult to change.
There may be a lot of difficulties and inefficiency if cultures are very

different from each other and the cultural differences are not
understood.

Solution: Every team member should know the main differences of different sites’
cultures.

Implement the following actions:
Raise the awareness of different national culture for team members.
Use site visits, ambassadors, and liaisons to improve communication and

to increase the amount of cultural knowledge in project participants, if
possible.

Notice cultural differences when you are applying different patterns such
as GSD Strategy, Work Allocation, Common Processes,
Communication Tools and Common Repositories and Tools etc.

Allow local approaches in processes, tools, meeting methods etc. to
decrease problems with cultural differences, if they do not disturb
common processes etc.

Resulting
Context:

Understanding of your team members’ culture is increased. Many problems
which are related to cultural differences have been avoided. Team sprit is
improved because differences between nations are easier to understand.
Improved trust between team members when they understand each other better.

Paper I

Requirements Management
Practices as Patterns for

Distributed Product
Management

In: Munch, Abrahamsson,. (ed.),
Product-Focused Software Process

Improvement, PROFES 2007, Riga,
Latvia, July 2007, LNCS 4589,

Springer (2007), pp. 188-200.
Reprinted with permission from the publisher.

.

Paper II

Patterns for Distributed Scrum
– a Case Study

In: International Conference on Interoperability of
Enterprise, Software and Applications (I-ESA).

Berlin, German. March 25th – 28th 2008. Mertins
K. et al. (Eds.): Enterprise Interoperability III –

New Challenges and Industrial Approached.
Springer (2008), pp. 85 – 97.

Reprinted with permission from the publisher.

Paper III

Get a grip on your distributed
software development with

Application Lifecycle
Management

In: International Journal of Computer
Applications in Technology (IJCAT),

InderScience Publishers, Vol. 40,
No. 3 (2011), pp. 181-190.

Reprinted with permission from the publisher.

Paper IV

Scenario-Based Assessment of
Process Pattern Languages

In: Proceedings of Profes 2009, June 2009,
(Eds). Springer (2009), pp. 246 – 260.

Reprinted with permission from the publisher.

Paper V

Global Software Development
Patterns for Project

Management

In: R.V. O’Connor et al. (Eds.):
Communications in Computer and Information

Science. Vol. 42, EuroSPI 2009, Springer, Berlin -
Heidelberg (2009), pp. 137 – 148.

Reprinted with permission from the publisher.

Paper VI

Applying Application Lifecycle
Management for the

Development of Complex
Systems: Experiences from

Automation Industry

In: R.V. O’Connor et al. (Eds.): Communications
in Computer and Information Science. Vol. 42,

EuroSPI 2009, Springer, Berlin - Heidelberg
(2009), pp. 149 – 160.

Reprinted with permission from the publisher.

