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Abstract

Unobtrusive health monitoring includes advantages such as long-term monitoring of

rarely occurring conditions or of slow changes in health, at reasonable costs. In addition,

the preparation of electrodes or other sensors is not needed. Currently, the main limita-

tion of remote patient monitoring is not in the existing communication infrastructure but

the lack of reliable, easy-to-use, and well-studied sensors.

The aim of this thesis was to develop methods for monitoring cardiac and respira-

tory activity with microwave continuous wave (CW) Doppler radar. When considering

cardiac and respiration monitoring, the heart and respiration rates are often the first mon-

itored parameters. The motivation of this thesis, however, is to measure not only rate-

related parameters but also the cardiac and respiratory waveforms, including the chest

wall displacement information.

This dissertation thoroughly explores the signal processing methods for accurate

chest wall displacement measurement with a radar sensor. The sensor prototype and

measurement setup choices are reported. The contributions of this dissertation encom-

pass an I/Q imbalance estimation method and a nonlinear demodulation method for a

quadrature radar sensor. Unlike the previous imbalance estimation methods, the pro-

posed method does not require the use of laboratory equipment. The proposed nonlin-

ear demodulation method, on the other hand, is shown to be more accurate than other

methods in low-noise cases. In addition, the separation of the cardiac and respiratory

components with independent component analysis (ICA) is discussed. The developed

methods were validated with simulations and with simplified measurement setups in

an office environment. The performance of the nonlinear demodulation method was

also studied with three patients for sleep-time respiration monitoring. This is the first
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time that whole-night measurements have been analyzed with the method in an uncon-

trolled environment. Data synchronization between the radar sensor and a commercial

polysomnographic (PSG) device was assured with a developed infrared (IR) link, which

is reported as a side result.

The developed methods enable the extraction of more useful information from a

radar sensor and extend its application. This brings Doppler radar sensors one step

closer to large-scale commercial use for a wide range of applications, including home

health monitoring, sleep-time respiration monitoring, and measuring gating signals for

medical imaging.
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Chapter 1

Introduction

1.1 Motivation

During recent years, unobtrusive health monitoring has been one of the coolest technol-

ogy trends. Terms related to this trend such as non-contact measurement, ubiquitous

sensors, noninvasive monitoring, unobtrusive measurement, remote/online patient mon-

itoring, mobile medical sensors, biomedical wireless sensor networks (WSN), wearable

sensors, body area network (BAN) are just part of a long list in this field. Neverthe-

less, unobtrusive health monitoring does offer both advantages and disadvantages over

conventional wired monitoring. A few concrete advantages are:

• Long-term monitoring of rarely occurring conditions: Some conditions may not

appear during a short monitoring period with a standard method such as during

one-night poly-somnography (PSG) or during a 24-hour Holter monitoring.

• Possibility of long-term monitoring of slow changes with reasonable costs: Mon-

itoring the exercise recovery of an athlete, the rehabilitation of a surgery patient,

lifestyle changes during a diet, the effects of personal daytime choices (such as

stress, sports, coffee or alcohol consumption) on sleep [1, 2] are several possibili-

ties.

• No need for preparation: Electrocardiographic (ECG) and electromyographic (EMG)

electrodes need preparation prior to the measurement and can cause irritation for
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Chapter 1. Introduction

premature infants or burn victims, for example. The preparation of sensors that

provide a gating signal for thorax area medical imaging takes time from medical

personnel [3, 4]. The preparation for a full PSG recording takes at least an hour’s

time from an experienced nurse [5].

Benefits to a user obviously depend highly on the application. With long-term sleep

monitoring, advantages include better health due to sufficiently long, good quality sleep

due to small daytime changes in habits. In addition, more efficient treatment of sleeping

disorders may be gained due to easy and affordable treatment follow-ups. Moreover,

early diagnosis and intervention into sleep disorders may decrease the effects of other

conditions that are known to be linked to sleeping problems such as type 2 diabetes,

depression, hypertension, heart failure, stroke, and memory and learning problems [6,7].

With infant sleep monitoring, a sensor that measures infant respiration to prevent sudden

infant death syndrome (SIDS) may provide peace of mind for a parent. With medical

imaging, a radar sensor could provide a respiratory gating signal for an imaging device

to increase the imaging quality [8] and to decrease the required dose [9].

On the other hand, there are also disadvantages to consider:

• Possibly lower signal quality: Medical personnel are well trained to perform the

measurement preparation and to make changes if the data quality is low. This is

not the case with the general public.

• Possibly lower reliability of the data: Other factors affecting the data are not al-

ways known. For example, heart rate increases can be due to several reasons such

as drinking coffee, physical exercise, or tension; non-contact sensors can occa-

sionally grab signals originating from another person nearby the actual patient; or

the data coverage may be restricted, such as cases when a sleep sensor is used only

during weekends.

• Training required: Medical personnel are accustomed to interpreting the data mea-

sured with the golden standard methods. With a new measurement method, inter-

pretation of the data requires training.

• Automatic data interpretation required: The amount of data measured with easy

to use unobtrusive methods can increase enormously. This makes it practically
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1.2. Objectives and scope of the thesis

impossible to screen the data manually. Thus, automatic methods for the data

interpretation are essential.

Currently, the main limitation in remote patient monitoring is not in the existing

communication infrastructure, but in the lack of reliable, easy-to-use, and well-studied

sensors. This thesis adds to the vast amount of work performed in the field of developing

unobtrusive physiological monitoring methods.

Radar offers some unique properties when compared to other unobtrusive sensor

technologies. The measurement is truly non-contact, as the radar can measure from a

distance. In addition, the sensor can be hidden behind an enclosure or can measure

through walls. Thus, it does not cause discomfort to the patient nor disturb the very

parameters that are being measured such as cardiorespiratory activity or sleep. Moreover,

radar provides very accurate displacement measures. Most other respiration monitoring

methods do not enable measuring of the absolute chest wall displacement [10].

1.2 Objectives and scope of the thesis

In this thesis, microwave continuous wave (CW) Doppler radar is studied in physiolog-

ical monitoring applications. As physiological monitoring, we refer to monitoring of

cardiac and respiratory activity.

The main research questions in this thesis are the following:

1. What factors affect the accuracy of the displacement measurement with the radar

sensor?

2. How should the radar data be analyzed to reach valuable information?

3. Is radar monitoring a viable method for cardiorespiratory monitoring?

When considering heart and respiration monitoring, measuring the heart and respira-

tion rate is often the first thing considered. The motivation of this thesis, however, is to

measure not only the rate-related parameters but also the cardiac and respiration signa-

tures, including the amplitude (displacement) -related parameters. This is an important
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Chapter 1. Introduction

separation that will be discussed in detailed in following chapters, as not all the methods

developed in this thesis are needed in rate-related applications.

The following topics are out of the scope of this thesis:

• Ultra wide band (UWB) radars: UWB radar operates by transmitting very short

duration pulses (i.e., wide bandwidth > 500 MHz) and by comparing the echoes

from successive pulses. It has the advantage of gaining large range resolution. A

considerable amount of work is done with UWB radars in physiological sensing

applications; for example, Sachs et al. has studied it for acquiring a respiration

gating signal for magnetic resonance imaging (MRI) [11] and for detecting earth-

quake and avalanche survivors [12]. The signal processing with UWB radar data,

however, is rather different from CW Doppler radar. Thus, the use of UWB radars

is out of the scope of this thesis.

• Applications other than physiological measurement applications: By physiolog-

ical measurement, we mean measuring of cardiac and respiration activity. In ad-

dition, the movement of any body parts such as limbs, hands, torso, or chest area

can be considered as physiological measurement. One practical application for

measuring such movements of body parts is periodic limb movement (PLM) mon-

itoring during sleep. In addition, a Doppler radar sensor is commonly used, for

example, in intruder detection devices, in automatic doors, and in car driver as-

sistance systems (DAS). Recently, a Doppler radar sensor has been proposed for

accurate displacement measurement of vibrating targets [13–15] and bridge struc-

tural health monitoring [16]. However, the main approach in this thesis is to study

the methods and problems that are faced in physiological sensing applications on

a daily basis, targeting cardiorespiratory movements. This does not mean that the

methods developed in this thesis could not be used in other application areas as

well. On the contrary, some of the methods developed in this thesis, such as the

LM center estimation and the imbalance calibration with the ellipse fitting method,

are supposedly highly useful in other radar sensor applications as well.

• Infant test subjects: Several studies have been performed for developing radar for

baby applications [17–19]. However, in this study, only adult test subjects were
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1.4. Thesis outline

measured, and no infant or child was measured. Nevertheless, the developed meth-

ods can probably be used in these applications as well as long as the differences

are taken into considerations, such as the considerably higher heart rate (HR) and

respiration rate (RR) of infants. Similarly, the monitoring of animal vital signs

are not particularly considered in this thesis. Practical applications in animal vital

sign monitoring range from endangered fish behavior research [20,21] to the stress

measurements of farm animals [22] or test animals.

1.3 Author’s contributions

The author has carried out the majority of the research in Publications P2–P7. This

includes 1) designing and building the sensor hardware, 2) designing the measurement

setups, 3) performing the measurements, 4) designing and writing Matlab codes for radar

signal processing, and 5) writing of the publications. Publications P1 and P2 were per-

formed in collaboration with the research team at the University of Hawaii, Manoa, led

by Prof. Olga Boric-Lubecke. In Publication P1, the author contributed to the writing

and to drawing conclusions on the measurement results. In Publication P2; the author

had the main responsibility, however, Aditya Singh, PhD, Ehsan Yavari, MSc, and Xi-

aomeng Gao, MSc, helped with the measurements and writing. In addition, Aditya

Singh provided the Matlab code for the algebraic fitting. In Publication P3, Harri Rait-

tinen, PhD, proposed the real data measurement setup for calibration measurements. In

Publication P6, the synchronization Matlab code was written together with Atte Joutsen,

Lic. Tech. In Publication P7, the measurements were performed together with Antti

Vehkaoja, PhD, and Atte Joutsen, and the polysomnographic (PSG) reference measure-

ments were performed by the research team at the University of Jyväskylä from the

Department of Health Sciences. In addition, the Jyväskylä team handled the patient re-

cruitment. Vehkaoja and Joutsen also provided helpful advices for data analysis and

writing.
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Chapter 1. Introduction

1.4 Thesis outline

The thesis is organized as follows. In Chapter 2, the related work performed in the field

is presented, including the main application areas for microwave radar and recent ad-

vances. In addition, the main advantages that microwave monitoring provides compared

to other unobtrusive physiological signal monitoring methods are briefly introduced. An

overview of microwave radar monitoring methods is given in Chapter 3.

The rest of the thesis is outlined in the same order as the radar data has been pro-

cessed. Fig. 1.1 illustrates the main signal processing steps. Before the actual measure-

ment, a preliminary measurement step is performed to calibrate the quadrature radar. The

methods for this calibration step are discussed in Chapter 4. During the measurement

phase, the run-time signal analysis steps used in the literature vary between different

approaches. Our approach can be divided into the following steps: I/Q imbalance com-

pensation, quadrature channel combining, signal source separation, and analysis of the

waveform, rate and/or amplitude data from heart and/or respiration signal. In addition,

artifacts removal is needed. The quadrature channel combining is also called the phase

angle calculation. Different methods for combining the two channels of a quadrature

radar are explained in Chapter 5. In Chapter 6, the signal source separation and the main

results from amplitude analysis are considered. The main conclusions and discussion

are provided in Chapter 7.
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1.4. Thesis outline

Estimate I/Q 
imbalance values 

Compensate I/Q 
imbalance 

Analyse waveform,  
amplitude and/or rate  

Combine the 
channels 

Separate the cardiac 
and respiratory 

components 

Calibration data 
BIcal(t),  BQcal(t) 

Measurement data 
BI(t), BQ(t) 

Imbalance values 
AE, ØE Calibrated data 

BIort(t), BQort(t) 

Displacement caused by cardiac 
and respiratory activity xh(t), xr(t) 

Phase angle θ(t) 
Displacement x(t) 

HR, RR 
Cardiac and respiratory  
amplitude Ah(t) Ar(t) 

Chapter 4, Publications P1 
and P2 

Chapter 5, Publications P3 
and P7 

Chapter 6, Publication P5 

Chapter 6, Publications P7 
and P4 

Chapter 3, Publication P6 

Figure 1.1: The main steps for radar signal analysis. The right hand row show in which

chapter of this thesis and in which publication each step is discussed.
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Chapter 2

Related work

It is often referred as a fact that the microwave monitoring of heart and respiration was

first presented by Lin [23] or Lin et al. [24] in the late 1970s. However, Caro and

Bloice had already published their measurement setup for detecting apnea in 1971 in the

Lancet [25] and in 1972 in the Journal of Physiology [26]. During 1980s and 1990s,

radar monitoring was not studied much. A notable exception is published by Greneker

et al. [27], where the vital signs of athletes were measured at a distance of 10 meters

with a directional antenna.

During the twenty-first century, the field has expanded both in academia and com-

mercial market. One driver has probably been recent advances in wireless monitoring

and wearable devices. The first PhD thesis about the subject was written by Amy Droit-

cour [28] at the Stanford University in 2006. After eight years of growing research inter-

est, this thesis still provides an excellent guide to the field. Other handbooks and review

articles have been written by two top teams in the field: one led by Olga Boric-Lubecke

and Victor Lubecke, and another by Changzhi Li and Jenshan Lin [29–31]. Recent ad-

vances, especially concentrating on work by Changzhi Li and Jenshan Lin, can be found

in [32]. Similarly, recent advances mainly from the team led by Prof. Schreurs can be

found in [33]. However, there is a lack of comprehensive review article that acknowl-

edges also the recent European work. Aho [34] provides an excellent overview of signal

processing methods in his MSc. thesis.

In this chapter, an overview of the different application areas for CW Doppler radar
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Chapter 2. Related work

monitoring of physiological signs is presented. The purpose is to present some of the

most important related work performed in the field.

2.1 Monitoring vital signs at home and in the hospital

A number of studies present results of monitoring HR and RR with a radar sensor. To

be precise, there are different levels of HR measurement. Most commonly, HR means

measuring average HR over a time window. This has been performed, for example,

with spectral estimation methods [34–37] (as was also done in Publication P4) or with

autocorrelation methods [35,38]. Aho presents a detailed comparison of the usability of

different spectral estimation methods with radar monitoring [34]. A more precise level

is reached by measuring beat-to-beat intervals (also named as interbeat intervals) of the

cardiac signal. This corresponds to R-R intervals with ECG. With a radar sensor, the

beat-to-beat intervals have been measured by Boric-Lubecke et al. [39].

In addition to HR monitoring, long-term Heart Rate Variability (HRV) measurements

are often used in health monitoring applications. HRV means variation of beat-to-beat

intervals over time. Compared to average HR measures, this requires much more accu-

rate monitoring of cardiac activity. Measuring HRV with microwave radar was studied

by Massagram in her PhD thesis [40] and in publications [41, 42]. Massagram mea-

sured some of the most important HRV parameters: the standard deviation of normal

beat-to-beat intervals (SDNN) and the root-mean-square of differences of successive

beat-to-beat intervals (RMSDDs), but was able to reach a rather high variance in the

results compared to ECG [42]. In addition, the use of varying transmitting power levels

in microwave radar HRV measurement was reported by Obeid et al. [43].

More accurate results with HRV analysis were gained by Hu et al. [44]. The rea-

son for more accurate results might be 1) that advanced signal processing methods to

separate cardiac and respiratory components and remove noise was used or 2) that the

arctangent demodulation and center estimation was used. Massagram et al., on the other

hand, used principal component analysis (PCA) for demodulation [42]. These demodu-

lation techniques are discussed in detail in Chapter 5.

Radar monitoring has been proposed for monitoring infant respiration during sleep
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and to prevent sudden infant death syndrome (SIDS) [17, 45]. Yan et al. built an infant

simulator to verify the performance of the radar sensor in infant HR and RR monitor-

ing. With the infant simulator, they generated an automatic and realistic physiological

response of an infant whose vital signs are controlled by software [19]. Noah et al. used

a standard wireless baby monitor as transmitter and a passive receiver to monitor HR

and RR [18].

One of the biggest challenge in home monitoring is to deal with movement artifacts.

Several studies have attempted to answer the movement artifact problem. Singh et al.

used harmonic tags to isolate the respiration of a tagged human subject from other mov-

ing elements [46–49]. A radio-frequency identification (RFID)-type tag was used to

modulate the transmitted signal, and a receiver was used to sense the received second

harmonic signal. Li et al. [50, 51] used two radars in the opposite sides of the target

to cancel out artifacts. Another approach is to use a camera to measure the random

body movements and then feed them back as phase information to the radar system [52].

Mostafanezhad et al. used Empirical Mode Decomposition, a signal processing method,

to cancel motion artifact [53]. While proof of concept has been demonstrated, more re-

search – and especially long-term evaluation – is still needed to prove reliable operation

in complex real environments.

2.2 Home occupancy and fall detection

Passive infrared (PIR) and ultrasonic movement sensors are widely adopted for occu-

pancy detection and are used in several applications ranging from security applications

to controlling of lighting, heating, ventilation, and air conditioning (HVAC) in homes

and offices. In addition, presence information of an inhabitant could be used to opti-

mize the energy-latency trade-off present in a wireless sensor network (WSN) in a smart

home environment [54]. However, PIR and ultrasonic sensors suffer from a failure to

detect stationary human subjects. Yavari et al. [55] used a microwave CW radar to over-

come this problem. Instead of detecting large movements, they detected true presence

by measuring human cardiopulmonary motion with a Doppler radar.

Radar monitoring has also been proposed for fall monitoring and indoor positioning
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of elderly people who live alone [56, 57]. The radar sensor was used to detect the fast

movements that take place during a fall event. In addition, the paper presented the inte-

gration of a radar sensor to a Zigbee-WSN. The latter is a significant development step

that links the radar sensor into the extensive amount of research in the area of WSNs.

Wireless, unobtrusive health monitoring at home has been one of the hottest research

topics at least for a decade. Our group at TUT has participated in this trend by developing

a set of sensors for monitoring elderly persons who live alone or persons who are in

rehabilitation at home – a sort of a smart home in a suitcase [58, 59]. Radar sensor has

been studied as one type of the sensors in the set [60].

2.3 Sleep monitoring

Several sleep monitoring consumer applications are already available on the market:

Beddit [1, 2] uses a polyvinylidene fluoride (PVDF) force sensor attached under the

mattress, EMFit uses an Emfi force sensor attached under the mattress as well [61],

Mimo [62] attaches an acceleration sensor to a baby’s kimono, Sleep Cycle sells a mobile

application that uses nighttime microphone recordings for apnea screening [63], and

wristband devices such as Fitbit [64], Lark [65], and Jawbone Up [66] use a wrist-worn

accelerometer to determine sleep and awake cycles.

As previously mentioned, Caro and Bloice reported the first measurements for sleep

apnea monitoring with adults and infants in 1971–72 [25, 26]. In addition, Franks [17]

reported a detailed setup for infant apnea monitoring in 1976. This measurement setup

was very advanced, noting both the null-point problem and the effect of quadrature im-

balance as well as reporting the use of a quadrature radar to solve the null-point problem.

Moreover, Franks concluded that "the 2-channel radar system has proved consistently

satisfactory in practice" compared to an air-filled mattress system, an under-mattress

pressure sensor, a magnetometer and magnet, and a capacitance-change detector [17].

The first commercial products using microwave radar to monitor sleep are developed

by BiancaMed, a startup from University College Dublin and currently part of ResMed

Sensor Technologies. Three products, SleepMinder [67], HSL-101 (sold by Omron)

[68], and Sleep Clock (sold by Gear4), are all based on the same technology developed
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by ResMed [67, 69–71]. Very recently, ResMed launched the S+ device and mobile

application [72]. These devices are targeted on self-monitoring of sleep at home, as the

devices can measure parameters such as sleep duration, sleep onset time, amount and

time of awakenings during the night and so on. In addition, S+ estimates sleep stages

(light sleep, deep sleep, and rapid eye movement [REM]). Moreover, Japanese Nintendo,

previously known mainly for its video games, is expected to launch a sleep monitoring

application that is based on ResMed technology [73].

In recent years, ResMed has conducted extensive studies into developing radar sen-

sor for sleep monitoring. In [69], the sleep/wake patterns in adults was identified. An

automated sleep/wake pattern classification was based on measuring movements on 30-

second epochs. The overall per-subject accuracy of 78% was gained with 113 test sub-

jects. The radar sensor was demonstrated to gain similar accuracy to wrist actigraphy

for sleep/wake determination [71]. In [70], the diagnostic accuracy of SleepMinder in

identifying obstructive sleep apnea and apnea-hypopnea index (AHI) was assessed. A

sensitivity of 90% and a specificity of 92% were gained, when a diagnostic threshold of

moderate-severe (AHI ≥ 15 events / h) for obstructive sleep apnea was used. The study

contained 75 subjects.

Recently, Lee et al. [74] were the first to show that different types of breathing pat-

terns can be recorded with a radar sensor. The test subject was instructed to emulate

the following breathing patterns for a short time period: normal breathing, Kussmaul’s

breathing, Cheyne-Stokes respiration, ataxic breathing and Biot’s breathing, Cheyne-

Stokes variant, central sleep apnea, and dysrhythmic breathing. The patterns were only

recorded, not recognized automatically.

An interesting study related to radar sleep monitoring has been published by Kiriazi

et al. [75] about the measurement of the radar cross section (RCS) of the portion of the

torso surface that is moving due to respiration and cardiac activity. In addition, they

measured the torso displacement magnitude. Both the RCS and displacement amplitude

change in different sleeping positions.

Still, there is room for future improvements. The separation of chest and abdomen

activity could improve differentiation of apnea types. Further, limb movements cause

distortion in the radar signal as reported also by ResMed [70], but when correctly pro-
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cessed, the data could yield information about periodic limb movements (PLMs). This

is also noted as one limitation of the commercial S+ product [72]. In sleep monitor-

ing, robust methods for signal source separation are highly needed. This thesis presents

one approach, cardiac and respiration signal separation with Independent Component

Analysis (ICA), in Chapter 6.

2.4 Providing a gating signal for medical imaging

Recently, the radar sensor has been proposed for medical imaging to avoid motion ar-

tifacts such as breathing or patient movement. Often, patients can be advised to hold

their breath during the acquisition. This is not always possible, however, such as with

small children or if the acquisition time is long compared to the respiration rate. In such

a case, a radar respiration signal could provide a respiratory gating signal for an imaging

device such as computed tomography (CT) or magnetic resonance imaging (MRI), or for

a cancer radiotherapy. The purpose is to increase the imaging quality [8] and to decrease

the required dose [9].

Gu et al. proposed the use of radar sensor to create a respiratory gating signal for can-

cer radiotherapy [9, 32, 76–78]. They demonstrated respiration measurement with radar

sensor while the radiation beam was on [9]. The accuracy of respiration measurement

was evaluated using a physical phantom, human subject, and moving plate. In addition,

it was shown that radar sensor is able to precisely measure movement with stationary

moments [9, 78]. In [77], two 2.4 GHz miniature radars were used to monitor the chest

wall and abdominal movements simultaneously.

Pfanner et al. [3, 4, 8, 79, 80], positioned the radar antennas under the patient on a

CT table. They used CW Doppler radars with a transmitting frequency of 869 MHz.

The low frequency was selected to enable some penetration of electromagnetic waves to

the human body [79]. The functionality of the respiration measurement in the CT table

setup was demonstrated with 10 test patients [3, 8]. Recently, a similar setup was used

to demonstrate the cardiac motion measurement as well [4].
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2.5 Monitoring through barriers

Since microwaves can penetrate through several objects and obstacles, CW Doppler

radar can be used to detect the presence of people behind obstacles. Through a wall vital

sign monitoring has been presented by several researchers for applications in search-

and-rescue, military, or public authority operations [12, 81–84]. A survivor search radar

system to search for victims trapped under collapsed buildings or rubble after an earth-

quake has been presented [81]. A less conventional approach was also presented by

Pieraccini et al. for detecting vital signs through a layer of snow [82]. Detection of

trapped survivors using ultra wide band (UWB) radar has also been studied [12, 83]. A

long-distance measurement of HR and RR has been presented by Petkie et al. from as

far a distance as 50 meters with 228 GHz radar [84].

2.6 Other unobtrusive physiological monitoring techniques

Radar monitoring of cardiac and respiratory activity is a ballistographic monitoring

method. The ballistocardiography “is a record of the movements of the body caused

by shifts in the center of the mass of the blood and to lesser extent of the heart [85, p.

40].” In this thesis, we use the term "ballistographic" instead of ballistocardiographic

(BCG) to refer to both cardiac and respiratory signals. A ballistographic (BG) signal can

be recorded, for example, with a force sensor (also frequently called a pressure sensor)

or with a radar sensor. In general, the measurement methods with a radar and a force

sensor are very similar, and thus, both have very similar advantages and disadvantages.

However, the force sensor is often attached under the patient’s body (e.g., [2, 86, 87]),

while radar is often attached above or next to the body [67, 69]. Thus, the mechanical

connectivity of the signal to the sensor is rather different. In addition, depending on the

transmitting frequency, a part of the radar signal is reflected from the deeper parts of the

human body than from skin. This is discussed more in Chapter 3.4. When again, the

force sensor measures the force exerted to the sensor, requiring either direct or indirect

contact with the patient.

Regardless of these differences between BG signals recorded either with a radar or

15



Chapter 2. Related work

a force sensor, similarities exist in the resulting signal waveforms. Thus, the signal

processing methods developed for one sensor could most likely be used with another.

In particular, the considerable amount of literature about force sensor signal processing

would be useful in radar signal analysis in the future.

Other unobtrusive cardiorespiratory monitoring methods include, for example, the

use of ECG and capacitive electrodes sewn into bed linens [88, 89] or clothing, or a

camera-based method [90, 91]. With the capacitive electrodes, the proof of concept

has been demonstrated for monitoring rate-related parameters [89], but amplitude infor-

mation has not been measured with the method. The wide penetration of inexpensive

mobile cameras makes the camera-based method highly interesting. For sleep monitor-

ing, it might not be optimum, because cameras tend to fail in dark lighting, but other

application areas surely emerge.
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Chapter 3

Doppler radar for physiological sensing

3.1 Signal theory

In this thesis, we have used a single-input single-output Doppler radar, and presumed

that we have a single moving reflection point. The baseband signals of the radar for

in-phase (I) channel and quadrature (Q) channel are:

BI(t) =VI +AB cos
(

4πd0

λ
+

4πx(t)
λ
−θ0 +∆φ(t)

)
,

BQ(t) =VQ +AB sin
(

4πd0

λ
+

4πx(t)
λ
−θ0 +∆φ(t)

)
,

(3.1)

where VI and VQ are DC-offset in I- and Q-channels, AB is the baseband amplitude, d0 is

the nominal distance of the subject, x(t) is the time varying displacement of the subject

(or chest wall movement in a cardiorespiratory monitoring case), λ is the wavelength

of the carrier, θ0 is the constant phase shift, and ∆φ(t) is the residual phase noise. The

initial phase angle at the beginning of the measurement is

θi =
4πd0

λ
−θ0. (3.2)

Thus, it is dependent on the nominal distance of the subject d0. With an ideal radar, when

the data is plotted in the IQ-plot, a radially moving target, such as human respiration,

forms an arc of a circle with the radius of AB centered in (VI, VQ). This is illustrated in

Fig. 3.1. [28]
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Figure 3.1: Breathing forms an arc of a circle in the IQ-plot. The radius of the circle is

AB, and the center of the circle is at (VI, VQ). The initial phase angle at the beginning of

the measurement is θi. We are interested at measuring the displacement angle θ(t)i at

each time instant ti, as it is proportional to the displacement x(ti).

In this thesis, the time varying displacement of the target is defined with the symbol

x(t). It results in the time varying displacement angle θ(t) in the radar baseband signals

BI and BQ.

θ(t) = ∆θ(t)+θi, (3.3)

∆θ(t) =
4πx(t)

λ
+∆φ(t). (3.4)

The effect of the phase noise φ(t) is decreased by the range correlation effect [45].

The received signal is a time-delayed version of the transmitted signal with the phase

modulation. Thus, the phase noise on the receiver signal is correlated with the phase

noise on the local oscillator. The amount of correlation is proportional to the range

between the radar and the target. Thus, the residual phase noise ∆φ(t) is small with short

detection ranges. The range correlation has a significant effect on the demodulation

sensitivity in radar physiological signal measurements [45, 92]. For simplicity, ∆φ(t) is

discarded in further analysis.

A term often referred to radar monitoring is the null-point problem. When initial

angle θ0 ≈ 0◦+ nπ, n ∈ Z, the arc is almost parallel to the Q-axis. This means that Q-
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3.2. Radar sensor architecture

channel data is considerably larger in amplitude than I-channel data. This is called the

null detection point problem in I-channel. According to (3.2), the initial angle depends

directly on the subject’s nominal distance. Thus, if the distance changes, the arc moves

to a different initial angle. This happens every time the subject moves or changes posi-

tion. With a single channel receiver, the null-point problem is crucial, but the quadrature

receiver is designed to overcome the problem [45]. However, another challenge arises:

how to combine the data in quadrature channels in the presence of DC-offset. This ques-

tion is answered in Chapter 5. A detailed explanation and simulations of the null-point

problem and its consequences can be found in [28] [45]. Another possibility to overcome

the null-point problem, besides the use of a quadrature receiver, is using douple-sideband

transmission and frequency tuning [93, 94]. However, this technique requires tuning the

intermediate frequency every time the subject moves.

3.2 Radar sensor architecture

The radar sensor hardware design is rather simple. Fig. 3.2 presents the block diagram of

the hardware components, and Fig. 3.3 shows the picture of the radar sensor used in the

latest Publications P2, P6, and P7. During the thesis process, some minor evolution steps

were performed to the hardware such as switching the analog logarithmic amplifier used

in Publication P4 to a lowpass filter and digital signal processing used in later studies. In

the future, the next prototype would be powered from a USB.

In this thesis, we have used commercial radar modules: MDU4220 [95] with the

transmitting frequencies of 10.587 GHz, 10.525 GHz, and 10.410 GHz (in Publications

P2, P3, and P5), and MDU1000 [96] with the transmitting frequency of 10.587 GHz

(in Publication P4). The resulting baseband signal was low-pass filtered to prevent an-

tialiasation. We have used the DC-coupling in the signal path. No separate analog DC-

removal was performed unlike several other studies in the field [97,98]. The radar signal

contains a large dynamic range: a large DC-level in combination with a small effec-

tive displacement signal. Thus, large amplification of the signal saturates the analog-to-

digital converter (ADC). If AC-coupling is used, a very low cut-off frequency is required.

This results in a high settling time. Several papers deal with the DC-level problem: Park
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Figure 3.2: The block diagram of the hardware setup used in the measurements. Tx and

Rx are transmitting and receiving antenna, LO is local oscillator, RF is radio frequency,

and IF is intermediate frequency. The power source and ground are not depicted.

et al. [97] designed a separate circuit with DA-converter to compensate the DC-level,

Gu et al. [98] demonstrated the effect of a wrongly designed high-pass filter, and Yavari

et al. [99] demonstrated that the problem can be overcome with a pulsed radar. Our ap-

proach, instead, was to use a commercial 24-bit ADC (developed by iCraft [100]) in this

thesis. In our experiments, the dynamic range of the ADC and radar data signal-to-noise

ratio (SNR) turned out to be adequate for direct digitalization without amplification. The

commercial ADC, however, presumably includes some pre-filtering, but the details are

unknown. In addition, we tend to keep the distance between the radar and the ADC short

to reduce noise coupling to the analog signal.

3.3 Data synchronization in sleep measurements

When developing novel sensors, the properties of the sensor under development need

to be compared to the golden standard measurement method. This sets the requirement

that the measurement data needs to be collected synchronously from both the new and

the standard sensor. There are multiple solutions to synchronize the data. Biancamed

solved the problem by connecting the radar sensor directly (calvanically) to the PSG

device [69]. This is practical if the selected PSG device is stationary; however, we

wanted to use a wearable device to allow the test patients to move freely during the
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Figure 3.3: The radar sensor attached in a stand. The two radar modules are attached

side by side, the amplification circuit is in the middle of the radars, and the ADC card is

above.

full night measurement. Singh et. al [101] reported on a rather complex system for the

synchronization. At first, the radar data was digitized with ADC, then processed digitally

and converted back to analog signal with a DA converter, and, finally, fed to an analog

input of the PSG device. Thus, there is some concern about real-time implementation

and latency.

Publication P6 describes the IR link that was used in our sleep measurements. The

properties of the synchronization link include the possibility of accurate, non-contact

synchronization with an unlimited amount of simultaneously used sensors. Moreover,

we provided the hardware and software of the system openly online to allow others to

use the system easily [102].

3.4 About signal penetration

The choice of carrier frequency is highly important. Most of the radar signal is reflected

from the patient’s skin [103]. Only a small part of the signal penetrates deeper into the

body, and an even smaller part of the penetrated signal is reflected back and recorded in
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Figure 3.4: Percentage of penetration and reflection of the radar signal power. α is the

attenuation constant; η is the intrinsic impedance of each material. Reprinted from [28,

p. 369].

the receiver antenna. The percentage of incident power reflected from and transmitted

through biological interfaces at 2.4 GHz is studied by Droitcour [28, p. 369] (see Fig.

3.4). However, both the RCS of the target and the level of the signal penetration are

dependent on the transmitting frequency. The RCS of human heartbeats and respiration

in the frequency range 500 MHz to 3 GHz is investigated by Aardal [104]. “On the other

hand, the heart-rate detection sensitivity is proportional to 2πxh/λ, which is, in turn,

proportional to the working frequency” [105] (xh is the chest wall displacement caused

by cardiac activity). The smaller the wavelength, the larger the resulting angle, so the

choosing of transmitting frequency is effectively a trade-off between signal penetration

into the body and sensitivity. If linear demodulation is used (discussed in Chapter 4),

Changzhi et al. [106] has demonstrated that an optimal carrier frequency exists for dif-

ferent physiological movement amplitudes. Moreover, if the radar antenna is in direct

contact with the body, the optimal frequency range for heartbeat measurements seems to

be between 2–3 GHz [107].

Good signal penetration is highly desirable, for example, when a radar signal is used

for providing a gating signal for medical imaging. Pfanner et al. [8] noted small time

shifts between the respiratory motion curves recorded with a radar sensor and the ones

recorded with respiration belts in their measurements. They used an 869 MHz transmit-

ting frequency and attached the antennas directly under supine patients. They concluded
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that a part of the radar signal is from internal organ motion, which would be slightly dif-

ferent from external respiratory motion. While more research is needed to actually prove

this, it provides a good example of the importance of the choosing of the transmitting

frequency and the resulting signal penetration depth.

3.5 Safety considerations of the radar sensor

In this thesis, commercial radar transceiver modules were used. Similar sensors are com-

monly used as motion detectors in automatic door openers or driver assistance systems.

The radiation power of the transmitter is 20 dBm or 100 mW EIRP (equivalent isotropic

radiated power) [95], which meets the European Standard EN 300 440. The standard

limits the transmitted power of a radar in the frequency range of 10.5 to 10.6 GHz to 500

mW EIRP [108].

During the patent measurements, the radar was placed at a distance of 0.4 to 2 meters

from the patient’s chest wall. Thus, none of the components are in direct electrical or

physical contact with the patient during the measurement. The operating voltage of the

sensor is low (5 V), thus, accidental contact with the electrical parts will cause no harm.

However, the radar sensor is covered with an enclosure also for aesthetic reasons. The

radar system used in this study is a prototype designed for scientific research. It is not

approved to meet the safety standards of medical devices.

Monitoring at the Peurunka rehabilitation center required a statement of the Ethics

Committee of Central Finland Hospital District, and thus, the statement was applied

and received in the meetings of the Ethics Committee on April 26th and August 16th

of 2011. In addition, a permission was applied and received from KELA for recording

rehabilitation patients in Peurunka [109].
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Chapter 4

Radar imbalance compensation

The I- and- Q channels of a radar can never be electrically exactly similar, which results

in nonidealities in real radars. These are called the amplitude imbalance AE and the

phase imbalance φE that exist between the I- and Q-channels. The imbalance is caused

by different component values in the two channels. In addition, the main reason the

imbalance values change over time is temperature change [110]. Thus, the baseband

signals presented in (3.1) become:

BI(t) =VI +AB cos
(

4πd0

λ
+

4πx(t)
λ
−θ0 +∆φ(t)

)
,

BQ(t) =VQ +ABAE sin
(

4πd0

λ
+

4πx(t)
λ
−θ0 +∆φ(t)+φE

) (4.1)

[28] [111]. Now in the IQ-plane, the data does not form an arc of the circle but an arc of

an ellipse. The imbalance values are known to depend also on environmental factors such

as temperature [110] and aging. Thus, it should not be presumed that once measured the

imbalance values will remain constant. Instead, a calibration step to measure imbalance

should be performed from time to time.

In addition to separate, high-quality RF components, also commercial radar mod-

ules can be used in physiological sensing applications. The popularity of radar sensors

in the anti-collision systems of cars and automatic doors has resulted in the availability

of several lower quality Doppler radar modules at a reasonable price. However, radar

sensors, for example, for automatic doors measure the presence or direction of move-

ment, and thus they are typically not optimized for accurate displacement measurement.
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Chapter 4. Radar imbalance compensation

This results in high imbalance values. In such cases, regular calibration steps are more

important.

4.1 The Gram-Schmidt procedure

To avoid signal distortion, the imbalance errors must be calculated and removed before

demodulation with the arctangent function (4.3). The known amplitude and phase im-

balances can be corrected using the Gram-Schmidt (GS) procedure:



BIort

BQort


=




1 0

− tanφE
1

AE cosφE







BI

BQ


 (4.2)

Basically, the GS procedure is a matrix multiplication.

To thoroughly understand how the imbalances are corrected with the GS procedure,

data before and after the GS procedure were drawn in the IQ-plot (see Fig. 4.1). The

figure contains simulated data with known imbalance values (shown in gray) forming an

ellipse. The amplitude imbalance was kept constant AE = 2, and the phase imbalance

varied φE = 10◦ to 60◦. The figure shows how individual data points move during the GS

to form a circle (shown in black). The data in the I-axis is left unchanged, while the data

in the Q-axis is changed. Basically, this means that the Q-channel parameters are forced

to fit the I-channel parameters. The figure also illustrates how the phase imbalance φE

results in the tilting of the ellipse in the IQ-plot.

4.2 The effect of imbalances

When the baseband signal with imbalances is demodulated with the arctangent function,

the output is

θ
′(t) = arctan

(
VQ +ABAE sin(θ(t)+φE)

VI +AB cos(θ(t))

)
. (4.3)

The arctangent function is discussed in detail in Chapter 5.2.1.

Thus, the phase error, εθ, can be defined as the difference between this phase and the

ideal phase

εθ = θ
′(t)−θ(t) (4.4)
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Figure 4.1: The known (or measured) imbalance values can be corrected with the GS

procedure. The ellipse is changed into a circle by keeping the I-axis values unchanged

and changing the Q-axis values according to the (4.2).

[28, p. 336]. And the resulting displacement error is thus

εx =
λ

4π
(θ′(t)−θ(t)). (4.5)

In the following, we show concretely what happens if the imbalance compensation

step is skipped. The amount of displacement error to the resulting signal due to a small

imbalance is calculated. Moreover, we discuss, what level of imbalance compensation

we should target. To answer these questions, we calculated the distortion for simu-

lated data with different imbalance values. The data with sinusoidal motion with 4 cm

displacement was generated. The arctanget function was used for combining the two

channels. In Fig. 4.2a, the amplitude imbalance was kept constant to see the effect of

only phase imbalance. Similarly in Fig. 4.2b, the effect of only amplitude imbalance is

shown, and in Fig. 4.2c, the effect of both amplitude and phase imbalance is shown. If

the imbalance compensation step is skipped, the signal will be distorted. From the sig-

nal processing point of view, this distortion is undesirable because it is highly nonlinear.

The magnitude of the distortion is different in different parts of the ellipse. For example,

it can be observed from Fig. 4.2b that an amplitude imbalance of 3 dB would result

in a displacement estimation of 3.43 cm. This corresponds to the 14% error gained in

Publication P1. Evidentially, the larger the imbalance values, the larger the distortion is.

The magnitude of imbalance values of commercial radar modules highly depend on

the manufacturer and on the module. For comparison, Innosent guarantees the maximum
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Figure 4.2: a) Effect of phase imbalance on displacement when there is no amplitude

imbalance present in the system, b) effect of amplitude imbalance on displacement when

there is no phase imbalance present in the system, and c) effect of amplitude imbalance

on displacement when a phase imbalance of 20◦ is present in the system. Reprinted with

permission, from Publication P1. ©2013 IEEE.

amplitude imbalance to be 6 dB and the maximum phase imbalance to be ±30◦. With

careful analog (chip)-design, the amplitude imbalance of ∼ 0.09− 0.17 dB (or 1.01 –

1.02) and phase imbalance of ∼ 1−2◦ are achievable [112].

It is clear that the imbalance error causes distortion in the signal amplitude. Thus,

the imbalance compensation is important in applications that require good displacement

accuracy. However, whether the imbalance affects respiration and heart rate estimation

as well has not been well studied. At first, it seems that changes in amplitude and signal

waveform would not affect frequency domain characteristics and rate estimation much.

However, the cardiac signal is superimposed on the respiration waveform. Thus, the

distortion of cardiac signal is different depending on the part of the respiration phase;

that is, the cardiac signal will be amplitude modulated by the respiration signal and its

harmonics. This is problematic because the challenge in the separation of the cardiac
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Figure 4.3: If the error in the imbalance estimation step is "sufficiently small" the re-

sulting displacement error εx is 4% or smaller.

and respiration signals is the respiration harmonics that fall into the same frequency

spectrum as the cardiac signal fundamental. How the imbalance error affects the rate

estimation should be studied further. Actually, such a study is currently in progress at

the University of Hawaii, Manoa.

If the imbalance estimate is not accurate, there will be some residual imbalance.

This could happen due to large noise in the signal or some systematic error in the used

imbalance estimation method, for example. It should also be noted that what is said

in this chapter about skipping the imbalance compensation also applies to the residual

imbalance.

In Publication P2, we defined that the error in estimating the imbalance values is

sufficiently small if the mean error ± quantiles lies within ±5% limits. Instead of tying

the sufficiently small error to a percentage value, it is more practical to define absolute

values for the sufficiently small error. In the simulations in Publication P2, we use

imbalance values of AE = 1.2 and φE = 20◦. Thus, a±5% residual error with these values

would mean a residual amplitude imbalance AEres between 0.94 and 1.06 (or ±0.5 dB)

and a residual phase imbalance φEres of ±1◦. The simulations in Fig. 4.3 show that with

this sufficiently small error in imbalance estimation, the displacement error εx remains

smaller than 4%.
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4.3 Imbalance estimation

The imbalance estimation can be divided into two parts: the generation of the calibration

signal, and the calculation of the imbalance values from the calibration signal. Table 4.1

summarizes the advantages and disadvantages of different imbalance estimation methods

reported in literature.

4.3.1 Generating the imbalance signal

The calibration signal can be measured in at least four ways. The fist method is to use

two signal generators with a slightly different frequency. One of the signal generators is

connected to bypass the local oscillator (LO), and the other is connected to the RF input

port. This method has been used, for example, by Droitcour [28, p. 154]. Bypassing the

LO and removing the antenna, however, requires hardware (HW) modifications, which

is not always practical. Park et al. [111] presented a method where external voltage

controllable phase shifters are connected between the antenna and the radar electronics.

In addition, a metal plate is placed in front of the antenna to a fixed point. The phase

shifters, thus, simulate a moving target with a constant velocity. This is a slightly easier

modification but still requires some HW changes. Thus, it is not easily performed on site

at home or in a hospital environment, but requires a laboratory setting. In general, the

requirement of HW modifications is not practical for commercial radar sensor modules.

A more practical approach is to use the motion of an actual, real target to generate

the test signal. One of the objectives of our work with imbalance compensation was

to use the breathing signal itself as the calibration signal. In detail, the patient would

be asked to take a deep breath in the beginning of the actual measurement to generate a

signal with the arc length large enough to be used for imbalance calibration. The moving

thorax wall is a highly complex target that cannot always be modeled as a point or plate

reflector. Moreover, the movement is slightly different from person to person and in

different poses. Thus, to thoroughly understand the imbalance compensation problem,

we constructed a more simplistic measurement setup. In Publications P1 and P2, a linear

mover and a milling machine, respectively, were used to move the target automatically.

The two measurement setups are shown in Fig. 4.4. The linear mover is smaller in size,
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4.3. Imbalance estimation

Table 4.1: Summary of the imbalance estimation methods

Method Advantages and disadvantages

Generating calibration signal

Two signal generators − Extensive HW modifications
− Laboratory equipments needed for HW modifications
− HW modifications might cause a change in imbalance

values

Voltage-controlled phase − Laboratory equipment needed for HW modifications
shifters − HW modifications might cause a change in imbalance

values

Automatically controlled − A complex setup needed for automated target
target moving in front + No HW modifications
of the antenna

A free-moving target + Enables easy setup
moving in front of + No HW modifications
the antenna − Target movement harder to control and assure

radial movement
− Ellipse fitting needed

Calculating imbalance values

Time/frequency domain methods
Extrema detection − Only extrema values used in calculation

⇒ sensitive to noise
− Full ellipse is needed
− A target moving with constantly velocity is required

Regression and FFT + All the data points contribute to the calculation
phase/cross correlation − A target moving with constantly velocity is required

+ Robust to noise

Ellipse fitting
with algebraic fitting + All the data points contribute to the calculation

− Results in biased estimate
⇒ systematic error
− Large noise decreases the performance

with geometric fitting + All the data points contribute to the calculation
+ Robust to noise
+ Invariant to translations and rotations of the data

HW stands for hardware, FFT stands for fast Fourier transform.
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Figure 4.4: a) A linear mover was used in Publication P1 and b) a CNN milling machine

in Publication P2 to move the target automatically.

so it’s easier to decrease the reflections from other moving parts than the target such as

the support. These need to be hidden behind the target or covered with absorbers. Thus,

using a linear mover is a more elegant method. However, the milling machine was used

in Publication P2 because it was readily available at the laboratory.

In the next step, in calculating imbalance values, some of the methods require a

calibration signal with a constant frequency. This means that the velocity of the target is

constant. The use of two signal generators or voltage-controlled phase shifters simulates

a target with a constant velocity. Similarly, a linear mover and a milling machine can be

programmed to move with a constant velocity. In Publication P1, the target was moved

sinusoidally, whereas in Publications P2 and P3, the target was moved with a constant

velocity. With a free-moving target, however, it is very challenging to generate constant

velocity.

Nevertheless, a free-moving target was successfully used for generating the calibra-

tion signal [113]. A pendulum composed of a metal sphere fixed to a ceiling with a

nonreflecting line was used. Thus, the movement of the target was sinusoidal. This

setup would be easily exploitable in a hospital or home setting. Our work is a first time

that a free-moving target is demonstrated to work for generating calibration signal [113].

Similar results were gained later by Pieraccini et al. [114]. To the best of our knowledge,

use of a breathing subject as a radar target for generating the calibration signal has not

been reported. However, the drawback with a free-moving target is the inability to as-
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sure that the movement is parallel to the line between the radar and the target (i.e., radial

movement), and that a certain side of the target is illuminated by the radar during the

whole measurement. Changes in these cause signal distortion from an ellipse (in the

IQ-plot).

4.3.2 Calculating imbalance values

Independent of the measurement method the calibration signal is generated with, the

imbalance values can be calculated with several methods. However, there are some

limitations. The time domain or the frequency domain methods require at least one full

ellipse in the IQ-plot. More importantly, these two methods require the target to move

with a constant velocity.

In the time domain method [115] (or the extrema detection method), the minima

and maxima points are detected from I- and Q-channel data. The ratio of peak-to-peak

amplitudes of I- and Q-channels defines the amplitude error. The deviation from 90◦ in

the phase delay between I- and Q-channel extrema define the phase error. The method

is presented visually in Fig. 4.5. In the example, only one of each extremum values is

used to calculate the estimates, but several peaks could be used as well. The method is

easy to understand. However, in the time domain method, only the extrema values of the

signal have an effect on the calculation. This makes the method sensitive to noise. In

addition, the data has to cover both the minimum and maximum of both the channels.

If the initial angle may vary, this is gained if the minimum movement amplitude of the

target is at least λ/2; that is, the data forms a full ellipse in the IQ-plot. It is good to note,

that for correct phase delay calculation, the target velocity should be constant so that the

waveforms in I- and Q-channels are sinusoidal.

Another way of calculating the imbalance values is to use regression for amplitude

imbalance and some frequency domain method for phase imbalance calculation. First,

the phase imbalance was calculated from FFT phase response. Again, a constant target

velocity is needed so that the waveforms in I- and Q-channels are sinusoidal. For the

calculation of the amplitude imbalance, the data of the channel that is further behind

are shifted to the left in order to force the same phase angle in both channels. The

amount of the shift is the amount of the phase difference, that is, φE + 90◦. Then, the
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Figure 4.5: Minimum and maximum points of I- and Q-channels define the imbalance

values. The time domain method is easily understandable. Here, the measured amplitude

imbalance AE = 4.7, and phase imbalance φE = 18.5◦. Reprinted with permission, from

[115]. ©2007 IEEE.

amplitude error between the channels is calculated by linear regression. This method

was used in Publication P3. Cross-correlation of the I- and Q-channel signals was used

by Droitcour [28, p. 154, 349] to determine the phase difference. This method is very

close to FFT phase response method.

In the next section, we discuss in detail the third option for imbalance calculation,

the imbalance calculation with ellipse fitting methods.

4.4 Imbalance estimation with ellipse fitting methods

The method exploits the IQ-plot. If both channels are in perfect balance, a radially

moving target results in a circle in the IQ-plot. Any imbalance in the channels results

in an ellipse instead, as is illustrated in Fig. 4.6 (in the right-hand side). The left-hand

side of Fig. 4.6 shows the data with different imbalance values in the time domain. The

idea with the ellipse fitting method is, based on the measured data, to find the ellipse that

best fits the measured data. Thus, we have a classical estimation problem of finding the

ellipse parameters. From the ellipse parameters, the calculation of the imbalance values

is straightforward.

34



4.4. Imbalance estimation with ellipse fitting methods

Figure 4.6: a) Time-domain and b) IQ-plots for simulated baseband data with varying

imbalance values. In the upper row, the amplitude imbalance AE is varied, while phase

imbalance φE was zero. In the lower row, the phase imbalance φE is varied, while

the amplitude imbalance AE was one. The channel imbalance is seen in IQ-plot as an

ellipse instead of a the circle. The ellipse fitting imbalance compensation uses this fact

and transforms the ellipse into a circle. Reprinted with permission, from Publication P1.

©2013 IEEE.

An advantage in ellipse fitting methods is that there are no strict requirements on

the distribution of data along the arc. A target with a constant velocity would results in

evenly distributed data along the arc. However, the data distribution is not critical, and

a target moving sinusoidally is allowed as well. To be precise, though, the effect of data

distribution on accuracy of the ellipse fitting has not been studied in this thesis. How-

ever, the calibration with a sinusoidally (freely) moving target with ellipse fitting was

demonstrated in [113]. This is an important advantage, because the time and frequency

domain methods require a target moving at a constant velocity which is hard to generate

in practice.

To the best of our knowledge, the ellipse fitting method was used for the first time
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Figure 4.7: The LM algorithm is much more robust to noise than the algebraic method.

In addition, the algebraic method can result in biased estimates. Reprinted with permis-

sion, from Publication P2. ©2014 IEEE.

in Publication P1 for the imbalance compensation problem in a radar monitoring ap-

plication. It has also been considered later by Sachs et al. for UWB radars, but not

published [116]. Independent from our work, Hu et al. [44] published very recently an

imbalance estimation method that estimates ellipse parameters visually from the IQ-plot.

Then, the parameters are used for calculating the imbalance factors. In Publication P1, a

so-called algebraic method was used as an ellipse fitting algorithm. A more sophisticated

ellipse fitting algorithm, the Levenberg-Marquardt (LM) algorithm, is presented for this

application in Publication P2. Also in Publication P2, the main factors affecting estima-

tion accuracy are discussed, and the performances of the two ellipse fitting methods are

compared.

The accuracy of the imbalance estimation depends on three factors: 1) noise, 2) arc

length, and 3) initial angle. The problem was studied both with simulations and with real

data measurements. The three main result of the study are the following: 1) ellipse fitting

is a feasible method for imbalance calculation, 2) the algebraic method can sometimes

result in biased estimates, and 3) the LM algorithm is robust to noise. The last two effects

are visualized in Fig. 4.7.
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4.5 Results and discussion on imbalance estimation

To summarize, what is the best method for imbalance calibration? The only practical

method for data generation that could be performed in any environment and by a per-

son who is not specialized in radar or who has little technical knowledge is to use a

free-moving target. In that case, the ellipse fitting is needed for the imbalance value

calculation.

On the other hand, if it is possible to generate calibration data with a target moving at

a constant velocity, or to simulate such, either the ellipse fitting with the LM algorithm or

regression and FFT/cross correlation may be used. To the best of our knowledge, there

has not been a study to compare these two methods. Moreover, in the field of commu-

nication receivers, there might be other time domain methods for imbalance calculation.

This field is not thoroughly studied in this thesis.

The ellipse fitting method is useful in a wide range of transmitting frequencies as long

as the arc length is adequate. As shown in Publication P2, this minimum arc length is

about 40%. For small carrier frequencies, this inherently means that larger displacement

is needed (as explained in detail in Chapter 3.4).
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Chapter 5

Quadrature signal demodulation

The two channels of the quadrature radar need to either be combined to form one di-

mensional data or processed together as components in a complex plane. Notable ex-

ceptions to that are using radar as a simple intruder or presence sensor and movement

or artifact detection. As an example, de Chazal et al. [69, 71] detected movement arti-

facts directly from I- and Q-channel data without combining them. They calculated the

signal power in the frequency band of movements (0.05 to 2 Hz) for each channel sepa-

rately and detected the epochs when the patient was moving [69]. The movement epochs

were then discarded from further analysis. However, for acquiring detailed information

from the signal, the quadrature channels need to be combined or processed in a complex

plane. Moreover, when comparing radar signals to conventionally measured reference

cardiorespiratory signals in the time domain, the comparison is perhaps more transparent

with one combined radar channel than with two dependent channels or with one com-

plex signal channel. Both the terms channel combining and quadrature demodulation

have been used in literature to mean the same preprocessing step.

There are two main factors that affect the selection of a channel combining method:

the magnitude of the target displacement, and the type of information required for the

application in question. If the measured displacement x(t) is small enough, the arc in

the IQ-plot (or in the complex plane) is small, and it can be modelled as a straight line –

instead of an arc. This simplifies the calculation and is called the small angle approxima-

tion. The requirement for the approximation to be valid is that the displacement is small
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compared to the wavelength, that is x(t)� λ. It should be noted that the largest dis-

placement that is acquired defines whether the small angle approximation is valid or not.

In the case of cardiac and respiratory monitoring, the largest displacement is typically

caused either by respiration or by movement artifacts.

In addition, the channel combining method should be selected based on the informa-

tion needed. In applications that measure rate-related information, the absolute value of

signal amplitude is not of vital importance – as long as the signal-to-noise ratio (SNR) is

high enough. By rate-related information, we mean parameters that measure frequency

domain characteristics. A few examples of such rate-related parameters are heart rate,

respiration rate, and heart rate variability (HRV) parameters, as well as all the param-

eters derived from these parameters. However, in some applications, the signal ampli-

tude change is the most important feature measured. Examples of such applications are

respiration depth measurement for sleep apnea detection and measuring a respiratory

amplitude gating signal during medical imaging. In these applications, the accuracy

requirement for the displacement amplitude is very different compared to one in ap-

plications that measure rate. Now, the channel selection and the principal component

analysis (PCA) methods lose the absolute displacement information. To be precise, the

magnitude and the sign of the displacement is lost. This fact is discussed in Chapter 5.1.

Thus, channel combining should be considered based on what information is needed:

the displacement information versus the rate-related information.

Table 5.1 summarizes the advantages and disadvantages of the different methods for

channel combining. Each point is revisited in the following as each method is presented

in detail.

5.1 Methods for small displacement

5.1.1 Channel selection

The channel selection method proposed by Droitcour [28, p. 272] basically means that

the channel with the highest root-mean-square (RMS) amplitude is chosen. Obviously,

the method breaks down with large displacements (i.e., if the small angle approximation
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Table 5.1: Summary of channel combining methods

Advantages and disadvantages
Method Abs.

λ vs. xmax values of x Other pros and cons

Channel selection λ� xmax No − distortion, if θi close to 45◦+n ·90◦

− distance-dependent

− direction of the displacement lost

+ easy to compute

PCA λ� xmax No − distance-dependent

− direction of the displacement lost

+ good for rate estimation

+ easy to compute

Arctangent demodulation

Park’s method λ < 10 xmax Yes − inaccurate with small displacements

− sensitive to respiration waveform

Gradient decent λ < 10 xmax Yes − inaccurate with small displacements

Levenberg-Marquardt λ < 10 xmax Yes − inaccurate with small displacements

+ robust to different respiration

waveforms

L1-norm λ < 10 xmax Yes − inaccurate with small displacements

+ robust to outliers

Complex spectrum est. λ� xmax No + good for rate estimation

Here λ is the wavelength of the carrier, x is the target displacement, xmax is the maximum target

displacement, and θi is the initial displacement angle. Abs. stands for absolute value. If the

carrier wavelength λ = 10xmax, the resulting arc length in the IQ-plot would be 2π/5 or 20% of

the full circle. This is a rough approximation of the minimum arc length needed for arctangent

demodulation. However, the minimum depends on the data noise level and the center estimation

method.
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is not valid), as the resulting signal will be distorted. In addition, the initial angle affects

the amplitude of the resulting signal. Around initial angles θi = 45◦+n ·90◦, n ∈ Z, the

amplitude of the resulting signal is smaller. Moreover, with displacements x(t) ≥ λ/2

(arc length N ≥ 100% of the full circle), the channel is selected arbitrarily. However, if

the displacement is small, the method is feasible for rate estimations.

The method is currently carelessly being used by Matsui et al. with a 24 GHz [117].

Whether the channel selection method can be used to measure physiological signals

with such a high frequency radar is highly questionable. The chest wall motion due to

the respiration causes arc lengths N > 180◦, and thus, distortion in the data is inevitable.

In addition, the method is used in [118] but with 5.8 GHz transmitting frequency.

Droitcour [28, p. 272-273] also studies two other similar channel combining meth-

ods: equal ratio combining (ERC) and maximal ratio combining (MRC). In ERC, the

two channels are summed together after ensuring that they are in phase. In MRC, the

two channels are first weighted with their RMS amplitude and then summed together.

Again, the channels being in phase needs to be ensured in the beginning. However,

these methods have not been widely reported in the literature by others. In addition, the

performance of the methods is reported to be modest [28].

5.1.2 Principal component analysis

Principal component analysis (PCA) (or principal component combining) is used for

finding the principal component of the two-dimensional data. The deviation (variance) is

larger along the tangent of the arc than in other directions. Thus, the principal component

is parallel to the tangent of the arc. Fig. 5.1 explains the method. At first, the DC offset

is removed, and the principal component is found. Then, the data is rotated along this

principal component (or I-axis). The method was first proposed by Droitcour [28] for

microwave monitoring and studied by Park et al. [119]. The method is also called linear

demodulation.

The channel selection and PCA methods lose the absolute value of displacement

information (the motion amplitude) [13]. The problem is illustrated in Fig. 5.2. In Fig.

5.2a, two targets T1 and T2 with a different radar cross section (RCS) are moving with

the same displacement x. The target T2 with a larger RCS results in a larger amplitude
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Figure 5.1: The PCA finds the component with the largest variance in the data. Then,

the data is rotated in the direction of the first principal component (PC1).

signal (a larger radius AB) in the quadrature channels; however, both targets result in the

same displacement angle θ. Fig. 5.2b shows the opposite. The two targets can result

in equal amplitude signal in quadrature channels, even though they are moving with

different displacements. For simplicity, the same DC-level for all the targets is used in

the simulated plots. Moreover, the channel selection and PCA methods lose also the

direction of the radial displacement i.e., whether the target is approaching to or moving

further away from the radar. In respiration monitoring, this means that an inspiration can

not be distinguished from an expiration. Only with methods that take the arc curvature

into account, the correct displacement angle θ can be determined. And consequently, the

correct absolute displacement x can be gained.

Both of these methods are distance-dependent, meaning that when the distance be-

tween the radar and the target changes, the selected channel or the PC needs to be ad-

justed accordingly. Otherwise, the null-point problem will emerge.

5.2 Methods for large displacement

5.2.1 Arctangent demodulation

If the small-angle approximation is not valid, i.e., the arc length is large, modeling the

arc as a straight line results in clear distortion in the signal. More sophisticated methods
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Figure 5.2: With the methods that don’t take into account the curvature of the arc, the

absolute value displacement information is lost. a) Two targets with different RCS are

moving with an equal displacement. However, the resulting signals in I- and Q-channels

are different in amplitude. b) shows the opposite: the amplitudes in I- and Q-channels

are equal, but the two targets are moving with different displacement.

for channel combining are needed. The first method is arctangent demodulation:

θ
′(t) = arctan

(
BQ

BI

)
= arctan

(
VQ +ABAE sin(θ(t)+φE)

VI +AB cos(θ(t))

)
. (5.1)

When we calibrate the channel imbalance (and expect that there is no residual imbalance)

and remove the DC-level, the equation simplifies to:

θ
′(t) = arctan

(
AB sin(θ(t))
AB cos(θ(t))

)
. (5.2)

The arctangent demodulation is also called nonlinear demodulation and direct phase

demodulation in the literature. In case that the small-angle approximation is not valid,

the arctangent demodulation leads to accurate results without distortion, provided that

the nonidealities are known and compensated for. The performance of the PCA (the

linear demodulation) and the nonlinear demodulation for data with different arc lengths

are compared in Fig. 5.3. It clearly shows how, the linear demodulation is better than

the nonlinear for short arc length. However, the nonlinear demodulation becomes better

at arc lengths 13% or larger.

The estimation and compensation of amplitude and phase imbalance were discussed

previously in Chapter 4. In addition, DC offset needs to be estimated. This can be
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Figure 5.3: Performance of the nonlinear and the linear demodulation methods. In the

simulation, the Park’s method was used for the center estimation, and the SNR was 37

dB. θm/(2π) is the arc length. Reprinted, from [119].

performed by using the fact that the data forms an arc in the IQ-plot. There are several

methods for center estimation, which are discussed next in Chapter 5.2.2.

In addition, the center should be assumed to stay the same during the whole mea-

surement phase. “...the DC offset is not only produced by the electronic circuit, but

also by the unmodulated reflected signal, i.e., signal reflected from stationary objects

and other parts of the human body rather than the moving chest wall. Therefore, the

DC offset changes as the environment changes and needs to be calibrated when it is

changed” [120, p. 85]. This means that in real life, the arctangent method is not in-

dependent of distance changes either. Based on our measurements, especially the ones

performed in Publication P7, the DC offset needs to be calibrated constantly during run

time.

There is some doubt that the center of the respiratory and cardiac activity would not

be the same [121]. This is also perceivable, as a smaller portion of the chest is moving

due to the cardiac activity than due to the respiratory activity. However, by estimating

the center of cardiorespiratory activity, we mean estimating the one caused mainly by

respiration activity. This challenge is discussed more in Publication P7.

45



Chapter 5. Quadrature signal demodulation

5.2.2 Estimating the center of the circle

Fitting circle parameters to the data is a classical problem in parameter estimation liter-

ature, thus, it’s also a well-studied field. Park et al. [115] presented the first method for

center estimation in radar monitoring. The method is calculated as follows [119]: The

data are first multiplied by the transpose of the matrix of eigenvectors of the covariance

matrix VVV T to rotate the arc. Now, the arc is orthogonal to the Q-axis, and the center is on

the I-axis. The described method is close to the PCA method (see Chapter 5.1.2). After

rotation, the heuristic estimate for the circle center is (k, 0), where k is:

k̂(i, j) =
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∣∣∣∣∣∣∣
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


BI( j)

BQ( j)




∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

2(BI(i)−BI( j))
,

k̂ = median
i 6= j

{k̂(i, j)},

(5.3)

where BI(i) and BQ(i) are the radar I- and Q-channel baseband signal in time instant

t = i, respectively. The equation for k is presented here because the calculation of k is

hard to find in literature. It is, however, presented in the unpublished paper [119]. The

center of the unrotated data is obtained with the inverse transform by multiplying (k, 0)

with VVV−1.

The method in Eq.(5.3) is not commonly used in circle estimation literature. After

reviewing the literature of the traditional methods for approaching the center estima-

tion problem, we proposed the LM algorithm to be used in radar monitoring. Chernov

et al. [122, 123] has published several detailed and easy-to-read studies on the center

estimation problem with emphasis on practical applications. The LM algorithm is a

modification of the Gauss-Newton method. The least squares fit minimizes the mean

square distance from the fitting curve to the data points. The objective function is:

F =
n

∑
i=1

d2
i , (5.4)

where di is the Euclidian distance (or L2-norm) from the point (xi, yi) to the fitting circle.

di =
√
(Ii−a)2 +(Qi−b)2− r a,b,r ∈ R (5.5)
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5.2. Methods for large displacement

(a,b) is the center, and r is the radius of the fitting circle. The distance is defined so that

the distance is negative to the points inside the fitting circle and positive to the points

outside the fitting circle.

Another algorithm, the gradient decent algorithm, is also very close to the LM algo-

rithm. It has been successfully used by Lv et al. [124, 125] to minimize (5.5).

In Publication P3, we compared the performance of the first method (5.3), which we

call the Park’s method, and the LM algorithm for center estimation in radar monitoring

application. The main result of the paper shows that the Park’s method suffers from a

systematic error, if the breathing waveform is not single-tone sinusoidal. This is illus-

trated in Fig. 5.4. This is an important drawback in monitoring physiological signals

because respiration waveform is typically not a single tone. The respiration signal wave-

form is revisited in Chapter 6.2. In addition, in Publication P3, we show that the LM

algorithm is also computationally less complex (i.e., faster). With the Park’s method, the

computation time increases quadratically, while with the LM algorithm, the computation

time is linear when the sample size increases.

Recently an L1-norm-based method was presented [126]. The L1-norm (or Manhat-

tan distance) is another distance metric. The distance between two points is the sum of

the absolute differences of their Cartesian coordinates. “The L1-norm is commonly used

for data sets which contain outliers or wild-points, as the outliers do not have a signif-

icant effect upon the best L1 approximation [127].” In addition in [126], the method is

compared in performance to the L2-norm-based method proposed in (5.6). It is stated

that the L1-norm-based fitting problem is well-posed and can be solved in polynomial

time. On the other hand, the original form in (5.5) is said to be “nonconvex and cannot be

solved effectively. The state-of-the-art method for this problem is to relax the calculation

of residual di to:

di = (Ii−a)2 +(Qi−b)2− r2.′′ (5.6)

[126] However, due to the recent advances in the center fitting with the L2-norm, it is

actually shown to be effective [128] and computationally fast. Unfortunately, for some

reason, the data used to compare the two methods in [126] does not seem to be the same

for both methods. Obviously, the performance comparison of any two methods is fair

only if both the algorithms are run with the same data. This does not seem to be the
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Figure 5.4: Performance comparison of the Park’s method and the LM algorithm. a)

Simulated respiration test signal that is not single-tone sinusoidal. b) The circles esti-

mated with the two methods (in red and black) and the original circle (in blue). The

Park’s method (in black) suffers from a systematic error. c) The effect of error in the

center estimation step to the resulting demodulated data. Reprinted with permission,

from Publication P3. ©2012 IEEE.

case in [126]. Thus, it remains to be shown that the method is actually more sensitive to

outliers.

Another question is whether the radar data is keen to large single outliers. The dom-

inating noise sources in radar physiological sensing are reported to be thermal noise and

flicker noise in the receiver chain [129,130]. Thus, an assumption of Gaussian noise dis-

tribution should be more reasonable. In addition, the L2-norm-based method is known

to perform well under the assumption that the noise has Gaussian distribution [123].

However, any artifacts, such as movements of limbs that are superimposed to the radar

48



5.2. Methods for large displacement

signal, will cause large outliers. Such outliers were seen in real data in Publication P7,

and they, indeed, caused significant challenges to signal processing. Detailed examples

are presented in Publication P7.

Very recently, the performance of the LM algorithm that was published in Publi-

cation P3 was compared to three other methods [16]. The other methods were 1) the

Park’s method (or linear demodulation as named by the authors; this should not be con-

fused with the PCA method in Chapter 5.1.2, which is usually the method referred as

linear demodulation), 2) the least squares (LS) method, and 3) the compressed sensing

(CS) method (the same as the L1-norm-based method). The comparison was performed

in terms of accuracy and computational complexity. The accuracy was quantified with

the sum of the squared error (SSE) values, or to be precise, with the mean squared er-

ror (MSE) values as the SSE expression was divided by N, the number of data samples.

They found that “the SSE values verify that the LM method has the best accuracy,” while

the accuracy of the CS method is very close. This is an important acknowledgment from

an independent and leading team in the field. Moreover, it is good to know that the

method seems to work in practice in a rather different application. The paper studies

the radar monitoring for structural health monitoring of bridges and other civil infras-

tructures. The purpose is to implement the center estimation methods in wireless sensor

networks (WSN). Also in Publication P7, it was demonstrated that the LM algorithm

works with real data. The study consisted of whole-night recordings with three patients

in an uncontrolled environment. However, the results of Publication P7 are revisited in

Chapter 6.1. The paper [16] raises the concern of a slow convergence of the LM al-

gorithm, which is an important issue. However, there may be some differences in the

implementation of the LM algorithm. In [16], the LM algorithm converges with around

775 iterations. Based on a couple of runs with real respiration data, our implementation

of the LM algorithm converges in approximately 7 iterations (mean = 6.7 iterations; std

= 1.1 iterations). Moreover, according to our experience, if the LM algorithm does not

converge in roughly 20 iterations, it will not produce good results.

Noguchi et al. [131] also published notably similar results as the ones in Publication

P3 when comparing phase estimation methods a year later, in 2013. They compared

the performance of five different center estimation methods for the respiration measure-
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ment, namely: signal mean, least squares, Hough transformation, particle filter, and di-

rect phase estimation based on a difference vector. They concluded that the least squares

method is the best. However, the paper seems to contain major errors concerning in-

terpretation of the results. They measured the goodness of the algorithm by calculating

the correlation coefficient between the radar sensor data and the reference sensor data.

Based on the presented results, the correlation coefficient values seem to be fully domi-

nated by the signal discontinuities. Thus, no real conclusions can be made based on the

paper. These discontinuities are discussed in detail in the next Section.

5.2.3 Discontinuities

After the center of the circle is estimated with one of the proposed manners (5.3 - 5.6

or with others), the center is removed, and the arctangent is calculated with (5.2). The

arctangent is defined only in the range
]
−π

2 ,
π

2

[
. Thus, if there are some points outside

this range, that is, the I-channel data has negative values, discontinuities may occur in

the resulting signal [13, 124, 132]. This problem is illustrated in Fig. 5.5. In Case I,

a small-amplitude signal is correctly demodulated. However, if the initial angle θi is

close to π

2 (or −π

2 ), also a small-amplitude signal will face discontinuities in arctangent

demodulation (Case II). With a large-amplitude signal (Apeak-to-peak > π) in Case III, the

discontinuities are inevitable.

Our approach to solve the problem is to use Matlab functions atan2 for arctangent,

and unwrap to find and correct the discontinuities. Atan2 determines first which of the

four quadrants of the circle the point lies on and returns the angle in the closed interval

[−π,π]. With large noise (small SNR), however, this unwrapping approach is prone to

errors [13]. However, our simulation results show that this would happen only with very

large noise values. We generated a sinusoidal movement with amplitude of π

2 + 1 and

added varying noise levels. The standard deviation of the noise was varied between 10%

and 30% compared to the signal amplitude AB. Fig. 5.6 shows the resulting demodulated

signals for different combinations of atan and unwrapping functions. The plain atan

function fails to resolve the original signal, but adding the unwrap function solves the

problem with small noise values. The combination of atan2 and unwrap -functions most

often do the job with a noise level of s = 30% or smaller. The simulations were performed
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5.2. Methods for large displacement

Figure 5.5: a) Desired demodulation result and b) the actual demodulation result with

arctangent function. Case I: a small-amplitude signal is correctly demodulated, if the

initial angle θi is close to zero. Case II: discontinuities are seen in a small-amplitude

signal, if the initial angle θi is close to π

2 . Case III: discontinuities will be faced with a

large-amplitude signal. Reprinted with permission, from [13]. ©2014 IEEE.
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Figure 5.6: Unwrapping works nicely as long as the noise is less than 30 %.

without filtering, which would have increased the SNR value.

In their recent paper, Wang et al. [13] proposes an extended differentiate and cross-

multiply (DACM) algorithm to overcome this problem. It is based on calculating the

derivative of the arctangent function instead of the direct arctangent, and then, calculat-

ing the integral by accumulation. The method has been proven to work in distinct ap-

plications: detecting human cardiac activity [124, 132], detecting human walking back

51



Chapter 5. Quadrature signal demodulation

and forth [124], and a vibration sensor [13]. However, as they state themselves [13, p.

147], the method is sensitive to high frequency noise. This was the reason to develop the

algorithm in the first place. Thus, it remains to be shown that the method would actually

perform better than the unwrapping approach with very noisy data.

5.3 Complex signal interpretation

One effective option is to consider radar data as being complex-valued, and use complex-

valued methods to analyze it. In this case, the I-channel data is considered as the real

part, and the Q-channel data as the imaginary part. Thus, the radar baseband signal

becomes

BI(t) = cos
(

4πmsin(ωt)
λ

+θi +∆φ(t)
)
= Re(e j(4πmsin(ωt)/λ)e j(θi+∆φ(t))),

BQ(t) = sin
(

4πmsin(ωt)
λ

+θi +∆φ(t)
)
= Im(e j(4πmsin(ωt)/λ)e j(θi+∆φ(t))).

(5.7)

Now any complex-valued spectral estimation technique can be used to resolve the rate-

related parameters. Aho compared several spectral estimation techniques (periodogram,

Capon, and fast recursive Capon estimation) and time-frequency analysis techniques

(short-time Fourier transform, and Wigner-Ville distribution) in his MSc. thesis [34].

Changzi Li et al. succesfully used complex-valued FFT to derive heart and respi-

ration rate from four sides of a human body (front, back, and sides) [105, 120] with a

rather small carrier frequency (5.8 GHz) and to separate random body movements from

cardiorespiratory activity seen in different sides of a body [50]. However, it should be

noted that using the complex-valued FFT (instead of the real-valued FFT) does not elimi-

nate harmonic and intermodulation effects at high carrier frequency [50]. Thus with high

carrier frequency, the arctangent modulation and center estimation is the only option. On

the other hand, complex-valued FFT will eliminate the null-point problem. In addition,

DC offset is not a problem because it only contributes to the DC-term of B(t). There-

fore, the existence of DC offset does not affect obtaining the frequency of the desired

signal components [120, p. 82]. However, if the angular information of the complex

data is required, meaning that if the displacement signal in time domain is needed, then

the arctangent demodulation and center estimation are required.
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In addition to spectral estimation methods, several other complex-valued methods

could be useful for analyzing physiological radar data. Some of these can be used with

high carrier frequency as well, without harmonic and intermodulation effects. For this

reason, the complex signal interpretation is not discussed in Chapter 5.1 as the methods

that can be used only for small displacement. Currently, this track of using complex-

valued methods for radar monitoring of physiological signals is mostly unstudied. We

have applied complex-valued ICA for radar data in Publication P5. This will be dis-

cussed in Chapter 6.3.

5.4 Results and discussion on channel combining

There are two main factors that define the most suitable method for demodulating quadra-

ture radar channels: the radar carrier frequency, and the type of information needed for

the application. For applications that use rate-related parameters and a small radar car-

rier frequency, the PCA or the complex-valued spectral estimation methods are good

methods. They do not require high computational costs. These methods, however, are

restricted to low carrier frequency (the small angle approximation should be valid).

For applications in which the accurate displacement information or high carrier fre-

quency is needed, arctangent demodulation together with the LM center estimation

method provide a state-of-the-art method. This was proven with theoretical simula-

tions, short-time real data measurements in an office environment (emulations), and

whole-night respiration measurements with three patients in an uncontrolled environ-

ment. More studies in variable real-life environments are needed, however, to ensure

the reliability in varying conditions and in practical applications. In environments in

which large outliers are present, the L1-norm-based method instead of the LM algorithm

might result in more robust results in center estimation. However, to prove this, new

measurements are needed.
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Chapter 6

Analyzing cardiorespiratory radar data

The respiration monitoring during sleep is one of the main application areas of this thesis.

It is also one of the first commercial applications for cardiorespiratory radar monitoring.

The main results of sleep-time respiration measurements presented in Publication P7 are

discussed in this chapter. In addition, the separation of the cardiac and the respiratory

components is discussed. A common approach for separating the cardiac and the respi-

ratory signals is filtering. In a resting patient, the fundamental frequency of respiration is

typically between 0.13 – 0.4 Hz (8 – 24 breaths per minute) [28, p. 82] while the cardiac

fundamental component is between 0.8 – 1.5 Hz (50 – 90 beats per minute). This leads

to the conclusion that the cardiac and the respiratory components of the radar signal can

easily be separated by filtering. However, it is not that simple. Although the funda-

mental frequencies of the cardiac and the respiration signals are in different frequency

bands, the harmonics of the respiration signal fall in to the same frequency band with the

cardiac fundamental [133].

6.1 Sleep-time respiration monitoring

The state-of-the-art research in the area of sleep-time respiration monitoring with radar

sensor has been performed by the ResMed team (earlier BiancaMed). In recent years,

extensive studies have been made by ResMed for developing radar measurement for

sleep monitoring (for a list of the main results, see Chapter 2.3). However, some different
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design choices can be pointed out that make our approaches different from each others:

1. ResMed places the sensor on the bedside table [69, 72, 118]. For detailed results,

the device bedside location is probably not optimal because radar is sensitive to

motion radial to the transceiver. When attached on the ceiling, the radar signal

is reflected from the whole trunk area of a supine patient. In addition, from this

position, the separation of the chest and the abdomen activity could improve dif-

ferentiation of apnea types. Thus, we chose to attach the radar to the ceiling in

Publications P6 and P7. However, the placement on the bedside table might have

been chosen due to easier installation compared to the placement on the ceiling.

On the other hand, on the ceiling, the device is out of the field of view and out of

the way. This is an advantage, especially in the hospital.

2. ResMed uses pulsed-Doppler radar to limit the range of the transmitted signal to

a maximum of 2.5 meters [69]. Pulsed-Doppler radar can determine the range

to the target by measuring the time of flight (TOF) of the reflected pulse, and it

uses the Doppler effect to determine the target’s displacement. This is a good idea

for reducing artifacts from other people around the test patient, but for early state

tests, CW radar is adequate.

3. ResMed connects the radar sensor directly to the PSG device [71], thus, there is no

need for data synchronization. This, however, limits the amount of radar channels

to the number of available PSG channels. In commercial devices, there might

not be so many free channels. The synchronization system used in this thesis is

discussed in section 3.3.

4. The recent publications by BiancaMed uses a considerably large group of patients:

in [69], n = 113; in [71], n = 103; and in [70], n = 74. Compared to our patient

group in Publication P7 (n = 3), ResMed has published nice quantitative studies.

In Publication P7, the functionality of the methods developed in this thesis has been

demonstrated with real data. A short example of successfully analyzed radar data com-

pared with the PSG reference signals is shown in Fig. 6.1. While most of the research

performed in the radar monitoring field has been verified with a few-minutes-long data

56



6.1. Sleep-time respiration monitoring

0 20 40 60 80 100 120

96 96 95 95 95

Supine Supine Supine Supine Supine 

Normal   

Hypopnoea Hypopnoea Hypopnoea Hypopnoea
Radar

I

Radar
Q

Radar
Dem

Thorax

Abdomen

Flow

Position

Events

SpO
2

Time / s

Hypopnea events measured with radar and PSG, patient 3

Figure 6.1: An example of hypopnea events successfully measured and processed

with the nonlinear demodulation method. The PSG data are shown as the reference.

Reprinted with permission, from Publication P7. ©2015 IEEE.

sets (work by ResMed being an exception), the measurements in Publication P7 were

whole-night measurements. Moreover, several early work measurements in literature

have been performed in an office environment, laboratory, or even anechoic chamber. In

detail, the methods utilized in Publication P7 are the channel imbalance compensation,

the nonlinear demodulation using the LM center estimation algorithm and arctangent

demodulation, and the phase unwrapping. Thus, the main purpose of Publication P7

is to provide proof-of-concept in a real life setting for these methods. The imbalance

values used were the ones measured and estimated previously in Publication P2. Thus,

the imbalance values were not measured again after the installation to the measurement

site. However, the imbalance values seemed to remain adequately constant as the data

formed an arc of a circle in the IQ-plot.

The measurements in Publication P7 also concretely showed that respiration is a

complex movement. The nonlinear demodulation was successful most of the time, but

not always. If the chest wall displacement x is too small compared to the radar wave-

length λ, the curvature of the arc is not enough for accurate center estimation. Moreover,

if the radar data does not form an arc-like shape in the IQ-plot, the nonlinear demodu-
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lation is not a suitable method. The prevalence of such cases in sleep monitoring is an

interesting finding in the field because it is often ignored. More discussion about this

challenge can be found in Publication P7. In addition, movement artifacts cause large

outliers to the data thus causing the center estimation algorithm to fail. These results

of Publication P7 highlight the importance of separating the different sources of chest

movement.

6.2 Separating the cardiac and the respiratory compo-

nents with digital filters

In many publications, the respiration waveform is modelled as being sinusoidal. This,

however, does not apply very well in real-life data. Especially when a patient is breath-

ing deeply, the waveform we have seen has one half of the sinusoid prolonged and an-

other narrowed. Thus, in addition to the fundamental frequency, harmonics with higher

frequency components are also present in the signal. This problem is also well acknowl-

edged in the literature [44, 132, 134]. The respiration test signal presented in [133] fits

well to our empirical observations. A respiration pulse pr(t) can be modelled with a

half-cycle of a sinusoid raised to the pth power

pr(t) = 1− sinp
π fRt, (6.1)

where fR is respiration frequency, and p is a scalar parameter defining the waveform

type. The respiration pulse is then repeated at intervals of 1/ fR. Fig. 6.2 shows how

increasing the value of p results in a narrower pulse. This model was chosen to represent

different types of respiration in simulations in this thesis.

The most common way to separate cardiac and respiratory components is filtering.

The transition band between cardiac and respiratory components is around the interval

of 0.4 Hz and 0.8 Hz. This results in a steep transition band for the filter. However, a

filter with a too steep transition band might result in distortion in the resulting respiration

waveform. This phenomenon is illustrated in Fig. 6.2 with simulations.

The following parameters were chosen for the simulation: a respiration test signal

was generated according to (6.1) using values fR = 12 breaths per minute (= 0.2 Hz), fs
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Figure 6.2: The effect of filtering the respiration signal with a low-pass filter. Three

different types of respiration waveforms were simulated and filtered either with a 3 Hz

or 0.6 Hz low-pass filter. Especially with the latter filter, a distortion is seen in the flat

parts of the signal.

= 100 Hz, and p was varied between 3 – 25. Then, the signal was low-pass filtered either

with a low-pass filter with cut-off at 3 Hz (the transition band between 2.1 and 3.0 Hz)

or at 0.6 Hz (transition band between 0.4 and 0.8 Hz). The stopband attenuation was 60

dB, and the passband ripple was less than 0.005. The resulting waveforms before and

after filtering are shown in Fig. 6.2. In the uppermost row, the respiration pulse is wide,

and thus, the waveform is close to a sinusoid. Only the second harmonic frequency com-

ponent is significant as shown in the frequency domain plot shown in the right column.

When the respiration pulse is narrow (p = 25), the 3rd, the 4th, and even the 5th harmonic

components are clearly seen in the frequency domain plot. Now, the 0.6 Hz low-pass

filter decreases these frequency components significantly. This causes ripple to the sig-

nal in time domain during the flat phases between two pulses. The distortion is clearly
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caused by the removal of the large frequency harmonic components. The amplitude of

the distortion depends on the filter characteristics, such as the filter order.

There is nothing new in this phenomenon that results in the ringing artifact. It’s called

the Gibbs phenomena. It is caused by choosing a steep transition band for the filter. It

cannot be avoided if the steep transition band is preserved. To overcome this, a filter with

a smooth transition band has been used in [38, 135–139], for example. The drawback

is the smaller attenuation of the cardiac component. Thus, there is a trade-off between

preserving the correct respiration signal waveform and the attenuation of the cardiac

component. Although a well-known phenomenon in signal processing literature, this is

meant to provide a reminder. Often the respiration signal is modelled as a monotone

sinusoidal. Then, however, the Gibbs phenomenon does not emerge in simulations and

also may be left unnoticed with real data.

Another side of the same problem is the remaining respiration harmonics in the fil-

tered cardiac signal. After filtering off the low frequency components of respiration,

there can be remaining high frequency harmonic components in the cardiac signal.

Boric-Lubecke et al. showed that these remaining components can cause amplitude

modulation to the cardiac signal [134]. All in all, filtering is known to cause signal

distortion in BG signals with different methods.

As discussed in the previous chapters, the cardiac and respiratory components of the

radar signal are connected to each other. Using a simple filter to separate the components

may not be the optimum solution. Thus, more sophisticated methods are needed.

6.3 Independent component analysis

Independent Component Analysis (ICA) is a statistical method that aims to find compo-

nents that are maximally independent and non-Gaussian (non-normal) [140]. It is used

for finding hidden factors, called sources sss(t), that underlie in the measurement data

xxx(t). So, given the set of observations xxx(t) = [x1(t), ...,xn(t)]T measured with n sen-

sors, assume that they are generated as a linear mixture of n independent components

sss(t) = [s1(t), ...,sn(t)]T :

xxx(t) = AAAsss(t), (6.2)
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where AAA is some unknown mixing matrix. ICA estimates both the matrix AAA and the

independent components sss(t).

There are two presumptions made with ICA: the components (or sources) need to

be statistically independent, and they need to have non-Gaussian distributions. It is of-

ten claimed that ICA presumptions do not hold in microwave physiological monitoring.

This has been pointed out, for example, by Mostafanezhad [53]: “The ICA framework is

valid only where there are physically meaningful independent components. However, in

the case of vital sign monitoring using Doppler radar the components of interest (heart

rate, respiratory) and the fidgeting artifact are both correlated and their spectra overlap,

which motivates us to exploit a data driven method that operates on non-stationary data -

the Empirical Mode Decomposition.” In addition, when referring to Publication P5, Aho

states,: “Interestingly enough, the technique provides good results even though generally

one might consider the respiratory and cardiac activities to be highly correlated, which

simply emphasizes the robustness of ICA” [34, p. 58]. Indeed, the respiration and heart

rate are not statistically independent. On the contrary, during exercise, heart and respi-

ration rates increase. HR and RR clearly correlate. However, it’s worth considering the

statistical independence of the components a bit deeper.

By definition, two random variables xxx and yyy are statistically independent iff

pxxx,yyy(xxx,yyy) = pxxx(xxx)pyyy(yyy), (6.3)

where pxxx,yyy(xxx,yyy) is the joint probability density function of xxx and yyy, and pxxx(xxx) and pyyy(yyy)

are the marginal probability density functions of xxx and yyy, respectively [140, p. 27]. It is

important to note that independence is not equivalent to uncorrelatedness. xxx and yyy are

said to be uncorrelated, if their covariance is zero:

E{xxxyyy}−E{xxx}E{yyy}= 0. (6.4)

If the variables are independent, they are uncorrelated. However, if variables are uncor-

related, they may be independent or dependent.

With a healthy person, cardiac and respiratory signals are known to interfere physio-

logically at least in the following ways:

1. Heart rate and respiration rate are strongly correlated. During exercise, the heart

rate and the respiration rate increase; while at rest, both of them decrease.
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2. The beat-to-beat cardiac interval is shortened during inspiration and prolonged

during expiration. This phenomenon is called respiratory sinus arrhythmia (RSA).

3. Cardiac stroke volume changes with respiration. In detail, the left ventricular

stroke volume is reported to fall during inspiration and rise during expiration

[141, 142].

4. Interdependence between left and right ventricle stroke volume or pressure. These

are especially present with sudden postural and respiratory changes in ventricular

volume and, thus, might be important in an apnea event. [142–144]

In addition, the interference between the cardiac and respiratory signals can be caused

by the recording methodology:

5. Respiration waveform can be seen as amplitude modulation in the ECG signal,

meaning that the R-peak amplitude changes according to the respiration phase.

This is due to the motion of the electrodes relative to the heart and to the impedance

changes in thorax during expiration and inspiration [145]. Somewhat similar ef-

fects have also been reported in BCG signals. Variation in the size of the car-

diac impacts during the respiratory cycle has been reported: during inhale, the

amplitude increases; and during exhale, the amplitude diminishes [146]. Paalas-

maa reported that in addition to amplitude modulation due to respiration, there

is also more complex respiratory variation in cardiac signal recorded with force

sensors [136, 147].

6. Boric-Lubecke et al. showed that amplitude modulation can also be generated in

the filtering step. After filtering off the low frequency components of respiration,

there can be remaining high frequency harmonic components in the cardiac signal

[134]. These would be seen as amplitude modulation of the cardiac signal.

These interferences are also discussed by Seppä in his PhD thesis [148]. Let’s first

consider the type 1 and 2 interferences. The heart and respiration rates correlate - not

the time domain signals. This is a very different thing. In time domain, the increase of

the HR or RR is seen as an increase in R-R/beat-to-beat intervals; in other words, the

waveform is compressed in time, while the signal morphology remains unchanged. The
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increase of HR or RR is not seen as an increase of signal DC level or as an increase in

amplitude of the other signal. Thus, the density functions of the cardiac and respiratory

signal are not changed due to the increased HR or RR.

Now, let’s consider the type 3 – 6 interferences. These interferences do make the

cardiac and respiration signals correlated, and thus, statistically dependent. Therefore,

the cardiac and respiratory components cannot be considered fully independent. And a

perfect separation may not be reached with ICA. But, the dependence of the time domain

signals is not strong, as is the case with HR and RR (type 1). The effects of phenomena

2 – 6 to the radar signal should be rather weak. As an example of ICA’s ability to

separate components that overlap in frequency domain, ICA has been used to separate

right ventricle, left ventricle, and myocardium motion in PET images [149]. Recently,

ICA was applied with BG signals to separate respiration and cardiac components [150].

All in all, respiration and cardiac signals can still be called mostly independent – keeping

in mind that it’s not exactly true – and the use of ICA is justified.

With microwave radar monitoring of the heart, ICA has been used previously for

separating two heartbeats from two different persons in the radar coverage area [151].

Publication P5 is the first paper to report a study using the data recorded from one person

with two radars and utilizing ICA for blind source separation (BSS) of the respiration

artifact. Later, ICA has been studied for a rescue radar to detect victims trapped under

rubble [152], although they use ICA in rather unconventional way. Furthermore, Publi-

cation P5 uses a complex valued extension of the FastICA algorithm [153,154], meaning

that both the sources and the mixed signals are complex-valued. The reason for complex

values (instead of two real-valued signals) is easily perceived, when noted that the I-

and Q-components of the radar data are not independent. ICA has also been used with

other BG signals for separating respiration and cardiac components. Examples of such

studies can be found, for example, from [150], where IR cameras recorded the motion

of retroreflective optical markers placed on the anteriour upper body; and from [155],

where bioimpedance signals were measured.

Publication P5 studies the use of ICA for separating cardiac and respiratory com-

ponents of the radar signal. The results are illustrated in Fig. 6.3. In the data before

ICA, the respiration signal is clearly dominant both in time and frequency domain plots.
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After ICA, the cardiac component is visible as well. The paper cannot be said to provide

a reliable proof-of-concept of the functionality of the method in separating the cardiac

and respiratory components. However, it serves as a good preliminary study of the pos-

sibilities of an interesting method. All in all, more research is needed to show the full

potential of the method.

6.4 Other proposed methods for signal separation

Signal source separation is a highly important problem common in all noninvasive phys-

iological monitoring methods (radar sensor, force sensors, bio-impedance, etc.). Thus,

several articles and theses discuss the problem (e.g., [148]). Perhaps it is still worth

reviewing a few that have been used with radar sensor.

Morgan et al. [133] estimated the respiration fundamental with spectrum analysis

techniques from the displacement signal, and then, estimated the harmonic components

of the respiration signal by

v̂(n) = ℜ

(
L

∑
l=1

wle jlω̂0n

)
, (6.5)

where wl , l = 1, ...,L are complex weights, and ω̂0 is the estimated respiration funda-

mental (angular) frequency. The weights wl are chosen to minimize the mean-square

error (MSE) cost function. Finally, the resulting v̂(n) is removed from the displacement

signal x(t),

y(n) = x(n)− v̂(n)−w0, (6.6)

where w0 is the dc level. The remaining signal y(n) is the presumed to be the required

cardiac signal.

Wang et al. [132] presented a method using polynomial fitting to separate the res-

piration and cardiac components. The respiration signal F(n) was gained by fitting the

equation:

F(n) =
M

∑
i=0

pini, (6.7)

where M is the order of the polynomial, and pi (i = 0 to M) are the fitting constant co-

efficients. They are determined to minimize the mean square error (MSE). M value of
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6 was found to be suitable in experiments. By removing the fitted signal F(n) from the

displacement angle θ signal, Wang et al. were able to reconstruct similar waveforms in

consecutive cardiac cycles, which suggests that the separation is successful. The meth-

ods (6.5) and (6.7) do have similarities. The first (6.5) performs the fitting in frequency

domain, while the other (6.7) does the same in time domain.

Moreover, Hu et al. [44] successfully used wavelet transform (WT) to separate car-

diac and respiratory components. In addition, the empirical mode decomposition (EMD)

was applied for further analysis of the heartbeat signal after wavelet filter [53].
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Figure 6.3: Data before and after applying ICA. a) and b) In the original data, the res-

piration artifact is dominant. This is seen both a) in the time domain plot and b) in the

frequency domain plots. b) Frequency spectras of radars’ imaginary components are

presented in the upper figure and real components in the bottom figure. The cardiac fre-

quency component can barely be distinguished from the respiration and it’s harmonics.

R1 and R2 stand for radar 1 and radar 2, respectively. c) and d) The cardiac signal is

more visible in the resulting ICs (independent components). d) In the imaginary part of

the IC1, respiration is the most dominant. In the real parts of IC1 and IC2, cardiac sig-

nal is seen. However, some respiration artifact is still present. Note that the magnitude

and the sign of the signals are lost according to ICA properties. From Publication P5.

Reprinted with permission, from Publication P5. ©2010 IEEE.66



Chapter 7

Conclusions

7.1 The main results of the thesis

According to the specific aims of the thesis (in Chapter 1.2), the following conclusions

were made:

1. It is commonly known that the channel imbalance in quadrature radar reduces the

accuracy of the displacement measurement. In this thesis, the amount of the dis-

placement error caused by the channel imbalance is quantified. In addition, a

novel quadrature radar imbalance estimation method is proposed. We call the

method the LM ellipse estimation method. Unlike the previous methods, the de-

veloped method does not require laboratory equipments to be performed, and it is

proven to be robust against noise.

2. Moreover, a state-of-the-art channel combining method is developed. The func-

tionality of the method was demonstrated with extensive simulations and with real

data containing whole-night recordings from three patients. The method performs

at its best if the following conditions are met:

(a) the target displacement x is large compared to the radar wavelength λ,

(b) the radar data does not contain significant outliers,

(c) movement artifacts are compensated or removed, and
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(d) the radar data forms an arc-like shape in the IQ-plot.

If condition a) is not met, the previously proposed PCA method or interpreting the

signal as complex-valued are the best options. This, however, will result in the

loss of accurate displacement amplitude information. If condition b) is not met,

the L1-norm-based method might perform better. A method to deal with data that

is complex-shaped (i.e., does not form either an arc or a line in the IQ-plot) has

not been proposed in the literature.

3. Radar monitoring with quadrature Doppler radar provides the unique possibility

for non-contact measurement of the absolute chest wall displacement in centime-

ters. This is possible only if the above-mentioned conditions are met. With these

conditions, the radar monitoring performed well during whole-night recordings

from three patients. The separation of different components of chest wall move-

ment, such as the cardiac and respiratory components, is a challenging task. This

thesis provides a promising preliminary study of the use of ICA for this task.

7.2 Limitations of the studies

In this thesis, it has been demonstrated that the methods that allow absolute displacement

measurements can be used in practice. However, in Publication P7, relative respiration

displacement measures were used as a reference. The accurate displacement measure-

ment with a radar sensor has previously been demonstrated with simple radar targets

in [15, 16] and also in Publication P1. In [15], a half-circle radar target was moved au-

tomatically with a programmable linear stage, and the center estimation was performed

using Park’s method. A small displacement of 1 cm was acquired with an accuracy of

5%. Similarly, accurate absolute displacement measures were gained with a planar radar

target and the LM center estimation algorithm in [16]. However, a chest wall moving

along respiration and cardiac activity is a more complex radar target. Thus, the accuracy

of the absolute chest wall displacement measurement still needs more validation.

The development of a novel medical device for the market requires clinical tests

with hundreds of patients. This study contains a detailed analysis of test setups and
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whole-night studies with three patients. Movement artifacts were removed manually. In

addition, ICA was studied with very short data sets. Clearly, extensive patient validation

studies are needed to prove the functionality and the feasibility of the methods in real

life and with varying patient groups.

7.3 Applications with the most potential

The radar monitoring is a part of a huge trend of emerging unobtrusive long-term vital

sign monitoring techniques. Several other sensor technologies exist and are being devel-

oped at a fast pace [10]. A radar sensor offers some unique properties compared to other

technologies. It does not require direct contact with a patient, and it can be hidden be-

hind an enclosure or a wall. In addition, microwaves can penetrate bedsheets, duvets, and

clothing. It is also suggested in this thesis that the absolute displacement of a chest wall,

which is related to the respiration depth, might be measured with a radar sensor. With

most other unobtrusive monitoring techniques, this is not possible [10]. Laser interfer-

ometry (or laser vibrocardiography) and video-based cardiorespiratory motion analysis

are notable exceptions [10]. The importance of this property in practical applications

still needs further study. For example, it is not clear that better sleep apnea monitoring

can be reached with absolute measures than with relative measures.

The most common vital sign measurement is heart rate monitoring with a chest strap

and electrodes during exercise. However, radar monitoring will hardly be practical for

exercise monitoring. The movement artifacts caused by limb and torso movements are

easily hundreds of times larger in amplitude than the cardiac motion amplitude, which

makes it challenging to separate different sources.

While developing methods to overcome motion artifacts are highly interesting, how-

ever, situations in which the patient is stationary most of the time seem to be more

applicable for radar monitoring. Sleep monitoring was discussed in Chapter 6. Radar

monitoring during medical imaging was shortly presented in Chapter 2. Sleep moni-

toring and radar monitoring during medical imaging currently seem to be the two most

inspiring applications.
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7.4 Future work

Multiple questions remain for future work. The most important is probably the source

separation problem. This includes dealing with movement artifacts, separating the res-

piratory and cardiac components, separating of the thorax and abdomen components of

respiration, and handling also the parts of data that forms a complex shape in the IQ-plot.

This thesis provides only a preliminary, though successful, study for the use of ICA

in separating different components in radar physiological monitoring. A further detailed

study on separating cardiac, respiratory, and other body movement components would

be highly interesting. Aho [34, pp. 80–81] seems to agree: “One further interesting

approach to separating the vital sign components from excess motion clutter in multi-

antenna CW radar is the application of ICA. ...since any interfering motion such as hand

waving and head nodding should intuitively be uncorrelated with the cardiopulmonary

activities.” Currently, there are only a few papers studying blind source separation (BSS)

methods with radar data, and thus, the field would have great potential.

Also, the track of using other complex-valued methods for the radar monitoring of

physiological signals is mostly unstudied.

The LM center estimation method might also have applications in fields other than

radar monitoring. Surprisingly, the quadrature microwave radar measurement utilizes

highly similar data processing techniques to quadrature laser interferometry. In par-

ticular, the utilization of quadrature imbalance correction and quadrature demodulation

with arctangent function and unwrapping are reported in [156], [157], [158], and the

utilization of PCA demodulation is reported in [159]. Interestingly, the imbalance cor-

rection is performed on run time by the measured data. Pozar et al. [158] compares four

different ellipse parameter estimation methods for laser interferometry, namely: bias-

corrected ellipse-specific fitting (BCESF); a least squares fitting method that employs

a constraint (called LIN); ellipse-specific, least-squares fitting (called ESF, also known

as the Fitzgibbon method); and a reference method, presented in [156]. The BCESF

algorithm is concluded to provide a good balance between the accuracy of the fit and the

computational efficiency. Now, testing the LM algorithm also for laser interferometry

would be interesting and could result in even more accurate estimates.

70



7.5. Contributions to the scientific community

7.5 Contributions to the scientific community

The center estimation problem in radar sensor has been discussed in several publications

very recently [16, 124–126, 131]. The LM center estimation method presented in Pub-

lication P3 was later used and validated by an independent team in [126] and in [16].

Most importantly, the LM algorithm was proven to be both accurate and functional in

real applications. The papers raise good concerns about the robustness to noise and

the convergence of the algorithm. These possible weaknesses are discussed in detail in

Chapter 5.2.2.

To the best of our knowledge, Publication P7 is the first to report successful long-time

breathing measurements with a quadrature radar and nonlinear demodulation method.

Similar objectives has been presented very recently [74,160], however, with considerably

shorter measurements and in controlled environment.

In their papers [8] [4] [3], Pfanner et al. used 869 MHz radar sensors and the PCA

as a channel combining method. They measure cardiac and respiratory motion to gen-

erate a synchronization signal to be used by a CT system. The low carrier frequency

used results in a very short arc length with the respiration signal. Thus, the short angle

approximation is valid (x << λ). However, in using PCA, information about the depth

of a breath is lost. The authors claim that they can extract the amplitude of the heart

motion [4], but this is not possible with the PCA method. The depth of the breath of

the same person with the same position and the exact same posture can be measured.

However, when any of these change (patient, position, or posture), the depth information

is lost. In real life, keeping these constant is impossible – the measurement of consecu-

tive breaths being an exception. Nevertheless, at least with respiratory gating with PET,

the accurate amplitude measurement seems important [161]. It is also a clinical practice

with PET imaging to generate a gating signal based on respiration amplitude – not based

on respiration phase [162]. If amplitude information is important in other medical imag-

ing applications as well, a good option to consider would be to use center estimation and

arctangent channel combining instead. However, to assure accurate center estimation,

a slightly larger arc length is needed. This would mean a higher carrier frequency, and

therefore, a smaller penetration depth.
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Abstract—Accurate displacement measurement using 

quadrature Doppler radar requires amplitude and phase 
imbalance compensation. Previously, this imbalance calibration 
has required cumbersome hardware modifications and thus can 
only be performed in a laboratory setting. Recently, a data-
based method that does not require hardware modifications has 
been proposed. This simplifies the calibration process and 
allows the calibration to be performed on-site periodically. The 
method is called ellipse fitting. 

In this paper, the different factors affecting imbalance 
estimation accuracy, namely arc length, initial phase angle, and 
noise level were thoroughly investigated. The Levenberg-
Marquardt (LM) algorithm is proposed for the first time to 
increase the estimation accuracy as compared to the previously 
suggested algebraic fitting. Comprehensive simulations and 
experimental data show that the algebraic fitting method results 
in biased estimates. The proposed LM method has also been 
demonstrated to be more robust to noise, varying arc lengths, 
and different initial angles. The LM method reaches sufficient 
imbalance estimation accuracy with an arc length of 40% and a 
noise level of 1.5%. 
 

Index Terms—Amplitude imbalance, phase imbalance, 
Doppler radar, Ellipse fit. 

I. INTRODUCTION 
uadrature microwave radar systems have been 

proposed for several physiological sensing applications 
used in both the hospital [1]–[4] and home environments [5]–
[7]. Microwave radar records ballistographic (BG) signal, so 
it has similar advantages and disadvantages as BG signal that 
is recorded with a pressure sensor [8], [9]. However, radar 
sensor is a fully non-contact measurement method. A non-
invasive heart and respiration sensor offers advantages when 
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monitoring infants [1], [2] or burn victims. Radar 
measurement has also been proposed for tracking a tumor 
that is moving due to respiration in lung cancer radiotherapy 
[4]. Here, the amplitude or the phase of the respiration signal 
measured with a radar sensor would control the radiotherapy 
beam. In addition, in medical sleep laboratory or home 
monitoring of sleep quality, non-contact measurement would 
not affect sleep itself in the way that cumbersome contact 
electrodes  might  do  [5],  [6].  Apnea  events  can  be  seen  in  
radar signal as a decrease in signal amplitude (i.e., as shallow 
breathing) when the thoracic wall displacement due to 
respiration is measured. Often in physiological 
measurements, the respiration and the heart rate are the 
interesting parameters. Whereas in the aforementioned 
applications, the accuracy of the displacement measurement, 
particularly changes in the breathing amplitude are very 
important features. However, real radar components suffer 
from problems with amplitude and phase imbalance due to 
hardware imperfections [10], [11]. To ensure accurate 
displacement calculation and signal interpretation, the 
imbalances need to be accurately measured and compensated 
for. This imbalance compensation is a separate calibration 
step performed prior the actual measurement of physiological 
signals takes place. 

The extent of signal distortion depends on the imbalance 
between the I and Q channels. This is discussed for example 
in [12], [13]. With high quality RF-components, the 
imbalance will be small, thus resulting in a small distortion 
only. However, the popularity of radar sensors in the anti-
collision systems of cars and automatic doors has resulted in 
the availability of several lower quality Doppler radar 
modules at a reasonable price. The IQ imbalance is not 
critical in these applications, and thus, they may suffer from 
large imbalance factors. For example, the radar module used 
in this study had large amplitude and phase imbalances of 
1.25 and 23°, respectively. Therefore, accurate and robust 
imbalance estimation methods enable the use of inexpensive 
radar modules in applications with high accuracy 
requirements. 

Park et al. [11] presented an imbalance measurement 
method where external voltage controllable phase shifters are 
connected between the antenna and the radar electronics. The 
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phase shifters would be used to simulate an object moving at 
a constant velocity. From the measured signals, the minima 
and maxima values of I and Q channels are detected. The 
amplitude difference between the extrema of I and Q channels 
defines Ae, and the phase delay between the extrema of I and 
Q  channels  defines  øE. We call this imbalance estimation 
method the “time domain” method. The method works well, 
but requires more than one full circle of data in the IQ-plane. 
In addition, as only the extrema values of the signal 
contribute to the imbalance values, the method is prone to 
inaccuracies due to noise. Moreover, circuit modifications are 
possible only in a laboratory environment, and such 
modifications itself can change the imbalance values. 
Environmental factors, mainly temperature change, result in 
changes to the imbalance values over time [14]. This means 
that imbalance calibration should preferably be performed 
periodically or at least after each time the system is installed 
in  a  new  environment.  With  the  use  of  phase  shifters,  this  
would be impractical.  

Recently, a data-based method that requires no circuit 
modifications has been proposed [12]. This method is called 
“ellipse fitting”. The method requires a target to be moving 
linearly in front of the radar, and the imbalance parameters 
are estimated from the ellipse that the data forms in the IQ-
plot. All the data points along the arc contribute to the 
estimate, making the method more robust. In general, there 
are two main methods for fitting the ellipse parameters to the 
data: minimizing either algebraic or geometric distance. The 
previous study used one algebraic ellipse fitting method [12]. 
However, algebraic methods tend to be biased, while 
geometric methods are known to be more accurate and robust 
[15]. Previously, geometric methods have been 
computationally expensive (they required the solving of a 
polynomial equation of degree four), and thus, they were 
often discarded [15]. Moreover, a geometric ellipse fitting 
method that is computationally fast has been presented only 
recently [15]–[17]. In this paper, the imbalance estimation 
problem is studied in detail. The performances of algebraic 
and geometric ellipse fitting methods are compared in 
different conditions faced in radar physiological sensing. 

The literature on fitting an ellipse to data is vast. In 
addition, the geometric fitting methods are well known for 
fitting lines, circles, and ellipses. Radar imbalance 
compensation with ellipse fitting was first presented in [12] 
with an algebraic fitting method. In this paper, the problem is 
studied in depth and the Levenberg-Marquardt (LM) method 
is applied for the first time to address the imbalance 
compensation problem. The objective is to develop easy 
imbalance estimation. The idea is that the required 
calibration signal for ellipse fitting could be generated for 
example by moving an object in front of the radar. At its 
simplest, this could be a pendulum with a metal sphere. 

This paper is organized as follows, microwave monitoring 
method is shortly presented in Section II. In Section III, the 
used ellipse fitting methods are presented, and in Section IV, 
their performance is compared with simulations. In Section 
V, the simulation results are validated with real data. 

II. MICROWAVE DOPPLER MONITORING OF HEART AND 
RESPIRATION 

In microwave Doppler monitoring, the radar transmits a 
single tone signal with a frequency f, which is reflected from 
all objects in the coverage area. The phase of the signal 
reflected from the moving targets is changed according to the 
Doppler theory and can be detected, whereas the signal 
reflected from still targets will be removed in mixing. To 
avoid the so-called null point problem of single channel 
radar, a quadrature radar topology can be used. The received 
signal is mixed with two signals with phases 90° apart. The 
output signals of the radar for in-phase(I)- and 
quadrature(Q)-channels are: 
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where VI and VQ are DC-offset in I- and Q-channels, AB is the 
baseband amplitude, d0 is the nominal distance of the subject, 
x(t) is the time varying distance of the subject (or chest wall 
movement in a heart monitoring case), λ is the wavelength of 
the carrier, θ0 is  the  constant  phase  shift,  and  Δø(t)  is  the  
residual phase noise. The initial phase angle at the beginning 
of the measurement is: 
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Thus, it is dependent on the nominal distance of the subject 
d0. With an ideal radar when the data is plotted in the IQ-
plane, a periodically and perpendicularly moving object, such 
as human respiration, forms an arc of a circle with the radius 
of  AB centered in (VI, VQ)  [10].  Now,  the  distance  of  the  
subject x(t) can be derived by combining the channels with an 
arctangent function [10].  

However, there are some non-idealities in real systems. 
These are the amplitude AE and the phase øE imbalance that 
exist between the I- and Q-channels [10], [11]. Thus, the 
baseband signals become: 
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Now  in  the  IQ-plane,  the  data  does  not  form  an  arc  of  the  
circle but an arc of an ellipse instead. In order to avoid signal 
distortion, these errors must be calculated and removed before 
the demodulation with the arctangent function. The known 
amplitude and phase imbalances can be corrected using the 
Gram-Schmidt (GS) procedure.  

III. ELLIPSE FITTING METHODS 
An ellipse can be defined by an equation: 
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where qq sin)(cos)( 21 cycxx ---=(  and 
.cos)(sin)( 21 qq cycxy -+-=(  The ellipse parameters are 

Θ1 = (a, b, c1, c2, θ), where (c1, c2) is the center, a, and b are 
the semiaxes, and θ is the angle of tilt of the ellipse [15]. 
Another equation for the ellipse is: 

,0),( 22 =+++++= FEyDxCyBxyAxyxQ   (5) 
where the parameters Θ2 =  (A, B, C, D, E, F) define the 
ellipse [15]. These two parameter spaces are directly 
convertible [18]. Further, the conversion from Θ2 parameter 
space to imbalance factors is trivial as shown in [19]. 

In this paper, the ellipse fitting methods from two different 
fitting families were used: geometric and algebraic fitting. 
The classical least squares fit minimizes the geometric 
distances di’s from data points to the fitting ellipse: 
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The equation (6) has no closed form solution, but it can be 
solved either iteratively or approximately [15]. 

A. Algebraic ellipse fitting method 
Algebraic ellipse fitting methods are approximative by nature. 
Instead of minimizing (6) with geometric distances, the 
algebraic ellipse equation (5) is used as an objective function 
for minimization [20], [21]. This minimizes the algebraic 
distance Qi. There is also a trivial solution for (5): A = B = C 
=  D  =  E  =  F  =  0.  To  avoid  this,  some  constraint  is  needed  
when using algebraic ellipse fitting. Several constraints are 
proposed in the literature for example: A + C = 1 [20], [21], 
A2 + B2 + C2 + D2 + E2 + F2 = 1 [20]–[22], or 4AC – B2 = 1 
used by Fitzgibbon [23]. 

In this paper, the method described in [12] is used to 
represent algebraic fitting, because it is the only method 
previously used for radar physiological sensing. The 
derivation of the algorithm is presented in [12]. In detail, the 
method is algebraic ellipse fitting using a pseudo inverse 
technique (see for example [21]).  

The main advantages of algebraic methods are their fast and 
simple operation. In addition, they do not require an initial 
guess. However, as Chernov stated [15, p. 15], “practical 
experience shows that all algebraic fits, with or without 
constraints, are statistically inaccurate and biased, in one way 
or another. The main reason is that algebraic distances may 
be substantially different from geometric distances.” This 
problem is also addressed in [21]. 

It is worth noting that a curve satisfying equation (5) is not 
necessarily  an  ellipse  but  can  also  be  a  hyperbola  or  a  
parabola [15]. This drawback was noticed while running data 
sets with a short arc length. The algorithm returned complex-
valued imbalance estimates, signifying that the resulting 
curve was a hyperbola or a parabola instead of an ellipse. 

B. Geometric ellipse fitting method 
Geometric ellipse fitting methods are iterative. They 

minimize the orthogonal distance di from the data points (xi, 
yi) to their projections (xi

’, yi
’) on the ellipse. However, the 

calculation of this projection has previously been 
computationally complex and numerically unstable [15]. But 

improvements by Eberly [17] in calculating the projection, 
and by Ahn [16] on an efficient calculation of the derivate of 
the objective function, have made the geometric ellipse fitting 
method computationally fast and efficient [15]. 

In this study, LM correction of the classical Gauss-Newton 
method is used. Matlab codes are available in [24]. Other 
geometric methods also exist such as [25], but the LM 
method was chosen since it has been shown to manage also 
cases with data spread over a short arc length. In addition, the 
LM method performs well in another step in the radar signal 
processing. While combining the I and Q channel data to 
form the desired displacement data x(t), the LM method has 
been used to estimate the center of the circle [26]. This 
channel combining step is, however, a constant runtime 
analysis, while the imbalance compensation is a separate 
calibration step performed before the actual measurement. 
Being an iterative method, the LM method requires an initial 
guess and convergence to the global minimum (i.e., the 
accuracy of the estimation) is largely affected by the quality of 
the  initial  guess  [15].  Chernov  [15]  suggested  the  use  of  the  
Taubin algebraic method [27] for the initial guess, and thus, 
it has been used in this study. The Matlab code for the Taubin 
fit is available in [28]. Using the mean values of the data as 
an initial guess was also tested, but the Taubin method gave 
more accurate estimates. 

In this study, the suitability of these ellipse fitting methods 
was tested for our application. The hypothesis was that 1) arc 
length, 2) initial phase angle, and 3) noise level would all 
affect the accuracy of the ellipse fit. As described in the 
following sections, this hypothesis was tested with both 
simulations and real data. 

IV. SIMULATIONS 

A. Simulation Setup 
To study the algorithms described above in more detail, 

several baseband signals were generated using Matlab©. For 
a quadrature Doppler radar, the arc in the IQ-plane is a 
function of the radar wavelength and the displacement of the 
target. A larger displacement results in a larger arc. The 
initial angle of the arc depends on the initial position of the 
target. In simulations, a sinusoidally moving target was used 
(meaning that the variation of the angle was sinusoidal) and 
its displacement, initial position, and added noise level were 
varied. Eight data sets were generated with one parameter 
varying while the other parameters were kept constant. The 
parameter values are shown in Table I. In total, each data 
subset contained 1001 data points. In all the simulation test 
sets, the imbalance values were set at AE = 1.2 and øE = 20°. 
For easier comparison, all the parameters were chosen to 
match closely with the radar used in the real data 
measurements. 

The added noise was 2D independent identically distributed 
(i.i.d.)  Gaussian noise with a zero mean. The noise standard 
deviation (STD) was proportional to the circle radius. In 
detail, the noise percentage s is the ratio between the STD 
and the radius. Thus, with a circle radius of 1, 1% of noise s 
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would have a STD of 0.01. To ensure a similar noise level in 
both  the  I  and  Q  channels,  the  noise  STD  was  chosen  to  be  
bounded to the circle radius instead of to the ellipse axis. 
Similarly, the arc length refers to the arc length of a circle 
without distortion instead of the arc length of an ellipse. 

The amplitude imbalance and phase imbalance values of the 
I and Q signals were constant in all the simulation test sets 
while the other factors were changed one at a time. The 
simulations were performed 100 times for each test 
parameter. Then, the estimated amplitude and phase 
imbalance values were compared to the pre-set values by 
calculating the mean error and the quantile values. The 
lowers bound of the error bars are the 20% quantiles and the 
upper bounds are the 80% quantiles. 

B. Simulation results 
Fig. 1 shows the estimation error from test set 1 under a 

wide range of arc lengths, indicating that both of the methods 
fail  with  short  arc  lengths  (<  30%).   However,  the  LM  
method gives more accurate estimates with shorter arc 
lengths than the algebraic method. It is interesting to note 
that the algebraic method suffers from a considerable bias 
error  with  small  arc  lengths.  The  error  is  considered  
sufficiently small if the mean error ± quantiles lies within ± 
5% limits. A sufficiently small error (for both AE and øE) is 
gained  with  an  arc  length  of  30%  or  more  with  the  LM  
method and 50% with the algebraic method. These results are 
in line with the results reported in [12] concerning the 
algebraic method. According to that study, with slightly more 
noise (30 dB signal to noise ratio corresponds to 3.2% of 
noise level), a 5% RMS error or better was reached if the data 
encompassed more than 60% of the arc in the IQ-plane [12]. 

Test sets 2 – 6 study how the initial angle affects the 
estimation accuracy. The resulting imbalance estimation 
errors from test  sets  3 – 6 are depicted in Fig.  2 for the LM 
method and in Fig. 3 for the algebraic method. In Fig. 2, the 
small quantile values for test set 3 have been left out from the 
plot to ensure the clarity of the figure. Again, the algebraic 
estimates are biased. The amount of this bias error depends 
on the initial angle. On the other hand, the LM estimates are 
unbiased, but the standard error of the LM estimates is larger. 
With accurate estimates, both the mean and standard error 
are small. Interestingly, data with a certain initial angle does 
not necessarily result in the most accurate amplitude and 
phase imbalance estimates simultaneously. On the contrary, 

with both the methods, the amplitude imbalance estimate is 
more accurate at initial angles around 35° and again at 
around 125°, while the phase imbalance estimate is more 
accurate at around 80° and again at around 170°. There is 
approximately a 90° difference between the minima. Fig. 4 
presents the distribution of the data along the ellipse at 

TABLE I 
THE SIMULATION TEST SETS 

Test set N / % ΘI / ° S / % 

1 10 to 100 0 1.5 
2 60 0 to 175 1.5 
3 50 0 to 175 1.5 
4 40 0 to 175 1.5 
5 30 0 to 175 1.5 
6 20 0 to 175 1.5 
7 50 0 0.25 to 5 
8 80 0 0.25 to 5 

One parameter was changed at a time to see its effect on the estimation 
accuracy. In all the simulation test sets, imbalance values were kept constant: 
AE = 1.2, øE = 20°. 

N = arc length, θi = initial phase angle, and s = noise. 

Fig. 1.  Simulation results for imbalance estimation accuracy with different arc 
lengths. The figures show the mean error and the 20% and 80% quantiles. With 
short arc lengths, both of the methods fail. However, the LM method gives 
accurate estimates with 30% of arc length, while the algebraic method requires 
50% arc length. AM stands for algebraic method in the figures. AE = 1.2, øE = 
20°, θi = 0°, and s = 1.5%. 

 
Fig. 2.  Simulation results for LM imbalance estimation accuracy with different 
initial angles. The mean error of the estimates is close to zero. The standard 
error of the amplitude imbalance estimate is smallest around initial angles of 
35° and again at 125°, while the standard error of the phase imbalance estimate 
is more accurate around 80° and again at 170°. AE = 1.2, øE = 20°, and s = 
1.5%. 

 
 Fig. 3.  Simulation results for algebraic imbalance estimation accuracy with 
different initial angles. The mean error of the amplitude imbalance estimates is 
at its smallest around initial angles of 35° and again at 125°, while the mean 
error of the phase imbalance estimates is smallest at around 75° and again at 
170°. AE = 1.2, øE = 20°, and s = 1.5%. 

 
Fig. 4.  With different initial angles, the data is spread differently over the 
ellipse. Here, an arc length of N = 30% and noise s = 1.5% are used. 
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different initial angles. It seems that the amplitude imbalance 
estimates are more accurate if the data is spread either over 
high (θi ≈ 35°) or low curvature sections (θi ≈ 125°), while 
the phase imbalance estimates are more accurate if the data 
covers both low and high curvature sections (θi ≈ 80° or 
170°).  

In  test  set  2,  the  arc  length  N was 60%. With such a large 
arc length (and also with larger ones) the estimation error is 
always  less  than  3%.  Thus,  the  initial  angle  does  not  have  a  
significant effect if the arc length is large. For the clarity of 
the figure, test set 2 results have not been plotted in Figs. 2 
and 3. 

In test set 1, the initial angle θi = 0° was selected. Now, 
Figs. 2 and 3 show that a slightly larger arc length is actually 
needed for sufficient estimation accuracy independent of the 
initial angle. For the LM method, this arc length is 40%, and 
for the algebraic method 60%. 

Simulation results for imbalance estimation accuracy with 
different noise levels are presented in Fig. 5. The LM method 
tolerates noise much better than the algebraic method. 
Actually, the algebraic method tolerates noise poorly. In 
general, the effect of noise on estimation accuracy seems to be 
greater than the effect of arc length or initial angle. 

V. VALIDATION WITH REAL DATA 

A. Measurement set-up 
To validate the simulation results with real data, 

measurements were set up with an automatic milling machine 
that was programmed to move according to a predefined 
cycle. The measurement set-up is shown in Fig. 6. The 
advantage of using the milling machine carrier beam was the 
ability to set a desired position with 0.1 mm accuracy. A 
stainless steel sphere with a diameter of 19.5 cm was used as 
a target. The sphere was attached to a PVC pipe, which was 
then connected to the milling machine carrier beam. The 
carrier  beam  was  moved  linearly  back  and  forth  in  front  of  
the radar. The radar was positioned at a distance of 3.3 meter 
facing the target. The radar far-field starts at the distance of 
2D2/λ, where D is the maximum dimension of the antenna or 
the target [10]. With the 10.525 GHz radar that was used in 
the measurements and the steel sphere target, the far-field 
limit would be 2.7 meter. Thus, the measurements were made 

in the radar far-field region. All of the moving parts, except 
the target, were covered with an absorber material.  

In total, five measurement sets were performed: one for 
measuring the effect of the arc length, and four for measuring 
the effect of the starting angle. The parameters for each of the 
test sets are presented in Table II, where a is an unknown, 
constant initial angle that depends on the initial distance 
between the radar and the target. In the first test set, the 
target  was  first  moved  0.7  mm  closer  to  the  radar  from  the  
starting point, then 1.4 mm further from the radar, and 
finally, back to the starting point. At 10.525 GHz, this 
corresponds to a 10% arc length of the ellipse. To gain some 
repeatability to the results, this cycle was repeated 3.5 times 
to form each subset of data. Then, the same steps were 
repeated each time with a larger arc length (a larger 
displacement) until the arc length was 100% (a full ellipse) in 
the IQ-plane. Test sets 2–5 were performed in a similar way, 
but instead of changing the arc length, the starting point of 
each cycle was changed by moving the target 0.8 mm further 
from  the  radar.  This  corresponds  to  a  20°  angle  in  the  IQ-
plane.  

The amount of noise in the measurements depends on the 
radar characteristics [29], [30], movements of other objects in 
the radar range, or small unwanted vibrations of the target in 
the maximum displacement point due to a sudden change in 
the direction of the movement. Here, all artifacts are 
considered noise. Generating more noise would require the 
use of another radar module or cumbersome changes to the 
measurement set up. On the other hand, adding simulated 
noise to the real data would not lead to any additional 

TABLE II 
REAL DATA MEASUREMENT TEST SETS 

Test set N / % ΘI / ° 
Step 

increment 
1 10 to 100 a 10% 
2 20 a to (a + 180) 20° 
3 30 a to (a + 180) 20° 
4 40 a to (a + 180) 20° 
5 50 a to (a + 180) 20° 

N = arc length, θi = initial phase angle. a = unknown constant initial angle, 
which depends on the initial distance between the radar and the target. 
 

 
Fig. 5.  Simulation results for imbalance estimation accuracy with different 
noise levels. The LM method tolerates noise much better than the algebraic 
method. AE = 1.2, øE = 20°, and θi = 0°. 

a) b) 
Fig. 6.  a) Two radar modules in the radar design are employed in the 
measurements, but only one of them is used in this paper. The distance between 
the radar and the target is approximately 3 meter. b) The measurement set up is 
shown. The metal sphere used as a radar target is in the middle. The target is 
attached to the CNC milling machine that can be programmed to move 
accurately. 
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a) Measured data with different arc lengths are shown in the 
IQ-plot. The DC drift is removed in each subset, and thus, the 
subsets do not form ellipses with the same center. 

 

b) The resulting ellipses with LM and algebraic methods are shown along with measured 
data. Note the slightly different axes in each plot, which is caused by the DC removal. 

 
c) The calculated imbalance values with both the methods. 
Real data measurements support the simulations that LM 
reaches more accurate results with short arc lengths. 

 
d) The data subsets after GS imbalance compensation with LM 
imbalance values and center estimation. The data in the subsets 
should fall into the same circle if the imbalance values were 
estimated correctly. 

 
e) The data subsets after GS imbalance compensation with 
algebraic imbalance values and center estimation. 

 
 

Fig. 7.  The real data measurements for different arc length values (test set1) i.e., the target is moving with different displacements. 

information in the simulation results. Thus, in this study, real 
data measurements to investigate the effect of noise were not 
performed. 

The noise level in the measurements was measured to be 
approximately 1.5%. The same value was used in the 
simulations (except in the test sets that studied the effect of 
noise). Thus, making a comparison between the simulations 
and the measurements is straightforward. 

The  resulting  signal  contained  a  DC-drift,  which  was  
removed. This was done by subtracting the mean from data 
windows containing movement in one direction only. The 
appropriate window size was chosen to be large enough to 
allow at least one full arc of data for mean calculation and to 
be small enough to effectively remove the DC-drift. 

B. Measurement results 
Fig. 7 combines the results for test set 1 with different arc 

lengths. In Fig. 7a, the data in IQ-plane forms a set of arcs of 
the ellipse. However, because the DC has been removed, these 
ellipses do not have the same center. Figs. 7b and 7c show 
ellipses fitted with the LM and algebraic methods for each 
subset and the imbalance values calculated from these 
ellipses. In the subsets with a small displacement (= small arc 
length), the ellipses fitted with the two methods are not 
similar. Similarly to the simulations, accurate values of the 
imbalances are not known for the real data measurements.  
Therefore, it is not possible to decide which of the methods is 
more accurate. However, based on the simulations, the 
imbalance estimates should converge to the correct value as 
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a) Measured data with different initial angles is shown in the IQ-
plot. The DC drift is removed in each subset, and thus, the 
subsets do not form ellipses with the same center. 

b) The resulting ellipses with LM and algebraic methods are shown along with the 
measured data. Note the different axes in each plot caused by DC removal. 

 
c) Calculated imbalance values with both the methods. 

 
d) The data subsets after GS imbalance compensation with LM 
imbalance values and center estimation. The data in the subsets 
should fall into the same circle if the imbalance values were 
estimated correctly. 

 
e) The data sets after GS imbalance compensation with 
algebraic imbalance values and center estimation. 

 
 

Fig. 8.  The real data measurements for different initial angle values (test set 4). The arc length in all the subsets is 40% (corresponds to the target displacement of 5.7 
mm).  

the arc length increases. The LM method converges with 
smaller arc length values than the algebraic method. 

In Fig. 7d and 7e, the calculated imbalance values are used 
to  compensate  for  the  channel  imbalance  with  the  Gram-
Schmidt (GS) method. After GS, data in the IQ-plot should 
form a circle instead of an ellipse. The center of this circle is 
calculated using the LM circle fitting algorithm [26], and 
then removed from the data. Now, the data should fall into 
the same circle if the imbalance values were estimated 
correctly in the first place. This is true in subsets with an arc 
length of 40% or larger for the LM method and 50% or larger 
for the algebraic method. Thus, the results from the real data 
measurements support those of the simulations in that the LM 
can reach accurate results with shorter arc lengths than the 
algebraic method. 

Similarly to Fig. 7, Fig. 8 combines the data from one test 

set (test set 4), which studies the effect of the initial angle. 
The order of subplots is similar to those in Fig. 7. When 
plotted  on  the  IQ-plot  (Fig.  8a),  each  subset  forms  an  arc  of  
an ellipse. Removal of the DC in each subset explains the fan-
like shape. 

Fig. 8b shows the fitted ellipses for each subset. From Figs. 
7b and 8b, it can be concluded that in these measurements, 
the initial angle at the beginning of the measurements is a ≈ 
30°. The value of a depends on the distance between the radar 
and  the  target,  that  is,  where  the  target  happens  to  be  at  the  
beginning of the measurements. The value of a was kept 
constant during the measurement by moving the target to the 
same position before each subset measurement. Therefore, the 
resulting initial angle is θi = a + Δθi = 30° + Δθi. Thus, while 
comparing the measurement results with the simulations, a 
should be added to the angle values. Hereafter, the 
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comparable initial angle θi values are referred to. 
In Fig. 8b, which shows initial angles of θi = 70° and 90° 
(Δθi = 40° and 60°), the ellipses fitted with the two methods 
are consistent. With the other initial angle values, the ellipses 
differ. The imbalance estimates calculated using the algebraic 
method (in Fig. 8c) have a large variance, while the LM 
estimates are more robust for different initial angles. After 
imbalance correction and center estimation (Figs. 8d and 8e), 
the data should form a circle in the IQ-plane. With the 
algebraic method, the circle is more spread out, indicating 
incorrect imbalance estimates. 

Figs. 9 and 10 combine the results for the remaining test 
sets 2 – 5 for the LM and algebraic methods, respectively. 
The larger the arc length is, the more consistent the 
imbalance estimates are. With the algebraic method, the 
variance of the amplitude imbalance AE estimates is at a 
minimum at initial angles of around 40° and  130° (Δθi = 10° 
and 100°) and largest at initial angles of around 75° and 175° 
(Δθi = 45° and 145°). Now with the same angle values, the 
variance of the phase imbalance øE behaves in an exactly 
opposite manner. This corresponds with the simulations (Fig. 
3).  With the LM method (in Fig.  9),  no clear trend was seen 
in initial angle effects on the imbalance estimates. However, 
the variance of the estimates is smaller with larger arc 
lengths. In general, the initial angle only affected the 
estimation accuracy if the arc length was small. This is seen 
both in the simulations and the measurements. Overall, the 
LM estimates in Fig. 9 are more consistent than the algebraic 
estimates in Fig. 10. 

VI. DISCUSSION 
Based on the study, the LM method performs well in the 

ellipse fitting problem in physiological sensing applications. 
But is it the best method? What is the theoretical limit for the 
accuracy of the estimate? The LM method provides the 
maximum likelihood estimate of Θ under standard statistical 
assumptions (points are observed with an independent 
isotropic Gaussian noise) [15]. A maximum likelihood 
estimate asymptotically achieves the Cramér-Rao lower 
bound. Thus, there is little room for future improvements, at 
least in terms of estimation accuracy. One needs to consider, 
if the assumptions hold. The dominating noise sources in 
radar physiological sensing are reported to be thermal noise 
and flicker noise in the receiver chain [29], [30]. Thus, the 
assumption of Gaussian noise should be reasonable. However, 
any artefacts, such as a respiration of a nearby person starting 
the calibration procedure, that are superimposed to the radar 
signal might not be Gaussian. 

The results showed that the initial angle affects the 
estimation accuracy with the algebraic method. Algebraic 
methods are reported not to be invariant under data rotation 
and translation [15, p. 15], which is basically the same as the 
change of the initial angle. 

VII. CONCLUSION 
Calibration of the radar imbalances has previously been 

possible only in a laboratory environment due to the required 
circuit modifications. A recently published ellipse fitting 
imbalance calibration method enables the calibration to be 
performed on-site and periodically. In this paper, an 
improvement in the ellipse fitting method is presented. Two 
ellipse fitting algorithms have been studied: the proposed LM 
method and the previous algebraic method. The effect of 
different parameters on the accuracy of the imbalance 
estimation is simulated. The studied parameters are: arc 
length, initial angle, and noise level. In addition, the real data 
measurements validate the results at varying arc lengths and 
initial angles. 

This study demonstrates that both the algebraic and LM 
ellipse fitting methods can be used for imbalance estimation 
provided that the data contains a large arc length (≥ 60%) 
and a low noise level (≤ 1.5%). However, if these 
requirements are not met, the algebraic method results in 
biased imbalance estimates. The LM method is unbiased and 
robust for noise, which is of vital importance in practical 
applications if imbalance calibration is performed on-site. 
The real data measurements demonstrate the feasibility of 
estimating imbalance values using the ellipse fitting method 
in real life. 
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Abstract—Microwave Doppler radar offers significant 

improvements for unobtrusive heart and respiration 
measurement. Radar monitoring enables non-contact 
measurement, through clothing, of heart and respiration rate, 
which is desired in several applications ranging from medical 
sleep laboratory measurements to home health care 
measurements and stress monitoring. The use of high frequency 
radar  (>  10  GHz)  instead  of  lower  frequencies  (~2.4  GHz)  
increases the signal-to-noise-ratio (SNR) of the signal and enables 
the utilization of commercial radar modules. However, if high 
frequency radar is used, linear combining of quadrature radar 
channels is inadequate. Instead, a non-linear channel combining 
algorithm is needed. The combining can be performed with an 
arctangent function if center, amplitude error, and phase error 
are  estimated  accurately  and  corrected.  In  this  paper,  we  show  
that the Levenberg-Marquardt (LM) center estimation algorithm 
outperforms the state-of-the-art center estimation algorithm 
precision-wise and is computationally less complex. The 
simulated results show that the root mean squared error (RMSE) 
with the LM method is always less than 1 %, while it is around 5 
– 13 % with the compared method, depending on the breathing 
signal model used. In addition, the computational complexity of 
the LM method stays almost  constant  as  the size  of  the data set  
increases, whereas with the reference method, it increases 
exponentially. In this paper, the LM method is validated both 
with simulations and with real data. 
 

Index Terms—biomedical signal processing, Doppler radar 
measurement, non-contact heart and respiration measurement, 
physiological monitoring, remote sensing 
 

I. INTRODUCTION 
on-contact heart and respiration rate measurement, 
through clothing, with microwave Doppler monitoring 

has several interesting applications. In a hospital setting, it has 
applications in situations where contact electrocardiography 
(ECG) electrodes are impractical, such as with infants or burn 
victims. In addition, there are applications where obtrusive 
contact electrodes could disturb the measurement itself, such 
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as during sleep quality monitoring in a medical sleep 
laboratory. In a home environment, the method offers 
applications for elderly monitoring, stress level monitoring, 
and recovery monitoring during rest. 

Microwave radar monitoring of respiration was first 
presented in 1975 [1] and monitoring of the heart in 1979 [2]. 
The method has raised increased interest during the last 10 
years in academia. Currently, the first commercial respiration 
monitors are entering the market [3], [4]. However, a number 
of challenges still remain with radar monitoring, including 
development of non-linear channel combining algorithms [5]–
[7], removal of motion and respiration artifacts of the patient 
[8], [9] and the background, and development of rate detection 
methods for heart rate variability (HRV) analysis [10]–[13]. 
Rate detection should be robust for the changes in the signal 
waveform that occur due to the measurement position. 

II. MICROWAVE DOPPLER MONITORING OF HEART AND 
RESPIRATION 

A. Monitoring Principle 
In microwave Doppler monitoring, the radar transmits a 

single tone signal with frequency f, which is reflected from all 
of the objects in the coverage area – such as from the chest 
wall in heart monitoring case. The phase of the reflected signal 
is changed according to the Doppler theorem. The reflected 
signal is captured in the receiver antenna and mixed with 
portions of the transmitted signal. In a quadrature radar 
topology, the received signal is mixed with two signals with 
phases 90° apart in order to avoid the null point problem of 
single channel radar. The output signals of the receiver for in-
phase(I)- and quadrature(Q)-channels are: 

,)()(44sin)(

)()(44cos)(

0
0

0
0

ttxdAtB

ttxdAtB

BQ

BI  (1) 

where AB is the baseband amplitude, d0 is the nominal distance 
of the subject, x(t) is the time varying distance of the subject 
(or chest wall movement in heart monitoring case),  is the 
wavelength of the carrier, 0 is  the  constant  phase  shift,  and  

ø(t) is the residual phase noise. [5] 
The distance of the subject x(t) can be solved by combining 

the channels with an arctangent function. However, non-
idealities of real systems cause some challenges to signal 
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processing. These are the amplitude AE and the phase øE 
imbalance that exist between the I- and Q-channels and dc-
offset, V I and  VQ, in both channels. The receiver output 
signals become: 

.
)(

)(44
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These errors need to be calculated and removed before the 
demodulation with the arctangent function in order to avoid 
signal distortion. The known amplitude and phase imbalances 
can be corrected with the Gramm-Schmidt (GS) procedure. [5] 

When plotted in I/Q-plane, a periodically back and forth 
moving object, such as human respiration, forms an arc of a 
circle centered in (VI, VQ) [8]. The initial phase angle in the 
beginning of the measurement is: 

.4
0

0d
i

         (3)  

Thus, it is dependent on the nominal distance of the subject d0. 

B. Radar parameters 
One of our design goals has been to use commercial Doppler 

radar modules that would make the non-contact heart 
measurement readily available to application developers such 
as medical device manufacturers or wireless sensor network 
(WSN) developers. In addition, a directive antenna with a 
narrow beam width is desired for minimizing unwanted 
reflections from the background. A wide beam width would 
result in more clutter in the antenna’s beam [5]. The 
drawback, however, is that a narrow beam width is harder to 
focus to the correct area of the subject’s chest. However, we 
are concentrating on applications where the subject is more or 
less stable (while sleeping or sitting in a chair), and sidewise 
movements are minimal. Thus, a directive antenna is 
appropriate. 

In most of the previous related work, 2.4 GHz radars were 
used [5]–[8], [10]–[13]. However, no commercial radar 
modules are currently available for the 2.4 GHz band. These 
previous studies used either custom built radars from 
commercial parts or an old KMY-24 radar module, which is 
no longer manufactured in the 21st century. For this reason, 
we selected 10 GHz band radars. This, however, raises both 
challenges and advantages in the signal processing. 

The amount of the phase modulation in radians is: 

,)(4 tx          (4)  

where x(t) is the time varying displacement of the chest wall. 
Thus, the signal to noise ratio (SNR) is dependent on the 
wavelength  of the carrier. With a 2.4 GHz radar, the 
wavelength of the carrier is higher that with a 10 GHz radar, 
and the phase modulation (and the arc length) is smaller. This 
leads to a lower SNR. In general, it is beneficial to use as high 
frequency as possible. 

The  chest  wall  motion  due  to  the  heart  beat  is  maximally  
0.6 millimeters in order of magnitude and motion due to the 
respiration is about 4–12 millimeters, according to a literature 
review by Droitcour [5]. With a 2.4 GHz radar, this causes a 

phase modulation  of 3.5° for heart beat and 23–69° for 
respiration. For a 10 GHz radar, the corresponding values are 
14° and 96–290°, respectively. With small values of , the 
small angle approximation (x(t)  <<  ) is valid, and we can 
use the so-called linear demodulation. This means that, with a 
reasonably small error, the arc can be modeled as a straight 
line. The linear demodulation can be performed by principal 
component analysis (PCA) [e.g. 5] or by linear regression [8]. 

The small angle approximation, however, is not valid with a 
10 GHz radar while respiration is present. In [7], it is 
estimated that, with phase modulation of  = 0.13  (rad) = 
47°, non-linear demodulation performs better than linear 
demodulation (with certain received signal power and system 
noise power values). Thus, non-linear demodulation is needed 
with  higher  frequencies.  In  addition,  if  large  motions  are  
measured, such as movements of the whole body like in [6]–
[8], then non-linear demodulation is needed. 

C. Non-linear demodulation 
The arctangent modulation of the radar signal with center 

estimation is presented in [6]–[7]. However with the 2.4 GHz 
radar used in the studies, the arc length is rather small (23–
69°), which might result in an unreliable estimate of the circle 
center. Thus, if the non-linear demodulation was used, we 
would prefer to use a transmission frequency of 10 GHz or 
higher.  

To preserve the correct waveform of the signal, the phase 
and the amplitude imbalance of the channels should be 
corrected and the unwanted dc-offset removed prior the 
arctangent function [5]. If the dc-offset is removed by 
filtering, this will also remove the important dc-offset in the I- 
and Q-channels, resulting in severe distortion of the signal 
during the arctangent function, because the circle center would 
not  be  in  the  origin.  If  the  center  of  the  circle,  (VI, VQ), is 
estimated from the data, the unwanted dc-offset alone can be 
removed [7]. In the next chapter, we present three different 
center estimation algorithms and compare their performance. 

III. COMPARISON OF CENTER ESTIMATION METHODS 
Center estimation of an arc has been an intensively studied 

estimation problem. The maximum likelihood (ML) estimator 
would usually be the first algorithm to try, but a closed form 
solution does not exist [14]. Thus, we used three different 
methods to estimate the center of the arc (VI, VQ): 

1. a method proposed by Park et al. for quadrature 
demodulation for Doppler radar [7], 

2. a method proposed by Yuen and Feng [15], and 
3. a least squares fitting method with Levenberg-

Marquardt (LM) algorithm. 
The first method is a heuristic estimate that has been used in 

several papers dealing with Doppler monitoring; e.g., in [6] 
and [10]. So far, it has been the only method proposed for 
radar heart monitoring applications and can therefore be 
considered as a state-of-the-art method. For simplicity, we call 
this method the Park method from now on. The Park method 
is calculated as follows: the data are first multiplied by the 
transpose of the matrix of eigenvectors of the covariance 
matrix VT to rotate the arc. Now, the arc is orthogonal to the 
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Q-axis, and the center is on I-axis. This is close to the PCA. 
After rotation, the heuristic estimate is (k, 0), where k is: 
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      (5)  

The center of the unrotated data is obtained with the inverse 
transform by multiplying (k, 0) with V-1.[7] 

The second method, here referred to as the Yuen method, is 
an approximative method. The data are divided into three 
subsets. Then, each data point of each subset is substituted 
into 3m number of circle equations, when m is the number of 
data points in each subset. From these 3m circle equations, 
three dummy variables for each subset are calculated, and 
further, the circle parameters are derived. The method is 
presented in detail in [15]. 

The last method, here called the LM method, is a recursive 
algorithm for solving least squares fitting (LSF) problems. In 
detail, the method is the classical Gauss-Newton method with 
the Levenberg-Marquardt correction. The method is well 
documented in the literature, and more details can be found, 
for example, in [14]. Flow charts for the three selected 
methods are presented in Fig. 1. 

A. Simulation Results 
The first experiment was performed with data points that 

were generated along the arc. Two data sets, which had 
different distribution of the data points, were generated along 
the arc. In the first data set, the phase angles of the data points 
along the arc were uniformly distributed. In the second data 
set, the x-coordinates of the data points were uniformly 
distributed which leads to non-uniform distribution of the y-
coordinates and the phase angles of the data points. In 
addition, noise, with 2D Gaussian distribution, with zero mean 
and 0.04 variance compared to a unit radius, was added.  

 
a) 
 

 
b) 

Fig.  2.   a) When the data points are uniformly distributed relative to the 
angle, Park and LM methods perform equally well. b) However, when the 
data points are weighted to some part of the arc, Park estimate has a bias 
compared to the LM estimate. 
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Fig. 1. The flowcharts present the differences in calculation of the Park, Yuen and LM methods. The Park and Yuen methods are approximative, and the LM 
method is iterative. 

Rotate the arc to make it 
orthogonal to the Q-axis.

Calculate k(i,j) matrix.

k is the median of the 
matrix components. 

Center estimate is (k,0).

LSF is based on 
minimizing the mean 

squared distance d from 
the estimated circle to the 

data points.

Objective function is:

Find the minimum of F
iteratively, because closed 
form solution for LSF of a 

circle does not exist.

Center estimate is at the 
minimum of F.

Divide the data into three 
subsets.

Substitute each data point 
into 3m number of circle 
equations, and sum these 
equations subset-wise.

Derive three dummy 
variables for each subset.

Center estimate is 
approximated from dummy 
variables and subset-wise 

circle equations.

Park method Yuen method LM method
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When the phase angles of the points are uniformly 
distributed (Fig. 2a), both the Park and LM methods seem to 
perform equally well. The Yuen method, however, has 
considerable bias, as seen in Fig. 2a. In Fig. 2b, the x-
coordinates of the points are uniformly distributed, which 
means that the data are accumulated to some part of the arc. 
Now, the center estimate of Park method moves closer to the 
center of mass of the data points, while the Yuen method is 
again unsuccessful. The LM method, however, returns a good 
estimate. 

In these two simulations, the performance of the Yuen 
method was considered to be so poor that the method should 

not be considered for use in a presented application. Thus, this 
method is not further analyzed in this paper. 

According to our experimental tests, respiration data should 
not be modeled as a simple sinusoid function; rather, one half 
of the sinusoid is prolonged and another is narrowed. Morgan 
et.al. [8] simulated respiration pulse pr(t) with a half-cycle of a 
sinusoid raised to the pth power: 

,sin1)( tftp R
p

r         (5)  
where fR is respiration frequency. The respiration pulse is then 
repeated at intervals of 1/fR. The values of p = 3–5 are selected 
for simulations. Two cycles of simulated respiration signal are 
used as the experimental data. The amplitude is multiplied by 

a) b) c) 

d) e) f) 

g) h) i) 
Fig. 3.  The performance comparison of different center estimates with simulated respiration test signals with p values from 3 to 5. In the left hand column 
(Figs. 3a, 3d, 3g), the respiration test signals are shown. In the center column (Figs. 3b, 3e, 3h), the center estimates for corresponding respiration signals are 
presented. In the right hand column (Figs. 3c, 3f, 3i), the corresponding waveforms after arctangent combining of channels are shown. Rows represent results 
for p values from 3 to 5, respectively, from up to down. Park method suffers from systematic error which increases in larger p values. 
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/2 to get angle values  to vary between 0 – /2. Circular 
Gaussian noise (zero mean, 4 % variance) is added to the data. 

Fig. 3 shows qualitative simulation results for the LM and 
Park methods with different p values. Simulated respiration 
test signals and calculated center estimates are presented in the 
left and middle columns, respectively. Estimated center values 
are subtracted from the data, and the arctangent combination 
method is used to combine the I- and Q- channels. The 
resulting waveforms are shown in the right hand column. 

The LM method always results in better center estimates 
than the Park method, and only a minor error is seen in the 
signal waveform, most of which is due to the added noise. 
Although the center estimate of the Park method with p =  3  
seems to differ evidently from the original center and the LM 
center estimate, the error is not very large in waveform after 
arctangent combining. However, with larger p values, the error 
is increased considerably. The larger the p value, the larger is 
the distortion of the waveform. In addition, it should be noted 
that the distortion is non-linear, which might impede the 
further processing of the signal. 

In addition, quantitative results were calculated with 1000 
iterations. The error in the resulting waveform between the 
original signal and the signals after estimation methods and 
arctangent combining is calculated by root mean squared error 
(RMSE). The respiration test signal and the calculated signals 
were  first  normalized  by  dividing  the  signals  by  the  value  of  

/2. The resulting errors are shown in Table I. 

IV. VALIDATION WITH REAL DATA 
 For the validation part, the phase and amplitude errors of 
the radars were first measured. The error values of each radar 
are expected to remain constant over time. Next, data were 
recorded from a sitting test subject. The measured amplitude 
and phase error values were used to correct the imbalances by 
the GS orthonormalization procedure. Finally, the LM and 
Park methods were compared for center estimation of the 
collected data. 

A. Correction of amplitude and phase imbalances 
In addition to the DC-offset VI and  VQ, the amplitude and 

the phase errors AE and øE between the channels should be 
estimated [16]. This was performed by using a wall plate of an 
automatic miller machine as a radar target, which can be 
programmed to move accurately to the desired positions with a 
desired velocity. Thus, the mechanical movement of the target 
in front of the radar was known. The measurement setup is 
presented in Fig. 4a. In Fig. 5, the resulting waveforms from 

TABLE I 
ERROR OF ESTIMATION METHODS 

Estimation method 
Root mean squared error (RMSE) 

p=3 p = 4 p = 5 
LM method 8.4 10-3 8.5 10-3 8.6 10-3 
Park method 51 10-3 97 10-3 130 10-3 

Root mean squared error between the original signal waveform and signal 
waveform after the two estimation methods and arctangent combining. LM 
and Park estimates are compared for three different respiration test signal 
parameter p values, 3, 4, and 5. The results are means of 1000 iterations.  
 

 
a) 

 
b) 

Fig. 4. The measurement setup for radar calibration measurements (4a) and 
patient measurements (4b). For calibration measurements, a programmable 
miller machine is used as the target, because its position can be accurately 
determined. Each radar is measured separately. For human measurements, a 
patient  is  seated in front of two radars.  Data are sampled with an ADC card 
and transferred to a laptop PC for further analysis. 

Fig. 5.  Small segments of the resulting signal waveforms in time domain. 
The phase difference between the channels I and Q is actually less than 90°, 
which was the value presented in the radar data sheet. In addition, a small 
difference in the amplitudes is seen. 

a)            b)  
Fig. 6. a) On the left, the data from the Fig. 3 are plotted in the I/Q-plane, b) 
and in the right, the same data set is plotted after GS procedure. The circle of 
the original data is tilted. After GS, the data form a circle in the I/Q-plane. 
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TABLE II 
AMPLITUDE AND PHASE IMBALANCES 

Radar nro. Amplitude error AE Phase error øE 

1 1.04 20.8 
2 1.27 20.3 
3 0.99 42.5 

The calculated amplitude and phase imbalance values 
for three different radars used for the measurements. 
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the miller machine measurements are shown. The existence of 
the amplitude and phase errors AE and øE is visible. First, the 
phase imbalance, øE, was calculated from FFT phase response. 
For the calculation of the amplitude imbalance, AE, the data of 
the channel that is further behind are shifted to the left, in 
order to force the same phase angle in both the channels. The 
amount of the shift is the amount of the phase error. Then, the 
amplitude error øE between the channels is calculated by linear 
regression.  

The results of the calculated errors are presented in Table II. 
Especially for radar 3, the phase error turned out to be rather 
large, and it should be corrected before further analysis. The 
amplitude error of the radar 2 is also large. The known phase 
and amplitude imbalances can be corrected with the GS 
method. The IQ-plot of data before and after the GS method 
can be seen in Fig. 6a and 6b, respectively. 

B. Measurement Setup 
The experimental arrangement was set up as follows: the 

radar was placed to face the test subject’s chest at half a meter 
distance. The subject was seated in a chair, leaning into a 
backrest. The data were recorded from a female test subject 
(age 29 years, height 158 cm, weight 63 kg), who had no 
diagnosed heart disease. Two different data sets were 
recorded: in the first set, the subject was breathing normally, 
and in the second data set, the subject was advised to breathe 
very deeply. The measurement setup is seen in Fig. 4b. 

Quadrature radar modules, MDU4220, from Microwave 
Solutions Ltd. were used. The frequency of the radars were 
around 10 GHz (10.587 GHz, 10.525 GHz, and 10.410 GHz). 
The data of all the channels were sampled at the sampling rate 
of 800 Hz with a 24-bit AD-converter ADCiso4x (from 
Icraft). Each channel of the AD-converter was galvanically 
isolated from each other. One test set lasted approximately 1 
minute. A 2-channel contact ECG was recorded as a reference. 

C. Measurement Results 
 The center estimates of the recorded data were calculated in 
smaller, 10-second windows. This was due to the fact that the 
Park method is computationally slow with large data sets. In 
addition, the changes in the patient posture will affect the 
position of the center, and thus, can deteriorate the data inside 
the window. 
 The validation results with real data are presented in the 
Fig. 7. Time domain figures are presented on the left, and I/Q-
plots on the right. The first test set, in which the subject was 
breathing normally, showed only small differences in the two 
center estimates (see Fig. 7d). Thus, the difference resulting in 
the phase angles LM and P is small as well (Figs. 7b and 7c). 
These results are comparable to the simulation set with 
parameter value p = 3, where inspiration time is close to 
expiration time. 
 In the second test set, the subject was breathing deeply. 
Now however, there was a systematic bias between the Park 
and LM methods in the center estimates. This results in some 
notable changes in the phase angles LM and P. In particular, 
as shown in Fig. 7g, some sharp peaks in the filtered P signal 
are seen in separate positions than in the filtered LM signal. 
The plot presents mainly the cardiac component as the 
respiration is filtered away with a high pass filter. Thus, this 

might have implications in accurate HRV analysis. The results 
from test set 2 are similar to the simulation set with parameter 
values p = 4 or 5. Now, the inspiration and the expiration are 
not equal in length. 
 According to these validation results, we can not really say 
which of the two algorithms performs better. Since we do not 
know the real chest placement during the measurement, and 
since measuring it is rather complex, we can only state that 
this validation step does confirm the simulation results.  

D. Computational Complexity 
The computational complexity of the Park and LM methods 

were estimated with several data sets. The measurements were 
performed with a laptop PC with a 1.86 GHz processor and 
1024 Mt of memory. The time required for Matlab to complete 
the center estimates was calculated with tic-toc-operands. In 
total, eight data sets were used. In the first seven data sets, the 
respiration test signal (5) with added circular Gaussian noise, 
similarly as described in chapter IIIA, was used. However, 
now the sampling frequency of 150 Hz was used, as it is 
around the frequency needed for HRV analysis. The length of 
the data set varied from 5 to 60 seconds. For accurate center 
estimation, at least one cycle of breathing is needed. Thus, at 
least a five-second-long data set is needed in a real life setting. 
On the other hand, as the posture of the person may change 
during the measurement, long data sets should be divided into 
segments. Changing the posture will move the center point (VI, 
VQ) to another position and distort the signal waveform. In the 
last data set, real data were used. These were sampled with 
800 Hz sampling frequency, and a ten-second long data set 
was used. For each data set, ten iterations were performed, and 
the mean values of the resulting computation times are 
presented in the Table III.  

The computation time of the Park method increases rapidly 
as the size of the data set  increases,  whereas the computation 
time of the LM method remains at less than 70 ms. In general, 
the Park method is rather slow. 

V. DISCUSSION 
Although the error in the center estimates between the Park 

and LM methods is distinct in I/Q-plots, the error in the 
resulting signal waveform after an atan-method is not very 
large. However, the error is largest in the peaks of the signal. 
This might have significance for the HRV analysis, in which 

TABLE III 
COMPUTATIONAL COMPLEXITY  

Data 
set 

Length of the set Sampling 
rate / Hz 

Park 
method / s 

LM 
method / s Points Time / s 

1 750 5 150 1.0 0.027 
2 1500 10 150 3.9 0.028 
3 3000 20 150 16 0.036 
4 4500 30 150 35 0.038 
5 6000 40 150 63 0.043 
6 7500 50 150 98 0.044 
7 9000 60 150 140 0.046 
8 8000 10 800 110 0.069 

The computation times of Park and LM method for varying data sets. 
Park method is very slow for large data sets, while the computation time 
of LM method s independent of the size of the data set. 
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the accurate timing estimation is of great importance. The 
timing points are often measured in the peak points of the 
signal. Thus, errors in peaks of the signal waveform might 
result in decreased accuracy of the HRV analysis. This is 
noted also in [13], in which a linear demodulation method 
resulted in three times more accurate HRV estimate than that 
obtained using arctangent demodulation [11]. In the paper, the 
difference is explained by the accuracy of the center estimate. 
However, the Park method is used for center estimation in the 
comparison study. It should be further studied whether the LM 
method increases the HRV accuracy. 

The superiority of the LM method over the Park method 
depends on the respiration waveform. The waveform of the 
respiration can, to some extent, be altered consciously by the 
test subject. The largest amplitude of the movements can 
occur ether in the chest or in the abdomen in normal breathing. 
In healthy patients, the ratio of time spent in inspiration and 
time spent in expiration (I/E ratio) is about 1:2 [17]. In 
neonates, the normal I/E ratio is between 1:1 and 1:3 [18]. In 
addition, several health conditions such as obstructive sleep 
apnea or asthma may change the morphology of the signal. In 
general, the respiration waveform is too complex to be 
modeled as simple sinus waveform. In simulations, the LM 
method always resulted in better, or at least as good, estimates 
as the Park method. Thus, the LM method should be used 
instead of the Park method. 

VI. CONCLUSIONS 
Center estimation is a vital preprocessing step for the non-

linear demodulation needed in microwave radar heart and 
respiration monitoring. In this paper, we compared three 
different center estimation methods for microwave radar 
monitoring: methods proposed by Park et al., by Yuen and 
Feng, and the LM method. When the subject is breathing 
calmly, both the Park and LM methods seem to perform 
accurately. However, if the subject is breathing deeply, the 
LM method achieves more accurate center estimation. 
Moreover, the LM method proved to be computationally less 
complex. In real life measurements, the breathing waveform 
could differ greatly from a sinus-type waveform. Since the 
LM method is always at least as accurate, and often more 
accurate, as the other two compared methods, we recommend 
the utilization of the LM method in radar monitoring. 
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Fig. 7.  The results from validation with real data for comparison of the performance of the LM and Park methods. On the left hand side (Figs 7a-c, 7e-g), the 
signals in time domain are presented, and on the right hand side (Figs 7d and 7h), the data and the calculated center estimates are presented in I/Q-plots. The three 
uppermost figures on the left present the results from test set 1. a) The unprocessed data recorded with the radar, b) the calculated phase angles LM and  P 
(presenting mainly respiration signal), and c) the phase angles LM and P with respiration filtered out (presenting mainly cardiac signal)  are presented from the 
top to the bottom, respectively. The results from test set 2 are similarly presented in the three lowermost figures (Figs 7e-g). 
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Abstract—Current technology trends, such as ubiquitous 
computing and calm technology, call for novel unobtrusive 
sensors. The commonly used heart rate monitoring techniques 
require direct contact to the patient which makes the patient 
well aware of the sensors. In this paper, a novel method for 
detecting the distance of an approaching patient and for 
measuring his or her heart rate with a microwave Doppler 
radar is presented. This enables a truly non-contact and 
unobtrusive measurement. In addition, the measurement can 
be performed even through thick clothing. Furthermore, the 
patient does not need to be aware of being monitored since the 
method enables measurement to be started automatically as the 
patient approaches the sensor. 

I. INTRODUCTION 
he trendy visions of ubiquitous [1] and proactive 
technology [2] call for development of calm and non-
disruptive sensor technology. Novel sensors and 

continuing development of old sensors are needed in order 
to design context aware devices. On the other hand, as the 
inhabitants of developed countries age, home-based 
healthcare offers a possibility for substantial savings and 
major decrease in time spent in a hospital or a nursing home. 
This is not possible unless there are as reliable monitoring 
methods available for home environment as there are for 
hospital care. 

It is apparent that people do not want to be connected to 
the measuring devices nor to be aware of constant sensing 
and monitoring [3]. This is even more the case in home 
environment where people seek for comfort, relaxation, and 
safety. Although those who suffer from a serious illness or 
disability, or are on rehabilitation phase might have a lower 
threshold in making some compromises in the usability or 
comfort of a monitoring device, whereas healthy (not to 
mention sporty) persons are not willing to do so. The 
measurement has to be unobtrusive and it must not hamper 
the everyday life. Hence, unobtrusiveness is one of the 
enabling concepts in making healthcare measurements part 
of our every day life. Thus, there is a clear need for novel 
sensors that can make measurement as unobtrusive as 
possible for the patient or the user. 
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Heart rate (HR) can be measured by various methods: 
with electrocardiography (ECG) or with common 
commercial heart rate monitors that are based on ECG, with 
ballistocardiography (BCG), with photoplethysmography 
(PPG), and with impedance cardiography (ICG). 
Measurement with these methods can be made less obtrusive 
with careful product development and utilization of novel 
research results (such as using textile electrodes [e.g. 4] and 
wireless data transmission), by embedding sensors (for 
example in a chair [5] or in clothing) or by miniaturization 
[e.g. 6]. However, this does not remove the fact that all these 
methods require a direct contact to the patient – either in 
form of electrodes, photodiode, or some kind of pressure 
sensor. 

The Doppler radar monitoring of HR was published by 
Lin et al. [7] already in the late 1970’s, and later, in order to 
develop the method towards commercial use, by Boric-
Lubecke [8]-[10], [12] and Droitcour [11]. The latter two 
have done several improvements and developments 
including integrating the radar in an IC-chip [9] [11], using 
WLAN (Wireless Local Area Network) PC card as a 
transmitter and a receiver [10] and using cordless telephone 
handset as a transmitter and an add-on module as a receiver 
of the microwave signal [12]. However, the method has not 
yet become widely known, although it offers many 
advantages over typically used HR monitoring methods. 

In this paper, a microwave Doppler radar is used as a 
sensor for measuring patient’s HR. In addition, the 
sensitivity of the placement of the sensor is discussed. 
Furthermore, this paper presents a novel method for 
detecting an approaching patient with the same kind of radar 
structure as used for HR measurement. The distance of an 
approaching patient can be used for starting the 
measurement automatically. The patient does not need to do 
any preparations prior the measurement. In addition, this 
enables a situation where the patient is not even aware of the 
fact that he or she is being monitored. This enables several 
highly interesting applications ranging from using HR as a 
parameter for controlling of home to HR lie detectors. In 
general, the method enables truly unobtrusive sensors. 
Furthermore, the method holds another highly significant 
advantage: measurement can be made even through a thick 
set of clothes. At first, basic principles of the measurement 
are explained. Then, the system design is described, and 
finally, the measurement arrangements and the results are 
presented.  

Contactless and Unobtrusive Measurement of Heart Rate in Home 
Environment 

Mari Zakrzewski, Arto Kolinummi, and Jukka Vanhala 
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II. METHODOLOGY 

A. Doppler Radar Monitoring 
The measurement is based on the Doppler phenomenon. A 
microwave signal emitted from the radar module is reflected 
from all objects within the coverage area and the signal 
reflected from moving objects is Doppler shifted. The 
reflected signal is received by the radar module and mixed 
with a portion of the original one. The signal reflected from 
stationary objects will be removed in mixing since it has the 
same frequency as the transmitted signal. Hence, the output 
signal of the radar module is the signal reflected only from 
moving objects. The strength of the reflected signal can be 
estimated by the radar equation:  
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where Pr and Pt are the received power and the power fed to 
the transmitting antenna respectively, λ is the wavelength of 
the signal, R is the distance to an object, G is the antenna 
gain, and σ is the radar cross section (RCS) of an object. 
The RCS is defined as follows: 
 
 , p HSA=σ  (2) 

 
where A p is the projection area of an object, H is the 
reflectivity, and S is the directivity of an object. 
Nevertheless, the radar equation (1) gives only rough 
approximation of the signal strength since the reflection 
event is highly simplified and does not take into account 
several losses. However, it can be stated that the strength of 
the output signal is strongly inversely proportional to the 
distance of an object – but to the size, material, and 
orientation of that object as well. [13] 
 

B. Hardware Architecture 
The block diagram and the hardware prototype of the 

sensor are presented in Fig. 1. The device consists of a 
microwave radar module, an analog signal processing unit, a 
microcontroller, and a data transmission unit. An 
inexpensive, commercially available microwave Doppler 
radar module, which is commonly used as a motion detector, 
is utilized. The microwave radar module used is MDU1000, 
manufactured by Microwave Solutions Ltd. [14]. The radar 
uses a 10.587 GHz carrier frequency in continuously 
emitting mode (CW). CW radars are typically utilized for 
measuring the relative velocity of an object, but in this 
study, the similar radar structure is used for estimating the 
distance to a patient and measuring his/her HR. The 
dependency of the received reflection signal strength on the 
distance R between the radar and a patient is used to 
calculate the distance (1) [15]. The emitted power of 
MDU1000 is 20 mW (EIRP, Equivalent Isotropic Radiated 

Power), thus, it meets the EN 300 440 specification. The 
output signal of the radar module is very small, below 1 mV, 
so it needs to be amplified before it can be digitized. This is 
done in a cascade of two logarithmic amplifiers. The signal 
is converted into digital form with sampling frequency of 
100 Hz in the microcontroller and transferred to a PC for 
further processing with Matlab. 

 

C. Measurements 
To test the suitability of the Doppler HR monitoring, several 
experiments were conducted. The sensor was mounted at the 
height of one meter facing towards patient’s chest so that the 
distance between the sensor and the patient was 15 cm. The 
patient was sitting in a chair at rest, holding his breath 
during the test. The test cases were chosen as follows: 

1. The sensor was facing towards the thorax at about 
10º tilt angle to the vertical axis. The patient was 
leaning forward. 

2. The sensor was facing towards the thorax at about 
10º tilt angle to the vertical axis. The patient was 
leaning backward. 

3. The sensor was facing towards the thorax at about 
45º angle to the median plane in the left hand side 
of the patient. The patient was leaning backward. 

The duration of each test was 20–30 seconds. 
The effect of differences in patients’ physical size and 

moving velocity on the response was tested by conducting 
basic walk tests in a large room. The sensor was attached at 
the height of one meter facing towards a patient, who was 
moving back and forth at the distance of 0.5–7 meters. The 
range of seven meters can be considered adequate especially 
at home environment where distances are typically smaller. 
The test cases were chosen as follows:  

A. short, small sized patient (155 cm – 55 kg) moving, 
B. tall, large-sized patient (190 cm – 140 kg) moving, 
C. small patient moving at different velocities. 

The duration of each test was 30 seconds. 
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Fig. 1.  Upper: The block diagram of the sensor. Lower: The hardware 
prototype of the sensor. 



 
 

 

III. RESULTS 
The signals measured in test cases 1 to 3 are shown in Fig 

2. both in time and frequency domains. In the time domain 
curves, there can be seen several peaks during one phase. 
Yet, the shape of the curve remains the same from phase to 
phase. In the PSD graphs, there can be seen larger peaks in 
both the HR and twice the HR (marked with a red circle). 
The accurate frequencies of these peaks are presented in 
Table I along with calculated results in the unit beats per 
minute. The typical responses in test cases A to C are 
presented at the bottom of the Fig. 2. In addition, the RMS-
error (Root Mean Square) is shown next to each curve. As 
seen, the error of the method is approximately half a meter. 

 

IV. DISCUSSION 
The HR can reliably be obtained by Doppler radar 

monitor. The position of the sensor in relation to patient’s 
thorax affects greatly the measured waveform as seen in Fig. 
2. The movement of thorax is not similar in all directions as 
it differs both in transversal, frontal and sagittal planes. As 
the patient is leaning back- (test case 2) and forward (test 
case 1), the measurement is made in slightly different angle 

in relation to the thorax. This causes the difference between 
the waveforms in test cases 1 to 3. A large alteration in the 
waveform caused by a small displacement of the sensor 
might cause problems if the sensor must be placed 
accurately to the same position for each measurement. 
Nevertheless, the interesting part of the signal, as HR is 
measured, is the frequency, which can be easily calculated in 
each test case regardless of the waveform. 

The waveform of the Doppler radar monitoring has 
attracted little attention in the literature [16]. Only Lin et al. 
presents one waveform [7]. Similar waveform is seen in the 
test case 1 containing one wide peak with two smaller 
superpositioned peaks. 

Although the signal processing needed for distinguishing 
respiration artifacts from the HR signal is not performed in 
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Fig. 2.  Upper: The effect of differences in mounting of the sensor is shown. Samples of signals captured from test cases 1 to 3 are shown, from top to 
down, in time domain on the left hand side and in the frequency domain on the ride hand side. The waveform differs greatly depending on the 
placement of the sensor relative to the patient’s thorax, yet, the accurate frequency can be measured. Note that the y-axes in the PSD charts are in 
decibel scale, and the units in y-axes in the time domain charts are linear relative values, value 1 representing the maximum value. 
Lower: Typical responses of the sensor measuring patient’s distance when patients with different physical size are moving back and forth. The response 
to movement of a small-sized patient (test case A) and a large-sized (test case B) patient and the effect of different moving velocities (test case C) are 
shown in charts from left to right respectively. The measured distance is shown in the solid line and the reference distance in the dashed line. The RMS-
error is shown at the upper right hand side of each chart and it is approximately half a meter. 

TABLE I 
HRS OBTAINED BY DOPPLER RADAR MONITOR 

Results Case 

Base 
frequency 

(Hz) 

2. harmonic 
frequency 

(Hz) 

(beats/
min) 

1 1.22 2.44 73 
2 1.32 2.71 80 
3 1.12 2.25 67 



 
 

 

this paper, this can be done with the means of digital signal 
processing [17]. It should be mentioned that breathing 
activity causes significant artifacts to the signal waveform 
and, if not correctly filtered, the heart signal can not be 
distinguished during the times of in- or exhale. Another 
challenge still remains: how to distinguish HR from the 
motion artifact of the patient and the interferences caused by 
background movements.  

In the test cases A to C the data obtained by the Doppler 
radar correlate perfectly with the reference. Beforehand, it 
was expected that the physical size of the patient would 
significantly affect the received signal strength. 
Nevertheless, as we compare the results, it can be stated that 
the effect is only minor.  

In the test case C the effect of the patient’s velocity to the 
response was examined. In the beginning, the patient was 
moving roughly at a velocity of 1 m/s and in the second half 
at a velocity of 0.5 m/s. The measured trace is not smooth, 
although, the patient is moving at a constant velocity 
according to the reference measurement. This is probably 
due to the fact that the reference meter measures the distance 
of the patient’s torso whereas the response of the tracking 
device is dependent on the movement of the whole body, 
including limbs.  

Though there are still a few improvements that can 
increase the functionality of the method, the results are very 
promising. The method enables a truly non-contact 
measurement of HR. The method offers a possibility of 
measuring HR even through thick clothing. This could 
enable several novel applications and advantages for 
example in healthcare technology, home monitoring and 
sports – particularly in winter sports. As microwaves also 
easily penetrate several materials, for example plastic, the 
sensor can be hidden behind a cover so that it can be placed 
out of sight. These are major advantages both from the 
principle of calm technology [18] and from user-centered [3] 
point of views. 
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Abstract—With a microwave radar, chest wall movements 
originating from cardiac and respiratory activity can be 
recorded non-contactly. A major challenge is how to separate 
the desired low-amplitude cardiac signal from large-amplitude 
artifacts, such as respiration. Commonly, the separation is 
performed with a narrow band-pass filter. This causes the signal 
edges to be rounded, which complicates the accurate timing 
estimation in the heart rate variability (HRV) analysis. In 
addition, the harmonics of the respiration signal might fall into 
the same frequency spectrum as the cardiac signal. In this study, 
we recorded data with two radars and studied signal separation 
using a complex-valued Independent Component Analysis 
(ICA). After ICA, the respiratory signal is greatly attenuated, 
although still present, in two of the independent components 
(ICs). However, respiration harmonics are reduced as well, and 
thus, the residual respiratory signal can be removed by filtering. 

I. INTRODUCTION 
Non-contact heart monitoring has several application areas 

in elderly care, home health monitoring, stress level 
monitoring of an employee in safety critical tasks, or 
recovery monitoring. In addition, there are applications where 
obtrusive contact electrodes could disturb the measurement 
itself such as sleep quality monitoring in a medical sleep 
laboratory. The current challenges with radar monitoring, 
however, include removal of motion and respiration artifacts 
of the patient [1, 2] and the background, development of a 
non-linear channel combining algorithm [3, 4], estimation of 
amplitude and phase imbalance of the two radar channels [5], 
and development of rate detection methods [6–8]. Rate 
detection should be robust for the changes in the signal 
waveform due to the measurement position. In this paper, we 
utilize ICA to remove respiration artifact from the signal. 

In microwave monitoring, the respiration artifact is approx. 
10-100 times larger than the cardiac signal. Thus, respiration 
can easily be separated from the signal by low-pass filtering. 
But cardiac signal separation is more difficult. The harmonics 
of the respiratory signal might fall into the same frequency 
spectrum than cardiac signal [1], and thus, band-pass filtering 

of the signal might not remove all the respiratory 
components. The remaining respiration harmonics may well 
be similar in amplitude than the cardiac component. 

ICA has been used successfully for data measured by ECG 
[9]. The advantage of ICA compared to filtering in artifact 
removal is that no hypothesis on the cardiac signal frequency 
spectrum is necessary. This might enable monitoring of some 
abnormalities of the cardiac signal, such as premature peaks, 
as demonstrated with ECG in [9]. Instead, ICA assumes that 
the independent components are statistically independent i.e. 
the joint probability density function (pdf) is the product of 
the densities of all sources [9, 10].  

With microwave radar monitoring of heart, ICA has been 
used previously for separating two heartbeats from two 
different persons in the radar coverage area [11]. However, the 
novelty of this paper is to use the data recorded from one 
person with two radars and to utilize ICA for blind source 
separation of the respiration artifact. In addition, a complex-
valued extension of the FastICA algorithm [12] is used, 
meaning that both the sources and the mixed signals are 
complex. Moreover prior ICA, we performed a preprocessing 
step to ensure that different radars have the same initial phase 
angle θi, which is proportional to the nominal distance d0 
between the radar and the patient. That is, we ensured that data 
from two different radars are comparable. 

II. SIGNAL PROCESSING 
A.  Radar Heart Measurement 

The radar measurement of heart is based on monitoring 
the small movements of the chest wall due to the heart 
pulsation and blood flow in the large arteries. In this study, 
the measurements were performed with continuous wave 
quadrature microwave Doppler radars. The output signals of 
the radar module for in-phase(I)- and quadrature(Q)-channels 
are: 

This research is partly funded by Tampere Doctoral Programme in 
Information Science and Engineering (TISE) and partly by Learning and 
Interaction in Proactive Spaces (LIPS) –project funded by Academy of 
Finland. 
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where AB is the baseband amplitude, d0 is the nominal 
distance of the subject, x(t) is the time varying distance of the 
subject (or chest wall movement in heart monitoring), λ is the 
wavelength of the carrier, θ0 is the constant phase shift, and 
Δø(t) is the residual phase noise. [3] 

There are two imbalance factors between the I- and Q-
channels, amplitude AE and phase øE imbalances, and dc-
offset VI and VQ in both the channels [3]. Dc-offset is not 
critical in complex signal interpretation, and it is removed in 
signal processing. The imbalance factors, however, are 
measured for each radar module separately. The measured 
amplitude imbalances AE for radar 1 and 2 were 1.04 and 
1.27, respectively. The measured phase imbalances øE were 
20.8 and 20.3 degrees, respectively. The imbalance factors 
were compensated by the Gram-Schmidt orthonormalization 
procedure prior further signal processing steps. 

B.   Preprosessing step 
The constant phase shift θ0 is related to the phase change 

at the surface of a target and any time delays in the radar 
between the transmitter and the antenna and between the 
antenna and the mixer. We denote the initial phase angle by 

݅ߠ ൌ ߣ0݀ߨ4 െ  .0ߠ
Now, initial phase angle θi can be considered to be a random 
variable which changes depending on the positioning of the 
radar. In the preprocessing step, the data is rotated so that the 
initial phase angle θi is the same in both the radars in order to 
make the data from different radars comparable with each 
other. The rotation step is performed by multiplying the data 
with the matrix of eigenvectors of the covariance matrix of the 
data. Thus, the rotation step is close to the principal 
component analysis (PCA) and linear demodulation [3, 13]. 
Linear demodulation is widely used channel combining 
technique in Doppler radar measurement. However differing 
from PCA and linear demodulation, it is separately ensured 
that the step is always performed by rotating the data around 
the origin instead of mirroring the data in relation to the 
origin. The rotation step for both the radars is presented in Fig. 
1. 

C. ICA 
ICA is a method for blind source separation. The task is to 

estimate both matrix A and independent components s so that ࢞ሺݐሻ ൌ  ,ሻݐሺ࢙࡭

 
Figure 1.  The initial phase angle θi is related to the distance of the subject, 
the phase change at the surface of a target, and radar properties, i.e. it can be 
considered to depend randomly on the positioning of the radar. In the 
preprocessing step, the data is rotated so that the initial phase angle θ, is the 
same in both the radars in order to make the data from different radars 
comparable. The figures present the rotation step for the radar 1 (the upper 
row) and for the radar 2 (the lower row). 

 

where x(t) = (xR1(t), xR2(t)) is the vector of observed random 
variables (now radar output), s(t) = (sR1(t), sR2(t)) is the vector 
of statistically independent components (ICs), and A is an 
unknown constant 2x2 mixing matrix. Both x and s are 
complex valued. In our case, the radar output is made complex 
by xRj(t) = BI(t) + iBQ(t). ICA tries to find the random 
variables sRj, j = 1, 2, that are as independent as possible by 
estimating the demixing matrix W, such that s = WHx. The 
clear advantage of ICA is that no presumptions about the 
frequency spectrum of the ICs are needed. The disadvantage 
of ICA, however, is that it is not deterministic, meaning for 
example that order, amplitude and sign of ICs might change 
on next run. In this study, we use complex-valued extension of 
fastICA algorithm in Matlab [14]. [10, 12] 

III. MEASUREMENTS 
The experimental arrangement was set up as follows: the 

two radars were placed to face the patient’s chest at half a 
meter distance. The patient was sitting in a chair, leaning to 
backrest and breathing normally. The data was recorded from 
a sitting male patient who had no diagnosed heart disease. 
Quadrature radar modules, MDU4220, from Microwave 
Solutions Ltd. were used. The frequency of the radars differed 
slightly, 10.587 GHz and 10.525 GHz, to avoid radars to 



disturb each other. The data of all the channels were sampled 
at 800 Hz sampling rate with a 24-bit AD-converter 
ADCiso4x (from Icraft). One test set lasted approximately 1 
minute. 2-channel ECG was recorded as a reference. 

IV. RESULTS 
The original data after the preprocessing step is presented 

in Fig. 2 both in time and frequency domains. Respiratory 
signal is clearly visible, and cardiac component is 
superimposed on the signal. The signal separation results from 
ICA are presented in Figs. 3 and 4. In the imaginary part of 
IC1 (imag(IC1) in Fig. 3), respiration is the most dominant. 
Cardiac signal can be seen in real parts of ICs, however, some 
breathing artifacts are still present. This was removed by high-
pass filtering (see Fig. 4). The cardiac signal is now clearly 
visible in real parts of IC1 and IC2. In imaginary parts, which 
correlated more with the respiration, the cardiac signal is not 
as visible. To sum up, the cardiac signal was successfully 
separated with ICA. 

Interestingly, waveforms of real parts of ICs include sharp 
peaks during each heart cycle. The resulting cardiac signal 
waveform after ICA is more peaked than what is obtained by 
filtering (see for example [4, 7]). In [7], error in beat-to-beat 
intervals (root-mean-square of differences of successive beat-
to-beat intervals (RMSSD)) measured by Doppler radar and 
reference ECG differed less than ±76 ms. In [8], root-mean-
square error of intervals obtained by Doppler radar was 56 ms, 
compared to finger pulse reference. These errors can be 
considered rather large compared to the accuracy attained by 
ECG, which is in the order of milliseconds. In the future, the 
sharp peaks seen in the signal waveform of real(IC2) could be 
used for increasing the accuracy of the Doppler radar HRV 
analysis. 

V. CONCLUSIONS 
Separation of artifacts from the cardiac signal is one of the 

biggest challenges in the microwave radar monitoring field. 
These artifacts include chest wall movements due to 
respiration and other movements of the body, as well as 
movements in the background. Good results were gained by 
utilizing ICA for removing the respiration artifact from the 
cardiac signal. While band-pass filtering effectively removes 
the components in the stop band, the harmonics of the 
respiration might fall into the same frequency band with the 
cardiac signal. ICA, on the other hand, tries to separate as 
independent components as possible. In principle, ICA should 
separate also other artifacts as long as they are in the coverage 
area of both the radars. In the future, more research will be 
carried out to study this. In addition, the utilization of ICA 
should be studied to increase the accuracy of Doppler radar 
HRV analysis. The resulting waveform with ICA is more 
peaked than what is reached if respiration artifact were 
removed by filtering. 
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radar 2, respectively. Note the different y-axis scale in the frequency spectrum plots. 
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Figure 3.  The cardiac signal is more visible in the resulting ICs. This is seen both in the time domain plot (in the left) and in the frequency domain plots (in 
the right). In the right, frequency spectras of ICs’ imaginary components are presented in the upper figure and real components in the bottom figure. In the 
imaginary part of the IC1, respiration is the most dominant. In the real parts of IC1 and IC2, cardiac signal is seen. However, some breathing artifact is still 
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Non-contact respiration monitoring during sleep
with microwave Doppler radar

Mari Zakrzewski, Student Member, IEEE, Antti Vehkaoja, Atte Joutsen, Karri Palovuori,
and Jukka Vanhala, Member, IEEE

Abstract—This paper demonstrates the measurement of respi-
ration waveform during sleep with a non-contact radar sensor.
Instead of measuring only the respiration rate, the methods
that allow monitoring the absolute respiration displacement
were studied. Absolute respiration displacement can in theory
be measured with a quadrature microwave Doppler radar
sensor and using the nonlinear demodulation as the channel
combining method. However in this study, relative respiration
displacement measures were used as a reference. This is the
first time that longer data sets have been analyzed successfully
with the nonlinear demodulation method. The study consists
of whole-night recordings of three patients in an uncontrolled
environment. The reference respiration data was obtained from
a full polysomnography recorded simultaneously.

The feasibility of the nonlinear demodulation in a real life
setting has been unclear. However, this paper shows it is success-
ful most of the time. The coverage of successfully demodulated
radar data was approximately 58–78%. The use of the nonlinear
demodulation is not possible in the following cases: if the chest
wall displacement is too small compared to the wavelength of
the radar, if the radar data does not form an arc-like shape in
the IQ-plot, or if there are large movement artifacts present in
the data. Both in academic literature and in commercial radar
devices, the data is processed based on the presumption that it
forms either an arc or a line in the IQ-plot. Our measurements
show that the presumption is not always valid.

Index Terms—Doppler radar, breathing patterns, radar mea-
surements, non-contact respiration measurement

I. INTRODUCTION

PEOPLE sleep roughly a third of their lifetime. Sufficiently
long and good quality sleep is essential for daytime

performance and well being. Chronic sleep deprivation can
lead to type 2 diabetes, depression, hypertension, heart failure,
stroke, memory and learning problems, as well as increased
risk of traffic accidents due to daytime sleepiness [1], [2]. The
largest causes of chronic sleep deprivation are sleep apnea and
nocturnal movement disorders such as restless legs syndrome.
In the general adult population, the prevalence of obstructive
sleep apnea has been estimated to be 3–7% in men and 2–5%
in women [3].

The capacity of sleep laboratories is not large enough to
account for the number of sleep disorder patients. Currently,
only the ones suffering from severe symptoms are diagnosed
and treated. However, with early diagnosis and intervention,
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it is possible to increase capacity, reduce overall costs, and
quickly improve patients’ quality of life. Therefore, affordable
and robust methods, which facilitate early detection of those
in need of an intervention and/or enable low-cost follow-up of
the intervention, are highly needed.

Full polysomnographic (PSG) recording is the gold standard
method for sleep monitoring because it is accurate and reliable.
However, there are also drawbacks in PSG recording: 1) An
extensive set of measurement electrodes and other sensors
need to be attached to the person. This takes approximately
one hour of preparation time each night from a skilled technol-
ogist. This makes the measurement expensive and impractical
to be used for monitoring longer than one or two nights. 2)
Attaching several sensors to a patient may also disturb sleep,
thus leading to erroneous information.

There have been numerous efforts for developing the PSG
recording with a reduced or an alternative set of sensors for
long-term home monitoring [4]–[6]. In clinical sleep evalua-
tions, portable sleep monitors are mainly used in conjunction
with a comprehensive sleep evaluation [7]. The recording is
often called as ambulatory PSG. In current clinical practice, if
certain requirements are met, an ambulatory PSG device can
be used for diagnosis of obstructive sleep apnea (OSA) [6]. In
that case, the portable monitor must record airflow, respiratory
effort, and blood oxygenation, at minimum [7]. Examples of
commercial ambulatory PSG devices include [8], [9]. Devices
with only one or two sensors also exist. Commercial setups
include, for example, a snore and SpO2 sensor combination
(such as WatchPAT [10]) or a single-channel device with a
nasal cannula (such as ApneaLink [11], [12]). For long-term
monitoring, however, these sensors unavoidably cause some
inconvenience.

There are also methods that do not require the user to
wear any sensors. Sleep Cycle sells a mobile application that
uses nighttime microphone recording for apnea screening [13].
Force sensors placed under mattress or under the supports
of the bed has been studied for detection of sleep-disordered
breathing [14], [15]. Earlier works including the use of force
sensors are Static charge sensitive bed (SCSB) [16] and EMFit
sensor [17]. The aforementioned methods enable long-term
monitoring of sleep disorders and therefore facilitate also
the monitoring of the effect of treatment. In more recent
applications, self-monitored sleep data can be viewed with a
mobile device. Beddit has developed a pressure sensor strip
that is placed under the bedsheet and data analysis software
for sleep data viewing [18] [19]. Wristband devices such as
FitBit [20], Lark [21], and Jawbone Up [22] use a wrist-worn
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accelerometer to determine sleep and awake cycles. These
applications are mainly targeted for consumers for long-term
self-monitoring and do not measure parameters relating to
apnea or other sleep disorders.

In this active field of research and development for long-
term monitoring of sleep, microwave radar sensor offers one
option. The first commercial products using microwave radar
monitoring of sleep are bedside consumer products developed
by ResMed: SleepMinder, HSL-101 for Omron, and Renew
Sleep Clock for Gear4. Very recently, ResMed launched an S+
device and mobile application [23]. These devices are targeted
for self-monitoring of sleep at home, and the devices can
measure parameters such as sleep duration, sleep onset time,
number and time of awakenings during night, and so on. In
addition, S+ estimates sleep stages (light sleep, deep sleep,
and REM). Moreover, Japanese Nintendo, previously known
mainly for its video games, is expected to launch a sleep
monitoring application that is based on Resmed technology
[24].

Recently, Lee et al. [25] were the first to show that
different types of breathing patterns can be recorded with
a radar sensor. A test subject was instructed to emulate the
following breathing patterns for a short time period: normal
breathing, Kussmaul’s breathing, Cheyne-Stokes respiration,
ataxic breathing and Biot’s breathing, Cheyne-Stokes variant,
central sleep apnoea, and dysrhythmic breathing. The patterns
were only recorded, not recognized automatically.

Quantitative analysis of radar monitoring of sleep with
considerably large patient groups (n varies between 75 to
113 subjects) has been presented in [26]–[28] by ResMed.
The team has gained good quantitative results with radar
monitoring. The separation of sleep and wake stages with
an overall per subject accuracy of 78% was presented in
[27]. An automated sleep/wake pattern classification was based
on measuring movements in 30 second epochs. The radar
sensor was demonstrated to gain similar accuracy to wrist
actigraphy for sleep/wake determination [28]. In [26], the
diagnostic accuracy of SleepMinder in identifying obstructive
sleep apnoea and apnoea-hypopnea index (AHI) was assessed.
An accuracy of 91% was gained when a diagnostic threshold
of moderate-severe (AHI ≥ 15 events / h) for obstructive sleep
apnoea was used [26].

In this paper, we contribute to the field by presenting
several qualitative analyses of radar monitoring of sleep-time
respiration. A few challenges that need to be revisited in future
studies are also shown. In addition, the respiration waveform
measuring absolute chest wall displacement with radar sen-
sor is shown. To be precise, the radar sensor measurement
is validated against the respiration effort belt measurement
that measures relative change of the ribcage circumference.
The chosen reference is, however, widely used in the PSG
recording. Moreover, the accurate displacement measurement
with radar sensor has previously been demonstrated with
simple radar targets [29], [30]. Nevertheless, the accuracy of
the absolute chest wall displacement measurement still needs
more validation. Chest wall displacement is proportional to the
breathing depth, and for clarity, we consider the absolute chest
wall displacement to correspond to the depth of the breath,

while in fact, they are not quite the same thing.
The possibility of acquiring absolute chest wall displace-

ment was recently noted in Hu et al. [31], and its measurement
has also been reported by Massagram et al. [32] and by Lee
et al. [25]. In [32], the tidal volume of eight subjects were
measured during short time periods in supine and in seated
positions. Lee et al. [25] measured the chest wall displacement
in six subjects during short time periods. The measurement
lengths of these studies were not reported accurately, but the
presented examples suggest that it has been in the range of a
few minutes. Thus, to the best of our knowledge, the presented
work is the first time that longer (full night) data sets have been
successfully analyzed for determination of absolute chest wall
displacement.

Quadrature radar sensor produces two channels: in-phase
and quadrature channels. There are two main approaches for
demodulating the two channels: linear and nonlinear demodu-
lation methods. Massagram et al. used the linear demodulation
method (also called the principal component analysis, or
PCA) to combine the two radar channels [32]. Lee et al.,
on the other hand, used single-channel radar with 2.4 GHz
transmitting frequency [25]. Thus, the null point problem will
be faced, as also noted by the authors of [25]. The null point
problem means that a severe signal distortion is encountered
in certain radar-subject distances [33]. The problem is not
necessarily seen in short time recordings, but will emerge
in long-time recordings. The use of quadrature radar and the
PCA method would solve the null point problem. However,
the magnitude information of the displacement of the chest
wall in centimeters, which describes the depth of the breath,
would be lost, and only the relative respiration displacement
can be measured. To the best of our knowledge, our paper
is the first to report long-time breathing measurements with
a quadrature radar and the nonlinear demodulation method.
The use of long data sets is a notable difference compared to
previous work because the long-term data inevitably contains
also challenging and complex data segments.

In this paper, we study the utilization of a microwave radar
sensors for sleep monitoring in a domestic environment. The
study consists of whole-night recordings of three patients
with a radar sensor together with a full PSG recordings.
The measurements were performed outside a laboratory in
a rehabilitation center without constant nurse oversight. This
paper brings the large-scale commercial use of radar sensor in
sleep monitoring one step further.

II. MATERIALS AND METHODS

A. Microwave radar monitoring

Microwave Doppler radar monitoring enables ubiquitous,
non-contact, through-clothes measurement of heart and respi-
ration activity. The signal transmitted from the radar sensor
is reflected from the chest wall. The phase of the reflected
signal is proportional to the small movements of the chest wall.
The transmitting power of the radar is small, well below the
recommendations set by Federal Communications Commis-
sion (FCC) and The European Telecommunications Standards
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Institute (ETSI). The quadrature radar baseband signal’s in-
phase(I)- and quadrature(Q)-components are expressed as:

BI(t) = VI +AB cos (θ(t))

= VI +AB cos

(
4πd0
λ

+
4πx(t)

λ
− θ0 + ∆φ(t)

)
,

BQ(t) = VQ +ABAE sin (θ(t) + φE)

= VQ +ABAE sin

(
4πd0
λ

+
4πx(t)

λ
− θ0

+ ∆φ(t) + φE

)
,

(1)
where VI and VQ are DC-offset in I- and Q-channels, AB is
the baseband amplitude, θ(t) is the time varying displacement
angle (in degrees), d0 is the nominal distance between the
radar and the subject, x(t) is the time varying displacement of
the chest wall (in meters), λ is the wavelength of the carrier,
θ0 is the constant phase shift, ∆φ(t) is the residual phase
noise, AE is the amplitude imbalance, and φE is the phase
imbalance.

To acquire the chest wall displacement data x(t), these
two channels, I and Q, need to be combined. One option for
a combining method is linear demodulation (or PCA) [34].
PCA finds the principal component of the two-dimensional
data and, in practice, approximates the arc of a circle as a
line. This approximation is valid if the arc length is small
enough (in other words, if the chest wall displacement is
significantly smaller than the carrier wavelength, x(t) << λ).
For respiration monitoring with a 10 GHz radar, which is
used in this study, the approximation is valid with shallow
respiration but is not always valid with deep respiration.
Another drawback is that the PCA method loses the absolute
value of the displacement information (the signal magnitude)
[35]. In fact, the sign of the signal is lost as well, meaning
that a displacement can not be classified as being an inspiration
or an expiration. It should, however, be noted that the linear
demodulation is computationally simple. Moreover, the linear
demodulation can be used with small arc lengths. Therefore,
if the disadvantages of the method are acceptable in the
application in question, the linear demodulation may be the
best choice.

Another option for channel combining is using nonlinear
demodulation. For this, VI and VQ need to be estimated from
a short data segment. The data forms an arc of a circle in
an IQ-plot. By estimating the center of such circle, estimates
of VI and VQ are gained [36], [37]. The selection of the
best algorithm for the center estimation with radar data has
been an active research topic recently. Several algorithms
have been proposed such as the one presented by Park et
al. [37], Levenberg-Marquard (LM) algorithm [36], L1-norm-
based algorithm [30], [38], gradient descent [39], [40], and
least squares [30], as well as Hough transformation, particle
filter, and direct phase estimation based on a difference vector
[41]. The performance of the four latter algorithms has been
compared in [41], but unfortunately the interpretation of the
results is erroneous, because discontinuities due arctangent
function are not properly removed. The Park’s method is

shown to suffer from a systematic error, if the respiration
waveform is not single-tone sinusoidal [36]. Instead, the LM
algorithm is shown to perform accurately in simulations as
well as in simplified emulations with a spherical target or
a planar target in two independent studies: in [36] and in
[30]. The L1-norm-based algorithm [38] might, however, be
more sensitive to outliers than the LM algorithm, but more
measurements are needed to prove this.

Then after the center estimation step, the nonlinear demod-
ulation can be performed with arctangent function:

θ̂(t) = arctan

(
BQ − V̂Q

BI − V̂I

)
≈ arctan

(
AB sin(θ(t))

AB cos(θ(t))

)
.

(2)
The arctangent function may cause discontinuities around π

2
or −π

2 . These are discussed for example in [35], [40], [42].
However, based on our experience and simulations, the use of
Matlab built-in unwrap function is fully adequate for removing
discontinuities.

By using nonlinear demodulation, an absolute displace-
ment of the target can be obtained from the demodulated
signal. This has previously been shown in [29] and in [30].
In [29], a half-circle radar target was moved automatically
with a programmable linear stage, and the center estimation
was performed with Park’s method. Without any specific
calibration procedures (a so-called I/Q imbalance calibration
was performed, though), a small displacement of 1 cm was
acquired with the accuracy of 5 %. Similarly, accurate absolute
displacement measures were gained with a planar radar target
and the LM center estimation algorithm in [30]. In the present
study, nonlinear demodulation with LM center estimation
algorithm was also used.

B. Measurement setup

The measurement setup is shown in Fig. 1. The radar was
attached over the bed at the height of 1.5 m to a supporting
pole. A commercial quadrature radar module, MDU4220 [43],
with transmitting frequency of 10.587 GHz was used.

The beam width of the radar module used is 36◦ x 18◦.
In practice, this means that the whole torso area is in the
radar coverage area. This has twofold consequences: on one
hand, the areas moving most due to respiration are in the
coverage area even though the patient moves slightly; on the
other hand, in addition to chest movements, stomach and limb
movements contribute to the backscattered signal. Moreover,
the movement of the PSG unit and the movements of PSG
sensor wires will contribute to the backscattered signal as well.
In our study, the PSG unit was attached to the stomach strap,
further away from the center of the radar beam, to decrease
the echoes from the PSG unit and to allow free monitoring of
the chest area movements with the radar sensor. Attachment
to the chest strap would probably have caused the PSG unit
to move along the cardiac activity as well.

The radar data were sampled at the sampling rate of 800 Hz
with a 24-bit data acquisition (DAQ) device ADCiso4x (from
Icraft). The data was collected with a laptop computer and
analyzed offline.
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Fig. 1. The measurement setup. The radar was attached to a stand over
the bed. A commercial wearable PSG device was used as a reference.
The PSG recording unit was attached to the stomach strap, which allowed
free monitoring of the chest area movements with the radar sensor. The
synchronization receiver 1 was attached to the stand, and the receiver 2 to the
forehead of the test subject.

The respiration signals obtained in a whole-night full PSG
recording were used as a reference. A portable PSG de-
vice (SOMNOscreen plus, manufactured by SOMNOmedics
GmbH, Germany) was used as the reference device. A portable
model allowed the patient to move and walk freely in the
measurement room and to go to the bathroom during the
night. The used PSG setup contained a large set of sensors,
including EEG, ECG, abdominal and thoracic effort, snoring
(microphone), naso/oral flow, SpO2 (oxygen saturation), po-
sition, and periodic leg movement (PLM) sensors. The PSG
data were analyzed and scored by one expert scorer in Helsinki
Sleep Clinic, Vitalmed, according to the American Academy
of Sleep Medicine (AASM) 2007 criteria [44].

The data synchronization between the radar and the ref-
erence was assured by a synchronization system reported in
detail in [45] and [46]. The radar device housed an integrated
synchronization pulse transmitter. One receiver was connected
to the DAQ device of the radar and one to a free channel in
the PSG device.

In total, 12 test subjects were recruited and successfully
recorded. However, three subjects were selected for detailed
analysis for this study based on two inclusion criteria: PLM
index < 10 and AHI < 10 during the recording night. The
purpose of this was to show the functionality of the radar
monitoring method with relatively undistorted data. PLMs,
especially, cause large artifacts to the data, and automated
detection and removal of them was chosen to be left as future
work at this early stage of the research. The demographic data
of the test subjects is shown in Table I. The Ethics Committee
of Central Finland Hospital District approved the study. All
subjects signed an informed consent before participating to
the study.

C. Signal processing

1) Radar signal pre-processing: Firstly, the radar data was
low pass filtered with a 50 Hz anti-alias filter. All the data

TABLE I
DEMOGRAPHIC DATA OF THE TEST SUBJECTS AND SLEEP DATA FROM THE

POLYSOMNOGRAPHY

Patient Sex Age Height Weight AHI PLMI Sleep
(cm) (kg) time

1 F 51 167 59 6.4 9 7 h 48 min
2 M 57 183 68 6.4 0 7 h 13 min
3 F 46 153 59 1.4 0.6 6 h 28 min

AHI = apnoea hypopnea index, PLMI = periodic leg movement index.

(both radar and PSG data) was then resampled to 100 Hz and
synchronized. Secondly, the radar data was high pass filtered
with a 0.1 Hz filter.

The parts of the data that contained movement artifacts
were removed from the respiration analysis manually. This
obviously is not possible in an end application and presents
a limitation to this study. However, in this proof-of-concept
study, we have simplified the problem by limiting only to those
epochs that do not contain pronounced movement artifacts.
One automated movement detection algorithm based on a
threshold detection of signal power in 0.05 to 2 Hz bandwidth
is presented in [27] and in [28]. This method, however, does
not perform well with a 10 GHz radar as the respiration arc
length is close to 50% of a whole circle, and the movement
artifacts are approximately in the same order of magnitude.

In total, the percentage of discarded data was 10% for
patient 1, 15% for patient 2, and 24% for patient 3. The
movement artifacts may have been caused, for example, by the
movements of the torso, arms, or legs as well as by coughing
or sneezing. Only continuous segments longer that the epoch
length (> 120 s) were included. This partly explains the large
percentages of discarded data. In addition, the parts when the
subject was in an upright posture were discarded.

2) Nonlinear demodulation: In this paper, the LM algo-
rithm has been used as the fitting method in center estimation.
The LM algorithm is an iterative least-squares fitting method,
and the data mean is used as the initial guess for the algorithm.
Details of the LM method are presented in [36]. The center
estimation was performed in 30 s epochs.

The LM method is sensitive to large outliers. This was
pointed out in [38]. After the removal of the epochs with large
movement artifacts, the data still contained some smaller and
fast artifacts. These outliers sometimes caused errors in the
center estimates. To overcome these errors, the consecutive
center estimation results were averaged. The averaging was
performed by calculating the median of the four consecutive
center and radius estimates. Thus, the effective epoch size in
further analysis was 4 x 30 s = 120 s. Then, atan2-function
and phase unwrapping in Matlab were used to perform the
arctangent demodulation.

3) Comparison of radar and respiration effort belt signals:
The successfully demodulated radar data was then compared
with the reference respiration effort belt data. The respiration
effort belt measurement does not measure the absolute chest or
abdomen wall displacement, but relative change of the ribcage
circumference instead. The sensitivity of the belt sensor varies
largely from posture to posture. Moreover, also the tightness
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of the attachment of the elastic band strongly affects the
sensitivity of the sensor signal. Thus, to fairly compare the
signals, the thorax and the abdomen belt signals were scaled
to match the radar signals. The scaling factors were calculated
epoch-wise so that the standard deviation σ of the radar and
the belts’ signal would be equal. The same scaling method has
been used in [32].

For comparison, mean squared error (MSE) between the
radar and the reference signals was calculated. MSE was
calculated for the thorax and the abdomen signals separately
on a per-epoch basis. To allow inter-epoch comparison, the
data was first normalized to have a unit σ.

4) Comparison of linear and nonlinear demodulation:
The linear and the nonlinear demodulation methods were also
compared. The radar data that was successfully demodulated
with the nonlinear demodulation was also demodulated with
the linear demodulation. Epoch-wise MSE values between
the two were calculated. As the linear demodulation method
loses the absolute displacement information, the data was
again normalized to have a unit σ. In addition, as the linear
demodulation also loses the direction of movement, the MSE
values were calculated for both the resulting signal and the
mirrored signal. The smaller of the two MSE values was
chosen for further analysis.

III. RESULTS

The nonlinear demodulation was successful during most
epochs of the whole night measurements. Fig. 2 shows an
example of a short window of data during normal breathing
together with PSG respiration signals. In Fig. 3, another exam-
ple of demodulated data during hypopnea events are shown.
In Fig. 2, the amplitude of the data before demodulation
is rather small (∼ 0.2 mV in I-channel, ∼ 0.5 mV in Q-
channel). In Fig. 3, on the other hand, the amplitude is at
least fourfold (∼ 2 mV) in both the channels. However, the
measured displacement after demodulation is around 0.3 cm
in both the cases. This nicely illustrates how other factors
than displacement determine the amplitude of the data before
demodulation.

However, the nonlinear demodulation fails in the following
two cases:

1) The resulting arc length is too small to contain sufficient
information of the circle curvature. In this case, the
resulting circle estimates are arbitrary: either the circle is
estimated close to mean of the data (see Fig. 4a), or the
estimated circle is overly large and the center estimates
of the consecutive data windows have large variation
(see Fig. 4b). Note that Fig. 4b shows circle estimates
from four consecutive data windows. The fourth circle
estimate is so large that only a small arc is seen in the
plot. In the first case, the center estimation algorithm
converges to the initial guess (the data mean was used as
the initial guess), and in the latter, the center estimation
sometimes converges towards infinity.

2) In some cases, the data does not form an arc in the IQ-
plot but a more complex shape instead. This is shown
in Fig. 4c and 4d.
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Fig. 4. In some cases, the nonlinear demodulation fails. This happens, if the
arc (or the displacement) is small as in a) and b); or if the data forms a more
complex shape than an arc of a circle as in c) and d). In a), the LM algorithm
has returned an erroneous center estimate that is close to the mean of the data.
In b), the consecutive estimates from the LM algorithm have large variation.

TABLE II
THE NONLINEAR DEMODULATION FAILING RATE IN EACH POSTURE

Patient Posture All postures
Supine Right Left Prone

1 F [%] 55 26 43 – 42
t [hh:mm] 02:07 01:57 03:46 – 07:50

2 F [%] 60 24 29 – 34
t [hh:mm] 01:33 02:35 03:06 – 07:14

3 F [%] 55 25 16 16 22
t [hh:mm] 00:35 01:05 03:19 00:33 05:33

F = the proportion of failed segments in each posture, t = the time a patient
spend in the respective posture without moving during the measurement

night.

The data segments were examined manually to separate
successful and failed segments. The number and length of
these failed segments vary significantly between the subjects
and sleeping postures. The proportion of failed segments in
each posture are shown in Table II. Note that, data discarded
due to movements were not included in these values. It seems,
that the failing rate was lower, when a patient was in right, left,
or prone postures. Both types of failed segments were seen in
all the postures. However, the case 1 fails were dominant when
the patient was lying on the left side, and the case 2 fails were
dominant when the patient was supine.

Examples of successfully demodulated radar data compared
with the respiration belt signals are shown in Figs. 5–9. The
examples are selected to represent multiple different effects
seen in the data. The top left curves (in Fig. 5a) are I- and Q
channels, BI and BQ, before demodulation. The bottom left
curves in the same figure are the demodulated signal and the
reference thorax and the abdomen belt signals. In the right-
hand side (in Fig. 5b), BI and BQ are plotted in IQ-plot
together with the estimated circle. The residual error of the
center estimation is shown in the top. This same order is used
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Fig. 3. An example of hypopnea events successfully demodulated with nonlinear demodulation method a) in time domain and b) in IQ-plot.

in the following figures as well.
Figs. 5 and 6 present successful demodulation with short

and large arc length cases. Fig. 5 shows a relatively large
amplitude (∼ 0.5 mV) in BI and in BQ, but a relatively small
arc length in IQ-plot, and thus, relatively small displacement
(∼ 1 mm). An opposite case is seen in Fig. 6 with a small
amplitude in BI and in BQ (∼ 0.15 mV) and a large amplitude
in displacement (∼ 3.8 mm). This illustrates in practice how
a small amplitude in I- and Q-channels tells nothing about the
displacement. Figs. 5 and 6 also present the difference in data
deviation from an arc in the IQ-plot.

Fig. 7 illustrates an example of data with varying dis-
placement amplitudes demodulated successfully. Amplitude
changes can occur in data both during hypopnea events (Fig.
7a) or during a normal breathing pattern (Fig. 7b).

The relative MSE values calculated between the demodu-
lated and normalized radar respiration signals and normalized
the thorax and abdomen belt signals are shown in the left side
of Table III for each patient in different positions separately.
The shown values are the mean of the epoch-wise MSE values
for the whole night.
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Fig. 5. An example of a large amplitude in the I- and the Q-channel data, BI
and BQ, but with a small displacement x after demodulation. Thx = thorax
and Abd = abdomen.

The calculated MSE values are occasionally large. There
are two effects that cause the large MSE values. Firstly, the
thorax and abdomen do not always move synchronously. This
is illustrated in Fig. 8. In Fig. 8a, the radar signal follows
the abdomen signal well, whereas the thorax has a different
movement pattern. In similar cases, the radar signal often
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TABLE III
THE RADAR VS. THE BELT MEASUREMENT;

THE MEAN OF EPOCH-WISE MSE VALUES FOR DIFFERENT POSITIONS; NORMALIZED DATA.

Accurate acquisition Aligned
Patient Belt Supine Right Left Prone Supine Right Left Prone

1 thorax 0.71 0.34 0.30 – 0.28 0.23 0.14 –
abdomen 0.45 0.20 0.71 – 0.22 0.17 0.44 –

min 0.45 0.17 0.20 – 0.21 0.12 0.12 –
2 thorax 0.42 0.20 0.38 – 0.17 0.13 0.18 –

abdomen 0.41 0.18 0.26 – 0.24 0.13 0.18 –
min 0.33 0.15 0.24 – 0.14 0.10 0.10 –

3 thorax 0.29 0.22 0.32 0.28 0.11 0.08 0.09 0.16
abdomen 0.24 0.57 1.03 0.22 0.19 0.18 0.14 0.18

min 0.19 0.20 0.26 0.19 0.10 0.07 0.08 0.14
On the left, the radar and the reference data had synchronous acquisition. On the right,

the data were aligned based on the maximum covariance. Patients 1 and 2 did not sleep in
a prone position.
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Fig. 6. An example of a small amplitude in the I- and the Q-channel data
(BI and BQ), but with a large displacement x after demodulation.
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Fig. 7. An example of a successful demodulation of data containing varying
displacement amplitudes. a) During normal breathing segments, the thorax
and abdomen move synchronously, whereas during hypopnea events, a phase
difference is seen in respiration belts. This results in a large MSE. b)
Amplitude changes are seen also during normal breathing. In this case, all
the signals have the same phase, and thus, the MSE is small.

follows either of the respiration belt signals. Therefore in Table
III, the mean of the minimum of the two epoch-wise MSE
values are also shown. However, it is not uncommon that the
radar signal has a different phase to both the belt signals, as
in Fig. 8b. In this case, the patient is lying on her left side,
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Fig. 8. An example of the thorax and abdomen moving in different phases.
a) The radar signal follows the abdomen belt signal in this case. b) The
respiration belts are in the opposite phases. Also, the radar signal has a
different phase, thus, resulting in a large MSE.

while the radar is measuring the movements of the right side.
Secondly, the respiration belts do not measure the absolute
displacement values. On the contrary, a patient movement
results in a change in the sensitivity of the belt sensor signal.
Occasionally, a belt’s signal is also clipped. This is seen in
Fig. 9 with the abdomen belt. Obviously, a large MSE value
is resulted. These drawbacks with the used respiration belts
are, however, well known [47]. Therefore, a large MSE value
does not necessarily mean bad radar data, but rather shows the
limitations of the chosen reference method.

To decrease some effects caused by the asynchronous move-
ment of the thorax and the abdomen, the second set of MSE
values were calculated. For this, the respiration belt data were
shifted in the time domain with the amount that maximized
the crosscovariance between the radar data. The resulting MSE
values are shown in the right side of Table III. It is clear that
this alignment considerably decreases the MSE.

The MSE between the linear and the nonlinear demodula-
tion methods are shown in Table IV. The difference between
the demodulation methods is quite small in the data set
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Fig. 9. In this example, the abdomen belt’s signal is clipped, thus, increasing
MSE. This is also a nice example of the null point problem discussed in
the introduction. BQ is in the null point, which appears as two peaks in one
respiration cycle.

TABLE IV
NONLINEAR VS. LINEAR DEMODULATION; THE MEAN OF EPOCH-WISE

MSE VALUES FOR DIFFERENT POSITIONS; NORMALIZED DATA.

Patient Supine Right Left Prone

1 0.016 0.004 0.020 –
2 0.014 0.007 0.008 –
3 0.043 0.004 0.007 0.003

included in the calculation.

IV. DISCUSSION

The two cases when the nonlinear demodulation fails are
different in nature and should be treated differently. In case 1,
the nonlinear demodulation fails, but linear demodulation can
be experimented instead. With linear demodulation, however,
the absolute chest wall displacement information is lost.

In case 2, however, the linear demodulation will also fail. As
a matter of fact, a good method to deal with the demodulation
in this kind of case has not been proposed. Likely, a source
separation step, using for example a blind source separation
method as the one used in [48] should be performed before
the demodulation.

Aardal et al. [49] suggested that, at least in some cases,
the center of the respiratory and cardiac activity would not
be the same. This is also sensible, as a smaller portion of
the chest is moving due to the cardiac activity than due to
the respiratory activity. Aardal et al. suggested that the single
reflector model should be abandoned and a multiple reflector
model should be used instead. The same conclusion is also
drawn by Li et al. in [50]. Their simulations with a so-called
Ray-tracing model showed that when the signal is reflected
from two distinct points of the body, there are deformation
effects in the resulting data in the IQ-plot. This is caused
by a different phase offset in the data reflected by the two
points. Salmi et al. [51] performed simulations and short-time
real data measurements to study the single and the multiple
reflection models for heart and respiration rate estimation.
They concluded that nonlinear demodulation performs very
well, if the radar is close to chest of a person and proposing it
to be a single reflector case. However at larger distances, the
method fails due to multiple reflections.

Therefore based on these previous work and this study, it
seems that the single reflector model is not always adequate
for sleep monitoring applications. An important question for
future work is, how to deal with this.

Case 2 (not shaped like an arc) is also highly interesting,
since this type of a problem has not been reported by the
ResMed-team [23], [26]–[28] or by Lee et al. [25]. Now,
there is no reason to expect that a similar, although possibly
smaller, effect would not happen with the sensors used by other
research groups. Nevertheless, the effect remains hidden when
using the linear demodulation, as has been used by ResMed,
or single-channel radar, as has been used by Lee et al. In
such cases, there will just be unexplainable distortion in the
resulting demodulated signal.

The MSE values calculated in this study are admittedly
larger than the ones presented in [25]. However, the com-
parison is not straightforward. In [25], the MSE values are
calculated from a few minutes of data from a controlled
measurement. This paper presents results from whole-night
measurements in an uncontrolled environment. In addition, it
is not explained in [25] whether the radar and the reference
data are aligned based on the data waveform itself or based on
synchronous acquisition. Due to the synchronization system
used in this study, the data synchronization is assured very
accurately. However in different sides of the torso, the respi-
ration movement can have different phase shifts. Thus, when
comparing the data measured with a radar and with belts, the
comparison is more reasonable between the aligned data than
between the synchronous data. Moreover, this study contained
measurements from different patient postures (supine, right,
left, prone), whereas [25] and [32] contained measurements
only from in front of a patient.

When comparing the performance of linear and nonlinear
demodulation, the overall performance of the methods seems
relatively similar. However, the difference appears with long
arc lengths meaning in deep respiration. In addition, the result
strongly depends on the chosen radar transmitting frequency.
The linear demodulation has the advantage of being compu-
tationally simpler than the nonlinear demodulation, whereas
the nonlinear demodulation can provide absolute displacement
measures and the separation between the inspiration and
the expiration. Thus, if a relative displacement measure is
adequate for the application, the linear demodulation may be
a more favorable choice.

Multiple questions remain for future work. The length of the
epochs used for center estimation in this study was probably
not optimal. The length of the epochs should be long enough to
contain enough respiration for accurate estimation, but short
enough not to contain movement artifacts from the torso or
limbs. Particularly, the epoch should be longer than a typical
apnea event, since during an apnea event, the signal probably
does not contain enough arc length for the center estimation.
Therefore, an approach that uses multiple epoch lengths si-
multaneously might provide a good solution. Moreover, there
will be a signal discontinuity point and a sensitivity change
in the point where two consecutive epochs result in different
center estimates. This problem has not been addressed in the
literature. It should be pointed out, that these discontinuities

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSEN.2015.2446616

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

are different from the ones caused by arctangent function.
In addition, the automatic selection of linear or nonlinear
demodulation based on data would increase the coverage of
correctly processed data.

V. CONCLUSION

In this paper, we have successfully demonstrated the mea-
surement of respiration waveform with a non-contact radar
sensor from three full-night recordings. The results were
achieved by using quadrature microwave radar sensor and the
nonlinear demodulation method. The nonlinear demodulation
means using a center estimation method and the arctangent
channel combining method. However, the use of the nonlinear
demodulation method is not possible in certain cases:

1) If the arc length of the respiration is too small, the
variance of center estimates is large, and the result of the
center estimation algorithm becomes arbitrary. In these
cases, the linear demodulation method may work better
for channel combining, however, with the result of losing
the absolute displacement information.

2) If the quadrature data does not form the arc of a
circle in the IQ-plot, but a more complex shape. This
is most likely due to a different phase offset from
multiple reflection points. In this case, an intelligent
source separation algorithm could solve the problem.

3) During the sections of large motion artifacts.
Absolute target displacement measurements have previously
been demonstrated with the nonlinear demodulation method.
This study is the first time that the nonlinear demodulation
method with a radar sensor has been demonstrated using long
data sets and a real-life setting outside a controlled laboratory.

This paper serves as preliminary work, building a founda-
tion for the use of microwave radar as a non-contact monitor
of breathing patterns. It suggests that the radar method can
be used as an alternative to traditional respiration monitors to
provide a more convenient measurement. Naturally, extensive
clinical trials are needed before proceeding with commercial
or clinical use of the proposed methods.
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of Jyväskylä, Department on Health Sciences, for patient
recruiting and for their help in collecting the reference data.
In addition, the financial support from the Finnish Funding
Agency for Technology and Innovation (Tekes) and the Finnish
Konkordia Fund is gratefully acknowledged.

REFERENCES

[1] T. Young, P. Peppard, and D. Gottlieb, “Epidemiology of obstructive
sleep apnea: a population health perspective,” American Journal of
Respiratory and Critical Care Medicine, vol. 165, no. 9, pp. 1217–1239,
2002.

[2] P.-O. Haraldsson, C. Carenfelt, and C. Tingvall, “Sleep
apnea syndrome symptoms and automobile driving in a
general population,” Journal of Clinical Epidemiology, vol. 45,
no. 8, pp. 821 – 825, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/089543569290064T

[3] A. Lurie, Obstructive Sleep Apnea in Adults: Epidemiology, Clinical
Presentation, and Treatment Options. Karger, 2011, vol. 46, pp. 1–42.

[4] W. W. Flemons, M. R. Littner, J. A. Rowley, P. Gay, W. M. Anderson,
D. W. Hudgel, R. D. McEvoy, and D. I. Loube, “Home diagnosis
of sleep apnea: A systematic review of the literature: an evidence
review cosponsored by the American Academy of Sleep Medicine, the
American College of Chest Physicians, and the American Thoracic
Society,” Chest, vol. 124, no. 4, pp. 1543–1579, 2003. [Online].
Available: http://dx.doi.org/10.1378/chest.124.4.1543

[5] M. D. Ghegan, P. C. Angelos, A. C. Stonebraker, and M. B. Gillespie,
“Laboratory versus portable sleep studies: A meta-analysis,” The
Laryngoscope, vol. 116, no. 6, pp. 859–864, 2006. [Online]. Available:
http://dx.doi.org/10.1097/01.mlg.0000214866.32050.2e

[6] N. Collop, S. L. Tracy, V. Kapur, R. Mehra, D. Kuhlmann, S. A.
Fleishman, and J. M. Ojile, “Obstructive sleep apnea devices for out-of-
center OOC testing: Technology evaluation,” Journal of Clinical Sleep
Medicine, vol. 7, no. 5, pp. 531–548, 2011.

[7] N. Collop, W. Anderson, B. Boehlecke, D. Claman, R. Goldberg, D. Got-
tlieb, D. Hudgel, M. Sateia, and R. Schwab, “Clinical guidelines for the
use of unattended portable monitors in the diagnosis of obstructive sleep
apnea in adult patients. Portable monitoring task force of the American
Academy of Sleep Medicine,” Journal of Clinical Sleep Medicine, vol. 3,
no. 7, pp. 737–747, 2007.

[8] D. J. Lesser, G. G. Haddad, R. A. Bush, and M. S. Pian, “The utility
of a portable recording device for screening of obstructive sleep apnea
in obese adolescents,” Journal of Clinical Sleep Medicine, vol. 8, no. 3,
pp. 271–277, 2012.

[9] R. Santos-Silva, D. E. Sartori, V. Truksinas, E. Truksinas, F. F. F. D.
Alonso, S. Tufik, and L. R. A. Bittencourt, “Validation of a portable
monitoring system for the diagnosis of obstructive sleep apnea syn-
drome,” Sleep, vol. 32, no. 5, pp. 629–636, 2009.
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