TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Jakub Rudzki
Software Quality Concerns in a Commercial Setting

iy

/

Tampereen teknillinen yliopisto. Julkaisu 954
Tampere University of Technology. Publication 954

Jakub Rudzki

Software Quality Concerns in a Commercial Setting

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB223,
at Tampere University of Technology, on the 25" of February 2011, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2011

ISBN 978-952-15-2531-5 (printed)
ISBN 978-952-15-2539-1 (PDF)
ISSN 1459-2045

Abstract

Quality improvements in small and medium-sized software organisations can be
done in many ways. Companies can try to implement one of the well-established
quality improvement frameworks. However, many reports from practitioners show
that small and medium-sized organisations may not be prepared for fully-fledged
and possibly expensive improvement programmes. An alternative to official quality
improvement programmes may be an in-house initiative. Due to their size and often
to the organisational culture small and medium-sized software organisations may
encourage grass-root quality improvement initiatives.

In this thesis a grass-root initiative for a software quality improvement is pre-
sented. The initiative proposes an alternative path of quality improvement for small
and medium-sized organisations utilising their size and culture. This thesis proposes
five areas of quality improvements and concrete measures that can be taken for qual-
ity improvements in those areas. The improvement areas were selected based on the
experiences gained while working in the case software company Solita. The areas
were selected as reaction actions to observed needs for improvements, or as proac-
tive actions preparing for known organisational changes.

The five improvement areas discussed in this thesis address selected improve-
ment needs at the organisational level and those directly related to software devel-
opment. The improvement needs derive from experiences in the case organisation,
which uses subcontracting partners for development. The use of subcontractors also
resulted in some projects being conducted as multi-site development. Therefore, the
proposed improvements reflect the organisational settings. Concrete improvements
are proposed for the outsourcing-partner selection process. Moreover, recommen-
dations on agile methods usage in development projects with special emphasis on
subcontractor cooperation are proposed. Furthermore, specific practices for multi-
site development are proposed, as well as a framework for open source component
selection for reuse in commercial software solutions. Finally, specific improvements
in design of distributed systems are proposed.

Each of the improvement areas consists of concrete improvements that proved to
be successful to various degrees. However, the variety of areas shows how a soft-
ware organisation can practically implement an in-house software quality improve-
ment initiative. In this thesis three research questions are answered. The questions
focus on how concrete improvements can be implemented in selected areas of a soft-
ware organisation’s operations. Moreover, the questions aim at answering how an
in-house quality improvement initiative can be implemented, and how it can be re-
garded as complementary to official improvement frameworks, which allows a soft-

ii ABSTRACT

ware organisation to implement a fully-fledged quality improvement programme
when it is ready.

The proposed improvements in various areas were developed and evaluated in
a commercial context of a software service company. Some of the initiatives resulted
in changes in organisation processes, which indicated their usefulness. Generally,
the presented experiences from implementing a grass-root level software quality im-
provement initiative show that such initiatives driven by individuals or groups of
individuals within an organisation are possible. Therefore, other organisations in a
similar environment may utilise the results presented as concrete solutions for con-
crete problems or as an inspiration for encouraging similar improvement initiatives
in their organisations.

Preface

I have been working on this thesis since autumn 2003. This project was planned to
take only a few years, however, in the course of years it proved to be more time-
consuming than I had anticipated. Despite the delay it was a very enriching experi-
ence. There are many people who helped me during the years in this work and now
I'would like to express my gratitude to them.

My thesis would not be possible without the enormous support and encourage-
ment [have received from my supervisor, Professor Tarja Systd. I would like thank
her for always providing me with great guidance and spreading very positive at-
titude that was particularly useful when I needed an energy boost. Additionally,
I would like to thank other members of Software Systems Department at TUT for
their support. Particularly, I would like to thank Professor Tommi Mikkonen and
Dr Imed Hammouda, who in addition to research support co-authored papers with
me, and Professor Kai Koskimies for his general guidance and support. Naturally, I
would also like to thank the reviewers of this thesis Professor Casper Lassenius and
Dr Andrea Capiluppi for their valuable comments and feedback.

Moreover, I would like to thank my other co-authors Kimmo Kiviluoma, Tuo-
mas Mikkola, Karri Mustonen, and Tero Poikonen for contributing in my research.
Additionally, I would like to thank other colleagues from Solita for their comments
and input. Then I would like to thank Solita’s management for allowing me to use
company’s data for case studies and financing some of the conference and train-
ing expenses, particularly I would like to thank Heikki Halme, Raimo Arvola, Jari
Niska, Marko Torpo, Jukka Jadheimo, and Toni Uimonen. Additionally, I would like
to thank Solita’s IT Department, particularly Kari Hippolin and Antti Varjonen, for
their technical support with equipment needed at the beginning of my research.

Furthermore, I would like to thank organisations that supported my thesis: Tam-
pere Doctoral Programme in Information Science and Engineering (TISE), Graduate
School on Software Systems and Engineering (SoSE), Ulla Tuominen Foundation,
Academy of Finland, and Solita Oy.

Additionally, I would like to thank my friends, close ones, and family for their
support and understanding when I was occupied with this thesis (naturally, the list
could be much longer but you know who I mean): Eveliina and Mikko Nurmi,
Sylwia and Pawel Rogowicz, Jakub Borkowski, Jari Asp, Asta Suokas, Oleg Koz-
itsyn, Lasse Palkivaara, Maija and Kimmo Lahtinen, Hanna Toimi and Reijo Anttila,
Else and Jarmo Lehto, my late aunt Lucja Biernacka, my sister Barbara Miernik, Bar-
bara and Grzegorz Lukawski, Riikka and Mikko Laakso, and surely Jan Malmstrom.
Moreover special thanks for my friends who also helped me with proofreading of

ii

iv PREFACE

my papers are owed to Karen Thorburn and Michelle and Sing Wee.

Finally and last but definitely not least, I would like to express my gratitude to
my parents, Edward Rudzki and Magdalena Rudzka, for their unconditional love
and support. I would like to dedicate this whole thesis to them, which I express in
Polish:

Dedykufe tg prace moim rodzicom, Magdalanie | Edwardowi Rudzkim,
ktérzy okazywali mi bezwarunkowsg mifosc i wsparcie,

November 2010, Tampere, Finland

Jakub Rudzki

Table of Contents

Abstract

Preface

Table of Contents

List of Included Publications

1 Introduction
1.1 Software Quality Improvement Approaches
1.2 Research Objectives
1.3 Contributions L o
14 Contextof the Dissertation
1.5 Organisation of the Dissertation

2 Organisation - Outsourcing Supplier Selection
2.1 Outsourcing Considerations - Background

221 Subcontractor Cooperation Process
2.2.2 Subcontractor Selection,
2.2.3 Subcontractor Evaluation
224 Selection Process - Experience Gained
23 SUMMAIY o oo

3 Organisation - Agile Project Practices
3.1 AgilePracticesOverview
3.2 Why to Use Scrum in Commercial Projects and How to do it with Sub-
contractors?
321 Scrum and Non-Scrum Projects Comparison
3.22 Recommendations on Subcontractors in Scrum Projects
33 Summary

4 Development - Multi-Site Practices
41 Need for Multi-Site Development
4.2 How to Ensure Architectural Conventions in Multi-Site Development?
421 Architecture Assurance Process,

iii

vii

15
16
16
16
17
20
21
22

25
26

27
27
35
37

39
39
40

vi TABLE OF CONTENTS

422 Architecture Rule Analyser Tool 42

423 EBvaluation 45

43 Summary 46

5 Development - Component Evaluation 49

5.1 Relating OSS EvaluationtoSPL 50

5.1.1 Open Source Component Evaluation Approaches 50

5.1.2 Software Product Lines - Overview 52

52 How to Evaluate OSS Component for Commercial Use? 54

52.1 EvaluationCriteria 55

522 FrameworkUsage 55

53 Summary 56

6 Development - Selected Design Solutions 59

6.1 Software Design Considerations 60
6.2 How Can Selected Design Solutions Impact Performance in Distributed

Systems? 61

621 StudySetup o 62

622 Findingsin]J2EE L. 64

6.23 Findingsin NET 66

6.24 Serialisation Considerations 67

6.25 GeneralFindings L. 68

6.3 How Can Tools Support Quality-Driven Design? 68

6.31 ExampleSolution 70

6.3.2 ToolUsageBenefits 72

6.4 Summary 73

7 Related Work 77

7.1 Outsourcing Considerations 77

7.2 Experiences with Agile Practices 79

7.3 Multi-site Development 80

74 ComponentReuse. 82

7.5 Software Design Considerations 85

7.5.1 Design Patterns and Quality Attributes Overview 85

7.5.2 Tool Support for Incorporating and Validating Design Decisions 86

8 Conclusions 89

81 Summary 89

8.1.1 Research Questions Revisited 920

8.1.2 Limitations 94

8.2 Author’s Contributions in Publications 94

83 FutureWork 96

Bibliography 99

Included Publications 111

List of Included Publications

This dissertation is a compilation of the following publications.

[P1] Jakub Rudzki, Imed Hammouda, Tuomas Mikkola, Karri Mustonen, and Tarja
Systd. Considering Subcontractors in Distributed Scrum Teams. A chapter in
book Darja Smite, Nils Brede Moe, Pir J. Agerfalk, (Eds.) 'Agility Across Time and
Space: Implementing Agile Methods in Global Software Projects’, p. 235-255, May
2010, Springer 2010.

[P2] Jakub Rudzki, Imed Hammouda, and Tuomas Mikkola. Agile Experiences in
a Software Service Company. In Proceedings of the 35th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2009, pp.224-228, 27-29
Aug. 2009, IEEE Computer Society.

[P3] Jakub Rudzki, Kimmo Kiviluoma, Tero Poikonen, and Imed Hammouda. Eva-
luating Quality of Open Source Components for Reuse-Intensive Commercial
Solutions. In Proceedings of the 35th Euromicro Conference on Software Engineering
and Advanced Applications, SEAA 2009, pp.11-19, 27-29 Aug. 2009, IEEE Com-
puter Society.

[P4] Jakub Rudzki, Tarja Systd, and Karri Mustonen. Subcontracting Processes in
Software Service Organisations - An Experience Report. In Proceedings of the
International Conference on Software Process, ICSP 2009, pp. 224-235, Springer-
Verlag.

[P5] Jakub Rudzki, Imed Hammouda, and Tommi Mikkonen. Ensuring Architec-
ture Conventions in Multi-site Development. In Proceedings of the 32nd An-
nual IEEE International Computer Software and Applications Conference, COMP-
SAC 2008, pp.339-346, 2008.

[P6] Jakub Rudzki and Tarja Systd. Performance Implications of Design Pattern
Usage in Distributed Applications: Case Studies in J2EE and .NET. In Proceed-
ings of the ISSTA 2006 workshop on Role of Software Architecture for Testing and
Analysis, ROSATEA 2006, pp. 1-11, ACM.

[P7] Jakub Rudzki, Imed Hammouda, and Tommi Mikkonen. Tool Support for
Quality-driven Design. In Proceedings of the 3rd Nordic Workshop on UML and
Software Modeling, NWUML 2005, pp. 193-207, 2005.
http://www.cs.uta.fi/reports/pdf/A-2005-3.pdf

vii

Viii LIST OF PUBLICATIONS

[P8] Jakub Rudzki. How Design Patterns Affect Application Performance - a Case
of a Multi-tier J2EE Application. In Proceedings of the 4th International Workshop
on Scientific Engineering of Distributed Java Applications, FID]I 2004, pp. 12-23,
Springer.

The permissions of the copyright holders of the original publications to reprint them
in this thesis are hereby acknowledged.

CHAPTER 1

Introduction

Software companies operate in a very competitive and dynamic environment of
constant technological changes. They strive to provide the best possible products
or services for their customers. Irrespective of the companies’ business focus, the
quality of products and services can be one of the main factors distinguishing them
from competitors. Therefore, on one hand, software companies pay much attention
to initiatives that may improve the overall quality in their organisations. There are
many existing frameworks and initiatives that aim at improving quality of software,
for example, Software Process Improvement related initiatives [25,31,100]. On the
other hand, companies seek solutions that do not necessarily require much invest-
ment and too many changes in the existing company processes.

In this thesis the problem of software quality improvements is discussed in the
context of a medium-sized ! software service company. The company has not adopted
any official quality improvement frameworks, yet since 1996 it has been successfully
developing software. This thesis proposes selected quality improvement practices
in different areas of company operations. The set of improvements is a grass-root
level initiative for quality improvement in an organisation. The improvement ar-
eas include two categories relating to organisational practices and software develop-
ment. Hence, the quality improvement practices in various areas are viewed from
different perspectives representing different points of views on the software devel-
opment. The categories consist of five improvement areas. The details of the areas
and research objectives are presented in Section 1.2 after introducing general quality-
related concepts in Section 1.1. Then an overview of contributions of this thesis in the
various areas of quality improvement are presented in Section 1.3. Finally, the con-
text of this dissertation is outlined in Section 1.4, and the organisation of the whole
dissertation is presented in Section 1.5.

1.1 Software Quality Improvement Approaches

Let us start by reviewing some main concepts related to quality, which is the main
theme of this thesis. Software quality is a complex subject as software is complex
by its nature. In addition to the complexity of software itself, there are additional
external and internal factors that influence software quality. Internal factors may

1A medium-sized company according to the European Commission has under 250 employ-
ees. http://ec.europa.eu/enterprise/policies/sme/facts-figures—analysis/
sme-definition/index_en.htm

2 1. INTRODUCTION

include the processes used for software development, tools, technologies, and per-
sonnel. External factors may include customer expectations, schedules, and cooper-
ation with other parties contributing to the software solution being developed. All
of these factors can affect the quality of software offered to customers. However, be-
fore addressing particular problems related to software quality the term itself must
be defined.

Quality in general is seen differently by various parties. A variety of approaches
to defining product quality have been presented by David Garvin [48], who lists five
different approaches to defining quality:

1 Transcendent, which is a philosophical view on quality as something that can
be recognised, but cannot be defined.

2 Product-based, which aims at determining quality by measuring specific at-
tributes of a product.

3 User-based, which reflects the quality perceived by the user as satisfaction of
user needs and expectations by a product.

4 Manufacturing-based, which sees product quality as compliance with require-
ments.

5 Value-based, which determines product quality though the cost and price of a
product.

These approaches to defining quality show the differences in how quality can be seen
by different stakeholders. These different points of view on quality have been used
also for software quality. Kitchenham and Pfleeger [73] discuss software quality and
its different meanings to different stakeholders. According to the IEEE’s definition
'Software quality is the degree to which software possesses a desired combination of quality
attributes.” [115, p. 3]. Examples of quality attributes include performance, depend-
ability, security, and safety [11].

A number of frameworks aiming at improving processes in IT companies have
been created. The frameworks address, among others, different aspects of IT com-
pany operations. It is worth briefly going through these frameworks as they are
referred to in the later parts of this thesis. An overview of different process improve-
ment frameworks has been presented, for example, by Cater-Steel et al. [25], who
list four popular frameworks: CMMI, ISO 9000, ITIL, and CobiT. Currently, the pop-
ularity of the frameworks being used is limited. However, we should first briefly
categorise the frameworks listed by Cater-Steel et al. [25].

One of the well known frameworks aiming at improving the software develop-
ment process is the Capability Maturity Model (CMM) [116], which was later ex-
tended to CMM Integration (CMMI) [117]. The models were developed by the Soft-
ware Engineering Institute (SEI) of Carnagie Mellon University. The CMMI defines
five levels of organisation maturity. The levels are initial, managed, defined, quanti-
tatively managed, and optimising, listing from the lowest to the highest level. Each
of the levels corresponds to specific practices that an organisation is supposed to use
in order to fulfil requirements of the level. The CMMI model has also been refined for

1.1. SOFTWARE QUALITY IMPROVEMENT APPROACHES 3

product and services development as the CMMI Development model [124], which
specifies 22 process areas relevant for development.

Another framework used for quality assurance is the ISO 9000 series standards
supported by the International Organisation for Standardization (ISO). The ISO 9000
series standard includes specific parts on requirements in ISO 9001:2000 [40], fun-
damentals of quality management in ISO 9000:2005 [41], and guidelines in ISO
9004:2009 [42]. The ISO 9000 is a very generic quality assurance framework suitable
for any organisation, naturally including software development companies. More-
over, ISO specifies a standard for information technology organisation processes ma-
turity assessment ISO/IEC 15504 [39].

Furthermore, the Information Technology Infrastructure Library (ITIL) is another
example of a quality assurance framework. ITIL has been developed by the UK’s
Central Computer and Telecommunications Agency (CCTA) [25, p. 3], but the new
versions of ITIL are managed by the Office of Government Commerce (OGC) [95].
The ITIL framework is meant as a framework for IT service providers. Finally, the
CobiT [62] framework, developed by the IT Governance Institute (ITGI), aims at IT
governance. Neither the ITIL nor the CobiT are directly relevant to software devel-
opment, but they are part of IT-related process improvements frameworks and as
such are relevant for process improvement initiatives.

Software quality has been addressed by different Software Process Improvement
(SPI) initiatives. An extensive literature review on SPIs in small and medium-sized
software companies has been presented by Pino et al. [100]. Their work examined
a number of other publications in search for the most commonly mentioned SPI
method in the literature. The findings pointed out the SEI's CMM to be the first
and ISO’s 15504 and 9001 models to be the second most often reported models be-
ing used in small and medium-sized software companies. However, the work also
reports that only two medium-sized companies out of 122 have obtained a formal
certification for the model used. Additionally, this work points out reasons why SPI
models are not used in SME companies. The main such reasons discussed include
concerns that the standards are costly to implement in terms of time and money
(Saiedian and Carr 1997) [110].

Other reasons why small organisations often do not use formal SPI models have
been reported by Staples et al. [120]. They have investigated reasons why software
companies in Australia do not adopt SPI programmes. Small software organisations
generally justified their rejection of SPI (CMMI in that case) as being too small organ-
isations for adopting such a programme. Other common reasons for rejecting SPI
programme by companies reported in that research were: the programme being too
costly, having no time, and already using another form of SPI [120]. The Australian
study was later replicated by Khurshid et al. [72] in the context of the Malaysian
software market. Their findings also showed similar results, at the general level,
as the Australian study. The reported reasons of not adopting SPI programmes in
the Malaysian study were: being too costly, no clear benefits, being a small organ-
isation, and CMMI not being an organisational priority [72, p. 42]. Both of these
related pieces of research showed that small software companies often do not adopt
SPI programmes because they regard them costly and unsuitable for them.

Other aspects of introduction of SPI in companies of different sizes have been

4 1. INTRODUCTION

presented by Dyba [31]. The research investigated 120 software organisations in
Norway. The presented results show that small organisations can implement suc-
cessfully some elements of SPI, but they do not necessarily implement fully-fledged
SPI programmes. The conclusion of the differences between implementation of SPI
in small and large companies was that the size of the organisation does not limit its
potential for SPI success [31, p. 154]. Additionally, the study reported on differences
between a large and small successful software organisation. The findings showed
that large successful companies rely on formal procedures, while small successful
organisations emphasise exploration of new possibilities and utilisation of creativity
and diversity of their people [31, p. 154].

Another aspect of SPI in the context of SME was presented by Lester et al. [79],
who investigated the relation between SPI and the growth of companies. The in-
vestigated companies did not officially have CMMI implemented, but the findings
of the research showed that medium-sized companies tend to adhere to the CMMI
practices more than small companies. The study showed which process areas of
CMMI are most relevant to small and medium-sized companies. However, the main
conclusion of the study was that CMMI’s principles support growth of companies,
and therefore SMEs should focus their efforts on the identified areas for their future
growth.

A comprehensive review of SPI models for small and medium organisations
have been presented by Deepti Mishra and Alok Mishra [87,88]. The review com-
pared characteristics of selected SPI models and additionally listed factors that small
and medium organisations should take into account while selecting an SPI [87, p.
281] [88, p. 122]. The selected factors include, for example [87, p.281]:

o the fact that an SPI is based on an established model, e.g., CMM, which can en-
able the organisation to change the SPI easier in the future to the well-established
one,

o the fact the an SPI takes into consideration specific needs of an organisation,
and

o the fact that an SPI involves participation of the software development team
members, which is perceived as a factor securing their confidence and com-
mitment to the SPL.

These factors are especially important in the context of this thesis, as the proposed
grass-root level quality improvements are specific to a particular context of an organ-
isation, which addresses specific needs. Furthermore, the grass-root improvements
by their nature involve organisation members from the improvement inception to its
realisation. However, the extent of the involvement varied.

Benefits of implementing SPI in small companies have been also reported by
Karlheinz Kautz [68]. Moreover that study recognised four success factors, namely,
flexible approach to the improvement, network of small enterprises being involved
in the improvement, which provides support for achieving a common goal, and ex-
ternal technical help and financial support for the improvement programme [68].
Furthermore, Kautz et al. [69] have formulated three pieces of advice for organ-

1.2. RESEARCH OBJECTIVES 5

isations planning to introduce an improvement initiative. The recommendations
are [69, p. 631]:

e use a structured model for process organisation,
o adjust the model to the specific context of the organisation, and

e perform the improvement activities as projects with defined roles, documents,
responsibilities and roles.

Out of all the success factors and recommendations by Kautz et al., in the context of
this thesis the aspect of adjusting the improvement initiative to the organisational
context is the common one. The examples of quality improvements presented in this
thesis reflect the context of the organisation they have been conducted in. Finally,
what is also specific to the presented improvements is the role of the change agent,
who was directly involved in the improvements. This aspect of the SPI programmes
was also recognised by Kautz et al. [70], who classified four types of process agents
and two roles that they can play. The distinctive roles were of observers, who are not
directly involved in the changes, and actors, who participate in the change [70, p.
17]. In this light the role of the author of this thesis can be perceived as an actor who
has participated in the presented improvements.

Some tools are available to help companies to assess their processes with respect
to the conformance to specific standards. One example of such a tool is MARES [131].
The tool was used by Gresse von Wangenheim et al. [130] for process assessment
of compliance with the ISO/15504 [39] standard in small software companies. The
assessed processes included: Supply, Requirement elicitation, Project Management,
Software test, Measurement, Software construction, Customer support, Supplier ten-
dering, Contract agreement, Software release, Software acceptance support, Soft-
ware installation, Software integration, and Change request management [130, p.
95]. The long list of different processes assessed in 8 different software organisations
shows how many different processes can be improved in different companies. The
results of the study showed that also small companies can benefit from process as-
sessment. All of the assessed companies found the results assessment beneficial and
depending on their needs the companies started establishing processes most crucial
for them [130, p. 96]. This study shows an application of a particular assessment
method but also the needs demonstrated by even very small companies.

1.2 Research Objectives

As was presented in the previous section, the concept of quality can be seen from dif-
ferent perspectives, and there are many approaches to improving or assuring qual-
ity in software companies. In this thesis quality is viewed from the end user point
of view. In the context of a software service provider company, the end user is the
other organisation ordering a customised software solution. Therefore, the quality
improvements in this context aim at satisfying directly or indirectly the expectations
of the software solution orderer. Additionally, quality is seen through the value and

6 1. INTRODUCTION

cost perspective of the software solution developed. However, even in this case the
end customer assesses the value of the solution.

The main objective of this dissertation is to present how a small or medium-sized
software organisation can implement an in-house quality improvement initiative by
flexibly and in a light-weight fashion addressing its needs in selected quality im-
provement areas. It should be noted that in the context of this thesis the term small,
flexible and light-weight quality improvement means an improvement initiative that is
limited to a specific area of an organisation’s operations, hence small. The flexibility
of the approach derives from the fact that the implementing organisation can flexi-
bly choose what should be improved. Finally, the process is considered light-weight
when it does not require a significant effort in the organisation. In practice it also
means that the process is not meant for any official appraisal. The improvement ar-
eas are selected reactively, when an existing problem or room for improvement is
observed, or proactively, when an organisation is preparing for some changes and
anticipates that new practices are needed for the changes. Furthermore, in a small
or medium-sized software company such improvement areas can be suggested and
tackled by individuals or small groups of individuals. Naturally, company culture
must encourage such grass-root level initiatives for quality improvements. An in-
house quality improvement initiative may be a path that is more suitable for small
and medium-sized software companies than fully-fledged SPI programmes. Fur-
thermore, a choice of a flexible and light-weight approach to quality improvements
does not necessarily mean that the official SPI programmes cannot be followed in
the future.

Therefore, this dissertation aims at answering the following research questions

(RQ):

RQ1 How can small quality improvements in different areas of a software company’s opera-
tion help to improve software solution quality?

RQ2 How can a small or medium-sized software service company implement a flexible and
light-weight quality improvement initiative based on its internal organisational expe-
rience?

RQ3 How can the flexible and light-weight approach to quality improvement complement
an official SPI framework?

The main research question, RQ1, will be evaluated in this dissertation based on the
presentation of the different improvement areas and providing concrete examples
of improvement actions. The question RQ2 will be evaluated based on quality im-
provements presented as answers to RQ1 and then regarded as a set of possible so-
lutions that can be used at an organisation level for a quality improvement initiative.
Finally, the question RQ3 will be evaluated based on comparison of the proposed
quality improvements with process areas specified in a mainstream quality assur-
ance framework, namely, CMMI for Development [124]. This dissertation’s initial
objectives have been presented at COMPSAC 2008 Doctoral Symposium [107].

This dissertation proposes local quality improvements in five different areas of
activities in a software service organisation as measures for an overall quality im-
provement initiative. The areas selection and improvements proposed are derived

1.2. RESEARCH OBJECTIVES 7

from experiences in the case company. Additionally, in many areas issues related
to multi-site development, subcontracting, and agile practices are especially high-
lighted, as they reflect organisational changes in the case organisation. The improve-
ment areas are logically grouped in two categories: Organisation and Development.
These two categories cover two important aspects of a software organisation func-
tioning. The Organisation category focuses on activities that are vital for software
development, but that can be seen as ways of organising work. The Development
category focuses on activities related to software development, which is the core ac-
tivity in a software organisation. The categorisation is only a logical way of grouping
the improvement areas, and some areas may have certain aspects that can be over-
lapping with both categories.
In this thesis the two categories consist of improvement areas as follows:

e Organisation

— Outsourcing Supplier Selection, which determines the suitability of special-
ists coming from outsourcing partners for software development in SSP.
The choice of specialists developing a software solution can directly affect
the quality of software produced.

— Agile Project Practices, which specify agile practices used for project or-
ganisation. The usage of practices that are suitable for a particular de-
velopment organisation, e.g., encouraging communication and customer
participation regardless of their location, affects the software quality and
customer satisfaction.

o Development

— Multi-Site Practices, which gather practices that are used in multi-site soft-
ware development to solve particular problems. Development practices
that are tailored for a specific development environment, i.e., a multi-site
environment, help to improve the quality of the software produced re-
gardless of the development arrangements, so that the end customer is
not affected negatively by development arrangements.

— Component Evaluation, which affects software system quality by showing
how to evaluate components to be used in a software solution in a way
that assures that only suitable components are accepted for use.

— Selected Design Solutions, which improve software system quality by propos-
ing specific design solutions and tool support that affect specific quality
attributes. Improvements in specific quality attributes, e.g., performance,
are directly visible to the end customer using the software.

Each of the improvements in these selected areas affects directly or indirectly the
quality of software produced. Naturally, these quality improvements do not con-
stitute all possible areas of improvement. This particular set of areas derives from
experience gained in the case organisation. The context organisation is further dis-
cussed in Section 1.4.

8 1. INTRODUCTION

Cutsourcing
Supplier
Selection

Agile
Project
Practices

Multi-Site

Practices Component

Evaluation

Selected
Design
Solutions

L o L -

Figure 1.1 Selected quality improvement areas

All the quality improvement areas are depicted in Figure 1.1, which graphically
represents the two area categories in the context of general quality improvement in a
software organisation. The selected areas are purposely depicted as pieces of a puz-
zle, as they were not selected as part of any formal quality improvement programme
and they should be regarded as example areas that an organisation can choose to
focus on. The areas can be chosen in any order or configuration depending on needs
of the organisation that wants to make selective improvements in various areas of
their operation.

The five improvement areas can be presented in relation to two dimensions, for
example, as depicted in Figure 1.2. The dimensions are created by the Organisa-
tion’s level of interaction (Intra-organisational, Inter-organisational, and Open to
other organisations) and various aspects of Development. Such representation of
the improvement areas shows how they relate to the two dimensions and how they
may overlap. For instance, area A3 Multi-Site Practices spans across Inter- and Intra-
organisational levels of organisational interaction as it relates to internal practices
usage, but also to cooperation in multiple sites. Additionally, this area spans across
Tools, Methods, and Processes in the Development dimension, as the area specifies
a specific tool, a process, and a concrete method of process implementation. The
boundaries of the areas are very dependent on the context as well as interpreta-
tion. Moreover, such a two dimensional representation of quality improvement areas
shows clusters of areas that may indicate new areas for improvements in an organ-
isation. Naturally, the view of the improvement areas can be adjusted to particular
organisational needs.

Even though the selection of these different quality improvement areas was driven
by grass-root level initiatives, these areas can be linked with some mainstream SPI
frameworks. For example, the five quality improvement areas can be, at a high level,

1.3. CONTRIBUTIONS 9

Organisation A

Open ——

Intra ——

| I I I
Technology Tools Methods Processes

ngelo pment

Figure 1.2 Two dimensions of the improvement areas; A1: Outsourcing Supplier Se-
lection, A2: Agile Project Practices, A3: Multi-Site Practices, A4: Component Evaluation,
and Ab5: Selected Design Solutions

linked with some of the 22 process improvement areas defined in CMMI for Devel-
opment [124, p. 18]. For instance, CMMI for Development specifies Technical Solution
(TS) [124, p. 456] as an area focusing on designing, developing, and implementing
solutions according to requirements. This process improvement area has a similar
focus as specified in this thesis” areas in the Development category, which groups
improvements directly affecting software solution development. Moreover, specific
areas of Selected Design Solutions and Component Evaluation can be seen as parts of the
Technical Solution process area. This is only an example of possible mapping, how-
ever, note that the quality improvement areas discussed in this thesis do not aim
at fulfilling any specific quality improvement framework. These small area-specific
quality improvements can be regarded as an alternative implementation of Software
Process Improvement related to the overall software quality.

1.3 Contributions

The main contributions of this dissertation are practical solutions addressing needs
of software quality improvements in selected areas of software company operations.
The improvements constitute a grass-root level software quality improvement ini-
tiative that demonstrates how a small or medium-sized software company may ad-
dress its software quality concerns. The individual quality improvements that are
presented in this thesis have addressed particular problems of software quality, and
they gradually improve, directly or indirectly, the quality of the software solution
that the software organisation develops. The list of concrete contributions and sup-
porting publications in all five improvement areas are as follows:

e Organisation - Outsourcing Supplier Selection focuses on selecting outsourcing
partners according to needs of the organisation seeking external resources. In

10

1. INTRODUCTION

this area a concrete process for selecting outsourcing, i.e., subcontracting, part-
ners is proposed. It aims at selecting partners who are suitable for work in
projects in a software service provider. The process is suitable for and has
been evaluated in actual outsourcing partner searches. Furthermore, a general
evaluation process with specific evaluation criteria is proposed for cooperation
with selected partners. The selection process is based on practical experiences
in a case organisation, which have been presented in publication [P4]. Further-
more, the selection and cooperation process was presented in publication [P1],
which focuses on overall cooperation with subcontractors.

Organisation - Agile Project Practices, which concentrates on project organisa-
tion in specific contexts. In this area first experiences based on 18 project cases
are reported [P2]. The experiences compare projects’ performance depending
on the methodology used. Scrum and non-Scrum projects are compared. Ad-
ditionally, concrete practices used in Scrum projects are reported. Secondly,
based on experiences gained in Scrum projects and the subcontractor eval-
uation process, a process for cooperation with subcontractors in projects is
proposed. The process as well as specific practices are presented in publica-
tion [P1].

Development - Multi-Site Practices, which focus on practices that can be used in
software development to solve problems encountered in a specific context. As
an example, a problem of architectural design decisions assurance in multi-site
projects is addressed. A process for architectural decisions assurance is pro-
posed. The process aims at multi-site development projects with outsourcing
partners. Furthermore, a tool is proposed for architectural rule assurance in
Java applications. The tool has been developed by the author. Both the pro-
cess and tool were evaluated for their feasibility. The process and the tool are
described in publication [P5].

Development - Component Evaluation, which focuses on quality evaluation of
third party components that are to be used as an integral part of the built soft-
ware. The role of such components in the final software solution and the com-
ponent individual quality attributes affect in different ways the quality of the
final software. A framework for quality evaluation of open source components
is proposed in publication [P3]. The framework uses a number of selected cri-
teria to evaluate open source components. The framework also views the eval-
uation in a new way that is similar to construction of software product lines.
Finally, results from the framework usage are evaluated.

Development - Selected Design Solutions, where design decisions affecting partic-
ular quality attributes are addressed. In this case the dissertation presents em-
pirical findings of design patterns’ influence on the performance of distributed
systems. The findings are collected for two technology-specific cases presented
in publications [P8] and [P6]. Moreover, based on the empirical results, use of
an existing tool in a way supporting quality-driven design is proposed. The
tool allows a designer to choose a design pattern based on the pattern’s influ-
ence on particular quality attributes, which is described in publication [P7].

1.3. CONTRIBUTIONS 11

The summary of individual publications’ contributions in the different areas of
software quality improvements are gathered in Table 1.1. The contribution of each
publication in different areas is marked by X.

Table 1.1 Individual contributions of each publication

Contribution area /

Publication [P1] [P2] [P3] [P4] [P5] [P6] [P7] [P§]
Organisation

Outsourcing

Supplier Selection X X

Project Practices X X

Development

Development Process X

Component Evaluation X

Selected Design

Solutions X X X

Different research methods for the various contributions, details of which can be
found in the publications [P1]- [P8] and in Chapters 2-6, have been used. However,
one of the research methods frequently used in this thesis is a case study. Runeson
and Host present a case study definition as ... case study is an empirical method aimed
at investigating contemporary phenomena in their context”[109, p. 134], which is based on
definitions presented by Robson [106], Yin [136], and Benbasat et al. [17]. Addition-
ally, Runeson and Host list three reasons that differentiate research methodology in
software engineering from other fields. These reasons relate to the focus of the study
object that [109, p. 132-133]:

e focuses on organisations developing software,
e is project oriented, and
e investigates advanced engineering work.

This definition reflects the cases presented in this thesis as well as the context of
a single company, which is introduced in Section 1.4. Furthermore, the grass-root
level quality improvement initiative and the cases discussed in this thesis can be cat-
egorised as action research. Runeson and Host refer to differences between case study
and action research as: "More strictly, a case study is purely observational while action
research is focused on and involved in the change process.” [109, p. 134]. Therefore, the
presented frameworks or processes that aim at improving specific aspects of organ-
isation functioning and implemented internally in the organisation can be regarded
as action research. Additionally, the research findings presented in this thesis mostly
aim at improvements or finding out reasons behind specific phenomena. Therefore,
the research could be characterised as Exploratory and Improving, based on Runeson
and Host [109, p. 135], who refer to Robson [106]:

12 1. INTRODUCTION

o 'Exploratory-finding out what is happening, seeking new insights and generating ideas
and hypotheses for new research’

o '[mproving-trying to improve a certain aspect of the studied phenomenon’

In addjition to case studies and action research, system development (or constructive
research) is used, where a conceptual framework is constructed, system architecture
and design are defined, the system is then implemented, and results are analysed [66,
p- 635]. Furthermore, the role of a researcher in the grass-root quality improvement
initiative can be seen as a stakeholder who actively participates in the improvement
process [65, p. 123]. For example, the tool that was constructed for a specific purpose,
as presented in Chapter 4, can be seen as usage of system development as a research
method. A detailed review of various research methods and approaches based on
a number of publications in software engineering has been presented by Glass et
al. [49].

1.4 Context of the Dissertation

This dissertation has been created based on the author’s experience in a software
house company providing software development services for their customers. The
work reflects the author’s interests as well as observations made when acting in dif-
ferent roles in the organisation. Those various roles, which included software devel-
oper, lead developer, and project manager, allowed to obtain better understanding of
the organisation work and possible areas of operation that were good candidates for
quality-related improvements. Therefore, the improvement selection was strongly
related to the personal roles of the author of this thesis. Furthermore, as the pro-
posed improvements were not a part of any official SPI programme, no other im-
provement methods have been evaluated for the case organisation. It should be also
noted that the recommendations proposed in this dissertation are primarily targeted
to medium-sized organisations providing software services. However, other soft-
ware organisations are expected to find these recommendations useful as well.

The context of this dissertation is software service provider Solita?, which pro-
vides its services to customers in various domains. The domains range from media,
through industry, various services, telecommunication, to public institutions. More-
over, from the technology point of view Solita offers expertise in software solutions,
business intelligence and data warehousing, and integration solutions. As a soft-
ware solution provider that works very closely with its customers Solita operates in
a specific context that differs from organisations that focus on product development.
The main difference is the close cooperation with end customers. Additionally, from
organisational and cultural points of view it is worth mentioning that the company is
located in two Finnish cities, Tampere and Helsinki. The two offices accommodated
in 2009 about 150 software specialists. The company has successfully operatee and
grown organically since 1996.

These context details should be important for understanding the background of
this dissertation. This dissertation reflects both the personal experiences of the au-

2www.solita.fi

1.5. ORGANISATION OF THE DISSERTATION 13

thor and the context of a specific company type. Additionally, it is worth remem-
bering that this work has been created using a bottom-up approach by collecting
small quality improvements into a bigger quality improvement initative whole at
the company level. Therefore, the organisation and content of this work reflect this
approach.

1.5 Organisation of the Dissertation

This dissertation in the following chapters presents the different quality improve-
ment areas in a software service provider that affect, directly or indirectly, the quality
of the final software solution. These areas are presented starting from areas in the Or-
ganisation category and next areas in the Development category are discussed. There-
fore, in the category of Organisation, an outsourcing supplier selection and evaluation
process is presented in Chapter 2. Next, in Chapter 3 selected Agile project organisa-
tion practices are discussed and recommended. Then in the category of Development
selected multi-site development practices are discussed first, in Chapter 4. Next, in
Chapter 5 component evaluation from the quality point of view is discussed. Then,
specific design solutions are examined in Chapter 6. Each of the chapters presenting
the different areas of software quality improvements provides background informa-
tion on the specific area, the details of contributions, and a summary discussing the
given area in the context of overall software quality initiatives at an organisation
level. In Chapter 7 related work for each quality improvement area is presented.
Finally, in Chapter 8 conclusions of the research are presented.

CHAPTER 2

Organisation - Outsourcing
Supplier Selection

Outsourcing supplier selection is the first quality improvement area within the
Organisation category (see Figure 2.1). Organisation-related activities do not di-
rectly result in software production, however, as will be presented in the following
chapters, they have an important role in the software development processes.

Outsourcing supplier selec-
tion is an important activity /
for software organisations that A\
are planning to cooperate with Sl Moioret]
other software organisations in
order to get access to new spe-
cialists. There are many rea-
sons why companies use third

Multi-Site

Practices (eI

Evaluation

Selected
Design
Solutions

parties for delegating partly Srasnisaten perelopment

or fully development activi- \ Qualtty

ties. The main reasons can be

lower labour costs and access Figure 2.1 Outsourcing supplier selection

to skilled specialists [33]. How-

ever, a decision of using services of an external party for software development is im-
portant from the software quality point of view. The competences as well as process
and cultural compatibilities can cause additional challenges that are not present in
the case of in-house software development. Therefore, a choice of service suppliers
and a way of cooperation with them influence the quality of software produced. This
chapter shows, based on an industrial case study, how a software service provider
company can select their partners.

In this chapter brief background information of the outsourcing case is presented
along with key terms and concepts in Section 2.1. Then Section 2.2 presents how a
software organisation can select their outsourcing partners and evaluate their work.
Finally, this chapter is summarised with highlights relating to the main thesis ques-
tions in Section 2.3.

15

16 2. ORGANISATION - OUTSOURCING SUPPLIER SELECTION

2.1 Outsourcing Considerations - Background

The need for definition and improvements in processes used for outsourcing sup-
plier selection was observed in the case company when it was decided that external
developers were needed for software development. Due to a specific set of require-
ments and at the same time the aim of having a light-weight process, the process
was specified in-house. Despite the fact that the selection process was adjusted to
the needs of a specific organisation, it still seems generic enough for other software
service providers to be able to utilise it in their organisations.

Before going into details of outsourcing partner selection, we need to explain the
main terms. The definition of outsourcing is relatively broad and can refer to many
activities in an organisation that are passed to another organisation. For example,
Pirkko Ostring defines outsourcing as follows: Outsourcing is the strategy of using
external companies to provide a service or to manufacture products for your company. [96, p.
7]. Naturally in the case of a service software provider that seeks specialists who
can participate in development of a software solution for its clients, the focus of
outsourcing is on service rather than on manufacturing. The practice of using third
parties to fulfil one’s own contractual obligations is called subcontracting!. In later
parts of the text terms subcontractor or subcontracting partner will be used to refer to
an other software organisation that provides its specialists for work in projects of the
service software provider.

2.2 How to Cooperate with Subcontractors?

This section presents a process that shows how a software organisation can select a
suitable subcontracting partner and how the organisation can evaluate the cooper-
ation. This process has been used and evaluated at Solita, as was first described in
detail in publication [P4]. Later an overview of this process was presented as part of
practical recommendations on cooperation with subcontractors in publication [P1].

In order to present how an organisation can cooperate with subcontractors, we
first examine the cooperation process in Section 2.2.1. Then we present two phases
of the cooperation process, namely, selection in Section 2.2.2 and evaluation in Sec-
tion 2.2.3. Then we discuss experiences from process usage in Section 2.2.4.

2.21 Subcontractor Cooperation Process

A software service organisation that closely cooperates with its customers on spe-
cific software solutions must carefully choose subcontracting partners. The main
reasons for a careful consideration of such partners is the quality of the end solu-
tion, which naturally is linked with the technical skills of the developers working
on the solution. Additionally, often the partners work directly with end customers
of the software service organisation. Therefore the partner’s personnel must be fa-
miliar with both processes of the software service organisation as well as with the

1 As per dictionary definition: to subcontract: “To contract out portions of a larger contracted project.”
inhttp://en.wiktionary.org/wiki/subcontract

2.2. HOW TO COOPERATE WITH SUBCONTRACTORS? 17

culture of the organisation. Based on these two requirements it can be seen that a
service software organisation may want to create a selection and evaluation process
for subcontractors that suits its specific needs.

An overview of the subcontractor cooperation process is presented in Figure 2.2.
The process consists of two phases. The first phase is the selection phase, which
results in a supplier list. The second phase is the evaluation phase of the work done
with subcontracting partners that have been chosen in the selection phase.

Evaluation Phas e

Wiorls H Ewvaluation

Selection Phase

|Sear|:h HSelectiDn

Figure 2.2 Subcontractor cooperation process overview [P4, p. 226]

The selection phase consists of two main steps: search and selection. In the search
step potential subcontracting partners are searched. Then based on the defined crite-
ria some subcontractors are selected for cooperation. The evaluation phase consists
of work and evaluation steps. The work step represents the actual project done with
a subcontracting partner. The evaluation step represents any feedback and lessons
learned from the work done. Having gone through the main phases of the process it
is now possible to go into details of each phase.

2.2.2 Subcontractor Selection

The subcontractor selection process aims at finding a large number of possible can-
didates and then using various criteria and steps to narrow down the number to
a selected group of partners. It should be noted that the process may end without
finding any potential cooperation candidate. The process is an additional tool for col-
lecting information based on which decisions are made. However, the criteria used
in the process are not strictly defined, so that a small variation from the expected cri-
teria would automatically disqualify the potential candidate for partnership partner.
Finally, even the companies that are rejected at the selection phase may be reconsid-
ered if their status changes. For example, if a company grows over time and reaches
a size that is appropriate for cooperation, or the competences of a potential partner
become in line with the ones that are expected from partners.

The details of the subcontractor selection process are presented in Figure 2.3. The
first step is initial search. This search is done in order to get as many possible can-
didates as possible. Various sources are used in the search. Naturally, an Internet
search is one source of potential candidates, however, other sources like personal
recommendations or organisations helping in contacting businesses can be useful.
The initial search is typically limited by location, which is decided beforehand, and
by technology keywords. The location can be limited to a certain geographical area,

18 2. ORGANISATION - OUTSOURCING SUPPLIER SELECTION

nitial search

Sending initial
offer requests

Arranging
interview

Analysing
interview
details

Meetingsin suppliers'
premises

Analysing
meeting results

Signing contract
Categorised
Supplier List

Figure 2.3 Subcontractor selection phase [P4, p. 227]

e.g., a nearshore location [24], which from the perspective of Finland may mean Cen-
tral or Eastern Europe. The initial search results in a company list that is categorised
and gradually narrowed down in the following selection steps.

The next selection step is the first competence check. This step is designed to filter
out companies that do not have even potential qualifications for cooperation. An
example of such a situation can be a company that was included in the company
list based on information from a third-party organisation, but which after a brief
check turned out to work in a different IT branch than expected, e.g., the potential
partner changed its business from software to hardware, and the recommending
organisation was not aware of the change. The first competence check is done based
on publicly available information, which in most cases is collected from companies’
websites. The companies that are rejected are moved from the company list to the

2.2. HOW TO COOPERATE WITH SUBCONTRACTORS? 19

rejected company list.

After the first competence check the potential companies are contacted with initial
offer requests in the sending initial offer requests step. The request contains questions
about interest in providing subcontracting services, general company profile with
basic data, and an example pricing model. Based in the provided data the companies
that provide interesting offers continue to the arranging interview step.

The interview is arranged as a teleconference for practical reasons. As a prepa-
ration step for the interview the potential subcontracting partner receives a ques-
tionnaire that contains multiple questions about their organisation. The questions in
the questionnaire are discussed later in this section. The potential partner is asked
to send back the answers to the questionnaire before the interview. During the in-
terview the representatives from the software solution provider discuss with repre-
sentatives from the potential partner organisation. The discussion concentrates on
the questions from the questionnaire that may need some clarifications, as well as
general discussion about a possible cooperation model.

When the interview stage is concluded, the results of the interviews with poten-
tial subcontracting partners are analysed, which is named as the analysing interview
details stage. It focuses on the information provided in the answers to the question-
naire and in the interview. Based on the results of the analysis, selected potential
partners are asked for meetings in suppliers” premises. It should be noted that at this
stage of the selection process there are only a few candidates for subcontracting part-
ner and it is possible to have face-to-face meetings with all of them. The meeting
arranged in the potential supplier’s premises aims at discussing details of the co-
operation, getting to know each other, as well as see the work environment of the
potential partner. Additionally, at this stage interviews with specialists that poten-
tially could work in software service provider projects can be conducted. Finally,
after the visits, results are once more analysed (analysing meeting results), either the
cooperation process proceeds to signing contract, or the potential partner is rejected.
When a cooperation contract is signed the subcontracting partner is put on the cate-
gorised supplier list. The list consists of a few partners with whom the cooperation is
done and the partner’s specialists can be used in projects.

The use of a questionnaire aims at getting understanding on whether a potential
subcontracting partner is suitable for cooperation in solution-oriented projects. The
details of the selection criteria are presented in publication [P4, p. 228-229] and sum-
marised here. The main areas of interest focus on the size of the potential partner as
well as experience in different projects. Naturally, project number, size and roles of
the potential partner specialists in the projects are also important, i.e., whether the
specialists were technical leaders in their projects. Additionally, the methodology of
conducting projects is also asked, as the closer the methodologies and practices of
both organisations are the easier it is to cooperate in projects. Finally, the question-
naire contains questions about the customer relationships of the potential subcon-
tracting partner. All this information is collected in addition to typical business and
financial information needed in any business cooperation.

When the subcontracting partners are selected normal cooperation is started and
projects are realised. The cooperation with subcontracting partners is described in
Section 2.2.3. It should be noted, however, that the selection process can be executed

20 2. ORGANISATION - OUTSOURCING SUPPLIER SELECTION

multiple times in one organisation depending on the changes in the needs. For ex-
ample, if partners with some new technological expertise are needed, a new selection
process can be initiated in order to find partners meeting the new requirements.

2.2.3 Subcontractor Evaluation

The subcontractor evaluation, which is part of cooperation with subcontracting part-
ners, starts once the selection has been completed and partners to work with in
projects have been chosen. Having the partners ready for cooperation they can join a
project once there is a new project. The evaluation process is presented in Figure 2.4.
The process aims at working efficiently with subcontracting partners and based on
gained experience adjust cooperation practices on a way most benefiting the coop-
eration. It should be noted that changes may be required on both sides, i.e., both on
the software service provider and on the subcontracting partner side.

ategorised
Supplier
List

Tearn selection
(interviews)
Project Project
realisation phase feedback

e

Introduce
improvements

Figure 2.4 Subcontractor evaluation phase [P4, p. 230]

The first step of evaluation is team selection, which is a natural part of any project
formation. A new project team can include a few or consist of specialists from a
subcontracting partner’s organisation. The individuals are chosen based on their
suitability for a particular project. Next, project realisation starts. The evaluation
process does not specify how a project should be organised and according to what
methodology. However, also during project realisation project phase feedback should
be collected. This feedback might cause adjustments to the way the project is con-
ducted. A good process framework for getting frequent feedback during a project
is Scrum [111], which in the context of global software development in distributed

2.2. HOW TO COOPERATE WITH SUBCONTRACTORS? 21

teams was studied by Paasivaara et al. [98]. Their findings show the positive impact
of using Scrum in a distributed team developing a product. Moreover, Paasivaara et
al. [98] showed how Scrum practices can be used in practice. The details of project
organisation and practices including subcontractors” participation from Solita’s ex-
periences are presented in Chapter 3 of this thesis.

When a project is finished the results are evaluated (evaluating projects). The eval-
uation is based on a few selected criteria that aim at evaluating the quality of the
cooperation and ultimately the resulting software solution quality. For that purpose
a few possible criteria and a selected sub-set of them were listed. The evaluation
criteria details are presented in publication [P4, p. 231-232] and summarised below.
The used criteria were found most feasible and most easy to use. Naturally, typi-
cal software metrics, e.g., those presented by Stephen Kan [67] like object-oriented
complexity metrics, could be used, too. However, code level metrics used for evalu-
ation of cooperation with subcontracting partners could be too tedious for practical
applicability. The metrics that have been selected for evaluation are the following;:

e Profit margin is used as a metric for a business point of view on the project
performance. Even though it is a straightforward metric, it must be applied
with care and taking into consideration the context of project realisation. The
metric value can be obtained from the company’s invoicing system.

o Communication factor which is the ratio of time spent on communication to to-
tal time spent on project realisation. This metric aims at providing informa-
tion on possible differences in communication patterns between the projects.
The communication in this context should be understood as any formal com-
munication that is recorded in the time tracking system, for example, project
meetings, workshops, etc.

e Percentage of subcontractors in the project team, which aims at monitoring whether
there are any differences between projects organised in different project setups.

Additionally, qualitative criteria of evaluation were used. These consist of project
methodology and customer satisfaction. Especially customer satisfaction is essential
in the context of a software service provider that works closely with its customers.

The metrics and criteria were discussed in publication [P4] in the context of co-
operating with subcontractors. However, the metrics were later used in a broader
context of various project organisation models, which was generally discussed in
publication [P2] and further discussed in publication [P1]. The discussion on vari-
ous practices of project organisation and reported results are presented in Chapter 3.
A brief summary of selection process usage is presented in Section 2.2.4.

2.2.4 Selection Process - Experience Gained

The selection process has been used for selecting subcontracting partners at Solita.
The process has been applied at least twice for separate cycles of partner search. The
different search cycles differed as for location of the search as well as the techno-
logical profile of the potential partners. It should be noted that the search had been
limited to nearshore locations, i.e., locations that allow for relatively quick travelling,

22 2. ORGANISATION - OUTSOURCING SUPPLIER SELECTION

a similar time-zone, as well as a relatively similar culture. The main reason of this
limitation was the specifics of software service provider work that may require fre-
quent communication with the end customer, for example, a one-day business trip
can be requested at short notice.

The results of two selection cycles are summarised in Table 2.1, which shows how
the initial number of potential subcontracting partners (Initial Pool) lowered at each
selection step. In the first search cycle 26 companies from about 200 were initially
selected. From those 26 companies 12 were contacted after filtering out those that
had unsuitable profiles. The interviews and the following analysis resulted in vis-
iting five potential cooperation partners. Finally, from that short list a few partners
were selected.

Table 2.1 Subcontracting partner selection cycles

Search Cycle Initial Pool Initial Search Contacted Interviewed Visited
I 200 26 12 5 5
I 150 77 38 8 6

The second selection cycle with location and technical requirements different
than those in the first case was conducted. In the second search cycle there were
initially 77 organisations out of 150. From the initially selected 38 were contacted
and 8 interviewed. Then 6 companies were visited. That search cycle did not result
in selecting any subcontracting partners, however, the reasons are not related to the
selection process.

The presented results show the each step of the selection process resulted in re-
ducing the number of candidates for subcontracting partner. The selection was based
on additional information brought by each of the selection steps. The process is
generic and simple and can be used in future partner searches.

The process was found useful and flexible. The differences between the first and
second search cycle were only the technology scope and location of the potential
partners. Therefore, the process was easy to parametrise. The level of details was
found sufficient for making decisions and, at the same time, the selection process was
not too tedious to implement. Moreover, the cooperation with the selected partners
was successful. It is likely the selection process will be used in the future if a new
search cycle is needed.

2.3 Summary

In this chapter we have discussed a subcontractor cooperation process that has been
tailored to the needs of a software service company seeking subcontracting partners
for its projects. The process consists of two phases, namely, selection and evalua-
tion. The selection phase is executed rarely for seeking new subcontracting partners,
while the evaluation phase is actively realised for ongoing projects. The evaluation
phase aims at improving processes and establishing best practices in the cooperation,
as well as evaluating the subcontractor’s performance. Metrics and criteria selected

2.3. SUMMARY 23

for evaluation purposes were presented. The process was used in the case company
for a few years. Based on the results of cooperation with the selected partners it can
be said that selection was successful. The cooperation process helped in ensuring
the quality of software solutions developed together with subcontracting partners.

The proposed process uses common selection criteria and recommendations for
successful outsourcing [33,102,104] and adjusts them to the requirements of a soft-
ware service provider. The presented process is abstract enough to be further ad-
justed in the context of other organisations, while it is still concrete enough to follow
it directly. Therefore, an organisation considering usage of subcontractors is able to
build their own process that takes into consideration effects of the subcontracting on
the final software solution. For example, it is ensured that the subcontracting part-
ner has appropriate processes, knowledge of technologies needed, and experience
in working with end customers. Therefore, the presented contributions show how a
software organisation can improve their quality in the area of outsourcing supplier
selection by introducing the proposed process. Consequently as the competences of
outsourcing partners meet the required level for particular software development,
we may assume that also the resulting software solution is improved. This answers
the main research question RQ1 within the scope of this area. However, as this link
between outsourcing supplier selection and final software solution quality is not di-
rectly backed up by a sufficient amount of hard data, the actual impact of improve-
ments on final software solution products cannot be determined.

The quality improvement presented in this particular area of organisation opera-
tions additionally demonstrates that an organisation can internally create a feasible
process. The presented process was flexibly defined in a response to observed needs
without a prior improvement plan determined based on other means, e.g., a formal
SPI. The fact that an organisation can itself aim at improving processes in the out-
sourcing supplier selection area answers research question RQ?2 in the scope of this
area.

Moreover, the process is also in line with general steps of mainstream acquisition
processes. For example, CMMI for Acquisition Primer specifies the Solicitation and
Supplier Agreement Development (SSAD) process area [105, p. 26] that has main
steps of selection process similar to those described in the selection process. Fur-
thermore, the process area of Supplier Agreement Management (SAM) specified in
CMMI for Development [124, p. 439] overlaps with the activities specified in the sub-
contractor cooperation process. The goal of the SAM process area is "to manage the
acquisition of products from suppliers’ [124, p. 439], where the term product refers also
to services in this context [124, p. 439]. The SAM area specifies the main elements
of the cooperation process, supplier selection and evaluation. Therefore, it is safe
to state that by using the proposed subcontractor selection and evaluation process
an organisation follows a subset of guidelines specified in mainstream frameworks,
which addresses the research question RQ3.

The focus of this chapter was on selection of subcontractors and evaluation of
their work. More details of specific project organisation practices and methodolo-
gies will be presented in Chapter 3. Chapter 3 will also provide details on practices
useful in projects implemented with subcontractors. Therefore, it naturally links to
the evaluation process presented in this chapter.

CHAPTER 3

Organisation - Agile Project
Practices

Agile project practices that belong to the Organisation category are the second
quality improvement area presented in this thesis (see Figure 3.1). Project prac-
tices consist of any practices or methodologies used in projects. The practices used in
projects affect the project outcome as they determine how the project is conducted.
For example, the scope of project practices includes the way how a project team is
assembled, how the team communicates, and what tools and methods are used for
progress tracking and knowledge sharing. In this chapter particular focus is put on
general agile practices and particularly Scrum methodology [111].

In this chapter practical ex-
periences gained from using /
Scrum methodology for con- _
ducting projects are discussed. Supplier Reroiecl
Scrum and non-Scrum projects
are compared. Additionally,
this chapter presents a sum-
mary of recommendations and
practical tips for conducting
projects with subcontractors. \\ Qualtty

Multi-Site

Practices (P

Evaluation

Selected
Design
Solutions

Organisation

This area of quality im-
provement was selected for in-
vestigation as the Scrum meth-
odology was introduced to the case company and it was found useful to investigate
the impact of the methodology change on projects. Therefore, again the quality im-
provement area was selected based on emerging needs within an organisation.

Figure 3.1 Agile project practices

In order to provide a good overview of the subject, we first present an overview
of selected agile practices in Section 3.1. Then we present contributions that show
how a software organisation can use Scrum methodology in Section 3.2. Finally, a
summary is presented in Section 3.3, where the contributions are related to the main
research questions of this thesis.

25

26 3. ORGANISATION - AGILE PROJECT PRACTICES

3.1 Agile Practices Overview

The principles of Agile software development have been defined in Agile Manifesto
by Beck et al. [16]

"We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

o Individuals and interactions over processes and tools
o Working software over comprehensive documentation
o Customer collaboration over contract negotiation

e Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.” The
principles of agility in a very condensed form present the values that should drive
agile development. However, the manifesto does not specify any concrete meth-
ods how it could be implemented. Moreover, under specific circumstances an agile
project may need to use some elements of plan-driven practices, as noted by Barry
Boehm [18, p. 19]. Therefore, we should briefly discuss one software development
methodology that follows the agile principles and was used at Solita. The prominent
example is Scrum methodology that has been described by Advanced Development
Methods [2] and then by Ken Schwaber [111].

Scrum assumes that certain elements of software development are unpredictable
and proposes control mechanisms and risk control remedies to these unpredictable
elements [111, p. 10]. Scrum is based on a concept of Sprints that are short de-
velopment iterations that respond to a changing environment based on empirical
feedback [111, p. 10]. The huge difference between Scrum and plan-driven method-
ologies is that Scrum accepts changes in the project scope until project finalisation.
Scrum has been used in Chapter 3 as the main agile methodology. Scrum is only one
example of agile development methods. Various agile methods were reviewed by
Abrahamsson ef al., who also generally characterised agile methods as those that are
incremental, cooperative, straightforward, and adaptive [1, p. 17].

Scrum specifies primarily a management method [1, p. 27] but tools and detailed
practices, e.g., estimation, are left undefined. The Scrum methodology refers to back-
log as a list of items to be developed [111], but the details of a backlog are not de-
fined. Moreover, agile methods may require usage of the same tools that were used
in traditional projects, but most likely the tools will be used differently, as Alan Koch
noted [74, p. 35]. Therefore, tools and practices used in real-life projects have been
investigated, and the results can be found in Section 3.2. The experiences collected
from Solita’s projects show how Scrum has been used in real commercial projects, as
well as what kinds of tools and practices were used to support Scrum projects.

Having gone through agile method principles and a Scrum methodology overview,
we can discuss findings on Scrum practices in a specific context of a software service
organisation, as well as analyse differences between Scrum and non-Scrum projects.

3.2. WHY TO USE SCRUM IN COMMERCIAL PROJECTS AND HOW TO DO IT
WITH SUBCONTRACTORS? 27

3.2 Why to Use Scrum in Commercial Projects and How
to do it with Subcontractors?

In order to answer this question, the contributions have been grouped into two
parts. First, the analysis of 18 Scrum and non-Scrum projects conducted in Solita
is discussed. The analysis focused on the differences between Scrum and non-Scrum
projects in order to find out whether Scrum methodology improves the performance
of projects. The project performance was measured based on multiple criteria, which
will be described later in Section 3.2.1. However, the core criteria were already de-
fined as subcontractor project evaluation and they were presented in Section 2.2.3
and in publication [P4]. The results of the Scrum and non-Scrum project analysis
were presented in publication [P2].

Secondly, a Scrum-based cooperation process with subcontractors is presented.
Additionally, practical recommendations for conducting Scrum projects with team
members coming from subcontracting partners have been collected. Generally Scrum
projects were found to be better performing comparing to non-Scrum projects. Ad-
ditionally, the Scrum practices encouraged communication within the team as well
as with customers. The customer’s active participation in the project was also found
to have a positive effect on project performance. The recommendations are based
on findings from interviews conducted with project managers as preparation for
publication [P2]. Furthermore, the findings from publication [P2] are presented as
practical recommendations in detail and in a practitioner oriented manner in pub-
lication [P1], and summarised in Section 3.2.2. The recommendations are directly
usable in a given context.

3.2.1 Scrum and Non-Scrum Projects Comparison

The analysis of Scrum and non-Scrum projects was conducted using the Goal Ques-
tion Metric (GQM) approach [12]. The data for analysis was obtained from inter-
views with project managers of 18 Scrum and non-Scrum projects, who answered
questions corresponding to the metrics defined in GOM and gave free form feed-
back on the project. Additionally, data, e.g., profitability or project time usage, was
obtained from the company’s IT systems. The GQM consists of three parts:

e Goal that determines the ultimate purpose of the investigation,

e Question that asks about a certain aspect of the investigated issue and supports
the goal,

e Metric that specifies what should be measured in order to answer a specific
question.

The goal of this comparison of Scrum and non-Scrum projects was defined according
to the GQM template as follows: (Purpose) Find out (Issue) the impact of (Object) Agile
practices in software projects (Viewpoint) from the software service provider company point
of view [P2, p. 224]. In order to reach the goal, five questions [P2, p. 224-225] were
defined:

28 3. ORGANISATION - AGILE PROJECT PRACTICES

e Q1: Do the current Agile practices benefit projects? This question aimed at finding
out whether agile practices, and in particular Scrum, were benefiting projects.
In order to answer this question, three metrics were used.

1 Customer satisfaction, which represented the customer point of view on
the project performance.

2 Team performance, which represented the internal point of view of the
project manager on team performance.

3 Profitability, which represented a business point of view of the project
performance.

e Q2: Does the customer’s direct involvement in the project benefit project success? This
question aimed at finding out whether different degrees of customer involve-
ment during a project affected in any way the project performance. Three levels
of customer involvement were distinguished, from non-involvement, through
partial involvement where the customer provided occasional feedback on the
project progress, to full involvement that meant active and frequent participa-
tion in project meetings and providing feedback. The project performance was
measured based on the metrics specified in question Q1. All of the three met-
rics were expressed in a point scale from 1 to 5, where 1 was the poorest result,
and 5 was the best result. Both customer satisfaction and team performance
were assessed by the project manager of a given project. Therefore the metrics
can be influenced by the project manager point of view. The profitability was
assessed based on financial data.

o Q3: Is the communication different in Agile projects? This question aimed at veri-
fying any potential differences in communication between projects depending
on methodology used. Communication was measured using two metrics.

1 Communication factor, which was specified as the percentage of the time
spent by the whole project team on formal communication to all project
time. The time-related data was obtained from a time tracking system that
had separate tasks for internal or customer meetings, reviews, and similar
formal communication-related events; hence it was possible to measure
the metric.

2 Project manager time, which was the percentage of the time spent by the
project manager on managerial tasks to all time used by the project.

Both of the metrics used data obtained from a time tracking system that was
used in all projects. Naturally, informal communication was not registered by
that tool.

o Q4: How to adapt Agile practices to suit commercial needs? This question aimed at
finding out what practices are used in commercial projects and what kinds of
limitations were observed. The findings were based on interviews with project
managers and collected as qualitative data, i.e., comments, observations, and
individual recommendations.

3.2

WHY TO USE SCRUM IN COMMERCIAL PROJECTS AND HOW TO DO IT
WITH SUBCONTRACTORS? 29

Qb5: What kinds of projects suit Agile practices? This question aimed at finding
out whether there is any particular type of commercial project that best suits
agile, or in this case Scrum, projects. The data was obtained from interviews
with project managers and was based on analysis of data obtained for other
questions.

The most complete data obtained to support all the defined questions and metrics
is presented in Table 3.1; subsets of this table were published in publication [P2,
p- 225-226] and [P1, p. 19]. The table has more data than what was needed for
answering the defined questions. The additional metrics were obtained when the
main metrics were collected. This extensive data can be used as supportive and
comparative data for the future. The rows of the table are grouped based on the
project methodology used. The column abbreviations are as follows:

Proj. contains project ID or a number of projects in a given group,
Year is the year when a project was realised,
Size is the size of a project in man months,

Comm. factor is the communication factor that is defined as the time spent for
communication to the total project time,

Team size is the number team members,
Sub. is the number of subcontractors in the project team, and

Meth. is the methodology used in the project. The methodologies were dis-
tinguished as WF for traditional Waterfall-like projects that were relying on
heavier planning ahead, Ifer. for iterative projects that were not planned heav-
ily in advance but that did not follow Scrum, and Scrum for Scrum projects.
Other columns are:

Cust. satisf. for customer satisfaction,

Profit. for project profitability,

Team perf. for team performance,

Sites for the number of sites in the project,
Cust. invol. for customer involvement level,

Contract model for the project’s contract model that could be fixed, meaning
fixed scope and price, or Time and Material (TM), meaning the project is re-
alised until the customer decides that the requirements are fulfilled, and

PM time for Project Manager time that expresses time spent for management to
the total project time.

The questions were answered based on the collected data.

30 3. ORGANISATION - AGILE PROJECT PRACTICES

Q1: Do the current Agile practices benefit projects? The differences between
the different project methodologies can be seen in Table 3.1 in columns for cus-
tomer satisfaction, profitability, and team performance. The results are calculated
as average values for each methodology used and as total averages for all project
methodologies used. As can be seen the Scrum projects generally had higher scores
than projects using other methodologies. However, customer satisfaction in Scrum
projects was lower than that in iterative projects. There is no easy explanation for
this result. As has already been noted the customer satisfaction was not objectively
measured (e.g., by using a survey), and therefore the customer satisfaction data pro-
vided by the project managers might be inaccurate. This problem should be elim-
inated in the future by introducing standard customer satisfaction surveys used to
obtain customer feedback directly.

Q2: Does the customer’s direct involvement in the project benefit project suc-
cess? The results for various levels of customer involvement in projects are sum-
marised in Table 3.2. The data from Table 3.1 is grouped by customer involvement
level and methodology used. Additionally, only relevant metrics are used in Ta-
ble 3.2 for clarity. The three customer levels full, partial, and none, are marked in
the table by Full, Partial, and No respectively. The results for each group represent
average values of metrics used.

31

3.2. WHY TO USE SCRUM IN COMMERCIAL PROJECTS AND HOW TO DO IT
WITH SUBCONTRACTORS?

%601 ¢ 68¢ €ee €8¢ [BI0L 841 €89 W6E9C 64C 81
puein)

%076 ¢ €8¢ €8¢ gec HNSI €€ €8G WlISI9C ¥RGE 9

M

%00°S WL ON [4 ¥ € i M [4 ¥ %0091 ¥ 800C 91d

%00°4 N.L ON [4) € g M 1 ¢ %0061 ¢ 800c <Id

%00°8 WL m4 [4 ¥ g € M) L %00Lv €l 800Cc S0d
%0091 WL Tehred [4 ¥ € i M I € %00°6c ¢e L00C VId
%0011 Poxtd md [4 € [4 [4 dM g L %0071 €4 £00C 90d

%008 Poxtd ON [4 € I € M 0 <l %007%C 06 900C <¢0d
%C¥ ¢l 19 A/ O A 4 €y GLc INSIY 88T 89 Wcl'8C 96'0C 8

wng
%0091 poXid [ehted [4 ¥ g g umbg I € %00°4¥ G 800Cc 8Id
%00¥1 WL md [4 ¥ g y wnbg g L %000¢ 0L 800Cc ¢Id
%00°G1T Poxtd [eled [4 ¥ ¥ ywmnbg 1 € %007c Z 800Cc Tld
%00°€T Poxtd [eled [4 g g g wmnbs [4 11 %0061 6¢ 800Cc 0Id
%0081 WL ON [4 ¥ ¥ 1 wnbg [4 ¥ %00¢e 91 800Cc 60d

%00°Z WL md [4 ¥ ¥ € unbg [4 T %000¢ 61 800Cc Z0d

%006 WL md € ¥ € ¥ unbs [4 9 %00°0C 9¢ £00C ¥0d

%00°8 N.L md [4 ¥ € y wnng 0 9 %00%c¢ 42 900C €0d
%CC 0L L1 g G'¢ Gv HMSIA G40 9LV w9LTC L8'6C ¥

19]]

%00°6 WL ON 1 ¥ € ¥ 9] 0 € %0071 41 £200C Z1d
%0091 pPaxiq ON [4 [4 1 i 93 I ¥ %00°ZE §¢ £00C €1d
%00°€T Poxtd ON [4 ¥ € g RS 0 L %00°2L¢ L& £L00C 80d

%00 Poxid [eRIed [4 ¥ € g o)) [4 S %00¢l 0y 900¢ 10d

owny [Ppowr ‘[OAUl ‘Jrod ‘Jspes 9718 I030e] ()
INd Penuo) (IsnD SIAIG wWed], IJPoIJ ISND YRN qng wed], ‘wwo) 9zIig Jedx loig

pasn A3ojopoowr oy} Aq padnoig syoslor] T°€ d[qeL

32 3. ORGANISATION - AGILE PROJECT PRACTICES

As can be seen from Table 3.2 projects that did not have any customer involve-
ment during the projects scored the lowest scores. Projects with partial customer in-
volvement received the highest scores. Moreover, there was only one Scrum project
that did not have any customer involvement, which also had the worst customer
satisfaction level recorded. Therefore, based on the results and differences between
projects with and without customer involvement, it can be said that customer feed-
back improves project performance. However, it is difficult to definitely state to
what extent customers should be involved in projects. That may need case by case
considerations.

Table 3.2 Customer involvement in projects [P2, p. 225]

Number of Methodology Customer Profitability Team

projects satisfaction performance
4 Iterative 4.5 2.5 3.5

8 Scrum 3.75 413 413

6 WEF 3.5 2.83 3.83

18 Grand Total =~ 3.83 3.33 3.89

Q3: Is the communication different in Agile projects? The communication
differences in projects depending on the methodology used can be seen directly in
Table 3.1. The communication factor is the highest for Scrum projects, lower for tra-
ditional projects, and the lowest in iterative projects. The highest communication in
Scrum projects was expected, as Scrum has a few formal elements promoting com-
munication, i.e., daily meetings, planning and demonstration meetings. It cannot be
stated certainly why traditional projects had a relatively high score. However, one
explanation could be that in traditional projects the amount of formal documenta-
tion and planning generates enough communication recorded in the time tracking
system to receive a higher value than iterative projects, which do not produce so
much documentation.

The project management time was highest for Scrum, lower for iterative projects,
and lowest for traditional projects. It should be noted that in the investigated projects
the project manager typically also played role of Scrum master and therefore partici-
pated in all Scrum meetings. That is one possible reason why Scrum projects received
the highest project management time score.

Generally, the obtained results were not significantly different between each meth-
odology used. The differences were within a few percentage points. Therefore it can
be stated that Scrum projects tend to spend more time on communication-related
tasks. However, the difference comparing to other project methodology types is not
significantly higher. Moreover, taking general Scrum project performance into con-
sideration, it can be said that the additional time spent on communication brings
visible positive results to projects.

3.2. WHY TO USE SCRUM IN COMMERCIAL PROJECTS AND HOW TO DO IT
WITH SUBCONTRACTORS? 33

Q4: How to adapt Agile practices to suit commercial needs? This question was
answered based on comments received from various project managers, who were in-
terviewed on practices used in their projects, as well as general project practices used
in Solita. The listed practices include the practices that were used most commonly
and that were regarded as most beneficial for projects. A short list of these practices
was first published in [P2, p. 226], and later these practices were discussed in de-
tail in the context of using subcontractors in [P1]. In this section the main practices
are discussed and their usage together with selected practical recommendations are
further discussed in Section 3.2.2.

The practices and tools that have been commonly used in Solita’s projects are:

o Scrum meetings - short daily meetings where all team members tell the statues
of their work. Additionally, design clarifications were made at these meetings.
Any discussions that required much time and were out of the scope of a short
daily meeting resulted in a separate discussion or workshop.

o Product Backlog - product and sprint backlogs were used to keep track of main
features planned, ongoing, and done. It was used at Sprint planning. The fea-
ture sizes were expressed differently in different projects ranging from hours
to abstract units, e.g., story points or Ideal Engineering Hours.

e Sprint length - the Sprint lengths ranged typically from two to four weeks. In
some projects this was derived from the experience that six-weeks sprints are
too long, while two weeks for smaller teams and three weeks for bigger teams
are best suited.

e Planning sessions - sprint planning was typically conducted by the whole team
and in some cases with the customer’s active involvement. When the customer
was not involved, the customer point of view was represented by somebody
else, usually the project manager.

e Sprint demonstration and retrospective - were often combined in one meeting with
different parts. The customer was not always involved in the demonstration,
but it was noted that such participation was very useful and could have helped
in certain cases to avoid mistakes. Also teams were better motivated to keep
up high quality when the customer participated in demonstrations.

o Customer involvement - in general frequent customer feedback seemed to be a
desired element of a project, which however could not be realised in all cases.
No criticism was recorded on customers being actively involved in projects,
while there were recorded comments on too little involvement of customers.

o Continuous integration - was used to perform software builds and provide feed-
back to the whole team on the status of the software.

o Automated tests - test levels were different depending on the project. However,
at least at the unit test level automated tests were dominant. Moreover, in some
cases other test types were executed for each build.

34 3. ORGANISATION - AGILE PROJECT PRACTICES

o Collaboration tools - were used to share knowledge and foster communication
in the project teams. Various collaboration tools were used, including Instant
Messaging used for everyday communication, Issue tracking system used for
progress tracking, Wiki for light-weight documentation creation as well as any
project instructions.

e SVN tagging/branching - version control systems were used to keep track of
changes in the software produced. Also tagging and branching were used to
separate code at different stages of development (released versions and current
development).

e Documentation - was present in all projects, but the extent of the documenta-
tion differed significantly from project to project. Typically, general system-
level architecture was created at the beginning of a project. The documentation
evolved during the project and more details were added as the implementation
progressed. In some cases simple wiki pages were found sufficient, but in other
cases traditional documentation was produced as well. The level of documen-
tation in a project often depended on the customer requirements to have or not
to have formal documentation.

It is important to note that even though the main elements of Scrum (e.g., scrum
meetings, backlogs, self organising teams, shared code ownership, continuous inte-
gration, short development intervals) are used at Solita, one could argue that this is
not real Scrum, as some constraints are imposed by the commercial context, e.g., a
fixed scope of a project. Therefore, Scrum at Solita could be understood as Scrum-
like practices, where the main methodology elements are used but not always all
of them. In any case, the provided list of practices shows which elements of Agile
practices, and generally good practices, were considered as important and useful.

Q5: What kinds of projects suit Agile practices? This question aimed at find-
ing out whether Agile practices should be used with any particular types of projects.
The question was answered based on comments from interviewed project managers
as well as results gathered in Table 3.1. Most of the projects that were analysed in
Table 3.1 were software implementation projects. However, there were also data-
warehousing projects that may require much more scoping. As can be seen in Ta-
ble 3.1 two contract types were used, i.e., fixed scope and time and material (TM).
The TM projects were more common in Scrum projects, while fixed scope contract
models were more common in traditional projects. Even though TM contract mod-
els are very suitable for Scrum projects as they encourage the customer to actively
participate in projects, the Scrum projects that used a fixed scope were successful as
well.

Therefore, based on the collected data and comments from project managers, a
recommended project should preferably be a development project with a time and
material contract model. However, there are no practical limitations on project scope
or contract model. As was presented also fixed scope projects can successfully use
Scrum.

3.2. WHY TO USE SCRUM IN COMMERCIAL PROJECTS AND HOW TO DO IT
WITH SUBCONTRACTORS? 35

Other results. In addition to the answers to questions Q1-Q5 it is possible to
briefly discuss other findings based on data from Table 3.1. By analysing the changes
over time it can be seen that the number of Scrum projects increases with time from
one project in 2006 and 2007, and 6 in 2008. On the other hand, iterative projects
were on a decrease and none were realised in 2008. Interestingly, traditional projects
(WF) are at a relatively low level through the years, but they are on a slight increase
between 2006 and 2008. One explanation could be that the projects’ nature required
detailed planning ahead and Scrum was not considered, or Scrum was not consid-
ered in the first place.

Furthermore, based on the data in Table 3.1 it can be seen that most of the projects
that were investigated had an average size of 27 man months. The project teams on
average consisted of five team members, from which about two were subcontractors.
Finally, most of the projects were realised at two sites, with or without subcontrac-
tors. The multi-site projects without subcontractors were realised in two company
locations in Finland.

Having answers to all the defined questions it was possible to conclude that
Scrum projects showed a positive influence of the methodology used on project per-
formance. Additionally, certain elements of Scrum, particularly communication and
customer involvement, positively impact projects as well. Generally Scrum seems
suitable for any project type. However, implementation projects and in particular
projects with a time and material contract type were especially suitable for Scrum.

3.2.2 Recommendations on Subcontractors in Scrum Projects

The experiences from using Scrum in projects where subcontractors were present
led to collecting a few practical recommendations on how to organise projects with
subcontractors. The recommendations include practices as well as tool and were pre-
sented in publication [P1]. In this section an overview of those practices and selected
practical recommendations are presented. The practices are discussed around three
project phases. The phases are:

1 Preparation, where the project is organised including team members selection,
2 Development, where the software solution is implemented, and
3 Release, where the developed solution is released to the customer.

The preparation phase is an organisational phase that focuses on setting up the
project. The project scope is usually known, at least at some level, based on customer
requirements and project order. Based on the more or less detailed requirements
also the estimated project size is known. Based on the information it is possible to
decide the needed team size and competences of subcontractors. The subcontractor
list including competences is available as a result of the selection process presented
in Chapter 2. When assembling a team that is going to be distributed across sites it is
good to balance the sites so that there is no site with only one developer. Unbalanced
sites may result in isolation and deterioration in communication between the sites.

When a team is assembled all team members should receive access to all tools
and resources needed for the project regardless of their location or organisation. The

36 3. ORGANISATION - AGILE PROJECT PRACTICES

team’s first activity is an initial project meeting (i.e., kick-off meeting) where the
project scope, objectives, and procedures are explained. If the team members are not
experienced in Scrum methodology, the methodology is explained as well. After the
preparation phase is completed the development starts.

Development follows the principles and activities of Scrum methodology. An
overview of Scrum activities within a Sprint is depicted in Figure 3.2. Each Sprint
starts from detailed planning of selected features for the given Sprint. The features
are chosen by Product Owner, who in many cases is the same person as the project
leader. However, also the customer decides on the Sprint scope if the customer is
actively involved in development. Based on the planning Product and Sprint back-
logs are updated. Sprint tasks are placed in a task tracking system. Development
progress is followed up at daily Scrum meetings where ongoing work, planned work
and possible impediments are reported. The Scrum meetings are led by a Scrum
Master who facilitates the meetings as well as removed impediments.

)

Sprint i +1

Sprint Review
- Commitment status
+ Retrospective

)

Daily Scrum meeting
* Updated backiog * Current tasks
+Tasks « Planned
* Impediments

Figure 3.2 Scrum activities overview [P1, p. 8]

A Sprint ends with a Sprint Review where the work done is presented to the cus-
tomer, in an ideal situation, or at least to the team. The customer’s, or the team’s,
feedback decides whether corrections are implemented. Moreover, at the end of a
Sprint a retrospective on the Sprint is done with the whole team. This is a chance for
the team to discuss any positives or negatives of the Sprint and agree on improve-
ment actions. This is additional feedback in addition to the feedback provided by
the customer regarding the implemented functionality. If all functionality is imple-
mented in a Sprint, the development ends. If some functionality is left, a new Sprint
starts with a planning session.

The tools and practices listed in question Q4 on page 32 are used during the
development phase. Particularly the Collaboration tools are used on a daily basis.
Good communication is essential for a project’s success, and is of even greater im-
portance when the development team is distributed. A practical tip regarding com-
munication practices was given in publication [P1, p. 9]: A development team can
use a common chat where all the team members can easily exchange options, notify about
changes, ask questions, and see availability of other team members. A chat can be used more
willingly by subcontractors from other locations than phone, as it is less disruptive and more
cost-effective. Team chat rooms have proved to be quite useful in real life projects.”

3.3. SUMMARY 37

Other tips provided focus on the particular context of working with team mem-
bers from another organisation. The nature of these tips can be summarised as strong
emphasis on equal and easy access to all tools, which in many cases means web-
based applications, and secondly promotion of good communication in the team
regardless of the team members’ location. Hence the tip about a common chat
that aims at replacing informal communication that happens naturally in collocated
teams.

Release is the last phase of a project. This phase starts when the development is
completed. Release focus is on handing over the software solution to the customer.
Final tests are possibly executed in this phase unless all tests were automated and
executed during the development. Finally, the customer may need support in de-
ploying the solution. In any case the release delivers the whole software package,
documentation, and test reports to the customer. When all these activities are per-
formed and no faults are found in testing, the project activities end. The very last
activity, before the project ends and the team is disassembled, is a summary meeting
where the project achievements and lessons learned are discussed.

3.3 Summary

In this chapter we have presented results of analysis of 18 industrial projects and
compared Scrum and non-Scrum projects. The results showed that generally Scrum
projects had higher profitability and team performance, which is the main reason
why Scrum should be used in similar contexts of commercial projects. Additionally,
customer involvement helped projects in achieving their goals. However, the extent
of customer involvement should be decided case by case. It should also be noted
that the presented data came only from one organisation and that the data was col-
lected from a limited number of projects, i.e., 18 cases. This collection did not include
equal representation of different project types, namely, six traditional project types, 8
Scrum projects, and four iterative projects. Therefore, the data amount does not seem
sufficient or representative enough to statistically determine the extent of individual
project methodology on project performance. Still, this data is useful as informative
background and encouragement for other organisations to collect additional data for
comparison.

Furthermore, a list of practices and tools that were found useful and beneficial
for the projects was collected. This list was further described in the context of work-
ing with subcontractors. Generally work with subcontractors does not differ sig-
nificantly from working with team members coming from the same organisation.
However, first of all the subcontractors were selected, as presented in Section 2.2.2,
in a way that ensured that they were familiar with technologies and a similar work
environment. Secondly, the tools and practices selected focused on equal access to
the work environment for all team members, good communication, and frequent
feedback channels used to receive feedback from the customer and the team. All
these results and practical pieces of advice show how a software organisation can
work in projects with their subcontractors using Scrum methodology. The possible
improvements in project performance can be also indirectly linked to improvements

38 3. ORGANISATION - AGILE PROJECT PRACTICES

in the final software solution, which addresses the research question RQ1 in respect
of this improvement area. Again in the case of improvements in the Organisation cat-
egory, they support software development, but do not directly affect the software.
However, based on criteria like customer satisfaction or profitability, it is possible to
assume that customers were more satisfied with the software they received, which
is an outcome of a software project. Furthermore, the profitability level can also be
linked with software quality through possible rework done under warranty.

The software quality improvement is achieved in this area of project practices
by using development methodology, i.e., Scrum, that improves project performance.
The comparison of results in Scrum and non-Scrum projects shows a positive im-
pact of the methodology used in the project. Additionally, needs were identified
for better measurement of customer satisfaction as the current, subjective method,
may not produce convincing enough results. Furthermore, concrete recommenda-
tions on ways of working with subcontractors in Scrum teams were provided. The
recommendations were based on practical experiences. Therefore, software organ-
isations working in a similar context can improve their quality by introducing the
recommended practices in their projects, which addresses research question RQ2.

The presented practices and ways of cooperating in projects with subcontrac-
tors best fit the process area Integrated Project Management (IPM) +IPPD defined
in CMMI for Development [124, p. 145]. The purpose of IPM has been defined as
"to establish and manage the project and the involvement of the relevant stakeholders ac-
cording to an integrated and defined process that is tailored from the organizations set of
standard processes’ [124, p. 145]. The usage of Scrum methodology that encourages
involvement of multiple project stakeholders can be seen as following the purpose
of the IPM. Naturally, the usage of Scrum alone does not fulfill all requirements de-
fined in the IPM. However, based on the IPM process area purpose being in line
with the Scrum usage purposes, and literature reports on CMMI and agile method
mappings mentioned, the project practices presented in this chapter do not seem to
prevent possible adoption of a mainstream SPI framework. The ability of a software
company to choose Scrum as its project methodology and still being able to aim at
fulfilling requirements of a mainstream quality improvement framework addresses
the research question RQ3. The choice of agile project practices does not mean that
the software organisation has to abandon a possibility of introducing a fully-fledged
SPI framework in the future, which leaves flexibility in choices for the organisation.
Naturally, the presented project practices do not fulfill fully CMMI for Development
requirements. However, that was not the aim of these project practices.

CHAPTER 4

Development - Multi-Site
Practices

Multi—site development practices is the third area of quality improvements, and
the first one in the Development category that is presented in this thesis (see Fig-
ure 4.1). The term practices in this chapter refers to any practices or processes that are
used for software development. The practice presented in this chapter particularly
focuses on multi-site development. Multi-site development is an example of a spe-
cific context for development. Depending on a particular context, the development
practices may need adjustments to make them suitable for the context. Therefore, in
this chapter a specific practice for multi-site development is presented.

In this chapter we start
by very briefly discussing the
background of the multi-site A R
development case in Section 4.1. implieg Meioioi]
Then a process for ensur-
ing architectural decisions and
an example tool supporting
the architecture validation are
presented in Section 4.2. Fi-

Multi-Site

Practices Component

Evaluation

Selected
Design
Solutions

Organisation Development

nally, the contributions and \\ Quallty
their relation to the main the-
sis questions are summarised Figure 4.1 Multi-Site practices

in Section 4.3.

4.1 Need for Multi-Site Development

The need for additional improvements in development processes was observed when
the development in the case company became distributed. The distribution was
between the locations within the organisation, as well as locations of subcontract-
ing partners. Therefore, the improvements proposed in this chapter are a response
to changes in the environment in which the organisation operates. However, dis-
tributed development is a common practice and the proposed improvements can be
applicable to any organisation working in a similar environment.

Multi-site development is a variant of software development that is relatively

39

40 4. DEVELOPMENT - MULTI-SITE PRACTICES

common in today’s development. The goal of the development regardless of the
physical arrangements is the same as in single-site development - simply create soft-
ware according to the requirements. However, the fact that the development is car-
ried out in multiple locations may impact the everyday communication and there
can be a need for practices that are specific to the environment. Therefore, in this
chapter we focus on a particular problem of ensuring architectural conventions in a
multi-site development environment.

4.2 How to Ensure Architectural Conventions in Multi-
Site Development?

In order to understand a solution to the problem we need to first discuss a process
that is proposed (Section 4.2.1) for ensuring architectural conventions in a multi-
site environment. Next, we propose a tool that was developed for the process in
Section 4.2.2. Then the tool and process are evaluated in Section 4.2.3. The contribu-
tions to this area of software quality improvements have been presented in publica-
tion [P5]. There are two main contributions. First, the contribution is a process for
architectural decisions assurance in a multi-site project setting. Secondly, a tool for
this architectural design decisions validation has been developed and evaluated.

4.2.1 Architecture Assurance Process

The context for the contributions is a project with multiple locations, at least two
sites. Additionally, as it often happens in current development projects, one, or some,
sites represent different organisations than the one that designs the software [132].
For simplicity of the project setup it can be assumed that there are two separate
sites in two different organisations. One organisation is an organisation designing
the software, but it is the other organisation that implements it. In such a context
it is not easy to make sure that original design decisions are well communicated
to the implementers and that the architectural rules are followed during the devel-
opment. Even in locally developed systems original architectural decisions can be
altered with time, which for example can be addressed by Architecture Constraint
Language (ACL) as presented by Tibermacine et al. [125]. Furthermore, the two or-
ganisations may have different development processes and tools. Therefore, in pub-
lication [P5] we presented a process that assists architecture rules validation in a
multi-site environment.

Architectural rules can represent a specific architectural style, for example, a lay-
ered architecture [22, p. 31]. In such architecture the concept of layers can be dis-
turbed if certain layers refer directly to others bypassing intermediate layers. In
order to improve communication between the sites involved in software develop-
ment and at the same time not require major changes in the individual development
practices at the sites, a solution based on profiles is proposed. Please note that here
profiles do not refer to UML profiles [36] that are an extension mechanism for a spe-
cific technology, domain, or methodology. An overview of the proposed process is
depicted in Figure 4.2.

4.2. HOW TO ENSURE ARCHITECTURAL CONVENTIONS IN MULTI-SITE
DEVELOPMENT? 41

The process starts when architects or any other competent representatives from
the two sites meet in order to agree on the main architecture. The two different sites
can be referred to as creation team (site A) and wvalidation team (site B), as depicted
in Figure 4.2. The result of the meeting should be a high-level architectural decom-
position. That decomposition can be a simple list of main components and it can
be referred to as abstract architectural profiles. The abstract architectural profiles are the
base for creation of other profiles used in the development process. There are two
more profile types used. One type is creational profiles that contain rules on which the
software is created, and validational profiles that are used to validate the actual system
against the architectural rules.

The creational profiles are dependent on the tools and methods used by the creation
team, which gives them the freedom of choice. For instance, creational profiles can be
expressed as a UML diagram, e.g., class diagram or sequence, and provide enough
details to implement the system. However, regardless of the creation specifics, there
are a few assumptions made on the creation that need to be fulfilled for the process to
work. The first assumption is that creation uses the system decomposition defined in
abstract architectural profiles. Secondly, the creation can provide details of fine-grained
decomposition, namely component-package mappings. Finally, the assumption is
that the creation results in code that represents the system designed.

The validational profiles are derived from the abstract architectural profiles and they
define rules of component interactions as specified in the high-level architecture.
The validational profiles can focus only on the component interactions that are most
crucial from the architectural point of view or define all possible component interac-
tions. For example, the architecture can mandate that certain components may not
access other components directly, e.g., to keep a separation of concerns of compo-
nents and the predefined architecture of a system. In any case, the creation team
has the freedom of implementation within the limits of the agreed architecture. The
validational profiles are used for validation of architectural rules against the actual im-
plementation. As validational profiles define only components, the validation team
needs to know the mappings between components, and packages belonging to that
components. As was specified for creational profiles the fact of using packages for
organising the system is one of the requirements imposed on the creation. Once the

L Conventional development process

Abstract * Site A — Creation
Architecture k|

k(|
Profiles .. Carnpornent- |
Il package mappings lI
[T 4
0 i
YWalidational Tool-Specific Validation Walidation
. [Profiles]-[\/alidational F'rofiles] —[Tool]-[Report]
‘ Transitions
m Deliverables Site B — Validation

Figure 4.2 Architecture rules assurance process overview [P5, p. 340]

42 4. DEVELOPMENT - MULTI-SITE PRACTICES

components are mapped to package sets, they can be used to perform validation of
architectural rules against the system (i.e., code) using a validation tool. The result
of the validation provides a validation report that summarises the architectural rule
fulfillment, as presented in Figure 4.2.

Overall the process requires a certain level of formal communication between the
two teams. The creation and validation teams have to communicate at the beginning
of the development process in order to define the high-level architecture as abstract
architectural profiles. Then the creation team has to provide the package names that
they use for specific components as component-package mappings that are used in
validational profiles. The component-package mapping is likely to be incrementally
updated while the system implementation progresses. Finally, both of the teams
should have access to and visibility of the validation report. The validation report is
another channel of communication between the teams, and if there are any misun-
derstandings the teams can agree and either clarify the implementation that does not
follow the defined architectural rules or refine the architecture. The report should be
created along with the build process whenever the system code-base is updated.

Practically, the mappings between the components and packages can be stored in
an XML file that also contains validational rules. The file can be shared between the
sites. As for the validation tool, it needs to be able to use the validational profiles and
system code as inputs and produce a validation report. An example of such a tool is
presented in Section 4.2.2. However, from the general process point of view any tool
can be used that fulfils the requirements. The validational profiles can be stored from
the beginning in a format supported directly by the tool, or in a generic format that
is converted into a tool-specific format.

4.2.2 Architecture Rule Analyser Tool

A validation tool that can be directly used in the process of architectural rules valida-
tion is the Architecture Rule Analyser (ARA) !. ARA was designed and implemented
in Java by the author of this thesis. ARA is a tool developed for analysing architec-
ture rules in Java. ARA allows for defining custom dependency rules between Java
packages and validating those rules based on binary code of the developed software.

ARA is meant as a tool supporting development by validating specific architec-
ture rules during the software development. ARA can provide feedback on rules
fulfilment as a part of the Continuous Integration process, which was presented for
example by Martin Fowler [45]. An overview of the ARA-based validation process
is depicted in Figure 4.3. ARA operates on Java packages, which group Java ap-
plication classes in logical groups. The packages, or their structures, can comprise
components of the software system. The components can have specific relations be-
tween each other that are dependent on the chosen architecture style. The style can
be, for example, a layered architecture [22, p. 31]. In that architecture style com-
ponents from one layer may or may not refer to components from other layers, for
example, components from the view layer can refer to the subsequent service layer,
but they should not directly refer to the persistence layer. ARA is able to detect such
rule violation based on the defined rules.

IThttp://open.solita.fi/projects/ara/

4.2. HOW TO ENSURE ARCHITECTURAL CONVENTIONS IN MULTI-SITE
DEVELOPMENT? 43

Component-package Java

Mappings Binary Code

ARA Yalidation
Validational Profiles _[ARA J- [Repurt (XMUHTML)]

Figure 4.3 ARA rule validation [P5, p. 341]

As presented in Figure 4.3, ARA uses component mappings, which define pack-
ages comprising specific components. Then the components are used in validational
profiles for defining rules governing component interactions. The validational profiles
are expresses as a simple XML file, which is human readable but also directly used
by ARA. Those rules are then used by ARA to validate Java Binary Code. ARA first
goes through all classes of the system and collects package names that are used in
each class within a Java package. The information about used packages is collected
using Apache’s Byte Code Engineering Library 2. Then the package usage collected
from binary code is compared with package definitions defined in validation profiles,
which contain component-package mappings. The validation results are provided
as a summary of valid or broken rules.

ARA supports two types of rules:

e cannot use rule that specifies which components cannot refer to which ones,
and

o must use rule that specifies which component must refer to other components.

The cannot use can be used, for example, in the case of layered architecture where
components in one layer can or cannot refer to components in other layer. On the
other hand, the must use rule can represent a requirement of references between com-
ponents. For example, some components can be required to use logging service. The
rules can be freely defined to all or some components, as long as the components
can be defined as groups of Java packages. Therefore, the rules are applicable only
at the package level. Additionally, the references between packages are recognised
as any usage of classes or interfaces from another package. ARA does not analyse
references between particular classes or methods.

When ARA is used the architecture rules are defined in an XML file. The file has
two main sections, one with component mappings to Java packages, and the second
one with actual rules. An example ARA rule file is presented in Listing 4.1.

<?xml version="1.0" encoding="UTF-8"?>
<validationConstraints>
<!-—- Definition of a mapping between
an abstract subsystem and one real subsystem. -->
<componentMappings id="analyser">
<name>Analyser</name>

’http://jakarta.apache.org/bcel

44 4. DEVELOPMENT - MULTI-SITE PRACTICES

<component>fi.solita.open.ara.analyser</component>
</componentMappings>
<componentMappings id="converter">
<name>Converter</name>
<component>fi.solita.open.ara.converter</component>
</componentMappings>
<componentMappings id="data">
<name>Data</name>
<component>fi.solita.open.ara.data</component>
</componentMappings>
<componentMappings id="tools">
<name>Tools</name>
<component>fi.solita.open.ara.tools</component>
</componentMappings>
<componentMappings id="xml">
<name>XML</name>
<component>fi.solita.open.ara.xml</component>
</componentMappings>

<!-- Rule definitions -->
<rule type="cannotUse">
<source>converter</source>
<target>analyser</target>
<target>tools</target>
</rule>

<rule type="mustUse" strength="3">
<source>analyser</source>
<target>converter</target>
<target>data</target>
</rule>
</validationConstraints>

Listing 4.1 Example ARA validation rules

In this ARA rule example file components and their mappings to real packages
are defined. For example, the first component analyser consists of one Java package
fi.solita.open.ara.analyser. It should be noted that ARA component definitions support
wild-card character in package name, which allows for flexible system evolvement
without a need for mappings changes providing that the naming conventions are
followed. Based on the component definitions validation rules are created. In the
example ARA validation rules listing there are only two rules, one cannot use and
one must use rule. The cannot use rule specifies that the converter component cannot
refer to analyser or tools components. If any classes from packages constituting the
converter component use (e.g., method calls or package imports) any classes from
packages constituting the analyser or tools components, the rule is broken. The vali-
dation results are presented in a report, which is in an XML format and can therefore

4.2. HOW TO ENSURE ARCHITECTURAL CONVENTIONS IN MULTI-SITE
DEVELOPMENT? 45

be easily converted, for example, to HTML. An example ARA report in an HTML
format is presented in Figure 4.4. Violated rules are indicated in red (dark gray)
colour.

ARA Validation Report

Generated: July 15,2007, 7:35:05 PM (EEST)

Rule (0) 'cannot_use'

|Source: converter |org. archrules. converter

Targets:

org archrules. analyser

Rule (1) 'must_use'

Source: converter |org. archrules. converter

Targets:

org archrules lattiz

Figure 4.4 ARA example report

ARA can be easily integrated with build systems that use ANT 3 or Maven *.
Once the architecture rules are defined, a system can be modified depending on the
system evolution. The XML format of the ARA rule file is human readable and it can
be edited with a simple text editor.

4.2.3 Evaluation

ARA has been used in an example industrial case, as it is described in publica-
tion [P5]. First, ARA was used in an illustrative example to validate architecture
in a demo application developed at Solita by all new personnel. The application
was a simple system using design principles used in the company. The validation
was performed in a few implementations of the same application. In addition to the
illustrative example, ARA was used to validate architecture in a commercial appli-
cation developed in a multi-site project. Due to time constraints ARA was applied
to existing system versions, which correspond to real-life system development. The
results showed that in the initial version of the validated system that consisted of
521 classes in 56 packages the validation took only a few seconds and detected 21

3http://ant.apache.org/
4http://maven.apache.org/

46 4. DEVELOPMENT - MULTI-SITE PRACTICES

cannot use rule violations and 55 must use rule violations. The next major version of
the system consisted of 611 classes in 60 packages and 25 cannot use and 55 must use
rules were violated. The number of violations in that case was not as important as
the fact that the tool could be feasibly used. If ARA had been applied in a project
with ongoing development, the violated rules naturally would have sparked a dis-
cussion about the implementation. However, in this case the rules have been defined
and applied after the project developed the major version and therefore there was no
place for discussion on possible faulty rule definition or implementation.

ARA has been developed in Java and it is freely available as an open source
project. ARA provides less functionality than commercial Lattix, which is a fully-
fledged architecture analysis tool. On the other hand, the open source Macker tool
provided similar capabilities as ARA, but it does not support must use rules. Despite
its shortcomings in usability and report visualisation, ARA already in its current
form is ready for integration with a build system. ARA demonstrates how a tool
can support the validation process of a design decision in a software system un-
der development in a multi-site environment. Naturally, ARA can be used as well
in single-site development projects even though it was developed with a multi-site
environment in mind.

4.3 Summary

In this chapter we have presented a process for architectural rules assurance in a
multi-site project setting. Moreover, a tool, ARA, was presented that has been de-
veloped and implemented in order to fulfill requirements of architectural rule val-
idation. The presented process, on one hand, ensures that high-level architectural
decisions are fulfilled during the development. On the other hand, the process al-
lows for relative independence as for the way the creation of the software is done,
especially when the creation is done in another organisation. This process provides
enough flexibility, yet it ensures the architecture design throughout the development
process. Furthermore, the process promotes communication by requiring the differ-
ent sites to communicate details of the implementation, as well as implementation
results as binary code, while sharing the result of the validation. Finally, the pre-
sented validation tool has been applied successfully to commercial software.

It has been presented how by using this process and tools proposed a software
organisation can improve the quality of developed software by ensuring that ar-
chitectural rules are followed. The presented development practice is focused on a
specific context of usage in multi-sided projects. However, other practices can be
developed for other specific organisation contexts. As has been demonstrated, even
when different organisations are involved, the process and tools can be set in a way
that does not require many changes in organisations’ internal processes, at least in
specific contexts. Therefore, the contributions of this chapter address the main re-
search question RQ1 by showing how quality improvements can be done in the area
of specific practices in development. In this case the improvement directly affects the
software produced, as architectural conventions are part of the software produced.
As in other cases a limitation of this particular improvement is that it has not been

4.3. SUMMARY 47

used in multiple cases, which prevents from generalising conclusions on how much
ensurance of architectural conventions improves the quality of the final software so-
lution.

Additionally, this process and tools demonstrated how a software organisation
can develop internal quality improvement processes based on their needs and ex-
periences, without explicitly following any SPI frameworks. The specific process
and tool for ensuring architectural rules have been developed as a response to needs
observed in the multi-site development. Therefore, also the second research ques-
tion RQ2 is addresses by the presented contributions in this improvement area.

Even if a software organisation does not explicitly follow any SPI, the in-house
improvements may be in line a with mainstream SPI. In this case of a specific devel-
opment practice, the proposed improvements can be seen as part of the Verification
(VER) process area in CMMI for Development [124, p. 496]. The purpose of the
VER process area is "to ensure that selected work products meet their specified require-
ments’ [124, p. 496]. Moreover, VER is specified as an incremental process occurring
throughout the development process [124, p. 496]. In that context the architecture
rule assurance is a process verifying basic architectural requirements defined for a
software solution. Therefore the proposed process of architecture rules verification
can be seen as a small part of the larger CMMI'’s Validation improvement area, which
partially answers the research question RQ3.

CHAPTER 5

Development - Component
Evaluation

Component evaluation is the fourth area of quality improvement presented in this
thesis (as can be seen in Figure 5.1). A software system can be implemented as
a completely new solution, but in many cases certain components of a larger sys-
tem can be reused. Ready-made components can come from various sources, for
example, in-house components, Commercial Off-the-shelf Software (COTS) compo-
nents, or Open Source Software (OSS) components. In this chapter the evaluation
of ready-made OSS components is discussed. Usage of OSS components in com-
mercial software is an alternative choice to developing a complete software solution
from scratch. Many components in software solutions are generic ones that are not
specific to a given solution, hence considering a reuse of existing components instead
of developing them is a valid option for constructing a software solution. However,
a chosen component can affect the whole software solution quality in the same way
as a design decision can. The difference is that in the case of ready-made compo-
nents the design decisions are part of the component. Therefore, designers choosing
specific components to be used in a software solution should have tools that allow
them to assess the suitability of a component in a given context.

The choice of this quality
improvement area was driven
by the need of improving and . R
systematising the evaluation Supplier prroject
process in the case organisa-
tion. The goal of the improve-
ment was to make the evalu-
ation more efficient and take
risks of component usage into
account. Again the need for k Quality /
the improvement was observed
internally and fulfilled by as- Figure 5.1 Component evaluation
sembling the evaluation frame-
work.

In this chapter the basic concepts of Software Product Lines (SPL) and main OSS
evaluation methods are presented first in Section 5.1. The understanding of SPL and
main OSS evaluation methods is needed as they are conceptually merged together

Multi-Site

Practices Comeonant

Evaluation

Selected
Design
Solutions

Organisation Development

49

50 5. DEVELOPMENT - COMPONENT EVALUATION

in the OSS component evaluation framework. The actual framework is presented in
Section 5.2. Finally, this chapter is summarised in Section 5.3 and presented contri-
butions are discussed in the context of the research questions of this thesis.

5.1 Relating OSS Evaluation to SPL

The OSS component evaluation framework that is presented in Section 5.2 is the
main contribution in this chapter. Moreover, the framework was put into the con-
text of SPL construction, which is a new conceptual point of view for OSS evalu-
ation. Therefore, we need to briefly discuss the context of framework usage and
both concepts, SPL and main OSS evaluation methods. Details of considering OSS
component evaluation as an SPL construction process have been presented in publi-
cation [P3].

To understand the reasons why the OSS component evaluation framework was
constructed in this particular way, we should discuss the contexts for its usage. The
framework combines known good practices of OSS evaluation with concepts known
from SPL. The framework is based on many criteria selected based on feasibility in
commercial settings. A component in the context of this evaluation framework can
refer to any software part that can be used in a software solution. For instance, a
component can be a simple Java library which is dynamically used in a solution, a
whole framework, or a full system that is customised to particular solution needs.

Additionally, the framework is meant to be used in a specific environment of a
software service company, which develops customised software solutions for spe-
cific problems of their clients. Even though the solutions differ to a large extent at
a detailed level, to some extent common elements among them can be found. In
this context OSS components can be often reused in many solutions that share some
portions of common functionality. Evaluation of such components must take the
context in which the component is used into account and assess any risks associated
with the component’s usage. For instance, a solution being developed can be very
complex and risky by its nature, and therefore any additional risk coming from a
new component can be jeopardising for the whole solution, which should be miti-
gated by a proper component evaluation. In addition to the solution complexity also
the component role makes a difference. A component that is a key component in the
whole solution should be scrutinised much more carefully than a component that
plays only a supporting role. Therefore, the effort and level of detail of the OSS com-
ponent evaluation should be adjusted to the solution context, and evaluation tools
should be adjusted to the needs of the evaluation process.

In the following sections existing OSS evaluation methods are presented first in
Section 5.1.1. Next, basic SPL concepts are presented in Section 5.1.2.

5.1.1 Open Source Component Evaluation Approaches

Many tools have been developed just for evaluation of OSS. These tools can be suc-
cessfully used as such, modified, or even some evaluation results of well-known
software can be found. A comprehensive overview of OSS evaluation methods has

5.1. RELATING OSS EVALUATION TO SPL 51

been presented in an article by David A. Wheeler [134]. In addition to collecting ref-
erences to existing evaluation methods, Wheeler proposes a method for comparing
OSS components. The method consists of four steps: identify candidates, read existing
reviews, briefly compare the leading program’s attributes to your needs, and then perform
an in-depth analysis of the top candidates [134]. This method is meant for OSS com-
parison. However, in the case of evaluation of OSS for reuse in software solutions
discussed in this chapter there can often be one candidate that should be evaluated
for its quality and for possible risks introduced to the solution. The functionality
evaluation is naturally important as well. However, some components can be evalu-
ated for their potential use in future software solutions without explicit requirements
for functionality. In such cases the functionality evaluation can be limited to record-
ing the provided functionality. Despite a different purpose, the evaluation method
presented by Wheeler includes some criteria that can be applicable in any context.
For instance, the method suggests criteria like support, security, or legal/license is-
sues, among other criteria [134]. Those criteria are also used in the context of OSS
component evaluation for commercial software solutions, as proposed in this thesis
in Section 5.2.

Other prominent evaluation methods include, for example, Qualification and
Selection of Open Source software (QSOS) [7, 114], Open Source Maturity Mod-
els by Navica [90] and Capgemini [23], or Business Readiness Rating (BRR) [20].
QSOS [7,114] consists of four steps:

1 definition, which specifies the scope and context of the evaluation,
2 evaluation, which covers functionality and risks for users and service providers,

3 qualification, weighting the criteria according to an axis specified in evaluation,
and finally

4 selection, which can be strict or loose depending on needs.

The QSOS method is based on a system of weights and point scores that can be ad-
justed depending on the needs. Additionally, a QSOS method is under GNU license
itself including evaluation reports that are available at their website ! and can be a
valuable source of information for component evaluation.

Another distinctive evaluation method is Business Readiness Rating (BRR) [20],
which aims at finding out the suitability of software for usage in a commercial con-
text. BRR proposes a set of criteria that can be adjusted depending on requirements,
as well as templates using different weights for various metrics and score points.
Similarly to QSOS BRR offers ready templates for certain OSS on their website 2,
which can be a helpful starting point for evaluation. Other methods, namely Open
Source Maturity Models by Navica [90] and Capgemini [23], provide their own con-
tribution to OSS evaluation. For instance, Capgemini’s Open Source Maturity Model
(OSMM) [23] uses four criteria types and 12 criteria to assess maturity, compare,
and select OSS. Interestingly, however, some researches found that formal evaluation
methods are not widely used in industry, at least such an observation was reported

Thttp://www.gsos.org
’http://www.openbrr.org/wiki/index.php/Downloads

52 5. DEVELOPMENT - COMPONENT EVALUATION

in the Norwegian cases reported by Hauge et al. [57]. This report has not been dis-
cussed in publication [P3]. However, it provides an additional and recent account
of OSS evaluation in commercial software companies. Hauge et al. report that in
the investigated cases OSS evaluation was rather informal, and often an important
role was played by recommendations from a social network or reviews found on the
Internet [57, p. 44].

Generally, all of the above-mentioned OSS evaluation methods provide a valu-
able source of possible criteria to be used for evaluation. Moreover, they provide
in many cases ready-made evaluation reports. Some criteria used in these evalua-
tion frameworks were also used in the criteria for OSS component evaluation pro-
posed in this thesis, as listed in Section 5.2. Additionally, the OSS component evalu-
ation framework advises to use any existing evaluation results, such as ready-made
evaluation reports, as a source of information. The main difference between the
official evaluation frameworks and the proposed OSS component evaluation frame-
work (see Section 5.2) is the fact that the latter uses a specific set of criteria that was
adjusted to a particular context. Additionally, the above-mentioned OSS evaluation
methods use various point systems for evaluating individual criteria, while the OSS
evaluation framework proposed in this chapter does not use any points for criteria
evaluation and relies on the experience and judgement of the evaluator.

At a general level the evaluation process of an OSS component can be abstracted
as depicted in Figure 5.2. The process typically starts from requirements gathering,
and then selection of relevant software is done. Next, functional evaluation and non-
functional evaluation are performed. Finally, a chosen component can be integrated
with the whole system. These steps are quite general. However, they set the stage for
combining typical OSS evaluation and certain aspects of SPL, which are presented
in the subsequent section.

Requirements
gathering
Selection I
Functional
Evaluation I
Non-functional
Evaluation

Integration

Figure 5.2 A typical evaluation process [P3, p. 12]

5.1.2 Software Product Lines - Overview

Software Product Lines (SPL) have been created to ease the development of prod-
ucts that share common architecture and functionality. Paul Clements and Linda
Northrop define SPL as follows: A software product line is a set of software-intensive
systems sharing a common, managed, set of features that satisfy the specific needs of a par-

5.1. RELATING OSS EVALUATION TO SPL 53

ticular market segment or mission and that are developed from a common set of core assets
in a prescribed way [27, p. 5]. This definition indicated the important parts of any
SPL, namely, the shared and managed set of features and the development based
on common assets and in a prescribed way. The same requirements, i.e., a set of
shared features and development based on existing assets, can be applied to OSS
components meant for frequent reuse in multiple software solutions. Therefore, we
should be able to look, to some degree, at the OSS evaluation in a similar way as
construction of an SPL and building an asset set for the SPL.

There is much literature available on SPL development. For example, Linda
Northrop presented a report on adoption of SPL in organisations based on specific
patterns [92]. The report presents the Factory pattern [92, p. 5] that facilitates SPL
adoption in organisations. Practical approaches to SPL development were presented
in SEI's framework for SPL practices by Northrop et al. [93], which defines three
main activities for SPL development. The SEI's framework includes Core Asset De-
velopment, Product Development, and Management as main activities for SPL.

In addition to patterns and practices for SPL construction, approaches to han-
dling quality concerns in SPL have been defined. Niemeld and Immonen have spec-
ified Quality Requirements of a software Family (QRF) method that handles quality
requirements in SPL [91]. The QRF method consists of five steps and engages main
stakeholders in order to get a complete scope of the various quality requirements. Fi-
nally, a model for building SPL based on OSS components was also proposed, which
has been presented by Ahmed et al. [3].

As can be seen, construction of SPL requires much consideration about the re-
quirements, functional and non-functional ones, of the product family that the SPL
is used for. The general steps of construction of an SPL have been defined by Jan
Bosch [19, p. 189-190] as follows:

1 Business case analysis - which focuses on feasibility from the business point of
view of the product development with SPL,

2 Scoping - which selects products and features that should be developed in SPL,

3 Product and feature planning - which considers possible features coming in the
products developed in SPL,

4 Design of the product-line architecture - which specifies the SPL architecture
based on the requirements gathered in the previous steps,

5 Component requirement specification - which specifies components used in
the SPL architecture and the functionality of specific components and their us-
age in products, and

6 Validation - which validates that all requirements planned for SPL are correctly
supported in the SPL.

Having the basics of SPL covered, it is now possible to combine the OSS evaluation
with some SPL activities as presented next.

54 5. DEVELOPMENT - COMPONENT EVALUATION

5.2 How to Evaluate OSS Component for Commercial
Use?

OSS component evaluation for reuse in possibly multiple software solutions can be
viewed similarly as SPL construction. Naturally, it is not the same process, first of
all because the solutions are much more customised than products. However, the
requirements for quality of components and possible risks related to their usage are
similar to SPL. Secondly, multiple solutions are not governed, at least currently at
Solita, in the same way as SPL architecture is. Therefore, instead of referring to fully
fledged SPL based on OSS components, the software solutions are referred to as
software Solution Lines [P3, p. 13]. Solution Lines refer to systems that comprise a
custom solution that can be based on reusable components, but does not follow all
component management procedures of SPL.

The very high level mapping between the main OSS evaluation steps and SPL
construction steps is depicted in Figure 5.3. The evaluation steps concentrate on the
components rather than on SPL as such. The first phase Business case analysis cor-
responds to Requirement gathering and Selection. This first evaluation phase should
determine whether the OSS component should be considered for reuse, for instance,
the license can be not suitable for usage in commercial solutions. Additionally, the
business analysis should set the associated risk level and consequently needed eval-
uation effort. Next, Scoping is done, which corresponds to Functional Evaluation.
The scoping for a general reuse case, which does not have any particular feature re-
quirements, simply lists the features supported by the component. The third step is
Commonality and variability, which combines SPL construction steps of product and
feature planning and product line architecture, and which roughly corresponds to
Non-functional Evaluation. At this stage the component’s extensibility, for example,
should be evaluated. Finally, the last stage of OSS evaluation in the context of SPL
is Design and validation, which is seen as Integration in OSS evaluation. This last step
validates the component by using it in a specific software solution. Even though this
mapping between OSS evaluation and SPL is not perfect, it adds a perspective of
high reuse systems to OSS component evaluation.

.. Ruality

Business case analysis

Requirem ents ==
gathering

= Scoping
Selection e

Functional [
Evaluation

Commanality
“fi--and variahility

Design and

Nen-functiofial- =l
T validation

Evaluation

Inregratio‘ﬁ"

Figure 5.3 OSS evaluation in SPL context [P3, p. 13]

5.2. HOW TO EVALUATE OSS COMPONENT FOR COMMERCIAL USE? 55

5.2.1 Evaluation Criteria

The OSS evaluation framework described in publication [P3] is based on a number
of criteria. The criteria were selected from a long list of possible evaluation criteria.
Then those criteria were categorised in to groups for clarification. Finally, all the
criteria were analysed as for their feasibility usage. Criteria that were overlapping
with others were eliminated. Furthermore, criteria that were not easy to obtain and
did not bring much value to the evaluation were removed. Finally, a consensus list
with recommended criteria was created. These criteria were the suggested ones and
they might not be applicable in all possible cases. The criteria summary with all cate-
gories is gathered in Table 5.1, and the details of all the criteria can be found in [P3, p.
13-16]. There were 8 different criteria categories investigating various aspects of OSS
component. They were also relying on multiple sources of information, naturally
using information from the OSS community, but the sources also included any other
independent users, and internal experience in the organisation with the component.
One particularly important category was the No Excuses category. The criteria in that
category must have been fulfilled, otherwise the component evaluation would have
been stopped. For instance, a non-standard license or one that prohibits usage in any
commercial context would result in component rejection. The importance of other
criteria categories depended on the context.

5.2.2 Framework Usage

The criteria list is intended to be used for an evaluation performed by an experi-
enced developer. The fact that the evaluation is meant to be done by an experienced
person is important, as the criteria are not evaluated using any weight and point sys-
tem. The evaluation should encourage a critical consideration of the evaluator who
makes the final recommendation as well as possible comments on each of the crite-
ria. That summary can then be later reexamined if the already-evaluated component
is considered for usage in a different solution.

The framework is part of the evaluation process used at Solita and it is available
in the company’s intranet. There an evaluation template as a wiki page was cre-
ated. It contains additional explanation of the criteria and the expected evaluation
steps, which can also cover project-specific evaluations that are not covered by this
OSS evaluation framework. Results of evaluations are available for the evaluated
components together with evaluation summaries.

The framework has been used for evaluating different workflow engines. That
evaluation has been done and it is part of a Master’s Thesis by Ossi Syd [122]. Three
open source workflow engines were evaluated. Only one was selected as advised for
usage in software solutions that require workflow engines. In addition to OSS evalu-
ation, that evaluation case resulted in feedback on the framework and its usage. The
feedback received from the evaluator included a comment that the framework was
meant for an experienced evaluator and that the framework left many criteria for the
interpretation and judgement of the evaluator. That comment was in line with the
intentions of this framework. The feedback also included a positive note on the fact
that the proposed framework did not use any point system. Finally, the evaluator,

56 5. DEVELOPMENT - COMPONENT EVALUATION

Table 5.1 Summary of possible evaluation criteria [P5, p. 16]

Criteria Category Criteria

"No Excuses’ Working copy, License, and Activeness
Source Code Review, Metrics and Static Analysis, Dependencies
Revision Control Comments, and Testing
Documentation Instructions, Help, Cookbooks, Tutorials, How-tos,
and Support API, Books, Training, Bug Tracking System,
Number of Faults in the Bug Tracking System,
Number of Open Faults in the Bug Tracking System,
Bug Fixing Velocity, and Possibility of Contribution
Community Active Forums, Promptness of Forum Responses,
Unanswered Questions in Forums, Website Updates,
Last Delivered Fix, Frequency of Updates,
Number of Developers, and Developers” Motivation
Other Users, In-House Users, Commercial References,
Popularity Social Media, Other Publications, Number of Downloads,
Exploit Reports, and Search Engines
Maturity Version Number, Project Age, Version History,
Localised Versions, Supported Platforms,
Test Coverage, and Roadmap
Future Extensibility, Related Standards,
Unfinished Related Standards, Commercial Versions
Can the Component Become Commercial?,
OSS Project Model, and Effort to Maintain
Legal Concerns Pending patent and Law suit/charges against

who used the framework for the workflow evaluation, was positive about the fact
that the framework focused on OSS component quality. The quality focus provided
additional and helpful information for the evaluation. In addition to the workflow
engines evaluation, the framework has been used at least once. Based on the positive
feedback received, the framework is now part of Solita’s general evaluation process.
Therefore, the framework is likely to be used also in the future. Finally, as with many
processes, it is likely to be further improved in the future to adjust it to new needs.

5.3 Summary

This chapter presented an evaluation framework for Open Source Software compo-
nents for reuse in software solutions. The component reuse can be seen as a com-

5.3. SUMMARY 57

plementary part of specific design solutions, which is discussed next in Chapter 6,
and development of software from scratch. The presented framework puts a strong
emphasis on quality of OSS components and possible risks attached to component
usage in commercial software solutions. The importance of quality aspects and reuse
are mapped to the main steps of Software Product Lines creation. Even though the
mapping is not direct, there is a certain degree of similarity in the requirements for
components used in SPL and software Solution Lines. The OSS evaluation frame-
work takes into account a number of criteria, which are adjusted to a commercial
context of evaluation, from different sources. Moreover, the framework encourages
critical thinking of the evaluator and recording of the decision process by using cri-
teria without any weight or point system, and instead uses descriptive criteria sum-
maries. The framework is currently in use as part of an evaluation process at Solita.

The framework guides the evaluator in the evaluation process by providing var-
ious criteria groups, which cover different aspects of the OSS component that may
influence the risks related to using the component. Also, the framework defines the
role of the evaluator, who is expected to use critically the framework and criteria.
An organisation using the framework is able to assess the quality of an OSS compo-
nent and possible risks attached to the component, which in turn affects the whole
software solution where the component is to be used. Therefore, this framework
provides a way for a software organisation to improve the quality of its software by
providing a tool that can assess quality of individual OSS components. This contri-
bution addresses the research question RQ1 in this area of component evaluation. A
limitation in the scope of this improvement is the extent to which it has been used
and consequently available data that could be used for drawing wider conclusions.
However, in the Development category of improvements the improvements directly
affect the created software. In the case of OSS component reuse the impact depends
on the degree to which reusable OSS components are utilised in a software solution.

The framework helps in component selection in a way that mitigates the risks
related to the component usage in a commercial software solution. Additionally, the
knowledge base about OSS components build from evaluation results can be used in
the organisation as a reference material when components are considered for use in
new solutions. The framework is another example how a software organisation can
internally define a process that addresses needs in a specific area of quality improve-
ment. The framework was developed based on observed needs and is currently a
part of the internal evaluation process, which partially answers the research ques-
tion RQ2.

Furthermore, OSS component evaluation can be related to specific process im-
provement areas in the CMMI for Development framework [124]. The evaluation
of OSS components as part of component reuse can be seen as part of the Technical
Solution (TS) process improvement area in CMMI Development [124, p. 456]. The
decision to use a specific component is also a design decision. Therefore, quality
improvements in the component selection process seem to belong to the TS process
area, the goals of which are listed in Section 6.4.

Additionally, the evaluation eliminates risks related to component usage that po-
tentially might not be eliminated. Therefore, component evaluation can be seen as
part of the CMMI Development Risk Management (RSKM) process improvement

58 5. DEVELOPMENT - COMPONENT EVALUATION

area [124, p. 420]. The purpose of the RSKM process area has been defined as ‘to
identify potential problems before they occur so that risk-handling activities can be planned
and invoked as needed across the life of the product or project to mitigate adverse impacts on
achieving objectives’ [124, p. 420]. The risk management related to usage of OSS com-
ponents in a project and identification of the risks by evaluating the component can
be seen as part of a specific practice within the RSKM process area. The OSS eval-
uation suits best the RSKM practice SP 2.1 Identify Risks [124, p. 425]. Naturally,
neither TS nor RSKM process areas are fulfilled by the presented OSS evaluation
framework. However, the aim of the framework is in line with a subset of goals
of these two process areas of a major quality improvement framework. Therefore,
it is possible to state that an organisation that decides to use such an evaluation
framework for component selection partially follow recommendations of an official
quality improvement framework, which answers research question RQ3 within the
scope of this area of component selection.

CHAPTER 6

Development - Selected Design
Solutions

Selected design solutions are the fifth and last area of quality improvements that
this thesis addresses and makes contributions to (see Figure 6.1). Design deci-
sions are made by individual designers in a software company. Therefore, knowl-
edge about the consequences of using specific design solutions is relevant for rela-
tively many people in a software organisation.

Design of software systems
and their components is an in-
tegral part of software creation o
in companies developing soft- Sl fErviccl
ware. Even small design deci-
sions may have effects on entire
systems, which consequently
may be noticeable to the final
user. Therefore, it is impor-

Multi-Site
Practices

Component
Evaluation

Selected
Design
Solutions

Organisation

tant to make design decisions \ Qualtty /
consciously. In this chapter the
impact of selected design so- Figure 6.1 Selected design solutions

lutions on performance is pre-

sented, based on empirical data. Additionally, the empirical findings are used to
demonstrate how such findings can be used in tools that support quality-driven de-
sign.

In order to understand the selected design solutions, we should start (Section 6.1)
by discussing general approaches to software design, tool support for software de-
sign, and their relation to software quality. Then (Section 6.2) we can discuss findings
on the impact of selected design patterns on performance in distributed systems.
Next, a tool support for quality-driven design is proposed in Section 6.3. Contribu-
tions of this chapter are summarised in relation to the main research questions of this
thesis in Section 6.4.

59

60 6. DEVELOPMENT - SELECTED DESIGN SOLUTIONS

6.1 Software Design Considerations

Design of software systems has been under research for a long time. One of the main
works in this area is the catalogue of various design patters by Gamma et al. [46],
who categorised and described in detail various design patterns. Designers use de-
sign patterns on a daily basis. This design pattern catalogue allows designers not
only to have a reference point for commonly used solutions but also to have names
for those solutions, which facilitates communication. The design pattern catalogue
by Gamma et al. [46] is primarily relevant for any object-orientated programming
languages. However, there are also other design patterns that are specific to certain
technologies. Examples of design patters only for Java-related technology include
the pattern catalogue for Java ! by Mark Grand [53], the J2EE 2 design pattern cat-
alogue by Alur et al. [5] and Enterprise Java Beans (E]JB) patterns by Floyd Mari-
nescu [84]. Naturally, there are also other patterns for different technologies. For
example, Trowbridge et al. [126] presented patterns for .NET ® technology, Thomas
Erl presents Service Oriented Architecture (SOA) patterns [37], or Ajax design pat-
terns by Michael Mahemoff [82], to mention only a few.

Even though the technology-specific patterns are closely coupled to their imple-
mentations, they still in many cases can be easily linked to the more generic patterns.
For example, Session Facade [5, p. 291] is a J2EE-specific implementation of the clas-
sic Facade design pattern [46, p. 185]. Similarly Command design in Java [53, p. 277]
can be easily linked with the generic Command design pattern [46, p. 233].

Additionally, there are patterns that are meant for specific usage and are not
necessary bound to any particular technology. Architecture patters, for example,
provide examples and systematise solutions to common problems in software ar-
chitecture. Architecture patterns have been presented, for instance, by Buschmann
et al. [22] and Martin Fowler [44]. Other examples of usage-specific patterns could
include re-engineering patterns by Demayer et al. [30], applicable for existing soft-
ware refactoring, or analysis patterns by Martin Fowler [43], applicable for problem
conceptualisation at the early design stage. All these examples show the variety of
design pattern types as well as applications for them. The design considerations pre-
sented in Chapter 6 are limited only to a small sub-set of design patterns. Moreover,
the design patterns discussed in Chapter 6 have been implemented in two technolo-
gies, namely J2EE and .NET.

Another aspect of design is the relation of design decisions to specific quality
attributes. According to the IEEE definition a quality attribute is "A characteristic
of software, or a generic term applying to quality factors, quality subfactors, or metric val-
ues’ [115, p. 3] and a software quality metric is A function whose inputs are software data
and whose output is a single numerical value that can be interpreted as the degree to which
software possesses a given attribute that affects its quality’ [115, p. 3]. Various metrics
for assessing software quality and related design have been proposed. For example,
Stephen Kan collected a large number of different software quality-related metrics,
including metrics measuring design complexity for object-oriented software [67, p.

http://java.sun.com/javase
2http://java.sun.com/j2ee
Shttp://msdn.microsoft.com/netframework

6.2. HOW CAN SELECTED DESIGN SOLUTIONS IMPACT PERFORMANCE IN
DISTRIBUTED SYSTEMS? 61

334]. In addition to complexity metrics, software metrics were proposed that were
optimised for design pattern application in refactoring, as reported by Muraki and
Saeki [89]. Quality attributes have been categorised already for a long time. For ex-
ample, Barbacci et al. [11] discuss selected quality attributes, namely performance,
dependability, security, and safety, and relations between those attributes. Addi-
tionally, Barbacci et al. discuss different trade-offs between the attributes, and they
show that an optimal fulfilment of one attribute happens at the expense of another
one [11, p. 4]. The trade-offs between various quality attributes and their relation to
design decisions have been further researched by Bass et al. [13,14] and Bachmann et
al. [9,10].

Finally, tools supporting the design process are not a new concept. Already Potts
and Bruns [101, p. 419] note a need for documenting both the process, for design
decision reasoning, and design results. They present a model documenting the de-
sign process or deliberation [101]. They also indicate a need for a tool that would
support the designer in design process documentation. At the architecture design
level a "4+1” view model has been proposed by Philippe Kruchten [76]. This model
uses four different views on system architecture (i.e., logical, process, physical, and
development view) and use cases that span across the views. Additionally, Kruchten
lists tool examples for the different views. Another tool that supports a subset of the
different architectural views has been presented by Rick Kazman [71]. Moreover,
Kazman specified seven generic requirements for an architectural and design tool,
most of which are fulfilled by the actual tool SAAMtool.

6.2 How Can Selected Design Solutions Impact Perfor-
mance in Distributed Systems?

In order to demonstrate the impact of selected design choices in distributed systems,
we start from analysing results of empirical case studies performed for two popular
technologies used in web applications. The details of the cases can be found in pub-
lications [P8] and [P6]. The objective of this study was to find out whether design
choices that do not affect an application’s functionality can affect a specific qual-
ity attribute, namely performance. The chosen design patterns were Facade [46, p.
185], Command [46, p. 233], and Combined Command, which was an implementa-
tion of Macro Command [46, p. 235]. These design patterns were selected as they
all are valid choices for implementation of an interface to an application’s business
logic that can be accessed remotely. The selected design patterns were implemented
in two technologies popular in distributed applications, namely J2EE and .NET. In
J2EE technology the design patterns were implemented as Session Facade [84, p.
5], EJB Command [84, p. 18], and a modified EJB Command that handled multiple
commands at a time, as in Macro Command [46, p. 235]. For .NET technology the
patterns were ported to C# technology and exposed for remote access through .NET
remoting [94,103].

62 6. DEVELOPMENT - SELECTED DESIGN SOLUTIONS

1
Presentation
o .
Presentation | e —
| Za DataValueObjects
|
Services |
-
| -
W -
] -
Sermvices ADO
— — — —=|

:ﬁé Database

Figure 6.2 General DVC architecture overview [P6, p. 2]

Database - Storage

6.2.1 Study Setup

This study was conducted as two cases that were technology-specific. First, the re-
sults for J2EE technology were collected and analysed. They are described in detail
in publication [P8]. Then the same case was ported from J2EE technology to .NET
technology and the same tests were conducted. The results are described in publi-
cation [P6]. Furthermore, in publication [P6] general conclusions were drawn based
on the two cases. The following sections summarise the findings.

In both cases the same test application was used. The application was a simple
Document Version Control (DVC) system that allowed for storing documents, ver-
sioning them and access restrictions for users. The application was implemented as
a layered application [22, p. 31] with presentation layer, business logic layer, and
persistence layer in MySQL database *, as depicted in Figure 6.2. The presenta-
tion and business logic layers were respectively implemented as Java Server Pages
(JSP) and Enterprise Java Beans (EJB) for J2EE technology, and ASP pages and C#
code accessed through .NET remoting [94,103] in the case of .NET technology. The
three design pattern variants implemented to provide specific functionality in the
DVC application are presented in Figure 6.3. The patterns were used in the business
layer to expose functionality to the presentation layer. The design patterns were im-
plemented so that services (methods) exposed by Facade corresponded to separate
Command pattern implementations. The Combined Command allowed for execu-
tion of a few commands in one call. That possibility was used to combine a few
commands together that otherwise would be executed as separate calls. The pat-
terns did not impose any restrictions in this case for the provided functionality, and
therefore they could be treated as design alternatives for this application.

The performance of the application was measured based on selected metrics that

4http://www.mysgl.com

6.2. HOW CAN SELECTED DESIGN SOLUTIONS IMPACT PERFORMANCE IN

DISTRIBUTED SYSTEMS? 63
DocumentManager CommandExecutor Command
$craateGroup() ¥executeCommand()|1 1| ®executa()
SgrantAccess()
SremoveGroup() %
GrantA Crmd
Facade RemoveGroupCmd famAaccessbm CeateGroupCmd
FsetGroupld() 'S
th
$setGroupld() ‘setDncumentld(} sethlame)
Combined Command gg:rn\x,?na;(())
as a simple list of GCommand Sexecute()
commands.
\\ Combined C d
— <<listz> ombpine omman
CommandExecutor CombinedCommand Command
-
¥executeCommand()|1 1| ®add() 1 1n ®execute()
Fget()

Figure 6.3 Example pattern implementation [P6, p. 2]

consisted of
1 throughput - measured in requests per second,

2 average response time - measured as the average time that was needed to ob-
tain a response by the client,

3 threshold exceeded - measured as a number of requests whose processing time
took more than a threshold of 10 seconds, and

4 success rate - measured as percentage of successfully completed requests of the
total number of requests.

The performance-related metrics were measured using the JMeter > tool that sim-
ulated requests executed according to the provided scenario for the given number
of simultaneous users. The test scenario included a few activities for each user.
The user activities generated calls from the presentation layer to the business layer
where the investigated design patterns were implemented. The number of users
was increased gradually from five to 220, which was determined empirically as the
maximum number of users that can be handled by the application. The tests were
repeated in four series in order to obtain reliable data. The application in all the cases
handled data consisting of 500 users and 1500 documents.

The DVC application was deployed in technology-specific deployment variants.
For the J2EE technology case two deployment configurations were used. One con-
figuration involved only one J2EE container for the presentation and business logic
layers, which was called local deployment and can be seen in Figure 6.4(a). The other
deployment configuration consisted of two separate containers, one for the presen-
tation layer and the other one for the business logic. That separate arrangement of
containers was called separate deployment and can be seen in Figure 6.4(b). The lo-
cal deployment allowed for container-specific calls optimisation, while separate de-

Shttp://jakarta.apache.org/jmeter

64 6. DEVELOPMENT - SELECTED DESIGN SOLUTIONS

Servlet container (Tomcat) EJB container {JBoss or JOnAS)
EJB and servlet container - JBoss or JOnAS

. T

Business laver

| P N services Remote access

(a) Local deployment - one container. (b) Separate deployments - two containers.

Figure 6.4 Deployment variants [P8, p. 14]

ployment forced remote calls (i.e. Remote Method Invocation (RMI) %) between the
containers. The EJB containers used were JBoss 7 and JOnAS 8. The Tomcat ? servlet
container was used for the presentation layer in the case of separate deployments.

In the case of .NET implementation of DVC, the application was deployed in In-
ternet Information Services (IIS) !°. The .NET case deployments were done in similar
configurations as in the J2EE case with one local deployment configuration where
presentation and business logic layers were deployed in the same container. The
second .NET deployment case involved two containers on separate nodes, one for
presentation and the other one for business logic layers. In addition to the deploy-
ment variants in the .NET case, different configurations of the remote communica-
tion used between the layers were used. Two transport layer variants were used: one
used HTTP protocol for communication, the other one used 'raw’ TCP communica-
tion. Finally, for the HTTP communication case two different serialisers that convert
data transferred between the layers were used. The serialisers used were an XML se-
rialiser and a binary serialiser. All these configuration variants were investigated in
order to find out possible differences between performance of the application when
different design patterns are used for the inter-layer communication. Having pre-
sented the general setup of the cases we can next discuss the main findings of each
investigated case.

6.2.2 Findings in J2EE

In the case of local deployment the results were not very clear and had much 'noise’,
which was visible in the performance metrics graphs as unstable and uncorrelated
lines (see Figure 6.5). The throughput values for the investigated patterns do not
differ noticeably between each other. What could be observed was that the through-
put of the application lowered with an increasing load, which is an expected be-

®http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC. html
"http://www.jboss.org

8http://jonas.objectweb.org

http://jakarta.apache.org/tomcat

Ohttp://support .microsoft.com/ph/2097

6.2. HOW CAN SELECTED DESIGN SOLUTIONS IMPACT PERFORMANCE IN
DISTRIBUTED SYSTEMS? 65

35

20 m_ x_ ﬂ Noise' in the results - example

g = e
g S &
T LN
A
5 \
)

Comrmand combined Command — ~Facade |
O T
[¥ o S e S
— o

[T Y o o T o oo T v T s T e T o T s Y o R s R
i I SR o e S T) T B o N (o = B e
Lo I)

Threads

Figure 6.5 Throughput - J2EE local deployment [P8, p. 17]

haviour. Furthermore, it was possible to notice that the obtained throughput values
were higher compared to separate deployment, which is depicted in Figure 6.6. This
observation was also expected as in the case of separate deployment remote commu-
nication between containers causes additional overhead.

The results obtained from tests in the case of separate deployment were most in-
teresting as they enforced remote communication between containers. The through-
put results can be seen in Figure 6.6. There are clear differences between the pat-
tern used for accessing the business logic in the DVC application. Facade results
show that in this case simple calls to Facade’s service methods were most efficient.
Then Command combined was about 25% slower than Facade, however about 20%
faster than Command. In this case calls to Facade did not involve any overhead pro-
vided by the data structure as only the method parameters were passed. In the case
of Command the same parameters as in the case were passed and additionally the
Command object itself had to be transferred. In the case of Command combined the
data complexity was similar to the Command case. However, Command combined
provided a possibility of executing a few commands in one call, which reduced the
overhead of multiple remote calls.

Other metrics measured showed the same results, especially the average response
times. The success rate showed when the container was not able to compare with the
load, which happened approximately when the load reached 160 threads, as well as
the percentage of correctly served requests. The success rate additionally showed
when the waiting time for response increases with load. Finally, the differences be-
tween different containers were noticed. There were differences in values obtained
as well as the stability of each container. However, a container performance mea-
surement was not an objective of this case, and therefore the results are not analysed
from that point of view. What was important was the fact that the noticeable differ-

66 6. DEVELOPMENT - SELECTED DESIGN SOLUTIONS

8 % Facade

w
% | Command combined
5 = =

g Ty ¢ -y

o * M |

@

o

Command

0 — T — T —

. . 1
\‘o,\Qqﬂpn_gb@é_)@,@@@)\Qb’\,\Q)&Q{bﬁ’\hﬁ’@Q’@{)ﬁﬁi\%ﬁ)@bq’bbrﬁﬁrﬁ,ﬁ

Threads

Figure 6.6 Throughput - J2EE separate deployments [P8, p. 18]

ences between patterns had similar character regardless of the container.

6.2.3 Findings in .NET

Similarly as in the case of J2EE, in the local deployment case of .NET no clear differ-
ences between the investigated design patterns were observed [P6]. There were no
significant differences between the formatters used either. It should be noted, that
the communication in the case of application deployed to IIS container included se-
rialisation. However, there was no network communication as the deployment was
local.

When the DVC application was deployed on separate machines, differences in
performance were observed. For example, the throughput diagram for separate de-
ployment can be seen in Figure 6.7. It can be seen that generally Command had the
worst results. Facade and Command combined had similar results, which differed
from each other only in specific cases.

Average response times showed results in line with what the throughput results
indicated. Success rate and the exceeded threshold pointed out the number of users
with which the application started to have problems with serving requests, which
happened with 20 or more users. Additionally, the results for binary and SOAP
formatters both showed results that confirmed the differences between the patterns.

6.2. HOW CAN SELECTED DESIGN SOLUTIONS IMPACT PERFORMANCE IN
DISTRIBUTED SYSTEMS? 67

N Facade
W Command

Command camb.

reqls
(98]
|
L

1 2 3 4 5 5 7 8 9 10 1 12 15 20 30 40
Threads

Figure 6.7 Throughput - .NET separate deployment [P6, p. 8]

6.2.4 Serialisation Considerations

As could be observed in both technologies, J2EE and .NET, the most significant dif-
ferences were observed when communication between the application layers was
performed remotely. Remote communication in generally includes data serialisa-
tion to a format determined by the technology and formatter used, and next sending
the data over the network to the other layer where it would be deserialised and
served in the other layer. These operations seemed to have the biggest impact on the
performance and in that context revealed differences between the design patterns.
Therefore, the remote communication was investigated in detail in order to obtain
more data and find out the reasons for the differences. The serialisation and remote
communication tests included [P6, p. 8]:

e Java RMI,

e NET Remoting with SOAP formatter over HTTP,

e NET Remoting with binary formatter over HTTP,

o NET Remoting with binary formatter over TCP, and
o NET Remoting with SOAP formatter over TCP.

The measurement of size of the data for each design pattern revealed the impact of
the patterns on the amount of data that has to be transferred in each case. Regardless

68 6. DEVELOPMENT - SELECTED DESIGN SOLUTIONS

of the formatter used, Facade had the smallest data size, then was Command, and the
biggest data amount was for Command combined. The differences for small objects
serialised were most significant. However, for the largest objects, this difference was
not so significant. Furthermore, there were naturally differences between formatters,
too. The SOAP formatter produced the largest data, which was a few times larger
than RMI or .NET binary formatters produced.

6.2.5 General Findings

The overall findings showed that in locally deployed application layers the choice
of a design pattern used for communication between layers does not play a signif-
icant role in the performance of the whole application. This is due to the fact that
in the case of local deployment there is no real over-the-network communication.
However, when the layers are deployed separately there are noticeable differences
in performance of the application depending on the design pattern used. For both
J2EE and .NET, the Facade design pattern had the best performance among the three
investigated ones. Then the Command design pattern had better or similar perfor-
mance as the Command combined pattern for single calls. Additionally, based on
the serialisation investigation of the patterns it was known that the differences in
performance come from the fact that each of the design patterns introduced a differ-
ent degree of additional complexity to the remote call. Facade required only transfer
of the parameters used in the call, while Command and Command combined had
additional structure of the Command itself to be transferred. It was also observed
that the performance penalty caused by the design pattern used played a less sig-
nificant role when the data transferred was large. Furthermore, the choice of the
formatter used was important as the data size produced by each formatter differed,
which was especially visible in the case of the SOAP formatter. Finally, when remote
calls could be optimised to one call that used Command combined that pattern had
the potential to reduce the overhead of multiple remote calls and outperform at least
multiple Command calls and be close to the results obtained by Facade.

Generally, the results showed how selected design decisions can affect the perfor-
mance of a whole application. Designers can utilise this knowledge in their every-
day work. From the viewpoint of organisations it is important to acquire thorough
understanding of design decisions in the specific context of application architecture
and technology used.

6.3 How Can Tools Support Quality-Driven Design?

The empirical findings on the impact of selected design patterns on performance of
distributed systems, which were summarised in Section 6.2, can be utilised by tools
supporting software design. The tool support for quality-driven design was the aim
of a solution created using the MADE ! tool [55]. The MADE "Modelling and Ar-
chitecting Design Environment’ tool was an older version of a tool that has evolved

Uhttp://www.cs.tut.fi/~mda/

6.3. HOW CAN TOOLS SUPPORT QUALITY-DRIVEN DESIGN? 69

into the tool currently known as Inari 2. MADE is a design tool that uses a system
of patterns for design descriptions. A MADE pattern consists of roles, which can
be bound to, e.g., classes in a UML diagram, or other system artifacts, that specify
relationships between artifacts bound to the roles [54, p. 144]. Additionally, MADE
generates a list of tasks that have to be done in order to implement a pattern. The
tasks represent unbound roles, i.e., roles that do not have concrete artifacts bound to
them. A designer can implement a pattern based on the task list by binding particu-
lar roles to various artifacts, e.g., classes [54, p. 146].

An example overview of a MADE pattern and its mappings to a UML class dia-
gram is presented in Figure 6.8. In this example two alternative solutions A and B are
presented as a UML diagram. For the selected solution B the following MADE roles
are selected: AbstractB, for the abstract representation of the solution, and Blmple-
mentation, for solution implementation representation. The example also lists tasks
needed for implementation of the chosen solution. The tasks dynamically change de-
pending on the solution selected and possibly missing bindings between roles and
concrete artifacts. In this example, the task list includes tasks for implementing so-
lution B. The Provide abstract B mandates the designer to link the role AbstractB with
an abstract class. The second task mandates linking the role Blmplementation with an
implementation class Blmplementation. When both tasks are completed, the MADE
pattern is implemented. In this very simple example, the resulting solution is an im-
plementation of an abstract class AbstractB. In the case of complex systems the tasks
allow for gradual implementation of patterns and tracking of the implementation
progress.

Solutions i Choces, MADE tasks

== OR=> e T
: “{OR=> i Tasks: :

i -Provide abstract B :
! -Provide implementation B :

R

AbstractB

1

Blmplementation

Figure 6.8 MADE patterns and UML diagram example [P7, p. 197]

Pnttp://practise.cs.tut.fi

70 6. DEVELOPMENT - SELECTED DESIGN SOLUTIONS

6.3.1 Example Solution

The MADE tool was used for implementation of a solution to a specific design prob-
lem. This usage of the tool was an example of quality-driven design tool support,
as the design choices were based on the impact the design has on specific quality at-
tributes. The problem that was solved by the tool was an interface design for an ex-
ample application. The example application was a Document Version Control (DVC)
system already presented in Section 6.2.1. However, the application specifics were
not of the main concern in this case. The problem was limited to the design of two
interfaces for accessing the DVC application. One internal interface was supposed
to provide a high performance access. The second, external, interface was meant as
a highly flexible interface. In this context the interface designer was to design the
interfaces based on functional requirements as well the non-functional ones.

Based on the findings on design pattern usage for remote access, which were
presented in publications [P8,P6] and summarised in Section 6.2, a set of solutions
were defined in MADE as a set of patterns. The solutions had a descriptive summary
of their properties, so that the designer could make conscious choices between the
solutions. Once a solution was selected, a list of tasks to perform was created. The
list showed the minimum steps that had to be followed to implement the solution.

For the presented problem, three solutions were created in MADE. There was a
solution based on the Facade design pattern [46, p. 185], the Command [46, p. 233]
design pattern, and a Command combined [46, p. 235]. These three design alter-
natives were linked with specific quality attributes. The Facade-based solution was
attributed high performance, but it was also characterised as the one with an inflexi-
ble interface. On the other hand, the Command-based solution was attributed a low
performance among the provided solutions. However, the Command-based solu-
tion was also attributed a flexible interface. Finally, the Command combined-based
solution was attributed average performance and interface flexibility the same as in
the case of the Command-based solution. All this information about the solutions
was available for the designer. Thus, based on the requirements and known quality
attributes of the solutions, the designer could make a conscious choice between the
solutions. Once the choice was made, the tool provided a list of tasks needed for
actual implementation.

An example of a chosen solution for high performance is presented in Figure 6.9.
It is a solution that fulfils the internal interface requirements for the DVC application.
Once the designer selects the solution, the roles involved in it are activated. The roles
are mapped to specific class roles in the UML class diagram. Finally, a list of tasks
for the developer is created.

An example view of the MADE design environment is presented in Figure 6.10.
The view consists of four parts, a pattern tree, marked as Patterns, a list of various
roles, marked as Role bindings, tasks that need to be fulfilled to bind roles, marked as
Tnsks, and a selected task description window, marked as Task description. The pattern
tree groups patterns and their implementations (instances). In the example one pat-
tern RemotelnterfaceSolutions is visible and two instances that represent different im-
plementations of each pattern. The implementation results in a UML class diagram
that includes classes, or interfaces, mapped to roles of a MADE pattern. The role

6.3. HOW CAN TOOLS SUPPORT QUALITY-DRIVEN DESIGN? 71

Choices, MADE tasks.
i Tasks:
¢ -Provide Interface
<< I0RET g i i -Provide facade
~— : | -Provide operation (createGroup)
N Sy : : -Provide operation (removeGroup) :
o f :
Class diagram e,
Py
g
O\ ¢ Role
D th Businessinl g, % i
e erface ~ : = == Rale mapping
- Groupi) =
createGroup() - N
e et Comm and ‘I;Em::mm
=2
TSR]
] T e
1 1
CommandExecutar e
*axecuteCommand() ot
0
0.n AemoveGroupCmd
<alists>
CombinedC ommand *:2tGroupld()
addi)
Setl)

" MADE pattems

Figure 6.9 MADE patterns and UML diagram for performance solution [P7, p. 200]

binding view shows roles that constitute a pattern, in this case the RemotelnterfaceS-
olutions pattern. The selected pattern has two types of roles: class roles and method
roles. In the example, the I_DocumentManager interface is not bound to any imple-
mentation, which is marked in the view with a small circle in the bottom right hand
side corner of the class role icon. For the missing bindings, the task list view lists
tasks that have to be implemented, in this case the task is Provide 'BusinessInterface’.
The meaning of the task is textually described in the task description view. In this
example a flexible solution has been selected. It can be seen that a specific pattern has
been selected and role bindings are present. Also one specific task is selected as well
as its description. The pattern roles are bound to the UML class diagram managed
in IBM’s Rational Rose '® (see Figure 6.11). The diagram shows a Possible solution
corresponding to the design options that the designer can select from, a particular
solution implementation marked as Flexible solution implementation, and a Business
interface that corresponds to the role of I_DocumentManager from Figure 6.10. The
link between MADE and Rational Rose is interactive, so that changes in the class di-
agram that break any bindings are visible in the MADE views and active tasks. This
behaviour ensures that changes in the design do not break the already implemented
functionality.

13urlhttp: //www-01.ibm.com/software/rational /

72 6. DEVELOPMENT - SELECTED DESIGN SOLUTIONS

|- MaVakramess Eclipse Platfonm) J Jﬂ
Fle Edit Navigste Search Project Run Window Help
| Q-+]| B JavaFrames R
&P Architecture 12 + =8
=@ Oualty v —
=1 Instanczs o o v C

(E}} Exernalinterface (exends remoelr| Pattern View (nardatory 3, optional 4) - 'Desion Model' extends 'RemoteInterfeceSolutions/Desian Model
(B} Internallnterface (extends remotzIn) | = E), Externalntertare (extends remotelnte) o By Design Model
- Ufij Paterns =L, Design Model b, Provide ‘Businessinterface’ (2)
i @ RemotzInterfaceCalutions B AbstractComnand
evecute
+- B CommandSxezuter
+- B CreateDocwumantCmd
= B}, I_documentManager
&1 listal
removelocument
+- B ListDozumentsCmd
+-BE renoveDecumentZmd
- B, Opdons
B Fexbity Provide an UML class for the role
‘DasinessInterface’. Provids an interface that
defines all services thal bave w be
anplemented.

Patterns

Role bindings

Task

Tasks Properties| Hierarchy description

Figure 6.10 MADE design view [P7, p. 203]

6.3.2 Tool Usage Benefits

Using MADE and the example set of solutions the designer was able to select a solu-
tion that was the most suitable to the given requirements. Naturally, the solution set
in this example case was very limited and the presented problem was not very com-
plex either. However, the aim of this case was to demonstrate that a tool can be used
for quality-driven design. In the demonstrated case the experienced designer was
likely to know the differences between design choices. However a less experienced
one might find the tool useful. A tool that offers a wide range of design solutions
together with guidance on the solution implementation could be even more useful.

This usage of MADE was only a proof of concept validation that showed po-
tential applicability of such tools. However, the tool has never been used for any
commercial purposes, mainly due to the fact that simple design choices are easily
made by experienced designers. Additionally, a different tool set has been used at
Solita. Despite this limitation, generally, the idea of a tool that helps a designer in
making design decisions seemed useful. Organisations can build up a design library
that is applicable for their use. The library can be used for development, but it can
also be used as training material for new developers. The ways of utilising various
tools in software organisations naturally depend on their needs, and in the case of
MADE and the case company the practical applicability was found limited.

6.4. SUMMARY 73

se2Rational Rose- facade-commandamdli= [Classiiaeramsliopcal Viey/ihan]| J_JLE
Fle Edit View Format Browse Report Query Tools Addins Window Help ==
0w g wiO B B B %0

N -
AL Possible solutions

= Flexibility solution
CommandExecutor implementation

=] {frem Design Model)

o

 — ®executeCommand()

r

5 — v

Business interface AbstractCommand

from Dezign Modei

4 = g ins) removeDocumentCmd

& [y

4 @) Sexecuts() {from Design Model)

|_DocumentManager Yaxecute()
{from Design Madel)
listAll) ListDocumentsCmd CreateDocumentCmd AddDocumentCmd
removeDocument() {from Design Model) {from Design Model) [from Design Model)
‘createDucumem(}
‘execute() ’execute(} ’execute()
4 [

Figure 6.11 UML class diagram in Rational Rose [P7, p. 203]

6.4 Summary

In this chapter we have presented how specific design choices can affect performance
of a distributed system. The presented empirical results provide background infor-
mation and justification on usage of specific design patterns for remote communi-
cation in distributed applications. Generally, the results also showed mechanisms
that cause differences between the design patterns, i.e., data structure that results
in increased size of serialised objects, as well as usage of particular technologies for
serialisation, i.e., binary serialisation and XML serialisation. The data complexity in-
creased the size of the payload to be sent between application layers, as did the XML
serialisation compared with binary serialisation. Consequently, the increased size of
data to be sent between application layers impacted the application performance.

This contribution is narrow but provides additional value to a designer far mak-
ing conscious design decisions. Moreover, this chapter presented how results from
an empirical investigation of specific design choices can be utilised in tools support-
ing design. The tool support for quality-driven design is both directly helpful in the
design process, but also it allows to build up a knowledge base.

Software organisations can use the provided results directly. However, naturally
they can themselves investigate, or use existing research on, other design solutions

74 6. DEVELOPMENT - SELECTED DESIGN SOLUTIONS

in technologies and application scopes that are most important for their everyday
design decisions. That way organisations are able to build up a knowledge base
specific to their domain that can be utilised in the whole organisation. Therefore, the
presented empirical results and tool usage contribute twofold by presenting how
specific design solutions affect distributed systems and how the empirically gained
knowledge can be utilised further in tools. In Solita the obtained results have been
made available to everybody in the company’s knowledge sharing tool, i.e., a wiki
system.

In the context of the research questions of this thesis, this quality improvement
area is important as it impacts the final software solution offered to end customers.
Owing to the fact that any software system requires design decisions that impact
the final software solution, this quality improvement area can have an impact on the
overall quality improvement measures in a company. The contributions presented
in this chapter show practically how an organisation can make specific improve-
ments in this area, i.e., learn the design decision’s impacts on the typically designed
software and utilise the knowledge in tools supporting design, which is the main
research question RQ1. The limitation of the presented improvement in this area is
the fact that only very few design choices have been investigated. A larger set of in-
vestigated design alternatives would allow to collect more data and perform better
comparison. Additionally, the tool support for quality-driven has not been used in a
commercial context, which rendered it only a proof of a potentially useful concept.

Moreover, the selected improvements presented in this area show that a software
organisation can internally identify design-related concerns, address them by em-
pirical examination, and use the results for improvements in this area. By repeating
this scenario an organisation should be able to build up knowledge that it needs for
developing a software solution of higher quality, which partially answers the addi-
tional research question RQ2.

Furthermore, software design in a software organisation can be viewed in the
context of mainstream quality improvement frameworks. For instance, CMMI for
Development specifies the Technical Solution (TS) process area [124, p. 456]. Ac-
cording to CMMI for Development the purpose of Technical Solution is to ‘design,
develop, and implement solutions to requirements’ [124, p. 456]. Moreover, the Technical
Solution area is to focus on [124, p. 456]:

o 'Evaluating and selecting solutions ...that potentially satisfy an appropriate set of
allocated requirements’, in this context the selected design solutions provide al-
ternatives to the final design solution and the tool support eases the selection
process,

e 'Developing detailed designs for the selected solutions ...’, also in this case the se-
lected design solutions are concrete design examples that can be directly imple-
mented, and naturally the selected design solutions do not constitute a whole
system, but only a part of it,

o 'Implementing the designs as a product or product component’, the selected design
solutions propose solutions only to specific problems that can be encountered
in a system, hence they can only be a part of the implementation.

6.4. SUMMARY 75

Therefore, based on the intended scope of the Technical Solution process area the
selected design solutions as well as tools supporting design can be seen as being
within the scope of this process area. Naturally, they do not fulfill all requirements
of the TS area, but they support a subset of goals of this area within a major qual-
ity improvement framework. As a result, the proposed contributions in the area of
development and selected design solutions are partially supporting a major quality
improvement framework, i.e., CMMI for Development, which in this area answers
additional research question RQ3.

CHAPTER 7

Related Work

In Chapters 2-6 we have discussed quality improvements in various areas of soft-
ware organisation activities. In this chapter we present selected literature related
to each improvement area discussed. Moreover we characterise how the existing re-
search relates to the work presented in this thesis. The order of the literature review
follows the order of the main contribution chapters, namely from Chapter 2 to 6.

7.1 Outsourcing Considerations

The outsourcing supplier selection and cooperation process have been presented in
Chapter 2. Outsourcing in software development has been widely discussed in lit-
erature. General recommendations for outsourcing practices have already been de-
fined. For instance, Donald J. Reifer presented seven outsourcing practices [104].
The recommendations focus on a business feasibility of possible outsourcing, estab-
lishing a good relationship with the outsourcing partner, measuring performance as
well as using the results for stimulating the relation between the parties, and using
outsourcing as an opportunity of knowledge transfer in both directions to and from
the supplier. Finally, and probably most importantly, Reifer recommends to estab-
lish a win-win relationship between the organisations in order to sustain a healthy
relationship. A creation of a good relationship with a outsourcing supplier is also
a goal of the process described in Section 2.2.2. The building element of the rela-
tionship is the suitability of the supplier to the defined needs. Also the monitoring
of the cooperation, described in Section 2.2, allows for taking corrective actions and
developing the relationship with a supplier.

Additionally, high-level recommendations on developing outsourcing programmes
have been presented by Power et al. [102]. Power et al. emphasise the importance of
knowledge management in the process of building and improving an outsourcing
programme. Furthermore, they specify an outsourcing management maturity model
(OMMM) [102, p. 37]. These various high-level recommendations do not provide an
actual recipe for how to outsource. However, they emphasise important aspects of
developing and improving outsourcing programmes. As has been presented in Sec-
tion 2.2 some of these recommendations can be found in the defined process for sub-
contractor selection and evaluation, e.g., knowledge buildup and learning process
based on project experiences as well as aiming at partnership with the subcontrac-
tor.

A concrete set of criteria for supplier selection has been proposed by Christof

77

78 7. RELATED WORK

Ebert [33]. Ebert lists rules for supplier selection [33, p. 179-180]. These rules refer
to the suitable size and business model of the supplier, the competence and internal
processes of the supplier, and practical advice to obtain concrete names of people,
who will be working from the supplier’s side. Furthermore, Ebert presents a four-
stage supplier agreement management. These recommendations and the agreement
management plan are in line with the process presented in Section 2.2, but the pro-
cess’ details are adjusted to the specifics of the software service provider and the
process is defined at a ready-to-use level.

Naturally, frameworks and methods have been proposed for aiding organisa-
tions in outsourcing planning and execution. For example, Hefley and Loesche pro-
posed the eSourcing Capability Model for Client Organizations (eSCM-CL) [58, 59].
The eSCM-CL is an extensive collection of 95 best practices for client organisations
of sourced services. The eSCM-CL specifies five life-cycle phases in sourcing [58, p.
29-32], namely:

e Ongoing, which focuses on management thought the whole sourcing life-cycle,
o Analysis, which focuses on identifying activities that could potentially be sourced,

o Initiation, which focuses on service provider selection and defining and formal-
ising the sourcing relationship,

o Delivery, which focuses on actual service delivery by the service provider, and

o Completion, which focuses on ending a relationship with a sourcing service
provider.

Furthermore there exist major quality improvement frameworks that specify prac-
tices for supplier selection and cooperation. For instance, CMMI for Acquisition
Primer [105] defines selected practices for cooperation with suppliers and contrac-
tors in projects. Those practices are organised around various process areas, namely
Project Management, Acquisition, and Support.

The outsourcing supplier selection and cooperation process presented in Chap-
ter 2 is not based directly on any of the above-mentioned frameworks. However, it
uses a certain subset of elements defined in them. For example, comparing to the
eSCM-CL [58, 59] the subcontracting cooperation process, and its selection and eval-
uation phases, can be seen as a small subset of life-cycle phases defined in eSCM-CL,
particularly, Ongoing, Initiation, and Delivery. However, the internal organisational
considerations of decision making whether and what to outsource specified in the
Analysis phase are not covered by the proposed process. Likewise, details of activi-
ties related to termination of an outsourcing relationship, as defined in the Completion
phase, are not covered by the proposed process. Moreover, the selection and cooper-
ation process described in this thesis focuses on a long term relationship. Therefore,
the selection process is conducted infrequently, while cooperation happens in each
case a project is implemented with the participation of a subcontracting partner.

7.2. EXPERIENCES WITH AGILE PRACTICES 79

7.2 Experiences with Agile Practices

Agile practices and practical recommendations on their usage have been presented
in Chapter 3. In this chapter we review related reports on agile practices, and partic-
ularly Scrum use.

An important aspect of agile methods is communication. The impact of agile
methods on internal and external communication in agile projects were investigated
by Pikkarainen et al. [99]. Based on case studies, Pikkarainen ef al. reported a gen-
erally positive impact of agile methods, including Scrum, on communication. They
also report some negative impacts, e.g., an open space office that can positively in-
fluence informal face-to-face communication but can also be destructive in cases of
performing tasks that require a high level of concentration [99, p. 328-329]. Similarly
a positive impact of communication, particularly customer involvement, has been
observed in experiences presented in Chapter 3. Additionally, as the case projects
were often distributed ones, practices, e.g., common chat rooms in IM communica-
tors, have been listed that aim at compensating the lack of physical proximity.

There are also reports on communication in distributed agile projects. For exam-
ple, Korkala and Abrahamsson [75] report on case studies analysis where project
practices were compared with recommended practices. Furthermore, reports on
Scrum used in distributed projects exist. For example, Sutherland et al. [121] re-
port on best practices for distributed teams as well as provide data on high produc-
tivity achieved in those teams. Complementary recommendations on practices in
distributed Scrum teams were also presented by Paasivaara et al. [98]. These best
practices and recommendations in many points overlap with the findings presented
in Chapter 3. For instance, the use of teleconferencing or issue tracking tools, as well
as the importance of building trust in the distributed team, have also been among
best practice recommendations for distributed Scrum teams [98].

Moreover, tools aiming at improving communication and collaboration in dis-
tributed projects have been proposed. Bruegge et al. [21] suggest Sysiphus as a col-
laboration platform for system models. Sysiphus allows for collaboration on specific
artifacts including traceability of important stakeholders, or notifications of changes.
Such specialised tools for system model tracing have not been proposed. However,
in recommendations presented in Chapter 3, the use of Wiki pages for collaborative
documentation is advised.

In addition to reports on Scrum usage in various case studies, Scrum methodology
has been investigated on compliance with mainstream SPI frameworks. Margal et
al. [83] have compared Scrum with CMMI and concluded that Scrum is a good start-
ing point for companies at entry levels of CMMI. However, Margal et al. add that or-
ganisations that are aiming at reaching a higher level of CMMI must use alternative
practices to complement Scrum [83, p. 28]. Moreover, general compliance of agile
principles with CMMI have been investigated by Glazer et al., who state that "Us-
ing Agile principles when designing and selecting CMMI practices can create more accept-
able and appropriate process definition activities’ [50, p. 30]. Therefore, an organisation
that decides to use agile development practices does not automatically prevent itself
from complying with CMMI. These findings are especially important in the context
of companies implementing their own SPIs and deciding to make improvements in

80 7. RELATED WORK

the area of project organisation, as presented in Chapter 3.

The Scrum-based projects that provided experiences resulting in the recommen-
dations presented in Chapter 3 did not use any new methodologies. They rather
adjusted or selected some of the above-mentioned methods and practices. It should
be also noted that for an open and flexible organisation like Solita, Scrum and se-
lected agile practices were suitable also from the organisation culture point of view,
which may not be the case for all organisations.

7.3 Multi-site Development

In Chapter 4 we presented a specific practice used in multi-site development. How-
ever, other practices and general characteristics of multi-site development have al-
ready been discussed in many publications.

Wongthongtham et al. [135] discussed different advantages and challenges in
multi-site development. They list, among others, the need for frameworks support-
ing communication and knowledge sharing [135, p. 355]. Additionally, they mention
aneed for technology tools that would assist in multi-site development [135, p. 357].
Both of these needs are addressed by the process and tool proposed and presented
in Section 4.2.

The need for communication and more generally recognition of social and tech-
nical interdependencies in development teams were discussed by Amrit and van
Hillegersberg [6]. They reviewed known problems of both software architecture and
processes being altered during the life-cycle of a development project despite the use
of best development practices. They recognise Socio-Technical patterns that link so-
cial dependencies with technical ones in a development process. They additionally
propose a tool that can identify the dependency patterns based on communications
between team members. Amrit’s and van Hillegersberg’s [6] work discusses possible
problems in multi-site projects as well as possible solutions to the problems.

A practical solution to specific problems in multi-site software development was
proposed by Lars Taxén [123]. The solution is based on practices in the telecom-
munication industry, namely one case organisation Ericsson. Taxén proposes the
Integration Centric Development (ICD) approach consisting of three sub-processes.
The focus of ICD is on promoting common understanding of a system developed
at the functional level as well as increment and integration planning levels [123, p.
769]. Even though ICD has been used only in one organisation, the results were col-
lected based on around 140 projects [123, p. 772] and they show that the method is
valid for multi-site development where communication and common understand-
ing are crucial [123, p. 779]. The ICD method is an example of an industry response
to problems encountered in multi-site software development.

A specific problem of system architecture knowledge sharing has been presented
by Ovaska et al. [97]. They report on industry case findings where it was found that
simple coordination of development activities was not enough and suggest concen-
tration on interdependencies between development activities [97, p. 244]. Ovaska et
al. additionally propose architecture as means of communication about the system,
which is particularly important in a distributed development environment. Addi-

7.3. MULTI-SITE DEVELOPMENT 81

tionally, Clerc et al. [29] have specified a method for assessing organisation compli-
ance with defined architectural rules at multiple sites. Also Clerc et al. point out
that the main problem in multi-site development is not the architectural rules, but
the gathering and distribution of knowledge about those rules in an organisation.
Another approach to architecture knowledge sharing has been presented by Victor
Clerc [28], who collected architectural knowledge management practices as a set of
patterns. Those patterns, similarly as in other publications, put strong emphasis on
communication. The communication is promoted by practices and tools.

Finally, there are a number of industry case studies that describe experiences from
multi-site software development initiatives. For example, Herbsleb et al. [60] report
on experiences from nine projects carried out in Siemens Corporation. The report
points out practical challenges and lessons learned in project coordination, develop-
ment environment, and general communication, among others. An additional report
on multi-site development practices at Siemens was presented by Bass et al. [15].

As can be seen from the number of various reports in literature, multi-site devel-
opment adds up to the complexity of software development. There are, however,
practices that aim at mitigating the effect of distribution in development projects.
Moreover, concerns related to the architecture of the system developed were re-
ported frequently as well as various methods for ensuring the architecture decisions
communication and later enforcement.

The reoccurring themes of issues in multi-side development could be listed as
follows:

e communication and knowledge sharing [135, p. 355],

¢ software architecture alterations caused by social and technical interdependen-
cies [6], and

e development activities’ interdependencies [97].

The architecture conventions ensuring process and tool supporting the rules vali-
dation (ARA), proposed in Chapter 4, addresses some of these issues. There exist
also other tools that allow for validating software against certain architectural rules.
For example, a commercial tool Lattix 1 can be used as a validation tool for archi-
tecture rules. In fact, Lattix provides additional architecture refactoring features that
are not in the scope of the described process. Furthermore, there is an open source
tool Macker 2 that has capabilities for checking rules defining package or class level
references. Another tool that validates specific architectural rules was proposed by
Selonen and Xu [113]. Their tool, called artDECO, uses UML profiles for architecture
validation, which can be done at a lower level of granularity than packages, which
are the granularity level utilised by ARA, e.g., at a class level.

Communication and knowledge sharing are encouraged in the process by for-
malising the communication between the different sites of the development team
that implements and designs and validates the software (i.e., the required architec-
ture decomposition rules, component mappings to the Java packages, and the binary

Thttp://www.lattix.com
’http://innig.net/macker/index.html

82 7. RELATED WORK

code). Additionally, the whole process aims at ensuring that the architecture is not
altered by the multi-site character of the development, which is similar to concerns
of social interdependencies. However, the architecture rules ensuring process does
not adders any Socio-Technical patterns [6] as such. Finally, the development activi-
ties” interdependencies are addressed by the architecture rules ensurance process to
a certain extent. Only the main development activities are organised in the process:
the high level design, component design and implementation, and verification. The
process does not address fine-grained activities.

7.4 Component Reuse

A open source component framework has been presented in Chapter 5. That frame-
work aimed at selecting reusable components for commercial software solutions.
However, component reuse is a well known concept aiming at optimising software
development. The components can be in-house made, COTS components, or OSS
components. The last category is of primary interest in this chapter. However, in
order to put the OSS component selection in a broader context it will be useful to
start from a brief overview of component reuse in commercial organisations.

Land et al. [77] have provided an extensive review of commercial off-the-shelf
software (COTS) selection methods. The review covered 17 component selection
methods from 1995 to 2006. In addition to the component selection methods Land et
al. have conducted surveys, which included industry representatives, on the practi-
cally used selection methods. The results of that review provide a concrete industry
point of view on the component selection. Lang et al. identified four processes in the
selection methods, namely preparation, evaluation, selection, and supporting pro-
cesses [77, p. 102]. The details of the processes were analysed and practical recom-
mendations proposed, so that a custom selection process could be created. Finally,
they provided four key recommendations that can be summarised as follows [77, p.
110]:

e different evaluation criteria should be used (i.e. functional, non-functional,
architecture and business related criteria),

e evaluation should be an iterative process,

e architectural context of the whole system should be considered for compatibil-
ity and cost evaluation, and

e criticality of the components should be taken into consideration in the evalua-
tion.

These findings based on COTS selection method review provide a good background
for discussion of OSS component usage in commercial solutions. Moreover, the rec-
ommendations on usage of various criteria are fulfilled by the proposed OSS eval-
uation framework presented in Section 5.2. The framework utilises various criteria
and sources of information, including open source community, available literature,

7.4. COMPONENT REUSE 83

and the organisation’s internal knowledge base in order to make a thorough evalu-
ation. Naturally, evaluation of COTS and OSS components is not the same because
the components differ significantly (e.g., in terms of offered support).

Additionally, Lang et al. have conducted a survey on component reuse in in-
dustry [78]. They have investigated development practices with reusable compo-
nents, without the components, and development of such components. Their find-
ings show some differences in the different development cases. For example, they
have found that requirement specification is more flexible and accepts more changes
in the case of development without reusable components compared to development
with such components. Furthermore, the survey findings indicated acceptance of
code changes even at the integration stage when a system was developed based on
reusable components [78, p. 155]. This fact indicates a higher flexibility of solutions
based on ready-made components, including OSS components that are of interest in
this chapter.

The usage of OSS components poses concerns specific to the nature of OSS. For
instance, Ruffin and Ebert [108] discussed legal concerns relating to Intellectual Prop-
erty Rights (IPR) and license issues and they provided a few recommendations on
how to use OSS components in commercial solutions safely. Moreover, they listed
a few risks and benefits of OSS usage. For example, as benefits they mention short
update and correction time for mainstream OSS projects, or in the case of mature
OSS communities it can be less likely that the project is discontinued than in the case
of small commercial component vendors. Moreover, they indicate that security of
OSS components can be greater than in the case of commercial components where
the code is not available for review by the whole community. At the same time, they
mention a few risks attached to OSS components, for instance, a risk of breaching
the license terms if the OSS component is not used carefully, or possible legal risks
related to third party IPR violated in the OSS component. One of the suggested rec-
ommendations for reducing the legal risk was usage of packaging companies that
shield the software development organisation from possible legal actions in the case
of an OSS component breaching IPR. The evaluation framework presented in Sec-
tion 5.2 also takes into consideration legal and licensing issues. Incompatible license
for commercial use is one of the criteria in the No Excuses category that has to be
fulfilled in order for the component to be even considered for use.

In more recent publications [32, 34] Christof Ebert revisited the subject of OSS
in industry. The positives and negatives of using the OSS in a commercial con-
text [32] are in line with those presented earlier [108]. An important addition made
by Christof Ebert [32] is the analysis of different aspects of OSS that innovate soft-
ware development in many ways, e.g., in terms of processes, technology, quality,
architecture, standards used, and business model and marketing practices [32, p.
105-106]. However, organisations considering usage of OSS are still urged to con-
sider their processes to be aligned with the nature of the OSS environment, e.g., fre-
quent updates [32, p. 108]. Also other researches pointed out the importance of the
context in which OSS is used. Ven et al. [129] presented results of a literature review
and a case study based on 10 Belgian organisations. They have analysed five contra-
dictory claims about OSS showing how differently specific aspects can be perceived.
For instance, for organisations who only use the software, the access to the source

84 7. RELATED WORK

code may not be a clear benefit, especially if they do not have the competences to
use it. Even though their focus was on infrastructure software, e.g., operating sys-
tem, their findings showed the importance of evaluating OSS in the specific context
of the business environment in which the OSS is used.

Ven and Verelst [128] studied a number of Belgian organisations in order to find
out to what extent the organisations use external advice when adopting OSS. Also in
this case the focus was on a general usage of OSS, rather than on a specific compo-
nent reuse. However, the findings of the research showed that most of organisations
use some form of commercial support. In this context methods for evaluating OSS in
general are additionally important, especially if the company providing consulting
services has the right tools for advising their clients.

The recommendations on considering the specific context for component usage [32,
129] are fulfilled by the OSS component evaluation framework (see Section 5.2) as the
framework focus and used criteria are adjusted to a particular context in which the
framework is intended to be used. On the other hand, the framework does not rely
on any external help, as reported by Ven and Verelst [128], other than the available
sources of information.

The effects of the availability of OSS components on software development have
been discussed by Spinellis and Szyperski [119]. They note two important benefits
generally associated with OSS components, i.e., the access to the source code and
possibility to derive the developed code from the OSS. Additionally, they point out
benefits of using OSS components, particularly the typically high quality of OSS
components and the fact that they are potentially functionality richer than if devel-
oped in-house. However, they mention possible problems with the varying qual-
ity of different OSS components. For that problem, Spinellis and Szyperski suggest
taking advantage of access to source code, mailing list archives, and bug tracking
databases as indicators of OSS component quality and provided support [119, p. 30].
The concern of OSS component quality and ways of evaluating the quality based
on OSS properties (e.g., the source code access) is particularly valid in the context
of the evaluation framework discussed in Section 5.2. The quality of OSS compo-
nents is the main focus of the framework as the evaluated components are to be
used in commercial solutions. Moreover, sources of information that Spinellis and
Szyperski [119] recommend, are included in the sources of information in the OSS
evaluation framework.

Another interesting aspect of using OSS components was presented by Obren-
ovi¢ and Gasevi¢, who discussed a problem of OSS component integration [133].
They addressed the integration problem of very heterogeneous OSS components by
a middle-ware platform called Amico. The platform helped in quick integration
of different OSS components using many standard interfaces and adapters, and a
publish-subscribe way of communication [133]. This problem of component integra-
tion is also an aspect that must be taken into consideration when selecting compo-
nents to be integrated with a commercial software solution.

The economics of OSS component usage in commercial projects have also been
studied. Ajila and Wu [4] have reviewed literature and conducted interviews with
companies’ representatives in order to verify a few hypotheses about OSS compo-
nent reuse. They concluded that a positive correlation between the OSS reuse and

7.5. SOFTWARE DESIGN CONSIDERATIONS 85

software development economics existed. Additionally, they point out that no dif-
ferences were noticed in the quality of OSS and proprietary software. Moreover,
they indicate a strong positive impact of OSS component reuse on software quality,
moderate impact on productivity and some impact on budget, in particular testing,
platform, and documentation [4, p. 1526]. Therefore, economic reasons are valid
reasons for using OSS components in commercial software solutions.

There has also been research on OSS utilisation based on selected quality factors,
presented by Sohn and Mok [118]. They investigated a number of quality factors as
specified in ISO/IEC 9126 that had the biggest influence on OSS component adop-
tion by various user groups. Their findings showed that code sharing, functionality,
and efficiency had the highest influence on the utilisation. This study showed what
OSS-related factors may influence a user’s decision on adoption of OSS components.

As can be seen based on this brief literature review, component reuse and par-
ticularly OSS usage in commercial solutions has been researched extensively. It can
also be seen that the use or reuse of OSS should be considered in specific contexts.
Additionally, the literature reports point out possible concerns related to OSS qual-
ity and ways how those concerns can be addressed. OSS components compared to
COTS components offer access to the source code and additional community access
that may be utilised in order to assess the quality of the component. The opportu-
nities (i.e., community and source code access) that OSS components provide have
been used in the evaluation framework presented in Section 5.2.

7.5 Software Design Considerations

The impact of selected design choices on performance in distributed applications
as well as tool support for quality driven design have been presented in Chapter 6.
As background to this broad topic of software design we will go through a design
patterns and quality attributes overview in Section 7.5.1, and then briefly discuss
tool support for incorporating and validating software design in Section 7.5.2.

7.5.1 Design Patterns and Quality Attributes Overview

Some of the quality attributes have been studied in depth in different technology
contexts. For example, Cecchet et al. [26] have investigated performance of J2EE
applications dependent on design and utilisation of the capabilities offered by the
technology used. Similar research investigation for EJB has been done by Janne Mat-
tila [86]. Other technology-specific performance investigations include, for example,
EJB-specific performance issues presented by Gorton and Liu [52], Java RMI and
NET remoting [94] comparison by Elbers et al. [35], or object serialisation analysis
by Hericko ef al. [61]. Finally, there were reports on approaches that focused on pre-
dicting application performance already at the design level, for example as Liu et
al. [80,81] or Gomaa and Menascé [51] presented.

In this context the design considerations presented in Chapter 6 have been lim-
ited only to one quality attribute, namely performance. Moreover, instead of inves-
tigating the impact of the technology used, or design of the whole application, the

86 7. RELATED WORK

investigation was limited only to the design pattern used for a remote interface in a
distributed application.

All these aspects of software design that designers should understand make them
especially complex for everyday use in a software company. Naturally, design dif-
ficulty can be overcome by an experienced designer. However, as design is one of
the activities constantly in use in a software company, contribution to the knowledge
supporting design decisions is beneficial from the software quality point of view. In
addition to explicit knowledge of a design solution, a software designer can utilise
tools in design work. Therefore, let us next briefly discuss the role of various tools
used in the software design process.

7.5.2 Tool Support for Incorporating and Validating Design Deci-
sions

Tools supporting architecture design and decision tracking have already been pro-
posed. For example, Babar and Gorton [8] have presented a framework and tool
(PAKME) that stores architecture knowledge. The tool can serve as a repository of
design decisions that can be reused in an organisation. Later PAKME was comple-
mented by the AAKET tool, as presented by Aman-ul-haq and Babar [127]. AAKET
can automatically and semi-automatically extract architecture-related knowledge from
email messages and documents and store it in a repository, for example, PAKME.
Another tool allowing for storing, tracking, and visualising architectural decisions
in a form of graphs was a prototype tool called Archium, as presented by Jansen
et al. [64]. Furthermore, a different perspective on software system architecture has
been presented by Garlan et al. [47], who focus on architecture evolution. Garlan
et al. [47] specify an evolution style as a pattern of changes, which can be domain-
specific, in system architecture over time. They present the Zvol tool, which sup-
ports analysis and planning for system architecture evolution.

In addition to tools supporting system architecture design, there are tools that
focus on component or subsystem design. Florijn et al. [38] presented a tool proto-
type that supports a designer in using design patters. The tool supported pattern
generation, integration of patterns with existing code, and pattern validation [38, p.
474]. The tool was a prototype for the Samlltalk environment. However, it showed
what can be expected from such tools. A more recent example of a tool proposal
for design support has been presented by Hammouda et al. [56]. The tool, which is
called INARI, supports generation and validation of certain design pattern instances
based on rules expressed as tool-specific patterns.

Finally, there are tools and models aiming at supporting the design process with
respect to quality attributes. For example, at the analysis stage a model that aims at
estimating quality attributes was presented by Janakiram and Rajasree [63]. Their
quality estimation model uses an analysis model for estimating specific quality at-
tributes. Moreover, methods for verification or analysis of existing software im-
plementations have also been proposed. One example could be the "Metric-Driven
Analysis and Feedback’ system (Amadeus) presented by Selby et al. [112]. The Amadeus
system provides feedback about the system status based on various metrics, devel-
opment process stage, and even history data. All this information can be used to

7.5. SOFTWARE DESIGN CONSIDERATIONS 87

identify potentially "problematic” parts of a system. Another approach has been pro-
posed by Radu Marinescu [85], who suggested 'detection strategies’ that abstract
code metrics into a user-friendly form in order to detect problems and their causes
in code.

The tool support for quality driven design (i.e., MADE) in Chapter 6 was used
only as an example tool and its functionality was limited to suggesting three de-
sign choices to a designer based on the design pattern impact on performance of
distributed applications. The use of an existing tool for such a purpose showed an-
other way of using this particular tool, which later was extended to a tool called
INARI [56]. For the design selection the tool used the information obtained from
external sources and required manual configuration. Finally, this tool support was
meant for new systems under development, unlike the problem detection strategies
for existing code [85].

All these tool examples show the richness of tools used for design decision im-
plementation and validation. Software development organisations can potentially
use tools for different purposes during development.

CHAPTER 8

Conclusions

e have discussed five areas of quality improvements proposed in this thesis

(see Figure 8.1). These improvement areas are summarised in Section 8.1. In
this summary the research questions formulated in Chapter 1 (see page 6) and ad-
dressed for individual quality improvement areas in Chapters 2-6 are revisited. The
research questions are considered in the light of all contributions presented in previ-
ous chapters. Additionally, limitations of this thesis are highlighted. Next, this thesis
author’s contributions to the included publications are presented in Section 8.2. Fi-
nally, possible directions of future research in the context of this thesis are presented
in Section 8.3.

8.1 Summary

In this thesis we have pre-
sented five different areas of
quality improvements in a soft-
ware organisation. The areas Sepitn i
were categorised into two cat-
egories of Organisation and De- o
velopment. o
The improvement areas in
the Organisation category fo-
cused on activities in a software \ Quallty /
organisation that do not di-
rectly result in producing soft- Figure 8.1 Selected quality improvement areas
ware, but which they impact
the software production indirectly. This category included improvements in Out-
sourcing Supplier Selection and Agile Project Practices. For the Outsourcing Supplier Se-
lection area a process for subcontractor selection and evaluation was proposed, which
constituted a cooperation process with subcontractors. The selection of subcontract-
ing partners was based on a number of criteria and multiple elimination steps. The
selection process has been used in the case company Solita for selecting subcon-
tracting partners. Moreover, for evaluation of subcontractor work a set of metrics
and criteria were proposed that can be used relatively easily in commercial settings.
The criteria in their extended version were further used for comparing Scrum and
non-Scrum projects, which was presented in relation to Agile Project Practices. In the

Muilti-Site

Practices Component

Evaluation

Organisation Development

89

90 8. CONCLUSIONS

area of specific Agile Project Practices it was showed based on data obtained from 18
Scrum and non-Scrum projects that Scrum projects generally performed better than
other project types. Therefore, Scrum methodology was recommended as a pre-
ferred project methodology. Additionally, based on reported experiences a number
of practices and tools was listed that were found useful in work with subcontractors.

The quality improvements grouped in the Development category focused on ac-
tivities directly related to software development and included: Multi-Site Practices,
Component Evaluation, and Selected Design Solutions. In all of these areas specific qual-
ity improvements were proposed that improved the quality of software solutions
developed.

In the area of Multi-Site Practices a specific process and tool were proposed, which
constitute a practice supporting development in a multi-site environment. The prac-
tice focused on ensuring architectural rules in software solutions development in
multiple development sites by different organisations, i.e., outsourcing partners.

In addition to the multi-site development practices, an OSS component evalua-
tion framework was proposed, as an improvement in the Component Evaluation area.
The framework has been constructed to select OSS components that can be reused
in software solution lines taking into account possible risks related to using a com-
ponent. The framework was using multiple sources of information in order to get
a full picture of the evaluated OSS component. The framework became part of the
evaluation process used at the case company Solita.

Finally, three design patterns and their influence on performance of distributed
systems were investigated, as an improvement in the Selected Design Solutions area.
The results provided recommendations on optimal usage of the design patterns for
implementation of an application’s remote interfaces. The recommendations take
into account complexity of the interface, number of calls, and the technology used
for data serialisation. Moreover, based on the recommendations a tool support for
quality-driven design was proposed. The tool guided the designer to choose the
most suitable design solution based on selected quality requirements, performance
and flexibility, in this case for the interface.

Having reviewed all the quality improvements in different areas of a software
organisation’s operations, it is possible to look at the research questions in the context
of the whole thesis.

8.1.1 Research Questions Revisited

In this thesis three research questions were formulated. The questions were ad-
dressed partially already in individual chapters discussing the five quality improve-
ment areas. Now the questions can be revisited in the context of the findings gath-
ered throughout the thesis.

RQ1: How can small quality improvements in different areas of a software com-
pany’s operation help to improve software solution quality?

The light-weight improvements affect directly or indirectly the quality of software
produced in a software organisation. The various effects within the five different

8.1. SUMMARY 91

areas of improvements have been presented. The effects of improvements were
demonstrated in each area.

The careful Outsourcing Supplier Selection process ensured that the organisations
and people developing software for end customers were suitable for that task. The
usage of suitable partners for the specific organisational setting ensured that the end
software solution and consequently the customer was not affected by changes in
project organisation and staffing. The Agile Project Practices provided data support-
ing usage of Scrum methodology as the preferred methodology that improved the
success of projects. Additionally, the Agile Project Practices provided concrete rec-
ommendations for tools and practices that made work with subcontractors efficient.
The practices and tools were transparent for end customers and ensured that regard-
less of project organisations the practices selected were appropriate for developing a
software solution.

The usage of Multi-Site Practices that are adjusted to the project environment im-
proves the quality of final software solutions produced. In the presented example the
architectural decisions were verified in a multi-site environment. Therefore, for the
end customer the quality of the software solutions is unaffected because of usage of a
multi-side project arrangement with subcontracting partners. Moreover, Component
Evaluation improves the quality of software solutions where ready-made OSS com-
ponents are used. The evaluation framework allows eliminating OSS components
that have inadequate quality for usage in commercial solutions. Finally, the design
improvements within the Selected Design Solutions area demonstrated how selected
quality attributes can be improved and linked with specific design decisions that are
made frequently when software solutions are developed.

In the context of a software company, an initiative resulting in improvements in
the quality of a software solution means that the quality of the main product of the
organisation has been affected. The proposed quality improvements in the Develop-
ment category had a very local scope, e.g., design improvements. However, as they
focused on improving a part of the software developed, they also had to affect the
overall solutions. The improvements categorised in the Organisation category did not
have a strong and direct link to overall software solution quality. However, they all
focused on activities directly supporting software development, e.g., the competence
level of subcontracting partners who were implementing the software. Hence, such
initiatives also had an impact on the software produces. Therefore, it can be argued
that the proposed improvements can affect the overall software solutions developed
in the software organisation. However, the exact impact of one improvement over
another has not been quantitatively compared.

Naturally, the proposed quality improvements have a very limited scope of the
improvements. However, within their scope they improve quality. Furthermore, the
improvement areas propose small and light-weight improvements that are relatively
easy to implement for a software organisation. As many different improvement ar-
eas were proposed based on real needs observed in a case organisation, other organ-
isations should be able to select at least a subset of areas that are applicable in their
environment.

92 8. CONCLUSIONS

RQ2: How can a small or medium-sized software service company implement
a flexible and light-weight quality improvement initiative based on its internal
organisational experience?

As was presented a software organisation is able to react to changes in their envi-
ronment and seek solutions that solve new problems. An organisation can actively
prepare for upcoming changes, as in the case of the Outsourcing Supplier Selection
area, and be prepared for changes. The presented five areas of quality improve-
ment are only examples of possible improvement areas and they definitively do not
fulfill all possible improvements in any company. Moreover, as it was clarified in
Section 1.4, the presented improvements were not introduced as an organised im-
provement programme, but they were introduced as a grass-root level improvement
initiative.

The individual improvements provided quality improvements in the specific ar-
eas. It was also presented how a company can develop measures improving a given
area, i.e., improvements by changes in processes, tools, organisations, etc. The list
of improvement areas presented in this thesis is definitely incomplete. However, a
complete list of any possible improvements was not a goal of this thesis. This thesis
presents possibilities and a path for quality improvements driven by internal needs
of the software organisation. Based on the five areas, an other organisation should
be able to notice areas where they can introduce improvements. They can be areas
overlapping with those presented in this thesis. However, there are likely to be new
area or similar areas but with a different context.

Additionally, a quality improvement initiative that originates at a grass-root level
of the organisation requires the organisation to encourage such initiatives. Individ-
uals, or groups of individuals, working on an everyday basis with software devel-
opment can be encouraged to make suggestions for observed quality improvement
needs. The encouragement can be given, for example, as a possibility to ‘make a
difference’ in the organisation and see that at least some of the suggestions are im-
plemented, which was the case of improvements presented in this thesis.

Therefore, this thesis showed an example of a possible in-house quality improve-
ment initiative focusing on various areas of software organisation operations. The
concrete examples of improvements and ways how they can be implemented pro-
vide practical guidance within the scope of the selected areas. The examples can be
used as a starting point and inspiration for further improvements in other organi-
sations. Therefore, similar medium-sized software service providers can internally
select areas that they find important in their organisations. For example, in the case
of design they can choose different design solutions to be investigated, which could
be suggested by designers or architects. Some areas can be irrelevant for them, for
example, the outsourcing partner selection if they do not use outsourcing partners.
However, such organisations can use the experiences presented in this thesis and
adapt and extend them for their organisations’ needs.

It should be also noted that the grass-root approach to quality in software organ-
isations may be limited by the organisational culture and readiness of such organi-
sations to encourage organisation members to take the initiative. Additionally, even
though it is likely that similar organisations as the case organisation can be inspired

8.1. SUMMARY 93

to start the grass-root quality improvement approach, this approach has not been
validated in other organisations.

RQ3: How can the flexible and light-weight approach to quality improvement
complement an official SPI framework?

This question aimed at highlighting consequences for a software organisation of us-
ing a flexible and in-house experience-based quality improvement initiative for their
possible future choices. If a software organisation finds it suitable to implement
their own quality improvement initiative, the organisation may in the future still de-
cide to implement an official (i.e., certified) SPI programme. This question was ad-
dressed partially for each individual improvement area by finding links to a major
quality improvement framework. As an example of a framework CMMI for Devel-
opment [124] was chosen. The links between the presented five quality improve-
ment areas and selected CMMI for Development process areas are summarised in
Table 8.1.

Table 8.1 Links between the five quality improvement areas and CMMI for Devel-
opment

Contribution area CMMI for Dev. area Chapter
Organisation
Outsourcing
Supplier Selection Supplier Agreement Management (SAM) Chapter 2
Agile Project Practices Integrated Project Management (IPM) Chapter 3
Development
Multi-Site Practices Verification (VER) Chapter 4
Component Evaluation Technical Solution (TS) and

Risk Management (RSKM) Chapter 5
Selected Design
Solutions Technical Solution (TS) Chapter 6

Table 8.1 gathers the CMMI for Development process areas that were linked with
the given quality improvement area in Chapters 2-6. The links are based on the main
goals of the process areas and particular focus of the improvement areas. The links
present only partial fulfillment of a specific CMMI for Development process area
by a particular quality improvement area. The links have been established, but by
no means do the proposed improvements in five areas fulfill the process areas of
CMMI for Development. They fulfill only a subset of goals of a given process area.
To be more precise, in this thesis we have identified relations of the five proposed
improvement areas to six CMMI for Development areas out of 22. That means that
an organisation addressing the proposed five improvement areas would partially
fulfill only about one quarter of all CMMI for Development areas.

The links between the CMMI for Development and the five improvement areas
show that even unofficial improvement initiatives may be complementary to a major

94 8. CONCLUSIONS

quality improvement framework. Therefore, even though the proposed five areas for
quality improvement do not fulfill all requirements of CMMI for Development they
still support it partially. That implies that a choice of a in-house quality improve-
ment initiative does not automatically mean that the software organisation cannot
apply in the future an official quality improvement programme. Naturally, in order
to fulfill all requirements of different levels of compliance with CMMI for Devel-
opment, the quality improvements in various areas would have to be accompanied
with additional improvements fulfilling CMMI requirements.

8.1.2 Limitations

There are a few limitations of the work presented in this thesis. First, the presented
quality improvements were implemented only in one software organisation. The
fact that only one organisation was involved poses limits to possible generalisa-
tion of the findings. In order to make any wider recommendations, i.e., create a
framework or formal quality improvement programme for medium-size software
organisations, experiences from a larger number of software organisations would be
needed. Therefore, as has been already mentioned, the proposed quality improve-
ments in the five areas of company operations should not be treated as a universal
and defined quality improvement programme.

Moreover, the five individual quality improvement areas have their own limita-
tions. Partially they derive from the fact that only one organisation is discussed in
this thesis and the improvements were not applied to other organisations. However,
there are also additional limitations. For example, in the case of selected design solu-
tions, the proposed improvements are limited only to three design patterns and two
technologies, while in software organisations the variety of design decisions is much
wider. Therefore, all those limitations should be taken into consideration when ap-
plying the quality improvements in other organisations.

Additionally, the extent of the available data did not in all cases allow for proper
statistical analysis. This fact implies possible error included in the data. Naturally,
in all the cases the data was collected with as much care as possible. Furthermore,
not all data was possible to be measured, and had to be interpreted. For example, in
the case of agile practices recommendations based on the conducted interviews.

Finally, an in-house grass-root level quality improvement initiative does not give
guarantee that the selected areas for improvement will be implemented in the organ-
isation, or that they will be widely used. For example, the tool support for quality
driven design suggested in this thesis was a successful proof of concept, but in the
particular context of the organisation it was not feasible. Therefore, the suggestions
for quality improvements should be considered in a wider context in the organisa-
tion.

8.2 Author’s Contributions in Publications

The author of this thesis made contributions to the included publications as follows.

8.2. AUTHOR’S CONTRIBUTIONS IN PUBLICATIONS 95

Publication [P1] describes the cooperation process with subcontracting part-
ners and provides practical recommendations on tools and practices useful in work-
ing with subcontractors. This publication is based on the cooperation process pre-
sented in publication [P4] and extends findings presented in publication [P2] with
details and practical tips.

The author formulated the practical recommendations based on data collected as
well as arranged the findings in a way that presents the subcontractor cooperation
process in a practitioner-oriented fashion.

Publication [P2] describes findings of differences between Scrum and non-Scrum
projects based on 18 commercial projects. The Goal Question Metric approach was
used as the research methodology. The results are based on qualitative and quan-
titative analysis of data collected. The proposed recommendations aim at helping
projects in a similar commercial context to choose best agile practices.

The author designed and performed interviews with project managers. Addi-
tionally, the author collected data from IT systems and analysed the findings. The
author formulated recommendations based on all the collected data.

Publication [P3] describes a framework for evaluation of OSS components for
reuse in multiple commercial software solutions. The framework is based on a se-
lected set of quality criteria that were found most relevant and feasible to be used
in a commercial setting. The evaluation framework is also presented in the context
of Software Product Lines creation. Finally, feedback from the framework usage is
presented.

The author collected evaluation criteria and performed criteria selection together
with Kimmo Kiviluoma and Tero Poikonen. The author together with Imed Ham-
mouda conceptualised the evaluation process with a relation to SPL construction.
The author presented the process as usable instructions used by evaluators. The au-
thor collected and analysed data obtained from evaluation performed and received
feedback on the evaluation process.

Publication [P4] describes a process for selecting and evaluating subcontrac-
tors for cooperation in a Software Service Provider. Sets of particular criteria for both
purposes are selected. The criteria include specific metrics and qualitative criteria.
Finally, results from the process usage are reported.

The author specified the selection process as well as executed it together with
Karri Mustonen. The author collected data from the selection process. The author
specified the process and criteria for evaluation of subcontractors” work.

Publication [P5] describes a process and tool for ensuring architectural rules in
multi-site development. It is argued that software development distributed between
development sites should use a validation process that ensures that architectural
rules are not altered during the development. The proposed validation process is
supported by a specific tool called ARA. Evaluation of the process and tool was
performed and results reported.

96 8. CONCLUSIONS

The author implemented the ARA tool used for architectural rules validation in
Java. The author sketched the architectural rules assurance process, and finalised
it together with the co-authors. The author executed test cases and analysed the
results.

Publication [P6] extends the work presented in publication [P8] by performance
results collected for the selected design patterns implemented in .NET technology.
Three design patterns used as an interface for remote communication are investi-
gated for their influence on overall application performance. The additional results
from the .NET investigation are combined with the earlier results from the J2EE tech-
nology. General conclusions are drawn on the design aspects of remote communica-
tion that affect application performance.

The author ported the test application from J2EE implementation to .NET im-
plementation. Additionally, the author executed tests measuring application per-
formance as well as performed additional tests of different serialisation variants.
Finally, the author analysed the results.

Publication [P7] describes a usage of the MADE tool [55] as a tool for quality-
driven design. The tool was configured in a way that allows a designer to choose
between design solutions based on a specific quality attribute. The supported qual-
ity attributes were performance and flexibility of interface used for remote commu-
nication in a software system. The solution choice recommendations were based on
empirical data gathered in publication [P8].

The author used results of performance investigations from publication [P8] as
data for possible design choices. The author modelled design choices in the MADE
tool [55] together with Imed Hammouda.

Publication [P8] described results of investigation on how three design pat-
terns used for implementing a remote interface affect performance of a J2EE applica-
tion. The selected design patterns were implemented in a fully-functional test appli-
cation. A number of tests were executed and performance-related metrics collected.
The results showed performance differences between the design patterns used for
remote communication.

The author implemented test application in J2EE, designed and executed a num-
ber of tests and analysed the data.

8.3 Future Work

The future work can be seen at different levels. At one level the work may concen-
trate on further improvements within the selected improvement areas. For example,
the proposed tools can be further improved making them easier to use, or support-
ing new technologies. Furthermore, new improvement areas can be selected and
improvements proposed. For example, improvements in software solution line de-
velopment in a way that reflects even closer the SPL development.

8.3. FUTURE WORK 97

Another level of future research can include investigation of other organisations
for evaluating the proposed improvements in another organisation. Additionally, it
could be investigated whether grass-root level quality improvement initiatives can
be applied only in organisations with specific organisational cultures.

Generally, as a quality improvement is an ongoing process and software organ-
isations are very dynamic structures, there should be many new possible research
directions available.

Bibliography

[1] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani

Warsta. Agile software development methods. review and analysis.
http:/ /www.vtt.fi/inf/pdf/publications /2002 /P478.pdf, 2002. VTT Publica-
tions : 478.

[2] Inc. Advanced Development Methods. Controlled chaos : Living on
the edge. http://www.controlchaos.com/download/Living%20on%
20the%20Edge.pdf, 1996.

[3] Faheem Ahmed, Luiz Fernando Capretz, and Muhammad Ali Babar. A model
of open source software-based product line development. 32nd Annual IEEE
International Computer Software and Applications Conference, 0:1215-1220, 2008.

[4] Samuel A. Ajila and Di Wu. Empirical study of the effects of open source
adoption on software development economics. J. Syst. Softw., 80(9):1517-1529,
2007.

[5] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and
Design Strategies. Prentice Hall / Sun Microsystems Press, 2001.

[6] Chintan Amrit and Jos van Hillegersberg. Detecting coordination problems in
collaborative software development environments. Information Systems Man-
agement, 25(1):57-70, 2008.

[7] Atos Origin. Qsos version 1.6. http://www.gsos.org/?page_1id=3, 23
October 2006.

[8] Muhammad Ali Babar and Ian Gorton. A tool for managing software archi-
tecture knowledge. In SHARK-ADI "07: Proceedings of the Second Workshop on
SHAring and Reusing architectural Knowledge Architecture, Rationale, and Design
Intent, page 11, Washington, DC, USA, 2007. IEEE Computer Society.

[9] Felix Bachmann and Len Bass. Introduction to the attribute driven design
method. In ICSE '01: Proceedings of the 23rd International Conference on Soft-
ware Engineering, pages 745746, Washington, DC, USA, 2001. IEEE Computer
Society.

[10] Felix Bachmann, Len Bass, and Mark Klein. Moving from quality attribute
requirements to architectural decisions. In STRAW’03 : Second International

99

100 BIBLIOGRAPHY

SofTware Requirements to Architectures Workshop located at ICSE’03, pages 122-
130, Portland, OR, USA, 2003.

[11] Mario Barbacci, Mark H. Klein, Thomas A. Longstaff, and Charles B. Wein-
stock. Quality attributes. Technical Report CMU/SEI-95-TR-021, Software En-
gineering Institute, Carnegie Mellon University, December 1995.

[12] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal question
metric approach. ftp://ftp.cs.umd.edu/pub/sel/papers/gqm.pdf,
1994. accessed in March 2009.

[13] Len Bass, Mark Klein, and Felix Bachmann. Quality attribute design primi-
tives. Technical Note CMU /SEI-2000-TN-017, Software Engineering Institute
(SEI), 2000.

[14] Leonard J. Bass, Mark Klein, and Felix Bachmann. Quality attribute design
primitives and the attribute driven design method. In PFE "01: Revised Papers
from the 4th International Workshop on Software Product-Family Engineering, pages
169-186, London, UK, 2002. Springer-Verlag.

[15] Matthew Bass, James D. Herbsleb, and Christian Lescher. Collaboration in
global software projects at siemens: An experience report. In ICGSE "07: Pro-
ceedings of the International Conference on Global Software Engineering, pages 33—
39, Washington, DC, USA, 2007. IEEE Computer Society.

[16] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cun-
ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,
Ron Jeffries, Jon Kern, Brian Marick andRobert C. Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for agile software
development. http:/ /agilemanifesto.org/, 2001.

[17] Izak Benbasat, David K. Goldstein, and Melissa Mead. The case research strat-
egy in studies of information systems. MIS Quarterly, 11(3):369-386, 1987.

[18] Barry Boehm. A view of 20th and 21st century software engineering. In ICSE
"06: Proceedings of the 28th international conference on Software engineering, pages
12-29, New York, NY, USA, 2006. ACM.

[19] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-line Approach. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 2000.

[20] Business Readiness Rating. http://www.openbrr.org/, 2008.

[21] Bernd Bruegge, Allen H. Dutoit, and Timo Wolf. Sysiphus: Enabling informal
collaboration in global software development. In Global Software Engineering,
2006. ICGSE "06. International Conference on, pages 139-148, Oct. 2006.

[22] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland, and
Michael Stal. Pattern-Oriented Software Architecture: A System of Patterns. Wiley,
1996.

BIBLIOGRAPHY 101

[23] Capgemini. Open Source Maturity Model. http://www.osspartner.com/
portail/sections/accueil-public/evaluation-osmm, 2003.

[24] Erran Carmel and Pamela Abbott. Why 'nearshore” means that distance mat-
ters. Commun. ACM, 50(10):40-46, 2007.

[25] Aileen Cater-Steel, Wui-Gee Tan, and Mark Toleman. Challenge of adopting
multiple process improvement frameworks. 2006.

[26] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. Performance
and scalability of E]JB applications. In 17th ACM Conference on ObjectOriented
Programming, pages 246-261, Seattle, Washington, 2002.

[27] Paul Clements and Linda Northrop. Software Product Lines: Practices and Pat-
terns. Addison-Wesley, 2002.

[28] Viktor Clerc. Towards architectural knowledge management practices for
global software development. In SHARK '08: Proceedings of the 3rd interna-
tional workshop on Sharing and reusing architectural knowledge, pages 23-28, New
York, NY, USA, 2008. ACM.

[29] Viktor Clerc, Patricia Lago, and Hans van Vliet. Assessing a multi-site devel-
opment organization for architectural compliance. In WICSA '07: Proceedings of
the Sixth Working IEEE/IFIP Conference on Software Architecture, page 10, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[30] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[31] Tore Dyba. Factors of software process improvement success in small and
large organizations: an empirical study in the scandinavian context. SIGSOFT
Softw. Eng. Notes, 28(5):148-157, 2003.

[32] Christof Ebert. Open source drives innovation. IEEE Softw., 24(3):105-109,
2007.

[33] Christof Ebert. Optimizing supplier management in global software engineer-
ing. In ICGSE '07: Proceedings of the International Conference on Global Software
Engineering, pages 177-185, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[34] Christof Ebert. Open source software in industry. IEEE Software, 25:52-53,
2008.

[35] Willem Elbers, Frank Koopmans, and Ken Madlener. Java RMI and .NET
remoting performance comparison. At URL http://www.niii.ru.nl/
~marko/onderwijs/oss, December 2004. Radboud Universiteit Nijmegen.

[36] Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David Fado. UML 2
Toolkit. John Wiley and Sons, October 2003.

102 BIBLIOGRAPHY

[37] Thomas Erl. SOA Design Patterns. Prentice Hall PTR, 2009.

[38] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool support for
object-oriented patterns. In ECOOP’97 Object-Oriented Programming, volume
1241/1997 of Lecture Notes in Computer Science, pages 472—495. Springer Berlin
/ Heidelberg, 1997.

[39] International Organization for Standardization. ISO/IEC 15504, Information
technology - Process assessment, part 1 to part 5, 1998-2005.

[40] International Organization for Standardization. Iso 9001:2000 quality manage-
ment systems — requirements, 12 2000.

[41] International Organization for Standardization. Iso 9000:2005 quality manage-
ment systems — fundamentals and vocabulary, 09 2005.

[42] International Organization for Standardization. Iso 9004:2009 managing for
the sustained success of an organization — a quality management approach, 10
2009.

[43] Martin Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley,
Menlo Park, 1997.

[44] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

[45] Martin Fowler. Continuous integration. http://martinfowler.com/
articles/continuousIntegration.html, May 2006.

[46] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison Wesley, Mas-
sachusetts, 1994.

[47] David Garlan, Jeffrey M. Barnes, Bradley Schmerl, and Orieta Celiku. Evolu-
tion styles: Foundations and tool support for software architecture evolution.
In Proceedings of the Joint Working IEEE/IFIP Conference on Software Architecture
2009 European Conference on Software Architecture 2009, Cambridge, UK, 14-17
September 2009.

[48] David A. Garvin. What does ”"product quality” really mean? MIT Sloan Man-
agement Review, 26(1):25-43, 1984.

[49] R. L. Glass, I. Vessey, and V. Ramesh. Research in software engineering: an
analysis of the literature. Information and Software Technology, 44(8):491 — 506,
2002.

[50] Hillel Glazer, Jeff Dalton, David Anderson, Michael D. Konrad, and San-
dra Shrum. Cmmi or agile: Why not embrace both! Technical Report
CMU/SEI-2008-TN-003, Software Engineering Institute, Carnegie Mellon Uni-
versity, November 2008.

BIBLIOGRAPHY 103

[51] Hassan Gomaa and Daniel A. Menascé. Design and performance modeling of
component interconnection patterns for distributed software architectures. In
WOSP ’00: Proceedings of the 2nd international workshop on Software and perfor-
mance, pages 117-126, New York, NY, USA, 2000. ACM.

[52] Ian Gorton and Anna Liu. Evaluating the performance of ejb components.
IEEE Internet Computing, 7(3):18-23, 2003.

[53] Mark Grand. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated
with UML, volume 1. Wiley, 1998.

[54] Imed Hammouda, Juha Hautamaiki, Mika Pussinen, and Kai Koskimies. Man-
aging variability using heterogeneous feature variation patterns. In Fundamen-
tal Approaches to Software Engineering, 8th International Conference, FASE 2005,
pages 145-159, 2005.

[55] Imed Hammouda, Johannes Koskinen, Mika Pussinen, Mika Katara, and
Tommi Mikkonen. Adaptable concern-based framework specialization in
UML. In ASE, pages 78-87, 2004.

[56] Imed Hammouda, Anna Ruokonen, Mika Siikarla, André L. Santos, Kai
Koskimies, and Tarja Systd. Design profiles: toward unified tool support for
design patterns and uml profiles. Softw. Pract. Exper., 39(4):331-354, 2009.

[57] Oyvind Hauge, Thomas Osterlie, Carl-Fredrik Sorensen, and Marinela Gerea.
An empirical study on selection of open source software - preliminary results.
In FLOSS '09: Proceedings of the 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development, pages 42—-47, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[58] Bill Hefley and Ethel Loesche. esourcing capability model for client organiza-
tions (escm-cl), escm-cl v1.1, part 1. http://www.itsgc.org/downloads/
documents/eSCM-CL_v1l.1_Partl.pdf, September 27 2006.

[59] Bill Hefley and Ethel Loesche. esourcing capability model for client organiza-
tions (escm-cl), escm-cl v1.1, part 2. http://www.itsgc.org/downloads/
documents/eSCM-CL_v1l.1_Part2.pdf, September 27 2006.

[60] James D. Herbsleb, Daniel J. Paulish, and Matthew Bass. Global software de-
velopment at siemens: experience from nine projects. In ICSE ‘05: Proceedings
of the 27th international conference on Software engineering, pages 524-533, New
York, NY, USA, 2005. ACM.

[61] Marjan Hericko, Matjaz B. Juric, Ivan Rozman, Simon Beloglavec, and Ales
Zivkovic. Object serialization analysis and comparison in java and .NET. SIG-
PLAN Not., 38(8):44-54, 2003.

[62] IT Governance Institute (ITGI). Control objectives for information and
related technology - cobitt 4.1. http://www.isaca.org/Template.cfm?
Section=COBIT6&Template=/TaggedPage/TaggedPageDisplay.
cfm&TPLID=55&ContentID=7981, January 2010.

104 BIBLIOGRAPHY

[63] D. Janakiram and M. S. Rajasree. Request: Requirements-driven quality esti-
mator. SIGSOFT Software Engineering Notes, 30(1):4, 2005.

[64] A.Jansen, J. van der Ven, P. Avgeriou, and D.K. Hammer. Tool support for
architectural decisions. In Software Architecture, 2007. WICSA "07. The Working
IEEE/IFIP Conference on, pages 4-4, Jan. 2007.

[65] Pertti Jarvinen. On Research Methods. Tampereen yliopistopaino Oy, Tampere,
Finland, 2004.

[66] Jr. Jay F. Nunamaker and Minder Chen. Systems development in information
systems research. In Proceedings of the Twenty-Third Annual Hawaii International
Conference on System Sciences, volume 3, pages 631 — 640. IEEE, Jan 1990.

[67] Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[68] Karlheinz Kautz. Software process improvement in very small enterprises:
does it pay off? Software Process: Improvement and Practice, 4(4):209226, 1998.

[69] Karlheinz Kautz, Henrik Westergaard Hansen, and Kim Thaysen. Applying
and adjusting a software process improvement model in practice: the use of
the ideal model in a small software enterprise. In ICSE "00: Proceedings of the
22nd international conference on Software engineering, pages 626-633, New York,
NY, USA, 2000. ACM.

[70] Karlheinz Kautz, Henrik Westergaard, and Kim Thaysen. Understanding and
changing software organisations: an exploration of four perspectives on soft-
ware process improvement. Scand. J. Inf. Syst., 13:31-50, 2001.

[71] Rick Kazman. Tool support for architecture analysis and design. In Joint pro-
ceedings of the second international software architecture workshop (ISAW-2) and
international workshop on multiple perspectives in software development (Viewpoints
'96) on SIGSOFT 96 workshops, pages 94-97, New York, NY, USA, 1996. ACM.

[72] Nazrina Khurshid, Paul L. Bannerman, and Mark Staples. Overcoming the
first hurdle: Why organizations do not adopt cmmi. In ICSP "09: Proceedings of
the International Conference on Software Process, pages 38—49, Berlin, Heidelberg,
2009. Springer-Verlag.

[73] Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality: The elu-
sive target. IEEE Softw., 13(1):12-21, 1996.

[74] Alan S. Koch. Agile Software Development: Evaluating the Methods for Your Orga-
nization. Artech House Publishers, 2005.

[75] M. Korkala and P. Abrahamsson. Communication in distributed agile devel-
opment: A case study. pages 203 -210, aug. 2007.

[76] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw., 12(6):42—
50, 1995.

BIBLIOGRAPHY 105

[77] Rikard Land, Laurens Blankers, Michel R. V. Chaudron, and Ivica Crnkovic.
Cots selection best practices in literature and in industry. In ICSR, pages 100-
111, 2008.

[78] Rikard Land, Daniel Sundmark, Frank Liiders, Iva Krasteva, and Adnan Cau-
sevic. Reuse with software components - a survey of industrial state of prac-
tice. In ICSR, pages 150-159, 2009.

[79] N. G. Lester, F. G. Wilkie, D. McFall, and M. P. Ware. Investi-
gating the role of cmmi with expanding company size for small- to
medium-sized enterprises. Software Process: Improvement and Practice, 2009.
http:/ /dx.doi.org/10.1002/spip.409.

[80] Yan Liu, Alan Fekete, and Ian Gorton. Predicting the performance of
middleware-based applications at the design level. In WOSP "04, pages 166—
170, New York, NY, USA, 2004. ACM Press.

[81] Yan Liu, Alan Fekete, and Ian Gorton. Design-level performance prediction of
component-based applications. IEEE Trans. Softw. Eng., 31(11):928-941, 2005.

[82] Michael Mahemoff. Ajax Design Patterns. O’Reilly Media, 2006.

[83] Ana Sofia C. Marcal, Bruno Celso C. de Freitas, Felipe S. Furtado Soares, Maria
Elizabeth S. Furtado, Teresa M. Maciel, and Arnaldo D. Belchior. Blending
scrum practices and cmmi project management process areas. Innovations in
Systems and Software Engineering, 4(1):17-29, April 2008.

[84] Floyd Marinescu. EJB Design Patterns. The MiddleWare Company, 2002.

[85] R. Marinescu. Measurement and quality in object-oriented design. In Software
Maintenance, 2005. ICSM'05. Proceedings of the 21st IEEE International Conference
on, pages 701-704, Sept. 2005.

[86] Janne Mattila. EJB Performance. Master’s thesis, Tampere University of Tech-
nology, 2004.

[87] Deepti Mishra and Alok Mishra. Software process improvement methodolo-
gies for small and medium enterprises. In PROFES, pages 273-288, 2008.

[88] Deepti Mishra and Alok Mishra. Software process improvement in SMEs: A
comparative view. Computer Science and Information Systems, 6(1):111-140, 2009.

[89] Taichi Muraki and Motoshi Saeki. Metrics for applying gof design patterns in
refactoring processes. In IWPSE ‘01: Proceedings of the 4th International Work-
shop on Principles of Software Evolution, pages 27-36, New York, NY, USA, 2001.
ACM.

[90] Navica. Open Source Maturity Model. http://www.navicasoft.com/
pages/osmm.htm, 2008.

106 BIBLIOGRAPHY

[91] Eila Niemeld and Anne Immonen. Capturing quality requirements of prod-
uct family architecture. Information & Software Technology, 49(11-12):1107-1120,
2007.

[92] Linda M. Northrop. Software product line adoption roadmap. Technical
Report CMU/SEI-2004-TR-022, ADA431117, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, 2004.

[93] Linda M. Northrop, Paul C. Clements, Felix Bachmann, John Bergey, Gary
Chastek, Sholom Cohen, Patrick Donohoe, Lawrence Jones, Robert Krut, Reed
Little, John McGregor, and Liam O’Brien. A framework for software prod-
uct line practice, version 5.0. http://www.sei.cmu.edu/productlines/
framework.html, July 2007. Software Engineering Institute, Carnegie Mel-
lon University.

[94] Piet Obermeyer and Jonathan Hawkins. Microsoft .NET remoting: A techni-
cal overview. At URL http://msdn.microsoft.com/library, July 2001.
Microsoft Corporation.

[95] Office of Government Commerce (OGQ). It service manage-
ment - itil. http://www.best-management—-practice.com/
IT-Service-Management-ITIL/?trackid=002192, January 2010.

[96] Pirkko Ostring. Profit-Focused Supplier Management: How to Identify Risks and
Recognize Opportunities. Amacom, 2003.

[97] Paivi Ovaska, Matti Rossi, and Pentti Marttiin. Architecture as a coordina-
tion tool in multi-site software development. Software Process: Improvement and
Practice, 8(4):233-247, 2003.

[98] Maria Paasivaara, Sandra Durasiewicz, and Casper Lassenius. Using scrum in
a globally distributed project: a case study. Software Process: Improvement and
Practice, 13(6):527-544, 2008.

[99] Minna Pikkarainen, Jukka Haikara, Outi Salo, Pekka Abrahamsson, and Jari
Still. The impact of agile practices on communication in software develop-
ment. Empirical Software Engineering, 13(3):303-337, 2008.

[100] Francisco]J. Pino, Félix Garcia, and Mario Piattini. Software process improve-
ment in small and medium software enterprises: a systematic review. Software
Quality Control, 16(2):237-261, 2008.

[101] C. Potts and G. Bruns. Recording the reasons for design decisions. In ICSE
'88: Proceedings of the 10th international conference on Software engineering, pages
418-427, Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[102] Mark J. Power, Kevin C. Desouza, and Carlo Bonifazi. Developing superior
outsourcing programs. IT Professional, 7(4):32-38, 2005.

[103] Ingo Rammer. Advanced .NET Remoting. APress, 2002.

BIBLIOGRAPHY 107

[104] Donald J. Reifer. Seven hot outsourcing practices. IEEE Software, 21(1):14-16,
2004.

[105] Karen J. Richter. Cmmi for acquisition (cmmi-acq) primer, version 1.2. Tech-
nical Report CMU /SEI-2008-TR-010, Software Engineering Institute, Carnegie
Mellon University, 2008.

[106] Colin Robson. Real World Research: A Resource for Social Scientists and
Practitioner-Researchers. Wiley-Blackwell, 2002.

[107] Jakub Rudzki and Tarja Systd. Small steps approach to tackling software qual-
ity in a commercial setting. Computer Software and Applications Conference, An-
nual International, 0:496-498, 2008.

[108] Michel Ruffin and Christof Ebert. Using open source software in product de-
velopment: A primer. [EEE Softw., 21(1):82-86, 2004.

[109] Per Runeson and Martin Host. Guidelines for conducting and reporting case
study research in software engineering. Empirical Softw. Engg., 14(2):131-164,
2009.

[110] Hossein Saiedian and Natsu Carr. Characterizing a software process maturity
model for small organizations. SIGICE Bull., 23(1):2-11, 1997.

[111] Ken Schwaber. Scrum development process. In J. Sutherland and et al., ed-
itors, OOPSLA Business Object Design and Implementation Workshop. Springer:
London., 1997.

[112] Richard W. Selby, Adam A. Porter, Douglas C. Schmidt, and Jim Berney.
Metric-driven analysis and feedback systems for enabling empirically guided
software development. In ICSE, pages 288-298, 1991.

[113] Petri Selonen and Jianli Xu. Validating uml models against architectural pro-
files. In Proceedings of the 9th European software engineering conference held jointly
with 10th ACM SIGSOFT international symposium on Foundations of software en-
gineering, pages 58-67. ACM Press, September 2003.

[114] Raphaél Semeteys. Method for qualification and selection of open source soft-
ware. http://www.osbr.ca/ojs/index.php/osbr/article/view/
583/540, May 2008. Open Source Business Resource.

[115] IEEE Computer Society. leee std 1061-1998, ieee standard for a software quality
metrics methodology. http://ieeexplore.ieee.org/servlet/opac?
punumber=6061, dec. 1998.

[116] Software Engineering Institute, Carnegie Mellon University. Capability matu-
rity model for software (CMM). http://www.sei.cmu.edu/cmm/, 2007.

[117] Software Engineering Institute, Carnegie Mellon University. Capability matu-
rity model integration (CMMI). http://www.sei.cmu.edu/cmmi/index.html,
2007.

108

BIBLIOGRAPHY

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

So Young Sohn and Min Seok Mok. A strategic analysis for successful open
source software utilization based on a structural equation model. J. Syst. Softw.,
81(6):1014-1024, 2008.

Diomidis Spinellis and Clemens Szyperski. Guest editors’ introduction: How
is open source affecting software development? IEEE Software, 21:28-33, 2004.

Mark Staples, Mahmood Niazi, Ross Jeffery, Alan Abrahams, Paul Byatt, and
Russell Murphy. An exploratory study of why organizations do not adopt
cmmi. J. Syst. Softw., 80(6):883-895, 2007.

Jeff Sutherland, Anton Viktorov, Jack Blount, and Nikolai Puntikov. Dis-
tributed scrum: Agile project management with outsourced development
teams. In HICSS '07: Proceedings of the 40th Annual Hawaii International Con-
ference on System Sciences, page 274a, Washington, DC, USA, 2007. IEEE Com-
puter Society.

Ossi Syd. Avoimen lihdekoodin prosessikoneiden vertailu (comparison of
open source workflow management systems). Master’s thesis, Helsinki Uni-
versity of Technology, September 2008. in Finnish.

Lars Taxén. An integration centric approach for the coordination of distributed
software development projects. Information and Software Technology, 48(9):767 —
780, 2006. Special Issue Section: Distributed Software Development.

CMMI Product Team. Cmmi for development, version 1.2. Technical Report
CMU/SEI-2006-TR-008, Software Engineering Institute (SEI), Carnegie Mellon
University, August 2006.

Chouki Tibermacine, Regis Fleurquin, and Salah Sadou. Preserving architec-
tural choices throughout the component-based software development process.
pages 121-130, 2005.

David Trowbridge, Dave Mancini, Dave Quick, Gregor Hohpe, James
Newkirk, and David Lavigne. Enterprise Solution Patterns Using Microsoft NET.
Microsoft Corporation, 2003.

Aman ul haqg and Muhammad Ali Babar. Tool support for automating ar-
chitectural knowledge extraction. In SHARK "09: Proceedings of the 2009 ICSE
Workshop on Sharing and Reusing Architectural Knowledge, pages 49-56, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

Kris Ven and Jan Verelst. The importance of external support in the adoption
of open source server software. In Open Source Ecosystems: Diverse Communi-
ties Interacting, volume 299 of IFIP Advances in Information and Communication
Technology, pages 116-128. Springer Boston, 2009.

Kris Ven, Jan Verelst, and Herwig Mannaert. Should you adopt open source
software? IEEE Softw., 25(3):54-59, 2008.

BIBLIOGRAPHY 109

[130] Christiane Gresse von Wangenheim, Alessandra Anacleto, and Clenio F. Sal-
viano. Helping small companies assess software processes. IEEE Softw.,
23(1):91-98, 2006.

[131] Christiane Gresse von Wangenheim, Alessandra Anacleto, and Clinio F. Sal-
viano. Mares - a method for software process assessment in small software
companies. Technical Report LQPS001.04E, LQPS - Laboratrio de Qualidade
e Produtividade de Software, UNIVALI, 2004. http://www.inf.ufsc.br/
~gresse/download/LQOPS001_04E.pdf.

[132] Darja Smite. A case study: Coordination practices in global software develop-
ment. In Product Focused Software Process Improvement, volume 3547 of Lecture
Notes in Computer Science, pages 234-244. Springer Berlin / Heidelberg, 2005.

[133] Zeljko Obrenovi¢ and Dragan Gasevi¢. Open source software: All you do is
put it together. IEEE Software, 24:86-95, 2007.

[134] David A. Wheeler. How to evaluate open source software / free software (os-
s/fs) programs. http://www.dwheeler.com/oss_fs_eval.html. Re-
vised as of January 8, 2010.

[135] Pornpit Wongthongtham, Elizabeth Chang, and Tharam Dillon. Multi-site dis-
tributed software development: Issues, solutions, and challenges. In Computa-
tional Science and Its Applications ICCSA 2007, volume 4706 of Lecture Notes in
Computer Science, pages 346-359. Springer Berlin / Heidelberg, August 2007.

[136] Robert K. Yin. Case Study Research: Design and Methods. Sage Publications, Inc,
2003.

Included Publications

111

Due to the copyright limitation for electronic distribution,
some of the papers included in the printed version cannot be
included in the electronic version. The excluded publications
can be found at the publisher’s sites.

[P1] Jakub Rudzki, Imed Hammouda, Tuomas Mikkola, Karri Mustonen, and
Tarja Systa. Considering Subcontractors in Distributed Scrum Teams. A
chapter in book Darja Smite, Nils Brede Moe, Par J.Agerfalk, (Eds.) ’Agility
Across Time and Space: Implementing Agile Methods in Global Software
Projects’, p. 235-255, May 2010, Springer 2010.
http://www.springerlink.com/content/u028338207130810/

[P2] Jakub Rudzki, Imed Hammouda, and Tuomas Mikkola. Agile
Experiences in a Software Service Company. In Proceedings of the 35th
Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2009, pp.224-228, 27-29 Aug. 2009, IEEE Computer
Society. http://doi.ieeecomputersociety.org/10.1109/SEAA.2009.31

[P3] Jakub Rudzki, Kimmo Kiviluoma, Tero Poikonen, and Imed Hammouda.
Evaluating Quality of Open Source Components for Reuse-Intensive
Commercial Solutions. In Proceedings of the 35th Euromicro Conference
on Software Engineering and Advanced Applications, SEAA 2009, pp.11-19,
27-29 Aug. 2009, IEEE Computer Society.
http://doi.ieeecomputersociety.org/10.1109/SEAA.2009.30

[P4] Jakub Rudzki, Tarja Systd, and Karri Mustonen. Subcontracting
Processes in Software Service Organisations - An Experience Report. In
Proceedings of the International Conference on Software Process, ICSP
2009, pp. 224-235, Springer-Verlag.
http://www.springerlink.com/content/u24816477250nk30/

http://www.springerlink.com/content/u028338207130810/
http://doi.ieeecomputersociety.org/10.1109/SEAA.2009.31
http://doi.ieeecomputersociety.org/10.1109/SEAA.2009.30
http://www.springerlink.com/content/u248l6477250nk30/

[P5] Jakub Rudzki, Imed Hammouda, and Tommi Mikkonen. Ensuring
Architecture Conventions in Multi-site Development. In Proceedings of the
32nd Annual IEEE International Computer Software and Applications
Conference, COMPSAC 2008, pp.339-346, 2008.
http://doi.ieeecomputersociety.org/10.1109/COMPSAC.2008.38

[P6] Jakub Rudzki and Tarja Systa. Performance Implications of Design
Pattern Usage in Distributed Applications: Case Studies in J2EE and .NET. In
Proceedings of the ISSTA 2006 workshop on Role of Software Architecture
for Testing and Analysis, ROSATEA 2006, pp. 1-11, ACM.
http://doi.acm.org/10.1145/1147249.1147250

[P7] Jakub Rudzki, Imed Hammouda, and Tommi Mikkonen. Tool Support
for Quality-driven Design. In Proceedings of the 3rd Nordic Workshop on
UML and Software Modeling, NWUML 2005, pp. 193-207, 2005.
http://www.cs.uta.fi/reports/pdf/A-2005-3.pdf

[P8] Jakub Rudzki. How Design Patterns Affect Application Performance - a
Case of a Multi-tier J2EE Application. In Proceedings of the 4th
International Workshop on Scientific Engineering of Distributed Java
Applications, FIDJI 2004, pp. 12-23, Springer.
http://www.springerlink.com/content/f4780588t3372306/

http://doi.ieeecomputersociety.org/10.1109/COMPSAC.2008.38
http://doi.acm.org/10.1145/1147249.1147250
http://www.cs.uta.fi/reports/pdf/A-2005-3.pdf
http://www.springerlink.com/content/f4780588t3372306/

