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Abstract

Among many adaptive algorithms that exist in the open literature, the class of approaches

which are derived from the minimization of the mean squared error between the output of

the adaptive filter and some desired signal, seems to be the most popular. Probably the

simplest algorithm belonging to this class is the Least Mean Squared (LMS) algorithm

which has the advantage of low complexity and simplicity of implementation. One of

the main concerns in all practical situations is to develop algorithms which provide fast

convergence of the adaptive filter coefficients and in the same time good filtering perfor-

mance. There are four main classes of applications where the adaptive filters were applied

with success, namely: system identification, inverse modeling, prediction and interference

canceling. In this thesis we develop new algorithms for the first two classes of applications

although they can be implemented also for prediction and interference canceling.

In this thesis several new algorithms for adaptive filtering are introduced. The main

goal is to improve the performances of the existing algorithms, in terms of convergence

speed and filtering performance and also to introduce some new approaches. The new

algorithms are classified into several classes each of them addressing a certain application.

It is well known that the LMS algorithm has a slow convergence for correlated inputs.

Moreover its filtering performance and convergence speed are inversely related through

a single parameter, the step-size. An adaptive filter implementing the LMS might have

stability problems operating in a non-Gaussian environment due to the use of instanta-

neous gradient to update the coefficients. In applications belonging to the class of system

identification, not only the values of the coefficients of the model are of interest, but

also the length of the model. Therefore algorithms for length adaptation might be of

equal interest. Another situation, that can appear in identification applications is when

the coefficients of the model are time-varying. The adaptive algorithm should provide a

mechanism to track the changes of the model.

This thesis contains three main parts which are concentrated on time domain im-

plementations, transform domain implementations and applications respectively. At the

beginning of the first part two new variable step-size LMS algorithms are introduced which
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show good convergence speed. The dependence between the speed of adaptation and fil-

tering performance is reduced and the setup of the parameters is very easy as compared

with other existing approaches. The problem of length estimation is addressed later on

and an algorithm to iteratively adjust the length of the adaptive filter toward the length

of the model is proposed. This algorithm is derived for system identification application.

Next, the problem of tracking time-varying systems is discussed and the analytical ex-

pressions for the steady-state mean squared error and mean squared coefficient error are

revised. Based on these expressions a new algorithm in which the step-size is iteratively

modified toward the optimum is introduced. An important feature of the proposed algo-

rithm is the fact that the user does not need to know any information about the statistics

of the optimum model.

At the end of the first part the class of order statistics LMS algorithms is discussed

and a new algorithm belonging to this class is introduced. The new algorithm uses an

adaptive filter to smooth the gradient such that it does not require the knowledge of the

noise distribution in order to be implemented.

The second part of the thesis is dedicated to the transform domain implementation of

the LMS algorithm and its variants. First, three new algorithms belonging to the class

of variable step-size LMS algorithm in transform domain are introduced. To the best of

our knowledge the idea of step-size adaptation in transform domain, based on the output

error was not addressed so far in the open literature. The existing approaches, assume a

time-varying step-size due to the power estimates of the transform coefficients, whereas in

our implementations, the step-size is adapted by the output error. We continue with the

problem of time-varying modeling using the transform domain LMS and we introduce a

new algorithm. The aim of this algorithm is to increase the convergence speed of its time

domain counterpart and also to reduce its complexity.

At the end of the second part the scrambled LMS is briefly presented and it is compared

with the LMS and transform domain LMS. The chosen framework is the digital data

transmission over a telephone line. The analytical expressions of the mean squared error

and mean squared coefficient error are derived for this special case and a discusion about

their convergence speed and steady-state error is given. The aim of this discusion is to

provide some useful information about the utility of each algorithm.

In the first two parts of the thesis, computer experiments, showing the performances

of all the proposed algorithms, are provided for system identification application. Since

many of the algorithms can be implemented also in other applications, in the third part

of this thesis, channel equalization, CDMA multiuser detection and echo cancellation

applications are also addressed.
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Chapter 1

Introduction

During the last decades the adaptive filters have attracted the attention of many re-

searchers due to their property of self-designing [41]. In applications where some a priori

information about the statistics of the data is available, a linear filter optimal for that

application can be designed in advance (e.g. the Wiener filter which minimizes the mean

squared error between the output of the filter and some desired signal). In the absence of

this a priori information a solution is to use adaptive filters which possesses the ability

to adapt their coefficients to the statistics of the signals involved. As a consequence, the

adaptive filters and algorithms were successfully implemented in a wide variety of de-

vices for diverse application fields such as communications, control, radar and biomedical

engineering, to mention a few.

Adaptive filtering comprises two basic operations: the filtering process and the adap-

tation process. In the filtering process an output signal is generated from an input data

signal using a digital filter, whereas the adaptation process consists of an algorithm which

adjusts the coefficients of the filter to minimize a desired cost function. There is a large

variety of filter structures and algorithms used in adaptive filtering, each of them being

more suitable for a certain application. We first classify the adaptive filters into two

main categories: the Adaptive Finite Impulse Response (AFIR) and the Adaptive Infinite

Impulse Response (AIIR) filters. Moreover, in the class of AFIR filters there are three

different filter structures, namely: the transversal filter depicted in Fig. 1.1, the lattice

predictor as shown in Fig. 1.2 and the systolic array (see Fig. 1.3) [41]. There are other

FIR structures such as, subband FIR adaptive filters and frequency-domain adaptive fil-

ters, to mention a few. The first part of this dissertation addresses the algorithms for

transversal adaptive FIR filters as depicted in Fig. 1.4, where ĥ1(n), . . . , ĥN(n) are the

coefficients of the adaptive filter at time instant n, x(n) is the input sequence, y(n) is

1
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Figure 1.1: The block diagram of a transversal filter.
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Figure 1.2: The block diagram of a lattice predictor.

the output sequence, d(n) is the desired signal and e(n) represents the output error. The

second part of the dissertation is dedicated to the transform domain adaptive filters which

can be directly obtained from the structure shown in Fig. 1.4 including an orthogonal

transform at the input of the adaptive filter.

In connection to Fig. 1.4, the coefficients ĥi(n) are changed at each iteration by means

of an adaptive algorithm. Among many adaptive algorithms, probably the most known

is the Least Mean Squared (LMS), which was derived from the minimization of the mean
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e(n)

z−1
x(n)

z−1
x(n − 1) x(n − N + 2)

z−1
x(n − N + 1)

d(n)

Figure 1.4: The block diagram of an adaptive transversal FIR filter.



4 Introduction

squared error [25], [41], [43], [78], [83]:

J(n) = E
{
e2(n)

}
(1.1)

Many other adaptive algorithms based on minimization of other cost function also exist

such as the Least Mean Fourth algorithm [76], Least Mean P-Power algorithm [62] and

algorithms with adaptive cost function [71], [72], to mention just few. This dissertation

addresses the class of adaptive algorithms derived from the minimization of the mean

squared error which include the LMS algorithms and its variants. When the LMS is

used to adapt the filter coefficients, the following update equation is implemented at each

iteration:

ĥ(n + 1) = ĥ(n) + µe(n)x(n). (1.2)

where ĥ(n) =
[
ĥ1(n), . . . , ĥN(n)

]t
is a N × 1 vector which contains the filter coefficients,

x(n) = [x(n), . . . , x(n − N + 1)]T is the input vector containing the present and past N−1

samples from the input sequence and µ is a constant called the step-size which controls

the convergence and the stability of the algorithm.

An AFIR filter using (1.2), in the adaptation process, converges close to the Wiener

filter after a number of iterations called the transient period [41], [78]. In communica-

tion applications, during the transient period, the transmission of data is not possible

therefore, a fast adaptation is one of the main concerns. The LMS algorithm described

in (1.2) has a very low computational complexity (number of additions, subtractions, di-

visions, multiplications per iteration) and memory load, which makes it very attractive

for practical implementations. It is well known that the step-size µ influences the per-

formances of the adaptive filter [41]. Despite its low complexity, the LMS has also some

drawbacks which influence its performance in terms of convergence speed and accuracy.

Much research has been done during the last decades in order to develop algorithms which

eliminate or at least reduces the drawbacks of the LMS [1], [4], [5], [7], [9], [11], [12], [14]-

[19], [21], [23], [27], [28], [30], [33], [38], [39], [41], [46], [48], [58], [65], [80].

We shall review here some of the main inconveniences of the LMS algorithm. Based

on this, we classify the adaptive algorithms in terms of their goal and the problem they

address to.

1. First drawback of the LMS is its trade-off between small steady-state mean squared

error and fast convergence. For small values of µ in (1.2), the convergence of the

filter coefficients is very slow, but the steady-state mean squared error (MSE) is

small. On the contrary, for larger µ the convergence speed is increased and also

the steady-state MSE. It follows that, in the case of the LMS algorithm, it is not
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possible to obtain fast convergence and small steady-state error at the same time. In

all practical applications, the main goal is to obtain accurate and fast convergence,

therefore some new adaptive algorithms which increase the convergence speed of the

LMS while maintaining a low level of the MSE are necessary.

2. It was established in the open literature, that the speed of convergence of the LMS

depends on the eigenvalue spread of the input autocorrelation matrix [4], [25], [30],

[41], [51], [56], [63]. For large eigenvalue spread, the LMS has a slow convergence

while faster convergence is obtained for eigenvalue spread close to unity.

3. The coefficients of the adaptive filter are updated using an estimate of the cost

function gradient, e(n)x(n). In all applications, the signals involved (see Fig. 1.4)

might be corrupted by additive noise. When the noise is present in the desired

sequence d(n) or in the input sequence x(n), will interfere also in the coefficients

adaptation process through the term e(n)x(n). Due to this fact, in applications

where the distribution of the noise is highly impulsive, the LMS might have low

convergence and stability problems.

4. In the block digram shown in Fig. 1.4, we have assumed that the optimum length

of the adaptive filter is a priori known. This is not always true in practice, since the

statistics of the signals involved are unknown, and so the optimum number of the

coefficients of the adaptive filter. In some applications, an estimate of the optimum

length may be of interest.

5. Tracking capability is another very important characteristic of an adaptive filter.

In stationary environments, there is a linear dependence between the step-size µ

and the steady-state MSE. In this case, the optimum Wiener filter has constant

coefficients and by decreasing the step-size, the steady-state MSE is reduced. When

the environment is non-stationary, such as, fading communication channels, the

dependence between the steady-state MSE and µ is not linear anymore. Actually,

this nonlinear function has a minimum which is obtained for a certain µopt. The

value of µopt depends on the statistical variation of the environment. It follows

that, in non-stationary environments, in order to have small adaptation errors, the

step-size must be closer to the optimum µopt.

There have been many adaptive algorithms introduced in the open literature which

try to solve one or more of these inconveniences of the LMS. Depending on the problem

they addres one can make the following classification of adaptive LMS algorithms:
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C1 Variable Step-Size LMS (VSSLMS) algorithms which uses in (1.2) a time-varying

step-size µ(n) instead of a fixed one. Their main goal is to speed up the convergence

while maintaining a small level of the steady-state MSE and also to reduce the trade-

off between steady-state MSE and convergence speed;

C2 Order Statistic LMS (OSLMS) algorithms which improve the convergence of the

adaptive filter in non-Gaussian noise environments;

C3 Variable Length LMS (VLLMS) algorithms which estimate not only the coefficients

of the adaptive filter also its optimum length;

C4 Variable Step-Size LMS algorithms for time-varying environments. The algorithms

from this class are different from the VSSLMS in C1 due to the fact that their

primary goal is to adapt the step-size µ(n) toward the optimum µopt which minimize

the steady-state MSE;

C5 Transform Domain LMS (TDLMS) algorithms which use an orthogonal transfor-

mation at the input, such that the input autocorrelation matrix is diagonalized.

This class of algorithms was introduced to improve the convergence of the LMS in

applications where the input sequence is highly correlated;

C6 Transform Domain Variable Step-size (TDVSLMS) algorithms which are the com-

bination of VSSLMS and TDLMS and possesses high convergence speed for both

correlated and uncorrelated input sequences. They also reduce the trade-off between

steady-state MSE and convergence speed;

C7 Transform Domain LMS algorithms for time-varying environments, which were in-

troduced to increase the convergence speed and to simplify the structure of the

algorithms in C4;

C8 Other decorrelation techniques, such as, the scrambled LMS (SCLMS), which per-

forms the decorrelation of the input sequence by means of a scrambling device.

However the SCLMS was first introduced in applications where secure data trans-

mission was necessary.

1.1 Overview of the thesis

The dissertation consists of three main parts. According to the above classification of the

adaptive algorithms, all classes from C1 to C8 are discussed in Chapter 2 and Chapter 3.
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Chapter 2 deals with the time domain implementations of adaptive algorithms belong-

ing to classes C1 to C4. First, we start with a brief theoretical analysis of the standard

LMS and some algorithms with variable step-size that were proposed in the open litera-

ture. Next, two novel Variable Step-Size LMS algorithms are introduced and described

in detail. A discussion about the effects of the miss-estimation of the filter length is given

in the sequel and based on this, a variable length LMS algorithm for uncorrelated input

sequences is presented. Subsequently, a theoretical analysis of the LMS for non-stationary

environments is described in detail and based on this analysis a novel adaptive algorithm

with optimum step-size is introduced. Finally the class of Order Statistics LMS algorithms

is presented and a new OSLMS algorithm is introduced.

Chapter 3 is dedicated to the algorithms belonging to classes C5 to C8. First, the

Transform Domain LMS algorithm is described together with some of its variants intro-

duced in the literature. Next, three new algorithms which are combinations of VSSLMS

and TDLMS are presented in more details. A transform domain algorithm with optimum

step-size for time-varying environments is introduced as an alternative to the time domain

implementation from Chapter 2. At the end of this chapter, a brief introduction to the

class of Scrambled LMS algorithms is presented. The theoretical comparison in terms of

mean squared error, mean squared coefficient error and convergence speed between the

LMS, TDLMS and SCLMS is also discussed for the problem of digital data transmission

through a telephone line. The analytical results are supported by simulations performed

for two types of correlated input sequences.

Chapter 4 shows the implementations of some of the algorithms from Chapter 2 and

Chapter 3 in echo cancellation, channel equalization and CDMA frameworks. For the

channel equalization framework the cases of Gaussian and non-Gaussian noise are ad-

dressed.

1.2 Author’s contribution

The author’s contribution to the existing theory is mainly in Chapters 2-4. To the au-

thor’s knowledge, no work has been done before towards combining the VSSLMS and

TDLMS adaptive algorithms to obtain a new class of TDVSLMS algorithms. In the open

literature, the step-size of the TDLMS is considered time-varying due to the power nor-

malization and different techniques which improve the decorrelation of the input sequence

are discussed. The step-size of the algorithms from the novel class of TDVSLMS depends

also on the output error which highly increases their convergence speed. In addition to

that, various novel VSSLMS and VLLMS for time domain and transform domain are
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introduced. The problem of optimum step-size estimation in time-varying environments

for time domain and transform domain is addressed and two new algorithms are derived.

A new Order Statistic LMS (OSLMS) algorithm suitable in applications with unknown

noise distribution is also presented.

The main contribution of this thesis is in the following points:

1. Variable step-size LMS algorithms for time domain: in Proceedings of IEEE Wireless

Communications and Networking Conference EUROCOMM 2000 [18] and presented

at X European Signal Processing Conference EUSIPCO 2000 [19].

2. Variable Length LMS algorithm for time domain, presented at IEEE International

Conference on Electronics, Circuits and Systems, ICECS 2002 , [8].

3. A new Order Statistic LMS algorithm presented at IEEE International Conference

on Audio, Speech and Signal Processing, ICASSP 2002 , [12].

4. Novel adaptive algorithms with optimum step-size for time-varying environments

(in both time and transform domain), presented at: 7th WSEAS International

Conference on Circuits, Systems, Communications and Computers, WSEAS/CSCC

2003 , [15] and IEEE International Symposium on Image and Signal Processing and

Analysis ISISPA 2003 , [14].

5. A new class of Transform Domain Variable Step-Size LMS algorithms, published

in IEEE Signal Processing Letters , [9], WSEAS Transactions on Circuits, [10] and

presented at: XI European Signal Processing Conference, EUSIPCO 2002 , [11] and

IEEE International Conference on Electronics, Circuits and Systems, ICECS 2001 ,

[7].

6. Comparative study between Transform Domain LMS and Scrambled LMS in echo

cancellation framework, presented at International TICSP Workshop on Spectral

Methods and Multirate Signal Processing, SMMSP 2003 , [6]

The author has done the basic derivations and most of the experimental and writing work

in all these publications. The author fulfilled the publications task with the supervisor

and the co-authors of the papers. Other results related with one part or another of the

thesis were published in [13], [16] and [26].



Chapter 2

Time domain implementations

This chapter considers the time domain implementations of four classes of adaptive algo-

rithms: Variable Step-Size LMS (VSSLMS), Variable Length LMS (VLLMS), the adap-

tive LMS algorithm for time-varying environments and the Order Statistic LMS (OSLMS)

algorithms.

In the first section, the standard LMS algorithm [41], [78] is reviewed and its theoretical

analysis is considered. In the analysis, we follow three main directions: first the transient

and steady-state behavior in terms of the mean squared error is presented for the case of a

stationary environment in which the Wiener filter has time invariant coefficients. Second,

the problem of length mismatch between the adaptive filter and the unknown filter is

studied in a system identification framework. The analytical expressions are derived

for the case when the unknown system has constant coefficients for both correlated and

uncorrelated input sequences. Finally, the analysis of the LMS algorithm for tracking

a time-varying system with fixed length is presented and the formula for the optimum

step-size which minimizes the steady-state MSE is obtained.

In the second section, the class of Variable Step-Size LMS algorithms is addressed.

First we describe few of the most cited algorithms in the open literature and next based

on the results outlined in the first section, two new VSSLMS algorithms are presented.

Simulations results showing the behavior of these new algorithms for the problem of

system identification are given in the sequel. The section ends with a comparison in

terms of computational complexity, memory load and setup simplicity of the mentioned

VSSLMS algorithms.

The class of Variable Length LMS algorithms is detailed in Section 2.3 that starts

with a brief description of some algorithms that were published in the literature. Next

we introduce a new VLLMS algorithm for system identification, which adjusts the length

9



10 Time domain implementations

ŷ(n)x(n)

e(n)

d(n)

ĥ(n)

AdaptiveF ilter

Figure 2.1: Simplified block diagram of an adaptive FIR filter.

of the adaptive filter toward the length of the unknown filter. In the derivation of this

algorithm we use some theoretical results presented in the first section. The simulations

results of the proposed VLLMS algorithm for the problem of system identification for

uncorrelated input sequences, are presented at the end of this section. Length adaptation

for the case of correlated input sequence is addressed in Chapter 4.

Section 2.4 is dedicated to the problem of tracking time-varying systems. From the

theoretical results shown in the first section we directly derive an adaptive algorithm in

which the step-size is time-varying and converge near the optimum. The new algorithm

is implemented in the time-varying system identification framework and the simulation

results are shown.

The last section deals with the class of Order Statistics LMS algorithms (OSLMS). We

first briefly review the algorithms from this class and next we introduce a new algorithm.

The section ends with comparative simulation results of the OSLMS algorithms for the

problem of system identification for various noise distributions.

2.1 The Least Mean Square algorithm

The simplified block diagram of a transversal adaptive FIR filter is depicted in Fig.

2.1 where the block denoted by AdaptiveF ilter comprises an adaptive filter ĥ(n) =[
ĥ1(n), ĥ2(n), . . . , ĥN(n)

]t
and algorithm, x(n) is the input sequence from which the

input vector x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]t is obtained, e(n) is the output

error, ŷ(n) is the output of the adaptive filter and d(n) is the desired signal. All the

theoretical derivations from the present section are referred to this figure.

In connection with Fig. 2.1 the output of the adaptive filter can be written as follows:

ŷ(n) = ĥt(n)x(n) = xt(n)ĥ(n) =
N∑

i=1

ĥi(n)x(n − i + 1). (2.1)
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where t is the transposition operator.

The output error is expressed by the following equation [41]:

e(n) = d(n) − ŷ(n). (2.2)

The coefficients of the adaptive filter are updated to minimize the output mean squared

error defined as follows:

J(n) = E
[
e2(n)

]
= E

{
[d(n) − ŷ(n)]2

}
(2.3)

The optimum filter coefficients in the mean square sense (the optimum Wiener so-

lution) are those coefficients for which the partial derivatives of J(n) equals to zero.

Denoting the vector of the optimum coefficients as ho = [ho1
, . . . , hoN

]t, the system of

equations which gives ho is obtained as in the sequel:

δJ(n)

δhoi

=
δE
[
(d(n) − y(n))2]

δhoi

=

= −2E {x(n − i + 1) [d(n) − yo(n)]} =

= −2E {x(n − i + 1)eo(n)} = 0, ∀i = 1, . . . , N ; (2.4)

where

eo(n) = d(n) − ht
ox(n) (2.5)

is the minimum output error obtained when the coefficients of the adaptive filter equals

the coefficients of the optimum Wiener filter.

Equation (2.4) can be written in a more compact form as follows:

E [x(n)eo(n)] = 0. (2.6)

It follows from (2.6) that the optimum error is orthogonal to the input vector at each

time instant n, and this represents the well known principle of orthogonality.

From (2.4), the Wiener-Hopf equations which give the coefficients of the optimum

filter are represented by:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ho1

r(1 − 1) + ho2
r(1 − 2) + · · · + hoN

r(1 − N) = p(0)

ho1
r(2 − 1) + ho2

r(2 − 2) + · · · + hoN
r(2 − N) = p(1)

. . .

ho1
r(N − 1) + ho2

r(N − 2) + · · · + hoN
r(N − N) = p(N)

↔ Rho = p (2.7)

where r(i−j) = E [x(n − i)x(n − j)], p(i) = E [d(n)x(n − i)] and p = [p(1), p(2), . . . , p(N)]t.
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We note that the terms r(i−j) = r(j− i) and r(i− i) = r(j−j) = r(0) ∀i, j, therefore

the matrix R can be written as:

R =

⎡⎢⎢⎢⎣
r(0) r(1) r(2) . . . r(N − 1)

r(1) r(0) r(1) . . . r(N − 2)
...

...
. . .

...

r(N − 1) r(N − 2) r(N − 3) . . . r(0)

⎤⎥⎥⎥⎦ . (2.8)

When the matrix R is invertible and its elements can be estimated, the optimum

Wiener filter can be easily obtained from (2.7) as:

ho = R−1p. (2.9)

In situations when the elements of the matrix R are not available an iterative algorithm

can be applied to the adaptive filter which transforms its coefficients toward ho. One

simple adaptive algorithm is the Steepest Descent (SD) algorithm, which updates the

coefficients of the adaptive filter at each iteration in the opposite direction of the cost

function gradient. In the case of the SD, the update formula for the filter coefficients is:

ĥ(n + 1) = ĥ(n) − 1

2
µ � J(n), (2.10)

where �J(n) =
[

δJ(n)

δbh1(n)
, δJ(n)

δbh2(n)
, . . . , δJ(n)

δbhN (n)

]t
and

δJ(n)

δĥi(n)
= −2E [x(n − i + 1)e(n)] . (2.11)

In order to compute the elements of the gradient in (2.11), the expectation operator

must be used. A simpler alternative is to use the instantaneous gradient instead of the

true gradient and the obtained algorithm is called the Least Mean Square (LMS). As a

consequence, the LMS algorithm uses the following coefficient update formula:

ĥ(n + 1) = ĥ(n) + µe(n)x(n). (2.12)

where the step-size µ was introduced to control the stability of the algorithm.

Finally, the LMS algorithm can be described by the following four steps:
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Least Mean Square algorithm:

At every iteration n do:

1. Form the input vector x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]t from the input

sequence x(n).

2. Compute the output of the adaptive filter: ŷ(n) = xt(n)ĥ(n) = ĥt(n)x(n);

3. Compute the output error: e(n) = d(n) − ŷ(n);

4. Update the coefficients of the adaptive filter: ĥ(n + 1) = ĥ(n) + µe(n)x(n);

2.1.1 Analysis of the LMS for stationary environments

We point out some important results of the transient and steady-state analysis of the

mean square error of the LMS algorithm for stationary environments which will be used

further in the subsequent sections. The following fundamental assumptions are used in

order to make the convergence analysis of the LMS mathematically tractable1 [41]:

a. The input vectors x(1), x(2), . . . , x(n) are statistically independent from each other;

b. The input vector x(n) at time instant n is independent of all previous samples of

the desired sequence, d(1), d(2), . . . , d(n − 1);

c. The desired response d(n) at time instant n depends on the corresponding input

vector x(n), but it is statistically independent of all previous samples of the desired

response;

d. The input vector x(n) and the desired response d(n) consist of mutually Gaussian-

distributed random variables at all time instants n.

We first start with the analysis of the coefficient error vector defined as:

∆h(n) = ĥ(n) − ho, (2.13)

where ho is the vector of the optimum coefficients given in (2.9).

Subtracting the optimum coefficients vector from (2.12) and using (2.13), one obtains:

∆h(n + 1) = ĥ(n + 1) − ho = ĥ(n) − ho + µe(n)x(n) = ∆h(n) + µe(n)x(n), (2.14)

1These four assumptions form the so called independence theory which, even though is violated in

many practical applications, was proved to retain sufficient information about the adaptive process such

that to allow the derivation of quite reliable design guidelines.
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Subsequently, the formula to compute the output error can be rewritten as follows:

e(n) = d(n) − ĥt(n)x(n) = d(n) − ht
ox(n) + ht

ox(n) − ĥt(n)x(n) = eo(n) − ∆h(n)tx(n),

(2.15)

where eo(n) is the minimum error defined in (2.5).

From (2.14) and (2.15) the coefficient error vector can be obtained as follows:

∆h(n + 1) = ∆h(n) − µx(n)xt(n)∆h(n) + µx(n)eo(n)

=
[
I − µx(n)xt(n)

]
∆h(n) + µx(n)eo(n), (2.16)

where I is the N × N identity matrix.

Taking the mathematical expectation on both sides of (2.16) we obtain:

E [∆h(n + 1)] = E
{[

I − µx(n)xt(n)
]
∆h(n)

}
+ µE [x(n)eo(n)] . (2.17)

The last term in (2.17) vanishes due to the principle of orthogonality expressed by

(2.6). From (2.12) it follows that the coefficient error vector ∆h(n) is independent of

x(n) and as a consequence, (2.17) simplifies as follows:

E [∆h(n + 1)] = [I − µR] E [∆h(n)] . (2.18)

The stability condition for the step-size µ, which ensures the convergence of the adap-

tive filter coefficients in the mean can be obtained from (2.18) after some mathematical

manipulations as follows (see [41] for more details):

0 < µ <
2

λmax

. (2.19)

where λmax is the maximum eigenvalue of R.

To obtain an analytical expression for the output mean squared error, we first compute

the correlation matrix of the coefficient error vector C(n). The matrix C(n) is defined as

C(n) = E
[
∆ĥ(n)∆ĥt(n)

]
and it is obtained from (2.18) as follows (see [41] for detailed

analytical derivations):

C(n+1) = C(n)−µ [RC(n) + C(n)R]+µ2Rtr [RC(n)]+2µ2RC(n)R+µ2JminR. (2.20)

where Jmin = E [e2
o(n)] is the minimum MSE obtained in the case of perfect adaptation.

Recalling equation (2.3), the MSE can be further detailed as in the sequel:

J(n) = E
[(

d(n) − ĥt(n)x(n)
)(

d(n) − xt(n)ĥ(n)
)]

=

= E
[(

eo(n) + ht
ox(n) − ĥt(n)x(n)

)(
eo + xt(n)ho − xt(n)ĥ(n)

)]
=

= E [(eo(n) − ∆ht(n)x(n)) (eo − xt(n)∆h(n))]

(2.21)
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where ∆h = ĥ(n) − ho and ho is the optimum Wiener solution.

Finally, taking into account the above assumptions and after some mathematical ma-

nipulations, the MSE can be expressed as (see [41] for more details):

J(n) = Jmin + tr [RC(n)] , (2.22)

where R is the input autocorrelation matrix, C(n) is the crosscorrelation matrix of the

coefficient error vector and Jmin is the minimum MSE which is obtained in the case of

perfect adaptation (if ĥ(n) = ho).

The steady-state value of the mean squared error, can be expressed by combining

(2.20) and (2.22) for n → ∞, and the following analytical expression results [41]:

Jst = Jmin + Jmin

N∑
i=1

µλi

2−2µλi

1 −
N∑

i=1

µλi

2−2µλi

, (2.23)

which for small values of the step-size µ becomes:

Jst = Jmin +
µ

2
Jmin

N∑
i=1

λi = Jmin +
µ

2
JminNσ2

x = Jmin + Jex. (2.24)

where λi is the ith eigenvalue of R and σ2
x = r(0) is the variance of the input sequence

x(n).

It results from (2.23) and (2.24), that the steady-state MSE contains two components.

First component Jmin is the minimum MSE which can be achieved in the ideal case of

perfect adaptation, when the coefficients of the adaptive filter equals the coefficients of

the Wiener filter. The second component Jex, called the excess MSE, depends upon the

step-size µ and it is due to the missadaptation of the filter coefficients. We shall retain

these two equations which will be recalled later during this thesis.

The misadjustment is defined as the ratio between the excess MSE and the minimum

MSE and it is given by [41], [78]:

M =
Jex

Jmin

=

N∑
i=1

µλi

2−2µλi

1 −
N∑

i=1

µλi

2−2µλi

, (2.25)

and for small step-size the above expression can be simplified to:

M =
µN

2
σ2

x, (2.26)
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The average learning curve of the LMS algorithm can be approximated with an exponen-

tial with time constant τ . In this case the misadjustment can be expressed as follows:

M =
µNλav

2
=

N

4τ
. (2.27)

where λav = 1
N

N∑
i=1

λi is the average eigenvalue of R, and

τ =
1

2µλav

. (2.28)

is the average time constant which is proportional to the length of the transient period of

the algorithm.

We should note, that the condition for the convergence in the mean square sense (the

condition which ensures J(n) → Jst) is given by [41]:

0 < µ <
2

3
N∑

i=1

λi

=
2

3Nσ2
x

. (2.29)

It results from (2.27) and (2.28), that for a given filter length N , the misadjustment

is direct proportional with the step-size and the convergence time is inverse proportional

to µ. As a consequence, if two adaptive filters with the same length N and different

step-size are compared, the faster convergence is obtained with the filter that has larger

step-size. However, the filter with smaller step-size will converge to a smaller level of the

misadjustment M. This is a very important conclusion which is the basis for derivation

of the class of Variable Step-Size LMS algorithms.

2.1.2 Mean squared error as a function of the adaptive filter

length

In the previous section, we pointed out some important analytical expressions for the

optimum Wiener solution, MSE and coefficient error vector of an adaptive FIR filter that

uses the LMS algorithm to update its coefficients. From the analytical expression (2.24)

of the steady-state MSE we see that it depends upon Jmin which is the minimum MSE

in the case of perfect adaptation. In some applications, such as system identification, the

desired signal d(n) in Fig. 2.1 might be generated by an FIR filter of a certain length (for

instance in echo cancellation the sequence d(n) represents the echo generated by the echo

path which is modelled as an FIR filter). Usually, in this kind of applications the length

of the filter generating the desired sequence is not known and the length of the adaptive
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ŷ(n)

e(n)

d(n)

AdaptiveF ilter

x(n)

v(n)

y(n)Unknown

ĥNad
(n)

system hN

Figure 2.2: System identification block diagram for the case when the unknown filter and

the adaptive filter have different lengths.

filter is chosen by the user. As a consequence, when there is a mismatch between the

lengths of the two adaptive filters, there is a bias term which increases the term Jmin in

(2.24) and also the steady-state value of the MSE. In this section, we extend the previous

analysis with an emphasis in the effect of the length adaptation. We focus on the problem

of system identification as shown in Fig. 2.2 in which the desired sequence d(n) is obtained

at the output of an FIR filter (called unknown system) of length N while the adaptive

filter has different length Nad.

To this end, we first change some notations in order to emphasize the difference be-

tween the lengths of the adaptive filter and the unknown system. We denote by N , hN ,

Nad and ĥNad
, the length of the unknown system, the coefficients vector of the unknown

system, the length of the adaptive filter and the coefficients vector of the adaptive filter

respectively.

With reference to Fig. 2.2, the adaptive filter coefficients are updated by the following

formula:

ĥNad
(n + 1) = ĥNad

(n) + µxNad
(n)e(n); (2.30)

where µ is the step-size and xNad
(n) is the vector of the past Nad input samples.

The output error is computed as:

e(n) = y(n) − ŷ(n) + v(n); (2.31)
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where v(n) is the output noise,

y(n) = ht
NxN(n) =

N∑
i=1

hix(n − i + 1), (2.32)

ŷ(n) = ĥt
Nad

(n)xNad
(n) =

Nad∑
i=1

ĥi(n)x(n − i + 1), (2.33)

where N and Nad respectively indicate the lengths of the corresponding vectors.

The coefficients vectors, hN and ĥNad
(n), are denoted as follows:

hN = [h1, h2, . . . , hN ]t , and ĥNad
(n) =

[
ĥ1(n), ĥ2(n), . . . , ĥNad

(n)
]t

. (2.34)

and the input vectors are written as:

xN(n) = [x(n), . . . , x(n − N + 1)]t and xNad
(n) = [x(n), . . . , x(n − Nad + 1)]t

(2.35)

We should emphasize that the lengths N and Nad are usually not equal since the length

N of the unknown filter is not known and the length Nad of the adaptive filter is chosen

by the user. Of course, in applications where the length estimation is not of primary

concern, a long adaptive filter might be implemented without introducing a bias term in

the steady-state MSE as will be more clear in the sequel.

The optimum coefficients hoNad
= [ho1

, . . . , hoNad
], which minimize the mean squared

error, are obtained from the Wiener-Hopf equation. We recall here equation (2.27) in

which we explicitly write the terms pi(n) and we assume that the output noise v(n) is a

random Gaussian-distributed, zero mean sequence independent on x(n):⎧⎪⎪⎪⎨⎪⎪⎪⎩
ho1

r(0) + ho2
r(1) + · · · + hoNad

r(Nad − 1) = h1r(0) + h2r(1) + · · · + hNr(N − 1)

ho1
r(1) + ho2

r(0) + · · · + hoNad
r(Nad − 2) = h1r(1) + h2r(0) + · · · + hNr(N − 2)

. . .

ho1
r(Nad − 1) + . . . . . . . . . . . . + hoNad

r(0) = h1r(Nad − 1) + . . . + hNr(N − Nad)

(2.36)

Subsequently, (2.36) can be written in a compact form:

RNad×NadhoNad
= RNad×NhN . (2.37)

where

RNad×Nad = E
[
xNad(n)xt

Nad(n)
]

=

⎡⎢⎢⎢⎣
r(0) r(1) . . . r(Nad − 1)

r(1) r(0) . . . r(Nad − 2)

. . . . . . . . . . . .

r(Nad − 1) r(Nad − 2) . . . r(0)

⎤⎥⎥⎥⎦ ,(2.38)
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RNad×N = E
[
xNad(n)xt

N(n)
]

=

⎡⎢⎢⎢⎣
r(0) r(1) . . . r(N − 1)

r(1) r(0) . . . r(N − 2)

. . . . . . . . . . . .

r(Nad − 1) r(Nad − 2) . . . r(N − Nad)

⎤⎥⎥⎥⎦ (2.39)

and the subscripts indicate the sizes of the corresponding vectors and matrices.

We note that the matrix RNad×Nad in (2.37) is a square matrix, whereas RNad×N

has different number of rows and columns. As a consequence, in order to compute the

optimum coefficients, three cases must be taken into account namely N < Nad, N = Nad

and N > Nad as follows:

Case 1 : N < Nad In order to obtain the optimum coefficients, the vector of the

unknown system is padded with zeros and we obtain the following vector of length

Nad:

hNad
= [h1, . . . , hN , 0, . . . , 0]tNad

(2.40)

Subsequently, (2.37) can be written as follows:

RNad×NadhoNad
= RNad×NadhNad, (2.41)

and the optimum solution is given by the following equation:

hoNad
= hNad. (2.42)

with hNad given in (2.40).

Case 2 : N = Nad The optimum solution for this case is the same as in the previous

case with the difference that the vector of the unknown filter is not padded with

zeros since hoNad
and hN are of the same length.

Case 3 : N > Nad To compute the optimum coefficients vector, first we rewrite

(2.37) in an equivalent form:

RNad×NadhoNad
= RNad×NadhNad + RNad×(N−Nad)hN−Nad, (2.43)

where the vectors and the matrices from the right-hand side of (2.43) are given by:

hNad = [h1, . . . , hNad] , hN−Nad = [hNad+1, . . . , hN ] (2.44)

RNad×(N−Nad) =

⎡⎢⎢⎢⎣
r(Nad) r(Nad + 1) . . . r(N − 1)

r(Nad − 1) r(Nad) . . . r(N − 2)

. . . . . . . . . . . .

r(1) r(2) . . . r(N − Nad)

⎤⎥⎥⎥⎦ (2.45)
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and RNad×Nad is given in (2.38).

Multiplying (2.43) by R−1
Nad×Nad at left, the vector of the optimum coefficients is

obtained:

hoNad
= hNad + R−1

Nad×NadRNad×(N−Nad)hN−Nad. (2.46)

Finally, combining (2.42) and (2.46) the optimum Wiener solution can be expressed

in a compact form as follows:

hoNad
=

⎧⎨⎩
[h1, . . . , hN , 0, . . . , 0]tNad if N < Nad

[h1, . . . , hN ]tN if N = Nad

hNad + R−1
Nad×NadRNad×(N−Nad)hN−Nad if N > Nad

(2.47)

As a result, when the length Nad of the adaptive filter exceeds the length N of the

unknown filter, the vector of the optimum coefficients is obtained by padding with N−Nad

zeros the vector hN . On the contrary, when the length of the adaptive filter is smaller

than the length of hN , the optimum coefficients are obtained adding a bias term to the

corresponding coefficients of the unknown filter as shown in (2.47).

In the case of uncorrelated inputs, the elements of the matrix RNad×(N−Nad) are all

zeros and in (2.46) we have hoNad
= hNad with hNad given in (2.44). Consequently, for

uncorrelated input sequences the vector of the optimum coefficients is given by:

hoNad
=

⎧⎨⎩
[h1, . . . , hN , 0, . . . 0]tNad , if N < Nad

[h1, . . . , hN ]tN if Nad = N

[h1, . . . , hNad
]tNad , if N > Nad.

(2.48)

To complete the steady-state analysis of the LMS algorithm for the case of length

missmatch, we shall study also the output mean squared error. To this end, we recall

equation (2.22) which gives the output MSE where we explicitly denote the sizes of the

matrices and vectors involved:

J(n) = Jmin + tr [RNad×NadCNad×Nad(n)] , (2.49)

where RNad×Nad is given in (2.38),

CNad×Nad(n) = E
{

∆ĥNad
(n)∆ĥt

Nad
(n)
}

, (2.50)

∆ĥNad
(n) = ĥNad

(n) − hoNad
, (2.51)

and hoNad
is given by (2.47) for correlated inputs and (2.48) for uncorrelated inputs.
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The steady-state MSE is obtained following similar derivations as in the previous

section and we obtain:

Jst = E{e2(∞)} = Jmin

⎛⎜⎜⎜⎝1 +

Nad∑
i=1

µλi

2−2µλi

1 −
Nad∑
i=1

µλi

2−2µλi

⎞⎟⎟⎟⎠ , (2.52)

where λi are the eigenvalues of the input signal autocorrelation matrix RNad×Nad.

For small values of the step-size µ, (2.52) simplifies to:

Jst = Jmin

(
1 +

µ

2

Nad∑
i=1

λi

)
= Jmin

(
1 +

µ

2
tr [RNad×Nad]

)
= Jmin + Jmin

µ

2
Nadσ

2
x, (2.53)

From (2.53) we see that the misadjustment M =
µNadσ

2
x

2
do not depend on the dif-

ference between the lengths of the to filters (unknown system and the adaptive filter).

Intuitively we can explain this by the following fact: if the length of the adaptive fil-

ter is larger than the length of the unknown system, the extra coefficients converge to

zero. However, they will no be exactly equal to zero but will oscillate around zero. These

small oscillations of the extra coefficients will generate misadjustment exactly as the other

non-zero coefficients. When the length of the adaptive filter is smaller than the length

of hN , the optimum coefficients are obtained adding a bias term to the corresponding

coefficients from hN . The bias terms are non-zero if the input is correlated and they are

zero for uncorrelated inputs. However the misadjustment is the measure of adaptation to

the optimum solution which is biased and not to the coefficients of the unknown system.

To obtain the final expression of the steady-state MSE, the value of Jmin must be

expressed for three different cases: Nad < N , Nad = N and Nad > N .

Analysis of the minimum mean squared error

The value of the minimum mean squared error, Jmin, in (2.52) and (2.53) is obtained

in the case of perfect adaptation (when the coefficients of the adaptive filter equals the

optimum coefficients) and it is given by:

Jmin = E {e2
o(n)} = E

{
[y(n) + v(n) − yo(n)]2

}
= E {v2(n)} + E

{
[y(n) − yo(n)]2

}
,

Jmin = σ2
v + E

{[
N∑

i=1

hix(n − i + 1) −
Nad∑
i=1

hoi
x(n − i + 1)

]2
}

(2.54)
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where yo(n) =
Nad∑
i=1

hoi
x(n− i + 1) is the optimum output and v(n) is a zero mean random

Gaussian-distributed sequence with variance σ2
v and independent of x(n).

It follows from (2.47), that Jmin for the case of a correlated input sequence, can be

written as:

Jmin =

⎧⎪⎪⎨⎪⎪⎩
σ2

v if N ≤ Nad,

σ2
v + E

⎧⎨⎩
[

Nad∑
i=1

(hi − hoi
) x(n − i + 1) +

N∑
i=Nad+1

hix(n − i + 1)

]2
⎫⎬⎭ if N > Nad

(2.55)

For uncorrelated input sequence x(n), E {x(n − i + 1)x(n − j + 1)} = 0 for i �= j, and

the vector of the optimum coefficients is given by (2.48). As a result, equation (2.55), in

the case of uncorrelated input, simplifies to:

Jmin =

⎧⎨⎩
σ2

v , if N ≤ Nad,

σ2
v +

N∑
i=Nad+1

h2
i r(0), if N > Nad

(2.56)

Simulations and results

In order to test the above analytical results two sets of simulations were done. In the

first set, the behavior of the MSE and the behavior of the coefficients in the mean, for

correlated input sequence is studied. By doing this analysis we are interested to check the

validity of (2.47) and (2.55). The second set of simulations was done for uncorrelated input

sequence with a view to verify the validity of (2.48) and (2.56). Both sets of simulations

were done in system identification framework as depicted in Fig. 2.2 for the case when

the the length of the adaptive filter was smaller than the length of the unknown system

(Nad < N) and also for the situation when the adaptive filter has more coefficients than

the unknown system (Nad > N).

In all simulations, a number of 100 independent Monte-Carlo simulations were done,

each of them consisting of a number of 5 × 104 iterations and the results were averaged.

The coefficients of the adaptive filter were initialized with ones although in practice, when

there is no information about the optimum solution, usually they are initialized with zeros.

We have chosen this kind of initialization to show that the extra coefficients of the adaptive

filter, (when Nad > N) are adapted toward zero independently of initialization.

Correlated input sequence:

1. N > Nad: In this case, the length of the unknown FIR filter hN in Fig. 2.2 was

N = 9, the length of the adaptive filter was N = 5 and the input sequence x(n) was
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generated by the following model:

x(n) = 1.79x(n − 1) − 1.85x(n − 2) + 1.27x(n − 3) − 0.41x(n − 4) + η(n) (2.57)

where η(n) is a random zero mean Gaussian-distributed sequence with variance

chosen, such that the variance of x(n) is unity (σ2
x = 1).

The trace of the input autocorrelation matrix RNad×Nad was tr [RNad×Nad] = Nadσ
2
x =

5. It follows, that the condition for the convergence in the mean square sense in

(2.29) is µ < 0.13. A step-size µ = 10−2 which satisfy this condition, was chosen.
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Figure 2.3: The coefficients ĥ1(n) to ĥ5(n) of the adaptive filter, during the adaptation

(continuous line) and the corresponding coefficients of the unknown system (dashed line)

for correlated input sequence and N > Nad.

The output MSE is shown in Fig. 2.4 together with the steady-state MSE obtained

when the adaptive filter and the unknown filter are of equal length (Nad = N = 9).

We can see from this figure, that the obtained steady-state level of the MSE is

higher than the one obtained for equals lengths, which verifies the analytical result

of (2.55). It follows that for a correlated input sequence and N > Nad, the steady-

state MSE has a bias term that is due to the extra coefficients of the unknown system

which does not have correspondences into the adaptive filter. Unfortunately, there

is no proof that larger differences in the length of the filters increase the bias term.

In fact, it is possible in some cases, that the extra coefficients of the unknown system

have negative values and therefore, the MSE bias can decrease when the difference

between the lengths of the two filters increases.
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Figure 2.4: Mean squared error for correlated input sequence and N > Nad.

The coefficients of the adaptive filter during the adaptation are plotted in Fig. 2.3,

where the corresponding coefficients of the unknown system are also shown. The

plotted learning curves clearly show that, at the steady-state there is a bias in every

coefficient of the adaptive filter which verifies the analytical result of (2.47).

We can conclude that, there is a bias term in every adaptive filter coefficient, in

the case of correlated input sequences when the adaptive filter is smaller that the

unknown system. These bias terms prevent the coefficients of the adaptive filter to

converge close to the corresponding coefficients of the unknown system. In other

words, the coefficients of the optimum filter are not equal with the coefficients of

the unknown system. The misadjustment of the adaptive filter (that is a measure

of the adaptation to the optimum filter) is not influenced by the bias. On the other

hand, the minimum mean squared error Jmin is affected by the bias terms of the

coefficients and by the non-zero elements of the matrix RNad×(N−Nad).

2. N < Nad: In the simulations performed for this case we have used the same unknown

system of length N = 9 and the same correlated input sequence given by the model

in (2.57). The length of the adaptive filter was Nad = 11 and the step-size used to
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Figure 2.5: The coefficients ĥ1(n) to ĥ6(n) of the adaptive filter, during adaptation (con-

tinuous line) and the corresponding coefficients of the unknown system (dashed line) for

correlated input sequence and N < Nad.
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Figure 2.6: The coefficients ĥ7(n) to ĥ11(n) of the adaptive filter, during the adaptation

(continuous line) and the corresponding coefficients of the unknown system (dashed line)

for correlated input sequence and N < Nad.

update its coefficients was µ = 10−2 which satisfies the stability condition in the

mean square sense.

The behaviors of the adaptive filter coefficients are shown in Fig. 2.5 and Fig.

2.6. In both figures, the corresponding coefficients of the unknown system are also

plotted as dashed lines. Since the adaptive filter has larger length than the unknown
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Figure 2.7: Mean squared error for correlated input sequence and N < Nad.

system, in the last to plots of Fig. 2.6 we have shown the zero level with dashed

line. From Fig. 2.5 and Fig. 2.6 we can see that the first 9 coefficients converge to

hN whereas the last two coefficients of the adaptive filter converge to zero, which

demonstrate the analytical result of (2.47).

The MSE during the adaptation is shown in Fig. 2.7 together with the steady-

state MSE obtained when the length of the adaptive filter equals the length of the

unknown system. From this figure, we can see that the convergence of the MSE for

N < Nad and for N = Nad are the same. This is due to the fact that the extra

coefficients of the adaptive filter converges to zero as shown in Fig. 2.6.

Uncorrelated input sequence:

1. N > Nad: The behavior of an adaptive filter using the LMS algorithm is studied in

the system identification setup depicted in Fig. 2.2, for the case when the length

Nad of the adaptive filter is smaller than the length N of the unknown system and

the input x(n) is uncorrelated. To this end, we have chosen N = 9, Nad = 5 and

a zero mean random Gaussian distributed input sequence with unity variance. In

this case, the trace of the input autocorrelation matrix is tr [RNad×Nad] = 5 and a
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step-size µ = 10−2 which fulfill the condition for the MSE convergence was used.
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Figure 2.8: Coefficients for ĥ1(n) to ĥ5(n) of the adaptive filter, during adaptation (con-

tinuous line) and the corresponding coefficients of the unknown system (dashed line) for

uncorrelated input sequence and N > Nad.
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Figure 2.9: Mean squared error for uncorrelated input sequence and N > Nad.

The values of the coefficients during the adaptation are shown in Fig. 2.8 together
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with the values of the first five coefficients of the unknown system (dashed line). We

see that the coefficients of the adaptive filter converge close to their corresponding

coefficients of the unknown system.

The mean squared error J(n) during adaptation is shown in Fig. 2.9 together with

the value of the steady-state MSE, denoted as Jst, obtained in the case of equal

lengths. Clearly, there is a positive bias term due to the extra coefficients of the

unknown filter (see (2.56)).

2. N < Nad: In order to study the MSE and the coefficient behavior for the case when

the adaptive filter has more coefficients than the unknown system the same simu-

lations were repeated for N = 9 and Nad = 11. The coefficients of the unknown

system were the same as in the previous experiments, the input sequence x(n) was

a zero mean random Gaussian-distributed sequence with variance σ2
x = 1 and a

step-size µ = 10−2 was chosen.

The coefficients of the adaptive filter versus the coefficients of the unknown system,

during the adaptation are shown in Fig. 2.10 and Fig. 2.11. Due to the fact that the

adaptive filter has more coefficients than hN , in the last two plots of Fig. 2.11, the

zero levels are shown with dashed lines. We can see from these plots that the first

9 coefficients of the adaptive filter converge close to the corresponding coefficients

of the unknown system, whereas the extra coefficients converge to zero.

The MSE at the output of the adaptive filter is plotted in Fig. 2.12 together with

the value of the steady-state MSE obtained for equals lengths (dashed line). We can

see that, although the adaptive filter has more coefficients, the steady-state value

of the MSE is unbiased. This result is the consequence of the fact that the extra

coefficients of the adaptive filter converge to zero and the others converge to hN .

In conclusion, the analysis of the adaptive FIR filter using the LMS algorithm for the

problem of system identification was presented. In the analysis, we have been interested

in studying the effect of the mismatch between the lengths of the unknown system and the

adaptive filter. The aim of this study is to provide a theoretical basis for the development

of the class of Variable Length LMS algorithms in which not only the estimation of the

coefficients is of interest but also the length estimation.

From the presented analysis, we can conclude the following: when the input sequence

is correlated and the adaptive filter is smaller than the unknown system the coefficients

of the adaptive filter converges to the biased values of the first Nad coefficients of hN . In

this case, the steady-state MSE is also biased as compared with the case of equal lengths.
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Figure 2.10: Coefficients for ĥ1(n) to ĥ6(n) of the adaptive filter, during adaptation

(continuous line) and the corresponding coefficients of the unknown system (dashed line)

for uncorrelated input sequence and N < Nad.
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Figure 2.11: Coefficients for ĥ7(n) to ĥ11(n) of the adaptive filter, during adaptation

(continuous line) and the corresponding coefficients of the unknown system (dashed line)

for uncorrelated input sequence and N < Nad.

When the length of ĥNad is larger than the length of the unknown system, the first N

coefficients of the adaptive filter converge to hN and the others to zero. In this case the

steady-state MSE is the same as in the case of N = Nad. Unfortunately, for correlated

input sequence there is no direct dependence between the value of the MSE bias and the

difference between the filter lengths. In some cases, the extra coefficients of the unknown
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Figure 2.12: Mean squared error for uncorrelated input sequence and N < Nad.

system can have negative values therefore, there is no guarantee that for larger mismatch

of the lengths the MSE bias is increased.

For uncorrelated input sequence, the optimum coefficients are equal to the first Nad

coefficients of the unknown system in the case Nad < N whereas for Nad ≥ N the first

N coefficients of the optimum solution are equal to the coefficients of hN and the others

are zero. As a consequence the steady-state output MSE is biased when Nad < N and

unbiased for Nad ≥ N . More than that, there is a direct dependence between the bias

level and the length mismatch of the filters. When the adaptive filter has length closer

to the length of the unknown system the level of the bias is smaller whereas when the

difference between these two lengths is increased the bias increases.

2.1.3 Optimum step-size for time-varying environments

In this section, we study the behavior of the LMS adaptive algorithm for a time-varying

environment. With reference to Section 2.1.1, we derive here the equivalent Wiener-Hopf

equation (2.7) for time-varying environment. To this end, we start from the minimization

of the MSE defined in (2.3). The optimum coefficients are obtained making the partial
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derivatives of J(n) equal to zero and we obtain:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ho1

(n)r1−1(n) + ho2
(n)r1−2(n) + · · · + hoN

(n)r1−N(n) = p0(n)

ho1
(n)r2−1(n) + ho2

(n)r2−2(n) + · · · + hoN
(n)r2−N(n) = p1(n)

. . .

ho1
(n)rN−1(n) + ho2

(n)rN−2(n) + · · · + hoN
(n)r0(n) = pN(n)

(2.58)

where ri−j(n) = E [x(n − i + 1)x(n − j + 1)], pi(n) = E [d(n)x(n − i + 1)] and p(n) =

[p1(n), p2(n), . . . , pN(n)]t.

In (2.58), the input sequence x(n) and the desired sequence d(n) were assumed to be

non-stationary as opposed with (2.3), where x(n) and d(n) were assumed stationary. As

a consequence, the expectation operator of x(n− i + 1)x(n− j + 1) depends on the time

instant n, such that, E {x(n − i + 1)x(n − j + 1)} �= E {x(m − i + 1)x(m − j + 1)} for

n �= m. This is why the time instant n appears explicitly in (2.58). The indexes of the

elements ri−j(n) represent the difference between the time instants of x(n − i + 1) and

x(n− j +1) and they express the fact that the cross-correlations between different inputs

of the adaptive filter are computed. For the same reason, the elements of the vector p(n)

contain information about the time instant at which they were computed (since x(n) and

d(n) are assumed to be non-stationary). Since the autocorrelation matrix R(n) and the

vector p(n) are time-varying, also the optimum vector ho(n) is time-varying and (2.58)

can be written in a compact form as follows:

R(n)ho(n) = p(n). (2.59)

where:

R(n) =

⎡⎢⎢⎢⎣
r0(n) r1(n) . . . rN−1(n)

r1(n) r0(n) . . . rN−2(n)

. . . . . . . . . . . .

rN−1(n) rN−2(n) . . . r0(n)

⎤⎥⎥⎥⎦ (2.60)

We note that, (2.59) includes all the non-stationary situations that can appear in

practice as follows: if x(n) is non-stationary but d(n) is stationary the autocorrelation

matrix and the cross-correlation vector are both time-varying. When x(n) and d(n) are

both non-stationary, R(n) and p(n) are again time-varying. In applications, where the

input sequence x(n) is stationary and the desired sequence d(n) is non-stationary, just

the cross-correlation vector p(n) is time-varying and the matrix R has fixed coefficients.

As a result, in all the above mentioned cases the optimum vector ho(n) has time-varying

coefficients.

Here we address the problem of time-varying system identification depicted in Fig.

2.13, where h(n) = [h1(n), . . . , hN(n)]t is a linear time-varying channel whose coefficients
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Figure 2.13: Block diagram of time-varying system identification using an adaptive FIR

filter.

must be estimated by an adaptive FIR filter with the same number of coefficients ĥ(n) =[
ĥ1(n), ĥ2(n) . . . , ĥN(n)

]t
, x(n) is the stationary input sequence, d(n), e(n) and v(n) are

the desired sequence, the output error and the output noise respectively.

We note that the difference between Fig. 2.2 and Fig. 2.13 consists in the fact that

the unknown system does not have fixed coefficients but they are time-varying. However,

the length of the unknown system here is assumed to be known and an adaptive FIR filter

with the same length is implemented. Due to the fact that the input sequence x(n) is

stationary and the desired sequence d(n) is obtained at the output of a time-varying FIR

filter, the input autocorrelation matrix is time-invariant and the cross-correlation vector

p(n) is time-varying. Therefore, we restrict our discussion to the applications where the

non-stationarity appears into the desired sequence d(n), and (2.59) simplifies to:

Rho(n) = p(n). (2.61)

The other situations, when the non-stationarity appears in the input sequence or in both

x(n) and d(n), are left beyond the scope of this thesis. Although, we address here just

this case, there are many practical applications in which the analytical results developed

in this section and the algorithm introduced in the subsequent are of great interest. One

example of such application is echo cancellation where the echo path can be modelled by

a time-varying FIR filter.
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With reference to Fig. 2.13, the noisy observation at time n is given by:

d(n) = y(n) + v(n) = ht(n)x(n) + v(n). (2.62)

where x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]t is the tap input vector.

To obtain the optimum coefficients vector ho(n) we express the cross-correlation vector

p(n) in terms of autocorrelation matrix and vector h(n). Assuming that the output noise

v(n) is zero mean and independent to x(n), (2.61) can be written:

Rho(n) = Rh(n) → ho(n) = h(n). (2.63)

As a result, the optimum coefficients vector at each time instant n equals the vector of the

time-varying coefficients of the unknown system. The minimum output error is obtained

in the ideal case when the vector of the adaptive filter coefficients equals ho(n) and it can

be expressed as follows:

eo(n) = ht(n)x(n) − ht
o(n)x(n) + v(n) = v(n), (2.64)

From (2.64), the minimum MSE is obtained as follows:

Jmin = E
[
e2

o(n)
]

= E
[
v2(n)

]
= σ2

v . (2.65)

The coefficients of the adaptive filter ĥ(n) are modified to minimize the output mean

squared error. When the LMS algorithm is used for adaptation, the update formula for

the coefficients of the adaptive filter is:

ĥ(n + 1) = ĥ(n) + µe(n)x(n). (2.66)

where µ is the step-size.

In order to make the theoretical analysis more tractable, the following assumptions

are commonly used in the open literature (see [28] and [41]):

1. x(n) and eo(n) are zero-mean, stationary, jointly normal and with finite moments.

Where eo(n) is the output error in the case of perfect adaptation (when ĥ(n) =

ho(n)).

2. The successive increments ε(n) = h(n + 1) − h(n) of the channel coefficients are

independent to each other. However, the elements of ε(n) might be statistically

dependent for a given n. The sequence ε(n) is zero-mean and stationary such that

the covariance matrix of the filter coefficients increments Q = E [ε(n)εt(n)] is time

invariant.
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3. ĥ(n) is independent to eo(n) and x(n). This assumption is satisfied when the value

of the step-size µ is small enough.

4. eo(n), ε(n) and x(n) are independent to each other.

According to Assumption 2, we restrict our discussion to the tracking of time-varying

systems given by the following model:

h(n + 1) = h(n) + ε(n), (2.67)

with ε(n) being the N × 1 vector of the channel increments.

However, the time-varying model in (2.67) is not the only model which satisfy the

Assumption 2. It was shown in [25] that also the Markov model h(n + 1) = αh(n) + ε(n)

satisfy Assumption 2 provided that the constant α is close to unity.

Subtracting ho(n) = h(n) from both sides of (2.66) and using (2.67), the coefficient

error vector is obtained as follows:

∆h(n + 1) = ĥ(n + 1) − h(n + 1) = ĥ(n) − h(n) − ε(n) + µe(n)x(n),

∆h(n + 1) = ∆h(n) − ε(n) + µe(n)x(n) (2.68)

The output error is obtained as:

e(n) = y(n) − ŷ(n) + v(n) = ht(n)x(n) − ĥt(n)x(n) + v(n),

e(n) = ht(n)x(n) − ht
o(n)x(n) + ht

o(n)x(n) − ĥt(n)x(n) + v(n),

e(n) = v(n) − ∆ht(n)x(n). (2.69)

where ŷ(n) = ĥ(n)tx(n).

From (2.68) and (2.69) it follows, that the coefficient error vector can be written in

the following manner:

∆h(n + 1) = ∆h(n) − ε(n) − µx(n)xt(n)∆h(n) + µv(n)x(n) (2.70)

The mean of the coefficient error vector is obtained taking the expectation operator in

(2.70) and using the Assumptions 1 and 2:

E [∆h(n + 1)] = (I − µR) E [∆h(n)] . (2.71)

Following a similar derivation as in [25], [28] and [41], it can be shown that for large n the

left hand side of (2.71) converges to zero provided that the step-size satisfies the following

condition:

0 < µ <
2

λmax

. (2.72)

where λmax is the maximum eigenvalue of R.

At this point we should make two important remarks:
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• The expected value of the coefficient error vector E [∆h(n)], for large n converges

to zero in view of the Assumption 2 in which the increments ε(n) of the unknown

filter coefficients are assumed zero mean. If this assumption is violated, in the

right-hand side of (2.71) a non-zero term E [ε(n)] appears which prevents the vector

E [∆h(n + 1)] from converging to zero.

• The convergence condition of (2.72) is valid for a time-invariant autocorrelation

matrix R. When the autocorrelation matrix is time-varying (due to the non-

stationarity of x(n)), the stability condition of (2.72) becomes:

0 < µ <
2

λmax(n)
. (2.73)

which means that the step-size µ should be smaller than the inverse of the maximum

eigenvalue of R(n) computed at each time instant n.

The cross-correlation matrix C(n) = E [∆h(n)ht(n)], of the coefficient error vector can

be computed multiplying (2.70) with its transpose and taking the expectation operator,

as follows:

C(n + 1) = E
[
∆ht(n + 1)∆h(n + 1)

]
=

= C(n) + Q − µRC(n) − µC(n)R + µ2σ2
vR + µ2Rtr [RC(n)] + 2µ2RC(n)R.

(2.74)

For small value of the step-size µ the last two terms in (2.74) can be neglected (see [28])

and the cross-correlation matrix C(n + 1) becomes:

C(n + 1) = C(n) + Q − µRC(n) − µC(n)R + µ2σ2
vR, (2.75)

At the steady-state, for large values of n we have lim
n→∞

C(n + 1) = lim
n→∞

C(n) and (2.75)

can be written as in the sequel:

µRC(∞) + µC(∞)R = Q + µ2σ2
vR, (2.76)

The steady-state mean square coefficient error defined as Θst = tr [C(∞)] is obtained by

pre-multiplying (2.76) with R−1 and taking the trace, as follows:

2µΘst = tr
[
R−1Q

]
+ µ2σ2

vtr [I] ,

Θst =
1

2

[
µσ2

vN +
1

µ
tr
[
R−1Q

]]
(2.77)
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where we have used the fact that tr [AB] = tr [BA].

Using Assumptions 1 to 4 and following a development similar to [28], [41], which is

not detailed here, the steady-state MSE is obtained as follows:

Jst = Jmin + tr [RC(n)] , (2.78)

where Jmin is the minimum MSE in the case of perfect adaptation and it is expressed by

(2.65).

Finally, after some mathematical manipulations, the steady-state MSE can be explic-

itly expressed by the following formula:

Jst = σ2
v +

1

2

[
µσ2

vtr [R] +
tr [Q]

µ

]
(2.79)

The steady-state MSE given by (2.79) is a nonlinear function of the step-size µ and it

possesses a minimum (see [28] and [41]) which corresponds to an optimum step-size µopt.

The value of µopt can be computed taking the derivative of (2.79) with respect to µ equal

to zero.

δJst

δµ
= 0 ⇒ µmse

opt =

√
tr (Q)

σ2
vtr [R]

(2.80)

Also the steady-state value of the mean square coefficient error Θst expressed by (2.77)

is a nonlinear function of the step-size µ and its minimum is obtained for:

µcoef
opt =

√
tr [R−1Q]

σ2
vN

. (2.81)

In conclusion, the steady-state MSE and the steady-state mean square coefficients

(MSC) error, for a time-varying system identification are nonlinear functions on the step-

size µ. This effect is different from the case of a time-invariant system identification

where the dependency between the steady-state MSE and steady-state MSC are linear

functions on the step-size µ. As a consequence, for applications in which minimization

of the output error is of primary interest, a step-size close to µmse
opt should be used. On

the contrary, when the minimization of the coefficient error represents the main goal,

the step-size used in the adaptation process must be close to µcoef
opt . Another interesting

conclusion is that the class of Variable Step-Size LMS algorithms which were introduced

based on the analytical results obtained for a time-invariant environment might not be

suitable for time-varying systems. The VSSLMS which were derived based on the linear

dependence between the steady-state MSE and the step-size might not give good results in

time-varying environments in the sense that if the step-size is decreased as the algorithm
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goes close to the steady-state the MSE may actually increase. However, the optimum

step-size µmse
opt can be accommodated in the VSSLMS such that the speed of convergence

is increased while maintaining a small output missadjustment.

In order to use (2.80), for computation of the optimum step-size, one needs to know

tr [Q], tr [R], and σ2
v . Although the trace of R can be estimated during the adaptation,

the noise variance and the trace of Q are not known in practice. The common method in

the present literature is to estimate the channel parameters and the channel noise prior to

adaptation and to compute the optimum step-size using (2.80). The problem is when the

channel statistics cannot be easily and accurately estimated or when they change during

the adaptation. In such cases, the optimum step-size is impossible to be estimated in

advance. Iterative methods are therefore necessary which adaptively changes the step-

size toward the optimum, such that the steady-state MSE or steady-state MSC error are

minimized. An iterative algorithm for step-size adaptation toward µmse
opt is introduced in

Section 2.3 of this thesis.

2.1.4 Simulations and results

At this point, we will perform some computer simulations with the aim to verify the

analytical results of (2.77) and (2.79). To this end, we have implemented an adaptive

FIR filter in time-varying system identification framework as depicted in Fig. 2.13. The

length of the unknown system h(n) was N = 4 and the length of the adaptive filter ĥ(n) is

equal. The coefficients of the unknown system were modelled as in (2.67) and the elements

of ε(n) were zero mean random Gaussian-distributed with identical variances σ2
ε = 10−5,

such that the cross-correlation matrix equal Q = σ2
ε I with I being the identity matrix.

The input sequence x(n) used in the simulations was given by the following model:

x(n) = αx(n − 1) + η(n).

where α = 0.75 and η(n) was zero mean Gaussian distributed with variance chosen, such

that the variance of x(n) was unity.

The optimum step-sizes µmse
opt and µcoef

opt which minimize the steady-state MSE and Θst

are obtained from (2.77) and (2.79) as follows:

µmse
opt = 10−2 and µcoef

opt = 0.0171

We have conducted several experiments using the above system setup, and for each

experiment the step-size used to update the adaptive filter coefficients was constant.
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Figure 2.14: Steady-state excess MSE

vs. the step-size for a time-varying sys-

tem identification: experimental results

(continuous line) and theoretical results

(dashed line).
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Figure 2.15: Steady-state mean square co-

efficient error vs. the step-size for a time-

varying system identification: experimen-

tal results (continuous line) and theoreti-

cal results (dashed line).

However, the step-sizes used in different experiments were not equals. For each experiment

a number of 100 independent runs of 104 iterations were performed and the results were

averaged. In every experiment the steady-state MSE and the steady-state mean square

coefficient error are computed and they are plotted in Fig. 2.14 and Fig. 2.15 respectively

together with their theoretical values obtained by estimation of (2.77) and (2.79) for

different step-sizes.

A good agreement between the theory and practice can be observed in both Fig. 2.14

and Fig. 2.15.

2.2 Variable step-size Least Mean Square algorithms

As we outlined in Section 2.1, in practical applications adaptive algorithms which possess

high convergence speed while maintaining small convergence error are of great interest.

For instance, in channel equalization during the transient period, the frequency char-

acteristic of the adaptive equalizer is far from the inverse of the frequency response of

the channel therefore, the data transmitted during this time will be corrupted. In echo

cancellation application, if the coefficients of the adaptive canceler are not close to the

coefficients of the FIR filter which models the echo path the resulting echo signal is not
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attenuated. Actually, it is possible in this application, that during the transient period,

the echo will be actually amplified. As a consequence, the transient period of the adap-

tive filter must be as small as possible for most of the practical applications in order to

improve the overall quality of the system.

The Least Mean Square algorithm has a small computational complexity therefore,

it is very simple to be implemented in practice. Although its simplicity, one of its main

drawbacks is the fact that the speed of convergence and steady state error depends on

the same parameter, the step-size µ. This conclusion was pointed out in Section 2.1.1

equations (2.27) and (2.28), where we have seen that there is a direct dependence between

the step-size and the misadjustment, while the convergence speed is inverse proportional

with µ. In conclusion, when a constant step-size is used in the LMS, there is a tradeoff be-

tween the steady-state error and the convergence speed, which prevent a fast convergence

when the step-size is chosen to be small for small output error. In order to deal with this

problem, a simple idea is to use a step-size which is time-varying during the adaptation.

At early stages of the adaptation, when the adaptive filter is far from the optimum, a

larger value of the step-size should be used. This will shorten the transient period and

increase the convergence speed of the adaptive filter. As the adaptive filter goes close to

the optimum Wiener solution, the step-size should be decreased and so the misadjustment

expressed by (2.26). The adaptive algorithms derived from the LMS, which uses time-

varying step-size modified as described above, belong to the class of Variable Step-Size

LMS (VSSLMS) algorithms. We should note that there are other adaptive algorithms

with time-varying step-size, which we do not include in the class of VSSLMS due to the

fact that they use step-size adaptation for other purposes, such as, finding the optimum

step-size for time-varying environments.

In this section, we emphasize on the class of VSSLMS which uses time-varying step-

size to improve the convergence speed and also to reduce the tradeoff between the mis-

adjustment and the convergence time. Other algorithms with time-varying step-size are

discussed in subsequent sections.

2.2.1 Existing approaches

We review here some of the most cited algorithms from the class of VSSLMS and after that

in the next two sections we introduce two new VSSLMS algorithms. All the algorithms

from this section are described with reference to Fig. 2.1.
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The VSSLMS algorithm

The VSSLMS algorithm first introduced by Kwong and Johnston in [48] uses the following

update formula for the adaptive filter coefficients:

ĥ(n + 1) = ĥ(n) + µ(n)e(n)x(n). (2.82)

where ĥ(n) is the N × 1 vector of the adaptive filter coefficients, x(n) is the vector of the

past N samples from the input sequence x(n), µ(n) is a time-varying step-size and e(n)

is the output error.

The time-varying step-size is also adapted as in the following equation:

µ′(n + 1) = αµ′(n) + γe2(n),

µ(n + 1) =

⎧⎨⎩
µmax if µ′(n + 1) > µmax,

µmin if µ′(n + 1) < µmin,

µ′(n + 1) otherwise.

(2.83)

with 0 < α < 1 and γ > 0 being some constant parameters and µmax and µmin being the

upper and lower bounds of the time-varying step-size.

The constant parameter µmax which is normally selected close to the instability point

of the conventional LMS algorithm is used to increase the convergence speed, while the

parameter µmin is chosen to provide a good compromise between the steady-state misad-

justment and the tracking capability of the algorithm. The parameter γ is used to control

the convergence time and also the steady-state level of the misadjustment. The behavior

of the step-size as described in (2.83) is the following: at early stages of the adaptation

(when the coefficients ĥ(n) are far from the optimum solution) the step-size is increased

due to the large value of the output error. As the algorithm goes closer to the steady-state

the value of e(n) decreases which decrease the step-size µ(n).

The following approximate analytical expression for the steady-state misadjustment

of the VSSLMS algorithm was derived in [48]:

M =
Jex

Jmin

=
1 −

√
1 − 2 (3−α)γJmin

1−α2 tr [R]

1 +
√

1 − 2 (3−α)γJmin

1−α2 tr [R]
(2.84)

Clearly, the steady-state misadjustment depends on the parameter γ and on the min-

imum value of the MSE Jmin. Since the speed of convergence of the algorithm depends

also on the parameter γ we can conclude that there is still a dependence between the

misadjustment and the convergence time. Another drawback of this algorithm is the fact
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that the steady-state misadjustment depends also on Jmin. For instance in system iden-

tification applications, the minimum MSE equals the output noise variance, therefore the

steady-state misadjustment depends on the system noise.

The robust variable step-size LMS algorithm

In order to reduce the influence of Jmin in the steady-state misadjustment (see (2.84)), the

Robust Variable Step-Size LMS (RVSLMS) algorithm was proposed in [1]. The RVSLMS

uses an estimate of the autocorrelation between the output error at adjacent time instants

e(n) and e(n−1) to control the step-size. The same objective, to increase the step-size at

early stages of the adaptation and to decrease µ(n) when the algorithm approaches the

steady-state, is followed.

The following update equation is used for the step-size:

p(n) = βp(n − 1) + (1 − β) e(n)e(n − 1),

µ′(n + 1) = αµ′(n) + γp2(n),

µ(n + 1) =

⎧⎨⎩
µmax if µ′(n + 1) > µmax,

µmin if µ′(n + 1) < µmin,

µ′(n + 1) otherwise.

(2.85)

where the parameters α, γ, µmin and µmax are the same as those used in the VSSLMS

algorithm from [48] and 0 < β < 1 is an exponential weighting factor which controls the

quality of the estimation of p(n).

The misadjustment of the RVSLMS was derived in [1] for both stationary and non-

stationary environments. For stationary environment the steady-state misadjustment is

given by the following expressions [1]:

M =
γαJ2

min (1 − β)

(1 − α2) (1 + β)
tr [R] . (2.86)

Although the misadjustment of the RVSLMS still depends on Jmin, the parameter β which

is introduced in addition together with γ controls the steady-state misadjustment. The

parameter β can be chosen, such that, a small M is obtained while maintaining a large

γ which increases the convergence speed.

The complementary pair LMS algorithm

In order to obtain an algorithm which improves the convergence speed while maintaining

a small steady-state error, in [61] the so called Complementary Pair LMS (CP-LMS) algo-

rithm was proposed. The block diagram of an adaptive filter implementing this algorithm
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Figure 2.16: The block diagram of the complementary pair LMS.

is depicted in Fig. 2.16, where the speed mode filter ĥ1(n) and the accuracy mode filter

ĥ2(n) represent two adaptive filters whose coefficients are adapted by the LMS algorithm

with constant step-sizes µ1 and µ2 respectively. The speed mode filter uses a large step-

size and it is used to increase the convergence speed while the accuracy mode filter, which

uses a small step-size, is implemented to obtain a small steady-state error. Actually the

filter of interest is the accuracy mode filter and the other adaptive filter is used just to

increase the speed as it will be more clear in the sequel. Although this adaptive filtering

structure does not use a time-varying step-size in the update equation, we have chosen to

include it in the class of VSSLMS because the coefficients of the accuracy filter are not

adapted using only the step-size µ2 but they are also adapted by µ1. The coefficients of

the accuracy and speed mode filters are updated as in the following equations:

• The update equation of the accuracy mode filter coefficients:

ĥ2(n + 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ĥ1(n), if

⎧⎪⎪⎨⎪⎪⎩
n = T, 2T, 3T, . . .

and
J∏

j=1

Q(n − jT ) = 1

ĥ2(n) + µ2e2(n)x(n), otherwise;

(2.87)

where Q is computed as follows:
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Q(m) =

⎧⎨⎩ 1, if
m+T∑
i=m

e2
1(i) <

∑m+T
i=m e2

2(i)

0 otherwise;
(2.88)

• The coefficients of the speed mode filter are updated as follows:

ĥ1(n + 1) = ĥ1(n) + µ1e1(n)x(n). (2.89)

where ĥ1(n) is the coefficients vector of the speed mode filter, ĥ2(n) is the coefficients

vector of the accuracy mode filter, µ1 and µ2 are the step-sizes of the speed mode

filter and accuracy mode filter respectively; e1(n) and e2(n) are the errors of the

speed mode filter and accuracy mode filter which are computed as follows (see Fig.

2.16):

e1(n) = d(n) − ŷ1(n) and e2(n) = d(n) − ŷ2(n). (2.90)

As we can see from the equations (2.87), (2.88) and (2.89), the CP-LMS algorithm pre-

sented in [61] consists in two adaptive filters that operate in parallel one with large step-

size, called speed mode filter and another with small step-size, called accuracy mode filter.

Both adaptive filters use a fixed step-size in the adaptation process and their coefficients

are updated using the standard LMS algorithm for a number of T consecutive iterations

which represents the test interval. At the end of each test interval the local averages of

the square errors of both adaptive filters are computed and the coefficients of the accuracy

mode filter are updated accordingly. If the local average of square error of the accuracy

mode filter for L consecutive test intervals is larger than the local average of the square

error of the speed mode filter, the coefficients of the accuracy mode filter are updated

with the coefficients of the speed mode filter. The reason of this update is the following:

when
m+T∑
i=m

e2
1(n) <

m+T∑
i=m

e2
2(n), it means that the speed mode filter is closer to the optimum

solution than ĥ2(n) and its coefficients should be used. As both ĥ1(n) and ĥ2(n) are close

to the optimum solution, the accuracy mode filter will perform better than ĥ1(n) and its

coefficients are adapted using the LMS with a small and fixed step-size.

2.2.2 Complementary Pair Variable Step-Size LMS algorithm

In the CP-LMS algorithm, the coefficients of the accuracy mode filter are re-initialized

with the coefficients of the speed mode filter all the time when the local sum of the square

error e1(n) is less than the local sum of the square error e2(n) for L consecutive test
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intervals. This is because in that case the coefficients ĥ1(n) are closer to the optimum.

This observation can be extended to the step-size as well. For a training interval in which

the speed mode filter performs better than the accuracy mode filter not only its coefficients

are closer to the optimum but also its larger step-size is a better choice. As a consequence,

the step-size of the accuracy mode filter must be increased. On the contrary, when the

accuracy mode filter is closer to the optimum solution, its step-size is decreased in order

to obtain a desired level of the steady-state missadjustment. The new algorithm, called

Complementary Pair Variable Step-size LMS (CP-VSLMS) uses the idea of the CP-LMS

algorithm proposed in [61], but the difference between the two algorithms consists in the

fact that µ2 is time-varying.

In the case of the CP-VSLMS algorithm, the coefficients of the filter with step µ2(n)

are re-initialized in the same way as in the CP-LMS algorithm when the local average

of the e2
2(n) is larger than the local average of the e2

1(n) . In the same time, the step

µ2(n + 1) is changed to the value
µ1 + µ2(n)

2
, which increases the convergence speed of

the algorithm. When the filter with step µ2(n) is closer to the optimum, the step µ2(n) is

decreased in order to obtain a small steady-state error. As a consequence, the CP-VSLMS

algorithm can be described by the following steps:

1. Adaptation of the speed filter coefficients:

ĥ1(n + 1) = ĥ1(n) + µ1e1(n)x(n), (2.91)

where e1(n) = d(n) − ŷ1(n).

2. Adaptation of the coefficients ĥ2(n):

ĥ2(n + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ĥ1(n + 1), if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n = T, 2T, 3T, . . .

and
L∏

i=1

Q(n − iT ) = 1

ĥ2(n) + µ2(n)e2(n)x(n), otherwise.

(2.92)

and e2(n) = d(n) − ŷ2(n).

3. The re-initialization of the variable step:

µ2(n + 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
µ1 + µ2(n)

2
, if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n = T, 2T, 3T, . . .

and
L∏

i=1

Q(n − iT ) = 1;

max {αµ2(n), µ3} , otherwise

(2.93)
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where:

Q(m) =

⎧⎪⎨⎪⎩ 1, if
m+T∑
i=m

e2
1(i) >

m+T∑
i=m

e2
2(i);

0, otherwise.

(2.94)

The filter of interest is ĥ2(n) and its step-size is increased when it converges slowly

than ĥ1(n). The step-size µ2(n) is decreased when the filter ĥ2(n) is near the steady-state.

The coefficients of the adaptive filter ĥ2(n) are re-initialized as in the CP-LMS algorithm.

The minimum value of the step µ2(n) is obtained when the algorithm is at the steady-

state and it is close to µ3. The maximum value of µ2(n) is obtained when the algorithm

is far from the steady-state and can be in some cases very close to µ1, but always will be

smaller than µ1.

The parameters µ1 and µ3 which are the upper and the lower bounds of µ2(n) must

be chosen to ensure the convergence. Moreover, if µ1 is close to the value of µ3, the

number of changes in the step-size µ2(n) is small. In order to provide a large number of

modifications of µ2(n) we must choose µ3 � µ2. As a result, the parameters µ1 and µ3

must be chosen to satisfy the following condition:

µ3 � µ1 <
2

3tr [R]
. (2.95)

where R is the input autocorrelation matrix.

The value of the parameter α in equation (2.93) must be in the interval (0, 1), such

that the step µ2(n) is decreased when ĥ2(n) performs better than ĥ1(n). The parameter

L, that is the number of consecutive test intervals, where the sum of the square errors are

computed, is used in order to avoid missadaptations of the step-size and the coefficients.

The convergence speed of the CP-VSLMS algorithm can be modified by µ1, α and T and

the steady-state level of the misadjustment is obtained selecting the value of µ3.

Theoretical analysis

Is is easy to show, writing the Wiener-Hopf equations, that both adaptive filters converge

to the same optimum solution given by the following equation:

ho = R−1p. (2.96)

where R is the input autocorrelation matrix and p is the cross-correlation vector between

the desired sequence and the input.

To examine the behavior of the coefficients of the CP-VSLMS algorithm we analyze

both algorithms during one test interval. Suppose, that the analysis is made on the interval
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from (k− 1)T to kT and at (k− 1)T the coefficients ĥ2((k− 1)T ) were re-initialized with

ĥ1((k−1)T ). During one test interval the adaptive filters have constant step-sizes µ1 and

µ2((k − 1)T ). At the end of the test interval, the average of the coefficient error vectors

are obtained as follows (see Section 2.1.1):

E
[
∆ĥ1(kT )

]
= [I − µ1R] E

[
∆ĥ1(kT − 1)

]
,

E
[
∆ĥ2(kT )

]
= [I − µ2((k − 1)T )R] E

[
∆ĥ2(kT − 1)

]
. (2.97)

where k is an integer.

Writing the eigenvalue decomposition R = QΛQt of the matrix R equation (2.97)

can be written as follows for every coefficient:

E [v1i
(kT )] = [1 − µ1λi]

T E [v1i
((k − 1)T )] , i = 1, N

E [v2i
(kT )] = [1 − µ2((k − 1)T )λi]

T E [v2i
((k − 1)T )] , i = 1, N. (2.98)

where v2(kT ) = Q∆ĥ2(kT ), v1(kT ) = Q∆ĥ1(kT ), λi is the ith eigenvalue of R and v1i
(n)

and v2i
(n) are the ith elements of v1(n) and v2(n) respectively.

From (2.98) it is clear, that the convergence of the coefficients of the speed mode filter

to the optimum is much faster than the convergence of ĥ2(n) due to the fact that the step-

size µ2(n) is less than µ1 for all time instants n from (k− 1)T to kT and v1i
((k − 1)T ) =

v2i
((k − 1)T )2 for all i.

The MSE at the end of the test interval can be obtained taking into account that the

step-sizes µ1 and µ2(n) are constant for n = (k − 1)T, kT , as follows:

J1(kT ) = Jmin + tr [RC1(kT )]

J2(kT ) = Jmin + tr [RC2(kT )] (2.99)

where the minimum MSE for both adaptive filters is the same Jmin = lim
n→∞

E [e2
o(n)] =

lim
n→∞

E
[
(d(n) − hox(n))2] and the cross-correlation matrices of the coefficient error vectors

are expressed as C1(n) = E
[
∆ĥ1(n)∆ĥt

1(n)
]

and C2(n) = E
[
∆ĥ2(n)∆ĥt

2(n)
]
.

In [20] p. 156, the following approximate expression for the transient MSE of the LMS

with fixed step-size is given.

J(n) ≈ Jmin +
N∑

i=1

λi (1 − µλi)
2n v2

i (0) (2.100)

2This is due to the fact that ̂h2 ((k − 1)T ) = ̂h1 ((k − 1)T ), which implies v1 ((k − 1)T ) =

v2 ((k − 1)T )
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where λi is the ith eigenvalue of the input autocorrelation matrix, vi(0) is the ith element

of the vector v(0) = Qt
[
ĥ(0) − ho

]
and the columns of Q represent the eigenvectors of

the input autocorrelation matrix.

Taking into account that during one test interval the step-sizes of both adaptive filters

are constant, the following equations can be obtained from (2.100):

J1(kT ) ≈ Jmin +
N∑

i=1

λi (1 − µ1λi)
2T v2

1i
((k − 1)T ) ,

J2(kT ) ≈ Jmin +
N∑

i=1

λi (1 − µ2 ((k − 1)T ) λi)
2T v2

2i
((k − 1)T ) (2.101)

where λi is the ith eigenvalue of R, v1i
((k − 1)T ) is the ith element of v1 ((k − 1)T ) =

Qt∆ĥ1 ((k − 1)T ) = ĥ1 ((k − 1)T )−ho and v2i
((k − 1)T ) is the ith element of v2 ((k − 1)T ) =

∆ĥ2 ((k − 1)T ) = ĥ2 ((k − 1)T ) − ho.

We assume that at the beginning of the test interval the coefficients ĥ2 ((k − 1)T ) are

re-initialized with ĥ1 ((k − 1)T ), therefore we have:

v1i
((k − 1)T ) = v2i

((k − 1)T ) (2.102)

Clearly, from (2.101) and (2.102) it follows that the MSE of the speed mode filter

ĥ1(n) is smaller than the MSE of the adaptive filter ĥ2(n) at the end of the test interval3.

The above analysis was made for a test interval (n from (k − 1)T to kT ) with the

assumption that the coefficients ĥ2(n) are initialized with ĥ1(n) at n = (k − 1)T . If at

the beginning of the test interval, the coefficients ĥ2(n) are not re-initialized, the same

analysis can be extended for two or more consecutive intervals. Let us consider that at

n = (k − 1)T the coefficients ĥ2(n) are not re-initialized, but they are re-initialized at

n = (k − 2)T . The average of the coefficients errors at time instant n = kT can be

expressed as follows:

E [v1i
(kT )] = [1 − µ1λi]

2T E [v1i
((k − 2)T )] , i = 1, N

E [v2i
(kT )] = [1 − µ2((k − 2)T )λi]

T [1 − µ2((k − 1)T )λi]
T E [v2i

((k − 2)T )] ,

i = 1, N. (2.103)

3In Section 2.1.1, we have concluded that the steady-state MSE decreases when the step-sizes is

decreased. Here we discuss the behavior of the MSE after a number of T consecutive iterations during

the transient period of the adaptive filters. The conclusion is that a larger step-size will give smaller

transient MSE, which is intuitively correct since larger step-size means faster convergence to the optimum

solution.
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Since E [v1i
((k − 2)T )] = E [v2i

((k − 2)T )] and µ2 ((k − 2)T ) < µ2 ((k − 1)T ) < µ1, it

follows that E [v1i
(kT )] < E [v2i

(kT )], for every coefficients of the adaptive filters.

The transient MSE of both adaptive filters, at time instant n = kT can be approxi-

mated by:

J1(kT ) ≈ Jmin +
N∑

i=1

λi (1 − µ1λi)
2T v1i

((k − 2)T )

J2(kT ) ≈ Jmin +
N∑

i=1

λi (1 − µ2 ((k − 1)T ) λi)
T (1 − µ2 ((k − 2)T ) λi)

T v2i
((k − 2)T )

(2.104)

As a consequence, the speed mode filter has a smaller transient MSE than the accuracy

mode filter ĥ2(n).

From the above analytical results we can conclude that the transient MSE of the

speed mode filter is smaller than the MSE of ĥ2(n) at the end of every test interval. This

conclusion justifies the method for step-size update in (2.93) and the re-initialization of

the accuracy mode filter coefficients from (2.92).

Of course, when the speed mode filter is at steady-state, its MSE can be approximated

by:

J1st
= Jmin

(
1 +

µ1

2
tr [R]

)
. (2.105)

Since the speed mode filter, converges faster than ĥ2(n), the step-size µ2(n) will only be

decreased after ĥ1(n) has converged. Finally, the accuracy mode filter converges to the

following level of the MSE:

J2st
= Jmin

(
1 +

µ3

2
tr [R]

)
, (2.106)

obtained when µ2(n) attains its minimum bound.

2.2.3 Noise Constrained Variable Step-Size LMS algorithm

The inconvenience of the CP-VSLMS algorithm described in the previous section is its

increased computational complexity, as compared with the VSSLMS and RVSLMS algo-

rithms of [1] and [48], due to the use of two adaptive filters which operate in parallel.

In this section we introduce a variable step-size LMS algorithm that exploits the infor-

mation about noise in order to obtain a fast convergence and a small steady-state error.

The proposed filtering structure is introduced mainly for system identification applica-

tions and it uses just one adaptive filter such that the computational complexity is highly

decreased. The block diagram of an FIR adaptive filter implementing the proposed Noise

Constrained Variable Step-Size LMS (NCVSLMS) algorithm for system identification is
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depicted in Fig. 2.2. In this figure, h is the unknown system modelled as an FIR filter of

length N , ĥ(n) is the adaptive FIR filter, x(n) is the input sequence, y(n) and ŷ(n) are

the outputs of the unknown system and the adaptive filter respectively.

The coefficients of the adaptive filter are updated by the following equation:

ĥ(n + 1) = ĥ(n) + µ(n)e(n)x(n). (2.107)

where e(n) = y(n)− ŷ(n)+v(n) is the output error, y(n) = hT (n)x(n), ŷ(n) = ĥT (n)x(n)

and v(n) is the output noise.

To update the variable step-size µ(n) we propose the following formula:

µ(n + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µmax + µ(n)

2
, if

⎧⎨⎩
medT [e2(n)] > C,

and

n = T, 2T, . . .

max {αµ(n), µmin} if

⎧⎨⎩
med [e2(n)] ≤ C,

and

n = T, 2T, . . .

µ(n), otherwise

(2.108)

where µmin and µmax are the minimum and the maximum bounds of the step-size and

medT [e2(n)] is the median of [e2(n), e2(n − 1), . . . , e2(n − T + 1)].

The behavior of the step-size of the proposed algorithm can be described as follows.

For a number of T consecutive iterations (the test interval of length T ) the step-size

µ(n) is constant and the coefficients of the adaptive filter are updated as in the case of a

fixed step-size4. At the end of the test interval, the median of the square output error is

computed and compared with a threshold C. If the median is larger than this threshold,

this means the algorithm is on the transient period therefore, the step-size is increased to

obtain a faster convergence. On the contrary, when the median is comparable with the

threshold, it means that the algorithm is already at the steady-state and the step-size is

decreased in order to obtain a smaller level of the misadjustment. The minimum value of

the step-size is µmin and it is attained when the adaptive filter is at the steady-state.

As we can see from the above description of the algorithm, the main idea here is to

increase the step-size µ(n) during the transient period and to decrease its value at the

steady-state. As a consequence, the threshold C must contain information which allows

us to test when the adaptive filter is at the steady-state. To this end we propose to use

(2.24) which approximates the steady-state MSE in the case of a fixed step-size and the

4Since µ(n) is constant during a test interval, (2.107) is equivalent with (2.12) for the standard LMS

algorithm for T consecutive iterations.
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threshold is given by:

C(n) = σ2
v

(
1 +

µ(n)

2
Nσ2

x

)
(2.109)

where σ2
v is the variance of the output noise and σ2

x is the variance of the input sequence

x(n).

The threshold C(n) as described by (2.109) is not constant during the adaptation

process but it is computed all the time the step-size is changed. This is because the

steady-state MSE depends on the value of the step-size.

For the values of the step-sizes µmin and µmax we can choose any value as long as the

convergence is obtained. In order to increase the convergence speed, the step-size µmax

must be chosen close to the stability boundary
2

3Nσ2
x

. The convergence speed depends

also on the length T of the test interval. If T is too large, the algorithm converges inside

the test interval and the step-size is not enough times updated. The value of α must be

in the interval (0, 1) such that, when the algorithm goes to the steady-state, the step-size

is decreased.

At the steady-state, the step-size µ(n) converges to µmin, therefore the misadjustment

of the algorithm can be approximated as follows:

M =
µminNσ2

x

2
. (2.110)

In the step-size adaptation (see (2.108) and (2.109)), an accurate estimation of σ2
v

and σ2
x are necessary. In some practical applications, information about noise variance is

available by modeling or measuring the noise [52], [77]. The variance of the input sequence

can also be estimated. An equivalent of this algorithm in which there is no necessity to

compute the input variance is described in the next chapter.

2.2.4 Simulations and results

In this section, the above mentioned algorithms are implemented in system identification

framework depicted in Fig. 2.2. The unknown system has N = 10 coefficients and all

the tested adaptive filters have equal lengths. The parameters of the algorithms were

chosen to give comparable levels of the misadjustment. More than that, the selection of

the parameters was done using the guidelines from the corresponding papers and they

are shown in Table 2.1. For benchmark purposes, in addition to the variable step-size

LMS algorithms, in our simulations we have also included two LMS algorithms with fixed

step-size denoted as LMS1 and LMS2. The first algorithm LMS1 has a large step-size

whereas LMS2 has a small step-size chosen to obtain the same level of the misadjustment
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LMS1 µ = 0.05

LMS2 µ = 0.002

VSSLMS µmax = 0.05, µmin = 0.002, α = 0.97, γ = 0.057

RVSLMS µmax = 0.05, µmin = 0.002, α = 0.97, β = 0.99, γ = 1

CP-LMS µ1 = 0.05, µ2 = 0.002, T = 100, L = 1

CP-VSLMS µ1 = 0.05, µmin = 0.002, T = 100, α = 0.6, L = 1

NCVSLMS µmax = 0.05, µmin = 0.002, T = 100, α = 0.6

Table 2.1: The parameters of the compared algorithms.

as the VSSLMS algorithms. The output noise v(n) was zero mean Gaussian-distributed

with variance σ2
v = 10−3. The input sequence was also zero mean Gaussian-distributed

with unity variance. Results are obtained by averaging over 100 independent runs, each

run containing 8 × 103 iterations. The learning curves for the compared algorithms are

shown in Fig. 2.17 and Fig. 2.18 where we have plotted the mean square coefficient error

defined as:

MSC(n) =
N∑

i=1

(
ĥi(n) − hi

)2

(2.111)

where hi is the ith coefficient of the unknown filter h in Fig. 2.2 and ĥi(n) is the ith

coefficient of the adaptive filter ĥ(n) at time instant n.

In the case of CP-LMS and CP-VSLMS, there are two filters working in parallel, the

speed mode filter ĥ1(n) and the accuracy mode filter ĥ2(n) and in both cases the filter

of interest is ĥ2(n). Therefore, for these two filters (2.111) was evaluated using ĥ2(n)

instead of ĥ(n).

From the learning curves shown in Fig. 2.17 and Fig. 2.18 we can see that CP-

VSLMS has the best performance among the compared algorithms. Of course, LMS1,

which uses a large step-size has the faster convergence but at the expense of an increased

steady-state MSC. The CP-LMS has the slowest convergence among the variable step-

size LMS algorithms as we can see from Fig. 2.18. Anyway, when the step-size of the

accuracy mode filter is made time varying, the speed of the new CP-VSLMS algorithm

is highly improved. The performances of both proposed algorithms, the CP-VSLMS and

NCVSLMS are comparable.
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Figure 2.17: The mean square coefficient error for LMS1, LMS2, CP-VSLMS and

NCVSLMS.

2.2.5 Comparison of the variable step-size LMS algorithms

In this section, we compare different Variable Step-Size LMS algorithms in terms of com-

putational complexity, memory load and simplicity of implementation. Also the advan-

tages and the drawbacks of the compared algorithms are discussed together with some

guidelines for practical implementation.

To this end, in Table 2.2 the memory load and computational complexity of the

VSSLMS, RVSLMS, CP-LMS, CP-VSLMS and NCVSLMS are shown. Among all al-

gorithms, the CP-LMS and CP-VSLMS have the largest complexity. However the setup

of their parameters is very simple (the minimum bound of the step-size µmin can be

obtained from (2.106) for a desired level of the misadjustment).

We note that, in the case of NCVSLMS, in the formula for step-size update, the noise

variance σ2
v is needed. As a consequence, this algorithm is more suitable in applications

where σ2
v can be approximated. Actually, the same discussion is valid also for VSSLMS

and RVSLMS algorithms if we look at (2.84) and (2.86). These two equations are used

in order to setup the value of the parameter γ for both algorithms and in both equations

the value of the minimum MSE is included. As a consequence, the parameter γ computed
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Figure 2.18: The mean square coefficient error for VSSLMS, RVSLMS, CP-LMS and

CP-VSLMS.

to obtain a desired misadjustment depends upon Jmin. If Jmin increases, the value of γ

should be decreased to maintain the same output error. This problem can be avoided in

the case of VSSLMS and RVSLMS if the γ is chosen to have a very small value, such that

the same misadjustment is obtained for different noise levels5.

The advantages and disadvantages of the compared algorithms are synthesized in Table

2.3.

VSSLMS RVSLMS CP-LMS CP-VSLMS NCVSLMS

Memory load 2N+9 2N+12 3N+11 3N+14 2N+10

Add. and sub. 2N+1 2N+3 4N+2 4N+3 2N+3

Multip. and div. 2N+4 2N+7 4N+5 4N+6 2N+6

Table 2.2: The complexity of the compared algorithms.

5For small output SNR and very small value of γ, the steady-state value of the step-size equals the

minimum bound µmin. As a consequence, the misadjustment can be computed similar to (2.104). If Jmin

increases, the misadjustment is computed with (2.84) and (2.86) respectively.
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VSSLMS RVSLMS CP-LMS CP-VSLMS NCVSLMS

Complexity small small large large small

Speed fast fast slower faster fast

Setup needs Jmin needs Jmin simple simple needs Jmin

Table 2.3: Advantages and disadvantages of the compared algorithms.

2.3 Variable length LMS algorithms

In some practical applications, such as, system identification, the goal is to obtain good

approximations of the coefficients of an unknown system. To this end, the LMS algorithm

or some modifications, as those discussed in the previous section, can be very easily applied

with excellent results. However, in the existing implementations almost all authors use

an adaptive filter that has length equal to the length of the unknown system. Therefore,

the optimum length has to be a priori known or it is truncated to some predefined value.

There are just few implementations of the variable length LMS adaptive filters [69], [80],

but these implementations do not really find the optimum filter length. For instance,

in [69], the authors propose a Variable Length LMS in which the length of the filter is

increased as the algorithm goes to its steady-state. The same behavior of the adaptive

filter length is presented in the algorithm proposed in [80], although the modification of

the filter length is based on some other formulas. In the above mentioned papers, some

maximum length Nmax is imposed for the adaptive filter and this length is obtained at

the steady-state. Actually, by implementing a variable length for the LMS algorithm

the authors in [69] and [80] wanted to improve the speed of convergence of the adaptive

algorithm. Here we refer to the length adaptation from another point of view, namely

we are interested to approximate also the correct length of the adaptive system. In

Section 2.1.2, the analytical MSE was obtained as a function of the adaptive filter length.

Based on that analysis, an algorithm that finds the optimum coefficients together with

the optimum filter length is derived here.

2.3.1 The proposed algorithm

We addres the problem of system identification where we are interested not only in finding

the correct values of the filter coefficients but also to approximate its correct length. Our

proposed Variable Length LMS (VLLMS) algorithm is based on the analytical results

from Section 2.1.2 where we have shown that, the steady-state MSE is smaller when

the length Nad of the adaptive filter is close to the length of the unknown system N
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Figure 2.19: Block diagram of the VLLMS for system identification.

and Nad < N . On the other hand, if Nad ≥ N then the steady-state MSE does not

depend on the filter length. This conclusion is valid for an uncorrelated input sequence

x(n) and it is generally not valid for correlated input signals. The block diagram of the

proposed VLLMS algorithm is presented in Fig. 2.19 where ĥ1(n), ĥ2(n) and ĥ3(n) are

three adaptive filters working in parallel. The lengths of these filters are N1, N2 and N3

respectively with N1 < N2 < N3. The proposed algorithm can be summarized as follows:

1. Initialization: N1(0) = N0, N2(0) = N0 + 1, N3(0) = N0 + 2, µ1(0) =
µN0

N1(0)
,

µ2(0) =
µN0

N2(0)
, µ3(0) =

µN0

N3(0)
.

2. At every time instant n, compute the output errors el(n) = d(n) − ĥt
l(n)xl(n),
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∀l = 1, 2, 3 and update the coefficients of the adaptive filters:

ĥl(n + 1) = ĥl(n) + µl(n)xl(n)el(n), l = 1, 2, 3.

where xl(n) = [x(n), x(n − 1), . . . , x(n − Nl + 1)]t.

3. For every Lth iteration (where L is an integer parameter) do:

• compute the following averages: ml =
1

L

n∑
j=n−L+1

e2
l (j),∀l = 1, 2, 3.

• update the lengths:

N1(n + 1) =

⎧⎨⎩
N1(n) + 1, if m1 > m2 > m3,

N1(n), if m1 > m2 ≤ m3,

N1(n) − 1, otherwise.

N2(n + 1) = N1(n + 1) + 1,

N3(n + 1) = N1(n + 1) + 2.

(2.112)

• update the step-sizes: µl(n + 1) =
µN0

Nl(n + 1)
, ∀l = 1, 2, 3.

The parameter L in the above algorithm has to be large enough, such that the MSE

can be approximated with the average of past L square errors, and also it has to be small

in order to have a sufficient number of updates. Actually, in our simulations, we have

obtained good results using a variable parameter L(k) chosen to be a multiple of the time

constant τ :

L(n) =

[
P

N2

2µ2(n)tr [RN2
]

]
=

[
P

2µ2(n)σ2
x

]
, (2.113)

where [A] represents the integer part of A and P is an integer parameter. Note that, the

value of L(n) is changed together with µ2(n).

The specifics of the new algorithm are: the lengths N1(k), N2(k) and N3(k) are not

changed at each iteration, but are constant for a number of L(k) iterations and after that,

based on the estimated mean square errors, the lengths are changed according to (2.112).

When the lengths are decreased, the last coefficient from each of the coefficients vector

is simply eliminated. When the lengths are increased, the new coefficient added to each

vector ĥ1(k), ĥ2(k) and ĥ3(k) is initialized with zero. When all the lengths are smaller

than the optimum length, then m1 > m2 > m3 and all the lengths are increased by one as

shown in (2.112). If the length N1 is smaller than the optimum length and the others are

equal or larger than the optimum length we have just m1 > m2. In this case, the lengths

are left unchanged. Finally, if m1 ≤ m2 ≤ m3 (ideally they are all equals), it means that
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all the lengths are larger than the optimum length and they are decreased. The second

adaptive filter is the filter of interest in the sense that its coefficients vector will be the

closest one to the optimum Wiener filter and its length is closer to the optimum.

We emphasize, that the step-sizes of all three adaptive filters satisfies the condition

µ1(n)N1(n) = µ2(n)N2(n) = µ3(n)N3(n) at every time instant which ensures the same

misadjustments of the algorithms. Also due to this condition, the length update can be

done using (2.112).
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Figure 2.20: The length for the second

adaptive filter (N2(n)) during one run.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
8

10

12

14

16

18

Iterations

E
{N

2(n
)}

Figure 2.21: The average length for the

second adaptive filter (E {N2(n)}).
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Figure 2.22: The MSE of the second adap-

tive filter.
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Figure 2.23: The MSE of an adaptive filter

with length N = 19.
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2.3.2 Simulations and results

The new algorithm was tested in the system identification framework. The length of the

unknown system was N = 19. The lengths of the adaptive filters were initialized with:

N1(0) = 7, N2(0) = 8 and N3(n) = 9 respectively. The step-size µ was initialized with

10−2 which satisfy the condition for convergence in the mean square sense and the number

of time constants in (2.113) was P = 2. We note that due to the fact that the step-sizes of

all adaptive filters satisfy the condition µ1(n)N1(n) = µ2(n)N2(n) = µ3(n)N3(n) at each

iteration, the convergence of all adaptive filters is ensured when µ = 10−2.

The input signal x(n) was white Gaussian random with zero mean and variance σ2
x = 1.

The output noise was random Gaussian distributed with zero mean and variance σ2
v =

10−3.

The length behavior of the second adaptive filter during one run is depicted in Fig.

2.20 and the expected value of the N2(n) during the adaptation is depicted in Fig. 2.21.

The expected value of N2(n) in Fig. 2.21, was computed by averaging the results of 100

independent runs. We can see from these figures, that the length of the second adaptive

filter converges close to the length of the unknown filter.

In Fig. 2.22 and Fig. 2.23 the MSE of the second adaptive filter and the MSE of

an adaptive filter with length equal to N = 19 are depicted. The convergence of the

filter with adaptive length is slower than the convergence of the adaptive filter which has

length equal to the optimum length, due to the length adaptation. At early stages of

the length adaptation, the MSE is larger due to the fact that there are many coefficients

of the unknown filter that does not have correspondent in the adaptive filter. When the

length is close to the optimum the MSE decreases.

2.4 Step-size adaptation in time-varying environment

It is well known that, in the case of tracking a time-varying system, the steady-state MSE

is a nonlinear function of the algorithm step-size. Moreover, there is an optimum step-

size which minimizes the steady-state MSE, in a time-varying environment, as detailed

in Section 2.1.3. There are many papers in the open literature, that study the behavior

of different LMS based algorithms for tracking time-varying systems. However, to the

best of our knowledge in the existing literature the computation of the optimum step-

size is done making some assumptions about the parameters of the time-varying systems

and the theoretical formulas (2.80) and (2.81) are used. Here, we introduce a simple

adaptive algorithm which iteratively adjusts the value of the step-size toward the optimum,



2.4 Step-size adaptation in time-varying environment 59

such that the steady-state output MSE is minimized. The proposed algorithm uses the

parameterization of the nonlinear function that gives the dependence between the steady-

state MSE and the step-size. During the adaptation, the parameters of this nonlinear

function are computed therefore, some estimates of the optimum step-size can be easily

obtained without any prior information about the system parameters. The step-size of

the proposed algorithm converges near to µmse
opt as it can be seen from the simulations

shown at the end of this section.

To introduce our algorithm, we refere to (2.79) from Section 2.1.3 and we make the

following notations:

A = Jmin = σ2
v , B = 1

2
σ2

vtr [R] , C =
1

2
tr [Q]

(2.114)

With these notations, (2.79) can be written as follows:

Jst = A + µB +
C

µ
. (2.115)

In (2.115) A, B and C are unknown. We only know the step-size µ and the steady-

state MSE6. To estimate Jst during the adaptation process, we use the following iterative

method:

P (n) = αP (n − 1) + (1 − α)e2(i), J(n) = 1
L

n∑
i=n−L+1

P (i) (2.116)

α ∈ (0, 1) being a constant parameter and L is the number of consecutive iterations on

which J(n) is computed.

At this point, we have to make a very important remark: in (2.116) the MSE is

estimated during the adaptation process while Jst in (2.115) is the MSE at the steady-

state. This is why we have used the notation J(n) instead of Jst in (2.116). We shall

emphasize here that using J(n) instead of the steady-state MSE in (2.115), the optimum

value of the step-size computed when the algorithm is far from the steady-state (n << ∞)

are erroneous. For this reason, we do not compute the optimum step-size just once during

the adaptation process but we compute it many times. When the algorithm goes close to

its steady-state, the MSE estimate from (2.116) converges close to Jst and the value of

the estimated optimum step-size based on (2.115) is close to µmse
opt given by (2.80).

The parameters A, B and C do not depend on the adaptive filter but only on the

statistics of the input signal, output noise and the unknown filter statistics. For three

6Actually we estimate the steady state Jst during the adaptation.



60 Time domain implementations

adaptive LMS filters with same length and different step-sizes µ1, µ2 and µ3, at the steady-

state, three different MSE’s (Jst1 , Jst2 and Jst3) are obtained. The nonlinear functions

that give the dependence between these three steady-state MSE’s and the corresponding

step-sizes are expressed as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Jst1 = A + µ1B +

C

µ1

Jst2 = A + µ2B +
C

µ2

Jst3 = A + µ3B +
C

µ3

(2.117)

The system of equations in (2.117) is linear in A, B and C. Its solution can be easily

obtained as follows:

C =
(J12µ23 − J23µ12) µ1µ2µ3

µ12µ23µ13

, B =
J23

µ23

+
C

µ2µ3

(2.118)

where J12 = Jst1 − Jst2 , J23 = Jst2 − Jst3 , µ12 = µ1 − µ2, µ13 = µ1 − µ3 and µ23 = µ2 − µ3.

Finally, the optimum step-size µmse
opt is estimated as follows:

µmse
opt =

√
C

B
. (2.119)

Equations (2.117)-(2.119) are valid only when all three adaptive filters are at the steady-

state. If they are used during the transient period of the adaptive filters, the estimated

step-size in (2.119) is far from the optimum. Since the computation of the parameters A,

B and C is done many times during the adaptation process when the three algorithms

converges, also the value of the step-size computed using (2.119) converge to µmse
opt .

The same block diagram as the one in Fig. 2.19 is used for the proposed algorithm.

The difference is that the three FIR adaptive filters have the same lengths N and different

step-sizes. Their coefficients are updated as follows:

ĥ1(n + 1) = ĥ1(n) + µ1e1(n)x(n),

ĥ2(n + 1) = ĥ2(n) + µ2(n)e2(n)x(n),

ĥ3(n + 1) = ĥ3(n) + µ3(n)e3(n)x(n) (2.120)

Note that in (2.120) two of the adaptive filters have time-varying step-sizes updated as

follows:

µ2(n + 1) =

{ √
C
B

, if n = L, 2L, . . .

µ2(n), otherwise
, µ3(n + 1) =

3

4
µ2(n + 1), (2.121)
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with µ1 = 0.1 and µ2(n) in the first case

σ2
ε1

= σ2
ε2

= · · · = σ2
ε8

= 10−6

where C and B are computed as in (2.118).

The proposed algorithm can be described as follows: three adaptive LMS filters with

different step-sizes are used. All the filters perform independently and they have fixed

step-sizes for a number of L consecutive iterations (test interval of length L). At the

end of the test interval some estimates of the MSE for each filter are computed using

(2.116) and based on a linear system of equations (2.117)-(2.119) an intermediate value

of the optimum step-size is estimated. The step-size µ2(n) of the second adaptive filter

is updated with the value of this estimated optimum step-size. The adaptations continue

with the middle filter having the new step-size and after each test interval a new optimum

step-size is computed and µ2(n) is changed accordingly. The step-size µ3(n) of the third

adaptive filter is modified by (2.121). Choosing this formula to modify the step-size µ3(n)

we ensure that always µ2(n) > µ3(n). Imposing also, that µ1 > µ2(n) at each time instant,

by setting µ1 close to the stability limit, the three algorithms will have different step-sizes

and the system of equations (2.117) will always have a unique solution.

2.4.1 Simulations and results

The proposed algorithm was tested in the channel estimation framework as depicted in

Fig. 2.19. The model of the channel used in our simulations is given by (2.67). The

output noise v(n) was white Gaussian with zero mean and variance σ2
v = 25× 10−4. The

length of the time-varying channel and the lengths of all adaptive filters were chosen equal

to N = 8. The input sequence x(n) was white Gaussian with zero mean and variance
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σ2
x = 1. For the first adaptive filter with fixed step-size we have chosen µ1 = 0.1 and for

the two adaptive filters with variable step-sizes they were initialized with µ3(0) = 0.05

and µ2(0) = 0.075. The length of the test interval was chosen L = 100 iterations and the

smoothing coefficient in (2.116) was α = 0.99. The simulation results are presented for

two different cases.

In the first case, every element of the vector ε(n) in (2.67) was chosen from a random

zero mean sequence with variance σ2
ε = 10−6. In this case, Q = σ2

ε I, with I being the

identity matrix. The direct computation of the optimum step-size using (2.80) gives:

µmse
opt =

√
tr (Q)

σ2
vtr [R]

= 0.02

where tr [Q] = Nσ2
ε = 8 × 10−6, tr [R] = Nσ2

x = 8 and σ2
v = 25 × 10−4.

The behavior of the step-size µ2(n) during the adaptation is depicted in Fig. 2.24.

The MSE’s of the adaptive filter with fixed step-size µ1 and of the adaptive filter with

variable step-size µ2(n) are depicted in Fig. 2.25. As we can see from Fig. 2.24, during

the transient period of the algorithms, the value of the step-size µ2(n) is far from the

optimum. As the adaptive filters ĥ1(n), ĥ2(n) and ĥ3(n) go to their steady-state the

value of µ2(n) converges to approximately µopt = 0.02. From Fig. 2.25 we can conclude

that an adaptive step-size gives better performances in terms of lower steady-state MSE.

In the second case, just the first and the last coefficients of the channel were time-

varying (σ2
ε1

= σ2
ε8

= 10−6) and the rest of the coefficients were left unchanged (σ2
ε2

=
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· · · = σ2
ε7

= 0). The optimum step-size obtained by direct application of (2.77) was:

µopt =

√
tr (Q)

σ2
vtr [R]

= 0.01

where tr [Q] = 2σ2
ε = 2 × 10−6.

The behavior of the step-size µ2(n) is depicted in Fig. 2.26 and the MSE’s of the

adaptive filter with step-size µ1 and of the adaptive filter with variable step-size µ2(n)

are shown in Fig. 2.27. From Fig. 2.26 and 2.27 we can see that the step-size µ2(n)

converges to the optimum µopt. The adaptive filter with variable step-size µ2(n) gives

lower steady-state MSE than the adaptive filter with fixed step-size µ1.

2.5 Order Statistics Least Mean Squared algorithms

The LMS suffers serious performance degradation and may fail when the input and/or the

desired signals are corrupted by an impulsive noise. To overcome this difficulty, the class

of Order Statistic LMS (OSLMS) adaptive filters was introduced (see [23], [32], [33], [39]

and the references therein). In the case of OSLMS algorithms the coefficients of the

adaptive filter are updated as in the following formula:

ĥ(n + 1) = ĥ(n) + µO {g(n)} a, (2.122)

where ĥ(n) is the vector of the adaptive filter coefficients, µ is the step-size, a = [a1...aL]T

is a vector of weighting coefficients for smoothing the gradient, O {g(n)} is the ordering

operation applied to each row of the matrix g(n), which is given by:

g(n) =

⎡⎢⎢⎢⎣
e(n)x(n) . . . e(n − L + 1)x(n − L + 1)

e(n)x(n − 1) . . . e(n − L − 1)x(n − L + 2)

. . .

e(n)x(n − N + 1) . . . e(n − L − 1)x(n − N − L + 2)

⎤⎥⎥⎥⎦ , (2.123)

x(n) and e(n) are the input sequence and the output error, respectively. The class of

OSLMS filters includes the following adaptive filters as particular cases:

• the Average LMS (ALMS) with a = 1
L

[1, 1, ..., 1]T ;

• the Median LMS (MLMS) with a = [0, . . . , 1, . . . , 0]T ;

• the Trimmed Mean LMS (MxLMS) with a =
[
0, . . . , 1

L−2M
, ..., 1

L−2M
, . . . , 0

]T
, where

L is the length of the weighting vector and M is the number of samples eliminated

from the left and right side of the ordered input sequence;
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• the Outer Mean LMS (OxLMS) with a = [1/2, 0, . . . 0, 1/2]T ).

As shown in [32], [33], [39], the OSLMS algorithms can reduce the variance of the gradient

estimate if the weighting coefficients are chosen properly. This leads to a reduction of the

steady-state excess MSE. It was already established in [33] that for impulsive environ-

ments the MLMS and MxLMS algorithms have better behavior comparing to OxLMS and

ALMS, whereas for Gaussian and uniform noise environments the optimum choices are

the ALMS and OxLMS algorithms, respectively. However, selection of each of these algo-

rithms has to be based on a priori knowledge of the noise distribution or, more generally,

on the knowledge of the gradient distribution. Without this knowledge, an arbitrarily

chosen filter may have poor performance. In this paper we propose a new AOSLMS algo-

rithm that uses adaptive weighting coefficients a(n) for smoothing the gradient. A novelty

of the new algorithm is the fact that no prior information about the gradient distribution

is necessary. Some approaches that use the adaptation of the weighting coefficients a(n)

based on some statistic measurements of the gradient have been reported in the literature

(see, e.g., [32]), but they are limited to the modification of the trimming coefficient, such

that the OS filter is modified between mean and median.

2.5.1 The proposed algorithm

The update equation (2.122) of the OSLMS filter is modified as:

ĥ(n + 1) = ĥ(n) + µO {g(n)} a(n); (2.124)

where the notations are those from (2.122).

Note that in (2.124) the values of the weighting coefficients a(n) are not constants

during the adaptation, but are adapted to the gradient distribution. In order to adapt

the coefficients a(n) we have implemented an L-LMS filter (see, e.g., [23] and [64]). It

was already proved that these filters possess the ability to adapt their coefficients to the

distribution of the input sequence. Due to the topology of the matrix g(n), the distribution

of its rows will be similar therefore, the adaptation of a(n) can be done using samples of

the gradient contained in the first row of g(n). The block diagram of the new AOSLMS

algorithm for system identification is presented in Fig. 2.28 and the block diagram of the

L-LMS filter for the gradient is depicted in Fig. 2.29.

The new algorithm consists of the following steps.

• Compute the output ŷ(n) and the error e(n) of the AOSLMS filter (see Fig. 2.28):

ŷ(n) = ĥ(n)Tx(n), e(n) = y(n) + v(n) − ŷ(n).



2.5 Order Statistics Least Mean Squared algorithms 65
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Figure 2.28: The block diagram of the

OSLMS for system identification when the

noise appears at the input and output of

the filters.
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Figure 2.29: The block diagram of the

L-LMS filter used for adaptation of the

weighting coefficients a(n)

• Update the weighting coefficients a(n) (see Fig. 2.29):

a(n + 1) = a(n) + αg(0)(n)eg(n). (2.125)

where g(0)(n) is the ordered version of the first row of g(n), and eg(n) is the error of the

L-LMS filter applied to the gradient.

• Update the coefficients of the OSLMS filter:

ĥ(n + 1) = ĥ(n) + µO {g(n)} a(n). (2.126)

In (2.125), we have used the error eg(n) for updating the weighting coefficients. Since

in this case there is no desired signal available for filtering the gradient (dg(n) = 0 in Fig.

2.29), we have chosen the constrained L-LMS described in [79], and (2.125) becomes:

a(n + 1) = P
[
a(n) + αgT

(0)(n) (−yg(n))
]
+ F. (2.127)

where yg(n) = g(0)(n)a(n) is the output from the L-LMS filter, and the matrix P and the

vector F are respectively given by (see [79] and the references therein):

P = I − C
(
CTC

)−1
CT ; F = C

(
CTC

)−1
F (2.128)
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C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣ IL−1

2

1 0 . . . 0

−QL−1

2

⎤⎥⎦ , L odd

⎡⎢⎣ IL
2

1 0 . . . 0

−QL
2

⎤⎥⎦ , L even

F =

⎡⎢⎢⎢⎣
1

0
...

0

⎤⎥⎥⎥⎦ , (2.129)

I and Q are the identity and the opposite identity matrices, respectively.

I =

⎡⎢⎢⎢⎣
1 0 . . . 0

0 1 . . . 0

. . . . . .
. . . . . .

0 0 . . . 1

⎤⎥⎥⎥⎦ , Q =

⎡⎢⎢⎢⎣
0 . . . 0 1

0 . . . 1 0

. . .
. . . . . . . . .

1 . . . 0 0

⎤⎥⎥⎥⎦ .

In the case of the new algorithm, there are basically two adaptive algorithms: one is used

for adaptation of the coefficients a(n), and the second one is the AOSLMS algorithm.

Therefore, there are two step-sizes that have to be chosen for the convergence of the

algorithm. The most sensible step-size is that of the L-LMS filter employed for the

gradient. If this coefficient is not appropriately chosen and the L-LMS filter diverges, then

all the algorithm diverges. The main problem is to find a robust condition for this step-

size, that ensures stability of the algorithm for a wide range of gradient distributions. To

this aim, we have employed a normalized L-LMS and the value of α in (2.127) is replaced

with:

α =
µ̃

γ +
∥∥g(0)(n)

∥∥2 (2.130)

Finally, the new algorithm is described by formulas (2.125)-(2.130).

Steady-state study

The equation for updating the coefficients of the L-LMS filter is given by (2.127). Denoting

z(n) = E {a(n) − ao} (ao are the optimal coefficients of the L-LMS filter), and using the

development of Frost in [31], one obtains:

z(n + 1) =
[
I − αPR(g0)P

]
z(n) =

[
I − αPR(g0)P

]n+1
z(0) (2.131)

where R(g0) is the autocorrelation matrix of the ordered first row of matrix g(n) from

(2.123). The matrix PR(g0)P determines both the speed of convergence and also the

steady-state variance of the weighting coefficients a(n). If 0 < α < 1/λmax (λmax is

the maximum eigenvalue of matrix PR(g0)P), then the convergence in the mean of the
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weighting vector a(n) is ensured. A more restrictive condition for the step-size, that

ensures also convergence of the average MSE was given in [31]:

0 < α <
1

σmax + (1/2)tr(PR(g0)P)
, (2.132)

where tr[A] represents the trace of the matrix A.

If α satisfies

0 < α <
2

3tr
(
R(g0)

) , (2.133)

then it is guaranteed to satisfy also (2.132) (see [41] and the referred papers). The matrix

R(g0) is different for various gradient distributions and a value of α chosen based on (2.133)

for a certain gradient distribution may not be suitable for another gradient distribution.

Since the convergence of the algorithm has to be ensured for any distribution without an

a priori knowledge, the step-size in the proposed algorithm is chosen as α =
µ̃

γ + ‖g0(n)‖2

thus, (2.133) becomes:

0 < µ̃ <
2

3
. (2.134)

The asymptotic convergence point of (2.126), which we denote as ĥo, is the point

where E {O {g(k)} a(k)} = 0 when ĥ(k) = ĥo. In the case of absence of input noise

(w(n) = 0, f(n) = x(n)), for ith coefficient of ĥ(n) we would have:

E {O {gi(k)} a(k)} = E {O {[gi,0(k) . . . gi,L−1(k)]} a(k)} (2.135)

where gi,j(k) = e(k − j)f(k − i − j), i = 0, N − 1, j = 0, L − 1. The value of gi,j(k) can

be written as gi,j(k) =
[[

hT − ĥT (k − j)
]
f(k − j) + v(k − j)

]
f(k − i − j).

If ĥ(k) = h for a large value of k, then (2.135) becomes:

E {O {gi(k)} a(k)} = E {O {v(k)f(k − i) . . . v(k − L)f(k − i − L)} a(k)}

Since f(k) and v(k) are both zero mean, i.i.d., with symmetric distributions, and inde-

pendent on each other, and if we assume that the weighting coefficients a(k) are constants

for large k, then E {O {gi(k)} a(k)} = 0, ∀i = 0, N − 1. This result means that the co-

efficients ĥo = h represent the asymptotic convergence point of (2.126) for the case with

only output noise.

For the case with only input noise (v(n)=0), the value of gi,j(k) in (2.135) is given by:

gi,j(k) =
[
hT f(k − j) − ĥT (k − j)x(k − j)

]
f(k − i − j)
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Multip. Add.

OSLMS

a fixed
N · L N · (L − 1)

AOSLMS

a adaptive

L · (N + L)

+2(L + 1)

N · (L − 1)

+L2 + 2L − 1

Table 2.4: Extra computations for OSLMS filters.

Making the same assumptions, it can be shown that the coefficients ĥ(n) converge

within a small ball around h, (see [32], [33], [39]).

Thus we can conclude that the new algorithm converges within a small ball around h,

for input and also for the output noise cases provided that the L-LMS filter is convergent

too.

Computational complexity analysis

The computational complexity of the new algorithm is increased comparing to the other

OSLMS algorithms. For comparison purposes, in Table 2.4 we present the extra computa-

tions needed for the standard OSLMS and the new AOSLMS algorithms. In addition with

these computations, each algorithm needs N sorting operations performed on L samples,

where N is the length of the OSLMS filter and L is the length of the weighting vector.

2.5.2 Simulation results

The simulations were done in the system identification framework depicted in Fig. 2.28.

The new AOSLMS algorithm was compared with the following OSLMS algorithms: MLMS,

MxLMS, OxLMS and ALMS. The length of the filters was N = 11, the length of the

weighting vector was L = 7. The step-sizes of the compared algorithms was chosen in

such a way, that they would have the same convergence speed. The step-size µ̃ has a fixed

value chosen to satisfy (2.134). The input signal f(n) was Gaussian random sequence

with zero mean and unity variance. The noise, either w(n) or v(n) has a generalized

exponential density of the form:

p(r) = k1e
−k2|r|β , |r| < ∞, β > 0

k1 =

(
βk

1/β
2 /2Γ

(
1

β

))
, k2 =

[
Γ
(

3
β

)
/Γ
(

1
β

)]β/2

(2.136)

where Γ is the gamma function.
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coefficient errors for input noise case

v(n) = 0.

As β in (2.136) increases, the resulting noise density varies from highly impulsive

(β = 0.2) to Gaussian (β = 2) and near uniform (β = 7). The algorithms were compared

using the steady-state sum of squared coefficient errors:

u = 10 · log

{
N∑

i=1

[
hi − ĥi(n)

]2}

For each algorithm, a number of 100 independent runs were performed and the results

were averaged. The corresponding learning curves are given in Fig. 2.30 for the case of

output noise (w(n) = 0) and in Fig. 2.31 for the input noise case (v(n) = 0). We can

see from these figures that for impulsive environments (β < 2) the new algorithm has a

performance similar to MxLMS and MLMS and for (β > 2) the new AOSLMS algorithm

performs similar to OxLMS and ALMS.
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Chapter 3

Transform domain implementations

This chapter considers the transform domain implementations of two classes of adaptive

algorithms: the Transform Domain Variable Step-Size LMS (TDVSLMS) and the Trans-

form Domain LMS algorithm for time-varying environments. The algorithms developed

here represent the transform domain counterparts of the algorithms from Chapter 2 and

they are introduced to improve the behavior of their time domain counterparts. For in-

stance, the convergence of the time domain VSSLMS algorithms is still slow for correlated

inputs and it was found that the TDLMS can improve the convergence using the decor-

relation of the input sequence. More than that, if the same approach of time-varying

step-size is used in the TDLMS, its speed of convergence is increased even further as we

will see in the sequel. The time domain adaptation of the step-size toward the optimum,

for time-varying environments, requires, in the proposed algorithm, three adaptive fil-

ters working in parallel as shown in Section 2.4. Doing the step-size adaptation in the

transform domain the required number of adaptive filters reduces to two and also the con-

vergence speed is increased when the input sequence is highly correlated. As a result, the

transform domain implementation may be an alternative to the time domain adaptation

of the step-size.

In Section 3.1, the plain Transform Domain Least Mean Squared (TDLMS) algo-

rithm [20], [25] is reviewed and its theoretical analysis is briefly described. However, the

theoretical analysis of the TDLMS is not presented in great details since the same deriva-

tions as those in Chapter 2, can be applied and also there are many papers in the open

literature which study the analytical behavior of the TDLMS (see [4], [5], [20], [25], [30],

[45], [51], [58], [61], [73] and the references therein). In the analysis of the TDLMS, we

follow two main directions and the differences between the time domain and transform

domain LMS algorithms are emphasized. First, the transient and steady-state behavior

71
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in terms of the MSE for stationary environments is discussed and then the analysis of the

TDLMS algorithm for tracking a time-varying system with fixed length is presented. The

analytical expressions of the optimum step-sizes which minimize the steady-state MSE

and the steady-state mean squared coefficient error (MSC) are obtained next. At the end

of this section, some simulations which demonstrate the validity of the analytical results

are presented.

In Section 3.2, the class of Transform Domain Variable Step-size TDVSLMS algorithms

is addressed. First, a variable step-size LMS in transform domain proposed by Kim

in [45] is shortly presented and then, based on the analytical results outlined in the

first section, three new TDVSLMS algorithms are introduced. However, the DCT-LMS

algorithm is slightly different from our approach since it does not uses the output error

to update the step-size as in our algorithms. Simulations results, showing the behavior

of these new algorithms for the problem of system identification when the input sequence

is highly correlated, are given in the sequel. In the simulations, we compare the behavior

of the proposed algorithms with the plain TDLMS, DCT-LMS from [45] and the time

domain VSSLMS algorithms described in Section 2.2 such that, the simulations shown

here, complete the results from Section 2.2.

Section 3.3 is dedicated to the problem of tracking time-varying systems. From the

theoretical results shown in the first section, we directly derive an adaptive algorithm

in which the step-size is time-varying and converges near the optimum. The difference

between the algorithm described here and the algorithm proposed in Section 2.4 relies in

the fact that the transform domain implementation uses just two adaptive filters. The

new algorithm is implemented in the time-varying system identification framework and

the simulation results are shown at the end of this section.

At the end of the chapter, a very short presentation of the Scrambled LMS (SCLMS)

algorithm is presented. Although, the SCLMS does not use an orthogonal transform

at the input, we have chosen to include it here for two reasons. The first reason is

that the SCLMS transforms the input sequence by means of a scrambling device and

for correlated inputs this operation acts a whitening process. As a consequence, both

SCLMS and TDLMS perform a decorrelation of the input prior to the adaptation of the

coefficients. The second reason to include here the SCLMS is its increased interest for

practical applications. In many applications a secure transmission of the data is necessary,

which can be realized by scrambling the transmitted data. When adaptation must be done

for scrambled data, the resulting algorithm is the SCLMS.

For these two reasons, in the last section of this chapter, a comparison between the

TDLMS and SCLMS for the problem of local echo cancellation is presented. The specific
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application addressed is the digital data transmission over a telephone line and the com-

parison is made in terms of convergence speed, steady-state mean coefficient error and

steady-state MSE.

3.1 The transform domain least mean squared algo-

rithm

In the previous chapter, we have discussed about the time domain Least Mean Squared

algorithm and some of its variants. From the analysis shown in Section 2.1, we have seen

that the MSE of the LMS can be approximated with a sum of exponentials whose time

constants are inversely proportional with the eigenvalues of the input autocorrelation ma-

trix R. As a consequence, if one of the eigenvalues of R is very small, the convergence of

the adaptive filter in this direction will be slow. We can conclude that the convergence

speed of the time domain LMS depends on the eigenvalue spread1 of the input autocorre-

lation matrix. Some algorithms which try to improve the convergence of the LMS such as

the VSSLMS can be implemented. However, the VSSLMS algorithms do not modify the

input sequence and its autocorrelation matrix, therefore they are expected to have slow

convergence for correlated inputs. One solution to this problem is to perform a decorre-

lation of the input sequence using an orthogonal transform and the resulting algorithm is

called the Transform Domain LMS.

In this chapter, we consider the transform domain adaptive filter whose block diagram

is depicted in Fig. 3.1, where T represents the orthogonal transformation applied to the

input vector x(n) = [x(n), . . . , x(n − N + 1)]t, ĥ(n) =
[
ĥ1(n), . . . , ĥN(n)

]t
is the N × 1

vector of the adaptive filter coefficients, s(n) = [s1(n), . . . , sN(n)]t, ŷ(n), e(n) and d(n)

are the transform coefficients, the output of the adaptive filter, the output error and

the desired sequence respectively. Other transform domain structures such as subband

adaptive filters [20] also exist in the literature but they are not the subject of this thesis.

With reference to Fig. 3.1, the transform coefficients are computed as follows:

s(n) = Tx(n), (3.1)

and the output of the adaptive filter is obtained from:

ŷ(n) = ĥt(n)s(n) = st(n)ĥ(n). (3.2)

1The eigenvalue spread is defined as the ratio between the largest and the smallest eigenvalues of R.
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ŷ(n)

e(n)

d(n)

ĥ(n)

AdaptiveF ilterx(n) s(n)
T

Figure 3.1: The block diagram of the transform domain adaptive FIR filter.

with T being the N × N orthogonal matrix with real valued elements satisfying the

following relation:

TtT = TTt = I. (3.3)

where t represents the transposition operator and I is the N × N identity matrix.

Other transforms2 with complex valued elements can equally be used for the orthogo-

nalization of the input sequence x(n). In this thesis the Discrete Cosine Transform is used

because it gives real valued coefficients. However, the orthogonal transformation used in

the implementations must be chosen based on the characteristics of the input signal x(n).

A very good discusion on the selection of the best transform can be find in [21] and [45].

Since the above referenced papers provide a well documented discusion, here we do not

address the problem of transform selection.

The cost function used to optimize the coefficients of the transform domain adaptive

filter is the MSE defined as:

J(n) = E
[
e2(n)

]
where e(n) = d(n) − ŷ(n). (3.4)

From (3.4), the following Wiener-Hopf equation can be obtained for transform domain

which gives the coefficients of the optimum filter (see Section 2.1 for more details):

hTo
= R−1

s ps. (3.5)

where Rs = E [s(n)st(n)] = TRTt is the autocorrelation matrix of the transformed

coefficients s(n), R is the autocorrelation matrix of x(n), ps = Tp is the cross-correlation

vector between s(n) and d(n) and p(n) is the cross-correlation vector between x(n) and

d(n).

It follows from (3.5), after some simple mathematical manipulations, that the optimum

coefficients vector is given by:

hTo
= Tho. (3.6)

2Called unitary transforms which satisfy THT = TTH = I and H is the hermitian transposition.



3.1 The transform domain least mean squared algorithm 75

In (3.6), by hTo
we denoted the optimum coefficients in transform domain, whereas ho

represents the Wiener solution in time domain expressed by (2.9). We can conclude that

the optimum solution in the mean squared sense in transform domain is obtained simply

by applying the orthogonal transformation to the optimum coefficients in time domain.

The input autocorrelation matrix which governs the convergence of the transform

domain adaptive filter is given by Rs = TRTt. In the ideal case, when the elements of

s(n) are uncorrelated the matrix Rs is diagonal. It follows that, when the transformation

matrix T is applied to the input sequence the input autocorrelation matrix is diagonalized.

However, the diagonal elements of Rs are not equal and its eigenvalue spread is equal to

the eigenvalue spread of R. A solution to this problem is to normalize Rs with its diagonal

elements diag (Rs). Specifically, this normalization is applied only in the update formula

of the adaptive filter coefficients, which for the ith filter coefficient can be written as

follows:

ĥi(n + 1) = ĥi(n) +
µ

ε + σsi
(n)2

si(n)e(n). (3.7)

where σ2
si
(n) is the power estimate of the ith transform coefficient si(n) and ε is a small

constant which eliminates the numerical instability when σ2
si
(n) is close to zero.

The powers of the transform coefficients si(n) can be estimated by the following simple

formula3:

σ2
si
(n) = ασ2

si
(n − 1) + (1 − α) s2

i (n), ∀i = 1, N (3.8)

which it is proven to converge close to the diagonal elements of Rs.

From (3.7) and (3.8) we can conclude that each coefficient of the adaptive filter is

updated by a different step-size µi(n) =
µ

ε + σ2
si
(n)

which is time-varying due to the

normalization term. For stationary inputs, it can be shown that, (3.8) converges fast to

the real powers of the transform coefficients, therefore to simplify the analysis, one can

consider that the estimates σ2
si

are constant. However, in some cases where other power

estimators are used, the step-sizes are time-varying due to the normalization term. Such

an example is the DCT-LMS algorithm suggested in [45], where other formula is used

instead of (3.8).

In all our implementations, we have used (3.8) to estimate the powers of the transform

coefficients, therefore we can assume that, after few iterations, the estimates in (3.8) are

constant and close to the diagonal terms of Rs. As a consequence, in the analytical

derivations we use σ2
si

instead of σ2
si
(n).

Finally the TDLMS algorithm is described by the following six steps:

3Other approaches are also available in the open literature [45].
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Transform Domain Least Mean Squared algorithm:

At each iteration n do:

1. Form the input vector x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]t from the input

sequence x(n);

2. Compute the coefficients s(n): s(n) = Tx(n);

3. Compute the output of the adaptive filter: ŷ(n) = st(n)ĥ(n) = ĥt(n)s(n);

4. Compute the output error: e(n) = d(n) − ŷ(n);

5. Update the power estimates of the coefficients s(n) using (3.8);

6. Update every coefficient of the adaptive filter: ĥ(n + 1) = ĥ(n) + µ
ε+σ2

si
(n)

si(n)e(n);

3.1.1 Analysis of the TDLMS for stationary environments

We point out the important formulas for the transient and steady-state MSE and mean

coefficient error for the TDLMS, when operating in a stationary environment. These

analytical results will be used in subsequent sections to introduced the new class of variable

step-size algorithms in transform domain. Since most of the equations derived for the

time domain case in Section 2.1 can be applied here with small modifications, we will

not give the entire derivations but we will emphasize the differences between the time

domain approach and its transform domain counterpart. To make the analytical analysis

mathematically tractable, similar assumptions as in time domain are made (see Section

2.1.1).

We start with the coefficient error vector defined as:

∆h(n) = ĥ(n) − hTo
, (3.9)

where hTo
is the optimum solution defined by (3.6).

The update equation (3.7) can be written in a more compact form as follows:

ĥ(n + 1) = ĥ(n) + µΓ−1s(n)e(n) (3.10)

where Γ is a diagonal matrix composed by the terms ε + σ2
si
(n).

Subtracting hTo
from (3.10) and taking the expectation operator, after some simple

mathematical manipulations we obtain:

E [∆h(n + 1)] =
(
I − µE

[
Γ−1

]
Rs

)
E [∆h(n)] , (3.11)
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where we have used the assumption that ĥ(n+1) is independent on s(n) and the optimum

error defined as eo(n) = d(n) − hTo
s(n) is orthogonal to the input vector s(n)4.

Assuming that the diagonal elements of Γ are constant and equal to the powers of the

elements of s(n), equation (3.11) can be simplified to:

∆h(n + 1) = (1 − µ)n ∆h(0). (3.12)

From (3.12), the condition for the convergence of the coefficients in the mean is:

0 < µ < 2. (3.13)

Comparing (3.13) with its counterpart from time domain (equation (2.19) from Sec-

tion 2.1.1) we can see that in the case of TDLMS the condition for the convergence of the

adaptive filter coefficients does not depend in the eigenvalues of the input autocorrelation

matrix while in time domain the condition depend on λmax. Intuitively, we can arrive at

the same conclusion if we take into account the fact that the autocorrelation matrix is

diagonalized by the orthogonal transform and the power normalization makes the auto-

correlation matrix equal to identity5. As a result, the eigenvalues of the autocorrelation

matrix are all equal to unity.

To obtain an analytical expression for the cross-correlation matrix of the coefficient

error vector we subtract hTo
from (3.10). Pre-multiplying the result by its transpose and

taking the statistical expectation we arrive at the following expression:

C(n + 1) = C(n) − C(n)RsΓ
−1µ − µΓ−1RsC(n) + 2µ2Γ−1RsC(n)RsΓ

−1 +

µ2Γ−1RsΓ
−1tr [RsC(n)] + Jminµ

2Γ−1RsΓ
−1 (3.14)

where C(n) = E {∆h(n)∆ht(n)}.
Making the assumption that Γ−1Rs ≈ I, equation (3.14) can be simplified as follows:

C(n + 1) = C(n) − µC(n) − µC(n) + 2µ2C(n) + µ2Γ−1tr [RsC(n)] + Jminµ2Γ−1(3.15)

Following a development similar to the one in time domain, and starting from (3.4),

the following expression can be obtained to describe the MSE:

J(n) = Jmin + tr [RsC(n)] (3.16)

4The orthogonality of the optimum error to the input vector s(n) can be proven in a similar manner

as in time domain from the fact that the gradient, when ̂h(n) approaches hTo
, equal zero.

5Actually it is close to identity. The only transform which makes the autocorrelation matrix equal to

the identity matrix is the KLT. However, the DCT was shown to be a good approximation of the KLT

for many practical signals.
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where Jmin = E
{
d(n) − ht

To
s(n)

}
is the minimum mean squared error obtained in the case

of perfect adaptation and the term tr [RsC(n)] appears due to the imperfect adaptation

of the coefficients.

The second term in (3.16) can be obtained by pre-multiplication of (3.15) with Rs

and taking the trace of the result. At the steady-state we have C(n + 1) ≈ C(n) and the

MSE can be expressed as follows:

Jst = Jmin

(
1 +

µN

2 − (N + 2) µ

)
. (3.17)

which, for small values of the step-size µ, is simplified to:

Jst = Jmin

(
1 +

µN

2

)
. (3.18)

Intuitively (3.18) and (2.24) are equivalent, since in the TDLMS the normalization

by the powers of the transform coefficients is used, therefore the matrix which gives the

misadjustment of the algorithm is approximated by the identity matrix.

The condition for the convergence of the MSE can be obtained from (3.17) forcing the

misadjustment to be bounded. The value of the step-size for which the misadjustment

tends to infinity is µmax =
2

N + 2
, therefore the step-size should satisfy the following

stability condition:

0 < µ <
2

N + 2
. (3.19)

3.1.2 Optimum step-size for time-varying environments

In this section, the behavior of the transform domain LMS algorithm for the problem of

a time-varying system identification depicted in Fig. 3.2 is addressed. To this end, we

derive the analytical equations which describe the steady-state MSE and the steady-state

mean squared coefficient error in a similar manner as in Chapter 2. Due to the fact that

many derivations are similar with those in the previous chapter, here we emphasize the

differences between time domain and transform domain implementations. The same setup

is followed as in time domain, where the unknown system is modeled as follows:

h(n + 1) = h(n) + ε(n), (3.20)

with ε(n) being the vector of the increments of the unknown system, at time instant n.

We consider the case when the unknown filter h(n) and the adaptive filter ĥ(n) in

Fig. 3.2 have the same length N . The notations in Fig. 3.2 are the following: x(n) is



3.1 The transform domain least mean squared algorithm 79

ŷ(n)

e(n)

d(n)

ĥ(n)

AdaptiveF ilterx(n) s(n)
T

v(n)

y(n)

h(n)system

Unknown

Figure 3.2: The block diagram of the transform domain adaptive FIR filter implemented

for time-varying system identification.

the input sequence, the block denoted by T represents the transform layer which trans-

forms the input vector x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]t into s(n) = Tx(n) =

[s1(n), s2(n), . . . , sN(n)]t, v(n) is the output noise, ŷ(n), y(n) and e(n) are the output of

the adaptive filter, the output of h(n) and the output error respectively.

To make the theoretical analysis more tractable, we make the following assumptions

which are commonly used in the open literature [20], [21], [28], [41]:

1. The sequences x(n), v(n) and ε(n) are statistically independent of one another;

2. The sequences x(n) and v(n) are zero mean, stationary, jointly normal and with

finite moments;

3. The successive increments of the channel tap weights ε(n) are independent of one

another. However, the elements of ε(n) for a given n, may be statistically dependent.

The sequence ε(n) is zero mean and stationary with a constant covariance matrix Q =

E
{
ε(n)εT (n)

}
;

4. At time n, the vector ĥ(n) is statistically independent of v(n) and X(n). This

assumption is true when µ is small [20], [41].

The Wiener-Hopf equations in transform domain can be written in a similar manner

as in time domain by taking the derivative of the gradient with respect to the adaptive

filters coefficients, equal to zero. Taking into account that the input of the adaptive filter

is now s(n) = Tx(n), the desired sequence is given by d(n) = ht(n)x(n)+v(n) and taking

into account the above assumptions, the optimum Wiener solution is given by:

hTo
(n) = Th(n). (3.21)
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It follows from (3.21), that the optimum coefficients vector at time instant n equal the

transformed coefficients vector of the unknown filter at the same time instant n.

Subtracting hTo
(n) = Th(n + 1) from both sides of (3.10) one obtains:

∆ĥ(n + 1) = ĥ(n + 1) − Th(n + 1) = ĥ(n) − Th(n + 1) + µe(n)Γ−1s(n), (3.22)

Using e(n) = ht(n)x(n)− ĥt(n)s(n) + v(n), equation (3.22) can be written as follows:

∆ĥ(n + 1) = ĥ(n) − Th(n + 1) + µΓ−1s(n)
(
xt(n)h(n) − st(n)ĥ(n)

)
+ µΓ−1s(n)v(n),

(3.23)

Making the notation εT (n) = Th(n + 1) − Th(n) = Tε(n) and using the above

assumptions and the fact that st(n) = (Tx(n))t = xt(n)Tt, the above equation can be

written as follows:

∆ĥ(n + 1) = ∆ĥ(n) − εT (n) − µΓ−1s(n)st(n)∆ĥ(n) + µΓ−1s(n)v(n), (3.24)

The mean coefficient error vector can be obtained taking the expectation operator on

both sides of (3.24), and we obtain:

E
{

∆ĥ(n + 1)
}

= E
{

∆ĥ(n)
}
−E {εT (n)}−µE

{
Γ−1s(n)st(n)∆ĥ(n)

}
+µE

{
Γ−1s(n)v(n)

}
,

(3.25)

Using the Assumptions 2, 3 and 4, one obtains6:

E
{

∆ĥ(n + 1)
}

=
(
I − µΓ−1Rs

)n+1
E
{

∆ĥ(0)
}

(3.26)

where I is the N × N identity matrix, ∆ĥ(0) = ĥ(0) − hTo
is the initial coefficient error

vector and Rs = E {s(n)st(n)} is the autocorrelation matrix of the transform coefficients.

Equation (3.26) can be simplified further if we take into account that the matrix Rs

is close to diagonal and has on the main diagonal the powers of the transform coefficients

such that the following approximation can be made:

RsΓ
−1 = Γ−1Rs ≈ I (3.27)

Using (3.27) in (3.26) one obtains:

E
{

∆ĥ(n + 1)
}

= (1 − µ)n+1 E
{

∆ĥ(0)
}

(3.28)

The convergence of the coefficients in the mean is ensured if:

−1 < 1 − µ < 1, ⇒ 0 < µ < 2, (3.29)

6Assumption 3 also implies that εT (n) is zero mean and stationary.
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We should emphasize here that (3.28) proves the convergence of the adaptive filter coeffi-

cients to Th(n) in view of the Assumption 3 which stipulates that the sequences ε and εT

are zero mean. If the increments of the unknown filter are not zero mean, the coefficients

of the adaptive filter will converge to a biased solution due to the non-zero term E {εT (n)}
which does not vanish in (3.25).

Our main goal here is to derive the analytical equations for the steady-state MSE

in the case of time-varying environment, which will be used further to introduce a new

algorithm. To this end, we first derive the weight-error correlation matrix defined as

C(n) = E
{

∆ĥ(n)∆ĥt(n)
}

. Pre-multiplying (3.24) by its transpose and following a

procedure similar to the one in [21], we obtain:

C(n + 1) = C(n) − µΓ−1RsC(n) + Qs − C(n)RsΓ
−1µ + µΓ−1RsΓ

−1µtr [RsC(n)] +

+2µΓ−1RsC(n)RsΓ
−1µ + σ2

vµΓ−1RsΓ
−1µ (3.30)

where Qs = E {εs(n)εt
s(n)}.

Using the approximation from (3.27) in (3.30) one obtains:

C(n + 1) = C(n) − 2µC(n) + 2µ2C(n) + µ2Γ−1tr [RsC(n)] + σ2
vµ

2Γ−1 + Qs, (3.31)

At the steady-state, for small values of the step-size µ, the third and the fourth terms

in (3.31), can be neglected7. Also for n → ∞, we have C(n + 1) ≈ C(n) and the steady-

state value of the mean squared coefficient error, defined as Θ(n + 1) = tr [C(n + 1)] can

be written in the following manner:

Θst =
1

2

[
µσ2

vtr
[
Γ−1

]
+ µ−1tr [Qs]

]
. (3.32)

The output MSE defined by J(n) = E
{
e2(n)

}
, is obtained, after some mathematical

manipulations as follows:

J(n) = Jmin + tr [RsC(n)] = σ2
v + tr [RsC(n)] (3.33)

where Jmin = E
[
d(n) − ht

To
(n)s(n)

]
is the minimum mean squared error.

Multiplying (3.30) by Rs and taking the trace, the analytical expression of the steady-

state MSE can be obtained:

Jst = σ2
v +

1

2 − µ(N + 2)

[
µσ2

vN + µ−1tr [RsQT ]
]

(3.34)

7This was justified in [22].
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For small values of the step-size a simplified analytical result can be obtained which is

more useful for practical implementations:

Jst = σ2
v +

1

2

[
µσ2

vN + µ−1tr [RsQs]
]

(3.35)

From (3.32) and (3.35), we can see that Θst and Jst are nonlinear functions on the

step-size µ. Both analytical results show that the steady-state values Θst and Jst contain

two components. The first component is proportional with the step-size and it is due

to the noisy estimates of the adaptive filters coefficients. The second component that is

inversely proportional with µ appears due to the time variations in the unknown filter

coefficients. Due to this fact both Θst and Jst possess a minimum for a certain value

of the step-size. The optimum step-size µΘ
o which minimizes Θst and the step-size µmse

o

which minimizes Jst are not equal in general and they can be expressed by the following

equations:

µmse
o =

√
tr [RsQs]

σ2
vN

and µΘ
o =

√
tr [Qs]

σ2
vtr [Γ−1]

(3.36)

Although (3.32) and (3.35) were obtained making some assumptions and approxima-

tions, we found that they provide good practical models for the behavior of Θst and Jst.

We should emphasize here that these results were obtained for the case when the desired

sequence is obtained as the output of a time-varying FIR filter and the input sequence

x(n) is stationary8.

The reason to introduce this theoretical analysis was to have the basis for the intro-

duction of a new algorithm with adaptive step-size for time-varying environments. We

are interested to develop an algorithm in which the step-size is updated toward µmse
o , such

that the steady-state MSE Jst is minimized. To this end, we analyze (3.35) and we make

the notation A = tr [RsQs]. With this notation, equation (3.35) can be written as follows:

Jst = σ2
v +

1

2
σ2

vNµ +
1

2µ
A. (3.37)

In the above equation there are just two unknown quantities σ2
v and A as opposed

with the time domain counterpart (2.79) where the unknowns are σ2
v , tr [R] and tr [Q].

As a consequence, in order to derive an algorithm for step-size adaptation which does

not need the knowledge of the statistics of h(n), only these two values must be estimated

during the adaptation. For the transform domain, a system of two equations must be

8When the input x(n) is non-stationary the input autocorrelation matrix R and its transform domain

counterpart Rs are both non-stationary. Analysis of this case is left beyond the scope of this thesis.
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solved in order to compute µmse
o , therefore just two adaptive filters working in parallel are

necessary9.

The reduction of the number of adaptive filters was the main reason to implement

the adaptive step-size in the transform domain. However, the reduction in computational

complexity is shadowed by the fact that the input vector x(n) must be transformed to

s(n) by means of an orthogonal transformation T, which introduces some extra compu-

tations. The second reason of equal interest, to introduce the adaptation of the step-size

in transform domain, was to increase the convergence speed for highly correlated input

sequences. In practice the user must choose one of the two alternatives which is more

suitable for the application at hand. If the time domain implementation provides enough

convergence speed (i.e. for small filter lengths), then it might be a good choice. Otherwise,

the transform domain is the alternative which ensures an increased speed of convergence.

3.1.3 Simulations and results

In this section, we show the simulations results conducted with the aim to verify the

analytical results from the previous section (we verify the validity of (3.32), (3.35) and

(3.36)). To this end, we have implemented an adaptive FIR filter in a time-varying

environment as depicted in Fig. 3.2. The model of the time-varying coefficients of the

unknown system is expressed by (3.20), where the elements of the vector ε(n) are chosen

to be random independent zero mean Gaussian-distributed sequences. The variances of

the elements of ε(n) were all equal to σ2
c = 10−6. The lengths of h(n) and ĥ(n) were

equal to N = 4. The output noise v(n) was a random Gaussian-distributed sequence with

zero mean and variance σ2
v = 25× 10−4. The algorithm used to update the coefficients of

the adaptive filter was the transform domain LMS and the orthogonal transformation T

was the Discrete Cosine Transform. The coefficients of the adaptive filter were updated

at each iteration using equation (3.10) and the elements of the diagonal matrix Γ−1 were

iteratively estimated by (3.8). The coefficient α in (3.8) was chosen to be equal to 0.9

which shows a good trade-off between the accuracy of estimation and the convergence

of the diagonal elements of Γ. The model used to generate the input sequence was the

Markov(1) model:

x(n + 1) = βx(n) + η(n). (3.38)

where β = 0.75 and η(n) was a random zero mean Gaussian-distributed sequence with

the variance chosen, such that the variance of x(n) was unity.

9In time domain due to the fact that Jst in (2.79) was parametrized with three parameters A = σ2

v
,

B =
σ2

v
tr [R]

2
and C =

tr [Q]

2
, three adaptive filters were needed.
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With this system setup, the optimum step-sizes which minimizes the steady-state MSE

and the steady-state mean squared coefficient error were found to be:

µmse
0 = 0.02 and µΘ

o = 0.0118. (3.39)

where we have used (3.36) to compute µmse
o and µΘ

o .

To obtain experimentally the dependence between Jst and the step-size and also the

dependence between Θst and µ, we have conducted a set of different simulations. During

one simulation, the step-size of the TDLMS was constant. However, the step-sizes used in

different simulations were not equal. We start with µ = 5 × 10−3 for the first simulation

and continue until µ = 0.05 for the last simulation. The increment of the step-size between

two experiments was 10−3. All the experiments contained a number of 100 independent

runs of 5 × 103 iterations and the results were averaged. In order to have a more clear

representation, instead of plotting the MSE, we have chosen to plot the excess MSE

as a function of the step-size. Therefore, in every experiment we have computed the

steady-state excess MSE and the steady-state mean squared coefficient error and they are

plotted versus the corresponding step-size in Fig. 3.3 and Fig. 3.4 respectively. In Fig.

3.4 and Fig. 3.3 we have also plotted the value of Θst obtained by estimation of (3.32)

and the steady-state excess MSE obtained from the evaluation of the following analytical
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expression:

Jst =
1

2

{
µσ2

vN + µ−1tr [RsQs]
}

(3.40)

From Fig. 3.3 and Fig. 3.4 we can see that there are small differences between the

experimental and analytical results. These differences are due to the fact that some

assumptions and approximations were done in the derivation of (3.32) and (3.35). For

instance, to obtain (3.32) we have assumed that the third and fourth terms in (3.31) can be

neglected. Moreover, the term 2−µ(N +2) was approximated with 2 in order to simplify

both (3.32) and (3.35). Anyway, these differences between the theory and practice are

small and the important issue is that in the experimental results and analytical results

the optimum step-size is preserved (for both steady-state MSE and Θst the analytical and

experimental curves have minimum around the same point corresponding to the optimum

step-size).

In conclusion, we can state that (3.35) represents a good basis for the derivation of

step-size adaptation as we will see in Section 3.3.

3.2 Transform domain variable step-size LMS algo-

rithms

In this section we address the problem of step-size adaptation for transform domain LMS

algorithm. We note that our discussion here is emphasized for the stationary environments

whereas implementations for time-varying environments are addressed in the next section.

It is well known that, for highly correlated input signals the speed of convergence of the

time domain LMS algorithm degrades dramatically. As an alternative solution, different

modifications of the LMS algorithms with variable step-size as well as transform domain

LMS (TDLMS) algorithms have been developed in the open literature (see, e.g., [1], [4],

[7], [9], [11], [18], [19], [20], [25], [27], [29], [30], [38], [58], [61], [62]).

As we have seen in Section 3.1, in the case of TDLMS an input signal is transformed

using an orthogonal transform and the filter coefficients are updated by independent step-

sizes as shown in (3.7). In the existing approaches, the step-sizes are often considered

time-varying due to the power estimates of the transform coefficients10 in (3.7). When

the power estimates become constants, the different step-sizes corresponding to each filter

coefficients are also constants. As a consequence, when the input signal is stationary, the

10Some authors consider the step-size corresponding to the ith adaptive filter coefficient in (3.7) to be

µi(n) =
µ

ε + σ2

i
(n)

and it is time-varying due to the normalization with σ2

si
(n).
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step-size of each filter tap is time-varying just during the early stages of the adaptation

and after that it is constant. However, there are no TDLMS algorithms known so far that

uses in the update of the step-size the output error. Here we introduce some modifications

of the TDLMS algorithm which have the following feature: we define for each step-size a

local component depending on the power normalization and a global component that is

the same for each filter tap. As opposed to the existing approaches, the global component

is also time-variable, and depends on the output error, such that the speed of convergence

of the new algorithms is significantly improved.

In our discussion first we briefly describe the existing approaches in the open literature

and then three new transform domain algorithms with variable step-size are introduced.

3.2.1 Existing approaches

When the TDLMS is used to update the coefficients of an adaptive filter, equation (3.7)

is usually implemented and the power estimates are obtained in various ways. One way is

to use the average method of (3.8), whereas in other publications some other methods are

proposed, such as the Gram-Schmidt normalization in [60] or other averaging method as in

[45]. Also, analysis of different orthogonal transforms for various types of input sequences

are published [4], [21] and many performance indexes which express their decorelation

properties are defined. It is well known that the optimum transform is the KLT which

diagonalizes the autocorrelation matrix Rs, but it requires the knowledge of the input

signal statistics in order to be implemented. Other transforms, such as the DCT are

shown to be close to the KLT for different signal distributions.

A very interesting approach was proposed by Kim and Wilde in [45], where the co-

efficients of the adaptive filter have different time-varying step-sizes. In the case of the

DCT-LMS introduced in [45], the step-sizes are changed based on the following formula:

µi(n + 1) = βµi(n) + γ (1 − β)

(
1

ε + 1
M

si(n)tsi(n)

)
. (3.41)

where si(n) = [si(n), si(n − 1), ..., si(n − M + 1)]T is the vector of the past M values of

the ith transform coefficient si(n), β ∈ [0, 1], γ ∈ [0, 1], and 0 < ε � 1 are some constant

parameters.

In [45], the theoretical analysis of the DCT-LMS was provided together with the

simulations showing the performances of the proposed algorithm for system identification

and channel equalization applications. It was shown that the DCT-LMS performs better in

terms of convergence speed than the TDLMS which uses (3.7) and (3.8) for the coefficients

adaptation. The theoretical analysis for the DCT-LMS was done in a similar manner with
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that of the time domain LMS and the value of the steady-state misadjustment was found

to be:

M =
1

2

N∑
i=1

yiλi (3.42)

where yi =
E [µ2

i (∞)]

E [µi(∞)]
with E [µi(∞)] and E [µ2

i (∞)] being the steady-state mean and

respectively mean squared value of the step-size. The analytical expression for the mean

and mean squared value of the step-size were also given in [45].

Since the DCT-LMS was the only transform domain algorithm with variable step-size,

which we have found in the open literature, for benchmark purposes, our new algorithms

are compared with it. However, as it can be seen in (3.41), the step-size of every coefficient

of the DCT-LMS is not updated based on the evolution of the output error, therefore one

can include this algorithm in the class of algorithms which uses an improved normalization

method.

3.2.2 Transform domain LMS adaptive filter with variable step-

size

Here, we propose a new algorithm that uses the output error in order to update the step-

size of each filter tap resulting in a significant improvement of the convergence speed. To

develop our new algorithm we start from the well known method, in which the step-size

of the ith coefficient is computed as follows:

µi(n) =
µ

ε + σ2
si
(n)

. (3.43)

In (3.43), the numerator µ can be viewed as the global component of the step-size, since

it is the same for each coefficient and the denominator can be viewed as the local compo-

nent of the step-size, and it depends on the power estimate σ2
si
(n) of the corresponding

transform coefficient.

In the approaches proposed so far, only the local component is variable whereas in

our new algorithm also the global component is time-varying and depends on the output

error as follows:

µ′(n) = αµ(n) +
γ

L

n∑
i=n−L+1

e2(i) (3.44)
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and

µ(n + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ′(n) if n = L, 2L, . . . and µ′(n) ∈ (µmin, µmax)

µmax if n = L, 2L, . . . and µ′(n) ≥ µmax,

µmin if n = L, 2L, . . . and µ′(n) ≤ µmin,

µ(n) if n �= L, 2L, . . . .

(3.45)

In the case of the new TDVSLMS algorithm, the update of each filter coefficient is

given by:

ĥi(n + 1) = ĥi(n) +
µ(n)

ε + σ2
si
(n)

e(n)si(n). (3.46)

where the notations are the same as for the standard TDLMS algorithm, µ(n) is given by

(3.44) and (3.45) and we have used (3.8) for power estimation.

The behavior of the new TDVSLMS algorithm can be described as follows: for a

number of L consecutive iterations (the test interval of length L), the global component

µ(n) is constant, and the new algorithm behaves as a standard TDLMS. At the end of

the test interval, the average of the past L squared values of the error is computed, and

µ(n) is updated according to (3.44) and (3.45). In this way, when the output error is

large the step-size is increased, such that the convergence time is shortened. When the

adaptive filter goes toward the steady-state, the error decreases which decrease also the

global component of every step-size. In all our simulations, we have used L = 10 which

shows good performances. Usually, the parameter γ in (3.44) has a small value, and it

may be chosen to meet the misadjustment requirements.

The steady-state mean squared error analysis of the new TDVSLMS algorithm

The steady-state analysis of the TDVSLMS algorithms is done in order to find the relation

between the misadjustment of the algorithm and its parameters. Based on the analytical

expression of the steady-state missadjustment, we will discuss how to set the parameters

of the algorithm in order to obtain the desired performances in terms of convergence speed

and small steady-state error. To start the analysis, we first rewrite (3.10) in the following

form:

ĥ(n + 1) = ĥ(n) + µ̃(n)s(n)e(n), (3.47)

where µ̃(n) = µ(n)Γ−1(n) is an N ×N diagonal matrix with the diagonal elements given

by µ̃i(n) = µ(n)Γ−1
i (n) and µ(n) is given by (3.45).

To make the convergence analysis of the TDVSLMS algorithm more tractable, besides

the usual assumptions, we introduce the following ones:
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Assumption 1: After few iterations the power estimates of the transform coef-

ficients si(n) become constant therefore, the step-sizes µ̃i(n) are independent to

s(n).

Assumption 2: The step-sizes µ̃i(n) in (3.47) and the output error e(n) are inde-

pendent. This can be justified by the update method of the step-size which is done

using just some past L values of the error as shown in (3.45).

The mean squared error (MSE) is defined by (3.16) which we rewrite here for convenience:

J(n) = Jmin + tr [RsC(n)] , (3.48)

where Jmin is the minimum MSE obtained in the case of perfect adaptation, C(n) is the

covariance matrix of the coefficient error vector, Rs is the autocorrelation matrix of the

transform coefficients.

The input autocorrelation matrix can be expressed as Rs = QΛsQ
t, where Λs =

diag [λ0, . . . , λN−1] is the diagonal matrix having on the main diagonal the eigenvalues of

Rs, Q is the modal matrix of Rs, QQt = I and Q−1 = Qt. Denoting C′(n) = QC(n)Qt,

(3.48) can be rewritten as follows:

E
{
e2(n)

}
= Jmin + tr [ΛssC

′(n)] = Jmin +
N−1∑
i=0

λic
′
ii(n) (3.49)

where c′ii(n) are the diagonal elements of C′(n).

The coefficient error vector is defined as the difference between the adaptive filter

coefficients and the optimum Wiener solution and it can be expressed as in the following

equation:

ĥ(n + 1) − hTo
= ĥ(n) − hTo

+ µ̃(n)s(n)e(n) =
[
I − µ̃(n)st(n)

]
∆h(n) + µ̃(n)e0(n)s(n)

(3.50)

Computing the outer product of (3.50) by itself, taking the expectations on both sides

and using the fact that C′(n) was obtained from the relation C′(n) = QC(n)Qt, one

obtains:

C′(n + 1) = C′(n) − E {µ̃(n)}
[
C′(n)Λss + ΛssC

′(n)
]

+ E
{
µ̃2(n)

} [
JminΛss +

2ΛssC
′(n)Λss + tr [ΛssC

′(n)]Λss

]
(3.51)

Thus the diagonal elements c′ii(n) of the matrix C′(n) are obtained from (3.51) as follows:

c′ii(n + 1) = [1 − 2E {µ̃i(n)}λi] c
′
ii(n) + 2E

{
µ̃2

i

}
λ2

i c
′
ii(n) + E

{
µ̃2

i (n)
}

Jmin +

+E
{
µ̃2

i (n)
}N−1∑

m=0

λmc′mm(n) (3.52)
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The mean value of the variable step-size µ̃i(n) is given by:

E {µ̃i(n)} = E
{
µ(n)Γ−1

i (n)
}

=
E {µ(n)}
E {Γi(n)} , (3.53)

with E {µ(n)} given by:

E {µ(n)} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E {µ′(n)} , if n − 1 = L, 2L, . . . and µ′(n) ∈ (µmin, µmax)

µmin, if n − 1 = L, 2L, . . . and µ′(n) < µmin

µmax, if n − 1 = L, 2L, . . . and µ′(n) > µmax

E {µ(n − 1)} , otherwise

(3.54)

Taking the expectation operator in (3.44) the mean value of the step-size E {µ′(n)} can

be computed as follows:

E {µ′(n)} = βE {µ(n − 1)} + E

{
γ

L

n−1∑
k=n−L

e2(k)

}
= βE {µ(n − 1)} +

γ

L

n−1∑
k=n−L

J(k).

(3.55)

where E {e2(k)} = J(k) is the MSE at time instant k.

The mean squared value of the step-size µ̃i(n) corresponding to the ith coefficient, is

given by:

E
{
µ̃2

i (n)
}

=
E {µ2(n)}
E {Γ2

i (n)} (3.56)

and the numerator in (3.56) can be expressed as follows:

E
{
µ2(n)

}
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E {µ′2(n)} if n − 1 = L, 2L, and µ′(n) ∈ [µmin, µmax]

µ2
min if n − 1 = L, 2L, and µ′(n) < µmin

µ2
max if n − 1 = L, 2L, and µ′(n) > µmax

E {µ2(n − 1)} otherwise

(3.57)

The mean squared value of µ′(n) is obtained from (3.44) as follows:

E
{
µ′2(n)

}
= β2E

{
µ2(n − 1)

}
+

2βγ

L
E

{
µ(n − 1)

n−1∑
k=n−L

e2(k)

}
+

γ2

L2
E

⎧⎨⎩
(

n−1∑
k=n−L

e2(k)

)2
⎫⎬⎭

(3.58)

For small values of γ the term γ2

L2 E

{(
n−1∑

k=n−L

e2(k)

)2
}

have negligible values at the

steady-state and it can be discarded from (3.58). More than that, if we use Assumption

2, the following expression is obtained to express the mean squared value of µ′(n):

E
{
µ′2(∞)

}
= β2E

{
µ2(∞)

}
+ 2βγE {µ(∞)} Jst (3.59)
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To obtain the steady-state MSE we need to compute the mean and mean squared

values of the step-sizes µist
at the steady-state. Combining (3.53) with (3.54) and (3.55),

and combining (3.56) with (3.57) and (3.58), the mean and mean squared values of µ̃ist

are obtained as follows:

E {µ̃ist
} =

E {µ′(∞)}
Γi

=
γJst

Γi (1 − β)
, E

{
µ̃2

ist

}
=

E {µ′2(∞)}
Γ2

i

=
2βγ2J2

st

Γ2
i (1 − β2) (1 − β)

(3.60)

We note that, in the derivation of (3.60) we have assumed that the step-size is between

µmin and µmax. The steady-state misadjustment can be obtained from (3.49), (3.52) and

(3.60) following a derivation similar to the one in [48] and [45]:

M =
Jst − Jmin

Jmin

≈ 1

2

N−1∑
i=0

yiλi ≈ βγJst

(1 − β2)

N−1∑
i=0

λi

Γi

(3.61)

Since the matrix Rs is near diagonal and the power estimates Γi are close to the real

powers, then the summation in (3.61) can be approximated by N (due to the fact that

Γi ≈ λi). Thus finally, the steady-state misadjustment can be written as follows:

M ≈
βγN
1−β2 Jmin

1 − βγN
1−β2 Jmin

(3.62)

which is similar to the results derived in [48].

We note that for a constant step-size, say µ(n) = µ, equation (3.62) can be simplified

to:

M ≈ 1

2
µN (3.63)

that is the well known approximation for the misadjustment of the TDLMS with fixed

step-size.

The value of the parameter L in (3.45) is not critical for the algorithm. Actually we

have seen in our simulations that L has to be smaller than the convergence time of the

algorithm in order to have enough step-size updates. Any values L ≤ 10 seems to be good

choices for a wide range of applications.

For the parameter β we have found that a value β = 0.9 shows good performances in

all our simulations. Setting β = 0.9, the value of the parameter γ can be obtained from

(3.62), such that, a desired level of the misadjustment is obtained.
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filter ĥ2(n)
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Speed mode

Accuracy mode

s1(n)
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ŷ1(n)

ŷ2(n)

Figure 3.5: The block diagram of the transform domain complementary pair LMS with

variable step-size.

3.2.3 The transform domain complementary pair variable step-

size LMS algorithm

In the development of the transform domain complementary pair LMS algorithm with

variable step-size (TDCPVSLMS), we consider the equation (3.43) which describes the

independent step-size computation. Again µ in (3.43) is viewed as an overall component

of µi(n) since it is the same for each filter tap, whereas γ+σ2
i (n) is the local component of

µi(n) (it is different for each filter tap). In the new implementation, the overall component

is also time-variable as in the algorithm introduced in the previous section. However,

the expression used to update µ(n) is different. Actually, the TDCPVSLMS algorithm,

depicted in Fig. 3.5, is the transform domain implementation of the CP-VSLMS from

Section 2.2. In Fig. 3.5, the block denoted by T represents the transform applied to the

input signal x(n), and s(n) is the vector of the transform coefficients. As in the case of

CP-VSLMS, there are two adaptive algorithms that work in parallel. The Speed mode

filter ĥ1(n), and the Accuracy mode filter ĥ2(n). The adaptive filter filter ĥ1(n) is an

additional filter which uses a large and fixed overall component µ1 and is implemented

just to increase the convergence speed of the algorithm, whereas ĥ2(n) represents the filter

of interest.

The TDCPVSLMS algorithm is described as follows:

• Compute the outputs and the output errors of the two adaptive filters:
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ŷ1(n) = ĥt
1(n)s(n), ŷ2(n) = ĥt

2(n)s(n), e1(n) = d(n) − ŷ1(n), e2(n) = d(n) − ŷ2(n).

(3.64)

• Update the coefficients of the speed mode filter:

ĥ1(n + 1) = ĥ1(n) + µ1Γ
−1e1(n)s(n). (3.65)

• Update the coefficients of the accuracy mode filter:

ĥ2(n + 1) =

{
ĥ1(n + 1), if n = L, 2L, . . . , and

∏M
i=1 Q(i) = 1

ĥ2(n) + µ2(n)Γ−1(n)e2(n)s(n), otherwise .

(3.66)

• Update the overall component of the step-size for the accuracy mode filter:

µ2(n + 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µ2(n) + µ1

2
, if n = L, 2L, . . . , and

M∏
i=1

Q(i) = 1

max{αµ2(n), µmin}, if n = L, 2L, . . . , and
M∏
i=1

Q(i) = 0

µ2(n), otherwise

(3.67)

The matrix Γ in (3.65) and (3.66) is a diagonal matrix whose elements are iteratively

computed using (3.8). The value of Q in (3.66) and (3.67) is computed as:

Q(i) =

⎧⎨⎩ 1 if
n−(i−1)M∑
k=n−iM

e2
2(k) >

n−(i−1)M∑
k=n−iM

e2
1(k),

0 otherwise

(3.68)

According to the above equations, the behavior of the new algorithm can be described

as follows: for L consecutive iterations, which represents the test interval, the value of

the overall component µ2(n) is constant and the adaptive filters ĥ1(n) and ĥ2(n) perform

independently as plain TDLMS filters. Also on this interval, the local averages of e2
1(n)

and e2
2(n) are computed. If the local average of e2

2(n) is larger than the local average of

e2
1(n) for M consecutive test intervals then the coefficients ĥ2(n) are updated with the

values ĥ1(n). This is due to the fact that the filter ĥ1(n) performs faster than ĥ2(n) due

to the larger value of µ1. When the speed mode filter performs better (in terms of output

mean squared error) than the accuracy mode filter, it also means that a larger step-size

would be more beneficial to be used. This is the reason why the value of µ2(n) is increased

in order to get a faster convergence. When the two algorithms approximate the steady-

state, the local average of e2
2(n) becomes smaller than the local average of e2

1(n) and the

value of µ2(n) is decreased in order to obtain the desired steady-state missadjustment11.

11The speed mode filter reaches its steady-state faster than the accuracy mode filter due to the fact

that µ2(n) ≤ µ1 at each iteration.
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Figure 3.6: The block diagram of the transform domain noise constrained LMS with

variable step-size, for system identification.

The maximum and minimum values of µ2(n) are µ1, and µmin respectively. At the steady-

state the value of the overall component of the step-size µ2(n) is constant and equal to

µmin, as a consequence the steady-state misadjustment of the new algorithm equals the

misadjustment of a plain TDLMS algorithm with step-size µmin.

The size of parameter L (the length of the test interval) in (3.68) should be sufficiently

large L >> 1, such that the statistical average of e2
1(n) and e2

2(n) can be obtained. Also,

L should be much smaller than the length P of the training input x(n), such that, a

sufficient number of re-initializations will be possible. The parameter M in (3.66) and

(3.67), must be chosen according to the training input length and the noise level. The

total comparison length M×L should be much smaller than P in order to ensure a prompt

update of the variable step and filter coefficients. The value of M has to be also large in

order to avoid the mistaken re-initializations due to the noise level. In our simulations we

have used L = 10, and M = 3 and we have obtained good results.

3.2.4 Noise constrained LMS algorithm in transform domain

As in the time domain implementation from Chapter 2, the main reason to introduce the

Transform Domain Noise Constrained Variable Step-size LMS (TDNCVSLMS) algorithm

was to reduce the complexity of the algorithm from the previous section which uses two

adaptive filters working in parallel to increase the convergence speed. The algorithm

from Section 3.2.2 uses just one adaptive filter and its computational complexity is much

lower than the computational complexity of the TDCPVSLMS. However, the setup of its
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parameters is more complicated since in the analytical expression of the misadjustment

(3.62), the value of the minimum MSE is included. Here, we propose a new algorithm

that uses some information about the noise variance σ2
v for updating the step-size in order

to increase the convergence speed12. The block diagram of the new algorithm for system

identification is shown in Fig. 3.6. The algorithm is described by the same steps as in

the case of TDLMS, the only difference is that the global component of the step-size is

time-varying.

The coefficients of the adaptive filter are updated by the following equation:

ĥ(n + 1) = ĥ(n) + µ(n)Γ−1s(n)e(n) (3.69)

and the step-size is changed according to:

µ(n + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µmax + µ(n)

2
if

1

L

n∑
i=n−L+1

e(i)2 > C(n) and n = L, 2L, . . .

max{µmin, αµ(n)} if
1

L

n∑
i=n−L+1

e(i)2 ≤ C(n) and n = L, 2L, . . .

µ(n) otherwise
(3.70)

The behavior of the new TDNCVSLMS algorithms is as follows: for L consecutive it-

erations, the global component µ(n) of the step-size is kept constant and the algorithm

performs as a standard TDLMS algorithm with fixed step-size. With this constant value

of µ(n) the algorithm would have a certain steady-state MSE denoted by C(n). At the

end of the test interval (after L iterations), the average of the squared error is computed.

If the average of the squared error is larger than C(n), then the step-size µ(n) is increased.

This means that the algorithm is far from the intermediate steady-state and in order to

speed-up the convergence, the global component of the step-size has to be increased. Oth-

erwise, when the algorithm reaches the intermediate steady-state within the test interval

of length L, the step-size is decreased in order to obtain a desired steady-state level.

As we can see, the value of C(n) is changed each time when the step-size is modified

and represents the MSE obtained if the algorithm would have a constant step-size until

convergence.

The minimum value allowed for the global component µ(n) is µmin and at the steady-

state, the algorithm performs as a TDLMS with constant step-size µ(n) = µmin. There-

12This is the transform domain counterpart of the algorithm introduced in Section 2.2.3. We emphasize

the difference between the NCVSLMS and the transform domain implementation which relies in the fact

that in time domain we have used the median operation to test when the algorithm is at steady-state

whereas in transform domain the average of the square error is implemented.
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fore, the final level of the misadjustment is given by µmin. The maximum value of µ(n)

can be very close to µmax but is always smaller than µmax.

Analysis and the setup of the coefficients

Here, we discuss about the selection of the coefficients of the TDNCVSLMS algorithm.

We start with the condition that ensures the stability of the algorithm. As we can see

from (3.70), the global component µ(n) of the new algorithm is bounded by µmin ≤
µ(n) < µmax. Since the new algorithm performs as the standard TDLMS algorithm

inside of each test interval, the stability analysis can be done using well known methods

(see [45], [58] and the references therein). Following the derivations in [45] and making

the usual assumptions, the TDNCVSLMS algorithm converges when 0 < µmax <
2

N
.

In order to compute the value of C(n), we will consider L consecutive iterations on

which the overall step-size is constant. The value of C(n) is set to be the steady-state MSE

obtained at the output of the adaptive filter if the step-size is kept constant. In Section

3.1 a simplified analytical expression for the steady-state MSE was derived therefore C(n)

can be approximated by:

C(n) =

(
1 +

1

2
Nµ(n)

)
σ2

v (3.71)

If the noise variance cannot be accurately estimated then a penalty term Φ can be intro-

duced in (3.71) as follows:

C(n) = Φ

(
1 +

1

2
Nµ(n)

)
σ2

v (3.72)

where Φ ≥ 1 and close to 1.

The value of L in (3.70) has to be large enough such that the MSE can be approxi-

mated and also it has to be smaller than the convergence time for an TDLMS with fixed

step-size µmin, such that a sufficient number of step-size updates occur. In a large num-

ber of simulations, for different signal to noise ratio, the following selection gives good

performance L = 10 and α = 0.9.

3.2.5 Simulations and results

In this section the results obtained for the problem of system identification are presented.

The compared algorithms, in this framework, are: the plain time domain LMS with

constant step-size, the VSSLMS from [48], the RVSLMS introduced in [1], the CP-LMS

from [61], the CP-VSLMS and the NCVSLMS described in Section 2.2, the plain TDLMS
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with fixed step-size, the DCT-LMS introduced in [45] and the TDVSLMS, TDCPVSLMS

and TDNCVSLMS described in this chapter. For the time-domain implementations the

block diagrams used in the simulations are those from Section 2.2 whereas for the time

domain implementations we have used the block diagrams shown in the previous sections.

The unknown system has N = 16 constant coefficients and all adaptive filters were

chosen of the same length. The transform used in all transform domain implementations

was the DCT which gives real coefficients and also shows good decorrelation properties

for many input sequences found in practice.

The input sequence, was generated by the following autoregressive model:

x(n) = 1.79x(n − 1) − 1.85x(n − 2) + 1.27x(n − 3) − 0.41x(n − 4) + ν(n)

where ν(n) is a white Gaussian random signal with zero mean and variance σ2
ν = 0.14817.

The eigenvalue spread ratio of the autocorrelation matrix, for this highly correlated

input sequence was found to be 944.67. The signal to noise ratio at the output of the

unknown system was 50 dB, and all the simulations were obtained by averaging 100

independent runs of the algorithms. The parameters of all the compared algorithms are

given in Table 3.1, and they were chosen such that the steady-state missadjustments

are comparable (around 0.04). The selection of the parameters was done following the

guidelines from the corresponding papers and the levels of the misadjustments, obtained

experimentally, are shown in Table 3.2.

The learning curves (the output excess MSE) for the compared algorithms are shown

in Fig. 3.7 for VSSLMS, CP-VSLMS and NCVSLMS, in Fig. 3.8 for LMS, RVSLMS and

CP-LMS, in Fig. 3.9 for TDLMS, DCT-LMS and TDCPVSLMS and in Fig. 3.10 for

TDVSLMS, TDCPVSLMS and TDNCVSLMS.

As expected, the time domain implementations do not perform well for such highly

correlated input signal. Indeed if we compare the results shown in Fig. 3.7 and Fig. 3.8

with those shown in Chapter 2 we can see that the convergence speed of the time domain

adaptive algorithms is much smaller for highly correlated input sequence. We note that

the learning curves shown in chapter 2 represent the mean squared coefficient error and

not the excess MSE of the algorithms. The comparison can be made between this figure

and the ones presented here if we take into account that the simulations performed in

Chapter 2 were done with a random zero mean Gaussian-distributed input sequence and

in that case the excess MSE and the mean squared coefficient error are proportional13.

13Also the lengths of the filters in Chapter 2 were smaller which means that the speed of convergence

would be larger. However the difference between the convergence speed of the time domain implementa-

tions in the framework of Chapter 2 and in the framework of this chapter are much larger.
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Table 3.1: The parameters of the compared algorithms (LMS, VSSLMS, RVSLMS, CP-

LMS, CPVSLMS, NCVSLMS, TDLMS, TDVSLMS, TDCPVSLMS, TDNCVSLMS).

LMS µ = 5 · 10−3

VSSLMS γ = 1, µmin = 5 · 10−3, α = 0.97, µmax = 3 · 10−2

RVSLMS µmax = 3 · 10−2, α = 0.97, µmin = 5 · 10−3, β = 0.99, γ = 1

CP-LMS µ1 = 3 · 10−2, L = 1, µ2 = 5 · 10−3, T = 100

CPVSLMS µ1 = 3 · 10−2, L = 1, µmin = 5 · 10−3, T = 100, α = 0.6

NCVSLMS µmin = 5 · 10−3, α = 0.6, µmax = 3 · 10−2, T = 100

TDLMS µ = 5 · 10−3, β = 0.9, ε = 2.5 · 10−2

DCT-LMS M = 10, γ = 2 · 10−3, β = 0.9985, ε = 8 · 10−4

TDVSLMS
µmax = 5 · 10−2, α = 0.9, µmin = 5 · 10−3, β = 0.9,

ε = 2.5 · 10−2, L = 10, γ = 10−3

TDCPVSLMS
µmin = 5 · 10−3, M = 3, µmax = 5 · 10−2, L = 10,

ε = 2.5 · 10−2, α = 0.6, β = 0.9,

TDNCVSLMS µmin = 5 · 10−3, L = 10, µmax = 5 · 10−2, α = 0.6, ε = 2.5 · 10−2

Table 3.2: The misadjustments of the compared algorithms.

LMS VSSLMS RVSLMS CP-LMS CPVSLMS NCVSLMS

M 4.18% 3.98% 4.35% 4.20% 4.35% 4.23%

TDLMS DCT-LMS TDVSLMS TDCPVSLMS TDNCVSLMS

M 3.91% 3.46% 4.64% 3.90% 3.96%

In Fig. 3.9 and Fig. 3.10, the learning curves of the transform domain implementa-

tions are presented. One can see from these plots that using the output error to adjust

the global component of the step-size, the convergence speed of the transform domain

implementations can be significantly increased.

Of course other techniques which can improve the convergence may be included in

addition to the step-size adaptation. One method is the selection of the orthogonal trans-

form which must be chosen based on the properties of the input sequence. Another way

to improve the convergence speed is to implement other expressions for power estimation

instead of (3.8). Also, when (3.8) is implemented, initialization of the power estimates is

important. In our simulations we have observed that better performances are obtained
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when the power estimates are initialized with values close to the adaptive filter length14.

All these techniques are well described in the referenced publications, therefore they are

not detailed here.

14Actually the power estimates must be initialized close to the real powers of the transform coefficients

for faster convergence. Due to the fact that in our simulations we have used the DCT and the power of

the input sequence was unity, this initialization seems to be a good choice.
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Algorithm TDLMS DCT-LMS TDCPVSLMS TDNCVSLMS TDVSLMS

Mult./Div. 6N + 1

5N + MN =

= 15N

(M = 10)

12N + 5 6N + 8 6N + 4

Add./Sub. 3N

3N + MN =

= 13N

(M = 10)

6N + 3 3N + 3 3N + 2

Table 3.3: Computational complexity of the TDLMS, DCT-LMS, TDCPVSLMS, TD-

NCVSLMS and TDVSLMS algorithms.

3.2.6 Comparison of the transform domain variable step-size

LMS algorithms

Here, we compare the transform domain implementations, described above, in terms of

their computational complexity, memory load and simplicity of the parameter setup. To

this end, in Table 3.3 the memory load and computational complexity of the TDLMS,

TDCPVSLMS, TDNCVSLMS, DCT-LMS and TDVSLMS are shown.

As expected, among all the algorithms, the TDCPVSLMS have a large complexity

due to the use of two adaptive filters that work in parallel. Despite this fact, it possesses

the faster convergence and the setup of its parameters is very simple. A single parameter

µmin must be chosen in order to obtain a desired level of the misadjustment and the other

parameters influence the convergence speed. We shall note that the expression
µ(n) + µ1

2
is probably not the best choice to increase the value of the step-size. Other expressions

that provide better results may be used instead. We emphasize here that the complexity

of the DCT-LMS is also large, due to the calculation of the power estimates. Moreover

the complexity of the DCT-LMS depends on the parameter M .

In the case of TDNCVSLMS, in the formula for step-size update, the noise variance

σ2
v is needed15. Therefore it can be implemented in applications where σ2

v is known

or it can be estimated. Actually, the same discussion is valid also for TDVSLMS and

DCT-LMS algorithm if we take into account the analytical expression to estimate their

misadjustment (see (3.61) and (3.42) respectively). These two equations are used in order

to setup the values of the parameters of both algorithms and in both equations the value of

the minimum MSE is included. In system identification applications, the minimum MSE

equals the noise variance therefore, also these two algorithms require some information

15As in the case of its time domain counterpart.
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about σ2
v . If we refer to the time domain implementations, VSSLMS and RVSLMS the

same discusion is valid for their parameter’s setup. The TDCPVSLMS and CP-VSLMS

does not have this problem since their misadjustments depends only on the minimum

bounds of their step-sizes.

Finally, the advantages and disadvantages of the transform domain implementations

are synthesized in Table 3.4.

TDLMS DCT-LMS TDCPVSLMS TDNCVSLMS TDVSLMS

Complexity small small large small small

Speed slowest fast fast fast fast

Setup simple needs Jmin simple needs Jmin needs Jmin

Table 3.4: Advantages and disadvantages of the transform domain algorithms.

3.3 Transform domain LMS algorithm with optimum

step-size

In Section 3.1.2, we have given a brief theoretical analysis of the TDLMS for tracking time-

varying channels. Using some common assumptions, we have obtained a simplified formula

(3.35) which describes the steady-state MSE of the algorithm. From (3.35), it follows

that the dependence between the steady-state MSE and the step-size is nonlinear and

the steady-state MSE has three components. One component σ2
v which is the minimum

level of the MSE achieved in the case of perfect adaptation, the second component 1
2
σ2

vN ,

proportional with the step-size µ, and represents the component due to the imperfect

adaptation of the coefficients. Finally, the third part µ−1tr [RDQD] is due to the time

variations of the channel coefficients and is inversely proportional with the step-size.

The primary goal of the algorithm introduced here is to adaptively adjust the step-size

µ toward the optimum µmse
opt which minimizes the steady-state MSE. We emphasize that

the steady-state MSE and the steady-state mean squared coefficient error are minimized

by different step-sizes which are expressed in (3.36). In order to compute µmse
opt , one needs

to know the trace of the matrix RDQD and the variance of the output noise σ2
v . When

these two values are available, the computation of µmse
opt is trivial. Here we assume that

this information is not available, and we propose an iterative method for computing the

optimum value of the step-size µmse
opt .
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For the simplicity of the exposition we make the following notations regarding (3.35):

A =
1

2
σ2

v , B = 1
2
tr [RsQs] (3.73)

With these notations, equation (3.35) can be written as Jst = 2A + µNA +
B

µ
. If we

consider two adaptive TDLMS filters with equal lengths N and different step-sizes µ1

and µ2, their steady-state mean squared errors can be approximated by the following

expressions:

Jst1 = 2A + µ1NA +
B

µ1

and Jst2 = 2A + µ2NA +
B

µ2

. (3.74)

In (3.74), the length N and the step-sizes µ1 and µ2 of the adaptive filters are known.

Also some estimates of Jst1 and Jst2 can be obtained for instance by averaging the output

squared errors. As a consequence, the system of equations in (3.74) can be easily solved

in order to compute the unknowns A and B. The solution is given by the following

expression:

A =
Jst1µ1 − Jst2µ2

(µ1 − µ2) [2 + N (µ1 + µ2)]
, B = µ1 (Jst1(∞) − 2A − µ1NA) (3.75)

The optimum step-size, which minimizes the steady-state MSE can be computed by the

following formula:

µmse
opt =

√
B

NA
(3.76)

The proposed approach for step-size adaptation introduced in the sequel is based on

this concept, which uses two adaptive filters with equal lengths and different step-sizes.

3.3.1 The proposed implementation

Based on the above derivations, we propose the following TDLMS with adaptive step-size

whose block diagram is depicted in Fig. 3.11. The new algorithm contains two adaptive

TDLMS filters with equal lengths N that operate in parallel. The first adaptive filter

with coefficients ĥ1(n) has a fixed step-size µ1 while the second adaptive filter ĥ2(n) has

a variable step-size µ2(n) which is adapted using the following formula:

µ2(n + 1) =

{ √
B

NA
, if, n = L, 2L, 3L, ...

µ2(n), otherwise
(3.77)
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Figure 3.11: The block diagram of the proposed transform domain adaptation of the

step-size.

The parameters A and B are computed using (3.75). We note that A and B have

constant values due to the fact that the input x(n) is stationary and the covariance matrix

Qs has constant elements.

As we can see from (3.77), the behavior of the proposed algorithm can be described

as follows: for a number of L consecutive iterations, called the test interval, the step-sizes

of both adaptive TDLMS filters are constant. At the end of the test interval, the output

MSE for both adaptive filters (Jst1 and respectively Jst2) are computed and the step-size

µ2(n) is updated according with (3.77). To compute the output MSE of the two adaptive

filters we propose the following analytical expression16:

J1(n) = δJ1(n − 1) + (1 − δ) 1
L

n∑
i=n−L+1

e2
1(i),

J2(n) = δJ2(n − 1) + (1 − δ) 1
L

n∑
i=n−L+1

e2
2(i)

(3.78)

with 0 < δ < 1 being a constant parameter.

We should emphasize that in (3.78) the values of the output MSE at time instant n

are computed whereas in (3.75) the steady-state MSE values are necessary. Therefore, at

16Other expressions which give better approximation of the output MSE can be used as well.
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the beginning of the adaptation, the value of the step-size µ2(n) is far from the optimum

due to the use of the transient mean squared error. For this reason we do not update the

step-size µ2(n) just once during the adaptation but we update it many times using (3.77).

When both adaptive filters go near the steady-state, the estimates in (3.78) are close to

the steady-state values of the MSE and the step-size µ2(n) converges to the optimum.

In all our experiments we have used a fixed value of the parameter L, which is the

length of the test interval. Another possibility, which is not addressed here, is to use a

time-varying test interval, for instance proportional with the time constant of the algo-

rithm.

We have tested the proposed algorithm in system identification framework depicted

in Fig. 3.11. The output noise v(n) was a Gaussian zero mean sequence with variance

σ2
v = 25 × 10−4. The input sequence x(n) was given by the model:

x(n) = γx(n − 1) + θ(n)

where γ = 0.9 and θ(n) is a random Gaussian-distributed sequence with zero mean and

variance chosen, such that the variance of x(n) was unity.

The lengths of the unknown system and of the adaptive filters were equal to N = 10.

The step-size of the first adaptive filter was chosen µ1 = 5 × 10−3 while the step-size of

the second adaptive filter was initialized with µ2(0) = 10−3.

To update the coefficients of both adaptive filters we have used (3.10) and the powers

of the transform coefficients were estimated by (3.8). The parameter used to estimate the

powers of the transform coefficients was α = 0.9 and the coefficients used to estimate the

MSE in (3.78) was δ = 0.9. The length of the test interval in (3.77) was chosen L = 50.

The time-varying unknown system was modelled by (3.20) and the increments ε(n) of the

time-varying channel coefficients were random zero mean sequences with variance 10−6.

The plotted results are obtained by averaging a number of 100 independent runs each

run containing a number of 5 × 103 iterations.

3.3.2 Simulations and results

The behavior of the expected value of the step-size E [µ2(n)], during the adaptation,

is depicted in Fig. 3.12 together with the value of the optimum step-size which was

computed from (3.36). We can see from this figure that the step-size of the proposed

algorithm converge close to the optimum µmse
opt . The transient period in Fig. 3.12 is due

to the transient periods of both adaptive filters.

The steady-state MSE at the output of the first adaptive filter with fixed step-size

µ1 = 5 × 10−3 was Jst1 = −24.2760 dB while for the second adaptive filter with adaptive
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Figure 3.12: Step-size behavior during adaptation.

step-size µ2(n) the steady-state MSE was found to be Jst2(n) = −25.0490 dB. Clearly

there is a reduction on the steady-state MSE when a step-size close to the optimum is

used.

3.4 The Scrambled Least Mean Squared algorithm

The LMS algorithm is widely utilized in adaptive filtering for several reasons. Its principal

characteristics responsible for attracting the users are low computational complexity, clear

convergence analysis in stationary environment, unbiased convergence in the mean to the

Wiener solution, stable behavior when is implemented with finite-precision arithmetic,

it is straightforward to setup and there is a single parameter to be pre-defined [25],

[41]. However, the convergence speed of the LMS algorithm depends on the eigenvalue

spread of the input autocorrelation matrix R, as we have seen in the first chapter of this

thesis. For highly correlated inputs, the eigenvalue spread of R is high leading to a slow

convergence of the LMS. During last decades there has been a large interest in adaptive

filtering community to improve LMS convergence properties without affecting too much

computational complexity. One important class of LMS like adaptive algorithms is the
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class of variable step-size LMS algorithms and some of its components were described also

in the first chapter of the thesis. The main idea of the VSSLMS algorithms is to use a

time-variable step-size that has large values when the algorithm is far from the optimum,

to increase the convergence speed, and smaller values near the steady-state to obtain a

small missadjustment. Although, the VSSLMS algorithms have shown improved speed of

convergence for uncorrelated input signals their behavior for highly correlated signals is

still poor as we have illustrated in the simulations shown in Chapter 3. Another attempt

to improve the convergence speed and the steady-state misadjustment of the LMS is the

cost function adaptation [71], [72], which does not make the subject of this thesis.

An alternative way to increase the convergence speed of the LMS is to modify not only

the coefficients update equation (by implementing a variable step-size or cost function

adaptation), but to change also the statistics of the input signal, such that the input

autocorrelation matrix will be as close as possible to the identity matrix. When the

input autocorrelation matrix R is the identity matrix (or near identity matrix) all the

convergence modes of the adaptive filter are equally excited and the convergence speed is

improved. The algorithms that uses an orthogonal transform to diagonalize the matrix

R belongs to the class of the Transform Domain LMS adaptive algorithms, such as those

presented earlier in this chapter.

In the communication community the technique of scrambled transmission is well

known. When a secure communication is needed, the transmitted signal is transformed

in such a way that its information content is unintelligible to a third part and this trans-

formation can be made by means of a scrambling device. The main classes of scrambling

devices are the digital scrambler and the analog scrambler. The advantage of the digital

scrambler is its higher degree of security comparing with the analog counterpart. Al-

though the digital scrambler offers a higher degree of security its main drawback is the

fact that the resulting waveform (the scrambled signal) occupies a much higher bandwidth

than the baseband unscrambled signal.

While scrambling was initially introduced for the reason of securing the data trans-

mission, in digital communication systems it also provides a source of pseudodata for

adjustment of the timing and Automatic Gain Control (AGC). Consequently, various

subsystems in data communication systems, such as equalizers and echo canceler, work

better with uncorrelated input sequences. Scrambling is also a way for whitening a cor-

related signal, such that the convergence speed of the adaptive filters operating with

scrambled signals is improved [3]. The scrambled sequence must be unscrambled at the

receiver in order to preserve overall bit sequence transparency.

From the above considerations one can say that the transformation of the input signal
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Figure 3.13: A full duplex speech communication channel.

by means of an orthogonal transform and by means of a scrambling device represents

two ways to improve the convergence speed of the adaptive filters. The question is which

technique is of most interest in practical implementations. In this section, we focus on

the application of Transform Domain LMS (TDLMS) and Scrambled LMS (SCLMS) for

the problem of transmission of digital data through a telephone channel. Although, the

Scrambled LMS does not use an orthogonal transformation at the input, we can consider

that it is based on the same principle of whitening the input sequence as the transform

domain LMS, therefore we have include this discussion in the present chapter.

3.4.1 Problem formulation and theoretical background

In this section, we study the problem of full-duplex digital transmission over a telephone

line as depicted in Fig. 3.13. Ideally, all the energy of the transmitted signal from the

transmitter A has to be received by the receiver B and vice-versa. Since the hybrid

terminations are not ideal, a small part of the transmitted data signal goes to the local

receiver (through the local echo path) and disturb the communication. This signal is

called the local echo. Another source of an echo signal represents the reflected signal

due to the imperfect impedance adaptation at the ends of the telephone line. Here we

concentrate only on the local echo cancellation problem. The block diagram for echo

cancellation at emitter A is depicted in Fig. 3.14.

The main problem in the case of local echo cancellation is to approximate the transfer

function of the local echo path h using an adaptive FIR filter ĥ(n) and then to subtract

the estimated echo ŷ(n) from the returning echo y(n), such that the resulting echo is

minimized.

When the LMS algorithm is used to modify the coefficients of the adaptive filter ĥ(n),



108 Transform domain implementations

e(n)

d(n)

AdaptiveF ilter

v(n)

y(n)
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Figure 3.14: Adaptive local echo cancellation block diagram.

the update equation is given by:

ĥ(n + 1) = ĥ(n) + µe(n)x(n), (3.79)

where ĥ(n) =
[
ĥ1(n), ĥ2(n), . . . , ĥN(n)

]t
is the N × 1 vector of the adaptive filter co-

efficients, x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]t is the N × 1 vector containing the

past N samples of the input sequence x(n), µ is a constant step-size that controls the

convergence speed and ensures the stability of the algorithm and e(n) is the output error

which is computed as follows:

e(n) = y(n) + v(n) − ŷ(n), (3.80)

with y(n) = htx(n), ŷ(n) = ĥt(n)x(n) and v(n) being the output of the echo path

(local echo), the output of the adaptive filter (estimated local echo) and the output noise,

respectively. Usually, the sequence v(n) contains the transmitted signal from emitter B

plus the reflected echo and the channel noise. For the simplicity of exposition and without

loss of generality we consider here that the reflected signal and the transmitted signal from

emitter B are zero. This corresponds to the situation when the transmission is done just

from user A to user B and the hybrid connections at the receiver are perfect.

The convergence speed of the LMS algorithm is governed by the eigenvalues of the

input autocorrelation matrix R = E {x(n)xt(n)}. If some of the eigenvalues of R are

very small then the convergence of the LMS in the direction of these eigenvalues will be

slow resulting in a slow overall convergence of the algorithm. A good measure of the

convergence speed of the LMS is the eigenvalue spread γ(R) of the input autocorrelation
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matrix R, computed as the ratio between the largest eigenvalue to the minimum eigenvalue

of R. For high values of γ(R), the LMS has slow convergence. If the input signal x(n)

is uncorrelated then the matrix R equal the identity matrix and has equal eigenvalues

resulting in γ(R) = 1. For correlated input sequences the eigenvalues of R are not equal

and γ(R) might be much larger than unity. In order to speed up the convergence of the

LMS when operating with correlated signals the class of Transform Domain LMS was

introduced.

3.4.2 Analysis of the LMS algorithm for digital data transmis-

sion

We study here the behavior of the LMS adaptive algorithm in the special case when the

transmitted sequence is constant with all its samples equal to +1. The input autocorre-

lation matrix for this special case can be written as follows:

R =

⎡⎢⎢⎢⎣
1 1 . . . 1

1 1 . . . 1

. . . . . . . . . . . .

1 1 . . . 1

⎤⎥⎥⎥⎦ (3.81)

which does not admit an inverse.

The system of equations used to compute the Wiener solution can be written as follows:

Rho = Rh, (3.82)

where ho is the vector of the optimum coefficients and h is the vector of the echo path.

Since the autocorrelation matrix does not admit an inverse it is not possible to pre-

multiply (3.82) by R−1 to obtain the optimum coefficients. Moreover, taking into account

the structure of matrix R shown in (3.81), the system of N equations in (3.82) reduces

to a single equation:

ho1
+ ho2

+ · · · + hoN
= h1 + h2 + · · · + hN (3.83)

Clearly equation (3.83) has multiple solutions which suggest that the LMS does not

have a unique convergence point. If we take into account the update equation of the

adaptive filter coefficients (3.79) we can see that all coefficients are updated by the same

quantity since the elements of the vector x(n) are all equal. It follows from this fact that

the coefficients of the adaptive filter are all equal at every time instant, provided that
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they are initialized with the same value17. Using this observation and (3.83) we can find

the convergence point of the LMS algorithm as follows:

ho1
= ho2

= · · · = hoN
=

1

N

N∑
i=1

(h1 + h2 + · · · + hN) (3.84)

The steady-state MSE can be approximated by the well known expression:

Jst = Jmin +
µJmin

2
tr [R] = Jmin

(
1 +

µN

2

)
, (3.85)

For this special case, the matrix R has N − 1 eigenvalues equal to zero and one

eigenvalue equal to N and the eigenvalue spread of R equal infinity. This fact suggests

that the algorithm might not be convergent. Actually, this is not true due to the fact that

for this case of equal inputs, the system is equivalent to the one in which the echo path

have just one coefficient equal to the sum H =
N∑

i=1

hi and also the adaptive filter have just

one coefficient, which converges to H. Due to this fact the convergence speed is expected

to be N times faster when the inputs are equal than in the case of non-equal inputs.

The minimum MSE can be computed as in the sequel:

Jmin = E
{
e2

o(n)
}

= E
{
(y(n) − ŷo(n) + v(n))2} = σ2

v + E
{
(y(n) − ŷo(n))2} (3.86)

where ŷo(n) is the optimum output obtained in the case of perfect adaptation and it can

be written as:

ŷo(n) =
N∑

i=1

x(n − i + 1)hoi
=

N∑
i=1

hoi
(3.87)

where in (3.87) we have taken into account that x(n) = 1 at each time instant n.

Replacing (3.87) in (3.86) and using (3.84), the minimum MSE at the output of the

adaptive filter equals Jmin = σ2
v and the steady-state MSE is expressed by the following

analytical result:

Jst = σ2
v

(
1 +

µN

2

)
. (3.88)

In conclusion, the convergence point of the LMS when operating with constant input

sequences is different than the convergence point when the inputs are not equal. This

situation is actually equivalent with the one in which the echo path and the adaptive filter

have just one coefficient. However, the minimum and the steady-state MSE for equal and

non-equal inputs are the same.

17If the coefficients are initialized with different values the convergence point is different.
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Figure 3.15: The block diagram of the adaptive echo cancellation in transform domain.

3.4.3 Analysis of the Transform Domain LMS algorithm for dig-

ital data transmission

To implement the Transform Domain LMS, the block diagram from Fig. 3.14 is modified

as shown in Fig. 3.15, by the introduction of the block denoted as T which represents

the orthogonal transformation applied to the input signal x(n). The coefficients update

formula becomes:

ĥ(n + 1) = ĥ(n) + µΓ−1(n)e(n)s(n), (3.89)

where s(n) = Ttx(n) is the vector of the transform coefficients, T represents the matrix

of the orthogonal transformation, Γ(n) is a diagonal matrix having on the main diagonal

the power estimates of the transform coefficients and e(n) is the output error computed

as follows:

e(n) = y(n) + v(n) − ŷ(n), (3.90)

and ŷ(n) = ĥt(n)s(n).

The equation which gives the optimum coefficients of the adaptive filter in transform

domain was derived in the previous sections at it was found to be:

RshTo
= RsTh. (3.91)

Usually, the equation (3.91) is pre-multiplied with R−1
s and the optimum solution is

hopt = Th. In the special case, when the digital data transmitted through the com-

munication channel represents a long string of constant values (for instance when the
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transmitter sends just +1s), the matrix Rs has a special structure and it does not admit

an inverse. If the input sequence x(n) consists of a long string of +1’s, then the vector

x(n) will have all its elements equal to +1s and the transformed vector s(n) will have

the first element non-zero and the other elements equal to zero. Therefore, in this special

case the structure of the matrix Rs is expressed by:

Rs =

⎡⎢⎢⎢⎣
r11 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . .

0 0 . . . 0

⎤⎥⎥⎥⎦ (3.92)

Using (3.92) in (3.91) we can conclude that the first element of the vector ĥTo
is equal

to the first element of the vector Th. Moreover, from the update equation (3.89) we

can see that just the first element of the vector s(n) is non-zero which implies that just

first element of ĥ(n) is adapted and the others remain unchanged. If the vector ĥ(n) is

initialized by zeros, then the optimum vector will be:

ĥTo
= [Th1, 0, . . . , 0]t . (3.93)

where by Th1 we denoted the first element of the vector Th.

The steady-state MSE can be obtained following a procedure similar to the one in

Section 3.2 of this thesis. Finally, the following analytical expression gives the value of

the steady-state MSE:

Jsttd = Jmin + tr [RsC(∞)] (3.94)

where C(∞) = lim
n→∞

E
{

∆ĥ(n)∆ĥt(n)
}

, ∆ĥ(n) = ĥ(n) − hTo
, Rs is given in (3.92) and

Jmin is the minimum MSE obtained in the case of perfect adaptation when the coefficients

of the adaptive filter equals hTo
.

Taking into account (3.92), we can write (3.94) in the following form:

Jsttd = Jmin + r11C11(∞), (3.95)

where C11(n) = ĥ1(n) − ho1
and ho1

is the first element of hTo
.

From the above equations, the analytical expression for the steady-state MSE can be

obtained after some simple mathematical manipulations, as follows:

Jsttd = Jmin

(
1 +

1

2
µ

)
. (3.96)

From (3.96) we can see that when the input sequence is constant, the steady-state

MSE does not depend on the length N of the adaptive filter. This is expected since in
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the adaptation process just one coefficient of the adaptive filter is modified. Actually, this

situation is similar with the case in which the adaptive filter have just one coefficient.

The minimum MSE Jmin can be obtained in the following way:

Jmin = E
{
e2

o(n)
}

= E
{
[y(n) + v(n) − yo(n)]2

}
(3.97)

where y(n) =
N∑

i=1

x(n − i + 1)hi and the optimum output is given by yo(n) =
N∑

i=1

si(n)hoi

with si(n) being the ith element of the transformed input vector s(n) and hoi
is the ith

element of the optimum vector hTo
.

For a constant input sequence (say x(n) = 1) just the first element of s(n) is non-zero

and the others are equal to zero. In this case equation (3.97) simplifies to:

Jmin = E

⎧⎨⎩
(

N∑
i=1

hi − s1(n)ho1
+ v(n)

)2
⎫⎬⎭ (3.98)

When the DCT transform is used, for the decorrelation of the sequence x(n), the input

vector s(n) and the optimum vector hTo
can be written in the following manner18:

s(n) =

[
N√
N

0 . . . 0

]t

and hTo
=

[
1√
N

N∑
i=1

hi 0 . . . 0

]t

(3.99)

Using (3.99) in (3.97), the minimum MSE is expressed by:

Jmin = E

⎧⎨⎩
(

N∑
i=1

hi − N√
N

1√
N

N∑
i=1

hi + v(n)

)2
⎫⎬⎭ = E

{
v2(n)

}
= σ2

v (3.100)

Finally, the steady-state MSE is obtained combining (3.96) and (3.100), and it is

expressed by:

Jsttd = σ2
v

(
1 +

1

2
µ

)
. (3.101)

It follows from the above analytical result that the transform domain LMS converges

to an optimum solution, which is not equal to the coefficients of the echo path when the

inputs are all equal. Moreover, the steady-state excess MSE is N times smaller than the

steady-state excess MSE of the time domain LMS which uses the same step-size.
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Figure 3.16: A full duplex scrambled communication channel.

3.4.4 The Scrambled LMS

A block diagram of a full duplex scrambled transmission over a telephone line is depicted

in Fig. 3.16. We can see that in the case of a scrambled transmission the blocks denoted

by Scrambler and Descrambler are introduced. Their main goal is to secure the data

transmission. When a message has to be sent from the user A to the user B, the signal

is scrambled prior to the transmission. The user B receives the scrambled signal and

using a corresponding descrambler, decodes the transmitted data. Here, we focus on the

application of the digital scrambler/descrambler.

From the adaptive filtering point of view an important fact is that the scrambler acts

to ”whitten” the data to be sent. For modem components, such as the echo canceler and

the equalizer, to function properly, a common assumption has to be made that the data

is random and i.i.d. (independent and identically distributed). This assumption can be

easily violated since long sequences of equal samples can be sent. The scrambler tries to

ensure this pretext by making the bit sequence to look random and the input symbol data

xsc(n) are uncorrelated.

The block diagram of the local echo cancellation in the case of scrambled transmission

is depicted in Fig. 3.17. The difference between Fig. 3.17 and Fig. 3.14 is that the

input sequence x(n) is transformed by the block denoted Scrambler and the resulting

sequence xsc(n) is transmitted over the telephone line. This is why the scrambler device

appears also at the input of the echo path in Fig. 3.17. We note that the orthogonal

transformation T appears in Fig. 3.15 just at the input of the adaptive filter.

When the LMS algorithm is used to update the coefficients of the adaptive filter the

update equation is exactly the same as (3.79) with the only difference that the input signal

18For the case of a constant input sequence x(n) = 1.
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Figure 3.17: Scrambled adaptive local echo cancellation.

into the adaptive filter and into the echo path is now the scrambled sequence xsc(n).

It is easy to show that the optimum solution when the Scrambled LMS algorithm is

used to update the coefficients of the adaptive filter is hsco
= h and the steady-state MSE

can be expressed by19:

Jstsc
= σ2

v +
1

2
µtr [Rsc] σ

2
v . (3.102)

where Rsc is the autocorrelation matrix of the scrambled sequence xsc(n).

Actually, when the Scrambled LMS is implemented the scrambler does not only per-

mute the input samples but it inserts some −1’s between the samples of the input sequence

x(n) to obtain the scrambled sequence xsc(n). In this way, the autocorrelation matrix Rsc

has the diagonal elements equal to 1 and very small off-diagonal elements. Due to this

fact, the analysis of the Scrambled LMS can be made in a similar manner as in Chapter

2.

3.4.5 Comparison between scrambled LMS, transform domain

LMS and time domain LMS for echo cancellation

In the system identification applications, such as the echo cancellation, the common way

to measure the performance of an adaptive filter is the Normalized Estimation Error

19The derivation of the steady-state mean squared error can be made as in Chapter 2 using the as-

sumption that xsc(n) is i.i.d.
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(NEE) defined as (see [71], [72]):

NEE(n) = 10log10
||h − ĥ(n)||2

||h||2 , for LMS and SCLMS (3.103)

NEE(n) = 10log10
||Th − ĥ(n)||2

||Th||2 , for TDLMS (3.104)

At the steady-state, taking into account that ĥ(∞) has null elements except the first one,

equation (3.104), for the transform domain LMS, becomes:

NEEtd(∞) = 10log10

(
Th1 − ĥ1(∞)

)2

+
N∑

i=2

Thi

N∑
i=1

Th2
i

, (3.105)

It follows from (3.105) that, even in the case of a perfect adaptation when ĥ1(∞) =

Th1, the steady-state level of the NEE cannot be made very small due to the terms Thi,

i = 2, N which are not vanished by the corresponding adaptive filter coefficients. On

the other hand, the steady-state MSE in (3.101) can be reduced to a desired level by

decreasing the value of the step-size µ.

A similar discussion can be made for the LMS algorithm since the coefficients of the

adaptive filter do not converge to the coefficients of the echo path but they are all equal to

the average of hi
20. As a consequence, the steady-state NEE cannot be made very small

decreasing the step-size µ. The steady-state MSE on the other hand is proportional with

the step-size and the length of the adaptive filter as seen in (3.88).

Due to the fact that the optimum coefficients of the Scrambled LMS equal the coeffi-

cients of the echo path, the steady-state NEE and the steady-state MSE decreases when

the step-size is decreased.

Since in the case of echo cancellation the interest is to minimize the output error

between the echo y(n) and its estimate ŷ(n), the MSE is the best choice to measure the

performances of the TDLMS algorithm. Actually, in echo cancellation application the

interest is not to identify the echo path but to reduce the local echo. As a consequence,

the best measure to compare two algorithms ( for instance LMS, transform domain LMS

and scrambled LMS) is to compare their output MSEs.

20This is true when the coefficients of the LMS are initialized with zeros.
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3.4.6 Simulations and results

Here we study the performances, in terms of MSE and mean squared coefficient error

of the time domain LMS, scrambled LMS and the transform domain LMS in the echo

cancellation framework for digital data transmission. The length of the echo path and of

the adaptive filters were N = 9 in all experiments. In order to illustrate the analytical

results from the previous section, two different experiments were performed. In the first

experiment, we have studied an extreme case where the input sequence was a constant

signal, whereas in the second case we tested the three algorithms when the input sequence

was a binary sequence with elements from the set {−1; 1}. However the samples of the

input sequence in the second experiment were correlated in the sense that long strings

of −1’s and +1’s were included in x(n). Although a constant input sequence as in the

first experiment is unlikely to appear in practice, we have chosen to include here this

example in order to get a more clear insight about the adaptation mechanism for these

three algorithms.

First experiment: The block diagram used to implement the LMS, SCLMS and

TDLMS algorithms are those depicted in Fig. 3.14, Fig. 3.15 and Fig. 3.17 respectively.

The input sequence x(n) have a constant level of +1. The step-sizes used in the LMS

and SCLMS were made equal whereas for the TDLMS we have used a step-size that is 9

times larger21.

The values of the first coefficients of the TDLMS and Th, during the adaptation, are

shown in Fig. 3.18. We can see that ĥ1(n) converges to the first element of the vector

Th and the other coefficients of the TDLMS were zero, which is in agreement with the

theoretical results.

The value of the first coefficient during the adaptation together with the average of

the coefficients of the echo path are shown in Fig. 3.19 for the LMS algorithm. The

plotted learning curves show a good agreement with the analytical result of (3.84) (the

other coefficients of the adaptive filter were equal to the first coefficient).

In Fig. 3.20 and Fig. 3.21 the second and the fifth coefficients of the adaptive filter are

plotted for the scrambled LMS together with the corresponding coefficients of the echo

path model. Also, these figures have shown a good agreement with the theory (we see

that the coefficients of the SCLMS approximate the coefficients of the echo path h).

In Fig. 3.22, the Normalized Estimation Error (see (3.103) and (3.104)) is plotted

for the TDLMS and SCLMS. We can see from this figure, that the steady-state level of

the NEE in the case of TDLMS is higher than in the case of SCLMS which is due to

21This was suggested by the expression of the misadjustment in (3.96).
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Figure 3.18: The behavior of the first co-

efficient of the TDLMS and the first coef-

ficient of Th during the adaptation in the

first experiment.
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Figure 3.19: The behavior of the first co-

efficient of the LMS and the average of the

coefficients of h during the adaptation in

the first experiment.
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Figure 3.20: The behavior of the second

coefficient of the SCLMS and the second

coefficient of the echo path model in the

first experiment.
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Figure 3.21: The behavior of the fifth co-

efficient of the SCLMS and the fifth coef-

ficient of the echo path model in the first

experiment.

the fact that some coefficients of the adaptive filter are not updated. The reason of this

phenomenon is the fact that the transformed input vector s(n) have just one non-zero

element.

Finally, the excess MSE for the LMS, SCLMS and TDLMS are shown in Fig. 3.23,
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Figure 3.22: Normalized estimation error

for the SCLMS and TDLMS in the first

experiment.
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Figure 3.23: The excess MSE for the LMS

in the first experiment.
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Figure 3.24: The excess MSE for the

SCLMS in the first experiment.
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Figure 3.25: The excess MSE of the

TDLMS for the first experiment.

Fig. 3.24 and Fig. 3.25 respectively. We can see that the TDLMS performs better than

the SCLMS in terms of MSE, for this particular input sequence. The step-size of the

TDLMS was 9 times larger than the step-sizes of the LMS and SCLMS as suggested by

(3.96) and (3.102), in order to obtain the same level of the steady-state missadjustment.

We can see that both filters converge to the same level of the MSE although they have

different step-sizes, which proves the validity of (3.96).

Second experiment: The same block diagrams were used to implement the three

compared algorithms. The input sequence was bipolar with elements in {−1, +1} and it
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Figure 3.26: The first coefficient of the

TDLMS and its optimum value during the

adaptation (second experiment).
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Figure 3.27: The third coefficient of the

TDLMS and its optimum value during the

adaptation (second experiment).
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Figure 3.28: Normalized estimation error for the LMS, SCLMS and TDLMS in the second

experiment.
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Figure 3.29: The excess MSE for the LMS, SCLMS and TDLMS in the second experiment.

contains long strings of consecutive −1’s and +1’s. In this case, the input autocorrelation

matrix is not diagonal and the eigenvalue spread was larger than unity.

The behavior of the first and the third coefficient of the TDLMS together with the

first and the third coefficient of Th are plotted in Fig. 3.26 and Fig. 3.27 respectively.

We can see that in this case the coefficients of the TDLMS converge near Th. However,

from the learning curves shown in Fig. 3.28 we can see that also in this case the TDLMS

converges to a higher level of the NEE comparing to the LMS and SCLMS. This is due

to the fact that during the adaptation the long strings of input samples with constant

values are transformed by the orthogonal transform into vectors having just one non-zero

coefficient and the other coefficients are zero. Because of this phenomenon, the coefficients

of the adaptive filter are not enough times updated resulting into a higher level of the

steady-state NEE.

The excess MSEs obtained with the LMS, SCLMS and TDLMS are plotted in Fig.

3.29. We can see that TDLMS and SCLMS converges faster than the LMS for correlated

input sequence. This faster convergence was expected since both algorithms uses the

decorrelation of the input sequence which increases the convergence speed.

Here we have analyzed the problem of local echo cancellation for digital transmission
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over a telephone. For this practical application we have studied the behavior of three

different adaptive algorithms, the Least Mean Squared (LMS) algorithm, the Scrambled

LMS (SCLMS) and the Transform Domain LMS (TDLMS) algorithm.

We have found that in the case of TDLMS the level of the steady-state NEE is higher

compared to LMS and SCLMS, when the input sequence contains long strings of con-

secutive equals samples and it cannot be decreased due to the fact that there are some

coefficients that are not enough times updated. However, all algorithms converge to the

same level of the steady-state MSE which is of interest in practical applications, when the

step-sizes are appropriately chosen.

For input sequences which contains long string of equal samples, the convergence speed

of both TDLMS and SCLMS are comparable and higher than the convergence speed of

the LMS. This result is expected since it is well known that the LMS converges slower for

correlated inputs than other algorithms which perform the decorrelation at the input of

the adaptive filter.



Chapter 4

Applications

In this chapter, we discuss about the implementation of various adaptive algorithms intro-

duced in the previous chapters for three practical applications. First, we address the prob-

lem of channel equalization for Gaussian and non-Gaussian noise environments. Second

the behavior of different adaptive algorithms for the problem of Code-Division Multiple-

Access using the Direct-Sequence (DS) spread spectrum signaling is discussed. Finally,

the problem of echo cancellation for digital data transmission is addressed. Computer

experiments showing the results obtained with the compared algorithms are presented

and the advantages and the disadvantages of the implementations are discussed.

Section 4.1 is dedicated to the problem of channel equalization and the algorithms

which are implemented for this problem are the order statistics LMS, the plain time

domain LMS, the variable step-size LMS in time domain and the transform domain im-

plementations (the plain transform domain LMS and transform domain LMS algorithms

with variable step-size). All these algorithms were described in the previous sections of

the thesis. We first briefly describe the problem of channel equalization and the block

diagrams of the time domain and transform domain implementations are presented. In

Section 4.1.1 the order statistic LMS algorithms are implemented in channel equalization

framework for non-Gaussian channel noise whereas in Section 4.1.2 the time domain and

transform domain algorithms are compared for the situation in which the channel noise

is Gaussian distributed.

In Section 4.2 the problem of CDMA multiuser detection is addressed. We shortly

describe first the framework in which the adaptive filters are implemented and then the

simulations and results obtained with the time domain adaptive algorithms with variable

step-size are shown. For this application we have implemented the following adaptive al-

gorithms: the plain LMS, the variable step LMS proposed in [48], the robust variable step

123
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LMS proposed in [1] and the complementary pair variable step LMS algorithm described

in Section 2.2.

In the last part of this chapter, an extension of the Variable Length LMS for correlated

input sequence is introduced. The proposed algorithm is a combination of the VLLMS

algorithm introduced in Chapter 2 and SCLMS presented in Chapter 3. The performances

of the new implementation are studied in echo cancellation framework.

4.1 Channel equalization

For the problem of channel equalization, we study the performances of two main classes

of adaptive filters namely the time domain implementations and the transform domain

implementations. The block diagram implemented for channel equalization in time do-

main is depicted in Fig. 4.1, where h represents the time invariant linear communication

channel, v(n) represents the channel noise, ĥ(n) is the vector containing the coefficients

of the adaptive filter, xin(n) is the sequence transmitted through the channel and xout(n)

the output sequence from the channel.

The noise channel is added at the output sequence xout(n) and the result x(n) repre-

sents the input into the adaptive filter. The coefficients of the adaptive filter are updated,

such that the MSE at the output of ĥ(n) is minimized. The error is computed as the

difference between the desired sequence d(n) and the output of the adaptive filter and the

sequence d(n) is obtained as a delayed version of the transmitted signal xin(n). Actually,

in practice the sequence d(n) is stored in the receiver and during the adaptation period

the same sequence is transmitted through the channel. During the training period, the

sequence xin(n) and its delayed version d(n) does not contain useful information. After

the training period the coefficients of the adaptive filter are maintained constant and the

sequence which contains the useful information is transmitted. This method is known as

the training based channel equalization since the transmition of the useful information is

interrupted from time to time in order to perform the equalization of the channel during

the training period.

For transform domain implementations the same scheme of training-based channel

equalization is implemented as shown in Fig. 4.2. The difference between the two figures

consists in the block denoted as T which appears in Fig. 4.2. This block represents

the orthogonal transformation applied at the input of the adaptive filter, such that the

output from the channel plus the channel noise x(n) = xout(n) + v(n) is first transformed

to s(n) = Tx(n) and then applied to the adaptive filter.

In all simulations presented here the transmitted sequence is bipolar with values ran-
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Figure 4.1: The block diagram for channel equalization in time domain.
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Figure 4.2: The block diagram for channel equalization in transform domain.

domly chosen from {−1; +1}. Although the transmitted signal xin(n) represents a random

sequence, the samples xout(n) at the output of the channel are correlated due to the chan-

nel coefficients. Due to this fact the autocorrelation matrix of the sequence x(n) can be

in some cases very high and the convergence speed of the time domain implementations

is low. This is the reason why we have implemented also the transform domain adaptive

filters for this application.

Another situation, which can occur in practice, is when the channel noise v(n) have

non-Gaussian distribution. For instance, when the noise distribution is impulsive, the

LMS have stability problems. This is due to the fact that the impulses contained in

v(n) influences the adaptation of the coefficients through the term x(n)e(n)1. For such

1We note that in this application, the noise appears just at the input of the adaptive filter. However

due to the fact that the desired sequence d(n) is bipolar, a certain degree of impulsivity exists at the

output of the adaptive filter as well.
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situations the Order Statistics LMS algorithms might be an alternative solution.

Computer experiments, showing the performances of the OSLMS algorithms described

in Chapter 2, are presented in the next section, for various noise distributions. For the

case of Gaussian noise distribution in Section 4.1.2 the results obtained with the variable

step-size LMS algorithms in time and transform domain are presented.

4.1.1 Channel equalization in non-Gaussian noise environments

The block diagram used in the experiments is depicted in Fig. 4.1 and the compared

algorithms were the order statistic LMS from Section 2.5. A delayed version of the

transmitted sequence xin(n), with an appropriate delay D, is used as the desired signal

d(n) = xin(n − D) for the adaptive filters. The length of the channel was Nch = 11, the

lengths of all the compared adaptive filters were N = 11 and the length of the weighting

vector (a and a(n)) for the gradient was L = 7 (see Section 2.5).

The distribution of the channel noise v(n) has a generalized exponential density given

by:

p(r) = k1e
−k2|r|β , |r| < ∞, 0 < β ≤ ∞, (4.1)

where k1 and k2 are given by:

k1 =
(
βk

1/β
2

)
/2Γ

(
1

β

)
, k2 =

⎡⎣Γ
(

3
β

)
Γ
(

1
β

)
⎤⎦β/2

σ−β
v , (4.2)

with Γ being the ordinary gamma function and σ−2
v the standard deviation.

In order to have a fair comparison the step-sizes of all the algorithms were chosen

to give comparable convergence speeds and the step-size for the L-LMS algorithm was

chosen to be µ̃ = 0.1 which satisfies the stability condition from Section 2.5.

As β in (4.1) increases from a value close to zero, the resulting density varies from

highly impulsive to Gaussian and to uniform. However, the gradient has a certain degree

of impulsivity also in the case of Gaussian and uniform channel noise due to the desired

signal d(n), which is bipolar. Therefore, we expect that the Outer Mean LMS does

not give satisfactory results for any considered noise distribution. More than that, the

gradient distribution is also influenced by the distribution of the channel noise and input

sequence x(n) and the performance of the Median LMS is expected to be also poor. With

these observations we can expect that among OSLMS algorithms with fixed weighting

coefficients the Trimmed Mean LMS would have the best performance. Note, that an



4.1 Channel equalization 127

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2

3

4

β

M
ea

n 
Sq

ua
re

 E
rr

or
 (

dB
)

MEDIAN
OxLMS
MxLMS
AOSLMS

Figure 4.3: Steady-state mean squared error for median LMS, MxLMS, OxLMS and

AOSLMS for SNR = 0 dB.

algorithm similar to the proposed AOSLMS in which not only the trimming coefficient is

adapted but also the envelope of the weighting coefficients would give even better results.

The simulations showing the performance of the AOSLMS filter compared with other

OSLMS algorithms are given in Fig. 4.3 and Fig. 4.4 for different noise distributions

and different signal-to-noise ratio at the input of the adaptive filters. In these figures, the

steady-state MSE for each compared algorithms are plotted. The results shown in Fig.

4.3 were obtained for a signal-to-noise ratio of SNR = 0 dB, at the output of the channel,

whereas in Fig. 4.4 the signal to noise ratio was SNR = 10 dB. From these figures, we

can see that the algorithm which uses an adaptive filter to smooth the gradient gives

better results for almost all considered noise distributions and this is in agreement with

the theoretical considerations from Section 2.5.

Here, we have applied a new AOSLMS adaptive filter to the problem of channel equal-

ization for non-Gaussian noise environments. The approach of channel equalization differs

from that of the system identification, in which the impulsive nature of the gradient is

mainly given by the noise present in the system. Usually, in the case of channel equal-
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Figure 4.4: Steady-state mean squared error for median LMS, MxLMS, OxLMS and

AOSLMS for SNR = 10 dB.

ization it is difficult to predict the distribution of the gradient and hence the optimal

weighting vector to smooth the gradient. In such cases, the proposed AOSLMS algo-

rithm would give better results due to its ability to adapt the weighting coefficients to the

unknown gradient distribution.

4.1.2 Channel equalization using variable step-size adaptive al-

gorithms

The algorithms compared here, in channel equalization framework, are the time domain

and transform domain algorithms with fixed and variable step-sizes that were described in

Chapter 2 and Chapter 3. The block diagram for the transform domain implementations

is depicted in Fig 4.2 and for the time domain implementations in Fig. 4.1. The compared

algorithms were: the plain LMS, the Variable Step-Size LMS proposed in [48], the robust

variable step LMS (RVSLMS) from [1], the plain TDLMS using the DCT transform, the

DCT-LMS using the modified power estimator proposed in [45] and the TDVSLMS from

Section 3.2 of this thesis.

The transform used at the input of all transform domain implementations was the
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Algorithm LMS VSSLMS RVSLMS TDLMS DCT-LMS TDVSLMS

MSE 0.0155 0.0155 0.0157 0.0153 0.0161 0.0153

Table 4.1: The steady-state mean squared error for the compared algorithms in the chan-

nel equalization framework.
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Figure 4.5: Mean squared error of the LMS, VSLMS, RVSLMS and TDVSLMS imple-

mented for channel equalization.

DCT. The signal to noise ratio at the output of the channel was SNR = 30 dB and the

parameters of all the compared algorithms were chosen, such that they have comparable

steady-state MSE. In order to setup the parameters of the implemented algorithms, we

have followed the guidelines presented in Section 3.2.

The plotted learning curves were obtained by averaging the squared errors of 200

independent runs each run containing a number of 15 × 104 iterations. The steady-state

mean squared errors obtained experimentally are given in Table 4.1 and these values were

computed averaging the last 1000 values from the corresponding MSE’s.

All the adaptive filters have the same number of coefficients N = 17 and the trans-
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Figure 4.6: Mean squared error of the TDLMS, DCT-LMS and TDVSLMS implemented

for channel equalization.

mission channel has three coefficients given by the following model (see [45]):

hi =

⎧⎨⎩
1

2

[
1 + cos

{
2π

W
(i − 2)

}]
, if i = 1, 2, 3,

0, otherwise
(4.3)

In Fig. 4.5, the learning curves obtained for the LMS, VSSLMS, RVSLMS and TD-

VSLMS algorithms are depicted. In order to have a more clear representation, just the

first 4000 samples of each learning curve are plotted. We can see from this figure that the

TDVSLMS clearly has higher convergence speed than the time domain implementations.

This is expected since the input signal into the adaptive filter was highly correlated due

to the coefficient W = 3.75 in (4.3).

A more interesting result is presented in Fig. 4.6, where the TDVSLMS algorithm is

compared with the plain TDLMS and the DCT-LMS using the modified power estimator.

We can see from this figure that the TDVSLMS is the fastest algorithm among these three

transform domain implementations.

The transform domain variable step-size LMS algorithm described in Section 3.2, ap-

plied to the problem of channel equalization, shows better convergence speed compared

to other well known time domain and also transform domain algorithms. We have seen
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in Chapter 3 that the computational complexity of the TDVSLMS algorithm is compa-

rable with that of the plain TDLMS, which makes it a very good candidate for practical

implementations. Another transform domain algorithm which can be implemented in

this framework is the TDCPVSLMS from Section 3.2 of this thesis. Although it is more

computational expensive, the setup of its parameters is simpler.

4.2 CDMA multiuser detection

Code Division Multiple Access (CDMA) using the direct sequence (DS) spread-spectrum

signaling has been implemented with success in telecommunication applications. Some

of the main advantages of the DS/CDMA technique are: the ability of asynchronous

operation, a better channel usage compared with other techniques that allows a single

user to be transmitted over the channel at a certain time and its ability to operate in the

presence of narrow band communication systems. When a given user is demodulated in a

DS/CDMA system, two types of interferences must be minimized, namely the wide band

Multiple Access Interference (MAI) and the Narrow Band Interference (NBI), as well as

the channel noise. The MAI is caused by other spread spectrum users into the channel

while the NBI interference is caused by other conventional communication systems.

Among other demodulation techniques, the adaptive methods have been successfully

applied to reduce both the MAI and NBI interferences in DS/CDMA systems. When the

spreading code and the channel parameters of the desired user are known or can be esti-

mated, the blind adaptive detectors can be easily used [36], [37], [42], [47], [67], [68], [81],

[75], whereas in absence of these pieces of information the trained based implementations

are preferred [50], [53], [57].

In the trained based systems a known training sequence is transmitted which is used

to tune the coefficients of the adaptive filter before the actual data is sent. The well

known adaptive algorithm used in both blind and training based demodulators is the

LMS algorithm which has the advantage of having a simple implementation and low

computational complexity. However, the main disadvantages of the LMS algorithm are

its slow convergence when operating with highly correlated input signals and the trade-off

between the convergence speed and the output error, as we have pointed out during this

thesis [41]. In order to reduce these disadvantages many of its variants where introduced

in the open literature, such as the class of Variable Step-Size LMS algorithms.

In this section, we analyze the behavior of different VSSLMS adaptive algorithms

for the problem of multiuser detection in a synchronous CDMA system. We show, by

means of simulations, that the Complementary Pair Variable Step-Size LMS (CP-VSLMS)
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Figure 4.7: Block diagram of an adaptive detector using the LMS algorithm.

adaptive algorithm introduced in Section 2.2 possess a faster convergence speed than other

known algorithms, while reducing the trade-off between convergence speed and steady-

state output error.

4.2.1 Problem formulation and theoretical background

For the sake of simplicity, we consider a synchronous CDMA system in which a number

of K users transmit over a single-path time-invariant channel. The processing gain is

denoted by N , the attenuation of each user data are denoted by ak and the data symbols

transmitted by all users are aligned in time.

The received signal, sampled at chip rate, can be written in vector form as follows:

r(n) = SAd(n) + v(n), (4.4)

where the jth column of S represents the received spreading code of the jth user, the vector

d(n) = [d1(n), . . . dK(n)]T contains the data symbols transmitted by all users at the time

instant n, the N × 1 vector v is the sampled channel noise and the K × K matrix A is

given by:

A =

⎡⎢⎢⎢⎣
a1 0 0 . . . 0

0 a2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . aK

⎤⎥⎥⎥⎦
Assuming that the desired user is user 1, a block diagram of a trained based detector

using the standard LMS adaptive algorithm is depicted in Fig. 4.7, where r(n) is the

input vector described in (4.4), ĥ(n) =
[
ĥ1(n), . . . , ĥN(n)

]t
is the N ×1 vector containing
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the coefficients of the demodulator, d1(n) is the known desired sequence that is the same

as the data sequence transmitted by the user 1 and e(n) is the output error.

The LMS adaptive algorithm used to train the coefficients of the adaptive filter ĥ(n)

can be described by the following steps (see also Section 2.2 of this thesis):

1. Compute the output of the adaptive filter ĥ(n):

ŷ(n) = ĥt(n)r(n) =
N∑

i=1

ĥi(n)ri(n), (4.5)

where ri(n) is the ith element of the vector r(n) in (4.4).

2. Compute the output error:

e(n) = d1(n) − ŷ(n), (4.6)

3. Update the coefficients of the adaptive demodulator:

ĥ(n + 1) = ĥ(n) + µe(n)r(n). (4.7)

where µ is a constant parameter called step-size, which controlls the steady-state

error and the convergence speed.

For the training based detector the convergence speed is governed by the eigenvalue

spread of the input autocorrelation matrix which is defined as follows:

R = E
[
r(n)rt(n)

]
= E [SAd(n)dt(n)AtSt] + E [v(n)vt(n)] , (4.8)

where we have assumed that the elements of the vector v are random zero-mean and

independent from S, A and d(n).

It is clear from (4.8) that the eigenvalue spread of the input autocorrelation matrix R

can be far from unity and an adaptive demodulator using the standard LMS algorithm

will have a very slow convergence. Since in the case of training based detectors, during the

adaptation period no data sequences can be transmitted, a slow convergence will decrease

also the transmission rate. Therefore, in practical applications, the convergence speed of

the detector has to be increased while maintaining a small steady-state error.

Besides a slow convergence, the plain LMS algorithm has also the disadvantage of a

trade-off between speed and steady-state output error. Indeed from (4.7) we can see, that

in order to obtain a small steady-state error, one has to choose a small step-size, but a

small value of µ decreases the speed of convergence of the algorithm.

In the sequel we study, by means of computer experiments, the behavior of the adaptive

algorithms described in Section 2.2 of this thesis.
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Table 4.2: Steady-state MSE and the parameters for the compared algorithms for CDMA

multiuser detection.
Algorithm Parameters Steady-State MSE (dB)

LMS µmin = 3 × 10−4 -17.4256

LMS µmax = 3 × 10−3 -14.0252

CP-VSLMS
µmin = 3 × 10−4, µ2 = 3 × 10−3,

α = 0.9, T = 50
-17.4251

VSSLMS
µmin = 3 × 10−4, µmax = 3 × 10−3,

α = 0.9, γ = 0.002
-17.2241

RVSSLMS
µmin = 3 × 10−4, µmax = 3 × 10−3,

α = 0.97, β = 0.99 γ = 2
-17.2643

4.2.2 Simulations and results

We compare the performances, in terms of convergence speed and steady-state MSE, of

the CP-VSLMS, plain LMS, VSSLMS, and RVSLMS algorithms, in the CDMA multiuser

detection framework. The signal model is given in (4.4) and the number of users was

K = 4 with the first user being the user of interest. The attenuation of the first user was

10 dB below the attenuation of the other three users. The spreading codes were chosen

from a set of Gold sequences of length N = 31 and the channel noise v(n) was white

Gaussian with zero mean and variance σ2
v = 10−2. The transmitted data (the elements of

the vector d(n) in (4.4)) were equiprobable bipolar sequences with values in {−1, +1}.
The parameters of all the tested algorithms are presented in Table 4.2 together with

the corresponding values of theirs steady-state MSE. These parameters were chosen to

give comparable steady-state MSE for all adaptive filters. One exception is the LMS,

implemented with fixed step-size µmax = 3 × 10−3, which was included for benchmark

purposes. The learning curves (the output MSE during the adaptation) for all algorithms

are shown in Fig. 4.8, Fig. 4.9, Fig. 4.10, Fig. 4.11 and Fig. 4.12. These results

were obtained by averaging a number of 100 runs of length 4 × 104 iterations. From

these figures, we can see, that the CP-VSLMS has faster convergence compared with the

VSSLMS, RVSLMS and the LMS having a small step-size while their steady-state MSE

are comparable.

In order to have a more clear insight of the behavior of the compared algorithms in Fig.

4.13, Fig. 4.14 and Fig. 4.15 the expected value of the step-size during the adaptation

for the CP-VSLMS, VSSLMS and RVSLMS respectively are plotted. From these figures,

we can see, that the step-size of the CP-VSLMS algorithm has the smallest variations at

the steady-state and also its value is very close to µmin = 3 × 10−4. These results are
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Figure 4.8: Output mean squared error for

the LMS with µmin = 3 × 10−4.
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Figure 4.9: Output mean squared error for

the LMS with µmax = 3 × 10−3.
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Figure 4.10: Output mean squared error

for CP-VSLMS.
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Figure 4.11: Output mean squared error

for VSSLMS.

in agreement with our theoretical considerations from section 2.2 that the steady-state

misadjustment of the CP-VSLMS is given by µmin.

In Chapter 2, the computational complexity and memory load2 of the variable step-

size algorithms were compared and we have seen that the computational complexity and

memory load of the CP-VSLMS algorithm are almost double compared with the other

algorithms. However, the benefit of the proposed algorithm is the increased convergence

speed and the fact that the dependence between the speed of convergence and the steady-

2The number of memory locations necessary to store the variables and the parameters.
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Figure 4.12: Output mean squared error

for RVSLMS.
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Figure 4.13: Step-size behavior for CP-

VSLMS.
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Figure 4.14: Step-size behavior for

VSSLMS.
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RVSLMS.

state error is eliminated. Indeed the steady-state misadjustment of the CP-VSLMS is

given by its steady-state step-size which is µ1(∞) = µmin, whereas the speed of conver-

gence can be tuned selecting the other parameters, such as, α, µmax and T . In the case of

VSSLMS and RVSSLMS the equations that gives the values of the parameters, provided

in [48] and [1], are sometimes difficult to be used, due to the fact that they depend on

the minimum MSE.
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Figure 4.16: Block diagram of the local echo cancellation using the Scrambled LMS with

adaptive length.

4.3 Scrambled LMS with adaptive length for echo

cancellation

In this section, we address the problem of local echo cancellation for digital data transmi-

tion over a telephone line. Moreover, the transmition is secured by the use of a scrambling

device at both users as depicted in Fig. 3.16. In our discussion we assume the length

of the echo path unknown and the adaptive filter implemented is a combination of the

scrambled LMS described in the previous chapter and the variable length introduced in

Section 2.3. The aim of this implementation is to reduce the bias which appears in the

steady-state MSE when the length of the echo path and the length of the adaptive filter

are not equal.
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A detailed block diagram implemented in our simulations is depicted in Fig. 4.16

where we have used three adaptive filters with different lengths as in the approach of

Section 2.3. The transmitted digital data x(n) has samples chosen from {−1; +1} and it

contains long strings of consecutive −1’s and +1’s. The sequence x(n) is passed through

a scrambling device, which generate the scrambled sequence xsc(n). As we have seen in

the previous chapter, the scrambling device decorrelate the transmitted data, therefore

the analytical results for length adaptation from Chapter 2 can be used here3.

The far-end sequence v(n) is obtained by adding a random zero mean Gaussian-

distributed sequence and a bipolar sequence with samples from {−a; +a}. The Gaussian

component of v(n) simulate the channel noise whereas the bipolar component of v(n) is

due to the transmitted data from user B to user A (we have assumed that the hybrid

connections of the telephone line are ideal).

The transfer function of the echo path used in the simulations was [72]:

H(z) =
N−1∑
i=0

piz−i, (4.9)

where p = 0.80025 and the impulse response of the echo path is shown in Fig. 4.17.

The attenuation of the transmitted data from user B to user A was chosen a = 0.1

and the variance of the channel noise was σ2
v = 10−3. The length of the echo path model

in (4.9) is N = 19 and the lengths of the adaptive filters were initialized with N1(0) = 7,

N2(0) = 8 and N3(0) = 9 respectively. A step-size µ = 10−2 was used to initialize

the step-sizes of all adaptive algorithms. This value of µ satisfies the stability condition

and also ensures equal misadjustments. A time-varying test interval was used for length

adaptation in (2.113) and the parameter P was chosen as P = 2.

All the results were obtained by averaging a number of 100 independent runs each of

them containing 104 iterations. The same algorithm as the one described in Section 2.3

was implemented for length adaptation and the adaptive filter of interest is ĥ2(n). The

average of the length N2(n) of the second adaptive filter ĥ2(n), during the adaptation, is

shown in Fig. 4.18. The value of N2(n) during one run is shown in Fig. 4.19. We can

see, that the length of the second adaptive filter converges close to the optimum length

which is N = 19. However, there is a small difference between the steady-state value of

E {N2(n)} and N = 19 due to the fact that the autocorrelation matrix of the scrambled

sequence xsc(n) is not diagonal and the off-diagonal terms influence the minimum MSE

as explained in Chapter 2.

3Actually the autocorrelation matrix of the scrambled sequence xsc(n) is not perfectly diagonal, there-

fore a certain deviation from the optimum length is expected to occur.
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Figure 4.19: The length of the second

adaptive filter during one run.

The MSE of the second adaptive filter is depicted in Fig. 4.20, whereas the MSE of an

adaptive filter with constant length N = 19 is shown in Fig. 4.21. The step-sizes used in

the adaptation were chosen to obtain the same misadjustments for both adaptive filters.
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Figure 4.20: Output mean squared error

of the second adaptive filter.
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of an adaptive filter with optimum length.
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Figure 4.22: Mean squared error for the case of a constant length smaller than the length

of the echo path.

For comparison purposes in Fig. 4.22 the MSE of an adaptive filter with fixed length

Nad = 7 is depicted. The learning curve is obtained in the same framework as the ones

shown in Fig. 4.20 and Fig. 4.21. Clearly the filter with adaptive length converges to
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a smaller steady-state MSE than the filter with fixed length Nad < N . Also, due to the

transient time of the length adaptation, the filter ĥ2(n) converges in a slower form than

the filter with optimum length.

From the results shown in this section, we can conclude that in echo cancellation

applications, a very important issue is the length adaptation. If a smaller adaptive filter

is used, the steady-state MSE is larger as compared with the situation when the length of

the echo path is known. When a scrambling device is used to secure the data transmission,

this also performs a decorrelation of the input sequence into the adaptive filter and an

algorithm as the one introduced in Chapter 2 can be implemented for length adaptation.

However, due to the imperfect decorrelating properties of the scrambling device, the off-

diagonal terms of the matrix Rsc are non-zero and the estimation of the length is not

perfect.
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Chapter 5

Conclusions

This thesis has introduced several new algorithms for adaptive filtering, all of them derived

from the well known Least Mean Squared adaptive algorithm, which is widely used in

many practical applications due to its simplicity. Despite its simplicity, the LMS has

some major drawbacks which are mentioned and discussed during this work. One goal of

this thesis has been to analyze each of these inconveniences of the LMS and to provide

solutions to improve its performance in terms of convergence speed, adaptation error,

tracking capabilities and stability in Gaussian and non-Gaussian noise environments.

The new developed techniques differ by addressed framework, selection of parameters

and application. We have derived two new adaptive algorithms with variable step-size for

time domain which provide high convergence speed while maintaining a small steady-state

error. The proposed algorithms use the output error in the adaptation of the step-size

and this concept was utilized by many researchers. The difference between the new

methods and the existing approaches is that the output error is not directly included

in the expression of the step-size, although the step-size adaptation is still based on the

mean squared error. As a consequence, the analytical expression of the steady-state

misadjustment is simplified1 and the setup of the parameters is very easy. Even more

the parameters of the proposed algorithms are not sensitive to the level of the signals

involved.

It is well known that the transform domain LMS increases its convergence speed for

highly correlated inputs in comparison with the time domain implementations. We have

shown here that using the same concept of step-size adaptation, but in transform domain,

the convergence speed can be even more increased. As a consequence, a new class of

transform domain adaptive algorithms with variable step-size has been introduced in this

1Actually it is shown to be the same as for plain LMS with fixed step-size.

143



144 Conclusions

thesis.

The estimation of the model length in system identification applications might be

of great interest. Also when there is a mismatch between the length of the model and

adaptive filter, the output mean squared error is increased. To address this problem, we

have introduced a variable length LMS algorithm in which not only the coefficients of the

adaptive filter are adapted but also its length.

Tracking capability for identification applications is also addressed in this thesis and

two new algorithms with adaptive step-size are introduced. In a time-varying environ-

ment, the steady-state mean squared error possess a minimum for a certain value of

the step-size. In the existing approaches the optimum step-size is computed based on

some prior information about the statistics of the model. Our proposed algorithms do

not use any information for step-size adaptation. The aim of step-size adaptation for a

time-varying environment was not to increase the convergence speed, but to adapt their

step-size toward the optimum. However one of the two proposed algorithms is derived for

the transform domain which provides also an improved convergence speed.

Non-Gaussian noise environments are known to be difficult tasks for the LMS al-

gorithm due to the use of the instantaneous gradient to update the coefficients of the

adaptive filter. Due to this fact the LMS may have stability problems for impulsive dis-

tributions of the signals. An answer to this problem is to use a smoothed version of the

gradient in the update formula. The gradient can be smoothed using different nonlinear

filters and the resulting algorithms are available in the open literature. The nonlinear

filter has to be chosen based on the distribution of the gradient. In our new approach we

use an nonlinear filter with adaptive coefficients for smoothing the gradient and the prior

information about the gradient distribution is not any more necessary.

The scrambled LMS algorithm was primarily introduced for the applications where

there is a necessity to secure the data transmition. However scrambling was shown to be

a good decorelation technique, which can increase the convergence speed. The question

which arises is how the scrambled LMS performs comparing with the transform domain

LMS. To have an insight to this problem, the analytical expressions of the steady-state

mean squared error and mean squared coefficient error for LMS, TDLMS and scrambled

LMS are derived in this thesis. These expressions are obtained for the special case when

the input sequence has equals samples, in the framework of digital transmission over a

telephone line. The optimum solution of the compared algorithms is also derived and the

simulations results supporting the theoretical considerations are presented.

As a final conclusion we can state that the contributions of this thesis have both

theoretical and practical importance succeeding to introduce several solutions to improve
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the behavior of the Least Mean Squared adaptive algorithm. All the proposed algorithms

were developed based on analytical expressions derived for different situations which can

appear in practice. Moreover, this thesis work can also provide many other possible topics

of future research.
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