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Abstract

The connectivity of microstructures is directly related to the physical proper-

ties of materials. Currently, the Euler number is the most popular measure

of connectivity. It is an elegant topological invariant, however, it does not

provide information about cavities or the proximities and sizes of objects. In

this thesis, an alternative measure called contour tree connectivity (CTC) is

developed and its applications for the analysis of microstructures are studied.

CTC is derived from contour trees that are used in the first publication to

represent complex binary images with simple graphs. By analyzing contour

trees, CTC produces new connectivity information that is not provided by

other approaches described in the literature. Contour tree representation of

binary images and CTC can be computed for any dimensions of data and

topology as explained in the second publication. Moreover, CTC is designed

to be a scalar between 0 and 1, which makes it easy to use and understand.

In this thesis, the use of CTC for analyzing microstructures is presented in two

studies. In the first study, the microstructure of trabecular bone is analyzed

in relation to its mechanical strength. In the second study, the relationship

between microstructures and the fluid flow within materials are examined.

The results from these studies show that CTC contributes to the understand-

ing of how the structural properties of materials are linked to their physical

properties.

To conclude, with its unique properties, CTC complements the structural

information provided by currently used measures. This makes it an important

image analysis tool for the study of the microstructures of materials such as

soil, paper, filters and food products as well as biomaterials and biological

tissues.
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1

INTRODUCTION

It is an important research problem to find out how the physical properties of materi-

als and their microstructures are related. To achieve this, a variety of image analysis

methods to study the structural properties of materials such as connectivity have been

proposed. Connectivity is an important property for several reasons. For example, the

flow and transport properties within porous objects are governed by the connectivity of

the pore network [55], the stiffness of fibrous objects depends strongly on the number

of connected/touching fibers [32] and the mechanical strength of the trabecular bone is

related to the connectivity of the trabecular structure [139]. Despite efforts to link con-

nectivity with various physical properties, there is, however, a lack of a good quantitative

measure for it. The only scalar measure that is applicable for any geometry is the Euler

number that is a topological invariant. Although there are a few other scalar measures of

connectivity such as parameters based on percolation theory, their applications are not

common and they cannot provide intuitive connectivity measures.

This thesis proposes a novel scalar measure for connectivity and introduces its uses

in predicting the physical properties of materials from images of microstructures. In

particular, it is targeted at obtaining a connectivity measure that is both effective and

intuitive for complex microstructures.
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1. INTRODUCTION

1.1 Aims and contributions

The aims of the thesis are the following:

1. To develop a new interpretation for connectivity which has more geometrical rele-

vance, rather than purely topological or functional.

2. To design and create effective algorithms to quantify connectivity with a scalar,

that is easy to understand and use.

3. To investigate how this new geometrical interpretation of connectivity relates to

real-life processes, such as flow and mechanical properties of materials.

The contributions of the thesis are the following:

1. A new connectivity measure that is named the contour tree connectivity (CTC) is

developed. [Publication-I, Publication-II]

2. CTC is designed to be a scalar, that is between 0 and 1. [Publication-II]

3. Structural connectivity information quantified with CTC is shown to be linked to

mechanical and fluid flow properties of microstructures. [Publication-III, Publica-

tion-IV]

1.2 Organization of the thesis

The thesis comprises six chapters. In Chapter 2, related work is summarized. This chap-

ter starts by explaining the connectivity concept used in image processing. Following this,

the common problems of shape analysis and how they are solved in computer vision ap-

plications are summarized. Lastly, image analysis and the connectivity of microstructures

are explained.

In Chapter 1.1, the aim of the thesis and the main contributions are summarized.

The methods developed to achieve the aims of the thesis are given in Chapter 3. The

method chapter is the core of this thesis and provides extended explanations of the ideas

presented in [Publication-I,Publication-II]. Here, mainly the new connectivity measure

that we named contour tree connectivity (CTC) is described.

2



1.2 Organization of the thesis

In order to develop CTC, we combine tools from computational topology and algebraic

graph theory. From computational topology, contour trees are used. The traditional use

of contour trees is to represent high-dimensional scalar data with simple graphs that

are later combined with user interfaces for visualization purposes. From algebraic graph

theory, we use the algebraic connectivity that is a standard tool to assess the connectivity

properties of graphs. In Section 3.1, the definition of contour trees is given. Contour trees

are commonly defined based on Morse theory. Following this tradition, we also start by

giving a contour tree definition for Morse functions in subsection 3.1.2. Later we extend

this definition to non-Morse functions in subsection 3.1.3. Following the definitions, we

give detailed pseudo codes of the algorithms for each step that is used to compute contour

trees, in subsection 3.1.4. Since we do not provide the actual codes in this thesis, we

intended to give all the information needed to replicate our method in the pseudo codes.

In Sections 3.2 and 3.3, we explain how binary images are represented using contour trees

and how CTC is calculated from this representation.

Chapter 4 is divided into three main sections, each of which explains an applica-

tion of CTC. In Section 4.1, the results from [Publication-II] and the performance of

CTC are studied. In this section, several binary 2D and 3D images are analyzed to

show the different connectivity interpretation of CTC and to summarize the fundamental

geometric changes that alter CTC. In Sections 4.2 and 4.3, the focus is on the analy-

sis of microstructures using CTC. These sections give the results from [Publication-III]

and[Publication-IV]. Section 4.2 explains an application of CTC where we characterize

the microstructures of trabecular bone biopsies. In this section, we show that connectiv-

ity information quantified by CTC improves the prediction of ultimate bone strength. In

Section 4.3, fluid flow in microstructures is studied using artificial samples and computer

models. It is shown that CTC, unlike other popular connectivity measures, is capable of

discriminating different microstructures.

Chapters 5 and 6 are the discussions and conclusion chapters where we elaborate on our

methodological approach in the development of CTC, the experimental and performance

results, the drawbacks of CTC and how we intend to improve CTC in our future work.

3



1. INTRODUCTION
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2

RELATED WORK

In this chapter, we provide a review of the literature that is related to our work. We start

with explaining the basic understanding of the connectivity concept and its applications

in image processing. In the second section, we give an overview of the shape analysis

methods and applications used in general for computer vision. In the third section, we

focus in the image analysis of microstructures and the methods used to study connectivity.

2.1 Connectivity in image processing

Connectivity is a fundamental concept in image processing since it sets up the spatial

relationship between the elements of an image. For example, pixel connectivity defines in

which way pixels in 2D or 3D relate to each other [95]. This establishes the base for the

definition of connected components as well as the morphological operators.

As an alternative to classical pixel-based filtering in image processing, morphological

operators are extended to gray-scale images which leads to connected operators and filters

[14, 133]. As an extension, connectivity is interpreted as a spatial property that generates

flat regions and how the regions are nested within each other [98, 134]. This interpretation

aims to fulfill the need to define objects and process them separately which has become

necessary with the increase in image and video data. For example, a related representation

called the tree of shapes has been proposed in [74], which mainly aims to structure the

inclusion relationship of shapes by their saturation, sat(.). The sat(.) operator fills the

holes of a level set in order to delineate shapes.

5



2. RELATED WORK

Another interpretation of connectivity is given in [123] which presents an alternative

to the traditional crisp connectivity interpretation in image processing. Here images are

considered as fuzzy in nature due to imaging and other factors. For example, objects in

images are heterogeneous instead of flat regions due to resolution limits and noise, or the

boundaries in images are not sharp but blurry. This fuzzy connectivity interpretation

aims to treat such uncertainties as realistically as possible by means of a function called

the affinity. Affinity determines the strength of connectedness among the elements by

how spatially close they are and how close their intensities are. For segmentation applica-

tions, affinity is used to explain how objects hang together ; it is also used to define fuzzy

connected components.

2.2 Overview of shape analysis methods and applications

Shape analysis in general focuses on how to describe geometric properties of object(s).

After images are acquired, it is customary to start by segmentation which refers to marking

of the objects that need to be studied. By segmentation, the information in an image is

reduced only to a certain number of objects, which makes rest of the image redundant. As

a result, a new image is created, where objects of interest or shapes are represented with

1s and the rest with 0s. Such images are called binary images. It is worth mentioning that,

by shape, it is referred to an appearance of an object which is independent of location,

scale and rotational effects [39].

Shape analysis has an abundant number of applications in addition to merely studying

structural properties of objects. Information acquired from shapes are used for recogni-

tion [105], registration [99], matching [53, 126], retrieval [116] and segmentation [49].

Due to the wide spectrum of shape analysis applications, there have been a significant

amount of research done to describe and represent shapes in both 2D and 3D images

[64, 116, 137]. Shape description refers to the extraction of useful numeric descriptors of

shapes. 2D shape descriptors are commonly categorized into two as contour and region

based methods [137]. For example perimeter is a contour descriptor and area is a region

descriptor. Unlike 2D, 3D shapes are mostly represented with meshes; thus most 2D

descriptors cannot be extended to 3D. Due to these differences, 3D shape descriptors are

studied separately from 2D counterparts. In [116], 3D shape descriptors are classified into

6



2.3 Image analysis of microstructures

feature based, geometry based and graph based. With feature based methods, geometrical

features of shapes such as volume, convex hull and moments are referred. Geometry based

approaches utilize similarities between shapes depending on different views or point sets.

Graph based methods utilize meaningful graph representation of shapes such as skeletons

[113], Morse-Smale complexes [109], contour trees [22] or Reeb graphs [10, 91]. Graph

representation of shapes have also a fundamental place in computational topology and

used commonly for removing topological features for simplifying high dimensional scalar

fields and visualization [9, 143].

With the availability of imaging equipments, it has become common to have a col-

lection of images and shapes to be used for certain tasks. Shapes belonging to a certain

population are studied using tools of statistical shape analysis in which the main aim is

to find variability of shapes. Similarities among shapes are initially studied using corre-

spondences between landmarks [39]. The correspondences are used for example to align

shapes with respect to location, scale or rotation, this is also referred as procrustes anal-

ysis [12]. Establishing correspondences in a set of shapes creates shape spaces by which

distances between shapes can be computed. This makes it possible to compute mean

shapes, shape models and variability of shapes within populations, commonly by using

principal component analysis (PCA) [49]. Starting from late 1990’s there has been a ma-

jor interest in developing effective feature descriptors which assign each point of a shape

a multi-dimensional feature vector that describes local and geometrical properties at that

point. Particularly the use of eigenvalues and eigenvectors of Laplace-Beltrami operator

initiated a whole set of feature descriptors which are generally called as spectral shape

descriptors [19, 29]. Notable spectral shape descriptors include ShapeDNA [93], global

point signature [96], heat kernel signature [112] and wave kernel signature [6].

2.3 Image analysis of microstructures

Figure 2.1 shows example images of segmented structures of objects acquired from a mi-

crocomputed tomography (µCT) device. The complex geometry of many materials at

microscale introduces a new set of problems for shape analysis. Contrary to the applica-

tions of connectivity in image processing and shapes in computer vision, when studying

microstructures, the main goal is to analyze and extract useful structural information

that relates to physical attributes of materials.

7



2. RELATED WORK

(a) (b) (c) (d)

Figure 2.1: Example images obtained using a µCT device. (a) Low density ceramic mate-
rial for insulation and filtering applications (courtesy of Prof. Erkki Levänen, Department
of Materials Science, TUT, Tampere), (b) soil (courtesy of Markus Hannula, ELT, TUT,
Tampere and BioMediTech, Tampere), (c) trabecular bone, (d) fibrous biomaterial scaffold
(courtesy of Prof. Minna Kellomäki, ELT, TUT, Tampere and BioMediTech, Tampere)

Common characteristics for microstructures that can be computed for all geometries

are the Euler number, volume, surface area, the integral of mean curvature and their

densities [82]. However, due to the variability of shapes and applications, there have been

specific solutions proposed to analyze particular microstructures. For example, foreground

and background of foam, fibrous, sintered and powdered structures provide different infor-

mation about the physical properties of materials. Flow and transport properties within

porous objects are governed by the pore network (background information) and the stiff-

ness of fibrous objects depends strongly on the number of touching fibers (foreground

information) [32]. Traditionally mean intercept length (MIL) is used to describe mean

size of constituents and anisotropy of microstructures of fibrous materials [47]. Briefly,

when computing MIL, the length of intersections between a set of parallel lines and the

image is computed. By repeating this procedure for several different angles, a measure for

the orientation of the structure is determined. This technique is commonly used also for

determining the anisotropy of the trabecular bone [79]. Structure model index (SMI) is

an other measure to characterize trabecular bones, which quantifies the type of trabecular

structure [50]. SMI basically computes and compares the change in the surface area in

the case of a small increase in volume. For plate-like structures SMI = 0 and for rod-like

structures SMI = 3. For granular structures, granulometry is used to characterize struc-

tures by means of generating profiles for the size and shape distributions of objects that

form images [15, 68]. Granulometry mainly applies the morphological opening operator

iteratively on an image with increasing sizes for the structure element. The changes in

each opening operation, such as the sum of pixel values, are associated with the size of

objects [122, 124, 127].

8
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2.4 Connectivity of microstructures

2.4 Connectivity of microstructures

Among several characterizations, understanding the role of connectivity has become a very

active research area since early 2000’s. A paradigm shift towards studying connectivity

has been pointed out in the fields of hydrogeology, surface hydrology, geomorphology,

landscape ecology and soil physics [92]. For understanding flow in microstructures, con-

nectivity is an important property to study because it complements the information from

local spatial variances and higher order correlations, which are traditionally used to model

heterogeneity. There are several application and structure specific approaches proposed

to study connectivity in the literature. For example, for foam materials, watershedding

is generally used to partition pore space [67, 106]. This is followed by estimating pore

size distributions and strut thicknesses which is used as a connectivity measure for the

pore network [5, 60]. Another common approach is to use the medial axis transform

and skeletonization to partition pore space and form pore networks for foam materials to

analyze connectivity [61, 77, 78].

A major problem associated with connectivity is the lack of a unique mathematical

definition. Being an intuitive notion, the quantification of connectivity is based on how

it is interpreted. Application specific interpretations put aside, it is common to interpret

connectivity as either a static or functional (dynamic) property [92]. Static interpretations

regard connectivity only as a structural property whereas functional connectivity measures

involve physical processes which can be estimated experimentally or with modeling such

as the effective hydraulic conductivity [57].

The differences in the interpretation of connectivity creates a problem when it comes

to comparing connectivities of different structures. For example since there are no com-

mon interpretations for foam, sintered or fibrous materials, it is challenging to make

comparisons. Therefore general methods, such as the connectivity function (τ), that are

applicable for any geometry are needed. Connectivity function is defined as the probabil-

ity that two points belong to the same connected component [3]:

τ(x, y) = P (x←→ y|x, y ∈ C) (2.1)

where x, y are two elements of the image, P is probability and C is a connected component.

9



2. RELATED WORK

In order to simplify the connectivity function, it is common to compute τ as a function

of a shift, α, for which y = x+α is assumed [121]. Although connectivity function can be

computed for any geometry, it does not provide a scalar measure. It is desirable to study

connectivity using a scalar since multi dimensional comparisons are challenging. However,

such measures are extremely limited. To our knowledge, Euler number (χ) is the only

scalar connectivity measure that can be computed for any geometry. In addition to Euler

number, we encountered two other related scalar measures. These are the proportion

of connected pairs (Γ) [51] and the nominal opening dimension (dnom) [128]. Although

these parameters are connectivity related, their applications are not as general as Euler

number’s. Also they do not provide intuitive connectivity information. However since

they are used in the literature as scalar connectivity measures to study flow [92], we next

explain them along with Euler number.

2.4.1 Euler number (χ)

The most commonly used connectivity measure for binary images is the Euler number

(χ), which is described with the Euler-Poincaré formula as the alternating sum of Betti

numbers, βk , χ =
∑

k(−1)
kβk. For 2D, Betti numbers are the number of connected

components (β0) and the number of holes (β1). For 3D, they are the number of connected

components (β0), the number of tunnels (β1) and the number of voids (β2). χ is easily

calculated using graph counts as follows [59]:

χ = v − e+ f − s (2.2)

where v is the number of vertices, e is the number of edges, f is the number of faces and

s is the number of solids.

The connectivity parameter named the connectivity density (Conn.D) is perhaps the

best example for the use of Euler number. Conn.D is commonly used to study trabecular

bone microstructure [80]. For a 3D binary image that is composed of a single connected

component with no voids, 1− χ gives the number of tunnels that exist in the connected

component. The tunnels in the case of trabecular bone are mostly associated with tra-

beculae. This makes Conn.D, which is defined as the number of tunnels per unit volume,

a very useful tool to study trabecular bone structure.

10



2.4 Connectivity of microstructures

The density of Euler number is an important measure when studying foam materials

as well. The topological properties of foam are similar to random networks consisting of

nodes and edges. Since density of connections can be computed using Euler number, it is

also possible to estimate the density of nodes [70]. This approach is also used to compute

the number of touching fibers in non-woven materials [82].

Euler number is very easy to understand which makes it an elegant topological in-

variant. On the other hand, for most of the practical purposes, topology alone is not

sufficient to describe connectivity properties and other geometrical information related to

connectivity becomes important. For example, it is indicated in [83] that, to provide bone

ingress and angiogenesis, the thickness of interconnections between pores of a biomaterial

foam should be at least 100 µm. Such information regarding geometrical dimensions are

not provided by Euler number. Although Euler number includes information regarding

the number of connected components or holes, it does not provide information about the

proximity of connected components, sizes of holes or cavities.

In order to include more information considering the local variations in structures,

Euler number is commonly computed on level or excursion sets obtained by thresholding

scalar fields [104, 128, 129]. An example application to a series of thresholded images

along with corresponding χ values are shown in Fig.2.2. By repeating the experiments

for several threshold values, functions for χ are obtained. An example is shown in Fig.2.3a

that is applied on the sample shown in Fig.2.2.

2.4.2 Proportion of connected pairs (Γ)

Proportion of connected pairs is a parameter used in percolation theory which studies

the simplest phase transition with nontrivial critical behavior [18]. For example, assume

that each cell of a 3D grid has a probability of p to be occupied and 1 − p to be empty.

Suppose that p is increased from 0 to 1, after some certain p value, there starts to exist

a cluster of occupied cells that connects the top and the bottom of the grid, such a

cluster is said to percolate. One of the most important problems in percolation theory is

to investigate the percolation threshold, that is the value of p after which a percolating

cluster starts to occur. In general, percolation theory studies occupied cells, clusters and

their properties with the changes in p [111]. Among the many properties of clusters, we

found that proportion of connected pairs is used as a scalar connectivity measure [51].

11



2. RELATED WORK

High resolution images of many microstructures have sharp boundaries, which makes it

straightforward to segment unoccupied or permeable (pores) and occupied or impervious

(material) regions using simple techniques such as thresholding [101]. The proportion of

connected pairs is defined as:

Γ = (1/n2)
N
∑

i=1

n2
i (2.3)

where n is the total number of permeable cells, N is the number of connected permeable

regions and ni is the number of permeable cells in the ith region.

Figure 2.2: Euler number (χ) and proportion of connected pairs (Γ) corresponding to the
excursion sets obtained by thresholding distance transform of an artificial 3D image. From
left to right the value of the threshold (th) is increased. At th = 0, the resultant image is
the image of the permeable region. (Reproduced from [Publication-IV].)

Γ shows the ratio of the pairs of cells that are connected to all the pairs of permeable

cells. One common case in which Γ does not provide information is when there is a

medium with a single fully connected permeable region, for which Γ = 1. In order to

include the effects of local variability, similar to χ, Γ is also computed iteratively on the

level sets [92]. Fig.2.2 and Fig.2.3b shows an example to this approach.

−40

0

40

80

−50 −25 0 25
Threshold (pixel)

0

0.5

1

−50 −25 0 25
Threshold (pixel)

−80

(a) (b)

Figure 2.3: (a) Euler number (χ) and (b) proportion of connected pairs (Γ) as a func-
tion of threshold. The functions are obtained using the sample in Fig.2.2. Dots on the
graphs indicate the location of the χ and Γ values calculated in Fig.2.2. (Reproduced from
[Publication-IV].)
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2.4 Connectivity of microstructures

2.4.3 Nominal opening dimension (dnom)

One of the most common techniques to estimate pore (opening) size distribution and

nominal opening size, dnom, is to use the morphological opening operator which eliminates

features smaller than the structure element. By iteratively using the opening operator

with increasing sizes of spheres as structure elements, the opening size distribution is

obtained [128, 129].

Let I ◦ Sd denote the opening of image I with a spherical structure element with

diameter d, Sd. Then, the cumulative opening size distribution of image I is a function

of d that is defined as:

O(d) =
∑

xor(I, I ◦ Sd) (2.4)

where xor denotes the exclusive or operator. The opening size distribution is o(d) = O′(d).

Using o(d), dnom is calculated by the following expected value:

dnom(I) =

∑

o(d).d
∑

o(d)
(2.5)

dnom is also used as an estimate for the characteristic length scale [2]. The use of open-

ing operator iteratively has also been presented in [5, 75] as a measure for the connectivity

of porous biodegradable materials.
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3

METHODS

This chapter explains the theoretical foundations and algorithms to implement the contour

tree connectivity (CTC). The chapter is composed of three sections. First section starts

with the description of contour trees and continues with the formal definition for Morse

fields. Here, the definition given by Carr is taken as the main reference [22]. Generally,

this definition is extended to be generalized for smooth functions using perturbation.

Instead of this approach, contour trees are generalized using up- and down-degrees of

isocomponents in section 3.1.3. To our knowledge, this the first contour tree definition

for general smooth functions which does not rely on perturbation. In the last part of the

first section, all the algorithms used to compute contour trees are given in detail. The

algorithms are inspired from Carr’s work in [22]. The main contribution of the thesis

is given in the last two sections of the chapter, where binary image representation by

contour trees and contour tree connectivity are explained.

3.1 Contour trees

3.1.1 Description of the contour tree

Contour trees describe topological properties of images by showing the evolution of con-

tours as they appear, join, split or disappear by means of a graph. In order to explain

the main idea behind contour trees, an example is given in Fig.3.1.

Assume that the data shown in Fig.3.1a is an elevation map. It is generally easier to

visualize and understand the spatial changes of functions or a 2D image in this example
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3. METHODS

with manifolds as shown in Fig.3.1b. Because 3D visualization tools has not been always

available, it has become customary to use contour plots as shown in Fig.3.1c. Notice that

for each local maxima and minima a new class of contours that are nested each other

appears. Additionally where saddles exist, the nested contour classes meet each other.

Contour trees depict this nesting and meeting relationship of contour classes with a

graph. In Fig.3.1d the contour tree is overlaid on the input image. Local maxima and

minima of the image are represented with red and blue vertices in the graph respec-

tively, saddles are shown with green vertices. Fig.3.1e shows the same graph with the

corresponding elevations of the vertices.

It is the simplicity of contour trees that make it an attractive tool for several purposes.

The example demonstrates that without the need for 3D visualization or contour plots,

important points of a function can be shown with simple graphs.

Figure 3.1: (a) Example elevation data (b) 3D visualization of the elevation (c) Contour
plot of the elevation (d) Contour tree overlaid on the input image. Maxima, minima and
saddles are shown with red, blue and green vertices respectively (e) Contour tree with
vertices shown with corresponding elevations.

Contour trees are originally used for topography applications [13] and in many areas

of geo-science involving the use of terrain profiles [30, 45]. Early applications of contour

representation of terrains are used to describe features like peaks, pits, ridges and ravines

[58, 114].

Contour trees are commonly used for abstraction and visualization of scalar fields [7,

8, 63]. They are also used to compute Reeb graphs to develop alternative abstractions [37,

120]. Contour trees are used together with user interfaces to select interesting isovalues,

particularly when dimensions increase and visualization becomes challenging [16, 21, 23,

56]. Also they are used to design transfer functions for volume rendering [115, 130, 140]. In

[85], the edges in contour trees are augmented with Betti numbers which gives additional

topological information for the levelsets. Other visualization applications of contour trees
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include development of web-based tools [100] and visualization of time-varying scalar

fields [110].

It has become popular in the recent years to use contour trees in order to analyze

scalar fields on top of abstraction and visualization applications. In [119], by comparing

subtrees in contour trees, symmetric or repeating patterns in scalar fields are identified.

Applications to find out similarities and differences between scalar fields are also developed

[102, 103, 138].

Contour trees are also used in pattern recognition and machine vision. In [36], a

method using contour representation is proposed to recognize company logos. In [38],

topological information extracted from contour trees are used to identify key features in

images which are used for example to identify craters on the surface of Mars and to locate

breast tumors from optical tomography data.

3.1.2 Contour tree definition for Morse fields

A formal definition for contour trees can be given using the Morse theory [22]. Simply,

Morse theory connects topology of a manifold with the function defined on it.

Definition 1 (Manifold). A topological space M is an n-dimensional manifold or an

n-manifold if for all the points in M there exists an open ball that is homeomorphic to

R
n.

Definition 2 (Critical point). Let M be an n-manifold and f : M → R be a smooth

mapping. A point p ∈ M is called a critical point if all the partial derivatives of f at p

are 0 with respect to the local coordinates of M , (x1, · · · , xn) , i.e:

∂f

∂x1
(p) = 0,

∂f

∂x2
(p) = 0, · · · ,

∂f

∂xn

(p) = 0, (3.1)

Critical points of a function f(x1, · · · , xn) are categorized using its Hessian matrix,

Hf , which is given as follows:

Hf =





























∂2f

∂x2
1

∂2f

∂x1 ∂x2
· · ·

∂2f

∂x1 ∂xn

∂2f

∂x2 ∂x1

∂2f

∂x2
2

· · ·
∂2f

∂x2 ∂xn

...
...

. . .
...

∂2f

∂xn ∂x1

∂2f

∂xn ∂x2
· · ·

∂2f

∂x2
n





























(3.2)
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Definition 3 (Nondegenerate and degenerate critical points). Let p be a critical point of

function f . p is a nondegenerate critical point if detHf (p) 6= 0, otherwise it is degenerate.

Fig.3.2 shows various degenerate critical point examples for 2 and 3-manifolds. Notice

that degeneracies can happen at points, curves or surface patches for 2-manifolds, in

addition to these for 3-manifolds it can also happen on volume regions. The categorization

of critical points helps to define Morse functions.

Figure 3.2: Upper and lower rows show example degenerate critical points for 2 and 3-
manifolds. For 2-manifolds, on first and second columns, degeneracies occur along curves.
Forth and fifth columns show degeneracies that occur at a single point whereas on third
column, degeneracy occurs on a surface patch. A degeneracy on a surface patch of a 3-
manifold is shown in the second column. First and fifth columns show degeneracies along
curves for 3-manifolds. A volume region degeneracy is shown in the third column for 3-
manifolds. In the forth column a degeneracy that occurs at a single point is shown.

Definition 4 (Morse function). A mapping f : M → R is a Morse function if all its

critical points are nondegenerate.

Definition 5 (Index of a critical point). Let f : M → R be a Morse function. The index

γ(p) of a critical point p ∈M is the number of the negative eigenvalues of Hf (p).

Morse lemma states that, it is possible to express a Morse function f about a critical

point with a second order representation of the form f(x1, · · · , xn) = f(p)−
∑γ(p)

i=1 x2
i +

∑n
i=γ(p)+1 x

2
i [71]. It follows from Morse lemma that, nondegenerate critical points are

isolated. Therefore, Morse functions have finitely many critical points.

Notice that for a 2D Morse function f(x, y), the Hessian is Hf = [∂
2f

∂x2

∂2f
∂y∂x

; ∂2f
∂x∂y

∂2f
∂y2 ].

Possible indices for critical points are 0, 1 and 2. And according to Morse lemma f(x, y) =
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f(xc, yc)±x2± y2 around a critical point {xc, yc}. All three possible cases for f around a

critical point are shown in Fig 3.3. Since it is rare to find the visualizations of the critical

points on 3-manifolds, these are also given in Fig 3.3.

Figure 3.3: First row shows all possible cases for a critical point, p, of a Morse function f

on 2 (left) and 3-manifolds (right). Indices of the critical points are shown on top. Second
and third rows show the level sets Υ(t+δ) and Υ(t−δ) respectively for t = f(p) and δ being
a very small positive number.

Using a Morse function f : M → R, it is possible to learn about the topology of M

from the level sets or contours of f .

Definition 6 (Level set, upper and lower level sets). The level set of a function f : M →

R at t ∈ R is the set Υt(f) = {p ∈ M |f(p) = t}. Lower and upper levels sets are

Υ−
t (f) = {p ∈M |f(p) ≤ t} and Υ+

t (f) = {p ∈M |f(p) ≥ t} respectively.

t is generally called as isovalue in the literature. Notice that Υt(f) is the boundary of

the upper and lower levels sets and Υt(f) = Υ−
t (f) ∩Υ+

t (f).

Definition 7 (Isocomponent). An isocomponent of a function f : M → R at isovalue t

is a single component of Υt(f).

Definition 8 (Contour). Let M be an n-manifold and f : M → R be any function. Then

a contour of f is an isocomponent that is an isolated point or homeomorphic to any

m-dimensional sphere where m < n.

It is common in literature to use synonyms for contours, such as isolines or isocontours

for 2-manifolds and isosurfaces for 3-manifolds. In this text, the term contour is used in

general for any dimension.

Corollary 1. If a function is Morse then all of its isocomponents are contours. Non-

Morse functions may or may not have isocomponents which are not contours.
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Corollary 2. Each point of a Morse function belongs to exactly one contour.

Fig.3.3 shows the contours of Υ(t−δ) and Υ(t+δ) around the critical points. Notice

that if δ is picked to be a very small positive number, for a minimum or a maximum,

a single contour is approaching to the critical points whereas for a saddle two contours

are coinciding. Based on the examples and observations made for 2 and 3-manifolds, it is

possible to identify critical points by the number of contours in their neighborhood using

the following definitions.

Let M be an n-manifold (n ≥ 2) and f : M → R be a Morse function. Assume that

f(p) = t for a point p ∈ M . Let Bǫ(p) be the ball of radius ǫ centered at p and f |Bǫ(p)

denote the restriction of f to Bǫ(p). Lastly let δ and ǫ be very small positive numbers.

Definition 9 (Up- and down-degree of a point). The up-degree, δ+(p), of f at p is the

number of contours of f at isovalue t+ δ that intersects Bǫ(p), as δ, ǫ→ 0. The number

of contours of at isovalue t− δ is called the down-degree, δ−(p).

Using δ+ and δ− definitions, regular points, maxima, minima and saddles of a Morse

function f : M → R can be identified as follows. A point p ∈M is a:

• regular if δ+(p) = 1 and δ−(p) = 1.

• local maximum if δ+(p) = 0.

• local minimum if δ−(p) = 0.

• saddle either if

– δ+(p) = 2

– δ−(p) = 2

Notice the difference that for n-manifolds where n > 2, different contours of f |Bǫ(p)

may belong to the same contour of f . Therefore, a regular point which has δ+(p) =

δ−(p) = 1 can be a critical point according to Definition 2. Due to this difference the

critical points defined using up- and down-degrees are separated with the following defi-

nition.

Definition 10 (Component critical point). A component critical point is a point p where

both δ+(p) and δ−(p) are not equal to 1.
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For the rest of the text unless stated otherwise, with regular points, points with

δ+ = δ− = 1 are referred. The conditions of δ+(p) = 2 or δ−(p) = 2 for saddle cases are

also given special names in the literature.

Definition 11 (Join and split). A join is a saddle where δ+(p) ≥ 2. A split is saddle

where δ−(p) ≥ 2.

The inequalities in Definition 11 will be useful in the next section when degeneracies are

handled.

In order to explain how critical points of a function give information about the topology

of a manifold, changes in Betti numbers are illustrated in Fig.3.4 for the smooth function

f : M → R used in example Fig.3.1a. A step by step investigation of the changes in the

lower level sets Υ−
t (f) while t ∈ R is increased from −∞ to∞ are listed below. The values

of the indices of the critical points, up-degrees and down-degrees are given in parenthesis.

Figure 3.4: Topological changes in Υ−

t (f) for several values of t which are given on top.
Different colors (red, blue) indicate different components. Merging components at a saddle
point are shown with the same color (red). The circle in (e) shows a point on the boundary
which causes a topological change although it is not a component critical point. The circle
in (f) shows a local maxima which is on the boundary thus does not alter β1.

• Between (−∞, tgmin) where tgmin is the global minimum of f , Υ−
t (f) = {}, no

topology change occurs.

• (γ = 0, δ− = 0, δ+ = 1) At each local minimum a new component is introduced. β0

increases by 1.

• At each saddle one of the following happens:

– (γ = 1, δ− = 2, δ+ = 1 or 2) Two components merge. β0 decreases by 1.

– (γ = 1, δ− = 1, δ+ = 2) A hole forms inside a component. β1 increases by 1.

• (γ = 2, δ− = 1, δ+ = 0) At each local maximum a hole is filled. β1 decreases by 1.

(For manifolds with boundary, maxima at boundaries do not alter topology.)
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• Between (tgmax,∞) where tgmax is the global maximum of f , Υ−
t (f) = M , no

topology change occurs.

Same investigation can be done using the upper level sets which yields a similar result.

It is evident that the observations made above are valid for all Morse functions on surfaces

such as for 2D images. However, for higher dimensions there will be more varieties for

the saddle cases.

For the sake of completeness, an elegant outcome of the Morse theory is given without

proof in Equation 3.3. Curious readers are recommended to read [71, 143] for the proof

of this expression and further information on Morse theory.

χ(M) =

n
∑

i=0

(−1)iβi =

n
∑

i=0

(−1)i(#γi) (3.3)

where M is a closed manifold and #γi is the number of critical points with index i.

In image processing, 2 and 3-manifolds are traditionally not closed but compact with

boundary and critical points can be at the boundaries as shown in Fig.3.4e-f. In short,

Equation 3.3 is not useful in its purest form. Regardless of this, the earlier demonstration

shows that encountering a component critical point during the transitions of the isovalues

alter the topology of level sets. Therefore, an equivalence relation for contours can be

defined as follows:

Definition 12 (Equivalent contours). Let c and c′ be two contours of a Morse function

f : M → R at isovalues t and t′ respectively where t < t′. And let MΓ be the manifold

MΓ = Υ+
t ∩Υ

−
t′ . Then c are c′ are equivalent if there exists a path Γ in MΓ that connects

a point of c with a point of c′ such that there is no point of Γ which belongs to a contour

of any component critical point of f .

It follows from Definition 12 that all points in Γ belong to contours that are equivalent

to c and c′. Therefore, the transition of the isovalue t → t′ spans an infinite number of

contours that are all equivalent. Contours that are equivalent are also said to belong to

the same contour class.

The theorem that is given next uses the contour class concept and establishes the base

for the contour tree definition.

Theorem 1. Let f : M → R be a Morse function. Then the contours for all component

critical points of f belong to a contour class with a single contour and the contours for

all regular points of f belong to a contour class with infinite contours.
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Proof. Since all critical points of a Morse function are isolated and each point of f belongs

to a single contour by Corollary 2, a contour that includes a component critical point is

not equivalent to any other contour and is therefore the sole member of its contour class.

Second part of the theorem can be proved by showing that no contour on a regular point

is the only member of its contour class. Let p ∈M be a regular point with f(p) = t and c

be the contour on p. Then δ+(p) = δ−(p) = 1, thus there exists contours c+ ⊂ Υ(t+δ)(f)

and c− ⊂ Υ(t−δ)(f) which are in the same contour class with c.

The correspondence between single member contour classes for contours on component

critical points and infinite member contour classes for contours on regular points is used

in [20] to give a graph theoretical definition of the contour tree as follows:

Definition 13 (Contour tree for Morse functions). The contour tree, G(V,E), of a Morse

function f : M → R is a graph with a vertex set V and edge set E such that:

1. For each minima, maxima, join and split of f , there is a vertex vi ∈ V .

2. For each contour at vi, through its transition to the next component critical point at

vj, there is an edge (vi, vj) ∈ E.

3.1.3 Generalized contour trees for smooth functions

In the previous section main properties of Morse functions are summarized and the formal

definition of the contour tree is given based on Morse theory. Unfortunately, the functions

in most practical applications are not Morse and have degenerate critical points. Some

examples of degeneracies were given earlier in Fig.3.2.

In Fig.3.5, level sets Υ(t−δ) and Υ(t+δ) are given for the degeneracies shown in Fig.3.2.

On the second column for 2-manifolds and forth column of both manifolds, δ+ = δ− = 1.

Based on the discussion made for Definition 9, these degeneracies can be discarded from

the set of critical points and are categorized as regular.

Notice that nondegenerate critical points are always isolated, however all isolated crit-

ical points are not nondegenerate. An example to this is shown with x3− 3xy2 in Fig.3.2.

Therefore degeneracies happen both on isolated points and on a set of topologically con-

nected points.

All the points of a Morse function are identified earlier by using the degree definitions

given in Definition 9. In order to follow a similar path for a non-Morse function, degree

definitions can be generalized to isocomponents. Let MD be any isocomponent of a
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Figure 3.5: First two rows show the level sets Υ(t+δ) and Υ(t−δ) for the degenerate critical
points of 2-manifolds given in Fig.3.2. Last two rows show the same level sets for the
degenerate critical points of 3-manifolds given in Fig.3.2. δ+ = δ− = 1 for the 2-manifold
in the second column also for both manifolds of the forth column. Degeneracy happens on
a single point for 2-manifolds on the forth and fifth columns. A degenerate volume is shown
for a 3-manifold in the third column.

smooth function f : M → R at isovalue t. Since f can be non-Morse,MD is not necessarily

a contour (Corollary 1). Let ∂MD be the boundary of MD. Notice that ∀p ∈MD \ ∂MD,

δ+(p) = δ−(p) = 0 and ∀p ∈ ∂MD there exists contours of Υ(t−δ) and/or Υ(t+δ). Based on

this observation, the degree definitions for points can be extended to any isocomponent.

Let f : M → R be any smooth function and Bǫ(p) be the ball of radius ǫ centered at

p ∈ M where ǫ is a very small positive number. Let MD be an isocomponent of f at

isovalue t.

Definition 14 (Up- and down-degree of an isocomponent). The up-degree of MD, δ+(MD),

is the number of distinct contours of f that intersects Bǫ(p) of all p ∈MD at isovalue t+δ,

as δ, ǫ → 0. The number of distinct contours at isovalue t − δ is called the down-degree,

δ−(MD).

The up- and down-degree symbols for both points and isocomponents are same since

the context makes it clear which one is on concern.
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The points of any smooth function f : M → R can be identified using the degrees of

isocomponents. Let MD be any isocomponent of f then all points p ∈MD are:

• regular if δ+(MD) = 1 and δ−(MD) = 1.

• local maxima if δ+(MD) = 0 and δ−(MD) ≥ 1.

• local minima if δ−(MD) = 0 and δ+(MD) ≥ 1.

• saddles either if

– δ+(MD) ≥ 2 and δ−(MD) 6= 0

– δ−(MD) ≥ 2 and δ+(MD) 6= 0

Definition 15 (Regular and critical isocomponents). A regular isocomponent is an iso-

component of a function with δ+ = δ− = 1, otherwise it is a critical isocomponent.

If f is Morse, then the identification of the points are exactly the same as the one made

earlier using Definition 9. Notice that there are additional conditions to identify critical

isocomponents. This is because, with the inclusion of degenerate points, it is possible to

have a join or a split at a local extrema. Therefore, the condition of δ− = 0 or δ+ = 0 is

added in the saddle identification in order to separate local extrema.

With Definition 15 it is possible to generalize contour classes to isocomponent classes.

For this, the equivalence relation of contours given in Definition 12 is extended for iso-

components of smooth functions.

Definition 16 (Equivalent isocomponents). Let c and c′ be two isocomponents of a

smooth function f : M → R at isovalues t and t′ respectively where t < t′. And let

MΓ be the manifold MΓ = Υ+
t ∩Υ

−
t′ . Then c are c′ are equivalent if there exists a path Γ

in MΓ that connects a point of c with a point of c′ such that there is no point of Γ which

belongs to any critical isocomponent of f .

Similarly, Theorem 1 can also be generalized for any smooth function.

Theorem 2. Let f : M → R be a smooth function. Then all the critical isocomponents

of f belong to an isocomponent class with a single isocomponent and all the regular iso-

components of f belong to isocomponent classes with infinite isocomponents.
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Proof. By the definition of a critical isocomponent, δ+ 6= δ− 6= 1, therefore there is no

other isocomponent that belongs to the same class. Second part of the theorem can be

proved by showing that no regular isocomponent is the only member of its isocomponent

class. Let c ∈ M be a regular isocomponent at isolevel t. Then by definition δ+(c) =

δ−(c) = 1, thus there exists contours c+ ⊂ Υ(t+δ)(f) and c− ⊂ Υ(t−δ)(f) which are in

the same isocomponent class with c.

Finally, the contour tree of a smooth function can be defined as follows:

Definition 17 (Contour tree). The contour tree, G(V,E), of a smooth function f : M →

R is a graph with a vertex set V and edge set E such that:

1. For each critical isocomponent of f , there is a vertex vi ∈ V .

2. For each isocomponent at vi, through its transition to the next critical isocomponent

at vj , there is an edge (vi, vj) ∈ E.

The main difference between the contour tree definition for Morse functions and

smooth functions is that, vertices of the contour tree of a Morse function corresponds

to a single point of the manifold whereas vertices of the contour tree of a random smooth

function may contain a set of points that belong to an isocomponent of the manifold.

3.1.4 Contour tree computation algorithm

For the early applications of contour trees to simplify terrain profiles, a manual method

is proposed in [13]. The first systematic computation approach to compute contour trees

is given in [33, 125]. This approach is based on the observation that component critical

points cause topological changes during the transition of the upper and lower level sets.

One easy way to locate component critical points is to keep a record of the topological

changes of the components during the transition of isovalues as demonstrated in subsection

3.1.2. During the sweep of the lower level sets, new components appear where there are

local minima (δ− = 0) and connected components merge where there are splits (δ− ≥ 2).

However, it is clear that by sweeping the lower level sets and keeping a record of the

connected components, one cannot detect where holes form and close, simply because

during these topological changes, connected components are preserved. On the other

hand, it can be observed from the example shown in Fig.3.4 that holes form where there are

joins (δ+ ≥ 2) and they close where there are local maxima (δ+ = 0). Therefore, sweeping
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the upper level sets complements the sweep of the lower level sets. As a result, two sweeps

together are able to locate all the component critical points. However, the algorithm in

[125] requires that no more than two components merge at a component critical point and

the boundaries are needed to be processed separately. The computational complexity of

this algorithm is O(nlogn) for 2D where n is the number of vertices in the mesh, for 3D

it is O(n2). This algorithm is extended and improved in [117] to have a computational

complexity of O(nlogn) for 3D as well.

One reason behind contour trees’ popularity is the elegant algorithm given in [22] which

is O(N + nlogn + tα(t)) where N is the number of cells, t is the number of component

critical points and α is the inverse of the Ackermann function [21]. With this algorithm,

the limitations of [125] are overcome, such as the separate handling of multisaddles and

boundaries. Similar to [125], the computation of contour trees in this algorithm is done

based on a sweep and merge approach.

In the sweep stage, up- and down-degrees of all points are computed. As a result, two

graphs called the join and split trees are formed. In the merge step, these two trees are

combined to form the contour tree. The algorithm given in [22] is easy to understand,

fast and very well documented [20]. Due to these reasons, the contour tree computation

method used in this thesis is based on this algorithm. Although the main framework is

same as [22], in this work, different than simplicial meshes, the computation is done on

the regular rectilinear grid. Also, the union-find data structure is not implemented in the

code.

The computation method implemented in this thesis has similarities to [72] in which

a region based contour tree computation algorithm is proposed. This algorithm is also

based on [22], with the difference that it works on the rectilinear grid similar to this work.

There are several other algorithms proposed to compute contour trees other than the

approaches based on sweep and merge. In [52], an erosion based idea is proposed. This

algorithm starts with the complete mesh and iteratively removes the vertices, edges, faces

and tetrahedra while keeping the topological connectivity between the critical points. It

is an efficient algorithm with a computation complexity of O(n); however no proof was

provided to show that the resultant structure is the contour tree. In [114] an algorithm to

construct contour trees for 2D data is given. Here firstly the extrema and the saddles of the

data are found by analyzing the stars of the simplices and later the extrema are connected
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saddles appropriately. In [26, 27], spatial adjacency of pixels are used to compute Voronoi

diagrams which are later used to generate contour trees.

There have also been several other algorithms proposed using the sweep and merge

approach, particularly, based on the algorithm given in [22]. For example in [28], an

algorithm which is inspired from [22] is given where initially all the component critical

points are identified and in a later step these are connected appropriately. The compu-

tational complexity is given as O(N + tlogt). Also in [25], the method in [22] is extended

to arbitrary interpolants. Another sweep and merge approach is given in [85] where

Betti numbers are augmented on contour trees, this study is followed by [86] where a

parallelizable algorithm is developed which is O(n+ tα(n)).

The complete process used to compute contour trees in this thesis is shown in Fig.3.6.

Below each process, the number of the corresponding algorithm is given which are ex-

plained in the coming subsections. For each block, inputs and outputs are indicated on

the associated arrows. Vertices of trees are shown with a superscript · and the edges with

a superscript →. The data structures where the indices are stored are indicated with the

subscript index.

Figure 3.6: The complete process of the contour tree computation. Given an input image,
first join and split trees are computed. The trees are post processed and augmented which
prepare the graphs for merging. Given two pruning parameters (height and area/volume
thresholds) the merged tree is cleaned which is the contour tree of the image.
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3.1 Contour trees

Computations of join, J = {J·, J→}, and split trees, S = {S·, S→}, constitute the sweep

stage. Merging starts with post processing and continues with the augmentation of the

trees. Post processing and augmentation are done to prepare the graphs for the final

merging operation. After the augmented trees are merged, a raw form of the contour

tree is obtained which is referred to as the merge tree, M = {M·,M→} ,in the rest of the

text. The algorithms used until this point are based on [22]. As commonly done in the

literature, also in this work, merging is followed with a compulsory pruning step whose

output is the contour tree, CT = {CT·,CT→} ,of the image. In the coming subsections,

the building blocks of Fig.3.6 are explained with detailed pseudo codes of the underlying

algorithms.

3.1.4.1 Pixel connectivity

Before giving the algorithms to compute the join and split trees, it has to be pointed out

that in order to process the information using computers, images are digitized by means of

sampling the data onto a rectilinear grid. These samples are the building blocks of digital

images and are called pixels. In 3D, pixels are also called voxels. Since continuity is lost

with sampling, a convention for connectivity of pixels is needed. Classical definitions for

pixel connectivity is given in [95]. Next, the pixel connectivity convention used in his

thesis is described.

In this work, it is assumed that each pixel is located in the middle of the cells which

are elements of the rectilinear grid. The cells are square shaped for 2D and cube for 3D

images. The corners of each cell are called pointels. Pointels are connected with edgels.

For 3D, each side of a cell is called a facel. Based on this framework, pixels can be

connected with a variety of ways. For 2D images, 4-connectivity means that pixels are

connected through the edgels but not through pointels; 8-connectivity means that pixels

are connected both through edgels and pointels. Similar connectivity relations are set for

3D pixels as well. 6-connectivity in 3D implies that pixels are connected only through

the facels. 18-connectivity means that pixels are connected through facels and edgels.

In 26-connectivity facels, edgels and pointels connect pixels. These pixel connectivity

arrangements are shown in Fig.3.7. The convention for pixel connectivity in this work is

8- connectivity for 2D and 26-connectivity for 3D.
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Figure 3.7: Pixel connectivity for 2D and 3D. Upper row shows the elements that make
up the rectilinear grids for 2D and 3D images. (a) 4-connectivity (b) 8-connectivity (c)
6-connectivity (d) 6-connectivity (e) 26-connectivity

3.1.4.2 Computation of join and split trees

During the join sweep, a record of the connected components are kept throughout the

transition of the isovalues from ∞ to −∞. In the split sweep, isovalues are varied in

the opposite direction. In order to discard the isovalues that are not present among the

pixels, as the first step of the sweep stage, all pixels are sorted with respect to their

intensities. Then they are analyzed in order. If a pixel is not connected to a connected

component (δ+ = 0 or δ− = 0), it is a local/global extrema. If it is connected to multiple

connected components (δ+ ≥ 2 or δ− ≥ 2), then it is a saddle. If it is connected to a

single connected component (δ+ = 1 or δ− = 1), it is either a regular point of the join or

split tree depending on the type of sweep. The iterations of the pixels continue until the

last pixel in the queue is processed. The algorithms to compute the join tree and split

tree are described below in Algorithm 1 and Algorithm 2 respectively. Notice that the

outputs of the Algorithms 1 and 2 give the vertices of join and split trees (J·, S·) and the

directed edges (J→, S→). Also the indices of the pixels that are on the vertices and edges

are given in the output with Jindex and Sindex. The indices are used to identify common

vertices in the post processing also in the last step during pruning.
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Algorithm 1: Computing the join tree

Input : Image I
Output: The join tree J = {J·, J→} and indices Jindex = {J·index, J

→
index}

1 Set J· = {}, J→ = {}, J·index = {}, J→index = {};
2 Sort the elements of I in descending order and form the list Id;
3 Initialize an empty label image, L;
4 Set maxL = 0;

5 for i = Id(first)→ Id(last) do
6 Form the list Nindices, that has the indices of neighbors of i;
7 Set Pindices = {}, Plabels = {};
8 for n = Nindices(first)→ Nindices(last) do
9 Get L(n), that is the label of n from L;

10 if L(n) 6= 0 & L(n) 6∈ Plabels then
11 Add n to Pindices, add L(n) to Plabels;

12 end

13 end
14 if Plabels = {} then // δ+ = 0
15 Set maxL = maxL + 1;
16 Set J·(maxL) = maxL, J

→(maxL) = 0;
17 Set J·index(maxL) = i, J→index(maxL) = {};
18 Set L(i) = maxL;

19 else if Plabels has 1 element then // δ+ = 1
20 Add i to J→index(Plabels(1));
21 Set L(i) = Plabels(1);

22 else if Plabels has 2 or more elements then // δ+ ≥ 2
23 Set maxL = maxL + 1;
24 Set J·(maxL) = maxL, J

→(maxL) = 0;
25 Set J·index(maxL) = i, J→index(maxL) = {};
26 for label = Plabels(first)→ Plabels(last) do
27 J→(label) = maxL;
28 Replace label in L with maxL;

29 end

30 end

31 end
32 J→(end) = maxL + 1;
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Algorithm 2: Computing the split tree

Input : Image I
Output: The split tree S = {S·, S→} and indices Sindex = {S·index, S

→
index}

1 Set S· = {}, S→ = {}, S·index = {}, S→index = {};
2 Sort the elements of I in descending order and form the list Ia;
3 Initialize an empty label image, L;
4 Set maxL = 0;

5 for i = Ia(first)→ Ia(last) do
6 Form the list Nindices, that has the indices of neighbors of i;
7 Set Pindices = {}, Plabels = {};
8 for n = Nindices(first)→ Nindices(last) do
9 Get L(n), that is the label of n from L;

10 if L(n) 6= 0 & L(n) 6∈ Plabels then
11 Add n to Pindices, add L(n) to Plabels;

12 end

13 end
14 if Plabels = {} then // δ− = 0
15 Set maxL = maxL + 1;
16 Set S·(maxL) = maxL, S

→(maxL) = 0;
17 Set S·index(maxL) = i, S→index(maxL) = {};
18 Set L(i) = maxL;

19 else if Plabels has 1 element then // δ− = 1
20 Add i to S→index(Plabels(1));
21 Set L(i) = Plabels(1);

22 else if Plabels has 2 or more elements then // δ− ≥ 2
23 Set maxL = maxL + 1;
24 Set S·(maxL) = maxL, S

→(maxL) = 0;
25 Set S·index(maxL) = i, S→index(maxL) = {};
26 for label = Plabels(first)→ Plabels(last) do
27 S→(label) = maxL;
28 Replace label in L with maxL;

29 end

30 end

31 end
32 S→(end) = maxL + 1;

3.1.4.3 Post processing and augmentation of join and split trees

Both outputs of the Algorithms 1 and 2 give a sorted array for the list of vertices starting

from number 1. In the post processing step, the vertices of the join and split trees are

given unique numbers. Additionally, if there are any pixels that have common indices

in both trees, these are assigned the same vertex number. The algorithm used to post

process the join and split trees is given in Algorithm 3. The last vertex of a post processed

tree is a global extrema which does not have a directed edge to any other vertex in the
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graph. Therefore, the last line of the algorithm sets this last edge to be directed to vertex

0 to indicate this.

An elegant algorithm to merge the join and split trees is given in [21]. This algorithm

requires an augmentation step in which the vertices of the split tree are placed in the join

and the vertices of the join tree are placed in the split tree. The augmentation algorithm

is given in Algorithm 4. Here, simply the indices of the vertices of a tree are searched in

the branches of the other tree. The vertices are not searched since common vertices are

already handled in the post processing step.

Algorithm 3: Computing the post-processed join and split trees

Input : J, Jindex, S, Sindex
Output: JP{JP·, JP→}, JPindex{JP

·
index, JP

→
index},

SP{SP·, SP→}, SPindex{SP
·
index, SP

→
index}

1 Set JP·
index = J·index, JP

→
index = J→index;

2 Set SP·
index = S·index, SP

→
index = S→index;

3 Set JP· = J·, JP→ = J→;
4 Set SP· = S· + J·(end), SP→ = S→ + J·(end);

5 Initialize an empty 2 column matrix, comm, for common vertices;
6 for i = S·index(first)→ S·index(last) do
7 for j = J·index(first)→ J·index(last) do
8 if S·index(i) = J·index(j) then append {SP·(i), JP·(j)} to comm ;
9 end

10 end

11 for i = comm(first)→ comm(last) do
12 for k = SP

·(first)→ SP
·(last) do

13 if SP
·(k) = comm(i, 1) then SP

·(k) = comm(i, 2);
14 if SP

→(k) = comm(i, 1) then SP
→(k) = comm(i, 2);

15 end

16 end

17 Form SPunique which has the unique vertices of SP· in ascending order;
18 Initialize tmpSP· = SP

·, tmpSP→ = SP
→;

19 for i = SPunique(first)→ SPunique(last) do
20 if SPunique(i) /∈ comm(., 2) then
21 for k = SP

·(first)→ SP
·(last) do

22 if SP
·(k) = SPunique(i) then tmpSP·(k) = i+ J·(end);

23 if SP
→(k) = SPunique(i) then tmpSP→(k) = i + J·(end);

24 end

25 end
26 SP

· = tmpSP·;
27 SP

→ = tmpSP→;
28 SP

→(end) = 0;
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Algorithm 4: Augmenting tree A with a tree B

Input : A = {A·,A→}, Aindex = {A·
index,A

→
index}

B = {B·,B→}, Bindex = {B·
index,B

→
index}

Output: A with augmented vertices and indices of B

1 for i = B·(first)→ B·(last) do
2 Set newbranch = −1;
3 for j = A→

index(first)→ A→
index(last) do

4 Set counter = 0;
5 for k = A→

index(j, first)→ A→
index(j, last) do

6 if A→(j, k) = B·(i) then newbrach = j;
7 else counter ++;

8 end

9 end
10 if newbrach > −1 then
11 Set aug· = B·(i) and aug→ = A→(newbrach);
12 A→(newbrach) = B→(i);
13 Insert aug· into A· after element newbrach;
14 Insert aug→ into A→ after element newbrach;
15 Set aug·index = B·

index(i) and aug→index = A→
index(newbrach);

16 Remove the elements of aug→index until element counter;
17 Remove the elements of A→

index after element counter;
18 Insert aug·index into A·

index after element newbrach;
19 Insert aug→index into A→

index after element newbrach;

20 end

3.1.4.4 Merging augmented trees

Augmented trees are merged using the same idea that is suggested in [21]. The algorithm

is given in Algorithm 5. In the beginning, two new arrays for the up- and down-degrees of

the vertices are initialized. Only the vertices in the augmented join tree with 0 up-degree

and 1 down-degree or the vertices in the augmented split tree with 0 down-degree and 1

up-degree are processed. When a vertex is found and processed, it is removed from the

list and corresponding up- and down-degrees are updated.

In the last part of the algorithm, it is confirmed that all vertices are directed to some

vertex in the graph. This makes sure that all the pixels are included in the indices lists.

Basically, in this part, if a vertex is found to be not directed to any other, a new edge is

appended at the end which directs it to itself.

34



3.1 Contour trees

Algorithm 5: Merging augmented trees

Input : Augmented join and split trees JA, JAindex, SA, SAindex

Output: Merged tree M = {M·,M→}, Mindices = {M
·
indices,M

→
indices}

1 Initialize M· = {},M→ = {},M·
indices = {},M

→
indices = {};

2 Initialize δ+ = {} and δ− = {};
3 ∀i set δ+(i) as the number of JA·(i) in JA

→;
4 ∀i set δ−(i) as the number of SA·(i) in SA

→;

5 while ∃δ+ 6= 0 or ∃δ− 6= 0 do
6 for i = JA

·(first)→ JA
·(last) do

7 if δ+(i) = 0 & JA
·(i) 6= 0 then

8 Find j : SA·(j) = JA
·(i);

9 if δ−(j) = 1 then
10 δ−(j) = δ−(j)− 1;
11 M·(JA·(i)) = JA

·(i); M→(JA·(i)) = JA
→(i);

12 M·
index(JA

·(i)) = JA
·
index(i); M

→
index(JA

·(i)) = JA
→
index(i);

13 Find l : JA·(l) = JA
→(i);

14 δ+(l) = δ+(l)− 1; JA·(i) = JA
→(i) = 0;

15 Trace in SA the vertices SA·(j) = JA
→(i) until JA·(i);

16 Form a list of the traced vertices, tr;
17 SA

→(tr(end)) = SA
→(j); SA·(j) = SA

→(j) = 0;
18 Update all SA→

index(tr) = SA
→
index(tr) \ JA

→
index(i)

19 end
20 for i = SA

·(first)→ SA
·(last) do

21 if δ−(i) = 0 & SA
·(i) 6= 0 then

22 Find j : JA·(j) = SA
·(i);

23 if δ+(j) = 1 then
24 δ+(j) = δ+(j)− 1;
25 M·(SA·(i)) = SA

·(i); M→(SA·(i)) = SA
→(i);

26 M·
index(SA

·(i)) = SA
·
index(i); M

→
index(SA

·(i)) = SA
→
index(i);

27 Find l : SA·(l) = SA
→(i);

28 δ+(l) = δ+(l)− 1; SA·(i) = SA
→(i) = 0;

29 Trace in JA the vertices JA·(j) = SA
→(i) until SA·(i);

30 Form a list of the traced vertices, tr;
31 JA

→(tr(end)) = JA
→(j); JA·(j) = JA

→(j) = 0;
32 Update all JA→

index(tr) = JA
→
index(tr) \ SA

→
index(i)

33 end

34 end
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35 for i = 1→ max(JA·) do
36 if i /∈M· then
37 if i ∈M→ then
38 Find j : JA·(j) = i;
39 Append i to M· and M→;
40 Append JA

·
index(j) to M·

index and {} to M→
index;

41 else
42 Find j : SA·(j) = i;
43 Append i to M· and M→;
44 Append SA

·
index(j) to M·

index and {} to M→
index;

45 end

3.1.4.5 Pruning

For Morse functions the output of the merging given in Algorithm 5 is the contour tree.

However, non-Morse functions require a compulsory pruning operation that is followed

by the merging of the augmented trees. Pruning combines the degenerate critical points

that are connected and constructs contour trees for non-Morse functions. Also for both

Morse and non-Morse functions, pruning cleans up insignificant vertices and edges.

More commonly, contour trees for non-Morse functions are calculated after perturba-

tion, which removes degeneracies other than multisaddles. Perturbation is generally done

using the Simulation of Simplicity method [41], where a very small number is added to

each data point according to its location in physical memory. Perturbation renders out

the need for combining degenerate critical points that are connected in the pruning step

and decreases the computational cost. However, a contour tree given in Definition 17

cannot be obtained once the data is perturbed.

There have been few approaches suggested in the literature to perform pruning for

contour trees. In [4, 24], insignificant vertices and edges are determined and removed

by using geometrical measures such as surface area or volume from contour trees. In

[141, 142], branches are assigned importance values which are calculated by a function of

three parameters, p, v and hv. p stands for persistence, which is defined as the absolute

difference between intensities at the vertices of an edge, v is the volume and hv is the

hypervolume, which is defined as the integral of the scalar field on an edge. Based on the

importance value of an edge it is either kept or removed.
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In order to further simplify the visualization of contour trees and represent them in

more intuitive ways, several approaches are suggested such as the topological landscapes

[38, 48, 81, 131], the toporrery [87] and topological cacti [132].

In this thesis, three graph operations (i) vertex collapse, (ii) leaf pruning and (iii)

saddle collapse are used to prune merge trees. These operations and in which cases they

are applied are shown in Fig.3.8.

Figure 3.8: Graph operations used for pruning. On the first column, the main operations
of vertex collapse, leaf pruning and saddle collapse are shown. The second column shows all
the cases where the operations are applied. The insignificant vertices and edges are shown
in gray.

Vertex collapse operation is done whenever possible. In order to prune leaves or

collapse saddles, similar to [24] and [141], two inputs called the (i) height threshold and

(ii) area/volume threshold are used to determine whether vertices are insignificant and

will be removed. If M·(x) is a vertex of the merged tree, it is insignificant, either if

M·
index(x)∪M

→
index(x) has fewer elements than the area/volume threshold or the intensity

difference |I(M·
index(x))−I(M→

index(x))| is smaller than the height threshold. The pseudo

algorithm of the pruning is given in Algorithm 6.
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Algorithm 6: Pruning merged trees

Input : Input image I, height threshold hT , area/volume threshold avT ,
M = {M·,M→}, Mindex = {M·

index,M
→
index}

Output: Contour tree CT = {CT·,CT→}, CTindices = {CT·
indices,CT

→
indices}

1 repeat
2 for i = M·(first)→M·(last) do
3 if vertex collapse then
4 Find j : M→(j) = M·(i) and k : M·(k) = M→(i);
5 M→(j) = M·(k) and M→

index(j) = M→
index(j) ∪M·

index(i) ∪M→
index(i) ;

6 Remove M·(i),M→(i),M·
index(i),M

→
index(i) ;

7 else if leaf pruning then
8 Find k : M·(k) = M→(i);
9 if |I(M·

index(i))− I(M·
index(k))| ≤ hT or

#(M·
index(i) +M→

index(k)) ≤ avT then
10 M·

index(k) = M·
index(k) ∪M·

index(i) ∪M→
index(i) ;

11 Remove M·(i),M→(i),M·
index(i),M

→
index(i) ;

12 else if saddle collapse then
13 Find all j : M→(j) = M·(i) and k : M·(k) = M→(i);
14 if |I(M·

index(i))− I(M·
index(k))| ≤ hT or

#(M·
index(i) +M→

index(k)) ≤ avT then
15 For all j, set M→(j) = M·(k);
16 M·

index(k) = M·
index(k) ∪M·

index(i) ∪M→
index(i) ;

17 Remove M·(i),M→(i),M·
index(i),M

→
index(i) ;

18 end

19 until no change;
20 CT = M;
21 CTindex = Mindex;

3.2 Representation of binary images using contour trees

It is described in subsection 3.1.1 that contour trees are generally used to simplify and

help visualize scalar fields. In this section, a different application of contour trees where

it is used to represent binary images is explained. This is done simply by using the

Euclidean distance transform (EDT) which transforms a binary image to a scalar image,

this approach is first presented in [Publication-I].

EDT is a fundamental geometrical operator which has been used often in computer

vision, pattern recognition, computational geometry and shape analysis applications [84].

Distance transform is first mentioned in [94] as a mapping of each element into its smallest

distance to a given subset. Here the minimum distance of all elements to the boundary
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3.2 Representation of binary images using contour trees

of the foreground is considered. The formal expression of the signed EDT used in this

thesis is given as follows:

Definition 18 (Euclidean distance transform (EDT)). EDT is the following mapping

from a binary image I(X) to an image EDT (X).

EDT (x) =











min{‖ x− y ‖} for x ∈ F & ∀y ∈ F b

0 for x ∈ F b

−min{‖ x− y ‖} for x ∈ F c& ∀y ∈ F b

(3.4)

‖ x− y ‖=
√

∑n
k=1 (xk − yk)

2
, the Euclidean distance between x and y.

There are several algorithms proposed to calculate EDT. A review of the most common

approaches can be found in [42]. In this study, the popular algorithm of Maurer’s is used,

which is based on dimensionality reduction and partial Voronoi diagram construction [69].

Fig.3.9 shows an example of a contour tree representation for a binary image. Rep-

resentation of binary images using contour trees reveal important geometrical and topo-

logical information. Above the zero level, information about the number of connected

components and their geometry is given. Below the zero level, the geometry of back-

ground is represented which provides information about how connected components are

placed in the image. The foreground and background representations reveal how thick

connected components get and the separation between them.

20
5
-5
-15

-70

-116

(a) (b) (c)

Figure 3.9: Binary image representation using contour trees. (a) Binary input image (b)
contour tree drawn on top of the EDT of the input (c) contour tree and levels of vertices
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3. METHODS

3.3 Contour tree connectivity

In this section, the main contribution of the thesis, the contour tree connectivity (CTC)

is introduced. CTC is featured in all the publications except [Publication-I].

CTC offers an alternative connectivity measure for binary images by providing con-

nectivity information that takes into account the proximity of connected components and

cavities. For CTC to be easy to use, it is designed to be a real number between 0 and

1. For example, Fig.3.10 shows that there is an 11% connectivity decrease in terms of

CTC from left to right. Decreases occur due to cavity formation (a-c), hole formation

(d), separation of connected components (e) and increase in the number of connected

components (f). In contrast, Euler number only varies when a topology change occurs in

(d) and (f).

CTC=0.71
χ=2

(a)

CTC=0.70
χ=2

(b)

CTC=0.68
χ=2

(c)

CTC=0.64
χ=1

(d)

CTC=0.62
χ=1

(e)

CTC=0.60
χ=2

(f)

Figure 3.10: The connectivity information provided by CTC shows a total of 11% con-
nectivity decrease from left to right. CTC is decreasing due to cavity formation (a-c), hole
formation (d), separation of connected components (e) and increase in the number of con-
nected components (f). Notice that Euler number varies only in (d) and (f) where the
topology changes. (Reproduced from [Publication-II].)

The main idea behind CTC is to compute the structural connectivity of a binary image

by computing the connectivity of a variant of its contour tree representation. Fig.3.11

shows the flowchart for extracting CTC. Starting with a binary image, firstly a real

valued image is obtained using EDT. The contour tree of this image is computed and

later processed to obtain a new tree representation which is called the supplemented

contour tree (SCT). Lastly, connectivity of SCT is calculated using algebraic connectivity

and normalized with a function of the range of the EDT image, which gives the CTC.

Before describing what SCT is and why there is a need for SCT, in the next subsection,

information about algebraic graph connectivity is given.
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3.3 Contour tree connectivity

Figure 3.11: Flowchart for the CTC extraction. From a binary input image, firstly EDT,
then the SCT and finally the CTC is calculated as the normalized algebraic connectivity of
SCT. (Reproduced from [Publication-II].)

3.3.1 Graph spectrum and algebraic graph connectivity

Spectrum of graphs has been useful for many applications in computer science [31]. For

instance, the Googlebot search engine uses ideas derived from spectral graph theory [17].

Graph spectrum and algebraic connectivity of graphs have also found several applications

in image processing [34, 107, 135].

For a graph G, the eigenvalues of the Laplacian matrix given as L(G) = D(G)−A(G),

form the spectrum of G. Here D(G) and A(G) are the degree diagonal and the adjacency

matrices respectively. Note that for a connected graph, the eigenvalues of L(G) can be

sorted as 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn. Since λ1 = 0 for disconnected graphs, Fiedler

gave the following definition for algebraic connectivity in [43] as a measure of graph

connectivity:

Definition 19. Algebraic connectivity of a graph G, λ1(G), is the second smallest eigen-

value of its Laplacian matrix.

3.3.2 Supplemented contour tree

In section 3.2, it is shown that binary image representation using contour trees reveal im-

portant geometrical and topological properties such as information about the connected

components, their thickness and separations. However, this information is possible, pro-

vided that the indices for the vertices are used together with the input image. As for the

contour tree itself, it is only a graph with a set of vertices and edges which does not con-

tain the intensity levels which vertices represent. Therefore as only graphs, contour trees
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give very high level of abstractions whose connectivities do not provide discriminative

information. Additionally, in order to compare connectivities of different binary images,

there is a need to normalize algebraic connectivity values since sorting trees with respect

to their algebraic values is challenging. Supplemented contour tree (SCT) is designed to

create a graph representation from a contour tree with lesser abstraction and more dis-

crimination. Additionally, SCT makes it easier to normalize algebraic connectivity which

is explained in the next subsection.

SCT is obtained by introducing additional vertices into a contour tree. Vertices are

added to represent the intensity differences between the ends of edges by the number of

new vertices in between them. This addition of new vertices is named supplementation

thus the name supplemented contour tree. SCT is obtained using Algorithm 7.

Algorithm 7: Computing the supplemented contour tree

Input : Input image I, CT = {CT·,CT→}, CTindex = {CT·
index,CT

→
index}

Output: Supplemented contour tree SCT = {SCT·, SCT→}

1 Initialize SCT
· = SCT

→ = {};
2 Set newV = max(CT·) + 1;
3 for i = CT

·(first)→ CT
·(last) do

4 Find k : CT→(i) = CT
·(k);

5 startLevel = I(CT·
index(i));

6 endLevel = I(CT·
index(k));

7 dif = |startLevel− endLevel|;
8 if dif > 1 then
9 Append CT

·(i) to SCT
·;

10 Append newV to SCT
→;

11 for j = (startLevel − sign(dif))→ (endLevel+ 2sign(dif)) do
12 newV = newV + 1;
13 Append newV − 1 to SCT

· ; // Supplement vertex

14 Append newV to SCT
→ ; // Supplement edge

15 end
16 Append newV to SCT

·;
17 Append CT

→(i) to SCT
→;

18 newV = newV + 1;

19 else
20 Append CT

·(i) to SCT
·;

21 Append CT
→(i) to SCT

→;

22 end
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3.3 Contour tree connectivity

SCT is a useful graph representation for binary images as it is capable of showing how

foreground/background regions are positioned in the image by the number of vertices

along edges. The example in Fig. 3.12 shows the difference between the contour tree and

the SCT.

Input image

Split tree

Join tree

EDT image Contour tree
Supplemented
contour tree

Figure 3.12: Binary image representation using the supplemented contour trees. First
EDT, then join and split trees (green trees) are calculated. Join and split trees are merged
to form the contour tree (red tree). SCT is shown on the right (red tree with yellow
supplemented nodes). (Reproduced from [Publication-II].)

The vertices of a contour tree where topological changes occur are called supernodes

[22]. Notice that the contour tree definition given in Definition 17 only contains supern-

odes. Contour trees which only contain supernodes are called unaugmented contour trees

in the literature [22]. An augmented contour tree can be obtained by introducing vertices

from other significant levels into the graph. However in contrast to an augmented contour

tree, the vertices that are introduced in SCT do not necessarily represent contours of the

input image.

3.3.3 Normalization - Upper and lower bounds

One problem regarding algebraic connectivity is associated with the bounds. For example,

[11] gives a lower bound of λ1 ≥ 4/(n.diam). This implies that in the set of SCTs with

the same diameter, graphs having larger number of vertices, n, have lower λ1 values.

However, this might not necessarily be a good comparative measure for connectivity. The

problem with λ1 bounds makes ordering graphs using algebraic connectivity a challenging
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research problem in spectral graph theory. A review of the recent studies concerning

algebraic connectivity, bound values and ordering graphs based on λ1 is given in [65].

In order to compare algebraic connectivities of SCTs belonging to different binary

images, the height of SCT is used as the parameter for normalization. Using tree heights

not only solves the normalization problem with a simple function but also makes it pos-

sible to fairly compare connectivities of SCTs with different number of vertices. The

normalization based on SCT heights is done using the following lower and upper bounds.

From subsection 3.3.1 and Definition 19, we give the following lower bound:

Corollary 3. G being an SCT, λ1(G) > 0 is a lower bound.

The upper bound for λ1 is given by the following theorem:

Theorem 3. G being an SCT, λ1(G) ≤ 2(1− cos π
h+1 ) is an upper bound, where h is the

height of G.

Proof. We use the following corollary derived from Theorem 6.4.1 (page 240) and Corol-

lary 6.4.3 (page 242) given in [73].

Corollary 4. Suppose that Ĝ is a subtree of the unweighted tree G. Then λ(Ĝ) > λ(G).

Let G be any SCT. Pick Ĝ as any path from any vertex on ⌊lgmax⌉ to any vertex on

⌊lgmin⌉. Note that G and Ĝ have the same root vertex and height, h. Then L(Ĝ) is the

following (h+ 1)× (h+ 1) matrix:

L(Ĝ) =

















1 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

















(h+1)×(h+1)

(3.5)

which has the eigenvalues λk = 2(1 − cos kπ
h+1 ), k = {0, 1, · · · , h} [136]. Therefore, from

Corollary 4, λ1(G) ≤ λ1(Ĝ) = 2(1− cos π
h+1).

3.3.4 Formal definition of contour tree connectivity

Finally, by using Definition 19, Corollary 3 and Theorem 3, the formal definition of the

CTC is given as follows:
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3.3 Contour tree connectivity

Definition 20. (Contour tree connectivity (CTC)) CTC of a binary image I is:

λ1(G) =
λ1(G)

2

[

1− cos

(

π

⌊lgmax⌉ − ⌊l
g
min⌉+ 1

)] (3.6)

where G is the SCT of I, λ1 is the algebraic connectivity of G, lgmax and lgmin are the global

max and min of EDT of I.

In the rest of the text, the abbreviation CTC and the symbol λ1 are used interchange-

ably. Lastly, we give the following corollary and conclude this chapter.

Corollary 5. For any binary image, 0 < λ1 ≤ 1.
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4

EXPERIMENTS AND RESULTS

This chapter is divided into 3 sections: Case A, B and C. In Case A, we experiment

with synthetic 2D and 3D toy images. The main goal is to introduce the connectivity

interpretation of CTC. Case B and C considers applications of CTC. In Case B, we analyze

trabecular bone connectivity and how it relates to its mechanical strength. In Case C,

we study flow in simple microstructures and how this is related with connectivity.

4.1 Case A: Tests on 2D and 3D binary images

In this section, we study contour tree connectivity (CTC) using 2D and 3D binary images

[Publication-II]. This section aims to show how the theory behind CTC works and what

kind of connectivity information is provided by it. In order to demonstrate the intuition

behind CTC, in subsection 4.1.1, 2D images are studied where carefully designed series of

images are analyzed. In subsection 4.1.2, 3D images are used to show a simple example

to how CTC can be used to study complex structures. In the last subsection of 4.1.3, the

results of the computation speed analysis for our implementation is given.

4.1.1 2D test images

We tested CTC with the synthetic dataset shown in Fig.4.1. The dataset is composed of 6

series (I-VI). Each series contains 6 images (A-F), that have slight changes in connectivity.

All images are of dimensions 256×256 pixels. We prepared different cases for each series

to show how λ1 varies. For example, series II shows the changes in λ1 during clumping

of objects, III shows the changes during branching, IV shows the effect of holes.
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4. EXPERIMENTS AND RESULTS

A

I

B C D E F

II

III

IV

V

VI

Figure 4.1: 2D images used in the experiments. Each row contains a series of images. In
each column connectivity is slightly altered. (Reproduced from [Publication-II].)

We also tested CTC using the same images under various boundary noise conditions.

To add boundary noise, we randomly moved the boundary pixels. We considered Gaussian

noise with µ = 0 and σ = {1, 2, 3, 4}. Samples from the noisy images are shown in Fig.4.2.

This type of noise allows for topological changes that significantly alter Euler number

which is shown in Fig.4.3.

Fig.4.4 shows the λ1 values for the images. Error bars show the max and min values

of λ1 for noisy images. It is observed from Fig.4.4 that λ1 consistently increases when

foreground objects approach each other. This trend is best seen for series II. Also the
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4.1 Case A: Tests on 2D and 3D binary images

I-
D

σ = 0 σ = 1 σ = 2 σ = 3 σ = 4
σ

 =
 4

II-D III-D IV-D V-D VI-D

Figure 4.2: Top row shows various levels of noise on image I-D. Bottom row shows the
maximum noise for images II-D to VI-D. (Reproduced from [Publication-II].)
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Figure 4.3: Bar graphs in (a)-(f) show the calculated Euler numbers for the 2D dataset.
The error bars show the maximum and minimum values of Euler number in the presence of
noise.

changes from I-D to I-E and IV-B to IV-C occur due to the same reason. The decreasing

trend in λ1 during branching is seen best in series III. From I-A to I-B and I-C, a decreasing

trend is present during cavity formation. When cavities turn into holes, the decreasing λ1

trend continues, for example in I-D. It is also observed from series IV that the decrease

in the number of holes increases λ1. From series VI, it is seen that increasing details

decreases λ1. Lastly, disconnecting objects decrease λ1 as seen in I-F and II-F.

We picked the worst results to show the effect of noise. For each series, the image with

worst error is picked and the absolute error is plotted in Fig.4.4g for all noise conditions.

From Fig.4.4g, it is observed that for σ = {1, 2}, λ1 change is mostly below 10%. For I-D,

IV-A and VI-B, increasing the noise to σ = 3 still keeps λ1 within 10% error. In the case

of extreme noise (σ = 4), for most cases λ1 changes drastically. CTC performs bad for

series III where very thin branches exist. This is partly due to how we added the noise.

Fig.4.2 shows the effect of this type of noise on branches of III-D.
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Figure 4.4: Bar graphs in (a)-(f) show the calculated λ1 values for the 2D dataset. The
error bars show the maximum and minimum values of λ1 in the presence of noise. Worst
cases of error are shown in (g) for varying noise. (Reproduced from [Publication-II].)

We picked one good, one bad and one typical case to show the effect of the pruning

parameters on CTC. Fig.4.5 shows the changes for various combinations of level and area

thresholds on images IV-A, III-D and V-A. It is observed that pruning does not alter λ1

significantly for image IV-A despite the noise. Whereas for III-D, pruning parameters

affect the λ1 value. On a typical case, pruning parameters do alter λ1. However, it can be

observed from Fig.4.5 that there is a flat region in a typical case which makes it easy to

decide on the parameters. For example, for all results in this subsection, a level threshold

of 0.1 and an area threshold of 16 is used regardless of the data or the noise.
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(a) Good case: IV-A with noise
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(b) Bad case: III-D with noise

σ = 4
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(b) Typical case: V-A with

noise σ = 1

Figure 4.5: Bar graphs showing the effects of pruning parameters on (a) good (b) bad and
(c) typical cases. As default values, area threshold of 16 and level threshold of 0.1 is found
to work reasonable. (Reproduced from [Publication-II].)
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4.1 Case A: Tests on 2D and 3D binary images

4.1.2 3D test images

Euler number is the standard measure to study connectivity of microstructures of mate-

rials [82]. In order to show the complementary value of CTC to identify microstructures,

we used 3D artificial samples created in MATLAB R© that resemble segmented microstruc-

tures obtained with a µCT device.

We prepared six groups of data. Each group contains 50 samples of dimensions

128×128×128 voxels. Three of the groups are made of spheres and the rest of the three

are made of lines. We will abbreviate the sphere samples as S1, S2, S3 and line samples

as L1, L2, L3.

All images are created using two parameters: the number of objects and the dimensions

of objects. The object dimension for S1, S2 and S3 is the radius of spheres. For L1, L2 and

L3, the object dimension is the width of lines. We used a Gaussian distributed random

variable with mean µ = 32 and standard deviation σ = 6 voxels for the length of lines

in all L1, L2 and L3. For all samples, partial overlapping of objects was allowed. Fig.4.6

shows sample images from each group used in the test.

Figure 4.6: Samples from the 3D dataset used in the test. (a) S1, (b) S2, (c) S3, (d) L1,
(e) L2 and (f) L3. (Reproduced from [Publication-II].)

For each group, we used a constant number of objects. For the dimensions of the

objects, Gaussian distributed random variables are used. For S2 and L2, we used two

random variables to create intermediate samples of S1-S3 and L1-L3. The parameters for

all samples are set so that the volume ratio of foreground to background is ≈ 1. Table.4.1

shows the parameters that we used to generate the dataset.
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4. EXPERIMENTS AND RESULTS

Table 4.1: Parameters used to generate the dataset for the 3D test samples. The values
in (. , .) are the µ and σ of Gaussian distributed random variables used for setting object
dimensions. The number of objects and the random variables used for S2 and L2 are shown
in [. , .]. (Reproduced from [Publication-II].)

S1 S2 S3 L1 L2 L3

Number of objects 90 [45,400] 800 200 [100,400] 800
Dimension of objects (16,4) [(16,4),(6,4)] (6,4) (16,4) [(16,4),(6,4)] (6,4)

By using three features we performed a classification test. The used features are CTC

(λ1), nominal opening dimension (dnom) and Euler number (χ):

a) λ1: is calculated as explained in subsection 3.3.

b) dnom: is calculated as explained in subsection 2.4.3.

c) χ: is calculated as explained in subsection 2.4.1.

To classify the samples, we used the naive Bayesian classifier because it is simple and

known to achieve good results even in challenging multivariate cases [46]. Naive Bayesian

classifier utilizes the Bayes’ theorem to assign a probability that the input data is from

a given class [40]. Let C = {c1, · · · , cN} be a set of classes ci where N is the number of

classes, {i ∈ N
+|i ≤ N} and let x be a D dimensional feature vector with independent

features xj , {j ∈ N
+|j ≤ D}. Then given the prior probability of observing the class

P (ci), the probability of a particular class is:

P (ci|x) ∝ P (ci)P (x|ci) ∝ P (ci)

D
∏

j=1

P (xj |ci) (4.1)

where P (xj |ci) is the conditional probability of xj given class ci. Following Eq.4.1, Bayes’

decision rule can be given as:

c = argmax
ci∈C

P (ci|x) ∝ argmax
ci∈C

P (ci)

D
∏

j=1

P (xj |ci) (4.2)

In our classification problem, N = 6 and ∀ci ∈ C P (ci) = 1/6. Therefore, the feature

vector x is assigned the class ci; so that ci maximizes P (ci|x) which is proportional to
∏D

j=1 P (xj |ci). Thus, P (xj |ci) are required. This estimation is done using the MATLAB’s

built-in NaiveBayes class. We used half of the samples in each group for training and

the other half for testing. Lastly, the classification accuracy, A, is calculated as follows:

A =

(

1−
# of misclassified samples

# of all samples

)

× 100 (4.3)
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4.1 Case A: Tests on 2D and 3D binary images

Classifications are done using all possible two combinations of the three features.

In order to show what additional information comes with λ1, in Fig.4.7 we first give the

estimated class conditional probabilities for each feature. Maximum peaks are normalized

to 1 for easier visual comparison.
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Figure 4.7: Class conditional probabilities. The legend shows the corresponding classes
for different lines. From left to right, class conditional probabilities for (a) dnom, (b) χ and
(c) λ1 are plotted. (Reproduced from [Publication-II].)

The scatter plots are given for the feature combinations of {χ, dnom}, {λ1, dnom} and

{λ1, χ} in Fig.4.8.
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Figure 4.8: Scatter plots. The legend shows the corresponding classes for different markers.
From left to right, scatter plots for feature sets (a) {χ, dnom}, (b) {λ1, dnom} and (c) {λ1, χ}
are shown.

Table 4.2 shows the confusion matrices and the classification accuracies. Based on the

distributions, a naive Bayesian classifier yields a 72.3% classification accuracy using only

χ. With λ1 included, the accuracy increases to 92.7%.

Table 4.2: Confusion matrices. First column shows the true classes, the third row shows
the predicted classes with {χ, dnom}, {λ1, dnom} and {λ1, χ}. Classification accuracies are
given in the second row. (Reproduced from [Publication-II].)

{χ, dnom} {λ1, dnom} {λ1, χ}
A = 70.7% A = 72.7% A = 92.7%

S1 S2 S3 L1 L2 L3 S1 S2 S3 L1 L2 L3 S1 S2 S3 L1 L2 L3
S1 18 7 0 0 0 0 21 0 0 4 0 0 24 1 0 0 0 0
S2 2 23 0 0 0 0 0 24 0 1 0 0 0 25 0 0 0 0
S3 0 0 24 0 1 0 0 0 22 0 1 2 0 0 25 0 0 0
L1 0 0 0 0 25 0 3 2 0 20 0 0 0 0 0 25 0 0
L2 1 1 2 1 17 3 1 19 0 0 1 4 1 1 0 3 15 5
L3 0 0 0 1 0 24 0 3 1 0 0 21 0 0 0 0 0 25
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4. EXPERIMENTS AND RESULTS

4.1.3 Performance test

We used binary images generated by thresholding Gaussian random fields (GRF) to test

the speed of our implementation. These images are commonly used for studying mi-

crostructures [54], they are easy to generate and have a single tuning parameter for

controlling the level of details.

We generated GRFs in Fourier domain by using random phases and Rayleigh dis-

tributed amplitudes. Rayleigh density function is Rpdf (x|σR) = x
σ2

R

e
x

2σ2
R with σR being

the Rayleigh scaling parameter. We generated 20 samples of dimensions 256×256 for each

σR = {4, 7, 10, 13}. GRFs with larger σR give structurally more detailed images. Sample

images obtained for each σR is given in Fig.4.9.

Figure 4.9: Sample test images used in the performance test. Images are generated by
thresholding GRFs. Rayleigh scaling parameter, σR, is adjusted to vary the level of details.
The images correspond to the GRFs generated by (a) σR = 4 (b) σR = 7 (c) σR = 10 and
(d) σR = 13.

Table 4.3 shows the mean results for each σR group. Here, the computation times for

sweeping, merging, pruning, supplementing and eigen value calculation are given sepa-

rately. Also, the total number of vertices for the trees are given on the last three columns.

All computations are done using an AMD Phenom R© II X4 955 processor with 12GB sys-

tem memory.

Table 4.3: Performance test results on GRF images. The values are the averages obtained
using 20 images for each σR = {4, 7, 10, 13}. The second column shows the average λ1 which
is decreasing with the increasing level of detail.

Time (s) Number of vertices

σR λ1 Total Sweep Merge Prune Supplement Eigen value CT PCT SCT
4 0.152 3.1 0.2 1.9 0.4 0.01 0.6 632 148 690
7 0.079 12.8 0.2 10.0 1.0 0.01 1.5 1328 331 978
10 0.063 34.6 0.2 29.5 2.0 0.02 2.9 2171 512 1219
13 0.053 68.9 0.2 60.5 3.5 0.02 4.7 3137 651 1399
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4.2 Case B: Contour tree connectivity and mechanical strength of trabecular
bone microstructure

4.2 Case B: Contour tree connectivity and mechanical strength

of trabecular bone microstructure

Connectivity has long been recognized as an important parameter to predict the mechan-

ical properties of trabecular bone [44]. The most commonly used connectivity measure

is the connectivity density (Conn.D), which is based on the Euler number (χ) [80]. As

explained in subsection 2.4.1, Conn.D gives the density of trabeculae in unit volume.

However, although Conn.D includes information regarding the number of trabeculae, it

does not provide information about the thickness of the connections nor the gaps between

them.

In this study, we propose to use the contour tree connectivity (CTC) as an alterna-

tive connectivity measure to predict the strength of trabecular bone. In [Publication-I],

contour trees are utilized to provide graph representations of binary images. This repre-

sentation of images transforms complex 3D data, such as the trabecular bone, into simple

graphs. Based on a similar representation, CTC calculates the connectivity of binary

images by calculating the connectivity of graphs [Publication-II].

In the first subsection we conduct a study using synthetic data in order to show the

complementary information provided by CTC. In the second subsection we show the

results obtained using patient data.

4.2.1 Tests with synthetic data

4.2.1.1 Description of data

We designed synthetic samples using MATLAB in order to study the effect of number of

trabeculae, number of plate-like structures and bone deterioration on bone volume ratio

(BV/TV), connectivity density (Conn.D) and contour tree connectivity (CTC). Samples

from the computer generated data are shown in Fig.4.10.

The data are generated by a simple arrangement of intersecting cylinders with radius

of 8 voxels. The first structural parameter we modified is the number of trabeculae which

we altered by changing the density of cylinders. The three groups with different numbers

of trabeculae are denoted with Roman numerals I, II, III. The second structural parameter

that is modified is the number of plates between the trabeculae. For each groups of I,

II and III, we created three different sets of data with varying plate numbers. With the
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increasing order of plates, these are denoted with A, B and C. The last parameter that

is controlled is bone deterioration, which is simulated by morphological erosion. Eroded

bones are denoted with A’, B’ and C’. In order to account for the changes in random

arrangements, we created 20 samples in each group. Therefore, 360 synthetic images

with 18 structurally different groups are prepared.

I

II

III

A B C A' B' C'

Figure 4.10: Sample images used for the tests with synthetic data. I, II and III denote
the groups with different numbers of trabeculae. A, B and C denote the different numbers
of plates. A’, B’ and C’ denote that bone is eroded.

4.2.1.2 BV/TV, Conn.D and CTC values

We computed BV/TV, Conn.D and CTC values belonging to each synthetic data group.

Fig.4.11 shows the average results, the error bars show the min and max values of each

parameter. Bottom row shows the values for the deteriorated bone. Based on the results,

the effects of the morphological changes in the parameters can be summarized with the

Table-4.4

Table 4.4: The effect of the morphological changes in BV/TV, Conn.D and CTC. Neither
Conn.D nor CTC provides information that is correlated with BV/TV. CTC may increase
or decrease with the change in the number of plates.

BV/TV Conn.D CTC

↑ number of trabaculae ↑ ↑ ↓
↑ number of plates ↑ ↓ ↑ or ↓
↑ bone erosion ↓ no change ↑
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4.2 Case B: Contour tree connectivity and mechanical strength of trabecular
bone microstructure
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Figure 4.11: Computed BV/TV, Conn.D and CTC values for each group. Bottom row
shows the values for the deteriorated bone. Error bars show the min and max values of the
parameters. There is no error bar for Conn.D since there is no variation.

It is observed that neither Conn.D nor CTC provides information that is correlated

with BV/TV. Given that topology is preserved, Conn.D does not provide information in

the case of erosion whereas CTC increases.

4.2.2 Tests with patient data

4.2.2.1 Patient data, µCT imaging and biomechanical testing

The original study population consisted of 61 patients with primary hip osteoarthritis

who underwent primary cementless total hip arthroplasty (THA). The demographic data

of the patients was described previously in [66]. During THA surgery, a cancellous biopsy

was taken from the intertrochanteric region of the proximal femur as described earlier

in [76]. The biopsy specimen were wrapped in saline-wet sponges and placed in a sealed

plastic bag and stored frozen at -20◦C until machining. Multiple specimens were prepared

from each biopsy under saline irrigation using a high-speed trephine drill. The cylindrical

specimens were scanned with µCT (SkyScan 1072, Kontich, Belgium) with isotropic voxel

resolution of 16.3 µm.

From the µCT images, 10 parameters were calculated. These are: bone volume frac-

tion (BV/TV), bone mineral density (BMD), mean trabecular thickness (Tb.Th), tra-

becular separation (Tb.Sp), trabecular number (Tb.N), trabecular bone pattern factor

(Tb.Pf), structure model index (SMI), degree of anisotropy (DA), Conn.D and CTC.
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4. EXPERIMENTS AND RESULTS

Conn.D and CTC were calculated using MATLAB, whereas the other parameters were

calculated using CTan software (SkyScan). For each patient, the mean results of the

parameters obtained from multiple specimens were used in the study.

Following the µCT imaging, the specimens were used in compression testing to fail-

ure using a universal mechanical testing device (Avalon Technologies, Rochester, MI,

USA). Tests were performed at a constant speed of 0.825 mm/min and the load data

were continuously recorded by the data acquisition system (Visual Designer, Intelligent

Instrumentation, Tucson, AZ, USA). Values for the ultimate tensile strength (σU ) were

calculated from the raw data files using Origin software (Origin Lab Corp. Northampton,

MA, USA).

The analyses were performed on 55 patients out of 61. Six patients were excluded due

to incomplete data. The patients were divided into three groups with respect to their

trabecular bones’ ultimate strength. The first group, G-1, has σU ≤ 0.35 MPa, the second

group, G-2, has 0.35 MPa < σU ≤ 1 MPa and the last group, G-3, has σU > 1 MPa. The

thresholds were chosen manually by taking into account the jumps in σU . According to

this division, 26 patients belong to G-1, 20 patients belong to G-2 and 9 patients belong

to G-3. Fig.4.12 shows the values for the ultimate tensile strength in ascending order and

the threshold levels used to group the patients.
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Figure 4.12: Ultimate strength values obtained from the measurements in ascending order.
Red lines show the thresholds that are used to categorize the patients into three groups.
(Reproduced from [Publication-III].)

58

7_experimentsAndResults/figures/EXP_CASE_B_1.eps


4.2 Case B: Contour tree connectivity and mechanical strength of trabecular
bone microstructure

4.2.2.2 Regression, feature selection and classification method

The correlation between ultimate tensile strength and BV/TV was reported earlier in [76].

In this work, we study the other correlations and calculate the coefficient of determination

(R2) between (a) σU and µCT parameters (b) BV/TV and µCT parameters (c) CTC

and µCT parameters.

To identify the most predictive µCT parameters for ultimate tensile strength, we used

the data from all the patients and did a sequential forward feature selection (SFS). SFS

selects a subset of µCT features that best predict the σU measurements by sequentially

adding features. Each feature is selected after a repeated application of 10-fold cross

validation. Among all candidates, the feature set that gives the minimum mean deviance

is picked. Deviance measures the quality of the fit as the residual sum of squares obtained

from generalized linear model regression. We used SFS on two sets of features. The first

feature set, Case-1, had all the 10 µCT parameters. The second feature set, Case-2, did

not have CTC but had all the other 9 parameters.

Lastly, we used linear discriminant analysis for classifications. For this, we used 13,

10 and 4 patients from groups G-1, G-2 and G-3 respectively as the training set. The

rest of the 28 patients are used in the tests. For both feature sets, Case-1 and Case-2,

we sequentially classified test subjects into groups by increasing the number of significant

features.

4.2.2.3 Demonstrative CTC results

We picked three µCT images to show example CTC values for different cases. Fig.4.13

shows these samples, corresponding ultimate tensile strength, BV/TV and CTC values.

Since the actual contour trees contain several hundreds of vertices, simplified versions

obtained from the crops are plotted below each µCT image.

Fig.4.13 shows example CTC values obtained for 3 µCT images. Generally an in-

creased number of trabeculae decreases CTC by two mechanisms. Firstly, trabeculae

appear as local maxima in the EDT image, which introduces vertices into the join tree.

Secondly, gaps between trabeculae, that appear as local minima, introduce vertices into

the split tree. As a result, a sample with a large number of trabeculae is represented

with a spread of several vertices above and below 0 level. In the contour trees shown in

59



4. EXPERIMENTS AND RESULTS

Figure 4.13: Example µCT images and corresponding σU , BV/TV and CTC values. Below
each sample is a simplified version of the contour tree. (a) shows the strongest bone in the
dataset, (b) has the highest BV/TV in the dataset, (c) has a similar σU value to the one in
(b) despite less BV/TV. (Reproduced from [Publication-III].)

Fig.4.13, vertices at higher levels correspond to thicker trabeculae, whereas lower levels

correspond to larger gaps between trabeculae. By quantifying the connectivity of this rep-

resentation, CTC quantifies the connectivity of trabeculae with regard to their thickness

and separation.

Fig.4.13 also shows how CTC complements other features such as BV/TV. From

Fig.4.13a to Fig.4.13b, there is a 1.1 MPa decrease in σU despite the 8.8% increase in

BV/TV. Additionally, from Fig.4.13b to Fig.4.13c, the 7.3% decrease in BV/TV does not

change σU significantly. The contour tree for Fig.4.13b with few trabeculae and large

gaps accounts for these differences. This compact tree representation yields a large CTC

value, which might indicate structural weakness for this sample.

4.2.2.4 Results of the correlation analysis

Fig.4.14 shows the calculated R2 values. From left to right, Fig.4.14 shows the linear

correlation between (a) σU and µCT parameters (b) BV/TV and µCT parameters (c)

CTC and µCT parameters.

The correlation analysis in Fig.4.14a shows that BV/TV alone explains more than

65% of the variance in σU . Second most correlated feature with σU is Tb.N. The least

correlated features are DA, BMD and CTC. Fig.4.14b shows that, Tb.N, Tb.Sp, SMI and

Tb.Pf are correlated with BV/TV. On the other hand, CTC is uncorrelated with most

parameters.
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Figure 4.14: Linear regression analyses show (a) σU is best correlated with BV/TV (b)
Tb.N, Tb.Sp, SMI and Tb.Pf are correlated with BV/TV (c) CTC is uncorrelated with µCT
parameters other than Tb.Sp, Conn.D and Tb.N. (Reproduced from [Publication-III].)

4.2.2.5 Feature selection and classification results

Table 4.5 shows the order of the selected features for Case-1 and Case-2 using SFS and

the classification accuracies.

Table 4.5: The order of the selected features that best predict σU measurements and
the classification accuracies using feature sets Case-1 and Case-2. CTC is chosen as the
3rd best feature by SFS. BV/TV and DA are the top two features. (Reproduced from
[Publication-III].)

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Case-1 BV/TV DA CTC Conn.D Tb.Sp Tb.Pf Tb.Th Tb.N SMI BMD
60.7% 50% 64.3% 67.9% 67.9% 67.9% 71.4% 71.4% 71.4% 67.9%

Case-2 BV/TV DA SMI Conn. D Tb.N Tb.Th Tb.Sp BMD Tb.Pf -
60.7% 50% 60.7% 60.7% 60.7% 53.6% 53.6% 53.6% 57.1% -

Table 4.5 shows that CTC is the 3rd best predictive feature of ultimate strength

after BV/TV and DA. This coincides with recent studies where BV/TV and DA are

shown to be good predictors for σU [118]. Interestingly, our results show that BMD is

neither correlated with σU nor it is significant when predicting σU . It is observed from

the correlation and classification results that most of the commonly used parameters are

redundant. For Case-2, once BV/TV is used, the inclusion of many features does not

improve accuracy. Moreover, additional features decrease the accuracy more for Case-2

than Case-1 due to the curse of dimensionality. Lastly, it is observed that 3 subsets of

Case-1 that include CTC reach an accuracy of 71.4%, which could not be achieved by

any Case-2 subsets.

61

7_experimentsAndResults/figures/EXP_CASE_B_3.eps


4. EXPERIMENTS AND RESULTS

4.3 Case C: Contour tree connectivity and fluid flow

in microstructures

In this study, we assess and compare the capability of various geometrical characteristics

including CTC in relating structural properties with permeability of microstructures. To

achieve this goal, we generated 120 samples representing 6 different types of microstruc-

tures with equal porosities using MATLAB. We correlated the nominal opening dimension

(dnom), CTC, Euler parameter (EP), parameter for connected pairs (PCP) and the per-

meabilities estimated using direct pore scale modeling. We show that the connectivity

interpretation and information provided by CTC is different from the other measures

and can be used to quantify connectivity in order to identify differences and changes in

microstructures [Publication-IV].

4.3.1 Description of materials and estimation of permeabilities

We prepared random porous structures that resemble segmented microstructures ob-

tained from a µCT device with an isotropic voxel spacing of 7.8125 µm. All samples

were designed to have physical dimensions of 1mm× 1mm× 1mm which correspond to

128×128×128 voxels in image domain. In order to quantify connectivity independently

of porosity, all samples were designed to have ∼85% porosity. Porosity was calculated as

the ratio of the number of permeable voxels to the number of all voxels.

We generated 6 groups of data where each group contains 20 samples. 3 of the groups

contain samples made of spheres and the rest of the 3 contain samples of fibers. We

abbreviate the sphere samples as S1, S2, S3 and fiber samples as F1, F2, F3. S1 and F1

have 45 big disconnected objects, S2 and F2 have 100 medium sized disconnected objects

and S3 and F3 have 300 small disconnected objects.

For S1, S2 and S3 the diameters of the spheres vary between 15-26, 9-20 and 3-14

voxels respectively. All fibers in F1, F2 and F3 are square prisms with a varying ratio of

width to height between 10-20. The widths of fibers in F1, F2 and F3 vary between 6-8,

4-6 and 2-4 voxels respectively. Fig.4.15 shows sample images from each group.

We designed and generated the images using an in-house developed MATLAB soft-

ware. Starting with an empty image, our code iteratively places a sphere or a fiber of
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desired dimensions in a random fashion where ever there is no collision. The iteration

stops when the necessary number of objects are placed in the image.

(a) S1 (b) S2 (c) S3 (d) F1 (e) F2 (f) F3

Figure 4.15: Sample visualizations of the 6 type of 3D structures. (Reproduced from
[Publication-IV].)

To estimate the permeability of the materials we used direct pore scale modeling

(DPLS) or pore-level numerical simulation which has become a popular method to esti-

mate permeability during the last few decades due to its speed and low cost [89]. The

common approach used in DPLS is based on the setup shown in Fig.4.16 and Darcy’s

law, which states that:

∇p = −
µ

K
uD (4.4)

here∇ is the del operator, p is the pressure (N/m2), µ is the dynamic viscosity (kg/ms) of

the fluid, K is the permeability (m2) of the porous media and uD is the Darcian velocity

(m/s) of the fluid.

Inlet Outlet

u = 0
p∇ = 0

u = u
D

p∇ = 0

∇u = 0
p = 0

Matrix walls Pipe walls
u = 0
p∇ = 0

0.5 mm 1 mm 1.5 mm

1 mm

1 mm

Figure 4.16: The setup used in direct pore scale modeling. The figure shows the initial
and boundary conditions for velocity and pressure. (Reproduced from [Publication-IV].)

The main goal of DPLS is to calculate the pressure distribution inside the porous

medium for a given velocity. Therefore, the model requires an input uD, in addition to
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the fluid parameters such as µ. The value for uD is determined based on an assumption

on the Reynold’s number (Re). Since Equation 4.4 is valid only for low fluid velocities,

turbulence is neglected and Reynold’s number is assumed to be < 2. Followed by this

assumption, uD can be estimated from the modified expression for the Reynolds number:

Re = −ρ
uD

ε

dnom
µ

=⇒ uD = −
εµRe

dnomρ
(4.5)

here ρ is the density of the fluid (kg/m3), ε is the porosity and dnom is the nominal

opening dimension (m) of the medium.

Lastly, by combining Equations 4.4 and 4.5, K can be expressed as:

K =
εµ2Re

dnomρ∇p
(4.6)

here the only unknown is the pressure gradient, which can be estimated by a Navier-Stokes

solver. The governing equations are:

∇.v = 0
ρ
(

∂v
∂t

+ v · ∇v
)

− µ∇2v = −∇p
(4.7)

where v is the velocity vector. Equation 4.7 couples velocity and pressure and can be

solved by the SIMPLE algorithm (Semi Implicit Method for Pressure Linked Equation),

which is a popular approach applied to obtain a steady state solution for incompressible

fluid flow [88].

As a Newtonian, incompressible fluid, we use water in the models. Specifically, we use

the fluid properties at 20◦C with a density of ρ = 998.2 kg/m3 and a dynamic viscosity

of µ = 0.001 kg/ms [62]. In the models, water is flowed through a rectangular pipe of

dimensions 1mm×1mm×3mm. This setup is shown in Fig.4.16. As boundary conditions,

0 velocity on the sides of the tube and 0 pressure on the outlet is used. For the walls of the

porous medium, no slip condition is assumed. Turbulence is neglected and a laminar flow

with Re = 0.12 is modeled. The initial condition for uD at the inlet is calculated using

Equation 4.5. Time step for the simulation is determined by setting the Courant number

to 0.1. OpenFoam and SIMPLE algorithms are used for the solution of the pressure

distribution.
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The meshing of the geometry is done using the enGrid software [1]. Fig.4.17 shows

visualizations for the meshes of a sample belonging to group S3. Inlet and outlet for water

are shown with burgundy and purple respectively. The dimensions of the tetrahedral

elements are adjusted by the software. The example mesh in Fig.4.17 contains 1.3e6

million tetrahedral elements which is set in consistence with the predetermined Courant

number.

Figure 4.17: Visualizations of an example mesh belonging to group S3. Inlet and outlet
for water are shown with burgundy and purple respectively. Surface visualization on the left
contains 1.73e3 triangular elements. Green triangles show the model boundary. The walls
of the porous medium is shown with yellow. Volumetric visualization on the right contains
1.3e6 tetrahedral elements. Red tetrahedrons mark the region where water flows.

4.3.2 Contour trees and CTC values

From each group of test materials, we picked a sample to show example contour trees and

the corresponding CTC values. The samples are shown in Fig.4.15. The corresponding

contour trees and the calculated CTC values are shown in Fig.4.18. Samples with a fewer

number of objects (S1 and F1) have less vertices in their contour trees due to a fewer

number of local maxima and minima in their EDT image (not shown). With the increase

in the number of objects, the number of local maxima and minima also increase. As a

result, samples with more objects contain more vertices in their contour trees (S3 and F3).
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Increasing the number of pendant vertices decreases algebraic connectivity. Therefore, in

general, increasing the number of objects in a random fashion decreases CTC.

(a) S1 (d) F1

(b) S2 (e) F2

(f) F3(c) S3

CTC=0.0794 CTC=0.0386

CTC=0.0278 CTC=0.0245

CTC=0.0101 CTC=0.0073

Figure 4.18: Example contour trees and CTC values. The trees belong to the samples
shown in Fig.4.15. Increasing the number of objects introduces more details in the graph
which decreases CTC. (Reproduced from [Publication-IV].)
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4.3.3 Permeability, dnom, CTC, Euler parameter (EP), Parameter for con-

nected pairs (PCP)

Fig.4.19a shows an example of the velocity distribution through the material and the

resulting pressure distribution is shown in Fig.4.19b. A negative pressure gradient be-

tween 0.5mm-1.5mm is shown in Fig.4.19c where the material is placed. This trend is

observed for all the samples. By using Equation 4.6 and the obtained pressure gradients,

permeabilities are estimated. Examples values are shown in Fig.4.19c.
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Figure 4.19: (a) Velocity distribution and (b) pressure distribution computed for the
S1 sample shown in Fig.4.15a (c) Example pressure gradients and permeability values for
samples belonging to different groups. (Reproduced from [Publication-IV].)

The calculated permeability, dnom, CTC, EP and PCP values are plotted for each

test group in Fig.4.20. Table 4.6 shows the means and variances of the parameters for

each group. EP is the mean of the absolute value of the Euler numbers obtained for the

excursion sets which was explained in section 2.4.1. Similarly, PCP is the mean of the Γ

curve computed on the excursion sets which was explained in section 2.4.2.
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4. EXPERIMENTS AND RESULTS
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Figure 4.20: FE and image analyses results for all the test samples (a) permeability (b)
dnom (c) CTC (d) EP (e) PCP. For each group different colors represent different samples.
(Reproduced from [Publication-IV].)

From Table 4.6, it is observed that among the test groups, S1 has the highest mean

permeability and is followed by S2 and F1. The lowest mean permeability value belongs

to the group F3. F2 and S3 also have low permeability values. A similar trend is observed

with dnom and EP (inversely). However, CTC and PCP do not show this trend.

Table 4.6: Mean (µ) and variances (σ2) of the parameters calculated for each group.
(Reproduced from [Publication-IV].)

S1 S2 S3 F1 F2 F3

Permeability (m2)
µ 1.69e-6 1.25e-6 0.82e-6 1.04e-6 0.82e-6 0.58e-6
σ2 9.90e-15 8.69e-15 1.67e-15 2.08e-15 1.49e-15 0.39e-15

dnom (m)
µ 2.77e-5 2.21e-5 1.65e-5 2.08e-5 1.74e-5 1.34e-5
σ2 4.88e-12 1.25e-12 1.05e-12 1.11e-12 1.22e-12 0.41e-12

CTC
µ 7.54e-2 2.81e-2 1.13e-2 4.24e-2 1.99e-2 0.92e-2
σ2 1.73e-4 0.13e-4 0.02e-4 0.37e-4 0.09e-4 0.02e-4

EP
µ 21.24 41.28 106.13 42.98 83.62 184.06
σ2 1.82 9.02 78.48 12.60 68.52 205.39

PCP
µ 0.81 0.75 0.73 0.69 0.68 0.63
σ2 2.70e-3 2.14e-3 2.03e-3 3.45e-3 3.06e-3 2.48e-3
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4.3 Case C: Contour tree connectivity and fluid flow
in microstructures

4.3.4 Correlation, clustering analysis and classification results

Fig.4.21 shows scatter plots between permeability, dnom and CTC, EP, PCP. Table 4.7

shows the values for the coefficients of determination (R2). The first column shows the

R2 values calculated using all the test samples and the rest of the columns show values

corresponding to each group separately.

From Fig.4.21a-c and Table 4.7, it is observed that dnom has the highest linear corre-

lation with permeability (R2 = 0.91). CTC, EP and PCP follows dnom with R2 values of

0.78, 0.7 and 0.45 respectively.

Table 4.7: The coefficients of determination (R2) obtained using linear correlation analysis.
The first column shows the R2 values calculated using all the test samples. Other columns
show the correlation between the parameter pairs for each group separately. (Reproduced
from [Publication-IV].)

All S1 S2 S3 F1 F2 F3

dnom-Permeability 0.91 0.17 0.22 0.00 0.02 0.00 0.04
CTC-Permeability 0.78 0.08 0.14 0.03 0.08 0.01 0.25
EP-Permeability 0.70 0.07 0.20 0.00 0.16 0.06 0.13
PCP-Permeability 0.45 0.07 0.03 0.29 0.00 0.24 0.18
CTC-dnom 0.84 0.40 0.70 0.66 0.47 0.61 0.51
EP-dnom 0.78 0.65 0.82 0.92 0.60 0.88 0.85
PCP-dnom 0.54 0.69 0.16 0.20 0.21 0.42 0.31

In order to quantify how well the groups are separated in Fig.4.21, we calculated the

distances between the groups using the Bhattacharyya distance. Larger Bhattacharyya

distance indicates better separation of groups. Fig.4.22 shows the logarithm of the dis-

tances between groups. It is observed that although dnom is the best predictor for perme-

ability, dnom-permeability combination is not able to separate S2 from F1 and S3 from F2.

These groups are also not discriminated well with EP-permeability and PCP-permeability

combinations. CTC-permeability combination gives the largest distance between the sim-

ilar groups. Using dnom instead of permeability as the second feature decreases almost

all the distances between groups. However, CTC-dnom combination still provides a good

contrast between groups. EP-dnom combination is better at discriminating S3 and F2

compared to EP-permeability, however, S2 and F1 are still not separated well. PCP-

dnom combination does not provide useful information to separate different groups.
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Figure 4.21: Scatter plots of different parameter combinations. Straight lines shown in
the plots show the best linear fits calculated using all the samples. R2 values corresponding
to the fits are given in Table 4.7. (Reproduced from [Publication-IV].)
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Figure 4.22: Logarithm of the Bhattacharyya distances between groups using different
parameter combinations. Largest values of separation are obtained using EP. However both
EP-permeability and EP-dnom feature combinations fail to separate S2 and F1. CTC pro-
vides a good contrast between groups that are difficult to be separated by other parameter
combinations. (Reproduced from [Publication-IV].)
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4.3 Case C: Contour tree connectivity and fluid flow
in microstructures

Lastly, we performed a classification test using the same parameter combinations

shown in Fig.4.21 We used a supervised classification approach based on linear discrimi-

nant analysis (LDA). Half of the samples from each group were used to train a classifier

and the rest of the samples were used for the tests. We repeated the experiments 100

times with different training and test groups. Fig.4.23 shows the average results for the

classification tests and accuracies using each parameter combination. Rows in Fig.4.23

show the true classes and columns show the predicted ones.

(a) dnom – Perm.

S1

S2

S3

F1

F2

F3

S1S2S3F1F2F3

(b) CTC – Perm. (c) EP – Perm. (e) CTC – dnom (f) EP – dnom (g) PCP – dnom(d) PCP – Perm.

S1S2S3F1F2F3 S1S2S3F1F2F3 S1S2S3F1F2F3 S1S2S3F1F2F3 S1S2S3F1F2F3 S1S2S3F1F2F3
10

5

0

Acc: 85.6% Acc: 96.1% Acc: 94.2% Acc: 86.1% Acc: 95.5% Acc: 86.1% Acc: 80.1%

Figure 4.23: Results of the classification tests. Rows of the confusion matrices show the
true classes and columns show the predicted ones. Best classification accuracy is obtained
using CTC-permeability combination. EP also performs well when used together with
permeability. In the absence of permeability information, the best classification result is
obtained using CTC-dnom combination. (Reproduced from [Publication-IV].)

The value of CTC varies due to several factors affecting the geometry and topology,

such as the amount of connected components, their proximity to each other, cavities

or holes they have. The example contour trees shown in Fig.4.18 demonstrate that in

general compact graphs give larger CTC values and details lower CTC. Although, the

information CTC provides is important to quantify structural properties, we are also

interested in correlating this information with permeability.

Table 4.7 and the scatter plots show the correlation between parameters. dnom is

the most correlated parameter with permeability (R2 = 0.91). The scatter plots in

Fig.4.21e-g show the relations between dnom, CTC, EP and PCP. This demonstrates the

case where costly FE modeling or experiments are not possible and permeability values

are not known. Because dnom is highly correlated with permeability, we investigated its

relation with other parameters. Relations between CTC, EP and PCP are not shown

since they did not yield much information about flow and microstructures.

In order to visually explain how each parameter separates different groups, we plotted

the Bhattacharyya distances in Fig.4.22. It is observed that although dnom is the most

correlated parameter with permeability, it does not provide as useful information as CTC
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4. EXPERIMENTS AND RESULTS

in terms separating structural differences. For example, S3 and F2 have similar perme-

ability and dnom but with different structures. On the other hand, CTC is both correlated

with permeability (R2 = 0.78) and can separate differences in structures. Both EP and

PCP has lower correlations with permeability, additionally, they both fail to separate the

structural differences within groups.
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With the goal of providing a new connectivity interpretation, quantifying it with a scalar

number and investigating how this measure is linked to real-life processes, we conducted

experiments in Chapter 4 and tried to show how many of these goals were met. Indeed,

by using contour tree representations of binary images as shown in [Publication-I] and

[Publication-II], contour tree connectivity (CTC) uses a different interpretation of struc-

tural connectivity. The geometric interpretation of connectivity with CTC, complements

the topological connectivity information given by the Euler number (χ).

There are several other related graphs to contour trees that are used to represent

images. For example, the Morse-Smale complex and Reeb graphs are closely related tools

used in computational topology [9]. Unlike contour trees, Reeb graphs may have cycles.

However, if a Reeb graph of a scalar field is a tree then it is identical to the contour tree

of the scalar field. Due to this relation, contour trees and Reeb graphs can be computed

using similar algorithms [90]. In image processing, join and split trees are also known as

max- andmin-trees [97]. The level line tree or the tree of shapes is a joint representation of

max- and min-trees [74] that has similarities to contour trees. A concavity tree is another

structure used for describing non-convex 2D shapes [108]. In contrast to concavity trees,

which are developed for 2D, contour trees are applicable to all dimensions. Additionally,

contour trees represent scalar fields based on topological properties unlike max-, min- and

the level line trees that put on hierarchical representations of level-sets or shapes. Also
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5. DISCUSSIONS

when compared to Morse-Smale complex and Reeb graphs, contour trees are easier to

work with since they are trees. Due to these reasons, we picked contour trees to quantify

the connectivity of structures.

We introduced CTC in [Publication-II] and its applications on quantifying the connec-

tivity of microstructures in [Publication-III] and [Publication-IV]. One of the challenges

we faced was to balance the new theory and applications in our articles. We published

most of the results shown in section 4.1 in [Publication-II] that aimed to introduce CTC

with all the necessary theoretical content. Since in [Publication-II], we focused on show-

ing how and why CTC works, we worked with the 2D toy images shown in Fig.4.1 and

artificial the 3D images shown in Fig.4.6. The results using the toy images show the

various properties of CTC. For example, CTC decreases when objects in the foreground

separate or when cavities and branches form in the foreground. When foreground ob-

jects approach each other or become rounder, however, CTC increases. Although, we

only refer to the changes in the foreground, when describing the properties of CTC, it

should be kept in mind that CTC is not calculated for the foreground or the background

separately. There is only one CTC for a binary scene and it is independent of which

binary component is assigned to be the foreground or the background. Therefore, there

is actually a duality between foreground and background. This is due to the contour

tree representation of binary images in which objects in the foreground are equivalent

to holes in the background and cavities in the foreground are equivalent to branches in

the background. Furthermore, it should be mentioned that when considering the con-

tour tree representation of binary images, there is little difference between cavities and

holes. Actually, this is the main reason why CTC works effectively even on the very noisy

images that were studied using the images shown in Fig.4.2. The advantage of avoiding

the purely topological connectivity interpretation shows itself when spatial relationships

between or within components in the scene vary. It should be noted that the method we

use to introduce noise to the binary images also change the topology, which in turn alters

χ significantly, as shown in Fig.4.3.

One of the main goals of our work was to design an easy to use scalar measure for

connectivity. Thanks to the normalization step that comes from the lower and upper

bounds of the algebraic connectivity of supplemented contour trees (SCT), the value of

CTC is always between 0 and 1. It is worth mentioning here that normalization is not
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done to force a value between 0 and 1. The normalization step is necessary in order to

compare the algebraic connectivity of trees with different heights. Another normalization

could have been done, for example, in terms of the number of vertices in a tree. This

has, however, been shown to be a significantly more difficult problem [65]. Therefore,

by normalizing with respect to the height of the trees, it was not only possible to sort

trees according to their algebraic connectivity but, as a result, a value between 0 and 1

was also obtained. The supplementation of contour trees, however, introduces additional

computation to the algorithm. Furthermore, the size of the Laplacian matrix significantly

increases with supplementation and makes the eigenvalue computation slower. With sup-

plementation, geometrical information is introduced to the tree that would not otherwise

be there. Another approach to include geometrical information could be the use of edge

weights. However, the normalization of weighted trees is again a difficult problem to solve

[65, 73]. In short, supplementation together with normalization makes CTC a measure

that is between 0 and 1 and is comparable between different images.

Pruning is an essential step that must be performed for CTC. Neither of the two

parameters used for pruning (area/volume and level thresholds), however, need careful

adjustment. We showed in [Publication-II] that there is a broad confidence zone where

these parameters can be adjusted without significantly altering CTC. Relying on this

fact, the pruning parameters can be set to constants for practical applications. With this

knowledge, we conducted all the experiments in [Publication-III] and [Publication-IV]

using constant values.

The advantages of the new connectivity interpretation of CTC come with a cost as-

sociated with computational complexity. Most topological invariants such as χ can be

easily computed. Even for very large images, there are fast algorithms available [35].

On the other hand, the performance analysis shown in subsection 4.1.3 shows that even

for small images, depending on their complexity, computation of CTC can take over a

minute. All the results shown in this thesis were obtained by using the same code that

is the implementation of the algorithms given in subsection 3.1.4. Our code is written

mostly in MATLAB and only the join and split tree computations are done with mex.

The performance test results shown in Table 4.3 show that the merging time increases

dramatically with the increase in image detail. Although for most binary images our

current implementation runs at an acceptable speed, this can be improved with the use of
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better implementation and faster programming language. Carr’s algorithm to calculate

contour trees is O(n log n+Mα(M)) for a simplicial mesh of n vertices and M simplices

[22]. We used the same approach for merging; we did not, however, use the union-find

data structure in our implementation. Therefore, we expect a significant improvement in

speed if the code is implemented completely with mex using a union-find data structure.

During the writing of our first publication, [Publication-I], CTC was not mature

enough. Thus, we provided only the part where we represented binary images using

contour trees, as explained in section 3.2. In this earlier work, we attempted to lower

the computational complexity by skipping the ordering step that is done in the very be-

ginning of the sweep tree computation (Algorithm 1, line 2). Instead of sorting, we used

all the integer valued levels between the global extrema. This approach indeed increased

the computation speed. The speed is increased not only due to skipping the sorting step

but also by using a significantly lower number of levels for computation. The resultant

contour tree is very much simplified, which eliminates the need for pruning completely.

However, the trade off with using predefined levels is the loss of accuracy in the contour

tree. Although, we aimed to speed up the contour tree computation by taking advantage

of the monotonicity in Euclidean distance transformed (EDT) images, we realized that

this reduces the information content in the contour trees. This caused us to reconsider

this approach and we decided to implement the algorithms presented in subsection 3.1.4.

With the new implementation it was possible to harvest more useful information from

the resultant contour trees and this eventually led to CTC.

One of the major applications of CTC is to relate the new connectivity information

with real-life processes. To do this, we investigated the correlation between CTC with

mechanical strength and the permeability of microstructures. One of the biggest chal-

lenges of these studies was the lack of alternative parameters against which CTC could be

compared. Other than the Euler number, there is no generally-applicable structural con-

nectivity measure in the literature. However, as shown in [Publication-IV], for flow inside

microstructures, percolation analysis is an increasingly used method. Therefore, in addi-

tion to the Euler number, we used a proportion of connected pairs for comparison against

CTC in [Publication-IV]. It should be pointed out that measurements for connectivity

(such as permeability) might not always be possible, as is in the case with measurements
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that need to be made on biological tissues in-vivo. The lack of image-based static connec-

tivity measures indicates the need for more research in this area. In both [Publication-III]

and [Publication-IV], we showed that the connectivity information provided by CTC is

valuable in understanding how the structural properties of microstructures affect physical

processes. In particular, [Publication-IV] demonstrates that the Euler number and per-

colation can be very limited measures for comparing structures with similar topologies.

Since CTC is designed to be able to compare such structures, it is reasonable to expect

more discriminative connectivity information. This expectation is well met particularly

where we sorted the features in order of importance in Table 4.5 that shows that CTC

is, after bone volume ratio and anisotropy, the 3rd best predictive feature of the ultimate

strength of bone. This coincides with recent studies where these two parameters are

shown to be good predictors for the strength of trabecular bone [118].

One major criticism of our studies, in particular for [Publication-IV], is the lack of

models for complex structures and the use of real-data. We agree that it is an interesting

problem to study CTC on different types of microstructures such as foams, fibers, powders

and sintered materials etc. Due to the large variability of microstructures and the com-

plexity associated with each structure, however, there is a need to simplify the problem.

Thus, in this thesis we use simple-synthetic structures that are capable of explaining the

relationship between morphology and physical processes. In [Publication-IV], we use a

simple dataset where differences in structures can be observed using visual inspection. It

is, however, extremely difficult to sort the test groups with regard to permeability using

visual inspection. This is because of the complicated physics that govern fluid flow. We

do agree, however, that using real data would have strengthened our conclusions. On

the other hand, because CTC is a new measure, we find it important to study simple

data in order to show the reader how and why CTC works. Our future work will indeed

involve tests that use real data, but we found it an essential step to first show that CTC

is a promising measure on simple synthetic data. This justifies, therefore, the reason and

resources to be invested in studying real data.

In this thesis, we propose CTC as a measure for connectivity that can be used to

analyze binary images, in particular images of 3D microstructures. CTC is an intriguing

measure for connectivity since it can compare the connectivities of scenes, regardless

of the differences in topology. We show with both simple synthetic structures and a
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real-life application that other alternatives, such as the Euler number and percolation

based parameters, do not provide connectivity information that is discriminative enough.

Therefore, CTC is also important because of the lack of good alternative measures to

quantify connectivity. CTC is not yet, however, fully mature. There is still much to

improve, not only with the implementation but also with the theory that might yield

faster algorithms for computation. While we are working on improving CTC and its

computation speed, we also find it as important to study more real data and to better

use CTC for practical applications.
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CONCLUSION

We aimed to design a scalar connectivity measure that is easy to understand. Such a

measure is not only a valuable parameter for classifying and analyzing data but also

important for understanding complex structures and real life processes. However, it is

quite challenging to develop a robust connectivity index that works well under noisy

conditions and is applicable to any topology. With this work, contour tree connectivity

(CTC) is proposed to solve the problems associated with complex structures, noise and

ease of use.

Based on the results presented in this thesis, the following can be concluded:

• The challenges of working with complex structures can be significantly reduced

by using simpler representations. In this thesis, we started with this idea and

showed in [Publication-I] that complex structures can be represented with simpler

contour trees. We presented results using 2D and 3D synthetic images as well

as real trabecular bone data. So far, we used this simple representation only to

develop CTC. However, there is clearly more to be investigated from the contour

tree representation of binary images.

• We showed in [Publication-II] that the value of CTC is between 0 and 1 which

makes it easy to be used. CTC also provides useful information even under very

noisy conditions. Moreover, it has a unique interpretation for connectivity and
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6. CONCLUSION

provides new information which is not available with other methods. Although we

applied CTC only to analyze microstructures, it is evident that the information can

be used for several other computer vision applications as well.

• In [Publication-III] and [Publication-IV], we showed that CTC is an important

parameter to study in order to relate microstructures with physical properties of

materials. It is a viable alternative to commonly used parameters such the Euler

number and percolation based connectivity measures. It can be used to predict the

mechanical strength of microstructures [Publication-III] and analyze how structural

properties relate to flow [Publication-IV].

Our approach in developing a new connectivity measure is based on contour trees

and algebraic connectivity. Although the histories of both computational topology and

spectral graph theory are long, to our knowledge CTC is the first product of these two

fields. In addition to the work presented in this thesis, we believe there is much to improve

in theory, algorithms, implementation of the method and utilization of CTC for practical

applications.
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[66] T. J. Mäkinen, J. J. Alm, H. Laine, E. Svedström, and H. T. Aro. The

incidence of osteopenia and osteoporosis in women with hip osteoarthritis

scheduled for cementless total joint replacement. Bone, 40(4):1041–1047,

2007. 57

[67] A. A. Malcolm, H. Y. Leong, A. C. Spowage, and A. P. Shacklock. Image

segmentation and analysis for porosity measurement. Journal of Materials

Processing Technology, 192–193:391–396, 2007. 9

[68] P. Maragos. Pattern spectrum and multiscale shape representation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11(7):701–716, 1989.

8

[69] C. R. J. Maurer, R. Qi, and V. Raghavan. A linear time algorithm for

computing exact Euclidean distance transforms of binary images in arbi-

trary dimensions. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 25(2):265 – 270, 2003. 39

[70] Joseph Mecke and Dietrich Stoyan. The specific connectivity number

of random networks. Advances in Applied Probability, 33(3):576–585, September

2001. 11

88



REFERENCES

[71] John Willard Milnor. Morse Theory. Princeton University Press, 1963. 18, 22

[72] S. Mizuta and T. Matsuda. Description of Digital Images by Region-

Based Contour Trees. In Image Analysis and Recognition, 3656 of Lecture

Notes in Computer Science, pages 549–558. Springer Berlin / Heidelberg, 2005. 27

[73] J. J. Molitierno. Applications of Combinatorial Matrix Theory to Laplacian

Matrices of Graphs. Taylor & Francis, 2012. 44, 75

[74] P. Monasse and F. Guichard. Fast Computation of a Contrast-Invariant

Image Representation. IEEE Trans. on Image Proc, 9:860–872, 1998. 5, 73

[75] Michael J. Moore, Esmaiel Jabbari, Erik L. Ritman, Lichun Lu, Brad-

ford L. Currier, Anthony J. Windebank, and Michael J. Yaszemski.

Quantitative analysis of interconnectivity of porous biodegradable scaf-

folds with micro-computed tomography. Journal of Biomedical Materials

Research Part A, 71A(2):258–267, 2004. 13

[76] N. Moritz, J. J. Alm, P. Lankinen, T. J. Mäkinen, K. Mattila, and
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ABSTRACT

There is a growing need in medical image processing to analyze segmented objects. In this study we are interested
in analyzing morphological properties of complex structures such as the trabecular bone. Although, there are
various shape description approaches proposed in the literature, there is not an adequate method to represent
foreground object(s) morphology with respect to the background.

In this article, we propose a way of representing binary images of any dimensions using graphs that emphasize
connectivity of level-sets to foreground and background. We start by calculating the euclidean distance transform
(EDT) to create a scalar field. Then the contour tree of this scalar field is calculated using a modified version of
the algorithm proposed by Carr[1]. Contour trees are mostly used to visualize high dimensional scalar fields as
they can put on view the critical points, i.e: local min, max and saddle points; however, their use in representing
complex shapes have not been studied. We demonstrate the use of our method on artificial 2D images having
different topologies as well as 3D µ-CT images of two bone biopsies.

We show that the application of contour trees to complex binary data particularly prove useful when inter-
preting pore-networks at micro-scale. Further work to quantify foreground and background interconnectivity
using certain graph theoretical methods is still under research.

Keywords: binary image representation, contour trees

1. INTRODUCTION

In many fields of medical image processing, there is a growing need of analyzing foreground objects with respect
to background. For example, after segmentation, 3D microcomputed-tomography (µ-CT) images of foam-like
materials such as trabecular bones reveal interconnected networks of pore spaces as well as the bone itself.
Similarly, confocal microscopy images of biological tissues put on view individual cells that compose them.
Generally, the information that is seeked is two-fold (i) the topological properties of the foreground object(s)
and (ii) how foreground objects are placed on the background.

There are several shape descriptors in the literature to quantify morphological properties of segmented objects.
A review of these methods can be found in [2]. However almost all of these approaches work for a single body.
On the other hand, multiple objects are conventionally analyzed by connected component labeling algorithms
which are followed by analyzing each label seperately by the aforementioned shape descriptors. Although there
has been over a decade long history in the study of binary data, structure related parameters that are currently
used to characterize complex tissues or biomaterials are still mostly qualitative, vaguely defined and not suitable
for accurately describing connectivity information. In this work, we propose a new and balanced approach to
visualize and track the morphological properties of foreground objects with regard to their placement on the
background.

Previous research in this field include [3], in which authors use a watershedding based approach for quantifying
interconnectivity for foam materials’ porous space. In [4], for the same goal, a more heuristic approach is proposed
based on iteratively labeling connected components and applying morphological opening operator. [5] proposes
using the medial axis to partition pore-space and calculate strut thicknesses of foam materials. Medial axis is
also used in [6] for characterizing foreground fiber network topology. On the other hand, pore-space formed
within fibrous materials has not been studied as much. An excellent collection of the previous research done
regarding micro-structure analysis of materials and the pore space within is gathered in [7].
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Although there has been over a decade long history in the study of such data, structure related parameters
that are currently used to characterize complex tissues or biomaterials are still mostly qualitative, vaguely
defined and not suitable for accurately describing connectivity information. The quantitative approaches that
are briefly summarized in the previous paragraph only work either for the background or the foreground object(s).
Moreover, in order to compare morphological properties of different types of geometries, such as in foam and
fibrious materials, there is a need to develop a single approach that works for all. To our knowledge, there is not
an adequate approach in the literature that is capable of working for any geometry in describing foreground and
background morphology jointly. The aim of this paper is to fill this gap by introducing a new way of describing
shapes via contour trees which is suitable for any dimension of data and any topology.

2. METHODS AND MATERIALS

2.1 Overview of the approach

In this work, we propose to represent binary images by contour trees after computing the Euclidean distance
transform (EDT).

Let X be the domain of a binary image V (X) and let x, y ∈ X. Then ∀x ∈ X, EDT maps to the distance
given by F (x) = min{ x − y : V (y) = 0 ∧ 1}. The final scalar field to be used with the contour tree
algorithm was obtained by assigning positive distance values for the foreground object(s) and negative values for
the background.

Therefore, the contour tree shows the global and local maximum values for foreground objects(s) whereas
global and local minimum for the background. As a result the complete tree represents the connectivity of
foreground objects with regard to their placement on the background.

2.2 Contour trees

Isocontours have been used for over a century to visualize scalar fields, such as for topographic analysis in [8].
For higher dimensional data, isosurfaces have been used intensively during the last decades for the same purpose.
The main aim of contour trees is to follow the evolution of isocontours(/isosurfaces) as they appear, join, split
or dissappear by means of a graph. Contour trees are a special type of Reeb graphs and used mainly for the
visualization of 3D scalar fields [9].

In this study, we adopted the contour tree calculation algorithm given in [1]. The algorithm starts by
computing the “join and split trees”; in a later stage of the algorithm these are merged to form the contour tree.

Let x ∈ X be the domain of the scalar field F (X). Let l represent any level between the global-min
(lmin ∈ F (X)) and global-max (lmax ∈ F (X)).

For the join tree calculation, l is swept from lmax towards lmin to represent the connectivity of regions
x : F (X) ≤ l in the form of a tree graph. For the split tree calculation, l is swept from lmin towards lmax to
represent the connectivity of regions x : F (X) ≥ l.

Figure-1 shows the flowchart of procedures in order to obtain the contour tree from a binary input image.
Image is first transform to a scalar field using EDT. The split and join trees are calculated using at the level set
values given in “Levels” input. Finally, two trees are merged to form the contour tree.

Figure 1. The procedure to obtain the contour tree from a binary input image
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In the original article [1], the values in F (X) are sorted and l = F (x) are used when obtaining the join
and split trees. However, this approach creates numerous unwanted edges in the contour tree as a result of the
inclusion of all the critical points. The authors of the algorithm also mention this problem in their work and
propose several approaches to remove this noise in the contour tree.

In our work, in order to avoid the noise in the contour tree, we quantized the values of l between lmin and
lmax instead of tracing all the vertices in the image. The quantization step size is determined by the user. One
other reason for supplying the levels seperately was that, number of vertices decrease significantly in this manner
as compared to the number of vertices in the image. Therefore, it makes it easier and faster to process the
augmented contour tree later on.

2.3 Test images

We tested our method on both artificial images and real data. We used the 2D images to demostrate how
the topological differences are reflected on the contour tree. In addition to the artificial images, we used µ-CT
images of normal and cancellous trabecular bone samples. All the images that are used in the study are shown
in Figure-2.

Figure 2. Test images that are used for the study. 2D artificial images (a,b) and 3D trabecular bone samples osteoporotic
(c) and healthy (d)

3. RESULTS

Figure-3 shows the calculated EDT image for the artificial 2D sample shown in Figure-2 (b). For a better
visualization of how split and join trees are calculated from this data, the EDT image is also shown in 3D by
putting the intensity values as levels of elevation in Figure-3.

Figure 3. EDT image (middle) obtained from the 2D artificial sample (left). EDT image is also shown as a 3D elevation
map (right).
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Figure-4 shows how the split and join trees are calculated from the sample shown in Figure-2 (b) on the
3D elevation map. First two coloumns of Figure-4 show the formation of split tree as the level-sets join from
global minimum to global maximum. Through the evolution of the split tree local minimums are caught. The
two coloumns on the right of Figure-4 show how the join tree evolves from the global maximum to the global
minimum. Local maximum at level 5 is caught by the join tree.

Figure 4. Split and join trees used in extracting the contour tree. Left hand side shows how the split tree forms; right
hand side shows how the join tree forms.

The final contour tree representing the 2D artificial sample in Figure-2 (b) is calculated by merging the split
and the join trees according to the algorithm described in [1]. For this data, contour tree is calculated using
levels varying from global maximum (20) to global minimum (-116) with a step size of 1. Figure-5 shows the
corresponding contour tree. (The augmentation step is skipped in Figure-5)

Figure 5. Contour tree (right) as a fusion of split (left) and join (middle) trees

In Fig-6 the contour tree is calculated for the image in Figure-2 (a). The isolevels are varied by a step size
of 1 for this data as well.

Figure 6. EDT image (middle) and corresponing contour tree (right) for the test sample given in Fig-2 (a)
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For the bone samples, contour trees are drawn in Fig-6. For both of the bone data, contour trees are calculated
using isolevels varying from 8 to -32 with a step size of 8.

Figure 7. Results for the bone samples. Osteoporotic bone contour tree (left) and healthy bone contour (right)

4. DISCUSSIONS AND CONCLUSIONS

In this work, we proposed a new approach to represent binary images using contours trees. We used artificial
2D data for the demonstration and 3D µ-CT images of bone biopsies as real case studies. We adopted a fast
contour tree computation algorithm and modified it for our needs in order to avoid extra edges in the graph.

The calculated contour trees shown in Figures - 5 and 6 put on view the differences between the two artificial
structures. In the case of a single connected component (Figure-2 (a)), the graph represents how thick regions
of the foreground object are getting connected/split with the rest of the foreground object as well as the the
background. This representation is also able to show how big is the background and how disconnected it becomes
with the foreground object. In the case of multiple connected components (Figure-2 (b)), the graph also shows
how much disconnected objects are seperated. With the work on artificial data, contour tree representations of
binary images were shown to be useful tools in understanding topological properties of structures.

The results shown for µ-CT images of normal and cancellous trabecular bone samples in Figure-7 clearly show
differences in the contour tree. This result was expected as cancellous bone has more disconnected components
in its microstructure.

Binning l values between lmin and lmax succesfully eliminates large numbers of edges in the contour tree but
this comes with a cost. Saddle points are not calculated accurately. However, for our purpose, the interest is not
the locations of the saddle points; the information we are after is whether a saddle occurs between two levels or
not. Therefore, the cost of mislocating saddle points is worth avoiding the contour tree pruning.

As the conclusion, the initial results that are given in this paper are promising. We are continuing this
research towards quantifying an interconnectivity parameter using the calculated contour trees. The results of
the ongoing research for interconnectivity quantification will be used in the diagnosis of osteoporosis and other
similar diseases which show themselves as structural deformations in tissues.
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ABSTRACT
We propose a novel feature for binary images that provides
connectivity information by taking into account the proxim-
ity of connected components and cavities. We start by apply-
ing the Euclidean distance transform and then we compute
the contour tree. Finally, we assign the normalized algebraic
connectivity of a contour tree derivative as a feature for con-
nectivity. Our algorithm can be applied to any dimensions of
data as well as topology. And the resultant connectivity index
is a single real number between 0 and 1.

We test and demonstrate interesting properties of our ap-
proach on various 2D and 3D images. With its intriguing
properties, the proposed index is widely applicable for study-
ing binary morphology. Especially, it is complementary to
Euler number for studying connectivity of microstructures of
materials such as soil, paper, filter, food products as well as
biomaterials and biological tissues.

Index Terms— connectivity, contour tree, feature extrac-
tion, algebraic graph theory, binary morphology

1. INTRODUCTION

Connectivity has long been recognized as an important tool
for analyzing images. The most commonly used connectivity
measure for binary images is the Euler number (χ), which is
expressed with the Euler-Poincaré formula as the alternating
sum of Betti numbers, β , χ =



k(−1)kβk. For 2D, this
is simply the number of connected components (β0), minus
the number of holes (β1). For 3D, it is the number of con-
nected components (β0), minus the number of tunnels (β1),
plus the number of voids (β2). Euler number is very easy
to understand which makes it an elegant topological invari-
ant. On the other hand, for most practical purposes, topology
alone is not sufficient to describe connectivity properties of
binary images. For example, although Euler number includes
information regarding the number of connected components,
it does not provide information about their proximity to each
other. Similarly, Euler number can detect holes but it ignores
the information regarding cavities.

This work is funded by the Jenny & Antti Wihuri Foundation.

Different aspects of connectivity have been investigated
due to the increase in the diversity of applications and image
processing problems. For example, based on connected oper-
ators [1, 2] and filters, hierarchical representations of regions
are generated in [3, 4]. In order to represent the inclusion
relationship of shapes, tree of shapes has been proposed in
[5]. Another interpretation of connectivity is given in [6],
where images are considered as fuzzy in nature. For seg-
mentation applications, hanging togetherness is emphasized,
which leads to the definition of fuzzy connected components.

In our earlier work, we proposed an approach to represent
binary images using contour trees [7]. The main contribution
of this work is a novel connectivity index that is derived from
the contour tree representation of binary images. Our work
is also the first in which spectral graph theory is used with
contour trees.

In this paper, we introduce the contour tree connectiv-
ity (CTC), which provides connectivity information by taking
into account the proximity of connected components and cav-
ities. In order to provide an easy to use figure, we designed
the CTC so that it is a real number between 0 and 1. For ex-
ample, Fig.1 shows that there is an 11% connectivity decrease
in terms of CTC from left to right. The decrease occurs due
to cavity formation (a-c), hole formation (d), separation of
connected components (e) and increase in the number of con-
nected components (f). In contrast, Euler number only varies
when a topology change occurs in (d) and (f).

CTC=0.71
χ=2

(a)

CTC=0.70
χ=2

(b)

CTC=0.68
χ=2

(c)

CTC=0.64
χ=1

(d)

CTC=0.62
χ=1

(e)

CTC=0.60
χ=2

(f)

Fig. 1: The connectivity information provided by CTC shows a to-
tal of 11% connectivity decrease from left to right. CTC is decreas-
ing due to cavity formation (a-c), hole formation (d), separation of
connected components (e) and increase in the number of connected
components (f). Notice that Euler number varies only in (d) and (f)
where the topology changes.



2. CONTOUR TREE CONNECTIVITY (CTC)

2.1. Overview of the CTC feature extraction method
Fig.2 shows the flowchart for extracting the connectivity fea-
ture proposed in this article. Starting with a binary image,
we create a real valued image using the Euclidean distance
transform (EDT). This image is used as the input for calculat-
ing the join and split trees. These two trees are then merged
to form the contour tree and the supplemented contour tree
(SCT). Lastly, the algebraic connectivity of the SCT is calcu-
lated and normalized with a function of the range of the EDT
image, which gives the CTC.

Fig. 2: Flowchart for the CTC feature extraction. From a binary
input image, firstly EDT, then the SCT and finally the CTC is calcu-
lated as the normalized algebraic connectivity of SCT.

In subsections 2.2-2.7, the blocks in Fig.2 are explained.

2.2. Euclidean distance transform (EDT)
Euclidean distance transform converts binary images to gray
scale in which the value of pixels are determined by their dis-
tance to the nearest non-object pixel. We used the signed
Euclidean distance transform definition given in [8]. For the
computation of EDT, we used Maurer’s algorithm in [9].

2.3. Binary image representation using contour trees
The contour tree is a topological abstraction that follows the
evolution of level sets as they appear, join, split or disappear
by means of a graph. In [7], we proposed a representation for
binary images which takes into account both the geometrical
properties of foreground object(s) and how the object(s) is/are
placed on the background. This is done by applying the Eu-
clidean distance transform and by estimating its contour tree.
Fig.3 demonstrates this representation on a sample image.

We implemented a sweep and merge method to compute
the contour tree. Here, we initially compute the join and split
trees and then merge them in a later step. Different than [7],
in our current work, join/split tree computation and the merg-
ing are done by the approach given in [10, 11]. A contour tree
that has only the critical points of an image (i.e: where topo-
logical changes occur between level sets) is also known as
an unaugmented contour tree. An augmented version can be
obtained by introducing vertices from other significant levels
into the graph.

Input image

Split tree

Join tree

EDT image Contour tree
Supplemented
contour tree

Fig. 3: Binary image representation using contour trees. First EDT,
then join and split trees (green trees) are calculated. Join and split
trees are merged to form the contour tree (red tree). SCT is shown
on the right (red tree with yellow supplemented nodes).

2.4. Pruning
In order to remove the noise in the contour trees, we imple-
mented a pruning algorithm that is based on three graph oper-
ations. These are (i) vertex collapse, (ii) leaf pruning and (iii)
saddle collapse. The operations are shown in Fig. 4.

(a) (b) (c)

Fig. 4: Graph operations used for pruning contour trees (a) vertex
collapse (b) leaf pruning (c) saddle collapse.

Vertex collapse removes only vertices and is done when-
ever possible. In order to perform leaf pruning or saddle col-
lapse, the edge to be removed must have less area/volume
than the defined area/volume threshold and the vertices on
each sides of the edge should have a level difference below
the given level threshold. The algorithm recursively removes
unnecessary vertices and edges using these operations until
no more removal is possible.

2.5. Supplemented contour tree (SCT)
In order to utilize our graph connectivity approach we need a
particular tree that is similar to the augmented contour tree but
has vertices only at integer valued levels. This tree is named
the supplemented contour tree and is obtained as follows:

Definition 1. The supplemented contour tree (SCT) of an im-
age I is the graph, G(V,E), with vertex set V and edge set E
that is obtained as follows:

1. Compute the contour tree, T (V T , ET ), of I .

2. For each vTi ∈ V T with level ℓ(vTi ), create a new ver-
tex v′i ∈ V ′ with a supplemented level ⌊ℓ(vTi )⌉ where
⌊.⌉ is the rounding operator.

3. Create an intermediate tree, G′(V ′, E′) with E′ = ET .

4. For each e′i ∈ E′, initialize a new vertex set V ′′
e′
i

= {}

and for each integer valued level along e′i, add a new
vertex in V ′′

e′
i

.



5. Create a path for each e′i ∈ E′ to form an edge set E′′
e′
i

by joining the vertices in V ′′
e′
i

.

6. G(V,E) is the SCT with V =


V ′′ and E =


E′′.

SCT is a suitable graph representation for binary images
as it is capable of showing how foreground/background re-
gions are positioned in the image by the number of vertices
along edges. The example in Fig. 3 shows the difference be-
tween the contour tree and the SCT.

2.6. Graph spectrum and algebraic connectivity
For a graph G, the eigenvalues of the Laplacian matrix given
as L(G) = D(G) − A(G), form the spectrum of G. Here
D(G) and A(G) are the degree diagonal and the adjacency
matrices respectively. Note that for a connected graph, the
eigenvalues of L(G) can be sorted as 0 = λ0 ≤ λ1 ≤ λ2 ≤
. . . ≤ λn. Since λ1 = 0 for disconnected graphs, Fiedler gave
the following definition for algebraic connectivity in [12] as a
measure of graph connectivity:

Definition 2. Algebraic connectivity of a graph G, λ1(G), is
the second smallest eigenvalue of its Laplacian matrix.

2.7. Normalization - Upper and lower bounds
We are interested in the λ1 bounds as a function of the height
of the SCT. This makes it possible to compare λ1 values using
the following lower and upper bounds. From subsection 2.6
and Definition 2, we give the following lower bound:

Corollary 1. G being an SCT, λ1(G) > 0 is a lower bound.
The upper bound for λ1 is given by the following theorem

(proof is given in Appendix A):

Theorem 1. G being an SCT, λ1(G) ≤ 2(1 − cos π
h+1 ) is an

upper bound, where h is the height of G.
Finally, by using Definition 2, Corollary 1 and Theorem 1

we give the formal definition of the CTC as follows:

Definition 3. Contour tree connectivity (CTC) of a binary
image I is:

λ1(G) =
λ1(G)

2



1− cos



π

⌊lgmax⌉ − ⌊lgmin⌉+ 1

 (1)

Here G is the SCT of I . λ1 is the algebraic connectivity of G;
lgmax and l

g
min are the global max and min of EDT of I .

In the rest of the text, we will use the abbreviation CTC
and the symbol λ1 interchangeably. Lastly, we give the fol-
lowing corollary and conclude this section.

Corollary 2. For any binary image, 0 < λ1 ≤ 1.

3. RESULTS AND DISCUSSIONS
3.1. 2D test images
We tested CTC with the synthetic dataset shown in Fig.5. The
dataset is composed of 6 series (I-VI). Each series contains 6
images (A-F), that have slight changes in connectivity. All
images are of dimensions 256×256. We prepared different
cases for each series to show how λ1 varies. For example,

A

I

B C D E F

II

III

IV

V

VI

Fig. 5: 2D images used in the experiments. Each row contains a
series of images. In each column connectivity is slightly altered.
series II shows the changes in λ1 during clumping of objects,
III shows the changes during branching, IV shows the effect
of holes.

We also tested CTC using the same images under various
boundary noise conditions. To add boundary noise, we ran-
domly moved the boundary pixels. We used Gaussian noise
with µ = 0 and σ = {1, 2, 3, 4}. Samples from the noisy im-
ages are shown in Fig.6. This type of noise allows for topo-
logical changes that may significantly alter Euler number.

I-
D

σ = 0 σ = 1 σ = 2 σ = 3 σ = 4

σ 
=

 4

II-D III-D IV-D V-D VI-D

Fig. 6: Top row shows various levels of noise on image I-D. Bottom
row shows the maximum noise for images II-D to VI-D.

Fig.7 shows the λ1 values for the test images. Error bars
show the max and min values of λ1 for noisy images. It is
observed from Fig.7 that λ1 consistently increases when fore-
ground objects approach each other. This trend is best seen
for series II. Also λ1 changes from I-D to I-E and IV-B to
IV-C have the same effect. The decreasing trend in λ1 during
branching is seen best in series III. Similarly, from I-A to I-B
and I-C, a decreasing trend is present during cavity formation.
When cavities turn into holes, the decreasing λ1 trend contin-
ues, for example in I-D. It is also observed from series IV that
the decrease in the number of holes increases λ1. From series
VI, it is observed that increasing details decreases λ1. Lastly,
disconnecting objects decrease λ1 as seen in I-F and II-F.



We picked the worst results to show the effect of noise.
For each series, the image with worst error is picked and the
absolute error is plotted in Fig.7g for all noise conditions.
From Fig.7g, it is observed that for σ = {1, 2}, λ1 change
is mostly below 10%. For I-D, IV-A and VI-B, increasing the
noise to σ = 3 still keeps λ1 within 10% error. In the case of
extreme noise (σ = 4), for most cases λ1 changes drastically.
CTC performs bad for series III where very thin branches ex-
ist. This is partly due to how we added the noise. Fig.6 shows
the effect of this type of noise on the branches of III-D.

ABCDEF0
.2
.4
.6
.8

(a) I
ABCDEF0

.2

.4

.6

.8
1

(b) II
ABCDEF0

.2

.4

.6

.8

(c) III
ABCDEF0

.2

.4

.6

.8
1

(d) IV

ABCDEF0
.2
.4
.6
.8

(e) V

ABCDEF

.08
.1

.06

.04

.02
0

(f) VI
I−D II−D III−B IV−A V−D VI−B0

10
20
30
40
50
�0

�

T
C

 e
rr

or
 (

%
) σ = 1

σ = 2
σ = 3
σ = 4

(g) Worst results with noise
Fig. 7: Bar graphs in (a)-(f) show the calculated λ1 values for the
2D dataset. The error bars show the maximum and minimum values
of λ1 in the presence of noise. Worst cases of error are shown in (g)
for varying noise.

We picked one good, one bad and one typical case to show
the effect of the pruning parameters on CTC. Fig.8 shows the
changes for various combinations of level and area thresh-
olds on images IV-A, III-D and V-A. It is observed that prun-
ing does not alter λ1 significantly for image IV-A despite the
noise. Whereas for III-D, pruning parameters affect the λ1

value. On a typical case, pruning parameters do alter λ1.
However, it can be observed from Fig.8 that there is a flat
region in a typical case which makes it easy to decide on the
parameters. For example, for all results in this paper, a level
threshold of 0.1 and an area threshold of 16 is used regardless
of the data or the noise.
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Fig. 8: Bar graphs showing the effects of pruning parameters on (a)
good (b) bad and (c) typical cases. As default values, area threshold
of 16 and level threshold of 0.1 is found to work reasonable.

3.2. 3D test images
Euler number is the standard measure to study connectivity of
microstructures of materials [13]. In order to show the com-
plementary value of CTC, we created 6 groups of 3D sam-
ples that resemble microstructures. Each group contains 50
random images of dimensions 128×128×128. Three of the
groups are made of spheres (S1, S2, S3) and the rest are lines

(L1, L2, L3). S1 and L1 have large objects, S3 and L3 have
small. S2 and L2 have both sizes. All images have ∼1 fore-
ground to background ratio. Samples are shown in Fig.9.

Fig. 9: 3D samples. (a) S1, (b) S2, (c) S3, (d) L1, (e) L2 and (f) L3.

Fig.10 shows the class conditional probabilities for Euler
number and CTC fitted using Gaussian distribution. Samples
with similar object dimensions have close λ1 values which
is not observed for χ values. Based on the distributions, a
naive Bayesian classifier yields a 72.3% classification accu-
racy using only χ. With λ1 included, the accuracy increases
to 92.7%.
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The contour tree computation algorithm that is used in
this work is O(n log n + Mα(M)) (n vertices and M sim-
plices) [10]. For the 2D and 3D test images, depending on the
number of vertices in the contour tree, CTC calculation took
a couple of seconds after the contour tree is computed.

4. CONCLUSIONS
In this article, we introduce a novel structural connectivity
index which is based on contour trees and algebraic graph
theory. CTC has interesting properties that complements
the topological information provided by the Euler number.
The applicability of our algorithm on any dimensions of data
makes it a great tool for morphological analysis of binary
images.

Appendix A: Proof of Theorem-1
We use the following corollary derived from Theorem 6.4.1
(page 240) and Corollary 6.4.3 (page 242) given in [14].
Corollary 3. Suppose that Ĝ is a subtree of the unweighted
tree G. Then λ(Ĝ) > λ(G).

Let G be any SCT. Pick Ĝ as any path from any vertex on
⌊lgmax⌉ to any vertex on ⌊lgmin⌉. Note that G and Ĝ have the
same root vertex and height, h. Then L(Ĝ) can be expressed
as the following (h+ 1)× (h+ 1) matrix:

L(Ĝ) =















1 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1















(h+1)×(h+1)

(2)

which has the eigenvalues λk = 2(1 − cos kπ
h+1 ), k =

{0, 1, · · · , h} [15]. Finally, from Corollary 3, λ1(G) ≤
λ1(Ĝ) = 2(1− cos π

h+1 ).
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Abstract. Millions of people worldwide suffer from fragility fractures,
which cause significant morbidity, financial costs and even mortality. The
gold standard to quantify structural properties of trabecular bone is
based on the morphometric parameters obtained from µCT images of
clinical bone biopsy specimens. The currently used image processing ap-
proaches are not able to fully explain the variation in bone strength. In
this study, we introduce the contour tree connectivity (CTC) as a novel
morphometric parameter to study trabecular bone quality. With CTC,
we calculate a new connectivity measure for trabecular bone by using
contour tree representation of binary images and algebraic graph theory.
To test our approach, we use trabecular bone biopsies obtained from
55 female patients. We study the correlation of CTC with biomechani-
cal test results as well as other morphometric parameters obtained from
µCT. The results based on our dataset show that CTC is the 3rd best
predictive feature of ultimate bone strength after bone volume fraction
and degree of anisotropy.

Keywords: trabecular bone, microstructure, binary morphology, CT
imaging, connectivity, contour tree, algebraic graph theory

1 Introduction

Fractures affect millions of people worldwide, causing significant morbidity, fi-
nancial costs and even mortality. Several studies suggest that currently used
standard diagnosis approach which is based on BMD is a limited predictor of
fracture risks [1]. On the other hand, there is increasing evidence on other factors,
most important one being the bone quality, which combines both structural and
material properties of trabecular bone tissue [2]. Currently, the gold standard
to study trabecular bone microstructure is based on morphometric parameters
obtained from µCT images. Therefore, it is crucial to develop effective image
processing methods that predict bone strength by analyzing µCT images.

Connectivity has long been recognized as an important parameter to predict
the mechanical properties of trabecular bone [3]. The most commonly used con-
nectivity measure is the connectivity density (Conn.D), which is based on the



Euler number (χ) [4]. For a 3D binary image that is composed of a single con-
nected component with no holes, 1−χ gives the number of tunnels that exist in
the connected component. The tunnels in the case of trabecular bone are mostly
associated with trabeculae. This makes Conn.D, which is defined as the number
of tunnels per unit volume, an elegant tool to study trabecular bone topology.
On the other hand, for most practical purposes, topology alone is not sufficient
to describe connectivity properties. For example, although Conn.D includes in-
formation regarding the number of trabeculae, it does not provide information
about the thickness of the connections nor the gaps between them.

In this study, we propose to use the contour tree connectivity (CTC) as an
alternative connectivity measure to predict strength of trabecular bone. In [5],
contour trees are utilized to provide graph representations of binary images. This
representation of images transforms complex 3D data, such as the trabecular
bone, into simple graphs. Based on a similar representation, CTC calculates the
connectivity of binary images by calculating the connectivity of graphs.

This study introduces CTC as a novel morphometric parameter to study
bone quality. For that, we study bone biopsies of 55 patients and show how
CTC can be used to predict the strength of trabecular bone.

2 Methods and Materials

2.1 Contour tree connectivity (CTC)

Representation of binary images using contour trees: Contour tree is a
topological abstraction that follows the evolution of level sets as they appear,
join, split or disappear by means of a graph. In image processing, it has been
mostly used for volume simplification and visualization of high dimensional scalar
fields [6]. Contour trees are first used for binary images in [5], in order to develop
a graph representation, which takes into account both the geometrical properties
of foreground object(s) and how the object(s) is/are placed on the background.
This is done by first applying the Euclidean distance transform (EDT) and than
estimating the contour tree of the transformed image. An example on a small
crop of a 2D trabecular bone slice is shown in Fig.1.

Fig. 1. (a) Input image (b) EDT of input (c) Contour tree drawn on top the EDT
image (d) Supplemented contour tree with red nodes from the contour tree and green
nodes from supplementation (e) Contour tree with level lines and EDT colormap.



Extraction steps and the algorithms used to compute CTC: The main
idea of CTC is to compute the structural connectivity of a binary image by
computing the connectivity of its contour tree representation. Fig.2 shows the
flowchart for extracting the CTC feature.

Fig. 2. Flowchart for the CTC feature extraction. From a binary input image, firstly
EDT, then the supplemented contour tree (SCT) and finally the CTC is calculated as
the normalized algebraic connectivity of SCT.

Starting with a binary image, we first create a real valued image using EDT.
With a signed EDT, we transform the foreground to positive and background to
negative real numbers with their distances to the nearest non-object pixels. The
EDT image is used as the input for computing the contour tree.

We picked a popular method called the sweep and merge to compute the
contour tree [7]. The sweep and merge method starts with computing the join
and split trees; in a later stage, these are merged to form the contour tree.
Join and splits trees represent the connectivities of upper and lower level sets
respectively.

In order to remove the noise from the graph, we perform basic pruning oper-
ations on the contour tree. In order to prune edges or vertices, two user defined
inputs are utilized. Edges to be removed must have less area/volume than the
defined area/volume threshold and the vertices on each sides of the edge should
have a level difference below the given level threshold.

As the last graph operation, we create a new tree by introducing integer
valued levels in between the critical points. This final tree is called the sup-
plemented contour tree (SCT). SCT simply shows how foreground/background
regions in the image are positioned by the number of vertices along edges. The
example in Fig. 1 shows the difference between the contour tree and the SCT.

Graph spectrum and algebraic connectivity: CTC measures the connec-
tivity of a binary image indirectly by computing the connectivity of its contour
tree representation. To achieve this, we use algebraic graph theory and spectrum
of graphs. The spectrum of a graph G is the set of the eigenvalues of its Laplacian
matrix that is given as L(G) = D(G)−A(G). Here D(G) and A(G) are the degree
diagonal and the adjacency matrices respectively. The eigenvalues of the Lapla-



cian matrix can be sorted as 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn for any connected
graph. Since λ1 = 0 for disconnected graphs, Fiedler named the second smallest
eigenvalue, λ1, as algebraic connectivity.

From the definition of algebraic connectivity, for all SCT, λ1 > 0 is a lower
bound. Also for all SCT, λ1 ≤ 2(1− cos π

h+1
) is an upper bound, where h is the

height of SCT. (The upper bound follows from Theorem 6.4.1 (page 240) and
Corollary 6.4.3 (page 242) given in [8].)

Among the set of trees with same height, trees with wider horizontal spread
of vertices have lower λ1. Therefore, we define CTC of a binary image I by
normalizing λ1 with as follows:

CTC =
λ1(G)

2

�

1− cos

�

π

⌊lgmax⌉ − ⌊lgmin⌉+ 1

�� (1)

Here G is the SCT of I. λ1 is the algebraic connectivity of G. l
g
max and l

g
min

are the global max and min of EDT of I and ⌊.⌉ is the rounding operator.
From Equation 1, it follows that for any binary image, 0 < CTC ≤ 1.

2.2 Patient data, µCT imaging and biomechanical testing

The original study population consisted of 61 patients with primary hip os-
teoarthritis who underwent primary cementless total hip arthroplasty (THA).
The demographic data of the patients was described previously in [9]. During
THA surgery, a cancellous biopsy was taken from the intertrochanteric region
of the proximal femur as described earlier in [10]. The biopsy specimen were
wrapped in saline-wet sponges and placed in a sealed plastic bag and stored
frozen at -20◦C until machining. Multiple specimens were prepared from each
biopsy under saline irrigation using a high-speed trephine drill. The cylindri-
cal specimens were scanned with µCT (SkyScan 1072, Kontich, Belgium) with
isotropic voxel resolution of 16.3 µm.

From the µCT images, 10 parameters were calculated. These are: bone vol-
ume fraction (BV/TV), bone mineral density (BMD), mean trabecular thickness
(Tb.Th), trabecular seperation (Tb.Sp), trabecular number (Tb.N), trabecular
bone pattern factor (Tb.Pf), structure model index (SMI), degree of anisotropy
(DA), Conn.D and CTC. Conn.D and CTC were calculated using MATLAB,
whereas the other parameters were calculated using CTan software (SkyScan).
For each patient, the mean results of the parameters obtained from multiple
specimens were used in the study.

Following the µCT imaging, the specimens were used in compression test-
ing to failure using a universal mechanical testing device (Avalon Technolo-
gies, Rochester, MI, USA). Tests were performed at a constant speed of 0.825
mm/min and the load data were continuously recorded by the data acquisition
system (Visual Designer, Intelligent Instrumentation, Tucson, AZ, USA). Val-
ues for the ultimate tensile strength (σU ) were calculated from the raw data files
using Origin software (Origin Lab Corp. Northampton, MA, USA).



The analyses were performed on 55 patients out of 61. Six patients were
excluded due to incomplete data. The patients were divided into three groups
with respect to their trabecular bones’ ultimate strength. The first group, G-1,
has σU ≤ 0.35 MPa, the second group, G-2, has 0.35 MPa < σU ≤ 1 MPa and
the last group, G-3, has σU > 1 MPa. The thresholds were chosen manually
by taking into account the jumps in σU . According to this division, 26 patients
belong to G-1, 20 patients belong to G-2 and 9 patients belong to G-3. Fig.3
shows the values for the ultimate tensile strength in ascending order and the
threshold levels used to group the patients.
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Fig. 3. Ultimate strength values obtained from the measurements in ascending order.
Red lines show the thresholds that are used to categorize the patients into three groups.

2.3 Regression analysis, feature selection and classification method

The correlation between ultimate tensile strength and BV/TV was reported
earlier in [10]. In this work, we study the other correlations and calculate the co-
efficient of determination (R2) between (a) σU and µCT parameters (b) BV/TV
and µCT parameters (c) CTC and µCT parameters.

To identify the most predictive µCT parameters for ultimate tensile strength,
we used the data from all the patients and did a sequential forward feature
selection (SFS). SFS selects a subset of µCT features that best predict the σU

measurements by sequentially adding features. Each feature is selected after
a repeated application of 10-fold cross validation. Among all candidates, the
feature set that gives the minimum mean deviance is picked. Deviance measures
the quality of the fit as the residual sum of squares obtained from generalized
linear model regression. We used SFS on two sets of features. The first feature
set, Case-1, had all the 10 µCT parameters. The second feature set, Case-2, did
not have CTC but had all the other 9 parameters.

Lastly, we used linear discriminant analysis for classifications. For this, we
used 13, 10 and 4 patients from groups G-1, G-2 and G-3 respectively as the
training set. The rest of the 28 patients are used in the tests. For both feature
sets, Case-1 and Case-2, we sequentially classified test subjects into groups by
increasing the number of significant features.



3 Results

3.1 Demonstrative CTC study

We picked three µCT images to show example CTC values for different cases.
Fig.4 shows these samples, corresponding ultimate tensile strength, BV/TV and
CTC values. Since the actual contour trees contain several hundreds of vertices,
simplified versions obtained from the crops are plotted below each µCT image.

Fig. 4. Example µCT images and corresponding σU , BV/TV and CTC values. Below
each sample is a simplified version of the contour tree. (a) shows the strongest bone in
the dataset, (b) has the highest BV/TV in the dataset, (c) has a similar σU value to
the one in (b) despite less BV/TV.

3.2 Correlation analysis

Fig.5 shows the calculated R2 values. From left to right, Fig.5 shows the linear
correlation between (a) σU and µCT parameters (b) BV/TV and µCT parame-
ters (c) CTC and µCT parameters.
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Fig. 5. Linear regression analyses show (a) σU is best correlated with BV/TV (b)
Tb.N, Tb.Sp, SMI and Tb.Pf are correlated with BV/TV (c) CTC is uncorrelated
with µCT parameters other than Tb.Sp, Conn.D and Tb.N.

3.3 Feature selection and classification results

Table 1 shows the order of the selected features for Case-1 and Case-2 using SFS
and the classification accuracies.



Table 1. The order of the selected features that best predict σU measurements and
the classification accuracies using feature sets Case-1 and Case-2. CTC is chosen as the
3rd best feature by SFS. BV/TV and DA are the top two features.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Case-1 BV/TV DA CTC Conn.D Tb.Sp Tb.Pf Tb.Th Tb.N SMI BMD
60.7% 50% 64.3% 67.9% 67.9% 67.9% 71.4% 71.4% 71.4% 67.9%

Case-2 BV/TV DA SMI Conn. D Tb.N Tb.Th Tb.Sp BMD Tb.Pf -
60.7% 50% 60.7% 60.7% 60.7% 53.6% 53.6% 53.6% 57.1% -

4 Discussion and conclusion

Traditionally, the connectivity of trabecular bone has been studied from a topo-
logical point of view using the Euler number. This interpretation has been linked
to the mechanical properties of bone [4]. With a structural interpretation, CTC
provides new connectivity information that takes into account the thickness of
the trabeculae as well as their separation.

Fig.4 shows example CTC values obtained for 3 µCT images. Generally an in-
creased number of trabeculae decreases CTC by two mechanisms. Firstly, trabec-
ulae appear as local maximas in the EDT image, which introduces vertices into
the join tree. Secondly, gaps between trabeculae, that appear as local minimas,
introduce vertices into the split tree. As a result, a sample with a large number
of trabaculae is represented with a spread of several vertices above and below 0
level. In the contour trees shown in Fig.4, vertices at higher levels correspond to
thicker trabeculae, whereas lower levels correspond to larger gaps between tra-
beculae. By quantifying the connectivity of this representation, CTC quantifies
the connectivity of trabeculae with regard to their thickness and separation.

Fig.4 also shows how CTC complements other features such as BV/TV. From
Fig.4a to Fig.4b, there is a 1.1 MPa decrease in σU despite the 8.8% increase in
BV/TV. Additionally, from Fig.4b to Fig.4c, the 7.3% decrease in BV/TV does
not change σU significantly. The contour tree for Fig.4b with few trabeculae and
large gaps accounts for these differences. This compact tree representation yields
a large CTC value, which indicates structural weakness for this sample.

The correlation analysis in Fig.5a shows that BV/TV alone explains more
than 65% of the variance in σU . Second most correlated feature with σU is Tb.N.
Fig.5b shows that, Tb.N, Tb.Sp, SMI and Tb.Pf are correlated with BV/TV.
On the other hand, CTC is uncorrelated with most parameters.

Table 1 shows that CTC is the 3rd best predictive feature of ultimate strength
after BV/TV and DA. This coincides with both earlier and recent studies where
BV/TV and DA are shown to be good predictors for σU [11, 12]. Interestingly,
our results show that BMD is neither correlated with σU nor it is significant when
predicting σU . It is observed from the correlation and classification results that
most of the commonly used parameters are redundant. For Case-2, once BV/TV
is used, the inclusion of many features does not improve accuracy. Moreover,
additional features decrease the accuracy more for Case-2 than Case-1 due to



the curse of dimensionality. Lastly, it is observed that 3 subsets of Case-1 that
include CTC reach an accuracy of 71.4%, which could not be achieved by any
Case-2 subsets.

The application of linear regression for correlation analysis has the limita-
tion that only linear relations are investigated. LDA also suffers from the same
problem regardless of our use of independent traning and test sets. Further
investigations that include non-linear relations might improve the results. Addi-
tionally, in order to generalize the results, a wider spectrum of patients need to
be studied.

In this article, we introduce the contour tree connectivity (CTC) to predict
the ultimate strength of trabecular bone. Our results show that most morpho-
metric parameters do not provide additional information on top of bone volume
fraction. CTC on the other hand, is uncorrelated with bone volume fraction
and most other parameters. Our findings show that CTC is the 3rd best pre-
dictive parameter for ultimate strength after bone volume fraction and degree
of anisotropy. By providing new structural connectivity information, CTC offers
more options to better predict bone quality.
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