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Abstract

Transcription of music refers to the analysis of a music signal in order

to produce a parametric representation of the sounding notes in the sig-

nal. This is conventionally carried out by listening to a piece of music

and writing down the symbols of common musical notation to repre-

sent the occurring notes in the piece. Automatic transcription of music

refers to the extraction of such representations using signal-processing

methods.

This thesis concerns the automatic transcription of pitched notes in

musical audio and its applications. Emphasis is laid on the transcrip-

tion of realistic polyphonic music, where multiple pitched and percus-

sive instruments are sounding simultaneously. The methods included

in this thesis are based on a framework which combines both low-level

acoustic modeling and high-level musicological modeling. The empha-

sis in the acoustic modeling has been set to note events so that the

methods produce discrete-pitch notes with onset times and durations

as output. Such transcriptions can be efficiently represented as MIDI

files, for example, and the transcriptions can be converted to common

musical notation via temporal quantization of the note onsets and du-

rations. The musicological model utilizes musical context and trained

models of typical note sequences in the transcription process. Based

on the framework, this thesis presents methods for generic polyphonic

transcription, melody transcription, and bass line transcription. A

method for chord transcription is also presented.

All the proposed methods have been extensively evaluated using

realistic polyphonic music. In our evaluations with 91 half-a-minute

music excerpts, the generic polyphonic transcription method correctly

found 39% of all the pitched notes (recall) where 41% of the transcribed

notes were correct (precision). Despite the seemingly low recognition

rates in our simulations, this method was top-ranked in the polyphonic

note tracking task in the international MIREX evaluation in 2007 and

2008. The methods for the melody, bass line, and chord transcription
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were evaluated using hours of music, where F-measure of 51% was

achieved for both melodies and bass lines. The chord transcription

method was evaluated using the first eight albums by The Beatles and

it produced correct frame-based labeling for about 70% of the time.

The transcriptions are not only useful as human-readable musical

notation but in several other application areas too, including music

information retrieval and content-based audio modification. This is

demonstrated by two applications included in this thesis. The first ap-

plication is a query by humming system which is capable of search-

ing melodies similar to a user query directly from commercial music

recordings. In our evaluation with a database of 427 full commercial

audio recordings, the method retrieved the correct recording in the top-

three list for the 58% of 159 hummed queries. The method was also

top-ranked in “query by singing/humming” task in MIREX 2008 for a

database of 2048 MIDI melodies and 2797 queries. The second applica-

tion uses automatic melody transcription for accompaniment and vo-

cals separation. The transcription also enables tuning the user singing

to the original melody in a novel karaoke application.
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Chapter 1

Introduction

Transcription of music refers to the analysis of a music signal in order

to produce a parametric representation of the sounding notes in the

signal. Analogous to speech, which can be represented with charac-

ters and symbols to form written text, music can be represented using

musical notation. The common musical notation, which is widely used

to represent Western music, has remained rather unchanged for sev-

eral centuries and is of great importance as a medium to convey mu-

sic. Conventionally, music transcription is carried out by listening to a

piece of music and writing down the notes manually. However, this is

time-consuming and requires musical training.

Automatic transcription of music refers to the extraction of such

representations using signal-processing methods. This is useful as

such, since it provides an easy way of obtaining descriptions of mu-

sic signals so that musicians and hobbyists can play them. In addition,

transcription methods enable or facilitate a wide variety of other appli-

cations, including music analysis, music information retrieval (MIR)

from large music databases, content-based audio processing, and inter-

active music systems. Although automatic music transcription is very

challenging, the methods presented in this thesis demonstrate the fea-

sibility of the task along with two resulting applications.

1.1 Terminology

The terminology used throughout the thesis is briefly introduced in the

following.
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Musical Sounds

Humans are extremely capable of processing musical sounds and larger

musical structures, such as the melody or rhythm, without any formal

musical education. Music psychology studies this organization of mu-

sical information into perceptual structures and the listeners’ affection

evoked by a musical stimulus [20]. Psychoacoustics studies the rela-

tionship between an acoustic signal and the percept it evokes [111].

A musical sound has four basic perceptual attributes: pitch, loudness,

duration, and timbre. Pitch and timbre are only briefly introduced in

the following, and for an elaborate discussion on sounds and their per-

ception, see [106].

Pitch allows the ordering of sounds on a frequency-related scale ex-

tending from low to high, and “a sound has a certain pitch if it can

be reliably matched by adjusting the frequency of a sine wave of ar-

bitrary amplitude” [47, p. 3493]. Whereas pitch is a perceptual at-

tribute, fundamental frequency (F0) refers to the corresponding phys-

ical term, measured in Hertz (Hz), and it is defined only for periodic

or almost periodic signals. In this thesis, the terms pitch and funda-

mental frequency are used as synonyms despite their conceptual differ-

ence. Pitched musical sounds usually consist of several frequency com-

ponents. For a perfectly harmonic sound with fundamental frequency

f0, the sound has frequency components at the integer multiples of the

fundamental frequency, kf0, k ≥ 1, called harmonics.

Timbre allows listeners to distinguish musical sounds which have

the same pitch, loudness, and duration. Timbre of a musical sound

is affected by the spectral content and its temporal evolvement. More

informally, the term timbre is used to denote the color or quality of a

sound [106].

The perception of rhythm is described by grouping and meter [69].

Grouping refers to the hierarchical segmentation of a music signal into

variable-sized rhythmic structures, extending from groups of a few

notes to musical phrases and parts. Meter refers to a regular alter-

ation of strong and weak beats sensed by a listener. The pulses, or

beats, do not have to be explicitly spelled out in music, but they may be

inducted by observing the underlying rhythmic periodicities in music.

Tempo defines the rate of the perceptually most prominent pulse and

is usually expressed as beats-per-minute (BPM).

Monophonic music refers here to music where only a single pitched

sound is played at a time. In polyphonic music, several pitched and un-

pitched sounds may occur simultaneously. Monaural (commonly mono)
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refers to single-channel audio signals whereas stereophonic (stereo)

refers to two-channel audio signals. Commercial music is usually dis-

tributed as stereophonic audio signals.

About Music Theory and Notation

The fundamental building block of music is a note which is here defined

by a discrete pitch, a starting time, and a duration. An interval refers

to the pitch ratio of two notes. In particular, the interval with pitch

ratio 1 : 2 is called an octave which is divided into twelve notes in

Western music. This results in ratio 1 : 21/12 between adjacent note

pitches, which is called a semitone.

The seven note pitches corresponding to the white keys of piano

in one octave range are named with letters C, D, E, F, G, A, and B.

The octave of the pitch can be marked after the letter, e.g., A4. Pitch

classes express the octave equivalence of notes, i.e., notes separated

by an octave (or several octaves) are from the same pitch class (e.g.,

C is the pitch class of C3, C4, and C5). Pitch can be modified with

accidentals, e.g., with sharp ♯ (+1 semitone) and flat ♭ (−1 semitone).

For computers, a convenient way to express note pitches is to use

MIDI1 note numbers. The MIDI note number is defined for a note with

a fundamental frequency f0 (Hz) by

MIDI note number = 69 + 12 log2

(
f0

440

)
, (1.1)

where 69 and 440 (Hz), according to the widely adopted standard tun-

ing, correspond to the MIDI note number and to the fundamental fre-

quency of the note A4. Equation (1.1) provides a musically convenient

way of representing arbitrary F0 values in semitone units when the

corresponding MIDI note numbers are not rounded to integers.

Figure 1.1 exemplifies different representations for note pitches.

The tabulation in 1.1a lists note names and their fundamental frequen-

cies in 440 Hz tuning, and the corresponding MIDI note numbers by

Eq. (1.1). In 1.1b, note pitches are written with the common musical

notation. The white piano keys in 1.1c correspond to the note names.

Scales are ordered series of intervals and they are commonly used

as the tonal framework for music pieces. In Western music, the most

commonly used scale is the seven-note diatonic scale which consists

1Music Instrument Digital Interface (MIDI) is a standard format for coding note

and instrument data.
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Note C3 D3 E3 F3 G3 A3 B3 C4

f0, MIDI 48 50 52 53 55 57 59 60

f0, Hz 130.8 146.8 164.8 174.6 196.0 220.0 246.9 261.6

(a) Fundamental frequencies and MIDI note numbers for note names.

(b) Note pitches on the common musical notation.

D E F G A BC

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

D E F G A BC

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

D E F G A BC

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

2 3 4

(c) Note pitches on a piano keyboard. The numbers 2, 3, and 4 identify

the octave for note pitches ranging from C to B.

Figure 1.1: Different representations for note pitches.

of an interval series 2, 2, 1, 2, 2, 2, 1 semitones. The term tonic note

refers to the note from which the interval series is started. Starting

such a series from note C results in stepping through the white piano

keys and C major scale, named after the tonic. Starting from note A

with ordering 2, 1, 2, 2, 1, 2, 2 also steps through the white keys but

results in A minor scale. Since the diatonic scale can be started from

seven different positions, there are seven modes for the diatonic scale

of which the most commonly used ones are the major (Ionian) and the

minor (Aelion).

A chord is a combination of notes which sound simultaneously or

nearly simultaneously, and three-note chords are called triads. Chord

progressions largely determine the tonality, or harmony, of a music

piece. Musical key identifies the tonic triad (major or minor) which rep-

resents the final point of rest for a piece, or the focal point of a section.

If the major and minor modes contain the same notes, the correspond-

ing keys are referred to as the relative keys (or the relative-key pair).

For example, C major and A minor keys form a relative-key pair. Key
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Figure 1.2: Key signatures and their tonic triads for major and minor

modes.

(or guitar):

Piano

Chord

symbol Rest

Clefs

signature
Key

Note

Bar line

Accidental

Melody:

Bass line:

Drums:

Lyrics

signature
Time

Figure 1.3: An example of common musical notation.

signature refers to a set of sharps or flats in the common musical no-

tation defining the notes which are to be played one semitone lower or

higher, and its purpose is to minimize the need for writing the possible

accidentals for each note. Figure 1.2 shows the key signatures together

with their major and minor tonic triads.

Figure 1.3 shows an example of the common musical notation. It

consists of the note and rest symbols which are written on a five-line

staff, read from left to right. The pitch of a note is indicated by the

vertical placement of the symbol on the staff, possibly modified by ac-

cidentals. Note durations are specified by their stems or note-head

symbols and they can be modified with dots and ties. Rests are pauses

when there are no notes to be played. The staff usually begins with a

clef, which specifies the pitches on the staff, and a key signature. Then,

a time signature defines the temporal grouping of music into measures,

or bars. In Figure 1.3, for example, the time signature 4/4 means that a

measure lasts four quarter notes. Each measure is filled up with notes

and rests so that their non-overlapping durations sum up to the length

of the measure. This determines the starting point for each note or
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rest. Chord symbols are commonly used as a short-hand notation in-

stead of explicitly writing all the sounding notes on the staff. Lyrics

of the music piece may be printed within the notation. The notation

may also include numerous performance instructions, such as tempo

changes, dynamic variations, playing style, and so on. In addition to

pitched instruments, percussive instruments such as drums can be no-

tated with a certain set of symbols.

The example in Figure 1.3 shows notation for the melody, bass line,

and accompaniment. Melody is an organized sequence of consecutive

notes and rests, usually performed by a lead singer or by a solo instru-

ment. More informally, the melody is the part one often hums along

when listening to a music piece. The bass line consists of notes in a

lower pitch register and is usually played with a bass guitar, a double

bass, or a bass synthesizer. The term accompaniment refers to music

without the melody, and in this example, it consists of the piano or

guitar chords, bass line, and drums.

In addition to the common musical notation, MIDI files are widely

used as a parametric representation of music with computers. MIDI

files are very compact and flexible with wide application support. For

example, MIDI is the standard for representing notes and other con-

trol data in computer music software and hardware; it is used in se-

quencers, music notation software, music-controlled effects and light-

ing, and even in ring tones for mobile phones.

A common visualization of MIDI notes is called a piano roll. As an

example, Figure 1.4 illustrates the measures of the melody from song

“Let It Be” by The Beatles. Panel 1.4a shows the melody and lyrics in

music notation. In panel 1.4b, the black rectangles show the melody

notes with the piano-roll representation where time and pitch are on

horizontal and vertical axes, respectively. The note pitches in both rep-

resentations are discrete. In the piano roll, however, the note starting

times and durations are not discrete but continuous in time. For illus-

tration purposes, the strength of fundamental frequencies, estimated

from the original recording by The Beatles, are indicated by the gray-

level intensity in the background. The horizontal dashed lines denote

the note pitches of C major key.

In this example, the musical notation and the piano-roll represen-

tation match each other quite accurately. The plotted strengths of fun-

damental frequencies, however, reveal the use of vibrato and glissandi

in the singing performance. For example, typical examples of vibrato

occur at 15 s (“times”), 17 s (“Mar-”), and 23 s (“be”) whereas glissandi

occur at 13 s (“When”), 14.2 s (“-self”), 19.8 s (“speaking”), and 22.4 s

6



(a) Melody notes and lyrics written with music notation.

P
it
c
h

 (
n

o
te

 n
a

m
e

 :
 M

ID
I 

n
o

te
)

time (s)
13 14 15 16 17 18 19 20 21 22 23

E3 : 52

F3 : 53

G3 : 55

A3 : 57

B3 : 59

C4 : 60

D4 : 62

E4 : 64

F4 : 65

(b) Melody notes (the black rectangles) shown with piano-roll representation. In the

background, the gray-level intensity shows the strength of fundamental frequencies

estimated from the original recording for illustration.

Figure 1.4: The first melody phrase of “Let It Be” by The Beatles in

music notation and piano-roll representation.

(“Let”). The example also illustrates the ambiguity in music transcrip-

tion which makes the transcription task challenging for machines: al-

though the transcription is obviously correct for human listeners, the

fundamental frequencies vary widely around the discrete note pitches.

As an example, the fundamental frequencies span over five semitones

during the note “Let” (22.4 s) with glissando and only briefly hit the

discrete note E4 in the transcription. In addition, the discrete note du-

rations in the musical notation are often quantized to longer durations

to make the notation easier to read. For example, the note at 18.5 s

(“me”) is performed as an eighth-note whereas in the musical notation

the same note is extended to the end of the measure. To summarize,

musical notations provide guidelines for musicians to reproduce musi-
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cal pieces, however, with the freedom to produce unique music perfor-

mances.

1.2 Overview of Automatic Music

Transcription

As already mentioned, humans are extremely good at listening to mu-

sic. The ability to focus on a single instrument at a time, provided that

it is somewhat audible in the mixture, is especially useful in music

transcription. The usual process of manual music transcription pro-

ceeds in top-down order: first, the piece is segmented into meaningful

parts and the rhythmic structure is recognized. After that, the instru-

ments or musical objects of interest (e.g., the singing melody or chords)

are written down by repeatedly listening to the piece. Most of the auto-

matic transcription methods in the literature, however, use a bottom-

up approach, including the methods proposed in this thesis. This is

due to the fact that modeling such analytic listening and organization

of musical sounds into entities is simply a very challenging problem.

At a lower level, relativity is a fundamental difference in the per-

ception of musical objects between humans and machines. Musically

trained subjects can distinguish musical intervals and rhythmic struc-

tures relative to tempo. However, only a few people can actually di-

rectly name the absolute pitch of a sounding note, or the tempo of the

piece. Therefore, musicians commonly use an instrument to determine

the note names while doing the transcription. With transcription meth-

ods, however, the absolute values can be measured from the input sig-

nal.

Research Areas and Topics

There exists a wide variety of different research topics in music-signal

processing concerning the analysis, synthesis, and modification of mu-

sic signals. In general, automatic music transcription tries to extract

information on the musical content and includes several topics, such

as pitch and multipitch estimation, the transcription of pitched instru-

ments, sound-source separation, beat tracking and meter analysis, the

transcription of percussive instruments, instrument recognition, har-

monic analysis, and music structure analysis. These are briefly in-

troduced in the following, with some references to the relevant work.
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In order to build an ultimate music transcription system, all of these

are important. For a more complete overview of different topics, see

[63]. An international evaluation festival, Music Information Retrieval

Evaluation eXchange (MIREX), nicely reflects the hot-topic tasks in

music-signal processing. See [24] for an overview of MIREX and [1, 2]

for 2007–2008 the results and abstracts.

Pitch and multipitch estimation of music signals is a widely studied

task and it is usually a prerequisite for pitched instrument transcrip-

tion. The usual aim is to estimate one or more fundamental frequency

values within a short time frame of the input signal, or judge the frame

to be unvoiced. The estimated pitches in consequent time frames are

usually referred to as a pitch track. There exist several algorithms

for fundamental frequency estimation in monophonic signals, includ-

ing time-domain and frequency-domain algorithms, and it is practically

a solved problem (for reviews, see [50, 18]). The estimation of several

pitches in polyphonic music is a considerably more difficult problem

for which, however, a number of feasible solutions have been proposed

[63, 17, 62].

In general, pitched instrument transcription refers to the estima-

tion of pitch tracks or notes from musical audio signals. Transcrip-

tion of notes requires both note segmentation and labeling. Here the

term note segmentation refers to deciding the start and end times for a

note and the term note labeling to assigning a single pitch label (e.g.,

a note name or a discrete MIDI note number) to the note. The input

can be monophonic or polyphonic and also the transcription output can

be either one. In the monophonic case, singing transcription has re-

ceived most attention (see [108] for an introduction and a review of

methods). For polyphonic inputs, the first transcription method dates

back more than thirty years [83]. Along several methods evaluated

on synthetic inputs (e.g., random mixtures of acoustic samples or mu-

sic signals synthesized from MIDI files), there exist methods for tran-

scribing real-world music taken, for example, from commercial music

CDs. Pitch tracking of the melody and bass lines in such material was

first considered by Goto [35, 36]. Later, either pitch tracking or note-

level transcription of the melody has been considered, for example, in

[28, 92, 29, 25]; and [P2], [P4], and the bass line transcription in [43]

and [P3], [P4]. Various melody pitch tracking methods have been eval-

uated in MIREX in 2005, 2006, and 2008, preceded by ISMIR 2004

audio description task. The results and methods of the 2004–2005 com-

parative evaluations are summarized in [98].

9



Methods for producing polyphonic transcriptions from music have

also been under extensive research. In this context, the research has

focused on the transcription of piano music, including [105, 21, 104,

74, 99, 82, 126]. However, some of these methods are also applica-

ble to “generic” music transcription, together with methods including

[58, 9, 6], and [P1]. The generic transcription task was considered in

MIREX 2007–2008 with title “Multiple Fundamental Frequency Esti-

mation & Tracking”. Currently, polyphonic music transcription is not

a completely solved problem, despite the encouraging results and de-

velopment in recent years.

Sound-source separation aims at recovering the audio signals of dif-

ferent sound sources from a mixture signal. For music signals, this is a

particularly interesting research area which enables, for example, the

acoustic separation of different instrument sounds from complex poly-

phonic music signals. The method proposed in [P6] combines melody

transcription and sound-source separation in order to suppress vocals

in commercial music recordings. Some approaches to sound-source sep-

aration are briefly introduced in Section 7.2.

Beat tracking refers to estimating the locations of beats in music

signals with possibly time-varying tempi. For humans, this is a seem-

ingly easy task: even an untrained subject can usually sense the beats

and correctly tap foot or clap hands along with a music piece. Tempo es-

timation refers to finding the average rate of the beats. Meter analysis

of music signals aims at a more detailed analysis in order to recover the

hierarchical rhythmic structure of the piece. For example, the method

proposed in [64] produces three levels of metrical information as out-

put: tatum, tactus (beats), and measures. Onset detection methods

aim at revealing the beginning times of individual, possibly percussive,

notes. For an overview and evaluation of beat tracking, tempo estima-

tion, and meter analysis methods, see [40, 42, 77]. Tempo tracking and

quantization of note timings (e.g., in MIDI files) into discrete values is

a related topic [8, 134], which facilitates the conversion of automatic

transcriptions in MIDI format into common musical notation.

The transcription of unpitched percussive instruments, such as the

bass drum, the snare drum, and the cymbals in a typical drum set, is

also an interesting research topic which, however, has not gained as

much research emphasis as the pitched instrument transcription. The

developed methods can be broadly categorized into pattern recognition

and separation-based methods. Despite the rapid development of the

methods, their performance is still somewhat limited for polyphonic

music. For different approaches and results, see [30, 138].
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Instrument recognition methods aim at classifying the sounding in-

strument, or instruments, in music signals. The methods usually model

the instrument timbre via various acoustic features. Classification of

isolated instrument sounds can be performed rather robustly by using

conventional pattern recognition algorithms. The task is again much

more complex for polyphonic music and usually the methods use sound-

source separation techniques prior to classification. The transcription

of percussive instruments is closely related to instrument recognition.

For different approaches and results, see [49, 96, 12].

Methods for harmonic analysis attempt to extract information about

the tonal content of music signals. Common tasks include key estima-

tion and chord labeling which are later discussed in Chapter 5. For an

extensive study, see [34]. In addition to the analysis of acoustic inputs,

work has been carried out to analyze the tonal and rhythmical content

in MIDI files. A particularly interesting work has been implemented

as the “Melisma Music Analyzer” program2 by Temperley and Sleator,

based on the concepts presented in [119, 118].

Music structure analysis refers to extracting a high-level sectional

form for a music piece, i.e., segmenting the music piece into parts and

possibly assigning labels (such as “verse” and “chorus”) to them. Re-

cently, music structure analysis has become a widely studied topic with

practical applications including music summarization, browsing, and

retrieval [10, 88, 70, 94].

Applications

Automatic music transcription enables or facilitates several different

applications. Despite the fact that the performance of the methods is

still somewhat limited, the transcriptions are useful as such in music

notation software for music hobbyists and musicians, and for music ed-

ucation and tutoring. The transcription can be corrected by the user if

it is necessary to obtain a perfect transcription. Such semi-automatic

transcriptions could be distributed in a community-based web service.

Currently, there exist several sites in the web providing manually pre-

pared MIDI files, guitar tablatures, and chord charts of popular songs.3

Wikifonia is a recent example of a service providing lead sheets of mu-

sic pieces prepared by its users (www.wikifonia.org).

2Available at www.link.cs.cmu.edu/music-analysis
3However, one must carefully take into account the copyright issues when dis-

tributing music in such formats.
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There exist some software for automatic music transcription, al-

though with limited performance, usually referred to as wave-to-MIDI

conversion tools. These include Digital Ear (www.digital-ear.com), Solo

Explorer (www.recognisoft.com), and Autoscore (www.wildcat.com) for

monophonic inputs; and AKoff Music Composer (www.akoff.com), TS-

AudioToMIDI (http://audioto.com), and Intelliscore (www.intelliscore.

net) for polyphonic inputs. Transcribe! (www.seventhstring.com) is an

example of a tool for aiding manual transcription.

Applications of music information retrieval are of great importance.

The revolution in the way people consume and buy music has resulted

in an extremely rapid growth of digital music collections. Within the

next decade, it is expected that music is mostly sold as digital mu-

sic files in online media stores.4 Therefore, applications for browsing

and retrieving music based on the musical content are important for

both consumers and the service providers. Query by humming (QBH)

is an example of music information retrieval where short audio clips

of humming (e.g., the melody of the desired piece) act as queries. Au-

tomatic melody transcription is useful for producing a parametric rep-

resentation of the query and of the recordings in an audio collection

in the case of audio retrieval. A method for this is proposed in [P5]

(see Section 7.1). There also exist query by tapping systems where

the search is based on the similarity of rhythmic content [55]. Exam-

ples of web services for query by humming and query by tapping can

be found at www.midomi.com and at www.melodyhound.com, respec-

tively. Also music browsing applications may use intra-song or inter-

song similarity measures based on automatic music transcription. As

an example, melodic fragments can be used to search for the repeating

note sequences within a music piece, or then to search for other music

pieces with similar melodies.

Content-based music modification methods allow the user to per-

form modifications to a piece based on automatically extracted informa-

tion. A beat-tracking method can be used to synchronize music pieces

for remixing purposes, for example. Melodyne software is an exam-

ple of content-based music modification for professional music produc-

tion. It automatically transcribes the notes from a monophonic input

sound and allows the user to edit the audio of individual notes, for ex-

ample, by pitch shifting and time stretching. Celemony, the company

behind Melodyne, has introduced a new version of the Melodyne with

4Apple R© announced in July 2007 that over three billion songs have been pur-

chased via their online music store iTunes R©.
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a feature called “direct note access”, which enables editing individual

notes in polyphonic music as well. This feature will be available on the

Melodyne plugin version 2 scheduled for publication in the beginning

of 2009. For details, see www.celemony.com. An example application

for editing individual notes in polyphonic music was also presented in

[130].

Object-based coding of musical audio aims at using high-level mu-

sical objects, such as notes, as a basis for audio compression. While

MIDI is a highly structured and compact representation of musical

performance data, the MPEG-4 “structured audio standard“ defines a

framework for representing the actual sound objects in a parametric

domain [123]. The standard includes, e.g., Structured Audio Score Lan-

guage (SASL) for controlling sound generation algorithms. MIDI can

be used interchangeably with SASL for backward compatibility. Al-

though the standard has existed for a decade, the object-based coding

of complex polyphonic music is currently an unsolved problem. How-

ever, good audio quality with low bit rates (less than 10 kbit/s) has been

achieved for polyphonic music with no percussive instruments and lim-

ited polyphony [127].

Interactive music systems can utilize automatic music transcription

in various manners. For example, beat tracking can be used for control-

ling stage lighting or computer graphics in live performances [37]. Also

the video game industry has recently demonstrated the huge market

potential of games based on interaction with musical content, including

titles like “Guitar Hero”, “Rockband”, “Singstar”, and “Staraoke”. Score

following and alignment refers to systems where a musical score is syn-

chronized either with a real-time input from the user performance or

with an existing audio signal [102, 103, 22, 15]. The former enables an

interactive computer accompaniment by synthesizing the score during

the user performance. In MIDI domain, there exist interactive accom-

paniment methods, such as [13, 120], and also music-generating, or

computer improvisation, methods [66, 91].

1.3 Objectives and Scope of the Thesis

The main objective of this thesis is to propose methods for the auto-

matic transcription of pitched notes in music signals. The methods

produce notes with discrete pitch (representable with integer MIDI

note numbers or note names) and their non-quantized start and end

times. This work applies a simple and efficient statistical framework

13



to automatic music transcription. In particular, the focus is set on

complex polyphonic music to ensure the applicability of the methods

to any music collection. There are no restrictions on the sounding in-

struments, music style, or maximum polyphony. Percussive sounds,

such as drums, may be present in the input signals but they are not

transcribed. In singing-melody transcription, lyrics are not recognized.

Instrument recognition as such is not considered but some of the tran-

scription methods are tailored for transcribing certain musical entities,

such as the melody and bass line. Utilizing the timbre of different in-

struments is not addressed in this thesis.

The development of acoustic feature extractors, such as fundamen-

tal frequency estimators, is beyond the scope of the thesis. Instead,

the proposed methods use these extractors as front-ends and aim at

producing notes based on the features. The method development fo-

cuses on combining low-level acoustic modeling and high-level musi-

cological modeling into a statistical framework for polyphonic music

transcription. The acoustic models represent notes and rests and their

parameters are learned from music recordings. The framework utilizes

musicological context in terms of musical key and learned statistics on

note sequences.

The second objective of the thesis is to demonstrate the applicability

of the proposed transcription methods in end-user applications. First,

this thesis includes a complete query by humming system which per-

forms retrieval directly from music recordings, enabled by automatic

melody transcription. The second application uses automatic melody

transcription to suppress vocals in music recordings and to tune user

singing in a karaoke application.

1.4 Main Results of the Thesis

As the main result and contribution, this thesis tackles the problem

of realistic polyphonic music transcription with a simple and efficient

statistical framework which combines acoustic and musicological mod-

eling to produce MIDI notes as an output. Based on this framework,

the thesis proposes the following transcription methods.

• A generic polyphonic music transcription method with state-of-

the-art performance [P1].

• A melody transcription method where the framework has been

tailored for singing voice [P2].
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• A bass line transcription method which is capable of transcribing

streaming audio [P3].

• A method for transcribing the melody, bass line, and chords to pro-

duce a song-book style representation of polyphonic music [P4].

The second main result of the thesis is to exemplify the use of a pro-

posed melody transcription method in two practical applications. This

shows that the produced transcriptions are useful and encourages other

researchers to utilize automatic music transcription technology in var-

ious applications. The included applications are the following.

• A query by humming method with a novel and efficient search al-

gorithm of melodic fragments [P5]. More importantly, the method

can perform the search directly from music recordings which is

enabled by the melody transcription method.

• A novel karaoke application for producing song accompaniment

directly from music recordings based on automatic melody tran-

scription [P6]. The melody transcription also enables the real-

time tuning of the user singing to the original melody.

The results of each included publication are summarized in the follow-

ing.

[P1] Generic Polyphonic Transcription

The publication proposes a method for producing a polyphonic tran-

scription of arbitrary music signals using note event, rest, and musi-

cological modeling. Polyphonic transcription is obtained by searching

for several paths through the note models. In our evaluations with

91 half-a-minute music excerpts, the method correctly found 39% of all

the pitched notes (recall) where 41% of the transcribed notes were cor-

rect (precision). Although the method introduces a simple approach

to polyphonic transcription, the method was top-ranked in polyphonic

note tracking tasks in MIREX 2007 and 2008 [1, 2].

[P2] Singing Melody Transcription in Polyphonic

Music

The publication proposes a method for singing melody transcription in

polyphonic music. The main contribution is to use the framework for a
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particular transcription target by learning note model parameters for

singing notes. A trained model for rests is introduced, and the estima-

tion of singing pitch range and glissandi correction are applied. The

method was evaluated using 96 one-minute excerpts of polyphonic mu-

sic and achieved recall and precision rates of 63% and 45%, respectively.

[P3] Bass Line Transcription in Polyphonic Music

The publication proposes a method for transcribing bass lines in poly-

phonic music by using the framework. The main contribution is to ad-

dress real-time transcription and causality issues to enable transcrip-

tion of streaming audio. This includes causal key estimation, upper-F0

limit estimation, and blockwise Viterbi decoding. Also, variable-order

Markov models are applied to capture the repetitive nature of bass note

patterns both as pre-trained models and in an optional post-processing

stage. The method achieved recall and precision rates of 63% and 59%,

respectively, for 87 one-minute song excerpts.

[P4] Transcription of Melody, Bass Line, and Chords

in Polyphonic Music

The publication proposes a note modeling scheme where the transcrip-

tion target is contrasted with the other instrument notes and noise or

silence. A simplified use of a pitch-salience function is proposed, and

the method transcribes the melody, bass line, and chords. The method

is capable of producing a song-book style representation of music in a

computationally very efficient manner. Comparative evaluations with

other methods show state-of-the-art performance.

[P5] Method for Query by Humming of MIDI and

Audio

The publication proposes a query by humming method for MIDI and

audio retrieval. The main contribution consists of a simple but effective

representation for melodic fragments and a novel retrieval algorithm

based on locality sensitive hashing. In addition, the search space is

extended from MIDI-domain to audio recordings by using automatic

melody transcription. Compared with previously reported results in

the literature, the audio retrieval results are very promising. In our

evaluation with a database of 427 full commercial audio recordings, the
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method retrieved the correct recording in the top-three list for the 58%

of 159 hummed queries. The method was also top-ranked in “query by

singing/humming” task in MIREX 2008 [2] for a database of 2048 MIDI

melodies and 2797 queries.

[P6] Accompaniment Separation and Karaoke

Application

The publication proposes an application of automatic melody transcrip-

tion to accompaniment versus vocals separation. In addition, a novel

karaoke application is introduced where user singing can be tuned to

the transcribed melody in real-time. A Finnish patent application of

the technique was filed in October 2007 [110].

1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 2 gives an overview of

the proposed transcription methods with comparison to previous ap-

proaches. Chapter 3 briefly introduces the applied feature extraction

methods which is followed by introductions to acoustic modeling and

musicological modeling in Chapters 4 and 5, respectively. Chapter 6

summarizes the used evaluation criteria, databases, reported results,

and refers to comparative evaluations of the methods in literature.

Chapter 7 briefly introduces the two proposed applications based on

an automatic melody transcription method. Chapter 8 summarizes the

main conclusions of this thesis and outlines future directions for the

development of transcription methods and the enabled applications.
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Chapter 2

Overview of the Proposed

Transcription Methods

All the proposed transcription methods included in this thesis employ a

statistical framework which combines low-level acoustic modeling with

high-level musicological modeling. Since the methods aim at producing

notes with discrete pitch labels and their temporal segmentation, the

entity to be represented with acoustic models has been chosen to be

a note event1. The musicological model aims at utilizing the musical

context and learned statistics of note sequences in the methods.

Figure 2.1 shows a block diagram of the framework. First, the in-

put audio is processed with frame-wise feature extractors, for example,

to estimate fundamental frequencies and their strengths in consecu-

tive signal frames. The features are then passed to both acoustic and

musicological modeling blocks. The acoustic models use pre-trained pa-

rameters to estimate the likelihoods of different note events and rests.

More precisely, note events and rests are modeled using hidden Markov

models (HMMs) for which the observation vectors are derived from the

extracted features. The musicological model uses the features to es-

timate the key of the piece and to choose a pre-trained model for dif-

ferent note transitions. Statistics of note sequences are modeled with

N-grams or variable-order Markov models (VMMs). After calculating

the likelihoods for note events and their relationships, standard decod-

ing methods, such as the Viterbi algorithm, can be used to resolve a

sequence of notes and rests. The details of each block are introduced in

the following chapters.

1In this work, the term note event refers to an acoustic realization of a note in a

musical composition.
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Figure 2.1: A block diagram of the framework for automatic music

transcription.

The framework has several desirable properties. First, discrete

pitch labels and temporal segmentation for notes are determined si-

multaneously. Secondly, the framework can be easily extended and

adapted to handle different instruments, music style, and features by

training the model parameters with the music material in demand.

This is clearly demonstrated by the successful transcription methods

for different transcription targets. Thirdly, the framework is conceptu-

ally simple and proves to be computationally efficient and to produce

state-of-the-art transcription quality.

Table 2.1 summarizes the proposed transcription methods using the

framework and lists the feature extractors and the applied techniques

for low-level modeling, high-level modeling, and decoding. In publica-

tion [P1], the framework was first applied to transcribe any pitched

notes to produce polyphonic transcription from arbitrary polyphonic

music. After this, the framework was applied to singing melody tran-

scription in polyphonic music [P2], and later adapted to bass line tran-

scription of streaming audio [P3]. The transcription of the melody, bass

line, and chords was considered in [P4], including streamlined perfor-

mance and note modeling for target notes (i.e., melody or bass notes),

other notes, and noise or silence. Details of the methods are explained

in the publications.

An analogy can be drawn between the framework and large-vocab-

ulary speech recognition systems. Hidden Markov models are conven-
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tionally used for modeling sub-word acoustic units or whole words and

the transitions between words are modeled using a language model

[51, 139]. In this sense, note events correspond to words and the mu-

sicological model to the language model as discussed in [27]. Similarly,

using key information can be assimilated to utilizing context in speech

recognition.

2.1 Other Approaches

Automatic transcription of the pitch content in music has been studied

for over three decades resulting in numerous methods and approaches

to the problem. It is difficult to properly categorize the whole gamut of

transcription methods since they tend to be complex, combine different

computational frameworks with various knowledge sources, and aim

at producing different analysis results for different types of music ma-

terial. To start with, questions to characterize a transcription method

include: does the method aim at producing a monophonic or polyphonic

transcription consisting of continuous pitch track(s), segmented notes,

or a musical notation; what type of music material the transcription

method handles (e.g., monophonic, polyphonic); what kind of a compu-

tational framework is used (e.g., rule-based, statistical, machine learn-

ing); and does the method use other knowledge sources (e.g., tone mod-

els, musicological knowledge) in addition to the acoustic input signal.

Since the pioneering work of Moorer to transcribe simple duets [83],

the transcription of complex polyphonic music has become the topic of

interest. Examples of different approaches are provided in the follow-

ing discussion.

Goto was the first to tackle the transcription of complex polyphonic

music by estimating the F0 trajectories of melody and bass line on com-

mercial music CDs [35, 36]. The method considers the signal spectrum

in a short time frame as a weighted mixture of tone models. A tone

model represents typical harmonic structure by Gaussian distributions

centered at the integer multiples of a fundamental frequency value.

Expectation-maximization algorithm is used to give maximum a poste-

riori estimate of the probability for each F0 candidate. The temporal

continuity of the predominant F0 trajectory is obtained by a multiple-

agent architecture. Silence is not detected but the method produces

a predominant F0 estimate in each frame. The method analyzes the

lower frequency range for the bass line and the middle range for the

melody. Later, e.g., Marolt used analysis similar to Goto’s to create sev-
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eral, possibly overlapping, F0 trajectories and clustered the trajectories

belonging to the melody [75]. Musicological models are not utilized in

these methods. Both of them produce continuous F0 trajectories as

output whereas the proposed methods produce MIDI notes.

Kashino and colleagues integrated various knowledge sources into a

music transcription method [58], and first exemplified the use of prob-

abilistic musicological modeling. They aimed at music scene analysis

via hierarchical representation of frequency components, notes, and

chords in music signals. Several knowledge sources were utilized, in-

cluding tone memories, timbre models, chord-note relations, and chord

transitions. All the knowledge sources were integrated into a dynamic

Bayesian network2. Temporal segmentation was resolved at the chord

level and results were reported for MIDI-synthesized signals with a

maximum polyphony of three notes. For an overview of their work, see

[57].

Bayesian approaches have been applied in signal-model based mu-

sic analysis where not only the F0 but all the parameters of overtone

partials are estimated for the sounding notes. Such methods include

[16, 9, 127], for example. The drawback is that for complex polyphonic

mixtures, the models tend to become computationally very expensive

due to enormous parameter spaces.

Music transcription methods based on machine learning derive the

model parameters from annotated music samples. The techniques in-

clude HMMs, neural networks, and support vector machines (SVMs),

for example. Raphael used HMMs to transcribe piano music [104],

where a model for a single chord consists of states for attack, sustain,

and rest. The state-space for chords consists of all possible pitch com-

binations. At the decoding stage, however, the state-space needed to

be compressed due to its huge size to contain only the most likely hy-

potheses of the different note combinations. The models were trained

using recorded Mozart piano sonata movements.

Marolt used neural networks to transcribe piano music [74]. The

method front-end used a computational auditory model followed by a

network of adaptive oscillators for partial tracking. Note labeling and

segmentation were obtained using neural networks. No musicological

model was applied.

2In general, dynamic Bayesian networks model data sequences and HMMs can

be considered as a special case of dynamic Bayesian networks. See [84] for a formal

discussion.

22



Poliner and Ellis used SVMs for piano transcription [99]. Their

approach was purely based on machine learning: the note-classifying

SVMs were trained on labeled examples of piano music where short-

time spectra acted as the inputs to the classification. The method thus

made no assumptions about musical sounds, not even about the har-

monic structure of a pitched note. The frame-level pitch detection was

carried out by the SVM classifiers, followed by two-state on/off HMMs

for each note pitch to carry out the temporal segmentation. They used

similar approach to melody transcription [29] and performed well in

MIREX melody transcription evaluations [98].

2.2 Earlier Methods Using Note Event

Modeling

Note events have been modeled with HMMs prior to this work. For

example, Raphael used two-state note HMMs with states for attack

and sustain to perform score alignment [102]. The method handled

monophonic music performances and required the corresponding mu-

sical score as an input.

Durey and Clements applied note HMMs for melodic word-spotting

in a query by melody system [27]. A user performed the query by en-

tering a note list as text. Then the HMMs for each note in the list

were concatenated to obtain a model for the query. The model was then

evaluated for each monophonic recording in the database to output a

ranked list of retrieved melodies.

Shih et al. used three-state HMMs to model note events in mono-

phonic humming transcription [114]. Instead of absolute pitch values,

the note models accounted for intervals relative to either the first or

the preceding note. In the former case, note models were trained to

describe one octave of a major scale upwards and downwards from the

first detected note. In the latter case, they trained models for one and

two semitone intervals upwards and downwards with respect to the

previous note.

Also Orio and Sette used note HMMs to transcribe monophonic

singing queries [89], with states for attack, sustain, and rest. The

HMMs of different notes were integrated into a note network and the

Viterbi algorithm was used to decide both the note segments and the

pitch labels simultaneously, thus producing note-level transcriptions.

They discussed about the possibility to use the between-note transi-
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tions in a musically meaningful manner, about using several attack

states for modeling different types of note beginnings, and about an

enhanced sustain state with two additional states to model slight de-

tunings upwards and downwards from the note pitch. However, these

ideas were not implemented in their reported system.

Viitaniemi et al. used a HMM, in which each state corresponded to

a single MIDI note pitch, for monophonic singing transcription [124].

The transitions between the notes (i.e., each state) were controlled with

a musicological model using a key estimation method and a pre-trained

bigram. Viterbi algorithm was used to produce a frame-level labeling

of discrete note pitches.

Our preliminary work addressed monophonic singing transcription

by combining the note event HMMs with key estimation and note se-

quence modeling [107, 109, 108]. Although the framework itself is not

a novel contribution, the methods included in this thesis demonstrate

its applicability in complex polyphonic music transcription.
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Chapter 3

Feature Extraction

Feature extractors are used as front-ends for the proposed transcrip-

tion methods. Although no feature extractors have been developed in

this thesis, this chapter briefly introduces the employed methods and

summarizes the features with examples. Notice that the transcription

framework is not in any way restricted to the used features but allows

other extractors to be used in a straightforward manner.

3.1 Fundamental Frequency Estimators

The estimation of fundamental frequencies is important for any pitched

instrument transcription system. The estimators aim at extracting a

number of fundamental frequencies and their strengths, or saliences,

within short time frames of an input signal. As already mentioned, F0

estimation from monophonic music has been widely studied and the

problem is largely solved. One example of such an estimator is the YIN

algorithm [19] which was employed, e.g., in monophonic singing tran-

scription methods [124, 109]. For details and comparison with other

approaches, see [108]. In order to transcribe polyphonic music, more

complex methods are required.

The proposed transcription methods employ a number of multiple-

F0 estimation algorithms by Klapuri, including [60, 61, 62]. Figure 3.1

shows an overview block diagram of these estimators. A frame of an

audio signal is first converted to an intermediate representation (in the

frequency domain) where the periodicity analysis takes place. In [60,

62], this transform is carried out by using a computational model of the
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Figure 3.1: An overview of the F0 estimation methods by Klapuri.

auditory system1. The auditory model consists of a bandpass filterbank

to model the frequency selectivity of the inner ear. Each subband signal

is compressed, half-wave rectified, and lowpass filtered to model the

characteristics of the inner hair cells that produce firing activity in

the auditory nerve. The resulting subband signal is transformed to

frequency domain. The spectra are summed over the bands to obtain

the intermediate representation.

Instead of the auditory model, a computationally simpler spectral

whitening can also be used to produce the intermediate representation,

as proposed in [61]. Spectral whitening aims at suppressing timbral

information and making the pitch estimation more robust to various

sound sources. Briefly, an input signal frame is first transformed into

the frequency domain. Powers within critical bands are estimated and

used for calculating bandwise compression coefficients. The coefficients

are linearly interpolated between the center frequencies of the bands

to obtain compression coefficients for the frequency bins. The input

magnitude spectrum is weighted with the compression coefficients to

obtain the intermediate representation.

The periodicity analysis uses the intermediate representation to es-

timate the strength of each fundamental frequency candidate to pro-

duce a so-called pitch salience function. For a pitch candidate, the

value of this function is calculated as a weighted sum of the ampli-

tudes of the harmonic partials of the candidate. The global maximum

of the salience function gives a good estimate of the predominant pitch

in the signal frame. To obtain several pitch estimates, the spectrum of

the pitched sound with the found F0 is estimated, canceled from the

1Some of the first models accounting for the principles of auditory processing were

applied in speech processing [73] and sound quality assessment [56].
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Table 3.1: Summary of the parameters for multipitch estimation.

Publica-

tion

Target Interme-

diate

represent.

Frame

size and

hop (ms)

Output F0 region

(Hz)

[P1] All

pitched

notes

Auditory 92.9, 11.6 Five F0s 30–2200

[P2] Singing

melody

Auditory 92.9, 23.2 Six F0s 60–2100

[P3] Bass line Spectral

whitening

92.9, 23.2 Four F0s 35–270

[P4] Melody,

bass line,

chords

Spectral

whitening

92.9, 23.2 Pitch

salience

function

35–1100

intermediate representation, and the search of a new F0 estimate is

repeated. This iterative process is continued until a desired number of

F0 estimates has been obtained.

Here, the above-described F0 estimation process has been utilized

in every method for polyphonic music transcription, and the parame-

ters are summarized in Table 3.1. The generic polyphonic transcrip-

tion [P1] and melody transcription [P2] used the auditory-model based

F0 estimation method with iterative F0 estimation and cancellation

[62]. In [P3] for bass line transcription, the F0 estimation with spec-

tral whitening was applied [61]. The method for the melody, bass line,

and chord transcription used the same estimator, however, with an im-

portant difference: the estimator was used only to produce the pitch

salience function without F0 detection. This way the decision of sound-

ing pitches is postponed to the statistical framework. In addition, cal-

culating only the pitch salience function is computationally very effi-

cient, since the auditory model and the iterative pitch detection and

cancellation scheme are not needed.

The choice of the frame size naturally affects the time-frequency

resolution whereas the frame hop determines the temporal resolution

of the transcription. Both of these also affect the computational com-

plexity. For complex polyphonic music, the frame size of 92.2 ms is a

good choice to capture F0s also from the lower pitch range (e.g., in the

bass line transcription). The frame hop of 23.2 ms provides a reasonable

temporal resolution, although for very rapid note passages, a smaller
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frame hop (together with a smaller frame size) should be considered.

The number of F0s in the output directly affects the computational

complexity whereas the considered F0 region is selected according to

the transcription target.

The frame-to-frame time difference of the salience values can also

be calculated as in [P4]. The differential salience values are important

for singing melody transcription since they indicate regions of varying

pitch, e.g., in the case of glissandi and vibrato (see [108] for a discus-

sion on singing sounds). In [P1] and [P2], only the positive changes

were calculated and exposed to periodicity analysis for indicating on-

sets of pitched sounds. The temporal variation of pitch was found to be

a useful cue for singing voice detection also in [32].

Figures 3.2 and 3.3 illustrate the outputs of the multiple-F0 estima-

tion using different configurations for the middle and low pitch regions,

respectively. The input signal is a short excerpt of the song RWC-MDB-

P-2001 No. 6 from the Real World Computing (RWC) Popular music

database [38]. The database includes manually prepared annotations

of the sounding notes in MIDI format and they are shown in the figures

by colored rectangles.

3.2 Accent Signal and Meter Analysis

Along with pitch features, the transcription methods employ features

to facilitate note segmentation. Accent signal measures the amount

of incoming spectral energy in time frame t and is useful for detect-

ing note onsets. Calculation of the accent feature has been explained

in detail in [64]. Briefly, a “perceptual spectrum” is first calculated in

an analysis frame by measuring log-power levels within critical bands.

Then the perceptual spectrum in the previous frame is element-wise

subtracted from the current frame, and the resulting positive level dif-

ferences are summed across bands. This results in the accent signal

which is a perceptually-motivated measure of the amount of incoming

spectral energy in each frame.

In addition, a more elaborate tempo and meter analysis was used to

derive a metrical accent function in our work on monophonic singing

transcription in [109]. This feature predicts potential note onsets at

the metrically strong positions (e.g., at the estimated beat times) even

when the audio signal itself exhibits no note onsets, e.g., in the accent

signal. However, the advantage of using the metrical accent was found

to be insignificant compared to the increased complexity of the tran-
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(c) Spectral whitening followed by pitch salience calculation.

Figure 3.2: Features obtained by multiple-F0 estimation for an excerpt

of RWC-MDB-P-2001 No. 6.
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(c) Spectral whitening followed by pitch salience calculation.

Figure 3.3: Features obtained by multiple-F0 estimation for the lower

pitch region (RWC-MDB-P-2001 No. 6).
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Figure 3.4: An example of the accent signal and the estimated beat

times.

scription system in that case. For details on the feature and results,

see [109]. Figure 3.4 shows an example of the accent signal and the

estimated beat times for the same song excerpt that was shown in Fig-

ures 3.2 and 3.3.

3.3 Discussion

Although the proposed methods employ only the above-mentioned fea-

tures, the framework allows the straightforward use of other features

and feature extractors, too. Multipitch analysis could be carried out by

using methods by Goto [35, 36], Dressler [25], Zhou [141], and Pertusa

and Iñesta [97], to name a few examples. Seppänen et al. proposed

a computationally streamlined beat-tracking method which also calcu-

lates the accent signal similar to the one used in this work [112]. The

beat-tracking method by Dixon, called BeatRoot, could also be used

[23].2

2Available for download at www.elec.qmul.ac.uk/people/simond/beatroot
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Features accounting for timbre, such as mel-frequency cepstral co-

efficients (MFCCs) and their time derivatives, are commonly applied

in instrument recognition and can be applied as features for the tran-

scription task, too. For example, MFCCs have been used for detecting

singing voice segments in polyphonic music [90, 59]. Alternatively, the

strengths of harmonic partials for each F0 can be modeled to take tim-

bre into account (as in the tone model by Goto, for example). Fujihara

et al. estimated several F0 trajectories, used sinusoidal modeling to

resynthesize the audio of each trajectory, and applied pre-trained mod-

els of vocal and non-vocal segments to evaluate the probability that a

F0 candidate belongs to the vocal melody [32]. This was reported to im-

prove the F0 estimation accuracy of vocal melodies. In [P2], we tested

a rather similar idea but achieved no improvement in our preliminary

simulations. Eggink and Brown employed an instrument recognition

module, which used e.g. the partial strengths and their time differences

as features, in melody transcription [28]. Li and Wang [71] applied

the features of Eggink and Brown in an instrument recognition mod-

ule which was used together with a transcription framework similar to

ours.

In this work, all the features are extracted from single-channel au-

dio signals, where possible stereo inputs are mixed to mono prior to the

extraction.3 However, spatial information in stereo recordings should

be utilized as well and it has been successfully applied in sound-source

separation methods (e.g., [3, 76, 128]). Parameters, which describe the

left-right panning position of F0 estimates within stereo recordings,

could be estimated and used as features.

3In [P1], multipitch estimation is performed for both left and right channels in

the case of stereo input signals but the possible inter-channel dependencies are not

utilized.
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Chapter 4

Acoustic Modeling

Here the term acoustic modeling refers to learning statistical mod-

els for the values of extracted features during note events and rests.

The parameters for the models are estimated from music recordings

where the sounding notes have been annotated. The transcription

methods use the models for calculating likelihoods for notes with dif-

ferent pitches and for rest segments in the music signal under analysis.

Hidden Markov model is an excellent tool for this task with well-

established theory and algorithms. Briefly, HMM is a state machine

consisting of a set of states Q = {q1, . . . , q|Q|}, where |Q| denotes the

number of states. Let rt ∈ Q denote the random state variable of the

machine at time t. A HMM can then be defined by the following param-

eters: state-transition probabilities P(rt = qj|rt−1 = qi), the observation

likelihood distribution P(ot|rt = qj), and the initial state probabilities

P(r1 = qi). The actual state of the machine at time t cannot be directly

observed (hence the name hidden) but it is estimated based on an ob-

servation vector ot and its state-conditioned likelihood distribution.

Once we have the HMM parameters, the optimal state sequence r∗1:T

explaining a sequence of observations o1:T ≡ o1o2 . . . oT is given by

r∗1:T = argmax
r1:T

[
P(r1)P(o1|r1)

T∏

t=2

P(rt|rt−1)P(ot|rt)

]
, (4.1)

which can be efficiently found by using the Viterbi algorithm [31], for

example. A detailed introduction to HMMs is given in [101].
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Figure 4.1: Note HMM accounting for a single note pitch n.

4.1 Note Event and Rest Modeling

The proposed methods use a three-state left-to-right HMM for note

event modeling. State qi represents the typical feature values in the

i:th segment of a sounding note and the three states can be interpreted

as the attack, sustain, and ending of a note event (see [108] for a dis-

cussion). Figure 4.1 illustrates the basic idea of the model accounting

for a single note pitch n. To exemplify, let f̂0(t) denote the fundamental

frequency estimate associated with the note, s(t) its salience, and a(t)
the accent signal in frame t. The observation vector for the note is then

defined by

on,t = [f̂0(t) − n, s(t), a(t)]T. (4.2)

There are usually several F0 estimates around each note pitch n as

illustrated in Figures 3.2 and 3.3. Therefore, the maximum-salience

F0 estimate in the vicinity of the note pitch is often associated with the

note (see the publications for details).

After this, the observation likelihoods P(on,t|rt = qj) for each state

qj at each time t are calculated based on the HMM parameters. The

optimal state sequence r∗1:T can then be resolved by Eq. 4.1, which is

shown with the arrowed line in Figure 4.1. The change between the
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model states in frames 5 and 6 indicates the temporal position of a

transition from the attack state to the sustain state, for example.

As already introduced in Figure 4.1, the methods use the distance

between a fundamental frequency estimate and the modeled note pitch

n instead of the actual value of F0 estimate. This makes the note event

model parameters independent of the actual note pitch and has the

advantage that only one set of HMM parameters needs to be trained

for the note event model in order to represent different note pitches.

However, the observation vectors are specific to each note pitch n, as

exemplified in Eq. 4.2. The form of the observation vector is specified

for each transcription method in the included publications.

The parameters for the note event HMM are trained from audio

recordings with manually labeled note events. For example, the RWC

databases contain such annotations for a number of musical recordings

[38, 39] and are very useful for the task (Figures 3.2 and 3.3 showed an

example of the labeled note events). For the time region of each anno-

tated note, the observation vectors constitute a training sequence for

the model. The HMM parameters are then obtained using the Baum-

Welch algorithm [101] where observation likelihood distributions are

modeled with Gaussian mixture models (GMMs).

In addition to note events, the methods use a model for rests, i.e.,

the segments where no notes are sounding. Rests are modeled with

a one-state HMM which is here analogous to a GMM, since there is

no hidden state if only one state is possible. Usually the maximum-

salience value in frame t is used as a component of the observation

vector or,t for rest, and the observation likelihood P(or,t) is calculated

using the learned rest GMM parameters, as in [P2] and [P3]. In [P1],

the likelihood for rest is derived from the note observation likelihoods,

and in [P4], the rest state corresponds to using the “background” ex-

planation for all notes (see [P4] for the details).

Using the Models

Now we have models for a note with pitch n and rest segments. In or-

der to transcribe music, the note model structure shown in Figure 4.1

is replicated for each note pitch in the desired note range, e.g., for MIDI

notes 44–84, and combined with the rest model. This results in a net-

work of note models and the rest model as illustrated in Figure 4.2.

Given the frame-wise extracted features, the observation likelihoods

are calculated for each state of each note and the rest state based on the
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Figure 4.2: A network of note models and the rest model for music

transcription.

model parameters. In addition to the state-transitions within the mod-

els, the methods need probabilities for the transitions between notes

and rests, i.e., the musicological model. Obtaining these probabilities

will be discussed in Chapter 5.

The transcription is obtained by finding a path through the network

(indicated with the arrowed line in Figure 4.2) by solving Eq. 4.1. This

simultaneously produces the discrete pitch labels and note segmenta-

tion, i.e., the note onsets and offsets. A note starts when the path en-

ters the first state of a note model and ends when the path exits its last

state. Rests are produced when the path goes through the rest state.

Figure 4.2 shows three transcribed notes (with discrete note pitches

n, n, n + 1) and their onset and offset times. There is also a rest seg-

ment in the first few frames. In [P1], a polyphonic transcription output

is obtained by transcribing several note sequences in an iterative man-

ner. The method simply finds a path through the network, prohibits

using the transcribed note segments on the next iteration, and repeats

this as long as new notes are found or until the desired polyphony is

reached.

The path can be found using the Viterbi algorithm as used in [P2],

[P3], and [P4]. Another alternative, the token-passing algorithm [140],
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was applied in [P1]. The token-passing algorithm was originally de-

signed for large-vocabulary speech recognition and is very similar to

the Viterbi algorithm. The Viterbi decoding relies on the first-order

Markov assumption (i.e., a random state is conditionally dependent

only of the preceding state) whereas the token-passing algorithm can

store several best paths (or, tokens) in each frame and possibly find a

better global path through the network if the first-order Markov as-

sumption does not hold. This happens when the musicological model

uses several previous notes to determine the transition probability, or

a key estimate is updated in a causal manner. In practise, however,

there is no significant difference in the transcription results between

the decoding algorithms, and thus we prefer using the Viterbi decoding

due to its simple implementation and very straightforward processing.

The above discussion is affirmed by the results for the bass line tran-

scription from streaming audio [P3]; the difference in the transcription

results was negligible between the standard Viterbi decoding (the first-

order Markov assumption held) and a suboptimal Viterbi with a block-

wise backtracking and a causally updated key estimate. See [P3] for

details.

4.2 Contrasting Target Notes with Other

Instrument Notes and Noise

The transcription method for the melody, bass line, and chords [P4]

uses three types of note event models instead of a single model for the

target notes. The basic idea is that all the considered note pitches at all

times are classified as target notes (melody or bass), as notes from the

other instruments, or as noise or silence. The use of the target-notes

and the other-notes models aims at improving the discriminability of

the target sound source from other instruments. Details are given in

[P4].
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Chapter 5

Musicological Modeling

Chapter 4 introduced the acoustic modeling of individual note events

and rests without using knowledge on the other simultaneously or pre-

viously sounding notes in the music piece. The musical context, how-

ever, plays an important role in how notes are arranged and related

to the harmony of the piece. In other words, some notes and note se-

quences are more probable than others when considering the musical

context. As an example, a note sequence C, E, G (the notes of C major

chord) in the key of C major is musically very natural. Shifting the last

note of the sequence, G, up by a semitone to G♯ results in the notes of

C augmented chord. If the individual note models for pitches G and

G♯ give approximately equal likelihoods for the notes, the methods can

utilize musical context (e.g., the key of C major and the previous notes)

and prefer transcribing the more common sequence which ends in note

G.

The proposed framework for music transcription enables utilizing

musicological knowledge in the transcription in a straightforward man-

ner by assigning probabilities for the transitions between notes and

rests. The proposed methods use this feature by first estimating the

musical key of the piece and then using key-dependent transition prob-

abilities, trained with note sequences from MIDI files. The following

sections briefly introduce the key estimation and the training of the

note-transition models, with a discussion about chord transcription.

The details of each method are given in the enclosed publications.

38



5.1 Key Estimation

Several methods have been proposed for the key estimation and the

analysis of chord progression from music signals, including [100, 34,

95, 87, 52, 67]. In order to analyze simultaneously sounding notes,

pitch saliences are commonly mapped to a pitch-class representation.

Briefly, the set of notes which belong to a pitch class m ∈ {0, 1, . . . , 11}
is defined by Hm = {n | n ∈ N ∧ mod(n, 12) = m}, where N is the note

range and mod(x, y) ≡ x−y⌊x/y⌋. The pitch-class profile PCPt(m) mea-

sures the salience of pitch class m in frame t, for example by summing

up the saliences of notes belonging to the pitch class. This type of rep-

resentation is also referred to as the chroma vector. The calculation of

the pitch-class profile varies between different methods but all of them

bear information on how spectral energy is distributed among the pitch

classes. This representation is extensively used in several harmonic

analysis methods, including the chord transcription method in [P4].

The pitch-class representation can be further mapped to a musically

more relevant representation, such as the tonal centroid [46]. The tonal

centroid is a feature vector based on the harmonic network, or Tonnetz

(see [100, 34]), and the idea is that two tonal-centroid vectors mapped

from pitch classes with close harmonic relations (e.g., fifths, major and

minor thirds) are close to each other in the Euclidean space. The tonal

centroid has been applied in the detection of harmonic changes [46]

and in key and chord transcription [67], for example.

Commonly, the pitch-class profile, or the like, is used as an obser-

vation vector ot for a HMM with states representing chords, keys, or

chord transitions, as in [113, 5, 87, 93, 67]. The model parameters are

obtained either by training them from audio with labeled chord and

key segments, or then using reported pitch-class distributions for dif-

ferent keys or chords. The latter include, for example, the pitch-class

distributions reported by Krumhansl [65] shown in Figure 5.1. Once

the parameters have been obtained, the model can assign a likelihood

for each key or chord given the observation in a frame. Let this be de-

noted by P(ot|rt = qj) where the state qj can be one among i) a set of

chords, j ∈ 0, . . . , 23, to represent twelve major and twelve minor tri-

ads or ii) a set of relative-key pairs, j ∈ 0, . . . , 11, to represent pairs

[C major / A minor], [D♭ major / B♭ minor], and so forth until the pair

[B major / G♯ minor]. If key or chord transitions are defined as well,

P(rt = qj|rt−1 = qi), the Viterbi algorithm can be used to decode a se-

quence of keys or chords using Eq. 4.1.
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Figure 5.1: Pitch class occurrence frequencies in major and minor keys

with respect to the tonic pitch class reported by Krumhansl [65, p. 67].

As an example, the pitch class names are listed below the figure axes

for the relative keys C major and A minor. (After [108, p. 386].)

The proposed methods use a key estimation method to decide the

relative-key pair of the music piece under analysis. In [P4], for ex-

ample, the key estimation first maps the values of the pitch salience

function into a pitch-class profile. Then, the likelihood of a key is ob-

tained by rotating the profile so that pitch class m = 0 corresponds to

the tonic note of the key and comparing the rotated profile with the dis-

tributions reported by Krumhansl. The likelihoods are accumulated for

each key over time, and the most probable relative-key pair is simply

decided by the maximum likelihood among the keys. This corresponds

to a key HMM with twelve states where, however, there exist no tran-

sitions between the states, i.e., P(rt = qj|rt−1 = qi) 6= 0 only if i = j. The

chord transcription is similarly obtained, however, with chord transi-

tions and profiles for major and minor chords estimated from manually

annotated music.

Key estimation forms a basis for utilizing musical context, and nat-

urally, for using key-dependent note-transition models. The key esti-

mation method itself is not important as long as it produces somewhat

correct estimates, and the proposed methods could apply any of the

above-listed key estimation methods. Publication [P2] reports the in-

fluence of the perfect and the worst-case key estimates on the melody

transcription results.
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5.2 Note Sequence Modeling

The objective of note sequence modeling is to solve ambiguous note la-

belings by utilizing previous note pitches and the estimated key. Given

a sequence of note pitches, n1:t−1, the note sequence models give prob-

abilities P(nt|n1:t−1) for the following note nt. It is not reasonable to

model all the possible past note sequences, and therefore, the methods

approximate the probabilities based on the most recent notes. Note N-

gram models the probability of the note pitch based on N − 1 previous

note pitches:

P(nt|n1:t−1) ≈ P(nt|nt−N+1:t−1). (5.1)

Most of the methods apply note bigrams where N = 2. This reduces the

model in Eq. 5.1 to P(nt|nt−1) fulfilling the first-order Markov assump-

tion. The models take into account only the pitch of the notes and not

the temporal aspects such as onsets or durations.

The note bigram models are based on histograms obtained by count-

ing note-interval occurrences from a collection of MIDI files where key

information has been annotated. The Essen Associative Code and Folk-

song database (EsAC) is suitable for melody note sequences, including

thousands of folksongs with key information.1 Let kmaj = 0, . . . , 11 and

kmin = 0, . . . , 11 denote the major and minor mode keys with tonic notes

C, C♯, D, and so forth. A transition from note n to note n′ is now defined

by i) the degree of the first note n and ii) the interval n′ − n between

the notes. The term note degree refers here to distance mod(n − k, 12).
Then these transitions are counted from the MIDI files.

The upper panels in Figure 5.2 show the obtained histograms of

note transitions for major and minor keys in the EsAC database. The

histograms show very clearly that most of the transitions occur within

the diatonic scale. The example given at the beginning of this chapter

can now be confirmed. For C major key, kmaj = 0, the transition from

note E (n = 52) to G (n′ = 55) results in note degree mod(52 − 0, 12) = 4
with interval 55 − 52 = 3 which has occurred much more frequently

than the transition to G♯ with interval 4.

Since key estimators easily confuse the major and minor mode, the

major and minor histograms are combined to obtain a single distribu-

tion for relative-key pairs k = 0, . . . , 11 corresponding to [C major / A

minor], [D♭ major / B♭ minor], and so forth until the pair [B major / G♯
minor]. This is easily obtained by summing up the histograms and the

result is shown in the bottom panel of Figure 5.2. However, we need to

1www.esac-data.org
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Figure 5.2: Note transitions in EsAC database.

rotate the histogram for minor keys so that the notes of A minor match

the notes of C major, for example. In general, the relation between

the relative major and minor keys obeys kmaj = mod(kmin + 3, 12) and

kmin = mod(kmaj + 9, 12). For example, B minor kmin = 11 has relative D

major key by kmaj = mod(11 + 3, 12) = 2.

The note transition histograms can now be used to build a key-

dependent note bigram, which gives probabilities for transitions be-

tween notes once the relative-key pair k has been estimated. Figure

5.3 shows two example note bigrams for relative-key pairs [C major / A

minor] and [F major / D minor] for note range C3–B3 (i.e., MIDI notes

48–59). The Witten-Bell discounting algorithm [135] is used for nor-

malizing and smoothing the transition probabilities. In general, the

transition probabilities over all states given the preceding state must

sum to unity.
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Figure 5.3: Two note bigrams for relative-key pairs [C major / A minor]

and [F major / D minor] where the transition probability is indicated

with gray-level intensity.

The note bigrams do not take into account the absolute pitch of

the notes but only the interval between them. However, it is advan-

tageous to prefer target notes in the typical pitch range of the target

instrument. In [P4], this was implemented by weighting the probabil-

ities with a normal distribution over pitches (see [P4] for details). The

methods also take into account the transitions between notes and rests.

The note-to-rest and rest-to-note transitions can be counted similarly

to note transitions within the training material. Another alternative is

to use, for example, the Krumhansl distributions. This assumes that

note sequences tend to begin and end with the pitches on the diatonic

scale.

N-gram modeling consists of |Q|N possible transitions, where |Q|
is the number of states. As a result, using the models with large

values of N requires lots of training material and memory. Variable-

order Markov model offers a useful alternative for note pitch prediction

where the context length varies in response to the available statistics

in the training data [4]. This is a very desirable feature, and for note

sequences, this means that a single model can take into account both

short and long note sequences based on their occurrence in the training

data.

VMM prediction was applied instead of N-grams to capture the

repetitive nature of bass note sequences [P3]. The VMM was trained

using bass note sequences in a collection of MIDI files. In addition, it

is likely that the same note sequences, possibly with slight variations,
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are repeated several times within a song. We took this into account

by an optional post-processing step in [P3], where a song-specific VMM

was trained with the first transcription of the bass line and used on the

second pass of the Viterbi decoding. This slightly reduced transcription

errors in our simulations.

5.3 Chord Sequence Modeling

In addition to note sequences, it is beneficial to utilize musicological

modeling in transitions between chords, since there are common chord

progressions in Western music. The chord transition model can be ei-

ther estimated from data as in [P4], or then the model can be derived

from music theory basics. As an example of this, Bello and Pickens

used the distance on the circle of fifths for approximating probabilities

for chord transitions [5].
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Chapter 6

Transcription Methods and

Evaluation

This chapter briefly introduces the evaluation criteria, used databases,

and results for the proposed transcription methods. Some references

are given to work by other researchers, where the transcription meth-

ods have been used in comparative evaluations. The chapter is con-

cluded with transcription examples.

6.1 Evaluation Criteria and Data

For the note-based evaluation of the transcriptions, we used the recall

rate R and the precision rate P defined by

R =
#(correctly transc. notes)

#(reference notes)
, P =

#(correctly transc. notes)

#(transcribed notes)
, (6.1)

in [P1]–[P4]. A reference note was correctly transcribed by a note in

the transcription if their discrete MIDI note numbers were equal, the

absolute difference between their onset times was less than 150 ms,

and the transcribed note was not already associated with another ref-

erence note. The F-measure F = 2RP/(R + P ) was used to give an

overall measure of performance. Temporal overlap ratio of a correctly

transcribed note with the associated reference note was measured by

ρ = (min{E} − max{B})/(max{E} − min{B}), where sets B and E con-

tained the beginning and ending times of the two notes, respectively.

Mean overlap ratio ρ̄ was obtained by averaging ρ values over the cor-

rectly transcribed notes.
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For the sake of comparison with the melody transcription method

by Ellis and Poliner [29], the method in [P4] was evaluated also with

frame-based evaluation criteria. The criteria were adopted from the

“audio melody extraction” task in MIREX 2005–2006. See [98] for de-

tails.

The chord transcription in [P4] was evaluated by comparing the

transcribed chords with the reference chords frame-by-frame, includ-

ing an error analysis and a comparison with the chord transcription

method by Bello and Pickens [5].

All the proposed methods have been evaluated with RWC popular

music (RWC-MDB-P-2001) and genre (RWC-MDB-G-2001) databases

of polyphonic music [38, 39]. The databases contain a MIDI file for each

song with manually annotated reference notes for the melody, bass, and

other instruments. MIDI notes for drums, percussive instruments, and

sound effects were excluded from the evaluations. The results were ob-

tained via cross validation since the databases have been also used

for training the acoustic models. Notice that some of the database

songs were omitted due to unreliable synchronization with the refer-

ence notes, or due to the absence of the transcription target (e.g., the

melody or the bass line).

For chord transcription in [P4], we used the first eight albums by

The Beatles with annotations provided by Harte et al. [45]. This da-

tabase was used both for the training and the evaluation with cross

validation.

6.2 Results

Table 6.1 summarizes the reported results and the used data for the

proposed transcription methods. Detailed results for different method

configurations are given in the publications. To summarize, recall rate

of 60% was achieved for the melody and bass line with precision varying

around 50% for polyphonic popular music. For varying styles of music

in RWC genre database, the performance was somewhat lower than for

popular music. Transcription of all the pitched notes achieved the low-

est results where, however, the task was also the most challenging. In

the evaluation of the method [P1], it was required that also the refer-

ence notes with colliding pitch and timing (about 20% of the notes) are

transcribed although the method is not capable of transcribing such

notes. The chord transcription gave correct frame-based labeling for

about 70% of the time.
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The table also lists the execution speed of the methods for monau-

ral audio input compared with real-time processing (i.e., the duration

of input signal is divided by the execution time). These values were

obtained with simulations on a 3.2 GHz Pentium 4 processor. The lat-

est transcription methods, e.g., [P3] and [P4], are the most efficient in

terms of the execution time.

6.3 Comparative Evaluations

The proposed transcription methods have achieved good results in com-

parative evaluations with other state-of-the-art methods. For example,

the transcription method [P1] was submitted to task “Multiple Funda-

mental Frequency Estimation & Tracking” in MIREX 2007 and 2008

evaluations [1, 2]. The task included two subtasks: multi-F0 estima-

tion and polyphonic note tracking. In the multi-F0 estimation subtask,

the aim was to frame-wise extract multiple pitches from polyphonic

music recordings. The second subtask, polyphonic note tracking, re-

quired transcribing pitched note events in music recordings.

Figure 6.1 summarizes the results for the subtasks in MIREX 2007

evaluation. The proposed method (team “RK”) was ranked first in both

of them (see [1] for detailed results and method abstracts). In the

frame-based multiple-F0 estimation subtask, the differences in the re-

sults were negligible between the first four methods. The evaluation

criteria for this subtask are defined in [99]. Since the proposed method

was originally designed to produce MIDI notes as an output, the differ-

ences were more pronounced in the subtask of polyphonic note tracking

(the bottom panel in Figure 6.1). The method also performed best for

piano material although the note model parameters were trained to ob-

tain a generic music transcription method without specializing for any

particular instrument. The trained note-model parameters were the

same ones used in the simulations of the original publication [P1].

Figure 6.2 shows the corresponding results in MIREX 2008 evalu-

ation [2], where our results were identical to the ones in 2007 evalua-

tion. Pleasingly, the results were improved by other teams, including

the submissions of Yeh et al. (team “YRC”) and Pertusa & Iñesta (team

“PI”) in the frame-based evaluation. Our submission was ranked as

fourth in this subtask. In the note-tracking subtask (the bottom panel

in Figure 6.2), our method [P1] still outperformed other submissions

according to the “onset only” criterion (as in the 2007 evaluation). How-

ever, if the note offsets were taken into account in the evaluation cri-
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Figure 6.1: MIREX 2007 results for “Multiple Fundamental Frequency

Estimation & Tracking” task. See text for details.

terion, the submission by Yeh et al. [137, 11] performed slightly better

(see [2] for the detailed results).

The good general performance of the method was also noted by Po-

liner and Ellis in [99]. They compared the results of the proposed

method [P1], the transcription method by Marolt [74], and their tran-

scription method in a polyphonic piano transcription task. See [99] for

details.

The proposed methods for melody transcription [P2] and [P4] have

also been evaluated in “Audio Melody Extraction” task in MIREX eval-

uations 2005, 2006, and 2008. The goal was to estimate F0 trajectory

of the main melody within polyphonic music. In 2005, we submitted

a version of the polyphonic transcription method [P1] which was then

developed into the melody transcription method [P2] for the 2006 sub-
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Figure 6.2: MIREX 2008 results for “Multiple Fundamental Frequency

Estimation & Tracking” task. See text for details.

mission1. The proposed methods were ranked second best both in 2005

and in 2006. The different approaches for the 2005 evaluation are com-

pared in detail in [98]. In 2008, the melody transcription method [P4]

was first used for producing a note-level transcription. This was fol-

lowed by the estimation of a detailed F0 trajectory for each note as

described in [P6]. The submitted method was ranked as third with

overall accuracy of 71.1% [2]. The methods by Cancela and by Dur-

rie et al. performed clearly better with overall accuracies of 76.1% and

75.0% whereas our method ran over 400 and 20 times faster than these

methods, respectively. Comparative results of the melody transcription

method [P2] have been also reported by Li and Wang in [72].

1For the detailed results of the 2006 evaluation, see www.music-

ir.org/mirex2006/index.php/Audio Melody Extraction Results.
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Figure 6.3: MIREX 2008 results for “Audio Chord Detection” task.

The chord transcription method [P4] was evaluated in MIREX 2008

“Audio Chord Detection” task [2]. The evaluation dataset consisted of

176 full songs by The Beatles where the annotations provided by Harte

et al. [45] were used as the ground-truth. The submitted methods

were required to transcribe major/minor triads and no-chord segments.

Evaluation was performed using a frame-based criterion similar to the

one used in [P4]. In addition, the evaluation was arranged for both

pre-trained methods (the parameters of the methods were fixed) and

methods which were run in three-fold cross validation. Our method

was evaluated in the former category.

Figure 6.3 shows the results for the pre-trained methods. The best

performing method by Bello & Pickens (team “BP”) labeled correctly

66% of the frames. Due to the rather similar approaches (namely using

HMMs) to the task, it is not surprising that differences in the results

are very small, e.g., Mehnert 65% (team “MM”), Ryynänen & Klapuri

64% (team “RK”), Khadkevich & Omologo 63% (team “KO”), and Pa-

padopoulos & Peeters 63% (team “PP”). As noted in [P4] in the compar-

ison with the method by Bello & Pickens, our method tends to confuse

major and minor modes more often. When these errors are ignored (the

white bars in Figure 6.3), our method performed as well as the method

by Bello & Pickens (both 69% correct). Our method took about half an

hour to transcribe the 176 songs and was the second fastest submission

after the method by Lee (team “KL”).
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Figure 6.4: Bass line transcription from streaming polyphonic audio.

See text for details.

6.4 Transcription Examples

This section shows a few transcription examples and graphical user

interfaces (GUIs) for the proposed methods. Figure 6.4 shows an ex-

ample of bass line transcription from streaming audio [P3]. The pro-

posed method was implemented in C++ with a GUI. The implemen-

tation takes an audio file as the input and starts the audio playback

and the transcription process simultaneously. Since here the method

analyzes an audio file instead of an audio stream, the causal process-

ing proceeds faster than the playback and the transcription results can

be shown in advance. The vertical line shows the audio playback po-

sition, the black rectangles the transcribed bass notes, the green and

gray dots the frame-wise extracted F0s, and the red line the estimated

upper F0 limit for the transcription (see [P3] for details). The analyzed

song in the example is “Ignotus Per Ignotum” by Planet X.

Figure 6.5 shows an example of the melody, bass line, and chord

transcription [P4] of the song “Like a Virgin” by Madonna. The upper

panel shows the transcription on a piano roll, where the red rectan-
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Figure 6.5: An example of the melody, bass line, and chord transcrip-

tion. The common musical notation is produced directly from the piano-

roll representation. See text for details.
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gles show the melody notes, the blue rectangles the bass notes, and

the black rectangles the chords. Salience function values and the es-

timated likelihoods for chords are illustrated in the background. In

addition, the meter analysis method [64] is used to estimate the tem-

poral positions of measures and beats, shown with dashed and dotted

vertical lines, respectively. This temporal grid is used for producing

the common musical notation shown in the lower panel. Here the note

beginnings and durations are simply quantized to a 16th-note grid al-

though a more elaborate temporal quantization method, such as [134],

could be used. The common musical notation is automatically pro-

duced by writing the estimated key signature and all the notes and

chords with quantized timing into a Lilypond source file. Lilypond2

is an open-source music typesetting software which compiles text files

with a musical notation syntax into musical score documents.

The automatically produced transcription is not perfect as exem-

plified by Figure 6.5. The song begins with a correctly transcribed

monophonic bass line (with drums). However, this is problematic for

the chord transcription which follows the bass line notes as the chord

roots. In addition, the bass notes D♯, F♯, and C♯ can be interpreted as

the D♯m7 chord where the fifth is omitted, or as F♯6 without the third.

Therefore, the decision between the triads F♯ and D♯m is difficult even

for a human listener. The melody transcription follows the singing mel-

ody rather faithfully notating also some glissandi (e.g., at 12.5 s). On

the other hand, the predominant singing melody disturbs the bass line

transcription, e.g., around 14 s.

Despite the errors, the automatic transcription serves as an excel-

lent starting point for a user who wishes to obtain a perfect transcrip-

tion of the music piece. With this in mind, the transcription method

[P4] has been integrated into music annotation software. Figure 6.6

shows a screenshot of this software called SAMIRAT (Semi-Automatic

Music Information Retrieval and Annotation Tool), which has been de-

veloped at Tampere University of Technology and now aimed for com-

mercial distribution by a start-up company Wavesum. The software

first automatically transcribes a music piece and the user can then

edit individual notes or note groups to obtain a perfect transcription.

The software allows the simultaneous playback of the music piece and

the synthesized transcription, and visualization of the salience func-

tion and the results of meter analysis, for example. The software also

includes a time-stretching algorithm allowing the user to modify the

2Available for download at http://lilypond.org
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Figure 6.6: A screenshot of SAMIRAT. See text for details.

playback speed in real-time without affecting the pitch. This is a use-

ful feature for a detailed analysis of rapid note passages.
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Chapter 7

Applications Based on

Automatic Melody

Transcription

In addition to automatic or semi-automatic music transcription soft-

ware, the proposed transcription methods facilitate other applications.

This chapter briefly introduces two applications based on the automatic

melody transcription method published in [P4]: query by humming of

MIDI and audio [P5]; and accompaniment and vocals separation with

a karaoke application [P6].

7.1 Query by Humming of MIDI and Audio

Query by humming (QBH) refers to music information retrieval sys-

tems where short audio clips of singing or humming act as queries. In

a normal use case of QBH, a user wants to find a song from a large

database of music recordings. If the user does not remember the name

of the artist or the song to make a metadata query, a natural option is

to sing, hum, or whistle a part of the melody of the song into a micro-

phone and let the QBH system retrieve the song.

Query by humming has been extensively studied for over a decade

[33, 78] and it has remained as an active research topic [14, 122].

QBH systems provide an interesting topic for research as a combina-

tion of audio analysis methods, i.e., the automatic singing/humming

transcription [27, 48, 142, 115, 132], the study of melodic similarity

in symbolic domain [68, 121], and efficient information retrieval tech-

niques [136, 133]. For example, most of the early monophonic singing

56



transcription methods were developed for QBH systems, as described

in [108].

A common approach to QBH first transcribes the user singing ei-

ther into a F0 trajectory or segmented note events, and then searches

for matching melodies from a melody database. Approaches to simi-

larity measurement include string matching techniques [68], hidden

Markov models [79, 54], and dynamic programming [53, 133]. The re-

trieval efficiency is also essential, since for large melody databases, it

is not acceptable that the search time depends linearly on the number

of database items. For example, Wu et al. used a cascade of operations

with an increasing similarity requirement to narrow down the search

space so that the evaluation of each melody candidate was possible at

the final stage [136]. Variants of their system were top-ranked in the

MIREX 2006 and 2007 query by singing/humming tasks.

Most of the previous research has concentrated on retrieval from

MIDI-melody databases, which are usually manually prepared. How-

ever, it is highly desirable to perform the search over audio recordings

as well. This allows, for example, the user to perform queries for his or

her own music collection. Results on QBH of audio have been reported

in [86, 117, 26, 41].

The publication [P5] proposes an efficient QBH system which is ca-

pable of performing the search directly from music recordings. The

method is briefly introduced in the following but the details are given

in [P5]. Given a database of melodies in MIDI format, the method

constructs an index of melodic fragments by extracting pitch vectors,

where a pitch vector stores an approximate representation of the mel-

ody contour within a fixed-length time window. To retrieve audio sig-

nals, we use the automatic melody transcription method [P4] to pro-

duce the melody database directly from music recordings. The retrieval

process converts a sung query into a MIDI note sequence and then ex-

tracts pitch vectors from it. For each query pitch vector, the method

searches for the nearest neighbors in Euclidean space from the index

of database melody fragments to obtain melody candidates and their

matching positions in time. This is performed very efficiently by lo-

cality sensitive hashing (LSH). The final ranking of candidates is done

by comparing the whole transcribed query with each candidate melody

segment by using the method by Wu et al. [136]. The use of LSH pro-

vides a significant speed-up and retrieval performance comparable to

the state-of-the-art.

The QBH system [P5] was evaluated in MIREX 2008 “Query by

Singing / Humming” task (see [2] for detailed results and abstracts)
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Figure 7.1: MIREX 2008 results of “Query by Singing / Humming” eval-

uation. The submitted method [P5] is indicated by team “RK”.

for which the results are shown in Figure 7.1 for two different corpora.

The top panel in Figure 7.1 shows the results for Jang’s corpus. The

method [P5] indicated by team “RK” was top-ranked together with the

submission by L. Wang (team “LW”), where the submissions obtained

mean reciprocal rank (MRR) of 0.93. In publication [P5], we evaluated

the method with this corpus and reported similar results. The bot-

tom panel in Figure 7.1 shows the results for the ThinkIT corpus. On

this corpus, the method obtained MRR of 0.89 whereas the methods by

L. Wang and X. Wu & M. Li (team “WL”) obtained clearly better results

(MRR of 0.94).

The direct search from audio recordings also showed very encour-

aging results as reported in [P5], where the database of 427 songs

contained approximately 26.8 hours of audio. The method retrieved

the correct recording in the top-three list for the 58% of 159 hummed
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queries. In addition, the proposed method does not require that the

user starts the singing from the beginning of the melody, as in [41], for

example. This also enables immediate playback of the matched melody

segments in the original audio recordings. The automatic transcrip-

tions of some audio recordings still contain too many errors to perform

the retrieval robustly. Also the system does not utilize rests, although

in some cases, these might be the only cues for retrieval that the user

can robustly perform.

7.2 Accompaniment Separation and

Karaoke Application

The second application based on the automatic melody transcription

method [P4] performs separation of accompaniment and vocals from

commercial audio recordings [P6]. In general, music is distributed in

a form where all the instruments are mixed together in a monaural

or stereophonic audio signal. This type of material is unsuitable for

karaoke usage since the lead vocals have been mixed with the accom-

paniment. Therefore, it is useful to have a method for producing the

song accompaniment directly from a desired audio recording.

Sound-source separation has remained as an active research topic

for decades. For music signals, upmixing an existing music record-

ing into a representative set of sources (e.g., instruments) or musi-

cally meaningful objects, such as notes, enables applications ranging

from audio-content modification or remixing (such as the Melodyne

software) to structured audio coding, for example. Obtaining such a

structured representation is also related to automatic music transcrip-

tion.

Various techniques have been applied to separate sources in music

signals. Ozerov et al. [90] adapted a pre-trained generic model of the

accompaniment spectra with the detected non-vocal segments in the in-

put sound to separate the vocals and the background. Li and Wang [72]

used consecutive steps of vocal/non-vocal segment detection, predomi-

nant pitch detection, and the construction of a time-frequency mask

for synthesizing the singing melody. Han and Raphael [44] used ex-

plicit note information from an automatically-aligned musical score to

estimate a binary time-frequency mask to suppress a solo instrument

in classical orchestra recordings. Burred and Sikora [7] applied sinu-

soidal modeling followed by onset detection to form groups of partial
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tracks. Each group was then searched for a match in a library of timbre

models both to classify and to resynthesize sound sources. Smaragdis

and Brown [116] used non-negative spectrogram factorization for sep-

arating and transcribing piano notes. Virtanen [129] extended this

model with temporal continuity and sparseness criteria to improve the

separation performance on music signals. The above-mentioned meth-

ods perform the separation for monaural signals, whereas the methods

by Barry et al. [3], Vinyes et al. [128], Vincent [125], and Master [76]

utilize the spatial information in stereophonic music signals in the sep-

aration.

Here the motivation for using melody transcription is twofold. First,

melody transcription produces useful information for a more robust ac-

companiment separation. The separation can be performed only dur-

ing the transcribed notes, thus preserving original audio quality during

rests. The transcribed notes also allow the robust estimation of a de-

tailed F0 trajectory for the melody which is utilized in the separation.

Similar approach to accompaniment and vocals separation has been

utilized by Li and Wang [72].

Secondly, karaoke performances are usually given by non-profes-

sional singers who may sing out-of-tune, i.e., the singing pitch differs

noticeably from the original melody notes. The automatic melody tran-

scription, however, allows the visualization of the original singing mel-

ody to aid the singer as in the karaoke game SingStar1 and in an on-

line karaoke service2, for example. The transcription can be also used

to tune the user singing to the transcribed singing melody in real-time

if desired. Nakano et al. proposed a method for visualizing the user

singing pitch together with the melody analyzed from music recordings

[85].

Figure 7.2 shows the GUI of the karaoke-application prototype. The

red and green lines show the F0 trajectory of the transcribed melody

in the recording and the user singing, respectively. As the figure illus-

trates, the user sings several semitones too low for the most of the time.

The application, however, tunes the user singing to the transcribed

melody in real-time if desired. The details of the proposed method and

the karaoke application are given in [P6].

The vocals separation of the proposed method has also been utilized

in singer identification [81] and in automatic alignment of musical au-

dio and lyrics [80]. Whereas the method [P6] concentrates on the ac-

1www.singstargame.com
2www.karaokeparty.com

60



Figure 7.2: Karaoke application with real-time tuning of user singing.

The red and green lines show the F0 trajectory of the transcribed mel-

ody and the user singing, respectively. See text for details.

companiment separation, the method was further developed to produce

better quality for the separated vocals using non-negative spectrogram

factorization [131].
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Chapter 8

Conclusions and Future Work

The automatic music transcription methods developed in this thesis

take an important step towards the transcription of realistic music

signals although the problem of automatic music transcription still

awaits for a complete solution. The general research focus has shifted

from monophonic material to complex polyphonic signals. This trend

can also be observed in the work of music-signal processing commu-

nity, which sets expectations for the upcoming commercial applications

aimed at the large audience. This thesis demonstrates that the auto-

matic transcription of complex polyphonic music is possible in practise,

and useful applications can be build upon the transcription methods.

The combination of the acoustic and musicological models appears

to be a very powerful approach to automatic music transcription. Start-

ing out with monophonic singing transcription, the statistical frame-

work has been successfully applied in polyphonic music transcription

with relatively small changes. The framework is very flexible since

it allows the models to be trained on any annotated music material,

and the individual components, such as the acoustic feature extrac-

tors and the key estimation method, can be easily replaced. This is

clearly shown by the diversity of the proposed transcription methods.

The framework provides an intuitive and practical approach to the mu-

sic transcription problem.

The three-state HMM represents notes in a very intuitive manner.

The note modeling allows to resolve the note segmentation and label-

ing jointly, whereas most of the other approaches perform these two

tasks separately. In literature, the note segmentation has received con-

siderably less attention than the estimation of multiple pitches. This

is indicated, e.g., by the results of MIREX 2007 and 2008 evaluations

where the differences in the results are more pronounced when also
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the note segmentation is required. However, the note segmentation is

important and necessary for representing the transcription outputs as

MIDI files, for example.

Although the transcription quality still leaves room for improve-

ment, the results are quite satisfactory. From a subjective point of

view, the transcription methods already do a better job than musically

untrained users. Furthermore, the methods output the absolute note

pitches and their temporal positions in music recordings very quickly

and provide at least a useful starting point for manual music transcrip-

tion. Also the two applications based on automatic melody transcrip-

tion show very promising results.

Automatic music transcription provides interesting research chal-

lenges, and there are several possible directions for the future work

which have not been investigated in this thesis.

• Utilizing timbre in acoustic modeling. Although the acoustic note

models are specifically trained, e.g., for the melody and bass notes,

timbre has not been utilized in this work. Features describing the

note timbre should be integrated into observation vectors.

• Utilizing stereophonic/multichannel audio. Usually the transcrip-

tion methods in the literature process only monaural music sig-

nals, and to the author’s knowledge, there are no transcription

methods which utilize stereophonic audio. However, the major-

ity of commercial music is distributed in stereo and multichannel

audio has been successfully utilized in sound source separation,

for example. This facet should be taken into account also in the

transcription methods.

• Top-down approach to music transcription. Most of the transcrip-

tion methods use the bottom-up approach in music transcription.

However, following the human approach to music transcription,

top-down processing should be utilized at a large scale. Music

recordings repeat the same melody phrases, chord sequences, and

sections. A top-down approach could utilize this feature by using

music structure analysis to produce similar segments which pos-

sibly contain several repetitions of note sequences, for example.

• Utilizing data mining and web resources. There exist large collec-

tions of manually prepared MIDI files, printed music, chord maps,

and lyrics in the web. Although the collections contain errors and

are not and will not be complete, a fair amount of transcriptions
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exist for the most popular songs. The integration of automatic

music transcription, score alignment, and music-information re-

trieval techniques can take the next big step in music transcrip-

tion technology.
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Errata and Clarifications for

the Publications

• [P1], page 321, Section 3.3. “A transition from the silence model

to itself is prohibited.” is a bit confusing; there is no silence-to-

silence transition in the musicological model but the silence model

itself (a one-state HMM) has a self-transition.

• [P2], Table 3. The “Distance on the circle of fifths” in the last

column should be > 3, not ≥ 3.
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