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Abstract

Personal multimedia databases contain thousands of items and other
databases on the Internet may contain even billions of items. Finding
a particular item manually from such databases becomes overwhelm-
ing and thus automatic search engines are required to lighten the job.
Query by example refers to automatically finding multimedia items
from a database, which are similar to the example provided by the user.
This is an important task in modern multimedia databases.

This thesis deals with automatic query by example of audio sam-
ples. The emphasis is on representation and distance measures be-
tween two audio signals, which are used to estimate the similarity be-
tween these two signals. The thesis also covers computational issues,
which are highly important when it comes to practical implementation
of the algorithms.

Two different audio signal representations are proposed. These rep-
resentations are interconnected, since the first separates drums from
a polyphonic music signal although the same approach could be used
to separate other parts of the original signal as well, for example, har-
monic instruments. The second representation models the harmonic
sound using only a few parameters. The proposed method is based
on Mel frequency cepstral coefficients, which are further modeled us-
ing attack-decay-sustain-release curves with temporal evolution of har-
monic instruments.

Most distance measures, used in audio signal processing, are based
on dividing a signal into frames, extracting perceptually motivated
features from each frame, and calculating the distance between the
features. Most of the proposed distance measures use Gaussian mix-
ture models to estimate the probability density functions of the frame-
wise features and calculate the distance between the Gaussian mixture
models. However, the thesis also introduces a parameter free distance
measurement. This is based on compression ratios of audio signals and



hence it removes the user influence on the results, since no features or
other parameters need to be set.

In a query by example application, the similarity between the ex-
ample provided by the user and each database item need to be calcu-
lated in order to obtain a ranked list of database samples. However,
in practical applications this operation is very time-consuming if the
database contains millions of items. The proposed method applies key-
sample transformation to reduce the series of feature vectors, used to
represent each signal, into a single feature vector. The database is then
clustered and the search is restricted to only a few clusters, thus saving
retrieval time with some loss of accuracy.

ii
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Chapter 1

Introduction

The explosive growth of digital multimedia information has gener-
ated the need for automatic content analysis tools to manage the huge
amounts of data. Multimedia data used to be designed mostly for pro-
fessional use but during this decade the Internet and mobile devices
have rapidly increased the amount of personal and on-line digital infor-
mation. As a consequence, managing all the data manually has become
an overwhelming task.

Traditionally, the emphasis on multimedia management has been
in image and video analysis, but lately the importance of audio content
has become apparent. In addition to pure audio signals, video analysis
can also benefit from inclusion of the audio content [85]. For example,
in a soccer game it can be difficult from the video to detect a goal, but it
is easy to track the crowd cheering from the audio content. There are
also cases when a certain event occurring in the background is impos-
sible to detect without the audio. For example, a car approaching from
behind which can not be observed visually, but auditory clues are obvi-
ous. For example, Li et al. used both audio and visual clues for video
skimming [48].

Nowadays, audio management has also gained increasing commer-
cial value. A good example is music information retrieval which is
used in many ways in commercial applications such as Musipedia [58],
Midomi [54], and Last.fm [44]. These applications retrieve music pieces
based on a user profile or a given query.

This thesis deals with general audio retrieval and especially with
query by example (QBE) applications. Probably the single most impor-
tant aspect of such applications is the similarity estimation between
audio samples. Thus, the focus of this thesis is on similarity measures,



which are the crucial part in, for example, classification, segmentation,
highlight extraction, and QBE tasks.

1.1 Overview of Audio Retrieval

Expectations with respect to audio retrieval applications are enormous,
since people hope for a system that can perform the same operations as
human being. However, the human ability to process information from
the environment is astonishingly well developed. In addition to hear-
ing and recognizing sounds, a human can also find semantic meaning
in them and he/she has decades of experience on how to process dif-
ferent kinds of information. A human can, for example, select from a
mixture of several sound sources the interesting one and follow it. Au-
tomatic systems often try to mimic the properties of human hearing but
are still far behind. A comprehensive study in content based retrieval
was made in the MUVIS framework [21, 38, 59], which proposed an
overall system performing both audio and visual segmentation, clas-
sification, indexing, and retrieval. Kiranyaz et al. have also proposed
progressive query [39] and database indexing [40] to achieve faster re-
trieval results.

The typical problem in audio retrieval applications is how the user
can define the kind of audio clips, referred here as samples, that he/she
is searching for. For a normal user, it might be difficult to verbally
describe the properties of an audio sample. For this reason the query
by example (QBE) method has attracted increasing interest lately. In
QBE a user can give an example of the audio sample he/she is search-
ing for. The example could be, for example, humming [50], clapping
[34], [74], or a real audio sample [35]. An innovative method for au-
dio collection navigation was proposed by Stewart et al. [74]. In their
system, a user can navigate through a music collection in two or three
dimensional space using ambisonics and binaural technology.

One challenge nowadays in multimedia retrieval is that significant
amounts of recordings and processing are made using mobile devices.
These devices are limited in processing power, memory, storage space,
and battery duration. These limitations have to be considered when
designing applications for mobile devices. Iftikhar and Gabbouj [31]
proposed a client-server approach, where the user can make an audio
or a visual query through the client which is a mobile device but the
database is stored on the server which performs the actual query oper-
ations.



1.2 Problem Definition

Audio retrieval is a wide research area and can be approached from
several different directions. In this section the approach used in this
thesis and the sub problems are introduced and the focus is aimed at
certain areas.

1.2.1 Signal Representation

Prior to analysis, an audio signal must be represented in an appropri-
ate form. The purpose of the representation is to express the original
signal in a more compact form and the aim is to minimize the percep-
tual quality loss in the process. Typical representations used nowadays
in everyday data storage are, for example, wave format (.wav) in CDs,
MP3 is used in mobile audio devices and computer environments, and
AMR format is used for speech signals on mobile devices.

One goal for audio signal representation is to separate the original
signal into sound objects and find representations for these different
sound sources. One such method is introduced in this thesis. A mu-
sic signal can be separated into a harmonic part and a transient part.
A very efficient representation for the harmonic part of the signal, in
terms of compression, is also introduced here.

Signal representations can also be used to assist the query by ex-
ample applications. In Chapter 4 a similarity measure is introduces
which uses modern audio codecs as a preprocessing step for the simi-
larity measure. The other possibility is to take advantage of the sound
source separation. For example, if trying to find similar rhythmic pat-
terns from the music it would be beneficial to first separate drums and
then compare only the drum parts of the original signals. This way the
non-rhythmic content does not disturb the process.

For audio analysis purposes, the signal is normally represented us-
ing frame-wise acoustic features. The signal is divided into short, typ-
ically 10-60 ms frames and a set of features is extracted from each
frame. The features usually aim at representing the most important
perceptual characteristics of the original signals. Then, based on these
features the properties of the signal can be compared to the proper-
ties of other signals. The signal representations will be discussed more
thoroughly in Chapter 3.



1.2.2 Similarity of Audio Samples

Similarity between two audio samples as such is an ill-defined problem.
It is impossible to know which properties of the sample the user is
emphasizing. For example, if the query signal contains both music and
speech, should the similarity be measured relative to speech, music, or
both. Another question is whether the temporal sequence should be
observed. For example, is it important that speakers in the sample are
speaking in the certain order.

In music information retrieval (MIR), two approaches have been
suggested in the literature to solve this problem. One approach is
query by humming (QBH) [72]. This is applied in a situation when
the user does not remember the name of the song he/she is searching
for. The user can hum, sing, or whistle the song to the QBH application
as an input. Then the system extracts the melody from the input hum-
ming and retrieves pieces having a similar melody from the database.

The second approach is query by beatboxing (QBB) [34]. In such
an application, the user can beatbox or just tap the music piece. The
system extracts the rhythm from the input and retrieves pieces hav-
ing a similar rhythm. The problem in QBH and QBB applications is
that the user may not be able, naturally, to hum the melody or tap the
rhythm perfectly, so the system tries to retrieve the pieces which are
most similar to the query.

Another alternative is QBE [P3] [P4] [P5]. This is especially appli-
cable in a music recommendation system or in a situation when the
user has a certain song and he/she wants to find other music pieces
that have similar properties. In QBE applications, the user provides
an example signal to the system. The properties of the input signal are
analyzed and signals having similar properties are retrieved from the
database. The results from such an application could be, for example,
retrieving music from the same band or speech samples from the same
speaker.

In addition to MIR, QBE is also useful with a general audio
database when there is no way of anticipating the content of the
database. The only restriction is the set of features used in the appli-
cation since the similarity is defined according to these features. Obvi-
ously the features can be more specialized if there is some information
on the contents of the database. However, audio databases collected
with mobile phones, for example, can contain any kind of audio sam-
ples. In such cases features which describe general properties of audio
samples must be used.



1.3 Awuthor’s Contributions to the
Publications

The main results of the thesis are the following.

e Separating pitched instruments and drums from a music signal
and representing harmonic sounds effectively [P1] [P2]

e Developing several novel similarity measures for audio signals
based mostly on the PDF's of the feature vectors [P3] [P4] [P5]
[P8]

e Developing a practical QBE application for a general audio
database in which the proposed similarity measures are tested
and proven to outperform previous measures [P7]

e Developing a transformation which enables the use of clustering
methods to accelerate QBE in large audio databases [P6] [P9].

The publications used in this thesis are summarized below and the
author’s contributions are identified.

[P1] Parametric representation for harmonic
sounds

The publication proposes a representation of harmonic sounds for data
compression purposes. The representation significantly reduces the
number of parameters while preserving the most important percep-
tual features of sounds. The proposed representation is used as part of
an object-based audio coding system. The implementation, evaluation,
and most of the writing work was done by the author.

[P2] Drum separation from music

The publication introduces a novel algorithm for the separation of
pitched musical instruments and drums from a music signal. This is
based on two-stage processing in which the signal is first separated into
time-frequency components and then these components are organized
into sound sources. Here we used the method for drum separation, but
it can also be applied to other types of sound sources. The idea of the
system and the implementation of non-negative matrix factorization
came from Tuomas Virtanen.



[P3] Methods for query by example

This publication introduces three methods for QBE. The first method
is based on hidden Markov models (HMMs). There is a model for the
example signal and a universal background model (UBM). First, the
likelihood for each database signal belonging to these two models is
estimated. The second method is likelihood ratio test. The example
and the database signal are concatenated and then n-component and
2n-component Gaussian mixture models (GMMs) are generated. If the
n-component model gives a higher likelihood for the concatenation, the
signals are considered similar. The idea behind likelihood ratio test
came from Tommi Lahti. The third method is called the histogram
method in which feature histograms are estimated from each sample
and the distances between these histograms are used as a similarity
measure.

[P4] Euclidean distance between Gaussian mixture
models

The publication introduces an improvement to the histogram method
[P3] in which feature vectors were quantized before distance calcula-
tion. Here we model the continuous PDF's of the samples using Gaus-
sian mixture models and derive a closed form solution for Euclidean
distance between GMMs. The distance measure is applied to the QBE
application. The derivation and implementation of closed-form Eu-
clidean distance was made by Tuomas Virtanen.

[P5] Similarity measure based on compression
ratios

The publication proposes a novel similarity measure for audio files
which is based on their compression ratios. The main advantage of this
method is that it is practically parameter free, thus it can easily be ap-
plied to a wide range of tasks and the user cannot affect the results
as much as in parameter-laden algorithms. The method is compared
with parameter-laden algorithms and considering the simplicity of the
method, it gives very good results. The idea of using compression ra-
tios for audio similarity came from Tuomas Virtanen. Implementation,
evaluation, and most of the writing work was done by the author.



[P6] Accelerating the query by example via
clustering

The publication proposes a novel transformation which enables the use
of traditional clustering algorithms with samples which are modeled
using a series of feature vectors. QBE becomes an exhausting task in
large databases if the distance from the example signal to all database
signals is calculated. Here we propose that the database could be clus-
tered offline, thus in the query only the distances between the example
and the samples in the nearest clusters are calculated. We accomplish
major savings in computational costs with only a minor decrease in ac-
curacy. Most of the research and writing work was performed by the
author.

[P7] Techniques for Personal Audio Content
Management

The publication introduces an audio management system, which has
several co-operating management tools. The audio samples are first
classified into four classes (silence, speech, music, and noise). Then,
analysis tools are applied inside these classes. The tools include
speaker change detection, gender and emotion recognition, and simi-
larity estimation. The main contribution of this publication is to gener-
ate a system where different analysis tools can benefit from each other.
The author’s contribution was with the QBE algorithm and finding
proper similarity measures for the task.

[P8] Audio Similarity Measures

The publication introduces the distance measures for audio signals, fo-
cus being on probability distribution based measures. The Euclidean
distance between PDF's is derived for the full covariance matrix GMMs,
and cross-likelihood ratio test and approximations of Kullback-Leibler
(KL) divergence between GMMs are applied to audio similarity. The
idea and implementation of Euclidean distance and idea of applying
cross-likelihood ratio test came from Tuomas Virtanen.



[P9] Automatic Audio Management Tools

The publication introduces the concept of metadata and how this data
is used in applications for automatic audio content management. The
publication includes an introduction to audio classification and seg-
mentation, query-by-example, music retrieval and recommendation,
and computational issues. The main contribution is the idea that meta-
data is first extracted from the original data and then the metadata is
used in applications. Tommi Lahti wrote the section ’Automatic infor-
mation management for speech’ and assisted on ’background’. Anssi
Klapuri contributed in sections 'Music retrieval and recommendation’
and "Locality sensitive hashing’. The rest of the work was undertaken
by the author.

1.4 Outline of the Thesis

This thesis is organized as follows. Chapter 2 gives an overview of
the metadata extraction process and Chapter 3 introduces methods for
acoustic signal modeling. These operations are preprocessing stages for
further audio analysis and processing. Chapter 4 discusses the novel
distance measures, which are used to estimate the similarity between
audio samples. The similarity estimates are tested here in query by
example tasks. This becomes overly time-consuming if the distance
between all samples in the database is calculated. Chapter 5 briefly in-
troduces the clustering method to lower the computational cost of such
an application. Chapter 6 presents the evaluation criteria, databases,
simulation results, and refers to comparative evaluations of the meth-
ods in literature. Chapter 7 summarizes the main conclusions of the
thesis and outlines future directions for the development and the ap-
plications.



Chapter 2

Metadata Extraction

Prior to any multimedia signal analysis, there is a need to have infor-
mation about the samples which can then be further processed. Such
“data about data” is referred as metadata. Metadata can be derived for
different aspects; for example, metadata concerning the content of the
samples or metadata about the relationships between different sam-
ples. Multimedia analysis applications can then benefit from the ex-
tracted metadata and operate even without the original samples, which
decreases the need for large storage capacity or fast file transfer.

2.1 Metadata Types for Multimedia
Content

Basically there are five different types of metadata (for further infor-
mation, see [46]):

e Content metadata describes the media content and it is deduced
from the original data without any information from outside. For
example, acoustic features like tempo or loudness can be directly
analyzed from the musical content. Multimedia files also often
hold tags, which are simple attributes that are included in the
files. MP3 files, for example, have an ID3 container in conjunction
with the content file, in which the user can insert the information
about the artist, title of the song, and the name of the album.
Also, the name of the file can contain information about the file.

e Context metadata is data about the situation where the multi-
media sample is recorded or where it is consumed. For example,



when taking a picture, the matters that are not captured on the
film are context metadata. This might be the location where the
picture is taken or the persons who are nearby. Contextual data
would be especially important when organizing or grouping the
media samples.

Also, the information about the situation in which the user is con-
suming the media is considered as context metadata. For exam-
ple, when, where, or what mood, does the user usually listen to a
certain song.

Relationship metadata describes the connections between a
single media sample and other media samples. For example, all
images taken by the same person have a relationship and if such
a relationship is stored as a metadata it allows accessing the ob-
ject with the help of other objects. If you have one such sample
it is easy to access the others. All relationships are two-way re-
lations, implying that if the sample A is used with sample B, it
automatically implies that sample B uses sample A. The relation-
ship can also exist between samples from different media types.
For example, an audio clip may be related to an image.

Usage history metadata describes how often the user accesses
the content and how the content is used. Based on, for example,
how often a certain song is played by the user, we can estimate
how valuable this song is for the user. Usage history information
also provides the possibility of creating a dynamically adapted
playlist, based on which songs are most often played.

Community metadata describes the relationships between the
users. Using the community metadata, it is possible, for exam-
ple, to recommend songs based on playlists by other people with
similar taste.

In this thesis, content and relationship metadata are of most interest,
since in a QBE task, the first step is to extract certain features from
the content and then find which samples have the closest relationships
based on these features.

2.2 Acoustic Features

Prior to any audio content analysis, there is a need to extract fea-
tures from raw data signals. Features represent different properties
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of the content and thus, the choice of features depends on the task. In
MIR, the musical features like rhythm or tempo should be emphasized
whereas, in speech recognition the Mel-frequency cepstral coefficients
are important.

When talking about feature extraction, the question arises: which
features should be used? To answer this question, several feature se-
lection methods have been developed. These can be used to reduce the
dimensionality of the original feature space, because there might be
features which are not relevant for the task or features which represent
the same property of the signal. The most popular of these methods
are principal component analysis (PCA) [77] and linear discriminant
analysis (LDA) [6]. Both of these algorithms reduce the dimension-
ality through linear transformations. PCA assumes that most of the
information is contained in the feature dimensions having the largest
variation. Thus, it optimizes the transformation matrix to maximize
the variance in the projected space. LDA, on the other hand, optimizes
the ratio of between-class variation and within-class variation for the
best discrimination of the classes

Below is a short introduction to the features used in this thesis.

2.2.1 Frequency Domain Features

e Mel-frequency cepstral coefficients (MFCCs) (used in [P1]-
[P9]) are probably the most popular feature used in audio signal
processing. They represent the most important properties of the
audio sample, based on human sound perception. MFCCs were
originally applied to speech analysis [15]. They are calculated
using the following procedure. First, the input signal is filtered
using frequency-dependent weights, which simulate the response
of the human auditory system. Then, the spectrum is emphasized
using a filterbank, which consists of triangular filters spaced uni-
formly in the Mel-frequency scale and with the heights scaled to
unity. The Mel-scale is defined as

Mel(f) = 2595log;,(1 + %), (2.1)

where f is the original frequency in Hertz. The energies in each
filterbank channel are summed and a logarithm is used to com-
press the dynamic range.
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N
mj = log ). W(fn)Hj(fn)a%/ (2.2)
n=1
where Ny, is the number of FFT bins, W(f) is the frequency de-
pendent weight at f, H;(f) is the frequency response of the Jie
triangular filter at frequency f, and 4, is the amplitude of n'" fast
Fourier transform (FFT) bin. Finally, the discrete cosine trans-
form (DCT) is taken from channel magnitudes to obtain cepstral
coefficients

Nmel T ) 1

Crrel (1) = ]; m; COS(Nmel (- Z)i)'

(2.3)

where N,,,; is the number of bands. [15]

e Spectral centroid (used in [P2]-[P9]) defines where the center
of mass of the spectrum resides [62]

ZnNif{ n-ay
Zfot

n=1

SC = (2.4)

an

e Spectral spread (used in [P3]-[P9]) is the variance of spectral
centroid [62]

n=1

Ny
Znifl An

T (1 — 8C)2ay,

SS = (2.5)

The feature measures how concentrated the energy is around the
centroid of the spectrum. It separates tone-like signals from noise
signals.

e Spectral flux (used in [P3]-[P9]) is an average variation between
two consecutive frames in a 1-s window. It measures how quickly
the spectrum of the signal is changing. It is measured as the Eu-
clidean distance between the normalized spectra of two consecu-
tive frames [51, 70].

e Noise likeness (used in [P2]-[P9]) is the correlation coefficient
between the spectrum of the original signal, and the convolution

12



between the local maxima of a spectrum and a Gaussian impulse
with zero mean. The Gaussian impulse is given by

2
X
= ——). 2.6
G(x) = exp( 202) (2.6)
The feature represents the noisiness of the signal, which is in-
tended to describe percussive sounds. [78]

Roll off point 85% (ROP) (used in [P2]) is the frequency below
which 85 % of the spectrum energy resides [62]

ROP Ny

Y a5 =085) a;. (2.7)
n=1 n=1

2.2.2 Time Domain Features

Peak time (used in [P2]) is an average length of peaks in a time
domain gain curve. Peak is defined as an area where the signal
value is at least 0.2 times the maximum value.

Peak fluctuation (used in [P2]) means the standard deviation in
peak times.

Harmonic ratio (used in [P3]-[P9]) is used to separate music
from noise. It estimates the ratio between harmonic and non-
harmonic components in the signal. It is calculated as a max-
imum of the normalized autocorrelation function of the signal,
defined as:

ZnNso S]( )S](n_l)
\/En o sj(n nNolSJ(”—l)2
(2.8)

where j is the frame index, N; is the number of sample frames
in original signal s(n), I is the lag index, s;(n) is defined as s(; -
Nyop + 1), Nyop is the hop between consecutive frames, L is the
maximum fundamental period and the total number of frames in
s(n) is Nf,.

Harmonic ratio is defined as the maximum autocorrelation within
frame.

(j<1<L0<j<Np-1),
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e Maximum autocorrelation lag (used in [P3]-[P9]) is the index
where autocorrelation reaches the maximum value. It estimates
the fundamental period of the signal [37, pp. 34-35]. For periodic
signals the maximum autocorrelation lag corresponds to multi-
ples of fundamental period. This feature is especially useful in
detecting drum patterns which are periodic by nature.

e Crest factor (used in [P3]-[P6] and [P8], [P9]) describes the mag-
nitude of percussions occurring in the waveform of the frame [62].
It is defined as:

Peak
RMS ’
where Peak is the maximum absolute amplitude and RMS is the
root mean square value of the waveform.

CrestFactor = 2.9)

e Standard deviation (used in [P2]) describes how far the obser-
vations are on average, from the mean value. It is defined as

1 Nops )
- - —x 2.1
o No 1 Y (xn —X)?, (2.10)

n=1

where ¥ is the mean of observations x,, and N, is the number of
observations in a frame.

e Total energy (used in [P3]-[P9]) is the average power of all ob-
servations in a frame [62]

Nops .2
TE — anl x}’l

(2.11)
Nobs

e Variance of instantaneous power (used in [P3]-[P9]) is the
variance from the average total energy calculated in a one-second
window.

e Zero crossing rate (used in [P3]-[P9]) defines how often the sig-
nal changes from positive to negative or back [62].

e Pause rate (used in [P3]) measures the amount of pauses in the
signal. It is defined as the ratio between silent frames and the to-
tal number of frames. Pause rate is typically used to distinguish
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a speech signal from a music signal. In speech there are a lot
of short breaks whereas typically in music the number of breaks
is close to zero [41]. A closely related feature, called the transi-
tion rate, measures the frequency of transition between silent and
non-silent segments [41].

Further discussion and detail on audio features can be found in [62].

2.3 Limitations in Audio Recordings

Previously most of the multimedia content was created by professionals
using professional equipment. Nowadays, more and more of the multi-
media is recorded by amateurs using mobile phones or other personal
devices. This has decreased the quality of the recordings which should
be taken into account when designing multimedia retrieval applica-
tions. Here are some shortcomings which appear in audio recordings:

e The manufacturers of mobile devices aim at low production costs
and thus acoustic components are not capable of capturing high
quality audio. Frequency response is typically highly irregular
and the dynamic range is very narrow. The microphones, espe-
cially in mobile phones, are very directional. They are designed
to capture speech and are optimized for very short distances be-
tween source and microphone.

e Recordings are often made by complete amateurs and thus the
recording conditions are not well set up. Recordings are also often
made without any planning which leads to poor quality. There
is often traffic or wind noise or other background voices in the
recordings. Variation in the volume level is also high. All these
factors together lead to poor signal-to-noise ratio.

e Mobile phones are focused on capturing speech signals at the ex-
pense of other audio information. Typically, there are audio en-
hancements made to the input signal, in order to maximize the
quality of recorded speech in terms of pleasantness and intelli-
gibility. Such enhancement is, for example, achieved by concen-
trating only on speech frequency bands and removing everything
outside that. Also, dynamic compression and discontinuous trans-
mission algorithms fade out the properties which would have been
valuable for some audio content.
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e Nowadays, there are several widely used audio codecs which are
not compatible with each other. It would be preferable for audio
processing tools to be able to operate independently of the repre-
sentation format.

e Volume levels and sampling rates differ between the recordings.
Hence normalization and resampling are required.

This thesis concentrates on similarity measures which are ap-
plied to a query by example task. The measures are applicable to
all audio recordings. However, the shortcomings mentioned above
reduce the accuracy of the methods. The representation of the
signal is irrelevant as long as acoustic features can be extracted
from the signal. Furthermore, despite the noisy or otherwise poor
recording conditions, the query by example application retrieves
the most similar samples from the database, based on the acoustic
features.
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Chapter 3

Signal Modeling

Signal modeling, for the purpose of audio storage, aims at representing
the original signal in a way that minimizes the number of parameters
required but preserves the most important perceptual properties of the
signal. This is an important factor in all practical audio analysis ap-
plications. Storage capacity is always limited and efficient methods for
representing the original signals are required. For example, in query
by example application, typically, the whole database has to be queried.
Thus, it would be beneficial to represent the signals in efficient manner
instead of storing all the original data. The query by example applica-
tion can also use the acoustic features calculated in the signal modeling
phase instead of calculating everything by itself. Next, audio modeling
methods are introduced, some of which are used for audio similarity
calculation in Chap. 4.

3.1 Perceptual Audio Coding

Perceptual audio codecs are commonly used in a wide range of com-
mercial applications. Practically, all audio on the internet, on portable
devices, or on digital television is perceptually coded. The most famil-
iar codecs are MP3 [56] and AAC [10] which are optimized for music
signals, but there are also specialized codecs for other audio, for exam-
ple, AMR [68] is optimized for speech signals.

Audio codecs aim at compressing the original audio file without los-
ing the perceptual quality of the signal [60]. The above mentioned
codecs are lossy algorithms thus they lose information from the source
signal. However, they utilize the properties of the human auditory sys-
tem to achieve compression without audible changes. An especially

17



useful property is the masking phenomenon. It means that when the
sounds which are close to each other in the frequency domain occur
simultaneously, the louder sound masks the other sound making it in-
audible. Thus, the silent sound can be ignored without losing percep-
tual quality. In practice, codecs achieve compression via quantization
of the files. First, a filter bank or a short-time frequency transform
is used to form a time-frequency representation. Second, an auditory
model estimates how coarse quantization can be applied without affect-
ing audibility. More bits are allocated to the parts which are perceptu-
ally the most important. Furthermore, after quantization, redundancy
in codewords can be reduced by entropy coding [83].

These audio codecs will be applied to compression based similarity
measures in Chap. 4, where they are used in combination with entropy
coding to estimate similarity.

3.2 Separation of Drums and Pitched
Instruments

One possible signal modeling method is to represent the audio as sound
objects. This is a challenging operation, but it also paves the way for
several audio processing tools. For example, song separation from a
polyphonic music signal can be used in karaoke applications [67] and
instrument separation can be used for automatic transcription [55].
Next a method to separate drums and pitched instruments from a mu-
sic signal is introduced. A similar approach could be applied for other
instruments as well. This algorithm was proposed in [P2].

Fig. 3.1 illustrates a drum separation system. The input signal
is first separated into components using non-negative matrix factor-
ization (NMF) [45]. Second, several features are extracted from the
components. Features used here are MFCCs, spectral centroid, stan-
dard deviation, roll off point, noise likeness, maximum autocorrelation
lag, peak time, and peak fluctuation. Third, the components are classi-
fied into either pitched or drums using support vector machine (SVM)
which was trained using examples from both classes. Finally, the com-
ponents within both classes are synthesized and summed to obtain
drum part and pitched part from the original signal.
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Figure 3.1: A block diagram of the drum separation system.

3.2.1 Non-Negative Matrix Factorization

Audio signals in the real world, for example music, are usually mix-
tures of several sound sources. The operation, which divides the mix-
ture into sources, is referred as sound source separation. Such a pro-
cess has several applications in audio data analysis and manipulation.
NMF is a signal separation method, which learns structures from the
data without prior information. Such algorithms are referred as data-
driven methods and they have been applied to music signal separation
and analysis [1, 12, 78, 80, 81]. NMF models the input signal X as

X ~ AS, (3.1)
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where X = [xl, e ,for], x; is the short-time spectrum in frame i, N¢,
is the number of frames, S = [s1,...,5N,,, ], §j is the spectrum of com-
ponent j, Neomp is the number of components, and A;; = 4;; is the gain
of j" component in frame i.

The components of NMF are estimated by minimizing the diver-
gence between X and AS denoted as:

Ny Nfr

D(X||AS) =

ij ) — X+ [AS];})- (3.2)

i=1j= ]
The minimization is done using the update rules given in [45] and [P2].
The measure is always non negative and it reduces to Kullback-Leibler
(KL) divergence [45] 1fZ ZNf’ Xij = Z Z] 1[AS]1] = 1.

The other data-driven method which we tested for separating the
signal into components, was independent component analysis (ICA)
[30]. However, in our simulations NMF outperformed ICA and thus
the former was chosen for further studies. It was observed, when lis-
tening to the separated components, that the separation quality of ICA
in our task was poor.

3.2.2 Support Vector Machines

Classification of data is an important operation in many data mining
applications. Having an unknown dataset, we would often like to clas-
sify the items into categories. In our case NMF separates a source sig-
nal into n = 20 components and we would like to know which of these
components belong to drums. Since we have prior information about
the categories of the components, we can use a supervised classifier,
meaning that example items from categories are provided for the algo-
rithm and when a new item is presented, the algorithm can decide in
which category it belongs. For this pattern recognition task we applied
SVMs [26].

SVM is first trained with feature vectors from both classes. From
the training procedure, the SVM learns the characteristics of the data
sets and finds a hyperplane in the feature space which separates the
two classes. This is an optimization problem, which is described more
thoroughly in [26]. The shape of the hyperplane depends on the kernel
function used in the algorithm. The common kernels are, for example,
polynomial, sigmoid, and radial basis function. The most suitable ker-
nel depends on the task. In our task the polynomial kernel provided
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Figure 3.2: An example of linear classification task.

the best separability. An example of linear separability is illustrated in
Fig. 3.2.

Finally, the component spectrograms are summed within both
classes. Phases are obtained from the original mixture spectrogram
and the transformation back to the time-domain is performed using
inverse Fourier transform. To reduce discontinuities, the frames are
windowed using a Hanning window and overlap-add.

3.2.3 Experimental Results

The performance of the proposed method was simulated and compared
to alternative preprocessing methods. Quantitative evaluation of the
separation performance would have required reference signals. We did
not have access to any material from which the pitched instruments
and drums could be obtained separately. Therefore, test signals were
generated by mixing harmonic signals and drums from various sources.
The detailed explanation of the experimental setup is in [P2].

100 samples were used for the testing. The samples were generated
by mixing harmonic and drum signals at equal energy levels. The sam-
ples were different in the training and testing. The original samples
were stored as references before mixing to allow the evaluation of the
separation quality. Each test sample was separated into components
using the NMF, and classified using the SVM. The components within
both classes were summed and synthesized. The separation quality
of harmonic and drum signals was measured using the signal-to-noise
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method SNR / dB
sinusoidal model (drums) 1.35
onset detection (drums) 3.05
NMF + GMM (drums) 7.0
NMF + SVM (drums) 7.33
NMF + SVM (harmonic) 2.46

Table 3.1: Average signal-to-noise ratios (SNR) obtained using differ-
ent separation algorithms.

ratio (SNR) of a separated signal defined as

L 5(n)?
(s(n) —5(n))*’
where s(n) is the original signal and §(n) is the separated signal. The
SNR is calculated for all separated harmonic and drum signals.

The proposed method was compared against other approaches. Ta-
ble 3.1 presents the average SNRs obtained with different methods.
Sinusoidal modeling was done using an algorithm which detects the
prominent peaks in the spectrum using the sinusoidal likeness mea-
sure [65]. The analysis and synthesis of the sinusoids was done with-
out continuation between frames. The harmonic part of the signal was
analyzed with a sinusoidal model, and the estimate of the drum part
was obtained by subtracting the synthesized sinusoids from the origi-
nal signal. The threshold value for the detection of the sinusoids was
tuned to maximize the SNR of the separated parts.

The other method tested is based on the onset detection algorithm
proposed by Klapuri [43]. The onsets were estimated by finding sharp
increases of the signal energy within 21 frequency bands. A short-
duration segment of the signal after each onset was judged to belong to
the drum signal. The harmonic part was obtained by removing the es-
timated onset segments from the original signal. The threshold for the
onset detection and the duration of the segments were tuned to maxi-
mize the SNR of the separated signals. The optimal segment duration
was found to be 66 ms.

For the drum part, the average SNR obtained using the proposed
method is clearly higher than others. However, the SNR of the har-
monic part is not as high. This can be explained by the signal model,
which suits drum signals better. However, by calculating the harmonic
part by subtracting the synthesized drums from the original signal, the
SNR for the harmonic part becomes equal to the SNR of the drum part.

(3.3)

SNR = 1010g10 3
n
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In order to measure the classification performance, each separated
component in the test data was labeled as harmonic instruments or
drums. Since a component may have both harmonic and drum content,
it was put in the class, where it most resembles the reference signal.
For each component, the residuals between the synthesized component
and original signals of pitched instruments and drums were calculated.
The energy ratios between the residuals and the original signals were
calculated and the one with the smaller residual-to-signal ratio was
chosen. That is, the component was labeled as drums if

Ead(n) = $(0)* _ Eall() = $(m))? a0
Yod(n)> T Yyh(n)r '
where h(n) and d(n) are the original pitched-instrument and drum sig-
nals respectively, and §(n) is the separated component. This labeling
was used as a reference in the classification.

The percent of correct classifications was used to measure the qual-
ity of the classification. The measure is an average of all the test sam-
ples. When testing different feature sets, the features calculated from
the spectrum seem to work better than the ones calculated from gain.
The best combination of features in our simulations included MFCCs,
noise-likeness, centroid, roll off point, standard deviation, periodicity,
peak time, and peak fluctuation. With this feature set, the percent
of correct classifications using SVM was up to 93 percent and using
GMDMs 92 percent. However, almost equally good results (80-90 per-
cent) were achieved with several different feature sets. Other features
with good classification capability were percussiveness and crest factor.
Even MFCCs alone gave the classification percent of 82. Furthermore,
the components clustered in the wrong class usually had a considerable
amount of content from both classes. For these components, it is hard
even for a human to decide which class they belong in.

Gillet and Richard [22] tested the drum separation algorithm in
[P2] against other state of the art drum separation approaches. They
stated that our method “obtained a high signal-to-interference ratio -
illustrating the ability of this algorithm to strongly discriminate drum
components”. Furthermore, Moreau and Flexer [55] extended our work
making drum transcription from separated drum sources.
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3.3 Parametric Representation of
Harmonic Instruments

The separation of instruments in a polyphonic music signal enables the
representation of each instrument using their special characteristics.
In [P1] we propose one such representation for harmonic sounds. In
the case of harmonic sounds, the characteristic properties are:

e Perfectly harmonic sound contains the fundamental frequency
component (Fy) and overtones which are integral multiples of F.

e the phases are not perceptually important and thus random
phases could be used in synthesis.

e The time-frequency spectrum is smooth, hence resulting in slowly-
varying amplitudes of harmonic sounds.

An example of an amplitude slope of a harmonic component is illus-
trated in Fig. 3.3.

The harmonic part of the sound of the j* frame can be expressed as
a sum of sinusoids

Nsin

5i(t) = ; a;cos(27tfit + @;), (3.5)

where t is the time index, N;;, is the number of sinusoids, a;, f;, and ¢;
are the amplitude, frequency, and phase of the i" sinusoid, respectively.
A single harmonic sound can similarly be represented in frame j as a
sum of the harmonic partials

Ny,
hi(t) = Y ancos(2mnFot + @y), (3.6)
n=1
where N, is the number of harmonics including the fundamental fre-
quency F.

In this thesis, a representation for the amplitude spectrum of har-
monic sounds is proposed. The rough shape of the spectrum is modeled
using MFCCs and the temporal evolution of MFCCs is further mod-
eled using the attack-decay-sustain-release (ADSR) representation [32,
pp. 51-66].
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Figure 3.3: An example of harmonic sound.

3.3.1 MFCC Representation

MFCCs can be used to represent the rough shape of the amplitude spec-
trum [P1] and they are explained in Section 2.2. Fig. 3.4 illustrates the
shape of the MFCC slope as a function of time for a harmonic sound.

When MFCCs are transformed back to amplitudes, the operations
are performed backwards. First inverse discrete cosine transform
(IDCT) is taken from the MFCCs to retrieve the energies in each fre-
quency band. Then the energies within each band are divided uni-
formly inside the band. Details from the original signal are lost, but
the rough shape of the amplitude spectrum is retained. The compres-
sion is achieved by removing the highest MFCCs.
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Figure 3.4: Five first MFCCs of the bowed cello as a function of time.

3.3.2 ADSR Representation

ADSR is often used in synthesizers to modulate the loudness of sound
over time. In [P1] we propose using a similar approach to model
the temporal evolution of the amplitude slope. The justification for
such modeling is that the natural sounds usually have a smooth time-
frequency spectrum resulting in slowly varying amplitudes of harmonic
components. The shape of the amplitude slope depends on the in-
strument being played. However, this slope can roughly be repre-
sented with amplitude values in four instants of time, which define
four stages. These are attack, decay, sustain, and release. First the
amplitude rises to its highest value which is the attack time. Then, at
the decay stage the amplitude drops to the sustain level. Sustain level
continues until the note is released. Finally, the release time describes
how fast the sound fades after the note ends. An example of ADSR
curve is illustrated in Fig. 3.5.
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Figure 3.5: Amplitude slope of one harmonic component and the result-
ing ADSR slope.

The problem with the ADSR method is, how to estimate the time
intervals for each stage. We applied the method which finds the maxi-
mum amplitude and the stages are defined with predetermined percent
values of the maximum [32, pp. 54-55]. The attack starts when the
value first rises above 10% of the maximum and ends at the maximum
value where the decay starts. The sustain starts when the amplitude
drops below 90% of the maximum and lasts until the amplitude is be-
low 70% of the maximum. Finally, the release ends when amplitude
drops below 10% of the maximum.

The ADSR model was improved by replacing linear lines in the orig-
inal model with exponential curves. The curves are defined as

F(x) =00+ (o1 — v9) (1 — (1 — x)")7, (3.7)

where vy and v, are start and end points, respectively. x is the time
parameter which is normalized between [0,1] and n is the parameter
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Figure 3.6: The effect of parameter n on ADSR curve model.

which defines the shape of the curve. If 0 < n < 1 the curve is exponen-
tial, if n = 1 the curve is linear, and if n > 1 the curve is logarithmic.
Fig. 3.6 clarifies the shapes.

We also further developed the state model. In [42] we proposed
an interpolating state model for time-varying spectra modeling. The
sequence of the acoustic feature vectors is represented by interpolating
between states. The states are estimated by iteratively merging and
deleting states from the state model. Details can be found in [42]. The
algorithm provided approximately two times better accuracy compared
to the vector quantization approach used as a reference method.

3.3.3 Combining MFCC and ADSR

In [P1] we propose a combined use of MFCC and ADSR representations
for modeling the time-varying amplitude slope of harmonic sound. The
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Figure 3.7: Block diagram of the harmonic sound representation algo-
rithm.

block diagram of the method is illustrated in Fig. 3.7. First, the funda-
mental frequencies (Fp) of harmonic sounds were identified in the orig-
inal signal with the multipitch estimator of Tolonen and Karjalainen
[76]. The method calculates the enhanced summary autocorrelation
function (ESACF) and the frequency of the F; is assumed to be the high-
est peak in the ESACF. Second, the amplitudes and phases of the har-
monic components are estimated from the signal spectrum. Since the
input is expected to be a clean harmonic sound the lower harmonics are
found from integer multiples of the Fy component. Third, if the same
fundamental frequencies are found from consecutive frames, these are
combined to one sound object. Finally, the MFCC-ADSR modeling is
applied to the sound objects to obtain the final parametric representa-
tion. The harmonic components are synthesized from the parameters
and summed to generate the resulting time domain signal.

The quality of the proposed method was measured using Perceptual
Audio Quality Measure (PAQM) [5] and informal listening tests. Ta-
ble 3.2 presents quality evaluations of some monophonic sounds. The
values are logarithms of noise disturbance thus the smaller the value
the better quality. It is observed that each stage of the processing usu-
ally degrades the quality of the sound. However, by listening to the
results the difference is quite small and there are also cases in the ta-
ble where the sound quality actually improves in terms of PAQM. For
example, in violin sample the ADSR processed sample is better qual-
ity than unprocessed sample, but in this case already the unprocessed
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Unprocessed | MFCC | ADSR | MFCC+ADSR
CELLO -3.2 -2.0 -2.9 -1.9
GUITAR -5.1 -3.6 -4.5 -3.6
VIOLIN -1.0 -0.4 -1.1 -0.4
BASS -3.3 -2.7 -3.3 -3.0

Table 3.2: PAQM values (log(noise disturbance)) for monophonic
sounds using different codings.

sample was rather low quality. The demonstrations of monophonic sig-
nals are available at http:/www.cs.tut.fi/ " heln/demopage.html.
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Chapter 4

Similarity Measures

This chapter introduces the measures which are used in the thesis to
estimate the similarity between two audio samples. An important fac-
tor that has to be considered when estimating similarity between sam-
ples is that similarity and distance are two different things. Distance is
an objective measure. On the other hand, similarity is subjective. It de-
pends on the application at hand and also on personal preferences. For
example, which one is more similar, the same song played by a different
band or a different song played by the same band? Distance measures
are, however, used to approximate the similarity of the samples.

One possibility for solving this “similarity” problem, which is left
for future studies, would be asking for feedback from the user or the
taking of several samples, instead of only one, as an example. Such
approaches have been followed in image retrieval [75, 87], but not yet
in content based audio retrieval. An application to audio would also re-
quire a large amount of work with user interfaces. On the other hand,
there is software on the Internet such as Last.fm [44], which compares
the playlists of users and can recommend songs for people having sim-
ilar playlists and thus, similar musical taste. Such applications, how-
ever, do not base their search on the actual content of the signals, but
only on usage history.

Traditional distance measures use simple statistics (mean, covari-
ance, etc) of the features. For example, Mandel and Ellis [52] used the
Mahalanobis distance for supervised music classification

du(f 8) = (s —ng) = (s —ny), (4.1)

where f and g are feature distributions characterized with means
S R" and e € R", respectively. £ € 1"*" is the covariance matrix
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of the features across all samples in the database. The Mahalanobis
distance is independent of the scale of the features since it uses the
variances of feature dimensions. If X is an identity matrix, the Maha-
lanobis distance reduces to the Euclidean distance.

The distance measure, which also considers the covariances of indi-
vidual samples, is called the Bhattacharyya distance [9] and is defined
as

1 1 Zf"'zg
do(f,8) = (g — 1) (5 + ) Mty ) + 2, (42)
Y
where L and X, are the covariances of multivariate feature distri-
butions f and g, respectively. In is the natural logarithm. It should
be noted that the Bhattacharyya distance reduces to the Mahalanobis
distance (up to a constant summation term) if Z; = .

Especially in speech segmentation and clustering, the Bayesian in-

formation criterion (BIC) has been used as a distance measure [86].
The BIC difference is defined as

ABIC = (Nﬁ + N]?r) logyo(|ZaB| — Nﬁ logyo(|2al) — N}gr logyo(|1Z5])
1 1

— —A(Nf + 5

2 N¢(Nf+1)) 10g1o(Nf‘r + N]ljr),

(4.3)

where Nf‘r and N}fr are the numbers of observations in sample A and
B, respectively. X4, X, and X 45 are the covariances of sample A, sam-
ple B, and the concatenation of these samples, respectively. Ny is the
length of the feature vector and A is a penalty factor to compensate for
small sample sizes.

The similarity of two samples is estimated here using distances.
That is, the smaller the distances, the more similar the samples are.
Features define the perspective sense in which the samples are similar.

4.1 Probability Distribution Based
Similarity Measures

In [P4] and [P8], we proposed similarity measures based on PDFs of
the frame-wise acoustic features. The problem when using PDFs is
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that values of audio features are normally continuous and thus their
PDF cannot be calculated exactly from a finite number of observations.

One possibility to overcome this is to quantize the frame-wise
feature-vectors and generate feature histograms. Kashino et al. [35]
proposed such an approach to detect specific audio events within a long
input signal. In [P3] we applied a similar approach to the QBE task.
First, the Linde-Buzo-Gray vector quantization algorithm [49] was ap-
plied to find the centers of the quantization levels. Second, the amount
of frame-wise features falling into each level was calculated resulting
in feature histograms for each sample. Finally, the distance between
histograms can be calculated using, for example, £1- or £,-norm.

However, based on simulations presented in [P8] and summarized
in Chap. 6, more accurate results were obtained when the PDF was
modeled using GMMs or HMMs and the distance measures between
these models are found.

4.1.1 Gaussian Mixture Model

GMM is a weighted sum of Gaussian components which is used to
model the distribution p(x) of the features of the sample. It is defined
as

I
p(x) =Y wiN(xm, L), (4.4)
i=1
where w; is the non-negative weight of the it" Gaussian component.
The sum of the weightsi = 1,...,Iis 1. I is the number of components,
and

1 1 Ty -1

= exp |—=(x—u) X (x—u. (4.5)

2 E OF 5 =) B (x = py)
is the multivariate normal distribution with mean vector u; and co-
variance matrix X;. The parameters of GMMs can be estimated using,
for example, the expectation maximization (EM) [16] algorithm or the
Parzen window [18, pp. 164-174] approach which assigns a GMM com-
ponent with a fixed variance for each observation. As a result, I is the
number of frames, y; is the feature vector of frame i, and w; = 1/1 (for
Vi).

Hidden Markov Models (HMMs) [63] can also be used to consider
temporal evolution of the signal. HMMs are widely used, for example,
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in speech recognition systems for modeling the units [23]. The HMM
can move from one state to another between frames. Emission proba-
bilities of the states are modeled with GMMs and the state transitions
are controlled by state transition probabilities. The Baum-Welch algo-
rithm [4], which is a special version of the EM algorithm, can be used
to estimate the HMM parameters. For solving the most likely state
sequence, we used the Viterbi algorithm [20].

4.1.2 Maximum Likelihood Estimation

The most traditional method for estimating the similarity of samples,
when operating with continuous PDFs , is to generate a model (e.g.,
GMM) and calculate the likelihood that the database sample is gener-
ated by this model [61]. We developed a modification of this algorithm
in [P3], which is illustrated in Fig. 4.1. First we generated a univer-
sal background model using the whole database and another model for
the example signal, which represents the general audio sample. Then,
the likelihood for each database sample to be generated by these two
models is estimated through the Viterbi algorithm. If the likelihood
for a sample being generated by the example model is higher than the
likelihood for the general model, these samples are considered to be
similar.

The computational cost of the universal background model is very
high depending, of course, about the size of the database. However, the
model can be generated offline and it has to be generated only once for a
certain database. On the other hand, generating the model for a single
sample is rather fast: for 10 second sample, with 4 states and 8 com-
ponents in each state, took about 2 second. The likelihood estimation
with Viterbi algorithm takes about 20 ms per sample.

The results are reported in [P3] and they are rather similar to those
obtained by the histogram based method [P3]. A somewhat similar
approach was applied also in audio segmentation by Velivelli et al. [79].

4.1.3 Kullback-Leibler Divergence

KL divergence is a distance measure between two probability distribu-
tions defined as

KL(pa(x)||pp(x / / x) log ((:))dxl...de, (4.6)
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Figure 4.1: An overview of HMM based QBE system.
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where p4(x) and pp(x) are the distributions of A and B, respectively.
The measure is non-symmetric, but it can easily be made symmetric by
adding the term KL(pg(x)||pa(x)).

Furthermore, the KL divergence between two Gaussian distribu-
tions is defined as [24]

KL(pa (0l |pa(x)) = 3llog (52 + Tr(5'E4) @)

+ (#4 _;”B) El(,”A —pp) — N¢l,

where Tr(X) is the trace of X. |A| denotes the determinant of matrix
A. The problem arises when dealing with GMMs, which have several
Gaussian components. There is no closed-form solution for such a case.
However, there are approximations which can be used to estimate the
KL divergence between GMMs.

Approximations of KL-divergence

Goldberger et al. [24] achieved good results on image retrieval applica-
tion using the approximations for KL-divergence between GMMs. One
of them was defined as

A
w?
KLGoldberger(pA HPB Zw KL HPB ( )) -I-IOg wB—l)/
m(i)
- (4.8)
where I4 is the number of components in GMM A, w# and p/, (x) are
the weight and the distribution of the i component in GMM A, respec-

tively, and

m(i) = arg mlin{KL(P’A(X)HP%(X)) — log(w})}. (4.9)
j=1,...Ip
Hershey and Olsen [28] tested several approximations for KL-diver-
gence. They observed that the Monte Carlo approximation is the most
accurate, but computationally too expensive for practical applications.
They concluded that from the computationally feasible approximations
the variational approximation is the most accurate:
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KLvariational(pA( )HPB( )) =
$ ot og L U S CKLAR () 410
Y2, wP exp(—KL(pa(x)illps(x);))

We applied Goldberger’s approximation and variational approximation
to audio QBE. The results were reported in [P8] and are summarized
in Chap. 6.

4.1.4 Euclidean Distance

In [P4] we derived a closed-form solution for the Euclidean distance be-
tween two GMMs having diagonal-covariance matrices. [P8] extended
the measure to full covariance GMMs.

The squared Euclidean distance ¢? between two GMMs is calculated
by integrating the squared difference of these GMMs over the whole
feature space:

2

62:/°° /oo [Zw PA ZZU pB ]' dxi...dxy, (4.11)

where x, denotes the n'" feature.
The derivations are given in [P8] but finally the Euclidean distance
is

e= ZZw w; QZJAA+ZZW w; Qz]BB 222“’ w; QZJAB’

i=1j=1 i=1j=1 i=1j=1

4.12)
where

Qi,j,k,n = /; ce /_ pk(x)i pn(x)] dx1 “es dXN. (413)

Chapter 6 presents the experimental results, where the Euclidean
distance between two GMMs is used as a distance measure in a QBE
system. When measuring the retrieval accuracy, the Euclidean dis-
tance is among the top measures. Furthermore, it is a rather low com-
plexity measure, especially when compared with likelihood ratio tests
which gave slightly higher accuracy. This is the reason why this mea-
sure was chosen for use as a part of our audio managements application
[P7].
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4.1.5 Cross-Likelihood Ratio Test

In [P8] and [82] we proposed the cross-likelihood ratio test for QBE
applications. A likelihood ratio test has previously been used in speech
clustering and segmentation tasks [73, 64]. It is defined as the ratio
between two hypothesis. First, the feature sequences are generated by
two separate models and second, the sequences are generated by the
same model:

LRT(A,B) = PA(A)Ps(B) (4.14)
pap(A)pap(B)
where p 45 is a model trained using both feature sequences A and B.
The problem with the above measure in the QBE task is that in
the query phase, the model p4p has to be generated on line for each
database sample, resulting in prohibitive computational complexity.
Thus, we used a modification of this measure referred to as cross-
likelihood ratio test, which is given as

CLRT(A, B) = PA(A)Ps(B) (4.15)
pe(A)pa(B)
This measure is computationally less expensive since it does not re-
quire models for signal combinations. Furthermore, this measure re-
sulted in better retrieval results compared to traditional likelihood ra-
tio test in our studies. This measure has also been used in many clus-
tering applications because of its computational benefits [73, 84].

4.2 Non-Parametric Similarity Measure

In most data mining applications, it would be preferable to have as lit-
tle user influence and interference as possible. Typically, in parameter-
laden algorithms either the end-user or the algorithm developer has to
choose several parameters. Such parameters are, for example, which
features are being used, how the features are calculated, and which
similarity measure is used. Consequently, human expectations and
presumptions may have an effect on the results. This may lead to over
emphasis of some properties or incorrect adjustment of parameters,
which may cause the retrieval task to fail. Thus, it would be better to
let the data speak for itself.

In parameter-free methods the number of user-determined param-
eters is ideally zero. As a consequence, data mining results are com-
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pletely dependent on the data but independent of the user. Despite the
seemingly simple algorithm, parameter-free methods have proven to
give very good results in various different tasks, including book clas-
sification by the author [13], optical character recognition [13], build-
ing an evolutionary tree based on mitochondrial genomes [13], and in
fetal heart rate tracing [14]. Keogh [36] showed that parameter-free
or parameter-light algorithms are able to outperform or at least give
competitive results in many tasks compared with traditional methods.
However, the most advantageous aspect of parameter-free algorithms
is that they do not require any specific knowledge from the user about
the problem at hand and can be applied, as such, in a wide range of
tasks.

Next, a non-parametric similarity measure, based on compression
ratios, will be discussed. Then this similarity measure is modified to
make it applicable to audio similarity [P5].

4.2.1 Normalized Compression Distance

The concept of normalized compression distance (NCD) was introduced
by Cilibrasi and Vitanyi [13]. The measure is based on Kolmogorov
complexity K(s) which is the minimal amount of information required
to represent a string s. Furthermore, conditional Kolmogorov complex-
ity K(s1|s2) is defined as the shortest binary program to compute s; if
Sy is given as an auxiliary input. As a consequence, we can define the
concept of information distance [7]:

ID(s1,52) = max{K(s1|s2), K(s2|s1) }- (4.16)

However, this measure does not take into account the lengths of the
samples and therefore, normalization is required. The normalized in-
formation distance (NID) [47] is given as:

max{K(s1|s2), K(s2|s1)}

max{K(sy),K(s2)}
The drawback using NID is that Kolmogorov complexities are non-com-
putable. However, they can be approximated using lossless compres-
sors, which aim at finding the minimum amount of data to represent a
given sample. Instead of NID, we can apply NCD [47]

C(s152) — min{C(s1),C(s2)}
max{C(s1),C(s2)} ,

NID(s1,52) = (4.17)

NCD(s1,57) = (4.18)

39



where C(s1) and C(sy), are the sizes of compressed s; and s;, respec-
tively, and C(s1sy) is the compressed size of concatenated s; and s,.

However, there are some parameters that need to be set even when
using NCD. Firstly, when dealing with audio signals, there is a need
to choose a signal representation format which would, preferably, re-
tain the perceptual quality of the signal but also quantize the signal to
produce identical codewords in two signals. This will be discussed in
the next section. Secondly, a compression algorithm has to be chosen.
The aim, however, is to approximate the Kolmogorov complexity and
the algorithm having the best compression ratio gives the best approx-
imation.

A rather similar idea is behind the earth mover’s distance [66]
which has also been used successfully in several areas. The earth
mover’s distance calculates the minimal cost of transforming the fea-
ture distribution of one sample to the feature distribution of the other
sample.

Application to Audio Similarity

When applying the compression based similarity measure to audio sig-
nals, the signal presentation is an essential factor. The presentation
should be such that near similar samples generate similar codewords
but at the same time it should preserve the perceptual properties of the
sound. Frequency components in the sound which are below or above
the threshold of hearing can be removed without audible effect. Also
masking phenomena are usually employed in the codecs. In simulta-
neous masking a louder sound hides a weaker sound which is occur-
ring simultaneously. Forward and backward masking happens when
a louder sound masks a weaker one even though the latter occurs ei-
ther before or after the louder sound [60]. In [P5] we tested different
signal representations for this purpose. We found that the low-bitrate
audio codecs (AAC, AMR, and MP3) gave the best results in our test
environment. For the second phase of the algorithm, a few different
lossless codecs, including gzip (Lempel Ziv [88] and Huffman [29] cod-
ing), bzip (Burrows-Wheeler [11] transform and Huffman coding), were
tested but the difference between them was negligible.

In the simulations, we noticed that higher bitrates gave worse re-
sults. This is due to the fact that, in order for lossless compression
algorithms to compress the files, identical codewords are required in
the two signals. When the bit rate is high there are more quantization
steps, which means that the original frames need to be more similar
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Figure 4.2: An overview of non-parametric audio similarity measure.

to each other to produce the same codeword than when lower bitrates,
and thus fewer quantization levels, are used. An extreme case was to
compress the audio files (wave format) without the lossy coding, which
did not work at all, since there is no quantization, aside the one in wave
format.

Fig. 4.2 illustrates the structure of the normalized compression dis-
tance (NCD) based similarity evaluation for audio signals.

4.3 Summary

In this chapter, several similarity measures for audio signals were re-
viewed. Similarity is typically calculated from the frame-wise features
extracted from the original signals. The most traditional methods are
based on simple statistics, but more complex measures between feature
distributions were also discussed. These PDF based similarity mea-
sures preserve more information from the original signal and there-
fore provide more accurate results than measures from simple statis-
tics [P4][P8]. In addition, parameter-free NCD was introduced, which
gives competitive results and this is especially useful since it does not
require the user to set any parameters. As a consequence, the user
does not need to be a specialist and the user’s expectations do not have
an effect on the results.

Table 4.1 summarizes the distance measures. Second column of the
table shows the computational time of a single distance calculation.
It should be noted, that different distance measures require varying
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Table 4.1: The properties of different similarity measures.

Method Comp. time | Parameters

GMM cross-likelihood ratio test (8 comp.) | 16.6ms pa(A),ps(B),pa(B),pp(A)
HMM cross-likelihood ratio test (8 comp.) | 39.3 ms pa(A),pp(B),pa(B),ps(A)
KL-Goldberger, GMM (8 comp.) 9.30 ms pa(x),pp(x)

Euclidean distance, GMM (8 comp.) 0.87 ms pa(x),ps(x)
KL-variational, GMM (8 comp.) 20.2 ms pa(x),pp(x)
KL-Gaussian, GMM (1 comp.) 0.19 ms pa(x),pp(x)

Compression distance (AAC) 22.9 ms (slsz) C(s1),C(s2)
Compression distance (AMR) 23.1 ms C(s152),C(s1),C(s2)
Bhattacharyya 6.5 ms Hptg L Ng

Mahalanobis 0.013 ms Hpotg D

amount of preprocessing. However, the preprocessing can be done of-
fline. Third column summarizes the parameters which each measure
uses for distance calculation.

Every distance measure has it’s pros and cons. Mahalanobis dis-
tance is really simple and thus the computational complexity is very
low. Bhattacharyya is an extension to Mahalanobis distance. Instead
of using the covariance calculated over the whole database, it consid-
ers the covariances calculated from the individual samples. This is
advantageous in audio query, since the feature distribution can vary a
lot between different samples. The GMM and HMM based measures
provide even more accurate modeling of feature distributions. KL di-
vergence has information theoretical justifications but it is slower to
compute than Euclidean distance. Furthermore, Euclidean distance
has a closed form solution for multiple component GMMs when KL di-
vergence has to be approximated if the number of GMM components is
more than one. Cross-likelihood ratio tests are computationally com-
plex, but they gave the highest accuracy in the evaluations. Likelihood
ratio test has previously been used, especially, in speech segmentation
tasks. The compression based distance measures are aimed for the ap-
plications which should operate without setting any parameters. The
proposed method takes advantage of audio codecs, which makes it suit-
able for audio query tasks. However, the computational complexity is
quite high.
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Chapter 5

Reducing Computational Cost
via Clustering

The aim of this chapter is to make the QBE application more computa-
tionally feasible. If the database is large, searching through the whole
database becomes a time consuming task but the users expect results
almost immediately. Nowadays, the usability of software and devices
has a high priority and thus speed is an essential factor when designing
a practical application.

Several methods exist in the literature to alleviate this computa-
tional burden. For example, progressive query [39], which partitions
the search space into sub-sets, searches one sub-set at a time and fuses
the results of the sub-set query with the previous overall retrieval re-
sults. Resulting samples can be retrieved after each sub-set query is
complete. Database indexing is another method where the database
is organized in a certain order as a preprocessing step in which case
the database is not queried in random order. An example of the ef-
fective indexing technique is a hierarchical cellular tree [40], which is
a self-organized tree and the items in the tree are partitioned offline,
based on their relative distances. Here a novel method for accelerating
the query is proposed [P6]. It utilizes clustering techniques in order to
narrow the query to include only the most relevant clusters.

5.1 Computational Issues
In a QBE application, if optimal search accuracy is needed, the require-

ment is to go through the entire database and compare the example to
all the database samples. Optimal accuracy means here that in all
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cases the database samples which have the shortest distance to the
example are retrieved. This operation requires excessive computing
capacity especially when it is done using mobile devices. Although, mo-
bile devices often work as a client in such operations and the server per-
forms the heavy calculations, the databases used nowadays may con-
tain millions of samples and the query then becomes time-consuming
even for high-performance processors. However, in practical applica-
tions users usually require fast response times even if it is at the ex-
pense of accuracy.

Fundamentally, there are two different approaches to reduce the
computational complexity in multimedia retrieval [19]. The first possi-
bility is to decrease the number of comparisons, which are made during
the operation. The second is to make the single comparison faster. This
is typically done by reducing the size of the feature vectors. Kanth et
al. [33] achieved this by reducing the dimensionality of the feature
space. Guldogan and Gabbouj [25] reduced the size of feature vectors
by choosing the most relevant features from the larger feature set.

This chapter concentrates on reducing the number of comparisons
during the query. The reduction is accomplished through clustering the
database prior to the search. The clustering itself is a time consuming
operation but the advantage is that it can be done offline and it has to
be done only once for a particular database. Although, when the items
are inserted into or removed from the database, the clusters will also
need updating. [P6] proposes the use of transformation which reduces
the dimensionality of the data in the clustering phase. This enables
the use of less complex similarity measures and therefore, makes clus-
tering faster.

5.2 Key-sample Distance Transformation

Clustering is an operation where the samples are organized into groups
of samples which have similar properties. One of the most typical
methods for clustering is k-means clustering [27]. The k-means al-
gorithm iteratively explores the centroid for each cluster, such that the
sum of distances between the samples and their representative cluster
centroids is minimized. The clustering of database can also be con-
sidered as an unsupervised audio classification task. In classification,
there are predefined classes which are used to learn the features as-
sociated with these classes in the data. Based on these associations,
the algorithm generates rules which are used to define the class of new
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samples. In clustering task, there are no predefined classes, but in-
stead the algorithm uses only the given data to group the samples into
clusters. Samples inside each cluster has similar properties. For exam-
ple, in [53] k-means clustering algorithm is used in co-operation with
support vector machines for unlabeled data classification.

The k-means algorithm has previously been used also in nearest
neighbor searching [19]. The samples were represented as feature vec-
tors which were clustered. The cluster centroid having the smallest
distance to query sample was then found and the search was restricted
to the representative cluster. The problem, however, is that in our case
each sample is represented by a series of feature vectors. As a result
the k-means algorithm is not applicable as such, since the represen-
tation can not be inserted in any dimensional feature space and thus
finding the centroid becomes impossible.

One solution for handling the problem would be to use some sta-
tistical measure like mean or median to reduce the input into a single
feature vector. This would, however, loose a lot of information from the
original sample. The other solution would be to concatenate the fea-
ture vectors. This could work if the samples have the same length, but
here we are dealing with varying-length samples. The third solution is
the use of a clustering algorithm which does not require the calculation
of the centroids, but instead finds existing samples from the database
which are then used as a cluster centers. The drawback of this ap-
proach is that the distance measures which operate on series of feature
vectors tend to be complex [P8] which then leads to very long clustering
time.

The other type of solution would be to make a transformation of
the original sample to convert a series of feature vectors into a single
feature vector. One possibility is to select k samples and calculate the
distance from each database sample to these key-samples. Then the
distances can be used as a k-dimensional feature vector. The question
is how to choose the key-samples which are to be used as a base for
the transform space? Shapiro [71] reported that the best choice of key-
samples (Shapiro referred them as reference points) is to select them so
that they are as far from each other as possible. In a practical situation
this is difficult to accomplish as there is no information about where in
the feature space, the database sample are located. Berenzweig et al.
[8] used key-samples (which they referred to as anchors) for music map-
ping purposes. They chose key-samples from different musical genres
and from different artists and the similarity between samples was esti-
mated based on the distances to these samples. Barrington et al. used
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a similar approach for general audio [3]. They chose key-samples from
several different audio classes. Again, in a general audio database it
is not always possible to choose samples that are in different parts of
the space, because the database may contain only speech samples, only
music samples or any other samples. This is why we decided to use ran-
dom samples from the database as the key-samples. This also is not an
optimal solution, but it is probable that the key-sample set includes
samples from different parts of the feature space.

In [P6] we proposed using key-sample transformation as a prepro-
cessing step to clustering based query by example. The algorithm is
illustrated in Fig. 5.1. First, k samples are chosen randomly from
the database to serve as a key-sample set. Then the distance from
each sample in the database to these key-samples is calculated and
the length k distance vector is used as a feature vector in clustering.
Only k distance calculations have to be done for each sample and thus
an accurate PDF based distance measure can be used. The number
of key-samples determines the accuracy of the algorithm but also the
computational complexity. In our simulations, k = 10 turned out to be a
good compromise. In the clustering phase, we used k-means clustering
but any other algorithm could be used instead. The transformation is
formally expressed as

T(x,0,d) = F — R, (5.1)

where x is the original series of feature vectors, O is the set of k key-
samples, d is the distance measure, F is the original feature space,
and R* is the k-dimensional feature space in which " element is the
distance from x to it key-sample (i = 1, ..., k).
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5.3 Accelerating the Query via Offline
Clustering

The overall QBE system is illustrated in Fig. 5.3. In the offline phase,
the features are first extracted from the database samples and the fea-
ture distribution is modeled using, for example, GMMs. Next the key-
samples are chosen from the database files and distances between each
sample and key-samples are calculated. Finally, the database is clus-
tered using the k-means algorithm. When the query sample is inputted
into the system, the same operations are completed. Features are ex-
tracted, the GMM is generated, and distances to key-samples are cal-
culated. Then the resulting distance vector is compared to cluster cen-
troids using the Euclidean distance. After this, the actual query can be
restricted only to nearest cluster. The distances inside the cluster are
calculated using the PDF based distance measures between the origi-
nal feature distributions. The samples having the shortest distance to
the example are outputted to the user.

Significant acceleration can be achieved via the clustering approach
without serious accuracy loss as demonstrated in [P6]. If the clustering
is completed offline, the computational time of the query is inversely
proportional to the number of clusters. If the clusters are of equal size,
the number of required distance calculations is

NCpst = NLNCfull + N, (5.2)
C

where N; is the number of clusters and NCy,;; is the number of dis-
tance calculations in full search. The last term is required since the
nearest cluster has to be searched although it should be noted that the
sizes of clusters are not usually the same, since samples are added and
removed. To overcome this, in [P7] we used an update method which
splits over-sized clusters and merges the small ones [19]. Figure 5.2 il-
lustrates the speedup which is achieved in the experimental setup via
the offline clustering of the database. The speedup is significant within
the first ten clusters, but above that the benefit, in terms of computa-
tional time, is quite low.

The accuracy of the system can be controlled by the number of clus-
ters into which the database is separated. Less clusters results in
larger size of clusters and thus more accurate results but also longer
query times. Accuracy can also be increased by expanding the search
from the nearest cluster to n nearest clusters. More accurate results
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Figure 5.2: Speedup achieved via clustering the database.

are achieved but the computational cost is increased. This approach
also makes it possible, in a practical application, to retrieve samples
from the nearest cluster first and then to widen the search to more dis-
tant clusters. In this way the application can offer first results quickly
and then make the search more accurate and complete.

The issue that is not covered in this study is the choice of how many
clusters should be used. We used a fixed number of clusters but it might
be advantageous to use some algorithm to choose the proper amount
of clusters. In the literature there are several methods of achieving
this. Aghagolzadeh et al. applied a top-down hierarchical clustering
algorithm which begins with a large number of clusters and during
iterations, removes some of the clusters [2]. They measured the infor-
mation potential to define the final number of clusters. Salvador and
Chan used an evaluation graph, where the x-axis is the number of clus-
ters and the y-axis is the clustering error to search for a “knee” point
in the curve [69]. Ding and He explored several methods for cluster
merging and splitting in hierarchical algorithms [17].
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Figure 5.3: Overview of the QBE system which uses clustering for

speedup.
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Chapter 6

Experimental Retrieval
Results

This chapter summarizes the main experimental retrieval results in
the thesis. Performance is compared with other similarity measures
from the literature. Firstly the evaluation procedure, the dataset, and
evaluation measures are explained.

6.1 Evaluation Procedure

In the evaluation of similarity measures we used a query by example
(QBE) application and “leave one out” testing. One database sample
at a time was used as an example query for the rest of the database.
The distance between the query and each database sample was calcu-
lated and the samples having the shortest distance were retrieved as
the most similar ones. The decision between correct and false retrieval
was made based on the annotations of the samples (annotation proce-
dure is explained in [P6]). If the query and the retrieved sample were
annotated into the same category, the sample was considered to be cor-
rectly retrieved, otherwise it was considered to be a false retrieval.
Two separate query methods were used: k-nearest neighbor (k-NN)
query and e-range query. In a k-NN query a fixed number of the most
similar samples were retrieved to the user, whereas in e-range query
all the samples having a distance to the example shorter than a fixed
threshold were retrieved. Typically a k-NN query is more practical
since no matter what the example query is, it always retrieves the same
number of samples. On the other hand, e-range query can retrieve
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samples for the user as soon as similar samples are found at any time
during the query process.

Features were extracted in 46 ms frames and the feature set used
in the following evaluations were MFCCs (the first three coefficients),
spectral spread, spectral flux, harmonic ratio, maximum autocorrela-
tion lag, crest factor, noise likeness, total energy, and variance of in-
stantaneous power.

6.1.1 Acoustic Material

The dataset used in QBE simulations contained 1332 samples with a
16 kHz sampling rate. The samples were from 4 main categories and
17 sub categories. The samples in the database were 10 seconds long.
The categories are listed in Table 6.1.

This thesis aims at query by example application, which could be
applied in any kind of audio. Thus, the database aims at being as gen-
eral as possible. It contains samples from different music styles, en-
vironmental sounds, speech samples from several speakers, etc. More
detailed explanation regarding the database can be found in [P5] and
[P6].

6.1.2 Evaluation Measures

The performance of query by example application was measured using
precision P, recall R, precision error P,, the combination of these re-
ferred to as F-measure F, and average normalized modified retrieval
rank (ANMRR) [57]. These are defined as:

_ number of relevant items retrieved

total number of retrieved items (6.1)

number of relevant items retrieved
= . (6.2)

total number of relevant items
P,=1-P, (6.3)
F=2RP/(R+P), (6.4)
GG r() _ 1(c(i

Q Y1 gy —2(GG) +1)

ANMRR = -} ol 2 (6.5)

Q & min(4G(j), 2max(G(j))) +0.5 — 3G(j)’
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Table 6.1: Audio categories and the number of samples in the database.

Main category Sub category
Environmental (231) | Inside a car (151)
In a restaurant (42)
Road (38)

Music (620) Jazz (264)
Drums (56)
Popular (249)
Classical (51)
Singing (165) Humming (52)
Singing (60)
Whistling (53)
Speech (316) Speakerl (50)
Speaker2 (47)
Speaker3 (44)
Speaker4 (40)
Speakerb (47)
Speaker6 (38)
Speaker7 (50)

where relevant item means sample from the same category as the ex-
ample, G(j) is the number of retrieved samples from query j, Q is the
number of queries, and r(i), i = 1,2,...,G(i) is the ranking of relevant
samples retrieved (lower number indicating more similar sample) and
for relevant samples missed 7(i) = min(4G(i),2max(G(i))) + 1.

6.2 Simulation Results

The values in the following simulations are mean values from the re-
sults of each category, unless otherwise stated. Table 6.2 demonstrates
the performance of different similarity measures in k-NN query. From
the table we can observe that the distribution based similarity mea-
sures which use multiple GMM components provide low precision er-
rors. The cross likelihood ratio test between HMMs and the Gold-
berger’s approximation of KL divergence give the lowest precision error
with a small margin relative to the others. The Mahalanobis distance
is also competitive, especially since it is the quickest to calculate. The
histogram method, which is actually a quantized version of a single
component distribution, is the most inaccurate.
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Table 6.2: The P, for k-NN queries for the main and sub categories. The
number of retrieved samples was 10.

Method Main | Sub
Histogram 7.7 % | 24.3 %
Mahalanobis 1.2% | 6.8 %
Compression distance (AMR) 22% | 14.6 %
Compression distance (AAC) 1.0% | 9.6 %
KL-Gaussian, GMM (1 comp.) 23% | 14.0 %
KL-Goldberger, GMM (8 comp.) 0.8% | 4.8 %
KL-variational, GMM (8 comp.) 1.2% | 6.0 %
Euclidean distance, GMM (8 comp.) 0.8% | 5.9 %
GMM cross-likelihood ratio test (8 comp.) | 0.8 % | 5.3 %
HMM cross-likelihood ratio test (8 comp.) | 0.7 % | 4.8 %

Table 6.3 presents F-measure and ANMRR values for each method.
F-measure was calculated from the e-range query with different values
of €. The maximum value is reported in the table. The ANMRR value
was calculated from k-NN query with k=10. Both quality measures
provide rather similar rank for the distance measures. In F-measure
the higher value corresponds to a better quality, whereas in ANMRR,
a lower value corresponds to a higher quality. The exception are the
compression based distance measures which give high F-measure and
low ANMRR compared to other measures.

Fig. 6.1 presents the precision and recall in e-range queries with
different values of €. In most parts of the figure, the cross-likelihood
ratio test between GMMs produced the highest accuracy. However, in
low recall rates, which refers to small €, the cross-likelihood ratio test
using HMMs, the Euclidean distance, and the Mahalanobis distance
had the highest precision.
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Table 6.3: Maximum F-measure and ANMRR values for different
methods in sub categories.

Method F-measure | ANMRR
GMM cross-likelihood ratio test (8 comp.) | 58.3 0.049
HMM cross-likelihood ratio test (8 comp.) | 52.1 0.044
KL-Goldberger, GMM (8 comp.) 49.3 0.045
Euclidean distance, GMM (8 comp.) 47.7 0.055
Mahalanobis 53.3 0.065
KL-variational, GMM (8 comp.) 45.7 0.056
KL-Gaussian, GMM (1 comp.) 40.1 0.133
Compression distance (AAC) 59.1 0.090
Compression distance (AMR) 50.1 0.141
Histogram 35.4 0.236

Fig. 6.2 illustrates the precision of k-NN queries when k was var-
ied from 1 to 35. Here we can observe, that when k was large (k>28)
the Euclidean distance was the most accurate measure. When the k
was small (k<10) the likelihood ratio using HMMs gives highest preci-
sion and in the mid section (10<k<20) Goldberger’s approximation of
the KL divergence and likelihood-ratio test using HMMs are the best
in terms of precision. Thus, it can be stated that none of the similar-
ity measures is clearly the most accurate. The most suitable measure
depends, instead, about the task.

We can also observe that PDF based measures, generally, give
higher precision compared to compression based measures. However,
the results of compression based measure using AAC as a signal rep-
resentation gives promising results considering that this measure does
not require any feature extraction or other parameters.

Similar results, for the PDF based and reference measures, from the
simulations, where the query is made to the whole database instead of
“leave one out”, is illustrated in Fig. 6.3. The natural consequence
is that the results are slightly better, since the query sample is now
included to the database.

Table 6.4 demonstrates the confusion matrix of the proposed query
by example algorithm. Here the Euclidean distance was used as a
distance measure and 10 nearest samples were retrieved from the
database. The values in the matrix are the percentage of the signals
retrieved from each category (rows) when the example was from the
certain category (columns). The most confusion was between the music
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Figure 6.1: e-range query results when the value of € is changed.

sub categories, especially with jazz, popular, and classical music. How-
ever, these categories contain samples which were close to each other
also from the human perspective. On the other hand, the speakers
were separated from each other almost perfectly.

6.2.1 Fast Search

Chapter 5 introduced a clustering method to improve the speed of the
QBE. The drawback of the method is that the accuracy is reduced
since the query example is not compared with all the samples in the
database. However, simulations reveal that the accuracy loss is only
few percentage units compared to full search. Euclidean distance be-
tween PDF's was used here as distance measure when searching inside
the clusters.

Fig. 6.4 illustrates the effect of changing the number of key-
samples. The number of clusters in this test was 17 and the 5 nearest
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Figure 6.2: Results for different similarity measures with k-NN
queries. k is varied between 1 and 35.

neighbors were retrieved. It can be seen that the higher key-sample
number gives higher precision. However, the improvement in precision
above 10 key-samples is quite small and thus, in the other simulations
we used 10 as the number of key-samples since the number of key sam-
ples should be as low as possible as the extra samples make the search
and especially the clustering take more time. As can be seen from the
figure, even when using all the samples as key-samples the algorithm
does not reach the same precision as the full search. This is due to the
fact that the clustering is still being made using less accurate similar-
ity measure, as discussed in Chapter 5. In the following simulations
the Euclidean distance between the PDF's is used as a similarity mea-
sure, when searching inside the nearest cluster.

In Fig. 6.5 the effect of changing the number of overall clusters and
the effect of searching similar samples from several nearest clusters,
was tested. 10 key-samples were used and the 5 nearest neighbors
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Figure 6.3: Results for different similarity measures in k-NN query. k
is changed from 1 to 35. The query is made from the whole database.

were retrieved. The query precision degrades more or less linearly as
the number of overall clusters increases. However, the query speed ac-
celerates at the same time, thus the number of clusters is again a com-
promise between accuracy and speed. If the number of clusters in the
original dataset is known beforehand, then this would be a good choice.
However, usually this information is not available. In our database
there were samples from 17 clusters, which explains the rapid drop in
precision after 17 clusters, when the search is done only in the nearest
cluster.

Different curves in Fig. 6.5 illustrate the effect of widening the
query to the two or three nearest clusters. The top curve is the full
search, which corresponds to the situation where the query is run over
the whole database, i.e. using all the clusters. The next is searching
the three nearest clusters, then searching from the two nearest clus-
ters, and finally searching only from the nearest cluster. Expanding
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the search into a few of the nearest clusters turned out to be very ef-
fective way of increasing the accuracy of the query. When searching
three nearest clusters, the precision is very close to that of a full search
even when the number of clusters is as high as 50. It can be seen that
searching in the two nearest clusters instead of only one is more effec-
tive than decreasing the overall number of clusters.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Similarity measures and signal representations proposed in this thesis
will aid the development of ever more accurate audio retrieval appli-
cations. Already, retrieval tools are useful in both professional and
commercial search engines, but they are still far from perfect. Sim-
ilarity, as a concept, is problematic when dealing with general audio
samples. This is due to the fact that when based on only one example
signal and without any additional information, it is impossible to know
which characteristics of the sample are of interest.

This thesis proposed a method which can separate drums from the
polyphonic music signal. The algorithm separates the original sound
into components using NMF and finds the components belonging to the
drums using a SVM. The sound source separation is an important pre-
processing step for further audio processing. The thesis also proposed
a parametric representation for harmonic sounds, which is based on
MFCCs and ADSR representation. It preserves the most important
characteristics of the signal while representing it in a highly compact
form.

Most importantly, this thesis demonstrates that the similarity of au-
dio samples can be estimated effectively using PDFs . Several distance
measures between PDFs were proposed for estimating the similarity
between audio samples. These were compared against traditional sta-
tistical measures in query by example task and were found to provide
more accurate results although they are, of course, more complex. A
parameter-free similarity measure was also proposed for audio sam-
ples. The sample is first represented using a perceptual lossy audio
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codec and then similarity is measured based on lossless compression
ratios. For practical audio retrieval applications, the clustering ap-
proach was proposed. This reduces the number of samples from among
which the similar samples are to be selected. This is an important pro-
cedure in modern databases which may contain millions of samples.

7.2 Discussion and Future Work

Although, the performance of the proposed query by example applica-
tion was already good, there exist several possibilities to improve audio
retrieval systems, which were not covered in this thesis.

e Utilizing feedback from the user. It would be profitable to take
either positive or negative feedback about the retrieval results.
Users could, for example, indicate that certain samples were ex-
actly what he/she was looking for or that certain samples were
completely wrong. Using this information the system could learn
and provide better results in the future.

e Finding better methods to choose the key-samples in key-sample
transformation and the number of clusters. In our implementa-
tion the key-samples are chosen randomly, since the system was
targeted for an application which does not have any information
about the content of database. However, random sampling may
not be the best solution. The number of clusters is set manually.
Automatic methods for finding the number of clusters [2, 17, 69]
would be useful, since the number of clusters is not always known.

e The usability of audio retrieval applications, and especially brows-
ing in audio databases. Browsing is usually based on file names
or some tags, but more innovative approaches are needed. Stew-
art et al. [74] proposed one such method, in which the user can
browse through the database in two or three dimensional space
based mostly on audio information. Such innovative usability im-
provements are also required for audio retrieval applications.
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Errata and Clarifications for
the Publications

e In[P2], Equation (2) should be:

X ~ AS. (7.1)

e In [P4], Equation (8)-(11) have minor errors. Here are the cor-
rected versions:
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