


 
 
Tampereen teknillinen yliopisto. Julkaisu 872   
Tampere University of Technology. Publication 872  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Erno Salminen 
 
On Design and Comparison of On-Chip Networks 
 
Thesis for the degree of Doctor of Technology to be presented with due permission for 
public examination and criticism in Tietotalo Building, Auditorium TB109, at Tampere 
University of Technology, on the 19th of February 2010, at 12 noon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tampereen teknillinen yliopisto - Tampere University of Technology 
Tampere 2010 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN 978-952-15-2325-0 (printed) 
ISBN 978-952-15-2348-9 (PDF)  
ISSN 1459-2045 
 
 



Erno Salminen

On Design and Comparison of On-Chip Networks

Contact Information:

Erno Salminen

mail: Tampere University of Technology

Department of Computer Systems

P.O.Box 553

FIN-33101 Tampere

Finland

tel: +358–3–3115 4540 (office)

+358–40–5832 182 (mobile)

fax: +358–3–3115 4561

e-mail: erno.salminen@tut.fi





ABSTRACT

This thesis focuses on the design of on-chip communication networks and methods

for benchmarking them. Network-on-Chip (NoC) paradigm seeks to achieve greater

design productivity and performance in large integrated circuits. Such systems in-

clude heterogeneous set of components that have different requirements for commu-

nication.

This thesis presents simulation-based evaluation methods for NoCs. In addition, sev-

eral detailed guidelines are given in order to promote disciplined NoC benchmarking.

Discussion starts with thorough surveys of 60 existing NoCs and over 40 evaluation

studies. The presented benchmarking methodology relies on abstract workload mod-

els based on task graphs. They are executed with a Transaction Generator (TG) that

sends and receives data to/from the benchmarked NoC and collects statistics. TG was

used in several configurations and was essential part for completing this work. The

error in time estimates was mostly below 10% whereas the speedup against cycle-

accurate HW/SW co-simulation was over 200x.

Heterogeneous IP Block Interconnection (HIBI) was designed to obtain a topology-

independent, scalable, and still high-performance network for integrating intellectual

property blocks. Six other NoCs were implemented for reference and benchmarked

with HIBI in various configurations and using multiple workloads. Over 30 published

implementation results were gathered. Furthermore, several FPGA prototypes were

implemented and they confirmed the utility of HIBI in multiprocessor environment.

In general, HIBI and 2-D mesh performed better than others in the presented cases

considering the trade-off between area and throughput.

The main goals of the work were met. The presented methodology along with TG

has been adopted by an OCP-IP workgroup that is seeking to standardize NoC bench-

marking methods.





PREFACE

The work presented in this thesis has been carried out in the Department of Computer

Systems at Tampere University of Technology during the years 2001-2009.

I thank my supervisor Prof. Timo D. Hämäläinen for guiding and encouraging me

towards doctoral degree. Grateful acknowledgements go also to Prof. Kees Goossens

and Dr. Juha Plosila for the thorough reviews and the constructive comments on the

manuscript.

It has been my pleasure to work in the Department of Computer Systems. Many

thanks to all my colleagues for the discussions and pleasant working atmosphere.

Especially Dr. Kimmo Kuusilinna, Dr. Vesa Lahtinen, Dr. Tero Kangas, Jouni Riihi-

mäki, M.Sc., Dr. Ari Kulmala, Petri Kukkala, M.Sc., Heikki Orsila, M.Sc., and Kalle

Holma, M.Sc., deserve a big hand for helping me in several matters. In addition, I

would like to thank all the other co-authors and colleagues. Our lively discussions

both on and off-topic have been pleasant and stimulating.

This thesis was financially supported by Graduate School in Telecommunication

System-on-Chip Integration (TELESOC), Nokia Foundation, Ulla Tuominen Foun-

dation, Foundation of Advancement of Technology, which are all gratefully acknowl-

edged.

My warmest thanks go to my beloved wife Hannele and our lovely ever-energetic

kids Ilona and Otto for their love, support, and understanding.

"Sitä saa, mitä tulee"

- A Finnish proverb and the guiding principle during this work

Tampere, December 2009

Erno Salminen



iv Preface



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Objective and scope of research . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Communication networks . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Basic properties and terminology . . . . . . . . . . . . . . . . . . . 7

2.1.1 Structural properties . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Temporal properties . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Performance measures . . . . . . . . . . . . . . . . . . . . 10

2.2 Network topologies . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Single-hop topologies . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Multi-hop topologies . . . . . . . . . . . . . . . . . . . . . 15

2.3 Floorplan of network-on-chips . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Basic floorplan optimizations . . . . . . . . . . . . . . . . 18



vi Table of Contents

2.3.2 Irregular size of processing elements . . . . . . . . . . . . . 18

2.3.3 Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Other aspects of communication performance . . . . . . . . . . . . 24

2.5.1 The latency components . . . . . . . . . . . . . . . . . . . 24

2.5.2 Network interface . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.3 Overlapping the computation with communication . . . . . 27

2.5.4 Intertwined transfers and out-of-order data delivery . . . . . 28

2.5.5 Limited buffering at the receiver . . . . . . . . . . . . . . . 30

2.5.6 Scheduling anomalies . . . . . . . . . . . . . . . . . . . . 32

2.5.7 Data synchronization . . . . . . . . . . . . . . . . . . . . . 33

2.5.8 Serial links and data encoding . . . . . . . . . . . . . . . . 34

3. Survey of network-on-chips . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 NoC proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Switching policy . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Utilized topologies . . . . . . . . . . . . . . . . . . . . . . 39

3.1.3 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.4 Quality-of-Service . . . . . . . . . . . . . . . . . . . . . . 42

3.1.5 Testing and fault-tolerance . . . . . . . . . . . . . . . . . . 43

3.2 NoC comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Compared topologies . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Evaluation methods and metrics . . . . . . . . . . . . . . . 47

3.2.3 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Representative NoC . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Survey of reusable hardware IP components . . . . . . . . . . . . . 51



Table of Contents vii

4. Basics of communication network evaluation . . . . . . . . . . . . . . . 55

4.1 Introduction to benchmarking . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Benchmark classification . . . . . . . . . . . . . . . . . . . 56

4.2 Analytical topology comparison . . . . . . . . . . . . . . . . . . . 57

4.3 Modeling traffic load . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Data rate and spatial distribution . . . . . . . . . . . . . . . 62

4.3.2 Burstiness . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.3 Communication-to-computation ratio . . . . . . . . . . . . 65

4.3.4 Traffic generation . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.5 Traffic profile capture . . . . . . . . . . . . . . . . . . . . . 68

4.4 General guidelines for NoC benchmarking . . . . . . . . . . . . . . 70

4.4.1 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.4 Concluding the findings . . . . . . . . . . . . . . . . . . . 74

4.4.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.6 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . 75

5. Proposed NoC benchmarking methodology . . . . . . . . . . . . . . . . 81

5.1 Application model . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Application tasks . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.2 Connections . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.3 Triggering events . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.4 Real-time constraints and paths . . . . . . . . . . . . . . . 89

5.2 Mapping model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Platform model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



viii Table of Contents

5.3.1 Resource model . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2 Network model . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Measurement constraints . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Implementation of the methodology . . . . . . . . . . . . . . . . . 98

5.5.1 Utilized Transaction generator . . . . . . . . . . . . . . . . 98

5.5.2 Evaluation of accuracy and simulation speedup of TG . . . 100

5.5.3 Utilized Stochastic generator . . . . . . . . . . . . . . . . . 101

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6. On the credibility of load-latency measurements . . . . . . . . . . . . . . 107

6.1 Introduction to load vs. latency measurements . . . . . . . . . . . . 107

6.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Units of measurement . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Latency breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Impact of the transfer count and length . . . . . . . . . . . . . . . 116

6.6 Network-specific settings . . . . . . . . . . . . . . . . . . . . . . . 117

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7. Heterogeneous IP Block Interconnection (HIBI) v.2 . . . . . . . . . . . . 123

7.1 HIBI topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Data transfer operations . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Buffering and signaling . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5 Wrapper structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.6 Runtime reconfiguration . . . . . . . . . . . . . . . . . . . . . . . 134

7.7 Summary and comparison to previous HIBI version . . . . . . . . . 136



Table of Contents ix

8. Benchmarked reference network-on-chips . . . . . . . . . . . . . . . . . 139

8.1 Network interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Packet-switched bus . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3 Packet-switched mesh . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.4 HERMES mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.5 Packet-switched ring and octagon . . . . . . . . . . . . . . . . . . 143

8.6 Circuit and packet-switched crossbar . . . . . . . . . . . . . . . . . 143

9. Comparison of NoC implementation results . . . . . . . . . . . . . . . . 145

9.1 Implementation results from literature . . . . . . . . . . . . . . . . 145

9.1.1 Router parameters . . . . . . . . . . . . . . . . . . . . . . 145

9.1.2 Minimum latency . . . . . . . . . . . . . . . . . . . . . . . 147

9.1.3 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.1.4 Operating frequency . . . . . . . . . . . . . . . . . . . . . 149

9.1.5 Router power . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2 Implementation results of studied networks . . . . . . . . . . . . . 152

9.2.1 Reference networks . . . . . . . . . . . . . . . . . . . . . . 152

9.2.2 HIBI version 2 . . . . . . . . . . . . . . . . . . . . . . . . 155

9.3 Reference NoCs relative to literature . . . . . . . . . . . . . . . . . 157

10. Comparison of NoC performance results . . . . . . . . . . . . . . . . . . 159

10.1 Performance results from literature . . . . . . . . . . . . . . . . . . 159

10.2 Performance evaluation of reference NoCs . . . . . . . . . . . . . . 161

10.2.1 Spatially uniform random traffic . . . . . . . . . . . . . . . 162

10.2.2 Spatially localized random traffic . . . . . . . . . . . . . . 162

10.2.3 Hot spot random traffic . . . . . . . . . . . . . . . . . . . . 165

10.2.4 Relative cost of reference NoCs . . . . . . . . . . . . . . . 165



x Table of Contents

10.3 Comparison of hierarchical bus and 2-D mesh . . . . . . . . . . . . 167

10.3.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.3.2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.3.3 Static Runtime Analysis . . . . . . . . . . . . . . . . . . . 169

10.3.4 Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . 170

10.3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 171

10.3.6 Relative Cost of the Networks . . . . . . . . . . . . . . . . 173

10.3.7 Results with other networks . . . . . . . . . . . . . . . . . 175

10.3.8 Impact of task mapping . . . . . . . . . . . . . . . . . . . . 176

10.3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.4 Performance evaluation of HIBI with synthetic traffic . . . . . . . . 180

10.4.1 Simple image processing . . . . . . . . . . . . . . . . . . . 180

10.4.2 The effect of network parameters . . . . . . . . . . . . . . 183

10.5 H.263 Video encoder simulation . . . . . . . . . . . . . . . . . . . 187

10.5.1 Data-parallel video encoder test case . . . . . . . . . . . . . 187

10.5.2 Modeling with Transaction Generator . . . . . . . . . . . . 190

10.5.3 Exploration results . . . . . . . . . . . . . . . . . . . . . . 191

10.6 HIBI-based multiprocessor SoCs . . . . . . . . . . . . . . . . . . . 195

10.6.1 Wireless video terminal on FPGA . . . . . . . . . . . . . . 195

10.6.2 MPEG-4 Video encoder of FPGA . . . . . . . . . . . . . . 196

10.7 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



LIST OF PUBLICATIONS

This thesis is a monograph which contains unpublished material but is mainly based

on the following publications. In the text, these publications are referred to as [P1],

[P2], . . ., [P13].

[P1] Erno Salminen, Vesa Lahtinen, Kimmo Kuusilinna, and Timo D. Hämäläinen

“Overview of Bus-based System-on-Chip Interconnections,” in IEEE Inter-

national Symposium on Circuits and Systems, vol. 2, Scottsdale, AZ, USA,

May 2002, pp. 372-375.

[P2] Tero Kangas, Jouni Riihimäki, Erno Salminen, Kimmo Kuusilinna, and Timo

D. Hämäläinen “Using a Communication Generator in SoC Architecture Ex-

ploration,” in International Symposium on System-on-Chip, Tampere, Fin-

land, Nov. 2003, pp. 105-108.

[P3] Erno Salminen, Kimmo Kuusilinna and Timo D. Hämäläinen, “Comparison

of Hardware IP components for System-on-Chip,” in International Sympo-

sium on System-on-Chip, Tampere, Finland, Nov. 2004, pp. 69-73.

[P4] Erno Salminen, Ari Kulmala and Timo D. Hämäläinen, “HIBI-Based Multi-

processor SoC on FPGA,” in IEEE International Symposium on Circuits and

Systems, Kobe, Japan, May 2005, pp. 3351-3354.

[P5] Erno Salminen, Tero Kangas, Timo D. Hämäläinen and Jouni Riihimäki,

“Requirements for Network-on-Chip Benchmarking,” in Norchip, Oulu, Fin-

land, Nov. 2005, pp. 372-375.

[P6] Erno Salminen, Tero Kangas, Jouni Riihimäki, Vesa Lahtinen, Kimmo Kuu-

silinna, and Timo D. Hämäläinen “HIBI Communication Network for System-

on-Chip,” Journal of VLSI Signal Processing-Systems for Signal, Image, and

Video Technology, Jun. 2006, vol. 43, no. 2-3, pp. 185-205, June 2006.



xii List of Publications

[P7] Erno Salminen, Tero Kangas, and Timo D. Hämäläinen “The Impact of Com-

munication on the Scalability of the Data-parallel Video Encoder on MP-

SoC,” in International Symposium on System-on-Chip, Tampere, Finland,

Nov. 2006, pp. 191-194.

[P8] Erno Salminen, Tero Kangas, Jouni Riihimäki, Vesa Lahtinen, Kimmo Kuu-

silinna, and Timo D. Hämäläinen “Benchmarking Mesh and Hierarchical

Bus Networks in System-on-Chip Context,” Journal of Systems Architecture,

Aug. 2007, Vol. 53, Issue 8, pp. 477-488.

[P9] Cristian Grecu, Andrè Ivanov, Partha Pratim Pande, Axel Jantsch, Erno Sal-

minen, Umit Ogras, Radu Marculescu, “Towards Open Network-on-Chip

Benchmarks”, in International Symposium on Networks-on-Chip, Princeton,

NJ, USA, May 2007, pp. 205-205

[P10] Erno Salminen, Ari Kulmala, and Timo D. Hämäläinen “On Network-on-

Chip Comparison,”in Euromicro Conference on Digital System Design, Lübeck,

Germany, Aug. 2007, pp. 503-510.

[P11] Erno Salminen, Ari Kulmala, Timo D. Hämäläinen, "Survey of Network-on-

Chip Proposals", white paper, OCP-IP, April 2008, 13 pages.

[P12] Erno Salminen, Cristian Grecu, Timo D. Hämäläinen, Andrè Ivanov, "Network-

on-Chip Benchmarking Specifications Part I: Application Modeling and Hard-

ware Description", Version 1.0, OCP-IP, April 4, 2008, 15 pages.

[P13] Erno Salminen, Ari Kulmala, Timo D. Hämäläinen, "On the Credibility of

Load-latency Measurement of Network-on-Chips", in International Sympo-

sium on System-on-Chip, Tampere, Finland, Nov. 2008, pp. 91-97.



LIST OF FIGURES

1 Historical scaling of transistor count and operating frequency in inte-

grated circuits. Furthermore, feature size and design abstraction level

are illustrated along the time axis. . . . . . . . . . . . . . . . . . . 1

2 Search hits for “network-on-chip” in IEEE Xplore archive. . . . . . 4

3 Simple network example and corresponding terminology. . . . . . . 9

4 Various bus topologies for Nag = 16. . . . . . . . . . . . . . . . . . 13

5 Crossbar and point-to-point topologies. . . . . . . . . . . . . . . . 14

6 Two topologies based on butterfly. Examples shown for 16 nodes. . 15

7 Networks based on two-dimensional tori: 16-node torus and mesh.

For simplicity, bidirectional links are illustrated only for the mesh. . 16

8 Networks based on one-dimensional tori: 16-node ring and 2 8-node

octagons (hierarchical express ring). . . . . . . . . . . . . . . . . . 17

9 8-node examples of layout optimization. . . . . . . . . . . . . . . . 18

10 Conceptual example of varying PE sizes in 16-node mesh. . . . . . 19

11 Customized 16-node networks with varying PE size. . . . . . . . . 20

12 Scaling wires with technology . . . . . . . . . . . . . . . . . . . . 21

13 The basic structure of a network router. . . . . . . . . . . . . . . . 23

14 The 5 latency components of inter-PE data transfer. . . . . . . . . . 25

15 The three basic scenarios of overlapping computation with commu-

nication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

16 Intertwined transfers and packet reordering. . . . . . . . . . . . . . 29



xiv List of Figures

17 The impact of limited buffering to transfer initiation. There are two

basic choices when the receiver reserves the buffers for incoming data. 31

18 An example of scheduling anomaly. . . . . . . . . . . . . . . . . . 33

19 Example of synchronization between clock domains. . . . . . . . . 34

20 Four examples of traffic profiles from [22]. Nodes represent SoC

resources and arrows show the sustained traffic rate in Mbytes/s. . . 63

21 Traffic examples with different level of burstiness. The average data

rate is the same in three all cases. . . . . . . . . . . . . . . . . . . . 65

22 HW/SW co-simulation and simulation using a traffic generator. . . . 67

23 Creating a traffic profile. . . . . . . . . . . . . . . . . . . . . . . . 69

24 Using fuzzy numbers for representing the design objectives. The

membership function, shown on Y-axis, is interpreted as relative good-

ness. Value 1.0 means best solution(s) and value 0.0 unacceptable. . 78

25 Conceptual view of the utilized system model and pseudo-XML. . . 82

26 Major tags in XML system model. The numbers show the minimum

number of occurrences of each tag. Each of the four major sections

occurs exactly once. Task description is shown in Fig. 27. . . . . . . 83

27 XML tags for describing the workload of application tasks. . . . . . 85

28 The possible states of an application task during simulation. It is

assumed here that tasks cannot be pre-empted. . . . . . . . . . . . . 87

29 Different communication costs between two tasks when a) tasks are

on the same PE or b) on different PEs. The task and PE symbols

correspond to Fig. 25. . . . . . . . . . . . . . . . . . . . . . . . . . 93

30 Three types of supported NoC terminals. . . . . . . . . . . . . . . . 94

31 SystemC classes of Transaction Generator. Data transfers to/from

processing element are implemented either i) with a DMA or ii) with

own I/O handler thread. . . . . . . . . . . . . . . . . . . . . . . . . 99

32 The main view of the Execution Monitor. . . . . . . . . . . . . . . 100

33 The accuracy of Transaction Generator [85, 103]. . . . . . . . . . . 103



List of Figures xv

34 Generating and using stochastic traffic. . . . . . . . . . . . . . . . . 105

35 Example of load vs. latency curve. X-axis shows the transfer rate

and Y-axis the delay. Six analytical bounds are shown in addition to

measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

36 Basics of load-latency measurement: different setups and the result-

ing deviations in measured performance. . . . . . . . . . . . . . . . 110

37 Comparing load-latency per component and between different mea-

surement runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

38 Impact of network specific settings: lengths of packet header and

payload, and the depth of buffers at the routers. Header is 3 flits

unless otherwise noted. . . . . . . . . . . . . . . . . . . . . . . . . 118

39 Example of a hierarchical HIBI network with multiple clock domains

and bus segments . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

40 Various arbitration schemes for 8-agent single bus and uniform ran-

dom traffic. The differences become evident on highly utilized bus. . 127

41 Relative performance of arbitration algorithms in MPEG-4 encoding

[130] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

42 Example of bus structure and timing of bus transfers . . . . . . . . 130

43 Structure of HIBI v.2 wrapper and configuration memory . . . . . . 133

44 Example of runtime configuration . . . . . . . . . . . . . . . . . . 135

45 Network interface logic needed for constructing packets. . . . . . . 140

46 Network implementations. . . . . . . . . . . . . . . . . . . . . . . 141

47 The relative areas of reference networks. Calculated for 16-terminal

networks. Values in each data set are scaled so that the smallest has

an area of 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

48 The area of network (router) as a function of degree. . . . . . . . . 154

49 Area of HIBI v.2 wrapper and its sub-blocks . . . . . . . . . . . . . 156

50 Latency and throughput as function of offered load. Average transfer

length is 6 payload words. Spatially uniform traffic between 16 agents. 163



xvi List of Figures

51 Offered load vs. throughput with spatially localized traffic. There are

16 agents and transfer length is 6 words on average. . . . . . . . . . 164

52 Test case types used in comparison, N = 8. . . . . . . . . . . . . . 168

53 Estimated and simulated cycle counts for three networks. . . . . . . 172

54 Speedup and relative performance, P = 16,D = 1024. . . . . . . . . 174

55 The relative runtimes with 4 test cases. Processing time P=64 cycles

and data amount D=32, 64 or 128 words . . . . . . . . . . . . . . . 175

56 The relative runtimes with test cases 1-3. Processing time P=16 cy-

cles and data amount D=16 words . . . . . . . . . . . . . . . . . . 177

57 The relative runtimes with test cases 4 and 5 and average of all five.

Processing time P=16 cycles and data amount D=16 words . . . . . 178

58 The runtimes for test cases 1, 2 and 3 with varying stride value in

mapping of tasks. Processing time P=16 cycles and data amount

D=16 words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

59 Examples of the test case pipelining . . . . . . . . . . . . . . . . . 181

60 Results of the case study: execution time in cycles, logic areas, and

cycle-area product . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

61 Results of the optimization process . . . . . . . . . . . . . . . . . . 184

62 Number of retransfers as a function of FIFO size and max_send pa-

rameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

63 Increasing transfer length reduces arbitration overhead . . . . . . . 185

64 Latency variation for system in which four agents send a total of 1000

39-word messages with uniform distribution. Both bus width and

data word width are 32 bits . . . . . . . . . . . . . . . . . . . . . . 186

65 Effect of relative priority on latency in a test case in which two agents

write to the same target . . . . . . . . . . . . . . . . . . . . . . . . 186

66 Data parallel video encoding. . . . . . . . . . . . . . . . . . . . . . 189



List of Figures xvii

67 Task graph and the example mapping of the video encoder applica-

tion. Each slave has identical set of encoding tasks that are initiated

by master’s task C1. . . . . . . . . . . . . . . . . . . . . . . . . . . 190

68 Speedup for CIF-sized frames with different bus frequencies. DMA

is ON in all cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

69 Speedup for 4CIF with PE frequency is 100 or 200 MHz, and bus

frequency is 100 MHz. Results are given with and without DMA. . 192

70 Speedup for CIF when bus frequency depends on the number of

slaves. Results are shown for repeated and non-repeated wires. DMA

is ON in all cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

71 Speedup for CIF and 4CIF as a function of bus frequency. System

size is 36 slave PEs. Results are shown with and without DMA. . . 194

72 Wireless video terminal on FPGA development board. [124] . . . . 196

73 The block diagram of HIBI-based MPSoC on (two) FPGA(s). . . . 197

74 The speedup achieved by increasing the number of encoding slave

processors with respect to one slave. Test case is MPEG-4 encoder

with CIF frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

75 The impact of HIBI to MPEG-4 QCIF frame rate [131]. . . . . . . . 198

76 A hierarchical HIBI used for interconnecting 58 IP components on a

3-FPGA prototype [129]. . . . . . . . . . . . . . . . . . . . . . . . 199

77 The suitability of reference networks considering the number of ter-

minals and difficulty of the traffic load. The cost function is area

divided by runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . 200



xviii List of Figures



LIST OF TABLES

1 The topology symbols used in other tables . . . . . . . . . . . . . . 38

2 Extensive summary of network-on-chip proposals in literature [P11]. 40

3 Extensive summary of network-on-chip proposals in literature (con-

tinued) [P11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Summary of comparative NoC studies [P10]. . . . . . . . . . . . . 44

5 Summary of comparative NoC studies (continued) [P10]. . . . . . . 45

6 Datasheet for a stereotypical NoC and suggested research directions

[P11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Comparison of processor cores [P3]. . . . . . . . . . . . . . . . . . 52

8 Comparison of accelerator IP cores [P3]. . . . . . . . . . . . . . . . 53

9 A brief summary of network topology analysis. . . . . . . . . . . . 59

10 Comparison of bus and NoC. Adapted and extended from [26, 71]. . 60

11 Examples of reported traffic loads in multiprocessor applications. . . 64

12 Simulation guidelines for NoC evaluation [P10]. . . . . . . . . . . . 71

13 Metrics for NoC evaluation. The values for all except throughput

should be minimized. . . . . . . . . . . . . . . . . . . . . . . . . . 76

14 Statistics visualized by Execution Monitor [84]. The information is

collected either from TG simulation or FPGA prototype. . . . . . . 101

15 Summary of application models used in exploration [85]. This work

utilizes the same TG as [85, 103]. . . . . . . . . . . . . . . . . . . . 102

16 Measurement settings and the maximum observed differences on pe-

formance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



xx List of Tables

17 Properties of HIBI v.1 and v.2. . . . . . . . . . . . . . . . . . . . . 137

18 Implementation result examples of NoC routers [P10]. . . . . . . . 146

19 Relative power consumption in NoCs . . . . . . . . . . . . . . . . 151

20 Implementation results of reference NoCs. . . . . . . . . . . . . . . 153

21 Reported differences between NoCs [P11] . . . . . . . . . . . . . . 160

22 The impact of spatial distribution of traffic to the NoC’s throughput.

Minimum and maximum values in each column are shown in bold. . 166

23 Summary of throughputs and relative costs with three traffic classes. 166

24 The number of trigger events in test cases as they are scaled with the

number of agents (N). . . . . . . . . . . . . . . . . . . . . . . . . . 168

25 Absolute logic area of the networks (in kilogates) and their relative

areas. Area of PE is assumed to be 50 kilogates. . . . . . . . . . . . 171

26 The runtimes in kilocycles for test cases with P = 16 cycles,D =

1024 words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



LIST OF ABBREVIATIONS

ACK Acknowledge

ACM Association for Computing Machinery

ASIC Application-Specific Integrated Circuit

BE Best Effort

BIST Built-In Self-Test

CAD Computer-Aided Design

CIF Common Intermediate Format

CMOS Complementary Metal Oxide Semiconductor

CMP Chip Multiprocessor

CPU Central Processing Unit

DAA Dynamically Adaptive Arbitration

DCT Discrete Cosine Transform

DMA Direct Memory Access

DRAM Dynamic RAM

DSM Deep-Submicron

DSP Digital Signal Processing

eCos Embedded Configurable Operating System

EDA Electronic Design Automation



xxii List of Abbreviations

EIB Element Interconnect Bus

FFT Fast Fourier Transform

FIFO First-In-First-Out

flit Flow control digit

FPGA Field Programmable Gate Array

GALS Globally Asynchronous, Locally Synchronous

GT Guaranteed Throughput

HW Hardware

HIBI Heterogeneous IP Block Interconnection

IIR Infinite impulse response

IDCT Inverse Discrete Cosine Transform

IEEE the Institute of Electrical and Electronics Engineers

IP Intellectual Property

ISS Instruction-Set Simulator

JPEG Joint Picture Experts Group

KPN Kahn Process Network

LSB Least Significant Bit

LUT Look-Up Table

MCA Multicriteria Analysis

MoC Model of Computation

MPI Message Passing Interface

MPEG Motion Picture Experts Group

MPSoC Multiprocessor System-on-Chip



xxiii

MSB Most Significant Bit

NACK Negative Acknowledge

NI Network Interface

NoC Network-on-Chip

OCP Open Core Protocol

OCP-IP Open Core Protocol International Partnership

OFDM Orthogonal Frequency Division Multiplexing

P2P Point-to-point

PC Personal Computer

PE Processing Element

QCIF Quarter CIF

QoS Quality-of-Service

RC Resistive-capacitive

R&D Research and Development

ROM Read-Only Memory

RAM Random Access Memory

RM Resource Manager

RTL Register Transfer Level

RISC Reduced Instruction-Set Computer

RTOS Real-Time Operating System

SI (French) le Système International d’unités, The International Sys-

tem of Units

SoC System-on-Chip



xxiv List of Abbreviations

SDRAM Synchronous DRAM

SPMD Single Program, Multiple Data

SRAM Static RAM

SW Software

TDMA Time Division Multiplexed Access

TG Transaction Generator

TLM Transaction-Level Model

UML Unified Modeling Language

VC Virtual Channel

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

WLAN Wireless Local Area Network

XML Extensible Markup Language

XSM XML System Model



1. INTRODUCTION

The complexity of integrated chips has increased in an exponential rate for the past

decades. This empirical observation is known as Moore’s law [167]. The term com-

plexity is commonly interpreted as a number of transistors but, historically, also the

frequency has scaled in a similar manner. This is illustrated in Fig. 1. which plots the

data collected from [49, 91]. The computation performance has also increased expo-

nentially and that has been due to three facts: increased transistor budget, increased

frequency, and architectural innovations (such as cache memories, pipelining, and

instruction level parallelism). A system-on-chip (SoC) integrates a large number of

components into a single chip. Usually, the components are not homogeneous but

vary in both size and type, for example they can be processors, memories, hardwired
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Fig. 1. Historical scaling of transistor count and operating frequency in integrated circuits.

Furthermore, feature size and design abstraction level are illustrated along the time

axis.
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components, and interconnected with a network-on-chip (NoC). This Thesis concen-

trates on the design and benchmarking of NoCs.

The growth of transistor counts is estimated to continue for several years possibly at

a slightly reduced rate, though [30, 92, 168]. Wire delays, clock skew together with

finite rise and fall times of the clock will limit further frequency scaling [82,232]. Par-

allel processing is commonly utilized in scientific processing that requires high per-

formance [49] and it is utilized to meet the strict computation requirements of modern

user applications, such as real-time video encoding [98]. An integrated parallel pro-

cessing device is referred to as a chip-level multiprocessing (CMP) platform [30] or

multiprocessor system-on-chip (MPSoC) [97, 249]. Few recent general-purpose ex-

amples are Intel Dual and Quad Core processors [70,202], IBM Cell processor [100],

and Intel TeraFLOPS [236]. The results of this thesis have been utilized in MPSoCs

on FPGA for MPEG-4 encoding [128] and for wireless networking [124].

Component reuse offers a great improvement in system design and it is necessary to

handle the complexity [37]. Sylvester and Keutzer have proposed block-based hi-

erarchical design style where the size of the used hardware block is in the range of

50 000− 100 000 equivalent gates (or 50k− 100k gates) [232]. Such blocks can be

designed and verified without excessive attention on various deep-submicron (DSM)

effects, such as wire delays. Direct consequence is that the number of components

will increase as the chip complexity increases. Large component count emphasizes

the impact of communication on the overall performance and cost of SoC. Note how-

ever that system integrators nowadays work with larger entities, subsystems that al-

ready include several intellectual property (IP) components in order to implement

complex functions.

Automated design tools are necessary for handling the complexity of a large MPSoC.

Koski design flow is one example which includes high-level design and requirements

capture in UML, automated design space exploration, code generation and hardware

synthesis, FPGA prototyping, and back-annotation of measured values. Despite au-

thor’s contribution to Koski, detailed discussion is beyond the scope of this thesis and

interested readers are referred to [103, 104].

Koski follows platform-based design methodology [112, 217]. The basic principle

is a sequence of refinement steps that go from the initial specification towards the

final implementation using platforms at various level of abstraction. One pillar of the
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methodology is the separation (or orthogonalization) between:

• function (what the system is supposed to do) and architecture (how it does it);

• communication and computation.

Separation of concerns and clear, unambiguous interfaces allow the designer to con-

centrate only on one part of the system without modifying the other part. For ex-

ample, the communication network can be designed, modified, and optimized while

keeping the computation resources fixed. Separation between communication and

computation, allows also interleaving their execution to maximize the performance.

Traditionally, SoCs utilize a single shared bus or a bus hierarchy for interconnecting

the IP components. In the late 1990’s and early 2000’s, many researchers proposed

replacing dedicated, design-specific wires with a general purpose, packet-switched

network, hence marking the beginning of the network-on-chip (NoC) era. The ma-

jor goal of NoC is to achieve greater design productivity by handling the increasing

parallelism, manufacturing complexity, wiring problems, uncertainty, and by intro-

ducing communication-centric design methodologies.

NoCs have been widely reported in several special issues in journals, numerous spe-

cial sessions on conferences and recently also in a dedicated NoC symposium 1. As

an example of increased interest, Fig. 2 shows the hit count for the search “network-

on-chip” in the IEEE Xplore document archive 2.

The key research areas in network-on-chip design are summarized in [26, 180] as

• Communication infrastructure: topology and link optimization, buffer sizing,

floorplanning, clock domains, power

• Communication paradigm: routing, switching, flow control, quality-of-service,

network interfaces

• Benchmarking and traffic characterization for design- and runtime optimiza-

tion

• Application mapping: task mapping/scheduling and IP component mapping.

1 www.nocs.org
2 http://ieeexplore.ieee.org
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The three critical challenges for NoC according to Owens et al. are power, latency,

and CAD compatibility [184].

1.1 Objective and scope of research

The objective of this work was to design an efficient communication method for IP

components in a System-on-chip.

This thesis presents an extensive survey of network-on-chips, a new proposal for

benchmarking them, and a detailed comparison of various networks. In addition, a

new NoC, HIBI, is presented and analyzed. A set of reference network implemen-

tations is implemented for comparison purposes. An analysis follows the conceived

guidelines and considers HIBI and reference NoCs. Simulation and FPGA execution

are emphasized. The results of the comparison are discussed relative to those from

the literature.

This thesis concentrates on digital components only and abstraction is mostly at the

register transfer level (RTL). The studied networks are targeted for interconnecting

intellectual property components, such as microprocessor cores, memories, and hard-

wired accelerators.

To summarize, the main contributions of this thesis are the following:

• Surveys of existing NoCs and evalutation studies are presented
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• Development of the HIBI NoC

• Systematic method for comparing NoCs

– synthesizable reference implementation for various topologies

– versatile traffic generation for networks

– benchmarking guidelines

– standardization work on benchmarking

• Comprehensive comparison of NoCs using the above method

1.2 Thesis outline

The outline of this thesis as follows. At first, Chapter 2 introduce the basic concepts

of communication networks and Chapter 3 presents a literature study and analysis

of existing network-on-chip proposals and their comparisons. In addition, a survey

of IP components is given. Chapter 4 presents the basics of communication net-

work evaluation and Chapter 5 presents a new benchmarking methodology for NoCs.

Chapter 6 discusses the latency measurement of NoCs in detail. Chapter 7 presents

the developed HIBI network and Chapter 8 the reference NoCs. The results of NoC

comparison are given in Chapters 9 and 10. Chapter 11 concludes the Thesis.
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2. COMMUNICATION NETWORKS

Due to some inconsistencies found in literature let us start by defining the terms that

will be used in this thesis. After that the basic network structures and components are

introduced, followed by a discussion about topology-independent issues in intra-SoC

communication.

2.1 Basic properties and terminology

This terminology follows mostly the definitions by Dally and Towles [51]. Synonyms

that are used in the literature are shown in parentheses. A communication network

(switching fabric) is a system that transports data between its terminals, i.e. its input

and output ports. A specific network-on-chip, NoC, paradigm will be discussed later

in its own section. A communicating entity is here called an agent that may consist

of one or multiple processing elements (PEs), memory banks, and a network inter-

face (NI). The number of agents is here denoted as Nag. Agents perform transactions

by exchanging messages. A split transaction performs bidirectional communication

with two separately transferred messages, such as a read request and a response.

Each message can create one or more packets depending on the parameters of the

communication network. Packets have a restricted maximum length unlike the mes-

sages. The data injected to the network are referred to as the traffic load. The load is

characterized by its spatial (where) and temporal (when) distributions.

The network interface is responsible of splitting messages into packets at the source

and combining, and possibly reordering, them at the destination. Agents that can

initiate transfers are called masters and agents only responding are called slaves.

Such distinction is not always made when some or all the agents operate in both

modes.

A non-blocking network allows simultaneous transfers between all source-destination
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pairs provided that the destination is free and is not the destination of any other trans-

fers. Blocking networks have more restrictions on simultaneous transfers, for exam-

ple, some link along the path may be blocked although the destination is free.

2.1.1 Structural properties

The topology defines the arrangement of the network’s routers (switches, network

nodes) and links (channels). The topologies are divided, somewhat superficially, into

two categories: direct and indirect. The routers in a direct network are always con-

nected to (at least one) agent; they all are network terminals. In an indirect network,

there are routers that are connected only to other routers. Each router has two or more

ports and their number is here referred to as router’s degree (or radix). In this the-

sis, all links and ports are unidirectional and the degree defines the sum of input and

output ports in a router. A bidirectional link is formed from two unidirectional links.

The term router is not commonly used with bus networks. Instead, the connection

between the resource and the network is done by a bus wrapper or bridge.

A link contains the data and control bits going downstream (direction from source to

destination) and also the flow control bits going upstream. All these bits are consid-

ered to form a wire bundle to avoid confusion with the bus topology. A packet may

require several hops to reach the destination; one hop denoting here the traversal of

one link. Networks that do not have any routers, for example point-to-point, have just

one hop.

2.1.2 Temporal properties

Networks are divided into two categories with respect to their connection type: circuit-

switched and packet-switched. Circuit-switching forms a path from the source to the

destination prior to the transfer by reserving the routers (switches) and links. All data

follow that route and the path is torn down after the transfer has completed. This

guarantees the latency and attained throughput. However, the time required for set-

ting up the circuit may be long and the bounds for setup time hard to define. In the

packet-switching scheme, the source creates and sends packets to the network and

each packet is routed separately to the destination. This Thesis uses a terminological
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Fig. 3. Simple network example and corresponding terminology.

convention that circuit-switched networks include switches whereas packet-switched

networks include routers.

Contention (congestion) for the shared resources of the network, such as router ports

or links, introduces varying latencies for packets. Arbitration is the method to resolve

the contention.

Routing is the mechanism that determines the path (route), the set of links, taken

between the source and destination. With deterministic routing, all packets between

the source-destination pair always follow the same route and hence remain in-order.

Adaptive routing tries to avoid the congested regions, hot-spots, by varying the route.

Hence, packets may occasionally arrive to the destination out-of-order. Oblivious

routing, a subclass of adaptive algorithms, does not consider the state of the network

when determining the route, for example, the route is selected pseudo-randomly for

each packet. Some adaptive routing schemes allow misrouting which means that

packets are routed away from the minimal route at some points.

Flow control manages the reservation of network resources, mainly router buffers

and links. Each packet consists of one or multiple flow control digits, flits, that is the

smallest unit of data to which resources can be allocated. A packet can be divided

into header, payload, and tail flits. The header provides control data for the network

and determines at least the destination, and optionally other control information, such

as packet length or priority. It is followed by the payload, or body, that is the actual

data. Tail denotes the end of the packet and may provide information for checking

the integrity of the data. The length of these parts varies between networks and the

payload and tail may be omitted in some cases. If they are present, they must follow
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the same route as the header and remain in order. There are also cases where the

header and the payload are transmitted in parallel within one flit 1 as well as cases

where the length of the payload varies between packets. The data is transmitted on

channels one physical digit, phit, at a time. A phit does not necessarily have the same

size as a flit. For example, the buffers are allocated for 32-bit flits but serial links use

1-bit phits.

Fig. 3 depicts an example of the terms. The shown network is indirect since router(1)

is not a terminal. The network has 4 unidirectional links between the routers and

all routers have a degree of 4. The message sent by PE(0) is split into two network

packets and each packet contains three flits. Here, the phits are smaller than flits, and

hence, each packet contains six phits. In the remainder of this thesis, however, the flit

and phit sizes are always equal and that number of bits referred to as the data width.

The hop count Nhops from agent(0) to agent(1) is 2 hops: router(0) → router(1) and

router(1) → router(2). The number of routers in that path is Nhops + 1 = 3.

2.1.3 Performance measures

In this thesis, the term performance refers to metrics that should be maximized, such

as throughput and error tolerance. Cost metrics, such as application runtime, area,

latency, and power consumption, should be minimized. The performance metrics are

also discussed later, for example, in Sections 3.2.2 and 4.4.6.

Throughput, or accepted traffic load, is the maximum data rate that can be delivered

to destination terminals with given load conditions, for example Bytes/s. It is the

sum of data rates at destination ports 2. In this thesis, the term bandwidth refers to

theoretical maximum accepted load and throughput to realized accepted load. Some

sources use these terms interchangeably, though. Saturation occurs when increasing

offered load does not increase the accepted load; it remains constant and sometimes is

may even drop. As the offered load increases beyond the saturation point, the average

transfer latency experienced by the agents (end-to-end latency) approaches infinity.

Scalability in general means that something is capable of being easily expanded or

upgraded on demand. Scalability is often hard to prove and the term is often used

1 This scheme is traditionally used in bus topologies although they are not generally considered as

packet-switched networks.
2 Measuring at input terminals is misleading if network drops packets.
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too carelessly. For parallel applications, there is some consensus that as the size of

a scalable machine increases, a corresponding increase in performance is obtained.

Scalable network architecture allows adding/removing components with modest ef-

fort, and the performance should increase/decrease correspondingly.

Bisection is a set of channels (cut) that partitions the network into two halves such

that the number of routers of both halves differ at most by one. Bisection bandwidth

is the bandwidth of the smallest such cut. Bisection is one scalability metric of the

network. If bisection grows slower than Nag or is constant, it will become a system

bottleneck as network grows unless data is localized efficiently.

Latency refers to the time between the first bit entering the network at the source

terminal and the last bit arriving at destination terminal. It is measured in seconds or

in clock cycles but the latter option is not always possible, for example with asyn-

chronous networks. Usually the maximum and average of all packet latencies are

monitored. Another important aspect is the difference between latencies which is

called jitter. Latency can be measured on multiple levels, for example for transac-

tions, messages, packets, or packet headers.

Latency of a packet can be defined as

Tpkt = Thdr + Tser + Tcont . (1)

where Thdr denotes header latency, Tser serialization latency, and Tcont contention

overhead [51]. Header latency Thdr is the time required for the head of the message

to reach the destination:

Thdr = (Nhops + 1) ·Trouter + Nhops ·Tlink. (2)

Trouter is the time needed per router without any contention and Tlink is the propagation

delay of a link. Note that there is one router more than there are links in a path. The

message must be serialized on the links so that Tser = Nmsg_bits/blink , where Nmsg_bits

denotes message size in bits and blink denotes the link bandwidth. The last term is

caused by contention and is generally hardest to analyze without simulation. In most

cases, the measurement setup must ensure that the traffic sources will not be stalled

during measurement.

Fault tolerance describes the ability of the network to perform in the presence of

one or more faults. It has been recognized for long a time in large networks such as
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telephone and internet, but it is also emerging into the NoC domain. A fault in an

integrated chip cannot always be repaired after fabrication. However, the faulty parts

can be avoided once detected, for example by routing the data via a fully functional

path. Deep-submicron technologies also increase the number of transient errors (soft

errors) [92] and emphasize the importance of fault tolerance. There are five key el-

ements to tolerate faults: avoidance, detection, containment, isolation, and recovery.

Fault-tolerance can be achieved via error detection and correction, stochastic com-

munication, adaptive routing, and both temporal and spatial redundancy [69].

Quality-of-service (QoS) refers to the levels of guarantees given for data transfers.

Guarantees can be related to timing (min. throughput, max. latency, max. latency

jitter), integrity (max. error rate, max. packet loss), and packet delivery (in-order or

out-of-order). Most contemporary articles concentrate on timing aspects. Transfers

are categorized as

a) Best effort (BE) scheme forwards packets as soon as possible but no guarantees

are given for latency or throughput in general case. This is the most common

approach nowadays. If packet injection to the network is restricted by the NI, a

(loose) upper bound can be determined for the network latency [94] but not always

for the waiting time at the NI.

b) Guaranteed throughput (GT) scheme can offer a minimum level of transfer capa-

bility through the network.

2.2 Network topologies

This section reviews some basic topologies that have been proposed for NoCs. Their

properties are analyzed later in more detail.

2.2.1 Single-hop topologies

The term bus refers to a set of signals connected to all communicating devices. A

bus is called multimaster or shared when there are more than 2 agents that are able to

initiate transfers. Fig. 4 shows few variations of the bus topology: single, hierarchical

and multibus. Only a single agent (rectangle in figure) can transfer data on a shared
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(a) Single shared bus. (b) Hierarchical/Split bus.

(c) Fully connected multi-bus. (d) Partially connected multi-bus.

Fig. 4. Various bus topologies for Nag = 16.

bus at any time. All other agents can receive data simultaneously and hence broadcast

operation is very simple. The limitations are obvious: the bandwidth is shared among

agents, the length of wires increases with system size, and some means for arbitra-

tion (resolving contention) are needed. Despite these limitations, bus topology has

been very widely utilized, especially in small-scale systems, for example Nag < 16.

Moreover, parallel computers utilizing a shared bus with up to 70 processors have

been built [49].

Simple modifications to the basic shared bus topology alleviate the problems. Divid-

ing the long bus lines into shorter segments, Fig. 4(b), improves electrical properties

and allows multiple parallel transfers. The segments are connected together with bus

bridges (black circles). A topology that uses a simple three-state buffer or similar

combinatorial logic is here called a split bus whereas a hierarchical bus uses more

complex bridge elements that possibly buffer the data. However, bridges impose an

area penalty and the transfers that cross the bridges experience a longer latency than

local transfers within one segment. Therefore, hierarchical buses are best suited to

traffic with locality. A hierarchical bus is built either as a simple chain of bus seg-

ments or as a tree like structure 3.

A ring-bus is formed by connecting together the ends of a split-bus [152]. It is consid-

ered a circuit-switched ring in the presented taxonomy. Latency in a hierarchical bus

is analyzed, for example, in [43]. Energy-area and delay-area trade-offs in segmented

buses are analyzed in [72].

3 It is presented here due to similarity with other bus topologies although it is a multi-hop topology.
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Fig. 5. Crossbar and point-to-point topologies.

The bandwidth can be increased by adding several parallel bus links. The agents can

be connected to all links, as in Fig. 4(c), or only to a subset, as in Fig. 4(d). The

former is also called multi-layer bus and suffers from long wires just like the single

bus topology.

A multibus topology having an equal number of links and agents is called a crossbar,

and shown in Fig. 5(a). A regular crossbar allows two transactions (sending and

reception) per terminal. It is almost similar to a fully connected point-to-point (P2P)

network, but a true P2P allows that one agent transfers data simultaneously to all

targets or receives from all sources.

The crossbar in Fig. 5(a) shows inputs on the left and outputs on the bottom. The

connections are formed with i) pass transistors or ii) with multiplexers. A crossbar

topology is also called a star [44, 143] but the difference is merely related to the

drawing style only and not to the functionality.

The implementation cost of both crossbar and P2P grows as N2
ag and they exhibit

long wires which limit their utilization mostly to small scale systems. At the same

time, these topologies offer by far the largest bandwidth. Partially connected P2P

network can result in major saving in network area in cases where all agents do not

communicate and the needed source-destination pairs are known, for example inside

a hardwired accelerator component. Partially connected crossbar is actually a sort of

an multilayer bus.
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all links bidirectional

(a) Butterfly (b) Fat-tree, fan-out=4

Fig. 6. Two topologies based on butterfly. Examples shown for 16 nodes.

2.2.2 Multi-hop topologies

The previous networks (except hierarchical bus) deliver data in one hop. Most other

topologies deliver data with multiple hops, and they are derived from two families of

regular networks : butterflies (k-ary n-flies) or tori (k-ary n-cubes, or hypercubes, or

cubes for short). It is of course possible to have a hybrid topology or customize it

according to application.

Fig. 6 shows two examples of butterflies. A fat-tree is a folded butterfly network and

has many variations, for example [32,51,109,189]. It differs from a regular tree since

the number of links (bandwidth) does not decrease towards the root. There are two

major drawbacks with these networks: butterfly offers in its minimal form only a sin-

gle path between terminals, and the longest links in a butterfly must traverse at least

half the perimeter of the machine [51]. However, they allow simple routing and the

maximum hop count increases logarithmically with the network size. Varying router

degrees can be used to increase the scalability and performance in eXtended Gener-

alized Fat-Tree (XGFT) [109]. Butterflies are also called multistage interconnection

networks and there are several variations; for example, so called Banyan, Clos, and

Benes variants of the butterfly network can replace a crossbar if some blocking is

allowed. Splitting one large crossbar into several smaller crossbars results in notable

area savings.

Fig. 7 and 8 shows four multihop network examples based on tori. Fig. 7(a) shows

a 16-node 2-D torus (4-ary 2-cube) where each PE is connected to a router which

is connected to 4 neighbor routers. A 2-D mesh (4-ary 2-mesh), Fig. 7(b), is a de-
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(a) Torus (b) Mesh

Fig. 7. Networks based on two-dimensional tori: 16-node torus and mesh. For simplicity,

bidirectional links are illustrated only for the mesh.

generate version of the torus since it does not have the wraparound links. All k-ary

n-cubes have the number of nodes Nag = kn packed in a regular n-dimensional grid

and channels between nearest neighbors.

Typically, the links are bidirectional, as illustrated by two unidirectional links 4 for

the mesh. Unidirectional links with a single driver are beneficial because they can be

pipelined [22] A unidirectional mesh is also called a Manhattan (street) network.

A unidirectional ring (16-ary 1-cube) is shown in Fig. 8(a). A (hyper)cube topology

can be extended to an express (hyper)cube by adding a number of long links between

non-neighboring nodes. Adding long-range links to the mesh in systematic way has

been studied by Ogras et al. [181] and it was shown to improve performance notably.

For an 8-node ring this scheme is also called an octagon (octa = eight), Fig. 8(b).

Assuming identical PEs, the system can be scaled without increasing the maximum

wire length. The longest link inside one octagon ring is about 4 side lengths of a

PE [107]. Larger networks can be built hierarchically from 8-node octagon rings or

using a Spidergon topology that allows the scheme to be extended for other ring sizes

than eight [61].

The performance increases with increased cube dimensions due to lower average hop

count but saturates quickly when network costs are kept constant [51]. For example,

the limited number of pins per router or the size of the crossbar inside each router

4 A multibit, unidirectional link is actually a point-to-point bus.
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(a) Ring (b) Hierarchical octagon

Fig. 8. Networks based on one-dimensional tori: 16-node ring and 2 8-node octagons (hier-

archical express ring).

might force adoption of narrower links as the router’s degree increases. However,

Soteriou et al. found 3-D tori superior among the studied topologies in many cases

[227]. They used a planar layout, whereas a “true” 3-D IC was considered in [62] and

[192]. However, laying out 3-dimensional structures on a 2-dimensional chip may

prove to be difficult, either resulting in long wires or routing congestion. Therefore,

3-D topologies are omitted here for brevity and because they are not widely utilized

in NoCs (see Tables 2 and 3). The next section discusses the issues related to the

floorplan of the chip.

2.3 Floorplan of network-on-chips

A floorplan refers to the placement of system components on a chip. The floorplan

of the bus (single, hierarchical, multibus) and mesh resembles the conceptual view

very closely. The long wraparound links in a torus can be removed by using so called

folded torus floorplan. In a mesh, all links have a constant length (1 side length of

PE) irrespective of Nag whereas in a folded torus some links have twice this length.

The ring floorplan can also be realized with constant length links. Few links that are

longer than one PE side length are needed depending on the number of PEs.
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bus or crossbar
shared 

signaling

p2p 

signaling

(a) Shared bus or crossbar (b) 2-D Mesh

Fig. 9. 8-node examples of layout optimization.

2.3.1 Basic floorplan optimizations

Fig. 9 shows simple floorplan optimizations for the bus and mesh. Similar techniques

can be applied to other topologies as well. A conceptual, unoptimized layout, where

the network logic, bus wrapper or router, is always adjacent to PE, is shown on top.

A simple optimization to layout, shown on bottom, moves the network logic towards

the center of the system. The longest link in the bus and the total link length in the

mesh are consequently reduced although some of the PE-wrapper (PE-router) links

become longer. Those links are unidirectional, point-to-point signals and are hence

suitable for repeater insertion or pipelining. They also have lower utilization than

those between the routers or wrappers. In the bus topology, the longest wire length

is now defined as the size of the wrappers instead of the PE size. In the mesh, the

longest wire remains the same but the total wire length is reduced. Routability of

wires in different topologies has been studied in [213].

2.3.2 Irregular size of processing elements

Fig. 10(a) shows how a regular mesh can be applied when the size and shape of the

agents varies. The minimum column width (or row height) is now determined by the

largest agent on the column (row) which leads to unutilized space on the chip and

hence excess area. The PE locations can be reordered in order to minimize area as

shown in Fig. 10(b).
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(a) Original placement

<19.5% reduction in area>

(b) Floorplan-aware placement

Fig. 10. Conceptual example of varying PE sizes in 16-node mesh.

Mesh topology can be customized by connecting many PEs to the edge routers, as

shown in Fig. 11(a) for top and bottom rows. The example has only 8 routers in-

stead of 16 which implies notable savings in area at the expense of reduced aggregate

bandwidth. The router degree remains the same (4 + 4 or 5 + 5). Another option is

to increase the router degree further and hence create so called star-mesh network.

Fig. 11(b) shows a regular topology having 4-PE clusters. A cluster has star (cross-

bar) topology whereas the clusters are connected through mesh. The star-mesh is

an example of a topology that combines two topologies: one at the local level (star,

i.e. crossbar) and one at the global level (mesh). In principle, any topologies can be

combined. Lee et al. [144] have shown that such hybrid topologies are beneficial in

many cases.

An example of an irregular topology, where the routers are connected to a varying

number of PEs, is shown in Fig. 11(c). This last approach may be supported by an

automated synthesis tool for optimizing the topology and few examples are presented

in [22]. One possibility (not shown) is to allow large PEs to span multiple “slots” in

a regular mesh. Such an irregular scheme is called mesh with regions. To avoid

deadlock, routing is somewhat more complex in irregular topologies than in regular

ones 5. These networks have been studied, for example, in [86].

5 Note that a request-response deadlock between communicating ends can still happen regardless of

the routing policy or topology.
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(a) Sharing mesh routers on top and

bottom row

(b) Regular custom network

(star-mesh)

(c) Irregular custom network

Fig. 11. Customized 16-node networks with varying PE size.

2.3.3 Wiring

In the past, the delay and power consumption in integrated circuits were mainly deter-

mined by the logic, i.e. transistors, and the impact of wiring was neglected. However,

the dimensions of the metal wiring cannot be scaled down in the same pace as tran-

sistors. Mainly this is due to resistance of the wires; the narrower wires create larger

resistance for electrical current. Similarly, the parasitic stray capacitance of the wires

does not shrink as fast as transistors and inductive effects increase with frequencies.

Therefore, the wiring must be taken into account already in the early phases of the

design, but unfortunately, that requires complex and expensive design tools. Inter-

ested reader is referred to [82, 83, 232] for a detailed description of various wiring

issues.

Estimates for the maximum frequency vary a lot as shown in Fig. 12(a). Values from

ITRS reports 1999-2005 [92] are combined and they predict much larger frequencies

for high-performance devices than other sources [82, 154]. However, all estimates

agree on the fact that frequencies will continue to increase. Furthermore, frequencies

for microprocessors by Intel Corporation [91] are also shown as their have histor-

ically been state-of-the-art. Interestingly, the difference between 90 nm and 65 nm

technologies is small (3.60 GHz vs. 3.73 GHz). This stall is due to excess power con-

sumption in high frequencies and therefore chip vendors are moving into multicore

architectures [209].

Fig. 12(b) shows the parasitic resistance and capacitance per unit length as given
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in [82] 6 and [83, 154, 174] and their product. There are big differences in estimates

especially in smaller geometries due to large number of parameters that must be

approximated. However, the trend is clear in all presented estimates. In smaller

geometries, the parasitic capacitance is slightly reduced but the resistance increases

very rapidly. Consequently, their product, so called RC delay, increases. At the same

time, the cycle period decreases and hence, a shorter distance can be reached in one

clock cycle. Fig. 12(a) and Fig. 12(b) have paradoxically similar shape although the

first shows frequency and the other shows the wire delay.

The delay of repeated wires depends linearly on the wire length whereas the relation-

ship is quadratic in unrepeated wires. However, the repeaters increase the capacitive

load, and hence dynamic power consumption.

Fig. 12(c) shows how wires are affected as the feature size scales down. The left

6 Note that the [82] has mistyped units in the tables, instead of Ω/µm there should be Ω/mm. Units

are correct in the figures.
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part of the figure shows a system-on-chip with 9 processing elements. On the right,

the newer silicon technology allows integration of 25 PEs with the same chip area.

Wires are divided into three categories: i) local (inside a processing element), ii)

cluster (between few neighboring processing elements) and iii) global (crossing the

whole chip). The length of local and cluster wires scale with technology but global

wires do not. The local wires are routed on lowest metal layers and cluster wires

either on top or intermediate metal layers. Global wires use the top layers.

Globally asynchronous, locally synchronous (GALS) systems use multiple clocks

within one chip and that brings many advantages, such as masking process varia-

tions and alleviating clock skew problems. In addition, the operating frequency of

the whole system is not necessarily defined by the longest critical path among com-

ponents. Hence, the frequency of certain parts may be increased to obtain higher

performance. Alternatively, the frequencies can be minimized while still meeting the

performance requirements. Removing global synchrony may also provide area and

power saving and easier creation and routing of the clock circuitry. However, spe-

cial synchronizing logic is needed when signals cross the clock domain boundaries

to avoid meta-stability.

2.4 Routers

Fig. 13 depicts a generic router component similar to [17, 51, 207]. Input ports are

shown on the left and output ports on the right. A crossbar switching fabric in the

middle allows connecting any input to any output. The crossbar area is relative to

Ninports ·Nout ports. Due to quadratic growth, the radix of the router must be restricted.

Pullini et al. conclude that 10 × 10 or at most 14 × 14 routers are feasible in 65

nm technology [199]. The routing logic decides which outputs are selected for the

arriving packets and the arbitrator resolves the contention that arises when two or

more packets are heading to the same output port. They can be implemented in

centralized or parallel fashion. A centralized approach minimizes the area but may

incur a larger latency for packets. Distributed schemes allocate routing and arbitration

logic per port. It varies whether they are allocated per input or per output port.

Each input or output port may be accompanied with one or multiple data buffers, such

as first-in-first-out (FIFO) buffers. An output-queued router has one buffer per input

port at each output port. Hence, the buffering cost increases quadratically with the
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Fig. 13. The basic structure of a network router.

number of ports (Ninports ·Nout ports). Virtual output queuing has the same number of

buffers but they are at the inputs, and the router is a less wire dominated. A traditional

input-queued router has a buffer only at each input port and, hence, a clearly smaller

area (relative to Ninports) [207]. Both data width and buffer depth also affect the

buffering area. Bartic et al. have studied size scaling of router areas in FGPA and

came to similar conclusions [17].

There are four basic choices how packets are forwarded and stored at routers: store-

and-forward, cut-through, wormhole, and virtual channel flow control. Store-and-

forward method waits for the whole packet before making routing decisions whereas

cut-through forwards the packet already when the header information is available.

Both methods need buffering capacity for one full packet at minimum.

Wormhole switching splits the packets into several flits (flow control digits). Rout-

ing is done as soon as possible, similarly to cut-through, but the buffer space can

be smaller (only one flit at smallest). Therefore, the packet may spread into many

consecutive routers and links like a worm.

It is also possible to associates several virtual channels with a single physical channel

which means having more than one FIFO and state holding logic at each (input) port.

The buffer and channel bandwidth allocation are flit-based as in wormhole. However,

blocking problems are less severe because virtual channels allow other packets to

bypass the blocked one; hence creating a sort of an “overtaking lane”. This method

can be used for enhancing performance and/or to avoid deadlocks that otherwise arise

in certain routing schemes.
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It is easy to note that the area and combinatorial delay increase rapidly with the

number of ports per router [199] and/or number of virtual channels, see also [193].

Therefore, the data width and buffer depth must be decreased to keep the total area

fixed in high-radix routers. Network latency as a function of network dimension was

studied in [51] assuming a fixed number of pins per router. The minimum latency

was achieved with 3-D and 4-D and higher dimension networks did not offer im-

provement. Moreover, high dimensions create difficulties in layout and routing (wire

length and congestion) that were not considered. Given all this, this thesis concen-

trates on topologies with a low dimension (1-D like bus and ring, or 2-D like mesh).

The layout of router and wiring channels also affect the performance and cost of

NoC. Interested readers are referred to the analysis presented in [186]. In this thesis,

however, the impact of channel width to the wire length and area is neglected for

simplicity.

2.5 Other aspects of communication performance

This section discusses few other aspects that affect the on-chip communication. The

common thing is that most of them do not depend on the topology or its floorplan.

These phenomena are easy to neglect in simple, benchmarking simulations, espe-

cially when traffic generators are used. However, many of these are present in real

prototypes or products, and hence benchmarks that omit these may be misleading.

2.5.1 The latency components

The end-to-end latency of a transfer can be characterized with 5-tuple [4]:

< ttx,pe, ttx,bu f , thop, trx,bu f , trx,pe >, (3)

whereas (1) considers only the latency inside the network.

Fig. 14 illustrates the 5 terms:

• Send Occupancy ttx,pe is the time a processing element and network interface

are occupied to initiate a packet transmission, for example serialization of com-

plex data structures.
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Fig. 14. The 5 latency components of inter-PE data transfer.

• Send Latency ttx,bu f is the time data waits before injection into the network

without occupying the processing element. This is mainly due to network con-

tention.

• Network Hop Latency thop is the time needed to transport a message from one

node (=router) to an adjacent node in the network.

• Receive Latency trx,bu f is the time the data on the receiving end waits before

usage.

• Receiver Occupancy trx,pe is the time the receiving processing element is occu-

pied in making the remote data ready for use.

Division between ttx,pe and ttx,bu f depends on how the communication functions are

divided between the PE and NI. The same applies to the receiver side as well. For

example in the Cell Broadband Engine’s Element Interconnect Bus (EIB), the delays

(in cycles) during sending phase are: ttx,pe = 5, ttx,bu f = 47−59, thop = 1, trx,bu f ≥ 0,

and trx,pe ≥ 0 [4]. Considering all the phases, the latency varies from 80 cycles (best

case) to 940 cycles (worst case).

Majority of NoC studies omit ttx,pe and trx,pe; see the references of Tables 4 and 5 for

examples. However, the overhead of SW platform is substantial in many cases. For

example, runtime overhead of 60 000 cycles due middleware functions is reported

in [208]. A SW platform supporting distributed execution of applications is studied

in [85,221]. The initialization time for inter-PE communication is about 8 000 cycles

at transmitting side PE and 15 300 cycles at the receiver. The time needed for setting
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up end-to-end connection to obtain guaranteed services is analyzed in [76]. The

reported values are in the range 4 000−200 000 cycles depending on the system size

and the number of connections. Hence, small differences observed between NoCs

may easily become negligible at the system-level.

2.5.2 Network interface

In addition to the routers, some kind of network interface (NI) (also called network

adapter) is usually needed to handle the packetization, and possibly re-ordering or

retransmissions. It offers high-level services by abstracting the underlying network

to a well-defined interface, such as OCP, and hence separates communication from

computation. Details about the needed network interface are often omitted in many

NoC studies although such interface may double the required silicon area, as in [207]

and [201].

The interfacing functionality usually needs some hardware, for example to connect

processors memory bus to the network, but some parts can be performed in soft-

ware, for example retransmission or reordering. Hardwired accelerator functions

(especially third-party components) and memories require that interfacing is done

with special purpose hardware. Software approach is slower, requires more program

memory than hardware counterpart [24] but easier to design and implement in the

start of the development. Reusing the interfaces and other network components in

several environments amortizes the development and verification cost. Hence, modu-

larity and scalability are desired properties, as noted also in [201]. Network interface

used in this thesis is presented in Chapter 8.1.

A generic packetizing process at the sender’s side has the following phases: address

translation to determine the target agent, preparation of header and possible tail in-

formation, data serialization and/or segmentation. Data serialization is needed if the

transferred data is not stored in consecutive memory addresses, for example in case

of linked list. The segmentation splits the large data chunk into limited-size packets

supported by the network. At the receiver’s side, interface inspects and checks the

packet header and tail and extracts the payload data. The data are copied to local data

memory of the PE first or consumed in first-in-first-out order. Either the corrupted

data is dropped or a retransmission request is sent.
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Fig. 15. The three basic scenarios of overlapping computation with communication.

2.5.3 Overlapping the computation with communication

A processing element can overlap the processing and transferring of data. A specific

hardware component in network interface, called direct memory access (DMA), han-

dles the communication instead of the processing element. At first, PE has to initilize

DMA transfers by defining (at least) three parameters: network address, address in

local its memory, and data amount. Then the DMA controller can copy data to/from

local memory from/to the network while the PE does computation. The completion

of a DMA transfer either causes an interrupt or the PE polls the status register of the

DMA controller.

Fig. 15 shows the timing with and without a DMA. The impact on this overlap de-

pends strongly on the relative durations of computation and communication. The

biggest gain can be achieved when computation and communication times are roughly

equal, Fig. 15(b), and PE always has tasks that are ready for execution after the pre-

vious is completed. Achieved parallelism is minimal when communication require-

ments are very low or extremely high, as shown in figures 15(a) and 15(c). Details

about DMA engines used in this thesis are given in [125, 214].

The runtime is the sum of computation, communication, and synchronization. More

precisely, only the non-overlapped portions of each in the critical path are consid-

ered [49]. For example, let us assume that PE1 transfers data to busy PE2 which

cannot process the data before it has finished its current task. As long as data ar-
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rives to destination prior to the end of its current task, the communication is fully

overlapped with computation and has no impact on performance. In contrast, the net-

work impacts runtime directly when a processor is stalled after miss until the memory

operation is complete. Moreover, load imbalance and synchronization due to depen-

dencies can cause idle periods in PEs even in the presence of an ideal network.

Overlapping communication with computation offers latency tolerance or latency

hiding, in other words (part of the) communication latency is removed from the pro-

gram’s critical path. The data transfers that utilize pre-communication can pipeline

the transfers with computation [49,128]. A prior knowledge of the applications needs,

for example inside a loop with determinate behavior, allows some transfers to be ini-

tialized before-hand. This approach requires free buffer space at the receiver. One

way is to use double buffering, where the data in one buffer is being processed while

other data is being transferred to/from the second buffer.

Different memory architectures were compared in [150,160,198]. Scratch-pad mem-

ory scheme has obtained better performance than cache-coherent shared memory

multiprocessors. Scratch-pad memories provide software with full flexibility on lo-

cality and communication management. Cache-coherent memory systems, on the

other hand, use specialized hardware for automatically providing best-effort manage-

ment. Scratch-pad scheme allows better optimization if program behavior is known,

require less energy and network bandwidth, can better hide the network latency, but

are also more complicated to program. However, the performance and energy con-

sumption become similar in both methods with few cache optimizations [150].

2.5.4 Intertwined transfers and out-of-order data delivery

The transfers from multiple sources can be arbitrarily intertwined at the receiver de-

pending on the state of the network. An example is shown in Fig. 16(a) where two

sources (black and white) transfer data to the same target. The size of the data is

irrelevant in this context. Assume that they are packets in the following discussion.

The receiver must somehow identify the source to process correct data (a−b− c and

d − e, instead of d −a−b− c−d).

All networks have intertwined transfers but on different granularity. Packet-switching

or non-preemptive burst transfers, guarantee the minimum number of words that

are transferred consecutively to destination without interruption. On the other hand,
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Fig. 16. Intertwined transfers and packet reordering.

many buses, such as HIBI, guarantee only that the data are transmitted uncorrupted

to the destination. Hence, the transfer may be interleaved on word-by-word basis.

In Fig. 16(a), all data from a single source remains in order. This is not always

the case, for example, when adaptive routing algorithms are used. Assume also that

packet b takes a shorter or otherwise faster route through the network than a. Then,

b reaches destination before a although they entered the network in different order.

This is illustrated in Fig. 16(b). Assume that the data must be processed in the same

order as it was sent. Separate reordering storage must be allocated for all possible

senders, data packets must be numbered, and source must be identified. The depth

of the buffer is application-dependent. It must be long enough so that processing can

begin when buffer becomes full. Separate buffers are needed to avoid head-of-line (or

head-of-queue) blocking on the left side of the multiplexer. For example with single

buffer, a deadlock may occur or data must be dropped. Once the data e is received,

both b and a are dropped because d is needed before processing can start.

Fixed-length packets simplify reordering as shown on top of Fig. 16(b) (case i). The

location where to store incoming packets is easy to determine once the size and num-

ber of the packet are known. Variable-length packets (case ii) cause problems because

it is impossible to know the sizes of the packets that are not received. Therefore, a

linked list must be used.
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Possibility of data dropping necessitates sending a positive acknowledge (ACK) after

the completion of transfers. Signaling only dropped packets is problematic since the

negative ACK (NACK) packets could also be dropped. However, buffers are still

required for each active source. The receiver must send acknowledges at known

intervals, for example after 8 packets, to avoid infinite reordering buffers. The buffer

size per source is a product of interval between acknowledges and the maximum

packet size. In the worst case, all other agents are sending to one target which means

that total buffer size grows with N · (N − i). With fewer buffers than senders, a

separate handshake phase is needed (cf. Section 2.5.5).

Open Core Protocol (OCP) [178] supports concurrency and out-of-order processing

of transfers with notion of multiple threads. Transactions within different threads

have no ordering requirements, and so they can be processed out of order. Within a

single thread of data flow, all OCP transfers must remain ordered. While the notion

of a thread is a local concept between a master and a slave communicating over

an OCP, it is possible to pass thread information globally from initiator to target

using connection identifiers. Connection information helps to identify the initiator

and determine priorities or access permissions at the target.

For simplicity, all networks developed in this thesis use deterministic routing algo-

rithms that are guaranteed to deliver data in-order.

2.5.5 Limited buffering at the receiver

In message-passing system, received data must be stored locally if the receiving PE

cannot process the incoming data immediately, or if the data must be reordered. This

creates few complications, either excess memory requirements or additional hand-

shaking for buffer reservation prior to transfers. Without handshaking, all senders

assume that they can start transfer without any preparation or negotiation. Therefore,

each receiver must reserve a local buffer for each sender in the system. Naturally,

the practical buffer size is limited. The memory requirement increases quadratically

with number of agents (all agents can be both senders and receivers).

Having less receiving buffers than senders necessitates some sort of handshaking. In

Fig. 17(a) a request is sent first denoting the length of the transfer and the initiator.

Then, receiver allocates local buffer space, activates the receiving DMA is (this might
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Fig. 17. The impact of limited buffering to transfer initiation. There are two basic choices

when the receiver reserves the buffers for incoming data.

be omitted in some architectures), and sends an acknowledgement. The positive ac-

knowledgement contains the address where to send the actual data (target address +

port identifier for the DMA), so that initiators of concurrent transfers can be distin-

guished. Negative acknowledge can be sent if no buffer is available (non-blocking

request). Another choice is to wait until a buffer is free (blocking request) and send

only positive acknowledges. Note that the sizes of the transfers in Fig. 17(a) are ar-

bitrary although each of them is drawn as a single arrow. For example, actual data is

likely much larger than notifications or acknowledgements.

Fig. 17(b) shows another basic approach that is applicable when fixed-length trans-

fers are used. The receiver reserves the buffers first and sends positive acknowledges

to those initiators it considers appropriate. In general case, this means all initiators.

The initiators that have received ACK can start a transfer at any time without hand-

shaking which reduces the transfer latency. Difference to previous scheme is that the

transfer length is now defined by the target and prior to transfer. Consequently, long

messages require several of these transfers. Short messages must signal the actual

data length somehow, for example as the first datum. Then, there are (at least) two

choices. First, dummy data is used to fill the transfer and DMA interrupts the PE

when expected number of words has been received. Second, receiver actively polls

the DMA controller to detect the completion of the transfer.
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The utilized network affects directly the latency of the handshakes and actual data

transfers. However, the buffer management also presents some overhead, especially

when executed in software. Allocating memory dynamically in software (tens to

hundreds of cycles), CPU interrupt (tens to hundreds of cycles) and possible OS

context switch latencies (hundreds of cycles) must be taken into account in trx,pe.

The rough cycle count estimates are based on our prototypes that utilize Nios II CPU

with eCos operating system [10]. These overheads may even take longer than the

actual data transfer and, hence, the impact of the network diminishes.

In the worst case, the DMA controller can access only a separate buffer memory

that is dedicated to communication, and the data must be copied to (from) another

memory before (after) processing. For maximum efficiency, the buffer management

must be implemented with specialized hardware and a dual-port data memory used

for both processing and communication.

As a conclusion, it is optimistic to expect that initiator can always start transfers

without any handshaking overhead. Although that might happen most of the time

(cf. Fig. 17(b)), in general, initiators have to stall and wait for acknowledge at some

point.

2.5.6 Scheduling anomalies

Scheduling anomaly is a situation where an improvement in some part results is worse

overall performance. For example, increasing the performance of the network or

some PE, offers speedup for certain operations. However, the order or execution -

the schedule - changes. This may lead to violated deadlines or lowered throughput.

An example is illustrated in Fig. 18 for 3 processing elements and 5 tasks. The

arrows represent the dependencies between tasks. The original schedule in Fig. 18(a)

meets the deadline set to task a2. Fig. 18(b) shows what happens if the frequency

of PE0 is increased. The runtime of tasks b0 and a2 naturally decrease notably.

However, task b1 is now executed before a1 in PE1 and the deadline is violated. This

is counterintuitive to the fact that PE0 is clearly faster than previously.

Such situations are very hard to predict and avoid. Consequently, the impact of local

optimization must be evaluated also in the system level, especially when deadlines

are present.
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Fig. 18. An example of scheduling anomaly.

2.5.7 Data synchronization

Data synchronization ensures that data is correctly sampled when crossing the clock

domain boundary. Basic two-flip-flop synchronization is rather straightforward to

implement and suited for RTL synthesis. The concept is illustrated in Fig. 19 It

has a latency of 2 cycles from request to data_valid and 3 cycles from request to

acknowledge. Note that also the acknowledge signal must be synchronized in similar

manner by the sender. Hence, the bandwidth is only a fraction from the maximum.

Although this scheme is reliable, it clearly reduces performance even if both domains

used the same clock frequency. Two clock signals can be derived from the common

source so that their frequencies are integer-multiples of each other. This simplifies

synchronization logic and achieves high performance but does not alleviate the prob-

lems in constructing global clock network. Several methods have been proposed to

overcome these issues, see for example [53]. Unfortunately, some are very hazardous

and difficult to implement [57]. For example, they require special Muller-C elements

or rely on some prior knowledge about wiring or gate delays. Hence, they are poorly

portable and sensitive to variations in the manufacturing process and runtime con-

ditions. An example of synchronization method that is synthesizable with regular

standard-cell or FPGA synthesis flow was presented in [127] along with similar con-

clusions as above.

The location of clock domain boundaries is also important in addition to the selected

synchronization style. For example, the whole network (not depending on the topol-

ogy) can be synchronous whereas the PEs operate on different clocks, or each net-
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work router can have different clock source. The first option is likely to incur less

synchronization overhead, only at the network interfaces at source and destination

ends of the path. The second, on the other, has the overhead on every router in the

path.

Performance analyses in this thesis assume that the whole system is either fully

synchronous or that network is synchronous and PEs utilize derived clocks (syn-

chronous multi-clock). This simplification removes the synchronization overheads

of our general-purpose synchronization [126]. Furthermore, the utilized FPGA pro-

totypes did not encounter any major problems with the clock tree synthesis although

they are evident in high-performance ASICs.

2.5.8 Serial links and data encoding

Using serial links instead of parallel has also been suggested [144, 170, 179]. One

reason is that interwire capacitances in parallel links cause crosstalk which can be

also alleviated with shielding wires and inserting repeaters. However, these methods

increase the area and/or power consumption. On the other hand, parallel links allow

lower frequency which reduces power consumption, especially if supply voltage is

also reduced. Most contemporary NoCs (including this work) utilize parallel links

[P10, P[11].

Transmitted data can be encoded in order to achieve low power [95, 144]. However,
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the total power is not necessarily lowered by reducing only the toggle count because

power due to encoding and decoding hardware must be accounted as well. It was

found in [185] that dozens of hops must be traversed in many in order to compensate

the power overhead of encoder/decoder. It has been argued that realistic buses or

NoC links are too short to allow notable power saving [119] and that the encoding

actually increases the overall power consumption [95]. However, encoding has also

been shown beneficial, at least for serial links in [144]. Low-power encoding is better

suited for off-chip than links since they have greater length and operating voltage.

Smaller process geometries and operating voltages combined with higher frequencies

and larger variations are projected to lead larger number of bit upsets in integrated

chips. Communication networks, especially their links, are estimated to prone to

these soft errors [21]. The codes can detect or correct varying number of bit errors.

Those data words that are detected as erroneous but cannot be repaired have to be

retransmitted. The results regarding the memory traffic of a CPU in [21] suggest

that error detection with retransmission is more energy efficient than error correc-

tion. This is due simpler encoding and decoding logic. However, the authors note

that technology scaling may favor error detection in the future because it induces less

communication. Furthermore, the power consumed in memory buffers must be ac-

counted with NoCs. A special case of encoding that encrypts the on-chip traffic in

high-security devices was envisioned in [66].
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3. SURVEY OF NETWORK-ON-CHIPS

This section presents literature studies on NoC proposals and comparisons. Proper-

ties such as utilized topologies, switching methods, evaluation criteria are collected

and commented. The findings will be summarized into a representative data sheet for

a contemporary NoC accompanied with improvement suggestions. Finally, a set of

IP components is reviewed briefly. The goal is to give examples of the modules that

are suitable for NoC-based systems.

The early work and basic principles of the NoC paradigm were outlined in vari-

ous seminal articles, for example [19, 52, 71, 78, 79, 132, 180, 184, 225, 246, 248] and

text books [20, 96, 177]. However, the aforementioned sources do not present many

implementation examples or conclusions about the current proposals. This Chapter

complements the survey [26] by providing a categorized, in-depth literature study of

NoC proposals and comparisons. The implementation results will be covered later in

Section 9.1 together with results from this Thesis.

As a rather new research field, network-on-chip design suffers from contradictory

and/or insufficient definitions of terminology. It is interesting that none of the NoC

text books [20, 96, 177] gives a clear, short definition what is a NoC. This thesis as-

sumes a simple and demystified definition that “network-on-chip is a communication

network that is implemented on chip”. It is a concept which presents a unification of

on-chip communication solutions.

3.1 NoC proposals

Extensive summary of NoC proposals is given in Tables 2 and 3 [P11] whereas NoC

comparisons are summarized in Tables 4 and 5 [P10]. Table 1 lists the used topology

symbols.
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Table 1. The topology symbols used in other tables

Symbol Topology

b, hb (single shared) bus, hierarchical bus

x crossbar

m, t 2-D mesh, 2-D torus

em, sm 2-D extended mesh, 2-D star-mesh

3m, h 3-D mesh, 3-D hypercube (i.e. torus)

tr, ftr tree, fat-tree

r, er ring, extended ring

c custom

(c) custom, but only 1 topology is reported

p point-to-point

db de Bruijn graph

Tables 2 and 3 list the topology, routing, switching scheme as well as utilized eval-

uation methodology and criteria. The bottom rows show the number and percentage

of the papers reporting/using the given property. Furthermore, the percentages from

[P10] are also given at the bottom row for comparison.

Each property is explained in more detail in the following. Tables list support of vari-

ous configurations if the papers explicitly report it. Any unclear or partially applying

properties are marked in parentheses. Although very extensive, Tables 2 - 5 cannot

be all-inclusive. However, it is argued that the selected publications offer a repre-

sentative view of NoC design. The missing information may be addressed in other

publications by the same authors, and hence, all the tables should be interpreted as

“at least these things are known”.

3.1.1 Switching policy

The upper part of Table 2 lists the circuit-switched (c in the table) and lower part

shows packet-switched (p) networks, both in alphabetical order. Switching policy is

not clearly stated in all cases and sometimes both schemes are supported.

Packet-switching is more common and it is utilized in about 80% of the studied NoCs.

Some sources assume packet-switching as key property of NoCs but this study will

consider also the circuit switched networks.

Wormhole switching (w) is the clearly most popular and well suited on chip. On

the other hand, cut-through (c) and store-and-forward (s) are rare. They require more
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buffering capacity and it commonly outweighs the gains of reduced blocking on links

during high traffic load.

Circuit-switching is best suited for predictable transfers that are long enough to amor-

tize the setup latency, and which require performance guarantees. Circuit-switching

scheme also reduces the buffering needs at the routers. Packet-switching necessitates

buffering and introduces unpredictable latency variation (jitter) but is more flexible,

especially for small transfers. It is an open research problem to analyze the break-

even point (predictability and duration of transfers) between the two schemes.

3.1.2 Utilized topologies

Physical restrictions in IC layout favor the utilization of 2-dimensional topologies and

all but 3 papers in Tables 2 and 3 have two-dimensional topology. The most common

topologies are 2-D mesh and torus which constitute about 60% of cases. Custom,

fat-tree, and crossbar have roughly even proportion followed by ring-based topolo-

gies. Otherwise similar distribution is observed in [P10] except that buses were used

commonly as a reference instead of multi-hop topologies. A survey concentrating

solely on on-chip buses can be found in [P1].

A crossbar (or star) is a non-blocking network with high performance. However, high

implementation cost restricts the usage for local communication only instead of large

systems. CDMA NoCs [113, 252] are here considered as crossbars. Hierarchically

constructed networks, for example Slim-spider (hierarchical star) [144], star-mesh

[44], and SNA [145], differentiate local and global topologies. This way the topology

better matches the differences between local and global communication.

Unlike general-purpose macronetworks, NoCs can be tailored according to the re-

quirements of the application domain. Application-specific networks can obtain su-

perior performance while minimizing both area and energy [22, 88]. A topology can

also be extended by systematically adding links between non-neighboring nodes [61,

107, 181]. Few approaches are customizable but the results are given for one topol-

ogy only [9, 18, 42, 148, 223]. However, customization is contradictory to the early

projections of simplified layout and wiring optimization that are possible with regu-

lar topologies [52, 78, 79]. Regular structure suites especially well general-purpose

chip-multiprocessors (CMPs) with homogeneous resources [236]. Resources in con-
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Table 2. Extensive summary of network-on-chip proposals in literature [P11].
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Table 3. Extensive summary of network-on-chip proposals in literature (continued) [P11].
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temporary SoCs, on the other hand, have often varying size and shape, see for exam-

ple [22, 67, 88, 132], which should be accounted in topology/floorplan analyses.

3.1.3 Routing

Packet-switched networks mostly utilize deterministic (d in the table) routing (about

70 %) but adaptive schemes (a) or some means for reprogramming the routing policy

is necessary for fault-tolerance. The studied circuit-switched NoCs do not commonly

discuss how the circuits are setup. However, the transmitted data remains in-order

since the circuit stays intact throughout the transfer, hence the notation (d). Hermes

supports selection of the scheme at design time [169]. Updating the routing tables

at runtime which allows adaptivity event though the routing is deterministic (marked

d∗) [17,181]. DyAD [89] switches automatically between deterministic and adaptive

at runtime and guarantees freedom from routing deadlock and livelock. Deflection

routing forwards packets every cycle and uses adaptive misrouting (other than min-

imal path) in case that target direction is occupied [163]. An interesting option is

to split the traffic across several paths to reduce congestion on certain area of the

network [22].

Although deadlock is generally avoided, out-of-order packet delivery is problematic

with adaptive routing. Many sources neglect this phenomenon totally and others,

for example [71, 163], assume that network interface or software performs the re-

ordering. The cost of reordering in terms of runtime and area overheads are unfortu-

nately neglected which author finds as major deficiency.

3.1.4 Quality-of-Service

Over half of the articles promise guarantees for data transfers, mostly on timing as-

pects. Although many articles mention QoS, only few actually discuss the implemen-

tation in detail or evaluate its efficiency.

Three methods are employed to give timing guarantees: network dimensioning, circuit-

switching, and prioritized packet scheduling [162].

The fundamental feature of GT is the necessity of a priori knowledge about the traffic

load conditions. For example, the network size (link width, topology, buffer sizes)
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is set to tolerate the estimated worst case conditions. Similarly, simultaneously ac-

tivated circuits must be statically determined. Otherwise, the circuit setup may fail

at runtime and lead to non-deterministic delay prior to transfer. Therefore, the com-

plexity of traffic modeling and system simulation is high, and no guarantees can be

given to new applications [162]. Prioritizing packets offers relative guarantees, for

example lower latency for high-priority packets, but no exact guarantees either.

More research is needed to obtain accurate, representative traffic models that can be

used in benchmarking and in NoC design. Conservative models are especially critical

when designing real-time systems. At the same, guaranteed services should coexist

with BE and provided with minimal overhead. Most of QoS issues are coupled with

routing and flow control policies.

3.1.5 Testing and fault-tolerance

Testing aims to detect the errors that occurred during fabrication, such as stuck-at-

faults or short circuits. Fault-tolerance means the ability to operate in the presence

of faults, either hard or soft. Link testing must be addressed in addition to NoC

routers [67, 187]. At the same time, test mechanism must meet the time, power,

coverage, and temperature constraints. Using already tested routers to deliver test

data and exploiting the NoC’s parallelism for simultaneous testing of multiple nodes

is presented in [69]. A special self-test mechanism for NoC was presented in [108].

Unfortunately, these issues are mostly neglected in the studied papers, except [153]

and [108]. Decreasing feature size, higher frequencies, and increased process varia-

tion expose the modern SoC to various faults and countermeasures must be actively

sought and studied.

3.2 NoC comparisons

Tables 4 and 5 list a summary of network comparisons found in literature.

The studies are sorted according to the number of networks, system sizes and then

alphabetically. The properties are divided into three sections: Topology and size,

evaluation type, and criteria.
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Table 4. Summary of comparative NoC studies [P10].
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Table 5. Summary of comparative NoC studies (continued) [P10].
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3.2.1 Compared topologies

The evaluated topologies and number of different system sizes are shown in the sec-

tion Topology and size. Single bus is separated from bus topologies with multiple

links (hierarchical, split, and multibus). Single bus and mesh/torus are the most stud-

ied topologies (over 50% of the cases) They are followed by hierarchical buses, fat-

trees, and rings. One fourth of the studies consider also other topologies, such as

point-to-point or custom. A special case is [P7] which compares a single shared bus

is to “ideal” network.

Column #networks shows how many NoCs are compared. The value can be larger

than the sum of the listed topologies because different versions of the same topol-

ogy are counted separately. For example, wormhole and store-and-forward mesh are

considered as two networks. On average, 3 networks are compared and the largest

studies included 9 [144] and 12 networks [227].

Half of the cases consider only one system size (number of terminals) and about 5

sizes are included on average. The most sizes are covered in [238](18 system sizes),

[P7] (36 sizes), and [259](49 sizes). Analytical models are shown with f () and they

offer naturally very large range of systems. Large networks have been studied in

simulation also; up to 100 nodes in [34, 144, 181] and 256 nodes in [190].

The size ratio is the largest system size divided by the smallest and rounded to nearest

integer. It gives coarse idea of how large design space is covered. It is about 6x on

average and 11x when counting only the studies with multiple sizes. Varying the

system size over 10x covers wide spectrum and hence gives good justification for

presented claims and observations. An exceptional and clearly the largest system

range, 23 −220 nodes, is covered in [238] and it is not included in the above average

values.

It is worth noting no single fixed topology categorically outperforms all others. The

properties of basic topologies are quite well-known but customization and IP map-

ping emphasize the importance of efficient design automation tools, application mod-

eling, and further research.
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3.2.2 Evaluation methods and metrics

Simulation and synthesis are clearly the most popular evaluation methods. One third

of the studies use analytical methods and one fourth have presented prototype chips.

On average, the studies in Tables 2 - 5 use three different metrics for comparing

NoCs which is barely adequate for good comparison. The most popular and impor-

tant metrics are application application runtime, silicon area, power consumption,

and latency. All these are to be minimized and an appropriate trade-off is sought.

Category others denotes metrics that are included only in few articles, for example,

operating frequency, wire length, latency jitter, congestion, path diversity, or packet

loss. These metrics are less suitable for direct comparison. Their major purpose is in

understanding and optimizing the system, and their impact should be reflected in the

four “major” comparison metrics. There are few papers where the marked metrics

are measured only for a fraction of studied networks or system sizes. The obtained

results are discussed in Section 10.1. The basic fault-tolerance metrics are discussed

in [69] but they were not considered in the papers listed here.

Measurement setup and the definition of metrics vary between research groups and

this complicates comparison. Third-party reference points are used in [81, 145, 151].

In other cases, comparison is practically always done between in-house developed

approaches which are not well documented in the publication.

3.2.3 Test cases

Majority of publications use synthetic traffic, such as uniform random traffic, which

is a valid approach on the first steps of design. However, author encourages systemat-

ically evaluating a large set of (representative) traffic parameters. Actual applications

give the best accuracy but their traffic profiles are also suitable. For example, the

profiles of [22] have been used by many researchers. Unfortunately, applications are

rare used, in 40% and 30% of cases in Tables 2 & 3 and Tables 4 & 5, respectively.

Several cases are needed to make general conclusions. The listed test case counts

for the synthetic cases are merely suggestive since it is not clear when the change

in some parameter actually defines a new test case. Most studies use only limited

number traffic scenarios, 3 on average. The largest synthetic test set, 30 random task
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graphs, is in [88] whereas application sets with 4 [155] and 5 cases [151] have been

reported.

Different scenarios are often modeled with some sort of traffic generator (tg), 43%

of cases omitting the dependencies between tasks and 27% considering them. Some-

times the traffic generators are used to mimic the real applications but without per-

forming actual computation.

Test case applications can be divided into computation kernels and full applications.

Examples in the first category include image binarization, segmentation, and smooth-

ing, IIR filter, FFT, DCT, dot product, vector sum, and matrix multiplication. Unfor-

tunately, these applications are not realistic for a billion transistor multi-processor

SoC (MPSoC). In addition, those applications represent too fine grained parallelism

-short computation periods and frequent communication - which is out of the pro-

jected NoC scope.

The latter group of applications includes video encoders (H.263, MPEG-2, MPEG-4)

and decoders (motion-JPEG, MPEG-2), smart camera, OFDM, radar signal analysis,

and large database processing. These give a better view to real NoC performance,

but are still insufficient alone. The largest study includes 30 application traces [227]

but only 1.3 cases are used on average. Application results from a physical prototype

are given only in [81, 88, 114, 129, 141, 142, 181, 236, 259] and the others rely on

simulation.

None has yet reported a NoC running several large applications simultaneously. This

is important step to bring evaluations closer to expected usage scenario of NoC-based

systems. At the same, it necessitates including such aspects as (real-time) operating

system, micronetwork stack [19] and other middleware that have a profound impli-

cations on runtime, scheduling, and memory usage. Similarly, the impact of more

detailed resource models has not been widely explored yet.

The last column in this part denotes how well the test cases are documented. The test

cases that can be repeated based on the publication are marked with x. Notation (x)

is used when some information is missing but rough reproduction is possible. The

analytical studies are reproducible by nature. The synthetic cases without dependen-

cies can be defined with few parameters and are therefore easiest simulation cases to

reproduce. Using dependencies and applications necessitates documenting also the

mapping information. Applications are generally too complex to describe briefly.
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3.2.4 Prototyping

The simulation evidently leads to some simplifications and inaccuracies. Such phe-

nomena could be avoided with real prototypes although measurements are usually

more complex than with a simulator and the costs are higher. Note that a prototype

offers a valuable reference point for calibrating the simulation and analytical models.

Some reported prototypes omit the computation resources or results from real ap-

plications. Two ASIC examples include the network only; SocBus with 2 [80] and

Nexus with 16 terminals [153]. Slim-Spider chip [144] includes the NoC and 9 re-

sources and the same hierarchical star was used in object recognition system [114].

FAUST chip is targeted for baseband processing and it includes 23 IPs and an asyn-

chronous 2-D mesh NoC [141].

Synthesizable traffic generators can be utilized in simulators but also if the complete

system does not fit into single chip. For example, Nostrum NoC was prototyped with

16 traffic generators [176] and an ASIC prototype of 64-node fat-tree with traffic

generators was presented in [166]. By far the largest NoC chip to date is the Intel’s

TeraFLOPS that has an 80-node 2-D mesh [236]. The chip is fabricated at 65 nm

technology, designed to runs at 4 GHz, and contains 100 million transistors occupy-

ing 275 mm2 silicon area.

Modern FPGA devices are large enough for multiprocessor SoC implementation in

the range of million gates and notably cheaper than ASICs in small series. They also

allow special hardware structures such as monitors and traffic generators, which can-

not be included in product ASICs. Two of the reported FPGA studies use 4 processing

elements (PEs) but do not provide any application results [3, 169]. In [181], a 4x4

mesh is prototyped on FPGA and evaluated using autoindustry and telecom bench-

marks from E3S set [55] as well as artificial traffic loads. Synthesizable MicroBlaze

processor and 7 other PE are used for image binarization in [81].

An MPEG-2 encoder in FPGA with 8 hardwired PEs and either custom mesh or

point-to-point network is presented in [142]. An FPGA-based MPEG-4 encoder with

multiple Nios II processors, HW accelerators, and hierarchical bus has been presented

in [P6] [129]. There can be 16 processors on a single FPGA and up to 35 processors

with 23 other IPs when three FPGA boards are used. Furthermore, performance

results of speechcoding kernels, such as the dot_product, IIR, vector sum with scalar

multiply, are obtained from reconfigurable Maia chip [259]. The study considers
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multibus, mesh, and hierarchical mesh topologies using multiple system sizes.

At the first stages, it is essential to perform verification with small systems, such as 4-

16 terminals common nowadays. Nevertheless, to properly analyze NoCs, they must

be utilized in their anticipated scale, which contains dozens of terminals. Note also

that mere FPGA synthesis is not the same as running full applications on the FPGA

(which naturally includes synthesis).

In summary, prototypes are too scarce and lack concrete results from real applica-

tions. In author’s experience, FPGA prototypes are very valuable to ensure correct

functionality of NoC, test the application, and include various overheads. Further-

more, the obtained (near) real-time execution of parallel applications allows longer

runs and better credibility of the results. Hence, more effort towards prototyping and

standardized evaluation methods in NoC community is strongly encouraged.

3.3 Representative NoC

The most remarkable observation is the lack of standardized NoC benchmarks, anec-

dotal nature, and limited number of results, and lack of comparison. However, more

and more high-quality papers are published continuously as the research matures.

Most studies cited here originate from academia but a growing interest is observed

also in the industry.

Table 6 shows a representative data sheet for a contemporary average NoC and im-

provement suggestions. The upper part shows the data related to Tables 2 - 5 and

the lower part to Table 18 To illustrate their importance, there are few properties that

were not included in the previous tables, such as packet length, buffer type, and the

parameters related to implementation results.

To put it simply, thorough benchmarking needs more applications, larger setups, more

prototypes, larger range of evaluated parameters and configurations, better models

for traffic cases and for networks (especially for NIs, network stack, and synchro-

nization).
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Table 6. Datasheet for a stereotypical NoC and suggested research directions [P11].

Property Average value Necessary improvement

Switching Packet-switched QoS, predictability

Topology 2-D mesh Synthesis, IP mapping

Links Bidirectional Pipelining, power reduction

Flow control Wormhole QoS

Data delivery In-order (Cannot be compromised)

Virtual channels No Needed, e.g. 2-8 VC/port

Routing Deterministic Fault-tolerance

QoS Mentioned Details, overhead minimization

Clocking Synchronous (or GALS) Account synchronization impact

Network interface Excluded Considered

Fault-tolerance Neglected Considered

Testability Neglected Considered

Evaluation Simulation, synthesis Analysis, prototype

Prototype No Needed

Used metrics Area, latency Appl. runtime, power

Comparison vs. in-house ref. vs. third-party/std-reference

Applications Not used Standardized,

several simultaneous,

modeling styles

Flit width 32 bits

Phit width Same as flit

Packet length [flit] Hdr:1, payload:n , tail:1

Buffering per router 5 x 3 x 6 flits

Buffer type Based on flip-flops

Router area 0.14  mm
2
 @ 130 nm,

15-18 kilogates

Router frequency 600 MHz @ 130 nm

Min. hdr.lat/router 5 cycles

Power ?

Results from RTL

Silicon conditions n/a

Wire+repeaters n/a

More detailed documentation
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3.4 Survey of reusable hardware IP components

Intellectual property (IP) components, also called macros or cores, are reusable com-

ponents offering verified and predictable functionality. A microprocessor core is a

common example of reusable IP component. Designing components for reuse re-

quires more effort than creating a component for single use only and that is some-

times used as an excuse of not designing them properly. Good design guidelines are

presented in [111] and overview of the IP-based design in [240].

Selecting the most suitable IPs is a crucial step in system design. Good design tech-
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Table 7. Comparison of processor cores [P3].

# Processors Data width Area [mm
2
]

Area 

[kilogates]

Max. freq. 

[MHz]

Energy 

[mW/MHz)

Performance 

[DMIPS/MHz]

1 Cache SRAM, 4-way 32 KB 3.75 (361) 1040 0.51 -

2 Embedded DDR DRAM 2 MB 15.75 (1514) 714 1.0 - 2.3 -

3 Arc 600 32b - 27 200 0.13 -

4 Arc Turbo 186, 0.25 um 16b - 30 100 - 0.25 MIPS/MHz

5 Arc v8 RISC, 0.25 um 8b - 3 100 - -

6 ARM7TDMI-S, 32b 0.62 (60) 80-100 0.39 0.9

7 ARM966E-S, 32b 2.00 (192) 180 0.7 1.1

8 COFFEE RISC 32b 1.42 (137) 200 4.77 -

9 Leon SPARC 32b - 35 165 - 0.85

10 MC8051, 0.35 um 8b - 10-13 100 - -

11 MIPS32, 0-32KB cache 32b 0.8-2.5 (77)+(0-163) 160-240 1.1-2.8 1.29-1.94

12 MIPS64 5Kc, 0.13 um 64b 1.8-2.6 (333-481) 350 - 1.4

13 Open RISC 1200 32b 0.5 25 150 - -

14 PowerPC 405 32b 1.4 (135) 266-390 1.87 1.4

15 Saturn DSP 16b 0.5 (48) 210 0.25 420 mega-MAC/s

16 TTA, small area 

/ high-perf

32b - 43 

/ 158

272 

/ 240

0.13 

/ 0.45

For 8x8 DCT: 6.6 

/ 13.8 Msample/s 

17 XiRISC, max freq 

/ min area / min power

32b - 100 

/ 50 / 61

362 

/ 107 / 100

0.84 

/ 0.45 / 0.37

-

18 Xtensa, 32b 0.7 (67) 320 0.4 -

AVERAGE 

(CPUs only)
29b 1.23 mm

2 75 kilogates 200 MHz
0.59 

mW/MHz
1.05 DMIPS/MHz

(Area values in parenthesis) = converted value, assuming area of NAND2= 320F
2
, where F=feature size 

niques, such as documentation, commenting, code structuring and clarity, are basis

for component reuse but they are not enough. Moreover, the IP should solve a gen-

eral problem, be configurable for different applications, and designed to function

with different technology libraries and synthesis/simulation tools [111]. Different

models can be provided for synthesis and system-level design, however, their func-

tional equivalence must be ensured. In addition, early estimates for performance and

cost factors of an IP component (so called IP meta-data) are needed. The impact of

verification cannot be exaggerated and it must be repeatable by the customer.

An overview of available IP components is shown in Tables 7 and 8. Details of

the comparison and full citation list are presented in [P3]. Results are tabulated

for 0.18µm processing technology with a few exceptions. The following parameters

were gathered: data width, area, (maximum) operating frequency, energy, and perfor-

mance. To ease the comparison, area results were converted to kilogates. In practice,

equivalent gate count depends on the semiconductor vendor and therefore, the ex-

act size is not always known. According to ITRS roadmaps [92], 2-input NAND

(NAND2) occupies 320F2, where F is the minimum feature size. Equation results in
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Table 8. Comparison of accelerator IP cores [P3].

# Accelerator Size / configuration

Area 

(memory not 

included)

Memory
Freq. 

[MHz]

Energy 

[mW/MHz]
Performance

1 ADPCM* 8 channels 20 kgates 624 B RAM 1 - 16-40 kb/s

2 ADPCM* 256 channels 20 kgates 8.8 KB DPRAM 2 - 16-40 kb/s

3 AES 128b key and data 173 kgates - 125 0.45 1.6-2.3 Gb/s

4 AES 128b key module 

/ data path

 84 kgates 

/ 310 kgates
-

400 

/ 266

- 34 Gb/s

5 DCT chip 8x8, 

9b in, 12b out

2.16 mm
2

(208 kgates)
-

75 0.06 75 Msample/s

6 DCT 8x8, 

8x9b in, 17b out

0.42 mm
2

(40 kgates)
-

40 0.22 320 Msample/s

7 DMA 32b, 

5 channels

0.16 mm
2

(15 kgates)
-

200
- -

8 DMA, 0.13 um - 60 kgates 140 - -

9 DWT 129 x 129, 16b 16 kagets 33.8 KB DPRAM 200 - 200 Msample/s

10 DWT 128 x 128 50 kgates 50 kB RAM - - 150 Msample/s

11

FFT 16b, full rate VDSL 114 kgates 37.5 KB RAM 

+ 4.1 KB ROM

75 3.08 75 Msample/s

12 FFT 16b, 1024-point 1.35 mm
2

(130 kgates)

3.03 mm
2

113 2.3
-

13 MPEG-2 

decoder

1920x1088 pixels 105 kgates 832 B RAM 

+ 1.8 KB DPRAM

133
-

60 fps

14 MPEG-2 

decoder

6 PAL/NTSC 

streams

110 kgates 518 B RAM 

+ 1.7 KB DPRAM

135
-

6 x 25 fps

15 Reed-Solomon

decoder

Time-division 

/ freq.-division

39 kgates 

/ 85 kgates

2 KB RAM 

/ 1 KB RAM

20 2.9 160 Mb/s

16 Reed-Solomon 

decoder, 0.25 um

- 33 kgates 1 KB RAM 84 0.74 - 1.21 2.5 Gb/s

17 RSA, 0.25 um 1024 b 36 kgates size unclear 66
-

25 ns for 

exponentiation

18 RSA, small 

/ fast

32b, 

max key 8192b

20 kgates 

/ 27 kgates

1 KB RAM 85 

/ 200
-

33ms / 14ms 

(1024b A mod C)

19 SHA-1 + MD5 FIPS-180-1, RFC 1321 27 kgates
-

166
-

SHA-1: 1.0 Gb/s,  

MD5: 1.3 Gb/s

20 SHA-1, FIPS 180-1 15 kgates - 140 - 874 Mb/s

21 Turbo codec block size 32-432 373 kgates 4.5 KB DPRAM 171 < 23.41 81 Mb/s

22 Turbo encoder W-CDMA, CDMA2000 20 kgates . 200 - 13 Mb/s

23 Turbo decoder W-CDMA, CDMA2000 60 kgates - 150 - 10 MB/s

24 Viterbi decoder 3GPP 52 kgates 2 KB RAM 64 - -

25 Viterbi decoder SOVA_13 44 kgates,

0.5 mm
2

- 500 0.8 500 Mb/s

AVERAGE -
79 kgates,

0.92 mm
2

4.6 KB RAM 

+ 3.8 DPRAM
144 MHz

3.29 

mW/MHz
-

(Area values in parenthesis) = converted value, assuming area of NAND2= 320F
2
, where F=feature size 

* = ASIC technology but feature size not known

NAND2 sizes of 10.4µm2 and 5.4µm2 for 0.18µm and 0.13µm technologies, respec-

tively. Converted gate count values are shown in parentheses. It is not always evident,

whether published area values include routing and placement results and therefore the

derived gate counts can be used only for rough comparison.

Power consumption was converted into energy per clock cycle. When power [W =



54 3. Survey of network-on-chips

J/s] is divided with frequency [Hz = cycle/s], the result is energy per clock cycle

[J/cycle]. Thus mW/MHz equals nJ/cycle. It is assumed that with 0.18µm technol-

ogy, the power is dominated by dynamic power instead of leakage power. However,

the effect of leakage power increases rapidly with smaller processing technologies.

The average size of contemporary IPs is around 75 − 80 kilogates and frequency

around 140− 200 MHz for 0.18 µm technology. The average size is in accordance

with the projections of [232]. The networks studied in this thesis are meant for inter-

connecting IP components similar to those in Tables 7 and 8.



4. BASICS OF COMMUNICATION NETWORK EVALUATION

This chapter presents the basics of benchmarking and communication network eval-

uation, namely implementation-independent comparison of topologies, data traffic

modeling, and simulation-based methodologies in general. Moreover, general guide-

lines for network benchmarking are given.

4.1 Introduction to benchmarking

A benchmark in every-day language is a point of reference for measurements. A

common benchmark set is required for fair and thorough comparison of different

approaches. It increases scientific credibility as the new claims can be reproduced

and checked by other researchers. Furthermore, benchmarks help to prune the design

space. System designer can concentrate on approaches that are likely to perform

well based on the existing benchmark scores. Benchmark that best resembles the

targeted application (domain) is of special interest. Robert Colwell, Intel’s chief IA32

architect through the Pentium II, III, and 4 microprocessors, captured quite well the

essence of benchmarking in [46]:

”It is dangerous to use benchmarks in designing new machines, but not

as dangerous as not using them.”

The point is that benchmarks are necessary for quantitative analysis but they must be

selected with great care.

Traditionally, computer-related benchmarks have measured the performance of CPU

and/or its compiler [59, 73, 74, 244, 245, 251]. Nowadays they are also used in many

other areas of system design, for example, computer-aided design (CAD) tools [56,

75, 118, 161, 231], as well as macro-level networks and servers [60, 102, 149]. A
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benchmark-based (also called a scenario-based) system design strategy that executes

a mix of concurrent applications during optimization is presented in [191].

No NoC benchmarks have been published to date. Therefore, Chapter 5 of this thesis

presents a methodology for NoC benchmarking that has been missing. Network-on-

chip is often utilized in an embedded system with multiple resources and, hence, the

traditional single-CPU benchmarks are not applicable. Unfortunately, also the mul-

tiprocessor benchmarks are unsuitable due to difference in scale. SPEC OMP2001

[230], for example, requires 8 GB memory and UNIX or Windows operating system.

4.1.1 Benchmark classification

There are four basic benchmark categories:

1. synthetic which abstracts out the functional details. For example, classical

CPU benchmarks Dhrystone [245] and Whetstone [244], execute instructions

according to certain statistical distribution. Distribution is either artificial or

measured from a real life program. With NoCs, synthetic means mimicking

spatial and temporal distribution of data transfers while abstracting the program

functionality. A common example is the uniform random traffic used in load-

latency measurements.

Synthetic cases are intended to debugging and isolating certain functionality.

Hence, they tend to be small in size, easily ported and adopted in various en-

vironments. However, their expressiveness is limited and they may be easily

tricked to achieve good results, for example, with some special compiler op-

tions.

2. algorithm-based (or derived) kernel includes only the kernel of the real algo-

rithm but not the full application [245].

3. actual applications are functionally accurate programs, such as C compiler and

analog circuit simulator. They give the best accuracy but are harder to port to

different systems, require standardized input data, and their simulation is usu-

ally slower than other types of benchmarks. The target application is naturally

the best possible benchmark. Unfortunately actually trying out software on

a prospective system generally isn’t a practical option due difficulty in port-

ing [45].
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4. combination includes benchmarks from the three above categories. For ex-

ample, a combination of small kernels and large applications is used in SPEC

[244], MiBench [74], and SPLASH-2 [251]. Commercial EEMBC [59] suite

includes benchmarks for many areas of embedded computing such as automo-

tive and digital entertainment.

The benchmark categories 2-4, can be executed with varying level of optimization. In

most cases, the benchmarks are complied in an automated way to the benchmarked

computer but there are cases when all possible optimizations are allowed, including

rewriting some parts of the codes.

A scalable benchmark can obtain a superset of the information given by any particular

fixed size benchmark and, hence, remains valid for longer time [73]. As an example,

Task Graphs for Free [56] is an open source approach for developing pseudo-random

directed acyclic graphs for allocation and scheduling research. Note that even if

graphs are (pseudo)random they must be reproducible by other researchers and easily

shared to allow comparison. Stroobandt et al. have presented a synthetic circuit gen-

eration method for evaluating CAD tools [231]. They noted, however, that sometimes

it is hard to prove that artificial cases represent properties of any known application.

Synthetic cases are easier to scale than applications and their usage for benchmarking

is recommended in [224, 234]. This thesis concentrates mostly on synthetic cases.

4.2 Analytical topology comparison

The main emphasis of this thesis is on simulation or execution-based evaluation.

However, short discussion about analytical comparison is included for the sake of

completeness.

The network properties have been studied with analytical methods in [28, 51, 136,

147, 258]. Lenoski and Weber [147] summarized the basic goals in designing an

ideal scalable network

• low cost (routers and wires) that grows linearly with Nag

• minimal latency independent of Nag, however the best that can be achieved in

practice is the growth of log(Nag)
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• bisection bandwidth grows linearly with Nag

Bandwidth can be scaled up by using wider links and pipelining with the expense

of increased area. However, it is much harder to minimize latency, especially when

accounting synchronization at clock domain boundaries. Few topologies are summa-

rized in Table 9. Assuming uniformly distributed traffic, none of the real networks

achieves all these goals but at least one of them is always violated. However, many

networks are “neighbor-optimized” which means that they achieve much higher per-

formance under appropriately localized traffic scenario. Traffic localization has no

impact on frequency or wire cost but on bandwidth and hop count.

The number of links defines the maximum theoretical bandwidth but also the wiring

cost when multiplied by average link length and wire bundle width. The number of

router ports differentiates the single router cost if all networks are assumed to have

identical buffers. The total area cost can be defined knowing the total number of

routers and the cost of a single router. In general, area costs grow with Nag except in

crossbar and point-to-point networks.

Latency tends to increase with the system size either due to increased hop count or

because the wire length affects the attainable operating frequency. These properties

have non-direct impact on the system performance. For example, the latency hiding

techniques, such as pre-fetching, can largely remove the impact of latency [49]. Sim-

ilarly, the operating frequency is limited by the router logic instead of the wire delay

in some cases. Increasing the number of segments in hierarchical buses allows high

frequencies but causes larger hop counts. A fat-tree has few long links but they do

not restrict the operating frequency of other links if GALS paradigm is applied inside

the NoC.

The number of bisection links is related to scalability of the network. It also reflects

the error-tolerance, i.e. the ability to operate in the presence of errors in wires or

routers. In both cases, a large value is desired. However, error-tolerance generally

requires a routing scheme that is either adaptive or that can be explicitly reconfigured

(reprogrammed). Hence, a large bisection is a necessary but not adequate condition

for error-tolerance. Half of the traffic goes across the bisection with spatially uniform

traffic. Actually, the fraction is not exactly 0.5 but N/2
N−1 when none of the sources

sends data to itself. Nevertheless, the value can be approximated with 0.5 in most

cases.
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Table 9. A brief summary of network topology analysis.

Bisection 

bandwidth

Latency (due 

to freq/hops)
Area cost

Bus b f - - b, f

Multibus b f - - b, f

Split bus b f - x b, f

Hier.bus (chain) b h or f - x -

Hier.bus (tree) b h or f - x -

Crossbar - f a - f, a

Point-to-point - f a - f, a

Bidir ring b h - x -

Octagon b h - x -

2D mesh b h - x -

2D torus b h - x -

Butterfly fat-tree - f 
(1)

a x f 
(1)

, a

Best case - - - x -

Symbols: b =bandwidth Notes: 
(1)

 Only in fully synchronous fat-tree

h= hops

f= frequency

a= area cost (routers + wires)

Topology

Neighbor-

optimized 

topology

Which scalability goal violated under 

spatially uniform traffic Violated 

goals under 

optimal 

traffic

A bus is considered non-scalable because its bisection is constant which means that

bandwidth per input terminal decreases with the number of terminals as 1/N. A

mesh is sometimes considered a “scalable” network, e.g. [132], because its bisection

bandwidth increases with the number of routers. The bisection of the mesh is defined

as Bmesh = 2N/k, where N equals the number of routers and k is the number of routers

in one dimension [51].

For a 2-dimensional mesh, N = k2 and Bmesh = 2N/
√

N = 2
√

N. Consequently, band-

width per input terminal with uniform traffic becomes (Bmesh/N)/0.5 = (2/
√

N)/0.5 =

4/
√

N, because half of the traffic crosses the bisection. Hence, it decreases with

larger N, although not as rapidly as with a single bus. Bisection bandwidth grows

less than linearly with network size in all networks except fully connected point-to-

point and crossbar.
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Table 10. Comparison of bus and NoC. Adapted and extended from [26, 71].

# Single, shared bus Multi-hop network

1 Every attached unit adds parasitic 

capacitance, therefore electrical 

performance degrades.

- + Local, point-to-point one-way wires are 

not affected by the scaling system size. 

2 Bus timing is difficult in a deep 

submicron process.

- + P2P wires can be pipelined because links 

are point-to-point.

3 Bus arbitration can become a 

bottleneck. The arbitration delay grows 

with the number of masters.

- + Routing decisions are distributed, if the

network protocol is made non-central.

4 The bus arbiter is instance-specific 

[Guerrier, Bjerregaard] but can be 

synthesized [Salminen].

- + The same router may be reinstantiated for 

all network sizes.

5
Bus testability is problematic and slow.

- + Locally placed dedicated BIST is fast and 

offers good test coverage.

6 Bandwidth is limited and shared by all 

units attached.

- + Aggregated bandwidth scales with the 

network size.

7 Bus latency is wire-speed once arbiter 

has granted control.

+ - Minimum delay is two routers and one 

link. Furthermore, internal network 

contention may increase  latency.

8 Any bus is almost directly compatible 

with most available IPs, including 

software running on CPUs.

+ - Bus-oriented IPs need packetization 

logic. SW needs clean synchronization in 

multiprocessor systems.

9 The concepts are simple and well 

understood.

+ - System designers need reeducation for 

new concepts.

10 Network logic (wrappers+arbitration) 

rather small.

+ - Larger network logic (routers, especially 

buffers)

11 - Data may arrive out-of-order with 

adaptive routing.

+ In-of-order  delivery with deterministic 

routing guarantees in-order delivery.

12 Long links induce more bit-errors due 

to crosstalk.

- + Shorter links are less prone to crosstalk-

induced errors.

13 + Multiple paths increases error tolerance 

iff routing is adaptive or configurable.

- Adaptive routing requires reorder buffers 

at the receiver.

14 Whole link driven all the time (large 

capacitance) irrespective of source and 

destination.

- + Several short links are driven on given 

path, others are idle.

Total + 5 10

Total - 9 6

Total -4 4 è Multi-hop is better

Pros 

& cons

Data arrives in-order. +

Only one path between source and 

destination does not offer error 

tolerance.

-
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Differences between single, shared bus and (multi-hop) network properties have been

summarized in [26, 71]. Their rather strict conclusion was that it is better to use

anything else than a single shared bus topology. This is perfectly valid for large

systems but not a new one or surprising. The statements are shown in Table 10 with

few additional comments.

Zeferino et al. have analyzed the switching point when a mesh-based NoC becomes

preferable over a simple bus having no hierarchy [258]. The analyzed test case is

total exchange which means that all Nag agents send data to all other agents (Nag −
1). They come up with an estimate that a mesh is preferable when the system sizes

increases beyond 16-25 agents assuming the same frequency for all networks. If the

maximum frequency is determined by signal propagation delays on wires, a mesh

provides higher maximum frequency due to shorter point-to-point links.

Ideally, the speedup over the single bus equals the number of bus segments Nseg

in hierarchical topology. However, bridges between the source and target induce

extra latency but not all traffic crosses bridges. This suggests that the switching

point between mesh and hierarchical bus is higher than 16− 25 agents. However,

the hierarchical bus topology is sensitive to locality and the latency of the bridge

component. It is actually slower than a single, shared bus if many accesses across the

bridges are required. Hence, the mapping of tasks onto computation resources is a

critical step to keep most of the communication within a small distance [43] and to

ensure load balancing.

4.3 Modeling traffic load

The offered traffic is characterized by its spatial (where to send) and temporal prop-

erties (when to send). Temporal parameters include:

• data rate, for example bits/s

• burstiness - defines how much the size of the transfers varies

• dependencies - define whether data is injected

a) continuously
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b) only after certain initial conditions are met, for example, enough input

data has been received first.

Uniform traffic pattern is widely utilized in network studies since it is easy to gen-

erate and bounds for latency and maximum bandwidth can be obtained analytically.

However, traffic tends to be localized in practice [190] and the dependencies between

application tasks cause throttling [51].

4.3.1 Data rate and spatial distribution

Fig. 20 shows four example SoC traffic models from [22]. The nodes in graphs de-

note PEs and memories whereas the edges denote communication between them.

Sustained average data rate in MB/s is marked to each edge. These graphs and other

reported state-of-the-art examples are summarized in Table 11. Graph-based traffic

descriptions are emphasized here. Terms “task” and “process” are used interchange-

ably in this thesis.

Bidirectional edges are assumed to be split into two unidirectional edges, each with

half of the data rate. Both the number of nodes and edges are small, 9 and 12 on

average, respectively. The shown cases are among the best that are publicly available,

but still unsuitable for benchmarking large systems with tens of resources.

The column Max #dst per node shows that task nodes have only 1− 3 destinations,

except SDRAM that communicates with 7 other nodes in MPEG-4 decoder. Hence,

the spatial distribution of targets is far from uniform. Similar findings were reported

also in [77]. Note also that the already one or few hot-modules in a wormhole-

based NoC dramatically reduce network efficiency and cause an unfair allocation of

system resources. For example, Walter et al. demonstrated that a single hot-module

can destroy the performance of the entire SoC, even if network resources are over-

provisioned but no access regulation is utilized [241]. Hence, this phenomenon must

be accounted for in SoC architectures and applications to fully exploit the potential

of NoCs.

Total emitted data rates range from 49 MB/s to over 3.5 GB/s, being about 1 GB/s

on average. Both maximum and average data rates per node are also given. Ejected

data rate denotes how much data is targeted to a single destination. There is large

variance between data rates of the nodes. Ratio between largest and smallest sent
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Fig. 20. Four examples of traffic profiles from [22]. Nodes represent SoC resources and ar-

rows show the sustained traffic rate in Mbytes/s.

data rate per node varies from 3x−4x (MWD, PIP, filter) to 750x−3000x (MPEG-4

dec). Uneven data rates were observed also in [228]. Maximum data rates are listed

because the node that either emits or ejects the largest amount of data (a hot-spot)

sets minimum bound for the frequency of network terminals.
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Table 11. Examples of reported traffic loads in multiprocessor applications.
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(a) Examples of varying burstiness.

Fig. 21. Traffic examples with different level of burstiness. The average data rate is the same

in three all cases.

4.3.2 Burstiness

The above examples report the average throughput values. However, the level of

burstiness, or bits per unit time, is not constant and varies from one cycle to the

next [50, 77, 228, 234]. Bursty traffic injects occasionally large data amounts (bursts)

instead of injecting data continuously with constant rate. This complicates the opti-

mization of NoC as it should perform well with a mixture of very short and very long

messages.

Fig. 21 illustrates the concept with three traffic scenarios which have the same aver-

age data rate their burstiness varies. The large spikes at data rate may momentarily

saturate the network and hence increase the latency of certain transfers. Burstiness

affects the runtime (up to 25% in [234]) also in cases where network offers adequate

bandwidth.

4.3.3 Communication-to-computation ratio

Communication-to-computation ratio is sometimes used to describe and design paral-

lel applications [50,237] 1 or computers [23,200]. Small communication/computation

ratio values mean that communication demands are low which favors parallelization.

For example, ratio 0.5B/op means that 1 byte of data is sent for each 2 executed

1 Some sources, for example [237], use inverse ratio which means that acronym CCR cannot be

used.
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operations. This format is recommended since it is easy to convert into data rate

B/s when the duration of one operation is known. In contrast, a unitless ratio, de-

rived from communication and computation times [237], is based on the algorithm,

architecture, and their mapping. It cannot be directly utilized for modeling the same

application with different mapping.

In traditional multiprocessor systems, communication is relatively slow compared

to computation. For example, high-performance computer architectures offered an

average ratio 0.06 B/ f lop (including MPI overheads) [200] and 0.07−0.59 B/ f lop

[23], where f lop denotes a floating point operation.

Therefore, the parallel algorithms try to minimize the communication. SPLASH-

2 multiprocessor benchmark set has comm-to-comp ratios in the range of 0.01 −
0.26B/ f lop [49] and 0.5− 3.1B/ f lop [251] but values are heavily influenced by

the utilized cache configuration. Distributed memory parallel computer with explicit

message-passing was studied in [50]. The average ratio was 0.3B/ f lop and maxi-

mum 1.9B/ f lop.

Compared to large-scale parallel computers, MPSoC offers higher relative network

capacity since the network can operate with the same frequency as the PEs. How-

ever, equally low ratios were reported for IEEE 802.11 MAC processor design [164].

The functions executed on SW had ratios 0.01−0.07B/cycle, and those on HW had

0.06−0.38B/cycle. A bit higher ratio of 0.1B/cycle for MJPEG application can be

obtained from [85]. There, the ratio is lowered by the overhead of operating system

and inter-process communication routines. In [160], the ratio during motion esti-

mation becomes 0.03− 0.06B/op. Unfortunately, no other examples for SoCs were

found at the time of writing. The common denominator here is that when the actual

computation is performed, traffic demands are low. Hence, it is difficult to gener-

ate very stringent traffic scenarios with fully functional models compared to purely

abstract models.

4.3.4 Traffic generation

Benchmarking a multiprocessor system using multiple instruction set simulators (ISSs)

gives accurate results but is too slow even if the simulation is distributed to multiple

computers [205]. For pure NoC benchmarking, only the external behavior of each

PE needs to be modeled, i.e. the amount and timing of data transfers regardless of
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Fig. 22. HW/SW co-simulation and simulation using a traffic generator.

the actual values of the internal variables or the transferred data. Abstraction allows

fine-tuning of traffic characteristics without the laborious optimizations on the fully-

functional program models.

The basic principle is illustrated in Fig. 22. The left side shows HW/SW co-simulation

that utilizes two types of simulators: an instruction set simulator for each CPU and

an HDL (HW description language) simulator for other parts. The simulators com-

municate via a co-simulation bridge program. The right part shows an abstracted

simulation setup. All resources are modeled with a single traffic generator, that in-

jects and ejects data to/from the network according to given traffic profile, and gen-

erates statistics about performance. This method allows using a single simulation

framework.

A higher abstraction level is utilized with traffic generators, which provide means

to generate data transfers to the network according to a pre-defined communication

profile. Hiding the internal functionality increases the simulation speed and allows

researchers to more easily contribute data to the test suite. The contents of data can

be freely chosen to simplify error checking, NoC debugging, and performance mea-

surements. Actual bit patterns and toggle rates affect power consumption estimates,

though. Traffic generators have been widely utilized, for example, for characterizing

internet traffic in order to test and measure routers and servers [60, 102].

Transfer-independent, also called stochastic, traffic generator does not account de-

pendencies of subsequent transfers but all PEs generate traffic according to a fixed

probability and distribution, as in [134,173,215,218,227,254]. For example, each PE
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transfers a random number of data words to all other PEs with uniform probability

regardless of how it receives data from others [175].

More realistic traffic is generated by considering the dependencies between the trans-

fers, in other words generating a transfer-dependent, also called reactive communica-

tion profile, for example [P2] [77, 121, 135, 151, 159, 247]. Small runtime estimation

errors have been reported [135, 159]. Dependencies make the profile partially or-

dered, i.e. tasks are not executed before they have received their input data.

Functional accuracy combined with fast simulation can be obtained without use of

ISSs. Applications can be run on a host simulation computer (native execution) and

annotating wait statements to model the execution time. Fine-grained annotation on

the basic block (assembly language) level has obtained both accurate and fast sim-

ulation [12, 31]. In this scheme, however, the application source codes must be dis-

tributed in the benchmark set which will limit the contributions from industry. Error

detection and detailed performance measuring may also be laborious to implement

with a real application. For example, checking real data values, say pixel values, is

harder than spotting the discontinuities in a sequence of running integer numbers.

4.3.5 Traffic profile capture

Traffic characterization is required in order to utilize traffic generators. Static anal-

ysis prior to compilation is difficult and/or inaccurate since the program flow and

execution time practically always depend on the input data set. For example, un-

bounded loops in SW are problematic. Static analysis, or “educated guess”, is of

course mandatory if the application is not available yet.

Application profiling is performed by running application in simulator or in real HW

with multiple input data sets and collecting execution traces. However, the archi-

tecture or mapping are not yet fixed but designed with aid of profiled information.

Fig. 23(a) illustrates three possible ways to profile the execution:

i) profiling is done after the application mapping by tracing the communication

between PEs. The profile captures the traffic generated by all the tasks mapped

on a given PE. Transfer-independent, stochastic, generator fall into this class.

ii) profile the application execution on each possible PE. The granularity level

varies from basic block of assembly instructions [31] to complete tasks.
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Fig. 23. Creating a traffic profile.

iii) profile the application once at task-level on a reference PE. The performance

of individual PEs is given relative to a reference PE. PE characterization is in-

dependent of the application at hand, and performed while constructing the PE

library, prior to exploration.

Short example outcomes of three profiling styles:

i) PE1 sends with probability of 5% to PE2, with probability 7% to PE3, ...

ii) application task t1 takes n1 clock cycles on PE1, n2 cycles on PE2, ...

iii) application task t1 executes o1 operations on reference PE, t2 takes o2, ...

Method i is limited to exploring the NoC and the locations of PEs. Every time the

application, mapping, scheduling, or PE allocation is changed, the profiling must

be performed again. This is not recommended approach. By utilizing the method

ii or iii, the same communication profile is applicable throughout the exploration

for all application mappings, schedules, and PE allocations. Furthermore, the same

communication profile remains valid for all NoC architectures. In ii this requires

that the impact of the NoC (stalls and throttling) can be separated, for example by

overclocking the NoC, as in [131].

Fig. 23(b) illustrates a further problem arising in method i that views the application

as a black-box. In simple case, the PE receives message A, starts processing, and

emits message B. The definition of processing time is more difficult with incoming
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messages C and D. It is not possible to determine whether the processing starts after

C, after D, or only when both of them have been received. In addition, all three

profiling styles require knowledge, whether the processing starts when the first word

or when the whole message arrives. Therefore, knowing the internal behavior of the

tasks is necessary to solve such ambiguities.

In [P7], a data-parallel video encoder [105] has been manually profiled to derive a

parameterizable transfer-dependent model for Transaction Generator. The obtained

simulation results are presented also in Section 10.5.1.

Manual profiling of video encoder application was somewhat tedious and time-consuming.

Therefore, MAC protocol for proprietary WLAN described in UML 2.0 [123] was

profiled by linking special functions to the automatically generated C code. The

application was run on FPGA and the collected execution traces were transformed

automatically into a task graph model (18 tasks) with scripts in few minutes which is

comparable time with results given in [159]. The automated profiling is an integral

part of Koski design flow [104]. Other studied publications do not report time and

effort needed for the profiling.

4.4 General guidelines for NoC benchmarking

This Section provides general guidelines for evaluation, metric selection, reporting

in general. Table 12 provides short general guidelines to alleviate the observed short-

comings in NoC comparison. Few common issues were inspired by [5,13,15,65,224]

although those articles deal with different problem domains; simulating and evaluat-

ing a mobile ad-hoc network (manet), job scheduling policies, computer architec-

tures, and heuristic algorithms, respectively.

The guidelines given here might seem obvious and self-evident at the first look. How-

ever, in practice they are not; judging by [5, 65] and the articles cited in Tables 2 - 5.

Although some of them are usually considered, too many are not documented accu-

rately. A reader cannot be sure about validity unless the setup and assumptions are

explicitly stated, which is rare. First step to improve the situation is the brief checklist

given in Table 12. Second, the research community should evaluate the guidelines,

and then thrive for their wide adoption, as in [P9].

The proposed guidelines are divided into 4 parts: workload, system modeling, mea-
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Table 12. Simulation guidelines for NoC evaluation [P10].

W.r.t. # Guidelines

1.1 Use several cases, ensure that they are representative

1.2 Validate statistical workload models against real applications

1.3 Ensure that cases are different enough and not biased towards some property

1.4 Document properly if there are limiting assumptions about the usage scenario

1.5 Include variable bit rate and bursty traffic

1.6 Scale the load with great care to avoid distortion of important properties

1.7 Use documented, freely available benchmark workloads when available

2.1 Evaluate many system sizes and configurations

2.2 Validate models against data from external source (other publications etc.)

2.3 Validate the analytical and simulation models against real implementations

2.4 Include various overheads (e.g. synchronization or interrupt latency)

3.1 Document all settings and assumptions to enable repeatability 

3.2 Determine the number of required independent runs to gain statistical validity

3.3 Address the sources of randomness to ensure simulation run independence

3.4 Perform sensitivity analysis to identify the significance of a certain parameter

3.5 Carefully select several metrics and document them

3.6 Specify units and ratios explicitly. Use (de-facto) standard units when possible.

3.7 Discard warm-up period and saturated workloads from the results

3.8 Use long workloads and (simulation) runs

3.9 Use "infinite" source queue in load-latency measurements to avoid self-throttling

4.1 Account for estimation/simulation errors in comparison

4.2 Compare and contrast the results to the state-of-the-art

4.3 Repeat the evaluations on a reference system

4.4 Search for trends and correlation in the obtained results

4.5 Do not use speedup from a small system directly to estimate the bigger ones
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surement, and conclusions. Each part and NoC benchmarking metrics are discussed

separately next.

4.4.1 Workload

Workload refers to applications or their models that are used during the evaluation.

Several cases are needed to obtain an overall view on the behavior of a system and

they must be representative for the target domain, for example multiprocessor SoC

targeted for mobile devices. In addition to their number, the cases must present differ-

ent characteristics to justify their inclusion in the test set. If the cases are biased, for

example assuming very small transfer sizes, that must be explicitly documented and

motivated. In the NoC domain, the traffic cases differ, for example, in their offered
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load, locality, burstiness, and latency tolerance.

Compared to real applications, traffic generators offer speedup for simulation and

easier modification. Hence, they are suitable for covering large application space

with proper scaling. However, care must be taken when modifying the basic parame-

ters not to distort the important properties which would give misleading results [65].

The models must be validated against real applications to identify the reasonable val-

ues (e.g. offered load and spatial distribution). Common benchmarks offer partial

solution to the problem as they greatly simplify documenting the workload.

4.4.2 System model

It is practically impossible to include all the minor details to simulation and analy-

sis which evidently leads to estimation errors. Therefore, the complete simulation

(developed protocol, traffic, environment model, and usage scenario) has to be val-

idated against a real-world implementation, analytical models, or protocol specifi-

cations. Less precise models are viable during early concept development but they

can be further refined later [5]. This applies, for example, to models of the NoC

(transaction-level, cycle-accurate models, area and wire estimates) as well as the en-

vironment (traffic generation, third-party IP). The utilized modeling techniques must

be configurable to cover reasonable design space. Comparing just the analytical and

in-house developed simulation models is dangerous as they both might have the same

erroneous assumptions [65]. Therefore, validation must be performed against ex-

ternal, independent data, when possible. For example, the accuracy of Transaction

Generator used in this thesis was compared against FPGA execution in addition to

simulation.

If the models turn out to be inaccurate, they must be tuned and usually that means

adding more details. In MPSoC, such details include, for example, interrupt latency

at the receiver, data synchronization at the clock boundary, context switch overhead,

DMA transfers, crosstalk, and chip layout. Some of these were introduced in Section

2.5. Estimates based on early models need revision during the course of research.

For example, the area overhead of the NoC was first estimated to be 1− 2% [188]

but after more research the estimates were updated to range 9− 45% [190]. The

analytical studies in Tables 4 and 5 are well motivated and seem intuitively correct

but no results were found on the validation of the models used. In [142], performance
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was estimated analytically and with measurements on an FPGA prototype.

4.4.3 Measurement

Other researchers must be able to repeat the experiments and hence justify the find-

ings. Very detailed description or the actual setting files can be published, for exam-

ple, in research group’s web pages so that they are freely accessible.

Several independent runs ensure statistical reliability when the environment models

and synthesis tools apply some pseudo-random techniques. The number of runs can

be determined empirically. For example, repeat executions until further runs change

the average at most 2%. Independence can be achieved, for example, by explicitly

varying the seed value for the random number generator. Sensitivity analysis iden-

tifies the most important parameters - those that produce the greatest variation in

results. Proper selection of values for these parameters is a critical step at bench-

marking and requires thorough motivation and background work.

Certain phenomena appear only with long enough simulation or execution run. For

example, the saturation of a NoC is not visible yet when only a couple of packets have

been sent. The warmup period at the beginning must be discarded from the results

to measure steady-state behavior. For example, the first few packets experience zero-

load conditions because NoC congestion arises only after several packets have been

injected. Therefore, inclusion of first packets distorts the average values. The trace

length can be determined similarly to the number or runs. The required trace length

is studied in [77] and in Section 6.5. The traffic sources must not be stalled during

latency measurements and hence a special source queue is required (see Chapter 6 for

further details). However, such queue should be omitted when running application

benchmarks.

The quantities related to implementation must be documented, see the lower part

of Table 6. Otherwise, a dishonest evaluator gains exceptionally good results, for

example, by using very wide flits while neglecting the area and power consumption.

The basic metrics and estimated PE utilization can be obtained automatically by the

generic benchmark tool. To obtain greater insight, they are augmented with NoC-

specific metrics with separate monitors, for example the fairness of flow control and

the utilization of links and buffers. This way the designer can spot the bottlenecks
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and design errors in the NoC.

4.4.4 Concluding the findings

Benchmarking must develop a method to gain insight from the numbers (results) and

guarantee the quality of those numbers [45, 47]. Hence, the obtained results must

be interpreted, compared to others, and generalized when appropriate. It is very

beneficial to identify systematic trends from the results. Especially when the source

of the phenomena is analyzed. At the same time, one must avoid generalizations

without a large coverage of the parameter space. For example, deriving the speedup

from a small system and extrapolating it to larger, is a common source of errors [65].

First of all, the comparison must take estimation errors of models into account. For

example, any runtime difference less than estimation error, say 5%, is negligible due

to approximations in traffic and NoC models. The fundamental problem is how to

determine the estimation error beforehand. The only option seems to be using models

that have been validated and verified earlier and assume that the accuracy remains

static. In addition to min/avg/max values, the results can make use of confidence

intervals [234] and percentiles. For example, the latency of 8-word packets is less

than 30 cycles in 95% and 40 cycles in 99% of the cases.

An important, although difficult, issue is to compare the obtained results to the state-

of-the-art in the field. Direct comparison, like “average latency is 5 cycles lower

than in [ref. X]”, is more difficult but also more beneficial. Care must be taken to

use exactly the same input values (e.g. common test cases) and key parameters. One

option is to re-implement novel ideas from the literature such as routing or coding

schemes. First, this either ensures the validity of the approach or reveals deficiencies

that were not covered in the original article. Second, this allows just comparison, as

many parameters, such as processing technology, can be held constant.

Third-party reference points are very valuable but currently, most NoCs and their test

cases are proprietary and unavailable for public evaluation. For example, freely avail-

able NoC (simulator), such as Hermes [54], FPGA-NoC2, Noxim3, and Netmaker4,

as a common reference are beneficial. Furthermore, researchers must aim for a wide

2 http://www.da.isy.liu.se/research/soc/fpganoc/
3 http://noxim.sourceforge.net/
4 http://www-dyn.cl.cam.ac.uk/ rdm34/wiki/
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spectrum of results instead of common practice of reporting just a few, non-related

values. For example, measuring area with sensitivity analysis over multiple router

configurations.

4.4.5 Metrics

All the metrics and units must be defined explicitly (SI units are preferred). Applica-

tion runtime is the most obvious cost metric at the system-level. The runtime is hard

to measure without real applications or transfer-dependent traffic models. Latency

can be usually measured more easily and it affects the runtime. However, the relation

is not straightforward; for example, various latency hiding techniques can remove the

impact of latency as long as it is below certain threshold. Therefore, smaller latency

does not necessarily translate to smaller runtime; see for example [58]. However,

it is very likely that shorter latency will not cause longer runtime either when the

possible scheduling anomalies are neglected. Therefore, achieving the same latency

with fewer resources (area, power) is a viable target for optimization. Similarly, the

bandwidth of the NoC is only an indirect clue of performance [8].

Table 13 summarizes the most important metrics for NoC evaluation. Timing-related

issues can be measured with four metrics and implementation cost with area and

power/energy. They all can be measured at different levels (e.g. messages vs. pack-

ets, network only vs. the whole chip) and it is crucial to document which one is se-

lected. To name a few for simplicity, the author argues that the three most important

metrics of the system are application runtime, silicon area, and power consumption.

The above discussion deals with the network performance only which indirectly af-

fects to whole system. For example, the area and power consumption of the PEs

and memories may be such that the differences between compared NoCs become

negligible. In [8], mesh NoC consumes over 5x power compared to multi-layer bus.

However considering the PEs, the energy consumption of a mesh-based system is

similar or less because its runtime is shorter.

4.4.6 Cost function

This thesis makes a clear distinction that the performance is to be maximized and

the cost minimized. The overall performance or merit is a combination of several
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Table 13. Metrics for NoC evaluation. The values for all except throughput should be mini-

mized.
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factors.

A solution to a multi-objective optimization problem cannot be achieved by consid-

ering the design objectives separately. However, there is a set of acceptable trade-off

optimal solutions. Each of these solutions is Pareto-optimal in the multidimensional

space. It means that there is no solution that can improve at least one of the objec-

tives without degradation any other objective. For example, in the case of timing and

power, the solution is Pareto-optimal if no other configuration has a lower power for

a given timing. Since the Pareto optimum gives usually more than one solution, the

designer has to decide which one is selected for the final implementation. Another

way is to define a combined objective function - a cost function - which collects the

objectives (that are often opposing) to one function. [105]

This thesis considers two ways to combine the individual cost components: weighted

product, and fuzzy multicriteria analysis (MCA). Weighted product can be defined as

costtot = ∏cost
wi

i , (4)

where costi denotes the value of criterion i (area, runtime etc.) and wi its weigth.

The cost value is either absolute (e.g. 500 kilogates) or relative (e.g. relative area of

0.75, unitless value). The benefit of relative values is that minimum and/or maximum

bounds can be chosen freely but absolute values enable better comparison between

papers. A good study of using weighted product in deep-submicron CMOS design

and synthesis can be found in [220].

Unlike PCs, embedded systems are targeted for a certain performance level in a nar-

row application domain instead of maximum performance in general purpose com-

puting. For example, consider two HW implementations for video encoding. The

first achieves 35 f rames/s and the other 25 f rames/s. However, the higher speed

offers no performance gain if frame rate is limited by other parts of the system (e.g.

camera).

Therefore, performance with given constraint is more natural objective. In other

words, given a strict upper (lower) bound, find the solution that meets that while

minimizing other factors. Hence, the solution is selected from the Pareto-optimal set.

For example, try to find a NoC with smallest area while achieving certain throughput

for test case Foobar. Constraints related to timing are especially important when

designing real-time systems in which the violation of (hard) deadlines is hazardous.
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(a) Fuzzy number X with trapezoidal

shape.

time

1.0

0.0
m2 m2+bm1

(b) Time.

μ

rate

1.0

0.0
m1m1-a

(c) Processing rate.

μ

area

1.0

0.0

m2+bm2

μ

area

1.0

0.0

m2+bm2

(d) Area.

Fig. 24. Using fuzzy numbers for representing the design objectives. The membership func-

tion, shown on Y-axis, is interpreted as relative goodness. Value 1.0 means best

solution(s) and value 0.0 unacceptable.

Fuzzy numbers can be used for expressing such constraining conditions [99]. A

membership function µA quantifies the grade of membership of the elements x to the

fundamental set X . When µA(x) = 0.0, the member x is not included in the given set

X and value 1.0 describes a fully included member. Values strictly between 0 and 1

characterize the fuzzy members. In this case, the membership can be interpreted as

relative performance (or merit, quality, applicability, goodness). Then, value 1 means

the best solutions that meet the constraint whereas unacceptable solutions have value

0.

Fig. 24(a) shows a fuzzy set X that has a trapezoidal shape. Such a shape can de-

scribed by four parameters [m1,m2,a,b], where m1 and m2 describe the beginning and

end points of full membership, respectively. Parameters a and b denote the slopes.

Strict limits are defined by setting a = 0 or b = 0.

Fig. 24(b) and 24(c) show examples for runtime and processing rate, respectively.

Both metrics have certain threshold (maximum runtime m2, minimum rate m1) and

values meeting that have membership equal to 1. There are also cases that have lim-
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ited applicability although they do not fully meet the criteria. Note that in Fig. 24(c)

having rate larger than m1 does not increase the applicability and m2 is infinite.

Fig. 24(d) shows example of applying fuzzy set for silicon area. Zero area is desired,

m1 = a = 0, and any increase in area reduces the applicability (m2 = 0). Architecture

cannot be applied at all if it does not fit. The upper bound b depends, for example, on

available packaging or selected FPGA device.

Once all the fuzzy sets are defined, fuzzy multicriteria analysis (MCA) combines

several metrics:

µMCA = ∑µ
wi

i , (5)

where µi denotes the membership of criterion i and wi its weight. The cost becomes

the inverse of membership aggregation:

costMCA =
1

µMCA

. (6)
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5. PROPOSED NOC BENCHMARKING METHODOLOGY

This Chapter presents a methodology for benchmarking NoCs, an XML (extensible

markup language) file format for delivering the benchmarks, and discussion about

the implementation of the methodology.

At first, the emphasis is on simulation-based evaluation of multimedia applications,

such as processing of streaming video. It is characteristic to streaming applications

that a long sequence of data items flows through a stable set of computation steps

(tasks) with only occasional control messaging and branching. Each task waits for

the data items, processes them, and outputs the results to the next task.

Fig. 25 depicts the utilized NoC system model. Some of the basic concepts of the

system model and a very similar format were previously presented in the Koski design

automation tool set [P2] [105]. The model and the corresponding XSM (XML system

model) description are divided into four main sections:

1. Application defines the workload in terms of computation and communication

2. Mapping binds the application tasks to the resources

3. Platform defines the resources and the NoC interconnecting them

4. Measurement section defines how to perform the evaluation, for example met-

rics and simulation length.

Separation to distinct parts - function vs. architecture and computation vs. com-

munication - is necessary to handle complex architectures and applications [217].

Orthogonality allows exercising or modifying one of the components, while keeping

the rest at their previous (default) configuration. Thus, the mapping, for example,

may be varied without touching the application or hardware models. Similarly, one

can describe the particular NoC once but change the application when needed.
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3. Platform

<application>

<task graph>

<task id=A>...</task>

...

<task id=F>...</task>

</task graph>

</application>

<mapping>

<resource id=PE3>

<group id=IV>

<task id=C/>...</group>

<group id=V>...</group>

</resource>

</mapping>

<platform>

<resource_list>

<resource id=PE3>

<connection terminal=3/>

...
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Fig. 25. Conceptual view of the utilized system model and pseudo-XML.

Fig. 25 depicts the proposed NoC system model. It shows a simple task graph con-

sisting of six tasks (A−F) and two triggering events, which trigger tasks A and D.

The tasks are grouped into five groups (I −V ) that are mapped onto the platform,

namely to four processing elements (PE0−PE3). Assuming that the events in this

application are periodical and their time interval is set properly, all the PEs 0-3 can

execute tasks simultaneously.

The benchmark set covers the three uppermost sections of Fig. 25 (application, map-

ping, computation resources) and measurement settings but leaves the network def-

inition to the NoC designer/evaluator. Message-passing communication paradigm

is assumed at this stage of research and the PEs are assumed to have local, private

memories large enough to store all program code and processed data. However, no

assumptions are made about the abstraction level of the NoC. The XML is given as in-

put to a traffic generator, such as [P2] [68], which will be used during the simulation.
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<application>

<system>

<platform>

<mapping>

<constraints>

<task_graph>

<task_

connection>

<noc>

<resource_list>

<resource> <group> <task>

<router_list> <router> <port>

<link_list>

<terminal_list> <connection>

<parameter>

<task>

<event_list> <event>

...

<sim_time>

<port>

metadata tags

<cost_function>

<path> <task>

<task_

connection>

<resource>

<sw_platform>

1

1

1

1

1+

0+

0+ 0+

1+

1

1

1

1

1+

1+

1 1+

1+ 1+

0+ 1+0+

0+

0+

1

0+

1

1+ 1+

*

other
0+

<task_

connection>

0+

<link>
0+

<network_

interface>

0/1

Fig. 26. Major tags in XML system model. The numbers show the minimum number of oc-

currences of each tag. Each of the four major sections occurs exactly once. Task

description is shown in Fig. 27.

The traffic generator will inject/eject traffic to/from the NoC, calculate statistics (PE

utilization, data latencies etc.), and detect transmission errors (corrupted, dropped,

out-of-order data etc.). Design mistakes naturally cause errors but they could be also

injected artificially to model soft errors. Error detection is especially useful when

evaluating work-in-progress or third-party NoCs.

Fig. 26 shows the major tags and their relations in the proposed XML description.

The top level tag is called system and it includes four tags under it. The first of

those, application, includes two and so on. The numbers show the minimum number

of occurrences of each tag. A number followed by the plus sign (+) denotes that

multiple instances of the same tag are allowed. In those cases, the upper bound is

case-dependent.

The major sections of the XML model are introduced next.
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5.1 Application model

An application includes a task graph that models the computational load as well as

the induced communication. In the basic case, there is only one task graph. The

model includes dependencies, timing, destinations, and size of data transfers. In a

task graph:

1. task nodes model the computation. The execution time is derived from the

task’s operation count and the properties of the PE executing that task. No

actual computation is performed during the simulation, only the external be-

havior of application tasks is modeled. (Actual computation is possible in [P2],

but not necessary at the first stage of NoC benchmarking.)

2. connections between nodes carry out the communication. Tasks nodes com-

municate via connection channels (directed edges) that carry the data tokens

between tasks. Channels are attached to the tasks’ ports. Bidirectional ports

are not allowed.

3. trigger events generate stimuli to the tasks

4. path definitions are used for measurements, especially when real-time con-

straints are present.

Utilized Model of Computation (MoC) is such that vertices represent computation

tasks and edges represent communication channels. The chosen model is reactive

due to dependencies. This means that when a certain transfer is delayed, all the

tasks (and transfers) depending on that transfer are also delayed. For example, a task

that models memory does not send any data before it is requested to do so. Such

dependencies capture bursty injection of traffic in addition to throttling where the

injected data rate drops momentarily if there is a bottleneck in the system that cannot

process and forward the data fast enough. An example of detecting such behavior

can be found in [84]. Furthermore, this allows estimating the utilization of each PE

and, hence, their power consumption.

The task set is static and no tasks are spawn during execution. Application model

may include several task graphs (smaller applications) in order to model multitask-

ing. Tasks in different graphs may be connected. Even if graphs are disjoint (no
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<task>

<in_port>

<out_port>

<in_port>

<exec_count>

<trigger>

1+

1+ 1+
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<next_state>
1

<op_count>
1

0+

<polynomial>
i)

<param>
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<param>
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<distribution> <uniform>

i) 1+
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<bistribution>

<int_ops>
0+

<byte_amount>
1

<float_ops>
0+

<mem_ops>
0+

...

...

...

...

ii)

<normal>

Fig. 27. XML tags for describing the workload of application tasks.

communication between graphs), they can still affect each other’s execution times as

they may compete for the shared resources, i.e. PEs and NoC. Some tasks may model

memory accesses instead of computation.

5.1.1 Application tasks

Tasks are the primary means of expressing the communication and computation load.

Fig. 27 shows the tags used for describing the tasks. Tasks communicate via unidirec-

tional ports. A task is triggered for execution according to a condition that depends

on the received data tokens and possibly on the internal state of the task. A task may

include several behaviors but exactly one is executed at a time.

Triggering conditions have two variables: input ports and the execution history of the

task. The number of ports in the task or trigger condition is not limited. Hence, all

inputs of the task can be present, if needed. There are two types of dependencies on

multiple input ports

1. AND: triggered when there is data in all inputs,

2. OR: triggered when any of the input receives a token.

The OR dependency distinguishes the model from the traditional Kahn Process Net-

work (KPN). The history means here simply the count of how many times the task
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has been executed. For example, a task may have a different behavior on the first

execution but after that the same on all other executions. Another example could

be that a task performs function A on every even execution count and function B on

every odd one. In the extreme case, the task behavior is different on each execution.

This is suitable for capturing a trace for highly varying tasks for which the average

values are misleading. Hence, the same file format can store both the captured trace

of events and the more abstract workload models.

Each execution behavior is characterized by three elements:

1. the operation count,

2. data amount to be sent (in bytes) and the output ports where the data will be

sent, and

3. the next state of the task after execution.

The operation count and data amount are expressed with either a statistical distribu-

tion (uniform or normal), or as a polynomial function, which depends on the received

data amount (a constant value is subset of the latter). Polynomial and statistical are

mutually exclusive choices and hence denoted with (i) and (ii) in Fig. 27. However,

the choice is done per task; certain tasks may have polynomial count/amount values

and others statistical ones. The actual values are, for example, results from simu-

lations of a virtual prototype when the application exists but educated guesses are

needed in case of estimating the workload of future applications. By varying the

values, the designer can search for corner cases, for example, finding the maximum

allowed operation counts for certain tasks. These may serve as boundary conditions

for the application developers.

There is one send tag for each destination. Each output is assigned a certain proba-

bility. The same output is always chosen if its probability is equal to 1.0, i.e. in 100%

of cases. Smaller probability values allow a more compact model as fewer triggering

conditions are needed.

Few possible example behaviors with different triggering conditions are

• Always perform the same action (same number of operations, same amount

of output data, same destinations) irrespective of the execution count or input

port.
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Run Ready

Wait

Free

a: The task has all the data for the next execution

b: Scheduler selected the task for execution 

c: Fully executed but has not all data for the next execution

d: Fully executed and is not dependent on any data anymore

b

a

ac

d

Fig. 28. The possible states of an application task during simulation. It is assumed here that

tasks cannot be pre-empted.

• Operation count and data amount depend on the received data amount but not

on the execution count; destinations are always the same.

• Select the output according to the input port similarly on every execution; how-

ever, the operation count and the data amount may be statistical values.

• All parameters depend on both the input port list and execution count.

Task state machine

During simulation, the internal state of a task is expressed with an execution counter

and a status variable. Fig. 28 illustrates the scheduling state machine of a single

task. Tasks start in state “wait”. Once a task receives enough data tokens and the

triggering condition is fulfilled, it will become ready for execution. The scheduling

policy of the PE defines which task from the ready list is selected for execution (edge

b). Parameters related to scheduling are defined in the mapping part. After execution,

the task’s next state is usually set again to "wait". It may also be "free" (as indicated

in Fig. 28) which means that the task will not be executed anymore. The execution

counter is incremented every time when the task leaves the state "run" (pre-emption

would necessitate detecting the completion of execution - not just state change - and

a new state “paused”).

Every task may have other restrictions and settings that affect the mapping and schedul-

ing possibilities, for example, can a task be pre-empted, or to which PEs it may be
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mapped. This section is included mainly for future extensions regarding design space

exploration.

5.1.2 Connections

The connections simply define the structure of the task graph: which tasks communi-

cate with each other. Their only parameters include the source and destination ports

of the tasks. Each connection has exactly one source and one destination. The trans-

mitted data token is an arbitrarily large data set. The NoC and NI settings define

how many packets are needed to transmit each data token. Currently, the simulation

engine assumes unbounded buffering capacity for the tokens at a connection. The de-

signer can monitor the lengths of these token buffers and, in the future, also set limits

to them. A separate source queue is not needed as in load-latency measurements.

5.1.3 Triggering events

Triggering events model the environment by providing stimulus to the task graph. In

other words, they generate the input data stream that is "processed" by the application

model.

Their behavior is similar to that of timers. An event fires when a given time period

has passed and them it emits data token(s). Events are either periodic or one-shot.

Their data emission may have a probability less than 100% if needed. This means

that an event does not always send data at all although it is triggered. As mentioned,

all tasks are initially in state "wait" and, therefore, at least one event is needed to

trigger the execution. Currently, events do not have input ports so they cannot react

to the application’s outputs.

Events are special nodes because they are not mapped to any PE, and hence do not

reserve resources. In other words, they do not consume "CPU-time" on processing

resources or NoC capacity. However, they use regular connections to transmit their

data to the tasks.
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5.1.4 Real-time constraints and paths

A task graph can also include real-time constraints, for example, computation dead-

lines with tasks and communication deadlines with connections. In addition to single

tasks (nodes) or connections (edges), paths that constitute several tasks may be de-

fined.

A path is an ordered list of tasks and/or connections that is used for benchmarking.

For example, path p includes tasks A, B, and C (in this order, cf. Fig. 25) and this

path has a real-time constraint of 2 ms. It is measured from the triggering of task A to

the completion of task C. The transaction generator will monitor if the deadlines are

always met and report violations. In addition, the average runtime of the path may be

also used in the cost function.

There are multiple options for choosing the start event in respect to which the real-

time constraints are given. The time may be measured starting from the time instant

when

• triggering condition X occurs,

• current task received all its input data,

• previous task is completed,

• current task last completed.

These conditions correspond, for example, to interrupt request from the user, operation-

parallel (i.e. pipelined) execution, and jitter-aware application. The number of path

definitions is not limited. Combining these constraints with other types of criteria,

such as execution counts reflecting the throughput of the application, gives a good

overall picture of the system’s performance.

5.2 Mapping model

The task mapping model defines, on a per-PE basis, where the tasks are executed.

Mapping and scheduling are steps of NoC design which deal with the implementa-

tion of applications onto the NoC architecture. Task mapping is the assignment of
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application tasks to processing elements. Communication mapping is the allocation

of architecture communication resources to the application transactions. Scheduling

is the ordering for execution of application tasks and transactions on the assigned

processing elements and NoC communication resources.

Task mapping is performed in two stages: grouping of tasks together, and mapping

the groups to resources. A less expressive mapping could be done without the groups,

but the chosen method allows more possibilities (including the simple mapping). If

uncertain, users can have just one task per group. The main ideas in grouping are to

model operating system threads and to restrict mapping exploration. Both tasks and

groups may have parameters related to scheduling, such as priorities.

Group contents may be modified by automated design automation tools if allowed

(mutable="yes") or they can be moved elsewhere (movable="yes"). The former re-

striction can be also done for a PE and the latter for a task. Although the application

is fixed in each benchmark, there are various options:

• assign fixed mapping for a NoC of a certain size, e.g. 16 terminals. Designers

can easily vary NoC parameters without modifying other parts of the XML

description.

• assign fixed grouping of tasks, and let the designer map them to his/her NoC

freely. Note that the number of NoC terminals (i.e. PEs) can be smaller than

the number of groups.

• as previous, but without groups. This option gives full freedom in mapping.

The tag software platform is included for future extensions for modeling the workload

of the real-time operating system (RTOS) and impact of scheduling.

5.3 Platform model

The platform has two parts: resources and NoC. The resources will be defined by the

benchmark set and the NoC by its designer/evaluator.
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5.3.1 Resource model

Computation architecture is modeled at a very coarse level. The PEs are characterized

with few parameters, such as operations-per-cycle, silicon area, power consumption.

In [104], these values are stored in separate PE library but here they are written di-

rectly in the XML for simplicity. The benchmark defines for each resource

1. type: processing element (PE) or storage

2. NoC terminal where it is connected to

3. operating frequency, number of operations per cycle

4. inclusion of DMA controller

5. the associated communication overheads

6. area (mm2 or kilogates, aspect ratio) and active/idle power consumption.

The first two belong to structural description and the next three are related to the

execution time. The last one is necessary for system-level analysis, for example

comparing power/energy of the whole chip instead of the NoCs alone. Similarly, PE

sizes are needed to obtain estimates on layout, wire lengths, and total system area.

These help to put the results from NoC into perspective since all differences between

NoCs are not relevant at system-level. This is especially true for application-specific

NoCs. For example, a NoC with much higher power consumption may achieve lower

system energy due to shorter execution time, as in [8].

The PE model includes a task scheduler. The scheduling choices are FIFO (de-

fault choice), (non)pre-emptive static priority, and round-robin. Priorities are set at

compile-time. When a task is mapped on a PE and scheduled for execution, the

simulation engine calculates the associated runtime. The cycle count becomes:

Ncycles,i,pe = Nops,i/IPCpe, (7)

where Nops,i is the operation count of the task i, and IPCpe defines how many op-

erations the PE can execute in one clock cycle. The runtime of task i on that PE is

then:

ti,pe = Ncycles,i,pe/ fpe. (8)
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When the task has finished its execution, it emits data token(s). A direct memory ac-

cess (DMA) controller allows simultaneous computation and communication which

means sending or receiving data while executing application tasks. The PE model

checks the destination of the transfers in order to decide whether the data is transmit-

ted to the NoC or is the communication internal to PE.

This defines which PE-specific communication costs are applied in addition to dy-

namic NoC delay [85]. The communication overhead has the form

tcomm,pe = a+ bx, (9)

where a is a constant cost (cycles), x is the data amount in bytes, and b is the cycles

per byte. Values of a and b are defined separately for each PE type and its software

platform. They are fixed (static) in the benchmark’s XML document.

Time overhead is smallest when the source and destination tasks are in the same group

(thread). A different cost is used when the destination is in another group but still on

the same PE. The largest overhead occurs when the destination task is mapped on a

different PE. In that case, the delay induced by the network will be added to tcomm,pe.

However, note that the network delay is not static, unlike a and b, but it is determined

at the simulation time.

For example in Fig. 25, communication between the tasks E and C is of type intra-

group, between C and F is intergroup, and between C and B is inter-PE. The latter

two can possibly cause a context switch at the receiver PE. Only the inter-PE com-

munication is passed via network model. Intra-PE communication happens via local

memory of a PE. The local communication style - pass-by-reference (as a pointer)

or as pass-by-value (data copying) - affects the annotated communication overhead

values.

Fig. 29 presents two examples of inter-task communication. In a), the communication

occurs between two tasks in the same PE whereas b) presents inter-PE communica-

tion. In both cases, the execution times of the tasks are the same. The network delay

is naturally not present in a), but otherwise the communication procedure is the same

as in b). In addition, both send and receive costs are longer in b), because the data

have to be prepared for the network transaction. These inter-PE transfers are natu-

rally the most interesting in NoC evaluation. Note also that the benchmark measures

latency of token transfer and not on per-packet basis. The latter is a NoC-specific
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Fig. 29. Different communication costs between two tasks when a) tasks are on the same PE

or b) on different PEs. The task and PE symbols correspond to Fig. 25.

low-level metric and inappropriate for comparison because the packet size may vary.

5.3.2 Network model

This section presents an XML description of a NoC, although the NoC is not usually

defined in the benchmark. The purpose is to promote a consistent way of docu-

menting the experiments and to enhance inter-operability of EDA tools. The net-

work model may also be defined partially, hence setting some restrictions to the de-

signer/evaluator.

The main emphasis is on documenting the topology and basic parameters. There is

no point to create separate XML tags for all the possible configuration parameters of

a NoC, especially those that are yet to be developed. However, the model still offers

additional information to a black-box view of components. In other words, we only

present a minimum set of properties that should be documented.

NoC is here defined by its:

1. Terminals which usually include network interfaces

2. Topology, i.e. routers and links

3. Parameters (optional part).
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Fig. 30. Three types of supported NoC terminals.

Terminals and Network Interfaces

This section defines the locations of the resources with respect to NoC. PEs are bound

to NoC terminals which are the "public interface" of a NoC. This provides a generic

way to bind PEs without exposing the internals of the NoC. It depends on the specific

NoC how the terminals are connected inside the network. On the contrary, connecting

PEs directly to router ports would be network-specific and not reusable. The resource

locations and the routing policy together define which communication routes are ac-

tivated inside the NoC.

Each terminal may include a network interface but this is not always necessary. The

NI, such as in [201], executes packetization (adding/removing header and tail flits),

checks integrity, and possibly reordering of packets. In a multi-clock system, the

synchronization between the PEs and NoC is left to the NoC designer. Hence, it

occurs inside the NI or at the router’s ports.

Currently, our Transaction Generator assumes that the NoC (its NI) has an OCP-IP

compliant interface. In the future, we seek to adopt a more versatile concept for

defining interfaces, for example similarly to [229].

Fig. 30 illustrates three different terminal types.

1. On the left, there is a direct point-to-point link between PE0 and PE1. The
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corresponding terminals are simply the two ends of the link. Of course, the

PEs must have directly compatible interfaces.

2. In the middle, PE2 communicates via a router. Each terminal is associated with

a certain router port. PEs must use the same communication protocol (signals,

their timing, and packet structure) as the router ports. Hence, the terminals

may be conceptual, i.e. just aliases to certain router ports, which do not require

any logic in HW implementation.

3. On the right, there is a network interface (NI) in addition to the router. This

is the most generic and probably the most common option. The interface does

conversion between communication protocols. For example, PE3 could have

a standard interface but the router could use a different, proprietary protocol.

One might consider defining NI together with the resource. Here, they are within

the NoC because that part is commonly left undefined in benchmark and completed

by the NoC designer or evaluator. One could also define point-to-point links with

network interfaces, although this option seems rare. It is left out from the figure but

its behavior is easy to understand with the previous examples.

NoC topology

The NoC may be instantiated as a white-box model that defines all necessary topo-

logical details, or as a black-box that defines only the terminals and parameters in

XML.

Fig. 30 illustrates also the internal structure of a NoC: there are links and routers.

Links connect the ports of the routers which can be uni- or bidirectional. Bidirectional

ports and links simplify XML description in many cases although in practice they are

likely realized as a pair of unidirectional ports/links.

Each router includes the following basic parameters

1. varying number of ports and their directions

2. flit width and optionally also frequency

3. buffer capacity (number of flits per buffer) per port
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4. number of virtual channels per port

5. minimum latency for forwarding the packet header

Each link defines

1. the end points, each defining a router and its port

2. number of data wires in one direction

3. pipeline depth (default is 0 which means no pipelining)

4. operating frequency (optional).

The connections between routers and PEs are included in terminal description. Oc-

casionally, the link or router list may be empty.

NoC Parameters

Default values can be defined for any parameters, such as data width, to avoid repeat-

ing them for every single router or link instance. However, they can be overridden on

a per-component basis.

The most common parameters, see the previous subsection, have specific tags but

it is possible to include additional, arbitrary parameters as name-value -pairs. This

supports using XML as input for proprietary configuration and synthesis tools. For

example, specific arbitration, routing, multi-Vdd settings, queue management options

may be given this way. The XML file may define arbitrary parameters for the NoC

or its sub-lists.

Another use case is when the NoC is used as black-box and the actual structure is

described separately in VHDL files (or similar) instead of XML. The compilation

and synthesis parameters are extracted from the XML and passed to corresponding

EDA tools. This allows instantiating third-party NoCs without knowledge of their

internals while allowing parameterization.

The white-box NoC model can represent arbitrary network topologies but might be

somewhat awkward for a large, say 100-node, NoC. The black-box approach is suit-

able in such case, especially for regular topologies. The designer/evaluator must
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only define the name of the library component (e.g. 2-D mesh), network dimensions

(x = 10, y = 10), terminal list (0− 99), and possibly some other parameters. Effort

is minimized as there is no need to describe individually all the routers and links.

There is no need to describe individually all the 100 routers, all 360 links, connect

links between west_out(x,y) to east_in(x+1,y) (except on the edges!), and so on. The

detailed XML description, such as IP-XACT, can be generated automatically based

on the above parameters, if desired.

5.4 Measurement constraints

This section includes restrictions related to the simulation and benchmarking. The

simulation time may be defined as a constant value, for example 200 milliseconds.

However, adequate absolute time is hard to come up with in general case and hence

there are other, dynamic conditions for the simulation length:

• total of B bytes have been injected/ejected

• total count of all tasks’ executions equals N

• task X has been executed N times

• communication edge X has been executed (used) N times

• path P has been traversed N times (paths are defined inside a task graph)

• same as previous but for several tasks/edges/paths are measured and average

or maximum time will be used.

These conditions ensure that the evaluated system reaches steady state and that enough

data has been transferred to obtain reliable performance results.

This section defines also the criteria that must be measured and reported and at least

one cost function. Cost function combines various metrics into single value (the

smaller the better) that can be used for direct comparison and ranking of approaches.

Example metrics are execution count of a task, sum of all tasks’ execution counts,

deadline violations, token transfer latencies, simulation time, path time, silicon area,

and power/energy consumption. The deadline related information is defined sepa-

rately in the application description.
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Basic arithmetic operations (sum, subtract, multiply, divide, power) and weights are

applied to the metrics. The delivered benchmark set fixes a certain minimum set of

criteria and cost functions. Researchers are, of course, encouraged to perform other

complementary measurements and the same XML format can be used for reporting

those studies also. For example, an OCP-IP workgroup [P9] is currently preparing

separate rules and guidelines for conducting the NoC studies in order to avoid ambi-

guities and loopholes.

5.5 Implementation of the methodology

The proposed benchmarking methodology relies on traffic simulators, which are at

this stage used in simulation environment. The generators model the traffic initi-

ated by the resources. That means the application and the PEs executing it - three

uppermost sections of Fig. 25.

There are two types of generators: one that models the dependencies between trans-

actions and simpler one that is purely statistical without dependencies.

5.5.1 Utilized Transaction generator

Transaction Generator (TG) [P2] [85] was implemented in VHDL and in SystemC

and both versions have been used in this work. The SystenC version has been pub-

lished as open source. A limited but synthesizable version of TG in VHDL is cur-

rently being developed but discussion about that is omitted for brevity.

TG can be connected to different types of NoC models: VHDL at gate-level or RTL,

and SystemC at RTL or transaction level. This section presents the SystemC version

which is the newer and has more features. Fig.31 presents the SystemC classes for

processing elements and tasks. The communication network model is not part of TG

but is included here to present the required interface.

PE represents a hardware element such as a general-purpose processor or a hardware

accelerator executing tasks that are mapped on it. Scheduler selects the executed task

as depicted in Fig.28. PE class supports two types of inter-PE transfers. When direct

memory access (DMA) is disabled (case ii)), I/O handler is added to the task list and

executed sequentially with the other tasks.
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Fig. 31. SystemC classes of Transaction Generator. Data transfers to/from processing ele-

ment are implemented either i) with a DMA or ii) with own I/O handler thread.

The implementation of the task class includes functions for resolving input depen-

dencies and the actual behavior. The input dependence function determines the task

triggering for execution according to the status of the received packet buffer, which

contains pointers to packets in input data buffer of PE. In the behavior, the task func-

tionality is executed and the output data stored in the output buffer of the related

processing element. The processing element and task models get their operation,

parameters, and relations as external models from the XSM.

In addition to generating the traffic, TG automatically checks all the transfers and

collects statistics about system performance such as execution counts for tasks, exe-

cution and idle period lengths, and latency of data transfers. Statistics are collected

for each PE and tasks. Furthermore, the transfers between the tasks also monitored

for the analysis of the communication network performance.

Transaction Generator can be connected to Execution Monitor which is a versatile

monitoring and visualization tool implemented in Java [84]. It supports any data

source that provides execution information in a generic XML format, for example

MPSoC on FPGA. Visualization helps extracting the most important issues in re-

garding system performance. For example, observing trends and anomalies in the

behavior is much easier by looking at graphs drawn in real-time compared to tex-

tual log file interpretation afterwards. The data is visualized in three forms: graphs,

tables, and flow chart.
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Fig. 32. The main view of the Execution Monitor.

Execution Monitor provides several views to the system, for example computation

and communication statistics on a per-task and per-PE basis. Fig. 32 shows one view

of the system with 3 CPUs and 10 software tasks. The view shows the mapping of

the tasks as well CPU utilization. Table 14 summarizes what kind of data can be

visualized with Execution Monitor. TG provides many values directly and some are

derived from those. However, NoC-specific properties other than data volume and

latency require additional special monitors in the simulation model or prototype.

5.5.2 Evaluation of accuracy and simulation speedup of TG

Table 15 from [85] summarizes reported system models, their target domains, ob-

tained speedup, and error values from literature. They are introduced in detail in

Section 5.5. Table data are collected from [27,31,77,85,101,103,116,135,159,165,
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Table 14. Statistics visualized by Execution Monitor [84]. The information is collected either

from TG simulation or FPGA prototype.

Category Monitored values

Application specific E.g. frame rate, radio throughput

Service Service interaction graph, avg./tot. execution cycles, communication 

between services

Task communication Signals in/out, avg./tot. communication cycles, communication % of 

execution time, intra/inter-PE communication bytes and cycles, 

communication cycles/byte

Task general Execution count, avg./tot. execution cycles, execution % of thread/service 

total, signal queue, execution latency, response time

Mapping Task to thread/PE/service

SW platform Thread priority, thread avg./tot. computation cycles, computation load, 

dynamically allocated memory

PE Utilization, allocated memory, power, inter-PE communication bytes, SW 

platform load, avg./tot. execution cycles

Network specific Utilization, efficiency, power, address cycles, data cycles
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195, 197]. The two bottom rows correspond to TG used in this work. The closest

match to the proposed methodology is presented by Pimentel et al. in [195, 197]

and [117] (omitted from the table). Interestingly, the level of application granular-

ity does not necessarily indicate much about the achieved speedup or accuracy. In

addition, Fig. 33 shows the accuracy of TG when compared against cycle-accurate

co-simulation [103] and against FPGA execution [85]. The latter study evaluates

three different TG models, namely (in descending accuracy order) trace, modulo,

and probabilistic. As a conclusion, TG provides an accurate and fast enough solution

for benchmarking NoCs.

5.5.3 Utilized Stochastic generator

Although TG can be used also for stochastic traffic, that is not its initial purpose.

The same behavior can be modeled with less effort by using a specific stochastic

generator. The concept is very simple. All the traffic is stored into a text file, one

file per terminal. Each row contains three values: target, data amount in bytes, and

wait time in cycles. The files were opted to allow exact reproduction later despite

randomness. Stochastic generator is currently implemented in VHDL.

A sender component reads the file and injects data to the network. At the beginning
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Table 15. Summary of application models used in exploration [85]. This work utilizes the

same TG as [85, 103].
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1 Pimentel [195] Sys. A Medium - n/a <2% FPGA 1 2 (2)

2 Pimentel [197] Sys. A Variable - n/a ~12-34%, FPGA 1 11 1-4

-"- <19-60%

3 Mohanty [165] Sys. A Medium - n/a <26% Sim. 1 4 1

4 Bouchima [31] Sys. M Fine x x ~5% Sim. 1 2 7

5 Kakita [101] Sys. M Medium - x <8% FPGA 1 6 2-3

6 Lahiri [135] NoC A Coarse - n/a <2% Sim. 2 1 8

7 Heirman [77] NoC M Coarse - n/a <(10+3)% Sim. 1 2 16

8 Mahadevan [159] NoC M Fine - n/a <2% Sim. 4 1-6 1-12

9 Bobrek [27] NoC M Variable n/a n/a ~18% Sim. 2 6 2-32

10 Kim, S. [116] NoC M Medium n/a n/a <10% Sim. 1 1112 2-10

11 Kangas [103] both A Medium - - ~5-8% Sim. 1 9 1-9

12 Holma [85] both A Medium - x ~4-13%, FPGA 1 9 1-4

-"- <11-31%
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Sys. = System, NoC = Network-on-Chip, A = automated, M = manual
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of the message, there is time stamp. Data values are simply consecutive integers

with sender’s ID concatenated. On the other side of the network, a reader component

ejects the data, checks it, and calculates statistics. Sender and reader have a common

notion of time, and hence latency per message is easy to calculate. Running numbers

simplify error detection as the missing, duplicated, or corrupted date can be detected

without difficulties.

This thesis uses b parameter, “bias”, to measure the level of burstiness similarly

to [234, 242] whereas Hurst parameter is used in [228]. The b parameter lies in

range 0.5− 1.0, larger values reflecting increased burstiness (only few large trans-

fers). Many real life programs can be modeled with b = 0.86 [234]. Fig. 34 illustrates

the procedure: X-axis shows the time of generated traffic trace, Y-axis shows the data

rate, and each bar presents one time window. The procedure is as follows
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Fig. 33. The accuracy of Transaction Generator [85, 103].

1. Designer sets the desired trace length, total data volume, and b. For example,

4096 clock cycles, 2000 Bytes, and b = 0.6.

2. The total time is divided in two equally long time windows which are given a

fraction of the total data specified by b and (1− b) respectively. The window

getting larger fraction is selected randomly.

3. Each is window is divided again into two halves.

4. Splitting continues until the length of window equals user-defined limit, for
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example 10 clock cycles.

5. The final step quantizes the data rates to integer values smaller or equal to the

maximum bandwidth of the terminal (marked as load limit in Fig. 34). Let

us assume a 4 B/cycle load limit due 32-bit interface to NoC. Then, the data

rate of 5.4 B/cycle is clipped to 4 B/cycle and the overflowing 1.4 B/cycle

is summed to the next window. Consequently, very large bursts are spread to

multiple consecutive time windows.

During simulation, data is emitted at the beginning of each window followed by wait

period (if any).

5.6 Discussion

Development of test applications was beyond the scope of this work. The final se-

lection of applications and building models for them is left future work. However,

brief projections about the practical test case types can be made. First of all, dif-

ferent application types, i.e. communication and computation intensive cases, must

be present. Regular and simple functions like FFT, DCT, IIR, and matrix multi-

plication are sometimes used [121, 151, 159] but they can hardly be considered as

typical applications for SoC, i.e. they present only kernels. In contrast, video cod-

ing [173] [105, 151, 254], 3GPP [247], WLAN [123] baseband processing, and data

mining [184] are more demanding and, hence, interesting.

The presented benchmarking methodology relies on abstract workload models based

on task graphs. The emphasis is currently on message-passing systems and simulation-

based evaluation. The accuracy and simulation speed of the reference implementa-

tion were shown to be satisfactory. The future work will consider modeling of shared

memories, cache memories, the workload imposed by SW platform, and better ways

of creating the workload models.
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# terminals = 16
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# dst    words    interval_cycles
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# Loading /export/work/tmp/ege/mesh_2d/codelib.tb_mesh2d_lat(rtl)

run 5500

# ** Error: Data mismatch! Wait :2, Got: 10, Src-> dst: 0 -> 3   Time: 1360 ns  Iteration: 1  Instance...

# ** Error: Addr mismatch! Wait : 00010001, got : 00000000   Time: 1380 ns  Iteration: 1  Instance...

# ** Note: packet 0 from agent 0 took 32 cycles, tx_len= 12 words   Time: 1420 ns  Iteration: 1  Instance...

# ** Note: packet 0 from agent 0 took 37 cycles, tx_len= 18 words   Time: 3020 ns  Iteration: 1  Instance...

# ** Note: packet 1 from agent 0 took 27 cycles, tx_len= 8 words Time: 4640 ns  Iteration: 1  Instance...

# ** Note: packet 0 from agent 0 took 30 cycles, tx_len= 12 words   Time: 6240 ns  Iteration: 1  Instance...

# ** Note: packet 0 from agent 1 took 18 cycles, tx_len= 3 words Time: 6440 ns  Iteration: 1  Instance...

# ** Note: packet 1 from agent 0 took 27 cycles, tx_len= 9 words Time: 7860 ns  Iteration: 1  Instance...

gen

1. 2. Generate traffic filesSet traffic parameters

Simulate the VHDL3.

Analyze the results4.
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(b) NoC evaluation using stochastic traffic generator.

Fig. 34. Generating and using stochastic traffic.
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6. ON THE CREDIBILITY OF LOAD-LATENCY MEASUREMENTS

This Chapter was inspired by the observations in surveys [P10, P11]. Networks,

especially NoCs, are typically compared and benchmarked via their load vs. latency

behavior [51]. For example, this method was utilized in about 18% of the papers

cited in Tables 2 - 5.

Unfortunately, the measurement setup is often unclear and sometimes even erroneous

which leads to unfair comparisons or prevents them. For example, the utilized trans-

fer sizes, metrics, and units are not always defined properly, the header and packet

latencies may be confused, or latency values from the saturated state are sometimes

given.

The following examples illustrate how the often undocumented features have a pro-

found impact on the results [P13]. The differences between various measurements

setups are analyzed next.

6.1 Introduction to load vs. latency measurements

Fig. 35. shows an example of the offered traffic load vs. latency curve for an imagi-

nary network. It shows the transfer delay as a function of the transfer rate. The X-axis

shows the average data rate that is offered, injected, to the network terminals. There

is one traffic source per terminal and usually they all are active simultaneously. The

Y-axis shows the transaction latency; in this case it is the average value. As the traffic

load increases beyond the network-specific threshold, the injected data start stacking

at the sender because the network cannot accept them fast enough. Consequently,

their latency increases without bound as the situation continues, and the network is

saturated.

The simplest traffic scenario sets equal probability for all targets (spatially uniform),

injects data continuously, and keeps both the message size and injection rate fixed
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Fig. 35. Example of load vs. latency curve. X-axis shows the transfer rate and Y-axis the

delay. Six analytical bounds are shown in addition to measured values.

(temporally uniform, periodic, i.e. constant bit rate). The traffic characteristics must

be documented properly to enable repeatability and comparison. Section 4.3 analyzes

the properties of traffic patterns found in real system-on-chips.

The exact curves are usually determined with simulation but certain bounds can be

determined analytically [51]. The loosest bounds (bottom-right) are derived from

the topology; namely the bisection bandwidth and the minimum number of hops

(traversal of a link). Practical routing algorithms do not achieve perfect load balance

and use more hops, hence defining tighter bounds (closer to the realized values).

The actual load leading to saturation is obtained from simulation or measured from

the implementation. Zero-load latency is measured so that only one sender is active

which means that there is no contention. Due to congestion, the measured latency

is usually higher than the zero-load latency, and increases slightly with the increased

load before saturation.

6.2 Measurement setup

Unfortunately, both offered load and latency, are ambiguous terms, see [P10, P11] for

examples. This does not ruin the validity of the results within one paper as long as all

cases use the same definition. However, comparison between publications becomes

impossible. This Section aims to alleviate these shortcomings.

The examples are given for a packet-switched 4x4 mesh with wormhole switching
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[P8] and utilizing spatially uniform random traffic. In general, it is recommended

using many types of spatial distributions but in this case, the simple uniform distribu-

tion suffices to bring out the issues author wishes to address. The average latency in

clock cycles is here measured for transfers with 8 payload flits (flow control digits).

When the transfer size varies, the average is still 8 payload flits. The traffic load is

given for the payload only (the headers are excluded). Resources and NoC use the

same clock. Each resource initiates 500 transfers; hence there are 16 · 500 = 8 000

transfers in total (8 000 · 8 = 64 000 payload flits). The measurement settings are

summarized in Table 16 in Section 6.7 with the corresponding deviations in results.

A canonical measurement setup is shown in Fig. 36(a). The traffic generator (TG)

models the SoC resources, such as processors and memories, which initiate transfers.

The configuration file defines the properties of the traffic:

• temporal - when and how much to send

• spatial - where to send.

Network interfaces (NI) restructure the data stream from TG to packets accepted by

the NoC, and vice versa. Large (infinite, in theory) buffers must be placed between

the traffic source and network interfaces to avoid self-throttling during the measure-

ment [51]. Without such buffers, the generator stops the data injection occasionally,

and the real offered load does not match the expected load. When the network satu-

rates, these source queues start growing infinitely. Longer simulations yield a larger

latency for the saturated traffic but the maximum observed latency cannot exceed the

length of the simulation. The interpretation of results must assume an infinite latency

during saturation.

There are three basic choices in load-latency measurement each with two options.

That means 23 = 8 possible combinations to start with. Fig. 36(b) illustrates the

resulting 3-dimensional measurement space. Each choice defines one axis in the

design space:

1. Size: Is latency t measured for the header or for the whole transfer?

2. Measurement point: Does latency t include the network interface (NI) and

waiting at the source buffer?
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deceitful difference between cases IV,ii and I,i al-

though the NoC and traffic are the same.

Fig. 36. Basics of load-latency measurement: different setups and the resulting deviations in

measured performance.
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3. Load: Does the load r (i) include or (ii) exclude the header?

Our recommendations are presented next.

Header latency gives the lower bound for communication delay in a system but head-

ers do not transmit any useful data in general case. Hence, latency of full packets

should be measured.

The latency measurement starts when the first bit of the transfer leaves the traffic gen-

erator and ends when the last bit exits the NI at the receiver. The NI must ensure that

received data is in-order. Its latency and (buffer) area overheads may be substantial

when reordering is required due to out-of-order delivery in the network.

The definition of offered load must be independent of the measured NoC. In other

words, it is measured on a higher protocol layer than network. The header overhead

depends on the evaluated NoC and NI, and therefore the header must be excluded

from the load. Otherwise, a NoC with large headers will be favored in an unfair

manner, as it seems to tolerate a larger load than it actually does. This applies even if

the source buffer and NI are implemented as part of the traffic generator.

As a summary, the latency must be measured for the whole packet including source

queue, NI, and NoC latencies, and the load must include the payload only. That way

the values correspond closely to the latency experienced by the actual processing

elements (PEs) during real operation. The recommended setup is denoted as case

IV,ii in Fig. 36(b) and 36(c). The same curve is repeated in the following graphs for

the sake of comparison.

Fig. 36(c) shows the impact of the various measurement options. Solid lines denote

that headers are excluded from the load whereas they are included in the dashed lines.

These load definitions do not affect the latency but they move the curves in the X-

direction. On the other hand, the measured transfer size and the impact of NI move

the curves in the Y-axis without affecting the saturation point. Differences are large:

the latency appears to be reduced to 0.4x while obtaining 1.4x throughput when basic

choices are done “creatively” (16 vs. 38 cycles and 33 vs. 24%, respectively). Case

II is here coincidentally identical to case III.
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6.3 Units of measurement

Another consideration regards the utilized measuring units and statistical values.

1) What values are reported? The most common and suitable choices for latency

are average tavg (10) and percentile t(p) (11)

tavg =
1

N

N−1

∑
i=0

ti (10)

f raction p o f trans f ers : ti ≤ t(p) (11)

ti = tlastbit_to_rx_TG − t f irstbit_ f rom_tx_TG (12)

where ti denotes the latency of a single transfer and N is their total number. La-

tency percentiles or box-plots are especially important when dealing with real-time

constraints as the average performance is inadequate metric in those cases. The max-

imum jitter t∆ (variation between transfer latencies) is calculated as

t∆ =
ti

min(all ti)
−1. (13)

Naturally, the latency equation must be reported explicitly to avoid confusion. For

example percentiles t(90%), t(99%), and t(100%) are reported for latency and jitter

[157]. The last one equals the maximum value of the set. Metrics ti and t(p) have the

same unit (see next subsection) whereas t∆ is unitless.

2) What is the unit of latency? Latency measures how long it takes to perform a

certain operation; a transfer in this case. In principle, its unit is time/operation - the

inverse of data rate (throughput). Note that inverse value of the data rate does not

equal latency in pipelined systems although units are reciprocal.

Both seconds and cycles are plausible time units. The latter is SI unit but affected

by the (assumed) NoC frequency. Frequency is an implementation-dependent vari-

able but most design-choices (routing algorithm, buffering, virtual channels etc.) can

be compared with their cycle counts. Care must be taken to define “clock cycle”

appropriately in a multi-clock system, e.g. using specifiers #cyclesPE or #cyclesNoC .

The monitored operation is case-dependent and needs rigor definition. For example,

latency per packet needs information about inclusion/exclusion of header, payload

length and is it varying dynamically between traffic sources.
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3) What is the unit of load? It is preferred to measure traffic load per terminal so

that its maximum value does not depend on the network size or topology. If latency

is measured at clock cycles, the recommended load unit is

[o f f ered load] = f lit/cycle/source ∈ [0.0,1.0]. (14)

The number of traffic sources usually equals the number of terminals but not always,

for example when measuring zero-load latency. In most cases, f lit/cycle/terminal

may be opted to emphasize the fact that data is injected to all inputs. Either way, the

chosen load metric has intuitive bounds that do not depend on the network size and

only the payload flits are accounted. The data width and frequency of NoC terminals

are implementation-dependent choices. Replacing them to (14) yields data rate in

bits/s/source or Bytes/s/source.

When the load varies between terminals or dynamically, characteristics are calculated

with equations (10)-(13) by replacing latency t with data rate r.

Expressing the load as a fraction (%) of terminal’s bandwidth also seems to be a

viable option. Unfortunately, the load is sometimes given as a fraction of network’s

ideal capacity on uniform traffic [51]. Capacity Θ means the input bandwidth that

saturates the network, and the aim is to evaluate how close to ideal performance the

network implementation gets. Percentage is always relative to something so it is

obviously important to document clearly how it is measured, or avoid its usage. For

example in Fig. 35, saturation occurs at 12% or 85% depending whether it is relative

to terminal bandwidth or to network’s ideal capacity. Note that it is no use to compare

latency curves from different NoC topologies in a single graph if load is expressed as

fraction of capacity. Furthermore, capacity naturally depends on the traffic pattern,

and it may be hard to derive it for other cases than uniform random traffic. Hence,

capacity Θ as an offered load measure should be avoided in most cases.

6.4 Latency breakdown

A part of the latency is due to utilized network interfaces but also to inefficiencies

of the traffic generator. Moreover, the evaluator must ensure the saturation is really

caused by the NoC itself and not by these secondary components. Fig. 37(a) shows

the results of such sanity check where the components are measured in separation.
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Fig. 37. Comparing load-latency per component and between different measurement runs.

Let us define the total latency t and the saturating data rate r as

t = ∑ tT G + tNI + tNoC (15)

r = min(rT G + rNI + rNoC) (16)

The lower bound for latency on the bottom illustrates the time needed for the mere

data copying: 8 cycles in this case. Above that is the 3-cycle additional latency due

to traffic generator. This is rather small overhead and could perhaps be eliminated in
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future versions of TG. However, the generator used in this study spends 2 extra cycles

between for each transfer, namely one cycle for address and one related to internal

state machine. This is compensated with small traffic loads but affects the maximum

load. Hence, it can inject at most

8 f lits

(8 f lits ·1 cycle/ f lit)+ 2 cycles
= 0.8 f lit/cycle.

Network saturation occurring beyond that would be masked away but these empty

cycles have no effect in lightly loaded case. Large transfers move the NI’s saturation

upwards, for example, 32-word transfers saturate at 94% of terminal bandwidth (not

shown).

The utilized NI has latency overhead that grows with packet length. Time needed in

NI for 8 payload words is 8 cycles for data, 3 for the header, and 2 empty cycles re-

lated to the current implementation. In other words, maximum offered load becomes
8 f lits

13 cycles
= 0.62 f lit/cycle per terminal due to this particular NI. It is by chance iden-

tical to the saturation point of a single router because the control logic inside a router

also wastes two cycles between the packets.

The location of the router affects its average latency but not the saturation load. For

example, the corner router (0,0) has larger latency than middle router (1,1). Note also

that data copying, traffic generator and NI together cause 27-cycle latency whereas

the (header) latency through the NoC attributes only additional 9 cycles. Let us as-

sume that an optimized NoC might reduce the latency by, say, one cycle. This would

mean a notable 11% reduction or mere 3% depending on whether one considers the

network only or the full end-to-end latency. The differences between NoC laten-

cies diminish even further, when the runtime overhead of SW platform running on a

processor are also accounted.

The above simulation validates that the following holds

r = rNoC < rbisection < rrouter ≤ rNI < rT G (17)

In this case, the example mesh saturates at 24% load. The bisection Bmesh has 2k

unidirectional links, where k denotes the number of nodes in one dimension [51].

Hence, the theoretical load bound for uniform load in 16-node mesh is Bmesh · 2
N

=
4k
N

= 4√
N

= 1.0 f lit/cycle/terminal. This reveals room for improvement regarding

routing policy, header overhead, and the control logic of the routers. Furthermore,
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we observe that the saturation load decreases with larger network sizes even if mesh

is often dubbed “scalable”.

6.5 Impact of the transfer count and length

The number of monitored data transfers, their length, and pseudo-random behavior

affect the results. These phenomena are studied next. Fig. 37(b) shows the results

when the number of transfers varies, averaged over 3 independent runs. In all cases,

8000 transfers were generated and 2000 − 8000 were included for calculating the

average. The sampled transfers were taken from beginning, middle, or from the end

of the simulation. Furthermore, an example of erroneous measurement setup is shown

with a case where the infinite FIFO was omitted from the source. A similar pitfall is

to use a too small source FIFO.

The differences become visible only near the saturation. During saturation, the last

packets will experience longer latency than the first. The knee-point of curve gets

sharper with larger transfer counts and when the warmup period (i.e. the first packets)

is discarded. However, all transfer counts had the same non-saturated latency and

were able to recognize the saturation point. Note that the saturation point can be

identified more accurately from the load-throughput curve.

The measurements were repeated 3 times independently in order to study the im-

pact of randomness. In this case, the generation of traffic files includes randomness

whereas the simulation produces always the same results with given traffic file. The

average latencies, eq. (10), of each run were compared, and the ratio between largest

and smallest values is shown in Fig. 37(c). The differences are negligible at small

loads and visible near saturation. Differences between runs decrease when more

transfers are monitored. However, the transfer counts are here high enough that one

simulation run suffices. In general, designers are encouraged to use largest transfer

count that is practical regarding the simulation time. In general, the number of needed

runs and transfers may be sought empirically case-by-case, for example as

f or all loads : f or all runs :
max(tavg)

min(tavg)
−1 ≤ ε (18)

and let’s say ε = 2% for non-saturated loads.
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Fig. 37(d) illustrates the variation due to different transfer lengths. Three cases are

shown: transfer length being 2,8 or 32 payload words (=flits in this case). Similar

measurements were done with single HIBI (Heterogeneous IP Block Interconnection)

segment. Note that the latency is here given per word whereas other graphs measure

the latency per transfer. The latency per word decreases with longer transfers because

the empty cycles in traffic generator and NI occur only once per transfer. This is

clearly shown with HIBI that has 1-word header (address) and varying burst length

needs only single header per arbitrarily long transfer.

In addition, longer transfers often move the saturation point to higher loads. Both net-

works have inferior results with 2-word transfers, especially the mesh that used fixed

length packets of 8 payload flits and 3 header flits. Comparing results from simula-

tions that utilize different transfer length is not meaningful. An obvious recommen-

dation is to study multiple transfer lengths for each compared NoC and document the

settings.

6.6 Network-specific settings

Final remarks concern the settings related to the measured networks. The overall per-

formance or merit is a combination of several factors, not just latency. For example,

a network with the highest performance may be prohibitively costly to implement

and hence out of the question. Therefore, an appropriate multiobjective trade-off

is sought. Automated design space exploration tools often seek to optimize a cost

function that considers properties such as silicon area, power consumption, runtime,

and latency. Network-specific settings - such as data width, frequency, buffer depth -

affect all these metrics which motivates their careful selection.

Packet structure is clearly network-specific parameter whereas transfers are defined

in the benchmark set. Preferably, several packet sizes must be evaluated. There are

three basic choices for selecting network settings, for example packet size, for the

compared NoCs:

1. Use the default packet size for each NoC, so called out-of-the-box execution.

The resulting differences in performance, area, and power are accounted in cost

function. A variant of this scheme uses the same packet size for each NoC.
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Fig. 38. Impact of network specific settings: lengths of packet header and payload, and the

depth of buffers at the routers. Header is 3 flits unless otherwise noted.

2. Select packet size that minimizes cost function, so called full-fury optimiza-

tion.

3. Select sizes that produce (nearly) equal area, and/or power, i.e. compare NoCs

that conform to given constraint. The obtained performance values are now

directly comparable.

Similar selection procedure can be easily generalized to other parameters, such as

buffering, pipelining, frequency, and data width.

Examples are shown in Fig. 38. Utilized mesh supports up to three header flits:

mandatory NoC address, optional packet length, and optional second level address.

The examples so far utilized all 3 fields. Performance with shorter headers is shown

in Fig. 38(a) for four header types. The differences in latency are quite small but
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shorter headers provide a notable 1.45x increase in tolerated load. This observation

clearly supports our recommendation to exclude headers from the offered load. Of

course, shortest possible headers are desired and minimum length is dictated by the

data width and the complexity of the network protocol.

Mesh in Fig. 38(b) uses fixed-size packets with 3-word headers and payload of 1,4,8,

or 12 words. The header overhead is intolerable for 1-word payload and larger pay-

loads naturally increase performance. For example, increasing payload length from

4 flits to 8 increases the maximum data rate by a factor 1.6. However, dummy data

that is used to fill packets deteriorates the performance with 12−word payload. Dy-

namically varying packet overcomes this drawback.

Fig. 38(c) varies both transfer and packet size. The traffic is now bursty because

the bit rate varies which resembles real-life applications better than constant load.

The average transfer size is 8 payload words in all cases and varies uniformly within

shown range. This situation is bad for fixed-size packets that need dummy data for

nearly all packets. A mesh that is able to vary packet size at runtime obtains categor-

ically better results. However, the constant bit rate traffic saturates at 24% and bursty

at 18%, i.e. 1.4x difference.

Fig. 38(d) illustrates the variation due to buffer depth in the routers as it varies from

2 to 12 flits. Furthermore, a mesh with store-and-forward switching scheme was

measured and found less capable than the wormhole switched. Larger buffers clearly

increase the performance but also the area cost. In this case, increasing buffering by

factor of 6x, results in 5.5x area cost and 1.14x saturation point. Hence, performance

increase is rather modest compared to cost.

6.7 Discussion

Very large differences are observed due to innocent-looking basic choices in mea-

surement setup and network settings.

The guidelines are summarized as:

• An “infinite” source queue is placed between traffic generator and NI.

• The measurement points are between traffic generator and source queue.
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Table 16. Measurement settings and the maximum observed differences on peformance.

Max. impact in case study Recommendation

size 16 terminals - evaluate many

topology 2-D mesh, bus (2 choices) 3.5x throughput evaluate many

header length 1 - 3 flits 1.6x throughput shortest possible

a) payload length 1 - 12 flits 25x throughput evaluate many

b) payload length fixed or varying (2 choices) 1.2x throughput (dynamically varying)

buffer depth 2 - 12 flits 1.14 throughput smallest adequate

switching wormhole, st-and-fwd (2 choices) 1.6x throughput, 2x lat. (wormhole)

spatial uniform dst distrib. (but not to itself) - evaluate many

offered load 0.0 - 1.0 flits/cycle/terminal - evaluate many

a) tx length 2 - 32 payload flits 1.6x throughput evaluate many

b) tx length fixed or varying (2 choices) 1.4x throughput varying

# tx 2000 - 8000 tx /terminal 9x latency largest practical

latency for header or whole tx (2 choices) 1.6x throughput, 1.3x lat. whole tx

load definition incl./excl. header - " - 1.3x latency excl. header

meas. point incl./excl. NI - " - 1.3x latency incl. NI

infinite src queue included/excluded - " - exclusion is illegal included

latency per transfer, per flit - " - - per transfer

# src terminals corner, middle, or all (3 choices) 3x throughput, 1.1x lat. all

# independent runs 3 runs 1.4x latency largest practical

warmup length 0 - 6000 transfers 9x latency discard warmup

Value and Unit (/note)Property

M
ea

su
re

m
en

t
T

ra
ff

ic
N

et
w

o
rk

• The latency is measured for the whole packet including source queue, NI, and

NoC latencies.

• Average, percentiles, and jitter are the most common values for characterizing

latency. The choice must be stated explicitly to avoid confusion.

• The recommended unit for offered load is f lit/cycle/terminal and it includes

the payload only.

• Large number of samples (monitored transfers) increases the validity.

• The min/avg/max values of packet size must be given when the size varies at

runtime or across the nodes.

• Study multiple transfer lengths for each compared NoC and document the set-

tings.

• Ensure that the bandwidth is not limited by the traffic generator or NI to effec-

tively measure the impact of NoC parameters.

• The parameters of the studied NoC must be selected with care and considering

the overall cost.
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Table 16 summarizes the measurements, maximum impact of parameters, and rec-

ommendations.
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7. HETEROGENEOUS IP BLOCK INTERCONNECTION (HIBI) V.2

This chapter presents the second version of Heterogeneous IP Block Interconnection

(HIBI). Topology, arbitration and data transfers are presented first. After that, data

buffering and the structure of wrapper component are discussed. Finally, the de-

veloped runtime configuration is presented followed by comparison to the previous

version of HIBI.

The development of HIBI [133, 136, 138] started in 1997 in Tampere University of

Technology with a goal of defining a reusable communication network for system-on-

chips. HIBI is intended for integrating coarse-grain components such as intellectual

property blocks that have size of thousands of gates, see Tables 7 and 8 for examples.

A survey [P1] and its extended versions [136, 177] indicated how fixed constraints

dominate the contemporary buses. For example, the number of agents (i.e. devices

connected to the network) and the available bus widths are strictly limited, leading

to constrained modularity and scalability. Furthermore, the hierarchy was often re-

stricted to two bus segments connected with a bridge.

Hence, the design objectives behind HIBI v.2 were to design a topology-independent,

scalable, and still high-performance network based on experiences from HIBI v.1

Special attention was paid on configurability, efficiency of the protocol, and quality

of service. New features include better support for hierarchical topologies with mul-

tiple clock domains, more efficient and versatile runtime configuration, and better

modularity enabling silicon area minimization. Furthermore, more emphasis was put

into FPGA prototyping.

A parameterizable HW component, called HIBI wrapper, is used to construct modu-

lar, hierarchical bus structures with distributed arbitration and multiple clock domains

as shown in Fig 39 (explained later in detail). This simplifies design and allows reuse

since the same wrapper can always be utilized. Configuration takes place both at syn-

thesis time (e.g. data width and buffer sizes) and on runtime (arbitration parameters).
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Fig. 39. Example of a hierarchical HIBI network with multiple clock domains and bus seg-

ments

A method for automating the parameter selection at design time is presented in [206].

7.1 HIBI topology

Bus performance can be scaled up by using bridges as shown in Section II. The key

is to cluster frequently communicating agents in the same segment to provide small

latency and adequate throughput. Clustering offers more freedom in the optimization

since segments can operate with various data widths and clock frequencies. The

implementation area and power consumption are lowered by making the segments as

slow and narrow as possible but still meeting the application requirements. Segments

having only simple peripheral devices can have a slow and narrow bus while the main

processing parts have higher capacity buses.

Fig 39 depicts an irregular HIBI network. The example has a point-to-point link

(SegA), hierarchical bus (SegB and SegC), and multibus topology (SegC and SegD).

Furthermore, SegB is wider than other segments and thus offers greater bandwidth.

In the multibus configuration, each IP must decide which bus to use while sending.

Note that SegA could be implemented without wrappers since there is no need for

arbitration.

The example shows four clock domains. Agents in SegA and SegB are inside one

domain and HIBI wrappers on SegC are in one domain. However, two IPs in the top

right corner use different clock than the wrappers of SegC. The IPs in the bottom right
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corner and all wrappers in SegD are in one domain. The number of clock domains is

not otherwise restricted but all wrappers in one bus segment must use the same clock.

Handshaking between the clock domains is done in the IP-wrapper interface or inside

the bridge [126, 127]. This allows the construction of GALS systems. The example

shows only one bridge but HIBI does not restrict either the number of bridges or

hierarchy levels in contrast to many bus architectures.

All wrappers in the system are instantiated from the same parameterizable HDL (HW

description language) entity and bridges are constructed by connecting two wrappers

together. If the connected segments use different data widths, the bridges are respon-

sible for the data width adaptation.

Transfers inside a bus segment are circuit-switched and use a common clock due to

(current) implementation of the distributed arbitration. However, HIBI bridges uti-

lize switching principle that resembles packet-switching so that bus segments are not

circuit-switched together. Instead, the data is stored inside the bridge until it gets an

access to the other segment. The data is forwarded to next segment as soon as pos-

sible like in wormhole routing. However, no guarantees are given for the minimum

length of continuous transfer. If the bridge cannot buffer all the data, the transfer is

interrupted and the source segment is free for other transfers. The interrupted wrap-

per will continue the transfer on its next turn. It is also possible that a bridge buffers

parts from multiple transfers.

7.2 Arbitration

A distinct feature in HIBI is that arbitration is distributed to wrappers, meaning that

they can decide the correct time to access the bus by themselves. Therefore, no

central arbiter is required. For example, Intel Itanium 2 system bus uses symmetric

distributed arbitration (with fixed round-robin arbitration) [90]. In addition, at least

Silicon Backplane [226] and Hewlett-Packard’s Runaway bus use distributed arbitra-

tion [33].

A two-level arbitration scheme, a combination of time division multiple access (TDMA)

and competition, is used in HIBI. In TDMA, time is divided into repeating time

frames. Inside frames, agents are provided time slots when they are guaranteed an

access to the communication channel. This way the throughput of each wrapper can
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be guaranteed. For example, Aethereal network [207] uses TDMA also. The worst-

case response time for a bus access through TDMA is the interval of the adjacent

time slots. TDMA in HIBI supports two flavors for handling the slots when there is

no data send: keeping them or releasing the bus for competition.

Competition is based either on round-robin or non-pre-emptive priority arbitration.

The second level mechanism is used to arbitrate the unassigned or unused time slots.

If the agent does not have anything to send in the beginning of its time slot, the time

slot can be given away to allow maximal bus utilization. Priority arbitration as a

second level method attempts to guarantee a small latency for high priority agents

whereas round-robin provides a fair arbitration scheme. When the bus is freed and

priority scheme is utilized, the agent with the highest priority can reserve the bus on

the first cycle. If the bus has been idle for two cycles, the agent with the second high-

est priority may reserve it and so on. The maximum transfer length is restricted with

runtime configurable parameter max_send. For round-robin, the maximum wait time

for accessing the bus is obtained by summing all max_send values. For priority-based

arbitration, the maximum wait time can be defined only for the two highest priorities.

This means that the low-priority agents may suffer starvation and system may end up

in deadlock. Therefore, using only priority arbitration is not recommended. More-

over, a new scheme called Dynamically Adaptive Arbitration (DAA) was presented

in [130].

TDMA arbitration may prove beneficial also for energy saving because transfer times

are known in advance and, therefore, timing of the shutdown and predictive power-up

operations are simple [137]. The application can actively set the power save modes

through a configuration memory.

Fig. 40 shows the differences in various arbitration policies and two traffic loads

(low and high contention). HIBI is configured as single bus with 8 agents. Agent 0

performs dynamic reconfiguration (time instants i−v) and other agents generate uni-

formly distributed random traffic. The reconfiguration changes the arbitration policy

at runtime. The exact configuration procedure is explained in more detail later The

utilized arbitration policies are

i) round-robin

ii) combination of priority and round-robin
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(b) High contention (send probability 30% per agent).

Fig. 40. Various arbitration schemes for 8-agent single bus and uniform random traffic. The

differences become evident on highly utilized bus.

iii) priority

iv) random

v) round-robin (again).

Round-robin offers fair arbitration (each agent has its share) whereas priority fa-

vors the highest priority agents and leads to starvation of others. Their combination

switches between them at user-defined intervals. Arbitration policy does not play a

major role when bus is lightly loaded, as illustrated in Fig. 40(a). The differences are

clear with higher load, Fig. 40(b).

Various arbitration methods of HIBI were compared in [130]. The test case was

MPEG-4 encoding on MPSoC. HIBI has 6 arbitrated components: 4 CPUs, SDRAM,

and performance monitor; all operating at 50MHz frequency. The maximum transfer

length was varied from 5 words (denoted as tx = 5) to non-limited. Transfer length

has major impact but all lengths of 50 words or over (tx>49) resulted in equal perfor-

mance. The bus frequency was set to 1,2,5, or 50 MHz in order to achieve varying

bus utilization (75%,56%,26%, and 3%, respectively) with single application. The

best and worse algorithms vary case by case but DAA performed well in general.
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Fig. 41. Relative performance of arbitration algorithms in MPEG-4 encoding [130]

Fig. 41 plots the relative encoding performance between the worst and best algo-

rithms. The curves denote different transfer lengths, and 1.0 is the best algorithm for

each case. Tx lengths over 49 are joined for clarity because they yield practically the

same results. With short transfers, the worst algorithm at 1 MHz HIBI (75% utiliza-

tion) offers only 0.62x the performance of the best, at 2 MHz 0.73x, at 5 MHz 0.98x,

and at 50 MHz there are no differences.

7.3 Data transfer operations

Since there is exactly one path between each source and destination, all data is guar-

anteed to arrive in-order and hence no reordering buffers are needed at the receiver.

In HIBI v.2, all operations can be targeted either to a single agent or to a group of

agents with multicast. Data can be sent with different relative priorities. High priority

data, such as control messages, bypass the normal data transfers inside the wrappers

and bridges resulting in smaller latency. This does not change the timing of bus

reservations, but it selects what is transferred first.

In traditional circuit-switched protocols, the bus is reserved during the whole read

operation which is problematic when accessing slow agents, such as off-chip memo-

ries. To overcome this, HIBI uses a split transaction for read operation. The reading
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agent first sends a read request, after which it frees the bus for other transfers. The

requested data (response) is returned with a normal write operation. The reader does

not get data any faster but the advantage is that the shared medium is available for

other agents in the middle of the transmission process and consequently the achieved

total throughput increases. In packet-switched networks the split-transactions are

commonly used and also in modern bus protocols, such as AMBA [1].

In fact, arbitration for response may increase the read latency but that is usually

compensated by the increased throughput, especially when memory latency is large.

For example, Chow and Sohi evaluated several shared-bus multiprocessor configu-

rations and found that split-transaction protocol offered 1.2x - 2x increase in system

performance over a traditional circuit-switched protocol [41]. The benefit of split-

transactions increased with system size in fat-tree network and over 5x speedup was

reported for 32-core system [1].

The bus signals are Clk, Av, Data, Comm, Lock, and Full. Address and data are multi-

plexed into a single set of signal lines (Data) to save logic and routing resources. Sig-

nal Av indicates when an address is transferred on the data lines, i.e. address is valid.

The number of data bits can be freely chosen. This is beneficial, for example, when

error correcting or detecting codes are added to data and the resulting total data width

is not equal to any power of two. Three bits are needed for Comm to present eight dif-

ferent network commands (idle, write_data, write_hi_prior_data, multicast_data,

multicast_hi_prior_data, read_request, write_con f ig, read_con f ig). Active mas-

ter asserts Lock signal when it reserves the bus. Handshaking is done with the Full

signal. When Full is asserted, the data word on the bus must be retransmitted. To

improve modularity, all signals are shared by all wrappers within a segment and no

point-to-point signaling is required. Consequently, the interface of a wrapper does

not depend on the number of agents and the wrapper can be reused more easily. An

OR network was selected for bus signal resolution.

In HIBI v.2, all transfers are bursts, i.e. address is transmitted only in the beginning

of the transfer and it is followed by one or more data words. The maximum burst

length is wrapper-specific. HIBI uses mainly two-level addressing scheme: the upper

bits of the address identify the target terminal (e.g. destination0) whereas the lower

bits define the additional identifier. This identifier can be used either as an address to

local memory, to select the correct reception channel on DMA, to identify the source

of the data, or to select requested service. Certain packet-switched networks (at least
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Fig. 42. Example of bus structure and timing of bus transfers

those implemented in this work) allow only one address per terminal. In that case,

the second level address must increase the header length.

The HIBI implementation pays special attention on minimizing the transfer latency

by removing empty cycles from the arbitration process by pipelining as shown in

Fig. 42. Empty cycles are here defined as cycles when at least one wrapper has data

to send but the bus segment is not reserved. An optimized protocol allows lower

frequency, and hence lower power, for certain performance level than inefficient pro-

tocol. Fig 42(a) shows an example of bus having three agents and Fig 42(b) shows the

related timing. Output signals from wrappers are denoted with post-fix _out and in-

puts with _in. Wrapper outputs are connected to OR gate and its output is connected

to inputs of every wrapper. All wrappers generate internally the two time slot signals

(next_slot_starts and curr_slot_ends, shown on bottom) and they are not transmitted

on the bus. The example shows the bus reservation through round-robin arbitration
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and TDMA. Agents 1 and 2 gain the ownership through round-robin and agent 3

through both round-robin and TDMA. The example shows only small transfers for

the sake of simplicity. In practice, it is more efficient to send tens or hundreds of data

words in each turn (cf. Fig. 41). The signals shown in figure are explained in the

following. Data values are here selected so that the most significant digit denotes the

sender and the two others are the running number of the data word.

1. Agent 1 reserves bus by asserting Lock. At the same time, the first address

(12) and the address valid (Av) signals are asserted. Address if followed by

the data word 101. After that, the same agent transfers next address and data

without empty cycles. The data and addresses are sent with the normal priority

(Comm = 2).

2. The time slot of agent 3 starts and therefore agent 1 must release the bus by

deasserting the Lock signal. Agent 3 transfers one address and 3 data words

with high priority (Comm = 3) on its turn. Note that Lock_out_3 is asserted

one cycle before the address. Hence, the empty cycles are avoided even if the

time slot was not used.

3. After 4 cycles, the time slot ends and agent 3 releases the bus. Lock signal

is always deasserted one cycle in advance to avoid empty cycles as shown in

figure. According to the round-robin, the next agent in turn is agent 2 which

reserves the bus.

4. Agent with the address 28 cannot temporarily accept more data and asserts

signal Full. Hence, agent 2 must interrupt its transfer. When a transfer is

interrupted, there is one empty cycle and after that agents continue transfer in

a normal manner.

5. When agent 2 has the ownership next time, it retransfers the data word 201

before sending other data.

Empty cycles appear also when bus utilization is low as distributed round-robin ar-

bitration takes one cycle per agent. If only one agent is transmitting, it has to wait a

whole round-robin cycle between transfers. In such cases, the priority-based arbitra-

tion is useful.
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7.4 Buffering and signaling

The model of computation used in HIBI design approach assumes bounded first-in-

first-out (FIFO) buffers between processes. A simple FIFO interface can be adapted

to other interfaces such as the OCP (Open Core Protocol) [178]. Consequently, IP

components use only OCP protocol and are isolated from the actual network imple-

mentation. Ideally, network can be chosen freely without affecting the IPs. However,

not all features of HIBI, such as relative data priorities or dynamic reconfiguration,

can be used with OCP directly but only the basic transfers.

To avoid excess buffering or retransfers, the received data must be read from the

FIFO as soon as possible, for example by using a direct memory access controller.

As a result, the receiver buffer space is not dictated by the amount of transferred data,

but the latency of reading data from the wrapper. This scheme resembles wormhole

routing, but the links are not reserved if the receiver is stalled.

7.5 Wrapper structure

The structure of the HIBI v.2 wrapper is depicted in Fig 43. The modular wrapper

structure can be tuned to better meet the application requirements by using different

versions of the internal units or leaving out properties that are not needed in a partic-

ular application. On IP side, there can be separate interfaces for every data priority

or they can be multiplexed into one interface. Furthermore, the power control signals

can be routed out of the wrapper if the IP block can utilize them. The main parts

are buffers for transferring and receiving data and the corresponding controllers. The

transfer controller takes care of distributed arbitration. The configuration memory

stores the arbitration parameters. Relative data priority is implemented by adding

extra FIFOs. A (de)multiplexer is placed between the FIFOs and the corresponding

controller so that the controller operates only on a single FIFO interface. The separate

(de)multiplexer allows adding FIFOs to support priorities in excess of two without

changing the control. Currently, transmit multiplexer uses pre-emptive scheduling.

HIBI v.2 has multiplexed address and data lines whereas HIBI v.1 uses separate ad-

dress and data lines. Multiplexing decreases implementation area because signal lines

are removed and less buffering capacity is needed for the addresses. This causes over-

head in control logic but that is less than the saving in buffering. Having fewer wires
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Fig. 43. Structure of HIBI v.2 wrapper and configuration memory

allows wider spacing between wires and hence lower coupling capacitance. On the

other hand, the saved wiring area can be used for wider data transfers to increase the

available bandwidth. The HIBI protocol does not require any specific control signals,

but message-passing is utilized when needed. HIBI v.1 assumes strictly non-blocking

transfers and omits handshake signals to minimize transfer latency but one handshake

signal Full was added to HIBI v.2 to avoid FIFO overflow at the receiver. As a result,

blocking models of computation can be used in system design and, in addition, the

depths of FIFOs can be considerably smaller than in HIBI v.1.

The structure of the configuration memory is illustrated at the bottom of Fig 43. It

includes multiple configuration pages for storing the parameter values, a register stor-

ing the number of currently active page, clock cycle counter, and logic that checks

the start and end of times of the time slots. The receive controller takes care of writ-

ing new configuration values whereas the configuration values and time slot signals

are fed to the transfer controller. Configuration values can be written to non-active

pages before they are used to minimize the risk of conflict when the configuration is

performed.
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7.6 Runtime reconfiguration

HIBI allows the runtime configuration of all arbitration parameters to maximize per-

formance. This is achieved so that one of the agents (e.g. system controller CPU)

writes the new configuration values to all wrappers. The configuration values are sent

through the regular data lines. During the normal operation, i.e. when the configu-

ration is not changed, the controller CPU can perform its computation tasks. In the

best case, other PEs can continue their transfers even if HIBI is being configured.

However, some operations, such as swapping priorities of two wrappers, necessitate

disabling other transfers momentarily.

For very regular traffic, the TDMA slots can be set to minimize the latency, i.e. slot

starts shortly after the availability of data. For TDMA, each wrapper has an internal

cycle counter to decide correct times to access the bus. For this reason, wrappers in

one bus segment must be synchronized. When data is produced with varying time

intervals or quantities, the time slots cannot be optimally located. By runtime recon-

figuration, the cycle counters can be reset to an arbitrary clock cycle value within

the time frame to keep time slots in the correct place with respect to data availabil-

ity. Also the length and owner of the slots can be changed. The resynchronization

can be triggered explicitly from software or automatically by a specific monitor unit,

which monitors how effectively time slots are used and starts the reconfiguration if

needed [106]. Roughly 10 % improvement in HIBI v.1 throughput in video encod-

ing due to dynamic reconfiguration was reported in [138]. Larger gains are expected

when several applications are executed on a single platform. Reconfiguration was

used in [130] to speed-up the exploration on FPGA. It allowed notably less synthesis

runs, each of which took several hours.

As a new feature in HIBI v.2, the second-level arbitration method can be changed

at runtime between priority and round-robin or both of them can be disabled. When

the second-level arbitration is disabled, only the basic TDMA is used and the slot

owner reserves the bus always for the whole allocated time slot. Similarly, only the

second-level arbitration is utilized when no time slots are allocated.

In HIBI v.2, three methods are used to improve the configuration procedure. First, by

making use of the bus nature, each common parameter can be broadcast to all wrap-

pers. Second, enabling the reading of configuration values simplifies the procedure as

the whole configuration does not have to be stored in the configuring agent. In con-
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From rx_control

101 103 105 201 203 205 000

5 2 20 4 1 30 2

Page_1_reg

3 5

9

0 2

10 20

Page_2_reg

2 4

8

0 1

20 30

To tx_control

3 5 4

9 8

0 2 1

10 20 30

clk

From rx_control

addr_in 101 103 105 201 203 205 000

data_in 5 2 20 4 1 30 2

we_in

Page_1_reg

.prior 3 5

.n_agents 9

.arb_type 0 2

.max_send 10 20

Page_2_reg

.prior 2 4

.n_agents 8

.arb_type 0 1

.max_send 20 30

To tx_control

prior_out 3 5 4

n_agents_out 9 8

arb_type_out 0 2 1

max_send_out 10 20 30

1. 2. 3.

Fig. 44. Example of runtime configuration

trast, the configuring agent can read the old parameter values to help determining the

new ones. Third, additional storage capacity for multiple parameter pages has been

added to enable rapid change of all parameters. When a configuration page changes,

all the parameters are updated immediately with one bus operation. It is possible to

store a specific configuration for every application (phase) in its own configuration

page to enable fast configuration switching.

Runtime reconfiguration is illustrated in Fig 44 for 2-page configuration memory.

Signals coming from receive controller to configuration memory (addr_in, data_in,

we_in) are shown on top. In the middle are the registers .prior, .n_agents, .arb_type,

.max_send for both configuration pages (all parameter registers are not shown for

clarity). On the bottom, are the signals from memory to transfer controller (prior_out,

n_agents_out, arb_type_out, max_send_out). In the example, the first digit of the

address defines the page and two last digits define the parameter number.

1. The parameter registers for priority (.prior), arbitration type (.arb_type), and

maximum send amount (.max_send) on current page (page 1) are configured

to values 5, 2, and 20, respectively.

2. Parameters on the inactive page are updated: priority is set to 4, arbitration type

is changed from round-robin (0) to priority (1), and max_send is increased to
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30.

3. Page 2 is activated by writing value 2 to address 0x000. When the page is

changed, all outputs to transfer controller change immediately. Since the num-

ber of agents (n_agents) changes to value 8, the wrapper with priority 9 cannot

access the bus anymore. This way arbitration latency can be decreased if some

agent is known to be idle.

7.7 Summary and comparison to previous HIBI version

HIBI network allows multiple topologies and utilizes distributed arbitration. The

network is constructed by instantiating multiple wrapper components and and con-

necting them together. The wrapper is modular allowing good parameterization at

design time and possibility to reconfigure certain parameters of the network runtime.

The most important properties of HIBI are summarized in Table. 17. Several changes

were made to the previous HIBI implementation (HIBI v.1) [136] as shown.
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Table 17. Properties of HIBI v.1 and v.2.

HIBI v.1 HIBI v.2 (this work) Change/Impact

Description language VHDL, (Matlab) VHDL, SystemC SystemC models for exploration

Topology (Hier.) bus Hier.bus Better support for arbitrary hierarchy 

levels

HIBI-specific HIBI-specific Four versions in v.2

- OCP (TLM1, TLM2)

Synchronous wrapper Synchronous wrapper -

Synchronous network GALS network Support  for GALS

Switching type 

(within segment) 

Circuit-switching Circuit-switching -

Switching type 

(between segments) 
Wormhole (packet)switching Wormhole (packet)switching

-

Configuration Design-time, (runtime) Design-time, runtime Runtime reconfiguration improved

Data width, addr width, 

initial configuration, 

addresses

Data width, addr width, 

initial configuration, 

addresses,

-

FIFO sizes FIFO sizes Wrapper-specific in v.2

- Number of config pages and

their type (RAM/ROM), 

included properties

Better configurability

TDMA cycle and slots, max 

send, own priority

TDMA cycle and slots, max 

send, own priority

More TDMA slots allowed in v.2

Own id - Fixed at synthesis in v.2

Own address - Fixed at synthesis in v.2

- Current TDMA clk cycle Synchronization added to v.2

- Utilized arbitration algorithm Run-time selection added to v.2

- Change configuration page Fast update of multiple parameters

Separate command All transfers are bursts More choices on burst length

Data on addr lines also - Multiplexed addr+data in v.2

Multicast Limited support Versatile Addressing was redesigned

Data priority None 2-level: regular and high-prior Differentiated services included

Handshaking signals None One Included the signal: target_full

6 8 More

Idle, write, read req, write 

cfg

Idle, write, read req, write cfg
-

Start burst, continue burst Multicast, read cfg, write hi 

prior, multicast hi prior

Replaced two with four

Data [n-1:0] Data [n-1:0] Multiplexed with address

Addr [m-1:0] Addr valid Multiplexing and 1-bit valid signal

Command [2:0] Command [2:0] -

Lock Lock -

- Full Added to v.2

Address lines Separate from data Multiplexed with data Less wires and buffers

Signal type Bidirectional, all shared Unidirectional, all shared Unidirectional better suited on chip

Signal resolution Three-state logic OR-based OR better suited on chip

TDMA, round-robin, 

combination

TDMA, round-robin, priority, 

combination

Run-times selection in v.2, two versions 

of TDMA in v.2

- Random, DAA New algorithms and combination

Distributed Distributed -

Pipelined Pipelined -

Handshaking Application-level Appl + signal level Allows smaller FIFOs in v.2

TDMA, round-robin/prior 

with limited tx length

TDMA, round-robin/prior 

with limited tx length

-

- Multiple priorities for data Added

- Fast runtime configuration Added

- TDMA synchronization Added

HW sim, HW/SW sim HW sim, HW/SW sim More thorough testbenches

- FPGA prototypes Much effort into this

HW emulation - Not applicable anymore

Conference 

publications
11 11

Journal articles 1 5

10-CPU H.263 video 10-CPU H.263 video encoder -

Synthetic test cases Synthetic test cases More cases

WLAN baseband WLAN baseband Also distributed simulation with v.2

- H.263 Added

- H.263 + WLAN (FPGA) Added

- MPEG-4, up to 35 CPUs + 

accelerators

Largest architecture requires 3 FPGAs
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8. BENCHMARKED REFERENCE NETWORK-ON-CHIPS

This Chapter presents reference networks and a network interface implemented dur-

ing this work. To allow fair comparison, the networks are compared by using syn-

thesizable building blocks. Studied networks utilize the same interface to processing

element (PE) which allows using exactly the same traffic generator (modeling the

PEs) in all cases.

The router structure is quite similar in reference mesh, ring, and octagon whereas

the wrapper of packet-switched bus resembles HIBI. At first, all topologies were

implemented using packet-switching with store-and-forward buffering. It is easy to

implement but may be sub-optimal regarding the latency and the required buffering

area. Hence, other versions of each topology were developed by implementing cut-

through and wormhole flow control policies also. All networks utilize deterministic

routing and hence, the data always arrive in-order. Furthermore, NoCs use identical

packet structure.

8.1 Network interface

The transferred data must be structured into packets before injection to a packet-

switched network. Fig. 45 shows the approach used in this work. The data stream is

coming from the resource (PE, memory, external interface) and the necessary packet

headers are added by the component dubbed as pkt_enc. The address of the data

stream is translated into the NoC address with an address look-up-table (addr LUT).

For example, a 32-bit address, say 0x5500F000, may be directly utilized with shared

bus topology. However, with mesh it translates to address (2,1) and with octagon to

(1,1,2).

The structure of the packet is configurable. The NoC address is always the first flit

of the packet. The length of the packet is either sent as part of address flit or as 2nd
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Fig. 45. Network interface logic needed for constructing packets.

flit of the packet. The original address (0x5500F000) is the last field of the header,

if included. The source identifier is encoded into the original address if necessary.

The header is 1 to 3 flits long and followed by the data payload. Dummy stuffing

data can be optionally inserted to create fixed-length packets if that is required by

the network. Currently, no tail flits or packet numbering are used. All the studied

packet-networks inspect only the NoC address and packet length, and handle all the

rest as data payload.

At the sender side, the data stream is first collected into a FIFO to determine the

length of the packet. The length of the FIFO is the same as the maximum amount

of payload per packet. The packet is sent if the data stream stops or its address

changes. When the data stream stops, the controller first waits for a pre-defined

number of clock cycles before sending. Without waiting, any short interruption in

the data stream would initiate packet transfer. That leads to shorter average payload

length and hence emphasizes the overhead caused by the headers. Moreover, fixed-

length packets include also the overhead from the dummy data. The reception of the

next stream to the FIFO can happen while writing the previous packet to the network.

The logic at the receiving end is much simpler. It only removes the packet headers

and the possible dummy data. Only the address and payload are forwarded to the

resource.

The presented scheme can operate in general case where the length of the data stream

is unknown. The main reason was the fact that utilized resources or traffic generators
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Fig. 46. Network implementations.

do not readily provide the transfer length as an output. However, knowledge about

the length prior to transfer improves the procedure. The sender tells the length using

the input port len. The area is saved by removing the FIFO buffer from the pkt_enc.

The packet latency is also reduced by forwarding the packet already when receiving

the data stream. However, the measurements in this thesis were performed assuming

a general case.

8.2 Packet-switched bus

Processing elements (pei) are connected to bus segments via wrappers (wi) and to-

gether they form an agent. The traditional single bus topology can be extended to a

hierarchical bus scheme as shown in Fig 46(a). Extension is done by using bridges

(marked with bI) to connect several bus segments together. In this case, each seg-

ment operates with the same frequency and has the same number of signal lines. The

number of segments is scaled with the number of agents.

The implemented bus wrapper is a fairly simple device with two FIFO buffers and a

control unit for arbitration. Arbitration is based on a distributed round-robin scheme.

In the packet-switched bus, the ownership is passed to the next wrapper after each

transmitted packet. As in HIBI, the bridge components are implemented by con-
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necting two wrappers together and the bus signal resolution is implemented with an

OR-based structure as shown in Fig 46(a). In the hierarchical bus, the problems in-

herent in long signal wires are solved by grouping only a limited number of agents,

in this case four, in each bus segment. Therefore, single bus and hierarchical bus

topologies are, in this case, the same for a system with 4 agents.

8.3 Packet-switched mesh

Fig 46(b) depicts a packet-switched 2-dimensional 4-way mesh used in this thesis.

The processing elements are connected to an array where router elements (ry,x) handle

the storing and forwarding of the data. A router comprises of a control unit taking

care of switching and routing, and a FIFO buffer for each direction (North, East,

South, West, and two for PE). Note that West FIFO can actually be removed from the

highlighted router that resides on the mesh boundary. Removing such unnecessary

FIFOs clearly reduces the mesh area: from 9% (64 routers) up to 49% (4 routers).

Routers implement a simple dimension-order routing scheme where the transfers are

first directed to the correct row and then to the requested column. This scheme uses

the minimal path but does not allow certain turns and, hence, avoids deadlocks [51].

8.4 HERMES mesh

HERMES is a mesh-based NoC presented in [169] and its source codes are publicly

available [54]. There are only minor differences with reference mesh, for example,

a couple of adaptive routing algorithms have been implemented and crossing a link

takes two clock cycles due to handshaking. However, the utilized test environment

requires that all data arrives in-order and, therefore, only the deterministic XY-routing

is utilized here. The interface is different to other utilized networks as the HERMES

router pulls the data at the sender side. The compatibility was achieved by adding

extra FIFO to routers inputs. Its area is not considered in the results. Furthermore,

the VHDL codes were somewhat modified in order to allow synthesis and few bugs

were also corrected.
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8.5 Packet-switched ring and octagon

The router design is very similar in ring, mesh, and octagon topologies, only the num-

ber of ports and routing algorithm changes. The octagon routers and ring bridges have

4 bidirectional ports whereas octagon bridges have 5 ports. This reference octagon

was inspired by [107] but may differ in some details. For example, only packet-

switching is supported.

8.6 Circuit and packet-switched crossbar

Crossbar network was implemented in several configurations. Three switching schemes

are supported: circuit, store-and-forward, and wormhole. Furthermore, two arbi-

tration styles are supported. The on-going transfers are handled similarly in both

schemes and the difference is related only the initiation of new transfers. Sequential

arbitration checks one input per cycle for new transfers. This increases latency but

minimizes area.

Parallel arbitration, on the other hand, checks all the inputs every cycle. The latency

decreases but area increases. In all configurations, the switch matrix is implemented

with multiplexers to allow easy synthesis with various technologies.
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9. COMPARISON OF NOC IMPLEMENTATION RESULTS

This chapter presents implementation results of NoCs. The results from literature are

presented first and then from reference NoCs. The studied properties include silicon

area, operating frequency, routing latency, and power consumption.

9.1 Implementation results from literature

Table 18 lists examples of reported implementation results for NoCs [P10]. FPGA

results are omitted for brevity. The results are given per router or wrapper, but their

number in the full network depends on the topology. The results are sorted according

to processing technology 1, topology, and then alphabetically.

Table 18 includes also results for networks that are used as reference in the studies

(marked with prefix Ref.).

9.1.1 Router parameters

For a given topology, the area is mainly defined by the flit width and the buffer size.

The flit width refers here to the data payload alone and the control signals are ex-

cluded. The most common width is 32 bits which is significantly smaller than 256

bits assumed in [52]. Few approaches use wide flits, for example 96 bits [207], 128

bits [163], and 256 bits [40]. Note that the flits are used for flow control (reserving

buffers and links) whereas the phit (physical digit) denotes the number of parallel

wires between the routers. However, they have the same width in most cases.

The reported buffer depths range from 1 flit to 30 flits but, unfortunately, all sources

do not document the buffer sizes. However, several sources report buffers taking 50-

90% of the router area and major part of the power consumption, see for example

1 Note that some feature sizes are grouped together, for example 90 nm and 100 nm.
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Table 18. Implementation result examples of NoC routers [P10].
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[110, 144, 223]. Buffers are usually constructed from flip-flops but using SRAM is

also viable, especially on FPGAs. Special FIFO design can offer clear area savings

[207].

When specified, the buffer size is listed as a product of number of ports, virtual

channels per port and depth of a buffer in flits. In other words ports ·VC · f lits

, average being 5 x 3 x 6 flits per router. The number of ports is defined by the

topology, mesh being the most popular (5 ports: PE, North, East, south, and West)
2. Circuit-switched proposals are often called “bufferless” but 1-flit buffers at each

output are assumed for them.

Multiple virtual channels (VCs) may be associated with each physical port. Each VC

has a separate buffer which reduces blocking and hence improves performance. They

are needed by certain routing algorithms to ensure correct operation without dead-

lock. Virtual channels are omitted in most current implementations. However, Mango

supports 8 VCs [25] and circuit-switched SDM up to 32 VCs per port [148]. Virtual

channels are necessary in adaptive routing schemes to avoid deadlocks. Higher VC

count also increases performance up to 4-8 VCs/port [190].

9.1.2 Minimum latency

The minimum header latency induced by a router is given in column Min. lat., in

clock cycles and/or nanoseconds. The shown values are for the optimum case without

contention. Once the header has been forwarded, the payload is transmitted (usually)

at the rate of one phit per clock cycle.

Latency depends on the level of pipelining being about 5 clock cycles on average

but details are not usually available. A basic 5-cycle router pipeline has the follow-

ing stages: input buffering, virtual channel handling, routing, output arbitration, and

switching. Detailed analysis of router pipelining is presented in [193].

A novel design of router allows single-cycle latency [172] and a look-ahead mecha-

nism that performs routing decision for the next router is presented in [40]. SoCBus

[219] reports a 6-cycle latency for circuit-setup whereas the latency for data trans-

fer is most likely one cycle. A combined latency of 10 cycles for the two network

2 Reference mesh on the bottom has two buffers for PE, one for tx and the other for rx.
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interfaces (sending and receiving ends) was reported in [22]. The latency of Aethe-

real NI is 4− 10 cycles whereas SW implementation of packetization takes nearly

50 cycles [201]. In [141], both NI and GALS interface introduce a double latency

compared to a single router (12 ns vs. 6 ns). According to [4], initiating the DMA

send operation in the Cell Broadband Engine takes about 53−65 processor’s cycles

in the best case and over 90 cycles in the worst case. The reported HW latencies are

low enough in author’s opinion, especially when the overheads regarding the middle-

ware and network stack are included. Minimizing the latency and memory overhead

of micronetwork stack that still enables simple reuse is an open research problem.

9.1.3 Area

The router area is given in mm2 or kilogates. These values are meant only for coarse-

level comparison since the router parameters or inclusion/exclusion of wiring area in

results are not always stated. This is rather counterintuitive to note because the area

is the most often reported metric (cf. Tables 2 - 5).

The reported gate count per router is around 18 kilogates on average, which is reason-

ably low for large MPSoCs. Reported average area at 130 nm technology is 0.14mm2.

Circuit-switching allows even smaller routers due to absence of buffers, see for exam-

ple [148,151,250]. Sylvester and Keutzer [232] have estimated PEs with complexity

of about 50−100 kilogates will allow dependable design and verification also in the

future. Hence, an average router (15− 18 kilogates) would impose a notable over-

head in chip area, roughly 15−36% even without NIs. Area overheads in the range

9−45% were reported in [190]. The overhead gets larger if separate wiring channels

are reserved for the signals between the routers. Hence, NoC area optimization is

encouraged when NoCs are used with modest-sized IPs.

Network interface (NI) handles the packetization, and possibly re-ordering or retrans-

missions. Details about the needed network interface are too often omitted. However,

interface may double the required silicon area, as in [201] and [207]. In [141], the

sum of router and the associated network and GALS interfaces, is 19+10+12 = 41

kilogates per NoC terminal.

Some sources, for example [52, 132, 172, 236], assume quite large blocks to be con-

nected via NoC, for example 1− 9mm2, which would clearly diminish the relative
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area overhead. For example, TeraFLOPS has 3 mm2 tiles and 53-kilogate routers ac-

count about 17% of the transistors. Large tiles consist of few hundred kilogates,

which is large enough to necessitate a local network, for example bus (for area-

optimization) or crossbar/point-to-point (performance optimization). This is a natural

spot for the hierarchical NoCs.

9.1.4 Operating frequency

The next column shows the reported operating frequencies. Similar to the area,

wiring has notable impact on the frequency in deep sub-micron technologies. The

results are for the router only assuming that the link delays do not affect. Few NoCs

are asynchronous [18, 25, 63, 141, 153, 210, 252]. Most NoCs use synchronous com-

ponents that may be asynchronous with respect to each other (globally asynchronous,

locally synchronous).

The average frequency is about 600 MHz for 130 nm technology which seems ad-

equate for cost-optimized, medium-performance devices. However, few very fast

NoCs [148, 250] increase to the average value notably.

There are great differences between the fastest and the slowest results; over 11x with

130 nm and 6x with 180 nm technology. An order of magnitude difference is so large

that one cannot assume anything about the NoC’s performance unless it is explicitly

given.

The last column shows the detail level. Most implementation results are obtained

from synthesis tool but good results are obtained also in real silicon implementations:

1.6 GHz for Slim-Spider at 180 nm [144], 1.35 GHz for Nexus at 130 nm [153], and

astonishing 4.27−5.67 GHz for TeraFLOPS at 65 nm.

9.1.5 Router power

Power consumption is omitted from the Table 18 since it is not a “static” metric in the

same sense as the area or maximum frequency. Hence, large variations in reported

power results are apparent. Leakage power is proportional to area but dynamic power

is related to the sustainable traffic rate of a NoC and hence application-dependent3 .

3 Leakage is also application-dependent if power supply gating is applied.
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Furthermore, the power depends on the used wire model and required wire length

which both require knowledge about the layout.

Further analysis of power consumption in NoCs can be found, for example, in [14,

22, 140, 142, 142, 144, 171, 194, 199, 236, 239, 253, 255]. Table 19 summarizes few

studies regarding the power consumption of NoCs. Table shows the proportion of

routers and links from the NoCs power, their system-level impact, and proportion

between dynamic and static power consumption. Wires are sometimes predicted to

become very power-hungry, e.g. [52], but the quantitative analyses in the table do

not fully support that claim. At least in multi-hop topologies, the wires account for

roughly 20− 30% of the network power. Ye et al. [255], note that storing a packet

into a buffer consumes far more energy than transmitting it on interconnect wires on

180 nm technology. Futhermore, buffer power increases with network throughput

due to contention.

The impact of static power consumption rises with shrinking feature size, from 2%

to 18% when moving from 180 nm to 90 nm and below. However, Pullini et al. have

analyzed power consumption of NoC assuming 65 nm processing technology and

nominal operating conditions [199]. In their experiment leakage power contributed

only negligible 0.46%−2.42% of the switch power

In [8], mesh has over 5x power (377 mW vs. 72 m W ) compared to multi-layer AMBA

bus but at the same time runtime is 10−15% shorter. Consequently, mesh consumes

more energy in this case. However, the total energy of the system depends also on

the PEs: with high-power PEs, the time saving may reduce the total energy as well.

Hence, differences between networks appear larger when considered in isolation than

as part of the whole system. Either way, to minimize dynamic power, the lowest

frequency that meets the application demands is sought. It may be set at runtime

as the computational/communication load varies. This is very efficient for power

reduction when combined with supply voltage scaling. Furthermore, estimating and

lowering frequency prior to synthesis avoids over-design, for example large signal

drivers. In addition, low-leakage logic gates can be opted with less stringent delay

constraints.
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Table 19. Relative power consumption in NoCs
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9.2 Implementation results of studied networks

9.2.1 Reference networks

Table 20 shows the synthesis results of the reference networks routers4. In addition,

there are results for a network interface, DMA controller, and crossbar with 4 and 16

terminals. The network components are described in Section 8 and HIBI’s result will

be discussed in more detail in the following Section.

Reference buses support hierarchical structures and results are for one wrapper. The

reference octagon is based on [107] but uses packet switching only. HIBI and bidi-

rectional ring are the smallest since they have least ports (= buffers). The reference

mesh and Hermes are the largest. Note that all others than HIBI and circuit-switched

crossbar require an NI, the area of which equals one average router.

The DMA controller can be used with all of these networks but it is not mandatory.

In this thesis, DMA is commonly included to all CPU-subsystems but not used with

HW accelerators. It does not have much buffering but the area depends heavily on

the number of reception channels (marked as VC in table). Each channel requires

storage for incoming address, address to local memory, expected data amount, and a

counter for the received data amount.

The relative areas of 16-terminal reference NoCs are shown in Fig. 47. Three val-

ues are shown, depending on whether the network interface and DMA controller are

included. Values in each data set are scaled so that the smallest has an area of 1.0.

Hence, one should compare NoC within one data set and not across the sets. Note that

ratios between NoCs change clearly between the sets. This happens especially when

the NI can be omitted: HIBI and circuit-switched crossbar are among the smallest

in all cases. Hence, it is important to clearly state how additional logic (e.g. NI or

DMA) belongs to the compared “network”.

All components were synthesized targeting 400 MHz frequency and all meet that

limit except the 16-node crossbar. Furthermore, the area of the crossbars grows fast:

increasing the number of terminals by 4x (from 4 to 16), the logic area increases

by 6.4− 8.3x, depending on the depths of the FIFO buffers. The reason is that the

area of the switch matrix grows quadratically and the FIFO area linearly. Hence, a

4 Some results are copied from Table 18 to simplify comparison.
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Table 20. Implementation results of reference NoCs.
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crossbar can be used in small configurations and this limits also the degree of network

routers since they include a crossbar. This phenomenon is illustrated in Fig. 48 using

automatic trend line fitting. Similarly, it was found in [199] that routers should have

at most 10 or 14 ports.

The different versions of the crossbar (serial vs. parallel arbitration, packet-switched

vs. circuit-switched) resulted in practically identical synthesis results. However, the

latency varies: serial arbitration takes one cycle more than parallel and store-and-

forward has overhead relative to the packet length. Circuit-switched and packet-

switched crossbars have equal latency but the latter needs a network interface which
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has its own latency overhead.

The reference NoCs imply a 4-cycle latency overhead in most cases and Hermes takes

10 cycles. The packet-switched bus and NI are implemented only in a store-and-

forward manner which means that the latency depends on the length of the packet.

DMA is the fastest as it causes only one cycle overhead.

9.2.2 HIBI version 2

HIBI v.2 was implemented with synthesizable RTL VHDL and SystemC. In addition,

the transaction-level SystemC model has an embedded performance monitor which

is used to analyze and tune the architecture to better fit the application. It also of-

fers a speedup of 20x-75x compared to RTL VHDL simulation and 9x-30x speedup

compared to RTL SystemC.

The HIBI v.2 wrapper was synthesized using a 0.18 µm CMOS ASIC technology and

Altera FPGA. No scan chains were synthesized. The ASIC results do not include the

wiring or place-and-route information. Nominal silicon conditions were used. Areas

for different wrapper configurations with four different data widths are shown in Fig

49(a) and 49(b). White bars (denoted with ROM) show cases where all configuration

parameters are fixed at synthesis time. Darker color bars (RAM) show the overhead

of enabling runtime reconfiguration.

The first wrapper has 3-word buffers for transmitting and receiving but no separate

buffers for high priority data. The configuration memory has one page. The second

wrapper has also high priority buffers and buffers are also bigger than in the first one.

The third wrapper has the biggest buffers of the three and includes 2-page config-

uration memory. On FPGA, wrapper with ROM-type memory results in relatively

smaller area than in ASIC. This is most likely due to different synthesis tool that can

better optimize the logic with constant input values. The maximum frequency on

ASIC is in the range of 245 to 420 MHz depending on the selected configuration. On

Stratix II FPGA, frequency varies from 81 MHz to 120 MHz. For comparison, soft

Nios processor developed by Altera achieves about 120 MHz on the same FPGA.

In these syntheses, the configuration memories and FIFO buffers are implemented

with flip-flops to support soft IP core methodologies, which results in rather large

area. This is illustrated in Fig 49(c) for an eight-bit wrapper. In many cases, the
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FIFO buffers occupy more than half of the wrapper area. Still, the area of FIFO

buffers is smaller than in the first version of HIBI due to multiplexed address/data

lines.

The number of configuration pages, time slots, and the width of parameters can be pa-

rameterized according to the application to minimize the implementation area. Natu-

rally, having multiple pages results in a large implementation area. A way to reduce

the area is to restrict the configuration options by hardwiring certain values. Still, it is

possible to leave some parameters to be configured at runtime. For example, allowing

clock counter synchronization and the use of multiple hardwired configuration pages

might be a good compromise in many cases.

Fig 49(d) shows the effect of configuration memory parameters on the area of a sin-

gle page memory. The reading of configuration values is not always needed and this

feature can be disabled (re = 0) which saves area by roughly 15%. Even bigger sav-

ings are obtained by using hardwired memory (we = 0) that does not allow runtime

reconfiguration. When time slots are not used, the clock cycle counter and time slot

logic become obsolete and area is reduced, see Fig 43. Having more than one time

slot has only minor effect when the slot parameters are hardwired.

9.3 Reference NoCs relative to literature

The NoCs implemented for this thesis appear to be “representative” NoCs when their

properties and implementation results are compared to those from literature. Hence,

using them for performance comparison is justified.
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10. COMPARISON OF NOC PERFORMANCE RESULTS

This Chapter compares the performance of NoCs. First, published results from liter-

ature are reviewed. Second, implemented reference NoCs are compared using syn-

thetic traffic in simulation. The impact of HIBI parameter selection is studied in

more detail. Third, simulation-based evaluation of a video encoder application is

presented. Finally, findings obtained from HIBI in FPGA prototypes are summarized

briefly.

10.1 Performance results from literature

Comparison results from literature are summarized in Table 21 with emphasis on

runtime comparisons. The compared topologies are listed first, followed by citation

information, and then the runtime ratio when available. When the ratio is < 1.0,

NoC1 is faster and vice versa. For example, a runtime ratio 2x means that NoC2

offers two-fold speedup because NoC1 takes twice the runtime compared to NoC2.

The last columns show the ratio of other studied metrics and reference to the source.

Sometimes, the results from the literature may sound contradicting at first but it

must be noted that the performance depends on the application. The various stud-

ies have simply utilized test cases with different characteristics and requirements.

There are also large differences between various configurations of the same topology.

For example, circuit-switched mesh outperforms packet-switched in [151](1.1− 2x

speedup) and in [38] (13x energy reduction, 6x speedup). On contrary, packet-

switching offers 2.5− 3.5x speedup in [121]. For buses, different versions can have

1.4−3x and 9.5x difference in runtime [P8] [81].

Mesh and hierarchical bus (hier.bus) achieve shorter runtimes than single bus in most

cases. However, both single and hierarchical buses require smaller areas than mesh.

Crossbar is also superior to bus but suffers from unacceptable area in large systems.
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Table 21. Reported differences between NoCs [P11]

Runtime ratio Other ratio

#1 #2 #1 /#2 #1 /#2

1 bus mesh Bolotin [28] 1x N
2.5
area, N

0.5
 power

2 Kreutz [121] 0.1-0.5x -

3 Liang [151] 1.1 - 3x -

4 Shen [222] 1.2x 1.4x energy

5 Hilton [81] 2x 0.8x area

6 Thid [234] 0.3-0.9x,  3-6x -

7 Salminen [P8] 1-50x (11x avg) 0.3x area

8 bus hier.bus Bolotin [28] 1x Nx area, 1x power

9 Liang [151] 0.9x -

10 Ryu [211] 1.4-2.4x 0.3-1.3x area

11 Salminen [P8] 1-30x (10x avg) 0.7x area

12 Lahiri [134] - 0.3-0.6x TP

13 bus crossbar Pimentel [196] 1.5x -

14 Xu [253] 1.6x 1x area

15 Loghi [155] 1.5-2.5x -

16 Lahtinen [139] 1.1-4x 0.5x area

17 bus ring Lahiri [134] - 1.5-3x TP

18 Liljeberg [152] - 1.3-1.9x TP

19 bus fat-tree Adriahantenaina [1] - 0.2x sat.point

20 multibus Angiolini [7] 4-7x -

21 split bus Lu, R. [156] - 0.2x BW, 5.5x lat.

22 octagon Dumitrascu [58] 1x 3x lat.

23 p2p Hu [88] - 4x energy

24 tree Kreutz [121] 0.3x -

25 mesh ext.mesh Ogras [181] 1.5x 0.9x area, 1.5x energy

26 hier.bus Liang [151] 0.2-0.9x -

27 hier.mesh Zhang [259] - 1.3-1.9x energy

28 p2p Lee, H.G. [142] 1x 0.6x power

29 tree Kreutz [121] 0.9x -

30 mesh crossbar Bartic [17] - 0.8x area/BW

31 Lee, K. [144] - 1x area, 2x energy

32 mesh multilayer-bus Angiolini [7] 0.9x 1.9x area (NoC)

33 Angiolini [7] 0.9x 1.3x area (chip)

34 Zhang [259] - 0.1-0.4x energy

35 Lee, K. [144] - 1.5-3x area

36 mesh fat-tree Vassiliadis [238] 4-16x -

37 Kreutz [120] - 0.9x lat., 1.2x energy

38 Bartic [17] - 1x area/BW

39 hier.bus ring Lahiri [134] - 1x TP

40 Liljeberg [152] - 1x TP

41 crossbar fat-tree Bartic [17] - 1.3x area/BW

42 tree fat-tree Vassiliadis [238] 0.5-1.8x 1x area

N =number of NoC terminals, used for asymptotic cost functions

BW =bandwidth

TP =throughput

Compared NoCs
# Author Ref.
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Hierarchical bus has quite similar performance with ring in [134, 152] and mesh in

[P8]. On the other hand, 2-D mesh is outperformed by hierarchical mesh [259], mesh

with express links [181], custom [22], and fat-tree [238]. In few cases, a single bus

is actually faster than hierarchical bus, 0.9x runtime [151], or mesh 0.1−0.5x [121]

and 0.3−0.9x runtime [234].

The simulated speedups are clearly smaller than expected by analytical studies or by

those concentrating purely on load-latency curves. However, the speedup depends on

how runtime is measured; in clock cycles or in seconds. Using cycle counts favors

buses and crossbars that have limited operating frequency. Fat-tree also exhibits few

links near the root whose length and delay depend on the system size.

Multi-hop topologies offer substantially larger maximum bandwidth than shared bus,

but also higher average latency with small load [1, 190]. Note that a network with

increased parallelism does not translate directly to shorter runtime. Octagon network

outperforms single bus clearly in terms of latency [107] when synthetic traffic is

utilized. For video encoding [58] bus and octagon obtain identical runtime despite

the fact that bus exhibits larger and more varying latency. Difference in encoding

time only 0.12% although bus has up to 3x latency compared to octagon.

As another example, a 5x5 crossbar enables 5 parallel transfers and gives 50% in-

crease in application performance compared to single bus [196]. This study empha-

sizes an important point: the increased parallelism in the network allows improve-

ments via allocating more resources (memory banks in this case). Parallel memories

are unlikely to produce any speedup with the bus. Similarly, the crossbar is unlikely

to improve the performance when utilized with one centralized memory. Hence, the

resource allocation and optimal network are tightly coupled to each other.

10.2 Performance evaluation of reference NoCs

The reference NoCs are compared briefly using random traffic. The spatial distri-

bution is either uniform or localized. The other parameters are the same in both

tests. The network size is fixed to 16 terminals, flits are 4 bytes wide, average trans-

fer length is 6 words, burstiness parameter b = 0.6, NoC and transaction generator

use the same 100 MHz clock signal. Theoretical maximum offered load is hence

16 terminals ·4 Bytes/terminal ·100 MHz = 6400 MB/s.
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The buffer size is 2 flits in all NoCs except the packet-switched bus. It supports only

store-and-forwards routing and hence the buffer size is 9 flits (3-flit header and 6-flit

payload).

10.2.1 Spatially uniform random traffic

In the first test, the target is chosen randomly and all targets have a uniform probabil-

ity 1/(N − 1). The results are shown in Fig. 50 for 6-word transfers. The crossbars

have clearly the highest performance. Mesh is quite close to packet-switched cross-

bar that has sequential arbiter. Parallel arbitration in crossbar naturally improves

performance. Single HIBI, hierarchical HIBI, octagon, and Hermes obtain similar

throughputs although Hermes has higher latency than the others do. Packet-switched

buses are clearly the worst.

Hierarchical bus offers only minor benefit with spatially uniform traffic. Bridges ac-

tually degrade the performance with packet-switched bus - from 146 MB/s to 129

MB/s. The reason is that bridge does not get enough bandwidth from the target

segment causing the initiator to stall. Initiator keeps retrying the transfer until it suc-

ceeds and every trial takes few bus cycles, hence wasting the bandwidth. The original

packet-switched bus uses store-and-forward switching and sends only 1 packet in one

turn. That would give only 84MB/s throughput. The Fig. 50 has results for packet-

swithced bus with cut-through and sending multiple packets in a row is allowed.

The phenomenon occurs also in HIBI but it is less severe. The single and hierarchical

HIBI obtain similar bandwidth when round-robin arbitration is used. Fig. 50 shows

the results with DAA and hierarchy brings clear benefit to HIBI. In addition, there is

a peculiar peak in the throughput of hierarchical buses. The throughput drops a little

from the maximum value, but remains above single bus, when the load increased

beyond optimum. Such networks are called unstable [51].

10.2.2 Spatially localized random traffic

Localized traffic is modeled by defining clusters and probabilities so that a certain

fraction ploc of traffic goes to a certain cluster. Two ways were examined for defining

the cluster cl of each source. The localization is network agnostic; it is calculated
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Fig. 50. Latency and throughput as function of offered load. Average transfer length is 6

payload words. Spatially uniform traffic between 16 agents.

from the terminal id i ∈ [0,Nag]. Hence, routers in a cluster are necessarily neighbors

in these topologies.

First, the cluster of sender i is defined as

cl = ⌊ i

Nagents_per_cluster

⌋. (19)

Another choice is to define as many clusters as their are agents. This creates overlap-
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(a) Localized traffic. Half of the sent data localized to the nearest 3 targets.
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(b) Hot spot traffic. Half of the all traffic goes to terminal 0.

Fig. 51. Offered load vs. throughput with spatially localized traffic. There are 16 agents and

transfer length is 6 words on average.

ping “sliding” clusters so that

cl = i (20)

and i is in the center of the cluster. To retain appropriate cluster size, the cluster

bounds are clipped in cases where they would point outside the list of terminals.

Setting Nagents_per_cluster = 4 means that in the first case agents 0−3 belong to cluster

0 agents 4− 7 to cluster 1 and so on. In the second case, all first three clusters have

agents 0− 3, fourth one has 1− 4, fifth 2− 5 and so on. The results for locality
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probability ploc = 50% and sliding cluster scheme are shown in Fig. 51. The other

cluster selection method exhibits quite similar behavior. However, that localization

scheme causes less traffic across the bridge in hierarchical bus and hence about 10%

higher throughput. In mesh, the benefit is about 3%.

All versions of single bus and crossbar have the same performance regardless of

locality but the other topologies benefit from the increased locality.

10.2.3 Hot spot random traffic

An extreme case of localised traffic creates a hot spot; much traffic flows into (out of)

single network node. This experiment sets agent 0 as hot spot target and the others

send half of their traffic to it. Agent 0 sends uniformly to all others.

Fig. 51(b) shows the results. Four distinct categories can be identified. First, Hermes

and packet-switched bus (both single and hierarchical) saturate at 115− 150 MB/s.

Second, hierarchical octagon saturates at 220 MB/s. Third and fourth, at 300− 350

MB/s all the rest except circuit-switched crossbar which reaches over 500 MB/s.

Table 22 summarizes the throughputs from the three experiments. Localized traffic

near the source always improves the throughput or has no effect (excluding the noise

in measurements). A single hot spot node, on the other hand, severely limits the

network performance. For example reference mesh, crossbars, and Hermes obtain

much lower throughput; only about one third compared to uniform traffic. However,

single bus topology is not affected and hierarchical bus only a little. Consequently,

the differences between studied NoC become smaller. Similar observation has been

made by Walter et al. [241]. Unfortunately, many contemporary MPSoCs have only

one external memory interface [249] which is susceptible to create a hot spot.

10.2.4 Relative cost of reference NoCs

Throughput is only one criterion in NoC selection and it must be combined with

others. As an example, Table 23 shows the relative throughputs, areas, and their

combination. It also emphasizes the fact that relative cost depends on the traffic

scenario.
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Table 22. The impact of spatial distribution of traffic to the NoC’s throughput. Minimum and

maximum values in each column are shown in bold.

uni loc hot loc/uni hot/uni loc hot

bus_hndshk_hier 129 165 129 1.28 1.00 ++ 0

bus_hndshk_single 146 145 146 0.99 1.00 0 0

hermes 329 368 117 1.12 0.36 + ---

hibi_v2 333 334 334 1.00 1.00 0 0

hibi_v2_hier 437 537 411 1.23 0.94 ++ -

mesh_2d_cut 1 018 1 060 377 1.04 0.37 + ---

octagon_worm 364 511 231 1.40 0.63 +++ --

xbar_par_circ 1 507 1 516 544 1.01 0.36 0 ---

xbar_par_worm 1 169 1 184 351 1.01 0.30 0 ---

xbar_ser_worm 934 956 339 1.02 0.36 0 ---

min 129 145 117 0.99 0.30 n/a n/a

avg 636 678 298 1.11 0.63 n/a n/a

max 1 507 1 516 544 1.40 1.00 n/a n/a

NoC
Max. throughput [MB/s] Ratio Diff. from uniform

Table 23. Summary of throughputs and relative costs with three traffic classes.

uni loc hot uni loc hot

bus_hndshk_hier 1.00 1.14 1.10 1.50 1.00 1.05 1.37

bus_hndshk_single 1.13 1.00 1.25 1.39 1.22 1.00 1.67

hermes 2.55 2.53 1.00 1.86 2.06 1.89 1.00

hibi_v2 2.58 2.30 2.85 1.00 3.87 3.19 5.30

hibi_v2_hier 3.39 3.70 3.51 1.56 3.26 3.29 4.19

mesh_2d_cut 7.89 7.31 3.22 2.11 5.59 4.80 2.83

octagon_worm 2.82 3.52 1.97 1.83 2.32 2.68 2.01

xbar_par_circ 11.68 10.46 4.65 1.05 16.66 13.80 8.22

xbar_par_worm 9.06 8.17 3.00 1.48 9.18 7.65 3.76

xbar_ser_worm 7.24 6.59 2.90 1.48 7.33 6.18 3.63

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00

avg 4.93 4.67 2.55 1.53 5.25 4.55 3.40

max 11.68 10.46 4.65 2.11 16.66 13.80 8.22

Relative throughput/area [no unit]Relative 

area
NoC

Relative max. throughput [no unit]

Crossbars offers clearly the highest throughput and (RTL synthesis) areas remain

quite modest in 16-node configuration. However, the long wires and arbitration will

limit the maximum frequency in larger configuration, which will also be very area

consuming. Single bus saturates quickly but offers a small latency for very small

traffic load (1-3% per agent). Hierarchical bus practically doubles the accepted traf-

fic with uniform traffic but the real gain is achieved when transfers are localized.

Reference octagon is quite close to hierarchical bus. Reference mesh exhibits the

larger latency (partly due to network interface) than buses for small load but toler-

ates the largest traffic. However, Hermes - which is also a mesh - has rather poor

performance.
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10.3 Comparison of hierarchical bus and 2-D mesh

Another study was performed with considering the dependencies between transfers

[P8], i.e. with Transaction Generator. The results were extended for this thesis with a

smaller set of experiments with reference ring, octagon, and crossbar once they were

implemented.

10.3.1 Test Setup

The comparison is done with synthetic benchmarks that are generated to represent

characteristic application properties, such as sequential/parallel behavior, communi-

cation/computation intensiveness, and spatial traffic distribution. The test cases are

executed with a VHDL version of Transaction Generator [P2]. Each task can be ei-

ther waiting for data, reading data, processing, writing data, or finished. TG notably

accelerates (up to 40x) the simulation compared to HW/SW co-simulation with mul-

tiple instruction set simulators. At the same time, the timing error is less than 10%

with respect to real application.

Since the actual sizes of PEs and wire length are unknown, it is impossible to de-

termine the maximum operating frequencies for networks accurately. For simplicity,

all networks have the same operating frequency in the simulations, meaning that the

runtimes are measured in clock cycles. Considering also the operating frequency af-

fects the single bus the most, as its maximum wire length increases with the system

size.

The communication networks were synthesized using a 180 nm CMOS technology.

The packet payload size was set to eight 32-bit words. Packets have a three-word

header and eight-word payload data and hence the required buffer size is (3+ 8) ·32

bits in all the internal network buffers. The header includes target’s NoC address,

data amount, and address fields. In contrast, HIBI requires a one-word header for

address and does not utilize packets. In packet-switched bus, the ownership is passed

to the next wrapper after each transmitted packet. In HIBI, the ownership changes

when a pre-defined number of words have been transferred (40 words in this case) or

when the sender runs out of data.
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start process

computation process

mapping to agent

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Fig. 52. Test case types used in comparison, N = 8.

Table 24. The number of trigger events in test cases as they are scaled with the number of

agents (N).

4 16 36 64 N

1 1 1 1 1 1

2 2 8 18 32 N/2

3 1 4 9 16 N/4

4 4 16 36 64 N

5 8 29 64 113 (7N/4)+1

Case
Number of start processes (S )

10.3.2 Test Cases

Fig 52 shows the used task graphs for 8 agents. The white nodes depict computation

tasks that can have an arbitrary processing time of P clock cycles. The edges repre-

sent data transmissions with length of D words. Computation at a node cannot start

until at least one of the arriving transfers has completed (transfer dependence). The

trigger events, marked with black nodes, have P = 1 and D = 1 and are executed only

once to trigger computation tasks. By changing P and D, the application model in TG

can be made more computation or communication intensive. Both P and D can be

varied randomly within a user-defined range. All these benchmarks are scaled with

N so that there is one computation process and variable number of trigger events per

agent. The dashed lines describe a simple 1-to-1 mapping of the task graph onto eight

agents. However, the task graphs are totally independent of the hardware architecture

and other mappings can be easily explored.

The first benchmark, case 1 (Fig 52(a)), resembles a sequential data flow application

having only one trigger event. Case 2 (Fig 52(b)) is partly sequential and partly par-

allel in nature having N/2 trigger events. Case 3 (Fig 52(c)) presents an application

where the transfers are sequential as in case 1 but within groups of four tasks so the
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communication is localized. Case 4 (Fig 52(d)) has tasks in a group of four trans-

mitting data in parallel to each other. Cases 2 and 4 can also be thought as pipelined

versions of cases 1 and 3, respectively. These cases do not include divergence (1 task

sends to multiple tasks) or convergence (vice versa). Hence topologies that handle

locality well will have an advantage.

In addition, case 5 combines the cases 1-4 into one simulation to represent heteroge-

neous behavior. In case 5, cases 1-4 are run together so that each agent executes one

computation task from each case. For example, all cases have start and computation

tasks grouped together in the top left corner (cf. Fig 52(a)-52(d)) and they all are

mapped to first agent in case 5. The next computation task to the right is mapped to

agent 2 and so on. The mutual order of the subcases is not specified. The number of

trigger events is shown in Table 24.

The mapping of PEs to NoC affects performance clearly in multi-hop topologies and

practically negligibly in a single shared bus. The PEs are numbered in the same order

as data flows in Fig. 52(a). In the hierarchical bus, a group of 4 consecutive PEs

always forms one segment hence exploiting the locality of the task graphs. In the

mesh, the PEs are placed according to data flow row-by-row always starting from the

top-left corner. The traffic is well localized but not optimally. The last connection in

cases 1 and 2 (one that closes the loop) travel all the way though the hierarchical bus

and mesh from corner to the opposite one.

10.3.3 Static Runtime Analysis

The total runtime of an application is a sum of computation time and communication

time. It can be estimated in a heuristic fashion for these graphs as

ttot =
∑Pi

min(N,S)
+

∑(Di · k)
min(N,L,S)

, [clock cycles] (21)

where

k =
payload + header + arbitration

payload
(22)

is an implementation specific factor that is explained later. The dividers in (21) define

the achievable parallelism. The parallelism of an application is defined here as the

maximum number of parallel transfers and active computation tasks, and it equals the
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number of trigger events (S) in these cases. If there are less agents (N) or communi-

cation links (L) than trigger events (S), the maximum parallelism of the application

cannot be achieved. Similarly, the maximum number of initiated transfers per clock

cycle cannot exceed the number of agents in any network. For example, case 1 is a

sequential application having only one trigger event and utilizes only one processor

or communication link at a time. Adding more communication links does not di-

rectly speed up the operation at all. However, the arbitration may get simpler (less

requestors per arbiter, smaller k) and can thereby reduce the communication time.

The factor k, caused by arbitration and the overhead from packet headers, is calcu-

lated with equation (22). It is defined as the number of clock cycles needed to transfer

one packet divided by the amount of transferred payload data words. Ideally, k would

be one. Packet and header sizes are expressed as multiples of the word size, because

one word can be transferred in one clock cycle. With distributed arbitration, each

agent in a bus segment has to wait whole round-robin iteration between consecutive

packets. However, there can be S agents active in each round, which reduces the

overall arbitration delay. In this study, the routing algorithm of a mesh simply checks

one input each clock cycle for new transfers, thus, on average 5/2 clock cycles are

needed for routing. The term arbitration is assumed to be (N − 1)/S for bus, 6 for

hierarchical bus (4 agents and 2 bridges per segment), and 2.5 for mesh. Estimate for

case 5 is a sum of individual estimates for cases 1-4. Still, (21) does not take transfer

dependencies into account and assumes a uniform, localized mapping.

10.3.4 Synthesis Results

The resulting network logic areas in kilogates are depicted in Table 25. The wiring

area is not taken into account. The difference is mainly due to buffers. HIBI has

5-word buffers but more complex control logic, and, hence its area is only about 13%

smaller than the area of simple, packet-switched bus (abbreviated as pkt). In mesh,

the control logic for cut-through switching is slightly more complex than in store-

and-forward. Both types of mesh omit the unnecessary buffers at network boundaries,

hence saving 9%−49% of area.

The relative sizes are shown for networks only and for the whole system assuming a

50-kilogate area for each processing element (PE). The overhead from network con-

sidering the total system size naturally decreases as the size of processing elements
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Table 25. Absolute logic area of the networks (in kilogates) and their relative areas. Area of

PE is assumed to be 50 kilogates.

4 16 36 64 network network+PEs

Single bus (pkt) 28.7 114.8 258.4 459.1 1.14 1.02

Single bus (HIBI) 25.2 100.4 225.8 401.4 1.00 1.00

Hier. bus (pkt) 28.7 158.1 373.5 675.2 1.51 1.06

Hier. bus (HIBI) 25.2 138.7 327.7 592.2 1.33 1.04

Mesh (st&fwd) 59.3 295.4 708.6 1 299.0 2.92 1.21

Mesh (cut) 59.8 297.7 714.1 1 309.1 2.94 1.22

Absolute logic area [kilogates] Relative area (on average)
Network

increases. The area results suggest that it is possible to use wider bus, e.g. 64-bit data

instead of 32-bit, and still have smaller area than with mesh. The impact of this will

be described later.

10.3.5 Simulation Results

In the following simulations, the processing time P varies from 16 to 1024 cycles and

the transfer length D varies from 16 to 1024 words. The extreme case P = 16,D =

1024 sets tight requirements for the communication network. This kind of commu-

nication intensive transfer patterns can be found, for example, in packet processing

inside an Internet router. In addition, such case appears when the processing ele-

ments operate with higher frequency than the network (processing time P refers to

clock cycles of the network in that case). The measured average runtimes for case

P = 16,D = 1024 are listed in Table 26. Times are given in thousands of cycles (kilo-

cycles). The shortest runtimes are shown in bold. Test cases were executed several

times, 30 times on average, for statistical reliability. All networks have the same data

width. The run-time of case 5 is defined by the slowest individual application, case

1, when applications 1-4 are run together.

In case 1, the poor result of the packet-switched single bus is due to inefficiency of the

utilized distributed round-robin arbitration during low levels of contention. HIBI, on

the other hand, can transfer more data in one turn and, hence, arbitration and address

transfers have less impact. Therefore, HIBI achieves the shortest execution time.

In test case 2, the differences between the networks are more apparent. The transfer

times of the single bus grows very fast with system (and application) size. On the
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Table 26. The runtimes in kilocycles for test cases with P = 16 cycles,D = 1024 words.

Network \ case 1 2 3 4 5 1 2 3 4 5

Single bus (pkt) 12.9 7.7 12.9 7.2 43.0 60.0 30.7 34.8 28.7 585.2

Single bus (HIBI) 6.5 4.4 6.5 5.0 24.9 23.6 18.5 18.9 19.1 257.7

Hier. bus (pkt) same as single bus(pkt) 55.0 11.3 14.5 7.3 110.5

Hier. bus (HIBI) same as single bus(HIBI) 20.4 8.9 4.9 5.3 97.1

Mesh (st&fwd) 15.6 7.8 15.6 3.9 43.0 62.4 7.8 15.6 3.9 115.9

Mesh (cut) 10.4 5.2 10.4 2.7 22.9 41.7 5.2 10.4 2.7 74.4

Network \ case 1 2 3 4 5 1 2 3 4 5

Single bus (pkt) 227.1 69.1 78.3 64.5 2 935.7 630.8 122.9 139.3 114.7 11 661.4

Single bus (HIBI) 71.9 31.9 42.7 38.6 1 242.2 176.2 67.1 74.9 91.4 3 607.7

Hier. bus (pkt) 120.0 11.5 14.5 7.3 266.4 211.1 11.5 14.5 7.3 494.3

Hier. bus (HIBI) 46.6 10.5 4.9 5.3 308.8 82.6 12.9 4.9 5.3 332.4

Mesh (st&fwd) 140.7 7.8 15.6 4.7 308.6 249.9 7.8 15.6 3.9 267.4

Mesh (cut) 93.8 5.2 10.4 4.3 209.8 167.0 5.2 10.4 2.7 196.1

4 agents 16 agents

36 agents 64 agents

Single bus (pkt) Hier bus (pkt) Mesh (st&fwd)
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Fig. 53. Estimated and simulated cycle counts for three networks.

other hand, the results for hierarchical bus and mesh are quite close to each other and

follow the results predicted by (21), which means that both networks are able to sys-

tematically exploit the inherent parallelism of the application. The same happens with

test cases 3, 4, and 5. For these test cases, a hierarchical, packet-switched bus offers

a comparable performance as 2-dimensional mesh with store-and-forward switch-

ing. However, HIBI outperforms the packet-switched bus and, similarly, cut-through

mesh outperforms store-and-forward switching. Thus, in addition to topology, the

switching policy has also a notable impact on the performance.

Fig 53 shows both the simulated cycle counts as well as those estimated using equa-

tion (21). Three networks out of six are shown for clarity. The shapes of the esti-



10.3. Comparison of hierarchical bus and 2-D mesh 173

mated and the measured performance curves match rather well, which implies that

equation (21) predicts the ratio between runtimes in many cases. However, in some

cases estimates are clearly inaccurate, e.g. case 2 with mesh. This is mainly due

to the implementation of TG, network contention, and inefficiencies in implemented

network protocols and packetization logic that were not included in equations. Other

than 1-to-1 mappings cause more contention and larger average hop counts and hence

bigger estimation errors are probable. Therefore, fast simulation-based approaches

for benchmarking are needed.

10.3.6 Relative Cost of the Networks

Fig 54(a) shows the area overhead versus average speedup curves for 36-agent net-

works. The speedup is estimated according to (21) and area according to the number

of buffers. Results are scaled so that both the smallest area and speedup are equal

to 1.0. The best approaches are in the top left corner. Hierarchical bus offers good

speedup over single bus with moderate area overhead, especially HIBI that scales

better than the packet-bus. Mesh offers biggest average speedup with largest area.

The choice between the mesh and the hierarchical bus is, therefore, a trade-off be-

tween area cost and performance. For comparison, let us define the architectural

performance as the inverse of the costs:

Per f ormance = cost−1 = (ttot
wt ·Atot)

−1 . (23)

The cost is defined as a product of runtime ttot and total system area Atot . System

area includes both the network and all the PEs (50 kilogates each, in this case). The

weighting exponent wt can be utilized to make the runtime less (wt < 1) or more

important (wt > 1) than the area. In these cases, smaller weights favor the hierarchical

bus and large ones favor the mesh. Fig 54(b) shows the measured performance of all

networks so that the best case is scaled to 1.0 and execution and area have equal

weights (wt = 1). Hierarchical HIBI and cut-through mesh offer the best trade-off. A

single bus is applicable only in sequential test case 1.

Fig. 55 shows cases where P = 64 cycles and D varies between 32 and 128 words.

Only the fastest networks, i.e. HIBI and cut-through mesh, are shown for clarity. The

differences between networks become more apparent as the data amount D increases.

Likewise, the network performance depends strongly on the application and system
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size. For example, HIBI is superior in cases 1 and 3 but mesh is better with cases

2 and 4, especially, with large number of agents and large data amount. In addition,

Fig. 55 shows the runtime of hierarchical HIBI when its data width is doubled. It is

measured by halving the amount of transferred data D in the simulation. As the data

width doubles, the area of HIBI increases 86% but it is still about 15% smaller than

mesh. At the same time, the runtime decreases in all test cases. The reduction varies

from 20% up to 50%, being smallest in sequential cases with small D. In addition,

hierarchical HIBI with wide links achieves the lowest cycle count in these cases. The

average (relative) cycle counts are 1.0 (hier. HIBI), 1.18 (mesh), and 0.67 (double

wide hier. HIBI).

10.3.7 Results with other networks

Similar test were run also for other networks. The results are shown in Fig. 56 and

Fig. 57 assuming processing time P = 16 cycles and data amount D = 16 words. The

results include also mesh as well as single and hierarchical HIBI v.2 and pkt. bus as

in previous studies. Due to vast number of combinations, other values of D and P

are omitted here. Moreover, only few choices of network parameters are selected, for

example arbitration style (serial or parallel) and switching (store-and-forward, cut-
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through, or wormhole). Other parameters, such as buffers sizes, packet lengths, and

frequencies are fixed.

A couple of straightforward conclusions can be drawn from the figures. Packet-

switching is unnatural choice for single-hop topologies, such as bus or crossbar. It

increases the runtime although it might provide benefits regarding error detection

(which is not covered in this Thesis).

The differences between multi-hop topologies are rather small with these test cases.

Crossbar is naturally the fastest network when cycle counts are measured but large

area restricts it usage, as noted earlier. Reference mesh clearly outperforms Hermes

mesh. This justifies the previous comparison as the reference mesh can be considered

representative implementation for that topology.

However, differences due to network settings other than topology are notable, for ex-

ample up to 2x with crossbar. With packet-switched network cut-through (or worm-

hole) should be chosen instead of store-and-forward switching. Following that, hi-

erarchical ring and octagon should be re-implemented with cut-through and parallel

output port arbitration as well.

10.3.8 Impact of task mapping

So far the mapping has been very straightforward: neighboring tasks are mapped

to neighboring PEs. This results in very localized traffic patterns, which benefits

especially the hierarchical bus. However, when tasks are mapped further apart, traffic

is less localized and performance will be different.

Fig. 58 shows the results for three cases. The mapping is varied with so called stride

parameter so that consecutive tasks i and i+ 1 are mapped to PEs p and p + stride.

The original mapping has stride = 1. We notice that single bus and mesh are not

affected much when stride varies. On the other hand, the runtime in hierarchical bus

is very sensitive to mapping. For example, the differences between minimum and

maximum in case 3 are +16.8% for single HIBI, +95.3% for hierarchical bus, and

+8.6% for mesh.
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(c) Case 3

Fig. 56. The relative runtimes with test cases 1-3. Processing time P=16 cycles and data

amount D=16 words
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(b) Case 5

16 agents, rel. runtimes (avg for 5 cases), P=16, D=16
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(c) Average of cases 1-5

Fig. 57. The relative runtimes with test cases 4 and 5 and average of all five. Processing time

P=16 cycles and data amount D=16 words
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Fig. 58. The runtimes for test cases 1, 2 and 3 with varying stride value in mapping of tasks.

Processing time P=16 cycles and data amount D=16 words
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10.3.9 Discussion

Application dependence is a factor that cannot be disregarded in communication-

based system design. Results with these test cases show that theoretical performance

derived from the aggregate bandwidth of the network does not reflect the application

runtime linearly. The presented formal equation provides reasonably accurate esti-

mate in some cases but not in general. However, more advanced estimates consider-

ing router latency and congestion would require rather complex equations. Therefore,

fast, cycle-accurate simulation is preferred.

Many contemporary analyzes depict bus as poorly fitting to large systems because

only the single bus is used as a reference. The presented hierarchical bus scales quite

easily to large systems and provides a good area-performance trade-off while retain-

ing many of the advantageous features of simpler bus arrangements. The hierarchical

bus exhibits good runtime results with relatively small implementation area. The an-

alyzed 2-dimensional mesh network provides higher performance but needs larger

area. The architectural performance, defined as a product of area and runtime, favors

the use of hierarchical bus topology.

10.4 Performance evaluation of HIBI with synthetic traffic

For comparison, HIBI v.2 protocol was tested with a test case similar to the one

described by Saastamoinen et al. [96] (pp. 193-213). Furthermore, several synthetic

test applications were developed to test and measure different NoCs and also Koski

design flow as well. The test cases are parameterizable allowing the designer to easily

create cases with varying characteristics (e.g. communication interval, transfer size

and burstiness, and load distribution).

10.4.1 Simple image processing

The application reads 10x10 byte pictures from source memory, processes the data,

and writes 10x10 byte result pictures to target memory. Original test case carries

out handshaking with messages for every transfer. It is not needed in HIBI because

no data is dropped, however, it was included to allow fair comparison. The test case

was modeled with Transaction Generator implemented in VHDL. The test case model
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Fig. 59. Examples of the test case pipelining

assumes minimum latency of 10 cycles for processing and 5 cycles for memory reads.

The actual function of image processing algorithm is irrelevant in this context; only

the execution times and communication behavior are needed.

The architecture includes eight processing units, single-ported source and target mem-

ories, and either single- or dual-bus 8-bit HIBI v.1 or v.2. Round-robin was used

as the arbitration method. Single- and dual-bus networks are similar to SegC and

SegC + D in Fig 39, respectively.

Doubling the bus width or adding another bus naturally improves the performance

but the improvement is less than two-fold. The reason is that requests and acknowl-

edgements cannot utilize the increased bandwidth. Furthermore, the task pipelining

may be inefficient. Two cases of pipelining are illustrated in Fig 59. Processing

(dashed box) is shown for the first agent even if it does not actually use either of the

buses. In an ideal case (a), first agent gets the whole input data when requesting it

(shown with circle 1) and it can start processing immediately. Likewise, it can write

all the results without interruption. The first agent is ready to start reading another

picture at the time instant denoted with circle 2. Simple application model does not

perform any handshaking between processing units and, therefore, they all start re-

questing source data at the same time. The memory sends slices of the picture to

all requesting processors and the processing cannot start until the whole picture has

been received, and hence the completion of the tasks is delayed. The same situation

happens when results are written. This is shown in Fig 59(b) still assuming ideal bus.

Consequently, one of the buses is idle for a long time and execution time does not

improve much from the single bus topology. This pipeline impact is negligible in the

single bus topology as the processing latency is so small.

Fig 60(a) shows the simulated run time for processing one picture in each processor.

Large transfer size is clearly beneficial and HIBI performance approaches the theo-
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Fig. 60. Results of the case study: execution time in cycles, logic areas, and cycle-area prod-

uct

retical minimum. Both dual-bus HIBI networks have 15-35% shorter execution times

for subsequent pictures when the time for filling the pipeline has only a minor effect.

Fig 60(b) illustrates the estimated area for different networks. The overall cost, de-

fined here as the product of execution time and area, is shown in 60(c). This cost fac-

tor suggests that a single HIBI v.2 bus with max_send = 100 offers the best trade-off

between execution time and area among the studied networks. This simple example

shows the importance of careful application design and pipelining in addition to net-

work optimization. For this reason, complex networks seldom achieve performance

that is close to their ideal case. Therefore, theoretical maximum bandwidth, which is

sometimes reported for NoCs, cannot be used for accurate comparison of networks.

HIBI v.2 has 21%- 43% smaller area than HIBI v.1 depending on transfer size. This

is due to multiplexed address/data lines and handshaking which both reduce buffer-

ing. As noted earlier, optimal buffer size in HIBI v.2 is determined by the latency of
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a functional unit instead of the packet size. The biggest impact is seen on destina-

tion memory wrapper: HIBI v.1 requires 65-word receiver buffer to avoid overflow

whereas HIBI v.2 used 7-word buffer. Even smaller buffers could be used in HIBI

v.2 with a small penalty of increased number of retransfers. In contrast, storing all

packets inside the network logic, like the store-and-forward method, would result in

area consumption that is linearly dependent on the packet size. As a result, the area

of HIBI would be approximately 1.7x - 17x larger. Comparison with results in [96]

(about 2500 cycles, 4.4 mm2 with 28B/tx) shows that even a single HIBI bus provides

better performance than a Proteo ring network with considerably smaller area cost for

this test case. Adding a second bus to HIBI network improves performance nearly

40%.

10.4.2 The effect of network parameters

HIBI is highly parameterizable interconnection and this Section discusses briefly the

impact of various settings. As an example, evolution of optimization with 53 iteration

rounds is shown in Fig 61 for test case hier_seq2. Each iteration round modifies HIBI

parameters, for example, FIFO sizes, priorities, and transfer sizes. In this case, the

best case offers 15% saving in clock cycles and 9% saving in area which give 17%

reduction in relative cost metric compared to initial configuration. The worst case re-

sulted over 2 times bigger cost than the best case. Exploring also the mapping of tasks

onto processing elements has even larger impact on system performance [182, 183]

and that is performed prior to network optimization. Automated tool provides these

results within minutes or hours depending on the size of the application and archi-

tectural space. A system having several applications can be optimized for different

scenarios depending on which applications are currently active. Optimal HIBI pa-

rameters can then be reconfigured at runtime.

In addition, monitoring capabilities of HIBI allow the designer to identify the bot-

tlenecks by examining the network statistics. For example, the achieved network

throughput and the fullness of all FIFOs and number of retransfer cycles are tabu-

lated for every wrapper automatically by the HIBI models. In addition, the Koski

tool can report the latencies of transfers, number of calculation and communication

cycles for each agent.

The effects of different HIBI parameters were evaluated with the aid of Koski. As
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Fig. 61. Results of the optimization process
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noted earlier, retransfer occurs when the receiver cannot accept the data immediately.

Fig 62 shows the total number of required retransfers in a system as a function of

FIFO size and max_send parameter for several test cases. It shows that other sizes

than minimum for FIFOs, i.e. 3 words or more, eliminate the need for retransmission

almost completely. In these cases, retransmissions account for 0.3% of the traffic

on average and 3.5% at maximum. With minimal FIFO size, a large number of re-

transfers happens in test case f ork_ join when all agents send data to a single agent.

This is a good example of how execution statistics are used to identify the system

bottleneck. If the optimizing the latency at the target IP proves to be difficult, its

receive buffers may be simply increased. Consequently, system performance is im-

proved notably as retransfers are removed. Note that the number of retransfers varies

irregularly with transfer size. Such behavior further emphasizes the importance of
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automated exploration and parameter optimization.

With small values of max_send, the distributed round-robin performs poorly when

the bus utilization is low. As an example, Fig 63 shows the breakdown of clock cy-

cles for test case hier_seq2 when all FIFOs are 6 words deep. Many cycles are needed

for arbitration and transmitting addresses when transfers are split into several small

transfers. However, already a small increase in max_send decreases these overheads

without affecting the area of the network. The possible drawback of large transfer

size is the increased latency of waiting for the bus access. The experiment shows

how the multiplexed address and data lines cause only minor performance degrada-

tion (address cycles) with respect to separate lines. The bars labeled as idle depend

heavily on application as they denote the cycles when the agents are only processing

(or waiting) data without any data transmissions.

The latency of HIBI was measured in two ways, both without TDMA. First, four

agents send a total of 1000 39-word messages to random targets as in [169]. The

latency is defined as the difference of times when the data is written to Tx FIFO and

when it is read from Rx FIFO. No time slots were used and all data was sent with the

same priority. Simulated latency histogram of one source-target pair is shown in Fig

64. Average latency was 158 cycles which means 4 cycles per data word. Latency

varies between 1.3-10 cycles per data word depending on the contention on the bus

and on the target.
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Fig. 65. Effect of relative priority on latency in a test case in which two agents write to the

same target

Second, the benefit of the relative priority is highlighted with a test case in which two

agents write to the same target. The first agent uses both high and low priority data

whereas the other uses only low priority. The average and maximum latencies for

different priorities are shown in Fig 65. Total of 27 different test configurations were

tried out by varying transfer size (in words), transfer interval (in clock cycles), and

max_send parameters. All of these parameters were varied from 2 to 100. Results are

sorted in ascending order of average latency of low priority transfers to emphasize the

differences. Low contention on the bus and on the target (test configurations 1-12)

result in low latency and the relative priority does not offer much benefit. Therefore,

the latency is not affected notably. However, for the configurations resulting in higher

latencies (configurations 12-27), the high priority offers great benefit. Regarding all
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configurations, high relative priority obtains 31% lower average latency and 41%

lower maximum latency than the low priority.

10.5 H.263 Video encoder simulation

This Section presents design space exploration of a data-parallel video encoder run-

ning on Multiprocessor System-on-Chip (MPSoC) [P7]. The impact of communica-

tion on the scalability is analyzed. The exploration is carried out with the abstract

models for application and architecture by using SystemC Transaction Generator.

The application model is based on profiled execution times and data sizes from real

application code.

Many studies consider how changes in application affect the speedup assuming fixed

computation platform. This study analyzes how the changes in communication mech-

anisms affect the speedup assuming fixed application. Efficient communication be-

tween processing elements and load balancing are crucial to obtain good scalability.

The communication requirements are proportional to the number of processing ele-

ments and, in general, inversely proportional to their complexity.

In this Chapter, a design space exploration for data-parallel video encoder MPSoC

[105] is presented. The processing elements (PEs) are interconnected with a single

shared bus to analyze its feasibility. Various architectures are explored by changing

the number of PEs, their frequency, and bus frequency. Furthermore, the upper bound

for performance resulting from ideal network and the impact of direct memory access

(DMA) are determined. Data-parallel video encoder application is modeled with

Transaction Generator [P2].

10.5.1 Data-parallel video encoder test case

A detailed presentation of the video encoder can be found in [105]. The video encod-

ing processing is done in master-slave configuration, in which all processing elements

have local data and instruction memories. All the slaves execute the same encoding

functions but operate on different parts of the image. Each PE processes one slice

consisting of one or more horizontal macroblock rows as shown in Fig. 66(a). At

first, the master PE reads one frame of raw video from I/O unit. Second, it divides
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the frame into slices and sends them to the slaves. Hence, a raw frame is transferred

twice across the communication network at the beginning of each frame encoding.

Third, the slave PEs must exchange rows with their neighbors (if any) to carry out

motion estimation. Finally, the master merges their results (opposite to transfer 2)

into a final bit-stream and sends that to I/O (opposite to transfer 1). Data amount

depends on the number of PEs in phase 3 only.

Only one macroblock row per neighbor is transferred when motion vector length

is restricted to 16 pixels or less. The slaves processing the top-most or the lower-

most slice have only one neighbor whereas others have two. Hence, the amount of

exchanged data equals 2∗ (nslaves −1) macroblock rows, nslaves denoting the number

of slaves. A macroblock (mb) corresponds to 16x16 pixel area. With 8 bits per pixel,

a macroblock size is 384 bytes (256 bytes of luminance and 128 bytes of chrominance

data). The different video frames sizes are shown in Fig. 66(b).

Such coarse-grained parallelization approach results in unequal load balance when

slices are not equally sized. For example, when 9 rows of QCIF (Quarter Common

Intermediate Format) frame are processed with 4 slaves, one slave must process 3

rows whereas others process only 2. Larger frame sizes allow a better load balance

for small number of PEs. Nevertheless, the total processing time is determined by

the slowest slave.

The data transfer requirements per frame are illustrated in Fig. 66(c). Four different

frame sizes are included from QCIF (176 x 144 pixels) up to 16CIF (1408 x 1152).

Note that both axes are logarithmic. Here, only the transfers of video data are consid-

ered, since they account approximately 99 per cent of all traffic. The graph is divided

into two parts: left side depicting coarse, row-wise parallelization and right side de-

picting fine-grained parallelization. The division happens when the number of slaves

equals the number of macroblock rows (MB_row). The largest possible system has

equal number of slaves and macroblocks.

With one slave, the transferred data amount per frame equals 2 raw image frames

and increases linearly to roughly 4 frames when the slice size is one row. At the

most parallel configuration, i.e. one macroblock per PE, the total data amount is

roughly 10 frames. At the same time, the required amount of local data memory per

slave decreases. For 25 frames per second, the worst case total data rates, i.e. with

maximum number of slaves, are approximately 10 MB/s (QCIF), 37 MB/s (CIF),
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Fig. 66. Data parallel video encoding.

146 MB/s (4CIF), and 581 MB/s (16CIF). The data rates to the network from both

master and IO are equal and vary between 1 MB/s (QCIF) and 60 MB/s (16CIF).

The slave data rates are at maximum 0.2 MB/s (QCIF) and 1.6 MB/s (16CIF). As

a conclusion, the data rates increase only modestly with the number of PEs. The

above values account only the data transfers. Artifactual communication, for example

cache misses, increase the traffic but is not considered here. Note that the number of

PEs affects the problem size only in master’s tasks which constitute only very small

fraction of all computation.
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Fig. 67. Task graph and the example mapping of the video encoder application. Each slave

has identical set of encoding tasks that are initiated by master’s task C1.

10.5.2 Modeling with Transaction Generator

Transaction Generator [P2] [85] is utilized for simulating a transfer-dependent ap-

plication model. It injects and reads data to/from a network according to external

behavior of the application tasks. The data transfers between tasks that are mapped

to separate PEs are forwarded to the network. The task runtime and transfer sizes

are profiled from a real application in ARM7 instruction set simulator. The impact

of hardware accelerator can be easily analyzed by profiling them and updating the

corresponding task runtimes in the TG model. Only the data transfers are profiled

since all PEs are assumed to have local instruction memories.

The application model is illustrated in Fig. 67. Both master and I/O unit execute

two tasks. All slaves have the same program code and, hence, similar task graph
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consisting of 21 computation tasks and 4 memory tasks. A shared memory system

(omitted here for brevity) can be modeled by mapping the memory tasks into a shared

memory instead of a slave PE. The structure of the task graph of one slave does

not depend on the frame size whereas the transfer sizes and computation times do.

Adding more slaves, increases the total task count from 29 with one slave to 1520

tasks with 72 slaves.

The accuracy of the model has been evaluated against cycle-accurate HW/SW co-

simulation for QCIF frames and 1 to 9 PEs. The estimation error for runtime is about

10% on average. The co-simulation for 9 slaves took nearly 16 hours and less than 10

minutes in TG. On a basic parallelization scheme [105], there is at least one row per

PE, but more parallel cases can be easily estimated with TG. However, the minimum

slice size is set to 9 macroblocks for CIF and 18 macroblocks for 4CIF.

10.5.3 Exploration results

All the encoding times are measured for INTER frames. Unless otherwise specified,

the PEs are operating at 100 MHz. All cases are run with DMA switched on and off.

In this study, it is assumed that PE without DMA can transfer one word per cycle

when network buffer allows that, i.e. transmit buffer is not full or receive buffer has

valid data. Since the transfer requirements are rather modest, this study concentrates

on single shared bus that is modeled in transaction level. HIBI network is used and

configured as single bus. The transaction level model allows estimating ideal net-

work by transmitting the whole data amount in one clock cycle. Such a transfer may

contain the whole macroblock or even the whole frame. This way, it is possible to

determine the minimum runtime for certain application by considering only the com-

putation times and idle times due to transfer dependencies. In other cases, the width

of the bus is 32 bits, i.e. 4 bytes, and bus frequency is either 1, 10, or 100 MHz.

The simulated speedups for CIF-sized video encoding are shown in Fig. 68. The

straight line depicts ideal speedup which equals the number of slaves. Ideal network

nearly achieves that estimate when the load is balanced and a 100 MHz bus with

DMA is very close. The actual speedup is not linear due to load imbalance causing

plateau areas in the curves. At the plateau, increasing the number of slaves does

not decrease the largest slice size but only increases the traffic. A 100 MHz bus

handles the increased traffic well but the frame rate drops slightly with smaller bus
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frequencies. The improving steps occur when the number of macroblock rows is an

integer multiple of the number of slaves.

As shown, the basic video encoder does not stress the communication network heav-

ily due to modest PE frequency. Furthermore, the C codes could be optimized or

some parts executed with hardware accelerators. Fig. 69 shows the speedup when the

frequency of the PEs is doubled and bus frequency is 100 MHz. Speedup is given rel-
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ative to system with 1 CPU at 100 MHz and 100 MHz bus as in Fig. 68. This clearly

demonstrates how the video encoding is dominated by computation times instead of

communication.

Compared to Fig. 68 the shape of the curve is smoother due to larger frame size and,

hence, load is more balanced. Furthermore, the impact of DMA, due to overlapping

of computation as communication, is illustrated. Interestingly, a 10 MHZ bus with

DMA gives similar performance as 100 MHz bus without DMA. DMA behavior is

similar in all evaluated frames sizes. The additional speedup due to DMA depends

linearly on the system size irrespective of the bus frequency. These speedups were at

maximum 1.9x (CIF) and 1.55x (4CIF). Note that the speedup is larger if increased

data rate of DMA compared to processor-controlled transfers was included.

So far, the bus frequency was assumed constant irrespective of the system size. In

reality, the delay of a wire depends on its length. Repeater insertion changes the

delay dependence from quadratic to linear but increases the power dissipation and

area. The examples have shown that already a bus frequency of 100 MHz (same as

PE frequency) provides enough capacity for real-time video processing and allows

good scalability. More realistic frame rates can be interpolated from previous results,

when the maximum bus frequency is determined. These are shown in Fig. 70 along

with constant 100 MHz case.
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Since the frequency depends on the utilized silicon technology and final layout, sim-

ple frequency estimation is utilized here. Cases with different critical system size,

i.e. the largest possible system that can operate at PE frequency, are shown. For ex-

ample, when the system size is two times the critical size, the bus length has doubled.

Consequently, the frequency of non-repeated bus has dropped to 25% of the original

in case (and to 50% with repeaters). Cases with critical sizes 5 and 10 PEs are shown.

For repeated global wires, the reachable distance per clock cycle is, for example, 28

mm (180 nm process, 700 MHz) and 10 mm (70 nm process, 2.5 GHz) [82]. Hi-

erarchical networks have shorter links and, hence, their operating frequency is less

dependent (in optimal case independent) of the system size. They need to be adopted

in large parallel systems - not necessarily due to shared bandwidth of the bus, but

due to prohibitively long delays in long wires. Considering the area costs of the bus

are often lower than those of NoCs, a bus-based network is still a good candidate for

many systems. Simulations were run also with 2-level hierarchical bus. The runtimes

are (practically) identical whereas the maximum wire lengths are halved.

Fig. 71 shows the correlation between bus frequency and obtained speedup in a sys-

tem with 36 PEs. The speedup achieved with ideal network is also shown (DMA

has no effect then). The speedup is the same for both frame sizes when DMA used.

However, larger frame size, 4CIF, achieves greater speedup than CIF when DMA is

not used.
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10.6 HIBI-based multiprocessor SoCs

As mentioned, artificial traffic is necessary during NoC design and evaluation. At the

same time, such studies must be complemented with results from real applications.

HIBI has been utilized in multiprocessor video encoder [105, 214] and in wireless

local area network (WLAN) terminal [122, 205]. These MPSoCs were evaluated

with HW/SW co-simulation.

Network evaluation with simulation has limited applicability due low execution speed

and poor availability of compatible models. Hence, multiple FPGA prototypes were

developed using HIBI v.2. At first, a basic platform was implemented using syn-

thesizable Nios processors by Altera [P4]. An 8-processor multiprocessor system

utilizing HIBI has also been prototyped and it takes about 36 400 logic elements,

which is 88% of logic resources on Altera Stratix 1S40 FPGA. The prototypes and

the lessons learned are discussed only briefly here due to space limitations. Interested

readers are referred to cited works for further details.

In all simulated and prototyped cases, HIBI has met all the performance require-

ments with clear margin and enabled simple integration of system components. For

example, in WLAN terminal [122], HIBI was responsible of mere 0.3% of packet’s

transmission latency. The FPGA experiments showed well the applicability of HIBI

on a reconfigurable devices where the wiring resources are scarce and affect the op-

erating frequency notably.

10.6.1 Wireless video terminal on FPGA

HIBI has been used to implement a configurable multiprocessor platform on FPGA

[10]. It supports distributed execution of UML 2.0 designed applications with aid of

eCos real-time operating system and in-house developed SW platform. Multiproces-

sor platform has been used for implementing, for example, a wireless video terminal

on FPGA [124] that is shown in Fig. 72. Commercial WLAN radio and camera mod-

ules were connected to the expansion headers of the development board. The user

can, for example, record and playback video, or stream it to/from another terminal.

The main objective of this work was to study the feasibility of the used Koski de-

sign methodology and tools to implement a multimedia terminal comprising various

subsystems, each comprising of several functional components. This objective was
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Fig. 72. Wireless video terminal on FPGA development board. [124]

fulfilled with very pleasant results as the design flow tools enable extensive design

automation in implementation from high-abstraction level models to a complete mul-

tiprocessor SoC on FPGA. It was rather straightforward to add new CPU subsystems

and accelerators to the HIBI-based system.

10.6.2 MPEG-4 Video encoder of FPGA

An MPEG-4 video encoder has been implemented on HIBI-based 4-processor system

on a single FPGA [146]. The system has been expanded and enhanced in many ways

after that [128, 131]. The basic structure of the configurable platform is shown in

Fig. 73. It is a combination of in-house developed IP and commercial components

delivered by FPGA vendor, Altera in this case. The bridges are optional. The example

shows 5 CPU sub-systems, each equipped with local memories, DMA controller,

and basic peripherals, such as timers. Note that slave CPUs can share an on-chip

instruction memory. This is especially beneficial when single-program multiple data

(SPMD) programming paradigm is used.

In addition to programmable processors, there are hardwired accelerators and special

units. For example, a resource manager (RM) unit keeps track of accelerator uti-

lization and reservation, and provides mutual exclusion when CPUs wish to access

them [203].

For example, it is straightforward to increase the number of motion estimators whereas
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Fig. 74. The speedup achieved by increasing the number of encoding slave processors with

respect to one slave. Test case is MPEG-4 encoder with CIF frames.

the other architecture and application software stay intact. The shown MPSoC sup-

ports GALS paradigm as there are various clock synchronizers. For example, de-

signer may use one clock for the processors, one for HIBI, and one for all the rest.

Depending on the utilized synchronizers, the clocks may be totally independent or

derived from each other.

Fig. 74 shows the frame rate as a function of the number of encoding slave CPUs

[130, 131]. Fig. 74(a) shows the impact of arbitration algorithm. Random algorithm
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Fig. 75. The impact of HIBI to MPEG-4 QCIF frame rate [131].

is clearly the worst whereas the others are within 10% of each other. DAA performed

best. The scalability of performance is almost linear when the system size increases

from 1 to 10 encoding slave CPUs.

Fig. 74(b) illustrates the impact of HIBI on the performance of the video encoder.

In practice, the case with 1 MHz CPUs and other components at 100 MHz depicts

how the software scales. The amount of sequential code causes the gap between

that curve and the ideal. On the other hand, the hardware scalability is very high

since the difference between the “CPUs at 1 MHz”-curve and the others is negligible.

HW-acceleration increases the data traffic by factor of 2.4x compared to SW only

implementation. Despite this, scalability is not affected and hence one can conclude

that HIBI offers adequate bandwidth.

A novel approach of frequency scaling is used to isolate the impact of various ar-

chitecture components. Scaling the bus frequency with respect to CPUs reveals the

minimum requirements for the bus as well as system’s maximum performance. The

impact of shared bus on the encoding performance was studied in [131]. The depth

of the FIFO buffers affects the number of retransfers (cf. Fig. 62) but did not affect

the encoding speed, as illustrated in Fig. 75(a). Bus was shown to offer adequate per-

formance for real-time encoding Fig. 75(b). It turned out that 10 MHz was adequate

for HIBI and higher frequencies improved performance only little.

A special case for HIBI was presented in [129] where a large MPSoC is spread into

several FPGA chips. The largest evaluated system had 58 IP components (35 soft

NIOS II CPUs and 23 other IP) on 3 FPGA boards each them having one HIBI

segment, as shown in Fig. 76. The boards were connected together between the two

halves of a HIBI bridge.
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Fig. 76. A hierarchical HIBI used for interconnecting 58 IP components on a 3-FPGA pro-

totype [129].

10.7 Lessons learned

Very large differences were observed between NoCs, both in literature and in this

work. Furthermore, the performance is very sensitive to the studied application, its

mapping, and the parameters of the NoC. All this emphasizes the need for disciplined

benchmarking methodology to obtain good estimates on the performance in differ-

ent scenarios. The presented Transaction Generator provided a good framework for

running benchmarks.

Fig. 77 shows a rough summary of the studies. The suitability of the network is

evaluated by their area vs. runtime trade-off. The X axis the shows the system size,

namely the number of terminals whereas the Y axis shows the difficulty of the traffic

load. The difficulty is a product of four factors: high throughput requirement, require-
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Fig. 77. The suitability of reference networks considering the number of terminals and diffi-

culty of the traffic load. The cost function is area divided by runtime.

ment for low latency, very bursty nature, and wide target distribtution. The circles

approximate the most appropriate usage scenario for 6 NoC topologies. Single-hop

topologies - bus and crossbar- are limited to small or medium sized systems, e.g. 2-

16 terminals. Multi-hop topologies support larger systems. Note that the top right

corner is considered too difficult for all known approaches.

In general, HIBI and 2-D mesh performed well in the presented cases. However, it

was noted during the development of MPEG-4 encoder that debugging was much

easier when (hierarchical) bus was used instead of mesh. Both networks showed

that easy instantiation directly from VHDL code was very useful feature for design

space exploration. This was enabled by algorithmic parameterization of the compo-

nents (wrappers, NIs, routers etc.) and there was no need for designer interaction via

graphical user interface. The implemented scratch-pad memory system with DMA

controllers offered enough performance and its program control was not too difficult

in such a regular application.

Furthermore, several FPGA prototypes were implemented and they confirmed the
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utility of HIBI in MP-SoC environment. For example, the clock frequency or area

of HIBI did not restrict the FPGA system development at any point. In many cases,

the memories (both internal and external) and the sheer complexity of the application

were the most severe bottlenecks. Physical prototypes with real applications help to

account such real-world phenomena in evaluation. Hence, they are an excellent way

to remove an excess optimism that may arise when a complex systems is considered

only on a very high abstraction level.
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11. CONCLUSIONS

The main goals of the work were met. The initial objective in this work was to

develop HIBI NoC further. The work started with a survey on on-chip buses and the

first versions of traffic generator was developed at the same time. Then, a new version

of HIBI was developed and evaluated. At that point, the importance of comparison,

contrasting between approaches, and wide range of scenarios became evident. That

led to surveys regarding NoCs, NoC comparisons, and larger emphasis on traffic

generation and benchmarking. At the same time, the development of HIBI continued

and reference NoCs were also implemented.

During this work, it was found that NoC parameters affect the performance unpre-

dictably and are thus hard to optimize. This fact emphasizes the importance of auto-

mated exploration and parameter optimization.

An OCP-IP workgroup seeks to define a common NoC benchmarks [P9, P12] [157].

It is formalizing a set of relevant metrics, associated measurement methodologies,

and a set of parameterized reference inputs for the NoC benchmarks. These ensure

meaningful comparison between various sources and the overall view can be deter-

mined in incremental steps. The presented benchmarking method is very suitable

for evaluating network-on-chips and was adopted by the workgroup. The author has

contributed, for example, to the basic requirements, application and traffic modeling,

metric selection, and XML description format for benchmarks. The author is cur-

rently the chairman of the workgroup. The workgroup aims to provide the academic

and industrial research and development (R&D) communities with a set of charac-

teristic benchmark designs and guidelines that will serve as a common repository of

relevant information with the following objectives:

• Enable the sharing and comparison of NoC-related R&D efforts and findings

• Enable and accelerate the NoC paradigm development
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• Increase the reproducibility of R&D claims and results

• Bridge the gap between academic and industrial state of the art.

As noted earlier, the term NoC has a multitude of contradictory and vague definitions.

Hence, just having a NoC does not tell much. After studying the seminal work in the

field and according to own experiments, the author projects that a good NoC

• separates communication from computation

• does not utilize long, global wires spanning the whole chip

• does not need a global, centralized controller for communication

• has a topology that allows the addition of links as the system size grows (offers

scalability)

• allows customization (link width, buffer sizes, even topology)

• allows an arbitrary number of terminals

• allows multiple voltage and frequency domains

• delivers data in-order either naturally or via a layered protocol

• offers services with varying guarantees

• offers support for system testing

• is reported in adequate detail to justify the claims and to allow meaningful

comparison.

The first property is necessary to design and verify PEs independently from the net-

work and simplifies reuse and design space exploration. Long signal wires are prob-

lematic due to their poor scaling with technology, large delay, noise, and power con-

sumption. In a parallel system, it is necessary to remove the obvious bottleneck,

whether it is a single shared link, memory, or arbiter. Allowing an arbitrary num-

ber of terminals (not just power of two, for example) and in-order delivery of data

ensure suitability to a wide range of systems. Services, for example low-latency,

high-throughput, or limited jitter, provide support for the heterogeneous data traffic
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inherent in SoC. Built-in-self-test supports timely delivery of products and field test-

ing. The two last are mainly related to reporting style to obtain maximum benefit for

the research community. Naturally, certain properties, such as energy, area, and bit

error rate, have to be minimized but the opposite goal is very unlikely anyway.

Based on the work, it can be concluded that no single network categorically outper-

forms all others. Moreover, it must be stressed that performance is very case depen-

dent and affected by so numerous parameters that generalizations are very complex to

achieve. Hence, the impact of certain settings cannot always be captured analytically

or only with rough simplifications. To make things worse, comparisons in literature

are often carried out optimistically promoting the author’s own approach, one may

add. Therefore in most papers, “this work” seems to be the best approach by default.

Independent evaluation using the presented methods should alleviate that problem.
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