

Tampereen teknillinen yliopisto. Julkaisu 1092
Tampere University of Technology. Publication 1092

Juliane Müller

Surrogate Model Algorithms for Computationally
Expensive Black-Box Global Optimization Problems

Thesis for the degree of Doctor of Philosophy to be presented with due permission for
public examination and criticism in Sähkötalo Building, Auditorium S4, at Tampere
University of Technology, on the 28th of November 2012, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2012

ISBN 978-952-15-2959-7 (printed)
ISBN 978-952-15-2991-7 (PDF)
ISSN 1459-2045

Abstract

Surrogate models (also called response surface models or metamodels)
have been widely used in the literature to solve continuous black-box
global optimization problems that have computationally expensive objective
functions. Different surrogate models such as radial basis functions, kriging,
multivariate adaptive regression splines, and polynomial regression models
have been used in various applications. It is in general however unknown
which model will perform best for a given application, and computation
time restrictions do not allow trying different models. Thus, in the first
part of this thesis, a family of algorithms (SO-M, SO-M-c, SO-M-s) based
on using a mixture of surrogate models is developed. The second part of
the thesis extends the research in using surrogate models for mixed-integer
(algorithm SO-MI) and purely integer (algorithms SO-I) optimization
problems. Finally, a real world application problem arising in the agri-
cultural land use management of a watershed is examined (algorithms SO-Ic).

The algorithm SO-M uses Dempster-Shafer theory to combine information
derived from various model characteristics in order to determine the
influence of individual models in the mixture. Extensions of SO-M with
respect to the sampling strategy (algorithms SO-M-c and SO-M-s) have
been compared in numerical experiments, and it was found that whenever
it is a priori unknown which surrogate model should be used, it is advisable
to use a mixture model in order to prevent accidentally selecting the
worst model. It could be shown that mixture models containing radial
basis function interpolants generally work very well, whereas using only
polynomial regression models should be avoided. Moreover, algorithms
using mixture models often outperform the algorithms that use only the
single models that are contributing to the mixture.

Although there are many computationally expensive black-box optimization
applications that have besides continuous also integer variables, or that
have only integer variables, algorithms for solving these types of problems

i

ABSTRACT ii

are scarce. In the second part of this thesis two algorithms, namely SO-MI
for mixed-integer problems, and SO-I for purely integer problems have been
developed and were shown to find accurate solutions for computationally
expensive problems with black-box objective functions and possibly black-
box constraints. The constraints were treated with a penalty approach and
numerical experiments showed that the surrogate model based algorithms
outperformed commonly used algorithms for (mixed-) integer problems such
as branch and bound, and genetic algorithms. Also NOMAD (Nonsmooth
Optimization by Mesh Adaptive Direct Search) has been included in the
comparison. NOMAD is suitable for integer and mixed-integer black-box
problems, but its performance for these problem types has not been studied
in the literature. In the numerical experiments, NOMAD also proved
superior as compared to branch and bound and the genetic algorithm, but
it performed worse than SO-I and SO-MI for most test problems.

Lastly, the algorithm SO-I has been further extended to directly handling
constraints with a response surface. The algorithm, SO-Ic, has been devel-
oped specifically for a watershed management problem that has only one
constraint, but SO-Ic is easily generalizable for problems with more con-
straints. In the considered application problem parts of the agricultural land
in the Cannonsville reservoir watershed in upstate New York have to be re-
tired in order to decrease the total phosphorus runoff to a given limit at
minimal cost. A computationally expensive simulation model has to be used
to compute the costs and phosphorus runoff. The performance of SO-Ic has
been compared to a genetic algorithm, NOMAD, and the discrete dynami-
cally dimensioned search algorithm on three problem instances with different
sizes of the feasible region. The surrogate model based algorithm SO-Ic per-
formed also for these problems significantly better than all other algorithms
and could be shown to be the most robust.

Acknowledgments

At this point I want to thank my dear friend Jarno “The King of Sweden”
Marttila for the quality company at the mathematics department coffee
table, for making me laugh, and for distracting me from work whenever there
was a deadline lurking. I also want to thank Nina Flink for her friendship
and for looking after Professor Gauss whenever I was traveling to conferences.

I would like to show my gratitude to my Tekiila-friends Jaakko “Padawaani”
Tyynismaa, Joonas Multanen, Juha Manninen, Tero Marttila, and Kalle
Laakso for the first class climbing time we spent together at the Finnish
crags and who made me forget about work during weekends. I am thankful
for having found so many friends in Ithaca who made my research visit at
Cornell University unforgettable: Sheila Saia, Ben Currens, Andy Casler,
Scott Cambo, Chris Chilas, Brian Harrington, Stephen Demjanenko, and
Sebastian Bauer. I want to thank Carlos Nieto for his constant encourage-
ment. Thanks to Flor and Mark Cianchetti for their friendship and moral
support at Cornell University. Thanks also to Markus “The Peasant” Rajala
and Jussi Kangas who always made the days look a bit brighter.

I want to express my gratitude to Prof. Shoemaker and Prof. Piché for
supervising my thesis and giving me the chance to visit Cornell University.
I would like to thank my thesis examiners, Rommel Regis and Stefan Wild,
for their helpful comments and suggestions, and Jorge Moré for being my
opponent.

Although she probably does not know how much of a help she has been, I
would like to thank Professor Gauss for the companionship.

Lastly, I would like to thank the Tampere Graduate School in Information
Science and Engineering for the financial support, and the Finnish Academy
of Science and Letters, Vilho, Yrjö and Kalle Väisälä Foundation for the
scholarship for my stay at Cornell University.

iii

Contents

Abstract i

Acknowledgments iii

List of Tables ix

List of Figures xii

1 Introduction 1
1.1 Motivation and Problem Statement 3
1.2 Literature Review of Surrogate Model Algorithms 4

1.2.1 Global Surrogate Model Algorithms 5
1.2.2 Polynomial Regression Models 7
1.2.3 Multivariate Adaptive Regression Splines 8
1.2.4 Radial Basis Functions 9
1.2.5 Kriging . 10

1.3 Contribution and Organization 13
1.3.1 Summary of Chapter 2: Algorithm SO-M 14
1.3.2 Summary of Chapter 3: Algorithms SO-M-s and SO-

M-c . 15
1.3.3 Summary of Chapter 4: Algorithm SO-MI 17
1.3.4 Summary of Chapter 5: Algorithm SO-I 18
1.3.5 Summary of Chapter 6: Algorithm SO-Ic 20

2 SO-M: A Mixture Surrogate Model Algorithm for Global
Optimization Problems Using Dempster-Shafer Theory 22
2.1 Introduction . 24
2.2 SO-M: Mixture Surrogate Model Algorithm 26
2.3 Numerical Results . 34

2.3.1 Test Problem B: Branin Function 36
2.3.2 Test Problem C: Camelback Function 38

iv

CONTENTS v

2.3.3 Test Problem G: Goldstein-Price Function 40
2.3.4 Test Problem H3: Three-Dimensional Hartmann Func-

tion . 43
2.3.5 Test Problem H6: Six-Dimensional Hartmann Function 45
2.3.6 Test Problem S10: Shekel Function 47
2.3.7 General Results . 50

2.4 Conclusions . 54

3 Influence of Surrogate Model Choice and Sampling Strate-
gies 57
3.1 Introduction and Motivation 60
3.2 Review of Surrogate Model Algorithms 60

3.2.1 Efficient Global Optimization (EGO) 61
3.2.2 Gutmann’s Radial Basis Function Algorithm 62
3.2.3 SO-M: Mixture Surrogate Model Algorithm Based on

Dempster-Shafer Theory 62
3.3 SO-M-c: A Stochastic Mixture Surrogate Model Algorithm . . 63
3.4 Experimental Setup . 68

3.4.1 Algorithms and Parameter Settings 68
3.4.2 Test Problems . 71

3.5 Numerical Results . 73
3.5.1 Low-dimensional Problems 74
3.5.2 Medium-sized Problems 77
3.5.3 Large-dimensional Problems 80
3.5.4 Application Problems 84

3.6 Conclusions . 86

4 SO-MI: A Surrogate Model Algorithm for Computationally
Expensive Nonlinear Mixed-Integer Black-Box Global Opti-
mization Problems 89
4.1 Introduction and Motivation 93
4.2 Mixed-Integer Optimization Problem 96
4.3 SO-MI: Surrogate Model Algorithm for Mixed-Integer Black-

Box Optimization Problems 99
4.3.1 The Initial Experimental Design and Penalty Functions 99
4.3.2 Selecting the Next Sample Site 101
4.3.3 SO-MI Algorithm . 104
4.3.4 Convergence of SO-MI 106

4.4 Numerical Experiments . 108
4.5 Test Problems . 111

4.5.1 Generic Test Problems 111

CONTENTS vi

4.5.2 Structural Design Applications 112
4.5.3 Reliability-Redundancy Allocation Problems 114
4.5.4 Overview of Test Problems 116

4.6 Numerical Results . 116
4.6.1 Box-Constrained Problems 119
4.6.2 Constrained Problems 126
4.6.3 Structural Design Problems 133
4.6.4 Reliability-Redundancy Problems 137

4.7 Conclusions . 140

5 SO-I: A Surrogate Model Algorithm for Expensive Nonlinear
Integer Programming Problems Including Global Optimiza-
tion Applications 143
5.1 Introduction . 146
5.2 Constrained Integer Optimization Problems 148
5.3 SO-I: Surrogate Model Algorithm for Discrete Global Opti-

mization Problems . 148
5.4 Test Problems . 154

5.4.1 Test Setup . 154
5.4.2 Generic Test Problems 155
5.4.3 Throughput Maximization Application 156
5.4.4 Hydropower Generation Maximization Application . . 158

5.5 Numerical Results . 161
5.5.1 Unimodal Problems . 162
5.5.2 Unconstrained Multimodal Problems 167
5.5.3 Constrained Multimodal Problems 171
5.5.4 Binary Problems . 174
5.5.5 Linear Problems . 177
5.5.6 Throughput Maximization Problems 180
5.5.7 Hydropower Maximization Problems 183
5.5.8 General Discussion . 190

5.6 Conclusions . 192

6 SO-Ic: Watershed Management Optimization Using A Dis-
crete Surrogate Model Algorithm with Explicit Constraint
Handling 195
6.1 Introduction . 198
6.2 The Cannonsville Reservoir Watershed 199
6.3 Watershed Land Use Management Optimization Problem . . 199
6.4 SO-Ic: Discrete Surrogate Model Algorithm with Direct Con-

straint Handling . 205

CONTENTS vii

6.5 Numerical Experiments . 208
6.5.1 Experimental Setup . 208
6.5.2 Numerical Results . 210

6.6 Conclusions . 220

7 Concluding Remarks 222
7.1 Which surrogate model should be used for a given problem? . 224
7.2 Can surrogate model algorithms be used for black-box prob-

lems with integrality constraints? 224
7.3 How can the agricultural land use of an upstate New York wa-

tershed be managed to reduce the phosphorus runoff at mini-
mal cost? . 226

7.4 Future research directions and open questions 226

A Test Problems Chapter 2 230
A.1 Test Problem 1: Branin . 230
A.2 Test Problem 2: Camelback 230
A.3 Test Problem 3: Goldstein-Price Function 231
A.4 Test Problems 4 and 5: Hartmann Functions 231
A.5 Test Problem 6: Shekel . 232

B Test Problems Chapter 3 233
B.1 Test Problem 1: Branin . 233
B.2 Test Problems 2 and 3: Hartmann Functions 233
B.3 Test Problems 4-6: Shekel . 234
B.4 Test Problem 7: Ackley . 235
B.5 Test Problem 8: Schoen . 235
B.6 Test Problem 9: Levy . 235
B.7 Test Problem 10: Powell . 236
B.8 Test Problem 11: Michalewicz 236
B.9 Test Problem 12: Sphere . 236
B.10 Test Problem 13: Rastrigin . 236

C Test Problems Chapter 4 238
C.1 Test Problem 1 . 238
C.2 Test Problem 2 . 239
C.3 Test Problem 3 . 239
C.4 Test Problem 4 . 239
C.5 Test Problem 5 . 240
C.6 Test Problem 6 . 240
C.7 Test Problem 7 . 241

CONTENTS viii

C.8 Test Problem 8 . 241
C.9 Test Problem 9 . 241
C.10 Test Problem 10 . 242
C.11 Test Problem 11 . 242
C.12 Test Problem 12 . 243
C.13 Test Problem 13 . 244
C.14 Test Problem 14 . 244
C.15 Test Problem 15 . 244
C.16 Test Problem 16 . 245
C.17 Test Problem 17 . 245
C.18 Test Problem 18 . 247
C.19 Test Problems 19-21 . 249

C.19.1 Test Problem 19 . 249
C.19.2 Test Problem 20 . 251
C.19.3 Test Problem 21 . 252

D Test Problems Chapter 5 254
D.1 Test Problem 1 . 254
D.2 Test Problem 2 . 254
D.3 Test Problem 3 . 254
D.4 Test Problem 4 . 255
D.5 Test Problem 5 . 256
D.6 Test Problem 6 . 256
D.7 Test Problem 7 . 257
D.8 Test Problem 8 . 257
D.9 Test Problem 9 . 258
D.10 Test Problem 10 . 258
D.11 Test Problem 11 . 258
D.12 Test Problem 12 . 259
D.13 Test Problem 13 . 259
D.14 Test Problem 14 . 260
D.15 Test Problem 15 . 260
D.16 Test Problem 16 . 260
D.17 Test Problem 17 . 261
D.18 Test Problems 18 and 19 . 261
D.19 Test Problems 20a-20c, 21a-21c 261

References 262

List of Tables

1.1 Commonly used RBF models, ρ > 0. 9
1.2 DACE toolbox correlation functions 11
1.3 DACE toolbox regression models 12

2.1 Test problems for SO-M . 34
2.2 Relative errors for Branin function 36
2.3 Relative errors for Camelback function 40
2.4 Relative errors for Goldstein-Price function 41
2.5 Relative errors for three-dimensional Hartmann function . . . 43
2.6 Relative errors for six-dimensional Hartmann function 47
2.7 Relative errors for Shekel function 48
2.8 Percentage of trials where global optima found 52
2.9 Number of function evaluations to reach <1% relative error . . 53
2.10 Number of times solution with <1% relative error found . . . 54

3.1 Surrogate models used in SO-M-c and SO-M-s 71
3.2 Test problems for SO-M-c and SO-M-s 73
3.3 Number of failed trials per problem and algorithm. 75
3.4 Mean relative errors for low-dimensional problems 76
3.5 Mean relative errors for medium-sized problems 78
3.6 Numerical results for Levy-20 function 79
3.7 Mean relative errors for large-dimensional problems 81
3.8 Numerical results for Powell-24 function 82
3.9 Numerical results for Sphere-27 function 83
3.10 Mean relative errors for application problems 85

4.1 Test problems for SO-MI . 117
4.2 Numerical results for box-constrained mixed-integer problems 122
4.3 Hypothesis tests for box-constrained mixed-integer problems . 125
4.4 Numerical results for constrained mixed-integer problems . . . 129
4.5 Hypothesis tests for constrained mixed-integer problems . . . 132

ix

LIST OF TABLES x

4.6 Numerical results for structural design problems 135
4.7 Hypothesis tests for structural design problems 136
4.8 Numerical results for reliability-redundancy allocation problems139
4.9 Hypothesis tests for reliability-redundancy allocation problems 140

5.1 Test problems for SO-I . 160
5.2 Numerical results for unimodal integer problems 164
5.3 Hypothesis tests for unimodal integer problems 166
5.4 Numerical results for unconstrained multimodal integer prob-

lems . 169
5.5 Hypothesis tests for unconstrained multimodal integer problems170
5.6 Numerical results for constrained multimodal integer problems 172
5.7 Hypothesis tests for constrained multimodal integer problems 173
5.8 Numerical results for binary problems 176
5.9 Hypothesis tests for binary problems 177
5.10 Numerical results for linear integer problems 179
5.11 Hypothesis tests for linear integer problems 180
5.12 Numerical results for integer throughput maximization problems182
5.13 Hypothesis tests for integer throughput maximization problems183
5.14 Numerical results for hydropower maximization problems, one

plant . 186
5.15 Hypothesis tests for hydropower maximization problems, one

plant . 187
5.16 Numerical results for hydropower maximization problems, two

plants . 188
5.17 Hypothesis tests for hydropower maximization problems, two

plants . 189
5.18 Number of trials where no feasible solution found 191
5.19 Number of trials for which global optimum found 192

6.1 Numerical results for watershed management problem 212
6.2 Hypothesis tests for watershed management problem 213
6.3 Numerical results for special starting points, 20% goal 216
6.4 Numerical results for special starting points, 40% goal 217
6.5 Numerical results for special starting points, 60% goal 220

A.1 Parameters three-dimensional Hartmann function 231
A.2 Parameters six-dimensional Hartmann function 232

B.1 Parameters three-dimensional Hartmann function 234
B.2 Parameters six-dimensional Hartmann function 234

LIST OF TABLES xi

C.1 Geometry data of eleven element plane truss 247
C.2 Geometry data of truss dome 248
C.3 Parameters for bridge configuration 251
C.4 Parameters for overspeed detection system 252
C.5 Parameters for series-parallel configuration 253

D.1 Best solutions of hydropower maximization problems 261

List of Figures

2.1 Distribution of relative errors for Branin function 37
2.2 Distribution of relative errors for Camelback function 39
2.3 Distribution of relative errors for Goldstein-Price function . . 42
2.4 Distribution of relative errors for three-dimensional Hartmann

function . 44
2.5 Distribution of relative errors for six-dimensional Hartmann

function . 46
2.6 Distribution of relative errors for Shekel function 49

3.1 Scoring criteria example . 66
3.2 Distribution of relative errors for low-dimensional problems. . 77
3.3 Distribution of relative errors for medium-sized problems. . . . 80
3.4 Distribution of relative errors for large-dimensional problems. . 84
3.5 Distribution of relative errors for application problems. 86

4.1 Mixed-integer objective function example 98
4.2 Eleven element plane truss . 113
4.3 Truss dome . 114
4.4 Average objective function values for box-constrained mixed-

integer problem . 121
4.5 Average objective function values for box-constrained mixed-

integer problem . 126
4.6 Average objective function values for constrained mixed-

integer problem . 128
4.7 Average objective function values for truss dome design 134
4.8 Best 2D truss design . 136
4.9 Average objective function values for series-parallel configuration138
4.10 Best reliability-redundancy allocation for the bridge system . . 141

5.1 Average objective function values for unconstrained unimodal
integer problem . 163

xii

LIST OF FIGURES xiii

5.2 Average objective function values for unconstrained multi-
modal integer problem . 168

5.3 Average objective function values for constrained multimodal
integer problem . 174

5.4 Average objective function values for unconstrained binary
problem . 175

5.5 Average objective function values for constrained linear inte-
ger problem . 178

5.6 Average objective function values for throughput maximiza-
tion problem . 183

5.7 Average objective function values for hydropower generation
problem . 189

6.1 Normalized total phosphorus runoff 202
6.2 Average objective function values for 20% reduction goal . . . 213
6.3 Average objective function values for 40% reduction goal . . . 214
6.4 Average objective function values for 60% reduction goal . . . 214
6.5 Average objective function values for SO-Ic 218
6.6 Average objective function values for GA 218
6.7 Average objective function values for discrete-DDS 219
6.8 Average objective function values for NOMAD 219

C.1 Eleven element plane truss . 246
C.2 Truss dome . 248
C.3 Bridge configuration block diagram 250
C.4 Series-parallel system block diagram 252

Chapter 1

Introduction

1

CHAPTER 1. INTRODUCTION 2

Abbreviations and Nomenclature

Discrete-DDS Discrete dynamically dimensioned search
MARS Multivariate adaptive regression splines
NOMAD Nonsmooth optimization by mesh adaptive direct search
RBF Radial basis function
SO-I Surrogate Optimization - Integer
SO-Ic Surrogate Optimization - Integer constraints
SO-M Surrogate Optimization - Mixture
SO-M-c Surrogate Optimization - Mixture - candidate sampling
SO-M-s Surrogate Optimization - Mixture - surface minimum
SO-MI Surrogate Optimization - Mixed Integer

f(·) Objective function, see equation (1.1a)
x Decision variable vector, see equation (1.1d)
xT Transpose of x
xi ith decision variable, i = 1, . . . , k, see equation (1.1c)
xli, x

u
i Lower and upper bound for ith decision variable, see

equation (1.1c)
k Problem dimension, see equation (1.1c)
Ω Variable domain, see equation (1.1d)
cj(·) jth constraint function, j = 1, . . . , m, see equa-

tion (1.1b)
m Number of constraints
R Real numbers
Z Integer numbers
s(·) Surrogate model
n Number of already evaluated points
xι ιth sample point, ι = 1, . . . , n
y Vector of objective function values (y1, . . . , yn)

T

sp(·) Polynomial regression model, see equations (1.3)
and (1.6)

sm(·) MARS model, see equation (1.7)
sb(·) RBF model, see equation (1.9)
sk(·) Kriging response surface model, see equation (1.12)
smix(·) Mixture surrogate model, see equation (1.16)
M Set of all models contributing to the mixture, see equa-

tion (1.16)
sr(·) rth surrogate model in the mixture, see equation (1.16)
wr Weight of the rth model in the mixture, see equa-

tion (1.16)

CHAPTER 1. INTRODUCTION 3

1.1 Motivation and Problem Statement

Application problems in engineering design, management, and finance,
for example, often require computationally expensive computer analysis
codes to capture the physical behavior of the systems under consideration.
Continuously increasing computational power enables the development of
simulation models that become more and more complex. With increasing
model complexity, the computation time of these simulations increases
significantly. When addressing optimization problems where the objective
function evaluation is based on such computationally expensive simulations,
the obvious goal is to find a good approximation of the global optimum
within as few function evaluations as possible in order to obtain a solution
within reasonable time.

In this thesis the optimization problems are formulated as minimization prob-
lems (a maximization problem can be reformulated by minimizing the nega-
tive of the objective function). The global optimization problems considered
here are in general of the following form

minimize f(x) (1.1a)

subject to cj(x) ≤ 0, j = 1, 2, . . . , m (1.1b)

−∞ < xli ≤ xi ≤ xui <∞, i = 1, 2, . . . , k (1.1c)

x ∈ Ω, (1.1d)

where f(x) : Rk → R is the deterministic objective function whose value
is computed by a computationally expensive simulation model, cj(x) are
deterministic constraint functions, and xli and xui are the lower and upper
bounds of the ith variable. If there are no constraints cj(x), then the
problem is referred to as a box-constrained (also unconstrained) global
optimization problem. If the constraints cj(x), j = 1, . . . , m, are present, it
is assumed that their function values are computed in the same computa-
tionally expensive simulation as the objective function, i.e. the simulation
model returns the objective and constraint function values. Moreover, it is
assumed that the feasible set is nonempty.

The number range that can be assumed by the variables xi, i = 1, . . . , k, is
either R (purely continuous problems, addressed in Chapters 2 and 3), Z

CHAPTER 1. INTRODUCTION 4

(purely integer problems, addressed in Chapters 5 and 6), or R for some
variables and Z for other variables (mixed-integer problems, addressed in
Chapter 4).

The objective function has several characteristics that make it difficult to
find its global optimum. As stated before, evaluating the objective function
requires running the computationally expensive simulation model, which
may take from several minutes to several hours or even days. Furthermore,
the simulation model is in general a black-box, and all that is known is
the deterministic output for a given input variable vector. The algebraic
form of the objective function f(x) is unknown, and therefore derivative
information is not available. Finite differencing or automatic differentiation
are in general not an option. Finite differencing may require too many
function evaluations, which in turn increases the computation time. For a
k-dimensional problem, computing the gradient and the Hessian of f(x)
is, respectively, k-times and k2-times as expensive as computing f(x) [56].
Furthermore, finite differencing gives only derivative estimates and no exact
values. Automatic differentiation is often not applicable because for many
problems the codes of the simulation models are not fully available due to
confidentiality restrictions. Also, if the evaluation of the objective function
involves a large number of operations, storage requirements may become
large when using the reverse mode of automatic differentiation. Moreover,
in many applications the objective function f(x) is often badly behaved and
has several local and global minima1. Hence, methods that are able to search
locally as well as globally have to be developed for finding accurate solutions
of the problem defined in (1.1a)-(1.1d) within as few function evaluations
as possible, and derivative-free optimization methods have proved successful
also in this respect [30].

1.2 Literature Review of Surrogate Model

Algorithms

In order to solve problems of the type described in Section 1.1, surrogate
models (also called response surface models, or metamodels) have been de-
veloped in the literature. Generally speaking, a surrogate model is a model of

1A global minimum is defined as a feasible point x
∗ for which f(x∗) ≤ f(x) for all

feasible x. A local minimum is defined as a feasible point x∗ for which f(x∗) ≤ f(x) for
all feasible points x for which ‖x−x

∗‖2 < ε, where ε > 0 and ‖ · ‖2 denotes the Euclidean
norm. A global minimum is therefore always also a local minimum.

CHAPTER 1. INTRODUCTION 5

a model. While the computationally expensive simulation models are used to
describe complex physical phenomena, surrogate models are used to replace
the computationally expensive simulation models [21]:

f(x) = s(x) + ε(x), (1.2)

where f(x) denotes the computationally expensive simulation model output,
s(x) denotes the prediction of the surrogate model at point x, and ε(x) is
the difference between the two.

The idea is to use the surrogate model s(x) during the iterative optimization
procedure instead of the true objective function f(x) as much as possible
because s(x) is computationally cheap to evaluate, and thus the computation
times can be considerably reduced. The surrogate model s(x) is used to
predict the objective function values of points in the variable domain, and
this information is then exploited for determining promising points for doing
the expensive function evaluations.

1.2.1 Global Surrogate Model Algorithms

The surrogate model algorithms widely used in the literature are so-called
two-stage approaches [73], and consist in general of the following steps:

Algorithm 1 General global surrogate model algorithm

1. Create an initial experimental design and evaluate the computationally
expensive objective function at the selected points.

2. Use the data from 1. to compute the parameters of the response surface.

3. Use the information from the response surface to determine the point
for doing the next computationally expensive function evaluation.

4. Given the new data, update the response surface parameters.

5. Iterate through 3. and 4. until a given stopping criterion has been met.

The initial experimental design in the first step can be created, for example,
by Latin hypercube sampling, orthogonal arrays, factorial designs, or some
other sampling strategy that seems useful for the given application [101].
In the second step, a surrogate model must be chosen. There are different
kinds of surrogate models. Radial basis functions and kriging, for example,
are interpolating models, whereas polynomial regression models and mul-
tivariate adaptive regression splines are non-interpolating. Each of these

CHAPTER 1. INTRODUCTION 6

models will be described in more detail in the following sections. In this
thesis global surrogate models, i.e. surrogate models that are fit over the
whole variable domain, are employed.

When determining the point for doing the next expensive function evaluation
in the third step, it is important to use a strategy that is able to search locally
as well as globally. During the local search, the neighborhood of promising
points should be examined more thoroughly (exploitation) in order to find
further objective function value improvements. On the other hand, the
global search is necessary to escape from possible local optima, and to find
new promising regions of the variable domain where the global optimum may
be located (exploration). It is not sufficient to use an algorithm that only
searches globally and fails to search locally. Once a promising point has been
encountered, its close vicinity must be further examined in order to find pos-
sible improvements. This is especially of importance if the objective function
has very steep minima which may easily be missed if the search is only global.

Several strategies have been developed to achieve a balance between local
and global search. Gutmann [57], for example, minimizes a so-called
“bumpiness” measure. A target value f ∗ for the objective function is
defined, and the point of the variable domain that minimizes the bumpiness
measure given the assumed value f ∗ becomes the next sample point.

Jones et al. [74] use a kriging surrogate model to approximate the objective
function and exploit in the sampling strategy the estimate of the predictor
error computed by the kriging model. Their criterion for selecting the next
sample site is to maximize the expected improvement.

Regis and Shoemaker [124] developed a global search method, AQUARS,
that uses a measure on how thoroughly the local minima of the response
surface have already been explored. The next sample point is chosen either
in the vicinity of the best partially explored or the least explored local
minimum point of the response surface.

All of the aforementioned approaches select a sample point by optimizing
an auxiliary function (minimize the bumpiness measure, maximize the
expected improvement, minimize the response surface), which is in general
itself a global optimization problem because it cannot be guaranteed that
these auxiliary optimization problems are unimodal. However, because the
optimization is done on the cheap-to-evaluate response surface, this step is

CHAPTER 1. INTRODUCTION 7

computationally inexpensive.

Regis and Shoemaker [119] also developed a stochastic sampling strategy.
In this approach a large number of candidate points for the next expensive
objective function evaluation is generated, and based on a weighted score
derived from the objective function value prediction of the response surface
and the distance of the candidates to the set of already sampled points, the
candidate point with the best score is selected for doing the next expensive
function evaluation. The advantage of this approach is that no auxiliary
optimization problem has to be solved and savings in computation times
can be achieved especially when high-dimensional problems are considered.
Moreover, the candidate point approach has been shown to often perform
superior as compared to the approaches where an auxiliary optimization
problem has to be solved [119].

The stopping criteria in Step 5 of Algorithm 1 can be, for example, a given
maximum number of allowed function evaluations, a maximum CPU time, a
maximum number of unsuccessful consecutive improvement trials, or some
other algorithm-specific criterion. The algorithm by Jones et al. [74], for
example, was stopped when the maximum expected improvement was less
than 1%.

The surrogate models used in this thesis are described in more detail in
the following sections. For a summary of global surrogate model based al-
gorithms, see, for example, Jones [73], and Shan and Wang [130]. In the
following, the n distinct points where the objective function f(x) has al-
ready been evaluated are denoted by x1,x2, . . . ,xn, and the corresponding
objective function values by y1, y2, . . . , yn.

1.2.2 Polynomial Regression Models

Polynomial regression models are non-interpolating and widely used in en-
gineering disciplines [101]. A linear regression model is in general defined
as

sp(x) = β0 +
k∑

i=1

βixi (1.3)

where xi is the ith component of x. The least squares estimator β̂ for the
parameters β = (β0, β1, . . . , βk)

T is

β̂ = (XTX)−1XTy (1.4)

CHAPTER 1. INTRODUCTION 8

where y = (y1, y2, . . . , yn)
T is the vector of objective function values, and

X =

⎡
⎢⎢⎢⎣
1 xT

1

1 xT
2

...
...

1 xT
n

⎤
⎥⎥⎥⎦ (1.5)

is the matrix of sample sites augmented with a column vector of ones for
the intercept β0.

The regression model can as well be extended to higher orders. A quadratic
regression model, for example, is defined as

sp(x) = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k−1∑
i=1

k∑
j=i+1

βijxixj . (1.6)

By their definition, quadratic models can capture the curvature of the true
model and interactions between variables better than linear models.

Polynomial regression models have been used in the literature, for example,
by Hosder et al. [66] for solving a multidisciplinary design optimization prob-
lem in high speed civil transport. Liao et al. [86] used a quadratic polynomial
as response surface for solving a multiobjective optimization problem about
crash safety design of vehicles. Quadratic polynomials have also been used
by Madsen et al. [90] to optimize the design of incompressible diffusers.

1.2.3 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) [49] are non-interpolating
and non-parametric models that are able to automatically model nonlinear-
ities and variable interactions. The general MARS model is defined as

sm(x) =
L∑
l=1

alBl(x), (1.7)

where al are constant coefficients and Bl are basis functions that can either be
a constant, a hinge function, or the product of two or more hinge functions.
Pairs of hinge functions have the form

max{0, c− x} and max{0,x− c}, (1.8)

where c denotes the so-called knot.

CHAPTER 1. INTRODUCTION 9

The MARS model is built in two stages, namely a forward and a backward
pass. In the forward pass pairs of basis functions are repeatedly added to
the model such that the sum of squared residual errors is reduced as much
as possible. During the backward pass the model is pruned, and at each step
the least effective term is deleted from the model according to the generalized
cross-validation criterion.

1.2.4 Radial Basis Functions

The radial basis function (RBF) models [40, 110] used in this thesis are inter-
polating models. The advantage of RBFs is their ability to model curvature
well. The RBF surrogate model is defined by

sb(x) =

n∑
ι=1

λιφ (‖x− xι‖2) + p(x), (1.9)

where ‖ · ‖2 denotes the Euclidean norm, λ1, λ2, . . . , λn ∈ R are parameters
to be determined, φ : R+ �→ R is a radial basis function. Commonly used
RBFs are summarized in Table 1.1.

Table 1.1: Commonly used RBF models, ρ > 0.

Name φ(d)

Cubic d3

Thin plate spline d2 log d

Gaussian exp
(
−d2

ρ2

)
Multiquadric

√
d2 + ρ2

Inverse-multiquadric (d2 + ρ2)−1/2

p ∈ Pn
d−1, where Pn

d−1 is the space of polynomials in k variables and of
total degree at most d − 1. The polynomial tail ensures uniqueness of the
model, and that the model belongs to a linear space that also contains the
polynomial space Pn

d−1 (trivial if d = 0) [149]. In the case of the cubic radial
basis function, for example, p(x) = bTx + a with b ∈ R

k, and a ∈ R. The
unknown parameters λ1, . . . , λn, b and a are obtained by solving the system[

Φ P
PT 0

] [
λ

γ

]
=

[
y
0

]
, (1.10)

CHAPTER 1. INTRODUCTION 10

where

P =

⎡
⎢⎢⎢⎣
x1

T 1
x2

T 1
...

...
xn

T 1

⎤
⎥⎥⎥⎦ , λ =

⎡
⎢⎢⎢⎣
λ1
λ2
...
λn

⎤
⎥⎥⎥⎦ , γ =

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
...
bk
a

⎤
⎥⎥⎥⎥⎥⎦ , (1.11)

and Φιν = φ(‖xι − xν‖2), ι, ν = 1, . . . , n, and 0 is a matrix with all entries
0 of appropriate dimension. If rank(P) = k + 1, then the matrix in equa-
tion (1.10) is nonsingular, and the system (1.10) has a unique solution [110].
Therefore, it is possible to obtain a unique radial basis function interpolant
for the true function f .

Several algorithms using radial basis function models have been devel-
oped [18, 19, 57, 64, 118, 119, 120, 121, 122, 124, 149]. Li et al. [84] used
radial basis function surrogate models for optimizing their injection mold-
ing process, and an improved expected improvement criterion has been used
for guiding the search for promising points in the variable domain. RBFs
have also been used by Regis and Shoemaker [119] for solving a groundwa-
ter bioremediation application problem, and by Regis [118] to solve a large
dimensional problem from the automotive industry.

1.2.5 Kriging

Kriging is an interpolating surrogate model and incorporates a stochastic
component that may be exploited by global optimization algorithms [74].
Kriging was introduced by Matheron [92], and has been used in numerical
experiments for example by Currin et al. [32] and Jones et al. [74].

Kriging models consist of two components. The first component is some
simple model that captures the trend in the data, and the second component
measures the deviation between the simple model and the true function.
Define the sample site matrix S = (x1, . . . ,xn)

T . The data is shifted and
scaled such that the mean over every column in S and the mean of the
objective function values in y equal zero, and that the variances equal 1 [88].

A model sk is built as a realization of a regression model F and a random
function z in order to express the deterministic response y for the input vector
x̃ ∈ Ω, where Ω denotes the variable domain. The model can be written as

sk(x̃) = F(ψ, x̃) + z(x̃), (1.12)

CHAPTER 1. INTRODUCTION 11

where the regression model F is a linear combination of q functions ϕj :
R

k �→ R, j = 1, . . . , q,

F(ψ, x̃) = ψ1ϕ1(x̃) + ψ2ϕ2(x̃) + . . .+ ψqϕq(x̃), (1.13)

and can be written in matrix notation as

F(ψ, x̃) = ϕ(x̃)Tψ, (1.14)

where ϕ(x̃) = (ϕ1(x̃), . . . , ϕq(x̃))
T is the vector of functions, and ψ =

(ψ1, . . . , ψq)
T is the vector of regression parameters. The random process

z is assumed to have zero mean, and covariance

V [z(w), z(x̃)] = σ2R(θ,w, x̃) (1.15)

between z(w) and z(x̃). Here σ2 is the process variance and R(θ,w, x̃)
is the correlation model depending on the parameters θ that have to be
optimized.

The Matlab toolbox DACE [88] allows the choice of different correlation
functions (Table 1.2) and regression polynomials (Table 1.3). The param-
eters θ are optimized with a modified version of the Hooke-Jeeves pattern
search method. The considered correlations are products of stationary,
one-dimensional correlations:

R(θ,w, x̃) =

k∏
i=1

Ri(θi, wi − x̃i).

Table 1.2: Correlation functions of the Matlab toolbox DACE.

Name Ri(θi, di), di = wi − x̃i

Exponential exp(−θi|di|)
General exponential exp(−θi|di|θn+1), 0 < θn+1 ≤ 2
Gaussian exp(−θid

2
i)

Linear max{0, 1− θi|di|}
Spherical 1− 1.5ξi + 0.5ξ3i , ξi = min{1, θi|di|}
Cubic 1− 3ξ2i + 2ξ3i , ξi = min{1, θi|di|}

1− 15ξ2i + 30ξ3i for 0 ≤ ξi ≤ 0.2
Spline (ξi = θi|di|) 1.25(1− ξi)

3 for 0.2 < ξi < 1
0 for ξi ≥ 1

CHAPTER 1. INTRODUCTION 12

Table 1.3: Regression models of the Matlab toolbox DACE.

Type Functions

Constant, q = 1 ϕ1(x̃) = 1
Linear, q = k + 1 ϕ1(x̃) = 1, ϕ2(x̃) = x̃1, . . . , ϕk+1(x̃) = x̃k
Quadratic, q = 1

2
(k + 1)(k + 2) ϕ1(x̃) = 1,

ϕ2(x̃) = x̃1, . . . , ϕk+1(x̃) = x̃k,
ϕk+2(x̃) = x̃21, . . . , ϕ2k+1(x̃) = x̃1x̃k,
ϕ2k+2(x̃) = x̃22, . . . , ϕ3k = x̃2x̃k,
. . . ϕq(x̃) = x̃2k

Denote by F = (ϕ(x1), . . . ,ϕ(xn))
T the n × q design matrix with entries

Fιj = ϕj(xι), ι = 1, . . . , n, j = 1, . . . , q. Let R be the matrix of stochastic
process correlations between the z’s at the design sites,

Rιν = R(θ,xι,xν), ι, ν = 1, . . . , n.

At the unsampled point x̃ the vector of correlations between the z’s at the
design sites xι, ι = 1, . . . , n, and x̃ is given by

r(x̃) = (R(θ,x1, x̃), . . . ,R(θ,xn, x̃))
T .

It can be shown that for the prediction sk(x̃) it holds that

sk(x̃) = ϕ(x̃)Tψ∗ + r(x̃)Tγ∗,

where ψ∗ is the generalized least squares solution to

Fψ = y,

and thus

ψ∗ = (FTR−1F)−1FTR−1y

γ∗ = R−1(y − Fψ∗),

where R and FTR−1F are nonsingular. Thus, ϕ(x̃)Tψ∗ can be interpreted as
an approximation of F(ψ, x̃), and r(x̃)Tγ∗ as some average approximation
of z(x̃).

Kriging models have been used for solving global optimization problems by
Horowitz et al. [65], for example, who developed a parallel version of Jones’
efficient global optimization (EGO) algorithm [74], and used it to optimize

CHAPTER 1. INTRODUCTION 13

a polymer injection strategy. The book by Forrester et al. [48] is a very
thorough introduction to engineering design using surrogate models and fea-
tures several application examples from engineering disciplines. Moreover,
the accompanying Matlab codes are freely available online. Glaz et al. [52]
studied the influence of different surrogate models on the solution to an op-
timization problem about the design of helicopter rotor blades with the goal
of vibration reduction. Polynomial regression surrogates, RBFs, and krig-
ing have been compared, and kriging was found to be the best model for
this type of problem. Kriging has also been used by Jouhaud et al. [75] for
solving a multidisciplinary shape optimization problem of a subsonic airfoil.
Lam et al. [81] used the kriging model to solve an aerostructural design op-
timization problem. Morgans et al. [96] developed a kriging based algorithm
for optimizing the shape of their horn-loaded loudspeakers. Yang et al. [155]
used kriging for solving a frontal impact design optimization problem.

1.3 Contribution and Organization

In this section the content of the individual chapters is briefly summarized
and the main contributions outlined. The goal in Chapters 2 and 3 is to
develop mixture surrogate model algorithms in order to answer the question

Which surrogate model should be used for a given problem?

The developed algorithms SO-M, SO-M-s, and SO-M-c use Dempster-Shafer
theory to determine the influence each individual model should have in the
mixture. In Chapter 3 various sampling strategies and mixture models are
compared in a numerical study to the efficient global optimization algorithm
(EGO) by Jones et al. [74] and to Gutmann’s RBF method [57].

In Chapters 4 and 5 the question

Can surrogate models be used to efficiently find good approximations of
global optima of problems where integrality constraints are imposed on some

or all variables?

is addressed. This is an important topic since many application problems
have both continuous and discrete variables, but this has barely been studied
in the literature. The algorithms SO-MI for mixed-integer problems and
SO-I for purely integer problems have been developed in order to answer the
question. Both algorithms deal with computationally expensive constraints
by using a penalty approach.

CHAPTER 1. INTRODUCTION 14

In Chapter 6 the question

How can the agricultural land use of an upstate New York watershed be
managed to reduce the phosphorus runoff at minimal cost?

has been studied. In this real world application problem all variables are
discrete, and the problem has one constraint whose value is obtained from
the same computationally expensive simulation as the objective function
value. The algorithm SO-I has been extended to the algorithm SO-Ic that
treats the constraint directly by using a response surface rather than with a
penalty approach.

Finally, Chapter 7 concludes the thesis, and gives possible future research
directions. The Appendices A-D contain information about the test problems
used in the numerical experiments.

1.3.1 Summary of Chapter 2: Algorithm SO-M

When optimizing black-box functions, it is in general a priori unknown
which surrogate model will be the most successful for finding an accurate
solution for a given application problem. While, for example, a kriging
model may perform well for some problem, it might perform poorly on
others. In Chapter 2 an algorithm, SO-M, is developed that tries to answer
the question of which surrogate model should be applied for a given problem
by using mixture surrogate models.

SO-M fits several surrogate models to the sample data. Model characteris-
tics such as correlation coefficients and various error measures are computed
using leave-one-out cross-validation to determine which models are “good”
(high correlation coefficients, low errors) and which models are “bad” (low
correlation coefficients, high errors). A good model should have high influ-
ence on the prediction of a mixture model, whereas models considered bad
should have no or only very little influence. The prediction of a mixture
surrogate model at point x is a weighted sum of the predictions of individual
surrogate models and it is defined by

smix(x) =
∑
r∈M

wrsr(x), where
∑
r∈M

wr = 1, (1.16)

and where wr ≥ 0 is the weight of the rth model in the mixture, M denotes
the set of models in the mixture, and sr(x) is the prediction of the rth
surrogate model at point x. By this definition it is favorable to give large

CHAPTER 1. INTRODUCTION 15

weights, and therefore a high influence, to “good” surrogate models, whereas
“bad” models should have low weights and thus only very low or no influence
on the prediction of the mixture model.

Difficulties arise, however, if a model has, for example, high correlation
coefficients but also large errors as compared to the other models. In this
case it is difficult to decide whether the considered model should get a large
weight because it has high correlation coefficients or a low weight because
it has large errors. This conflicting model information has been treated
by using Dempster-Shafer theory [37, 129], which is a mathematical theory
of evidence that allows the combination of conflicting information from
different sources.

The mixture surrogate model algorithm, SO-M (Surrogate Optimization
- Mixture), has been implemented with various rules for combining
the model information and redistributing possible conflicts (Dempster’s
rule [37], Yager’s rule [154], Inagaki’s rule [70], proportional conflict redis-
tribution [132]). The different algorithm versions have been compared in
numerical experiments on six of the Dixon and Szegö [39] test problems (two
to six dimensions). The results of these numerical experiments show that
the approach of using mixture models is in general very promising, especially
as the problem dimension increases. The mixture model algorithm is able
to explore the variable domain, and for all but one test problem accurate
approximations of the global optima have been found. The material of
Chapter 2 has been published in the Journal of Global Optimization, Vol. 51,
pages 79-104 [98].

1.3.2 Summary of Chapter 3: Algorithms SO-M-s and

SO-M-c

Another major component of surrogate model algorithms is the strategy
for selecting promising points in the variable domain for doing the next
expensive function evaluation. The goal is to sample in the vicinity of points
that have been found to have low objective function values in the hope to
further improve the solution (local search, exploitation). However, since
many problems are multimodal, there is a potential risk of getting stuck in
a local optimum. Thus, a good sampling strategy should be able to escape
from local optima and globally explore the whole variable domain in or-

CHAPTER 1. INTRODUCTION 16

der to find other promising regions where the global optimum may be located.

As briefly outlined in Section 1.2.1, there are various methods that can be
used as sampling strategy. An auxiliary function, such as the bumpiness
measure [57], the expected improvement [74], or the response surface [124],
could be optimized. On the other hand, a random sampling approach [119]
that does not require solving a global optimization subproblem could be
applied. This topic is addressed in Chapter 3. SO-M has been improved
with respect to its efficiency of computing the model characteristics (k̃-fold
cross-validation instead of leave-one-out cross-validation), and two sampling
strategies have been examined, namely a stochastic approach similar to
the one by Regis and Shoemaker [119] (algorithm SO-M-c (Surrogate
Optimization - Mixture - candidate sampling)), and an approach that
uses the minimum of the response surface (algorithm SO-M-s (Surrogate
Optimization - Mixture - surface minimum)).

SO-M-c and SO-M-s are used with various mixture surrogate models in
order to examine the influence of specific models on the mixture. The
algorithms are compared to EGO [74] and Gutmann’s RBF method [57] on
a wide range of literature test problems with up to 30 dimensions and two
application problems. One application deals with groundwater bioremedia-
tion [158] where the goal is to determine a pumping strategy for cleaning up
contaminated groundwater at minimal costs. The other application problem
deals with energy generation using tethered kites [8, 22, 45, 67] where the
design variables represent parameters for controlling the kite such that
the net power produced is maximized. Both application problems involve
differential equations.

The results show that there is no algorithm that performs best for all test
problems (No Free Lunch theorem [151]), but comparing the performance
of the algorithms after an equal number of function evaluations showed that
SO-M-c performs on average better for problems of dimension 12 and larger,
whereas SO-M-s performs better for low-dimensional problems. Gutmann’s
method performs in general worst, and EGO’s performance varied between
problem classes. The study showed, however, also that independent of the
sampling strategy it is advisable to use mixture surrogate models rather than
individual models. If it is not known beforehand which model will perform
best, mixture models help to prevent selecting the worst model. Moreover,
mixtures containing RBF models were found to perform in general well,
whereas using only a polynomial model should be avoided.

CHAPTER 1. INTRODUCTION 17

Within the scope of this study a Matlab toolbox that allows the user to
choose between different initial experimental design strategies, (mixture)
surrogate models, and sampling strategies has been developed, and is
freely available upon request from the author or on Matlab File Exchange
(“Surrogate Model Optimization Toolbox”, File ID #38530).

The material of Chapter 3 has been presented at the Global Optimization
Workshop 2012 in Natal, Brazil [100].

1.3.3 Summary of Chapter 4: Algorithm SO-MI

The algorithms in Chapters 2 and 3 have been developed for black-box
optimization problems with box-constraints and continuous variables
only. In many application problems, such as engineering design opti-
mization or reliability engineering, also integer variables are encoun-
tered [27, 36, 72, 80, 115, 136]. Moreover, application problems often have
black-box constraints whose function values are computed within the same
simulation model as the objective function. For example, when designing a
truss structure the goal may be to determine the length (continuous vari-
ables) and the cross sectional area (discrete variables) of each truss member
such that the total structural weight is minimized and constraints on nodal
displacements and stresses are satisfied. Computing displacements and
stresses requires a finite element analysis, which becomes computationally
expensive as the number of truss members increases [36, 72, 115, 126, 136].

Although surrogate model based algorithms have been used extensively to
solve continuous optimization problems, only very few papers deal with
mixed-integer problems [14, 33, 60, 64, 87, 116]. A new algorithm, SO-MI
(Surrogate Optimization - Mixed Integer), is introduced in Chapter 4
and is meant to extend the research in the area of mixed-integer global
optimization where the objective function is computationally expensive to
evaluate, and where black-box constraints may be present.

SO-MI uses a cubic radial basis function interpolant as surrogate model and a
stochastic sampling strategy. Algorithms developed so far for mixed-integer
global optimization problems with computationally expensive objective
functions solve optimization subproblems on the computationally cheap
response surface. The required MINLP solvers used in these subroutines
may however become a computational burden as the number of variables
increases. Thus, an alteration of the candidate point approach for continuous

CHAPTER 1. INTRODUCTION 18

variables has been used and avoids solving an optimization subproblem. In
every iteration four groups of candidates are generated, and from each group
the best point is selected for doing the expensive objective (and constraint)
function evaluation in parallel. Note that although some variables have to
be integers, all variables are assumed to be continuous in order to obtain
a smooth response surface. The candidate points, and therefore also the
sample points, are, however, generated such that the integrality constraints
are satisfied. Computationally expensive constraints are treated with a
penalty approach where the penalty factor is adjusted dynamically during
the optimization process. It can be shown that SO-MI converges to the
global optimum almost surely.

The performance of SO-MI has been compared in numerical experi-
ments to NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct
Search) [2, 3, 4] and to two commonly used algorithms for solving mixed-
integer problems, namely a genetic algorithm and a branch and bound
method. An extensive study comparing NOMAD for mixed-integer prob-
lems with other derivative-free algorithms has not been done yet in the
literature. Sixteen literature test problems and five instances of two types
of application problems have been used in the numerical experiments.
One type of application problem arises in structural optimization (two
truss structures have been optimized), and the other application area is
reliability design, where three reliability-redundancy allocation problems
have been examined. The results show that SO-MI outperforms the other
algorithms for most literature test problems and all application problems.
Also NOMAD performs very well compared to the genetic algorithm and
branch and bound, but is often outperformed by SO-MI.

The content of Chapter 4 has with minor changes been accepted for
publication in the journal Computers & Operations Research [99].

1.3.4 Summary of Chapter 5: Algorithm SO-I

Computationally expensive optimization problems with only integer vari-
ables are considered in Chapter 5. This type of problems is encountered in
many application areas. For example, in structural optimization there are
problems where the locations of the truss nodes are fixed, and only the cross
sectional areas or wall thicknesses of the members have to be determined.
Similarly, in reliability engineering, purely discrete optimization problems
arise when the system reliability is increased only by adding redundancy

CHAPTER 1. INTRODUCTION 19

rather than increasing also the reliability of individual components (redun-
dancy allocation problems) [80, Chapters 3-5]. Furthermore, throughput
maximization problems are often integer problems [108]. These applica-
tions are encountered, for example, in production planning and facility
layout [51, 134], but also in the design of networks-on-chip routers [69].
Another purely integer optimization problem arises in hydropower energy
generation [24, 85] where several turbines of different efficiencies are installed
in a hydropower plant, and the question is how many turbines of the same
kind should be in use to maximize the total generated power given a certain
amount of water that can be released from the reservoir.

The SO-MI algorithm introduced in Chapter 4 has been further developed
to solve purely integer problems. The algorithm SO-MI has been changed in
two major aspects. A first optimization phase has been introduced in which
the new algorithm, SO-I (Surrogate Optimization - Integer), minimizes a
constraint violation function in order to find a first feasible point. Thus, in
contrast to SO-MI, SO-I does not require an initially given feasible point.
Secondly, the generation of candidate points has been adapted for purely
integer problems. Candidate points are generated by perturbing the best
point found so far with integer increments, and by uniformly selecting
integer points from the whole box-constrained variable domain. Scoring
criteria are used to select the one best candidate point in every iteration.
Black-box constraints, if present, are treated with a penalty approach that
works similarly to a barrier method.

The efficiency of SO-I has been compared in numerical experiments to a
genetic algorithm, a branch and bound algorithm for nonlinear problems,
and NOMAD on 17 generic test problems with a wide variety of character-
istics, two throughput maximization problem instances, and six hydropower
generation application problems. SO-I performed significantly better than
all other algorithms for almost all test problems. Only NOMAD was able to
find better solutions for four test problems, and branch and bound performed
better for two problems with linear objective functions where optimizing the
relaxed subproblem in the tree nodes directly led to an integer feasible solu-
tion which was also the globally optimal solution. The convergence of SO-I
follows from a simple counting argument since the cardinality of the box-
constrained variable domain is finite and no point is sampled more than once.

In the numerical experiments a major drawback of using branch and bound
for black-box problems has been encountered when trying to solve the
application problems. The throughput maximization simulation code failed

CHAPTER 1. INTRODUCTION 20

when variables assumed continuous values as is the case when optimizing
the relaxed subproblems in the tree nodes of branch and bound in order to
compute lower bounds for the objective function value. Also the hydropower
generation simulation failed to compute an objective function value when
some integer variable setting did not allow a feasible solution with respect to
the total allowed water outflow from the reservoir. In contrast to the other
algorithms, branch and bound cannot deal with such “missing” objective
function values, and hence fails finding a solution. Moreover, if the relaxed
subproblems are multimodal, there is no guarantee that the lower bounds
computed by branch and bound (if possible) are valid. Therefore, pruning
decisions may be wrong if the lower bounds are not derived from the global
minimum of the relaxed subproblem.

1.3.5 Summary of Chapter 6: Algorithm SO-Ic

An application problem arising in the agricultural land use management
of the Cannonsville reservoir watershed in upstate New York is considered
in Chapter 6. The problem is to determine the optimal locations of land
conversion (or land retirement) in order to reduce the amount of total
phosphorus runoff in the watershed. Land conversion is a best management
practice (BMP) employed in watersheds that drain to bodies of water
that are particularly sensitive to agricultural runoff. This particular BMP
involves contracts between government agencies and local land owners to
remove certain land from crop production. In exchange for retiring the
land from crop production, the government agencies agree to provide some
percentage of setup costs, and yearly rental and maintenance payments.
Since the cost of these projects can be quite high, the goal is to minimize
the total conversion costs while keeping the total phosphorus runoff below a
given threshold. The total conversion costs and phosphorus runoff must be
computed with a highly nonlinear and computationally expensive simulation
model that has been supplied by Joshua Woodbury from Cornell University.

The algorithm SO-I described in Chapter 5 has been further developed
with respect to the constraint handling to solve this particular applica-
tion problem. The algorithm, SO-Ic (Surrogate Optimization - Integer
constraints), uses a cubic radial basis function interpolant as surrogate
model for approximating the objective and the constraint function. In the
first optimization phase the response surface of the constraint is used for
minimizing the computationally expensive phosphorus constraint in order to
find a first feasible solution. In the second optimization phase the response

CHAPTER 1. INTRODUCTION 21

surface for the constraint is used to discard infeasible-predicted candidate
points, and thus it is more likely that points chosen for the computationally
expensive simulations are feasible.

The performance of SO-Ic on this application problem has been compared
to NOMAD, a genetic algorithm, and the discrete dynamically dimensioned
search (discrete-DDS) algorithm [140]. Branch and bound could not be used
for this application problem because the code for evaluating the objective
and constraint function fails if the input variable vector contains continuous
variables, which is the case whenever branch and bound tries to optimize
a relaxed subproblem to compute lower bounds for the objective function
value. The numerical experiments on three problem instances with different
upper bounds for the allowable phosphorus content in the water showed
that SO-Ic achieves significantly better results than the other algorithms.
SO-Ic also has the lowest mean standard errors, which indicates that SO-Ic
is a rather robust algorithm. NOMAD performed comparatively poorly
on all problem instances, and was not able to find a feasible solution for
several trials. The numerical experiments also showed that the cost increase
does not behave linearly with the phosphorus reduction goals. Increasing
the phosphorus reduction goal from 20% to 40% of the base case invokes
significantly fewer additional costs than increasing the reduction goal from
40% to 60%.

The material of Chapter 6 is joint work with Joshua Woodbury from Cornell
University who kindly provided the description of the problem and the cost
benefit analysis.

Chapter 2

SO-M: A Mixture Surrogate
Model Algorithm for Global
Optimization Problems Using
Dempster-Shafer Theory

Abstract

Research in algorithms for solving computationally expensive global opti-
mization problems using surrogate models has shown that it is in general not
possible to use the same type of surrogate model for solving different kinds of
problems. While a radial basis function model may be the most suitable for
some problems, for others the best results may be obtained with a polynomial
regression model. In this chapter the approach of applying Dempster-Shafer
theory to surrogate model selection and their combination is introduced.
Cross-validation is used to compute various model characteristics, and, for
dealing with conflicting characteristics, different conflict redistribution rules
have been examined with respect to their influence on the results in numerical
experiments. Furthermore, the effect of the surrogate model type, i.e. using
mixture models, single models or a hybrid of both, has been studied. The
various versions of the algorithm, SO-M, are compared on six well-known
global optimization test problems from the Dixon and Szegö [39] test bench.
The results indicate that SO-M is able to thoroughly explore the variable do-
main for all problems, and the vicinities of global optima could be detected.
The global minima could except for one test problem be approximated with
high accuracy within 150 or fewer function evaluations.

22

CHAPTER 2. SO-M 23

Abbreviations and Nomenclature

ARS Accelerated random search
BPA Basic Probability Assignment
BetP Pignistic probability
CC Correlation coefficient
D Dempster’s rule
DST Dempster-Shafer Theory
I Inagaki’s rule
K Kriging model
M, MARS Multivariate adaptive regression spline
MAD Median absolute deviation
MAE Maximum absolute error
P Polynomial regression model
PCR Proportional conflict redistribution rule
R, RBF Radial basis function surrogate model
RMSE Root mean squared error
SO-M Surrogate Optimization - Mixture
Y Yager’s rule

f(·) Objective function, see equation (2.1a)
x Continuous variable vector
xT Transpose of x
R Real numbers
xi ith continuous variable, i = 1, . . . , k, see equation (2.1c)
xli, x

u
i Lower and upper bound for ith continuous variable, see equa-

tion (2.1b)
k Problem dimension, see equation (2.1c)
Ω Variable domain
smix Mixture surrogate model, see equation (2.2)
wr Weight for the rth surrogate model in the mixture, r ∈ M,

see equation (2.2)
M Set of models contributing to the mixture, see equation (2.2)
sr rth surrogate model in the mixture, r ∈ M, see equation (2.2)
smin Minimum of the response surface
fmax, fmin Maximal and minimal objective function values found so far

CHAPTER 2. SO-M 24

2.1 Introduction

In this chapter box-constrained global optimization problems of the following
form are considered:

minimize f(x) (2.1a)

s.t. −∞ < xli ≤ xi ≤ xui <∞, (2.1b)

xi ∈ R, i = 1, 2, . . . , k. (2.1c)

It is assumed that evaluating the objective function f(x) requires a time
consuming simulation model, and thus a good approximation of the global
minimum should be found within as few function evaluations as possible.
Moreover, the algebraic form of f(x) is unknown (black-box). In many
applications f(x) is multimodal, and therefore an algorithm that is able to
search locally as well as globally is needed. The box-constrained variable
domain defined in equation (2.1b) will in the following be denoted by Ω ⊂ R

k.

As stated in Chapter 1, surrogate models have been developed in order
to reduce the necessary number of costly simulations while searching for
the global minimum [52, 75, 84, 86, 114, 155]. Surrogate models have for
example been used by Glaz et al. [52] during the optimization of helicopter
rotor blades, and also by Queipo et al. [114] who optimized a liquid-rocket
injector with respect to multiple objectives. Efficient global optimization
(EGO) has been applied by Morgans et al. [96] in order to optimize the
shape of horn-loaded loudspeakers. Surrogate models have also been used in
automotive design (see, for example, [86, 155, 163]).

However, as shown for example by Goel et al. [53] and Viana and Haftka [144],
one surrogate model does not suit all kinds of problems, i.e. a certain surro-
gate model might perform very well for some problems, but poorly for others.
If it is not known beforehand which surrogate model is the most suitable for
the problem at hand, different models would have to be tried in order to
find the most effective one. This approach is, however, not feasible due to
restrictions on the computation time. Thus, the challenge is to either some-
how determine the best surrogate model, or to adjust the influence of single
surrogate models in mixtures such that good models have higher influence
than bad models in order to obtain the best results. The prediction smix(x)
of such a mixture surrogate model can in general be represented as

smix(x) =
∑
r∈M

wrsr(x), where
∑
r∈M

wr = 1, (2.2)

CHAPTER 2. SO-M 25

and where sr(x) denotes the prediction of the rth contributing model,
wr ≥ 0 is the corresponding weight, and M is the set of surrogate models in
the mixture.

Goel et al. [53] suggested different approaches for determining the weights
of models in combinations. However, only one of the approaches allows
emphasizing and restricting the influence of good and bad model character-
istics, respectively. Moreover, in this approach parameters must be adjusted,
which is in general a difficult task. Viana and Haftka [144] also considered
mixture surrogate models and suggested the optimization of an auxiliary
function in order to obtain an approximation matrix. This matrix is in
turn used for determining the model weights, but it can lead to negative
weights and weights larger than one, and thus results may become inaccurate.

In order to overcome the mentioned problems the choice and combination
of surrogate models using Dempster-Shafer theory (DST) [37, 129] is
introduced in this chapter. DST is a mathematical theory of evidence that
provides means of combining information from different sources in order to
construct a degree of belief. The theory allows the combination of imprecise
and uncertain pieces of information that may even be conflicting. So-called
basic probability assignments (BPA) contain information about certain
hypotheses (focal elements1), and are combined to calculate the credibility
of a given hypothesis. Three functions are usually associated with BPAs,
namely the belief, plausibility, and pignistic probability (BetP) function.

In terms of surrogate models the BPAs can be derived, for example, from
model characteristics such as correlation coefficients and various error mea-
sures. It is possible that one surrogate model has conflicting characteristics,
i.e. good (e.g., high correlation coefficients, or low errors) and bad (e.g.,
high errors, or low correlation coefficients) characteristics simultaneously.
This conflict must be taken into account when calculating the belief value
for a given model. Several rules have been developed in the literature for
dealing with such conflicting information. Dempster’s rule of combination
redistributes the conflict among all focal elements, regardless of which
elements caused the conflict. However, as shown by Zadeh [161], the results
of this approach may be counter-intuitive. Fairer conflict redistribution
rules have been developed. The conflict can be assigned to the set reflecting
complete ignorance [154] (Yager’s rule), or one may apply the proportional

1Here a hypothesis would be, for example, “A mixture of RBF and MARS should be
chosen”.

CHAPTER 2. SO-M 26

conflict redistribution (PCR) rules [132] to redistribute the conflict among
those focal elements that actually cause the conflict. The disadvantage of
the latter approach is, however, the computational complexity that increases
with the number of information sources. Inagaki [70] proposed a general
parametric formulation for the redistribution of the conflict.

The goal of this chapter is to develop a surrogate model algorithm that
uses Dempster-Shafer theory for choosing among different surrogate models
the most suitable one for a given optimization problem and for finding the
weights of single models contributing to mixture models as defined in equa-
tion (2.2). The considered surrogate models (polynomial regression models,
MARS, RBF, kriging) have already been described in Section 1.2. Since it
is in general unknown whether mixture models will be more successful than
single models, the following alternative strategies are examined:

1. using the best mixture model for the first optimization steps, then
switching to using always the best single surrogate model,

2. using only the best mixture model,

3. using only the best single surrogate model.

The remainder of this chapter is structured as follows. The algorithm SO-M
(Surrogate Optimization - Mixture) using DST is described in Section 2.2.
The results of the numerical experiments on a subset of problems from the
Dixon and Szegö [39] test bench are discussed in Section 2.3. The algebraic
description of the examined test problems is given in Appendix A. Conclu-
sions are drawn in Section 2.4.

2.2 SO-M: Mixture Surrogate Model Algo-

rithm

SO-M starts by generating an experimental design using Latin hyper-
cube sampling that maximizes the minimum distance between the design
points. The minimum number of initial sample sites is problem dependent.
In general, at least k + 1, where k is the problem dimension, initial
design sites are required for building the surrogate models. However,
since in a later stage leave-one-out cross-validation is used to assess the
accuracy of the models, at least one additional initial sample site is
required. Thus, if, for example, a two dimensional problem is considered,

CHAPTER 2. SO-M 27

at least k+2 = 4 sample points are needed in the initial experimental design.

Given the k + 2 sample sites, the expensive function values have to be
computed. Next, model characteristics are computed by leave-one-out cross-
validation. One sample site is left out from the experimental design, and the
remaining sample sites and their corresponding function values are used to
build the surrogate model, which is then used to re-predict the function value
at the sample site that was left out. This is done for every surrogate model
and every sample site, and thus for every sample site a prediction from every
model is obtained. Since it is assumed that the objective function is black-
box, it is unknown in which region of the variable domain the global optimum
will be found. Hence, the goal is to determine which surrogate model fits all
the data obtained so far best, and therefore not to influence the global search.

Correlation coefficients (CC), root mean squared errors (RMSE), maximal
absolute errors (MAE), and median absolute deviation (MAD) have been
chosen as model characteristics in SO-M. The number and type of model
characteristics can of course be tailored to specific application problems.
Correlation coefficients reflect how well the surrogate models capture the
behavior of the true objective function. High correlation coefficients (values
close to 1) indicate that the surrogate model is able to predict high values
where the true objective function attains high values, and that the surrogate
model predicts low values where the objective function attains low values.
Error measures should in general be low and indicate how accurate the
predictions of the surrogate models are. The model characteristics are
calculated for every surrogate model based on the true and the re-predicted
function values. Characteristics of a good model are high positive CC, and
low RMSE, MAE, and MAD.

After the model characteristics have been calculated BPAs are computed for
every model. For this purpose the model characteristics are scaled so that
the sum over all models for each BPA (CC, RMSE, MAE, MAD) equals one
and the non-negativity conditions of BPAs are satisfied. DST is applied to
determine the pignistic probabilities for each model. Based on these values
it can be decided which one of all considered models is the best, or in case
mixture models are considered, which weight should be assigned to each
contributing model.

CHAPTER 2. SO-M 28

CC, RMSE, MAE, and MAD must also be calculated for each mixture in
order to determine the best mixture model. The goodness values are nor-
malized to obtain the BPAs for each mixture:

mCC
r =

CCr∑
j∈MCCj

, mRMSE
r =

1
RMSEr∑

j∈M
1

RMSEj

,

mMAE
r =

1
MAEr∑

j∈M
1

MAEj

, mMAD
r =

1
MADr∑

j∈M
1

MADj

,

where M is the set of models in the combination, and r is the index of the
rth surrogate model in the combination. Four evidence sets are obtained, i.e.
the models contained in each considered mixture build the focal elements,
and the evidence sets are the BPAs for each model that will in turn be used
in the decision theory.

In order to illustrate the above procedure consider the following example.
Assume the four models described in Section 1.2 are available and denote
the polynomial model by P, the RBF model by R, the kriging model by K,
and the MARS model by M. After cross-validation the scaled characteristics
of the single models are as follows:

mCC
P = 0.29, mCC

R = 0.29, mCC
K = 0.42, mCC

M = 0

mRMSE
P = 0.11, mRMSE

R = 0.24, mRMSE
K = 0.25, mRMSE

M = 0.40,

mMAE
P = 0.10, mMAE

R = 0.24, mMAE
K = 0.25, mMAE

M = 0.41,

mMAD
P = 0.17, mMAD

R = 0.27, mMAD
K = 0.26, mMAD

M = 0.30.

After applying DST the pignistic probabilities of the models are

BetP(P) = 0.05, BetP(R) = 0.40, BetP(K) = 0.55, BetP(M) = 0,

and thus, if a single model was to be used in the next step, the kriging model
would be chosen because it has the highest pignistic probability. If, however,
a mixture model is required, the given pignistic probabilities are used for
calculating the weights of the contributing models. Assume that models P
and R are supposed to be combined. Then the weights for both models are

wp =
BetP(P)

BetP(P) + BetP(R)
=

1

9
, wb =

BetP(R)

BetP(P) + BetP(R)
=

8

9
, (2.3)

where wp is the weight for the polynomial model, and wb is the weight for the
RBF model, respectively. Thus wp + wb = 1, and these weights are used in
the computation of the mixture model prediction according to equation (2.2):

smix(x) = wpsp(x) + wbsb(x) =
1

9
sp(x) +

8

9
sb(x),

CHAPTER 2. SO-M 29

where sp(x) and sb(x) are the predictions of the polynomial and RBF model
at the point x, respectively.

In the algorithm every possible (one-,) two-, three- and four-model mixture
is considered, and therefore the focal elements are {P}, {R}, {K}, and {M}
for the single models, {P,R}, {P,K}, {P,M}, {R,K}, {R,M}, and {K,M} for
the two-model combinations, {P,R,K}, {P,R,M}, {P,K,M}, and {R,K,M}
for the three-model combinations, and {P,R,K,M} for the four-model
combination. In case of mixture models BPAs must be calculated based on
the cross-validation characteristics of the corresponding mixture.

In the next step, one of the conflict redistribution rules mentioned in Sec-
tion 2.1 is applied, i.e. the evidences are combined, and for each mixture and
single model the corresponding belief, plausibility, and pignistic probability
are calculated. Then the (mixture) model with the highest plausibility value
is chosen as the new response surface2.

Next a new sample site must be chosen. The algorithm must guarantee a
thorough local as well as global search, i.e. the algorithm must be able to
find and explore promising valleys of the objective function, but it must
also be prevented from getting stuck in a local optimum. The difficulty is
to decide when to switch from the local search to global search and vice versa.

If local minima of the single surrogate models contributing to the mixture
are very distant from each other, it might be an indication that there are
several regions in the variable domain where local and global optima of the
true objective function could be located, and thus sampling at these points
may be favorable. However, if the local minima are close together, this
approach may lead to a very local search.

In order to prevent the algorithm from excessively sampling in the vicinity
of the current best point it is necessary to force the search away from regions
where already many samples have been taken. For this purpose the distances
dmin of every newly added sample site to the set of already sampled points
are recorded, and in case a certain number of sample sites closer to each
other than some predefined threshold distance d∗ is exceeded, the algorithm
must be prevented from adding more points in this already densely sampled
region. The smaller the number of allowed close points is, the more global

2Note that the combination of all models, i.e. the universal set, always has plausibility
and belief values of one, and must thus be considered separately.

CHAPTER 2. SO-M 30

the search becomes. On the other hand, increasing the maximal allowed
number of close samples leads to a longer local search. Similarly, the smaller
the threshold distance d∗, the more thorough the local search becomes.

The sample sites where the true function has already been evaluated are
clustered according to a k′-means algorithm [89], where the number of
clusters k′ is determined dynamically. If a large cluster has been found,
a densely-sampled area is defined based on the cluster’s content. Denote
Xcl = (xcl,1,xcl,2, . . . ,xcl,l)

T the matrix of sample sites contained in the
considered cluster cl, where xcl,ι′ are column vectors. Lower bounds
min {Xcl (:, i1)} and upper bounds max {Xcl(:, i1)} are defined for the vari-
ables i1 ∈ {1, 2, . . . , l} that are closest to each other3, and thus determine
the boundary of the densely-sampled area. Note that these bounds do not
exist for all variables, which is important especially when problems with
very long and steep valleys are considered. In such cases it is of advantage
to not define bounds on all variables.

When searching for new prospective regions that may contain local or global
optima a target value strategy similar to the one proposed by Holmström
et al. [64] is applied. A vector T = smin − α (fmax − fmin) represents
desired objective function values, where α is a vector of non-negative scalars
(see [64]). smin stands for the minimum of the response surface, and fmin and
fmax denote, respectively, the minimal and maximal objective function value
obtained so far. An optimization routine is applied in order to minimize the
auxiliary function. To achieve a more global search a penalty term is used
to prevent the search from entering the densely-sampled area. Similarly, in
the local search phase a penalty term is used to prevent the search from
leaving the densely-sampled area. In this way the search can be drawn away
from or restricted to the already thoroughly examined area.

For each target value the point where the minimum has been located is
recorded. These points are clustered into l̃ groups where l̃ can be varied
to increase or decrease the number of desired new sample sites. From each
of the l̃ groups only the representative that reached the lowest value when
optimizing the auxiliary function is chosen as a new sample site. Problems
may potentially arise if the global optimum is inside the densely sampled
region during the global search or outside the densely sampled region during
the local search. This problem is addressed by setting the penalty of a point
that reaches during the optimization of the auxiliary function a significantly

3
Xcl

(:, i1) denotes the i1th column of matrix Xcl
.

CHAPTER 2. SO-M 31

better function value than any other candidate to zero.

Minimizing the auxiliary function requires itself an optimization routine.
Two different approaches have been compared, namely a Hooke-Jeeves
pattern search method and the accelerated random search algorithm de-
scribed by Appel et al. [7]. Simulations showed that while both optimization
routines lead to approximately the same sample sites especially when the
number of sample points is rather low, the ARS algorithm finds much
better solutions than the pattern search when the number of sample points
is larger. An advantage of the pattern search algorithm over ARS is the
lower computation time. However, the solution quality is considered more
important. Also if a single function evaluation is computationally expensive,
the additional time required by ARS is negligible.

For the accelerated random search approach J different starting solutions are
uniformly selected from the parameter domain scaled to Ω̃ = [0, 1]k. The op-
timization is executed similarly to the description by Appel et al. [7]. Let ‖·‖
denote the sup-norm on Ω̃, and denote by B(x, τ) = {χ ∈ Ω̃ : ‖x−χ‖ ≤ τ}
the closed ball centered at x with radius τ . With given contraction factor
γ > 1 and precision threshold ρ > 0, the following steps are executed:

Algorithm 2 Accelerated Random Search

1. Set iteration counter n = 1, radius τ1,1 = τ1,2 = . . . = τ1,J = 1 and
generate random vectors x1,1, . . . ,x1,J from a uniform distribution on
Ω̃.

2. Given xn,1, . . . ,xn,J ∈ Ω̃ and τn,1, . . . , τn,J ∈ (0, 1], gen-
erate random χn,1, . . . ,χn,J from uniform distributions on
B(xn,1, τn,1), . . . , B(xn,J , τn,J).

3. For all j = 1, . . . , J :

If s(χn,j) < s(xn,j), let xn+1,j = χn,j and τn+1,j = 1.

Otherwise, let xn+1,j = xn,j and τn+1,j = τn,j/γ.

If τn+1,j < ρ, then τn+1,j = 1.

Increment n := n + 1, and go to Step 2.

Here, s(·) denotes the prediction of the response surface. At the end of the
predefined number of iterations the best of the J results is accepted as the

CHAPTER 2. SO-M 32

new solution and the corresponding point is used as the new sample site.
The ARS approach as described above can be implemented in parallel so as
to execute the calculations for all J starting points simultaneously. Note that
the optimization is done on the response surface, and the computationally
expensive objective function is not evaluated during ARS.

After the new sample sites have been determined, the computationally
expensive objective function is evaluated and the surrogate models are
updated. Cross-validation is used to evaluate the goodness of the models,
and DST is applied to either find the best single model or the weights of the
models in mixtures. The pseudocode of the numerical procedure is given
below.

Algorithm 3 SO-M: Mixture Surrogate Model Algorithm

1. Find an initial set of sample points using a Latin hypercube design, and
evaluate the costly objective function at those points.

2. Leave-one-out cross-validation: sequentially leave out one sample site
and its corresponding function value at a time, and use the remaining
data for fitting different response surfaces. Use every response surface
to re-predict the function value at the point left out when building the
models.

3. Calculate goodness values CC, MAE, RMSE, and MAD between the
true function values and the re-predicted values from Step 2 for each
model.

4. (a) If using the best single model: use the goodness values as evidences
and apply Dempster-Shafer theory to choose the best model.

(b) If using a mixture model: use the goodness values to calculate
weights associated with each single model. Use the weights for
combining models and do leave-one-out cross-validation. For ev-
ery sample site and each mixture model, re-predict the function
value of each point that has been left out when building the mixture
model. Calculate CC, RMSE, MAD, and MAE for each mixture
model, and use the scaled values as evidences. Use Dempster-
Shafer theory to combine the evidences of the mixture models and
choose the best mixture model.

5. Find the new sample site(s) in one of the following ways:

CHAPTER 2. SO-M 33

(a) Local search 1: use the minimum site of the response surface.

(b) Local search 2: define variable domains where already many sam-
ples have been taken (densely-sampled areas, later on referred to as
allowed areas) and apply target value strategy that allows searching
only within these regions.

(c) Global search: define variable domains where already many sam-
ples have been taken (densely-sampled areas, later on referred to as
forbidden areas) and use target value strategy that allows sampling
only outside of these regions.

6. Evaluate the costly objective function at the new sample site(s).

7. Update the response surfaces.

8. Go to Step 2.

The algorithm has been implemented in the following three versions:

• Version 1: Initially the best mixture surrogate model is used in every
iteration. After a predefined number of failed improvement trials (i.e.
new samples that did not improve the current best function value)
the algorithm switches to using only the best single model in every
iteration.

• Version 2: Only the best mixture surrogate model is used in every
iteration.

• Version 3: Only the best single model is used in every iteration.

Initially the algorithm is set to search globally. The criterion described by
Holmström et al. [64] (later on referred to as strategy A) has been used
to determine whether the surface is fluctuating wildly, in which case the
minimum site of the response surface is added as the new sample site.
Otherwise, forbidden areas are defined. Target values are calculated and the
auxiliary function is minimized taking into account possible forbidden areas.

The algorithm stays in the global search phase as long as function value
improvements can be found. If no improvements have been obtained, the al-
gorithm switches to the local search phase where the search for the minimum
of the auxiliary function is restricted to within the allowed areas. For both
search phases it holds that if no restrictions are given for densely-sampled

CHAPTER 2. SO-M 34

regions, the minimum of the auxiliary function is sought over the whole vari-
able domain. Thus, local and global search reach in this case the same results.

Numerical experiments showed that it might also be useful to include the
minimum of the response surface as new sample site even if the surface is
not fluctuating wildly (later on referred to as strategy B). Therefore, also
this approach is examined, and thus three algorithm versions are tested with
two different criteria for adding the minimum site of the response surface.

All sample sites must have a sufficiently large distance to each other, thus
avoiding repeatedly sampling at the same point. In case no such new sample
site can be found, an additional point that maximizes the minimal distance
to all other already sampled points is used as new sample site.

2.3 Numerical Results

This section summarizes the results of the described algorithms for six
commonly used global optimization test problems from the Dixon and
Szegö [39] test suit given in Table 2.1. Although all problems have analytical
descriptions and the locations of the global optima are known, the problems
have been treated as black-boxes in the numerical experiments. The
analytical description, as well as global minima and their locations are
given in Appendix A. In order to average out the dependency on the initial
experimental design and the random component in ARS 20 trials have been
made for each algorithm.

Table 2.1: Test problems for numerical experiments [39].
ID - problem identification, k - problem dimension, LM - local minima,

GM - global minima; see Appendix A for further information.

ID Name k #Local/Global Minima Global minimum

B Branin 2 3 GM, no other LM 0.40
C Camelback 2 2 GM, no other LM -1.03
G Goldstein-Price 2 1 GM, several LM 3.00
H3 Hartmann 3 1GM, 4 LM - 3.86
H6 Hartmann 6 1 GM, 4 LM - 3.32
S10 Shekel 10 4 1 GM, 10 LM -10.54

CHAPTER 2. SO-M 35

The results are presented in the following in tables consisting of three sections
with one section for every algorithm version. The abbreviations in the first
column of each table reflect the rule for redistributing the global conflict, i.e.
D stands for Dempster’s [37], Y for Yager’s [154], I for Inagaki’s [70], and
PCR for the proportional conflict redistribution rule [132]. The numbers 1,
2, and 3, respectively, indicate the usage of algorithm version 1, 2, and 3.
The columns labeled by “min”, “max”, and “mean” denote the minimal,
maximal, and average relative error between the best solution found by the
algorithms and the known global minimum for all 20 trials. The figures
corresponding to each test problem illustrate the distribution of the relative
errors of all 20 trials in the form of box plots. Also every table and figure
consists of parts (a) and (b) that reflect the usage of Holmström’s criterion
(strategy A) for adding the minimum site of the response surface (tables and
figures (a)), and the usage of the second criterion (strategy B) that adds
the minimum of the response surface more frequently (tables and figures (b)).

All algorithm versions were stopped as soon as 150 function evaluations
were reached. The first version consisted of two phases: at first the model
combination was applied until either the current best solution has a relative
error of less than 10%, no improvement has been found within 30 consecutive
function evaluations, or the true function has been evaluated 150 times. If
either of the first two conditions is fulfilled, the algorithm switches to using
the best single model in every iteration until the maximal number of 150
function evaluations has been reached.

In the experiments the following issues were of interest:

1. Did the algorithms find the vicinities of the global minima? If so, did
they find all global minima if more than one existed?

2. Were there significant differences in the results when different conflict
redistribution rules were used? If so, was there one rule that worked
best for all problems?

3. How did the choice of the algorithm version influence the results?

4. How good were the results with respect to relative errors?

5. Did the conflict redistribution rule or the choice of the algorithm version
influence the computation times significantly?

6. Which models were chosen, and if mixture models were used, which
weights were assigned to the contributing models?

CHAPTER 2. SO-M 36

2.3.1 Test Problem B: Branin Function

The results of the algorithms for this problem are summarized in Ta-
bles 2.2(a) and 2.2(b). Every initial experimental design contained four
sample points. The results show that the mean relative errors are lower for
algorithm versions 2 and 3 for both sampling strategies than for algorithm
version 1, indicating that a hybrid of mixture and single surrogate models is
less effective for this test problem.

Figures 2.1(a) and 2.1(b) illustrate the distribution of the relative errors
according to conflict redistribution rule and algorithm version. It can be
seen that, with only few exceptions, the medians of the relative errors are
lower in Figure 2.1(a) than the corresponding values in Figure 2.1(b). The
figures show that the dispersion of the errors is highest whenever algorithm
version 1 was used, which is also indicated by the minimal and maximal
relative errors given in Tables 2.2(a) and 2.2(b). Algorithm version 2
achieved in general the lowest medians for each decision rule. Thus, it can
be concluded that for the Branin test function algorithm version 2 (choosing
in every iteration always the best mixture model) is most effective.

Table 2.2: Branin function. Relative errors for algorithm versions 1-3,
sampling strategies A and B; conflict redistribution rules: D - Dempster,

Y - Yager, I - Inagaki, PCR - proportional conflict redistribution.

(a) Sampling strategy A.

Rule min max mean

D1 0.0010·10−3 0.0844 0.0186
Y1 0.0009·10−3 0.0982 0.0200
I1 0.0015·10−3 0.0775 0.0218
PCR1 0.9781·10−3 0.0808 0.0158

D2 0.1649·10−3 0.0272 0.0044
Y2 0.2017·10−3 0.0216 0.0051
I2 0.0799·10−3 0.0616 0.0054
PCR2 0.0418·10−3 0.0978 0.0155

D3 0.0012·10−3 0.0534 0.0110
Y3 0.0024·10−3 0.0302 0.0060
I3 0.4561·10−3 0.0224 0.0073
PCR3 0.0013·10−3 0.0482 0.0100

(b) Sampling strategy B.

Rule min max mean

D1 0.0033·10−3 0.0482 0.0171
Y1 0.0012·10−3 0.0867 0.0220
I1 0.0010·10−3 0.0865 0.0287
PCR1 0.0010·10−3 0.0460 0.0130

D2 0.0106·10−3 0.0618 0.0088
Y2 0.1355·10−3 0.0511 0.0095
I2 0.0264·10−3 0.0467 0.0124
PCR2 0.1294·10−3 0.0311 0.0055

D3 0.0013·10−3 0.0182 0.0066
Y3 0.0035·10−3 0.0361 0.0095
I3 0.0132·10−3 0.0981 0.0135
PCR3 0.0046·10−3 0.0374 0.0087

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(a
)
S
a
m
p
li
n
g
st
ra
te
g
y
A
.

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(b
)
S
a
m
p
li
n
g
st
ra
te
g
y
B
.

F
ig
u
re

2.
1:

B
ra
n
in

fu
n
ct
io
n
.
D
is
tr
ib
u
ti
on

of
re
la
ti
ve

er
ro
rs

fo
r
al
go
ri
th
m

ve
rs
io
n
s
1-
3,

sa
m
p
li
n
g
st
ra
te
gi
es

A
an

d
B
;

co
n
fl
ic
t
re
d
is
tr
ib
u
ti
on

ru
le
s:

D
-
D
em

p
st
er
,
Y

-
Y
ag
er
,
I
-
In
ag
ak

i,
P
C
R

-
p
ro
p
or
ti
on

al
co
n
fl
ic
t
re
d
is
tr
ib
u
ti
on

.

CHAPTER 2. SO-M 38

Examining the weights of each model when using the mixture model in al-
gorithm version 1 shows that the kriging model has the highest influence on
the response surface. In general all four models contribute at some stage
to the combination, but MARS and the polynomial model have usually the
lowest weights, indicating that these models were considered worst by DST.
After the switch to using in every iteration only the best single model, krig-
ing proved best in almost every iteration. For algorithm version 2 the results
were similar. Kriging obtained the highest weights, while RBF, MARS, and
the polynomial model had the lowest influence. The polynomial model and
RBF had in general about the same weights, while the MARS model had
no major impact. When choosing in every iteration only the best single
model (algorithm version 3), kriging proved best in over 80% of all choices.
MARS and the polynomial model were rarely chosen, and the RBF model
was considered best in about 10% of all cases.

2.3.2 Test Problem C: Camelback Function

The results of the various algorithm versions are summarized in Tables 2.3(a)
and 2.3(b). Initially four sample sites were used in the experimental de-
signs. The results show that algorithm versions 1 and 3 with Inagaki’s
or Yager’s rule have the lowest mean relative errors for both sampling
strategies. The means of the relative errors obtained with algorithm
version 2 are lowest when the PCR rule was used for the conflict redis-
tribution, and these results are similar to those of algorithm versions 1 and 3.

The box plots in Figures 2.2(a) and 2.2(b) show that algorithm version 2 has
the highest dispersions and medians. In general, algorithm version 3 (choos-
ing in every iteration only the best single model as new response surface)
reaches the lowest medians and has the lowest dispersion. Noticeable in
Figure 2.2(b) are the higher number and higher values of outliers compared
to Figure 2.2(a).

The weights of the models contributing to the mixture model in algorithm
version 1 were highest for kriging and RBF, and the influence of the MARS
model was lowest. Similar as for the Branin function, the kriging model is
used in most iterations after the algorithm switched to using only the best
single model. The RBF model was chosen in a few more cases compared to
the Branin function. The weights assigned to the single models in algorithm
version 2 were highest for kriging. RBF and the polynomial model had about

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a
)
S
a
m
p
li
n
g
st
ra
te
g
y
A
.

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b
)
S
a
m
p
li
n
g
st
ra
te
g
y
B
.

F
ig
u
re

2.
2:

C
am

el
b
ac
k
fu
n
ct
io
n
.
D
is
tr
ib
u
ti
on

of
re
la
ti
ve

er
ro
rs

fo
r
al
go
ri
th
m

ve
rs
io
n
s
1-
3,

sa
m
p
li
n
g
st
ra
te
gi
es

A
an

d
B
;
co
n
fl
ic
t
re
d
is
tr
ib
u
ti
on

ru
le
s:

D
-
D
em

p
st
er
,
Y

-
Y
ag
er
,
I
-
In
ag
ak

i,
P
C
R

-
p
ro
p
or
ti
on

al
co
n
fl
ic
t

re
d
is
tr
ib
u
ti
on

.

CHAPTER 2. SO-M 40

Table 2.3: Camelback function. Relative errors for algorithm versions 1-3,
sampling strategies A and B; conflict redistribution rules: D - Dempster,

Y - Yager, I - Inagaki, PCR - proportional conflict redistribution.

(a) Sampling strategy A.

Rule min max mean

D1 0.0019·10−3 0.0298 0.0087
Y1 0.0160·10−3 0.0506 0.0118
I1 0.0015·10−3 0.0234 0.0059
PCR1 0.0412·10−3 0.0239 0.0072

D2 0.0320·10−3 0.1670 0.0317
Y2 1.3031·10−3 0.1762 0.0510
I2 0.1240·10−3 0.1437 0.0372
PCR2 0.0075·10−3 0.0203 0.0069

D3 0.3443·10−3 0.0161 0.0053
Y3 0.0419·10−3 0.0133 0.0040
I3 0.0261·10−3 0.0187 0.0062
PCR3 0.0592·10−3 0.0136 0.0037

(b) Sampling strategy B.

Rule min max mean

D1 0.0080·10−3 0.0238 0.0079
Y1 0.0006·10−3 0.0164 0.0053
I1 0.0073·10−3 0.0276 0.0097
PCR1 1.0333·10−3 0.0411 0.0093

D2 0.6491·10−3 0.2684 0.0298
Y2 0.8045·10−3 0.0937 0.0222
I2 0.6032·10−3 0.2641 0.0359
PCR2 0.0560·10−3 0.0233 0.0055

D3 0.0028·10−3 0.0152 0.0040
Y3 0.0089·10−3 0.0189 0.0038
I3 0.2260·10−3 0.0274 0.0051
PCR3 0.1425·10−3 0.0182 0.0050

the same influence on the mixture, and the MARS model had again the lowest
weights. Also in algorithm version 3 the kriging model was chosen in most
cases. The polynomial and MARS model had in comparison to the other
models the worst characteristics and were thus rarely chosen.

2.3.3 Test Problem G: Goldstein-Price Function

Since the range of the function values is very large for this test problem, the
logarithm of the function values has been used during the calculations. The
experimental design contained initially four sample sites.

The results in Tables 2.4(a) and 2.4(b) show that all algorithm versions
performed about equally well. For algorithm version 1 Inagaki’s rule for
conflict redistribution worked best for sampling strategy A, but worst for
sampling strategy B. Similarly, the best results for algorithm version 2
were achieved with Yager’s rule when sampling strategy A was used,
but this rule gave the second worst result when using sampling strat-
egy B. Only for algorithm version 3 are the best results for both sampling
strategies achieved with the same conflict redistribution rule (Inagaki’s rule).

CHAPTER 2. SO-M 41

The box plots in Figures 2.3(a) and 2.3(b) are rather similar for every
decision rule, but Figure 2.3(b) contains more outliers. The dispersion of
the errors in both figures is about equal. The results suggest that algorithm
version 3 with Inagaki’s conflict redistribution rule should be favored.

Table 2.4: Goldstein-Price function. Relative errors for algorithm
versions 1-3, sampling strategies A and B; conflict redistribution rules:

D - Dempster, Y - Yager, I - Inagaki, PCR - proportional conflict
redistribution.

(a) Sampling strategy A.

Rule min max mean

D1 0.0014 0.1140 0.0345
Y1 0.0058 0.1128 0.0394
I1 0.0012 0.0789 0.0263
PCR1 0.0002 0.1061 0.0277

D2 0.0002 0.1421 0.0415
Y2 0.0002 0.0739 0.0212
I2 0.0006 0.1363 0.0372
PCR2 0.0003 0.1370 0.0301

D3 0.0002 0.0956 0.0214
Y3 0.0002 0.0822 0.0303
I3 0.0002 0.0887 0.0182
PCR3 0.0024 0.1130 0.0312

(b) Sampling strategy B.

Rule min max mean

D1 0.0002 0.2545 0.0393
Y1 0.0011 0.1185 0.0327
I1 0.0001 0.2367 0.0413
PCR1 0.0002 0.1185 0.0349

D2 0.0013 0.0615 0.0219
Y2 0.0002 0.1268 0.0416
I2 0.0002 0.2196 0.0492
PCR2 0.0039 0.3605 0.0555

D3 0.0013 0.0615 0.0219
Y3 0.0001 0.0738 0.0220
I3 0.0002 0.0962 0.0161
PCR3 0.0002 0.0806 0.0181

The weights assigned to the models contributing to the mixture differ from
those obtained for the Branin and the Camelback function. The highest
weights in the mixture model of algorithm version 1 were assigned to the
RBF model. The kriging model had the second highest influence while the
MARS and polynomial model were rather insignificant in most cases. After
the switch to using only the best single model, RBF was chosen in over 90%
of all cases. Also in algorithm version 2 the RBF model had significantly
higher weights than the other models, and the weights of the kriging and
the polynomial model were in many cases about equal. Again, the MARS
model did not contribute much to the response surface, indicating that
is was considered worst by DST. In algorithm version 3 the RBF model
had the best model characteristics and was thus most often chosen as best

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3
00.10.20.30.4

(a
)
S
a
m
p
li
n
g
st
ra
te
g
y
A
.

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3
00.10.20.30.4

(b
)
S
a
m
p
li
n
g
st
ra
te
g
y
B
.

F
ig
u
re

2.
3:

G
ol
d
st
ei
n
-P
ri
ce

fu
n
ct
io
n
.
D
is
tr
ib
u
ti
on

of
re
la
ti
ve

er
ro
rs

fo
r
al
go
ri
th
m

ve
rs
io
n
s
1-
3,

sa
m
p
li
n
g
st
ra
te
gi
es

A
an

d
B
;
co
n
fl
ic
t
re
d
is
tr
ib
u
ti
on

ru
le
s:

D
-
D
em

p
st
er
,
Y

-
Y
ag
er
,
I
-
In
ag
ak

i,
P
C
R

-
p
ro
p
or
ti
on

al
co
n
fl
ic
t

re
d
is
tr
ib
u
ti
on

.

CHAPTER 2. SO-M 43

single model. The polynomial and MARS model had the worst model
characteristics.

2.3.4 Test Problem H3: Three-Dimensional Hartmann

Function

The results of the three versions of the algorithm are shown in Tables 2.5(a)
and 2.5(b). Five points were used in the initial experimental design. The
data shows algorithm version 1 performed in general worse than versions 2
and 3. Sampling strategy A seems to have in general slightly larger relative
errors than strategy B. The differences between the distributions of the
relative errors illustrated in Figures 2.4(a) and 2.4(b) are rather negligible
with respect to dispersion and median values.

Table 2.5: Three-dimensional Hartmann function. Relative errors for
algorithm versions 1-3, sampling strategies A and B; conflict redistribution
rules: D - Dempster, Y - Yager, I - Inagaki, PCR - proportional conflict

redistribution.

(a) Sampling strategy A.

Rule min max mean

D1 0.0002 0.0134 0.0040
Y1 0.0006 0.0171 0.0047
I1 0.0009 0.0109 0.0040
PCR1 0.0001 0.0093 0.0039

D2 0.0001 0.0070 0.0028
Y2 0.0001 0.0091 0.0032
I2 0.0002 0.0058 0.0026
PCR2 0.0001 0.0068 0.0025

D3 0.0001 0.0061 0.0028
Y3 0.0001 0.0054 0.0028
I3 0.0001 0.0116 0.0033
PCR3 0.0001 0.0113 0.0032

(b) Sampling strategy B.

Rule min max mean

D1 0.0002 0.0093 0.0034
Y1 0.0005 0.0121 0.0043
I1 0.0001 0.0106 0.0030
PCR1 0.0005 0.0083 0.0034

D2 0.0001 0.0065 0.0021
Y2 0.0009 0.0129 0.0035
I2 0.0001 0.0096 0.0025
PCR2 0.0004 0.0069 0.0031

D3 0.0005 0.0062 0.0024
Y3 0.0001 0.0054 0.0023
I3 0.0006 0.0059 0.0028
PCR3 0.0001 0.0069 0.0027

For the three-dimensional Hartmann function the kriging model obtained the
highest weights when using mixture models in algorithm versions 1 and 2. For

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3

05101520
x 1

0−3

(a
)
S
a
m
p
li
n
g
st
ra
te
g
y
A
.

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3

05101520
x 1

0−3

(b
)
S
a
m
p
li
n
g
st
ra
te
g
y
B
.

F
ig
u
re

2.
4:

T
h
re
e-
d
im

en
si
on

al
H
ar
tm

an
n
fu
n
ct
io
n
.
D
is
tr
ib
u
ti
on

of
re
la
ti
ve

er
ro
rs

fo
r
al
go
ri
th
m

ve
rs
io
n
s
1-
3,

sa
m
p
li
n
g
st
ra
te
gi
es

A
an

d
B
;
co
n
fl
ic
t
re
d
is
tr
ib
u
ti
on

ru
le
s:

D
-
D
em

p
st
er
,
Y

-
Y
ag
er
,
I
-
In
ag
ak

i,
P
C
R

-
p
ro
p
or
ti
on

al
co
n
fl
ic
t
re
d
is
tr
ib
u
ti
on

.

CHAPTER 2. SO-M 45

algorithm version 1 the weights for the MARS model were in general higher as
compared to any other already considered test function. The weights of the
polynomial model were lowest. On the other hand, in algorithm version 2 the
weight of the MARS model was again comparatively low, and the influence
of the kriging model had increased compared to version 1. When only the
best single model was used, the kriging model was chosen in over 90% of all
cases.

2.3.5 Test Problem H6: Six-Dimensional Hartmann
Function

The results for the three algorithm versions are shown in Tables 2.6(a)
and 2.6(b), respectively. Initially eight points were used in the experimental
design. The results show that algorithm version 1 achieves the lowest mean
relative errors for most conflict redistribution rules. Noticeable is that
the solution quality has in general decreased compared to the previously
considered test problems, indicating that the performance of the algorithms
is influenced by the increasing number of variables. Box plots of the relative
errors are illustrated in Figures 2.5(a) and 2.5(b). The medians and the
dispersion of the relative errors are in general larger than for any other
previously considered test problem. For both sampling strategies algorithm
version 1 with Yager’s conflict redistribution rule performs best.

The weights determined for the models contributing to the mixture models
in algorithm version 1 show that the kriging model had the highest influence
(50-60%). For this test problem also the MARS model had influence on
the response surface in several cases and did not obtain the lowest weights.
In the second phase of algorithm version 1 the kriging model was chosen
by every decision rule in every iteration. In algorithm version 2 again the
kriging model had the highest influence, while MARS and the polynomial
model were assigned the lowest weights. In algorithm version 3 the kriging
model was chosen in almost 90% of all iterations, and the polynomial and
MARS model were rarely used.

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3
0

0.0
50.10.1
50.2

(a
)
S
a
m
p
li
n
g
st
ra
te
g
y
A
.

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3
0

0.0
50.10.1
50.2

(b
)
S
a
m
p
li
n
g
st
ra
te
g
y
B
.

F
ig
u
re

2.
5:

S
ix
-d
im

en
si
on

al
H
ar
tm

an
n
fu
n
ct
io
n
.
D
is
tr
ib
u
ti
on

of
re
la
ti
ve

er
ro
rs

fo
r
al
go
ri
th
m

ve
rs
io
n
s
1-
3,

sa
m
p
li
n
g

st
ra
te
gi
es

A
an

d
B
;
co
n
fl
ic
t
re
d
is
tr
ib
u
ti
on

ru
le
s:

D
-
D
em

p
st
er
,
Y

-
Y
ag
er
,
I
-
In
ag
ak

i,
P
C
R

-
p
ro
p
or
ti
on

al
co
n
fl
ic
t

re
d
is
tr
ib
u
ti
on

.

CHAPTER 2. SO-M 47

Table 2.6: Six-dimensional Hartmann function. Relative errors for
algorithm versions 1-3, sampling strategies A and B; conflict redistribution
rules: D - Dempster, Y - Yager, I - Inagaki, PCR - proportional conflict

redistribution.

(a) Sampling strategy A.

Rule min max mean

D1 0.0015 0.1032 0.0388
Y1 0.0013 0.1007 0.0311
I1 0.0029 0.1130 0.0415
PCR1 0.0045 0.0963 0.0477

D2 0.0030 0.1073 0.0538
Y2 0.0043 0.1251 0.0470
I2 0.0040 0.1374 0.0501
PCR2 0.0058 0.1289 0.0689

D3 0.0027 0.0827 0.0383
Y3 0.0017 0.0844 0.0403
I3 0.0049 0.0966 0.0477
PCR3 0.0012 0.0895 0.0563

(b) Sampling strategy B.

Rule min max mean

D1 0.0020 0.0889 0.0419
Y1 0.0021 0.1138 0.0325
I1 0.0016 0.0952 0.0408
PCR1 0.0018 0.0955 0.0380

D2 0.0015 0.1281 0.0639
Y2 0.0039 0.1130 0.0610
I2 0.0017 0.1300 0.0438
PCR2 0.0035 0.1544 0.0533

D3 0.0022 0.0978 0.0375
Y3 0.0061 0.0942 0.0465
I3 0.0028 0.0960 0.0432
PCR3 0.0035 0.1129 0.0538

2.3.6 Test Problem S10: Shekel Function

In the considered four-dimensional case the optimal function value is
f ∗ = −10.54, and the number of local optima is 10. The initial experimental
design contained 16 points. All versions of the algorithm had trouble finding
the global optimum (see Tables 2.7(a) and 2.7(b)). The minimal relative
errors were achieved by algorithm version 1 for both sampling strategies.
Figures 2.6(a) and 2.6(b) show the distribution of the relative errors for
each algorithm version and conflict redistribution rule. Compared to all
other previously considered test problems, the results are much worse, and
the dispersion is very large. The box plots show that sampling strategy B
has more outliers than strategy A, but otherwise there are no significant
differences.

CHAPTER 2. SO-M 48

Table 2.7: Shekel function. Relative errors for algorithm versions 1-3,
sampling strategies A and B; conflict redistribution rules: D - Dempster,

Y - Yager, I - Inagaki, PCR - proportional conflict redistribution.

(a) Sampling strategy A.

Rule min max mean

D1 0.2693 0.8130 0.6526
Y1 0.3360 0.8209 0.5927
I1 0.2973 0.8362 0.6705
PCR1 0.1483 0.8357 0.6049

D2 0.3966 0.8427 0.6412
Y2 0.4565 0.8020 0.7035
I2 0.3966 0.8129 0.6418
PCR2 0.4565 0.8326 0.6847

D3 0.3020 0.8069 0.6360
Y3 0.2352 0.8372 0.6296
I3 0.2663 0.8296 0.6736
PCR3 0.3462 0.8126 0.6216

(b) Sampling strategy B.

Rule min max mean

D1 0.1051 0.8267 0.6657
Y1 0.2055 0.8179 0.6305
I1 0.2023 0.7987 0.5808
PCR1 0.2955 0.8581 0.6390

D2 0.3726 0.7888 0.6287
Y2 0.4565 0.8270 0.7106
I2 0.3699 0.8373 0.6464
PCR2 0.3726 0.8278 0.6225

D3 0.1300 0.7971 0.6124
Y3 0.2857 0.7888 0.6371
I3 0.2611 0.8265 0.6189
PCR3 0.3102 0.8396 0.6014

Also for this test function the weights assigned to the kriging model were
highest in algorithm version 1. The MARS model obtained the lowest
weights. However, the differences between the weights assigned to kriging,
RBF, and the polynomial model were much smaller than for the previously
considered test problems. After the switch to using only the best single
model, kriging was chosen in most cases, but also RBF had in several cases
the best model characteristics. The polynomial and MARS model never
obtained a better evaluation than kriging or RBF. The same statements
hold for algorithm versions 2 and 3. The weights of the models in version 2
were on average as for the first stage of algorithm version 1. In version 3
kriging and RBF were chosen as best models most often.

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3
00.20.40.60.8

(a
)
S
a
m
p
li
n
g
st
ra
te
g
y
A
.

D1
Y1

I1
PC

R1
D2

Y2
I2

PC
R2

D3
Y3

I3
PC

R3
00.20.40.60.8

(b
)
S
a
m
p
li
n
g
st
ra
te
g
y
B
.

F
ig
u
re

2.
6:

S
h
ek
el

fu
n
ct
io
n
.
D
is
tr
ib
u
ti
on

of
re
la
ti
ve

er
ro
rs

fo
r
al
go
ri
th
m

ve
rs
io
n
s
1-
3,

sa
m
p
li
n
g
st
ra
te
gi
es

A
an

d
B
;

co
n
fl
ic
t
re
d
is
tr
ib
u
ti
on

ru
le
s:

D
-
D
em

p
st
er
,
Y

-
Y
ag
er
,
I
-
In
ag
ak

i,
P
C
R

-
p
ro
p
or
ti
on

al
co
n
fl
ic
t
re
d
is
tr
ib
u
ti
on

.

CHAPTER 2. SO-M 50

2.3.7 General Results

As can be expected, the computation time is for all test problems highest
whenever only the mixture model was used and lowest when using only
the best single model. The mixture models require the predictions of more
than one model, and finding the best mixture model requires several more
calculations. Thus, the computation time is higher than when only the best
single model has to be determined, and predictions of only one model are
used. With respect to the conflict redistribution rules, there was in general
no difference in computation times.

As mentioned in Section 2.2, the set representing complete ignorance, i.e.
the combination of all four models, had to be considered separately since
it always has belief and plausibility values equal to one. Thus, algorithm
versions 1 and 2 were adjusted such that the four-model mixture was
used. Comparing the obtained results for all test problems to the reported
results in the foregoing sections showed that there were only a few instances
in which the four-model mixture achieved better results. In general the
four-model mixture resulted in higher maximal relative errors and also the
dispersion of the relative errors was larger. The influence of the single
models in the combination was highest for kriging and/or RBF, respectively.
Compared to the other algorithm versions the weights for MARS and the
polynomial model were in general higher, and both models had always about
the same influence. It can be concluded that using in every iteration the
four-model mixture does not lead to improved results.

In addition to investigating how close the algorithms get to the global
optima with respect to relative errors, it is of interest if the global optima
could be detected and how many global optima could be detected if there
were more than one. In applications it is often of interest how many global
optima there are, and where in the variable domain they are located, because
some variable adjustments might be in practice easier to realize than others.
Tables 2.8(a) and 2.8(b) show how often each algorithm was able to sample
in the vicinity of the global minima. If a function has, for example, three
global minima, and 20 trials were made with an algorithm, then 100%
indicates that samples in the vicinity of all three global optima have been
taken in every trial. The vicinity was here defined in terms of the distance
of the sample sites to the known locations of global and local optima.
The results show that for the Goldstein-Price and the three-dimensional
Hartmann function, all algorithm versions found the vicinity of the global
minima without getting trapped in local optima. Algorithm version 3 found

CHAPTER 2. SO-M 51

the highest number of global minima for all decision rules when the problem
dimension is at most three. However, for higher dimensional problems
algorithm versions 1 and 2 are more successful.

In general the proportional conflict redistribution rule proved the most
successful with respect to the number of global minima found, and has
thus a good influence on the global search. Compared to the quality of
the results however, the PCR rule was not always the best and did in
general not lead to the lowest errors, indicating a negative influence on the
local search. For the Shekel function the lowest relative error obtained was
10.51% by Dempster’s conflict redistribution rule using algorithm version 1
and sampling strategy B. However, all algorithms found the vicinity of the
global minimum in 50-95% of all test cases, but still the relative errors are
not very satisfying. Thus, it can be concluded that the algorithms failed in
searching thoroughly locally, and thus they missed the very steep minimum
of this function. Therefore, the local search strategy of the algorithms
must be enhanced so that also the relative errors for such functions can be
decreased.

Comparing the results in Tables 2.8(a) and 2.8(b) shows that the number
of global minima found was in general higher when using Holmström’s
criterion (sampling strategy A) for using the minimum site of the response
surface as sample point. Based on these and the foregoing results (tables
and figures corresponding to sampling strategy A) it seems reasonable to
employ Holmström’s criterion. Moreover, since algorithm versions 1 and 2
proved more successful with increasing dimensions, they should also be used
for problems containing more than six variables.

CHAPTER 2. SO-M 52

Table 2.8: Percentage of trials in which basins of global optima were found;
B - Branin, C - Camelback, G - Goldstein-Price, H3 - three-dim. Hartmann,
S10 - Shekel, H6 - six-dim. Hartmann; algorithm versions 1-3, sampling

strategies A and B; conflict redistribution rules: D - Dempster, Y - Yager,
I - Inagaki, PCR - proportional conflict redistribution.

(a) Sampling strategy A.

Rule B C G H3 S10 H6

D1 91.67 95.00 100.00 100.00 65.00 85.00
Y1 76.67 100.00 100.00 100.00 75.00 95.00
I1 86.67 100.00 100.00 100.00 50.00 80.00
PCR1 83.33 100.00 100.00 100.00 70.00 80.00

D2 86.67 65.00 100.00 100.00 85.00 80.00
Y2 83.33 57.50 100.00 100.00 60.00 90.00
I2 81.67 72.50 100.00 100.00 75.00 90.00
PCR2 81.67 100.00 100.00 100.00 75.00 85.00

D3 96.67 100.00 100.00 100.00 60.00 80.00
Y3 96.67 100.00 100.00 100.00 60.00 80.00
I3 95.00 100.00 100.00 100.00 50.00 85.00
PCR3 100.00 100.00 100.00 100.00 65.00 70.00

(b) Sampling strategy B.

Rule B C G H3 S10 H6

D1 85.00 100.00 100.00 100.00 55.00 75.00
Y1 81.67 97.50 100.00 100.00 65.00 85.00
I1 85.00 95.00 100.00 100.00 75.00 85.00
PCR1 83.33 100.00 100.00 100.00 65.00 80.00

D2 81.67 77.50 100.00 100.00 80.00 90.00
Y2 81.67 80.00 100.00 100.00 45.00 85.00
I2 25.00 82.50 100.00 100.00 70.00 85.00
PCR2 81.67 100.00 100.00 100.00 60.00 85.00

D3 96.67 100.00 100.00 100.00 60.00 80.00
Y3 96.67 100.00 100.00 100.00 50.00 85.00
I3 95.00 100.00 100.00 100.00 45.00 80.00
PCR3 100.00 100.00 100.00 100.00 65.00 65.00

CHAPTER 2. SO-M 53

Tables 2.9(a) and 2.9(b) show the minimum number of objective function
evaluations that were necessary to reach relative errors of less than 1% over
all 20 trial (note that the Shekel test function is not included since relative
errors of less than 1% were not achieved). The numbers show that Inagaki’s
rule should be used with algorithm version 1. For algorithm version 2
Yager’s rule proved the most efficient, and Dempster’s rule worked best
when algorithm version 3 was used.

Table 2.9: Minimum number of function evaluations to reach less than 1%
relative error; B - Branin, C - Camelback, G - Goldstein-Price,

H3 - three-dim. Hartmann, H6 - six-dim. Hartmann; algorithm versions 1-3,
sampling strategies A and B; conflict redistribution rules: D - Dempster,

Y - Yager, I - Inagaki, PCR - proportional conflict redistribution.

(a) Sampling strategy A.

Rule B C G H3 H6

D1 26 15 47 30 72
Y1 23 22 52 19 56
I1 12 22 39 20 40
PCR1 27 10 33 16 67

D2 23 16 46 21 70
Y2 12 15 42 14 60
I2 25 14 50 18 63
PCR2 27 9 65 21 58

D3 12 17 29 17 62
Y3 27 25 46 22 96
I3 21 9 29 21 129
PCR3 14 21 42 20 102

(b) Sampling strategy B.

Rule B C G H3 H6

D1 33 24 22 22 79
Y1 17 10 54 18 101
I1 14 22 19 13 37
PCR1 25 24 29 17 66

D2 17 24 49 24 79
Y2 12 15 40 19 51
I2 27 8 69 20 71
PCR2 17 11 48 20 88

D3 12 15 30 19 51
Y3 25 16 29 28 62
I3 13 22 36 20 89
PCR3 15 23 22 22 64

Tables 2.10(a) and 2.10(b) show the number of trials (out of 20) for which
each method could approximate the global optimum with less than 1% rel-
ative error. For example, with sampling strategy A the method D1 found
for test problem B in 10 out of 20 trials the global optimum with an error
of less than 1%. For algorithm version 1 Inagaki’s rule is most successful,
while Dempster’s or Yager’s rule are recommendable when using algorithm
version 2. For algorithm version 3 Dempster’s rule works best. An over-
all comparison of the results of all conflict redistribution rules shows that
Yager’s and the PCR rule have the best performance. Together with the re-
sults from Tables 2.9 it seems promising to use Inagaki’s rule when algorithm

CHAPTER 2. SO-M 54

version 1 is used, Yager’s rule in algorithm version 2, and Dempster’s rule
with algorithm version 3 in order to obtain the best results.

Table 2.10: Number of trials (out of 20) in which solutions were found that
have less than 1% relative error; B - Branin, C - Camelback,

G - Goldstein-Price, H3 - three-dim. Hartmann, H6 - six-dim. Hartmann;
algorithm versions 1-3, sampling strategies A and B; conflict redistribution
rules: D - Dempster, Y - Yager, I - Inagaki, PCR - proportional conflict

redistribution.

(a) Sampling strategy A.

Rule B C G H3 H6

D1 10 14 4 19 7
Y1 17 8 5 20 3
I1 13 15 10 20 5
PCR1 6 13 3 18 10

D2 16 5 10 20 6
Y2 16 18 6 20 5
I2 9 15 9 19 6
PCR2 19 7 8 20 5

D3 13 16 11 19 3
Y3 9 13 10 20 2
I3 13 15 7 20 1
PCR3 13 18 7 19 2

(b) Sampling strategy B.

Rule B C G H3 H6

D1 7 11 8 20 7
Y1 14 10 7 20 2
I1 15 18 6 20 6
PCR1 9 16 6 18 9

D2 16 7 7 19 2
Y2 11 16 7 20 2
I2 7 12 4 18 5
PCR2 12 7 6 20 4

D3 14 18 13 20 2
Y3 11 13 6 20 5
I3 17 16 4 20 2
PCR3 13 16 10 20 4

2.4 Conclusions

In this chapter the application of Dempster-Shafer theory to surrogate model
choice and surrogate model combination in global optimization problems has
been presented. Model characteristics obtained from cross-validation reflect
good and bad properties of the considered models and their combinations,
respectively. Different rules, namely Dempster’s, Yager’s, Inagaki’s, and
the proportional conflict redistribution rule, for redistributing the conflict
arising when one model has good and bad characteristics simultaneously
have been compared. Two sampling procedures that use different criteria for
adding the minimum site of the response surface as sample point have been
examined. The influence of mixture models, single models, and a hybrid
of both, and the importance of the sampling strategy have been assessed

CHAPTER 2. SO-M 55

in numerical experiments on a subset of the Dixon and Szegö [39] global
optimization test problem suit.

The advantage of the presented Dempster-Shafer theory method is that
in contrast to the approach by Goel et al. [53] no parameters need to be
adjusted for emphasizing or restricting the influence of good and bad models
in the mixture. In comparison to the method of Viana and Haftka [144] no
auxiliary optimization problem has to be solved for computing the model
weights, and the Dempster-Shafer theory approach guarantees that all
weights are non-negative and at most one.

The numerical results showed that the proposed approach is successful in
finding the global minima of most test problems. The exploration of the
variable domain had a good ratio of local and global search, and thus the
vicinities of global minima were detected, and the actual global minimum
could, with the exception of the Shekel test function, be approximated with
average relative errors of less than 1% within 150 function evaluations.
All algorithms had difficulties finding a good approximation of the global
minimum only for the Shekel test function, which is characterized by a
very steep global minimum and several local minima. Although the vicinity
of the global minimum has been detected and several samples have been
taken in that region, the algorithms failed to search thoroughly enough to
find the actual location of the minimum. This implies that the used local
search procedure could still be improved in order to detect also very steep
minima. In connection with this issue is also the adjustment of parameters
determining for example when to invoke the local search, how many points
should be sampled, or the definition of the search area when optimizing the
auxiliary function. A more random sampling strategy may improve the local
search.

The results also indicated that the success of the algorithms in finding
all global minima was to some extent dependent on the used conflict
redistribution rule and the algorithm version. In general, the proportional
conflict redistribution rule led to the best variable domain exploration
(global search). On the other hand, this rule did not always lead to
the lowest relative errors, and thus the possibility of linking the conflict
redistribution rule to the search phase (local or global) could be examined
in further experiments. With respect to variable domain exploration and
relative errors the results showed that with increasing problem dimension
the algorithms applying model combinations become more favorable.

CHAPTER 2. SO-M 56

The number and type of model characteristics used for the evaluation of
the goodness of the single surrogate models should in general be derived
from the specific application problem, i.e. in some cases certain model
characteristics may be more important than others and should thus be
emphasized in the model evaluation. For real-world application problems
an extension of the algorithms to handling linear, nonlinear, and integrality
constraints, which are often present in engineering problems, is necessary.

With respect to computation times the numerical experiments showed
that there are in general no major differences when using different conflict
redistribution rules. Differences arise obviously when using single or mixture
models. For mixture models parameters of more models have to be com-
puted, which is computationally more expensive. In general it can however
be assumed that evaluating the true function is computationally much more
expensive than building the surrogate models, and thus the algorithm’s
own computation time becomes negligible. Moreover, as the algorithm
advances, it may be advantageous to use the leave-one-out cross-validation
only on a subset of the data in the vicinity of the best point found so far to
determine the locally best surrogate model. Also, making the weights wr in
equation (2.2) dependent on the variable x may emphasize or restrict the
influence of single models depending on the point in the variable domain.

Lastly, it should be mentioned that the described algorithms are suitable
for distributed computing. For example, the cross-validation of the single
models is an embarrassingly parallel computation, as is the procedure for
computing the surrogate model parameters, and the method for minimizing
the auxiliary function. The cross-validation becomes time consuming as the
number of models in the mixture and the number of sample sites increases.
Therefore, switching to a so-called k̃-fold cross-validation strategy should be
considered. It may also be of advantage to re-evaluate and choose the best
(mixture) model only every, say, tth iteration to save computation time. An
important issue for this approach is however the determination of t, and
thus how often the (mixture) model should be re-adjusted while keeping the
solution quality at a high level. These extensions exceed however the topic
of this chapter.

Chapter 3

Influence of Surrogate Model
Choice and Sampling Strategies

Abstract

This chapter describes a computational study of extensions of SO-M to solv-
ing larger problems with up to 30 dimensions. The leave-one-out cross-
validation is replaced by a k̃-fold strategy, which leads to significant compu-
tation time savings as the number of sample sites and dimensions increases.
Two sampling procedures have been examined, namely a random sampling
strategy (algorithm SO-M-c), and a strategy where the minimum point of
the response surface is used as the new sample point in every iteration. The
surrogate models contributing to the mixture may not change and only their
weights are adjusted between iterations in order to better examine which
(mixture) surrogate models work generally well or should be avoided. The
performance of SO-M-c and SO-M-s with various (mixture) surrogate models
are compared in numerical experiments to examine the influence of the sam-
pling strategy on the results. Also the efficient global optimization algorithm
(EGO) [74], and Gutmann’s radial basis function algorithm [57] are included
in the comparison. The algorithms have been compared on 13 literature
test problems, and two application problems. One application deals with
groundwater bioremediation, and the other one arises in energy generation
using tethered kites. The results of the numerical experiments show that
when the problem dimension is low (at most six), then SO-M-s performs on
average better than SO-M-c. For problems with 12 and more dimensions,
SO-M-c performs in general better than SO-M-s. EGO performed better
for low-dimensional problems than for large-dimensional ones. Gutmann’s

57

CHAPTER 3. SO-M-C AND SO-M-S 58

method is except for one convex problem outperformed by all other algo-
rithms. Moreover, the numerical experiments showed that mixtures with
the cubic RBF model work in general well, whereas using only a polynomial
regression model should be avoided. Mixture surrogate model algorithms
should be used whenever it is a priori unclear which surrogate model per-
forms best because using a mixture prevents selecting the worst model, and
often leads to better results than when only a single model is used.

CHAPTER 3. SO-M-C AND SO-M-S 59

Abbreviations and Nomenclature

DACE Design and analysis of computer experiments
DST Dempster-Shafer Theory
EGO Efficient Global Optimization, [74]
G Gutmann’s radial basis function algorithm [57]
GM Global minima
K Kriging model
LM Local minima
M, MARS Multivariate adaptive regression spline
P Polynomial regression model
R, RBF Radial basis function surrogate model
SEM Standard error of means
SO-M Surrogate Optimization - Mixture
SO-M-c Surrogate Optimization - Mixture - candidate sampling
SO-M-s Surrogate Optimization - Mixture - surface minimum sampling

x Continuous variable vector
xT Transpose of x
xi ith continuous variable, see equation (2.1c)
k Problem dimension
n0 Number of points in the initial experimental design
n Number of function evaluations obtained so far

k̃ Number of points in the validation set for cross-validation
fmin Minimal objective function value found so far
sk(·) Kriging surrogate model
Ω Box-constrained variable domain
sb(·) Radial basis function interpolant
wr Weight of the rth model in the mixture
S Set of already evaluated sample points {x1, . . . ,xn}
χj jth candidate point, j = 1, . . . , t
xbest Best point found so far
P Perturbation probability of each variable, see equation (3.4)
VD Scaled distance criterion, see equation (3.6)
VR Scaled response surface criterion, see equation (3.7)
V Weighted score, see equation (3.8)
ωR Weight for response surface criterion, see equation (3.8)
ωD Weight for distance criterion, see equation (3.8)

CHAPTER 3. SO-M-C AND SO-M-S 60

3.1 Introduction and Motivation

In this chapter the same type of box-constrained continuous global opti-
mization problems as in Chapter 2 (equations (2.1a)-(2.1c)) are considered.
The goal of this chapter is (a) to further develop the mixture surrogate
model algorithm SO-M introduced in Chapter 2 by applying a random
sampling method when selecting the next sample site, (b) to examine the
influence of the (mixture) surrogate model and the strategy for iteratively
selecting sample points for doing the expensive simulation on the results,
and (c) to improve the mixture surrogate model algorithm introduced in
Chapter 2 such that larger dimensional problems can be solved efficiently.
Within this scope the efficient global optimization algorithm (EGO) [74]
and the radial basis function algorithm by Gutmann [57] are compared
to the improved mixture model algorithm on 13 global optimization test
problems from the literature, a 12-dimensional groundwater bioremediation
application problem, and a 13-dimensional application problem arising in
energy generation using kites.

The remainder of this chapter is structured as follows. Section 3.2 briefly
reviews the surrogate model algorithms used in the numerical experi-
ments [57, 74, 98]. In Section 3.3 the improved mixture surrogate model
algorithm SO-M-c (Surrogate Optimization - Mixture - candidate sampling)
is described. The setup for the numerical experiments is described in
Section 3.4, and the results are discussed in Section 3.5. Section 3.6
concludes this chapter.

Within the scope of this study, a Matlab toolbox has been developed that
allows the user to choose between different strategies for building the initial
experimental design, (mixture) surrogate models, and sampling strategies.
The toolbox can be obtained on request from the author or on Matlab File
Exchange (“Surrogate Model Optimization Toolbox”, File ID #38530).

3.2 Review of Surrogate Model Algorithms

The common basic structure of surrogate model algorithms has already
been described in Section 1.2.1. Recall that the algorithms are iterative.
In the first step an initial experimental design is generated, and the costly
objective function is evaluated at these points. Secondly, the chosen response
surface is fit to the given data, and in the third step the next sample site
is chosen according to some strategy that is based on objective function

CHAPTER 3. SO-M-C AND SO-M-S 61

value predictions by the response surface. The costly objective function
is evaluated at the chosen point, and in step four, the response surface
parameters are updated with the new data. The algorithm iterates through
steps three and four until a predefined stopping criterion has been reached.
Surrogate model algorithms differ in general with respect to the method
of generating the initial experimental design, the surrogate model, and the
strategy for choosing the next sample site.

Two well-known and widely used surrogate model algorithms, namely
EGO [74] and Gutmann’s radial basis function algorithm [57], are briefly
reviewed in the following sections. Also, a recap of the mixture surrogate
model algorithm SO-M [98] that uses Dempster-Shafer theory for computing
the weights of the models in the mixture is provided.

3.2.1 Efficient Global Optimization (EGO)

The initial experimental design in the EGO algorithm [74] is created by
generating a Latin hypercube design in k dimensions, so that all one- and
two-dimensional projections are nearly uniformly covered. Initially, with
slight deviations, n0 = 10k points are generated.

A kriging model (see Section 1.2.5) is used as response surface [32, 92]. The
advantage of the kriging model is that an uncertainty estimate is computed
when making predictions. These uncertainty estimates are then used by the
EGO algorithm for determining the next sample site. A disadvantage of the
kriging model is the computation of the model parameters. The number of
parameters depends on the problem dimension, and kriging is known to be
plagued by the curse of dimensionality, not just in computer memory and
time but also in ill-conditioning.

EGO determines the next sample point by maximizing the expected improve-
ment

E [I(x)] = E [max(fmin − Y, 0)] , (3.1)

where fmin is the best function value found so far, and Y is a random variable.
The closed form solution can be shown to be

E [I(x)] = (fmin − sk(x)) Φ

(
fmin − sk(x)

ζ

)
+ ζφ

(
fmin − sk(x)

ζ

)
, (3.2)

for ζ > 0, where φ(·) and Φ(·) are the standard normal density and
distribution function, respectively, and ζ is the root mean squared error of

CHAPTER 3. SO-M-C AND SO-M-S 62

the prediction at the point x ∈ Ω obtained from the kriging model. The
expected improvement function is however not unimodal, and to find the
global maximum, a global optimization routine must be used. The advantage
is that the computationally expensive objective function is not involved
when maximizing the expected improvement. Finding the global optimum
of this auxiliary optimization problem remains, however, a challenging task.

Jones et al. [74] solved the subproblem of maximizing the expected improve-
ment with a branch and bound algorithm. The chosen stopping criterion for
the EGO algorithm was a maximal expected improvement of less than 1%.
EGO has been tested in [74] on problems of at most six dimensions, whereas
an 11-dimensional problem has been solved with EGO in [64].

3.2.2 Gutmann’s Radial Basis Function Algorithm

Gutmann’s algorithm [57] uses an RBF interpolant (see equation (1.9)). The
next sample site is determined by minimizing a “bumpiness” measure

gn(x) = (−1)m0+1μn(x) [f
∗
n − sb(x)]

2 , (3.3)

where m0 depends on the chosen radial basis function and is either -1, 0, or
1, f ∗

n is a target value for the objective function in iteration n, sb(·) is the
RBF interpolant as defined in equation (1.9), and μn(x) is the coefficient
corresponding to x of the Lagrangian function L that satisfies L(xι) = 0,
ι = 1, . . . , n, and L(x) = 1 in iteration n. Gutmann’s algorithm has been
applied to test problems of at most ten dimensions in [57], and the author
of this paper remarked that optimizing the auxiliary function becomes com-
putationally more complex as the number of iterations increases. Another
disadvantage is that the algorithm may have difficulties finding very steep
minima (as in the case of the Shekel test function [39], for example), and
sometimes converges slowly to the global minimum because it does not
search locally [120].

3.2.3 SO-M: Mixture Surrogate Model Algorithm

Based on Dempster-Shafer Theory

Recall that the mixture surrogate model algorithm SO-M [98] described
in Section 2.2 uses n0 = k + 2 initial sample points generated by a Latin
hypercube design. Model characteristics such as correlation coefficients and
various error measures are computed by leave-one-out cross-validation, and

CHAPTER 3. SO-M-C AND SO-M-S 63

represent how well each individual model fits the data. Dempster-Shafer
theory (DST) uses this information to compute the weights wr of the
models in the mixture in equation (2.2). The next sample site is chosen by
solving an auxiliary optimization problem that uses a target value strategy
similar to that proposed by Holmström et al. [64]. The optimization of the
auxiliary problem is done by multistart accelerated random search with some
restrictions on the search space that force the algorithm to switch between
local and global search phases. The mixture model is updated in every
iteration, and thus the models contributing to the mixture may change. The
algorithm has been used to solve problems of up to six dimensions.

The advantage of using a mixture model is that if it is a priori unknown
which surrogate model performs best for a given problem, the influence of
“bad” models can be restricted and the influence of “good” models can
be emphasized. The disadvantage of the mixture model approach is that
finding the next sample point by optimizing an auxiliary function becomes
more complex as the number of variables increases, and finding very steep
minima (as in the case of the Shekel function) may be difficult. Furthermore,
the leave-one-out cross-validation becomes computationally expensive as
the number of sample sites increases, and if a kriging model is involved, the
same drawbacks as in the EGO algorithm are encountered.

3.3 SO-M-c: A Stochastic Mixture Surrogate

Model Algorithm

The mixture surrogate model algorithm SO-M [98] has been further devel-
oped with respect to two major aspects, namely the method of choosing the
next sample site, and the computation of the model characteristics. Comput-
ing the model characteristics is done by leave-one-out cross-validation in the
algorithm described in Chapter 2. This approach becomes a computational
burden as the number of sample sites and the problem dimension increase
because the models have to be fit for every sample site that is left out. The
complexity of computing the model parameters depends on the problem
dimension and the number n of already sampled points. Therefore, the
leave-one-out cross-validation is applied only while the number of sample
sites is less than 50. Thereafter, the k̃-fold cross-validation is applied, where
k̃ is adjusted dynamically depending on the number of sample points already

CHAPTER 3. SO-M-C AND SO-M-S 64

evaluated.

In the k̃-fold cross-validation, iteratively a subset of k̃ sample points is
taken out of the total set S of already sampled points. This subset is called
the validation set. The remaining n − k̃ points constitute the training set.
Using the points in the training set, all surrogate models are fit to the data.
Each surrogate model is used to re-predict the objective function values
of the sample points in the validation set. This is done for each subset,
and based on the re-predicted and the true function values, correlation
coefficients, maximum absolute errors, median absolute deviations, and root
mean squared errors are computed for each model. These values are then
transformed into basic probability assignments as described in Section 2.2,
and DST is used to determine the weights of the individual models in the
mixture in equation (2.2).

The second change made in the SO-M algorithm was to replace the method
for finding the next sample site. Since studies with RBF models showed
that a stochastic sampling strategy may be more successful than optimizing
an auxiliary function [119], a randomized approach is used. The SO-M
algorithm uses either the minimum of the response surface or a target
value strategy. In the target value strategy, the search is either global
(the best point is searched outside a densely sampled area of the variable
domain), or local (the target value strategy is applied within the densely
sampled area). Thus, SO-M is able to escape from local optima and
explore other promising regions of the variable domain. In every iteration
several target values are used, and therefore several auxiliary optimization
problems have to be solved. For low-dimensional problems this is computa-
tionally inexpensive, but the computational complexity increases with the
problem dimension. Therefore, a randomized sampling procedure similar
to the candidate point approach by Regis and Shoemaker [119] has been used.

In the randomized sampling procedure candidate points (denoted by χj,
j = 1, . . . , t) for the next sample site are generated as follows. One group
of candidates consists of points that are uniformly selected from the whole
variable domain Ω. The points in the second group are generated by perturb-
ing the best point found so far, i.e. xbest = argminι=1,...,nf(xι). In contrast
to [119] where all variables are perturbed with the same perturbation range,
every variable is perturbed with probability

P =

{
max{0.1, 5/k} if k > 5

1 otherwise
, (3.4)

CHAPTER 3. SO-M-C AND SO-M-S 65

and three perturbation ranges have been used to obtain large, medium,
and small perturbations. Thus, when generating the candidate points in
the second group, randomly chosen variable values of xbest are perturbed
by randomly adding or subtracting small, medium, or large perturbations.
This allows the generation of a broader range of candidate points for which
the magnitude of the perturbations of all variables may be different. Thus,
a larger diversity of points in the vicinity of xbest is generated as compared
to the approach in [119].

Two criteria are then used to find the “best” candidate point [119]. The first
criterion is determined based on the distance of every candidate point to the
set of already sampled points S (“distance criterion”). The second criterion
is based on the objective function value predicted by the mixture surrogate
model (“response surface criterion”). A score is computed for each candidate
point as a weighted sum of both criteria. The candidate point with the
best score becomes the point for doing the next expensive function evaluation.

A global search can be achieved by giving candidate points that are in
relatively unexplored regions of the variable domain preference, i.e. by
assigning a high weight to the distance criterion. On the other hand, once
a promising point has been found, its vicinity should be explored more
thoroughly. A local search can be achieved by giving a larger weight to the
response surface criterion because the response surface is likely to predict
lower objective function values for points in the vicinity of xbest.

By repeatedly cycling through a weight pattern for the criteria, a repeated
transition from global to local search is achieved [119]. The algorithm
starts by assigning a large weight to the distance criterion and a low weight
to the response surface criterion. The weight for the distance criterion is
iteratively decreased, and the weight for the response surface criterion is
increased. After the distance criterion weight has reached its minimum (and
the weight for the response surface criterion has reached its maximum),
it is re-initialized to the maximal value (minimal value). The advantage
of this randomized sampling strategy is that no subproblem has to be
optimized to find the next sample site, and savings in computation times are
possible. The algorithm is implemented such that it satisfies the convergence
conditions stated in [119] and convergence follows from Theorem 1 in [119].

Figure 3.1 illustrates the two criteria and the weighted scoring function for a
one-dimensional problem (note that illustrated are the values scaled to [0,1]).
The scoring function (solid green line) is not unimodal, and finding the

CHAPTER 3. SO-M-C AND SO-M-S 66

global minimum would require a global optimization algorithm. Numerical
experiments on a set of test problems in Chapter 5 showed, however, that
trying to find the global minimum of the scoring function and using the
corresponding point as the next sample site does not lead to better results
than the candidate point approach.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Score

Response surface
Distance criterion
Score function

Figure 3.1: A one-dimensional example showing the response surface and
distance criterion together with the weighted sum (score function) of both

criteria.

A third alteration of the SO-M algorithm in Chapter 2 is that the surrogate
models contributing to the mixture are fixed at the beginning of the algo-
rithm, and during the optimization phase only their weights are adjusted,
as opposed to the original implementation where the surrogate models
contributing to the mixture could change throughout the optimization
phase. By this approach it is possible to better examine the influence of
single models on the mixture. The specific steps of the stochastic mixture
surrogate model algorithm SO-M-c (Surrogate Optimization - Mixture -
candidate sampling) are given in Algorithm 4.

CHAPTER 3. SO-M-C AND SO-M-S 67

Algorithm 4 SO-M-c: Mixture Surrogate Model Algorithm With

Candidate Point Sampling Strategy

1. Create an initial experimental design using a symmetric Latin hyper-
cube sampling strategy. Evaluate the computationally expensive objec-
tive function at the generated points.

2. Apply cross-validation to compute the characteristics of the desired sur-
rogate models in the mixture:

• If n ≤ 50, use the leave-one-out cross-validation.

• If n > 50, use the k̃-fold cross-validation, where k̃ increases with
the number of function evaluations (k̃ = 10 for 50 < n ≤ 100,
k̃ = 20 for 100 < n ≤ 150, k̃ = 30 for 150 < n ≤ 200, etc.)

3. Use Dempster-Shafer Theory to determine the weights wr of the chosen
models in the mixture in equation (2.2).

4. Compute the parameters for each model contributing to the mixture.

5. Generate candidate points χj, j = 1, . . . , t, by uniformly selecting points
from the variable domain and by perturbing xbest as follows. With
δ = maxi=1,...,k{x

u
i −xli}, the perturbations are computed as gδΥ, where

the standard deviation g ∈ {0.1, 0.01, 0.001} is chosen randomly, and
Υ ∼ N (0, 1) is a random variable drawn from the standard normal
distribution. Every variable of xbest is perturbed by adding gδΥ with
probability P as defined in equation (3.4) to its value.

6. Compute the distance

Δ(χj) = min
ι=1,...,n

‖χj − xι‖2, (3.5)

where ‖ · ‖2 is the Euclidean norm in R
k, and xι ∈ S. Scale the values

to the interval [0, 1]:

VD(χj) =

{
Δmax−Δ(χj)

Δmax−Δmin
if Δmin
= Δmax

1 otherwise
, (3.6)

where VD(χj) is the scaled distance value for candidate χj, Δmax =
maxj=1,...,t{Δ(χj)}, and Δmin = minj=1,...,t{Δ(χj)}. Eliminate candi-
dates that are already contained in S from further consideration.

CHAPTER 3. SO-M-C AND SO-M-S 68

7. Use the mixture model in equation (2.2) to predict the objective function
values smix(χj) of the candidate points, and scale these values to the
interval [0, 1]:

VR(χj) =

{
smix(χj)−smin

smax−smin
if smin
= smax

1 otherwise
, (3.7)

where VR(χj) is the scaled predicted objective function value for candi-
date χj, smax = maxj=1,...,t{smix(χj)}, and smin = minj=1,...,t{smix(χj)}.

8. Compute the weighted scores of the candidate points

V (χj) = ωRVR(χj) + ωDVD(χj), j = 1, . . . , t, (3.8)

where ωR + ωD = 1, and ωR ≥ 0 is the weight for the response surface
criterion, and ωD ≥ 0 is the weight for the distance criterion. Set
ωD = 1 in the first iteration and decreases the value for 0.1 in every
following iteration until ωD = 0. Reinitialize the value to ωD = 1, and
decrease the value anew, etc. Choose the candidate point with the best
score (the smallest value for V) as next sample site.

9. Do the costly function evaluation at the chosen point.

10. If the maximum number of allowed function evaluations has not been
reached, go to Step 2. Otherwise, return the best point found.

3.4 Experimental Setup

The performance of the algorithms briefly reviewed in Section 3.2 (EGO,
Gutmann’s RBF algorithm) are compared to SO-M-c with various mixture
models for a range of literature test problems and two applications that
are described in Section 3.4.2. The parameter settings for the individual
algorithms are summarized in Section 3.4.1.

3.4.1 Algorithms and Parameter Settings

A symmetric Latin hypercube design is used to generate the initial exper-
imental design for each algorithm. In general any other Latin hypercube
sampling could be used. The design contains 2(k + 1) points, which is twice
the minimum number of data points needed for fitting a cubic RBF model
with a linear polynomial tail for a k-dimensional problem. This number has
been found to work better than the k+2 points used in SO-M. Furthermore,

CHAPTER 3. SO-M-C AND SO-M-S 69

10k points as suggested for the EGO algorithm [74] are in general too many
points because with a 30-dimensional problem, 300 points would be used,
which is for computationally expensive global optimization problems already
a very large number of evaluations. Each algorithm uses the same initial
experimental design in order to obtain a comparison after an equal number
of function evaluations.

An implementation of the EGO algorithm has been obtained from [48].
A kriging model with Gaussian correlation function is used as surrogate
for the computationally expensive objective function. The parameters of
the kriging model in the given implementation are computed by maxi-
mum likelihood estimation for which a genetic algorithm is applied. A
genetic algorithm is also used for determining the point that maximizes the
expected improvement in equation (3.2) for determining the next sample site.

In Gutmann’s algorithm a cubic RBF interpolant has been used as surrogate
model. A range of target values has been defined as suggested by [64], and
the algorithm cycles through these target values during the optimization
routine. The optimization subproblem of determining the minimum of the
bumpiness measure for finding the next sample site has been solved with
the dynamically dimensioned search algorithm [141]. The stopping criterion
for this optimization subroutine is 1000k bumpiness measure evaluations, or
a lack of improvement within 20 consecutive iterations. The goal is to find
a good approximation of the optimum of the auxiliary function and to not
spend too much time on the optimization subroutine which may cause the
algorithm to become itself computationally expensive.

The SO-M-c algorithm has been used with different options for the surrogate
models in the mixture in order to better examine how the influence of “bad”
models, i.e. models that do not lead to good results in comparison with
the best surrogate model, can be restricted by using mixtures with “good”
surrogate models. In the following, the kriging model is abbreviated by “K”,
the RBF interpolant is abbreviated by “R”, the polynomial regression model
is denoted by “P”, and the multivariate adaptive regression spline (MARS)
is denoted by “M”. Mixtures of these individual models are denoted by
concatenating letters of the individual models. For example, “RM” denotes
a mixture of the RBF model and the MARS model. To indicate which
mixture model is used in the SO-M-c framework, the surrogate model
abbreviation is given together with the sampling strategy abbreviation. For
example K-c indicates that only the kriging model is used within SO-M-c.
RKM-c denotes that SO-M-c uses a mixture of RBF, kriging, and MARS.

CHAPTER 3. SO-M-C AND SO-M-S 70

Note that if only the RBF model is used within the SO-M-c framework,
then R-c is except for the altered sampling procedure and the cubic instead
of the thin-plate spline RBF the same as the G-MSRBF algorithm by Regis
and Shoemaker [119].

Furthermore, a sampling procedure that uses the minimum site of the
response surface in every iteration to determine the next sample point has
been used as alternative sampling strategy. The dynamically dimensioned
search algorithm [141] with the same stopping criterion as used when min-
imizing the bumpiness measure described above is applied for minimizing
the response surface. The algorithms using this sampling strategy are in
the following denoted by SO-M-s (Surrogate Optimization - Mixture -
surface minimum). Using the minimum site of the surface is often done in
practice, but may lead to a search that is too local. If the response surface
is unimodal, sample points are selected only in the vicinity of the surface
minimum point, and the surface is thus refined only locally. The global
fit of the surface may not be improved, and there is a potential risk that
the algorithm may get trapped in a local optimum of the response surface
(which does not necessarily have to be a local optimum or even a stationary
point of the true objective function). On the other hand, if the response
surface is multimodal, then, depending on the optimization routine used for
finding the minimum of the surface, chances are that the next sample site
is derived from a local minimum. If the surface has several local and/or
global minima, the sample sites selected in each iteration may be in very
different areas of the variable domain, and therefore a global exploration is
possible. Hence, when using the minimum site of the response surface as
sampling strategy, the multimodality of the surface and the optimization
routine for finding the surface minimum play an important role and
determine whether the search is local or global. Regis and Shoemaker [124]
also showed that using a sampling criterion that is based on the various
local and global minima of the response surface may lead to improved results.

Within the SO-M-c and SO-M-s algorithms, the Matlab toolbox DACE [88]
has been used for computing the parameters of the kriging model. Further-
more, the Matlab toolbox ARESLab [71] has been used for adjusting the
MARS model. The various mixtures used within SO-M-c and SO-M-s in the
numerical experiments and their abbreviations are given in Table 3.1.

With the two sampling strategies, 22 versions of the mixture surrogate model
algorithms have been compared, where 11 versions use the candidate point

CHAPTER 3. SO-M-C AND SO-M-S 71

Table 3.1: Individual and mixture surrogate models used within SO-M-c
(candidate point sampling) and SO-M-s (minimum site of response surface

sampling).

Individual models

P-c/P-s Full cubic polynomial regression model
R-c/R-s Cubic RBF
K-c/K-s Kriging with Gaussian correlation function
M-c/M-s MARS

Two-model mixtures

RK-c/RK-s Cubic RBF and kriging with Gaussian correlation
function

RM-c/RM-s Cubic RBF and MARS
KM-c/KM-s Kriging with Gaussian correlation function and

MARS
RP-c/RB-s Cubic RBF and full cubic polynomial regression

model
KP-c/KP-s Kriging with Gaussian correlation function and

full cubic polynomial regression model
MP-c/MP-s MARS and full cubic polynomial regression model

Three-model mixtures

RKM-c/RKM-s Cubic RBF, kriging with Gaussian correlation
function, MARS

sampling procedure described in Section 3.3 (SO-M-c), and the remaining
11 versions use the minimum point of the response surface as next sample
site (SO-M-s). In addition to these 22 algorithms, also EGO and Gutmann’s
RBF method have been included in the comparison. Therefore, all together
24 algorithms have been compared in the numerical experiments. 30 trials
have been made for every test problem and every algorithm. The algorithms
used the same initial experimental design for the same trial of a test problem
in order to obtain a conclusive comparison. The maximum number of allowed
function evaluations has been restricted to 400.

3.4.2 Test Problems

In total 13 test problems from the literature have been used to compare the
algorithms. The problem dimensions range between 2 and 30. All problems

CHAPTER 3. SO-M-C AND SO-M-S 72

are box-constrained, i.e. except for the finite lower and upper bounds, there
are no other constraints. The characteristics of the test problems are given in
Table 3.2. The column “ID” contains the problem identification with which
each problem will be referred to later on. The column “k” contains the prob-
lem dimension. The column “#Local/Global Minima” contains information
about the number of local minima (LM) and global minima (GM). These 13
test problems are not really computationally expensive, but have character-
istics typically encountered with black-box global optimization problems and
are therefore suitable for comparing global optimization algorithms. The
mathematical description of the generic test problems is given in Appendix B.

Furthermore, a 12-dimensional in situ groundwater bioremediation problem
has been solved with the 24 algorithms. The objective is to purify con-
taminated groundwater at minimum cost using microorganisms to degrade
pollutants. The bioremediation is stimulated by pumping water and electron
acceptors (for example oxygen) or nutrients via injection wells into the
contaminated groundwater to increase the ability of the microorganisms
to degrade the contaminant in the aquifer. Injection and monitoring wells
for measuring contamination are installed at fixed locations. The planning
horizon is divided into management periods, and the goal is to determine
the pumping rates at the beginning of each management period such that
the contamination concentration at the end of the period is below a given
threshold while minimizing the total costs of the clean-up. To determine
the effect of the pumping policy, the biological transformation of the
substances must be simulated numerically. Only after the simulation can
it be determined whether the contamination constraints are satisfied. The
contamination constraints are incorporated with a penalty approach in the
objective function as done in [158]. This problem has multiple local minima,
but the number of local and global minima is unknown. The reported
global minimum in Table 3.2 is the best solution found during the numerical
experiments.

A second application problem that has been used to compare the algorithms
arises from energy generation using tethered kites [8, 22, 45, 67]. Kites
exploit high-altitude winds to generate energy. Energy is produced by lifting
and pulling forces of the kite, and then transmitted to an object at lower
altitudes by the tether. A drum is used to reel the tether in and out. If the
tether is let out at high tension, power is generated, whereas power is used
when reeling the tether back in. The goal is to control the kite optimally
so that the tension in the tether is much lower when reeling the kite in
than when letting it out, and thus generating the maximum net amount of

CHAPTER 3. SO-M-C AND SO-M-S 73

power possible. Various variables can be adjusted to control the tension in
the tether, for example, increasing the angle of attack of the kite increases
the tension. The control variables in the considered application problem are
the period of control of the kite, the rate of change of the period, the kite
control angle, the tether release speed, and the initial direction angle. For
computing the power generated by the kite, a set of differential equations
has to be solved. Also for this problem the number of local and global
optima is unknown, and the reported global minimum in Table 3.2 is the
best solution found during the numerical experiments.

Table 3.2: Test problems for numerical experiments.
ID - problem identification, k - problem dimension,

LM - local minima, GM - global minima, (a) - best solution found;
see Appendix B for further information.

ID Name k #Local/Global Minima Global minimum

B Branin [39] 2 3 GM, no LM 0.40
H3 Hartmann [39] 3 1 GM, 4 LM - 3.86
H6 Hartmann [39] 6 1 GM, 4 LM - 3.32
S5 Shekel 5 [39] 4 1 GM, 5 LM -10.15
S7 Shekel 7 [39] 4 1 GM, 7 LM -10.40
S10 Shekel 10 [39] 4 1 GM, 10 LM -10.54

A15 Ackley [5] 15 1 GM, several LM -22.72
Sc17 Schoen [128] 17 1 GM, several LM 23.01
L20 Levy [83] 20 1 GM, several LM 0

P24 Powell [109] 24 1 GM, no LM 0
M25 Michalewicz [93] 25 1 GM, 25! LM -16.49 (a)
Sp27 Sphere [34] 27 1 GM, no LM 0
R30 Rastrigin [97, 142] 30 1 GM, several LM -30.00

GW Groundwater [158] 12 black-box 279.20 (a)
Kite Kite 13 black-box 2501120 (a)

3.5 Numerical Results

The algorithms are in the following compared with respect to the relative
errors between the optimal solution (or the best known solution) and the
average function value over 30 trials after 400 evaluations found by the

CHAPTER 3. SO-M-C AND SO-M-S 74

algorithms. The test problems are subdivided into four groups, namely
low-dimensional (2 ≤ k ≤ 6), mid-sized (15 ≤ k ≤ 20), large-dimensional
(24 ≤ k ≤ 30), and application problems. For some test problems algorithm
trials have failed, either due to ill-conditioning of the sample site matrix
(DACE toolbox failed) or due to limited computer memory. The number of
failed trials for each algorithm are summarized in Table 3.3. If a test problem
is not mentioned in this table, it means that all 30 trials were successful for
each algorithm. A dash in the table denotes that all 30 trials of the corre-
sponding algorithm were successful for the respective problem. If there were
failed trials for a test problem, the corresponding average relative errors as
reported in the following sections are computed based on the successful trials.

Tables 3.4, 3.5, 3.7, and 3.10 show the mean relative errors for every problem
in each class, and the relative errors averaged over all problems in each class
(column “Mean”). The column “Algorithm” shows the number of the algo-
rithm together with its abbreviation as defined in Table 3.1. The numbers
are used in the box plots in Figures 3.2-3.5 for identifying the corresponding
algorithms. There are three problems (L20, P24, Sp27) whose optimal values
are zero, and thus the relative errors are not defined. For these problems,
the objective function values averaged over all successful trials are reported
for each algorithm in Tables 3.6, 3.8, and 3.9.

3.5.1 Low-dimensional Problems

The relative errors for the low-dimensional problems are shown in Table 3.4.
Note that the DACE toolbox failed for few problem instances due to
ill-conditioning of the sample site matrix when computing the parameters
of the kriging model (see Table 3.3). The results show that EGO achieves
the lowest relative error averaged over all problems. For the Branin and the
Hartmann test functions, the SO-M-c algorithms lead to better solutions
than SO-M-s. For the Shekel test functions, however, SO-M-s leads in
general to slightly better results than SO-M-c.

A box plot of the relative errors over all test problems for each algorithm
is shown in Figure 3.2. EGO has the lowest median, but the most outliers.
Among the SO-M-c algorithms (algorithms 1-11), the RBF model (algo-
rithm 1) and mixtures including the RBF model (algorithms 5, 6, 8, 9)
attain results for which the medians of the relative errors are lowest. The
same statement holds for the SO-M-s algorithms (algorithms 14-24). The
plot shows that the strategy of using the minimum of the response surface

CHAPTER 3. SO-M-C AND SO-M-S 75

Table 3.3: Number of failed trials per problem and algorithm.

Algorithm B H3 L20 P24 M25 Sp27 R30

1 R-c - - - - - - -
2 K-c 1 1 - - - - -
3 M-c - - - - - - -
4 P-c - - - - - - -
5 RK-c 1 1 - 4 23 24 24
6 RM-c - - - - - - -
7 KM-c 1 1 - - - - -
8 RKM-c 1 1 - 4 23 24 25
9 RP-c - - - - - - -
10 KP-c 1 1 - - - - -
11 MP-c - - - - - - -

12 G - - 5 - - 9 -
13 EGO - - - - - - -

14 R-s - - - - - - -
15 K-s 1 1 - - - - -
16 M-s - - - - - - -
17 P-s - - - - - - -
18 RK-s 1 1 - 9 25 21 27
19 RM-s - - - - - - -
20 KM-s 1 1 - - - - -
21 RKM-s 1 1 - 9 25 21 27
22 RP-s - - - - - - -
23 KP-s 1 1 - - - - -
24 MP-s - - - - - - -

(14-24) leads to better results (lower medians and smaller spread) than
when using the candidate point approach (algorithms 1-11), but the number
of outliers is larger. For both sampling strategies, the polynomial model
(algorithms 4 and 17) and the mixture of the polynomial and the MARS
model (algorithms 11 and 24) performed worst. The figure also shows that
the mixture models perform better or at least equally well as when using
single models (except for the mixtures of the polynomial and MARS). Thus,
if it is a priori unknown which model will be the best for a given problem,

T
ab

le
3.
4:

M
ea
n
re
la
ti
ve

er
ro
rs

fo
r
lo
w
-d
im

en
si
on

al
p
ro
b
le
m
s;
b
es
t
re
su
lt
is
m
ar
ke
d
b
y
b
ox
es
.

A
lg
or
it
h
m

B
H
3

H
6

S
5

S
7

S
10

M
ea
n

1
R
-c

0.
00
25
e-
01

0.
00
00
e-
02

0.
10
94
e-
01

4.
95
28
e-
01

5.
32
15
e-
01

4.
10
87
e-
01

2.
41
58
e-
01

2
K
-c

0.
00
22
e-
01

0.
00
00
e-
02

0.
10
78
e-
01

4.
69
15
e-
01

4.
89
25
e-
01

4.
14
50
e-
01

2.
30
65
e-
01

3
M
-c

0.
09
97
e-
01

0.
07
66
e-
02

0.
92
54
e-
01

6.
40
81
e-
01

6.
97
93
e-
01

7.
20
39
e-
01

3.
60
40
e-
01

4
P
-c

0.
99
44
e-
01

0.
48
18
e-
02

1.
15
02
e-
01

6.
76
63
e-
01

8.
01
38
e-
01

8.
11
93
e-
01

4.
18
20
e-
01

5
R
K
-c

0.
00
34
e-
01

0.
00
01
e-
02

0.
11
98
e-
01

4.
87
50
e-
01

4.
74
86
e-
01

4.
20
10
e-
01

2.
32
46
e-
01

6
R
M
-c

0.
00
69
e-
01

0.
00
68
e-
02

0.
20
12
e-
01

5.
10
87
e-
01

4.
05
32
e-
01

4.
64
61
e-
01

2.
33
61
e-
01

7
K
M
-c

0.
01
21
e-
01

0.
00
46
e-
02

0.
18
73
e-
01

4.
99
89
e-
01

4.
88
16
e-
01

4.
65
96
e-
01

2.
45
67
e-
01

8
R
K
M
-c

0.
00
68
e-
01

0.
00
15
e-
02

0.
12
37
e-
01

4.
71
04
e-
01

4.
36
45
e-
01

4.
68
70
e-
01

2.
31
54
e-
01

9
R
P
-c

0.
00
61
e-
01

0.
01
04
e-
02

0.
18
63
e-
01

3.
97
04
e-
01

5.
19
69
e-
01

4.
44
86
e-
01

2.
30
15
e-
01

10
K
P
-c

0.
02
41
e-
01

0.
00
82
e-
02

0.
13
64
e-
01

4.
92
46
e-
01

5.
36
17
e-
01

4.
50
67
e-
01

2.
49
24
e-
01

11
M
P
-c

0.
05
71
e-
01

0.
19
86
e-
02

1.
20
36
e-
01

6.
68
58
e-
01

7.
08
08
e-
01

7.
78
02
e-
01

3.
80
46
e-
01

12
G

2.
22
93
e-
01

3.
25
46
e-
02

2.
67
35
e-
01

1.
98
79
e-
01

1.
96
16
e-
01

2.
16
28
e-
01

1.
89
01
e-
01

13
E
G
O

0.
12
29
e-
01

0.
00
02
e-
02

0.
09
93
e-
01

0.
33
71
e-
01

0.
00
39
e-
01

1.
66
03
e-
01

0.
37
06
e-
01

14
R
-s

1.
89
13
e-
01

2.
76
38
e-
02

2.
43
74
e-
01

0.
33
18
e-
01

0.
16
91
e-
01

0.
00
01
e-
01

0.
85
10
e-
01

15
K
-s

1.
91
22
e-
01

2.
83
33
e-
02

2.
46
74
e-
01

3.
72
86
e-
01

1.
18
43
e-
01

0.
67
85
e-
01

1.
70
90
e-
01

16
M
-s

3.
74
55
e-
01

2.
76
38
e-
02

2.
43
74
e-
01

6.
30
93
e-
01

2.
61
70
e-
01

1.
99
91
e-
01

2.
89
74
e-
01

17
P
-s

1.
94
41
e-
01

2.
76
38
e-
02

2.
51
16
e-
01

5.
12
67
e-
01

5.
79
86
e-
01

4.
41
85
e-
01

3.
34
60
e-
01

18
R
K
-s

1.
71
78
e-
01

2.
68
84
e-
02

2.
37
03
e-
01

0.
49
76
e-
01

0.
16
91
e-
01

0.
38
18
e-
01

0.
90
09
e-
01

19
R
M
-s

1.
74
98
e-
01

2.
78
71
e-
02

2.
37
03
e-
01

0.
33
18
e-
01

0.
41
38
e-
01

0.
00
01
e-
01

0.
85
74
e-
01

20
K
M
-s

1.
71
78
e-
01

2.
68
84
e-
02

2.
38
87
e-
01

2.
40
31
e-
01

1.
35
46
e-
01

0.
68
30
e-
01

1.
46
94
e-
01

21
R
K
M
-s

1.
71
78
e-
01

2.
68
84
e-
02

2.
37
03
e-
01

0.
49
76
e-
01

0.
00
01
e-
01

0.
00
01
e-
01

0.
80
91
e-
01

22
R
P
-s

1.
69
40
e-
01

2.
78
71
e-
02

2.
37
03
e-
01

0.
33
18
e-
01

0.
00
01
e-
01

0.
00
01
e-
01

0.
77
92
e-
01

23
K
P
-s

1.
71
78
e-
01

2.
68
84
e-
02

2.
40
90
e-
01

2.
48
81
e-
01

0.
16
91
e-
01

0.
16
97
e-
01

1.
20
38
e-
01

24
M
P
-s

2.
03
93
e-
01

2.
78
71
e-
02

2.
37
28
e-
01

6.
74
95
e-
01

5.
34
25
e-
01

4.
01
65
e-
01

3.
46
65
e-
01

CHAPTER 3. SO-M-C AND SO-M-S 77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1

Figure 3.2: Distribution of relative errors for low-dimensional problems.

using a mixture that contains an RBF model is advisable.

3.5.2 Medium-sized Problems

The relative errors for the medium-sized problems are shown in Table 3.5.
Note that for the 20-dimensional Levy problem the relative errors are
not defined because the optimum has the objective function value 0. For
this test function the means of the objective function value over 30 trials
after 400 function evaluations for each algorithm are given in Table 3.6.
Gutmann’s algorithm failed for five trials for this problem, and therefore the
given results are averaged over the remaining 25 successful trials. For the
Levy function, the results show that EGO outperforms all other algorithms.

The results in Table 3.5 show that the average of the relative errors over
the Ackley and Schoen function is lowest when a mixture of RBF and the
polynomial is used together with the candidate point sampling strategy. For
the 17-dimensional Schoen function, the SO-M-c algorithms (algorithms 1-
11) perform better than the SO-M-s algorithms (algorithms 14-24). Also
the mean of the relative errors over both problems is, except for the polyno-
mial model, lower for SO-M-c. This fact is also reflected in the box plot in
Figure 3.3. For the SO-M-c algorithms, the RBF model (algorithm 1) and

CHAPTER 3. SO-M-C AND SO-M-S 78

the mixture of RBF and the polynomial (algorithm 9) perform best. EGO
(algorithm 13) has a slightly higher median than R-c and RP-c. Among the
SO-M-s algorithms, using only the RBF model as response surface performs
best (lowest median, algorithm 14). Thus also for this problem class using a
(mixture) surrogate that contains an RBF model should be chosen.

Table 3.5: Mean relative errors for medium-sized problems; best result is
marked by boxes. For results of L20, see Table 3.6.

Algorithm A15 Sch17 Mean

1 R-c 0.0996 0.1261 0.1128

2 K-c 0.6779 0.0009 0.3394
3 M-c 0.6189 1.6183 1.1186
4 P-c 0.8395 2.7743 1.8069
5 RK-c 0.3668 0.0990 0.2329
6 RM-c 0.1779 0.3763 0.2771
7 KM-c 0.6626 0.3315 0.4971
8 RKM-c 0.5293 0.2751 0.4022

9 RP-c 0.0839 0.0549 0.0694
10 KP-c 0.6662 0.0298 0.3480
11 MP-c 0.6329 1.6021 1.1175

12 G 0.5917 2.7088 1.6503
13 EGO 0.1072 0.2334 0.1703

14 R-s 0.0074 2.7086 1.3580
15 K-s 0.6598 2.7086 1.6842
16 M-s 0.5610 2.7101 1.6355
17 P-s 0.8384 2.8155 1.8270
18 RK-s 0.1416 2.7087 1.4252
19 RM-s 0.0470 2.7086 1.3778
20 KM-s 0.5526 2.7086 1.6306
21 RKM-s 0.2946 2.7086 1.5016
22 RP-s 0.0847 2.7086 1.3966
23 KP-s 0.6709 2.7086 1.6898
24MP-s 0.8028 2.7094 1.7561

CHAPTER 3. SO-M-C AND SO-M-S 79

Table 3.6: Levy-20 test problem, k = 20; 1 global minimum, several local
minima, minimization problem; best result is marked by box; Standard

error of means (SEM) in italic.

Algorithm Statistic Algorithm Statistic

1 R-c
mean 259.46

14 R-s
mean 149.73

SEM 36.28 SEM 20.04

2 K-c
mean 550.78

15 K-s
mean 787.43

SEM 27.85 SEM 34.48

3 M-c
mean 408.05

16 M-s
mean 146.27

SEM 19.28 SEM 4.20

4 P-c
mean 2105.82

17 P-s
mean 1475.62

SEM 70.48 SEM 12.09

5 RK-c
mean 451.37

18 RK-s
mean 196.90

SEM 32.98 SEM 27.21

6 RM-c
mean 272.01

19 RM-s
mean 130.70

SEM 27.75 SEM 18.16

7 KM-c
mean 517.76

20 KM-s
mean 533.97

SEM 27.45 SEM 16.84

8 RKM-c
mean 492.73

21 RKM-s
mean 144.07

SEM 31.02 SEM 22.41

9 RP-c
mean 198.63

22 RP-s
mean 313.83

SEM 31.52 SEM 27.24

10 KP-c
mean 583.74

23 KP-s
mean 760.40

SEM 30.80 SEM 41.38

11 MP-c
mean 397.47

24 MP-s
mean 836.30

SEM 27.87 SEM 14.89

12 G
mean 364.32
SEM 16.86

13 EGO
mean 31.70
SEM 1.35

CHAPTER 3. SO-M-C AND SO-M-S 80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

0.5

1

1.5

2

2.5

3

Figure 3.3: Distribution of relative errors for medium-sized problems.

3.5.3 Large-dimensional Problems

The relative errors over the large-dimensional problems are shown in Ta-
ble 3.7. Note that the optimal values of the Powell and the Sphere function
are zero, and therefore the relative errors are not defined. The average
objective function values and the standard errors of the means reached by
the algorithms for these problems after 400 function evaluations are given
in Tables 3.8 and 3.9, respectively. The algorithms involving a mixture of
RBF and kriging (algorithms 5, 8, 18, and 21) failed for several trials due to
limited computer memory. The results in Table 3.7 show that the mixture
of the RBF model and the MARS model when using the minimum of the
response surface as sampling strategy (algorithm 19) performs on average
better than all other algorithms. RM-s also performs best for the Powell
function, which is in particular a unimodal function. EGO performs for
the large-dimensional problems on average worse than the other algorithms,
except when the MARS (algorithm 3), the polynomial (algorithms 4 and 17),
or a mixture of MARS and polynomial (algorithms 11 and 24) are used as
response surface.

Figure 3.4 shows the box plots of the relative errors for each algorithm.
The figure shows that using only the polynomial regression model or a
mixture of the polynomial and MARS perform for both sampling strategies

CHAPTER 3. SO-M-C AND SO-M-S 81

worst (algorithms 4, 11, 17, 24). Also for this problem class it can be seen
that using the RBF model (algorithms 1 and 14), or a mixture including
the RBF model (algorithms 6, 9, 19, 22) performs in general better than
other mixtures. For the large-dimensional problems also Gutmann’s method
(algorithm 12) outperforms EGO (algorithm 11).

Table 3.7: Mean relative errors for large-dimensional problems; best result
is marked by boxes. For results of P24 and Sp27, see Tables 3.8 and 3.9,

respectively.

Algorithm M25 R30 Mean

1 R-c 0.3911 0.5189 0.4550
2 K-c 0.2979 0.8435 0.5707
3 M-c 0.5109 1.1617 0.8363
4 P-c 0.6437 2.2174 1.4305
5 RK-c 0.3986 0.5988 0.4987
6 RM-c 0.3783 0.5734 0.4759

7 KM-c 0.2890 0.8591 0.5740
8 RKM-c 0.2821 0.6395 0.4608
9 RP-c 0.4227 0.5411 0.4819
10 KP-c 0.3501 0.8316 0.5908
11 MP-c 0.5723 1.2493 0.9108

12 G 0.5652 0.0744 0.3198
13 EGO 0.4530 1.0409 0.7469

14 R-s 0.5614 0.0333 0.2974
15 K-s 0.6326 0.9744 0.8035
16 M-s 0.5481 0.8978 0.7229
17 P-s 0.6545 2.2363 1.4454
18 RK-s 0.5544 0.1333 0.3439

19 RM-s 0.5591 0.0144 0.2868
20 KM-s 0.6172 0.4667 0.5420
21 RKM-s 0.5710 0.1333 0.3522
22 RP-s 0.5803 0.1389 0.3596
23 KP-s 0.6140 0.8222 0.7181
24 MP-s 0.6304 2.1681 1.3993

CHAPTER 3. SO-M-C AND SO-M-S 82

Table 3.8: Powell-24 test problem, k = 24, 1 global minimum, no other
local minima, minimization problem; best result is marked by box;

Standard error of means (SEM) in italic.

Algorithm Statistic Algorithm Statistic

1 R-c
mean 504.10

14 R-s
mean 89.93

SEM 79.09 SEM 12.57

2 K-c
mean 2330.65

15 K-s
mean 4031.00

SEM 157.73 SEM 519.888

3 M-c
mean 4618.12

16 M-s
mean 4495.25

SEM 393.68 SEM 210.42

4 P-c
mean 10665.02

17 P-s
mean 12091.29

SEM 482.43 SEM 745.62

5 RK-c
mean 1491.18

18 RK-s
mean 281.29

SEM 104.05 SEM 55.57

6 RM-c
mean 1112.35

19 RM-s
mean 81.47

SEM 170.86 SEM 11.32

7 KM-c
mean 2487.67

20 KM-s
mean 1284.43

SEM 175.44 SEM 239.18

8 RKM-c
mean 1898.06

21 RKM-s
mean 544.43

SEM 174.68 SEM 152.58

9 RP-c
mean 578.80

22 RP-s
mean 147.23

SEM 128.97 SEM 21.42

10 KP-c
mean 2515.37

23 KP-s
mean 1830.13

SEM 139.69 SEM 407.59

11 MP-c
mean 4673.35

24 MP-s
mean 12093.97

SEM 317.60 SEM 746.34

12 G
mean 241.73
SEM 317.60

13 EGO
mean 363.05
SEM 28.26

CHAPTER 3. SO-M-C AND SO-M-S 83

Table 3.9: Sphere-27 test problem, k = 27; 1 global minimum, no other
local minima, minimization problem; best result is marked by box;

Standard error of means (SEM) in italic.

Algorithm Statistic Algorithm Statistic

1 R-c
mean 1.32

14 R-s
mean 1.47

SEM 0.87 SEM 0.33

2 K-c
mean 26.44

15 K-s
mean 71.40

SEM 1.33 SEM 5.56

3 M-c
mean 45.87

16 M-s
mean 80.07

SEM 2.91 SEM 1.88

4 P-c
mean 154.78

17 P-s
mean 154.78

SEM 2.73 SEM 2.73

5 RK-c
mean 12.07

18 RK-s
mean 3.33

SEM 0.77 SEM 0.82

6 RM-c
mean 3.77

19 RM-s
mean 0.37

SEM 1.44 SEM 0.15

7 KM-c
mean 29.82

20 KM-s
mean 19.83

SEM 1.94 SEM 3.03

8 RKM-c
mean 17.65

21 RKM-s
mean 9.67

SEM 3.91 SEM 2.69

9 RP-c
mean 0.45

22 RP-s
mean 2.20

SEM 0.04 SEM 0.42

10 KP-c
mean 29.83

23 KP-s
mean 38.37

SEM 1.15 SEM 5.48

11 MP-c
mean 50.08

24 MP-s
mean 154.78

SEM 3.44 SEM 2.73

12 G
mean 0.00
SEM 0.00

13 EGO
mean 13.68
SEM 0.70

CHAPTER 3. SO-M-C AND SO-M-S 84

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

0.5

1

1.5

2

2.5

Figure 3.4: Distribution of relative errors for large-dimensional problems.

3.5.4 Application Problems

The relative errors and the mean of the relative errors for both problems
are given in Table 3.10. For the groundwater bioremediation application the
RBF model with the candidate point sampling approach (algorithm 1) leads
to the best results. For the kite application the kriging model together with
the candidate point sampling (algorithm 2) attain on average the lowest rel-
ative errors. R-c, K-c, and RP-c perform almost equally well. EGO performs
on average worse than most SO-M-c algorithms (except when only the poly-
nomial regression model is used (algorithm 4)). Gutmann’s RBF method
performs worse than all other algorithms. The box plot in Figure 3.5 also
shows that the candidate point sampling strategy (algorithms 1-11) leads
in general to better results than when using the minimum of the response
surface (algorithms 14-24).

Table 3.10: Mean relative errors for application problems; best result is
marked by boxes.

Algorithm GW Kite Mean

1 R-c 0.2298 0.5319 0.3808

2 K-c 0.2985 0.4802 0.3894
3 M-c 0.3683 0.5250 0.4467
4 P-c 1.1301 0.5251 0.8276
5 RK-c 0.2749 0.5509 0.4129
6 RM-c 0.3731 0.5687 0.4709
7 KM-c 0.4094 0.4926 0.4510
8 RKM-c 0.3807 0.5183 0.4495
9 RP-c 0.2736 0.5203 0.3969
10 KP-c 0.4038 0.5103 0.4571
11 MP-c 0.4694 0.5929 0.5311

12 G 2.7298 0.5708 1.6503
13 EGO 1.1159 0.5007 0.8083

14 R-s 2.1496 0.5631 1.3564
15 K-s 2.2332 0.5387 1.3859
16 M-s 2.1506 0.5600 1.3553
17 P-s 2.6970 0.6161 1.6565
18 RK-s 1.9660 0.5401 1.2531
19 RM-s 1.9660 0.5496 1.2578
20 KM-s 2.0348 0.4845 1.2596
21 RKM-s 1.9660 0.5035 1.2348
22 RP-s 1.9660 0.5222 1.2441
23 KP-s 2.0062 0.5066 1.2564
24 MP-s 1.9909 0.5287 1.2598

CHAPTER 3. SO-M-C AND SO-M-S 86

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 3.5: Distribution of relative errors for application problems.

3.6 Conclusions

In this chapter the mixture surrogate model algorithm SO-M introduced in
Chapter 2 has been further developed with respect to two aspects. Firstly,
the strategy for selecting the next sample site in each iteration has been
changed to using a stochastic approach (algorithm SO-M-c). In every iter-
ation candidate points for the next sample site are generated by uniformly
selecting points from the whole variable domain, and by perturbing the
variable values of the best point found so far. Scoring criteria are used to
determine the best candidate, which in turn is used as sample site for doing
the expensive function evaluation. By changing the weights of the criteria a
repeated transition from global to local search could be achieved.

The second improvement has been made with respect to computing the
characteristics of the models in the mixture. Since the leave-one-out cross-
validation in SO-M becomes computationally too expensive as the number of
sample points and the problem dimension increase, a k̃-fold cross-validation
has been applied, where k̃ is adjusted dynamically throughout the algorithm
and depends on the number of sample sites.

The algorithm SO-M-c has been compared in numerical experiments to
the efficient global optimization algorithm (EGO) and Gutmann’s RBF

CHAPTER 3. SO-M-C AND SO-M-S 87

method. Moreover, a second sampling strategy that uses the minimum point
of the response surface has been used within the mixture model algorithm
(algorithm SO-M-s). Several mixture surrogate models have been used in
the comparison. As opposed to SO-M, however, the models contributing to
the mixtures in SO-M-c and SO-M-s were fixed, and thus they could not
change between iterations. Only their weights were re-adjusted in every
iteration. By this approach it was possible to examine which surrogate
models perform in general well, and which models should be avoided.

The comparison of the various algorithms, (mixture) surrogate models, and
sampling strategies showed that there is in general not one single algorithm
that outperforms all other algorithms (no free lunches [151]). The numerical
experiments showed that for the low-dimensional problems (2 ≤ k ≤ 6) the
SO-M-s algorithms perform on average better than the SO-M-c algorithms.
EGO had the best average performance for these low-dimensional problems
and Gutmann’s RBF method was among the worst. For the medium
sized problems (15 ≤ k ≤ 20) and both application problems the SO-M-c
algorithms proved in general superior as compared to using the SO-M-s
algorithms. For the large-dimensional problems (24 ≤ k ≤ 30) mixture
models performed better than single models for both sampling strategies.

Mixture models containing a cubic radial basis function interpolant per-
formed for most test problems best, while using only a cubic polynomial
regression model, MARS, or a mixture of the two often led to poor results.
However, in combinations with RBF or kriging, the performance of MARS
and the polynomial model could be significantly improved, and these
mixtures often outperformed even the best individual model contributing to
the mixture. Thus, if it is a priori unknown which surrogate model should be
used for a given black-box optimization problem, mixture surrogate models
that contain an RBF model should be chosen.

The problem of increasing computation times of the mixture model algo-
rithms can easily be avoided by parallel or distributed implementations. The
parameters and cross-validation for each model in the mixture can be done
on different processors, and thus the computation time can be reduced to
almost the same time required if only a single model was used. Gutmann’s
method on the other hand cannot be sped up by using parallelization
because minimizing the bumpiness measure is the driving computational
expense, and this is an iterative procedure.

CHAPTER 3. SO-M-C AND SO-M-S 88

In conclusion, a mixture surrogate model algorithm should be chosen if noth-
ing about the behavior of the black-box objective function is a priori known,
especially if there is the possibility of using several processors. Regarding the
sampling strategy the candidate point approach is very promising especially
for problems with larger dimensions (k ≥ 12). A more dynamic adjustment
of the perturbation probability when generating candidate points from the
best point found so far as done in the DYCORS algorithm [123] could be
examined in the future in connection with mixture models. Moreover, the
scoring criteria of the candidate point approach for mixture models contain-
ing kriging could be changed such that the expected improvement becomes
a criterion. Since the uncertainty of predictions is computed along with the
predictions in kriging, this information could be exploited in addition to
the response surface and distance criterion to determine the best candidate
point. These extensions are, however, left for future research and are thus
not further discussed in this thesis.

Chapter 4

SO-MI: A Surrogate Model
Algorithm for Computationally
Expensive Nonlinear
Mixed-Integer Black-Box
Global Optimization Problems

Abstract

This chapter introduces a surrogate model based algorithm for computation-
ally expensive mixed-integer black-box global optimization problems with
both binary and non-binary integer variables that may have computationally
expensive constraints. The goal is to find accurate solutions with relatively
few function evaluations. A radial basis function surrogate model (response
surface) is used to select candidates for integer and continuous decision vari-
able points at which the computationally expensive objective and constraint
functions are to be evaluated. In every iteration multiple new points are
selected based on different methods, and the function evaluations are done
in parallel. The algorithm converges to the global optimum almost surely.
The performance of this new algorithm, SO-MI, is compared to a branch
and bound algorithm for nonlinear problems, a genetic algorithm, and the
NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search, ver-
sion 3.5.0) algorithm for mixed-integer problems on sixteen test problems
from the literature (constrained, unconstrained, unimodal, and multimodal
problems), as well as on two application problems arising from structural

89

CHAPTER 4. SO-MI 90

optimization, and three application problems from optimal reliability design.
The numerical experiments show that SO-MI reaches significantly better re-
sults than the other algorithms when the number of function evaluations is
very restricted (200 to 300 evaluations).

CHAPTER 4. SO-MI 91

Abbreviations and Nomenclature

B&B Branch and bound algorithm
FEA Finite element analysis
GA Genetic algorithm
LC Linear constraints
MINLP Mixed-integer nonlinear programming
MM Multimodal
MTTF Mean time to failure
NLC Nonlinear constraints
NOMAD Nonsmooth Optimization by Mesh Adaptive Direct Search
RBF Radial basis function
SEM Standard error of the means
SO-MI Surrogate Optimization - Mixed Integer
UM Unimodal

R Real numbers
Z Integer numbers
w Mixed-integer decision variable vector, see equation (4.1e)
wT Transpose of w
x Continuous decision variables, see equation (4.1e)
u Discrete decision variables, see equation (4.1e)
i1 Index for continuous variables, see equation (4.1c)
i2 Index for discrete variables, see equation (4.1d)
xli1 , x

u
i1

Lower and upper variable bounds for continuous variables, see equa-
tion (4.1c)

uli2, u
u
i2

Lower and upper variable bounds for discrete variables, see equa-
tion (4.1d)

f(·) Objective function, see equation (4.1a)
cj(·) jth constraint function, see equation (4.1b)
k1 Dimension of the continuous variables, see equation (4.1c)
k2 Dimension of the discrete variables, see equation (4.1d)
k Problem dimension (k = k1 + k2)
m Number of constraints
Ωb Box-constrained variable domain
ΩD Discrete box-constrained variable domain
ΩC Continuous box-constrained variable domain
Ω Variable domain defined by box-constraints, linear, nonlinear, and

integrality constraints
n0 Number of points in initial experimental design

CHAPTER 4. SO-MI 92

S Set of n already evaluated points
wι ιth already sampled point, ι = 1, . . . , n
n Number of already sampled points
v(·) Constraint violation function, see equation (4.2)
fp(·) Objective function augmented with penalty term, see equation (4.3)
p Penalty factor, see equation (4.3)

f̃p(·) Objective function augmented with penalty term, see equation (4.5)
vs(·) Scaled constraint violation function, see equation (4.4)
sb(·) Radial basis function interpolant, see equation (1.9)
wmin Best feasible point found so far
fmin Best feasible objective function value found so far
fmax Worst feasible objective function value found so far
f(x|u) Objective function when the discrete variables are fixed to u, in

that case f is dependent only on continuous variables x
χj jth candidate point, j = 1, . . . , t
h1, h2 Standard deviations of perturbations
VD(·) Score for distance criterion, see equation (3.6)
VR(·) Score for response surface criterion, see equation (3.7)
V (·) Weighted score, see equation (3.8)
H0, H1 Null hypothesis and alternative hypothesis

CHAPTER 4. SO-MI 93

4.1 Introduction and Motivation

In many application areas such as logistics, engineering design, portfolio
optimization or energy generation problems may be encountered where
integrality constraints are imposed on several variables. The algorithms
developed and compared in Chapters 2 and 3 are suitable only for continuous
optimization problems, and other algorithms for solving computationally
expensive mixed-integer problems are needed. Mixed-integer optimization
problems are in general NP-hard and difficult to solve. Most algorithms
for solving mixed-integer optimization problems are based on branch
and bound methods, or some evolutionary strategy such as genetic algo-
rithms [31, 50, 59] or ant colony optimization (for example MIDACO [127]).
While several software packages are available for solving problems with
convex objective and constraint functions (for example DICOPT [145]
or BONMIN [20]), algorithms for solving nonconvex problems are rather
scarce and are usually based on problem reformulation and convexifica-
tion strategies [105, 106, 133]. However, when dealing with black-box
objective and constraint functions, where all that is known about the
problem is the deterministic output for a given input variable vector,
reformulating the problem is not possible. Moreover, if a single function
evaluation requires a time consuming simulation (from several minutes to
several hours or even days), the number of function evaluations for find-
ing a good approximation of the global optimum has to be as low as possible.

The branch and bound algorithm is based on recursively dividing the set of
possible solutions into smaller sets (nodes) during the so-called branching
step, and a tree structure evolves. During the bounding step an upper and
lower bound on the objective function value is calculated for every solution
subset. This requires minimizing the costly objective function at least
once because in order to obtain the lower bound, a relaxed problem (where
certain integer variables are assumed to be continuous) must be minimized.
For obtaining an upper bound, the variables in the solution of the relaxed
problem can be rounded, for example, to the closest integers (which does
not necessarily yield a feasible solution). In case the feasible upper bound
of a node, say N1, is lower than the feasible lower bound of node N2, the
node N2 can be deleted from the search (pruning). While the feasible upper
bounds on the solution at the nodes are non-increasing, the feasible lower
bounds are non-decreasing, and this is typically used to show convergence
to the global optimum.

CHAPTER 4. SO-MI 94

For solving computationally expensive black-box functions, however, branch
and bound might not be suitable because to obtain valid lower bounds for
multimodal problems the global optimum of the relaxed problem must be
found, which requires the application of a global optimization algorithm.
Furthermore, some application problems may not allow a relaxation of the
integer variables because this may cause the code evaluating the objective
function to fail.

Evolutionary algorithms such as genetic algorithms [63] mimic the natural
process of evolution by survival of the fittest. An initial population of
individuals (solutions) is generated randomly. The fittest individuals
are chosen for reproduction. Their offspring are generated by random
crossover and mutation operations. The advantage of this algorithm type
is that it is possible to escape from a local optimum. In general, a large
number of function evaluations must be done to find a good approxi-
mation of the global optimum due to the number of individuals in the
population and the number of generations. Thus, genetic algorithms may
not be suitable for solving computationally expensive optimization problems.

Other algorithms for mixed-integer problems include cutting plane
methods [54, 147, 148], and outer approximation methods [43, 76].
BARON [137, 125] is a widely used algorithm for global optimization
of algebraic nonlinear and mixed-integer nonlinear problems. However,
these algorithms require the knowledge of the algebraic formulation of the
problems, or that the problems are of a specific form (for example, convexity
of the objective function and constraints, or linearity in integer variables)
and are thus not suitable for solving black-box problems.

A derivative-free algorithm often referred to in the literature is NOMAD
(Nonsmooth Optimization by Mesh Adaptive Direct Search, here version
3.5.0 is used) [2, 3, 4]. NOMAD uses a mesh adaptive direct search
algorithm designed for solving constrained black-box optimization problems.
The mesh adaptive direct search is an extension of generalized pattern
search algorithms for which superior convergence properties can be shown [1].

NOMAD is applicable for mixed-variable problems, and by using the
variable neighborhood search [58, 95] option in the C++ implementation, it
is able to escape from local minima [10]. The mixed-variable pattern search
can be shown to guarantee first-order optimality conditions with respect
to the continuous variables, and local optimality in the mixed-integer case
is defined by user-specified neighboring points [11]. Although the C++

CHAPTER 4. SO-MI 95

implementation of NOMAD is able to use surrogate models during the
search, the user has to implement the desired model him/herself.

Furthermore, there are no extensive numerical studies of using NOMAD
for solving constrained mixed-integer problems. Liuzzi et al. [87] compared
their derivative-free algorithms to NOMAD on many low-dimensional
mixed-integer local optimization problems and few global optimization test
problems with at most 20 dimensions that have only bound constraints, but
application problems were not considered.

Despite their success in solving continuous optimization problems, sur-
rogate model algorithms have only started to be considered for solving
mixed-integer optimization problems [14, 33, 60, 64, 116]. Davis and
Ierapetritou [33] suggest an algorithm that is able to handle problems with
noisy data, and that have continuous and binary variables. A branch and
bound framework is coupled with kriging response surfaces and response
surface methodology to obtain a balance of local and global search while
using a very restricted number of function evaluations.

Holmström et al. [64] describe in their paper an adaptive radial basis
function algorithm for solving mixed-integer optimization problems. The
algorithm uses mixed-integer subsolvers from the commercial TOMLAB
optimization environment to solve an auxiliary problem to determine the
points where to evaluate the expensive objective function in every iteration
of the algorithm. Holmström et al. [64] considered mainly low dimensional
problems (one test problem with 11 dimensions and eight integer variables,
and other test problems with six or fewer dimensions with one to four integer
variables). The response surface is not necessarily unimodal, and solving the
auxiliary problem may require itself the application of a global optimization
algorithm. Furthermore, constraints have to either be computationally
cheap, or otherwise added as penalty term to the objective function value.
The adjustment of the penalty factor is however a delicate task, and there
are no recommendations on how to set it.

Similarly, Rashid et al. [116] use a MINLP subsolver to solve two auxiliary
optimization problems for determining the next sample site(s). In addition
to the computationally expensive objective function, Rashid et al. [116]
consider problems that may have computationally inexpensive as well as
expensive constraints.

CHAPTER 4. SO-MI 96

In this chapter a new surrogate model based algorithm is introduced that
solves larger dimensional mixed-integer computationally expensive black-box
problems without using mixed-integer subsolvers, and where the integer
variables may take on a wide range of values rather than only binary
values. Using mixed-integer subsolvers may, as for the continuous case, lead
to difficulties finding the global optimum of the auxiliary function to be
optimized, and the algorithms may thus get trapped in local optima of the
response surface which, if the surrogate model is inaccurate, may not be a
local optimum of the true objective function. The random sampling strategy
proposed here aims at avoiding this difficulty. A theoretical analysis of
convergence properties is also presented.

The remainder of this chapter is structured as follows. The mixed-integer
problem formulation is given in Section 4.2. The new algorithm, SO-MI, for
solving mixed-integer optimization problems that may have computationally
expensive constraints is described in Section 4.3, and its theoretical proper-
ties are described in Theorem 1. The algorithm uses a radial basis function
interpolant (which can in general be replaced by any of the other (mixture)
surrogate models described in Chapters 2 and 3). In Section 4.4 the setup of
the numerical experiments is described. The performance of SO-MI is com-
pared to a genetic algorithm, a branch and bound algorithm, and NOMAD
on 16 test problems from the literature, and five application problems that
are briefly described in Section 4.5. A more thorough description of the test
problems is given in Appendix C. The numerical results are summarized in
Section 4.6, and conclusions are drawn in Section 4.7.

4.2 Mixed-Integer Optimization Problem

In the following let f : Rk1 × Z
k2 �→ R denote the costly black-box objective

function that may in general be nonlinear or multimodal. Denote the decision
variables by wT = (xT ,uT), where x = (x1, x2, . . . , xk1)

T ∈ R
k1 denote the

continuous variables, and u = (u1, u2, . . . , uk2)
T ∈ Z

k2 denote the discrete
variables. The mixed-integer optimization problem can then be stated as

minimize f(w) (4.1a)

s.t. cj(w) ≤ 0, ∀j = 1, . . . , m (4.1b)

−∞ < xli1 ≤ xi1 ≤ xui1 <∞, ∀i1 = 1, . . . , k1 (4.1c)

−∞ < uli2 ≤ ui2 ≤ uui2 <∞, ∀i2 = 1, . . . , k2 (4.1d)

x ∈ R
k1,u ∈ Z

k2 ,wT = (xT ,uT) (4.1e)

CHAPTER 4. SO-MI 97

where xli1 and xui1 denote the lower and upper bounds on the continuous
variables xi1 , i1 = 1, . . . , k1, respectively, and where uli2 and uui2 denote
the lower and upper bounds on the discrete variables ui2 , i2 = 1, . . . , k2,
respectively. The jth computationally expensive constraint is denoted by
cj(w). It is assumed that the feasible region is nonempty. Inequalities (4.1c)
and (4.1d) are the box constraints. Denote the box-constrained discrete
variable domain by ΩD ⊂ Z

k2 , and the box-constrained continuous variable
domain by ΩC ⊂ R

k1. The mixed-integer box-constrained variable domain
is denoted by Ωb = ΩC × ΩD, and it holds that |ΩD| = κ < ∞, i.e. ΩD

is a finite set. The dimension of the mixed-integer optimization problem
is denoted by k = k1 + k2. Throughout this chapter it is assumed that
every point w satisfies the integrality constraints imposed on u, and that
f(w) and cj(w), j = 1, . . . , m, are continuous when the discrete variables
are fixed. Moreover it is assumed that each integer variable can assume at
least two values, otherwise the variable would be fixed, and the problem
dimension would reduce.

The objective functions of the optimization problems considered in this
chapter may in general look as illustrated in Figure 4.1 (constraints left out
for simplicity). Illustrated are the graphs of a function with one discrete and
one continuous variable when the discrete variable is fixed to three different
values. As can be seen, the function depends now only on the continuous
variable and may be multimodal.

0 0.5 1 1.5 2 2.5 3
−100

−50

0

50

100

150

x

f(x|u)

u=1
u=−5
u=10

Figure 4.1: Illustrated is the function f(x, u) = ux+ u sin3(u3x) + ux2

for three different fixed values of u. The function may be multimodal
depending on the discrete variable values.

CHAPTER 4. SO-MI 99

4.3 SO-MI: Surrogate Model Algorithm for

Mixed-Integer Black-Box Optimization

Problems

The surrogate model algorithm presented in this chapter has been developed
for finding (near) optimal solutions of mixed-integer optimization problems.
It will in the following be referred to as SO-MI (Surrogate Optimization
- Mixed-Integer). The algorithm uses a cubic radial basis function (RBF)
surrogate model as described in Section 1.2.4. The single steps of SO-MI are
described in detail in the following sections.

4.3.1 The Initial Experimental Design and Penalty
Functions

The initial experimental design consists of 2k + 1 points that are generated
using a symmetric Latin hypercube design over the box-constrained region
where the integer constraints are satisfied by rounding the corresponding
variable values to the closest integers. It is assumed that one feasible point is
known, and this point is added to the design. In practice, it can be assumed
that at least one feasible solution is known due to experience and a general
understanding of the problem at hand. Thus, totally n0 = 2(k + 1) points
are in the initial experimental design, which is twice the minimum number
of points required to fit the cubic RBF model of dimension k. Note that
there is a potential problem of the rank of the matrix P in equation (1.10)
being less than k+1 when rounding the integer variables. This has not been
a problem in the computational experiments, but, in order to circumvent
this problem, the rank of the matrix P is computed, and if rank(P) < k+1,
a new initial experimental design is generated until rank(P) = k + 1. Next,
the computationally expensive objective function and the constraints are
evaluated at these points.

The constraints cj(w) in equation (4.1b) are integrated during the optimiza-
tion phase in the objective function by a penalty term. A constraint violation
function

v(w) =
m∑
j=1

[
max

{
0, cj(w)

}]2
, (4.2)

is used, where it is assumed that w ∈ Ωb, i.e. only points within the box-
constrained domain are considered. If v(w) = 0, the point w satisfies every
constraint cj(w), j = 1, . . . , m. The penalty for constraint violations is in-

CHAPTER 4. SO-MI 100

corporated in two different ways. At the beginning of the algorithm when
there are possibly only one or very few feasible points known, it is preferable
to stay within the feasible region and explore it, i.e. to find further feasible
points, and thus improve the accuracy of the response surface within the fea-
sible region. To achieve this goal the following penalty augmented objective
function is used

fp(w) =

{
fmax + pv(w), if w is not feasible

f(w), otherwise
, (4.3)

where p denotes the penalty factor and fmax is the worst feasible objective
function value found so far. This definition guarantees that the penalty
augmented function values of the infeasible points are larger than the
worst feasible objective function value. Otherwise, if defining the penalty
function for example by f(w) + pv(w), it is possible that for a constant
penalty factor p infeasible points reach despite penalty a better objective
function value than the feasible points, and the search might be drawn into
the infeasible region and many unnecessary objective function evaluations
could be done. To prevent numerical instabilities, high function values fp
are replaced by the median. The data (wι, fp(wι)), ι = 1, . . . , n0, from
the initial experimental design are then used to solve the linear system of
equations (1.10) in Section 1.2.4 to obtain the response surface parameters.
Note that although some variables have to be integers, all variables are
assumed to be continuous in order to obtain a smooth response surface. The
sample points are however generated such that the integrality constraints
are satisfied.

Since the goal is to find accurate approximations of the global optimum
within as few function evaluations as possible, it is desired to do only very
few function evaluations at infeasible points. By adding large values to
infeasible points as done in equation (4.3) the response surface is likely to
predict high objective function values for points in the vicinity of infeasible
points. The response surface is used to approximate fp(w), and the penalty
term acts similarly to a barrier method with the goal to stay initially within
the feasible region. The disadvantage is however that the accuracy of the
response surface near the boundary of the feasible domain is decreased.
To overcome this drawback the penalty term is changed after 100 function

CHAPTER 4. SO-MI 101

evaluations1.

The penalty augmented objective function used for the remaining function
evaluations is defined as follows. First the sum of squared constraint viola-
tions (4.2) is scaled to the interval [0, 1]:

vs(w) =
v(w)− vmin

vmax − vmin
, (4.4)

if vmin
= vmax, and vs(w) = 0 otherwise (if vmin = vmax, then there are
no infeasible points). Here vmin = min{v(wι), ι = 1, 2, . . . , n} and vmax =
max{v(wι), ι = 1, 2, . . . , n}. Thus, feasible points (including the points on
the boundary) obtain the value vs = 0, whereas points that violate the
constraints obtain positive values for vs depending on how much these points
violate the constraints. The new penalty augmented objective function values
are then defined by

f̃p(w) = f(w) + vs(w)fmax. (4.5)

Thus, the worst feasible objective function value fmax is added to the func-
tion value of the point with the largest constraint violation, whereas only a
fraction of fmax is added as penalty to the objective function values of points
with lower constraint violations. This penalty function does not guarantee
that infeasible points have worse objective function values than the best fea-
sible point. The parameters of the response surface are then computed using
the data (wι, f̃p(wι)), and the surrogate model may predict better objective
function values for infeasible points than for feasible points, and the proba-
bility of sampling points at the boundary of the feasible region is larger than
when using the definition in equation (4.3).

4.3.2 Selecting the Next Sample Site

Just as for the algorithms for continuous optimization problems described in
Chapters 2 and 3, there are several possibilities for determining the next sam-
ple site. However, if optimizing an auxiliary function, now a mixed-integer
subsolver has to be used. The EGO algorithm by Jones et al. [74] could, for
example, be adapted by maximizing the expected improvement with respect
to the mixed-integer constrains. The Matlab implementation of EGO [48]
uses a genetic algorithm for solving the auxiliary optimization problem.

1Numerical experiments showed that for the problems in Section 4.5 100 evaluations
were sufficient to find several feasible points. The number may be changed depending
on the size of the initial experimental design and the total number of allowed function
evaluations.

CHAPTER 4. SO-MI 102

The genetic algorithm in Matlab 2011b and newer Matlab versions is able
to deal with integer constraints, and thus this would be a straightforward
adaption of EGO for solving mixed-integer problems. Similarly, Gutmann’s
bumpiness measure [57] could be minimized with respect to the integer
constraints with an appropriate mixed-integer subsolver. In this chapter the
goal is to develop a random sampling strategy that is able to select several
sample points in one iteration, and exploits the possibilities of parallelization.

In every iteration SO-MI chooses four new sample sites for evaluating
the expensive objective and constraint functions. These four points are
determined by generating four groups of candidate points. The first group
of points is generated by perturbing only the continuous variables of the
best feasible point found so far (this point is in the following denoted by
wmin). The discrete variable values of wmin are kept constant. Randomly
chosen continuous variables of wmin are perturbed by randomly adding
or subtracting small, medium and large perturbations. If the dimension
k > 5, then each variable is perturbed with a probability of max{0.1, 5/k}.
Otherwise, every variable is perturbed. Considering high-dimensional
problems, this is a practical approach because the goal of a local search
is to stay within the vicinity of wmin, and perturbing each variable of,
for example, a 30-dimensional problem may cause candidate points to be
far away from wmin [118]. By perturbing only the continuous variables it
is possible to find the minimum of the function f(x|u fixed), which is at
least a local optimum of f(w). The candidate points in this first group
are generated such that they satisfy the Global Search Condition 1 in [117,
Theorem 1, page 1189].

For generating the candidate points in the second group, the continuous
variables of wmin are kept constant, and only randomly chosen discrete
variables are perturbed by randomly adding or subtracting small, medium
or large discrete perturbations that depend on the minimum range of the
variables, and that are at least one unit. Thus, it is possible to explore
how much the objective function values change when transitioning from one
integer variable vector to another (compare for example the three objective
function values of the three graphs in Figure 4.1 when the continuous
variable is kept constant, for example, at x = 2). If, for example, the global
optima for each function f(u|x fixed) are at the same point x for all u, it is
possible to find the global optimum of f(w) very efficiently.

The candidate points in the third group are generated by perturbing ran-
domly chosen discrete and continuous variables of wmin by randomly adding

CHAPTER 4. SO-MI 103

or subtracting small, medium and large perturbations that are defined as for
the first two groups. If any candidate point in the first three groups exceeds
the lower or upper variable bounds xli1 , u

l
i2

or xui2 , u
u
i2

in equations (4.1c)
and (4.1d), respectively, then these variable values are set to the value of
the corresponding bound that has been exceeded. The candidate points in
the fourth group are generated by uniformly selecting points from the whole
box-constrained variable domain Ωb, and thus every point in Ωb may become
a candidate and therefore also sample point. The integrality constraints are
satisfied by rounding the corresponding variables to the closest integers.

The standard deviations of the perturbations of the continuous variables
have been set to h1 = δ ·min{min{xui1−x

l
i1 , i1 = 1, . . . , k1},min{uui2−u

l
i2, i2 =

1, . . . , k2}}, where δ = 0.1 for large perturbations, δ = 0.01 for medium
perturbations, and δ = 0.001 for small perturbations. The standard
deviations of the perturbations for the integer variables have been defined
as h2 = max{1, [h1]}, where [h1] is the value of h1 rounded to the closest
integer. The random perturbations ζh1 and ζh2, where ζ ∼ N (0, 1), are
then added to the variables chosen to be perturbed, and integer variables
are subsequently rounded to the closest integer value. Three standard
deviations for the perturbations have been used in order to increase the
variability of the generated candidate points.

Each group contains 500k candidate points, which is sufficient to create a
large diversity of points. The four groups have been generated with the
incentive of obtaining points that are close to wmin (local search), and points
that are randomly selected from the variable domain (global search). Thus,
it is possible to explore the vicinity of wmin more thoroughly, as well as
search globally for other promising regions of the variable domain.

If it is a priori known that the optimization problem is unimodal and that
the location of the minimum is independent of the discrete variable values,
it might be sufficient to use only candidate points from the third group,
and later switching to using candidate points only from the first group to
further refine the search since the perturbations are in general much smaller
(perturbing an integer variable results in a perturbation of at least one unit).
In general, it is, however, unknown how many local and/or global optima are
present. The candidate points in the fourth group allow the exploration of
the whole variable domain, and thus it is possible to escape from local optima.

The two criteria described in Section 3.3 are used to determine the best
candidate point in each group, i.e. one point from each of the four groups

CHAPTER 4. SO-MI 104

is chosen for doing the next expensive objective and constraint function
evaluations2. It is assumed that objective and constraint function values
are the output of the same computationally expensive black-box simulation
model, i.e. whenever the objective function is evaluated, also the constraint
function values are obtained. The evaluations at the chosen points can thus
be done in parallel because they are independent of each other. Of course,
the parallelization can be extended to more than four points if one wishes
to select more than four candidate points for doing function evaluations3.

After all new function values have been obtained, the new points are added
to the set of already sampled points S, fmax is updated if necessary, and,
depending on the stage of the algorithm, either fp in equation (4.3) or f̃p
in equation (4.5) is computed for each point in S. The parameters of the
RBF response surface in equation (1.9) are updated using either the data
(wι, fp(wι)) or (wι, f̃p(wι)), ι = 1, . . . , n (depending on the stage of the
algorithm), and the algorithm iterates through generating candidate points,
calculating scores, and updating the response surface until a given maximal
number of function evaluations has been reached.

4.3.3 SO-MI Algorithm

The specific steps of the surrogate model algorithm SO-MI for computation-
ally expensive mixed-integer black-box optimization problems is given below.

Algorithm 5 SO-MI: Surrogate Optimization - Mixed Integer

1. Repeatedly generate an initial experimental Latin hypercube design with
2k + 1 distinct points, round the discrete variables to the closest inte-
gers, and add a known feasible point to the design until rank(P) =
k + 1, where P is defined in equation (1.11). Denote the points by
w1, . . . ,wn0

, where n0 = 2(k + 1).

2. Do the costly function evaluations to obtain f(wι), and cj(wι), ι =
1, . . . , n0, j = 1 . . . , m.

2If two or more selected points are the same, then only one of them is used for doing
the expensive function evaluation, i.e. less than four points may be selected.

3If objective and constraint function values are the output of separate black-box sim-
ulation models, it might be favorable (depending on the number of constraints and their
computational demand) to use m+1 processors, and do objective and constraint function
evaluations for one point at a time in parallel rather than using one processor for each
point.

CHAPTER 4. SO-MI 105

3. Find the best feasible point wmin = argmin{f(wι) where cj(wι) ≤
0, ∀j = 1 . . . , m} with lowest function value fmin, and de-
termine the worst feasible objective function value fmax =
max{f(wι) where cj(wι) ≤ 0, ∀j = 1 . . . , m}.

4. Compute fp(wι), ι = 1, . . . , n0, the adjusted objective function values
according to equation (4.3).

5. Use the data (wι, fp(wι)), ι = 1, . . . , n0, to calculate the RBF model
parameters by solving system (1.10).

6. Iterate until the maximal number of allowed function evaluations has
been reached:

(a) Create four groups of candidate points by randomly (i) perturbing
only continuous variable values of wmin, (ii) perturbing only dis-
crete variable values of wmin, (iii) perturbing continuous and dis-
crete variable values of wmin, and (iv) uniformly selecting points
from Ωb, and make sure that the integrality constraints are satis-
fied. Eliminate all candidates that are already contained in S from
further consideration.

(b) Calculate the scoring criteria for every candidate point in each
group.

• Predict the objective function value of each candidate point
χj, j = 1, . . . , t, using the response surface sb defined in equa-
tion (1.9), and compute VR(χj) in equation (3.7), where smix

must be replaced by sb.

• Determine the distance of each candidate point χj, j =
1, . . . , t, to S, and compute VD(χj) in equation (3.6).

• Compute the weighted score V (χj) in equation (3.8) for the
candidates in each group.

(c) Choose from each group the candidate point with the best score V .

(d) Do the expensive function evaluations at these points (in parallel).

(e) If necessary, update the best feasible point found so far wmin. Up-
date also the worst feasible objective function value fmax if neces-
sary, and adjust the objective function values according to equa-
tion (4.3) or equation (4.5), depending on the stage of the algo-
rithm.

(f) Update the RBF model parameters using the penalty augmented
objective function values from Step 6(e).

CHAPTER 4. SO-MI 106

7. Return the best feasible solution found wmin.

4.3.4 Convergence of SO-MI

The algorithm SO-MI is convergent, specifically asymptotically com-
plete [104]. It is assumed that f is a deterministic real-valued function on
the compact set Ω ⊆ Ωb defined by the box constraints, and the linear and
nonlinear constraints cj, j = 1, . . . , m, if they exist. It is assumed that f
and cj , j = 1, . . . , m, are continuous when the integer variables are fixed.
Denote f ∗ = infw∈Ω f(w) > −∞ the feasible global minimum. Let w∗ be a
feasible global minimizer of f over Ω and suppose that f is continuous at w∗

when the integer variables are fixed. Moreover, the candidate points in the
first group (perturbation of only continuous variables) are generated such
that the Global Search Condition 1 in [117, Theorem 1, page 1189] is satisfied.

Theorem 1 The algorithm SO-MI is asymptotically complete, i.e. assuming
an indefinitely long run-time and exact computations, a global minimum of
the optimization problem (4.1a)-(4.1e) will be found with probability one.

Proof 1 By definition of the mixed-integer problem, the cardinality
|ΩD| = κ is finite, i.e. there is only a finite number of integer variable
vectors U1,U2, . . . ,Uκ. Therefore, there is only a finite number of possible
integer vectors that can be realized by the random vectors WT = (XT ,UT).
If each integer vector is considered as a “bin”, then each random vector
W1,W2, . . . ,Wn belongs to exactly one such bin. For example, if a problem
has only one integer variable U with possible values U ∈ {1, 2, . . . , 10}, there
are totally 10 such bins, and |ΩD| = 10.

Each function evaluation point W1,W2, . . . ,Wn can thus be assigned to the
bin it belongs to according to its integer variable values. Denote the points
in each bin as follows.

Bin 1:
{
W1(U1),W2(U1), . . . ,Wn

U1(U1)

}
, (4.6)

Bin 2:
{
W1(U2),W2(U2), . . . ,Wn

U2(U2)

}
, (4.7)

...

Bin κ:
{
W1(Uκ),W2(Uκ), . . . ,WnUκ(Uκ)

}
, (4.8)

where Wĩ(Uj̃) = (Xĩ(U),U) with U = Uj̃, and Xĩ is the ĩth point for which

U = Uj̃, i.e. the ĩth point in bin Uj̃. For each such bin a subsequence of best

CHAPTER 4. SO-MI 107

feasible points found so far can be defined. It is assumed that in the following
the points Wĩ(Uj̃), ĩ = 1, 2, . . . , n

Uj̃ , j̃ = 1, 2, . . . , κ′, κ′ ≤ κ, satisfy the linear

and nonlinear constraints if applicable (there may be integer sequences for
which the constraints cannot be satisfied regardless of the continuous variable
values). Thus, in general there are at most κ′ ≤ κ such subsequences of best
feasible points found so far, where the ĩth subsequence with integer variable
values Uĩ is denoted as

W∗
1(Uĩ)

= (X∗
1(Uĩ)

,Uĩ) = W1(Uĩ) = (X1(Uĩ),U
ĩ) (4.9a)

W∗
n
Uĩ

(Uĩ)
= (X∗

n(Uĩ)
,Uĩ) =

⎧⎨
⎩
Wn

Uĩ
(Uĩ) if f(Wn

Uĩ
(Uĩ)) < f(W∗

n
Uĩ−1(Uĩ)

)

W∗
n
Uĩ

−1(Uĩ)
otherwise

,

(4.9b)

for ĩ = 1, 2, . . . , κ′.

According to the sampling procedure of SO-MI, it is possible to generate
points in each of the κ bins (recall that candidate point groups 2, 3, and
4 perturb the integer variables/uniformly generate candidate points from
the whole variable domain). By assumption, the objective function f is
continuous when the integer variables are fixed. If SO-MI is able to converge
to the feasible global minimum for each continuous subproblem that arises
when fixing the integer variable values (i.e. the global minimum of each bin),
a finite number (assuming there is a finite number of global minima in each
bin) of local minima for the mixed-integer problem can be found. The point
amongst these local minima with the lowest objective function value is then
the global minimum of the mixed-integer problem.

Denote X∗
U ĩ
, ĩ = 1, 2, . . . , κ′, the feasible global minimizer of the ob-

jective function f when the integer variables are fixed to the values
Uĩ, ĩ = 1, 2, . . . , κ′, i.e. the feasible global minimizer of the ĩth bin. De-
note the feasible global minimum of the continuous objective function by
f ∗
U ĩ

= f(X∗
U ĩ
|Uĩ), ĩ = 1, 2, . . . , κ′, where (·|Uĩ) means that the integer

variables are fixed to Uĩ. Then the global minimum of the mixed-integer
problem is f ∗ = min{f ∗

U1 , f ∗
U2, . . . , f ∗

Uκ′}. Therefore, it remains to show that,
assuming indefinitely long run-time and exact computations, the algorithm
SO-MI converges to the feasible global minimum for each bin ĩ = 1, 2, . . . , κ′.

Note that it is not necessary to first find the global minimum of some bin be-
fore moving on to finding the global minimum of some other bin. According to

CHAPTER 4. SO-MI 108

the sampling procedure of SO-MI it is possible to return to a bin where sam-
ple points have been taken already in previous iterations (candidate points in
groups 2, 3, and 4). Thus, it is only necessary to show that SO-MI converges
to the global minimum of each bin, which (when considering sample points

in the ĩth bin Uĩ only) is a continuous global optimization problem. This
requires showing that the subsequence defined in equations (4.9a) and (4.9b)
converges to the minimum X∗

U ĩ
of the ĩth bin. However, this proof directly

follows along the lines of the proof of Theorem 1 by Regis [117].

4.4 Numerical Experiments

The SO-MI algorithm has been implemented and tested in Matlab
2010a. The performance of SO-MI is in the following analysis compared
in numerical experiments to a branch and bound algorithm for solv-
ing nonlinear mixed-integer optimization problems, a genetic algorithm,
and the mixed-integer option of the C++ implementation of NOMAD [3, 10].

The branch and bound algorithm for nonlinear problems is based on the
implementation by Kuipers [78] and applies the trust-region-reflective
algorithm (Matlab optimization toolbox function fmincon) when solving
the relaxed subproblems in the tree nodes. The maximum number of
function evaluations to solve one subproblem has been kept at the default
value 100k. The branch and bound implementation uses a depth-first
search with backtracking. The branching variable is chosen such that
|f(x1, . . . , xk1 , u1, . . . , ui2, . . . , uk2) − f(x1, . . . , xk1 , u1, . . . , [ui2], . . . , uk2)| is
maximized over all i2 ∈ {1, . . . , k2}, where [ui2] is the value of the i2th
discrete variable rounded to its closest integer.

The branch and bound algorithm has been included in the comparison
because it is a widely used algorithm for solving mixed-integer optimization
problems. However, as argued before, the performance of branch and bound
cannot be expected to be good on multimodal problems due to the com-
putation of the lower bounds in the tree nodes that would require a global
optimization algorithm. The comparison with branch and bound is included
to show that although the algorithm is suitable for solving mixed-integer
problems with special characteristics as, for example, convexity, it is not a
feasible option for finding (near) optimal solutions to black-box problems
where the algebraic structure of the objective function is unknown and can
thus not be exploited.

CHAPTER 4. SO-MI 109

The genetic algorithm has a population of 20 individuals, 20 generations,
and, following [61], uses real-coded chromosomes. The parents for creating
the next generation’s individuals are chosen based on their objective
function value fp. Crossover and mutation operations have been applied
for generating the offspring. In the crossover operation two parents are
chosen and the crossover point is selected randomly. The mutation operator
randomly selects variables of the parent and adds a value dζ , where ζ is
a random variable drawn from the normal distribution N (0, 1), and d = 1
initially and increases if the mutation does not result in new offspring. The
discrete variables are rounded to the closest integer values, and variables
exceeding any upper or lower bounds are replaced by the respective value of
the bound that has been exceeded.

As suggested by the literature [135, 162] and in order to help the genetic
algorithm to perform well within a limited number of function evaluations, a
dynamic adjustment of the crossover and mutation probabilities is applied.
The probability of using crossover decreases as the number of generations
increases, whereas the probability of using mutation increases with the
generation number. Hence, a transition from a rather global to a more local
search can be achieved as the algorithm advances. The linear and nonlinear
constraints have been incorporated in the objective function with a penalty
term. The branch and bound algorithm and the genetic algorithm were
implemented and tested with Matlab 2011b4.

NOMAD 3.5.0 has been obtained from [3] and can solve mixed-integer
problems [10]. The C++ implementation has been used because it incor-
porates the variable neighborhood search (the setting VNS SEARCH 0.75 as
suggested in the user manual has been used) that enables the algorithm to
escape from local optima. The constraints are treated with the progressive
barrier approach (setting PB). Although this version of the user manual
states that NOMAD can be used with a surrogate model, the software does
not include an implementation of a surrogate model. Therefore, NOMAD
has not been used with surrogate models in the numerical experiments.

In the SO-MI algorithm, the penalty factor in equation (4.3) has been
set to p = 100. The factor guarantees that infeasible points will have
worse function values than the worst feasible point. By subsequently

4Note that the genetic algorithm in Matlab 2011b and newer versions is able to deal
with integer constraints. This algorithm has been tried on the test problems, but delivered
significantly worse results than the suggested implementation.

CHAPTER 4. SO-MI 110

replacing large function values with the median, numerical instabilities can
be prevented.

The maximum number of allowed function evaluations has been set to 300
since SO-MI is intended for problems for which only a limited number
of function evaluations can be done, and in many real life applications
even 100 function evaluations are already computationally infeasible.
30 trials have been made with every algorithm for every problem, and
every algorithm was given the same feasible point for the same trial of a
given test problem. This feasible point was either the starting point for
the algorithm (NOMAD and branch and bound), or it was added to the
initial experimental design/initial generation (SO-MI and genetic algorithm).

The mixed-integer global optimization solver arbfMIP contained in the
commercial TOMLAB optimization environment [64] has not been included
in the comparison for the following reasons. TOMLAB has been developed
for unconstrained problems and problems that have computationally cheap
constraints. If the constraints are computationally expensive, they have
to be incorporated in the objective function with a penalty term. There
are, however, no recommendations on how to adjust the penalty factor.
Moreover, the objective and constraint function values must be computed
in separate Matlab files, and thus there are difficulties applying the penalty
method used in SO-MI as described in Section 4.3.1. A conclusive compari-
son between SO-MI and TOMLAB for constrained problems is therefore not
possible.

Furthermore, arbfMIP has several parameters that need to be adjusted (for
example, global search type, cycle length, global and local solver, etc.),
which may have to be adjusted according to the test problem, and which is
without further knowledge of the problem at hand difficult to do such that
the comparison with the other algorithms would be fair.

The mixed-integer global optimization solver arbfMIP has been applied to a
five- and a 30-dimensional unconstrained test problem with computationally
cheap objective functions. The calculations for the five-dimensional problem
have been interrupted after more than two hours computation time and the
algorithm was not close to having done 300 computationally cheap function
evaluations. For the 30-dimensional problem, the algorithm required more
than two hours for finding only 50 points for doing the computationally cheap
function evaluations, i.e. the arbfMIP tends to become itself a computational
burden (SO-MI needs less than a tenth of that time for 300 evaluations).

CHAPTER 4. SO-MI 111

Assuming an allowed maximum number of 300 function evaluations, where
each evaluation would take about two minutes, the total time for solving
the problem with TOMLAB would almost double for the 30-dimensional
problem. Thus, the TOMLAB optimization environment seems to be efficient
only for problems where the function evaluation requires considerably more
time. Also the solver glcSolve could be used, which is significantly faster
than arbfMIP. For glcSolve it is however not possible for the user to define a
starting point (the given feasible point). Thus, also for this solver a conclusive
comparison of the algorithms would not be possible. For the reasons stated
above, TOMLAB has not been included in the computational experiments.

4.5 Test Problems

4.5.1 Generic Test Problems

Totally, 16 test problems (which are modifications of literature problems)
have been used to examine the efficiency and solution quality of SO-MI
compared to branch and bound, the genetic algorithm, and NOMAD. Four
test problems used by Koziel and Michalewicz [77] (test problems 5-8,
Table 4.1), that are originally continuous global optimization test problems,
have been used and integrality constraints have been imposed on some of
the continuous variables.

Four test problems from the Mixed-Integer Nonlinear Programming models
library MINLPLib [23] (test problems 3, 9, 11, 12, Table 4.1), five problems
that have only box constraints (test problems 2, 10, 13, 14, 15, Table 4.1),
and three test problems from [6] have been used to compare the algorithms
(see also [17, 47, 159], integer variables are binary variables in these cases,
test problems 1, 4, 16, Table 4.1). The mathematical description of all
test problems is given in Appendix C together with their best known
solutions. Although some of the problems have convex objective functions,
the constraints determine the number of local optima. Many problems
have therefore several local optima. Furthermore, some problems have flat
regions, i.e. regions where several points of the variable domain have the
same function value. These generic test problems are computationally inex-
pensive, but they have characteristics often found in real world application
problems, and are thus suitable for comparing the algorithms.

CHAPTER 4. SO-MI 112

4.5.2 Structural Design Applications

Two applications from structural design have been examined. Mixed-integer
optimization problems are often encountered in this application area, for
example when designing truss structures.

The goal is in general to minimize structural costs such as the total volume
of the structure while satisfying constraints such as limits on the maximal
nodal displacements when loads are applied. A finite element analysis has to
be done to determine these nodal displacements, and depending on the num-
ber of elements involved and the type of finite element analysis required, the
computation times may become a considerable burden [36, 72, 115, 126, 136].

The need for integer decision variables arises because technological re-
quirements do not allow the production of truss members with arbitrary
cross sectional areas. Rather, catalogues are used from which commercially
available member sizes may be chosen. Therefore, discrete variables enter
the design problem. On the other hand, as the length of the truss element is
variable (one can always weld truss members together), continuous variables
are encountered. Although for this problem type the integer constraints
could be relaxed during the optimization, there are application problems
which do not allow continuous values for integer variables because this
may cause the simulation function to fail (see Chapter 5). Therefore, it is
assumed that integer variables cannot be relaxed in general.

The two structures shown in Figures 4.2 and 4.3, respectively, are considered.
The first example (Figure 4.2, test problem 17, Table 4.1) is a plane truss
and is an alteration of the example in [25, Chapter 4]. The structure has 11
elements (an element is a truss member located between two nodes). There
are three load cases, F1 = 280 kN acting on nodes 1 and 5, F2 = 210 kN
acting on node 3, and F3 = 310 kN acting on node 7. The coordinates of
nodes 1, 3, 5 and 7 are fixed, but the height x of the structure is variable.
The goal is to minimize the total mass of the structure while satisfying
the condition that the maximal displacement is at most 8mm for all
nodes. Therefore, the cross sectional areas of all truss elements have to be
determined, as well as the height x of nodes 2, 4 and 6, where each node
may have a different value for x. It is assumed that the steel bars have
cross-sections of equal-sided angle type, and therefore one discrete variable
is associated with every truss element, i.e. there are totally 11 discrete
variables describing the side lengths of the bars. There are three continuous

CHAPTER 4. SO-MI 113

variables describing the vertical locations of nodes 2, 4 and 6.

The second example (Figure 4.3, test problem 18, Table 4.1) is a three-
dimensional truss dome. The coordinates of nodes 8-13 are fixed, and the
height of nodes 1-7 has to be determined (continuous variables). There are
two load cases. Load F1 = 20 kN acts vertically on nodes 2-7, and load
F2 = 40 kN acts vertically on node 1. The truss consists of 24 tubular
elements that all have the same outer diameter and whose inner diameter
has to be determined (discrete variables). The goal is to minimize the total
mass while limiting the displacement of node 1 to at most 10mm. The
geometry data of both trusses is given in Appendix C.

Figure 4.2: Eleven element plane truss (test problem 17, Table 4.1): The
goal is to minimize the weight of the structure while satisfying nodal
displacement constraints. The geometry data is given in Appendix C.

CHAPTER 4. SO-MI 114

(a) Top view (b) Side view

Figure 4.3: Truss dome (test problem 18, Table 4.1): The goal is to
minimize the weight of the truss dome while satisfying displacement
constraints for node 1. The geometry data is given in Appendix C.

4.5.3 Reliability-Redundancy Allocation Problems

Three application problems arising from reliability engineering are exam-
ined. Reliability engineering is an important topic in fields such as system,
mechanical, electronics, or software engineering. Depending on the system
under consideration different levels of reliability must be guaranteed. The
consequences of the failure of a system’s reliability may vary significantly
between different applications (compare, for example, the crash of an air-
plane and the malfunctioning of a coffee machine). Although the reliability
requirements for different systems are in general very different, the common
goal is to maximize the total system reliability.

The reliability of a system is defined as the probability that a sys-
tem or device will perform its intended function for a specified time
period under given restrictions such as production costs, for example.
The most commonly used system reliability measure is the mean time to
failure (MTTF). The higher the MTTF is, the higher the system’s reliability.

The engineer has in general two options for increasing the reliability of
a system. On the one hand, it is possible to increase the reliability of
single components, and on the other hand redundancy can be provided at
various stages of the system. Because the component cost often increases
exponentially when the component reliability exceeds a certain limit, it

CHAPTER 4. SO-MI 115

might be cheaper to use components of lower reliability and to provide
redundancy, i.e. to add more components of the same kind of lower reliability
to the system. Although additional components also incur costs, the cost
increase might be less compared to the costs caused by increasing the
component reliability. A tradeoff between component reliability increments
and component redundancy arises. This problem type is in the literature
referred to as reliability-redundancy allocation (see for example [80]).

Since reliability is a probability, it is in practice difficult to test a system’s
reliability. A single test of the system is in general not representative, and
performing multiple tests or tests of systems with a high MTTF may be too
expensive. Thus, when adjusting reliability and redundancy parameters for
maximizing the total system reliability, it is important to strictly limit the
number of reliability tests to a minimum.

Reliability-redundancy allocation leads to a mixed-integer nonlinear opti-
mization problem where the discrete variables represent the levels of re-
dundancy, and the continuous variables are the component reliabilities that
are assumed to be known. The general mathematical formulation of such
reliability-redundancy allocation problems is as follows [80].

max
x,u

Rs(x,u) (4.10a)

s.t. cj(x,u) ≤ bj , j = 1, . . . , m (4.10b)

ui2 ∈ {uli2, . . . , u
u
i2
}, xi1 ∈ [xli1 , x

u
i1
], i1, i2 = 1, . . . , k1, (4.10c)

where Rs(x,u) is the system reliability that depends on the system config-
uration, and the constraints (4.10b) can be, for example, cost constraints
or weight restrictions. The continuous variables x reflect the reliability of
each component, whereas the integer variables u describe the redundancy
for each component.

In the literature, different heuristic algorithms [55, 138], as well as algo-
rithms based on branch and bound [79] and evolutionary algorithms [27, 68]
have been developed for solving reliability-redundancy allocation problems.
However, these methods require in general many function evaluations and
may become infeasible in practice.

Three reliability-redundancy allocation problems have in the following been
examined, namely a series-parallel configuration, a bridge system, and an
overspeed protection system (see [26, 38, 62, 157]). Block diagrams for
a simple bridge and a series-parallel configuration, and the configuration

CHAPTER 4. SO-MI 116

specific data are given in Appendix C.

4.5.4 Overview of Test Problems

A summary of all test problems is shown in Table 4.1. The column “ID”
shows the problem identification number each problem is referred to with
in the following sections. The column “k2” denotes the number of discrete
variables, and the column “Notes” gives information about the origin of
the problem. The column “Characteristics” contains information about the
problem constraints, where NLC stands for nonlinear constraints, and LC
for linear constraints, and indicates whether the problem is unimodal (UM)
or multimodal (MM). FEA means that a finite element analysis has to be
done for evaluating the constraints.

4.6 Numerical Results

In the following the genetic algorithm will be referred to as GA, and the
branch and bound algorithm for nonlinear problems will be abbreviated by
B&B. The test problems have been divided into four groups as follows. The
results for the test problems that have only box constraints are discussed
in Section 4.6.1. The results of the algorithms for problems that have in
addition to the box constraints linear and/or nonlinear constraints are
summarized in Section 4.6.2. Section 4.6.3 shows the numerical results
for the structural design application problems, and the results of the
reliability-redundancy allocation problems are given in Section 4.6.4 (note
that the latter are maximization problems).

Each of the Tables 4.2, 4.4, 4.6, and 4.8 shows the problem ID as defined
in Table 4.1, and the feasible function value achieved by every algorithm
after 100, 200, and 300 function evaluations, respectively, averaged over 30
trials together with the corresponding standard errors of the mean (SEM) in
columns “100 eval.”, “200 eval.”, “300 eval.”. The reported numbers are all
for feasible points only. Note that if a test problem has constraints, then the
constraints are evaluated if and only if the objective function is evaluated,
i.e. every objective function evaluation is followed by the evaluation of
all constraints, and constraints are not evaluated at a point without the
objective function being evaluated. In many real-life application problems

T
ab

le
4.
1:

S
u
m
m
ar
y
of

te
st

p
ro
b
le
m
s;
N
L
C

-
n
on

li
n
ea
r
co
n
st
ra
in
ts
,
L
C

-
li
n
ea
r
co
n
st
ra
in
ts
,
F
E
A

-
fi
n
it
e
el
em

en
t

an
al
y
si
s,
k
-p
ro
b
le
m

d
im

en
si
on

,
k
2
-
d
im

en
si
on

of
in
te
ge
r
va
ri
ab

le
s,
U
M

-
u
n
im

o
d
al
,
M
M

-
m
u
lt
im

o
d
al
;
ID

-
p
ro
b
le
m

id
en
ti
fi
ca
ti
on

n
u
m
b
er
;
se
e
A
p
p
en
d
ix

C
fo
r
fu
rt
h
er

in
fo
rm

at
io
n

(a
)
h
tt
p
:/
/w

w
w
.a
ri
d
ol
an

.c
om

/g
a/
ga
a/
M
u
lt
iV
ar
M
in
.h
tm

l
(b
)
re
li
ab

il
it
y
-r
ed
u
n
d
an

cy
al
lo
ca
ti
on

p
ro
b
le
m
.

ID
k

D
om

ai
n

k
2

N
ot
es

C
h
ar
ac
te
ri
st
ic
s

1
11

[0
,1
]8
×
[0
,0
.9
97
]×

[0
,0
.9
98
5]
×

[0
,0
.9
98
8]

4
[1
7]

3
N
L
C
,
4
L
C
,
M
M

2
8

[−
10
,1
0]

8
4

co
n
ve
x

n
o
co
n
st
ra
in
ts
,
U
M

3
5

[0
,1
0]

3
×
[0
,1
]2

2
[2
3]

2
N
L
C
,
3
L
C
,
U
M

4
3

[0
,1
]×

[0
.2
,1
]×

[−
2.
22
55
4,
−
1]

1
[4
6]

1
N
L
C
,
2
L
C
,
M
M

5
25

[0
,1
0]

2
5

6
[7
7]

1
N
L
C
,1

L
C
,
M
M

6
5

[7
8,
10
2]
×
[3
3,
45
]×

[2
7,
45
]3

2
[7
7]

6
N
L
C
,
U
M
/fl

at
7

2
[1
3,
10
0]
×
[0
,1
00
]

1
[7
7]

2
N
L
C
,
M
M

8
7

[−
10
,1
0]

7
3

[7
7]

4
N
L
C
,
M
M

9
5

[0
,1
0]

3
×
[0
,1
]2

3
[2
3]
,
li
n
ea
r

3
L
C
,
U
M

10
5

[−
10
0,
10
0]

5
2

(a
)

n
o
co
n
st
ra
in
ts
,
M
M

11
10

[3
,9
]1
0

5
[2
3]

n
o
co
n
st
ra
in
ts
,
U
M

12
10

[3
,9
9]

1
0

5
[2
3]

n
o
co
n
st
ra
in
ts
,
U
M

13
12

[−
1,
3]

1
2

5
[1
42
]

n
o
co
n
st
ra
in
ts
,
M
M

14
12

[−
10
,3
0]

1
2

5
[1
42
]

n
o
co
n
st
ra
in
ts
,
M
M

15
30

[−
1,
3]

3
0

10
[1
42
]

n
o
co
n
st
ra
in
ts
,
M
M

16
11

[0
,1
]8
×
[0
,1
0]

3
4

[1
59
]

4
N
L
C
,
9
L
C
,
M
M

17
14

[1
0,
60
]1
1
×
[2
00
0,
32
00
]3

11
2-
d
im

.
tr
u
ss

F
E
A

18
31

[1
,1
0]

2
4
×

[0
,1
00
0]

7
24

3-
d
im

.
tr
u
ss

F
E
A

19
10

[1
,1
0]

5
×
[0
,0
.9
99
99
9]

5
5

(b
),
b
ri
d
ge

3
N
L
C

20
8

[1
,1
0]

4
×
[0
,0
.9
99
99
9]

4
4

(b
),
ov
er
sp
ee
d

3
N
L
C

21
10

[1
,1
0]

5
×
[0
,0
.9
99
99
9]

5
5

(b
),
se
ri
es
-p
ar
al
le
l

3
N
L
C

CHAPTER 4. SO-MI 118

objective and constraint function values are the output of the same com-
putationally expensive black-box simulation, and therefore this assumption
has been made in the numerical experiments. The columns “dim.” and
“|ΩD|” in the tables give information about the problem dimension and
the cardinality of the discrete variable domain. The last column indicates
whether the problem is unimodal (UM) or multimodal (MM).

It has to be emphasized that the algorithms are compared with respect
to the number of function evaluations needed to find improvements, and
that the computation times of the algorithms are neglected because in
applications where a function evaluation may take up to several hours or
even days, the algorithms’ computation times become insignificant. The
objective function values reported in the tables are for feasible points only.
It shall be noted at this point that the performance of NOMAD, GA,
and B&B may be improved by combining these algorithms with surrogate
models. However, publicly available codes are rather scarce, and as in the
case of the C++ implementation of NOMAD, the developers ask the user to
implement the surrogate model him/herself.

In order to better compare the solution quality of the algorithms for the
four problem classes, the ”score” rows of Tables 4.2, 4.4, 4.6, and 4.8 sum-
marize how much each algorithm deviates from the best feasible solution
averaged over 30 trials (numbers in %). The value is computed for each
column (100 eval., 200 eval., and 300 eval.) and each algorithm as

1

|N |

∑
π∈N

∣∣∣∣fn
A(π)− fn

best(π)

fn
best(π)

∣∣∣∣ · 100, (4.11)

where N is the set of problems in each category (box-constrained, con-
strained, structural, reliability-redundancy), π denotes a certain problem
within the category, fn

best(π) is the best average feasible objective function
value reached for problem π after n function evaluations (n is 100, 200, or
300), and fn

A(π) is the average objective function value reached by algorithm
A (A is SO-MI, GA, B&B, or NOMAD) after n evaluations for problem
π. The best algorithm for a given problem receives therefore the score 0,
whereas all other algorithms with worse results obtain a positive score. Thus,
by this definition, the smaller the reported score is, the better is the algo-
rithm’s performance because the lower is the deviation from the best solution.

In addition, Tables 4.3, 4.5, 4.7, and 4.9 contain information of hypothesis
testing for differences in means between SO-MI and the other algorithms
after 100, 200, and 300 function evaluations

CHAPTER 4. SO-MI 119

4.6.1 Box-Constrained Problems

The results for the box-constrained problems in Table 4.2 show that SO-MI
and NOMAD outperform B&B and GA on all problems of this group.
Comparing the function values averaged over all 30 trials, shows that SO-MI
is better than NOMAD for five out of seven problems after 100 function
evaluations (column 3), indicating that SO-MI finds improvements faster.
SO-MI is also superior after 200 and 300 function evaluations for four and
five out of the seven problems, respectively.

B&B did not find any improvements during 300 function evaluations for test
problems 11, 12, 13, 14 and 15. GA found improvements for all problems,
but could not outperform SO-MI or NOMAD. B&B has in general the worst
performance, and is outperformed by all other algorithms for five out of
seven problems including the unimodal test problems. This fact indicates
that the optimization of the subproblems in the tree nodes of the branch
and bound algorithm consumes too many function evaluations, and feasible
solutions with respect to the integer constraints cannot be found efficiently.

Problems 13 and 14 are essentially the same problems, but problem 14
has a larger variable domain. The results show that for problem 13 the
results found by SO-MI and NOMAD after 300 evaluations are about equal,
whereas the results of NOMAD for problem 14 are for all evaluations sig-
nificantly worse. B&B found for problem 13 only very slight improvements
of the initially given point within 300 evaluations, and was not able to
find any improvements when the variable domain was increased. Also the
performance of GA is significantly worse for the problem with larger variable
domain.

Similarly, problems 11 and 12 have the same structure, but problem 12 has a
larger variable domain. The results show that SO-MI is able to find for both
problems a near optimal solution within fewer than 100 function evaluations,
whereas NOMAD reaches competitive results after 300 evaluations. B&B
did not find any improvements of the initially given points for either
problem. GA performs slightly worse for problem 12 (the final solution
is about 40% worse than the best solution after 300 evaluations) than for
problem 11 (the final solution is about 22% worse than the best solution
after 300 evaluations), indicating that the performance of GA decreases
when the variable domain gets larger. These four problems (11, 12, 13, and
14) show that the performance of SO-MI is less affected by the size of the

CHAPTER 4. SO-MI 120

variable domain than the other algorithms.

The scores for each algorithm in the table are computed without taking
the convex problem 2 into consideration because SO-MI was developed
for non-convex and multimodal problems, and was not expected to work
so well on a convex problem. The convex problem was included only to
examine how well SO-MI might do on this problem class. The scores in
the table show that SO-MI performs better than all other algorithms and
has the smallest deviations from the best solution found. Although SO-MI
does not continuously perform best on all problems, the cases where it is
outperformed by NOMAD show that the differences between the results
found by NOMAD and SO-MI are much smaller than the differences for the
problems where SO-MI outperforms NOMAD. Compared to GA and B&B,
SO-MI and NOMAD perform significantly better.

The standard errors of the means (SEM) given for each algorithm in
Table 4.2 are for SO-MI in general lowest (except for test problem 10). The
hypothesis testing for differences in means between the different algorithms
in Table 4.3 shows that except for problems 10, 13, and 15 the average
objective function values of SO-MI are significantly lower than those of
GA, NOMAD, and B&B at the 1% significance level. NOMAD reaches
significantly lower values than SO-MI only for test problems 10 and 15
after 200 and more function evaluations, and for problem 13 for up to 100
evaluations. The SEM values reported for B&B for test problems 11, 12, 13,
14, and 15 are computed based on the initially given points since B&B was
not able to find any improvements for these test problems.

Figures 4.4 and 4.5 illustrate the development of the objective function value
averaged over 30 trials versus the number of function evaluations for all
four compared algorithms for test problems 12 and 15. The error bars show
the standard deviations. Since the problems were about minimization, the
best algorithm is the one that achieves the fastest reduction of the objective
function value. Figure 4.4 shows that SO-MI improves the objective function
value within the lowest number of function evaluations as compared to GA,
NOMAD and B&B. NOMAD eventually finds a solution that is very similar
(less than 4% difference) to the one found by SO-MI, but comparing the
graphs of SO-MI and NOMAD after 100 and 200 function evaluations, for
example, shows that SO-MI performs significantly better. GA also finds
improvements, but is not able to perform nearly as well as SO-MI. Figure 4.5
illustrates the results found by the algorithms for test problem 15. SO-MI
is outperformed by NOMAD after about 100 function evaluations, and both

CHAPTER 4. SO-MI 121

algorithms outperform GA and B&B. B&B did not find any improvements
within 300 function evaluations for either test problem.

0 50 100 150 200 250 300
−10000

−6000

−2000

0

Number of function evaluations

Avg.
function

value

SO−MI
GA
NOMAD
B&B

Figure 4.4: Box-constrained minimization problem, test problem 12.
Objective function value averaged over 30 trials vs. number of function

evaluations; error bars illustrate standard deviations.

T
ab

le
4.
2:

B
ox
-c
on

st
ra
in
ed

p
ro
b
le
m
s.

M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h
10
0,

20
0,

an
d
30
0

fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s
(S
E
M
)
ar
e
gi
ve
n

fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A
ll
p
ro
b
le
m
s
ar
e
m
in
im

iz
at
io
n
p
ro
b
le
m
s.

M
M

-
m
u
lt
im

o
d
al
,
U
M

-
u
n
im

o
d
al
.

ID
A
lg
or
it
h
m

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

d
im

.
|Ω

D
|

M
M
/U

M

10

S
O
-M

I
m
ea
n

-3
86
.3
3

-4
20
.9
1

-4
32
.5
8

5
10
12

M
M

S
E
M

1
6
.7
4

1
4
.8
7

1
5
.1
7

G
A

m
ea
n

-2
40
.2
1

-3
00
.6
4

-3
06
.9
6

S
E
M

1
8
.7
8

1
8
.5
4

1
8
.0
4

B
&
B

m
ea
n

64
4.
33

-1
20
.7
6

-3
57
.9
4

S
E
M

1
0
7
.7
2

9
5
.9
7

1
9
.4
2

N
O
M
A
D

m
ea
n

-3
80
.2
0

-4
60
.0
5

-4
79
.9
8

S
E
M

1
4
.4
9

1
2
.4
1

9
.3
7

11

S
O
-M

I
m
ea
n

-4
2.
92

-4
2.
99

-4
2.
99

10
75

U
M

S
E
M

0
.1
9

0
.1
3

0
.1
3

G
A

m
ea
n

-1
7.
00

-2
6.
31

-3
3.
73

S
E
M

0
.7
8

0
.7
6

0
.7
7

B
&
B

m
ea
n

4.
23

4.
23

4.
23

S
E
M

1
.0
8

1
.0
8

1
.0
8

N
O
M
A
D

m
ea
n

-2
6.
78

-3
2.
99

-3
8.
26

S
E
M

1
.0
3

1
.0
1

0
.8
7

12

S
O
-M

I
m
ea
n

-9
58
1.
32

-9
58
4.
62

-9
58
4.
62

10
97

5
U
M

S
E
M

5
.2
6

0
.7
9

0
.7
9

G
A

m
ea
n

-4
93
1.
94

-5
64
8.
29

-5
82
5.
53

S
E
M

1
7
0
.5
5

1
6
8
.3
7

1
7
2
.7
5

B
&
B

m
ea
n

-1
51
3.
54

-1
51
3.
54

-1
51
3.
54

S
E
M

1
3
1
.7
2

1
3
1
.7
2

1
3
1
.7
2

N
O
M
A
D

m
ea
n

-5
28
0.
95

-7
43
6.
47

-9
20
1.
87

S
E
M

1
8
4
.1
3

2
2
2
.4
9

7
5
.2
3

13

S
O
-M

I
m
ea
n

-4
.8
9

-8
.4
8

–9
.6
3

12
55

M
M

S
E
M

0
.3
3

0
.3
0

0
.2
3

G
A

m
ea
n

2.
69

-1
.7
1

-3
.7
4

S
E
M

0
.6
0

0
.3
4

0
.2
8

B
&
B

m
ea
n

23
.8
8

23
.8
8

23
.8
8

S
E
M

2
.0
5

2
.0
5

2
.0
5

N
O
M
A
D

m
ea
n

-7
.5
1

-8
.6
6

-9
.2
7

S
E
M

0
.4
3

0
.1
9

0
.3
1

14

S
O
-M

I
m
ea
n

27
.9
5

-5
.7
8

-8
.2
7

12
41

5
M
M

S
E
M

2
.8
5

0
.2
7

0
.3
4

G
A

m
ea
n

81
6.
53

51
0.
26

37
6.
38

S
E
M

4
0
.6
8

2
6
.8
2

2
2
.1
8

B
&
B

m
ea
n

28
02
.7
9

28
02
.7
9

28
02
.7
9

S
E
M

1
8
0
.2
8

1
8
0
.2
8

1
8
0
.2
8

N
O
M
A
D

m
ea
n

23
.1
0

19
.8
8

13
.2
3

S
E
M

1
.9
4

1
.1
3

2
.3
1

15

S
O
-M

I
m
ea
n

-6
.5
9

-1
0.
29

-1
1.
80

30
51

0
M
M

S
E
M

0
.3
7

0
.3
6

0
.4
7

G
A

m
ea
n

25
.4
8

13
.8
3

10
.7
3

S
E
M

1
.4
6

1
.0
9

1
.0
7

B
&
B

m
ea
n

62
.0
3

62
.0
3

62
.0
3

S
E
M

3
.6
4

3
.6
4

3
.6
4

N
O
M
A
D

m
ea
n

-6
.3
9

-1
9.
27

-1
9.
52

S
E
M

2
.0
8

0
.9
0

0
.8
8

S
co
re

S
O
-M

I
9

9
8

G
A

70
0

15
50

82
7

in
%

B
&
B

23
25

82
82

58
30

N
O
M
A
D

15
81

46

2

S
O
-M

I
m
ea
n

0.
00

0.
00

0.
00

8
21

4
U
M

S
E
M

0
.0
0

0
.0
0

0
.0
0

G
A

m
ea
n

27
4.
17

15
3.
30

82
.7
9

S
E
M

2
1
.1
3

1
1
.2
6

8
.2
8

co
n
ve
x

B
&
B

m
ea
n

14
71
.0
5

12
74
.9
9

4.
29

S
E
M

1
3
2
.6
5

1
4
5
.1
1

1
.1
0

N
O
M
A
D

m
ea
n

11
7.
70

7.
36

0.
14

S
E
M

1
.2
3

1
.6
8

0
.0
5

CHAPTER 4. SO-MI 125

Table 4.3: Box-constrained problems. Hypothesis testing for differences in
means (μ) after 100, 200, and 300 function evaluations.

(∗∗) denotes significance at α = 1% for
H0 : μSO-MI = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-MI < μA;

(�) denotes significance at α = 5% and (��) denotes significance at α = 1%
for H0 : μSO-MI = μNOMAD and H1 : μSO-MI > μNOMAD.

ID Algorithm Number of evaluations
A 100 200 300

10
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (�) (��)

11
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

12
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

13
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (��)

14
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗)

15
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (��) (��)

2
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

CHAPTER 4. SO-MI 126

0 50 100 150 200 250 300
−50

0

50

100

Number of function evaluations

Avg.
function

value

SO−MI
GA
NOMAD
B&B

Figure 4.5: Box-constrained minimization problem, test problem 15.
Objective function value averaged over 30 trials vs. number of function

evaluations; error bars illustrate standard deviations.

4.6.2 Constrained Problems

The numerical results for the constrained test problems are shown in
Table 4.4. The results show that SO-MI performs best for six out of nine
test problems after 100 evaluations, and for five out of nine test problems
after 200 and 300 evaluations, respectively. NOMAD on the other hand
had the best performance only for one of the nine test problems after 200
function evaluations, and for two of nine test problems after 300 function
evaluations. These results indicate that SO-MI performs in general better
than NOMAD also for the constrained problems, and that SO-MI is able
to find improvements within fewer function evaluations as compared to
NOMAD.

B&B found the best results for test problems three, six, and nine, where
test problem six is in particular a convex problem, and test problems
three and nine have a linear objective function. Test problems three and
nine are essentially the same problem, but the nonlinear constraints have
been omitted in test problem nine. Moreover, for test problems three
and nine the globally optimal point of the continuous relaxation is the
same as when integer constraints are imposed (the global optimum of the

CHAPTER 4. SO-MI 127

continuous problem has all variable values zero), which explains the superior
performance of B&B on these problems.

For test problem eight, the optimization of the relaxed subproblems in
the tree nodes of B&B did not converge and the algorithm stalled. Thus,
the reported result is the average of the function values of the initially
given feasible points for the 30 trials. Moreover, B&B was not able to find
improvements for the remaining five test problems (test problems 1, 4, 5,
7, and 16) within 300 evaluations, and has for these problems the worst
performance among all compared algorithms.

GA was able to improve the initially given solution for all but one test
problem, and performs in general better than B&B, but significantly worse
than SO-MI and NOMAD. Although GA has been developed for solving
multimodal optimization problems, the number of function evaluations
needed for finding good solutions is very large due to the number of
individuals in the single generations and the number of generations.

Also for this problem class a score has been computed that measures how
much each algorithm deviates from the best feasible average result found
after 100, 200, and 300 evaluations. Test problems 3, 6, and 9 have not been
included in the calculation because problem 6 is convex, and problems 3
and 9 have linear objective functions and the continuous relaxations lead
directly to an integer feasible solution. SO-MI has been developed for
multimodal problems and therefore these problems are left out when
computing the scores. The scores show that SO-MI performs also for this
problem class better than any of the other algorithms. NOMAD performs
better than GA and B&B, and its performance improves as the number of
function evaluations increases.

The hypothesis testing for differences in means in Table 4.5 confirms that
SO-MI attains significantly better results (at the level α = 1%) than all
other algorithms for most problems. For reasons explained above, B&B
performs significantly better on the special problems 3, 6, and 9.

Figure 4.6 illustrates the development of the function value for feasible
points averaged over 30 trials versus the number of function evaluations
for all algorithms for test problem five. The error bars illustrate the
standard deviations for each algorithm. The figure shows that SO-MI
is able to find significantly better feasible solutions than B&B and GA,
and eventually also NOMAD. It can be seen that all B&B trials got

CHAPTER 4. SO-MI 128

stuck in the same point, and the algorithm did not find any improve-
ments within 300 function evaluations. NOMAD and GA are able to
find slight improvements of the initially supplied feasible solutions, but are
not able to find any more improvements after about 150 function evaluations.

0 50 100 150 200 250 300
−0.4

−0.3

−0.2

−0.1

0

Number of function evaluations

Avg.
function

value

SO−MI
GA
NOMAD
B&B

Figure 4.6: Constrained minimization problem, test problem 5. Objective
function value for feasible points averaged over 30 trials vs. number of

function evaluations; error bars illustrate standard deviations.

T
ab

le
4.
4:

P
ro
b
le
m
s
w
it
h
li
n
ea
r
an

d
/o
r
n
on

li
n
ea
r
co
n
st
ra
in
ts
.
M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls

w
it
h
10
0,

20
0,

an
d
30
0
fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s
(S
E
M
)
ar
e
gi
ve
n
fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A
ll
p
ro
b
le
m
s
ar
e
m
in
im

iz
at
io
n
p
ro
b
le
m
s.

B
&
B

∗
m
ea
n
s,
th
at

th
e
su
b
so
lv
er

fo
r
th
e
re
la
x
ed

p
ro
b
le
m
s
in

th
e
tr
ee

n
o
d
es

d
id

n
ot

co
n
ve
rg
e
an

d
th
e
al
go
ri
th
m

st
al
le
d
,
th
er
ef
or
e
al
so

S
E
M

is
n
ot

av
ai
la
b
le
.
M
M

-
m
u
lt
im

o
d
al
,
U
M

-
u
n
im

o
d
al
.

ID
A
lg
or
it
h
m

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

d
im

.
|Ω

D
|

M
M
/U

M

1

S
O
-M

I
m
ea
n

-0
.5
0

-0
.6
6

-0
.7
2

11
24

M
M

S
E
M

0
.0
3

0
.0
2

0
.0
2

G
A

m
ea
n

0.
26

-0
.3
1

-0
.3
3

S
E
M

0
.0
3

0
.0
3

0
.0
3

B
&
B

m
ea
n

-0
.0
9

-0
.0
9

-0
.0
9

S
E
M

0
.0
2

0
.0
2

0
.0
2

N
O
M
A
D

m
ea
n

-0
.4
7

-0
.5
3

-0
.6
4

S
E
M

0
.0
2

0
.0
2

0
.0
2

4

S
O
-M

I
m
ea
n

2.
99

2.
95

2.
93

3
2

M
M

S
E
M

0
.0
2

0
.0
2

0
.0
1

G
A

m
ea
n

3.
16

3.
16

3.
16

S
E
M

0
.0
2

0
.0
2

0
.0
2

B
&
B

m
ea
n

3.
18

3.
18

3.
18

S
E
M

0
.0
2

0
.0
2

0
.0
2

N
O
M
A
D

m
ea
n

3.
03

2.
94

2.
90

S
E
M

0
.0
2

0
.0
1

0
.0
1

5

S
O
-M

I
m
ea
n

-0
.1
8

-0
.2
5

-0
.3
2

25
11

6
M
M

S
E
M

0
.0
0

0
.0
1

0
.0
1

G
A

m
ea
n

-0
.1
5

-0
.1
5

-0
.1
6

S
E
M

0
.0
0

0
.0
0

0
.0
0

B
&
B

m
ea
n

-0
.0
9

-0
.0
9

-0
.0
9

S
E
M

0
.0
0

0
.0
0

0
.0
0

N
O
M
A
D

m
ea
n

-0
.1
7

-0
.1
9

-0
.1
9

S
E
M

0
.0
1

0
.0
1

0
.0
1

7

S
O
-M

I
m
ea
n

-4
15
6.
44

-4
18
2.
99

-4
18
6.
56

2
14

M
M

S
E
M

1
4
.3
9

9
.3
7

8
.1
2

G
A

m
ea
n

-3
26
6.
52

-3
38
0.
55

-3
61
6.
21

S
E
M

8
8
.7
8

9
9
.3
0

9
9
.7
1

B
&
B

m
ea
n

-3
19
4.
01

-3
19
4.
01

-3
19
4.
01

S
E
M

9
3
.4
1

9
3
.4
1

9
3
.4
1

N
O
M
A
D

m
ea
n

-3
82
5.
44

-3
84
5.
79

-3
84
7.
36

S
E
M

4
8
.9
1

4
7
.2
0

4
7
.6
2

8

S
O
-M

I
m
ea
n

10
57
.3
9

84
7.
65

76
1.
44
8

7
21

3
M
M

S
E
M

1
7
.8
1

1
5
.6
8

8
.6
3

G
A

m
ea
n

10
95
04
5.
15

87
46
65
.9
0

62
97
28
.4
3

S
E
M

4
4
6
4
3
6
.7
7

4
0
9
8
9
0
.3
0

3
6
8
7
6
3
.3
8

B
&
B

∗
m
ea
n

14
36
98
1.
97

14
36
98
1.
97

14
36
98
1.
97

S
E
M

N
A

N
A

N
A

N
O
M
A
D

m
ea
n

38
30
.1
7

11
24
.2
0

83
5.
22

S
E
M

9
1
6
.3
8

6
6
.7
3

1
8
.7
9

16
S
O
-M

I
m
ea
n

8.
05

6.
60

6.
20

11
24

M
M
/fl

at
S
E
M

0
.2
2

0
.1
0

0
.0
6

G
A

m
ea
n

10
.7
5

10
.6
0

10
.1
0

S
E
M

0
.3
3

0
.2
9

0
.3
1

B
&
B

m
ea
n

10
.9
3

10
.9
3

10
.9
3

S
E
M

0
.3
5

0
.3
5

0
.3
5

N
O
M
A
D

m
ea
n

9.
09

8.
65

7.
76

S
E
M

0
.2
9

0
.3
0

0
.2
3

S
co
re

S
O
-M

I
0

0
1

G
A

17
26
5

15
35
1

12
57
9

in
%

B
&
B

22
66
6

25
22
6

28
70
0

N
O
M
A
D

50
15

11

3

S
O
-M

I
m
ea
n

0.
44

0.
09

0.
04

5
11

2
U
M

S
E
M

0
.0
6

0
.0
2

0
.0
1

G
A

m
ea
n

3.
69

2.
36

1.
03

S
E
M

0
.3
4

0
.3
4

0
.2
4

B
&
B

m
ea
n

0.
00

0.
00

0.
00

S
E
M

0
.0
0

0
.0
0

0
.0
0

N
O
M
A
D

m
ea
n

0.
62

0.
21

0.
01

S
E
M

0
.1
1

0
.0
7

0
.0
1

6

S
O
-M

I
m
ea
n

-2
97
67
.9
8

-2
99
83
.6
9

-3
00
78
.4
9

5
97
5

U
M
/fl

at

S
E
M

6
7
.9
9

5
3
.9
2

5
1
.2
3

G
A

m
ea
n

-2
89
93
.0
4

-2
92
85
.9
0

-2
94
61
.4
6

S
E
M

1
0
0
.2
8

9
9
.6
7

1
0
8
.6
2

B
&
B

m
ea
n

-3
06
65
.5
4

-3
06
65
.5
4

-3
06
65
.5
4

S
E
M

0
.0
0

0
.0
0

0
.0
0

N
O
M
A
D

m
ea
n

-2
94
07
.0
9

-2
99
98
.1
2

-3
02
15
.5
3

S
E
M

1
2
9
.7
1

6
6
.7
0

4
5
.5
2

9

S
O
-M

I
m
ea
n

0.
67

0.
35

0.
17

5
11

2
U
M

S
E
M

0
.1
4

0
.1
5

0
.0
7

G
A

m
ea
n

4.
33

1.
42

0.
67

S
E
M

0
.3
5

0
.2
6

0
.2
2

li
n
ea
r

B
&
B

m
ea
n

0.
00

0.
00

0.
00

S
E
M

0
.0
0

0
.0
0

0
.0
0

N
O
M
A
D

m
ea
n

0.
41

0.
16

0.
00

S
E
M

0
.0
9

0
.0
6

0
.0
0

CHAPTER 4. SO-MI 132

Table 4.5: Box-constrained problems with additional linear and/or
nonlinear constraints. Hypothesis testing for differences in means (μ) after

100, 200, and 300 function evaluations.
(∗) denotes significance at α = 5% and (∗∗) denotes significance at α = 1%
for H0 : μSO-MI = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-MI < μA;

(�) denotes significance at α = 5% and (��) denotes significance at α = 1%
for H0 : μSO-MI = μNOMAD and H1 : μSO-MI > μNOMAD;

(⊕) denotes significance at α = 5% and (⊕⊕) denotes significance at
α = 1% for H0 : μSO-MI = μB&B and H1 : μSO-MI > μB&B.

ID Algorithm Number of evaluations
A 100 200 300

1
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗)

4
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (�)

5
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗)

7
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

8
GA (∗∗) (∗) (∗)
B&B NA NA NA
NOMAD (∗∗) (∗∗) (∗∗)

16
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

CHAPTER 4. SO-MI 133

3
GA (∗∗) (∗∗) (∗∗)
B&B (⊕⊕) (⊕⊕) (⊕⊕)
NOMAD

6
GA (∗∗) (∗∗) (∗∗)
B&B (⊕⊕) (⊕⊕) (⊕⊕)
NOMAD (∗∗) (�)

9
GA (∗∗) (∗∗) (∗)
B&B (⊕⊕) (⊕) (⊕⊕)
NOMAD (��)

4.6.3 Structural Design Problems

The results for the structural design optimization applications are shown
in Table 4.6. For both problems SO-MI outperforms all other algorithms
and reaches significantly better results within the same number of func-
tion evaluations. B&B was not able to find any improvements for the
three-dimensional truss dome problem. For the two-dimensional truss the
optimization of the relaxed subproblems in the tree nodes of B&B did not
converge within the allowed 100k function evaluations, and therefore the
average of the function values of the 30 different initially provided feasible
points is given in the table, and the standard error of the mean is therefore
not available. B&B had the worst performance for both structural design
problems.

GA was able to improve the initially supplied feasible solutions and out-
performed NOMAD on the three-dimensional truss dome application (the
31-dimensional problem), but does worse than NOMAD on the smaller
problem 17. The scores at the end of the table reflect again that SO-MI
performs better than all other algorithms on this problem class. Averaging
over both structural design problems shows that GA outperforms NOMAD.

For this problem class the standard errors of the means are for SO-MI
at almost all stages of the algorithm lower than for the other algorithms
(except for GA after 100 evaluations for test problem 18). Also the results
of the statistical tests in Table 4.7 show that the means of the feasible
objective function values attained by SO-MI are significantly lower than the
results found by the other algorithms.

CHAPTER 4. SO-MI 134

The objective function value averaged over all 30 trials versus the number
of function evaluations for the three-dimensional truss dome application
problem is illustrated for all four algorithms in Figure 4.7. The error bars
illustrate the standard deviations of the algorithms. The figure shows that
SO-MI finds significantly better solutions than all other algorithms and
has the lowest standard deviations. Figure 4.8 illustrates the best design
obtained for the 2D truss problem. Thicker lines illustrate truss members
with larger cross sectional areas. The arrows indicate the height of nodes
2, 4, and 6. The maximal nodal displacement occurs at node 7 in vertical
direction.

0 50 100 150 200 250 300
0

1

2

3

4 x 105

Number of function evaluations

Avg.
function

value

SO−MI
GA
NOMAD
B&B

Figure 4.7: Truss dome design optimization, minimization problem, test
problem 18. Objective function value for feasible points averaged over 30
trials vs. number of function evaluations; error bars illustrate standard

deviations.

T
ab

le
4.
6:

S
tr
u
ct
u
ra
l
d
es
ig
n
op

ti
m
iz
at
io
n
p
ro
b
le
m
s.

M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h
10
0,

20
0,

an
d
30
0
fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s

(S
E
M
)
ar
e
gi
ve
n
fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
B
&
B

∗
m
ea
n
s,
th
at

th
e
su
b
so
lv
er

fo
r
th
e
re
la
x
ed

p
ro
b
le
m
s
in

th
e
tr
ee

n
o
d
es

d
id

n
ot

co
n
ve
rg
e
an

d
th
e
al
go
ri
th
m

st
al
le
d
,
an

d
th
er
ef
or
e
al
so

S
E
M

is
n
ot

av
ai
la
b
le
.
B
ot
h
p
ro
b
le
m
s
ar
e

m
in
im

iz
at
io
n
p
ro
b
le
m
s.

ID
A
lg
or
it
h
m

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

d
im

.
|Ω

D
|

S
O
-M

I
m
ea
n

10
26
24
.5
0

98
09
9.
88

95
90
2.
51

14
51

1
1

S
E
M

8
0
7
.4
5

7
0
7
.9
5

6
1
4
.3
0

G
A

m
ea
n

11
29
75
.5
8

11
29
24
.5
2

11
28
16
.5
2

17
S
E
M

8
8
9
.4
7

9
0
0
.9
0

9
3
3
.8
5

2D
B
&
B

∗
m
ea
n

11
31
61
.2
1

11
31
61
.2
1

11
31
61
.2
1

tr
u
ss

S
E
M

N
A

N
A

N
A

N
O
M
A
D

m
ea
n

10
33
54
.7
2

10
14
33
.6
9

98
48
4.
86

S
E
M

8
1
5
.4
2

8
5
8
.3
4

9
3
2
.6
2

S
O
-M

I
m
ea
n

18
62
81
.1
1

83
52
5.
43

73
01
0.
86

31
10

2
4

S
E
M

5
7
1
6
.7
6

3
0
0
7
.1
0

1
6
4
0
.9
5

G
A

m
ea
n

27
74
76
.8
0

23
98
29
.0
9

21
23
46
.2
1

18
S
E
M

3
9
4
2
.8
4

4
6
1
3
.5
4

3
6
6
6
.2
8

3D
B
&
B

m
ea
n

35
51
60
.3
8

35
51
60
.3
8

35
51
60
.3
8

d
om

e
S
E
M

6
7
8
6
.1
5

6
7
8
6
.1
5

6
7
8
6
.1
5

N
O
M
A
D

m
ea
n

30
39
95
.4
3

26
87
12
.0
0

24
49
11
.4
7

S
E
M

9
1
9
3
.9
4

7
1
5
3
.0
9

8
5
9
5
.3
3

S
co
re

S
O
-M

I
0

0
0

G
A

30
97

10
1

in
%

B
&
B

50
16
4

19
6

N
O
M
A
D

32
10
8

11
5

Table 4.7: Structural design optimization problems. Hypothesis testing for
differences in means (μ) after 100, 200, and 300 function evaluations.

(∗) denotes significance at α = 5% and (∗∗) denotes significance at α = 1%
for H0 : μSO-MI = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-MI < μA.

ID Algorithm Number of evaluations
A 100 200 300

17
GA (∗∗) (∗∗) (∗∗)
B&B NA NA NA
NOMAD (∗∗) (∗)

18
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

Figure 4.8: Best design of the 2D truss problem. Thicker lines symbolize
truss members with larger cross sectional areas. The largest displacement is
in vertical direction at node 7. See Appendix C for the problem description

and data.

CHAPTER 4. SO-MI 137

4.6.4 Reliability-Redundancy Problems

Table 4.8 summarizes the results of the four compared algorithms for the
reliability-redundancy allocation application problems. The goal is here
to maximize the reliability of the system, and therefore large numbers
are better. Note that in this application area the digits after the decimal
point are important and therefore four decimals are reported. The results
show that SO-MI performs best for all three problems for over 200 function
evaluations, indicating that SO-MI is successful in finding improvements
more efficiently than all other algorithms.

NOMAD achieves only marginally better results for problem 20 after 300
function evaluations. B&B was not able to find any feasible improvements
of the initially supplied feasible points, and for the series-parallel system
(problem 21) the optimization of the relaxed problems in the tree nodes
did not converge. The reported numbers for B&B for this problem are the
average of the objective function values of the initially supplied feasible
points. GA found slight improvements for all three test problems, but was
in general not as good as SO-MI or NOMAD. This fact is also reflected by
the scores at the end of the table. SO-MI performs best on this problem
class, and the performance of NOMAD improves as the number of function
evaluations increases.

The standard errors of the means are for all algorithms very low, and
SO-MI and NOMAD have the lowest values. The statistical test results for
differences of means are reported in Table 4.9, and the results show that
the mean of SO-MI is for all problems at almost all stages of the algorithm
(100, 200, and 300 evaluations) significantly higher (maximization prob-
lem) than for the other algorithms at levels α = 1% and α = 5%, respectively.

Figure 4.9 shows the objective function value for feasible points averaged
over 30 trials versus the number of function evaluations for all algorithms for
the series-parallel system (test problem 21). Note that for the maximization
problem the algorithm that increases the average feasible objective function
value fastest is best. The error bars illustrate the standard deviations. The
figure shows that NOMAD finds immediately improvements of the given
feasible point because it uses only one point from which the mesh adaptive
direct search starts. SO-MI on the other hand generates at first an initial
experimental design and starts the “systematic” search for improvements
after all points in the starting design have been evaluated. This is reflected
by the initially constant average feasible objective function value of SO-MI

CHAPTER 4. SO-MI 138

(the value is constant until evaluation 2(k+1) = 22 because no other feasible
points were in the initial experimental design). After the points in the
initial experimental design have been evaluated, SO-MI immediately finds
better feasible results than all other algorithms. Figure 4.10 shows the best
reliability-redundancy allocation for the bridge system (test problem 19).
As can be seen, redundancy has been added at various stages.

0 50 100 150 200 250 300
0

0.4

0.8

1.2

Number of function evaluations

Avg.
function

value

SO−MI
GA
NOMAD
B&B

Figure 4.9: Reliability-redundancy allocation for series-parallel
configuration, maximization problem, test problem 21. Objective function
value for feasible points averaged over 30 trials vs. number of function

evaluations; error bars illustrate standard deviations.

T
ab

le
4.
8:

R
el
ia
b
il
it
y
-r
ed
u
n
d
an

cy
al
lo
ca
ti
on

p
ro
b
le
m
s
(m

ax
im

iz
at
io
n
p
ro
b
le
m
s)
.
M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h
10
0,

20
0,

an
d
30
0
fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.

S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s
(S
E
M
)
ar
e
gi
ve
n
fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
B
&
B

∗
m
ea
n
s,
th
at

th
e
su
b
so
lv
er

fo
r
th
e

re
la
x
ed

p
ro
b
le
m
s
in

th
e
tr
ee

n
o
d
es

d
id

n
ot

co
n
ve
rg
e
an

d
th
e
al
go
ri
th
m

st
al
le
d
,
an

d
th
er
ef
or
e
al
so

S
E
M

is
n
ot

av
ai
la
b
le
.

ID
A
lg
or
it
h
m

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

d
im

.
|Ω

D
|

S
O
-M

I
m
ea
n

0.
98
43

0.
99
74

0.
99
82

10
51

0

S
E
M

0
.0
0

0
.0
0

0
.0
0

G
A

m
ea
n

0.
82
11

0.
82
24

0.
83
69

19
S
E
M

0
.0
3

0
.0
3

0
.0
2

b
ri
d
ge

B
&
B

m
ea
n

0.
75
73

0.
75
73

0.
75
73

sy
st
em

S
E
M

0
.0
3

0
.0
3

0
.0
3

N
O
M
A
D

m
ea
n

0.
96
40

0.
98
49

0.
99
50

S
E
M

0
.0
1

0
.0
0

0
.0
0

S
O
-M

I
m
ea
n

0.
99
39

0.
99
88

0.
99
91

8
41

0

S
E
M

0
.0
0

0
.0
0

0
.0
0

G
A

m
ea
n

0.
95
88

0.
96
37

0.
96
46

20
S
E
M

0
.0
1

0
.0
0

0
.0
0

ov
er
-

B
&
B

m
ea
n

0.
80
60

0.
80
60

0.
80
60

sp
ee
d

S
E
M

0
.0
3

0
.0
3

0
.0
3

N
O
M
A
D

m
ea
n

0.
98
84

0.
99
71

0.
99
92

S
E
M

0
.0
0

0
.0
0

0
.0
0

S
O
-M

I
m
ea
n

0.
96
18

0.
99
62

0.
99
77

10
51

0

S
E
M

0
.0
1

0
.0
0

0
.0
0

G
A

m
ea
n

0.
64
52

0.
64
52

0.
65
39

21
S
E
M

0
.0
4

0
.0
4

0
.0
4

se
ri
es

B
&
B

∗
m
ea
n

0.
47
31

0.
47
31

0.
47
31

p
ar
al
le
l

S
E
M

N
A

N
A

N
A

N
O
M
A
D

m
ea
n

0.
81
32

0.
93
88

0.
98
33

S
E
M

0
.0
4

0
.0
1

0
.0
1

S
co
re

S
O
-M

I
0

0
0

G
A

17
18

18
in

%
B
&
B

∗
31

32
32

N
O
M
A
D

6
2

0

CHAPTER 4. SO-MI 140

Table 4.9: Reliability-redundancy allocation problems. Hypothesis testing
for differences in means (μ) after 100, 200, and 300 function evaluations.

(∗) denotes significance at α = 5% and (∗∗) denotes significance at α = 1%
for H0 : μSO-MI = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-MI > μA

(maximization problem).

ID Algorithm Number of evaluations
A 100 200 300

19
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗) (∗∗) (∗)

20
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗)

21
GA (∗∗) (∗∗) (∗∗)
B&B NA NA NA
NOMAD (∗∗) (∗∗) (∗)

4.7 Conclusions

In this chapter a surrogate model approach for finding (near) optimal
solutions to black-box mixed-integer global optimization problems within
a very restricted number of function evaluations has been introduced.
The algorithm, SO-MI, iteratively evaluates the computationally expensive
simulation model at four chosen points of the variable domain in parallel and
updates a cubic radial basis function surrogate model. Four perturbation
methods are used to diversify the selection of candidates for the next sample
point in every iteration, and based on scoring criteria the best point of
each group is chosen. In general, more than four points could be chosen to
make use of more processors. The algorithm SO-MI converges to the global
optimum almost surely.

SO-MI has been shown to perform very well in comparison to a branch
and bound algorithm for nonlinear problems [78], a genetic algorithm, and
the NOMAD algorithm for multimodal mixed-integer problems [10] on 16
test problems from the literature containing unconstrained, constrained,
unimodal, and multimodal problems, two application problems arising
from structural optimization, and three application problems from optimal

CHAPTER 4. SO-MI 141

Figure 4.10: Best reliability-redundancy allocation for the bridge system.
Redundancy has been added at components 1, 2, 3, and 4. See Appendix C

for the problem description and data.

reliability design.

The numerical results show that SO-MI is able to find significantly better
solutions than the other algorithms for 10 out of 16 literature test problems
and all application problems when the number of allowed function evalua-
tions is low (200 to 300 evaluations). On the remaining six problems, SO-MI
performed only slightly worse than the best algorithm which is also reflected
in a measure that is computed based on the deviation of the results obtained
by each algorithm from the best solution. This measure shows that SO-MI
performs in general better than all other algorithms for each problem group
(unconstrained, constrained, structures problems, and reliability problems).
Statistical tests on the differences of means for each problem also support
this conclusion.

The genetic algorithm and branch and bound have for almost all problems
the worst performance, whereas NOMAD is able to find competitive solu-
tions for some problems. Note however that the results of these algorithms
may be further improved by incorporating a surrogate model. The test
problems included also a convex problem (problem 2) for which SO-MI
performed best, and two special unimodal problems where the global
optimum of the continuous relaxation is at an integer point (problems 3
and 9). As may be expected, branch and bound performed very well
on problems 3 and 9, indicating that the algorithm may be preferred if
the specific problem structure is known to be mathematically tractable.

CHAPTER 4. SO-MI 142

However, for black-box problems, branch and bound requires in general too
many function evaluations when computing lower bounds for the objective
function value in the tree nodes. Also, for multimodal problems these lower
bounds are not necessarily valid and pruning decisions may eventually be
wrong.

Although developed for multimodal problems, the genetic algorithm does
not perform well in the computational experiments. Genetic algorithms
require in general many function evaluations (=population size × number of
generations) to find good solutions. Thus, when only a very low number of
evaluations can be allowed due to restrictions on the computational expense,
either the number of individuals in each generation has to be reduced, which
restricts the diversity in the population, or the number of generations has to
be reduced, which reduces the evolutionary aspect of the algorithm.

The NOMAD algorithm is also a derivative-free method, and the C++
implementation incorporates a mixed-integer version and the variable neigh-
borhood search that allows the algorithm to escape from local optima. There
are local convergence results for NOMAD, but in the numerical experiments
NOMAD is in general outperformed by SO-MI, especially on the structural
optimization problems where the difficulty was in the black-box constraints
rather than the objective function. However, compared to branch and bound
and the genetic algorithm, NOMAD performed very well.

In conclusion, the introduced algorithm SO-MI extends the research area of
using surrogate models for solving mixed-integer optimization problems. The
computational results indicate that SO-MI is a promising algorithm and per-
forms significantly better than commonly used algorithms for mixed-integer
problems if dealing with multimodal black-box functions. In addition it can
be shown that the SO-MI algorithm converges to the global optimum al-
most surely for multimodal mixed-integer problems with black-box objective
functions. None of the other algorithms have such a proof for this type of
problem. It is expected that the performance of SO-MI for black-box con-
strained problems can be further improved by replacing the penalty approach
for example with an approach that uses a response surface for each constraint
to eliminate infeasible-predicted candidate points from consideration [118].
A comparison of various ways for handling constraints exceeds however the
scope of this chapter and is left for future research. Another extension for fu-
ture research is considering the possibility of relaxing the integer constraints
during the optimization if the objective function values can be computed
when the integer variables assume continuous values.

Chapter 5

SO-I: A Surrogate Model
Algorithm for Expensive
Nonlinear Integer
Programming Problems
Including Global Optimization
Applications

Abstract

This chapter presents the surrogate model based algorithm SO-I for solving
purely integer optimization problems that have computationally expensive
black-box objective functions and that may have computationally expensive
constraints. The algorithm was developed for solving global optimization
problems, meaning that the relaxed optimization problems have many local
optima. However, the method is also shown to perform well on many local
optimization problems, and problems with linear objective functions. The
performance of SO-I, a genetic algorithm, a branch and bound algorithm
for nonlinear optimization problems, and NOMAD has been compared on 17
test problems from the literature, and on eight realizations of two application
problems. One application problem relates to hydropower generation, and
the other one to throughput maximization. The average objective function
values over several trials for each problem and hypothesis tests for differences
in means show that SO-I outperforms the other algorithms for almost all

143

CHAPTER 5. SO-I 144

test problems. Only NOMAD performed significantly better than SO-I on
four out of the 25 examined problems. Moreover, branch and bound failed
to iterate on all application problems because of difficulties arising when
evaluating the black-box objective function for the continuous relaxation or
at infeasible points.

CHAPTER 5. SO-I 145

Abbreviations and Nomenclature

B&B Branch and bound algorithm
GA Genetic algorithm
NOMAD Nonsmooth Optimization by Mesh Adaptive Direct Search
RBF Radial basis function
SEM Standard error of the means
SO-I Surrogate Optimization - Integer

R Real numbers
Z Integer numbers
u Discrete decision variables, see equation (5.1d)
f(·) Objective function, see equation (5.1a)
cj(·) jth constraint function, j = 1, . . . , m, see equation (5.1b)
m Number of constraints
k Problem dimension
j Index for the constraints
i Index for the variables
uli, u

u
i Lower and upper bounds for the ith variable, see equation (5.1c)

Ωb Box-constrained variable domain
Ω Feasible variable domain
S Set of already evaluated points
n0 Number of points in initial experimental design
q(·) Auxiliary function for minimizing constraint violation in phase 1,

see equation (5.2)
fp(·) Objective function value augmented with penalty term, see equa-

tion (5.3)
fmax Objective function value of the worst feasible point found so far,

see equation (5.3)
p Penalty factor, see equation (5.3)
v(·) Squared constraint violation function, see equation (5.4)
χj jth candidate point for next sample site, j = 1, . . . , t
n Number of already sampled points
sb(·) Radial basis function interpolant
VD(·) Score for distance criterion, see equation (3.6)
VR(·) Score for response surface criterion, see equation (3.7)
V (·) Weighted score, see equation (3.8)
ωR, ωD Weights for response surface and distance criteria, respectively
H0, H1 Null hypothesis and alternative hypothesis, respectively

CHAPTER 5. SO-I 146

5.1 Introduction

This chapter presents an adaption of the SO-MI algorithm introduced in
Chapter 4 to problems where all variables are restricted to be integers.
Although SO-MI as it is implemented could be used for solving integer
optimization problems, adapting the candidate point creation to only integer
points is more efficient. Devising an algorithm for computationally expensive
black-box optimization problems that have integrality constraints for all
variables may come handy in several application problems. For example,
similarly to the reliability-redundancy allocation problems described in
Chapter 4, there are system reliability optimization problems that are
only based on adding component redundancy [80, Chapters 3-5] (so-called
redundancy allocation problems). Moreover, applications arising from
throughput maximization are often integer problems [108]. This type of
applications is encountered, for example, in production planning and facility
layout [51, 134], but also in the design of networks-on-chip routers [69].
Another purely integer optimization problem arises in hydropower energy
generation where several turbines of different efficiencies are installed in
a hydropower plant, and the question is how many turbines of the same
kind should be in use to maximize the total generated power given a
certain amount of water that can be released from the reservoir [24, 85].
Furthermore, design optimization problems similar to the ones discussed in
Chapter 4 can be of purely discrete nature. For example, if the coordinates
of all nodes of the structure are fixed and only the cross-sectional areas or
the wall thicknesses of the members have to be determined such that the
total structural weight is minimized with respect to nodal displacement and
stress constraints, the optimization problem has only integer variables.

Another important application is encountered in the management of the
agricultural land use in a watershed. Depending on the land use, the
phosphorus runoff may be beyond a certain threshold and may decrease the
water quality significantly. One solution for decreasing the phosphorus runoff
is to convert (or retire) parts of the land. This practice may however invoke
high conversion costs, and thus the objective is to find an optimal strategy
such that the land conversion costs are minimal while the phosphorus runoff
is below a given limit. A highly nonlinear and computationally expensive
simulation model has to be used to compute the phosphorus runoff. This
application problem will be examined in detail in Chapter 6.

Similarly as in the mixed-integer case, the most commonly used algorithms in
the literature for solving discrete optimization problems comprise branch and

CHAPTER 5. SO-I 147

bound methods (introduced by [82]) and evolutionary algorithms [12, 13, 94].
As discussed in Chapter 4, these algorithms may, however, not be suitable
for solving computationally expensive black-box problems because too many
function evaluations are needed to obtain a good solution.

Algorithms for solving purely discrete optimization problems with compu-
tationally expensive objective functions are rather scarce. Although the
algorithms briefly discussed in Section 4.1 [33, 116] may be able to solve
problems with only discrete variables, this option has not been studied in
the literature. Moreover, altering the strategy of selecting the sample points
in each iteration of these algorithms may improve their performance and
efficiency as compared to using the mixed-integer version on purely integer
problems.

Furthermore, the NOMAD algorithm [2, 4, 11] is able to solve purely integer
problems, but the efficiency of NOMAD for problems of this type has not
been examined in the literature.

The remainder of this chapter is organized as follows. In Section 5.2 the
general mathematical description of discrete optimization problems is given.
Section 5.3 introduces the surrogate model based algorithm SO-I (Surrogate
Optimization - Integer) for discrete global optimization problems that may
have computationally expensive constraints. In contrast to SO-MI, SO-I
uses a first optimization phase for finding feasible points, i.e. an initial user-
supplied feasible point is not necessary. SO-I has been compared to a genetic
algorithm, NOMAD, and branch and bound on 17 test problems from the
literature and two types of application problems (throughput maximization,
and hydropower generation) that are described in Section 5.4. The numerical
results are presented in Section 5.5. Because the focus is on computationally
expensive functions, the computational effort is measured in the number of
objective function evaluations rather than the CPU time needed by the al-
gorithms. When dealing with computationally expensive objective functions
that may take several hours for computing one function value, the algo-
rithms’ own computation time becomes insignificant. Section 5.6 concludes
this chapter.

CHAPTER 5. SO-I 148

5.2 Constrained Integer Optimization Prob-

lems

The optimization problem type considered in this chapter is in general of the
following form

min f(u) (5.1a)

s.t. cj(u) ≤ 0, ∀j = 1, . . . , m (5.1b)

−∞ < uli ≤ ui ≤ uui <∞, ∀i = 1, . . . , k (5.1c)

ui ∈ Z, ∀i = 1, . . . , k (5.1d)

where f(u) ∈ R denotes the costly black-box objective function, cj(u) ∈
R, j = 1, . . . , m, are the m costly black-box constraints, and uli and u

u
i , where

uli < uui , denote the lower and upper bounds on the variable ui, respectively
(box constraints). Denote Ωb the intersection of the box-constrained variable
domain with the integer lattices Zk, and by Ω the feasible variable domain.
Throughout this chapter the variables u are assumed to be discrete. The set
of already sampled points is denoted by S, and it is assumed that all already
sampled points are distinct.

5.3 SO-I: Surrogate Model Algorithm for

Discrete Global Optimization Problems

The algorithm for solving discrete optimization problems with costly
objective and constraint functions starts by building an initial experimental
design. A symmetric Latin hypercube design [156] with n0 = 2(k + 1)
distinct points, where k denotes the problem dimension, is generated,
and the values are rounded to the closest integers. The algorithm uses a
cubic radial basis function interpolant as defined in equation (1.9), and
similarly as for SO-MI, it must be ensured that the rank of matrix P in
equation (1.11) is k+1. Thus, the initial experimental design is regenerated
until rank(P) = k + 1.

The optimization process following the initial experimental design consists
of two phases. The purpose of phase 1 is to find a feasible solution. The
auxiliary function

q(u) =

m∑
j=1

max
{
0, cj(u)

}
, (5.2)

CHAPTER 5. SO-I 149

is minimized with respect to the box and integrality constraints defined
in equations (5.1c) and (5.1d) until a first feasible point has been found
(q(u) = 0 for a feasible point). If the optimization problem has only box
constraints or the initial experimental design contains at least one feasible
point, optimization phase 1 is skipped.

In optimization phase 2, the penalized objective function

fp(u) =

{
fmax + pv(u) if u is infeasible

f(u) if u is feasible
, (5.3)

is minimized subject to the box and integrality constraints in equations (5.1c)
and (5.1d). Here, p denotes the penalty factor, and fmax is the feasible point
with the largest function value found so far (the worst feasible point), and

v(u) =

m∑
j=1

max
{
0, cj(u)

}2
, (5.4)

where it is assumed that u ∈ Ωb, i.e. only points within the box-constrained
domain are considered. Thus, if v(u) = 0, the point u satisfies every
constraint cj(u), j = 1, . . . , m, in equation (5.1b) and the box constraints in
equation (5.1c).

The penalty must be adjusted so that the function values at the infeasible
points are higher than the best feasible objective function value. Otherwise
the surrogate model would predict better objective function values in
the infeasible region, the search might be drawn into that region, and
many expensive function evaluations might be done without improving
the solution. Therefore, to safeguard that the infeasible points have worse
function values than the feasible points, their function value is set to that
of the worst feasible point found so far plus a penalty term, which works
similarly to a barrier term. To overcome numerical difficulties that might
arise due to adding the penalty, function values that are higher than the
median of all values of fp(u) are replaced by the median value. This also
prevents the surface from oscillating wildly.

Both optimization phases work iteratively and in each iteration one new
point for doing the next expensive function evaluation is added to the set of
already sampled points. In order to minimize q(u) in (5.2) and subsequently
fp(u) in (5.3) a new algorithm for dealing with discrete variables has been
developed. When minimizing q(u) the goal is to find a point where the
function value is non-positive. This point will then be a feasible point. The

CHAPTER 5. SO-I 150

goal in optimization phase 2 is to find a feasible point where the objective
function value fp(u) is smaller than the value of the best feasible point
found so far.

It is assumed that the objective and constraint functions are computa-
tionally expensive to evaluate and that the problem structure cannot be
exploited. Therefore, using a response surface is a valid approach because no
information other than the output of the simulation model for a given input
variable vector is necessary. In this chapter a cubic radial basis function
model is used, but every other surrogate model may in general be used.

A candidate point approach similar to the one described in Section 4.3.2 is
applied to determine the next sample site. Two groups of candidate points
are used, namely randomly generated integer points in Ωb, and candidates
generated by perturbing the best point found so far. In optimization phase 1
the best point found so far is the one with minimal q(u), i.e. the point
with minimal constraint violation. In optimization phase 2 the best point
found so far is the feasible point with minimal objective function value. All
variables of this point are perturbed with probability 0.5, and depending
on how much the chosen variable should be perturbed, either the value 1, 2
or 3 is added or subtracted (at random). If the resulting value exceeds the
variable’s upper or lower bound, the value is set to the value of the variable
bound that is exceeded, so that χj ∈ Ωb, ∀j = 1, . . . , t, where χj denotes the
jth candidate point.

Given the sample data obtained so far, the parameters of the cubic RBF
model are computed by solving the system (1.10). In optimization phase 1
the values of q(u) in equation (5.2) are used, while in optimization phase 2
the values of fp(u) in equation (5.3) are used in the right hand side of (1.10)
to compute the model parameters, where u ∈ S. The response surface
is then used to predict the values of q(χj), ∀j = 1, . . . , t, in optimization
phase 1, and fp(χj), ∀j = 1, . . . , t, in optimization phase 2 at every candidate
point. Note that the response surface is cheap to evaluate, and this step
is therefore computationally inexpensive. The candidate points’ predicted
function values are scaled to the interval [0, 1] so that low predicted values
obtain a lower score, and high predicted values obtain a higher score VR
(response surface criterion, see equation (3.7) where smix must replaced by
the RBF interpolant sb defined in equation (1.9)). Next, the distance of
all candidate points to the set of already sampled points S is calculated.
These distances are scaled to the interval [0, 1] so that high distances
obtain a lower score, and low distances obtain a higher score VD (distance

CHAPTER 5. SO-I 151

criterion, see equation (3.6)). Based on these two criteria the weighted score
V (χj), j = 1, . . . , t, defined in equation (3.8) is computed for each candidate
point, and the candidate point with the lowest score is chosen as the next
sample site.

In optimization phase 1, the weights in equation (3.8) are fixed to ωR = 0.9
for the response surface criterion, and ωD = 0.1 for the distance criterion.
This emphasizes the local search in an attempt to find a feasible point
quickly by giving an advantage to candidate points with low predicted
function values.

In optimization phase 2, three different approaches have been examined for
adjusting the weights in equation (3.8):

• Version 1: ωR = 0.9, ωD = 0.1 constant

• Version 2: In the nth iteration, ωD = 1 − log(n)/ log(Nmax), ωR =
1−ωD, where Nmax denotes the maximum number of allowed iterations

• Version 3: The algorithm repeatedly cycles through a fixed pattern
(0, 0.1, 0.2, . . . , 0.9, 1.0), i.e. the weights change in every iteration (e.g.
in iteration 1 ωD = 1, ωR = 0; in iteration 2 ωD = 0.9, ωR = 0.1, etc.)

The adjustment in Version 1 may be regarded as a more local search since
preference is always given to candidate points that have a low predicted
objective function value, and the distance criterion has only a very low
influence. Version 2 may be interpreted as a transition from a global search
(initially candidate points that are far away from already sampled points are
preferred) to a local search. The variable domain is explored during the first
iterations in order to find promising regions where the global optimum might
be. As the sampling continues, the search becomes more local and candidate
points with low predicted objective function values obtain better scores,
and therefore the promising regions of the variable domain are examined
more thoroughly. Version 3 repeatedly transitions from a global to a local
search in an attempt to escape from local optima if no further improve-
ments in the vicinity of the best feasible point found so far could be obtained.

Furthermore, experiments were made where the minimum of an auxiliary
function is used as criterion for finding the next sample point (Version 4).
In particular, the point that minimizes the weighted score in equation (3.8)
with cycling weights as in Version 3 has been used (see also the solid
green graph for the weighted score function in Figure 3.1). Numerical

CHAPTER 5. SO-I 152

experiments showed that Versions 1 and 2 deliver in general better results
than Versions 3 and 4, and that there are no differences between the
performance of the algorithms when using Version 1 or 2. For reasons of
space considerations the results of these numerical experiments are not
presented here. In the following, Version 1 will be used in the comparison
with the other algorithms, i.e. the weight for the response surface and the
distance criterion are fixed to the values 0.9 and 0.1, respectively. As shown
in Chapter 3, using the minimum of the response surface works well if the
response surface is multimodal, but there is a potential risk of the algorithm
getting stuck in a local optimum. Here the weights are adjusted such that
the response surface criterion has more influence than the distance criterion,
which enables the algorithm to prefer candidates with low predicted objec-
tive function values, but there is also the chance to escape from local optima.

After the candidate point with the best score has been determined, the costly
objective and constraint functions are evaluated at that point, and the re-
sponse surface parameters are updated with the new data. This process
(candidate point generation, score calculation, response surface updating) it-
erates. Note that for building the response surface the variables are assumed
to be continuous to obtain a smooth surface, but the generated candidate
and sample points only have discrete variable values. The specific steps of
SO-I with Version 1 as sampling strategy are given in Algorithm 6.

Algorithm 6 SO-I: Surrogate Optimization - Integer

1. Construct an initial experimental design:

(a) Build a symmetric Latin hypercube design where all variables are
integers and bounded only by the box constraints, and such that
rank(P) = k + 1 in equation (1.11).

(b) Compute the costly objective and constraint function values.

2. Optimization phase 1: If there is no feasible point in the initial experi-
mental design, minimize q(u) in equation (5.2). Iterate until a feasible
point has been found or the stopping criterion has been met:

(a) Find the point with lowest auxiliary function value q(u),u ∈ S,
and denote this point by (uq

min, qmin).

(b) Compute the response surface parameters based on the points in
S and their corresponding auxiliary function values q(u).

CHAPTER 5. SO-I 153

(c) Generate candidate points by perturbing uq
min, and by randomly

selecting points from the variable domain Ωb. Eliminate all candi-
dates that are already contained in S from further consideration.
Compute the candidate point scores using equations (3.6), (3.7),
and (3.8) with fixed weights ωD = 0.1, ωR = 0.9, and do the expen-
sive objective and constraint function evaluation at the candidate
point with the best score.

3. Optimization phase 2: Minimize fp(u) in equation (5.3). Iterate until
the stopping criterion has been met:

(a) Find the feasible point with lowest objective function value and
denote the pair by (uf

min, fmin). Find the feasible point with highest
objective function value and denote the pair by (uf

max, fmax).

(b) Set the function values to fp(u) = fmax + 100v(u), ∀u ∈ S that
are infeasible, and fp(u) = f(u) for all feasible points.

(c) Compute the response surface parameters using the points u ∈ S
and their corresponding function values fp(u).

(d) Generate a large set of candidate points by perturbing uf
min and

by randomly selecting points from the variable domain Ωb. Elim-
inate all candidates that are already contained in S from further
consideration. Compute the candidate point scores using equa-
tions (3.6), (3.7), and (3.8) with weights ωD = 0.1 and ωR = 0.9.
Do the expensive objective and constraint function evaluation at
the candidate point with the best score.

4. Return the best point found.

Note that although the values of the objective function are not used during
optimization phase 1, the values are computed (often the objective and
constraint function values are the output of the same computationally
expensive simulation, which is assumed also here) and later on used in
optimization phase 2.

The convergence of the algorithm using the candidate point sampling
approach is trivial and for reasons of completeness stated in Theorem 2.

CHAPTER 5. SO-I 154

Theorem 2 Let f be the real-valued function defined on Ωb ⊂ Z
k, and de-

note the cardinality |Ωb| = κ. Let f(u∗) = minu∈Ω f(u) > −∞ be the feasible
global minimum of f , i.e. f(u) > f(u∗) ∀u
= u∗,u ∈ Ω. Assume the
candidate points for the next sample site are generated as described in Algo-
rithm 6 (Steps 2(c) and 3(d), respectively). Denote u1 the first feasible point
found. Define the sequence of feasible random vectors {u∗

n}n≥1 as u∗
1 = u1,

u∗
n+1 = un+1 if f(un+1) < f(u∗

n) and cj(un+1) ≤ 0 ∀j, and u∗
n+1 = u∗

n

otherwise. Then, u∗
n → u∗ as n→ κ− 1.

Proof 2 The convergence of the algorithm follows from a simple counting
argument. The number of points in the box-constrained variable domain Ωb

is finite, and no point will be sampled more than once. Moreover, every
point in Ωb may become a candidate point because some of the candidates
are generated by uniformly selecting integer points from Ωb. Thus, as the
algorithm proceeds, the probability that the next chosen point will be the global
optimum goes in the limit to 1.

5.4 Test Problems

5.4.1 Test Setup

Algorithms for solving discrete global black-box optimization problems have
not widely been studied in the literature. Therefore, the SO-I algorithm
introduced in Section 5.3 is in the following compared to a branch and
bound algorithm for nonlinear optimization problems, a genetic algorithm,
and NOMAD. Branch and bound and genetic algorithms are often used for
solving discrete optimization problems. Note, however, that it is assumed
that nothing about the mathematical problem structure is known, and
thus reformulation strategies cannot be applied to enhance the performance
of branch and bound. The performance of NOMAD for purely integer
problems has not been studied in the literature yet.

The branch and bound method used is the same as described in Section 4.4.
For the genetic algorithm, Matlab’s implementation (function ga) has
been used, which is able to solve discrete problems (Matlab 2011b and
newer versions), and works for purely integer problems significantly better
than for mixed-integer problems. Furthermore, NOMAD version 3.5.0
has been used. Note, that NOMAD is included in the OPTI Toolbox
(http://www.i2c2.aut.ac.nz/Wiki/OPTI/), which is a Matlab toolbox for
optimization and simplifies the use of NOMAD as compared to its C++
implementation. NOMAD is used with the variable neighborhood search

CHAPTER 5. SO-I 155

technique (setting VNS 0.75) and the progressive barrier approach (setting
PB) is used for treating the constraints.

The maximum number of allowed function evaluations for each algorithm
is 400. The genetic algorithm has a population of 20, and stops when 400
function evaluations have been done. A time limit has not been defined for
the algorithms because the performance of the algorithms is measured with
respect to the solution quality after an equal number of function evaluations.
Assuming that one objective function evaluation requires a time consuming
simulation, the algorithms’ own computation times become insignificant.

It is expected that branch and bound will not deliver good results for
multimodal problems because obtaining valid lower bounds for the objective
function value is in general not possible if the problem structure cannot
be exploited. However, the algorithm has been included to show how
the surrogate model based algorithms compare on unimodal problems.
Moreover, it can be expected that the performance of branch and bound, the
genetic algorithm, and NOMAD may be improved if a surrogate model is
incorporated. For the branch and bound algorithm, for example, a surrogate
model could be used when optimizing the relaxed subproblems in the tree
nodes (although guarantees for the validity of the lower bounds can still not
be given). For the genetic algorithm surrogate models could be applied for
creating a new population. The surrogate model could be used to predict
the feasibility and fitness of each individual in the new generation, and
thus individuals that are predicted to have a low fitness value, or that are
predicted infeasible could be excluded from the next generation and replaced
by a better individual. The used NOMAD version has a feature that allows
the algorithm to use surrogate models, but the user has to implement the
surrogate model him/herself. Moreover, implementations of the described
algorithm extensions are not available. Thus, these extensions cannot be
included in the following comparison.

5.4.2 Generic Test Problems

The performance of the algorithms has been compared on 17 test problems
from the literature, and eight realizations of two application problems
arising in throughput maximization and hydropower generation maxi-
mization. Note that algorithms for purely integer black-box optimization
problems have not been studied in depth in the literature, and thus finding
a representative and widely used test bench of problems is impossible.

CHAPTER 5. SO-I 156

Thus, some of the 17 test problems are alterations of the problems used by
Koziel and Michalewicz [77] (continuous global optimization test problems).
Furthermore, several box-constrained continuous global optimization test
problems have been examined as well as a box-constrained convex problem,
and a purely linear optimization problem, and integrality constraints have
been added to the problem formulations. Three test problems from the
collection of Mixed Integer Nonlinear Programming models [23] have also
been included in the test bench with integrality constraints for all variables.

The problem dimensions range between 2 and 30, and the cardinality of
the box-constrained variable domain Ωb ranges between 5324 and 10113.
Most test problems have been derived from continuous global optimization
test problems by imposing integrality constraints on every variable. Some
test problems have been used in different variations. On the one hand the
number of variables has been changed in order to examine the behavior
of the algorithms as the problem dimension increases. On the other hand
the variable domain has been changed in order to examine the influence of
larger domains on the solution quality. Although the 17 test problems have
analytical descriptions (given in Appendix D) the problems are treated as
black-boxes, i.e. the mathematical problem structure cannot be exploited by
any of the algorithms. The test problems are used to examine the algorithms’
ability to solve problems with different characteristics such as multimodality,
linear and nonlinear constraints and objective functions, or binary variables
when no information about the problem structure can be exploited. Thus,
the test bench represents a variety of problem characteristics that may be
encountered when solving real-world black-box problems.

5.4.3 Throughput Maximization Application

In addition to the 17 literature test problems two realizations of an appli-
cation problem about throughput maximization [108] have been used to
compare the algorithms. The problem of throughput maximization given
restrictions on the total buffer size B and service rate R is encountered
in different application areas such as production planning and facility
layout [51, 134]. The space in the production facility is limited and practical
restrictions enforce limits on the total service rate at each station.

Throughput maximization is also an important topic in data networks in
computer science where the goal is to maximize the throughput subject
to given restrictions on the buffer size. Especially for networks-on-chip

CHAPTER 5. SO-I 157

router design, the on-chip network should be implemented with very little
area overhead in order to minimize implementation costs. The input
buffers of on-chip routers take a significant portion of the silicon area of
networks-on-chips, and thus their size should be as small as possible [69].

Here, the throughput maximization of a flow line with h stations is consid-
ered. The buffer storage in front of station 1 is infinite, whereas the buffer
storages b2, b3, . . . , bh in front of stations 2, 3, . . . , h are finite. Every station
i has a single server with service rate ri, i = 1, . . . , h. The service time re-
quired by every job is known. If the buffer at station i is full, then station
i − 1 is blocked because no job finished at station i − 1 can be transferred
to the buffer at station i. The total buffer space and the total service rate is
limited, i.e.

h∑
i=2

bi ≤ B (buffer space restriction), (5.5a)

h∑
i=1

ri ≤ R (service rate restriction), (5.5b)

where B and R are known constants. The goal is then to find a buffer
allocation and service rates such that the throughput (average output of the
flow line per unit time) is maximized.

Two problem realizations have been considered. First, a small scale problem
with h = 3 stations has been used. For this problem B = R = 20. There are
five variables (b2, b3, r1, r2, r3) and their lower and upper bounds have been
set to 1 and 20, respectively. Secondly, a flow line with h = 12 stations has
been considered where R = B = 80. For this problem the lower and upper
bounds on the variable values have also been set to 1 and 20, respectively,
and there are 23 variables (b2, . . . , b12, r1, . . . , r12). Altogether, 2050 jobs
have to be processed for each problem realization. To calculate the objective
function value, the processing of all jobs has to be simulated. The system
is initially empty, and then 2000 jobs are released. The time T for re-
leasing the 50 last jobs is recorded, and the throughput is calculated as 50/T .

CHAPTER 5. SO-I 158

5.4.4 Hydropower Generation Maximization Applica-

tion

Furthermore, the algorithms were compared on six realizations of a hy-
dropower generation application problem. The goal is to maximize the
power output over one day for hydropower plants with multiple types
of generating units. Electricity produced by hydropower plants is an
important source of renewable energy around the world. Large hydropower
facilities, like the Three Gorges Project in China [24, 85], are designed
with different generator types (denoted by ui, i = 1, . . . , k) because some
generators are more efficient (in terms of power generated/volume of
discharged water) with high water heads and others are more efficient with
lower heads. The water head is the height of the water in the reservoir
relative to its height after discharge and thus determines the potential energy.

Hydropower planning is done for different time periods. For longer time
periods (e.g., one or more weeks), stochastic analysis is more important
since the weather in the future affects the inflow. For planning over a shorter
period (like one day), stochastic factors are less important because Qj , the
total amount of water to be released from reservoir j, over one day and the
water head is known at the beginning of the day.

In this application problem a short term analysis of how to distribute Qj

units of water over one time period, (e.g., a day), among all different gener-
ator units is done. This problem is inspired by current research in the Three
Gorges Project-Gezhouba system on how to allocate water over a year long
period to determine what the Qj for each day should be. For computational
reasons the allocation of water among different generating units cannot
be considered directly in an annual analysis. The problem examined here
is a subproblem of the annual hydroelectric power generation problem to
determine the water allocation among generating units of different types.
The current Three Gorges Project analysis solves this subproblem associated
with the daily allocation of water among the generator units by exhaustive
search on the integer values of ui, which is much less efficient than the SO-I
method proposed here. Because the Three Gorges Dam is such a large
power source in the power grid, the focus of this study is to determine the
maximum power output possible, assuming other capacities of elements
of the power grid will be adjusted by long term planning after knowing
the maximum power output of the Three Gorges system. Thus, there are
no maximum hourly demand constraints incorporated in the optimization
problem. Of course, if the problem is changed to examine optimization under

CHAPTER 5. SO-I 159

additional demand constraints, it is expected that SO-I will perform simi-
larly or even better since the constraints further restrict the parameter space.

The general problem description follows. Given are five types of hydropower
generating units u1, . . . , u5 that have minimum and maximum capacities of
the water qi, i = 1, . . . , 5, that runs through the respective generator type.
All identical generator units of type i will receive the same amount of water
qi. The goal is to determine how many identical units of each generator
type should be used in order to maximize the total power generated while
not exceeding the maximum amount of water Qj that may be released
from reservoir j. For each variable set u1, . . . , u5 the amount of water
qi, i = 1, . . . , 5, that goes through the generating unit of type i must be
adjusted such that the generated power is maximized while not exceeding Qj .

Considered were two groups of hydropower test problems related to water
distribution among generator types. The first problem group has only one
reservoir and one hydropower plant with five different generator types. The
second group has two reservoirs and two hydropower plants, one upstream
with two different generator types that are more efficient with higher water
heads, and one further downstream with three different generator types that
are more efficient with lower water heads. For both groups three different
limits on the maximal available water Qj were considered, representing the
different water heads at different times of the year.

Table 5.1 summarizes the characteristics of all test problems. Note that
all variables are assumed to be discrete. The column “ID” contains the
problem identification number. The column “Notes” gives references about
the problem’s origin or other characteristics that are considered “special”.
For example, problem 16 is convex and problem 17 is a purely linear integer
programming problem. The last column indicates if the relaxed problem
(all variables continuous) has several local, global and/or stationary points
(denoted by MM), or if the relaxed problem has only one local optimum and
no other stationary points (denoted by UM). Furthermore, it is indicated
how many linear constraints (LC) and nonlinear constraints (NLC) each
problem has, and if the objective function is linear (lin.obj.) or a black-box
(BB objective). Note, that although these test problem characteristics
are known, they are not exploited by the compared algorithms. The
test problems are used to examine the suitability of the algorithms for
finding (near) optimal solutions to a wide range of problems with different

T
ab

le
5.
1:

S
u
m
m
ar
y
of

te
st

p
ro
b
le
m
s

(a
)
h
tt
p
:/
/w

w
w
.a
ri
d
ol
an

.c
om

/g
a/
ga
a/
M
u
lt
iV
ar
M
in
.h
tm

l;
c
d
en
ot
es

co
n
st
ra
in
ed

p
ro
b
le
m
s;

se
e
A
p
p
en
d
ix

D
fo
r
fu
rt
h
er

in
fo
rm

at
io
n
.

ID
k

D
om

ai
n

N
ot
es

R
el
ax

ed
p
ro
b
le
m

ch
ar
ac
te
ri
st
ic
s

1c
2

[1
3,
10
0]
×

[0
,1
00
]

[7
7]

M
M
,
2
N
L
C

2
5

[−
10
0,
10
0]

5
(a
)

M
M

3c
5

[0
,1
0]

3
×

[0
,1
]2

[2
3]

li
n
.o
b
j.
,
2
N
L
C
,
3
L
C

4c
5

[7
8,
10
2]
×
[3
3,
45
]×

[2
7,
45
]3

[7
7]

U
M
,
6
N
L
C

5c
7

[−
10
,1
0]

7
[7
7]

U
M
,
4
N
L
C

6c
13

[0
,1
]1
0
×
[0
,1
00
]3

[7
7]

M
M
,
9
L
C

7
10

[3
,9
]1
0

[2
3]

U
M

8c
16

[0
,1
]1
6

[2
3]

M
M
,
7
N
L
C

9
12

[−
1,
3]

1
2

R
as
tr
ig
in

[1
42
]

M
M

10
30

[−
1,
3]

3
0

R
as
tr
ig
in

[1
42
]

M
M

11
c

25
[0
,1
0]

2
5

[7
7]

M
M
,
1
N
L
C
,
1
L
C

12
20

[0
,1
]2
0

S
ch
o
en

[1
28
]

M
M

13
10

[3
,9
9]

1
0

[2
3]

M
M

14
c

13
[0
,1
00
]1
3

[7
7]

M
M
,
9
L
C

15
12

[−
10
,3
0]

1
2

R
as
tr
ig
in

[1
42
]

M
M

16
8

[−
10
,1
0]

8
co
n
ve
x

U
M

17
c

5
[0
,1
0]

3
×

[0
,1
]2

li
n
ea
r

li
n
.o
b
j.
,
3
L
C

18
c

5
[1
,2
0]

5
m
ax

.
th
ro
u
gh

p
u
t

B
B

ob
je
ct
iv
e,

2
L
C

19
c

23
[1
,2
0]

2
3

m
ax

.
th
ro
u
gh

p
u
t

B
B

ob
je
ct
iv
e,

2
L
C

20
ac

5
[0
,1
0]

5
m
ax

.
h
y
d
ro
p
ow

er
B
B

ob
je
ct
iv
e,

1
N
L
C

20
b
c

5
[0
,1
0]

5
m
ax

.
h
y
d
ro
p
ow

er
B
B

ob
je
ct
iv
e,

1
N
L
C

20
cc

5
[0
,1
0]

5
m
ax

.
h
y
d
ro
p
ow

er
B
B

ob
je
ct
iv
e,

1
N
L
C

21
ac

5
[0
,1
0]

5
m
ax

.
h
y
d
ro
p
ow

er
B
B

ob
je
ct
iv
e,

2
N
L
C

21
b
c

5
[0
,1
0]

5
m
ax

.
h
y
d
ro
p
ow

er
B
B

ob
je
ct
iv
e,

2
N
L
C

21
cc

5
[0
,1
0]

5
m
ax

.
h
y
d
ro
p
ow

er
B
B

ob
je
ct
iv
e,

2
N
L
C

CHAPTER 5. SO-I 161

characteristics without exploiting the problem structure.

5.5 Numerical Results

In the following the abbreviation GA stands for genetic algorithm, B&B
denotes the branch and bound algorithm, and SO-I is the surrogate model
based algorithm. For reasons of better presentation the test problems
have been divided into unimodal, unconstrained multimodal, constrained
multimodal, binary, linear, throughput maximization, and hydropower
generation problems. Thirty trials were made with each algorithm for every
problem, i.e. 30 different initial symmetric Latin hypercube designs were
used for the SO-I algorithm, 30 different initial starting points were used for
B&B and NOMAD, and 30 different initial populations were used with GA.
Note that the first point in the experimental design (SO-I), in the initial
population (GA), and the initial starting point (B&B, NOMAD) were the
same for each algorithm for the same trial of a given problem in order to
obtain a fair comparison.

The numerical results are presented in Tables 5.2-5.16. The average (“mean”)
of the best feasible solution found, and the standard errors of the means
(“SEM”) after 100, 200, 300, and 400 function evaluations are shown in
columns “100 eval.”, “200 eval.”, “300 eval.”, and “400 eval.”, respectively.
These numbers are computed based on the successful trials (feasible points
have been found) for each algorithm. Thus, if an algorithm failed to find a
feasible solution within 400 evaluations for two out of 30 trials, for example,
the average was computed from the remaining 28 successful trials. The num-
ber of trials of each algorithm for which no feasible solution was found within
400 evaluations is reported in column “#NF”. The column “dim” shows the
dimension of each test problem, and the entries in the column “|Ωb|” are the
cardinality of the box-constrained domain. The column “ID” contains the
problem identification number as defined in Table 5.1, and the superscript c

at that number indicates that the problem has additional constraints besides
the variables’ upper and lower bounds. The best solution in each column
for every problem is marked by boxes, and the SEM value is given in italic
font. Table entries marked by a dash denote that the respective algorithm
was not able to find a feasible solution within the given number of function
evaluations for all 30 trials. Additionally, the results of hypothesis tests for
differences in means for all problem classes are given.

CHAPTER 5. SO-I 162

5.5.1 Unimodal Problems

The numerical results for the unimodal test problems are given in Table 5.2.
The results show that SO-I reaches for every problem the best result among
all algorithms. B&B reaches the same results for test problem 13 after 200
function evaluations and for problem 7. B&B does not find any feasible
solution within 400 function evaluations for test problems 4 and 5. NOMAD
is able to find a solution with the same average objective function value as
SO-I for test problem 13 after more than 300 function evaluations, and for
problem 16 after more than 200 evaluations. GA found the best solution
only for test problem 7 after more than 300 function evaluations.

Comparing the results of GA and NOMAD shows that it is not possible
to determine which algorithm performs better. There are test problems
for which GA initially outperforms NOMAD, and others where NOMAD
outperforms GA. The standard errors of the means are except for problem 4
lowest for SO-I. GA and NOMAD were able to find feasible solutions for
both constrained problems (problems 4 and 5) in all trials, whereas SO-I
was not able to find a feasible solution for eight instances of test problem 4.
The relative errors between the global optimum (or the best solution found
over all trials and all algorithms)1 and the average function value found by
SO-I after 400 function evaluations are zero for the unconstrained problems.
For test problem 5 the relative error is about 10% and for problem 4 the
relative error is about 1%.

Problems 7 and 13 have a similar structure, but the variable domain of
problem 13 is larger than that of problem 7. SO-I is able to find for both
problems the best solution within 100 function evaluations. Also NOMAD
was able to find the optimal solutions of both problems, but it needed
more than 300 evaluations. In contrast, GA is able to find the optimal
solution for problem 7 after more than 300 evaluations, but the result for
problem 13 is about 3% worse than the optimal solution. Also B&B finds
the best solution for test problem 7 within 100 evaluations, and for test
problem 13 after more than 100 evaluations. Thus, none of the compared
algorithms seems to be significantly influenced by the larger variable domain.

Since SO-I reaches the best solution for every problem, only the hypothesis
H0 : μSO-I = μA and H1 : μSO-I < μA, where A ∈ {NOMAD, B&B, GA} has
to be tested. The results of the hypothesis testing in Table 5.3 show that
SO-I reaches a significantly lower mean value than B&B for three out of

1See Appendix D for the optimal values.

CHAPTER 5. SO-I 163

five problems, i.e. in these cases the null hypothesis H0 can be rejected for
A = B&B. Compared to NOMAD and GA the means of SO-I are especially
within 200 evaluations significantly better.

Figure 5.1 shows the objective function value averaged over thirty trials for
test problem 13 for each algorithm. The error bars illustrate the standard
deviations. Test problem 13 is an unconstrained minimization problem. The
figure shows that SO-I is able to reduce the average objective function value
fastest and finds the optimal solution within the fewest number of function
evaluations. B&B finds the optimal solution within slightly more than 100
evaluations, whereas NOMAD needs more than 350 evaluations to reach com-
parable results. GA did not find the optimal solution within 400 evaluations.

0 100 200 300 400
−12000

−6000

0

Number of function evaluations

Avg.
function

value

GA
SO−I
B&B
NOMAD

Figure 5.1: Unconstrained unimodal minimization problem, test problem
13. Objective function value averaged over 30 trials vs. number of function

evaluations; error bars illustrate standard deviations.

T
ab

le
5.
2:

U
n
im

o
d
al

p
ro
b
le
m
s.

M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h
10
0,

20
0,

30
0,

an
d
40
0

fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s
(S
E
M
)
ar
e
gi
ve
n

fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A
ll
p
ro
b
le
m
s
ar
e
m
in
im

iz
at
io
n
p
ro
b
le
m
s.

c
d
en
ot
es

co
n
st
ra
in
ed

p
ro
b
le
m
s.

ID
A
lg
or
it
h
m

#
N
F

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

40
0
ev
al
.

d
im

.
|Ω

D
|

4c

G
A

0
m
ea
n

-2
94
25
.6
8

-2
97
79
.8
0

-2
99
56
.0
8

-3
00
73
.7
7

5
25

·1
3
·1
93

S
E
M

4
9
.5
6

4
6
.0
8

4
7
.3
4

4
3
.3
0

S
O
-I

8
m
ea
n

-2
97
29
.5
0

-3
00
45
.8
2

-3
01
88
.5
1

-3
02
83
.8
4

S
E
M

1
1
5
.1
9

7
4
.6
1

5
5
.2
4

3
7
.2
3

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

0
m
ea
n

-2
93
84
.4
8

-2
98
16
.8
4

-3
00
48
.4
5

-3
01
92
.6
7

S
E
M

9
7
.0
9

6
4
.9
4

5
7
.8
1

3
5
.2
9

5c

G
A

0
m
ea
n

-
29
22
.3
0

11
21
.2
0

89
6.
53

7
21

7

S
E
M

-
1
3
5
8
.9
9

8
3
.9
4

2
9
.2
1

S
O
-I

0
m
ea
n

23
64
68
.1
0

12
78
.5
7

84
2.
90

77
1.
40

S
E
M

1
8
0
2
2
8
.6
0

2
4
7
.9
3

3
4
.7
6

1
4
.9
7

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

0
m
ea
n

74
20
37
.9
7

18
06
5.
77

21
89
.1
7

17
70
.5
0

S
E
M

4
0
3
4
9
8
.1
4

8
7
6
8
.6
4

5
1
7
.7
1

4
6
2
.5
8

7

G
A

0
m
ea
n

-2
2.
83

-3
6.
51

-4
2.
78

-4
3.
13

10
71

0

S
E
M

0
.9
5

0
.8
3

0
.3
5

0
.0
0

S
O
-I

0
m
ea
n

-4
3.
13

-4
3.
13

-4
3.
13

-4
3.
13

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

B
&
B

0
m
ea
n

-4
3.
13

-4
3.
13

-4
3.
13

-4
3.
13

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

N
O
M
A
D

0
m
ea
n

-2
7.
71

-3
6.
82

-4
0.
48

-4
3.
13

S
E
M

0
.7
2

0
.8
5

0
.6
9

0
.0
0

13

G
A

0
m
ea
n

-5
18
2.
64

-7
34
8.
78

-8
65
4.
65

-9
28
9.
87

10
97

1
0

S
E
M

1
3
2
.0
4

2
1
1
.4
9

1
6
6
.5
2

8
1
.2
4

S
O
-I

0
m
ea
n

-9
59
1.
72

-9
59
1.
72

-9
59
1.
72

-9
59
1.
72

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

B
&
B

0
m
ea
n

-8
65
4.
53

-9
59
1.
72

-9
59
1.
72

-9
59
1.
72

S
E
M

9
3
7
.1
9

0
.0
0

0
.0
0

0
.0
0

N
O
M
A
D

0
m
ea
n

-5
75
9.
21

-8
50
4.
33

-9
30
1.
37

-9
59
1.
72

S
E
M

2
4
3
.5
3

1
7
2
.9
2

6
0
.0
0

0
.0
0

16

G
A

0
m
ea
n

10
1.
68

32
.8
2

10
.2
4

2.
72

8
21

8

S
E
M

8
.9
6

3
.8
2

2
.3
6

0
.9
5

S
O
-I

0
m
ea
n

0.
15

0.
00

0.
00

0.
00

S
E
M

0
.0
5

0
.0
0

0
.0
0

0
.0
0

B
&
B

0
m
ea
n

15
38
.6
7

15
38
.6
7

26
0.
34

36
.0
6

S
E
M

1
0
1
.1
7

1
0
1
.1
7

9
9
.6
7

1
0
.9
3

N
O
M
A
D

0
m
ea
n

22
.3
8

3.
79

0.
00

0.
00

S
E
M

2
.1
3

1
.6
7

0
.0
0

0
.0
0

CHAPTER 5. SO-I 166

Table 5.3: Unimodal problems. Hypothesis testing for differences in means
(μ) after 100, 200, 300, and 400 function evaluations.

c denotes constrained problems.
(∗) denotes significance at α = 5% and (∗∗) denotes significance at α = 1%

for H0 : μSO-I = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-I < μA.

ID Algorithm Number of evaluations
A 100 200 300 400

4c
GA (∗) (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD

5c
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (∗∗)

7
GA (∗∗) (∗∗)
B&B
NOMAD (∗∗) (∗∗)

13
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B
NOMAD (∗∗) (∗∗) (∗∗) (∗∗)

16
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (∗∗)

CHAPTER 5. SO-I 167

5.5.2 Unconstrained Multimodal Problems

For the unconstrained multimodal problems, NOMAD and SO-I perform
best (see Table 5.4). NOMAD finds the best solution for three out of four
problems, whereas SO-I finds the best solution for two of the four problems.
B&B is outperformed by GA for all four problems. For test problems 10
and 15, B&B was not able to find any improvement of the initially given
point in any trial. Thus, the reported numbers are the mean and SEM of
the starting points.

Problems 9 and 10 differ only with respect to the number of variables
(12 and 30 dimensions, respectively). SO-I and NOMAD are both able
to find the optimal solution for the smaller dimensional problem 9. For
problem 10, NOMAD and SO-I deviate from the optimal solution by 3% and
9%, respectively, indicating that the solution quality for both algorithms
slightly decreases as the dimension increases. The solution found by GA
for the 12-dimensional problem 9 is about 9% worse than the optimal
solution after 400 evaluations, whereas for problem 10 the difference is
almost 43%. B&B was able to find improvements of the starting point for
problem 9, but for problem 10 no improvements could be found within
400 evaluations. Thus, all algorithms are affected by the larger dimen-
sion. NOMAD is least affected, and the performance of B&B decreases most.

The results of the hypothesis tests for differences in means are given
in Table 5.5. Since NOMAD reaches for this problem class better re-
sults than SO-I for two test problems (2 and 10), also the hypothesis
H0 : μSO-I = μNOMAD, and H1 : μSO-I > μNOMAD has to be tested. The
hypothesis tests show that the results reached by NOMAD are significantly
better than those of SO-I at the 5% level for problem 2 and at the 1% level for
problem 10, i.e. the null hypothesis H0 : μSO-I = μNOMAD must be rejected.
On the other hand, the means of SO-I are significantly lower than those
of NOMAD at the 1% level for test problem 15. For test problems 9, 10,
and 15 the results of SO-I are significantly better than those of GA and B&B.

The objective function values averaged over the 30 trials and error bars for
the standard deviations for test problem 9 are illustrated in Figure 5.2 for
all four algorithms. The figure shows that SO-I and NOMAD perform about
equally well with NOMAD having a slightly larger standard deviation. GA
is able to iteratively improve the average objective function value over the
400 function evaluations, whereas B&B finds improvements only after more

CHAPTER 5. SO-I 168

than 200 evaluations.

0 100 200 300 400
−20

0

20

Number of function evaluations

Avg.
function

value

GA
SO−I
B&B
NOMAD

Figure 5.2: Unconstrained multimodal minimization problem, test problem
9. Objective function value averaged over 30 trials vs. number of function

evaluations; error bars illustrate standard deviations.

T
ab

le
5.
4:

U
n
co
n
st
ra
in
ed

m
u
lt
im

o
d
al

p
ro
b
le
m
s.

M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h
10
0,

20
0,

30
0,

an
d
40
0
fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s

(S
E
M
)
ar
e
gi
ve
n
fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A
ll
p
ro
b
le
m
s
ar
e
m
in
im

iz
at
io
n
p
ro
b
le
m
s.

ID
A
lg
or
it
h
m

#
N
F

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

40
0
ev
al
.

d
im

.
|Ω

D
|

2

G
A

0
m
ea
n

-2
81
.4
9

-3
77
.5
9

-4
07
.9
8

-4
27
.9
1

5
20
15

S
E
M

1
3
.2
4

9
.6
9

8
.0
1

7
.3
8

S
O
-I

0
m
ea
n

-3
34
.7
0

-3
90
.8
7

-4
26
.0
6

-4
37
.1
6

S
E
M

1
3
.7
9

1
4
.9
4

1
3
.0
2

1
2
.0
9

B
&
B

0
m
ea
n

60
7.
78

-5
2.
89

-3
11
.6
8

-3
11
.6
8

S
E
M

1
0
3
.6
2

9
4
.7
0

5
.8
5

5
.8
5

N
O
M
A
D

0
m
ea
n

-3
64
.7
2

-4
39
.8
1

-4
71
.8
7

-4
85
.7
3

S
E
M

1
1
.9
6

1
4
.0
5

9
.8
2

9
.1
8

9

G
A

0
m
ea
n

-6
.7
3

-9
.5
0

-1
0.
70

-1
0.
87

12
51

2

S
E
M

0
.2
9

0
.2
0

0
.1
8

0
.1
9

S
O
-I

0
m
ea
n

-1
2.
00

-1
2.
00

-1
2.
00

-1
2.
00

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

B
&
B

0
m
ea
n

16
.3
0

16
.3
0

13
.0
0

-0
.9
3

S
E
M

1
.9
8

1
.9
8

2
.6
6

1
.9
2

N
O
M
A
D

0
m
ea
n

-1
2.
00

-1
2.
00

-1
2.
00

-1
2.
00

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

10

G
A

0
m
ea
n

-0
.0
7

-8
.6
3

-1
3.
63

-1
7.
17

30
53

0

S
E
M

1
.0
1

0
.8
3

0
.6
8

0
.6
6

S
O
-I

0
m
ea
n

-1
6.
00

-2
6.
10

-2
6.
93

-2
7.
23

S
E
M

0
.3
1

0
.2
1

0
.1
5

0
.1
6

B
&
B

0
m
ea
n

47
.5
3

47
.5
3

47
.5
3

47
.5
3

S
E
M

2
.9
2

2
.9
2

2
.9
2

2
.9
2

N
O
M
A
D

0
m
ea
n

-1
9.
40

-2
8.
63

-2
8.
97

-2
9.
17

S
E
M

1
.6
9

0
.4
7

0
.4
2

0
.4
1

15

G
A

0
m
ea
n

46
6.
63

18
8.
80

77
.7
3

33
.8
3

12
41

1
2

S
E
M

3
0
.3
3

1
7
.2
1

7
.9
2

4
.5
2

S
O
-I

0
m
ea
n

-1
1.
97

-1
2.
00

-1
2.
00

-1
2.
00

S
E
M

0
.0
3

0
.0
0

0
.0
0

0
.0
0

B
&
B

0
m
ea
n

26
50
.1
7

26
50
.1
7

26
50
.1
7

26
50
.1
7

S
E
M

1
8
2
.5
7

1
8
2
.5
7

1
8
2
.5
7

1
8
2
.5
7

N
O
M
A
D

0
m
ea
n

19
.5
7

14
.7
7

-1
.7
0

-1
0.
67

S
E
M

2
.2
2

1
.4
9

2
.8
0

1
.3
3

CHAPTER 5. SO-I 170

Table 5.5: Unconstrained multimodal problems. Hypothesis testing for
differences in means (μ) after 100, 200, 300, and 400 function evaluations.

(∗∗) denotes significance at α = 1% for
H0 : μSO-I = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-I < μA;

(�) denotes significance at α = 5% and (��) denotes significance at α = 1%
for H0 : μSO-I = μNOMAD and H1 : μSO-I > μNOMAD.

ID Algorithm Number of evaluations
A 100 200 300 400

2
GA (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (�) (�)

9
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD

10
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (�) (��) (��) (�)

15
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

CHAPTER 5. SO-I 171

5.5.3 Constrained Multimodal Problems

The results for the constrained multimodal problems are given in Table 5.6.
The results show that SO-I performs constantly best for two of the four
examined problems. NOMAD outperforms SO-I for problem 11 for less
than 200 function evaluations. GA found the optimal feasible solution for
test problem 1 after more than 100 function evaluations, and outperformed
NOMAD and SO-I for problem 11. B&B did not find any feasible solution
within 400 evaluations for problems 1 and 11, and had for the other two
problems difficulties finding a feasible solution. For test problem 1 also
NOMAD was not able to generate a feasible solution for any of the 30
trials. GA also had difficulties finding feasible solutions within 100 function
evaluations for problems 1, 6, and 14.

The results of the hypothesis tests are given in Table 5.7. For test prob-
lem 11 NOMAD and GA reached better results than SO-I for 100, 200,
and 400 evaluations, and thus also the hypotheses H0 : μSO-I = μNOMAD

(H1 : μSO-I > μNOMAD), and H0 : μSO-I = μGA (H1 : μSO-I > μGA) have been
tested. For this test problem the null hypothesis H0 : μSO-I = μNOMAD can
be rejected at the 5% significance level for up to 100 function evaluations,
and the hypothesis H0 : μSO-I = μGA can be rejected at the 1% significance
level for up to 100 evaluations. For problem 14, B&B reaches a significantly
better result than SO-I after 300 and more function evaluations. For the
remaining problems SO-I reaches significantly better results than B&B, and
it reaches significantly better results than NOMAD for test problems 1, 6,
and 14.

Figure 5.3 shows the average objective function value for feasible points
versus the number of function evaluations for test problem 6. The error
bars illustrate the standard deviations. The offset of the graphs indicates
how many function evaluations each algorithm needed at most to find a first
feasible solution in the 30 trials. As can be seen, for this test problem SO-I
was most successful and needed fewer than 50 evaluations to find a first
feasible point in all 30 trials. After the feasible point had been found, the
average objective function value could be improved significantly within the
next 50 evaluations. B&B, GA, and NOMAD also found feasible points in
all 30 trials for this test problem, but needed significantly more evaluations.
The average objective function value could also not be improved as much as
for SO-I.

T
ab

le
5.
6:

C
on

st
ra
in
ed

m
u
lt
im

o
d
al

p
ro
b
le
m
s.

M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h
10
0,

20
0,

30
0,

an
d
40
0
fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s

(S
E
M
)
ar
e
gi
ve
n
fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A
ll
p
ro
b
le
m
s
ar
e
m
in
im

iz
at
io
n
p
ro
b
le
m
s.

c
d
en
ot
es

co
n
st
ra
in
ed

p
ro
b
le
m
s.

ID
A
lg
or
it
h
m

#
N
F

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

40
0
ev
al
.

d
im

.
|Ω

D
|

1c

G
A

2
m
ea
n

-
-3
97
1.
00

-3
97
1.
00

-3
97
1.
00

2
88
88

S
E
M

-
0
.0
0

0
.0
0

0
.0
0

S
O
-I

0
m
ea
n

-3
97
1.
00

-3
97
1.
00

-3
97
1.
00

-3
97
1.
00

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

6c

G
A

0
m
ea
n

-
-

-6
.0
7

-6
.0
7

13
21

0
·1
01

3

S
E
M

-
-

0
.5
9

0
.5
9

S
O
-I

0
m
ea
n

-1
3.
90

-1
4.
50

-1
4.
73

-1
4.
83

S
E
M

0
.1
9

0
.1
5

0
.1
2

0
.1
0

B
&
B

0
m
ea
n

-
-1
2.
00

-1
2.
00

-1
2.
00

S
E
M

-
0
.0
0

0
.0
0

0
.0
0

N
O
M
A
D

0
m
ea
n

-
-

-5
.9
7

-5
.9
7

S
E
M

-
-

0
.0
3

0
.0
3

11
c

G
A

0
m
ea
n

-0
.1
4

-0
.1
7

-0
.1
9

-0
.2
2

25
11

2
5

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
1

S
O
-I

0
m
ea
n

-0
.1
3

-0
.1
6

-0
.2
0

-0
.2
1

S
E
M

0
.0
0

0
.0
1

0
.0
1

0
.0
1

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

0
m
ea
n

-0
.1
4

-0
.1
6

-0
.1
7

-0
.1
7

S
E
M

0
.0
1

0
.0
1

0
.0
1

0
.0
1

14
c

G
A

1
m
ea
n

-
-

-
-4
01
05
.0
7

13
10
11

3

S
E
M

-
-

-
3
1
7
5
.5
3

S
O
-I

0
m
ea
n

-2
25
52
.7
7

-3
13
59
.5
0

-3
55
17
.4
0

-4
06
87
.1
0

S
E
M

3
3
6
9
.0
6

3
3
2
5
.7
5

3
2
8
1
.8
0

3
1
4
5
.9
0

B
&
B

0
m
ea
n

-
-

-5
01
86
.7
3

-5
01
86
.7
3

S
E
M

-
-

4
.4
7

4
.4
7

N
O
M
A
D

0
m
ea
n

-
-

-
-4
83
63
.0
3

S
E
M

-
-

-
1
1
9
7
.0
2

CHAPTER 5. SO-I 173

Table 5.7: Constrained multimodal problems. Hypothesis testing for
differences in means (μ) after 100, 200, 300, and 400 function evaluations.

c denotes constrained problems.
(∗∗) denotes significance at α = 1% for

H0 : μSO-I = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-I < μA;
(⊕⊕) denotes significance at α = 1% for H0 : μSO-I = μB&B and

H1 : μSO-I > μB&B;
(��) denotes significance at α = 1% for H0 : μSO-I = μGA and

H1 : μSO-I > μGA.

ID Algorithm Number of evaluations
A 100 200 300 400

1c
GA (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗) (∗∗)

6c
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗) (∗∗)

11c
GA (��)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (�)

14c
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (⊕⊕) (⊕⊕)
NOMAD (∗∗) (∗∗) (∗∗)

CHAPTER 5. SO-I 174

0 100 200 300 400
−20

−10

0

Number of function evaluations

Avg.
function

value

GA
SO−I
B&B
NOMAD

Figure 5.3: Constrained multimodal minimization problem, test problem 6.
Objective function value averaged over 30 trials vs. number of function

evaluations; error bars illustrate standard deviations.

5.5.4 Binary Problems

The results for the two test problems with binary variables are shown
in Table 5.8. One constrained and one unconstrained problem has been
considered. NOMAD and SO-I perform better than GA. B&B did not
find any improvement of the starting point for test problem 12 within 400
evaluations, and the mean and SEM values have been computed based on
the objective function values of the initial points. B&B found the optimal
solution for test problem 8, but needed more than 300 function evaluations
to find a first feasible point. Moreover, the solution reported for B&B is
for only two out of 30 trials, since the algorithm did not find any feasible
solution within 400 evaluations for the other 28 trials. Also GA, SO-I and
NOMAD had difficulties finding a feasible solution (see column #NF).
For binary problems it was not expected that SO-I would work well at all
because only two variable values are possible for each integer dimension,
and the fitted surface was hence expected to be very inaccurate. The results
for these two problems suggest, however, that a surrogate model based
approach is as well useful when binary problems are dealt with.

The results of the hypothesis testing for problem 12 in Table 5.9 indicate
that SO-I performs significantly better than all other algorithms. For
test problem 8 (where NOMAD and B&B found better solutions than

CHAPTER 5. SO-I 175

SO-I) the null hypotheses H0 : μSO-I = μNOMAD must be rejected at the 5%
significance level and the hypothesis H0 : μSO-I = μB&B could not be rejected.

The development of the average objective function values over the 400 allowed
evaluations for test problem 12 is illustrated in Figure 5.4 together with the
standard deviations. The figure shows that SO-I, NOMAD, and GA are
able to find significant improvements within 100 evaluations, whereas B&B
did not find any improvements of the starting points within 400 evaluations.
The relative error between the global minimum (or the best known solution)
and the average objective function value found by SO-I after 400 function
evaluations is about 8% for test problem 8 and zero for problem 12.

0 100 200 300 400
−15

−10

−5

0

Number of function evaluations

Avg.
function

value

GA
SO−I
B&B
NOMAD

Figure 5.4: Unconstrained binary minimization problem, test problem 12.
Objective function value averaged over 30 trials vs. number of function

evaluations; error bars illustrate standard deviations.

T
ab

le
5.
8:

B
in
ar
y
p
ro
b
le
m
s.

M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h
10
0,

20
0,

30
0,

an
d
40
0

fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s
(S
E
M
)
ar
e
gi
ve
n

fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A
ll
p
ro
b
le
m
s
ar
e
m
in
im

iz
at
io
n
p
ro
b
le
m
s.

c
d
en
ot
es

co
n
st
ra
in
ed

p
ro
b
le
m
s.

ID
A
lg
or
it
h
m

#
N
F

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

40
0
ev
al
.

d
im

.
|Ω

D
|

8c

G
A

8
m
ea
n

17
.7
3

17
.7
3

17
.7
3

17
.7
3

16
21

6

S
E
M

0
.8
6

0
.8
6

0
.8
6

0
.8
6

S
O
-I

15
m
ea
n

15
.1
3

14
.6
0

14
.0
7

14
.0
7

S
E
M

0
.9
5

0
.8
6

0
.7
3

0
.7
3

B
&
B

28
m
ea
n

-
-

-
13
.0
0

S
E
M

-
-

-
0
.0
0

N
O
M
A
D

22
m
ea
n

13
.0
0

13
.0
0

13
.0
0

13
.0
0

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

12

G
A

0
m
ea
n

-1
2.
17

-1
2.
23

-1
2.
23

-1
2.
23

20
22

0

S
E
M

0
.2
0

0
.1
9

0
.1
9

0
.1
9

S
O
-I

0
m
ea
n

-1
3.
36

-1
3.
36

-1
3.
36

-1
3.
36

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

B
&
B

0
m
ea
n

-3
.0
9

-3
.0
9

-3
.0
9

-3
.0
9

S
E
M

0
.3
0

0
.3
0

0
.3
0

0
.3
0

N
O
M
A
D

0
m
ea
n

-1
2.
94

-1
3.
11

-1
3.
22

-1
3.
31

S
E
M

0
.0
3

0
.0
3

0
.0
3

0
.0
2

CHAPTER 5. SO-I 177

Table 5.9: Binary problems. Hypothesis testing for differences in means (μ)
after 100, 200, 300, and 400 function evaluations.

c denotes constrained problems.
(∗) denotes significance at α = 5% and (∗∗) denotes significance at α = 1%

for H0 : μSO-I = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-I < μA;
(�) denotes significance at α = 5% for H0 : μSO-I = μNOMAD and

H1 : μSO-I > μNOMAD.

ID Algorithm Number of evaluations
A 100 200 300 400

8c
GA (∗) (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (�) (�)

12
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

5.5.5 Linear Problems

The results for the linear problems are given in Table 5.10. SO-I found
the optimal feasible solution for both test problems. B&B and NOMAD
found the optimal feasible solution for problem 3. GA needed more than
100 function evaluations to find a first feasible point for both problems, and
B&B had initial difficulties finding a feasible point only for test problem
17. NOMAD did not find any feasible solution within 400 evaluations for 8
trials of problem 17.

For the two problems with linear objective functions the hypothesis tests
for differences in means in Table 5.11 show that SO-I performs significantly
better than GA on both test problems. The results also show that SO-I
performs significantly better than NOMAD and B&B for problem 17.

Figure 5.5 shows the objective function values of feasible points averaged
over 30 trials for all algorithms for test problem 17 and their corresponding
standard deviations. The offset of the graphs indicates the number of eval-
uations needed by each algorithm for finding a feasible solution. As can be
seen, NOMAD and SO-I are most efficient with this respect. SO-I is however

CHAPTER 5. SO-I 178

able to improve the objective function values within fewer evaluations than
NOMAD.

0 100 200 300 400
−9

−5

0

Number of function evaluations

Avg.
function

value

GA
SO−I
B&B
NOMAD

Figure 5.5: Constrained minimization problem with linear objective
function, test problem 17. Objective function value of feasible points
averaged over 30 trials vs. number of function evaluations; error bars

illustrate standard deviations.

T
ab

le
5.
10
:
P
ro
b
le
m
s
w
it
h
li
n
ea
r
ob

je
ct
iv
e
fu
n
ct
io
n
.
M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h

10
0,

20
0,

30
0,

an
d
40
0
fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s
(S
E
M
)
ar
e
gi
ve
n
fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A
ll
p
ro
b
le
m
s
ar
e
m
in
im

iz
at
io
n
p
ro
b
le
m
s.

c
d
en
ot
es

co
n
st
ra
in
ed

p
ro
b
le
m
s.

ID
A
lg
or
it
h
m

#
N
F

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

40
0
ev
al
.

d
im

.
|Ω

D
|

3c

G
A

0
m
ea
n

-
0.
72

0.
72

0.
72

5
53
24

S
E
M

-
0
.1
4

0
.1
4

0
.1
4

S
O
-I

0
m
ea
n

0.
00

0.
00

0.
00

0.
00

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

B
&
B

0
m
ea
n

0.
00

0.
00

0.
00

0.
00

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

N
O
M
A
D

0
m
ea
n

0.
00

0.
00

0.
00

0.
00

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

17
c

G
A

0
m
ea
n

-
-7
.0
8

-7
.1
0

-7
.1
0

5
53
24

S
E
M

-
0
.1
6

0
.1
6

0
.1
6

S
O
-I

0
m
ea
n

-8
.0
0

-8
.0
0

-8
.0
0

-8
.0
0

S
E
M

0
.0
0

0
.0
0

0
.0
0

0
.0
0

B
&
B

0
m
ea
n

-
-7
.5
0

-7
.5
0

-7
.5
0

S
E
M

-
0
.0
0

0
.0
0

0
.0
0

N
O
M
A
D

8
m
ea
n

-5
.0
9

-7
.2
5

-7
.9
1

-8
.0
0

S
E
M

0
.4
2

0
.1
8

0
.0
6

0
.0
0

CHAPTER 5. SO-I 180

Table 5.11: Linear problems. Hypothesis testing for differences in means
(μ) after 100, 200, 300, and 400 function evaluations.

c denotes constrained problems.
(∗∗) denotes significance at α = 1% for

H0 : μSO-I = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-I < μA.

ID Algorithm Number of evaluations
A 100 200 300 400

3c
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B
NOMAD

17c
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

5.5.6 Throughput Maximization Problems

The numerical results for the two throughput maximization problems
are reported in Table 5.12. Note that both problems are maximization
problems, and therefore large mean values are better. For both problems
SO-I found the best average objective function values, but failed to find a
feasible solution for three trials of problem 18. NOMAD also failed to find a
feasible solution for three trials of this problem. Although GA was able to
find feasible solutions for all trials of both problems, its solution quality is
in general worse than that of SO-I. NOMAD had initial difficulties finding a
feasible solution for problem 19 within 200 evaluations, and after a feasible
solution had been found, only very slight improvements could be achieved
within the next 200 evaluations.

Problem 19 is in general the same as problem 18, but has a higher dimension.
This increasing dimension seems to have a negative effect on the performance
of GA and NOMAD, because for the higher dimensional problem both
algorithms have initial difficulties finding a first feasible point. On the other
hand, the performance of SO-I improved with increasing problem dimension.
SO-I was able to find feasible solutions within fewer than 100 evaluations
for all 30 trials of problem 19.

CHAPTER 5. SO-I 181

B&B could not be applied to the throughput maximization problems because
the evaluation of the objective function fails when the variable values are not
integer. Thus, when optimizing the continuous relaxation in the tree nodes
for obtaining lower bounds for the objective function value, the simulation
model fails, and therefore B&B fails. This application problem shows one of
the major drawbacks of applying B&B to discrete black-box optimization
problems, i.e. if the black-box evaluation fails when the input variable vector
contains continuous values, B&B cannot find any solution.

Since SO-I reaches the best average objective function value for both
throughput maximization problems, only the hypothesis H0 : μSO-I = μA

(H1 : μSO-I > μA), A ∈ {GA, B&B, NOMAD}, has to be tested. The results
of these tests are shown in Table 5.13. Since B&B could not be used for
solving these problems, the entries are set to NA (the results of all other
algorithms can be considered “significantly better” whenever feasible points
have been found). SO-I finds for both throughput maximization problems
significantly better solutions than NOMAD. Also GA is outperformed by
SO-I at the α = 1% significance level for all algorithm stages of problem 18,
and until 100 evaluations of problem 19.

Figure 5.6 shows the average objective function values of the algorithms
for problem 18. The error bars indicate the standard deviations. Note
that B&B could not be illustrated because it could not be used to solve
the problem. The figure shows that SO-I is able to find feasible solutions
fastest. The solution quality of SO-I is better than that of GA and NOMAD.
NOMAD is also able to find feasible points, but its solution quality over the
400 function evaluations is slightly worse than that of GA.

T
ab

le
5.
12
:
T
h
ro
u
gh

p
u
t
m
ax

im
iz
at
io
n
p
ro
b
le
m
s.

M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h
10
0,

20
0,

30
0,

an
d
40
0
fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s

(S
E
M
)
ar
e
gi
ve
n
fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A
ll
p
ro
b
le
m
s
ar
e
m
ax

im
iz
at
io
n
p
ro
b
le
m
s.

c
d
en
ot
es

co
n
st
ra
in
ed

p
ro
b
le
m
s.

ID
A
lg
or
it
h
m

#
N
F

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

40
0
ev
al
.

d
im

.
|Ω

D
|

18
c

G
A

0
m
ea
n

6.
04

7.
16

7.
80

8.
24

5
52

0

S
E
M

0
.1
8

0
.1
5

0
.1
6

0
.1
7

S
O
-I

3
m
ea
n

7.
43

8.
60

9.
11

9.
18

S
E
M

0
.2
3

0
.1
7

0
.1
3

0
.1
1

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

3
m
ea
n

4.
39

5.
93

6.
99

7.
66

S
E
M

0
.4
5

0
.3
6

0
.2
6

0
.2
0

19
c

G
A

0
m
ea
n

-
2.
39

2.
82

3.
10

23
23

2
0

S
E
M

-
0
.1
6

0
.1
6

0
.1
7

S
O
-I

0
m
ea
n

1.
88

2.
50

2.
89

3.
15

S
E
M

0
.1
1

0
.1
7

0
.1
9

0
.2
0

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

0
m
ea
n

-
-

0.
87

0.
89

S
E
M

-
-

0
.0
6

0
.0
6

CHAPTER 5. SO-I 183

Table 5.13: Throughput maximization problems. Hypothesis testing for
differences in means (μ) after 100, 200, 300, and 400 function evaluations.

c denotes constrained problems.
(∗) denotes significance at α = 5% and (∗∗) denotes significance at α = 1%

for H0 : μSO-I = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-I > μA.

ID Algorithm Number of evaluations
A 100 200 300 400

18c
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B NA NA NA NA
NOMAD (∗) (∗) (∗∗)

19c
GA (∗∗)
B&B NA NA NA NA
NOMAD (∗∗) (∗∗) (∗∗) (∗∗)

0 100 200 300 400
0

5

10

Number of function evaluations

Avg.
function

value

GA
SO−I
NOMAD

Figure 5.6: Throughput maximization problem, test problem 18. Objective
function value for feasible points averaged over 30 trials (GA), and 27 trials

(SO-I and NOMAD) vs. number of function evaluations; error bars
illustrate standard deviations.

5.5.7 Hydropower Maximization Problems

The results for the hydropower maximization problems are given in
Tables 5.14 and 5.16. Note that these are maximization problems, and

CHAPTER 5. SO-I 184

therefore large values are better. The problem instances in Table 5.14, and
those in Table 5.16, differ mainly with respect to the amount of water Qj

that can be released from reservoir j, i.e. the bound on the constraint(s).
Problems 20a - 20c have only one constraint (one hydropower plant),
whereas problems 21a-21c have 2 constraints (two hydropower plants).
Different water amounts have been used to imitate seasons with different
amounts of available water in the reservoir(s). The amount of available
water Qj is lowest for problems 20a and 21a, and highest for problems 20c
and 21c. For the problems with one hydropower plant (Table 5.14), SO-I
performed best for two out of three problems, and NOMAD performed best
for one problem. GA had initial difficulties finding a feasible solution for
problems 20a and 20b. However, GA (and NOMAD) found feasible solutions
for all instances of all three problems within 400 evaluations, whereas SO-I
failed to do so for two instances of problem 20c. The solution quality of GA
is on the other hand worse than for SO-I and NOMAD also for the problems
where all algorithms were able to find feasible points for all trials.

For the hydropower problems with two reservoirs (and therefore two
constraints, Table 5.16), SO-I found the best feasible solutions for all three
problems. GA performs on these problems in general better than NOMAD,
indicating that NOMAD has difficulties dealing with the additional con-
straint. Although SO-I could not find a feasible point within 400 evaluations
for two instances of problem 21b and seven instances of problem 21c, the
solution quality is in general better than that of GA and NOMAD, and the
standard errors of the means are lower.

B&B could not be used for solving the hydropower application problems
because if the integer variable values in an iteration did not allow any
feasible solution with respect to the total allowed outflow Qj , then the
black-box calculation (for finding the values of the amount of water qi
that goes through each generator type i) failed. As a result, no objective
function value could be computed, and thus B&B failed. With SO-I, this
problem was avoided because infeasible points were given an objective
function value set to the worst feasible objective function value found so
far plus a penalty term derived from the constraint function values, and
thus the objective function values of infeasible points were irrelevant for the
remaining computations. This penalty approach could not be used for the
branch and bound algorithm because the pruning decisions depend on the
function value of the relaxed subproblems, and adding a penalty term as for
SO-I can adversely influence these pruning decisions.

CHAPTER 5. SO-I 185

For the hydropower generation problems with one constraint the results of
SO-I are significantly better than those of NOMAD and GA (and B&B)
for problems 20a and 20b as shown in Table 5.15. For test problem 20c,
NOMAD performs significantly better than SO-I for up to 300 evaluations.
These results indicate that the performance of NOMAD improves as the
upper bound on the constraint and therefore the feasible variable domain
increases. For the problems with two constraints (21a, 21b, 21c), SO-I
performs significantly better than all other algorithms at almost all stages
(Table 5.17), indicating that NOMAD and GA have difficulties dealing with
an increasing number of constraints.

Figure 5.7 shows the average objective function values of feasible points for
SO-I, NOMAD, and GA for test problem 21a and their standard deviations.
Note that for this problem a graph for B&B cannot be illustrated because
the algorithm could not solve the problem. The figure shows that SO-I and
NOMAD find feasible solutions within fewer function evaluations than GA.
Although GA needed more than 150 evaluations to find a feasible point, its
solution quality is at that point better than that of NOMAD. After 300 eval-
uations the performance of GA and NOMAD is approximately equal. SO-I
has continuously a better average objective function value than NOMAD and
GA.

T
ab

le
5.
14
:
H
y
d
ro
p
ow

er
ge
n
er
at
io
n
m
ax

im
iz
at
io
n
p
ro
b
le
m
s
w
it
h
on

e
h
y
d
ro
p
ow

er
p
la
n
t
(o
n
e
co
n
st
ra
in
t)
.
M
ea
n

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h
10
0,

20
0,

30
0,

an
d
40
0
fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l

al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s
(S
E
M
)
ar
e
gi
ve
n
fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A
ll

p
ro
b
le
m
s
ar
e
m
ax

im
iz
at
io
n
p
ro
b
le
m
s.

c
d
en
ot
es

co
n
st
ra
in
ed

p
ro
b
le
m
s.

ID
A
lg
or
it
h
m

#
N
F

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

40
0
ev
al
.

d
im

.
|Ω

D
|

20
ac

G
A

0
m
ea
n

-
71
8.
42

73
5.
34

73
5.
34

5
52

0

S
E
M

-
9
.9
2

6
.7
5

6
.7
5

S
O
-I

0
m
ea
n

75
3.
73

75
8.
08

75
8.
25

75
8.
25

S
E
M

1
.1
6

0
.1
7

0
.0
0

0
.0
0

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

0
m
ea
n

48
2.
00

73
2.
78

74
4.
00

74
4.
00

S
E
M

5
5
.8
0

8
.1
1

0
.9
6

0
.9
6

20
b
c

G
A

0
m
ea
n

-
19
44
.0
8

19
95
.5
0

20
08
.8
3

5
52

0

S
E
M

-
1
1
.7
8

7
.0
6

4
.6
8

S
O
-I

0
m
ea
n

19
86
.6
7

20
08
.2
1

20
20
.0
0

20
20
.6
7

S
E
M

6
.9
8

2
.9
4

1
.3
1

1
.3
3

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

0
m
ea
n

18
23
.0
8

19
76
.6
5

20
03
.4
6

20
03
.8
3

S
E
M

2
9
.5
9

1
2
.1
1

5
.0
7

5
.0
1

20
cc

G
A

0
m
ea
n

38
28
.2
5

40
43
.9
7

40
87
.9
2

41
08
.8
4

5
52

0

S
E
M

8
8
.4
9

9
.8
4

5
.1
7

4
.4
9

S
O
-I

2
m
ea
n

40
31
.3
4

40
90
.8
0

41
03
.3
0

41
14
.6
0

S
E
M

7
.4
2

3
.9
4

3
.1
6

2
.6
8

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

0
m
ea
n

40
81
.8
3

41
16
.7
5

41
25
.0
8

41
25
.7
5

S
E
M

1
0
.7
3

1
1
.6
7

1
2
.0
1

1
2
.0
6

Table 5.15: Hydropower generation maximization problems with one
hydropower plant. Hypothesis testing for differences in means (μ) after 100,
200, 300, and 400 function evaluations. c denotes constrained problems.

(∗) denotes significance at α = 5% and (∗∗) denotes significance at α = 1%
for H0 : μSO-I = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-I > μA;
(��) denotes significance at α = 1% for H0 : μSO-I = μNOMAD and

H1 : μSO-I < μNOMAD.

ID Algorithm Number of evaluations
A 100 200 300 400

20ac
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B NA NA NA NA
NOMAD (∗∗) (∗∗) (∗∗) (∗∗)

20bc

GA (∗∗) (∗∗) (∗∗) (∗)
B&B NA NA NA NA
NOMAD (∗∗) (∗) (∗∗)

20cc
GA (∗) (∗∗) (∗∗)
B&B NA NA NA NA
NOMAD (��) (��) (��)

T
ab

le
5.
16
:
H
y
d
ro
p
ow

er
ge
n
er
at
io
n
m
ax

im
iz
at
io
n
p
ro
b
le
m
s
w
it
h
tw

o
h
y
d
ro
p
ow

er
p
la
n
ts

(t
w
o
co
n
st
ra
in
ts
).

M
ea
n

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

30
tr
ia
ls
w
it
h
10
0,

20
0,

30
0,

an
d
40
0
fu
n
ct
io
n
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
of

al
l

al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s
(S
E
M
)
ar
e
gi
ve
n
fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A
ll

p
ro
b
le
m
s
ar
e
m
ax

im
iz
at
io
n
p
ro
b
le
m
s.

c
d
en
ot
es

co
n
st
ra
in
ed

p
ro
b
le
m
s.

ID
A
lg
or
it
h
m

#
N
F

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

40
0
ev
al
.

d
im

.
|Ω

D
|

21
ac

G
A

0
m
ea
n

-
14
43
.9
4

15
57
.6
1

15
60
.3
6

5
52

0

S
E
M

-
4
4
.4
1

2
6
.0
3

2
5
.9
6

S
O
-I

0
m
ea
n

16
21
.8
5

16
64
.8
1

16
75
.7
9

16
77
.1
7

S
E
M

1
7
.5
6

2
.8
1

2
.2
1

2
.1
0

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

0
m
ea
n

10
02
.7
8

12
79
.6
8

15
29
.5
3

16
26
.1
8

S
E
M

5
4
.9
8

3
7
.6
2

3
1
.9
5

1
9
.6
4

21
b
c

G
A

0
m
ea
n

33
20
.7
3

37
83
.8
3

39
14
.7
0

40
16
.1
7

5
52

0

S
E
M

1
1
4
.9
4

3
3
.8
8

2
7
.9
7

2
3
.1
4

S
O
-I

2
m
ea
n

38
65
.5
4

40
04
.1
1

40
75
.4
6

40
94
.5
4

S
E
M

3
0
.8
2

1
9
.9
2

1
5
.0
7

1
2
.5
3

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

0
m
ea
n

33
58
.8
3

37
47
.5
7

38
34
.4
7

38
99
.4
0

S
E
M

7
2
.8
1

3
7
.7
2

3
2
.8
6

2
5
.5
7

21
cc

G
A

0
m
ea
n

77
39
.3
3

80
02
.3
3

81
25
.3
3

82
20
.6
7

5
52

0

S
E
M

3
5
.7
0

3
6
.2
8

3
1
.9
2

2
2
.2
2

S
O
-I

7
m
ea
n

81
45
.6
5

82
40
.4
3

82
74
.7
8

82
95
.6
5

S
E
M

2
8
.6
6

1
9
.5
0

1
8
.8
8

1
6
.4
8

B
&
B

30
m
ea
n

-
-

-
-

S
E
M

-
-

-
-

N
O
M
A
D

0
m
ea
n

76
37
.8
3

78
94
.6
7

80
76
.3
3

81
22
.3
3

S
E
M

4
7
.8
5

4
2
.0
9

3
5
.1
5

3
2
.0
5

CHAPTER 5. SO-I 189

Table 5.17: Hydropower generation maximization problems with two
hydropower plants. Hypothesis testing for differences in means (μ) after

100, 200, 300, and 400 function evaluations. c denotes constrained problems.
(∗) denotes significance at α = 5% and (∗∗) denotes significance at α = 1%

for H0 : μSO-I = μA,A ∈ {GA, B&B, NOMAD}, and H1 : μSO-I > μA.

ID Algorithm Number of evaluations
A 100 200 300 400

21ac
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B NA NA NA NA
NOMAD (∗∗) (∗∗) (∗)

21bc

GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B NA NA NA NA
NOMAD (∗∗) (∗∗) (∗∗) (∗∗)

21cc
GA (∗∗) (∗∗) (∗∗) (∗∗)
B&B NA NA NA NA
NOMAD (∗∗) (∗∗) (∗)

0 100 200 300 400
−500

1000

2000

0

Number of function evaluations

Avg.
function

value GA
SO−I
NOMAD

Figure 5.7: Hydropower generation maximization problem with two
constraints, test problem 21a. Objective function value averaged over 30
trials vs. number of function evaluations; error bars illustrate standard

deviations.

CHAPTER 5. SO-I 190

5.5.8 General Discussion

The results of the numerical experiments show that SO-I outperforms
GA, NOMAD, and B&B for almost all generic and application problem
instances. It was expected that B&B would outperform SO-I at least on
the unimodal test problems. However, B&B required for most of these
problems many more function evaluations than SO-I for achieving the same
solution quality. This fact can be related to the computation of the lower
bounds for the objective function value in the tree nodes of the branch and
bound algorithm. Computing the lower bounds requires minimizing the
objective function with some variables relaxed to take on continuous values.
Even though the subproblems may be unimodal, the number of function
evaluations for determining the minimum of the relaxed subproblem may
become high, and thus, the total number of function evaluations increases
quickly.

The application problems show that B&B should not be used when the
structure of the underlying problem is unknown. None of the application
problems could be solved with the branch and bound algorithm, either
because the continuous relaxation of the variables causes an error in the
simulation code (throughput maximization), or because infeasible variable
values do not allow the algorithm to compute an objective function value
(hydropower generation maximization). These examples show that branch
and bound may in general encounter difficulties when dealing with black-box
functions.

SO-I outperforms GA and B&B for almost all problems, i.e. also on the
constrained problems, indicating that the chosen penalty approach for
treating the constraints is effective. NOMAD performed better than SO-I
only on four of the 25 problems, and performed for several problems better
than B&B and GA. One drawback of SO-I is that it failed finding a feasible
solution for a few cases more than GA. Table 5.18 summarizes for how
many out of 30 trials for each constrained test problem every algorithm
failed to find a feasible solution within 400 function evaluations. A dash
denotes that all 30 trials were successful. The last row of the table shows
the total number of failed trials summed up over all 17 constrained test
problems (total number of failures out of 17 · 30 = 510 trials). As can be
seen, GA failed to find feasible solutions for the fewest problems, followed
by NOMAD, and SO-I. SO-I had a lower trial failure count than NOMAD
(37 vs. 63 trials), but NOMAD had a lower problem failure count than
SO-I (4 vs. 6 problems). B&B had a significantly worse performance

CHAPTER 5. SO-I 191

than the other three algorithms with respect to finding feasible solutions
within a very restricted number of function evaluations. Comparing the
results of SO-I and GA for the eight unconstrained problems shows however
that SO-I is able to find better results for all unconstrained problems, in-
dicating that the solution quality of SO-I is in general better than that of GA.

Table 5.18: Number of trials per problem where no feasible solution could
be found within 400 function evaluations (constrained problems only). A
dash denotes that all 30 trials were successful, and feasible solutions were

found. c denotes constrained problems.

ID GA SO-I B&B NOMAD

1c 2 - 30 30
3c - - - -
4c - 8 30 -
5c - - 30 -
6c - - - -
8c 8 15 28 22
11c - - 30 -
14c 1 - - -
17c - - - 8
18c - 3 30 3
19c - - 30 -
20ac - - 30 -
20bc - - 30 -
20cc - 2 30 -
21ac - - 30 -
21bc - 2 30 -
21cc - 7 30 -

Total 11 37 388 63

Finally, Table 5.19 summarizes for how many trials of every test problem
each algorithm found the global minimum (or the best known solution, see
Appendix D). The numbers show that SO-I was able to find the global
optimum for the most trials for 20 out of the 25 examined test problems.
NOMAD found the global optimum more often than SO-I for problems 10
and 11, B&B found the global optimum for test problem 14 more often, and
GA found the optimal solution more often than SO-I for problems 4 and 21b.

CHAPTER 5. SO-I 192

Table 5.19: Number of trials per problem where the global minimum (or
best known solution) was found within 400 function evaluations by each
algorithm. A dash denotes that the global optimum was not found in any

of the 30 trials. c denotes constrained problems. Best result for each
problem is marked by boxes.

ID GA SO-I B&B NOMAD

1c 28 30 - -

2 - 1 - -

3c 15 30 30 30

4c 1 - - 1

5c 1 11 - -

6c - 27 - -

7 30 30 30 30

8c 9 13 2 8

9 9 30 - 30

10 - - - 26

11 - - - 1

12 4 30 - 5

13 12 30 30 30

14c - 1 23 -

15 - 30 - 1

16 10 30 1 30

17c 10 30 - 22

18c - 3 - -

19c - 1 - -

20ac 6 30 - 3

20bc 12 23 - 11

20cc 9 11 - 1

21ac 15 25 - 15

21bc 9 7 - -

21cc 8 15 - 3

5.6 Conclusions

In this chapter an extension of the SO-MI algorithm introduced in Chap-
ter 4 to handling purely discrete computationally expensive black-box

CHAPTER 5. SO-I 193

optimization problems that may have computationally expensive constraints
has been introduced. The performance of the new algorithm SO-I was
numerically compared to a genetic algorithm, a branch and bound algorithm
for nonlinear optimization problems, and NOMAD. While genetic algorithms
and branch and bound have been widely used in the literature to solve
discrete optimization problems, a study that examines the performance of
NOMAD and surrogate model based algorithms such as SO-I has not been
conducted.

The algorithms were compared on 17 generic test problems. Since there
is no test bench for discrete global optimization problems, problems
with different characteristics have been examined. Thus, problems where
the continuous relaxation is multimodal or unimodal, problems with
linear and nonlinear objective and constraint functions as well as binary
problems have been included in the comparison. Several problems were
derived from continuous global optimization test problems by imposing
integrality constraints on the variables. Also problems from the collection
of Mixed Integer Nonlinear Programming models [23] were used. Fur-
thermore, the algorithms were applied to eight realizations of application
problems arising from throughput and hydropower generation maximization.

The computational results show that the surrogate model based algorithm
SO-I outperforms all other algorithms on almost all problems. There are
only four problems for which NOMAD found significantly better solutions
than SO-I, and the genetic algorithm and branch and bound were not
able to find results that were significantly better for any of the totally 25
examined problems. Moreover, branch and bound was not able to solve the
eight application problem instances because the objective function value
could either not be calculated when some variables were continuous in the
relaxed subproblems, or because infeasible variable values did not allow the
simulation model to generate an objective function value. These examples
show that difficulties may in general be encountered when applying the
branch and bound algorithm to black-box optimization problems.

The numerical results indicate that SO-I is applicable to a much wider class
of problems than the branch and bound algorithm because SO-I does not
require the objective or constraint functions to be of a specific structure
(e.g. linear or unimodal). Thus, using surrogate models is a computationally
efficient and promising approach for solving integer optimization problems
in general.

CHAPTER 5. SO-I 194

It is important to remind the reader that because the focus is on com-
putationally expensive functions, the computational effort is measured in
the number of objective function evaluations. For expensive functions that
need, for example, several minutes or more per function evaluation, the
objective function evaluation requires at least an order of magnitude more
CPU time than the remaining calculations of the optimization algorithm
steps. Hence in this situation, the number of objective function evaluations
is the dominant issue. However, for unimodal and linear problems with very
inexpensively computed objective function values, the SO-I algorithm would
not necessarily perform as well comparatively as branch and bound because
the reduction in evaluations might be outweighed by the extra computation
cost for the surrogate model construction.

As more and more engineering and management problems are based on com-
putationally expensive black-box objective and constraint functions, it is
necessary to use as few function and constraint evaluations as possible for
obtaining accurate solutions within an acceptable time frame. The SO-I algo-
rithm shows great promise to achieve this goal, and thus substantial savings
in computation times are possible. One drawback of SO-I is that it cannot
be ensured that optimization phase 1 (finding a first feasible point) is suc-
cessful. Thus, an improved strategy of finding feasible points and handling
constraints in general could be developed in the future. An extension of SO-I
to handle constraints directly instead of adding a penalty term to the objec-
tive function value is considered within the scope of a watershed management
problem in Chapter 6.

Chapter 6

SO-Ic: Watershed Management
Optimization Using A Discrete
Surrogate Model Algorithm
with Explicit Constraint
Handling

Abstract

In this chapter a computationally expensive global optimization problem
about the management of the agricultural land use in the Cannonsville reser-
voir watershed in upstate New York is considered. The problem has only
integer variables, and an extension of SO-I is used for tackling the problem.
The goal of the optimization is to retire parts of the land in a watershed at
minimal cost such that constraints on the total allowable phosphorus runoff
are satisfied. Computing the objective and constraint function values re-
quires a computationally expensive simulation, and thus only a very limited
number of function evaluations is possible from a computation time point of
view. The SO-I algorithm is extended for treating the phosphorus constraint
directly rather than with a penalty approach. A surrogate model for the con-
straint is used to discard infeasible-predicted candidate points from further
consideration, and therefore it is more likely that the points selected for do-
ing the expensive simulation are feasible. The algorithm, SO-Ic, is compared
to a genetic algorithm, NOMAD, and the discrete dynamically dimensioned
search (discrete-DDS) algorithm for three problem instances with different

195

CHAPTER 6. SO-IC 196

limits for the total phosphorus runoff. The numerical experiments show that
SO-Ic outperforms all other algorithms, and finds significantly better solu-
tions for all problem instances.

CHAPTER 6. SO-IC 197

Abbreviations and Nomenclature

BMP Best Management Practice
CBA Cost-Benefit Analysis
GA Genetic algorithm
Discrete-DDS Discrete Dynamically Dimensioned Search
HRU Hydrologic Response Unit
NOMAD Nonsmooth Optimization by Mesh Adaptive Direct Search
NPV Net Present Value
SEM Standard error of the means
SO-Ic Surrogate Optimization - Integer constraints
SO-I Surrogate Optimization - Integer
SWAT Soil and Water Assessment Tool
TP Total phosphorus
VSA Variable Source Area

u Discrete decision variables,
u = (u1,1, u1,2, . . . , u1,K , u2,1, u2,2, . . . , u2,K), first index denotes
land use (1=corn, 2=pasture), second index denotes subbasin

uT Transpose of u
K Number of subbasins
k Subbasin index
f(·) Objective function, see equation (6.5a)
c(·) Constraint function, see equation (6.5b)
Hmax Maximal amount of allowed phosphorus runoff, see equa-

tion (6.5b)
i Index for the land use, i = 1 (corn), i = 2 (pasture)
sf (·) Response surface for the objective function
sp(·) Response surface for the phosphorus constraint function
S Set of already evaluated points
χ Candidate point for next sample site
n0 Number of points in initial experimental design
V (·) Weighted score, see equation (3.8)

CHAPTER 6. SO-IC 198

6.1 Introduction

In this Chapter the SO-I algorithm developed in Chapter 5 will be ex-
tended and applied to solving a computationally expensive optimization
problem that arises in the management of the agricultural land use of a
watershed in the Cannonsville reservoir in upstate New York. The goal is
to convert (retire) parts of the land in a watershed at minimum cost in
order to keep the total phosphorus (TP) runoff below a certain limit. The
problem has only integer variables, and for computing the objective and
constraint function values a computationally expensive simulation model
that takes more than two minutes CPU time has to be run. SO-I is further
developed with respect to the constraint handling. A response surface is
used to approximate the constraint on the TP runoff in the water [48],
and the prediction of the response surface for the TP constraint is used
to exclude candidate points from the search [118]. The surrogate model
algorithm for integer problems and with direct constraint handling is in the
following referred to as SO-Ic (SurrogateOptimization - Integer constraints).

The Cannonsville reservoir and the problem of managing the agricultural
land use in the watershed is described in detail in Sections 6.2 and 6.31, and
the mathematical problem formulation is given. Section 6.4 describes the
direct constraint handling of SO-Ic using a response surface to approximate
the constraint. The watershed management problem has only one constraint,
but the approach can be generalized to more constraints [48]. However,
note that if, for example, a kriging model is used as response surface for
objective and constraint functions and if the number of constraints is large,
the approach of using a separate surrogate model for each constraint may
become computationally expensive, because separate numerical optimiza-
tions have to be carried out for fitting the models. In those cases a penalty
approach may be more efficient. The results of SO-Ic for the watershed
management problem are compared to the discrete dynamically dimensioned
search (discrete-DDS) algorithm [140]2, the genetic algorithm for discrete
problems (Matlab versions 2011b and newer), and NOMAD. The branch
and bound algorithm is not applicable for this application problem because
the black-box simulation fails when variables take on continuous values as
is the case when optimizing the relaxed subproblems in the tree nodes. The
results of the numerical experiments are discussed in Section 6.5. Section 6.6

1Many thanks to Joshua Woodbury who kindly provided the verbal problem formula-
tion, the description of the cost-benefit analysis, and the simulation model.

2Implementation by Joshua Woodbury.

CHAPTER 6. SO-IC 199

concludes this chapter.

6.2 The Cannonsville Reservoir Watershed

The Cannonsville Reservoir located in Delaware County in upstate New
York is one of the largest of New York City’s drinking water reservoirs.
The watershed that drains into the reservoir is approximately 1200 km2,
consisting of mostly forested and agricultural lands, of which approximately
0.5% is urban. The dominant form of agriculture is dairy, which has been
shown to contribute high levels of phosphorus from runoff, particularly from
corn lands fertilized with manure. Because of this, the reservoir has often
experienced water quality problems due to heavy phosphorus loading. The
phosphorus loads have at times exceeded the total maximum daily load
(TMDL) set for the reservoir (20 μg/L [107]). Under a Memorandum of
Agreement between the county, New York City, and government agencies,
repeated violations of the TMDL could lead to restrictions on economic
development in Delaware County. The phosphorus has caused concerns as
to whether or not New York City can continually use this water without the
need for a water filtration plant.

In order to compare the algorithm SO-Ic presented in this chapter to the
various derivative-free methods mentioned in Section 6.1 (GA, NOMAD,
discrete-DDS), a test basin is used. This test basin is a 10 subbasin sub-
watershed of the Cannonsville watershed which is considered to be represen-
tative of the entire watershed. The test basin is used in order to reduce the
computational time required to solve the optimization problem. Corn land
and pasture land in this test basin are the two most significant producers of
TP runoff [139]. For this reason, corn land and pasture land are the two land
use types eligible for land conversion in this study.

6.3 Watershed Land Use Management Opti-

mization Problem

The optimization problem is to determine the optimal locations of land
conversion (or land retirement) in order to reduce the amount of TP runoff
within the watershed. Land conversion, sometimes referred to as land
retirement, is a best management practice (BMP) employed in watersheds
that drain to bodies of water that are particularly sensitive to agricultural

CHAPTER 6. SO-IC 200

runoff. This particular BMP involves contracts between government agencies
and local landowners to remove certain land from crop production. As
compensation for retiring the land from crop production, the government
agencies agree to provide some percentage of setup costs to convert the
land as well as yearly rental payments and sometimes yearly maintenance
payments. These payments are provided to the landowner in order to offset
the loss from removing the land from crop production. The land conversion
contracts are specified to last a certain number of years, often 10, 15, or 20
years. The focus of this study is on contracts with lengths of 10 years.

Since the cost of these projects can be quite high (millions of US$), the goal
is to minimize the total conversion costs while keeping the TP runoff below
a given threshold. These are, however, two conflicting requirements. When
increasing the amount of retired land, the TP runoff decreases, but the costs
increase. On the other hand, decreasing the amount of retired land leads
to cost reduction, but an increased TP runoff. Thus, finding an optimal
solution can become a complicated task in relatively large, agricultural
watersheds such as the ones found in the Catskill region of upstate New York.

The amount of TP runoff is computed with a modified version of the Soil and
Water Assessment Tool (SWAT) model 2005 [9]. The SWAT version used in
this study is referred to as SWAT-VSA, which incorporates variable source
area (VSA) hydrology by modifying the SWAT input files while maintaining
the Curve Number method used in the standard SWAT model [44]. The
SWAT-VSA model also incorporates several source code modifications
shown to improve the overall fit to measured data in the Cannonsville basin.
These modifications are described in [139].

The main difference between the SWAT 2005 model setup and the SWAT-
VSA setup is the way in which hydrologic response units (HRUs) are
defined. The HRUs in the SWAT 2005 model are defined by the coincidence
of land use and soil type [103], while the HRUs in the SWAT-VSA model
are defined by the coincidence of land use and wetness class. The wetness
classes used in this model are determined using a topographic index, as
described in [44]. These wetness classes are ranked from 1 (the driest and
least likely to saturate) to 10 (the wettest and most likely to saturate).
This method, combined with alterations to the available water content,
allows for more accurate descriptions of VSAs, which are major sources of
runoff in humid, well-vegetated regions, especially those with permeable
soils underlain by a shallow restricting layer, such as upstate New York (see,

CHAPTER 6. SO-IC 201

for example, [41, 42, 102]).

Since the SWAT model generates runoff and nutrient transport at the HRU
scale, the HRUs are converted in the optimization. This study focuses in
particular on the corn and pasture HRUs, but the method can easily be
extended to other types of agricultural HRUs. Rather than using each
agricultural HRU in the watershed as a decision variable (i.e. converted
or not converted), the method presented here combines agricultural HRUs
in each subbasin with the same land use into a single decision variable.
This drastically reduces the number of decision variables, which in turn
drastically decreases the computational time for each optimization.

In each subbasin, the agricultural HRUs with the same land use are
combined into a single decision variable by taking advantage of the setup of
the SWAT-VSA model. Since the HRUs are created by land use and wetness
class, which assumes that given a certain land use, the wettest HRU will
produce the most runoff and nutrient transport (see Figure 6.1), it can be
assumed that in an optimization scheme, the HRU with the highest wetness
class will be converted before an HRU with a lower wetness class. This facili-
tates the formulation of decision variables such that for a particular land use,
wetness class 10 will be converted before wetness class 9, which will be con-
verted before wetness class 8 and so on until all wetness classes are converted.

With this assumption, each decision variable, uik, for the ith land use (i = 1
(corn), i = 2 (pasture)) in the kth subbasin (k = 1, 2, , . . . , K), can take
on any discrete value from 1 to 11, where a value of one implies that all
wetness classes are converted, a value of two implies that wetness classes 2
through 10 are converted, a value of three implies that wetness classes 3
through 10 are converted, and so on, until 10, where only wetness class 10
is converted. A value of 11 implies that no wetness classes are converted for
that particular land use.

The costs associated with the land conversion are determined by using a
cost-benefit analysis (CBA) [152]. CBA is a systematic method to compare
the costs and the benefits of a project or an investment in order to determine
whether the project is sound, i.e. whether or not the benefits outweigh the
costs. The CBA used in this study is the net present value (NPV) approach.
The NPV is defined as the present values of the benefits minus the costs. It
requires the quantification of the costs and benefits of the project as well
as a discount rate ξ that discounts the future costs and benefits to today’s

CHAPTER 6. SO-IC 202

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Wetness Class

Normalized
TP/Area
in kg/ha

Corn
Pasture

Figure 6.1: Normalized total phosphorus runoff (TP) per hectare from corn
(black bars) and pasture (white bars) wetness classes in the watershed. The
amount of TP runoff per hectare increases from wetness class 1 (the driest
and least likely to saturate) to wetness class 10 (the wettest and most likely

to saturate).

values. If the NPV is negative, then the project is too costly and should not
be implemented, but if the NPV is greater than or equal to zero, the project
may be undertaken.

The costs incurred by the land conversion BMP are as follows. The
landowners’ costs are setup costs (SUC0), yearly maintenance costs (MCτ),
and the costs to replace the feed lost due to land conversion (CFτ).
The initial setup costs include mowing, site preparation, seeding, and
fencing. The yearly maintenance cost represents the yearly upkeep of the
land conversion BMPs to preserve the effectiveness. Much of this cost
comes from man hours, which include the operation of machinery and
general activities such as mowing and cleaning. The maintenance costs
also include fuel and equipment costs. Thirdly, the cost to replace the
loss of feed due to the land conversion have to be offset. In the Can-
nonsville watershed farmers grow corn primarily to feed their cows. If some
of this corn cannot be grown, farmers must purchase feed from other sources.

CHAPTER 6. SO-IC 203

The benefits in this analysis are the payments received by the landowners
from the government agencies for the land conversion project. There is an
initial payment per acre (INC0) given by the government agency, and there
is often a cost sharing (SUP0) provided for the landowners. This is referred
to as the setup payment, which is some fraction of the initial setup costs.
Since the land is taken out of production for some number of years, the gov-
ernment agency provides a yearly rental payment (RPτ) to the landowners
to help offset the loss of revenue from taking the land out of production.
The government agency also provides payment for some percentage of the
yearly maintenance costs (MCPτ). There is also a benefit from the cost of
producing corn (CPAτ) since the landowner no longer needs to produce corn.

The NPV approach used here is quite simple, and lends itself to many
different projects, both environmental and non-environmental. The NPV
approach is a way to use the time value of money to investigate the long-term
viability of a project or action. The method uses the initial cost of the
project along with the expected yearly cash in- and outflows along with
a discount rate to discount future cash flow values to today’s value. The
NPV method has been used to analyze watershed management practices in
many different agricultural watersheds [131, 143, 146, 150, 153, 160]. The
assumption is that once the lifetime of the project is agreed upon, it must
be completed.

The costs to the government agencies per kg of phosphorus reduction are
determined as follows.

NPVLT = BenefitsLT − CostsLT, (6.1)

where

BenefitsLT = INC0+SUP0+

LT∑
τ=1

RPτ

(1 + ξ)τ
+

LT∑
τ=1

MCPτ

(1 + ξ)τ
+

LT∑
τ=1

CPAτ

(1 + ξ)τ
, (6.2)

and

CostsLT = SUC0 +
LT∑
τ=1

MCτ

(1 + ξ)τ
+

LT∑
τ=1

CFτ

(1 + ξ)τ
, (6.3)

where NPVLT is the net present value and LT is the lifetime of the project,
which is 10 years. The objective is to obtain an NPV greater than or equal
to zero. One of the most important variables in the above equation is the
discount rate ξ. This value can be highly variable. When the discount rate
is held constant, an average value of 8% is used. This value falls within the

CHAPTER 6. SO-IC 204

range of 6-10% used in other environmental projects, and is recommended
by the Environmental Protection Agency [16, 91].

In order to determine the cost to the government agencies per kg of phos-
phorus reduction, the total cost of the project must be determined. This is
done by taking the benefits to the landowners from the NPV equation, which
represent the costs to the government agencies, and discounting these values
to present values. The equation for the total cost, TCLT, of the project to
the government agencies is thus defined by

TCLT = INC0 + SUP0 +

LT∑
τ=1

RPτ

(1 + ξ)τ
+

LT∑
τ=1

MCPτ

(1 + ξ)τ
. (6.4)

This study uses a SWAT-VSA model with 10 subbasins, and corn and
pasture being the two land types eligible for land conversion. This results
in a total of 20 decision variables since each of the 10 subbasins contains
both corn and pasture. The model is highly nonlinear and complex, and
a computationally expensive simulation has to be run for each vector of
decision variables to determine the total conversion costs (6.4) and the
corresponding TP runoff. The conversion costs and TP runoff are the
output of the same computationally expensive simulation, i.e. whenever the
objective function is evaluated, also the amount of TP runoff is obtained.
The amount of TP runoff from the watershed is taken from the watershed
outlet.

Due to the computational expense related to the objective and constraint
function evaluation, the goal is to find an accurate solution of the problem
within as few function evaluations as possible. The SWAT-VSA model is a
black-box, and therefore derivatives are not available. Moreover, computing
derivatives numerically would require too many function evaluations, and
computation times would in turn increase drastically. Thus, derivative-free
methods are pursued in this chapter.

Mathematically, the problem can be described as follows. Denote the de-
cision variable vector by u = (u1,1, u1,2, . . . , u1,K , u2,1, u2,2, . . . , u2,K)

T , where
the first subscript denotes the land use (1=corn, 2=pasture), and the sec-
ond subscript denotes the kth subbasin of the watershed. In the considered
instance there are totally K = 10 subbasins in the watershed, but the prob-
lem can be easily extended to more subbasins. The constrained optimization
problem can then be formulated as

CHAPTER 6. SO-IC 205

minimize f(u) (6.5a)

s.t. c(u)−Hmax ≤ 0 (6.5b)

uik ∈ {1, 2, . . . , 11}, i = 1, 2, k = 1, 2, . . . , K, (6.5c)

where f(u) denotes the total costs (TCLT defined in equation (6.4)), and
Hmax denotes the maximal amount of allowed TP runoff, and the problem
dimension is 2K.

6.4 SO-Ic: Discrete Surrogate Model Algo-

rithm with Direct Constraint Handling

The SO-I algorithm described in Chapter 5 has been extended to handling
constraints directly rather than with a penalty approach. The basic structure
of SO-I is maintained, i.e. the algorithm starts with an initial experimental
design with 2(2K + 1) points, where 2K = 20 (K = 10 subbasins) is
the problem dimension. The computationally expensive simulation model
is evaluated at all points in the starting design, and thus objective and
constraint function values are obtained.

Based on the data, two response surfaces are used, namely one for approxi-
mating the objective function f(u) in equation (6.5a) and another one for
approximating the constraint function in equation (6.5b). The prediction
of the response surface for the objective function at a point u will in the
following be denoted by sf(u), and the prediction of the response surface for
the TP constraint will be denoted by sp(u). A cubic radial basis function
interpolant has been used for approximating both functions. When doing
so, it is assumed that all variables are continuous in order to obtain smooth
surfaces. However, when evaluating the costly simulation model, only
integer points are selected, and thus every sampled point will satisfy the
integrality constraints in equation (6.5c). Since constraint and objective
function values are the output of the same simulation, there is always an
equal number of objective and constraint function values. Thus, the matrix
in equation (1.10) needs to be LU-factorized only once for computing the
parameters of sf and sp, respectively.

Although using a surrogate model to approximate black-box constraints
may be more accurate than using a penalty approach, using a surrogate
model for each constraint may in general become, depending on the used

CHAPTER 6. SO-IC 206

surrogate model, computationally inefficient with an increasing number of
constraints and function evaluations [118]. This is, however, not a problem
for the considered watershed management optimization problem because
only one constraint is present.

If there is no feasible point in the initial experimental design, optimization
phase 1, as described in Section 5.3, is applied, where the constraint violation
function defined in equation (5.2) is minimized. In the case of this specific
application, optimization phase 1 is equivalent to minimizing the constraint
function using the surrogate model sp. Once a feasible point has been found,
optimization phase 2 starts. Candidate points are generated as described in
Section 5.3. The response surface for the phosphorus constraint is used to
discard all candidate points that are predicted infeasible, i.e. all candidate
points χ for which sp(χ) is strictly positive. If no point is left, a new set of
candidates is generated until at least one feasible-predicted point is obtained
that is not contained in the set S of already evaluated points.

As for SO-I, the scoring criteria in equations (3.6) and (3.7) are used to
determine the best candidate point at which the next computationally
expensive simulation model will be evaluated. The weights for the scoring
criteria have been adjusted in a cycling manner in order to repeatedly
transition from a global to a local search. Numerical experiments with
both constant and cycling weights for the criteria showed that the cycling
weights lead to a better performance in this algorithm. The reason may
be related to the constraint handling. Since no penalties are used, the
response surface for the objective function does not have the large function
values at the boundary of the feasible region. Infeasible-predicted points
are discarded and hence the probability to sample in the infeasible region
is decreased. Therefore, it is more likely to select sample points within the
feasible region without continuously assigning a large weight to the response
surface criterion.

After the objective and constraint function values have been obtained, the
parameters of the response surfaces sf and sp are updated, and the algorithm
iterates through generating candidate points, computing scoring criteria for
feasible-predicted candidates, and parameter updating until a maximal num-
ber of allowed function evaluations has been reached. The specific steps of
SO-Ic are summarized in Algorithm 7.

CHAPTER 6. SO-IC 207

Algorithm 7 SO-Ic: Surrogate Optimization - Integer constraints

1. Initial experimental design. Generate an initial experimental design
with n0 = 2(2K +1) points, where 2K denotes the problem dimension.
Round the variable values to the closest integers, and in case the rank
of matrix P in equation (1.11) is less than 2K +1, create a new initial
experimental design. Repeat until rank(P) = 2K + 1. Do the com-
putationally expensive simulations at the n0 selected points to obtain
the objective and constraint function values. Denote the set of sampled
points by S.

2. Optimization phase 1. If there is no feasible point in the initial ex-
perimental design, minimize the constraint function in equation (6.5b)
using the response surface approach until a feasible point has been found
as follows.

(a) Compute the parameters of the response surface sp using the sam-
ple points in S and their corresponding constraint function values.

(b) Generate candidates for the next computationally expensive simu-
lation as in algorithm SO-I. Eliminate candidates that are already
contained in S.

(c) Select the candidate with the best value for V in equation (3.8)
as next sample site, where smix in equation (3.7) is replaced by
sp. Do the computationally expensive simulation to obtain the
objective and constraint function values at the selected point.

(d) Update the parameters of the response surface sp.

(e) Iterate through Steps 2b-2d until the first sample point with c(u)−
Hmax ≤ 0 has been found or the maximum number of allowed
function evaluations has been reached.

3. Optimization phase 2. Iterate through Steps 3a-3e until the maximum
number of allowed function evaluations has been reached.

(a) Compute the parameters of the response surfaces sf and sp us-
ing the sample points in S and their corresponding objective and
constraint function values, respectively.

(b) Generate candidates for the next computationally expensive simu-
lation as in algorithm SO-I. Eliminate candidates that are already
contained in S.

CHAPTER 6. SO-IC 208

(c) Use the response surface sp to predict the constraint function val-
ues for all candidates, and discard candidates that are predicted
infeasible.

(d) Choose the candidate point with the best value for V in equa-
tion (3.8) as next sample site, where smix in equation (3.7) is
replaced by sf .

(e) Add the selected point to the set S, and do the computationally
expensive simulation at the selected point to obtain constraint and
objective function values.

4. Return the best solution found.

6.5 Numerical Experiments

6.5.1 Experimental Setup

The performance of SO-Ic has been compared in the numerical exper-
iments to three other algorithms, namely Matlab’s genetic algorithm
(GA), NOMAD [2, 3, 4], and the discrete dynamically dimensioned search
(discrete-DDS) algorithm [140]. All four algorithms were implemented and
tested in Matlab 2011b. NOMAD has been used through the interface of the
OPTI Toolbox3 because the black-box simulation model was only given as a
Matlab file. NOMAD has been used with the variable neighborhood search
option VNS 0.75 as suggested by the developers in the code manual. The
constraint has been treated with the progressive barrier approach (setting
PB). The genetic algorithm used 20 individuals and stopped latest when the
maximum number of allowed function evaluations of 400 was reached.

The TP constraint has been treated within the discrete-DDS framework by
using a penalty approach. Since discrete-DDS does not require any penalty
function parameters [140], the constraint handling can easily be done fol-
lowing the method outlined in [35]. As in [35], the objective function used
in this study is defined in such a way that any infeasible solution (i.e. any
solution that yields a TP value larger than the allowable Hmax value) always
has an objective function value that is worse than any feasible solution. The
second requirement of the constraint handling method outlined in [35] is that
the magnitude of the violation of an infeasible solution must be quantified

3http://www.i2c2.aut.ac.nz/Wiki/OPTI/

CHAPTER 6. SO-IC 209

in order to compare two infeasible solutions. Thus, if denoting the penalized
objective function by fdiscrete-DDS

p , the value is adjusted to be

fdiscrete-DDS
p (u) =

{
f(u) + f(u) (c(u)−Hmax) if c(u) > Hmax

f(u) otherwise
. (6.6)

Three different limits for the TP content have been considered in order to
examine the influence on the total costs. The objective was to minimize the
total costs such that the TP runoff was reduced to 40%, 60%, and 80% of
the base case. The TP content at the outlet of the watershed in the base
case, i.e. without any land conversion, is 68753 kg. Thus, the three cases
considered in this study are

• Hmax = 55000[kg] (20% reduction)

• Hmax = 41250[kg] (40% reduction)

• Hmax = 27500[kg] (60% reduction).

Therefore, three optimization problems have been solved.

In order to average out the random component of the initial experimental
design/the initial starting point, 20 trials4 have been made with each
algorithm, and for each trial every algorithm was given the same initial
point to obtain a conclusive comparison. The same starting points have
been used for each of the three TP reduction goals given above. In the case
of SO-Ic and GA, the point was added to the initial experimental design
and the initial generation, respectively. For discrete-DDS and NOMAD
the point was used as an initial guess of the solution. Note that the
initially supplied points were not necessarily feasible with respect to the
TP constraint in equation (6.5b), and that a point that is feasible for a TP
reduction of 20% is not necessarily feasible when a 60% reduction is required.

The 20 trials contained 16 random starting points, and the following four
“special” starting points to examine their influence on the solution quality
of the algorithms:

• all land is initially converted:

u1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T (6.7)

4Due to the computation time required for each algorithm run, the number of trials
had to be restricted to 20.

CHAPTER 6. SO-IC 210

• no land is initially converted:

u2 = (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)T

(6.8)

• only all corn land is initially converted:

u3 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)T (6.9)

• only all pasture land is initially converted:

u4 = (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T.
(6.10)

6.5.2 Numerical Results

The results of the numerical experiments for all algorithms are summarized
in Tables 6.1-6.5. The first column of Table 6.1 shows the TP reduction
goals (“TP-reduction”). The column “#NF” indicates for how many of the
20 trials an algorithm was not able to find a feasible solution within 400
function evaluations. When computing the means and standard error of the
means (SEM), only the successful trials (trials in which feasible solutions
were found) are used. The columns “100 eval.”, “200 eval.”, “300 eval.”, and
“400 eval.” show the objective function values for feasible points averaged
over the number of successful trials for each algorithm after 100, 200, 300,
and 400 evaluations, respectively, and in italic font the corresponding SEM
values are reported. The provided numbers are all for feasible points only,
and the best results are marked by boxes. A dash as in the case for NOMAD
for the goal of 60% TP reduction denotes that the algorithm was not able
to find a feasible solution within the given number of function evaluations.

The results in Table 6.1 show that SO-Ic finds for each TP reduction goal
lower mean objective function values than all other algorithms. Also the
SEM values for SO-Ic are the lowest, indicating that the performance of
SO-Ic is least influenced by the choice of the starting points. Column #NF
shows that SO-Ic and GA were able to find feasible solutions for all 20
trials of each problem instance. NOMAD failed to find feasible points for
one trial of the 20% and 40% reduction goals, and for four trials of the
60% reduction goal. Discrete-DDS only failed finding a feasible solution
for one trial with the 60% reduction goal. Although NOMAD performed
comparatively well for several of the integer test problems in Chapter 5, its
performance on this specific application is the worst among all algorithms

CHAPTER 6. SO-IC 211

when comparing the values after 200 and more evaluations. This indicates
that NOMAD may be stuck in local optima for too long, and is thus
not able to find feasible objective function value improvements efficiently.
Moreover, for the 60% reduction goal where the feasible variable domain
was smallest, NOMAD had considerable difficulties finding feasible solutions.

Table 6.2 contains information about hypothesis tests for differences of
means between SO-Ic and the other three algorithms. The table shows
that, except for discrete-DDS for the 40% TP reduction goal, the mean
values of SO-Ic are lower than those of all other algorithms at the α = 1%
and α = 5% significance level. For NOMAD in the 60% case, the mean of
SO-Ic is significantly better because SO-Ic was able to find feasible solutions
within fewer than 100 evaluations, whereas NOMAD needed more than 300
evaluations to find feasible points.

Figures 6.2-6.4 show the average objective function value for feasible points
for all three cases of desired TP reduction. The error bars illustrate the
standard deviations. The offset of the graphs indicates the number of
function evaluations needed by each algorithm at most for finding a first
feasible point. As can be seen, when the goal is to reduce the TP value
for only 20% (Figure 6.2), all algorithms find feasible solutions within very
few function evaluations. However, as the constraint becomes tighter and
the TP reduction goal increases, all algorithms need more evaluations for
finding a feasible point, which can be seen especially in the case of NOMAD
in Figures 6.3 and 6.4.

Tables 6.3-6.5 show the results of the four algorithms for each individual
trial when using the special starting points defined in equations (6.7)-(6.10).
The results show that SO-Ic finds the best solutions for all four special
starting points when the goals are 20% and 60% TP reduction. When the
goal is to reduce the TP content in the water for 40%, NOMAD finds better
solutions than all other algorithms if initially either all corn (equation (6.9))
or all pasture (equation (6.10)) is converted. If initially either all land (equa-
tion (6.7)) or no land at all (equation (6.8)) is converted, SO-Ic performs
better than the other algorithms only for the first 100 evaluations, but is
then outperformed by discrete-DDS. However, NOMAD and discrete-DDS

T
ab

le
6.
1:

M
ea
n
ob

je
ct
iv
e
fu
n
ct
io
n
va
lu
es

(m
ea
n
)
ov
er

20
tr
ia
ls
af
te
r
10
0,

20
0,

30
0,

an
d
40
0
fu
n
ct
io
n
ev
al
u
at
io
n
s

fo
r
d
iff
er
en
t
T
P
re
d
u
ct
io
n
go
al
s.

B
es
t
re
su
lt
of

al
l
al
go
ri
th
m
s
is
m
ar
ke
d
b
y
b
ox
es
.
S
ta
n
d
ar
d
er
ro
rs

of
m
ea
n
s
(S
E
M

)
ar
e
gi
ve
n
fo
r
ea
ch

al
go
ri
th
m

in
it
al
ic
.
A

d
as
h
d
en
ot
es

th
at

n
o
fe
as
ib
le

p
oi
n
t
h
as

b
ee
n
fo
u
n
d
w
it
h
in

th
e
gi
ve
n

n
u
m
b
er

of
fu
n
ct
io
n
ev
al
u
at
io
n
s
fo
r
al
l
20

tr
ia
ls
.
T
h
e
n
u
m
b
er
s
ar
e
fo
r
fe
as
ib
le

p
oi
n
ts

on
ly
.

T
P
-r
ed
u
ct
io
n

A
lg
or
it
h
m

#
N
F

S
ta
ti
st
ic

10
0
ev
al
.

20
0
ev
al
.

30
0
ev
al
.

40
0
ev
al
.

20
%

S
O
-I
c

0
m
ea
n

34
77
21

32
46
40

31
33
99

30
78
60

S
E
M

6
2
5
1

3
2
3
3

2
0
9
5

2
3
7
6

G
A

0
m
ea
n

37
29
06
5

21
84
15
0

11
81
00
6

56
50
03

S
E
M

2
0
8
4
4
3

1
4
5
2
9
1

1
1
0
4
4
9

5
4
1
8
1

d
is
cr
et
e-
D
D
S

0
m
ea
n

16
52
40
1

56
03
83

37
76
60

33
32
84

S
E
M

1
3
1
6
9
6

6
8
0
2
8

2
9
9
7
6

1
1
8
3
5

N
O
M
A
D

1
m
ea
n

32
06
99
6

28
60
81
0

26
95
97
0

20
70
49
2

S
E
M

1
7
6
7
3
6

1
5
8
2
1
5

1
4
3
5
3
0

1
7
4
3
9
4

40
%

S
O
-I
c

0
m
ea
n

92
09
39

89
73
87

87
78
84

86
80
13

S
E
M

3
0
5
3

2
7
5
2

2
4
6
2

1
4
0
5

G
A

0
m
ea
n

41
78
50
3

24
85
77
1

15
00
87
8

10
07
77
3

S
E
M

1
9
5
6
8
0

1
9
2
4
1
3

1
5
3
0
1
7

1
0
1
2
6
9

d
is
cr
et
e-
D
D
S

0
m
ea
n

24
41
00
9

12
16
34
3

10
75
36
0

10
49
25
1

S
E
M

1
5
7
9
6
4

1
2
4
0
9
4

1
1
6
8
9
7

1
0
9
6
3
3

N
O
M
A
D

1
m
ea
n

39
28
95
9

35
17
30
9

33
50
43
6

30
40
36
8

S
E
M

2
7
4
0
7
7

2
9
1
2
3
7

3
0
6
3
2
4

3
0
0
7
2
3

60
%

S
O
-I
c

0
m
ea
n

38
65
90
7

35
33
22
3

34
54
93
1

34
36
38
8

S
E
M

4
7
1
2
6

3
1
1
3
3

7
8
6
7

7
8
2
2

G
A

0
m
ea
n

80
82
98
1

67
57
97
2

59
03
38
9

54
38
06
6

S
E
M

1
2
5
2
6
9

9
6
7
3
5

8
2
2
2
5

1
1
6
1
6
5

d
is
cr
et
e-
D
D
S

1
m
ea
n

75
38
80
5

59
51
46
0

54
62
80
2

54
04
19
2

S
E
M

2
1
6
0
2
0

1
6
8
6
9
6

1
3
2
4
4
7

1
4
0
4
5
8

N
O
M
A
D

4
m
ea
n

-
-

-
61
57
49
1

S
E
M

-
-

-
2
3
0
7
5
0

Table 6.2: Hypothesis testing for differences in means (μ) after 100, 200,
300, and 400 function evaluations.

(∗) denotes significance at α = 5% and (∗∗) denotes significance at α = 1%
for H0 : μSO-I = μA,A ∈ {GA, discrete-DDS, NOMAD}, and

H1 : μSO-I < μA.

TP- Algorithm Number of evaluations
reduction A 100 200 300 400

20%
GA (∗∗) (∗∗) (∗∗) (∗∗)
discrete-DDS (∗∗) (∗∗) (∗) (∗)
NOMAD (∗∗) (∗∗) (∗∗) (∗∗)

40%
GA (∗∗) (∗∗) (∗∗) (∗)
discrete-DDS (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗) (∗∗)

60%
GA (∗∗) (∗∗) (∗∗) (∗∗)
discrete-DDS (∗∗) (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗) (∗∗)

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12 x 106

Number of function evaluations

Avg.
function
value

SO−Ic
GA
NOMAD
discrete−DDS

Figure 6.2: 20% TP reduction goal. Objective function value averaged over
20 trials vs. number of function evaluations; error bars illustrate standard

deviations.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12 x 106

Number of function evaluations

Avg.
function
value

SO−Ic
GA
NOMAD
discrete−DDS

Figure 6.3: 40% TP reduction goal. Objective function value averaged over
20 trials vs. number of function evaluations; error bars illustrate standard

deviations.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12 x 106

Number of function evaluations

Avg.
function
value

SO−Ic
GA
NOMAD
discrete−DDS

Figure 6.4: 60% TP reduction goal. Objective function value averaged over
20 trials vs. number of function evaluations; error bars illustrate standard

deviations.

CHAPTER 6. SO-IC 215

failed to find a feasible solution when initially no land is converted. If no
land is converted, the TP content in the water is at the base case level,
and thus infeasible for all TP reduction goals. While NOMAD fails for all
three TP reduction goals to find a feasible solution starting from this spe-
cial point, discrete-DDS only fails when the goal is to reduce the TP for 60%.

Out of the four special cases, NOMAD finds its best result for all TP
reduction goals always for the staring point u3, i.e. when only all corn
land is initially converted. GA on the other hand reaches its best results
always for starting point u1, i.e. when all land is initially converted. For
SO-Ic and discrete-DDS different special points lead to the best results,
and thus the performance of these algorithms seems to be less dependent
on the starting point. The standard deviation of the solutions found by the
algorithms over the four trials with special starting points also showed that
SO-Ic was least influenced by the selected starting point and had for all
three TP reduction goals the lowest standard deviations. Discrete-DDS had
the second lowest standard deviations, and GA and NOMAD had the high-
est values. Thus, it can be concluded that SO-Ic is the most robust algorithm.

As may be expected, the higher the TP reduction goal is, the higher the
conversion costs are. For SO-Ic the costs increase for a factor of about three
when increasing the TP reduction from 20% to 40%, whereas increasing
the TP reduction from 20% to 60% increases the costs for a factor of more
than 10. For NOMAD the differences were not as large and a TP reduction
of 60% incurred only about three times the costs as when the goal was a
20% reduction. Thus, NOMAD does not seem to be able to exploit the
fact of the larger feasible variable domain when only a 20% TP reduction is
required, and fails to search more globally for other regions where significant
objective function value improvements could be possible.

Table 6.3: 20% TP reduction goal. Objective function value for special
starting points after 100, 200, 300, and 400 function evaluations. Best

result of all algorithms is marked by boxes.

Special Algorithm Number of evaluations
point A 100 200 300 400

u1

SO-Ic 399730 352501 316065 302228
GA 3684024 2084127 1044427 510003
discrete-DDS 1298502 694858 526301 306023
NOMAD 3590038 3264167 3264167 2737815

u2

SO-Ic 335814 325412 323157 316553
GA 4253431 2978701 2176577 863408
discrete-DDS 1411758 366221 352882 328211
NOMAD - - - -

u3

SO-Ic 341083 323906 320708 295381
GA 1001770 1001770 1001770 1001770

discrete-DDS 628997 329446 316031 310588
NOMAD 500183 500183 500183 379082

u4

SO-Ic 337155 323965 317161 317161
GA 5315847 3180148 2248653 748825
discrete-DDS 2054291 350379 328438 328438
NOMAD 3339389 2865536 2865536 2865536

CHAPTER 6. SO-IC 217

Table 6.4: 40% TP reduction goal. Objective function value for special
starting points after 100, 200, 300, and 400 function evaluations. Best

result of all algorithms is marked by boxes.

Special Algorithm Number of evaluations
point A 100 200 300 400

u1

SO-Ic 914087 899438 872083 860200
GA 4270298 2861688 1345235 901597

discrete-DDS 2360111 708985 678755 666777
NOMAD 5031686 5031686 4886143 4886143

u2

SO-Ic 911707 881573 877131 863953
GA 4177358 2886836 1485337 1093569

discrete-DDS 2532821 741110 717372 637772
NOMAD - - - -

u3

SO-Ic 935508 891428 873887 872603
GA 1001770 1001770 1001770 1001770
discrete-DDS 868606 725432 725432 725432

NOMAD 731754 712725 707632 700103

u4

SO-Ic 899283 890115 875105 861557
GA 4668567 2919728 1735963 1559272
discrete-DDS 2759582 2429047 2315654 1976526

NOMAD 832326 832326 832326 832326

Furthermore, Figures 6.5-6.8 show the average objective function values for
feasible points for each single algorithm with the three TP reduction goals. As
can be seen, the differences of the average objective function values between
the 20% and the 40% reduction goals are much lower for all algorithms than
the differences between the 40% and the 60% reduction goals. This indicates,
that increasing the TP reduction goal from 20% to 40% can be done at a
much lower additional cost than increasing the reduction goal to 60%.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12 x 106

Number of function evaluations

Avg.
function

value

20%
40%
60%

Figure 6.5: SO-Ic performance for 20%, 40%, and 60% TP reduction.
Objective function value averaged over 20 trials vs. number of function

evaluations; error bars illustrate standard deviations.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12 x 106

Number of function evaluations

Avg.
function

value

20%
40%
60%

Figure 6.6: GA performance for 20%, 40%, and 60% TP reduction.
Objective function value averaged over 20 trials vs. number of function

evaluations; error bars illustrate standard deviations.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12 x 106

Number of function evaluations

Avg.
function

value

20%
40%
60%

Figure 6.7: Discrete-DDS performance for 20%, 40%, and 60% TP
reduction. Objective function value averaged over 20 trials vs. number of

function evaluations; error bars illustrate standard deviations.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12 x 106

Number of function evaluations

Avg.
function

value

20%
40%
60%

Figure 6.8: NOMAD performance for 20%, 40%, and 60% TP reduction.
Objective function value averaged over 20 trials vs. number of function

evaluations; error bars illustrate standard deviations.

CHAPTER 6. SO-IC 220

Table 6.5: 60% TP reduction goal. Objective function value for special
starting points after 100, 200, 300, and 400 function evaluations. Best

result of all algorithms is marked by boxes.

Special Algorithm Number of evaluations
point A 100 200 300 400

u1

SO-Ic 3986540 3481243 3477478 3469863
GA 7637850 6131424 5197862 4640246
discrete-DDS 8606150 5674884 5479539 5477404
NOMAD 6264847 6141209 6141209 6141209

u2

SO-Ic 3863481 3460186 3456523 3456231
GA 7458287 7027093 5745856 5368368
discrete-DDS - - - -
NOMAD - - - -

u3

SO-Ic 3764394 3407824 3406378 3400207
GA 7893233 6487336 5666424 4811001
discrete-DDS 7919924 7909680 5937146 5932442
NOMAD 4889745 4831762 4483758 4483758

u4

SO-Ic 3593804 3461652 3409704 3398922
GA 8252913 6464985 6071684 5495053
discrete-DDS 6918792 6187244 5946740 5388905
NOMAD 6242599 5751215 5751215 5751215

6.6 Conclusions

In this chapter the surrogate model algorithm SO-I for computationally
expensive global optimization problems with integrality constraints for all
variables has been further developed for directly treating constraints. The
algorithm SO-Ic uses a surrogate model instead of a penalty approach for
handling the constraints. The algorithm has been specifically developed
and tested on a computationally expensive watershed optimization problem
where parts of the land of the Cannonsville reservoir watershed in upstate
New York have to be retired in order to keep the TP runoff below a given
threshold. The goal is to retire parts of the land such that the incurred
costs are minimal. The watershed management application has only one
constraint, and thus two surrogate models are used in SO-Ic, namely one for

CHAPTER 6. SO-IC 221

the objective and one for the constraint function.

The basic structure of SO-Ic is the same as for SO-I. An initial experimental
design is generated, and in optimization phase one a first feasible point is
determined by minimizing the constraint violation function (in this specific
application the actual constraint is minimized). In the second optimization
phase candidate points are generated by randomly selecting points from the
variable domain, and by perturbing the best feasible point found so far. The
surrogate model for the constraint is then used to predict the constraint
function values of the candidate points, and points predicted infeasible
(positive predicted constraint function values) are discarded. Thus, it is
more likely that the selected point for the next function evaluation will be
feasible.

The performance of SO-Ic has been compared to NOMAD, a genetic
algorithm (GA), and the discrete dynamically dimensioned search (discrete-
DDS) algorithm for three problem instances with different upper bounds for
the allowable amount of TP runoff in the water. The numerical results show
that SO-Ic outperforms all other algorithms for all three problem instances.
This fact is supported by hypothesis tests for differences in means between
the algorithms. NOMAD had for a few trials of all three problem instances
difficulties finding feasible solutions, and its performance was in general
worse than that of GA and discrete-DDS.

A comparison of the solution quality of the algorithms for four special
starting points showed furthermore that SO-Ic is the most robust algorithm
and its solution quality is least influenced by the starting point. GA and
NOMAD had the highest standard deviations, and their solution quality
seems thus more dependent on the starting point. Moreover, the results for
the three upper bounds on the allowable TP runoff showed that the cost
increase is much less when increasing the TP reduction goal from 20% to
40%, than when increasing the reduction goal from 40% to 60%, which in-
dicates that the total costs do not behave linearly with the TP reduction goal.

SO-Ic can in general easily be extended for problems with more than one
constraint [118]. However, as the number of constraints increases also the
computation time of the algorithm may, depending on the surrogate model,
increase, and thus the approach of using a surrogate model for each individ-
ual constraint may become inefficient. A study of different approaches for
handling constraints exceeds the scope of this thesis, and is left for future
research.

Chapter 7

Concluding Remarks

Abstract

In this thesis surrogate model algorithms for computationally expensive
global optimization problems with continuous, mixed-integer, and integer
variables have been developed. At this point it shall be briefly summarized
in how far the questions posed in Chapter 1 could be answered. Moreover,
questions for future research that arose during this study are outlined.

222

CHAPTER 7. CONCLUSIONS 223

Abbreviations

EGO Efficient global optimization
Discrete-DDS Discrete Dynamically Dimensioned Search
NOMAD Nonsmooth Optimization by Mesh Adaptive Direct Search
RBF Radial basis function
SO-I Surrogate Optimization - Integer
SO-Ic Surrogate Optimization - Integer constraints
SO-M Surrogate Optimization - Mixture
SO-M-c Surrogate Optimization - Mixture - candidate sampling
SO-M-s Surrogate Optimization - Mixture -surface minimum
SO-MI Surrogate Optimization - Mixed Integer

CHAPTER 7. CONCLUSIONS 224

7.1 Which surrogate model should be used

for a given problem?

Various studies in the literature have shown that one surrogate model
does not perform best for all kinds of problems, and when dealing with
black-box problems it is impossible to know a priori which surrogate model
will perform best. The question of which surrogate model is best suited for
a given problem has been addressed by developing mixture surrogate model
algorithms. The algorithms SO-M, SO-M-c, and SO-M-s for continuous
deterministic global optimization problems described in Chapters 2 and 3
use Dempster-Shafer theory to determine the influence of individual models
on the mixture. One major issue of importance that has been encountered
during this study is the strategy of iteratively selecting new sample sites for
doing the computationally expensive simulation. The three algorithms use
different sampling strategies, and their influence on the solution quality has
been examined in numerical studies.

It was found that mixtures that contain a cubic RBF model perform in
general very well, whereas algorithms that use only a polynomial regression
model should be avoided. Mixture surrogate models should be the choice
whenever it is a priori unknown which surrogate model will perform best be-
cause they automatically prevent selecting the worst single model. Moreover,
mixture models perform often even better than the single models contribut-
ing to the mixture. With respect to choosing the “most successful” sampling
strategy, it was found that the problem dimension plays an important role.
SO-M-s performed on average very well on problems of at most six dimen-
sions, whereas SO-M-c proves successful for higher-dimensional problems.

7.2 Can surrogate model algorithms be used

for black-box problems with integrality

constraints?

Yes, they can! And their performance is very promising. It was shown that
the algorithms SO-MI and SO-I developed in Chapters 4 and 5 are able to
find accurate solutions to mixed-integer and purely integer black-box global
optimization problems, respectively. The few surrogate model algorithms
that have so far been developed in the literature for these types of problems
either use mixed-integer subsolvers (which may become a computational
burden as the problem dimension increases), or they are made for binary

CHAPTER 7. CONCLUSIONS 225

problems only.

SO-I and SO-MI extend this research area and are applicable to higher
dimensional problems where integer variables may have a wide range of
values rather than only binary values. The two algorithms use a random
sampling strategy, and are thus very efficient with respect to computation
times when determining the sample points in each iteration. Constraints
are treated with a penalty approach, and numerical experiments showed
that both algorithms perform significantly better than NOMAD, genetic
algorithms, and branch and bound, where the latter two algorithms are
commonly used options when dealing with integer and mixed-integer
problems.

It was not expected that branch and bound would perform very well on
black-box problems where the algebraic problem description cannot be ex-
ploited for using reformulation or convexification strategies. However, freely
available codes that can be used to solve black-box integer and mixed-integer
optimization problems are very scarce. The numerical studies confirmed that
branch and bound is not suitable at all for black-box problems. Firstly, if the
objective function is multimodal, the lower bounds computed by branch and
bound are not necessarily valid, and pruning decisions may thus be wrong.
Secondly, and more importantly, many black-box problems do not allow
integer variables to take on continuous values as is the case when optimizing
relaxed subproblems in the tree nodes. In these cases objective function
values cannot be computed, and branch and bound fails finding any solution.

Although successful for optimization problems with cheap objective function
values, genetic algorithms did not prove suitable for computationally
expensive problems where only a limited number of function evaluations can
be allowed because they need in general many function evaluations (number
of generation × number of individuals) to find good solutions.

NOMAD, on the other hand, proved more successful than branch and
bound and the genetic algorithm. NOMAD is applicable for mixed-integer
and integer black-box optimization problems, but its performance for these
problem types has so far not widely been studied in the literature.

It has to be stressed that the algorithms were compared with respect to their
performance after an equal number of function evaluations, and that their
computation time can in general be neglected when evaluating the objective
and constraint functions takes from several minutes to several hours or even

CHAPTER 7. CONCLUSIONS 226

days. If the objective and constraint functions are computationally cheap,
other algorithms may be more efficient since in these cases the driving
computational expense comes from the optimization algorithm rather than
the function evaluations.

7.3 How can the agricultural land use of an

upstate New York watershed be managed

to reduce the phosphorus runoff at mini-

mal cost?

The SO-Ic algorithm in Chapter 6 tries to answer this question by using a
separate surrogate model for the objective function and the total phosphorus
constraint [48, 118]. The examined real-world watershed management
problem has integrality constraints imposed on all variables. The problem
had only a single constraint whose value is obtained by the same com-
putationally expensive simulation as the objective function value. Thus,
building a response surface for the constraint is computationally cheap.
Numerical experiments for the watershed management problem showed
that the constraint handling in SO-Ic is very successful, and the algorithm
performs significantly better than the genetic algorithm, NOMAD, and
discrete-DDS.

The constraint handling with the response surface in SO-Ic is very efficient
for this special problem because there was only one constraint. However,
if the number of constraints is large, then using a surrogate model for each
constraint may become computationally more demanding [118] (depending
on the type of surrogate model used), and in these cases penalty methods
may be more efficient.

7.4 Future research directions and open

questions

During this study various new questions arose that could be addressed in
the future. Depending on the number of allowed function evaluations, or
the maximum allowed CPU time, one major question for all developed
algorithms is when to switch from the local to the global search, and vice

CHAPTER 7. CONCLUSIONS 227

versa. Of course, once a promising region of the variable domain has been
found, it should be imperative to thoroughly explore this region (local
search). After how many function evaluations can the region however be
considered throughly explored? Should a predefined number of consecutive
unsuccessful function evaluations be used, or a limit on the percentage of
improvement between consecutive iterations? These questions have partially
been addressed in the algorithm SO-M, where so-called densely sampled
regions have been defined for some variables to guide the local and global
search phases. Other criteria, or maybe distance measures may be developed
in order to better address this topic.

During the study of mixture surrogate models one major question was which
surrogate models should be included in the mixture. Other choices of radial
basis functions (linear, thin-plate spline, multiquadric, etc.) have not been
examined in the study. Similarly, only the kriging model with Gaussian
correlation function has been included. In future studies it may be examined
if, for example, mixtures containing different radial basis function types, or
kriging models with different correlation functions (Gaussian, exponential,
cubic, etc.) would be able to improve the solution quality. Of course, an
increasing number of models in the mixture will increase the necessity of
several processors to speed up the computations by parallelization, and the
question of how many models can and should be used while still obtaining
a computationally efficient algorithm that is able to find good solutions
becomes important.

Moreover, for future comparisons, derivative-free trust-region methods such
as DFO [28, 29], UOBYQA [111], NEWUOA [112], or BOBYQA [113] could
be compared to the developed algorithms. Although these algorithms are
local optimizers, they may be competitive also on global problems especially
when the computational budget is very restricted. Also the influence of
using a multistart gradient-based method or a derivative-free method with a
convergence guarantee for optimizing the auxiliary problems in Gutmann’s
RBF method, EGO, or SO-M-s, could be further examined with respect to
its influence on the results.

Regarding integer and mixed-integer black-box global optimization problems
one major difficulty was to find suitable algorithms and test problems for
comparing the performance of SO-MI and SO-I. When the work of the cor-
responding chapters was submitted for journal publication, the anonymous
referees of the papers objected that a comparison to genetic algorithms and
branch and bound may not be fair because these algorithms are not really

CHAPTER 7. CONCLUSIONS 228

designed to work under such strict limitations on the number of function
evaluations, but they did not suggest any alternatives. Except for NOMAD,
there are no freely-available codes that are able to deal with integer and
mixed-integer black-box problems with computationally expensive objective
and constraint functions. The TOMLAB Matlab toolbox is able to deal with
problems that have cheap constraints, but there are many parameters that
have to be adjusted by the user, and thus fair comparisons are not possible
either. Moreover, the software is commercial, and tests on high-dimensional
unconstrained mixed-integer black-box problems showed that the algorithm
becomes itself a computational burden due to the optimization subproblems
that have to be solved for determining the sample points in each iteration.

As briefly outlined before, algorithms such as EGO [74], Gutmann’s RBF
method [57], or Regis’ AQUARS method [124] may straightforwardly be
adapted for integer and mixed-integer problems by replacing the optimization
subroutine for solving the auxiliary problems by a MINLP solver. This may
be efficient for low-dimensional problems, but may (just as in TOMLAB)
become a computational burden with increasing problem dimensions. On the
other hand, instead of using a MINLP subsolver, stochastic methods such
as the candidate point approach may be similarly effective and save com-
putation time. These algorithm extensions could be considered in the future.

A second issue criticized by the anonymous referees of the chapter papers
are the test problems. Due to the lack of algorithms for integer and
mixed-integer black-box problems, there is also no ”widely used” suit of
test problems (as was, for example, the Dixon and Szegö [39] test bench
for continuous global optimization problems) for evaluating the efficiency of
the algorithms. The goal when selecting test problems for SO-I and SO-MI
was to have a wide range of dimensions and a variety of characteristics and
application problems in order to examine the general applicability of the
algorithms. All results have been presented and no ”unfavorable” cases have
been omitted. The author agrees with the anonymous referees that a set
of test problems for computationally expensive integer and mixed-integer
global optimization problems should be developed in the future. These
test problems do not necessarily have to be computationally expensive, but
should have a wide variety of characteristics that are often encountered
in real world application problems, such as multimodality, nonlinear and
linear constraints, very steep minima, binary and non-binary variables, flat
areas where several points have the same objective function values, etc.,
and whose global optima are known. This topic has also been addressed by
Balaprakash et al. [15]. The test problems selected for SO-I and SO-MI were

CHAPTER 7. CONCLUSIONS 229

chosen such that problems of different dimensions and with the mentioned
characteristics were contained in the test set.

Various methods for treating computationally expensive black-box con-
straints should also be examined in the future in order to find efficient and
effective methods. The penalty approach used in SO-I and SO-MI worked
well, but can certainly be improved. Using a separate surrogate model for
each constraint may be more accurate, and parallel implementations may be
useful. Methods that use classifiers for determining feasible and infeasible
regions of the variable domain have been considered by the author, and
preliminary numerical experiments show promise. Moreover, if initially no
feasible point is known, the algorithms should be able to find feasible points.
Optimization phase 1 in SO-I could therefore further be improved in that
respect.

In this thesis algorithms for deterministic objective functions have been de-
veloped. An extension of the algorithms for problems with noisy objective
and constraint functions also constitutes a wide research area. It is expected
that the developed concepts can be adapted for such problems, but the used
surrogate models should probably be changed because interpolating models
for noisy objective and constraint functions may not be useful. The mixture
models may be successful for noisy problems since they are able to distinguish
between “good” and “bad” models, and they are able to combine interpolat-
ing and noninterpolating models. Also the weights for the single surrogate
models in the mixture may be changed such that they are depending on the
variable x, i.e.

smix(x) =
∑
r∈M

wr(x)sr(x), where
∑
r∈M

wr(x) = 1, (7.1)

because some surrogate models may have a better fit in certain regions of the
variable domain than in others. A challenge here is to determine these re-
gions of the variable domain, which may become difficult for high-dimensional
problems. Also it is expected that, similarly as for the continuous optimiza-
tion problems, mixture models will work well for integer and mixed-integer
problems. Moreover, sampling strategies based on minimizing the response
surface or some other response surface related auxiliary problem may not be
suitable for noisy problems, and also here random sampling strategies may
be more successful. This topic is, however, left for future research.

Appendix A

Test Problems Chapter 2

A.1 Test Problem 1: Branin

This is a two-dimensional problem with x1 ∈ [−5, 10] and x2 ∈ [0, 15]. The
function is defined by

f(x1, x2) =

(
x2 −

5.1x21
4π2

+
5x1
π

− 6

)2

+ 10

(
1−

1

8π

)
cos(x1) + 10. (A.1)

The function has three global minima with the optimum value f ∗ = 0.3979
at the locations (x∗1, x

∗
2) = (−π, 12.275), (x∗1, x

∗
2) = (π, 2.275), and

(x∗1, x
∗
2) = (3π, 2.475). Other local optima do not exist.

A.2 Test Problem 2: Camelback

The variables of this bivariate function are constrained to x1 ∈ [−3, 3] and
x2 ∈ [−2, 2], and the function is defined by

f(x1, x2) =

(
4− 2.1x21 +

x41
3

)
x21 + x1x2 + (−4 + 4x22)x

2
2. (A.2)

The function has two global minima, one at (x∗1, x
∗
2) = (−0.0898, 0.7127),

and the other at (x∗1, x
∗
2) = (0.0898,−0.7127), respectively, where it reaches

the optimal value f ∗ = −1.0316. Other local optima do not exist.

230

APPENDIX A 231

A.3 Test Problem 3: Goldstein-Price Func-

tion

The variable bounds in this problem are x1, x2 ∈ [−2, 2], and the function is
defined by

f(x1, x2) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)

]
×[

30 + (2x1 − 3x2)
2(18− 31x1 + 12x21 + 48x2 − 36x1x2 + 27x22)

]
.

(A.3)

The function has its global minimum at (x∗1, x
∗
2) = (0,−1) and attains there

the value f ∗ = 3. In addition, the function has several local minima.

A.4 Test Problems 4 and 5: Hartmann Func-

tions

The class of Hartmann functions is defined by

f(x) = −
m∑
ι=1

cι exp

{
−

k∑
i=1

aιi(xi − pιi)
2

}
, (A.4)

where x = (x1, x2, . . . , xk) and xi ∈ [0, 1], ∀i. The value for m has been
set to four. The parameters for the three-dimensional problem are given in
Table A.1.

Table A.1: Parameter settings for three-dimensional Hartmann function.

ι aιi cι pιi

1 3.0 10 30 1.0 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3.0 10 30 3.0 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.0382 0.5743 0.8828

The three-dimensional Hartmann function attains its global optimum
f ∗ = −3.8628 at the point (x∗1, x

∗
2, x

∗
3) = (0.1146, 0.5556, 0.8525). The

function has four local minima with function values −cι, ι = 1, . . . , 4.

The parameters of the six-dimensional problem are given in Table A.2.

APPENDIX A 232

Table A.2: Parameters for six-dimensional Hartmann function.

ι aιi cι pιi

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.665
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

The six-dimensional Hartmann function reaches its global
minimum f ∗ = −3.3224 at (x∗1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6) =

(0.2017, 0.1500, 0.4769, 0.2753, 0.3117, 0.6573) and it has four local op-
tima with function values −cι, ι = 1, . . . , 4.

A.5 Test Problem 6: Shekel

The general definition of the Shekel functions is

f(x) =
m∑
ι=1

1

cι +
∑k

i=1(xi − aiι)2
(A.5)

and the variables are bounded to x ∈ [0, 10]. The parameters are

A =

⎡
⎢⎢⎣
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 5 1 2 3.6
4 1 8 6 3 2 3 8 6 7
4 1 8 6 7 9 3 1 2 3.6

⎤
⎥⎥⎦ and c =

1

10
(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T .

The Shekel functions have a very steep global minimum at xi = 4, ∀i, and in
the considered test problem there are 10 local minima.

Appendix B

Test Problems Chapter 3

B.1 Test Problem 1: Branin

This is a two-dimensional problem with x1 ∈ [−5, 10] and x2 ∈ [0, 15]. The
function is defined by

f(x1, x2) =

(
x2 −

5.1x21
4π2

+
5x1
π

− 6

)2

+ 10

(
1−

1

8π

)
cos(x1) + 10. (B.1)

The function has three global minima with the optimum value f ∗ = 0.3979
at the locations (x∗1, x

∗
2) = (−π, 12.275), (x∗1, x

∗
2) = (π, 2.275), and

(x∗1, x
∗
2) = (3π, 2.475). Other local optima do not exist.

B.2 Test Problems 2 and 3: Hartmann Func-

tions

The class of Hartmann functions is defined by

f(x) = −
m∑
ι=1

cι exp

{
−

k∑
i=1

aιi(xi − pιi)
2

}
, (B.2)

where x = (x1, x2, . . . , xk) and xi ∈ [0, 1], ∀i. The value for m has been set
to four. The parameters for the three-dimensional problem are given in
Table B.1.

233

APPENDIX B 234

Table B.1: Parameter settings for three-dimensional Hartmann function.

ι aιi cι pιi

1 3.0 10 30 1.0 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3.0 10 30 3.0 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.0382 0.5743 0.8828

The three-dimensional Hartmann function attains its global optimum
f ∗ = −3.8628 at the point (x∗1, x

∗
2, x

∗
3) = (0.1146, 0.5556, 0.8525). The

function has four local minima with function values −cι, ι = 1, . . . , 4.

The parameters of the six-dimensional problem are given in Table B.2.

Table B.2: Parameters for six-dimensional Hartmann function.

ι aιi cι pιi

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.665
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

The six-dimensional Hartmann function reaches its global
minimum f ∗ = −3.3224 at (x∗1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6) =

(0.2017, 0.1500, 0.4769, 0.2753, 0.3117, 0.6573), and it has four local op-
tima with function values −cι, ι = 1, . . . , 4.

B.3 Test Problems 4-6: Shekel

The general definition of the Shekel functions is

f(x) =

m∑
ι=1

1

cι +
∑k

i=1(xi − aiι)2
, (B.3)

and the variables are bounded to x ∈ [0, 10]. The parameters are

A =

⎡
⎢⎢⎣
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 5 1 2 3.6
4 1 8 6 3 2 3 8 6 7
4 1 8 6 7 9 3 1 2 3.6

⎤
⎥⎥⎦ and c =

1

10
(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T .

APPENDIX B 235

The Shekel functions have a very steep global minimum at xi = 4, ∀i. In the
considered test problem there are 5, 7, and 10 local minima, respectively.

B.4 Test Problem 7: Ackley

The 15-dimensional Ackley function [5] has one global minimum at xi = 0,
i = 1 . . . , 15, where it attains the value f ∗ = −22.72. The function has
several local minima and is defined as

f(x) = −20 exp

⎧⎨
⎩−0.2

√∑15
i=1 x

2
i

15

⎫⎬
⎭− exp

{∑15
i=1 cos(2πxi)

15

}
, (B.4)

and xi ∈ [−15, 30] ∀i.

B.5 Test Problem 8: Schoen

The Schoen test functions [128] are in general defined as follows.

f(x) =

∑η
i=1 fi

∏
j �=i ‖x− zj‖

αj

2∑η
i=1

∏
j �=i ‖x− zj‖

αj

2

, (B.5)

where x ∈ [0, 1]k, η ≥ 0, zj ∈ [0, 1]k , ∀j = 1, . . . , η, fi ∈ R, ∀i = 1, . . . , η, and
αj ∈ R

+, ∀j = 1, . . . , η, and where ‖ · ‖2 denotes the Euclidean norm. The
best function value found for k = 17 is f ∗ = 23.03. For the Schoen functions
it holds that

1. f(zi) = fi, i = 1, . . . , η,

2. min1≤i≤η fi ≤ f(x) ≤ max1≤i≤η fi for all x ∈ [0, 1]k,

3. limx→zj
∇f(x) = 0 for all j = 1, . . . , η.

B.6 Test Problem 9: Levy

The 20-dimensional Levy function [83] has one global minimum at xi = 1,
i = 1 . . . , 20, where it attains the value f ∗ = 19. The function has several
local minima and is defined as

f(y) = sin2{πy1}+
19∑
i=1

y2i
(
1 + 10 sin2{πyi}

)
+ (y20 − 1)2

(
1 + sin2{2πy20}

)
,

(B.6)
where yi = 1 + (xi − 1)/4, and xi ∈ [−10, 10] ∀i.

APPENDIX B 236

B.7 Test Problem 10: Powell

The 24-dimensional Powell function [109] has one global minimum at x4i =
1, x4i−1 = 0, x4i−2 = −1, x4i−3 = 3, i = 1 . . . , 6, where it attains the value
f ∗ = 0. The function has no local minima and is defined as

f(x) =

6∑
i=1

(x4i−3 + 10x4i−2)
2+5 (x4i−1 − x4i)

2+(x4i−2 − 2x4i−1)
4+10 (x4i−3 − x4i)

4

(B.7)
and xi ∈ [−4, 5] ∀i.

B.8 Test Problem 11: Michalewicz

The 25-dimensional Michalewicz function [93] has one global minimum for
which the best objective function value found is f ∗ = −16.49. The function
has 25! local minima and is defined as

f(x) = −
25∑
i=1

sin(xi)

(
sin

(
ix2i
π

))20

(B.8)

and xi ∈ [0, π] ∀i.

B.9 Test Problem 12: Sphere

The 27-dimensional Sphere (the first function of De Jong’s test set) func-
tion [34] has one global minimum at xi = 0, i = 1, . . . , 27, where the objective
function value is f ∗ = 0. The function is convex and has no local minima,
and is defined as

f(x) =

27∑
i=1

x2i (B.9)

and xi ∈ [−5.12, 5.12] ∀i.

B.10 Test Problem 13: Rastrigin

The 30-dimensional Rastrigin function [97, 142] has one global minimum at
xi = 0, i = 1, . . . , 30, where the objective function value is f ∗ = −30. The

APPENDIX B 237

function has several local minima. The variables are xi ∈ [−1, 3] ∀i, and the
function is defined as

f(x) =
30∑
i=1

x2i − cos(2πxi). (B.10)

Appendix C

Test Problems Chapter 4

C.1 Test Problem 1

This test problem is a modification of the problem used by [17]. The problem
has several modes.

min f(x,u) = −x5x6x7 (C.1a)

s.t. − u1 − u2 − u3 + 1 ≤ 0 (C.1b)

− u4 − x1 − x2 + 1 ≤ 0 (C.1c)

− x3 − x4 + 1 ≤ 0 (C.1d)

3u1 + u2 + 2u3 + 3u4 + 2x1 + x2 + 3x3 + 2x4 ≤ 10 (C.1e)

log(0.1)u1 + log(0.2)u2 + log(0.15)u3 − log(1− x5) ≤ 0 (C.1f)

log(0.05)u4 + log(0.2)x1 + log(0.15)x2 − log(1− x6) ≤ 0 (C.1g)

log(0.02)x3 + log(0.06)x4 − log(1− x7) ≤ 0 (C.1h)

ui2 ∈ {0, 1}, i2 = 1, . . . , 4 (C.1i)

xi1 ∈ [0, 1], i1 = 1, . . . , 4, (C.1j)

x5 ∈ [0, 0.997] , x6 ∈ [0, 0.9985] , x7 ∈ [0, 0.9988] (C.1k)

The objective function value at the global optimum is -0.94347.

238

APPENDIX C 239

C.2 Test Problem 2

This is an 8-dimensional convex test problem. The problem is unimodal.

min f(x,u) = 3.1u21 + 7.6u22 + 6.9u23 + 0.004u24 + 19x21 + 3x22 + x23 + 4x24
(C.2a)

s.t. ui2 ∈ {−10, 9, . . . , 9, 10} , i2 = 1, . . . , 4 (C.2b)

xi1 ∈ [−10, 9, . . . , 9, 10] , i1 = 1, . . . , 4 (C.2c)

The objective function value at the global optimum is 0.

C.3 Test Problem 3

This is an altered version of the problem ex1221 from MINLPLib [23]
(see http://www.gamsworld.org/minlp/minlplib/ex1221.htm) where equal-
ity constraints have been replaced by ≤ constraints, and integrality con-
straints have been imposed on some variables. The problem seems to be
unimodal.

min f(x,u) = 2u1 + 3u2 + 1.5x1 + 2x2 − 0.5x3 (C.3a)

s.t. u21 + x1 ≤ 1.25 (C.3b)

u1.52 + 1.5x2 ≤ 3 (C.3c)

u1 + x1 ≤ 1.6 (C.3d)

1.333u2 + x2 ≤ 3 (C.3e)

− x1 − x2 + x3 ≤ 0 (C.3f)

u1, u2 ∈ {0, 1, . . . , 10} , x1 ∈ [0, 10], x2, x3 ∈ [0, 1] (C.3g)

The best known solution has the objective function value 0 at the point
[0, 0, 0, 0, 0]T .

C.4 Test Problem 4

This test problem goes back to [46]. The problem seems to be multimodal
when the discrete variable is fixed to the value 0.

min f(x, u) = 5(x1 − 0.2)2 + 0.8− 0.7u (C.4a)

s.t. − exp{x1 − 0.2} − x2 ≤ 0 (C.4b)

x2 + 1.1u+ 1 ≤ 0 (C.4c)

x1 − 1.2u ≤ 0 (C.4d)

u ∈ {0, 1}, x1 ∈ [0.2, 1] , x2 ∈ [−2.22554,−1] (C.4e)

APPENDIX C 240

The global optimum has the objective function value 1.07654.

C.5 Test Problem 5

This test problem is an alteration of the test problem G2 [77], where integral-
ity constraints have been added for several variables. The problem dimension
is k = 25. The problem has several modes.

max f(x,u) =

∣∣∣∣∣∣
∑6

i2=1 cos
4(ui2) +

∑19
i1=1 cos

4(xi1)− 2
∏6

i2=1 cos
2(ui2)

∏19
i1=1 cos

2(xi1)√∑6
i2=1 i2u

2
i2
+
∑19

i1=1 i1x
2
i1

∣∣∣∣∣∣
(C.5a)

s.t.
6∏

i2=1

ui2

19∏
i1=1

xi1 ≥ 0.75 (C.5b)

6∑
i2=1

ui2 +
19∑

i1=1

xi1 ≤ 7.5 · k (C.5c)

ui2 ∈ {0, 1, 2, . . . , 10} , i2 = 1, 2, . . . , 6 (C.5d)

xi1 ∈ [0, 10] , i1 = 1, 2, . . . , 19 (C.5e)

The best known objective function value is 0.4022.

C.6 Test Problem 6

This test problem is an alteration of the test problem G4 [77], where integral-
ity constraints have been added for several variables. The problem is convex
and seems to have a flat area where several points achieve the same objective
function value.

min f(x,u) = 5.3578547x21 + 0.8356891u1x3 + 37.293239u1 − 40792.141
(C.6a)

s.t. 0 ≤ 85.334407 + 0.0056858u2x3 + 0.0006262u1x2 − 0.0022053x1x3 ≤ 92
(C.6b)

90 ≤ 80.51249 + 0.0071317u2x3 + 0.0029955u1u2 + 0.0021813x21 ≤ 110
(C.6c)

20 ≤ 9.300961 + 0.0047026x1x3 + 0.0012547u1x1 + 0.0019085x1x2 ≤ 25
(C.6d)

u1 ∈ {78, 79, . . . , 102} , u2 ∈ {33, 34, . . . , 45} , (C.6e)

xi1 ∈ [27, 45] , i1 = 1, . . . , 3 (C.6f)

APPENDIX C 241

The objective function value at the global optimum is -30665.5.

C.7 Test Problem 7

This two-dimensional test problem is an alteration of the test problem
G6 [77], where integrality constraints have been added for one variable. The
problem seems to be multimodal.

min f(x, u) = (u− 10)3 + (x− 20)3 (C.7a)

s.t. (u− 5)2 + (x− 5)2 − 100 ≥ 0 (C.7b)

− (u− 6)2 − (x− 5)2 + 82.81 ≥ 0 (C.7c)

u ∈ {13, 14 . . . , , 100} , x ∈ [0, 100] (C.7d)

The best known objective function value is -4241.96.

C.8 Test Problem 8

This test problem is an alteration of the test problem G9 [77], where inte-
grality constraints have been added for some variables. The problem seems
to be unimodal when the integers are fixed.

min f(x,u) = (u1 − 10)2 + 5(u2 − 12)2 + u43 + 3(x1 − 11)2+ (C.8a)

10x62 + 7x23 + x44 − 4x3x4 − 10x3 − 8x4 (C.8b)

s.t. 2u21 + 3u42 + u3 + 4x21 + 5x2 ≤ 127 (C.8c)

7u1 + 3u2 + 10u23 + x1 − x2 ≤ 282 (C.8d)

23u1 + u22 + 6x23 − 8x4 ≤ 196 (C.8e)

4u21 + u22 − 3u1u2 + 2u23 + 5x3 − 11x4 ≤ 0 (C.8f)

ui2 ∈ {−10,−9 . . . , , 10} , i2 = 1, 2, 3 (C.8g)

xi1 ∈ [−10, 10] , i1 = 1, 2, 3, 4 (C.8h)

The best known objective function value is 686.34.

C.9 Test Problem 9

This is an altered version of the problem ex1221 from MINLPLib [23] (see
http://www.gamsworld.org/minlp/minlplib/ex1221.htm) where integrality

APPENDIX C 242

constraints have been imposed on some variables, and the nonlinear con-
straints have been left out in order to obtain a purely linear test problem.
The problem seems to be unimodal.

min f(x,u) = 2u1 + 3u2 + 1.5u3 + 2x1 − 0.5x2 (C.9a)

s.t. u1 + u3 ≤ 1.6 (C.9b)

1.333u2 + x1 ≤ 3 (C.9c)

− u3 − x1 + x2 ≤ 0 (C.9d)

u1, u2, u3 ∈ {0, 1, . . . , 10} , x1, x2 ∈ [0, 1] (C.9e)

The best known solution has the objective function value 0 at the point
[0, 0, 0, 0, 0]T .

C.10 Test Problem 10

This test problem can be found at http://www.aridolan.com/ga/gaa/MultiVarMin.html.
Integrality constraints have been added for some variables. The test problem
is multimodal.

min f(x,u) = u1 sin(u1) + 1.7u2 sin(u1)− 1.5x1− (C.10a)

0.1x2 cos(x2 + x3 − u1) + 0.2x23 − u2 − 1 (C.10b)

u1, u2 ∈ {−100,−99, . . . , 100} (C.10c)

x1, x2, x3 ∈ [−100, 100] (C.10d)

The best known solution has the objective function value -529.07.

C.11 Test Problem 11

This is the problem nvs09 from MINLPLib [23] (see
http://www.gamsworld.org/minlp/minlplib/nvs09.htm). In the origi-
nal problem formulation all variables are discrete. The problem has been

APPENDIX C 243

altered such that several variables may assume continuous values. The
problem is unimodal.

min f(x,u) =
5∑

i2=1

log(ui2 − 2)2 +
5∑

i1=1

log(xi1 − 2)2 +
5∑

i2=1

log(10− ui2)
2+

(C.11a)
5∑

i1=1

log(10− xi1)
2 −

5∏
i2=1

u0.2i2

5∏
i1=1

x0.2i1 (C.11b)

ui2 ∈ {3, 4 . . . , 9} , i2 = 1, . . . , 5, xi1 ∈ [3, 9] , i1 = 1, . . . , 5 (C.11c)

The function value at the global optimum is -43.13. The global optimum of
the continuous relaxation of the problem has integer variable values.

C.12 Test Problem 12

This is an altered version of the problem nvs09 from MINLPLib [23]
(see http://www.gamsworld.org/minlp/minlplib/nvs09.htm). In the original
problem formulation all variables are discrete. The problem has been altered
such that several variables may assume continuous values. In addition, the
variable domains have been increased and the objective function has been
adjusted accordingly. The problem is unimodal.

min f(x,u) =
5∑

i2=1

log(ui2 − 2)2 +
5∑

i1=1

log(xi1 − 2)2 +
5∑

i2=1

log(100− ui2)
2+

(C.12a)
5∑

i1=1

log(100− xi1)
2 −

5∏
i2=1

u0.2i2

5∏
i1=1

x0.2i1
(C.12b)

ui2 ∈ {3, 4 . . . , 99} , i2 = 1, . . . , 5, xi1 ∈ [3, 99] , i1 = 1, . . . , 5 (C.12c)

The best known objective function value is -9591.72. The global optimum of
the continuous relaxation of the problem has integer variable values.

APPENDIX C 244

C.13 Test Problem 13

This is the 12-dimensional Rastrigin function [142] where integrality con-
straints have been imposed on several variables. The problem is multimodal.

min f(x,u) =
5∑

i2=1

(
u2i2 − cos(2πui2)

)
+

7∑
i1=1

(
x2i1 − cos(2πxi1)

)
(C.13a)

s.t. ui2 ∈ {−1, 0, 1, 2, 3} , i2 = 1, . . . , 5, (C.13b)

xi1 ∈ [−1, 3] , i1 = 1, . . . , 7 (C.13c)

The objective function value at the global optimum is -12.

C.14 Test Problem 14

This is an altered version of the 12-dimensional Rastrigin function [142] where
integrality constraints have been imposed on several variables. Here the
variable domains have been increased. The problem is multimodal.

min f(x,u) =

5∑
i2=1

(
u2i2 − cos(2πui2)

)
+

7∑
i1=1

(
x2i1 − cos(2πxi1)

)
(C.14a)

s.t. ui2 ∈ {−10, 0, 1, 2, 30} , i2 = 1, . . . , 5, (C.14b)

xi1 ∈ [−10, 30] , i1 = 1, . . . , 7 (C.14c)

The objective function value at the global optimum is -12.

C.15 Test Problem 15

This is the 30-dimensional Rastrigin function [142] where integrality con-
straints have been imposed on several variables. The problem is multimodal.

min f(x,u) =

10∑
i2=1

u2i2 − cos(2πui2) +

20∑
i1=1

x2i1 − cos(2πxi1) (C.15a)

s.t. ui2 ∈ {−1, 0, 1, 2, 3} , i2 = 1, . . . , 10, (C.15b)

xi1 ∈ [−1, 3] , i1 = 1, . . . , 20 (C.15c)

The objective function value at the global optimum is -30.

APPENDIX C 245

C.16 Test Problem 16

This test problem has been introduced by Yuan et al. [159]. The problem
seems to be multimodal and has several points that take on the same function
value.

min f(x,u) = (x1 − 1)2 + (x2 − 2)2 + (x3 − 1)2 − log(x4 + 1)+

(x5 − 1)2 + (x6 − 2)2 + (x7 − 3)2 (C.16a)

s.t. u1 + u2 + u3 + x5 + x6 + x7 ≤ 5 (C.16b)

x23 + x25 + x26 + x27 ≤ 5.5 (C.16c)

u1 + x5 ≤ 1.2 (C.16d)

u2 + x6 ≤ 1.8 (C.16e)

u3 + x7 ≤ 2.5 (C.16f)

u4 + x5 ≤ 1.2 (C.16g)

x22 + x26 ≤ 1.64 (C.16h)

x23 + x27 ≤ 4.25 (C.16i)

x22 + x27 ≤ 4.64 (C.16j)

x1 − u1 ≤ 0 (C.16k)

x2 − u2 ≤ 0 (C.16l)

x3 − u3 ≤ 0 (C.16m)

x4 − u4 ≤ 0 (C.16n)

ui2 ∈ {0, 1}, i2 = 1, . . . , 4 (C.16o)

xi1 ∈ [0, 1] , i1 = 1, . . . , 4 (C.16p)

xi1 ∈ [0, 10] , i1 = 5, 6, 7 (C.16q)

The globally optimal solution has the objective function value 4.5796.

C.17 Test Problem 17: Eleven Element Truss

The planar truss shown in Figure C.1 is considered, which is an alteration of
the example in [25, Chapter 4]. The structure has 11 elements (an element
is a truss member located between two nodes). There are three load cases,
F1 = 280 kN acting on nodes 1 and 5, F2 = 210 kN acting on node 3, and
F3 = 310 kN acting on node 7. The coordinates of nodes 1, 3, 5, and 7 are
fixed, but the height x of the structure is variable. The goal is to minimize
the total mass of the structure while satisfying the condition that the
maximal displacement is at most 8mm for all nodes. Therefore, the cross

APPENDIX C 246

sectional areas of all truss elements have to be determined, as well as the
height x of nodes 2, 4, and 6, where each node may have a different value
for x. It is assumed that the steel bars have cross-sections of equal-sided
angle type, and therefore one discrete variable is associated with every
truss member, i.e. there are totally 11 discrete variables. There are three
continuous variables describing the vertical locations of nodes 2, 4, and 6.

The nodal coordinates are given in Table C.1. Young’s modulus is E =
200 GPa, and the density of the steel used is ρ = 7850 kg/m3. The hor-
izontal and vertical displacements of node 1 are zero, and the horizontal
displacement of node 7 is zero. The side length of the bars, i.e. the dis-
crete variables, are ui2 ∈ {10, 11, . . . , 60}[mm], i2 = 1, 2, . . . , 11, and the
vertical coordinates of the nodes 2, 4, and 6, i.e. the continuous variables,
are xi1 ∈ [2000, 3200][mm], i1 = 1, 2, 3. The best known solution has the
objective function value 88197.2[cm3].

Figure C.1: Eleven element plane truss (test problem 17): The goal is to
minimize the weight of the structure while satisfying nodal displacement

constraints.

APPENDIX C 247

Table C.1: Geometry of the eleven element truss structure.

Node Coordinate [mm]
number x y

1 0 0
2 1800 x1
3 3600 0
4 5400 x2
5 7200 0
6 9000 x3
7 10800 0

C.18 Test Problem 18: Three-Dimensional

Truss Dome

The three-dimensional truss dome is illustrated in Figure C.2. The coordi-
nates of nodes 8-13 are fixed, and the height of nodes 1-7 has to be determined
(continuous variables). There are two load cases. Load F1 = 20 kN acts ver-
tically on nodes 2-7, and load F2 = 40 kN acts vertically on node 1. The
truss consists of 24 tubular elements that all have the same outer diameter
and whose inner diameter has to be determined (discrete variables). The
goal is to minimize the total mass while limiting the displacement of node
1 to at most 10 mm. The truss dome has 24 elements, and thus there are
24 discrete variables ui2 ∈ {1, 2, . . . , 10}[mm], i2 = 1, 2, . . . , 24, describing
the wall thicknesses. The vertical coordinates of nodes 1-7 are represented
by the continuous variables xi1 ∈ [0, 1000][mm], i1 = 1, 2, . . . , 7. The ge-
ometry of the truss dome is summarized in Table C.2. Young’s modulus is
E = 200 GPa, and the density of the steel is ρ = 7850 kg/m3. The best
known solution has the objective function value 63833.2[cm3].

(a) Top view. (b) Side view.

Figure C.2: Truss dome (test problem 18): The goal is to minimize the
weight of the truss dome while satisfying displacement constraints for

node 1.

Table C.2: Geometry of the truss dome.

Node Coordinate [mm]
number x y z

1 0 0 x1
2 250 0 x2
3 125 216.51 x3
4 -125 216.51 x4
5 -250 0 x5
6 -125.0 -216.51 x6
7 125.0 -216.51 x7
8 433.01 250 0
9 0 500 0
10 -433.01 250 0
11 -433.01 -250 0
12 0 -500 0
13 433.01 -250 0

APPENDIX C 249

C.19 Test Problems 19-21: Reliability-

Redundancy Allocation

Reliability-redundancy allocation leads to a mixed-integer nonlinear opti-
mization problem where the discrete variables represent the levels of re-
dundancy and the continuous variables are the component reliabilities that
are assumed to be known. The general mathematical formulation of such
reliability-redundancy allocation problems is as follows [80].

max
x,u

Rs(x,u) (C.17a)

s.t. gj(x,u) ≤ bj , j = 1, . . . , m (C.17b)

ui2 ∈ {uli2, . . . , u
u
i2}, xi1 ∈ [xli1 , x

u
i1], i1, i2 = 1, . . . , k1, (C.17c)

where Rs(x,u) is the system reliability that depends on the system config-
uration, and the constraints (C.17b) can be, for example, cost constraints
or weight restrictions. The continuous variables x reflect the reliability of
each component, whereas the integer variables u describe the redundancy
for each component.

C.19.1 Test Problem 19: Bridge system

A small example of a bridge network is shown in Figure C.3. It is a complex
system that is neither a series nor parallel configuration. The system can
operate independently of component 5 if either paths 1-2 or 3-4 are working.
If component 5 fails, the system cannot continue operating successfully if
either the components 1 and 3, 1 and 4, 2 and 3, or 2 and 4 fail simultaneously.
The reliability Ri(xi, ui) at stage i is defined by

Ri = Ri(xi, ui) = 1− (1− xi)
ui. (C.18)

APPENDIX C 250

Figure C.3: Bridge configuration.

The resulting reliability-redundancy allocation problem is then defined as
follows.

max
x,u

f(x,u) = R1R2 +R3R4 +R1R4R5 +R2R3R5 −R1R2R3R4 − R1R2R3R5−

R1R2R4R5 − R1R3R4R5 −R2R3R4R5 + 2R1R2R3R4R5

(C.19a)

s.t.

5∑
i=1

piu
2
i ≤ P (C.19b)

5∑
i=1

ci(xi)
[
ui + exp

(ui
4

)]
≤ C (C.19c)

5∑
i=1

wiui exp
(ui
4

)
≤W (C.19d)

0 ≤ xi ≤ 1− 10−6, i = 1, . . . , 5 (C.19e)

ui ∈ {1, . . . , 10}, i = 1, . . . , 5 (C.19f)

where P = 110,W = 200, C = 175 and the cost-reliability relation is defined
as

ci(xi) = αi

(
−t

log xi

)βi

, i = 1, . . . , 5. (C.20)

The time for which the system is required to work is set to t = 1000. The
constants αi and βi describe the characteristics of each component at stage
i and are given together with the parameters wi and pi in Table C.3. The
best known solution has the objective function value 0.999659.

APPENDIX C 251

Table C.3: Parameters for the bridge configuration.

i αi × 105 pi wi βi

1 2.330 1 7 1.5
2 1.450 2 8 1.5
3 0.541 3 8 1.5
4 8.050 4 6 1.5
5 1.950 2 9 1.5

C.19.2 Test Problem 20: Overspeed Protection Sys-

tem

The overspeed protection system [38] for a gas turbine is modeled as a series
system with four components (valves). A mechanical and electrical system
is used to detect overspeed. If overspeed occurs, the four control valves
must close and cut off the supply of fuel to the gas turbine. The reliability-
redundancy allocation problem for the overspeed detection system is defined
as follows.

max
x,u

f(x,u) =
4∏

i=1

Ri (C.21a)

s.t.

4∑
i=1

piu
2
i ≤ P (C.21b)

4∑
i=1

ci(xi)
[
ui + exp

(ui
4

)]
≤ C (C.21c)

4∑
i=1

wiui exp
(ui
4

)
≤W (C.21d)

0.5 ≤ xi ≤ 1− 10−6, i = 1, . . . , 4 (C.21e)

ui ∈ {1, . . . , 10}, i = 1, . . . , 4 (C.21f)

where P = 250,W = 500, C = 400, and the cost-reliability relation is defined
as

ci(xi) = αi

(
−t

log xi

)βi

, i = 1, . . . , 4. (C.22)

The time for which the system is required to work is set to t = 1000, and
Ri is defined as in equation (C.18). The constants αi and βi describe the

APPENDIX C 252

characteristics of each component at stage i and are given together with
the parameters wi and pi in Table C.4. The best known solution has the
objective function value 0.999889.

Table C.4: Parameters for the overspeed detection system.

i αi × 105 pi wi βi

1 1.0 1 6 1.5
2 2.3 2 6 1.5
3 0.3 3 8 1.5
4 2.3 2 7 1.5

C.19.3 Test Problem 21: Series-Parallel System

A small example of a series-parallel system is illustrated in Figure C.4. The
system fails if subsystem 1-2 and subsystem 3-4-5 fail simultaneously.

Figure C.4: Series-parallel system.

APPENDIX C 253

The reliability-redundancy allocation problem for the series-parallel configu-
ration is defined as follows.

max
x,u

f(x,u) = 1− (1− R1R2) (1− (1− R3) (1− R4)R5) (C.23a)

s.t.

5∑
i=1

piu
2
i ≤ P (C.23b)

5∑
i=1

ci(xi)
[
ui + exp

(ui
4

)]
≤ C (C.23c)

5∑
i=1

wiui exp
(ui
4

)
≤W (C.23d)

0 ≤ xi ≤ 1− 10−6, i = 1, . . . , 5 (C.23e)

ui ∈ {1, . . . , 10}, i = 1, . . . , 5, (C.23f)

where Ri, i = 1, . . . , 5, are defined as in equation (C.18), and ci, i = 1, . . . , 5,
are defined as in equation (C.20). The system is required to work for the
time t = 1000. The parameters are given in Table C.5, and P = 180,
W = 100, and C = 175. The best known solution has the objective function
value 0.999725.

Table C.5: Parameters for the series-parallel configuration.

i αi × 105 pi wi βi

1 2.500 2 3.5 1.5
2 1.450 4 4.0 1.5
3 0.541 5 4.0 1.5
4 0.541 8 3.5 1.5
5 2.100 4 4.5 1.5

Appendix D

Test Problems Chapter 5

D.1 Test Problem 1

This test problem is an alteration of the test problem G6 by [77], where in-
tegrality constraints for each variable have been added. The global optimum
is -3971.

min f(x) = (x1 − 10)3 + (x2 − 20)3 (D.1a)

s.t. (x1 − 5)2 + (x2 − 5)2 − 100 ≥ 0 (D.1b)

− (x1 − 6)2 − (x2 − 5)2 + 82.81 ≥ 0 (D.1c)

x1 ∈ {13, 14 . . . , , 100} (D.1d)

x2 ∈ {0, 1, 2, . . . , 100} (D.1e)

D.2 Test Problem 2

This five variable test function has been taken from
http://www.aridolan.com/ga/gaa/MultiVarMin.html. The best solution
found so far has the objective function value -525.77.

min f(x) = x1 sin(x1) + 1.7x2 sin(x1)− 1.5x3− (D.2a)

0.1x4 cos(x4 + x5 − x1) + (0.2x25 − x2)− 1 (D.2b)

s.t. x1, x2, x3, x4, x5 ∈ {−100,−99, . . . , 99, 100} (D.2c)

D.3 Test Problem 3

This is an altered version of the problem ex1221 given on
http://www.gamsworld.org/minlp/minlplib/ex1221.htm [23] where in-

254

APPENDIX D 255

tegrality constraints for each variable have been added and equality
constraints have been replaced by inequality constraints. The best function
value found by the compared algorithms is 0.

min f(x) = 2x1 + 3x2 + 1.5x3 + 2x4 − 0.5x5 (D.3a)

s.t. x21 + x3 ≤ 1.25 (D.3b)

x1.52 + 1.5x4 ≤ 3 (D.3c)

x1 + x3 ≤ 1.6 (D.3d)

1.333x2 + x4 ≤ 3 (D.3e)

− x3 − x4 + x5 ≤ 0 (D.3f)

x1, x2, x3 ∈ {0, 1, . . . , 10} (D.3g)

x4, x5 ∈ {0, 1} (D.3h)

D.4 Test Problem 4

This test problem is an alteration of the test problem G4 [77], where integral-
ity constraints for each variable have been added. The best solution found
by the compared algorithms is -30512.44.

min f(x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141
(D.4a)

s.t. 0 ≤ 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 ≤ 92
(D.4b)

90 ≤ 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23 ≤ 110
(D.4c)

20 ≤ 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 ≤ 25
(D.4d)

x1 ∈ {78, 79 . . . , 102} (D.4e)

x2 ∈ {33, 34, . . . , 45} (D.4f)

x3, x4, x5 ∈ {27, 28, . . . , 45} (D.4g)

APPENDIX D 256

D.5 Test Problem 5

This test problem is an alteration of the test problem G9 [77], where integral-
ity constraints for each variable have been added. The best solution found
so far has the objective function value 700.

min f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2+ (D.5a)

10x65 + 7x26 + x47 − 4x6x7 − 10x6 − 8x7 (D.5b)

s.t. 127− 2x21 − 3x42 − x3 − 4x24 − 5x5 ≥ 0 (D.5c)

282− 7x1 − 3x2 − 10x23 − x4 + x5 ≥ 0 (D.5d)

196− 23x1 − x22 − 6x26 + 8x7 ≥ 0 (D.5e)

− 4x21 − x22 + 3x1x2 − 2x23 − 5x6 + 11x7 ≥ 0 (D.5f)

xi ∈ {−10,−9 . . . , 9, 10} , i = 1, . . . , 7 (D.5g)

D.6 Test Problem 6

This test problem is an alteration of the test problem G1 [77], where inte-
grality constraints for each variable have been added. The global minimum
is -15.

min f(x) = 5
4∑

i=1

xi − 5
4∑

i=1

x2i −
13∑
i=5

xi (D.6a)

s.t. 2x1 + 2x2 + x10 + x11 ≤ 10 (D.6b)

2x1 + 2x3 + x10 + x12 ≤ 10 (D.6c)

2x2 + 2x3 + x11 + x12 ≤ 10 (D.6d)

− 8x1 + x10 ≤ 0 (D.6e)

− 8x2 + x11 ≤ 0 (D.6f)

− 8x3 + x12 ≤ 0 (D.6g)

− 2x4 − x5 + x10 ≤ 0 (D.6h)

− 2x6 − x7 + x11 ≤ 0 (D.6i)

− 2x8 − x9 + x12 ≤ 0 (D.6j)

xi ∈ {0, 1} , i = 1, . . . , 9, 13 (D.6k)

xi ∈ {0, 1, . . . , 100} , i = 10, 11, 12 (D.6l)

APPENDIX D 257

D.7 Test Problem 7

This is the problem nvs09 from the MINLPLib
http://www.gamsworld.org/minlp/minlplib/nvs09.htm [23]. The solu-
tion value at the global optimum is -43.13.

min f(x) =
10∑
i=1

log(xi − 2)2 +
10∑
i=1

log(10− xi)
2 −

10∏
i=1

x0.2i (D.7a)

xi ∈ {3, 4 . . . , 9} , i = 1, . . . , 10 (D.7b)

D.8 Test Problem 8

This is the problem hmittelman from the MINLPLib
http://www.gamsworld.org/minlp/minlplib/hmittelman.htm [23]. The
function value at the global optimum is 13.

min f(x) = 10y1 + 7y2 + y3 + 12y4 + 8y5 + 3y6 + y7 + 5y8 + 3y9 (D.8a)

s.t. 3y1 − 12y2 − 8y3 + y4 − 7y9 + 2y10 ≤ −2 (D.8b)

y2 − 10y3 − 5y5 + y6 + 7y7 + y8 ≤ −1 (D.8c)

5y1 − 3y2 − y3 − 2y8 + y10 ≤ −1 (D.8d)

3y2 − 5y1 + y3 + 2y8 − y10 ≤ 1 (D.8e)

− 4y3 − 2y4 − 5y6 + y7 − 9y8 − 2y9 ≤ −3 (D.8f)

9y2 − 12y4 − 7y5 + 6y6 + 2y8 − 15y9 + 3y10 ≤ −7 (D.8g)

5y2 − 8y1 + 2y3 − 7y4 − y5 − 5y7 − 10y9 ≤ −1 (D.8h)

y1 = x5x7x9x10x14x15x16 (D.8i)

y2 = x1x2x3x4x8x11 (D.8j)

y3 = x3x4x6x7x8 (D.8k)

y4 = x3x4x8x11 (D.8l)

y5 = x6x7x8x12 (D.8m)

y6 = x6x7x9x14x16 (D.8n)

y7 = x9x10x14x16 (D.8o)

y8 = x5x10x14x15x16 (D.8p)

y9 = x1x2x11x12 (D.8q)

y10 = x13x14x15x16 (D.8r)

xi ∈ {0, 1} , i = 1, . . . , 16 (D.8s)

APPENDIX D 258

D.9 Test Problem 9

This is the 12-dimensional Rastrigin function [142] where integrality con-
straints for each variable have been added. The function value at the opti-
mum is -12.

min f(x) =

n∑
i=1

x2i − cos(2πxi) (D.9a)

s.t. xi ∈ {−1, 0, 1, 2, 3} , i = 1, . . . , 12 (D.9b)

D.10 Test Problem 10

This is the 30-dimensional Rastrigin function [142] where integrality con-
straints for each variable have been added. The optimal function value is
-30.

min f(x) =

n∑
i=1

x2i − cos(2πxi) (D.10a)

s.t. xi ∈ {−1, 0, 1, 2, 3} , i = 1, . . . , 30 (D.10b)

D.11 Test Problem 11

This test problem is an alteration of the test problem G2 [77], where integral-
ity constraints for each variable have been added. The problem dimension
used is k = 25. The best function value found by the compared algorithms
is 0.3225.

max f(x) =

∣∣∣∣∣∣
∑k

i=1 cos
4(xi)− 2

∏k
i=1 cos

2(xi)√∑k
i=1 ix

2
i

∣∣∣∣∣∣ (D.11a)

s.t.

k∏
i=1

xi ≥ 0.75 (D.11b)

k∑
i=1

xi ≤ 7.5k (D.11c)

xi ∈ {0, 1, 2, . . . , 10} , i = 1, 2, . . . , 25 (D.11d)

APPENDIX D 259

D.12 Test Problem 12

This is the Schoen test function [128] with 20 variables, altered to binary
variable constraints. The best solution found by the compared algorithms is
-13.36.

min f(x) =

∑η
i=1 fi

∏
j �=i ‖x− zj‖

αj

2∑η
i=1

∏
j �=i ‖x− zj‖

αj

2

, (D.12)

where x ∈ {0, 1}20, η = 6, zj ∈ [0, 1]20 , ∀j = 1, . . . , 6, fi ∈ R, ∀i = 1, . . . , 6,
and αi ∈ R

+, ∀i = 1, . . . , 6, and where ‖ · ‖2 denotes the Euclidean norm. For
the Schoen functions it holds that

1. f(zi) = fi, i = 1, . . . , η,

2. min1≤i≤η fi ≤ f(x) ≤ max1≤i≤η fi for all x ∈ {0, 1}k,

3. limx→zj
∇f(x) = 0 for all j = 1, . . . , η.

D.13 Test Problem 13

This is an altered version of the problem nvs09 given on
http://www.gamsworld.org/minlp/minlplib/nvs09.htm [23]. The best
objective function value found by the compared algorithms is -9591.72.

min f(x) =

10∑
i=1

log(xi − 2)2
10∑
i=1

log(100− xi)
2 −

10∏
i=1

x0.2i (D.13a)

s.t. xi ∈ {3, 4 . . . , 99} , i = 1, . . . , 10 (D.13b)

APPENDIX D 260

D.14 Test Problem 14

This test problem is an alteration of the test problem G1 [77], where integral-
ity constraints for each variable have been added and the variable domains
have been changed. The best solution found by the compared algorithms is
-50200.

min f(x) = 5

4∑
i=1

xi − 5

4∑
i=1

x2i −
13∑
i=5

xi (D.14a)

s.t. 2x1 + 2x2 + x10 + x11 ≤ 10 (D.14b)

2x1 + 2x3 + x10 + x12 ≤ 10 (D.14c)

2x2 + 2x3 + x11 + x12 ≤ 10 (D.14d)

− 8x1 + x10 ≤ 0 (D.14e)

− 8x2 + x11 ≤ 0 (D.14f)

− 8x3 + x12 ≤ 0 (D.14g)

− 2x4 − x5 + x10 ≤ 0 (D.14h)

− 2x6 − x7 + x11 ≤ 0 (D.14i)

− 2x8 − x9 + x12 ≤ 0 (D.14j)

xi ∈ {0, 1, . . . , 100} , i = 1, . . . , 13 (D.14k)

D.15 Test Problem 15

This is the 12-dimensional Rastrigin function [142] where integrality con-
straints for each variable have been added and the variable domains have
been increased. The global minimum is -12.

min f(x) =
n∑

i=1

x2i − cos(2πxi) (D.15a)

s.t. xi ∈ {−10, 9, . . . , 29, 30} , i = 1, . . . , 12 (D.15b)

D.16 Test Problem 16

This is an 8-dimensional convex function. The global minimum is 0.

min f(x) = 3.1x21 + 7.6x22 + 6.9x23 + 0.004x24 + 19x25 + 3x26 + x27 + 4x28
(D.16a)

s.t. xi ∈ {−10, 9, . . . , 9, 10} , i = 1, . . . , 8 (D.16b)

APPENDIX D 261

D.17 Test Problem 17

This is an altered version of the problem ex1221 given on
http://www.gamsworld.org/minlp/minlplib/ex1221.htm [23] where in-
tegrality constraints for all variables have been added and the nonlinear
constraints have been omitted. The best solution found by the algorithms
is -8.

min f(x) = −2x1 − 3x2 − 1.5x3 − 2x4 + 0.5x5 (D.17a)

s.t. x1 + x3 ≤ 1.6 (D.17b)

1.333x2 + x4 ≤ 3 (D.17c)

− x3 − x4 + x5 ≤ 0 (D.17d)

x1, x2, x3 ∈ {0, 1, . . . , 10} (D.17e)

x4, x5 ∈ {0, 1} (D.17f)

D.18 Test Problems 18 and 19: Throughput

Maximization

The best feasible objective function value found for problem 18 is 9.8965.
The feasible objective function value found for problem 19 is 5.1966. Both
results were found by SO-I.

D.19 Test Problems 20a-20c and 21a-21c:

Hydropower Maximization

The best feasible objective function values found for the problems are sum-
marized in Table D.1.

Table D.1: Best feasible function values for hydropower maximization
problems.

Problem 20a 20b 20c 21a 21b 21c

Best value 758.25 2022.50 4172.50 1681.80 4148.00 8325.00

Bibliography

[1] M.A. Abramson and C. Audet. Convergence of mesh adaptive direct
search to second-order stationary points. SIAM Journal on Optimiza-
tion, 17:606–619, 2006.

[2] M.A. Abramson, C. Audet, J. Chrissis, and J. Walston. Mesh adaptive
direct search algorithms for mixed variable optimization. Optimization
Letters, 3:35–47, 2009.

[3] M.A. Abramson, C. Audet, G. Couture, J.E. Dennis Jr, and
S. Le Digabel. The NOMAD project. Software available at
http://www.gerad.ca/nomad. 2011.

[4] M.A. Abramson, C. Audet, and J.E. Dennis Jr. Filter pattern search al-
gorithms for mixed variable constrained optimization problems. SIAM
Journal on Optimization, 11:573–594, 2004.

[5] D.H. Ackley. A connectionist machine for genetic hillclimbing. Boston:
Kluwer Academic Publishers, 1987.

[6] C.S. Adjiman, I.P. Androulakis, and C.A. Floudas. Global optimization
of mixed-integer nonlinear problems. AIChE Journal, 46:1769–1797,
2000.

[7] M.J. Appel, R. Labarre, and D. Radulović. On accelerated random
search. SIAM Journal on Optimization, 14:708–731, 2003.

[8] I. Argatov, P. Rautakorpi, and R. Silvennoinen. Estimation of the me-
chanical energy output of the kite wind generator. Renewable Energy,
34:1525–1532, 2009.

[9] J.G. Arnold, R. Srinivasan, R.R. Muttiah, and J.R. Williams. Large
area hydrologic modeling and assessment part 1: model development.
Journal of the American Water Resources Association, 34:73–89, 1998.

262

APPENDIX D 263

[10] C. Audet, V. Béchard, and S. Le Digabel. Nonsmooth optimization
through mesh adaptive direct search and variable neighborhood search.
Journal of Global Optimization, 41:299–318, 2008.

[11] C. Audet and J.E. Dennis Jr. Pattern search algorithms for mixed
variable programming. SIAM Journal on Optimization, 11:573–594,
2000.

[12] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford
University Press, 1996.

[13] T. Bäck, D. Fogel, and Z. Michalewicz. Handbook of Evolutionary
Computation. Oxford University Press, 1997.

[14] P. Balaprakash, S.M. Wild, and P.D. Hovland. An experimental study
of global and local search algorithms in empirical performance tun-
ing. In 10th International Meeting on High-Performance Computing
for Computational Science (VECPAR 2012), 2012.

[15] P. Balaprakash, S.M. Wild, and B. Norris. SPAPT: Search problems
in automatic performance tuning. Procedia Computer Science, 9:1959–
1968, 2012.

[16] C. Bazelton and K. Smetters. Discounting inside the Washington, D.C.
beltway. Journal of Economic Perspectives, 13:213–228, 1999.

[17] O. Berman and N. Ashrafi. Optimization models for reliability of mod-
ular software systems. IEEE Transactions on Software Engineering,
19:1119–1123, 1993.

[18] M. Björkman and K. Holmström. Global optimization of costly non-
convex functions using radial basis functions. Optimization and Engi-
neering, 1:373–397, 2001.

[19] N. Bliznyuk, D. Ruppert, C.A. Shoemaker, R.G. Regis, S.M. Wild,
and P. Mugunthan. Bayesian calibration of computationally expensive
models using optimization and radial basis function approximation.
Journal of Computational and Graphical Statistics, 17:1–25, 2008.

[20] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann,
C.D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An
algorithmic framework for convex mixed integer nonlinear programs.
Discrete Optimization, 5:186–204, 2008.

APPENDIX D 264

[21] A.J. Booker, J.E. Dennis Jr, P.D. Frank, D.B. Serafini, V. Torczon,
and M.W. Trosset. A rigorous framework for optimization of expen-
sive functions by surrogates. Structural Multidisciplinary Optimization,
17:1–13, 1999.

[22] J. Breukels. An engineering methodology for kite design. PhD thesis,
Delft University of Technology, 2011.

[23] M.R. Bussieck, A. Stolbjerg Drud, and A. Meeraus. MINLPLib – a
collection of test models for mixed-integer nonlinear programming. IN-
FORMS Journal on Computing, 15:114–119, 2003.

[24] G. Cao, Z. Cai, Z. Liu, and G. Wang. Daily optimized model for long-
term operation of the Three Gorges-Gezhouba Cascade Power Stations.
Science in China series E: Technological Sciences, 50:98–110, 2007.

[25] T.R. Chandrupatla and A.D. Belegundu. Introduction to Finite Ele-
ments in Engineering. Prentice Hall, 2002.

[26] T.-C. Chen. IAs based approach for reliability redundancy alloca-
tion problems. Applied Mathematics and Computation, 182:1556–1567,
2006.

[27] D.W. Coit and A.E. Smith. Reliability optimization of series-parallel
systems using a genetic algorithm. IEEE Transactions on Reliability,
45:254–266, 1996.

[28] A.R. Conn, K. Scheinberg, and P.L. Toint. A derivative free optimiza-
tion algorithm in practice. In Proceedings of AIAA St Louis Conference,
1998.

[29] A.R. Conn, K. Scheinberg, and L.N. Vicente. Global convergence of
general derivative free trust-region algorithms to first and second order
critical points. SIAM Journal on Optimization, 20:387–415, 2009.

[30] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to
Derivative-Free Optimization. SIAM, Philadelphia, 2009.

[31] L. Costa and P. Oliveira. Evolutionary algorithms approach to the
solution of mixed integer non-linear programming problems. Computers
& Chemical Engineering, 25:257–266, 2001.

[32] C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker. A Bayesian ap-
proach to the design and analysis of computer experiments. Technical
report, Oak Ridge National Laboratory, Oak Ridge, TN, 1988.

APPENDIX D 265

[33] E. Davis and M. Ierapetritou. Kriging based method for the solution
of mixed-integer nonlinear programs containing black-box functions.
Journal of Global Optimization, 43:191–205, 2009.

[34] K.A. De Jong. An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. PhD thesis, University of Michigan, 1975.

[35] K. Deb. An efficient constraint handling method for genetic algo-
rithms. Computational Methods in Applied Mechanics and Engineering,
186:311–338, 2000.

[36] T. Dede, S. Bekiroğlu, and Y. Ayvaz. Weight minimization of trusses
with genetic algorithm. Applied Soft Computing, 11:2565–2575, 2011.

[37] A.P. Dempster. A generalization of Bayesian inference. Journal of the
Royal Statistical Society, Series B 30:205–247, 1968.

[38] A.K. Dhingra. Optimal apportionment of reliability & redundancy
in series systems under multiple objectives. IEEE Transactions on
Reliability, 41:576–582, 1992.

[39] L.C.W. Dixon and G. Szegö. The global optimization problem: an intro-
duction. In: Towards Global Optimization, volume 2. North-Holland,
Amsterdam, 1978.

[40] J. Duchon. Constructive Theory of Functions of Several Variables.
Springer-Verlag, Berlin, 1977.

[41] T. Dunne and R.D. Black. Partial area contributions to storm runoff in
a small New England watershed. Water Resources Research, 6:1296–
1311, 1970.

[42] T. Dunne and L. Leopold. Water in Environmental Planning. W.H.
Freeman & Co., New York, p. 818, 1978.

[43] M.A. Duran and I.E. Grossmann. A mixed-integer nonlinear program-
ming algorithm for process systems synthesis. AIChE Journal, 32:592–
606, 1986.

[44] Z.M. Easton, D.R. Fuka, M.T. Walter, D.M. Cowan, E.M. Schneider-
man, and T.S. Steenhuis. Re-conceptualizing the soil and water assess-
ment tool (SWAT) model to predict runoff from variable source areas.
Journal of Hydrology, 348:279–291, 2008.

APPENDIX D 266

[45] L. Fagiano. Control of Tethered Airfoils for High-Altitude Wind Energy
Generation. PhD thesis, Politecnico di Torino, 2009.

[46] C.A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamen-
tals and Applications. Oxford University Press, Oxford, 1995.

[47] C.A. Floudas, O.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z.H. Gu-
mus, S.T. Harding, J.L. Klepeis, C.A. Meyer, and C.A. Schweiger.
Handbook of Test Problems in Local and Global Optimization. Kluwer
Academic Publishers, Dordrecht, 1999.

[48] A. Forrester, A. Sóbester, and A. Keane. Engineering Design via Sur-
rogate Modelling - A Practical Guide. Wiley, 2008.

[49] J.H. Friedman. Multivariate adaptive regression splines. The Annals
of Statistics, 19:1–67, 1991.

[50] V.B. Gantovnik, Z. Gürdal, L.T. Watson, and C.M. Anderson-Cook. A
genetic algorithm for mixed integer nonlinear programming problems
using separate constraint approximations. AIAA Journal, 43:1844–
1849, 2005.

[51] S.B. Gershwin and J.E. Schor. Efficient algorithms for buffer space
allocation. Annals of Operations Research, 93:117–144, 2000.

[52] B. Glaz, P.P. Friedmann, and L. Liu. Surrogate based optimization of
helicopter rotor blades for vibration reduction in forward flight. Struc-
tural and Multidisciplinary Optimization, 35:341–363, 2008.

[53] T. Goel, R.T. Haftka, W. Shyy, and N.V. Queipo. Ensemble of surro-
gates. Structural Multidisciplinary Optimization, 33:199–216, 2007.

[54] R.E. Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society, 64:275–278,
1958.

[55] K. Gopal, K.K. Aggarwal, and J.S. Gupta. A method for solving re-
liability optimization problem. IEEE Transactions on Reliability, R-
29:36–38, 1980.

[56] I. Griva, S.G. Nash, and A. Sofer. Linear and Nonlinear Optimization,
2nd Edition. SIAM, George Mason University, Fairfax, VA, 2009.

[57] H.-M. Gutmann. A radial basis function method for global optimiza-
tion. Journal of Global Optimization, 19:201–227, 2001.

APPENDIX D 267

[58] P. Hansen and N. Mladenović. Variable neighborhood search: prin-
ciples and applications. European Journal of Operational Research,
130:449–467, 2001.

[59] R.L. Haupt. Antenna design with a mixed integer genetic algorithm.
IEEE Transactions on Antennas and Propagation, 55:577–582, 2007.

[60] T. Hemker. Derivative Free Surrogate Optimization for Mixed-Integer
Nonlinear Black Box Problems in Engineering. PhD thesis, TU Darm-
stadt, 2008.

[61] F. Herrera, M. Lozano, and J.L. Verdegay. Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis. Artificial
Intelligence Review, 12:265–319, 1998.

[62] M. Hikita, Y. Nakagawa, K. Nakashima, and H. Narihisa. Reliability
optimization of systems by a surrogate-constraints algorithm. IEEE
Transactions on Reliability, R-41:473–480, 1992.

[63] J.H. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, 1975.

[64] K. Holmström, N.-H. Quttineh, and M.M. Edvall. An adaptive radial
basis algorithm (ARBF) for expensive black-box mixed-integer con-
strained global optimization. Journal of Global Optimization, 41:447–
464, 2008.

[65] B. Horowitz, L.J. do Nascimento Guimaräes, V. Dantas, and S.M. Bas-
tos Afonso. A concurrent efficient global optimization algorithm ap-
plied to polymer injection strategies. Journal of Petroleum Science and
Engineering, 71:195–204, 2010.

[66] S. Hosder, L.T. Watson, B. Grossman, W.H. Mason, H. Kim, R.T.
Haftka, and S.E. Cox. Polynomial response surface approximations for
the multidisciplinary design optimization of a high speed civil trans-
port. Optimization and Engineering, 2:431–452, 2001.

[67] B. Houska. Robustness and stability optimization of open-loop con-
trolled power generating kites. Master’s thesis, Ruprecht-Karls-
Universität Heidelberg, Fakultät für Mathematik und Informatik, 2007.

[68] Y.C. Hsieh, T.C. Chen, and D.L. Bricker. Genetic algorithms for re-
liability design problems. Technical report, Department of Industrial
Engineering, University of Iowa, 1997.

APPENDIX D 268

[69] J. Hu, U.Y. Ogras, and R. Marculescu. System-level buffer allocation
for application-specific networks-on-chip router design. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
25:2919–2933, 2006.

[70] T. Inagaki. Interdependence between safety-control policy and
multiple-sensor schemes via Dempster-Shafer theory. IEEE Transac-
tions on Reliability, 40:182–188, 1991.

[71] G. Jekabsons. ARESLab: Adaptive Regression Splines toolbox for
Matlab. available at http://www.cs.rtu.lv/jekabsons/, 2010.

[72] H.A. Jensen and J.G. Sepulveda. Structural optimization of uncertain
dynamical systems considering mixed-design variables. Probabilistic
Engineering Mechanics, 26:269–280, 2011.

[73] D.R. Jones. A taxonomy of global optimization methods based on
response surfaces. Journal of Global Optimization, 21:345–383, 2001.

[74] D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimiza-
tion of expensive black-box functions. Journal of Global Optimization,
13:455–492, 1998.

[75] J.-C. Jouhaud, P. Sagaut, M. Montagnac, and J. Laurenceau. A
surrogate-model based multidisciplinary shape optimization method
with application to a 2D subsonic airfoil. Computers & Fluids, 36:520–
529, 2007.

[76] G.R. Kocis and I.E. Grossmann. Global optimization of nonconvex
mixed-integer nonlinear programming (MINLP) problems in process
synthesis. Industrial & Engineering Chemistry Research, 27:1407–1421,
1988.

[77] S. Koziel and Z. Michalewicz. Evolutionary algorithms, homomor-
phous mappings, and constrained parameter optimization. Evolution-
ary Computation, 7:19–44, 1999.

[78] E.C. Kuipers. http://www.mathworks.com/matlabcentral/fileexchange/95.
2000.

[79] W. Kuo, H. Lin, Z. Xu, and W. Zhang. Reliability optimization with
Lagrange multiplier and branch-and-bound technique. IEEE Transac-
tions on Reliability, R-36:624–630, 1987.

APPENDIX D 269

[80] W. Kuo, V.R. Prasad, F.A. Tillman, and C.-L. Hwang. Optimal Reli-
ability Design: Fundamentals and Applications. Cambridge University
Press, 2001.

[81] X.B. Lam, Y.S. Kim, A.D. Hoang, and C.W. Park. Coupled aerostruc-
tural design optimization using the kriging model and integrated multi-
objective optimization algorithm. Journal of Optimization Theory and
Applications, 142:533–556, 2009.

[82] A.H. Land and A.G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28:497–520, 1960.

[83] A. Levy, A. Montalvo, S. Gomez, and A. Galderon. Topics in Global
Optimization. Springer-Verlag, New York, 1981.

[84] C. Li, F.-L. Wang, Y.-Q. Chang, and Y. Liu. A modified global op-
timization method based on surrogate model and its application in
packing profile optimization of injection molding process. The Inter-
national Journal of Advanced Manufacturing Technology, 48:505–511,
2010.

[85] F. Li, C.A. Shoemaker, J. Wei, and X. Fu. Estimating maximal annual
energy given heterogeneous hydropower generating units with applica-
tion to the Three Gorges System. Journal of Water Resources Planning
and Management, DOI: 10.1061/(ASCE)WR.1943-5452.0000250, 2012.

[86] X. Liao, Q. Li, X. Yang, W. Zhang, andW. Li. Multiobjective optimiza-
tion for crash safety design of vehicles using stepwise regression model.
Structural and Multidisciplinary Optimization, 35:561–569, 2008.

[87] G. Liuzzi, S. Lucidi, and F. Rinaldi. Derivative-free methods for bound
constrained mixed-integer optimization. Computational Optimization
and Applications, DOI 10.1007/s10589-011-9405-3, 2011.

[88] S.N. Lophaven, H.B. Nielsen, and J. Søndergaard. DACE a Matlab
kriging toolbox. Technical report, IMM-TR-2002-12, 2002.

[89] J.B. MacQueen. Some methods for classification and analysis of multi-
variate observations. Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, University of California Press,
1:281–297, 1967.

[90] J.I. Madsen, W. Shyy, and R.T. Haftka. Response surface techniques
for diffuser shape optimization. AIAA Journal, 38:1512–1518, 2000.

APPENDIX D 270

[91] W.A. Magat and W.K. Viscusi. Effectiveness of the EPA’s regulatory
enforcement: the case of industrial effluent standards. Journal of Law
and Economics, 33:331–360, 1990.

[92] G. Matheron. Principles of geostatistics. Economic Geology, 58:1246–
1266, 1963.

[93] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, Berlin, Heidelberg, New York, 1992.

[94] Z. Michalewicz and D. Fogel. How To Solve It: Modern Heuristics.
Springer, 2004.

[95] N. Mladenović and P. Hansen. Variable neighborhood search. Com-
puters and Operations Research, 24:1097–1100, 1997.

[96] R.C. Morgans, A.C. Zander, C.H. Hansen, and D.J. Murphy. EGO
shape optimization of horn-loaded loudspeakers. Optimization and En-
gineering, 9:361–374, 2008.

[97] H. Mühlenbein, D. Schomisch, and J. Born. The parallel genetic algo-
rithm as function optimizer. Parallel Computing, 17:619–632, 1991.

[98] J. Müller and R. Piché. Mixture surrogate models based on Dempster-
Shafer theory for global optimization problems. Journal of Global Op-
timization, 51:79–104, 2011.

[99] J. Müller, C.A. Shoemaker, and R. Piché. SO-MI: A surrogate model
algorithm for computationally expensive nonlinear mixed-integer black-
box global optimization problems. Computers and Operations Re-
search, http://dx.doi.org/10.1016/j.cor.2012.08.022, 2012.

[100] J. Müller, C.A. Shoemaker, and R. Piché. A stochastic mixture surro-
gate model algorithm for computationally expensive black-box global
optimization problems. In Proceedings of the global optimization work-
shop 2012, 2012.

[101] R.H. Myers and D.C. Montgomery. Response Surface Methodology,
Process and Product Optimization using Designed Experiments. Wiley-
Interscience Publication, 1995.

[102] B.A. Needelman, W.J. Gburek, G.W. Petersen, A.N. Sharpley, and
P.J.A. Kleinman. Surface runoff along two agricultural hillslopes with
contrasting soils. Soil Science Society of America journal, 68:914–923,
2004.

APPENDIX D 271

[103] S.L. Neitsch, J.G. Arnold, J.R. Kiniry, and J.R. . Williams. Soil and
water assessment tool theoretical documentation version 2005. Tech-
nical report, US Department of Agriculture – Agricultural Research
Service, Temple, Texas., 2004.

[104] A. Neumeier. Complete search in constrained global optimization. Acta
Numerica, 13:271–369, 2004.

[105] I. Nowak. Relaxation and Decomposition Methods for Mixed Integer
Nonlinear Programming. Birkhäuser, 2005.

[106] I. Nowak and S. Vigerske. LaGO - a (heuristic) branch and cut algo-
rithm for nonconvex MINLPs. Central European Journal of Operations
Research, 16:127–138, 2008.

[107] E.M. Owens, S.W. Effler, S.M. Doerr, R.K. Gelda, E.M. Schneider-
man, D.G. Lounsbury, and C.L. Stepczuk. A strategy for reservoir
model forecasting based on historic meteorological conditions. Lake
and Reservoir Management, 14:322–331, 1998.

[108] J. Pichitlamken, B.L. Nelson, and L.J. Hong. A sequential procedure
for neighborhood selection-of-the-best in optimization via simulation.
European Journal of Operational Research, 173:283–298, 2006.

[109] M.J.D. Powell. An efficient method for finding the minimum of a func-
tion of several variables without calculating derivatives. The Computer
Journal, 7:155–162, 1964.

[110] M.J.D. Powell. The Theory of Radial Basis Function Approximation
in 1990. Advances in Numerical Analysis, vol. 2: wavelets, subdivision
algorithms and radial basis functions. Oxford University Press, Oxford,
pp. 105-210, 1992.

[111] M.J.D. Powell. UOBYQA: unconstrained optimization by quadratic
approximation. Mathematical Programming, Series B 92:555–582, 2002.

[112] M.J.D. Powell. Developments of NEWUOA for minimization without
derivatives. IMA Journal of Numerical Analysis, 28:649–664, 2008.

[113] M.J.D. Powell. The BOBYQA algorithm for bound constrained opti-
mization without derivatives. Technical report, Centre for Mathemat-
ical Sciences, University of Cambridge, UK, 2009.

APPENDIX D 272

[114] N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and
P.K. Tucker. Surrogate-based analysis and optimization. Progress in
Aerospace Sciences, 41:1–28, 2005.

[115] S.D. Rajan and D.T. Nguyen. Design optimization of discrete struc-
tural systems using MPI-enabled genetic algorithm. Structural and
Multidisciplinary Optimization, 27:1–9, 2004.

[116] K. Rashid, S. Ambani, and E. Cetinkaya. An adaptive multi-
quadric radial basis function method for expensive black-box mixed-
integer nonlinear constrained optimization. Engineering Optimization,
DOI:10.1080/0305215X.2012.665450, 2012.

[117] R.G. Regis. Convergence guarantees for generalized adaptive stochastic
search methods for continuous global optimization. European Journal
of Operational Research, 207:1187–1202, 2010.

[118] R.G. Regis. Stochastic radial basis function algorithms for large-scale
optimization involving expensive black-box objective and constraint
functions. Computers & Operations Research, 38:837–853, 2011.

[119] R.G. Regis and C.A. Shoemaker. A stochastic radial basis function
method for the global optimization of expensive functions. INFORMS
Journal on Computing, 19:497–509, 2007.

[120] R.G. Regis and C.A. Shoemaker. Improved strategies for radial basis
function methods for global optimization. Journal of Global Optimiza-
tion, 37:113–135, 2007.

[121] R.G. Regis and C.A. Shoemaker. Parallel radial basis function methods
for the global optimization of expensive functions. European Journal
of Operational Research, 182:514–535, 2007.

[122] R.G. Regis and C.A. Shoemaker. Parallel stochastic global optimiza-
tion using radial basis functions. INFORMS Journal on Computing,
21:411–426, 2009.

[123] R.G. Regis and C.A. Shoemaker. Combining radial basis func-
tion surrogates and dynamic coordinate search in high-dimensional
expensive black-box optimization. Engineering Optimization,
DOI:10.1080/0305215X.2012.687731, 2012.

APPENDIX D 273

[124] R.G. Regis and C.A. Shoemaker. A quasi-multistart framework for
global optimization of expensive functions using response surface mod-
els. Journal of Global Optimization, DOI 10.1007/s10898-012-9940-1,
2012.

[125] N.V. Sahinidis and M. Tawarmalani. BARON 9.0.4: Global Optimiza-
tion of Mixed-Integer Nonlinear Programs, User’s manual, 2010.

[126] K. Schittkowski, C. Zillober, and R. Zotemantel. Numerical compari-
son of nonlinear programming algorithms for structural optimization.
Structural Optimization, 7:1–19, 1994.

[127] M. Schlüter, M. Gerdts, and J.-J. Rückmann. MIDACO: New
global optimization software for MINLPs. http://www.midaco-
solver.com/about.html, 2010.

[128] F. Schoen. A wide class of test functions for global optimization. Jour-
nal of Global Optimization, 3:133–137, 1993.

[129] G. Shafer. A Mathematical Theory of Evidence. Princeton University
Press, 1976.

[130] S. Shan and G.G. Wang. Survey of modeling and optimization strate-
gies to solve high-dimensional design problems with computationally-
expensive black-box functions. Structural and Multidisciplinary Opti-
mization, 41:219–241, 2010.

[131] B. Shankar, E.A. DeVuyst, D.C. White, J.B. Braden, and R.H. Horn-
baker. Nitrate abatement practices, farm profits and lake water quality:
a central Illinois case study. Journal of Soil and Water Conservation,
55:296–304, 2000.

[132] F. Smarandache and J. Dezert. Advances and Applications of DSmT for
Information Fusion, Collected Works, Volume 2. American Research
Press, 2006.

[133] E.M.B. Smith and C.C. Pantelides. A symbolic reformulation/spatial
branch-and-bound algorithm for the global optimization of nonconvex
MINLPs. Computers & Chemical Engineering, 23:457–478, 1999.

[134] D.D. Spinellis and C.T. Papadopoulos. A simulated annealing approach
for buffer allocation in reliable production lines. Annals of Operations
Research, 93:373–384, 2000.

APPENDIX D 274

[135] M. Srinivas and L.M. Patnaik. Adaptive probabilities of crossover and
mutation in genetic algorithms. IEEE Transactions on Systems, Man
and Cybernetics, 24:656–667, 1994.

[136] R. Stocki, K. Kolanek, S. Jendo, and M. Kleiber. Study on discrete
optimization techniques in reliability-based optimization of truss struc-
tures. Computers and Structures, 79:2235–2247, 2001.

[137] M. Tawarmalani and N.V. Sahinidis. A polyhedral branch-and-cut
approach to global optimization. Mathematical Programming, 103:225–
249, 2005.

[138] F.A. Tillman, C.L. Hwang, and W. Kuo. Determining component re-
liability and redundancy for optimum system reliability. IEEE Trans-
actions on Reliability, R-26:162–165, 1977.

[139] B. Tolson and C.A. Shoemaker. Cannonsville reservoir watershed
SWAT2000 model development, calibration and validation. Journal
of Hydrology, 337:68–89, 2007.

[140] B.A. Tolson, M. Asadzadeh, H.R. Maier, and A. Zecchin. Hybrid dis-
crete dynamically dimensioned search (HD-DDS) algorithm for water
distribution system design optimization. Water Resources Research,
pages W12416, DOI:10.1029/2008WR007673, 2009.

[141] B.A. Tolson and C.A. Shoemaker. Dynamically dimensioned search
algorithm for computationally efficient watershed model calibration.
Water Resources Research, 43:W01413, 16 pages, 2007.

[142] A. Törn and A. Zilinskas. Global Optimization. Lecture Notes in Com-
puter Science, 350. Springer-Verlag, Berlin, 1989.

[143] L.S. VanDyke, J.W. Pease, D.J. Bosch, and J.C. Baker. Nutrient man-
agement planning on four Virginia livestock farms: impacts on nutri-
ent losses and farm income. Journal of Soil and Water Conservation,
54:499–506, 1999.

[144] F.A.C. Viana and R.T. Haftka. Using multiple surrogates for minimiza-
tion of the RMS error in metamodeling. In Proceedings of the ASME
2008 International Design Engineering Technical Conferences & Com-
puters and Information in Engineering Conference DETC2008-49240,
2008.

APPENDIX D 275

[145] J. Viswanathan and I.E. Grossmann. A combined penalty function and
outer-approximation method for MINLP optimization. Computers &
Chemical Engineering, 14:769–782, 1990.

[146] E. Wang, W.L. Harman, J.R. Williams, and J.M. Sweeten. Profitability
and nutrient losses of alternative manure application strategies with
conservation tillage. Journal of Soil and Water Conservation, 57:221–
229, 2002.

[147] T. Westerlund and F. Petterson. An extended cutting plane method for
solving convex MINLP problems. Computers & Chemical Engineering,
19:131–136, 1995.

[148] T. Westerlund and R. Pörn. Solving pseudo-convex mixed integer op-
timization problems by cutting plane techniques. Optimization and
Engineering, 3:253–280, 2002.

[149] S.M. Wild, R.G. Regis, and C.A. Shoemaker. ORBIT: Optimization
by radial basis function interpolation in trust-regions. SIAM Journal
on Scientific Computing, 30:3197–3219, 2007.

[150] J.R. Williams, P.M. Clark, and P.G. Balch. Streambank stabilization:
an economic analysis from the landowner’s perspective. Journal of Soil
and Water Conservation, 59:252–259, 2004.

[151] D.H. Wolpert and W.G. Macready. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1:67–82,
1997.

[152] J. Woodbury. Multi-models, calibration, and optimization for cost based
water quality management of watershed models. PhD thesis, Cornell
University, Ithaca, NY, 2012.

[153] G.A.A. Wossink and D.L. Osmund. Farm economics to support the
design of cost-effective Best Management Practice (BMP) programs
to improve water quality: nitrogen control in the Neuse River Basin,
North Carolina. Journal of Soil and Water Conservation, 57:213–221,
2002.

[154] R.R. Yager. On the Dempster-Shafer framework and new combination
rules. Information Sciences, 41:93–137, 1987.

[155] R.J. Yang, N. Wang, C.H. Tho, J.P. Bobineau, and B.P. Wang. Meta-
modeling development for vehicle frontal impact simulation. Journal
of Mechanical Design, 127:1014–1021, 2005.

APPENDIX D 276

[156] K.Q. Ye, W. Li, and A. Sudjianto. Algorithmic construction of optimal
symmetric Latin hypercube designs. Journal of Statistical Planning and
Inference, 90:145–159, 2000.

[157] T. Yokota, M. Gen, and Y.-X. Li. Genetic algorithm for nonlinear
mixed-integer programming problems and its application. Computers
& Industrial Engineering, 30:905–917, 1996.

[158] J.-H. Yoon and C.A. Shoemaker. Comparison of optimization methods
for groundwater bioremediation. Journal of Water Resources Planning
Management, 125:54–63, 1999.

[159] X. Yuan, S. Zhang, L. Piboleau, and S. Domenech. Une méthode
d’optimisation non linéaire en variables mixtes pour la conception de
procédés. R.A.I.R.O. Operation Research, 22:331–346, 1988.

[160] Y. Yuan, S.M. Dabney, and R.L. Bingner. Cost effectiveness of agricul-
tural BMPs for sediment reduction in the Mississippi Delta. Journal
of Soil and Water Conservation, 57:259–268, 2002.

[161] L.A. Zadeh. Review of book: A mathematical theory of evidence. The
AI Magazine, 5:81–83, 1984.

[162] J. Zhang, H.S.-H. Chung, and W.-L. Lo. Clustering-based adaptive
crossover and mutation probabilities for genetic algorithms. IEEE
Transactions on Evolutionary Computation, 11:326–335, 2007.

[163] P. Zhu, Y. Zhang, and G.-L. Chen. Metamodel-based lightweight de-
sign of an automotive front-body structure using robust optimization.
Proceedings of the Institution of Mechanical Engineers, Part D: Jour-
nal of Automobile Engineering, DOI: 10.1243/09544070JAUTO1045,
2009.

