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Abstract 

The classification of natural images is an essential task in current computer vision and 
pattern recognition applications. Rock images are a typical example of natural images, 
and their analysis is of major importance in the rock industry and in bedrock 
investigations. Rock image classification is based on specific visual descriptors extracted 
from the images. Using these descriptors, images are divided into classes according to 
their visual similarity. 

This thesis investigates rock image classification using two different approaches. 
Firstly, the colour and texture based description of rock images is developed by applying 
multiscale texture filtering techniques to the rock images. The emphasis in such image 
description is to make the filtering for the selected colour channels of the rock images. 
Additionally, surface reflection images obtained from industrial rock plates are analysed 
using texture filtering methods. Secondly, the area of image classification is studied in 
terms of classifier combinations. The purpose of the classifier combination strategies 
proposed in this thesis is to combine the information provided by different visual 
descriptors extracted from the image in the classification. This is attained by using 
separate base classifiers for each descriptor and combining the opinions provided by the 
base classifiers in the final classification. In this way the texture and colour information 
of rock images can be combined in the classification to achieve better classification 
accuracy than a classification using separate descriptors. 

These methods can be readily applied to automated rock classification in such fields 
as the rock and stone industry or bedrock investigations.  
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1 Introduction 

In recent years, the use of digital imaging has increased rapidly in several areas of life 
thanks to the decreased costs of digital camera technology and the development of image 
processing and analysis methods. It is nowadays common for imaging tools to be used in 
several fields which earlier required manual inspection and monitoring. Imaging methods 
are widely used in a variety of monitoring and analysis tasks in fields such as health care, 
security, quality control, and process inspection. Different image-based classification 
tasks are also routinely performed in numerous industrial manufacturing processes.  

Compared to manual inspection and classification, the use of automated image 
analysis provides several benefits. Manual inspection carried out by people is, as might 
be expected, affected by human factors. These factors include personal preferences, 
fatigue, and the concentration levels of the individual performing the inspection task. 
Therefore, inspection is a subjective task, dependent on the personal inclinations of the 
individual inspector, with individuals often arriving at different judgments. By contrast, 
automated inspection by computer with a camera system performs both inspection and 
classification tasks dependably and consistently. Another drawback of manual inspection 
is the amount of manual labour expended on each task. 

1.1 Computer vision and pattern recognition        

Automatic image analysis carried out by computer is referred to as computer vision. In a 
computer vision system the human eye is replaced by a camera while the computer 
replaces the human brain. It can be said that the purpose of a computer vision system is to 
give a robot the ability to see (Schalkoff, 1989). Typically, computer vision is employed 
in the inspection of goods and products in industrial processes (Newman and Jain, 1995), 
but it can also be used in other types of image-based analysis and inspection tasks. In the 
process industry, significant amounts of information on the process can be acquired using 
computer vision. This information is utilized in process monitoring and control tasks. 
One typical area of the process industry employing computer vision systems is the web 
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Figure 1.1. Components of a pattern recognition system (Duda et al., 2001). 

material industry that includes metal, paper, plastics, and textile manufacturing 
(Iivarinen, 1998). In this area, computer vision is often used to detect and classify a range 
of defects and anomalies which occur in the production process. Quality control of 
products is a central task and the use of computer vision systems is also increasing in 
other types of manufacturing and production tasks both in industry and research. The 
application of different texture analysis methods is common in various visual inspection 
tasks (Pietikäinen et al., 1998; Kumar and Pang, 2002; Baykut et al., 2000), and colour-
based applications also exist (Boukovalas et al., 1999; Kauppinen, 1999).  

In contrast to inspection performed by a manual inspector, a computer vision system 
processes all information systematically without the inconsistencies caused by human 
factors. In addition to industrial quality and production control, computer vision systems 
are widely applied to such areas as traffic monitoring as well as a variety of security and 
controlling tasks. People identification based on facial features or fingerprints, 
recognition of handwritten characters, and medical imaging applications are examples of 
typical image-based recognition and classification tasks.   

The main parts of a computer vision system include image acquisition, image 
processing and analysis. Pattern recognition methods are widely used in computer vision 
systems to analyze and recognize the image content. Duda et al. (2001) have described 
the process of pattern recognition and classification as illustrated in Figure 1.1. The 
process starts with sensing of certain input which, in this case refers to image acquisition. 
Image acquisition is nowadays mainly performed using digital imaging methods and the 
images are then processed using a computer. The second step in the procedure is 
segmentation. It is often necessary to extract a certain region of interest from the image to 
be used in inspection. This way, the object to be classified is isolated from the other 
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objects and the background of the image; a process called image segmentation. In 
addition to segmentation, noise reduction and image enhancement methods, such as 
sharpening, can also be employed. The third step is feature extraction. The purpose of the 
feature extractor is to characterize the object to be recognized by using measurements 
whose values are very similar to objects in the same category and also very different to 
objects in different categories (Duda et al., 2001). In image recognition and classification, 
certain features are extracted from the images. The features often form feature vectors, 
also called descriptors, which are able to describe the image content. The fourth step is 
classification. The idea of classification is to assign the unknown image to one of a 
number of categories. If predefined categories are used, the classification is said to be 
supervised, otherwise it is unsupervised. Finally, in the post-processing stage, the 
classification result can be estimated using various validation methods. 

1.2 Image classification 

The present study deals with the problem of image classification. In image-based pattern 
recognition, images are used to describe real-world objects. This thesis focuses on feature 
selection and classification problems arising from the classification of images, 
particularly rock images.    

1.2.1 Feature selection 

In the previous Section, it was noted that the features describing the object to be 
classified should be such that they distinguish between different categories. Therefore, 
the features should describe the desired properties of the object. On the other hand, the 
features should be invariant to irrelevant transformations, such as scale, translation or 
rotation of the object to be recognized (Duda et al., 2001). 

In the case of image classification, descriptors extracted from the images are 
employed. The most typical visual properties used in image classification relate to the 
colours, textures, and shapes occurring in the images. These properties are described by 
calculating different kinds of descriptors based on them. In the fields of image analysis 
and pattern recognition, numerous descriptors have been proposed for use in the 
description of image content. In addition, much research has focused on the problem of 
image content description in the field of content-based image retrieval (Del Bimbo, 1999; 
Smeulders et al., 2000). In content-based image retrieval approaches, one of the goals is 
to describe image content by means of the visual descriptors extracted from the images. 
Consequently, descriptors used in retrieval approaches can also be used to characterize 
image content in image classification.        

1.2.2 Multiple classifier systems 

An unknown object is classified into one of the categories on the basis of certain 
properties. Normally, several different properties measured from the object are used in 
the decision process. One option is to employ several classifiers or experts, each dealing 
with different aspects of the input (Duda et al., 2002). Alternatively, different classifiers 
may classify the object into different categories even if the input is the same. The 
simplest case is when all classifiers elicit the same decision. However, when the 
classifiers are in disagreement, the situation is more complicated. By analogy, one may 
suppose that a person suffering from mysterious pains consults five doctors. Now, if four 



Introduction 

14 

doctors diagnose for disease A and only one for disease B, should the final diagnosis be 
based on a majority opinion? However, it is possible that the doctor diagnosing disease B 
is the only specialist in this highly specialised area of medicine and, therefore, uniquely 
competent to make a correct diagnosis. In this case, the medical majority would be 
wrong. This problem may also be viewed from a different perspective in which some of 
the five doctors are undecided as to a definitive diagnosis and instead propose that the 
patient may be suffering from either disease A or B, but that A is more likely. In this 
case, in addition to decisions, probabilities are also being expressed. This additional 
information can assist in making the final decision as to the actual nature of the disease. 

The above example illustrates the difficulties in reaching a final decision based on the 
opinions provided by different experts. In the field of pattern recognition it has been 
shown that a consensus decision of several classifiers can often provide greater accuracy 
than any single classifier (Ho et al., 1994; Kittler et al., 1998). As a result, several 
strategies have been developed to obtain a consensus decision on the basis of the opinions 
of different classifiers in pattern classification. Some of the strategies are based on simple 
voting (Lam and Suen, 1997; Lin et al., 2003) whereas others consider the probabilities 
provided by the separate classifiers (Kittler et al., 1998).   

In the case of image classification, multiple classifier systems can be used in several 
ways. In the present study, classifier combinations are used to classify unknown images 
into predefined categories. In this approach, classification based on different visual 
descriptors is first made separately. After this, the final decision is made by combining 
the results of the separate classifications. In such a procedure the opinion produced by 
each descriptor affects the final decision.               

1.3 Rock images      

The application area of this thesis is rock and stone images. In the rock industry, the 
visual inspection of products is essential because the colour and texture properties of rock 
often vary greatly, even within the same rock type. Therefore, when rock plates are 
manufactured, it is important that the plates used, such as in flooring, share common 
visual properties. In addition, visual inspection is necessary in the quality control of rock 
products. Traditionally, rock products have been manually classified into different 
categories on the basis of their visual similarity. However, in recent years the rock and 
stone industry has adopted computer vision and pattern recognition tools for use in rock 
image inspection and classification. In addition to the inspection of the visual properties 
of rock materials, the application of automated image-based inspection can also provide 
other benefits for rock manufacturers. For instance, the strength of the rock material can 
often be estimated by analyzing the surface structures of the rock plates.   

Additionally, in the field of rock science, the development of digital imaging has 
made it possible to store and manage images of the rock material in digital form (Autio et 
al., 2004). One typical application area of rock imaging is bedrock investigation which is 
utilized in many areas from mining to geological research. In such analysis, rock 
properties are analyzed by inspecting the images collected from the bedrock using 
borehole imaging. Some of the essential visual features of the images obtained from 
bedrock samples are texture, grain structure and colour distribution of the samples. The 
images of the rock samples are stored into image databases to be utilized in rock 
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inspection. Due to the relatively large size of such databases, automated image analysis 
and classification methods are necessary. 

1.4 Outline of thesis 

This aim of this study is to contribute to research into the classification of natural rock 
images. The classification task of the images obtained from rock is investigated in terms 
of two approaches. The first is the selection of effective visual descriptors for rock 
images. Successful classification requires descriptors which are capable of providing an 
effective description of image content. In the case of rock images, the descriptors should 
be capable of describing the colour and texture properties of rock that is often non-
homogenous. For this purpose, a multiscale texture filtering technique that is also applied 
to colour components of rock images is used. In addition, statistical histogram-based 
methods are used in image content description. 

In the second approach, classifier combinations are used for rock images. The 
classifier combinations include different types of visual descriptors such as colour and 
texture, extracted from the images. This is motivated by the fact that improved 
classification accuracy can be achieved using classifier combinations compared to 
classification using separate descriptors.  The organization of this thesis is as follows:   

Chapter 2 provides an introduction to the field of rock imaging and image analysis. 
The Chapter begins with a description of the image-based rock analysis problem. The 
imaging methods for rock materials as well as colour and texture properties are discussed. 
Earlier studies on rock image analysis are reviewed.  

Chapter 3 provides a brief overview of research undertaken in the field of texture and 
colour description.  

Chapter 4 focuses on classification methods and the major classification principles are 
discussed. In addition, the special character of image classification is described.  

The topic of classification is continued in Chapter 5 with an introduction to classifier 
combination methods. Previous work in this research area is reviewed and the most 
common classifier combination methods are presented.  

Chapter 6 discusses the application of the classification methods for rock images and 
there are brief introductions to publications related to this thesis. The author’s own 
contributions to the publications are presented. Conclusions arising from this study are 
presented in Chapter 7. 
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2 Rock image analysis 

The application area in this thesis is rock image classification. As mentioned in the 
previous Chapter, automated rock image analysis is essential in the rock and stone 
industry as well as in rock science. However, rock like most other natural image types, 
such as clouds, ice or vegetation, is seldom homogenous and this often makes their 
classification problematic. Indeed, the colour and texture properties of rock may vary 
significantly even within the same rock type. In this Chapter, the special character of rock 
images is examined. Colour and texture features are also considered and there is finally a 
review of previous work conducted in rock image analysis   

2.1 Image-based rock analysis 

The inspection of rock materials is essential in several areas. Typical examples of these 
are mining, underground construction, and oil well production. In several geoscientific 
disciplines from remote sensing to petrography, rock inspection and analysis tasks play 
important roles (Autio et al., 2004). In practical rock inspection applications, rock 
materials have been classified according to various factors such as their mineral content, 
physical properties, or origin (Autio et al., 2004). In this kind of analysis, rock properties 
are examined by inspecting bedrock using boreholes.    

In addition to bedrock investigation, another important field of rock material 
inspection is the construction industry. Rock is commonly used in buildings where 
ornamental rock plates are used for such purposes as floor and wall covering. In the rock 
plate manufacturing process, control of the visual properties of the plates is important. 
This is because visual properties such as the colour or texture of the rock plates should 
form a harmonic surface. In addition, cracks and other surface defects in the rock plates 
can be detected using imaging methods.  

Visual inspection is equally important in bedrock investigation as it is in rock plate 
manufacture. In both cases, manual inspection of rock materials is still widely practiced. 
In bedrock investigation, the manual inspection of core samples obtained from boreholes 
is carried out by geologists to determine the mineral content of the rock (Spies, 1996). 
The core samples are also stored for future analysis. The storage of core samples may 
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easily involve hundreds of kilometres of core samples. There are several problems with 
this conventional way of core sample inspection. In the first place, manual inspection is 
subjective since classification is always dependent the personal view of the individual 
performing the analysis. Secondly, manual inspection is a very labour-intensive way of 
analyzing large amounts of rock. The third problem is storage of the core samples for 
future analysis tasks. Accessing a core sample of interest involves a visit to the storage 
site and then the desired samples must be located. Similar problems also arise with rock 
plate production. The conventional manual inspection of the rock plate manufacturing is 
labour-intensive and subjective. In addition, any documents of produced rock plates 
cannot be stored for future analysis. 

Several problems associated with manual inspection in bedrock investigation as well 
as in rock plate manufacturing can be overcome by using automated image analysis. In 
bedrock analysis, the core samples obtained from the bedrock can be scanned into digital 
form using core scanning techniques. This means the rock samples can be analyzed as 
images, which make it possible to use automated pattern recognition and image analysis 
tools in the rock analysis. As a result, different rock materials can be distinguished and 
classified automatically on the basis of the visual properties of the rock. Automatic image 
analysis is a fast way of classifying large amounts of rock materials and the subjectivity 
problems encountered with manual classification can be avoided (Autio et al., 2004). 
Another significant benefit of image-based rock investigation is the storing of the rock 
samples. When the images are stored in digital form for future analysis tasks, the desired 
core samples can be easily retrieved from a digital image database. In the case of rock 
plate production, the image-based rock inspection makes it possible to automatically 
classify the rock plates according to their visual properties (Autio et al., 2004). 
Furthermore, the images of each plate can be stored into database which can serve as a 
documentary source for each plate for the manufacturer. These images can be used, for 
example, to construct the desired types of surfaces from the plates.              

2.2 Rock imaging 

Several types of image acquisition systems have been introduced in the field of rock 
imaging. Imaging applications are nowadays based on digital imaging, typically CCD 
cameras. In geoengineering applications, different types of scanners have enabled routine 
image acquisition in underground engineering (Autio et al., 2004). The scanners can be 
applied using two different principles. Core scanners are used to take images of the core 
samples drilled from the bedrock. They are typically horizontal scanners, which acquire 
the image of the cylinder-shaped core sample rotating under the camera. The core sample 
rotates 360  and the camera acquires the image of the surface of the cylinder.  Figure 2.1 
shows an example of a horizontal colour core scanner developed by DMT GmbH, 
Germany. In scanners of this type, special attention must be given to the stabilization of 
the light source and colour range of the camera system (Autio et al., 2004). Figure 2.2 
presents two images of the core surface. Another image acquisition principle is borehole 
imaging using borehole scanners or cameras. In these applications, the borehole is 
imaged instead of the core samples drilled from the hole.  
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Figure 2.1. The CoreScan Colour, horizontal core scanner developed by DMT GmbH, 
Germany. 

Figure 2.2. Examples of core images.   
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a)         b) 

Figure 2.3 a) The illumination setup used in rock plate imaging, b) A sample image 
obtained from a rock plate.  

The bedrock images used in this thesis have been obtained using horizontal core 
scanners. In the case of the industrial rock plates, the surface image can be acquired using 
a digital imaging system in which the plate is illuminated strongly enough to allow all the 
visual properties of rock to be acquired. To avoid light reflection on the plate surface, 
suitable lightning conditions can be achieved by illuminating the horizontally located 
square-shaped plate from each side. This allows the light to approach the plate surface 
horizontally. Figure 2.3a shows the lightning principle. In this kind of rock plate imaging 
system, the camera is located above the plate. A rock plate image is presented in Figure 
2.3b. 

There are also other interesting rock properties that can be measured using imaging 
techniques. In rock plate production it is often necessary to inspect the plate surface 
because when used in external walls, they must withstand a range of weather conditions 
(Lebrun, 2000). Cracking and other defects present in the surface of the rock plate have a 
significant effect on its ability to resist damage due to frost and moisture. It is, therefore, 
essential for a rock manufacturer to be able to inspect plate surfaces. The surface of a 
polished rock plate can be inspected using total reflection. According to Snell’s law 
(Keller et al., 1993), when light reaches the surface of two different materials, it partially 
reflects and partially transmits. If the light approaches at an angle 1 with respect to the 
surface normal, the angle of reflection 1r is equal to 1 (figure 2.4a). The angle of the 
refracted ray, 2, can be defined according to Snell’s law:  

2211 sinsin nn      (2.1) 

where n1and n2 are constants dependent on the material. Thus the angle 2 can be defined 
as follows: 

1

2

11
2 sinsin

n

n
               (2.2) 



Rock image analysis 

21

a)      b) 

Figure 2.4.  a) Total reflection, b) The setup for rock plate surface imaging. 

Figure 2.5. Examples of reflection images acquired from rock plate surfaces.      

Sinus function cannot be given values above one. Because sinus function has a value one 
with an angle of 90 , it is possible to define critical angle c:

221 90sinsin nnn c               (2.3) 

1

2sin
n

n
c                (2.4) 

At the surface, reflection and transmission occur when the approaching angle 1 is lower 
than critical angle c. If 1 is greater than c, all light is reflected and this is referred to 
as total reflection (Keller et al., 1993). When light is directed against the surface at an 
angle 1 which is higher than the critical angle, the surface acts as a mirror reflecting all 
the light at an angle 1r. This can be utilized in surface inspection since light is reflected 
from a smooth polished surface in a different manner than from a surface containing 
irregularities such as cracks. Using this kind of approach, even minute cracks and defects 
can be detected. Figure 2.4b illustrates an imaging setup for rock plate surface inspection. 
In the imaging arrangement, fluorescence tubes illuminate the plate via a white vertical 
surface. This kind of lightning arrangement provides even illumination across the surface. 
Figure 2.5 shows two examples of surface reflection images of rock plates. 
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Figure 2.6. Example textures from Brodatz album (1968). 

2.3 The features of rock images 

2.3.1 Texture features of rock   

Several types of rock properties can be estimated on the basis of texture. However, there 
are certain special properties of rock that can complicate analysis work and the most 
important of these is the non-homogeneity of the rock images. This condition is 
commonly expressed in the texture distribution of the rock images. This section considers 
the significance of the texture of rock images. 

Textures 

Texture is one of the most important image characteristics to be found almost anywhere 
in nature. It can be used to segment images into distinct objects or regions. Indeed, the 
classification and recognition of different surfaces is often based on texture properties. 
Textures can be roughly divided into two categories: deterministic and stochastic textures 
(Van Gool et al., 1985). A deterministic texture is composed of patterns which are 
repeated in an ordered manner. Almost all textures occurring in nature are stochastic and 
in these textures, the primitives do not obey any statistical law. Figure 2.6 presents 
sample textures from Brodatz album (1968) in which woollen cloth and a brick wall 
exemplify deterministic textures while grass and bark exemplify stochastic ones. 

Even if textures occur almost everywhere, there is still no universal definition 
available for them. Despite this, several different definitions do exist that may be used to 
describe texture. Haralick (1979) describes texture as a phenomenon formed by texture 
primitives and their organization. In the definition of Van Gool et al. (1985), texture is 
defined as a structure that consists of several more or less oriented elements or patterns. 
Tamura et al. (1978) define texture T as a simple mathematical model: 

)(tRT             (2.5) 

in which R corresponds to the organization of texture primitives t.
Human texture perception has been the subject of several studies. Tamura et al. 

(1978) investigated texture analysis from a psychological viewpoint. They proposed six 
significant visual properties for texture, namely coarseness, contrast, directionality, line-
likeness, regularity, and roughness. According to Rao and Lohse (1993), the most 
essential texture properties in human perception are repetitiveness, directionality, 
granularity, and complexity. These properties have been studied by Liu and Picard (1996)  
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Figure 2.7. Examples of three different rock textures. 

who proposed the three Wold features for texture description. Wold features describe 
periodicity, directionality, and randomness of texture. Julesz (1981) considers texture 
perception as a part of human visual perception. There are two basic models for texture 
perception suggested by Julesz (1981), feature model and frequency model. In the feature 
model, the texture perception obeys texture features called textons. All the patterns, lines, 
and orientations occurring in the texture are regarded as textons. The frequency model 
considers the texture image in terms of its frequency distribution. 

Rock textures 

Rock texture is stochastic in texture like most other natural textures. Figure 2.7 presents 
three different rock texture types. In addition to the stochastic nature of the rock textures, 
a more significant characteristic of the rock texture is non-homogeneity. In natural 
textures non-homogeneity is common which can make their analysis and classification 
somewhat complicated. The homogeneity of an image can be estimated by dividing a 
sample image into smaller blocks. After this certain texture features describing properties 
such as directionality or granularity are calculated for each block. If the features do not 
significantly vary between the blocks, the sample is deemed to be homogenous. 
Conversely, if these feature values show significant variance, the texture sample is non-
homogenous. This division into blocks has been applied in (Lepistö et al., 2003a). 

Texture properties are significant in rock image analysis. Based on texture, it is 
possible to estimate several types of rock properties. For example, the visual properties of 
rock plates manufactured in the building industry are dependent on the texture of the rock 
surface. Texture directionality and granularity are very important texture properties in 
rock texture analysis. This is because several types of rock textures have strong 
directionality and granular size of the rock texture also often varies. The orientation and 
the strength of directionality is important, for example, in obtaining a harmonic rock plate 
surface. All the plates should be similarly oriented to achieve an impression of a visually 
regular surface. In addition the granular sizes of the plates should not vary greatly. 
Texture directionality and granularity are important factors in terms of human texture 
perception and therefore have a significant effect on the visual properties of a surface 
constructed of rock. In bedrock investigation directionality and granularity play a major 
role in the recognition of different rock types. Certain rock properties such as strength of 
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Figure 2.8. Directional rock textures. 

            

 Figure 2.9. Rock textures with different grain structures. 

the rock can also be estimated on the basis of directionality and granularity. In some 
applications, the granular size and detection of grains of a certain size and colour are also 
important (Lepistö et al., 2004).  

Texture homogeneity is often expressed in terms of directionality or granularity. 
Figure 2.8 shows two examples of rock textures with different directionalities. In the first, 
the orientation is quite regular, but there are changes in the strength of directionality. In 
the second texture sample, texture directionality is clearly non-homogenous. Textures 
with varying grain structures are shown in Figure 2.9.  

2.3.2 Colour features of rock 

In addition to texture, colour is one of the basic characteristics used in image content 
description (Del Bimbo, 1999). Gonzales and Woods (1993) present two basic 
motivations for the use of colour description in image analysis. First, in automatic image 
analysis, colour is a powerful descriptor that often simplifies object identification and 
extraction from the scene. Second, in image analysis performed by human beings, the 
motivation for colour is that the human eye can discern thousands of colour shades and 
intensities, compared to about only two-dozen shades of grey. The use of colour 
information is, therefore, essential in several areas of image analysis. The present Section 
discusses the significance of colour in rock image analysis.   
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Colour 

The history of image analysis begins in the 17th century, when Sir Isaac Newton 
conducted experiments with light. He observed that a beam of sunlight can be divided 
into a continuous spectrum of colours ranging from violet at one end to red at the other 
(Gonzales and Woods, 1993). The spectrum of light can be divided into six broad 
regions: violet, blue, green, yellow, orange, and red. The colour perceived by the human 
eye in an object is determined by the nature of light reflected from the object. Visible 
light is a narrow band in the spectrum of electromagnetic energy, whose wavelengths are 
varying between 400 and 700 nm.   

Achromatic light does not include colour and hence its only attribute is its intensity
(Gonzales and Woods, 1993). Intensity is often described by means of its scalar measure, 
grey level. However, colour information is also necessary in several recognition and 
analysis tasks. In these cases, chromatic colour is considered. Chromatic light is coloured 
and can be described in terms of three basic properties: radiance, luminance, and 
brightness. Radiance refers to the total energy that flows from the light source and is 
usually measured in watts (W). Luminance characterizes the energy perceived by the 
observer from the light source. The unit of luminance is lumen (lm). Brightness 
corresponds to the intensity of achromatic light. It is a subjective descriptor that is almost 
impossible to measure (Gonzales and Woods, 1993). In addition to brightness, other 
measures describing colour are hue and saturation. Hue is associated with the dominant 
wavelength in a mixture of light waves. The combination of hue and saturation is referred 
to as chromaticity of light, and therefore a colour may be characterized by its brightness 
and chromaticity (Gonzales and Woods, 1993).

All colours can be presented as variable combinations of the three primary colours red 
(R), green (G), and blue (B) (Wyszecki and Stiles, 1982). The primary colours were 
standardized in 1931 by the International Commission of Illumination, CIE1. The exact 
wavelengths for the primary colours defined by CIE were 700 nm for red, 546.1 nm for 
green, and 435.8 nm for blue. It is possible to make additional secondary colours, 
magenta, cyan, and yellow by adding the primary colours. The secondary colour model 
containing these three colours is referred to as the CMY model. The RGB colour model 
can be presented in a Cartesian coordinate system as shown in Figure 2.10. In the colour 
cube of Figure 2.10, each colour appears in its primary spectral components of red, green, 
and blue. In the cube, the primary colours are at three corners and the secondary colours 
are at the other three corners. Black is at the origin and white is at the corner farthest from 
the origin. The grey level extends from black to white along the diagonal while colours 
are points on or inside this cube, defined by vectors extending from the origin.  

In addition to the RGB colour space, several other colour models have been 
introduced (Gonzales and Woods, 1993; Wyszecki and Stiles, 1982). Another colour 
space used in this study is HSI colour space. In the HSI model, hue, saturation, and 
intensity are considered separately. This is beneficial for two reasons (Gonzales and 
Woods, 1993). First, the intensity component (I) is decoupled from the colour 
information in the image. Second, the hue (H) and saturation (S) components are 
intimately related to the way in which human beings perceive colour.  

1 Commission Internationale de l’ Eclairage 
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Figure 2.10. The colour cube of RGB system. 

Figure 2.11. HSI colour model 

The colour components of the HSI model are defined with respect to the colour 
triangle (Gonzales and Woods, 1993) presented in Figure 2.11a. In this figure, the hue 
value of colour point P is the angle of the vector shown with respect to the red axis. Thus 
when hue is 0 , the colour is red, when it is 60 , the colour is yellow and so on. The 
saturation is proportional to the distance between P and the centre of the triangle, so that 
the farther P is from the triangle centre, the more saturated is the colour. When an 
intensity component is added, the model shown in Figure 2.11a, a three dimensional, 
pyramid-like structure is obtained (Gonzales and Woods, 1993), as shown in Figure 
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2.11b. The hue value of colour point P is determined by its angle with respect to the red 
axis. Any point on the surface of this structure represents a purely saturated colour. The 
intensity in the model is measured with respect to a line perpendicular to the triangle and 
passing through its centre. 

The RGB colour model defined with respect to the unit cube presented in Figure 2.10 
can be converted to the HSI model shown in Figure 2.11 (Gonzales and Woods, 1993) 
according to the following equations:     
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The RGB model is a non-uniform colour model because the differences in this colour 
space do not directly correspond to the colour differences as perceived by humans 
(Wyszecki and Stiles, 1982). Also HSI colour space does not represent the colours on a 
uniform space. For this reason, the CIE has introduced perceptually uniform colour 
spaces, L*a*b* and L*u*v* (Wyszecki and Stiles, 1982). These models have been 
defined in order to make easier the evaluation of perceptual distances between colours 
(Del Bimbo, 1999).  

Colour of rock 

The colour of the rock has significance for the visual appearance of rock materials used in 
buildings as well as for the recognition of rock types. In recognition tasks, the colour is 
one of the most important characteristics for describing rock properties such as strength. 
Figure 2.12 shows sample images of typical Finnish rock types widely used in the rock 
industry. In colour-based rock description, the problem is similar to that in texture 
description; colour distribution is often non-homogenous. This can be seen, for example, 
in samples 3 and 4 in Figure 2.12, in which the red and black colours of the rock image 
are unevenly distributed. As a result, this kind of image cannot be characterized using, for 
example, the mean colour of the sample. However, statistical distributions such as 
histograms are able to describe these kinds of image.  

When considering the visual properties of rock, selection of the colour space is 
essential. In addition to conventional RGB colour space, another colour space such as 
HSI, may often provide improved colour description since it is closer to human colour 
perception than is RGB space. In the case of bedrock inspection, images are sometimes 
also obtained using additional invisible light wavelengths which can be used to 
discriminate between certain minerals or chemical elements (Autio et al., 2004).  
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Figure 2.12. Example images of seven rock types used in rock industry. 

2.4 Previous work in rock image analysis     

The last decade has seen a growth of interest in the application of imaging methods to 
rock analysis. There have also been various kinds of studies on rock image analysis 
published in various conferences and journals and research has been carried out in a 
variety of fields such as bedrock investigation, quality control of rock, stone, and ceramic 
products, as well as mining. Lindqvist and Åkesson (2001) present a literature review of 
image analysis applied to geology in which the central areas are rock structure and 
texture analysis utilizing image analysis methods.  

Luthi (1994) has proposed a technique for texture segmentation of borehole images 
using filtering methods. In Singh et al. (2004), texture features for rock image 
classification are compared. In this comparison, the best classification performance was 
achieved using Law’s masks and co-occurrence matrices. The co-occurrence 
representation of rock texture was used in maximum-likelihood classification by Paclík et 
al. (2005). The textural features computed from the co-occurrence matrix were also used 
in rock image analysis in the study of Duarte and Fernlund (2005). In this study, entropy 
and textural correlation were found to be the most significant descriptors in the 
characterization of granite samples. Autio et al. (1999) employed co-occurrence matrix 
and Hough transform to describe the texture properties of rock. Lepistö et al. (2003a), 
employ contrast and entropy extracted from the co-occurrence matrix in the classification 
of non-homogenous rock samples. Tobias et al. (1995) proposed a texture analysis 
method based on the co-occurrences in the visual inspection of ceramic tile production. 
Texture directionality was used in the rock image classification of Lepistö et al. (2003b) 
in which directional histograms were formed for the rock samples using filtering with 
directional masks. The grain structure of rock was analyzed (Lepistö et al., 2004) by 
finding grains of a selected colour and size from the images. In this analysis 
morphological tools were also employed. Bruno et al. (1999) have analyzed the granular 
size of the rock texture using morphological image analysis tools.  
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In the production of rock and ceramic materials, colour-based image analysis tools 
have been utilized in several studies. One application area has been the quality control of 
ceramic tile production (Lebrun, 2001; Lebrun and Macaire, 2001). The use of colour 
analysis of ceramic tiles has also been studied by Boukovalas et al. (1997) in which the 
imaging of tiles and colour analysis in RGB colour space are discussed. Kukkonen et al. 
(2001) have applied spectral representation of colour to measure the visual properties of 
ceramic tiles. The tiles are classified based on their colour using self-organizing maps. 
Boukovalas et al. (1999), use RGB histograms used in the recognition of tile colour. 
Lebrun et al. (2000) have studied the influence of weather conditions on the rock 
materials using colour analysis. Mengko et al. (2000) have studied the recognition of 
minerals from the images. This recognition method uses colour features in RGB and HSI 
colour spaces. Lebrun et al. (1999), deal briefly with the surface reflection imaging and 
analysis of rock materials.  

In mining, image analysis has been applied to such fields as rock material recognition 
and stone size estimation (Crida and Jager, 1994, 1996). In Salinas et al. (2005), rock 
fragment sizes are estimated by means of a computer vision system utilizing 
segmentation, filtering and morphological operations.   
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3 Texture and colour descriptors    

In the literature, a wide variety of descriptors have been proposed for identifying image 
content. The descriptors are used to characterize the different properties in images such as 
textures, colours, and shapes. In this thesis the texture and colour properties of the rock 
images are selected as the characterising descriptors and the present Chapter provides an
overview of them both. 

3.1 Texture descriptors 

Numerous techniques have been proposed for texture description. Tuceryan and Jain 
(1993) have divided texture description methods into four main categories: statistical, 
geometric, model-based, and signal processing methods (see Figure 3.1). These 
categories are briefly reviewed in this Section, though the central focus is on the signal 
processing methods.  

3.1.1 Statistical methods             

The use of statistical methods is common in the texture analysis. These techniques are 
based on the description of the spatial organization of the image grey levels. On the basis 
of the grey level distribution, it is possible to calculate several types of simple statistical 
features. When the features are defined in terms of single pixel values (such as mean or 
variance), they are called first order statistics. However, if the statistical measures are 
defined for the relationship of two or more pixel values, they are referred to as second- 
and higher order statistics.  

Statistical methods have been used since the 1950s when Kaizer (1955) studied aerial 
photographs using autocorrelation function. An example of further use of correlation 
function is the work of Chen and Pavlidis (1983), in which correlation was applied to 
texture segmentation. Grey level co-occurrence matrix developed by Haralick (1973) has 
been a popular tool in texture analysis and classification. Co-occurrence matrix estimates 
the second order joint probability density functions g(i,j | d, ). Each g(i,j | d, ) is the 
probability of going from grey level i to grey level j, when the intersample spacing is d
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Figure 3.1. Main categories of texture description methods. 

and the direction is . These probabilities create the co-occurrence matrix M(i,j | d, ). It 
is possible to extract a number of textural features from the matrix Haralick (1973). 
Contrast, entropy, and energy include commonly used texture features extracted from the 
co-occurrence matrix: 
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Valkealahti and Oja (1998) introduced a co-occurrence histogram that is a simpler 
variation of the co-occurrence matrix. Grey level difference method (Weszka et al., 1976) 
measures the differences between pixel grey level values at a certain displacement in the 
texture and presents these differences as a table. Based on this table, several textural 
features can be calculated. Unser (1986) presents the grey level differences as a 
histogram. Ojala et al. (2001) have used signed grey level differences instead of absolute 
differences. In this case, the mean luminance of texture has no influence on the texture 
description and local image texture is also better described than in the case of absolute 
differences.   

3.1.2  Geometric methods             

In geometric texture analysis methods, textures are characterized by means of texture 
primitives and their spatial organization. Texture primitives are extracted from the image 
using such techniques as edge detection algorithms or morphological tools. An example 
of the use of the morphological techniques in texture description is the work of Wilson 
(1989). Pattern spectrum developed by Dougherty et al. (1992) also uses morphological 
methods in texture description. Asano (1999) has presented an application of the pattern 
spectrum to extract the texture primitives from the image. In this application, the size and 
shape of the primitives are measured using morphological tools. The structure and 
organization of the primitives has also been characterized by means of Voronoi 
tessellation (Tüceryan and Jain, 1990). In these approaches, the texture primitives are 
combined into regions of similar textures that are referred as Voronoi polygons.     
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3.1.3 Model-based methods             

Model-based texture analysis methods model the mathematical process describing the 
texture. Random mosaic model (Schacter et al., 1978; Ahuja and Rosenfeld, 1981) is a 
common method in this area in which the pixels in the texture are merged into regions 
based on their grey level distributions. On the basis of these regions, it is possible to 
calculate different statistical measures describing the texture. In texture characterization,  
time series models (Deguchi and Morishita, 1978) have also been proposed. These 
models include autoregressive (AR), moving average (MA), and their combination 
(ARMA). Mao and Jain (1992) have applied simultaneous autoregressive models (SAR) 
to texture segmentation and classification. In the SAR model, the relationships between 
texture pixels and their neighbourhoods are modelled using statistical parameters. These 
relationships are also utilized in Markov Random fields, in which texture is regarded as 
an independent stationary process. The random fields are used in unsupervised texture 
segmentation by both Manjunath and Chellappa (1991), and Kervrann and Heitz (1995). 
The model-based texture analysis methods also include Gibbs random fields (Besag, 
1974). Elfadel and Picard (1994) have further developed the Gibbs model and presented a 
new texture feature, Aura feature. In addition, the Wold features presented in (Liu and 
Picard, 1996) are based on random fields.    

3.1.4 Signal processing methods             

Methods based on signal processing are nowadays popular tools in texture analysis. In  
most of these methods the texture image is submitted to a linear transform, filter, or filter 
bank, followed by some energy measure (Randen and Husøy, 1999). The first filtering-
based approaches were introduced in the beginning of the 1980s. Eigenfilters (Ade, 1983) 
and Law’s masks (Law, 1980) are some of the early filtering approaches. In the 
Eigenfilters, a covariance matrix is defined for the 3x3 neighbourhoods of each texture 
pixel. Texture identification is based on the eigenvalues calculated from the covariance 
matrices. In Law’s method, convolution masks of different orientations are applied to the 
texture image. In the 1990s Ojala et al. proposed a new spatial filtering method, local 
binary pattern (LBP). In the LBP method, texture properties are characterized by means 
of the spatial organization of the texture neighbourhoods (Ojala et al., 1996). Based on 
the neighbourhood, a LBP number is defined for each texture pixel. The LBP numbers 
are presented as a histogram that describes the texture. 

Methods based on Fourier transform utilize the frequency distribution of texture. This 
field has been researched since the mid 1970s when Dyer and Rosenfeld (1976) used 
Fourier transform in texture description. The Fourier transform of an image f(x,y) can be 
defined as: 

dxdyyxfevuF vyuxi ),(),( )(2    (3.4) 

The Fourier power spectrum is |F|2=FF*, in which * denotes complex conjugate (Weszka 
et al., 1976). In practice, the images are in digital form and therefore, discrete Fourier 
transform is employed (Dyer and Rosenfeld (1976)): 
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Figure 3.2. Different texture filters. a) A set of Gabor filters at three scales and five 
orientations b) four ring-shaped Gaussian filters at different scales. 
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where f and F are n by n arrays (assuming that the images are square-shaped). In this 
case, the power spectrum is also of the form |F|2. In texture analysis, the Fourier power 
spectrum can be utilized in several manners. For example, the radial distribution of the 
spectrum values is sensitive to texture coarseness or granularity in f. Hence, the 
granularity can be analyzed by selecting ring-shaped regions from the spectrum. 
Similarly, the angular distribution of the spectrum is sensitive to the directionality of 
texture in f (Weszka et al., 1976). Coggins and Jain (1985) employed ring- and wedge-
shaped filters to extract features related to texture coarseness and directionality. The 
purpose of the filtering approaches is to estimate the energy in the spectrum at a specific 
local region. One of the most popular approaches in this area is Gabor filtering. Gabor 
filter is a Gaussian-shaped local band-pass filter that covers a certain radial frequency and 
orientation. It is typical that an image is filtered using a bank of Gabor filters of different 
orientations and radial frequencies, often referred to as scales. An example of this kind of 
approach is the work of Jain and Farrokhia (1991), in which Gabor filter banks were used 
to texture segmentation. Figure 3.2 shows different texture filters. Manjunath and Ma 
(1996) suggest simple texture features for texture image retrieval. In their method, the 
mean and standard deviation of the transform coefficients at each scale and orientation 
are used as texture features. Bigün and du Buf (1994) use complex moments of the local 
power spectrum as texture features. In the work of Kruizinga and Petkov (1999), Grating 
cell operators for Gabor filtering are used. The Grating cells are selective to orientation 
but they do not react to single lines or edges in the texture. These approaches have also 
given good results when compared to other Gabor methods in texture discrimination and 
segmentation in (Grigorescu et al., 2002). A review and comparison of the various 
filtering methods in texture classification is provided by Randen and Husøy (1999) who 
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conclude that no single filtering method can outperform all others with every kind of 
image. 

In addition to Fourier transform, wavelet transform (Chui, 1992) has received major 
research interest in recent years. Wavelet transform approaches use filter banks with 
particular filter parameters and sub-band decompositions (Randen and Husøy, 1999). 
Mallat (1989) was the first to apply wavelet transform to texture characterization since 
when wavelet-based texture description has been a popular research area. Wavelet packet 
transform (Laine and Fan, 1993) has also been widely used in texture description. 
Wavelet frame introduced by Unser (1995) is a translation invariant version of wavelet 
transform. It is an over-complete wavelet representation and is more effective in texture 
edge localization than other wavelet-based approaches (Randen and Husøy, 1999).    

3.2 Colour descriptors   

Colour distribution is a typical characteristic used in the image classification and can be 
described using statistical methods. Different moments are examples of simple statistical 
measures. Stricker and Orengo (1995) have used colour moments to describe image 

colour distribution. The moments include mean ( x ), variance ( 2ˆ
x ) and skewness (S):    
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The histogram is probably the most commonly used statistical tool for the description 
of image colour distribution. It is a first order statistical measure that estimates the 
probability of occurrence of a certain colour in the image. Hence, the histogram is a 
normalized distribution of pixel values. If the number of colour levels in an image is n,
the histogram H can be expressed as a vector of length n. The i:th component of the 
vector is defined as: 
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where N refers to the total number of pixels and Ni to the number of pixels of colour i.
Image histogram has been widely used in the description of image colour content. In 
(Swain and Ballard, 1991), a colour histogram is used as a feature vector for describing 
the image content. The benefit of the image histogram is its computational lightness and 
low dimensionality, which is equal to the number of colour levels in the image. The main 
drawback is that the histogram ignores the spatial relationships of the colours in the 
image. For this reason, a variety of second order statistical measures have been 
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introduced for image description. Several statistical measures utilize the correlation 
function in image description. Huang et al. (1997) introduce a correlogram that describes 
the relationships of pixel pairs at a distance d in the image. The correlogram is formed in 
the same manner as the co-occurrence matrix, but in the case of the correlogram it is 
usual that several values of d are used. If an image has N colour levels, the size of the 
correlogram is N2 at each value of d. Hence, the correlogram is computationally a 
relatively expensive method and because of this, it is usual that the autocorrelogram is 
employed instead. The autocorrelogram (Huang et al., 1997) is a subset of correlogram 
that gives the probability that the pixels at distance d in the image are of the same colour. 
The size of the autocorrelogram is N.

In addition to statistical methods for colour description, other colour description 
methods have also been proposed. Colour naming system is an approach in which basic 
colour names are used to describe the colour content of the images (Del Bimbo, 1999). 

3.2.1 Coloured textures    

The common texture analysis methods have been developed for grey level images. 
However, the colour that is often present in the texture image is also an important 
characteristic describing the image content. In many cases, it is practical to present the 
texture and colour properties of an image using a single descriptor. In the case of 
coloured textures, it is usual that different texture analysis methods, such as filters, are 
employed. Thai and Hailey (2000) propose a spatial filtering method that is based on 
Fourier transform in colour texture analysis. This method uses RGB colour space. Palm et 
al. (2000) have used HSI colour space in colour texture analysis. They present hue and 
saturation components as polar coordinates and apply Fourier transform to them. In 
colour texture analysis, the selection of the colour space is essential. Paschos (2001) has 
compared RGB, L*a*b*, and HSI colour spaces in colour texture analysis that is based 
on Gabor filtering. The experimental results indicate that HSI space gives the best 
classification results.  

In addition to the filtering-based methods, statistical methods are also employed in 
colour texture analysis. In the covariance method (Lakmann, 1997), a covariance matrix 
is computed for the colour channels. Paschos (1998) has studied the coloured textures 
using the chromaticity of colour. The idea behind his approach is that the correlation 
function has been calculated for the chromatic components of the image. Paschos and 
Radev (1999), make use of chromaticity-based moments in the classification of coloured 
textures. Valkealahti and Oja (1998b) have applied the statistical texture analysis 
methods for coloured textures. In their approach, multidimensional co-occurrence 
histograms have been used for the colour texture analysis. Co-occurrence matrix can also 
be calculated for coloured texture images. In the work of Shim and Choi (2003), co-
occurrence matrix is used to describe the spatial relationships between hue levels in the 
image.  



4 Image classification 

The previous Chapter reviewed the various techniques presented in the literature for 
image content description that can be used in image recognition and classification. 
However, in addition to good descriptors, an effective image classification system needs 
an appropriate classifier. The present Chapter concerns the field of the classification, and 
beginning with the theoretical background, the classification problem is discussed in 
some detail. This topic is continued with a consideration of Bayesian decision theory and 
nonparametric classification. Finally, the special character of image classification 
problem is examined. 

4.1 Classification 

A pattern to be classified consists of one or several features. In image classification, it is 
usual that a pattern is characterized using a feature vector containing n features. Such a 
vector is often referred as a feature vector of n dimensions. If fi represents the ith feature, 
the vector can be expressed as S=(f1, f2,…, fn)

T. This way, the feature vector represents 
the pattern in n dimensional feature space (Duda et al., 2001). A pattern class is a family 
of patterns that share some common properties (Gonzales and Woods, 1993). For 
example, in colour-based image classification, images sharing similar colour properties 
belong to the same class. This means that the colour histograms of n bins can be used as 
colour descriptors, and the images that have similar histograms are assigned to same 
classes. The classes can be denoted 1, 2, …, m, where m is the number of these 
classes. Hence, the problem in classification is to assign the unknown sample pattern to 
one of the classes. It should be noted that in the classification problems discussed in this 
Chapter, only supervised classification is discussed. This means that the classes are 
predefined. In classification problems in general, the patterns in the feature space should 
be assigned to classes as accurately as possible. For this purpose, several types of 
classification methods have been proposed. 
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Figure 4.1. Three classification examples containing two classes in two-dimensional 
feature spaces.      

Figure 4.1 shows three examples of two-class classification problems in which the 
patterns are presented in a two-dimensional feature space2. In all the examples, the 
number of patterns is 100 in both classes. In the first data set, the classes are spherical, 
Gaussian distributed datasets with the same variance. As presented in the figure, the 
means of the classes in the first dimension are relatively distant, which indicates that the 
classes are not significantly overlapping. The classes in data set II obey banana-shaped 
distribution, which is a more demanding classification task. This is because the means of 
the classes are close together. As shown in this example, the pattern classes are not 
always spherically shaped in the feature space. Instead, their shapes can be complicated, 
even if the classes are not significantly overlapping. The third dataset has two classes 
which are clearly overlapping in the feature space. The pattern distributions obey 
Highleyman classes (Duin et al., 2004).  

Validation 

The set of known samples in the supervised classification is usually called the training 
set. The selection of these samples should occur randomly from the population (van der 
Heijden et al., 2004). These samples are used as prototype samples in the classification, 
and the a priori knowledge of their classes is used in the classification of the unknown 
samples. The unknown samples form a testing set. It is usual that roughly one third of the 
available data is used as training set, and the remaining two thirds serves as testing set. 
The classification performance can be estimated by defining the error rate or the 
classification rate, which correspond respectively to the number of misclassified or 
correctly classified samples in the testing set. These values are often presented as 
percentages. 

The estimation of classification performance is often referred to as validation. Instead 
of using the above mentioned division into training set and testing set, other validation 
methods for classification also exist (van der Heijden et al., 2004). In the cross-validation 

                                                
2 The examples presented in figures 4.1-4.5 have been generated with PRTools 4, a Matlab toolbox for 
pattern recognition (Duin et al., 2004).  
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method, the available data is randomly partitioned into L equally sized subsets. Each 
subset is used as a test set in turn whereas the rest of the data is used as a training set. The 
final error rate is evaluated as an average of these L classifications. In the case of leave-
one-out method, only one sample is regarded as an unknown sample in turn, and all the 
other samples in the data set serve as training data. This way, all the samples in the 
dataset are classified. These two methods, however, are computationally expensive with 
large datasets. 

4.1.1 Pattern classification in the feature space  

Several classification methods use decision (or discriminant) functions (Duda et al, 
2001). For m pattern classes, the problem is to find m decision functions d1(S), d2(S), …, 
dm(S). If a pattern S belongs to class i, then 

ijmjdd ji ;...,,2,1)()( SS      (4.1) 

Hence, an unknown pattern S belongs to the ith pattern class if di(S) yields the largest 
numerical value. The decision boundary that separates the class i from j is given by 
values of S for which di(S) = dj(S). Alternatively, the decision boundary for the values of 
S can be defined by: 

0)()( SS ji dd       (4.2) 

The decision boundaries in the feature space can be found in several different ways. It is 
usual that some prototype patterns are used as training data. The classes of these patterns 
are known in advance, and therefore, the unknown patterns can be compared to the 
prototype patterns.  

Distance metrics 

In order to make a comparison between two patterns, a method is needed for evaluating 
the similarity (or dissimilarity) between them. For dissimilarity measurement, several 
types of distance functions have been proposed, known also as distance metrics (Santini 
and Jain, 1999; Duda et al., 2001). Duda et al. (2001) have presented four properties for 
distance metrics D between vectors a and b:

1. Nonnegativity: D(a,b)  0 
2. Reflexivity: D(a,b) = 0, if and only if a = b

3. Symmetry: D(a,b) = D(b,a)
4. Triangle inequality: D(a,b) + D(b,c) D(a,c)

A number of different distance metrics for different kinds of data has been proposed and 
a review of these is presented by Santini and Jain (1999). Minkowski metrics is one 
general class of metrics for n-dimensional patterns: 
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Figure 4.2. Minimum distance classification in three datasets. 

Minkowski metrics is also referred to as Lk norm. The most popularly used Lk metrics are 
L1 norm, which is also called Manhattan distance or city block distance: 
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and L2 norm, also known as Euclidean distance: 
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Minimum distance classifier 

A simple method for evaluating the decision boundaries in the feature space is to use a 
minimum distance classifier (van der Heijden et al., 2004), in which each pattern class is 
represented by a prototype vector that is the mean vector of the patterns in this particular 
class. Each pattern is then assigned to the class represented by their nearest prototype 
vector in the feature space. The minimum distance classifier works well when the 
distance between means is large compared to the spread or randomness of each class with 
respect to its mean. This kind of approach, however, is not effective when the classes are 
overlapping in the feature space. Figure 4.2 demonstrates the minimum distance 
classification in the three datasets shown in Figure 4.1. In this example, the decision 
boundaries are drawn on the basis of minimum distance to the mean of both classes. It is 
obvious that in the case of simple spherical distributions with only small overlap, the 
minimum distance method is usable. However, in the case of banana-shaped classes of 
dataset II, this classification method has lower performance. This is because the method 
does not take into account the shapes of the pattern classes, only their mean is significant. 
Minimum distance classifier is also unable to classify the overlapping datasets of set III. 
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The reason for misclassification is that the means of the classes do not provide any 
information on the spatial organizations of the patterns in the feature space.  

4.1.2 Bayesian decision theory  

Bayesian decision theory (Duda et al., 2001) approaches the classification problem by 
means of probabilities. Hence, it is assumed that there is some a priori probability that 
the sample belongs to one particular class. In the case of a two-class problem, classes 1

and 2, have probabilities P( 1) and P( 2) which sum to one. In the general case with m
classes, it is possible to write: 

m

i

iP
1

1)(      (4.6)   

These probabilities3 reflect the prior knowledge of how probable these two classes are for 
the unknown sample. If this is the only available information, it is reasonable to use the 
following simple decision rule: Decide 1 if P( 1) > P( 2); otherwise decide 2. It is 
obvious that this kind of classification is not useful, because the decision is always the 
same despite the fact that both classes can be present within the patterns. However, there 
is normally additional information available than only probabilities. The features 
describing the unknown sample are such that they are selective to particular categories 
and, therefore, can be used to describe the sample. Let us assume that we use a 
measurement f as a feature describing the sample. If f is considered as a continuous 
random variable, its distribution can be expressed as p(f| i). This is referred as a 
conditional probability density function and it expresses the probability that the class is i

at a certain value of f.
Let us assume that we know the a priori probabilities P( i) and conditional 

probability densities p(f | i) for i=1, 2. Also the feature value f for an unknown sample is 
known. Based on the two probabilities provided, it is possible to form a joint probability 
density of finding a pattern that is of class i and has a feature value f. This can be 
presented in two ways: )()|()()|()|( iiii PfpfpfPfp , (Duda et al., 2001). 

Based on this, the Bayes formula: 
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can be defined (Duda et al., 2001). Where, in the case of two classes: 
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In the case of multiclass problem, this can be written as: 

3 In this study, P and p denote probability mass function and probability density function, respectively.  
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According to the Bayes formula, it is possible to convert the a priori probability P( i)
to a posteriori probability P( i | f), which is the probability of class i given that f has 
been measured (Duda et al., 2001). This a posteriori probability can be used to make a 
classification decision. It is obvious that for an observation f for which P( 1 | f) is greater 
than P( 2 | f), the decision is 1. This kind of decision minimizes the classification error, 
and it is known as the Bayesian decision rule (Duda et al., 2001). 

It is also possible to define the decision boundaries using the Bayesian decision rule. 
The decision boundaries can be obtained from the discriminant functions presented in 
equation (4.1). In the Bayesian classification, the discriminant functions are selected such 
that they minimize the classification error (Duda et al., 2001). Figure 4.3 illustrates the 
Bayesian classification in the three datasets. In these classification examples, two kinds 
of Bayesian classifiers are employed. The first one, Bayes Normal-1, refers to linear 
Bayes normal classifier and the second one, Bayes Normal-2 refers to quadratic Bayes 
normal classifier (Duin et al., 2004). The linear Bayes normal classifier assumes that the 
classes are spherical in the feature space and they have the same variance (Duda et al., 
2001). The classifier makes a linear decision boundary between the classes. Therefore, 
the decision boundary is like that of the minimum distance classifier. In the case of a 
quadratic classifier, the decision surface is a hypersurface in the feature space. In a two-
dimensional case, the decision boundary is a quadratic curve, such as an ellipse or 
hyperbola. The difference between these two classifiers is clearly visible in the 
classification of dataset III, in which the quadratic classifier is able to distinguish between 
the classes by means of a hyperbola-shaped decision boundary. However, the decision 
boundaries of these two classifiers are relatively similar in the first two datasets. Figure 
4.4 shows the scatter diagrams with contour plots of the conditional probability densities 
of quadratic Bayesian normal classifier. The probability densities are also shown as three-
dimensional surfaces.  

Figure 4.3. Bayesian classification in three datasets. 
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Figure 4.4. The scatter plots of the classes with contour plots and three-dimensional           
surfaces describing the conditional probability densities of quadratic Bayesian normal 
classifier. 

4.1.3 Nonparametric classification  

In the Bayesian decision theory, the basic assumption is that the prior knowledge about 
the probability distributions is available. In the case of nonparametric classification, these 
distributions are not used (van der Heijden et al., 2004).   

Parzen windows  

The minimum distance classifier introduced in Section 4.1.1 selects one prototype pattern 
to represent the whole class. In contrast to this approach, it is also possible to estimate the 
densities of the patterns representing different classes in the region  around the 
unknown pattern. In this kind of density estimation, Parzen window estimates (Duda et 
al., 2001) can be employed. In the case of two-dimensional feature space, the region is a 
circle drawn around the unknown sample. Generally, in an n-dimensional space, this 
region is a hypercube of n dimensions with edge length h. The volume of the hypercube 
is then V=h

n and it can be defined by means of a window function . Let us assume that 
we have a set of N patterns, S1, S2, … SN. Each pattern has n dimensions. If the hypercube 
is centred at S,  ((S-Si)/h) is equal to unity if Si falls within the hypercube. The number 
of samples in this hypercube is therefore given by: 
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Based on this, it is possible to estimate the probability density function (Duda et al., 
2001): 
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Figure 4.5. Parzen window classifications for three datasets. 

Figure 4.5 presents the Parzen window classification in three datasets. In this experiment, 
optimum size of window function has been estimated for each classification (Duin et al., 
2004). The obtained decision boundaries show that this kind of nonparametric 
classification approach is able to distinguish between the classes in all three datasets. 

Nearest neighbour classifiers 

A problem with a Parzen window estimate is the selection of the region size. However,  
this size can be decided by growing the region (or a cell) around the sample pattern S
until it captures k samples in the neighbourhood. This is known as k-nearest neighbour 
classifier (k-NN classifier). Hence, the nearest neighbour classifiers use the training set 
directly and do not explicitly estimate the probability densities. If the density around S is 
high, this region is relatively small. If the density is low, the region grows larger, but 
stops soon after finding an area of higher density (Duda et al., 2001). In both cases, the 
density estimation can be written as: 

V

Nk
pn

/
)(S       (4.12) 

It is also possible to estimate the a posteriori probability P( i | S), for a k-NN classifier. 
As presented above, a cell of volume V is placed around S, and k samples are captured 
from the neighbourhood. If ki of these samples turn out to be of class i, the estimate for 
joint probability p(S, i) can be written as: 
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and an estimate for P( i| S) is: 
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Figure 4.6. k-nearest neighbour classification using three values for k=1,5, and 9. In 
addition, the optimized number of nearest neighbours, K, is used. 
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(Duda et al., 2001). In other words, the fraction of the samples in the cell labelled as i

can be considered as the a posteriori probability for this particular class. Consequently, 
the class that is the most frequently represented in the cell is selected. Figure 4.6 shows k-
NN classification of the three datasets. In these classifications, the numbers of nearest 
neighbours (k) are selected to be 1, 5, and 9. In addition, the value of k has been 
optimized by minimizing the leave-one-out error in classification (Duin et al., 2004). This 
optimized classifier is marked as K-NN classifier in the figure. The optimized values of k
are 30, 11, and 3, in the datasets I, II, and III, respectively.  

4.2 Image classification 

Real-world image classification is a relatively complicated problem. A typical 
characteristic of image classification tasks is that the image content is expressed in terms 
of numerical features. These features should describe the visual appearance of the image 
as accurately as possible. The feature values usually form relatively high dimensional 
feature vectors that are referred to as image descriptors. Some of the descriptor types 
were introduced in Chapter 3. It is also very common that the descriptors are overlapping 
in the feature space and this makes the classification challenging. In the present Section, 
the special challenges of image classification are discussed. 
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4.2.1 Dimensionality  

Since the descriptors are often high dimensional, the feature spaces are difficult to 
visualize. The high dimensionality of the feature vector may also yield a decreased 
classification result, especially with a small amount of training data. This is known as 
“the curse of dimensionality” (Duda et al., 2001), which means that the demand for a 
large number of training data samples increases exponentially with increasing dimensions 
of the feature space.    

The number of the dimensions in an image classification task is dependent on the 
descriptor types used. For example, the colour histograms are often evaluated for the 
whole range of colours in the image. Hence, the typical number of bins in the histogram 
is 256. In addition, if the histograms are defined for three colour channels4, the number of 
dimensions is 768. When the second order statistical measures, such as correlograms, are 
employed as descriptors, the dimensionality can be even higher.  

With texture descriptors, the dimensionality may also be a problem. The texture 
features that are presented in the form of a histogram are typically high dimensional.  
Gabor filtering with multiple scales and orientations is also able to produce a remarkable 
number of coefficients. Nevertheless, this problem can be solved by using, for example, 
mean or standard deviation of the coefficients as texture descriptors (Manjunath and Ma, 
1996). The features extracted from the co-occurrence matrix are also all one dimensional 
(see Section 3.1.1). However, some of the texture descriptors of recently introduced 
MPEG-7 standard (Manjunath et al., 2002) also have quite high dimensionality. For 
example, the number of dimensions in Homogenous Texture and Edge Histogram

descriptors is 62 and 80, respectively.  

Reducing dimensionality 

If high dimensionality of the feature space is a problem, it is possible to decrease the 
number of the dimensions. This is also known as feature reduction (van der Heijden et al., 
2004). In feature reduction, features with low significance in the classification are 
removed. 

 There have been several techniques proposed for feature reduction. Probably the best 
known is principal component analysis (PCA) which is an unsupervised method for 
selecting the “right” features from the data (Duda et al., 2001). In this feature reduction 
principle, the high dimensional feature vector Sn of n dimensions is transformed to a k-

dimensional vector Sk. This is carried out by calculating an n-dimensional mean vector 
and n x n covariance matrix  for the dataset. Next, the eigenvectors and eigenvalues are 
computed, and k eigenvectors having the largest eigenvalues are selected. Then, an n x k
matrix A is formed. The columns of A contain the k selected eigenvectors. Finally, the 
data is represented by projecting the data onto the k-dimensional subspace according to: 
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(Duda et al., 2001). The PCA yields a k-dimensional linear subspace of the feature space. 
Other approaches to feature reduction include nonlinear component analysis (NLCA), 
which is more suitable for data with complicated interactions of features (Duda et al., 

                                                
4 For RGB or HSI color spaces, for example. 
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2001). Multidimensional scaling (MDS) is sometimes also a better alternative than PCA 
(van der Heijden et al., 2004), particularly in cases when the data needs to be inspected in 
two or three dimensions. In such cases PCA often discards too much information (van der 
Heijden et al., 2004).       

4.2.2 Overlapping classes 

In most of the examples presented in the literature concerning classification problems, the 
classes form relatively uniform and separated clouds in the feature space. This is also the 
case with the examples presented at the beginning of this Chapter. However, in several 
kinds of real-world classification problems, the situation is more complicated. In image 
classification, the visual features employed in the classification task can be spread in the 
feature space in many difficult ways. For example, the image classes are often 
overlapping in the feature space. This is typical for images that have relatively similar 
content, but still belong to different classes. This may occur when the textures or colours 
of the image classes are similar.  

However, non-homogenous content in an image may also cause difficulties when an 
image belongs to class A, but some regions in this image have, for example, colour or 
texture that is typical of class B. In this case the feature values of the image are located 
between these classes in the feature space. Another typical situation may occur when 
images of the same class have variations in their colours or textures. In such cases, the 
feature values may be scattered over the larger region in the feature space. 

The problem with overlapping image classes can be seen in Figure 4.7, in which 
feature values of a set of rock images are shown in two dimensions. The image set 
contains 336 rock samples, which are divided into four classes by geologists. In the first 
figure, the features are contrast and entropy calculated from the grey level co-occurrence 
matrix. In the second figure, the features are mean hue and mean grey level of the images. 
Figure 4.8 presents three sample images of each class in the image set. The classification 
problem presented in this example is typical of rock image classification: the feature 
values are overlapping in the feature space, and they are also scattered over a large area in 
this space. This can be seen in the hue-intensity plot, in which class 1 samples are 
overlapping with all the other classes. It should be noted that in real image classification 
problems the number of dimensions is usually higher than two as in this example.        
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Figure 4.7. Features calculated from the four rock image classes presented in two feature 
spaces.  

Figure 4.8. Three sample images from each class.  



5 Combining classifiers 

A traditional approach in classification is the use of a single classifier, which assigns a 
class label for each feature vector describing the image content. It was noted in the 
previous Chapter that the decision functions produced by different classification 
principles differ from each other. This makes the classification accuracy somewhat 
varied. Furthermore, with real-world images it is common that the feature patterns are 
non-homogenous, noisy, and overlapping, which may cause variations in the decision 
boundaries of different classifiers. For these reasons, different classifiers may classify the 
same image in different ways. However, it has been observed that a consensus decision of 
several classifiers can yield improved performance compared to individual classifiers 
(Alkoot and Kittler, 1999; Kittler et al., 1998; Kuncheva, 2002). This is motivated by the 
fact that the features or classifiers of different types are able to complement one another 
in classification performance (Ho et al., 1994).  

This Chapter considers the area of classifier combinations. The idea behind classifier 
combinations is to combine multiple classifiers into one classification system (Barandela 
et al., 2003). Classifier combinations5 have become a rapidly growing field of research. 
The number of publications in this area is very large with more than a hundred of journal 
articles and an huge number of conference papers. Indeed entire conferences have been 
devoted to the topic (see Roli et al., 2004; Oza et al, 2005, for example). Classifier 
combinations have been applied to several kinds of classification tasks such as facial 
recognition (Lu et al., 2003), handwritten characters or numerals (Xu et al., 1992; Cao et 
al., 1995), person identification (Brunelli and Falavigna, 1995), speech recognition 
(Bilmes and Kirchhoff, 2003), fingerprint verification (Jain et al., 1999), to name just a 
few. 

                                                
5 In the literature, this research area is also referred to as classifier ensembles, multiple classifier systems, 
multiple expert fusions, mixtures of experts, committees of learners. 



Combining classifiers 

50 

5.1 Base classification 

According to Kittler et al (1998), the main motivation behind classifier combinations is 
that instead of using a single decision-making theme, the classification can be made by 
combining the individual opinions of separate base classifiers to derive a consensus 
decision. Ideally, the combination method should take advantage of the strengths of the 
individual classifiers, avoid their weaknesses, and improve the classification accuracy 
(Ho et al., 1994).  

In a multiple classifier system, it is common that there are several base classifiers that 
are combined using a particular classifier combination strategy. It is obvious that a 
combination of base classifiers with identical errors does not improve the classification 
and hence, the base classifiers with decorrelating errors are preferred. Consequently, the 
base classifiers should differ from each other in some manner. This kind of classifier 
combination can be formed in several different ways. Duin (2002) presents six ways in 
which a consistent set of base classifiers can be generated: 

1. Different initializations. Different initializations may yield different classifiers if 
the classifier training is initialization dependent. Examples of such classifier 
combinations can be found in the literature dealing with neural network classifiers 
(Hansen and Salamon, 1990). 

2. Different parameter choices. There are some parameters to be selected in most of 
the classifier principles. For instance, in k-NN classification the value of  k needs 
to be selected or in Parzen classifier, the window function needs to be selected. By 
using different parameter values, it is possible to obtain differently behaving 
classifiers. 

3. Different architectures. In several kinds of classifiers, the architecture can be 
selected. For instance, the size of neural networks in the base classifiers can be 
varied. 

4. Different classifiers. It is possible to use the same feature space and the same 
training set, but different classifiers in the base classification. An example of this 
approach is presented in the experimental parts of the works by Kittler et al., 
(1996) and Kittler et al., (1997), in which base classifiers of different 
classification principles are combined using selected combination rules. 

5. Different training sets. If the same feature space is employed, the base 
classification can be carried out by taking different samples from the feature set to 
be used for training (Skurichina and Duin, 2002). A popular solution in this field 
has been bagging (Breiman, 1996), which involves selecting several training sets 
by sub-sampling the dataset randomly using bootstrapping (Duda et al., 2001). A 
classifier is constructed for each training set, and finally the classifier outputs are 
combined by majority voting. Another common algorithm, boosting (Freund and 
Shaphire, 1995), also manipulates the training data but emphasizes the training of 
samples which are difficult to classify. This is done by weighting the training set 
objects according to their performance in the previous classification. The 
classification begins with equal weighting, but after each classification the 
training sets are assigned new performance related weightings. This kind of 
classification produces a sequence of classifiers and weights. The final decision is 
made using a majority vote or a weighted majority vote of the classifiers 
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(Skurichina and Duin, 2002). Stacked generalization (Wolpert, 1992) splits the 
training set into several partitions. The final decision is based on the guesses of 
the base classifiers that have been taught with different parts of the training sets.   

6. Different feature sets. The base classifiers may use separate feature sets as their 
inputs. These feature sets may describe different properties of the object to be 
classified, such as in character recognition (Ho et al., 1994; Xu et al., 1992). In 
these kinds of classifier combinations, an important application is the combination 
of physically different descriptions of the objects. An example of these 
applications is person identification (Brunelli and Falavigna, 1995), in which 
acoustic and visual features are combined using classifier combination. The image 
classification methods presented in this thesis combine classifiers employing 
separate feature sets (visual descriptors) extracted from the images.  

It has been observed that randomly selected feature sets can also be effective in 
classifier combinations. In (Bryll et al., 2003), the features in the feature space are 
randomly selected for use in base classification. Ho (1998) introduces a random 
subspace method. In this method, the classifiers are constructed for randomly 
selected subspaces of a high-dimensional feature space. The classifications carried 
out in the subspaces are usually combined by majority voting (Skurichina and 
Duin, 2002). Further, the selection of the feature sets can also be based on cluster 
analysis (Cao et al., 1995). It is also possible to consider each dimension of the 
feature space separately. Guvenir and Sirin (1996) partitioned the feature space 
into each dimension and applied voting to reach a consensus decision based on the 
classifications at each dimension.  

5.2 Classifier combination strategies 

Once the base classifiers have been constructed, it is necessary to combine their opinions 
using some combination strategy. Various approaches to this have been proposed in the 
literature. The selection of the classification strategy is dependent on the information 
provided by the base classifiers. If only the class labels are available, different kinds of 
voting-based methods are possible. However, if the a posteriori probabilities of the base 
classifiers are available, different linear combination rules can be used. It is also possible 
to use the outputs of the base classifiers as features in the final classification. In this 
section, different classifier combination strategies are described. 

5.2.1 Strategies based on probabilities 

Classifier combination methods that use the a posteriori probabilities provided by the 
base classifiers have been the subject of much research (Alkoot and Kittler, 1999; Kittler 
et al., 1996, 1998; Kuncheva, 2002). The methods are also known as fixed combining 
rules (Duin, 2002). These strategies utilize the fact that the base classifier outputs are not 
just class numbers, but that they also include the confidence of the classifier (Duin, 
2002). The confidence can be expressed as probability Pi(S) of pattern S with respect to 
class i (i=1,2,…, m), where m is the number of classes (Duin, 2002): 

)|Prob()( SS iiP      (5.1) 
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However, if several classifiers are combined, the probabilities need to be defined for each 
C classifier. It is assumed that each classifier represents a particular feature type and the 
feature vector used by j:th classifier is denoted as fj. Hence the pattern S is represented by 
C feature vectors. If the outcome of the jth classifier (j=1,2,…, C) is denoted as Oj, the 
probability depends on the outcome Oij of this classifier for class i (Duin, 2002): 

)|Prob()( ijiij OP S      (5.2) 

The classification is carried out by assigning the pattern S to the class with the highest 
confidence. According to the Bayesian theory, S is assigned to class i if the a posteriori

probability of that class is maximum. Hence, S is assigned to class i if: 
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It is possible to simplify the Bayesian decision rule of equation (5.3) by rewriting the a
posteriori probability P( n| f1,…, fC) using the Bayes theorem (Kittler et al., 1998): 
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where p( f1,…, fC) is the unconditional measurement joint probability density which can 
be expressed in terms of the conditional measurement distributions (Kittler et al., 1998). 
For this reason, only the numerator terms of equation (5.4) are used in the following, and 
the joint probability of the classifiers can be represented by p( f1,…, fC| n). Based on this, 
it is possible to obtain several classifier combination rules (Kittler et al., 1996, 1998; 
Duin, 2002). A detailed discussion of the rules can be found in (Kittler et al., 1998). 

Product rule is an important classifier combination rule. This rule can be obtained 
from the joint probability given by the base classifiers, p( f1,…, fC| n). The product rule 
assigns the pattern S to class i, if:  
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Sum rule can be obtained from equation (5.5) (Kittler et al., 1998) by assuming that 
the a posteriori probabilities P( n|f1) computed by the respective classifiers do not 
deviate dramatically from the prior probabilities. This rule assigns the pattern S to class 

i, if: 
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Figure 5.1. Outline of probability-based classifier combination schemes (Kittler et al., 
1998). 

Maximum rule selects the classifier that is most confident of itself. According to the 
maximum rule, S is assigned to class i, if: 
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It is also possible to define the minimum rule, which selects the classifier that has the 
least objection against a certain class. In this rule, S is assigned to class i, if: 
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The median rule assigns the pattern S to a class whose average a posteriori

probability is at maximum. In this rule, the median is used instead of the mean to estimate 
the average because the mean can be affected by outliers within the input patterns and 
this could lead to an incorrect decision (Kittler et al., 1998). The median rule assigns the 
pattern S to class i, if: 
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These rules have been experimentally evaluated in (Alkoot and Kittler, 1999). A 
theoretical study of several of these classification rules is provided by Kuncheva (2002). 
The combination methods presented and their relationships are set out in Figure 5.1. 

5.2.2 Voting-based strategies  

Voting-based techniques are simple methods for combining classifiers. The basic idea 
behind these methods is to make a consensus decision based on the base classifier 
opinions using voting. Hence, the class labels provided by the base classifiers are 
regarded as votes, and the final class is decided to be the class that receives the majority 
or most of the votes. The benefit of these methods is that the decision can be made solely 
on the basis of the class labels provided by the base classifier. For this reason, no 
additional internal information, such as a posteriori probabilities, is required from the 
base classifiers. Hence the base classifiers can be regarded as “black boxes” (Lin et al., 
2003). 

Voting-based classifier combination strategies have been used extensively in the field 
of pattern recognition (Lam and Suen, 1997; Lin et al., 2003; Xu et al., 1992). The 
methods can be divided into two classes, majority voting and plurality voting. Majority 
voting (Lam and Suen, 1997) requires the agreement of more than half the participants in 
order to make a decision. If a majority decision cannot be reached, the sample is rejected. 
Plurality voting (Lin et al., 2003), on the other hand, selects the sample which has 
received the highest number of votes. As a result, the problem arising with the rejected 
samples can be avoided because all the samples can be classified. 

5.2.3 Strategies employing the class labels 

In addition to the voting and the probability-based classifier combination methods, 
various classifier combination methods have been proposed that utilize the base classifier 
outputs in other ways than voting. In the most common case, these outputs are the class 
labels given by the base classifiers, though in certain cases methods such as  probability 
distributions are employed. 

An early approach in this field was the use of class rankings (Ho et al., 1992, 1994). 
Here, rankings of classes are used instead of unique class choices. The classifier ranks a 
given set of classes with respect to an input pattern. A classifier strongly believes that the 
input pattern belongs to the class ranked at the top, but also that the other classes in the 
rank can be significant. In highest rank method (Ho et al., 1992, 1994), C classifiers are 
applied to rank a set of classes for each input pattern and thus each class receives C ranks. 
The highest of these C ranks is assigned to that class as its score. The set of classes is 
then sorted according to these scores to yield a combined class ranking for input to the 
pattern. Borda count (Ho et al., 1992, 1994) is a generalization of majority vote which 
also uses rankings. The Borda count of a class can be expressed as the sum of the number 
of the classes ranked below it by each classifier. The consensus ranking is given by 
arranging the classes so that their Borda counts are in descending order. The magnitude 
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of this count for each class measures the strength of agreement by the classifiers that the 
input pattern belongs to that class.  

 A number of combination methods have also been proposed in which the base 
classifier outputs have been used as new features. Wolpert (1992) presents the principle 
of stacked generalization in which each of the base classifiers employs separate parts of 
the training set. The outputs of the base classifiers form a new feature space in which the 
final classification is carried out. This principle shares similarities with the CRV method 
presented in the present thesis. The main difference is that in the proposed CRV method, 
the base classifiers use distinct visual descriptors as their inputs, not different parts of the 
training set. Error-correcting output codes (ECOC) (Dietterich and Bakiri, 1995) have 
received a certain amount of research interest. In these methods, a combination of binary 
classifiers produces a bit string that describes the object to be classified. This binary 
string is used as a code word that describes the sample. In these methods, the objective is 
to break up a multi-class problem into several two-class problems which are the tasks of 
each binary base classifier. 
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6 Applications in rock image classification 

This study deals with the application field of rock image classification. The author has 
been involved in a research project which investigates rock image analysis. The project 
has been carried out in co-operation with industry and the author has been responsible for 
the development of visual description and classification methods for different kinds of 
rock images. For this purpose, various approaches have been presented in the 
publications attached to this thesis. In this Chapter, the main contributions of this work 
are presented.  

6.1 Rock image classification methods 

All the publications consider the use of colour and texture information in rock image 
description for classification purposes. However, the methodology introduced in the 
publications can be divided into two parts, texture filtering and classifier combinations. 

6.1.1 Texture filtering 

A variety of different kinds of filtering-based methods have been introduced for texture 
description, as presented in Chapter 3. In this thesis, however, texture description has 
been applied to natural rock images. The first three publications deal with this area of 
research. Texture analysis using Gabor filtering is applied to the surface inspection of 
industrial rock plates. In this way it is possible to detect the orientation and strength of 
surface cracking. This is essential because cracking in the rock surface is an important 
characteristic indicating, for instance, the extent to which it can withstand frost and 
moisture. 

Another field of texture analysis discussed in this thesis concerns coloured textures. 
Colour and texture are two essential visual properties describing the rock type. In 
common texture analysis methods, image processing operations, such as filtering, are 
usually carried out only for the intensity (grey level) channel of the texture image.  
However, it is often beneficial to include colour information of the image in the texture 
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description. This is possible by making the texture description for other colour 
components and not solely intensity. 

6.1.2 Combining colour and texture descriptors by classifier combinations 

In rock image classification, it is necessary to combine different kinds of visual 
descriptors in a particular way. In this study, the descriptors characterize the texture and 
colour content of rock images. These descriptors are typically high dimensional and the 
feature values are spread in many difficult ways in the feature space. For this reason, it is 
often problematic to combine several kinds of descriptors into a single feature vector to 
be used in the classification. Instead, the descriptors can be first considered separately by 
using an individual base classifier to classify the input image based on a single descriptor. 
After this, the opinions of the separate base classifiers are combined to reach the final 
decision. For this purpose, various classifier combination strategies have been introduced 
in Publications IV-VII.      

6.2 Overview of the publications and author’s contributions 

This thesis includes five publications presented at conferences and two journal articles. 
This section provides a short overview of the content of each publication and the author’s 
own contribution to each publication is explained.  

Publication I is related to the surface inspection of industrial rock plates. In this paper, a 
texture analysis method is presented for the analysis of surface reflection of polished rock 
surface. In addition, an image acquisition method that employs total reflection of the rock 
surface is proposed. The orientation of surface cracking can be inspected using a bank of 
oriented Gabor filters. The filtering results can be also used to measure the homogeneity 
of the surface. 

The author suggested the idea of using the Gabor filtering method for the surface 
inspection of the rock plates. For this reason, she is responsible for the analysis methods 
presented in this paper. The idea of surface reflection imaging was originally provided by 
Mr. Autio, while image pre-processing and certain implementation work were carried out 
by Mr. Kunttu. Prof. Visa supervised the work.  

Publication II is a study of texture filtering applied to colour channels of rock images. In 
this paper, a bank of Gabor filters is applied to the colour channels of the images in HSI 
colour space. Using this kind of method, the rock images can be classified using multiple 
scales and orientations. Two sets of industrial rock plate images have been used as testing 
material in the experiments. The experimental results show that by using the colour 
information, classification accuracy is improved compared to conventional grey level 
texture filtering. 

The idea of combining the colour information of rock images with texture description 
was suggested and developed by the author. The implementation of the methods was 
carried out by Mr. Kunttu, and Mr. Autio was responsible for the geological input in the 
paper. Prof. Visa supervised the work.        

Publication III also concerns the combination of colour and texture in filtering-based 
texture description. In this paper, colour information is applied to the texture description 
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of rock by using a set of Gaussian band-pass filters. In this case, the filters are ring-
shaped, which means that texture orientation is not measured. This yields low 
dimensional texture description. In addition, the borehole rock images used in the 
experiments do not have clear orientations that could be used as classifying 
characteristics. Filtering is applied to the rock images in RGB and HSI colour spaces. The 
experimental results show that the proposed visual descriptors outperform, for example, 
several MPEG-7 colour and texture descriptors in classification accuracy. 

This study follows on from Publication II by employing orientation-insensitive filters 
for the analysis of coloured rock images. The article was written by the author who had a 
central role in the filter design and in the selection of the colour spaces.  

Publication IV presents the principle of classification result vector (CRV) for rock image 
classification. This is a method for combining separate base classifiers employing 
different visual descriptors. In this method, the unknown sample image is first classified 
by employing a separate base classifier for each colour and texture descriptor. The class 
labels provided by the base classifiers are then combined into a feature vector that 
describes the image in the final classification. This vector is called classification result 
vector. In the final classification the images are classified using their CRV’s as feature 
vectors. 

The CRV method was invented by the author. Mr. Kunttu was responsible for most of 
the implementation of the classifiers and Prof. Visa supervised the work.  

Publication V introduces a method for combining base classifiers using their probability 
distributions. In this method, the probability distributions provided by separate base 
classifiers employing different visual descriptors are combined into a classification 
probability vector (CPV). The CPV method is an extension of the CRV method. The 
main difference between these two is that CPV uses the probability distributions provided 
by the base classifiers as features in the final classification, whereas CRV employs only 
the class numbers for this purpose. The experimental results show that the CPV gives 
better classification accuracy than many other classifier combination approaches for rock 
images and also for paper defect images. 

This method was also developed by the author while the implementation issues were 
overseen by Mr. Kunttu. Mr. Autio and Mr. Rauhamaa were responsible for applications 
for rock and paper defect image classification, respectively. Prof. Visa supervised the 
work.  

    
Publication VI presents an application example of the CPV method. This paper proposes 
an approach to multilevel colour description of rock images. Such a description is 
obtained by combining separate base classifiers that use image histograms at different 
quantization levels as their inputs. The base classifiers are combined using the CPV 
method. The experimental results obtained with rock images show that an accurate 
colour-based classification can be achieved with the method. 

The idea of using the CPV method for making multilevel colour description was 
proposed by the author. Mr. Kunttu oversaw implementation and Prof. Visa supervised 
the study.  
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Publication VII presents a method for combining various visual descriptors in rock 
image classification. In this method, the descriptors extracted from an image are used by 
k-nearest neighbour base classifiers and then a final decision is made by combining the 
nearest neighbours in each base classification. The total numbers of the neighbours 
representing each class are used as votes in the final classification. Experimental results 
with rock image classification indicate that the proposed classifier combination method is 
more accurate than conventional plurality voting. 

This voting-based approach was invented and reported by the author. Again, the 
method was implemented mainly by Mr. Kunttu and Prof. Visa supervised the work. 



7 Conclusions

With the rapid development of digital imaging tools, imaging applications have been 
adopted in many areas in which inspection and monitoring have been done manually. The 
application area of this thesis is an example of this change. Formerly, rock samples were 
inspected manually in the rock industry as well as in geological research. It was not until 
fairly recently that imaging and image processing methods made it feasible to start 
developing automatic approaches for the visual inspection and recognition of rock. 
Compared to several other goods and materials that are inspected by computer vision 
systems on the production line, rock material is a significantly more demanding analysis 
task. This is because rock is a natural material whose visual properties are often varying. 
For example, in terms of classification, the division of the rock images into classes is a 
difficult task even for a geological expert. Indeed, individual experts often classify the 
same rock image set in different ways. 

There are several advantages to using an automatic rock image classifier. For 
instance, the amount of manual labour can be significantly reduced and the subjective 
nature of the classification can be eliminated. With bedrock investigations, especially, the 
visual information obtained from the boreholes can be effectively utilized with 
appropriate image analysis and recognition tools. It is for these reasons that the area of 
rock image analysis is a significant application area of image analysis and pattern 
recognition.   

The goal of this thesis was to develop methods and techniques for the classification of 
natural rock images. In image classification, visual descriptors extracted from the images 
are used to describe image content. In this study, description methods were developed to 
characterize colour and texture content of the rock images. In addition, the classification 
procedure of the rock images was considered and the focus of this part of the research 
was on classifier combinations. The reason for this is that different types of visual 
descriptors can be easily combined in the classification by using classifier combinations. 

The main contributions of this work include new multiscale filtering techniques which 
combine colour and texture information of the rock. These techniques improve filtering-
based texture classification compared to conventional texture filtering which is applied 
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only to the intensity channel of the image. Another main contribution is a novel method 
for the analysis and measurement of the rock plate surface structures by means of surface 
reflection imaging and texture analysis. The third main contribution is a combination of 
visual descriptors of the rock images in the classification by using classifier 
combinations. It has been shown that classification of rock images can be easily 
improved by combining separate classifiers employing distinct visual descriptors. For this 
purpose, several classifier combination methods have been introduced. 

The methods introduced in this thesis are all directly applicable to practical rock 
image classification problems. They can, therefore, be used whenever rock image 
classification systems are being constructed. 
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Abstract. Surface reflection can be used as one quality assurance procedure to 

inspect the defects, cracking, and other irregularities occurring on a polished 

surface. In this paper, we present a novel approach to the detection of defects 

based on analysis of surface reflection images. In this approach, the surface im-

age is analyzed using texture analysis based on Gabor-filtering. Gabor-filters 

can be used in the inspection of the surface in multiple resolutions, which 

makes it possible to inspect the defects of different sizes. The orientation of the 

defects and surface cracking is measured by applying the Gabor-filters in sev-

eral orientations. A set of experiments were carried out by using surface reflec-

tion images of polished rock plates and the orientation of the surface cracking 

was determined. In addition, the homogeneity of the rock surface was measured 

based on the Gabor features. The results of the experiments show that Gabor 

features are effective in the measurement of the surface properties. 

1   Introduction 

During recent years, the number of industrial imaging systems has increased re-

markably. The purpose of these digital imaging solutions is often the control of qual-

ity or production. In these solutions, analysis of the image data is made by using some 

image processing method. One typical application for the image analysis system is to 

detect and analyze the defects occurring in the production. Image analysis is used to 

detect possible malfunctioning as soon as possible to minimize the economic losses. 

Another application is classification of the products in different categories. 

 Surface reflection is a phenomenon that can be utilized in the detection of defects 

and microfracturing on different surfaces. In addition, based on the surface reflection, 

other surface properties can also be analyzed. These properties can be for example 

uniformity and smoothness of the surface. 

The reflection image obtained from the surface can be analyzed using methods and 

tools developed in the field of texture analysis. The majority of the texture analysis 
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methods are based on the statistical textural features, some texture model, or applica-

tion of the signal processing tools. An example of the statistical tools is co-occurrence 

matrix [3], whereas Multiresolution autoregressive model (MRSAR) [10] represents 

the model-based features. Recently, the methods based on signal processing have 

been widely used in the analysis of textures. Commonly used filtering-based signal 

processing methods use wavelets [4] or Gabor features [9]. The benefit of the wave-

let-based methods is that they measure the textural properties in multiple resolutions. 

Manjunath and Ma [9] have made a comparison between multiple oriented Gabor 

filters, other wavelet-features, and MRSAR-model. In this comparison, the best re-

sults were achieved using Gabor-filtering. 

In rock industry, the digital imaging tools are used in the quality and production 

control of rock. Rock is a commonly used as ornamental stones in the building indus-

try, where rock plates are used e.g. to cover the floors and walls of buildings. When 

the plates are used in the external walls, they are required to tolerate different weather 

conditions. The cracking and other defects occurring in the surface of the rock plates 

have significant effect on their strength and ability to bear frost and moisture. There-

fore, it is beneficial for a rock manufacturer to be able to classify and assure the qual-

ity of the plates. Important properties of the rock surface are strength and directional-

ity of the surface cracking. The homogeneity of the surface reflection is also impor-

tant, because the smoothness of the polished surface can be determined based on its 

homogeneity.  

In the rock image analysis, it has been made several studies about the rock texture 

images. Autio et al. [1] have researched rock texture characterization and classifica-

tion using co-occurrence matrix and texture directionality. In [6] we presented a clas-

sification system for non-homogenous rock images using textural and spectral fea-

tures. The texture directionality was used in rock image classification in [7]. All these 

studies concern the images of rock texture, whereas the number of the researches 

about the surface reflection is very limited. However, in [5] surface reflection model 

for rock is presented. This study was focused mainly on image acquisition and the  

methods used for the reflection image analysis were not discussed.   

In this paper, we use multiscale texture analysis methods for the inspection of the 

surface reflection images. We use the textural properties to distinguish between ho-

mogenous and non-homogenous surfaces. For testing purposes, we used a set of in-

dustrial rock plates, whose surface reflection was used in testing of analysis methods. 

2   Analysis of Surface Reflection Images 

When the light approaches a surface at an angle 1 to the normal of the surface, a part 

of it reflects from the surface at the same angle 2 at the opposite side of the normal 

(figure 1a). If the angle 1 exceeds a certain critical angle c, all the approaching 

light reflects from the surface. This phenomenon is called total reflection, in which 

the surface acts like a mirror reflecting the light at angle 2. This reflection can be 

utilized in the surface inspection, because the light reflects from the smooth surface in 
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Fig. 1. a) The surface reflection model, b) The imaging arrangement of the rock plates 

a different way than from the cracking and other defects. Using a sophisticated digital 

camera system, this reflection pattern can be acquired into digital form, in which it 

can be processed and analyzed. 

2.1 Multiresolution Texture Analysis 

Directionality of the cracking and the other surface properties can be described using 

texture analysis. By means of multiscale texture analysis, the surface structures can be 

analyzed in the several resolutions. This is essential, because the size of the surface 

cracks and defects may vary strongly.    

The analysis methods presented in this paper use the texture representation based 

on the Gabor filters. The experimental results of [9] show that Gabor filtering gives 

the best texture classification compared to the other, commonly used wavelet-based 

texture analysis tools. Gabor filters can also be considered as tunable edge and line 

(bar) detectors [8]. This property can be utilized in the description of the surface 

cracking. The Gabor-features used in this study are based on the work of Manjunath 

and Ma [9]. They have used a bank of Gabor filters to characterize the texture proper-

ties. This filter bank can be used in multiple scales and orientations. Gabor function is 

based on the gaussian wavelet function [2]. A two dimensional Gabor function g(x,y) 

and its Fourier transform G(u,v) can be written as [9]: 
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where u=1/2 x and v=1/2 y. Let g(x,y) be a mother Gabor wavelet, then filter at 

multiple rotations and scales can be obtained by appropriate dilations and rotations of 

g(x,y) through the generating function: 
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where =n /K, K is the total number of orientations, and a-m is an energy factor that 

ensures that energy is independent of m [9]. When we have an image I(x,y), its Gabor 

wavelet transform is defined as [9]: 

111111 ),(*),(),( dydxyyxxgyxyxW mnmn I                       (4) 

where * indicates the complex conjugate. 

2.2 Textural Description of the Surface Reflection Images 

The multiscale texture representation presented in section 2.1 can be used to charac-

terize the surface reflection image. An effective textural descriptor for a texture re-

gion is the mean of the transform coefficient magnitudes for the scale m and the ori-

entation n [9]:

dxdyyxWmnmn ),(                                         (5) 

Using mn, the distribution of the orientations occurring in the image can be formed 

for each scale. Mean value mn can be defined for a set of scales [M]=s1, s2, ... , sk, 

and for the orientations [N]= 1, 2, ... , l. Then the dominating orientation D at the 

scale m is the orientation, in which mn has its maximum value. When mn is defined 

for all k scales and l orientations of the sets [M] and [N], a feature vector for a texture 

region can be defined as: 

kl,,,, 020100F                                          (6) 

Using this feature vector, texture properties of a texture region can be compared with 

the properties of the other regions. 

In addition to the orientation of the surface cracking, also homogeneity of the surface 

is essential in the rock surface analysis. The mean of the transform coefficients mn

can be used also in the measurement of the texture homogeneity. In this case, the 

reflection image is divided into B subimages (or blocks). The textural properties of 

i:th block are measured by calculating a feature vector Fi for it. Then the average 

feature vector Fave of the all B blocks in the image is defined.  
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Fig. 2. The distribution of the standard deviation (std) values of the test set images    

Fig. 3. Example images of non-homogenous and homogenous reflection images    

The homogeneity of the image can be measured by means of the deviation between 

Fi:s and Fave. Hence, in homogeneity measurement we use standard deviation (std): 
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Standard deviation is a measure that describes the texture homogeneity.  

3 Experiments 

For testing purposes we had 118 polished industrial rock plates. The surface of each 

plate was photographed using a digital camera combined with polarization filter. The 

imaging arrangement is presented in figure 1b. In this arrangement, a plane of fluo-

rescence tubes illuminated the plate via a white vertical surface. Using this lightning 

method, the plate surface was evenly illuminated. 
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We applied to the obtained surface reflection images the texture analysis methods 

presented in section 2.2. An area of 500x500 pixels was selected from the middle of 

the plate to represent the surface of the plate. For this region, Gabor wavelet trans-

form of equation 4 was defined using a set of four scales and six orientations. Using 

these scales and orientations, the transform coefficients mn were calculated. Based on 

these coefficients, the dominating orientation of each plate was defined. Based on the 

manual inspection of the reflection images, the results of the orientation measure-

ments were valid. 

Another goal was to measure the homogeneity of the surface. For this purpose, the 

images were divided into 25 blocks so that the size of each block was 100x100 pixels. 

The feature vector Fi of equation 6 was defined for each block of each image. Then 

the standard deviation (std) between the block feature vectors (equation 7) was calcu-

lated for each image. The manual inspection of the images showed that there is a clear 

relation between the std-value and the homogeneity of the surface image. Hence, the 

low value of std means that the surface is homogenous whereas large std-value indi-

cates non-homogeneity of the surface. The distribution of the std-values of the images 

is presented in figure 2. Based on this distribution, the thresholds for std-values of 

homogenous and non-homogenous rock plates can be defined. In figure 3, examples 

of non-homogenous and homogenous surface reflection images are presented.  

4 Discussion 

In this paper we presented a novel method for the analysis of the surface reflection 

images. This method is based on the multiscale texture analysis, which makes it pos-

sible to analyze the orientations and other textural properties in multiple resolutions. 

The benefit of this approach is that the defects and microcracks of different sizes can 

be found.  

The application field of this method lies in the rock and stone industry. The surface 

inspection by image analysis is beneficial in the quality control of the rock plates. It is 

fast and accurate compared to traditional visual methods. The directionality of surface 

cracking of the rock plate is an important feature to inspect. On the other hand, the 

homogeneity of the surface reflection indicates the average smoothness and void 

content of the plate. Therefore, we applied the surface analysis method to two pur-

poses: directionality and homogeneity measurement. The experimental results show 

that both of these properties can be inspected from the images using the methods 

presented in this paper. The method made it possible to classify the test material accu-

rately based on both of these two properties. 

The surface reflection method proved to be feasible in the analysis of the rock 

plate surfaces. The method for the image acquisition is straightforward and the tex-

ture analysis tools were able to analyze the desired features in the images. The ob-

tained results show that this method has great potential in rock and stone industry. 

However, these methods can also be applied to other surface inspection tasks.    
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Abstract

In texture analysis the common methods are based on 

the gray levels of the texture image. However, the use of 

color information  improves the classification accuracy of 

the colored textures. In the classification of non-

homogenous natural textures, human texture and color 

perception are important. Therefore, the color space and 

texture analysis method should be selected to correspond 

to human vision.  

In this paper, we present an effective method for the 

classification of colored natural textures. The natural 

textures are often non-homogenous and directional, 

which makes them difficult to classify. In our method, the 

multiresolution Gabor filtering is applied to the color 

components of the texture image in HSI color space. 

Using this method, the colored texture images can be 

classified in multiple scales and orientations. The 

experimental results show that the use of the color 

information improves the classification of natural 

textures.

1. Introduction 

The analysis of color and texture are both essential 

topics in image analysis and pattern recognition. Usually 

texture and color content of the image have been analyzed 

separately. Hence the conventional texture analysis 

methods use only the gray level information of the texture 

image. However, color of the texture image provides a 

significant amount of information about the image 

content. Therefore, in several recent studies, color has 

been taken into account in the analysis of texture images. 

The experimental results show that the use of the color in 

texture analysis has improved the texture classification 

results. 

In most of the studies concerning color texture 

analysis, the commonly used texture analysis methods 

have been applied to the colored textures. One of the most 

popular texture analysis methods is based on wavelets [6]. 

Gabor filtering [9], [11] is a wavelet-based method that 

provides a multiresolution representation of texture. In 

the comparison of Manjunath and Ma [9], Gabor filtering 

method proved to be the most effective wavelet-based 

method in the texture classification. Gabor filtering has 

also been the basis of many color texture analysis 

methods, such as [3], [5], [10].  

The choice of the color space is essential in the color 

texture analysis. The use of RGB color space is common 

in the image processing tasks. However, it does not 

correspond to the color differences perceived by humans 

[13]. In the work of Paschos [10], Gabor filtering was 

applied to the classification of color textures. He 

compared the color texture classification in RGB, 

L*a*b*, and HSI color spaces. The best classification 

result was obtained using HSI color space. 

Most of the natural textures are non-homogenous. 

Classification of natural non-homogenous textures is 

significantly more difficult than classification of 

homogenous textures such as the commonly used texture 

image set presented by Brodatz [2].  

In this type of texture images, there can be variations 

in directionality, granularity, and other textural features. 

Color is also an essential feature of natural texture 

images. Color levels may vary significantly within these 

images. In [7] we presented a method for the 

classification of colored natural non-homogenous 

textures. In this method, the texture image was divided 

into blocks and the textural and spectral features of these 

blocks formed a feature histogram. The classification of 

the texture images was based on these histograms. Many 

natural texture types, like rock texture [1], are directional. 

Directionality is also one of the most remarkable 

dimensions in human texture perception [12]. Therefore, 

directionality can be used as a classifying feature between 

natural textures. In [8] we presented a directionality-

based method for the retrieval of non-homogenous 

textures. Because Gabor filtering method can be used in 

multiple orientations, it is a powerful tool for the analysis 

of the directional textures. Therefore, it is a suitable 

method for the classification of these kinds of textures. In 

addition to its ability to describe  
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Figure 1. An example image of non-homogenous 
rock texture.

the texture directionality, Gabor filtering can be used in 

multiple scales, which is a desirable property in the 

classification of non-homogenous natural textures. 

In this paper, we present an effective method for the 

use of multiscale Gabor filtering in the classification of 

colored natural textures. In our method, we apply a bank 

of Gabor filters presented in [9]. This filter bank is used 

for the texture images in HSI color space. Compared to 

the conventionally used gray level Gabor filtering, our 

approach gives clearly better classification result without 

significantly increasing the computational cost. 

In section 2, the classification of colored natural 

textures is discussed. In the same section, our method for 

color-based Gabor filtering is presented. Section 3 is the 

experimental part of this work. The classification 

experiments are made using two databases of colored 

rock textures. The results are discussed in section 4.   

2. Classification of colored natural textures 

In non-homogenous natural textures, one or more of 

the texture properties are not constant in the same texture 

sample. An example image of non-homogenous rock 

texture is presented in figure 1. The texture sample 

presented in this figure is strongly non-homogenous in 

terms of directionality, granularity, and color. The 

homogeneity of a texture sample can be measured by 

dividing the sample into blocks. If the texture or color 

properties do not vary between the blocks, the texture is 

homogenous. On the other hand, if these feature values 

have significant variance, the texture sample is non-

homogenous. In our previous approach [7], this division 

into blocks was applied. 

In this section, we present a method for the 

classification of natural non-homogenous textures. 

Because texture directionality can be used as a classifying 

feature between the texture samples [8], we use a bank of 

multiple oriented Gabor filters. The benefit of this 

approach is also the fact that the textures are considered 

in multiple scales, which makes the classification more 

accurate. In our approach, we apply the filter bank for the 

colored texture images.  

In the beginning of this section, the previous work in 

the Gabor filtering of color textures is presented. After 

that, we present our approach to this purpose.   

2.1 Gabor filtering of colored textures

Gabor filtering is a wavelet-based method for texture 

description and classification. Gabor filters extract local 

orientation and scale information of the texture. These 

features have been shown to correspond to human visual 

system [11]. In the classification and retrieval, the 

common approach is to use a bank of multiple oriented 

Gabor filters in multiple scales [9].  

In the color texture analysis, several Gabor-based 

methods have been presented. In [10], the Gabor filters 

have been applied to different color bands of the texture 

images. After that, the classification is made by 

calculating distances between the transform coefficients. 

The work of Jain and Healey [5] is based on the opponent 

features that are motivated by color opponent 

mechanisms in human vision. The unichrome opponent 

features are used in texture image classification. 

Multichannel Gabor illuminant invariant texture features 

(MII) combine the ideas of color angle and Gabor 

filtering [3]. In this approach, MII is calculated as the 

color angles between the image color bands convolved 

with two different Gabor filters. 

2.2 Our approach

Our approach to the classification of the colored 

natural textures is based on the Gabor filtering in HSI 

color space. This color space is selected to be the basis of 

our texture analysis, because it corresponds to the human 

visual system [13]. Also the comprehensive comparison 

presented in [10] proved that HSI color space gives the 

best result in the classification of color textures. 

Manjunath and Ma [9] have introduced a method for 

the classification of the gray level textures. They have 

used a bank of Gabor filters to extract features that 

characterize the texture properties. The Gabor filter bank 

is used in multiple scales m and orientations n. The 

feature vector is formed using the mean µmn and standard 
deviation σmn of the magnitude of the transform 

coefficients. If the number of scales is M and the number 

of orientations is N, the resulting feature vector is of the 

form: 

[ ]MNMNf σµµσµ 010000 ,=   (1) 
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Figure 2. Example images of the textures in the testing database I. 

Figure 3. Example images of the textures in the testing database II. 

This approach has proved to be effective in the 

classification and retrieval of different types of gray level 

textures [9]. Also in the case of natural non-homogenous 

textures, this method has given reasonably good results. 

However, when the color information of the texture 

image is added to this method, the classification results 

can be improved as shown in the experimental part of this 

paper.

In our approach, we define the feature vector f for each 

color channel of the texture image: 

[ ]
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=
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=
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Then the feature vectors can be combined to a single 

vector that characterizes all the color channels: 

[ ]ISHHSI ffff ,,=     (3) 

When µmn and σmn are calculated for M scales, N

orientations, and C color channels, the size of the 

resulting feature vector is 2*M*N*C. In classification, the 

feature vectors of texture samples i and j are compared 

using the distance measure: 

=
m n

mn jidjid ),(),(       (4)  

where
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mn
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mn

mn
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mn
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mn
mn jid
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µα
µµ −

+
−

=      (5) 

in which α(µmn) and α(σmn) are the standard deviations of 
the respective features over the whole database [9].

3. Experiments

In this section, our approach to the classification of the 

colored natural textures is tested. For testing purposes, we 

used two testing databases. These databases consisted of 

colored rock textures, which are typical natural textures.  

3.1 Testing databases

The two testing databases used contained several types 

of non-homogenous rock textures. Test-set I (figure 2), 

consisted of 64 industrial rock images. The size of the 

images was 714x714 pixels and their texture was strongly 

directional. The texture samples were divided manually in 

three visually similar classes. The second testing 

database, test set II (figure 3), consisted of 168 rock 

texture samples. The size of each sample image was 

500x500 pixels. The test set II represented seven different 

rock texture types, and there were 24 samples from each 

texture class. Also in this test set, most of the texture 

types were directional and non-homogenous. 

3.2 Classification

In classification, k-nearest neighbor classification 

principle [4] was used. The validation of the classification 

experiments was made using leave one out validation 

method [4]. In this method, each sample is left out from 

the database in turn, whereas the rest of the images form 

the testing database. This classification is repeated for the 

whole image database, and the average classification rate 

can be defined as the mean value of these classification 

experiments. In the classification, the value of  k was

selected to be 3. 
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Figure 4. The mean classification results in each 
class of the testing database I. 

Figure 5. The mean classification results in each 
class of the testing database II. 

The classification experiments were made for hue, 

saturation, and intensity channels (HSI) as well as for hue 

and intensity channels (HI). For comparison, 

classification result was calculated also for intensity 

channel (I), which represents the gray level of the image. 

In the experiments, we used four scales and six 

orientations, as in [9].  

Table 1 presents the average classification results. 

These results show that the best classification rate was 

achieved using HSI color space, whereas hue and 

intensity channels (HI) gave the second best result. In 

both testing databases, the classification based on 

intensity component (gray level) gave the lowest 

classification result. The mean classification results in 

each class of both testing databases are presented in 

figures 4 and 5. The computational characteristics of the 

methods are presented in table 2. In this table, the feature 

vector lengths and the classification times are presented 

for the testing databases. The computation was made 

using Matlab on a PC with 804 MHz Pentium III CPU 

and 256 MB primary memory. 

Table 1. The average classification rates. 
Color space Database I Database II 

HSI 87.5 % 98.2 % 

HI 85.9 % 97.6 % 

I 84.4 % 95.8 % 

Table 2. The computational characteristics of the 
methods.

Vector length Classification time Color space 

2*M*N*C DB I DB II 

HSI 144 1.8 sec 9.1 sec 

HI 96 1.7 sec 8.9 sec 

I 48 1.4 sec 8.4 sec 

4. Discussion 

In this paper, we studied the color properties of the 

natural textures. The color information of the texture 

images is an essential feature in the classification of them. 

The results of the texture classification can be improved 

by combining the color information of the texture image 

in the classification. 

Rock texture is an example of natural textures. Rock 

texture images are often non-homogenous. The non-

homogeneity of these textures may appear as variations in 

directionality, granularity and color. Because Gabor 

filters have proved to be effective in the classification of 

directional textures, they were selected also to this study. 

Gabor filters can also be used to analyze the texture 

images in multiple scales, which is desirable in practical 

applications. This is due to the variations in the granular 

size of the rock textures. The multiscale texture 

representation is also essential, when human texture 

perception is considered.  

The objective of this work was to include the color 

information of the textures to the Gabor-based texture 

classification. In this way, the classification results 

obtained from the Gabor filtering could be further 

improved. The color space selected to be HSI, which 

corresponds to human color vision. In our texture 

classification method, the Gabor filtering is applied to the 

selected color channels separately. Then the feature 

vectors of each channel are combined into a single vector, 

which is used in the classification.  

Compared to the commonly used, gray level based 

Gabor filtering, our method provides improved 

classification results. These results are achievable at a 

reasonable computational cost. Good computational 

efficiency is the benefit of the presented method when 

compared to the other color texture analysis methods.          
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Abstract. In image classification, the common texture-based meth-
ods are based on image gray levels. However, the use of color
information improves the classification accuracy of the colored tex-
tures. In this paper, we extract texture features from the natural rock
images that are used in bedrock investigations. A Gaussian band-
pass filtering is applied to the color channels of the images in RGB
and HSI color spaces using different scales. The obtained feature
vectors are low dimensional, which make the methods computation-
ally effective. The results show that using combinations of different
color channels, the classification accuracy can be significantly
improved. © 2005 SPIE and IS&T. �DOI: 10.1117/1.2149872�

1 Introduction
The division of natural images like rock, stone, clouds, ice,
or vegetation into classes based on their visual similarity is
a common task in many machine vision and image analysis
solutions. Classification of natural images is demanding,
because in the nature the objects are seldom homogenous.
For example, when the images of rock surface are in-
spected, there are often strong differences in directionality,1

granularity, or color of the rock, even if the images repre-
sented the same rock type. These kinds of variations make
it difficult to classify these images accurately. In the current
rock imaging applications, rock images analysis is used in,
e.g., bedrock investigations. Therefore, effective inspection
methods are required to classify the rock images.

Texture is an important feature in the content-based im-
age classification. Also in the analysis of natural images,
texture plays a remarkable role. Rao and Lohse2 indicated
that most important perceptual dimensions in the natural
texture discrimination are repetitiveness, directionality, and
granularity. The directionality and granularity of nonho-
mogenous natural textures have been discussed in our ear-
lier work.1,3 In addition to texture, color is also an essential
feature of natural images. In this study, we combine the
color information to the textural features of rock images.

Gabor filtering provides a multiresolution representation
of texture. In the comparison of Manjunath and Ma,4 Gabor
filtering method proved to be the most effective method in
the texture classification. Gabor filtering has also been the
basis of many color texture analysis methods.5,6 In this pa-
per, we present an efficient approach to the classification of

colored rock textures. The method is based on the bandpass
filtering in Gabor space that is applied to different color
channels of the images. In Sec. 2, we present the principle
of our method. In Sec. 3, the method is used to classify
rock images obtained from the boreholes. The results are
discussed in Sec. 4.

2 Color Filtering in Gabor Space

Gabor filtering is a method for texture description and clas-
sification. In most cases, the filters are used to extract ori-
entation and scale information from the local spectrum of
the texture image. The local spectrum is the Fourier trans-
form of a window function which is multiplied with the
Fourier transform of the image. The filters are used to es-
timate the selected frequency band of the image using a
Gaussian as a smoothing window function. It has been
shown that Gabor features correspond to human visual
system.7

The filters as texture analysis tools are usually applied to
gray-level �intensity� images in the Gabor space. In our
previous approach,8 we showed that Gabor filters applied to
color channels of the rock texture images can improve the
classification accuracy of these images. In this paper, we
use rock textures that are not directional or their direction-
ality cannot be regarded as classifying feature. Therefore,
we do not utilize the orientation of the texture. We apply
filters of different scales to the color channels of the texture
images. This way, the obtained feature vectors are shorter
than in Ref. 8, which makes the feature extraction and clas-
sification significantly faster. Hence, instead of using filters
of multiple scales and orientations, we use a filter bank that
works independent on the orientation at a selected scale.

In this work, we use ring-shaped bandpass filters whose
amplitude responses are presented in Fig. 1. The cross sec-
tion of the ring is a Gaussian function. The feature vector is
formed using the mean �m and standard deviation �m of the
magnitude of the transform coefficients. This is repeated at
each scale m. If the number of scales is M, the resulting
feature vector is of the form:

f = ��1�1,�2�2 . . . �M�M� . �1�

A comprehensive comparison presented in Ref. 6 revealed
that HSI color space gives the best result in the classifica-
tion of color textures. This comparison, however, used
quite homogenous textures and oriented Gabor filters. In
this paper, we compare the results obtained in RGB space
with those obtained from HSI space in rock texture filtering
without orientation. In our approach, we define the feature
vector f for each color channel of the texture image:

fH = ��1
H�1

H,�2
H�2

H . . . �M
H �M

H �

fS = ��1
S�1

S,�2
S�2

S . . . �M
S �M

S �

f I = ��1
I �1

I ,�2
I �2

I . . . �M
I �M

I � . �2�

Then the feature vectors can be combined to a single vector
that characterizes all the color channels:
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fHSI = �fH, fS, f I� �3�

in which each component is normalized by removing its
mean and dividing by its standard deviation. When �m and
�m are calculated for M scales and C color channels, the
size of the resulting feature vector is 2*M*C, which yields
to quite short feature vectors, especially when the number
of scales is low. The same procedure is followed with the
experiments in HSI and RGB color spaces.

3 Experiments Using Rock Images

3.1 Nonhomogenous Rock Images
In the field of rock science, the development of digital im-
aging has made it possible to store and manage the images
of the rock material in digital form. Rock represents typical
example of nonhomogenous natural image type. This is be-
cause there are often strong differences in directionality,
granularity, or color of the rock texture, even if the images
represented the same rock type.8 In bedrock investigation,
rock properties are analyzed by inspecting the images that
are collected from the bedrock. Different rock layers can be
recognized from the borehole images based on the color
and texture properties of rock. Therefore, there is a need for
an automatic classifier that is capable of classifying the
rock images into visually similar classes.

As a testing database, we use a set of rock images that
consists of 336 images, which are obtained by dividing

large borehole images into parts. These images are manu-
ally divided into four classes by an expert. The division is
based on their color and texture properties. Figure 2 pre-
sents three example images from each of the four classes.
The images show that there is directionality in some of the
classes, but the orientations vary within the same classes.
Therefore, directionality is not used in the classification. In
classes 1–4, there are 46, 76, 100, and 114 images in each
class, respectively.

3.2 Classification
The database of rock images is classified using feature vec-
tors of Eq. �2� in different color channels. The number of
scales varyies between two and five. In all cases, the filter
centers have been located uniformly to the frequency band
such that the frequency channels of the filters cover the
whole frequency area. The corresponding filters are pre-
sented in Fig. 1. In classification, we have used k-nearest
neighbor �k-NN� classification principle. The selection of
the k-NN classifier is due to its robustness with nonhomog-
enous feature distributions of the rock images. With this
type of database, the selected classification algorithm is
also fast. The selection of value 5 for k was based on pre-
liminary experiments. In the experiments, a leave-one-out
validation method was employed. The distance measure in
the classification was Euclidean distance. In preliminary
experiments, Euclidean distance outperformed slightly
L1-norm that is other common distance metrics for texture
features.

Table 1 The average classification rates �%� in each class in RGB and HSI color spaces.

Dimensions

RGB color space HSI color space

1 2 3 4 Ave 1 2 3 4 Ave

2 scales 12 60.5 93.5 86.0 82.5 80.1 47.4 84.8 81.0 81.6 74.1

3 scales 18 59.2 95.7 87.0 86.0 81.3 56.6 87.0 80.0 82.5 76.5

4 scales 24 55.3 100.0 86.0 84.2 80.4 52.6 80.4 85.0 79.8 75.3

5 scales 30 53.9 100.0 88.0 86.0 81.3 52.6 82.6 81.0 77.2 73.5

Fig. 1 The filters used at �a� two, �b� three, �c� four, and �d� five
scales.

Fig. 2 Three examples from each class of the rock images in the
testing database.
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The average classification results are presented as per-
centages in Table 1. The results are presented for RGB and
HSI color spaces, respectively. In Table 1, the average clas-
sification rates are presented for each of the four classes
separately and as average value. The dimensionality of each
descriptor type is also mentioned in the table. To compare
our results to other commonly used visual descriptors, we
have calculated the classification results for the testing da-
tabase using some MPEG-7 texture and color descriptors.9

This comparison is presented in Table 2. We selected the
homogenous texture descriptor to represent texture descrip-
tion, because it is based on Gabor filtering in gray-level
texture images.9 This descriptor is based on the method
presented in Ref. 4, and it uses Gabor filters in five scales
and six orientations. Because this paper considers also
color information of the rock images, we have included
also MPEG-7 color descriptors for comparison. Color
structure descriptor and color layout descriptor employ
HMMD color space9 whereas scalable color descriptor uses
HSI color space.

3.3 Results
The classification rates presented in Table 1 show that the
rock texture filtering in RGB color space produces slightly
better classification results than that in HSI color space.
There are remarkable differencies in the classification per-
formance between the classes. Class 1 is especially difficult
to classify for all the features. This is due to the nonhomog-
enous nature of the class 1 images. These images are very
varying in terms of their color distributions and texture
properties. In class 2, RGB color space gives clearly better
results than HSI space. On the other hand, in classes 3 and
4, RGB space is only slightly better. When the comparison
with MPEG-7 visual descriptors is considered �Table 2�,
one can see that these descriptors are outperformed by the
proposed methods. Homogenous texture descriptor uses di-
rectional Gabor filtering, which yields poorer classification
results than the proposed methods. This is due to the fact
that especially in classes 1 and 3 the textures are randomly
oriented and therefore directionality cannot be regarded as
a classifying feature. In addition, color information of tex-
ture has not been utilized in this descriptor. The perfor-
mance of color descriptors is also lower than in the case of
the proposed methods. This is natural, because they con-
sider only color distribution of the images and not their
texture content.

Computational complexity is always a central matter
with practical image classification tasks. Compared to con-
ventional Gabor filtering,4,9 the proposed method is some-
what lighter because it does not calculate the filter re-
sponses for different orientation. On the other hand, the
filtering is repeated for three color channels instead of one.
Therefore the computational cost is dependent on the num-
ber of scales and color channels. In fact, the computational
complexity can be estimated by comparing the dimension-
ality of the descriptors. In Tables 1 and 2, the dimensional-
ity of each method is presented. For example, by using two
scales the dimensionality of the proposed method is 12,
which yields to a classification rate of 80.1% in RGB space.
This can be regarded as a good result with such a low
dimensional descriptor.

4 Discussion
In this paper, we showed that the classification of natural
rock texture images can be improved by combining the
color information to the texture description. We used band-
pass filtering that was applied to the images in different
color spaces. This way it is possible to analyze colored
texture images in multiple scales, which is desirable in
practical applications. This is due to the variations in the
granular size of the rock textures. In the practical solutions,
the computational cost is always an essential matter. In the
presented approach the filtering is a straightforward opera-
tion that is repeated for the selected color channels. The
obtained feature vectors are relatively short, which makes
online classification possible.
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ABSTRACT 

 

Combining classifiers has proved to be an effective 

solution to several classification problems. In this paper, 

we present a classifier combination strategy that is based 

on classification probability vector, CPV. In this 

approach, each visual feature extracted from the image is 

first classified separately, and the probability distributions 

provided by separate classifiers are used as a basis of 

final classification. This approach is particularly suitable 

for images with non-homogenous and overlapping feature 

distributions. 

 

1. INTRODUCTION 

 

Classification of real-world images is an essential task in 

image processing. It is usual that features are spread in 

many difficult ways. In most of the real classification 

problems the input patterns can be noisy, non-

homogenous and overlapping. Different classifiers may 

classify the same sample in different ways and hence 

there are differences in the decision surfaces. However, it 

has been found that a consensus decision of several 

classifiers can give better accuracy than any single 

classifier [1],[2],[7],[8]. Therefore, combining classifiers 

has become a popular research area. 

The goal of combining classifiers is to form a 

consensus decision based on opinions provided by 

different base classifiers. Duin [5] presented six ways, in 

which consistent set of base classifiers can be generated. 

In the base classifiers, there can be differences in 

initializations, parameter choices, architectures, 

classification principle, training sets, or feature sets. 

Combined classifiers have been applied to several 

classification tasks, for example to face recognition [12], 

person identification [3] and fingerprint verification [6]. 

Kittler et al. [7] presented a theoretical framework for 

combining classifiers.  

In image classification, a number of visual 

descriptors are used to classify the images based on their 

content. In the images, there are different types of visual 

features, like color, texture, and shape. The feature space 

is typically high dimensional. Also the categories of 

images are often overlapping in the feature space. A 

common approach is to combine all the selected 

descriptors into a single feature vector. The similarity 

between these vectors is defined using some distance 

metric and the most similar images are then classified 

(labeled) to the same category. However, when different 

types of features are combined into the same feature 

vector, some large-scaled features may dominate the 

distance, while the other features do not have the same 

impact on the classification. Especially, in the case of 

high dimensional descriptors combination into the same 

vector can be problematic. Therefore it is often more 

reasonable to consider each descriptor separately. 

In image classification, separate classifiers can be 

used to classify each visual feature individually [9]. The 

final classification can be obtained based on the 

combination of separate base classification results. In this 

way, each feature has its own effect on the final 

classification, independent of its scaling. Hence the non-

homogenous properties of individual features do not 

necessarily effect directly on the final classification. In 

several image classification problems, this approach can 

be used to improve the classification [9],[10]. 

In this paper, we present a novel method for the 

classification of non-homogenous real-world images 

using combined classifiers. The proposed combination 

method is based on the probabilities provided by base 

classifiers employing separate visual descriptors. The 

final classification is then carried out using the 

probability distribution provided by the base classifiers. 

The rest of this paper is organized as follows. Section two 

presents the idea of classifier combinations in image 

classification and the proposed method, classification 

probability vector (CPV). In section three, the method is 

tested using databases of real non-homogenous images. 

The results are discussed in section four. 
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Figure 1. The outline of the proposed classifier combination scheme. 

 

2. CLASSIFIER COMBINATIONS IN IMAGE 

CLASSIFICATION 

 

2.1. Methods for Combining Classifiers 

 

The general methods for combining classifiers can be 

roughly divided into two categories, voting-based 

methods and the methods based on probabilities. The 

voting-based techniques are popularly used in pattern 

recognition [11]. Voting has proved to be a simple and 

effective method for combining classifiers in several 

classification problems. Furthermore, the voting-based 

methods do not require any additional information, like 

probabilities, from the base classifiers [11]. Lepistö et al. 

[9] presented a method for combining classifiers using 

classification result vectors (CRV). In this approach, the 

class labels provided by the base classifiers are used as a 

feature vector in the final classification, and hence the 

result is not based on direct voting. CRV method 

outperformed voting method in image classification 

experiments [9],[10]. In [10] an unsupervised variation of 

CRV was presented. 

Recently, the probability-based classifier 

combination strategies have been popularly used in 

pattern recognition. In these techniques, the final 

classification is based on the a posteriori probabilities of 

the base classifiers. Kittler et al. [7] presented several 

common strategies for combining base classifiers. These 

strategies are e.g. product rule, sum rule, max rule, min 

rule, and median rule. In [7], the best experimental results 

were obtained using sum and median rules. Theoretical 

comparison of the rules has been carried out in [8]. Also 

Alkoot and Kittler [1] have made a comparison between 

the classifier combination strategies. 

   

2.2. Classification probability vector method 

 

Our previous method for combining classifiers combined 

the outputs of the base classifiers into a feature vector that 

is called classification result vector (CRV) [9]. However, 

CRV method uses only the class labels provided by the 

base classifiers, and ignores their probabilities. In this 

paper, we use the probability distributions of the separate 

base classifiers as features in the final classification.  

In general, in the classification problem a pattern S  is 

to be assigned to one of the m classes ( 1,…, m) [7]. We 

assume that we have C classifiers each representing a 

particular descriptor and we denote the feature vector 

used by each classifier by fi. Then each class k is 

modeled by the probability density function p(fi| k). The 

well-known Bayesian decision theory [4],[7] defines that 

S is assigned to class j if the a posteriori probability of 

that class is maximum. However, the probabilities of all 

the other classes than j have also significance in 

classification. They are particularly interesting when the 

pattern S is located near the decision surface. Therefore, 

we focus on the whole probability distribution 

p(fi| 1,…, m) provided by each classifier. Hence, if the 

probability is defined for each m class, the obtained 

probability distribution is a C by m  matrix for each 

pattern S. This matrix is used as a feature vector in the 

final classification, and it is called classification 

probability vector (CPV). In the final classification, the 

images with similar CPV:s are assigned into same classes. 

The outline of the CPV method is presented in figure 1.  

In contrary to the common probability-based 

classifier combinations [7], CPV method uses the whole 

probability distribution as a feature vector in the final 

classification. The CPV method utilizes the fact that the 

separate base classifiers classify similar samples in the 

similar way, which leads to a similar probability profile. 

The final classification is based merely on the similarity 

between the probabilities of the base classifiers. Hence, in 

contrary to voting, in the CPV method the base classifier 

outputs (class labels) do not directly affect the final 

classification result.    

When image classification is considered, the CPV 

method has several advantages. CPV method considers 

each visual descriptor of the images in the base classifiers 

separately. In the final classification, the probability 

distributions are employed instead of features. This way, 

the individual features do not directly affect the final 

classification result. Therefore, classification result is not 

sensitive to variations and non-homogeneities of single 

images. 



 
Figure 2. Three example images of each class of rock 

images in testing database I. 
 

 
Figure 3. Three example images of each class of paper 

defect images in testing database II. 

 

3. EXPERIMENTS 

 

3.1. Testing databases 

 

The experiments in this paper are focused on non-

homogenous image data that is represented by two real 

image databases. The database I consists of rock images. 

Rock texture is an example of natural textures. In many 

cases it is non-homogenous [9]. One application field for 

rock imaging is geological research work, in which the 

rock properties are inspected using borehole imaging. 

Different rock layers can be recognized from the borehole 

images based on the color and texture properties of rock. 

Therefore, there is a need for an automatic classifier that 

is capable of classifying the borehole images into visually 

similar classes. Testing database I consists of 336 images 

that are obtained by dividing large borehole images into 

parts. These images are manually divided into four 

classes by an expert. The division is based on their color 

and texture properties. Figure 2 presents an example 

image of each four class. Testing database II contains 

defect images that are collected from paper 

manufacturing process using a paper inspection system 

[14]. The reason for the collection of the defect image 

databases in the paper industry is the practical need of 

controlling the quality and production [14]. The accurate 

classification of the defect images into classes based on 

the defect type they represent is also essential. The 

defects can be for example holes, wrinkles, or different 

kinds of dirt spots. The defects in the images are typically 

very varying in terms of their size, shape, and gray level, 

which make them non-homogenous. The testing database 

II consists of 1204 paper images, which represent 14 

defect classes. Example images of each defect class are 

presented in figure 3. 

   

3.2. Classification experiments 

 

For the database I, we used five descriptors as input 

features fi. The descriptors were color layout, 

homogenous texture and edge histogram descriptors of 

MPEG-7 standard [13] as well as color and gray level 

histograms. In the case of the database II, MPEG-7 color 

layout, scalable color, color structure homogenous texture 

and edge histogram descriptors were used. Furthermore, 

defect shapes were described using Fourier descriptors. 

The classification was made for each feature separately 

and the separate classifications were combined using 

different combination strategies. The CPV approach was 

compared to CRV [9], sum rule, max rule, median rule, 

and majority voting, which have given good results in [7]. 

Product rule was not included into comparison, because 

the probability estimates of k-NN classifiers are 

sometimes zero, which may corrupt the result. Also 

bagging and boosting algorithms were not tested, because 

they sub-sample the same feature set and therefore they 

cannot be applied to classifier combination problems with 

separate feature sets. The classification principle was 

selected to be k-nearest neighbor (k -NN) method. 

Barandela et al. [2] found that nearest neighbor principle 

is efficient and accurate method to be used in classifier 

combinations. Classification results were obtained using 

leave-one-out validation [4]. Euclidean distance was used 

as distance metrics in the base classification as well as in 

the final classification of CPV:s. 

The classification results are presented in figures 4 

and 5 in which the mean classification results are 

presented using different combination methods. The 

results are presented for k varying between 7 and 15. The 

reason for using relatively high values of k is that the 

probability distributions used by CPV are able to 

accurately distinguish between image classes only when k 

is relatively high. However, the presented classification 

rates performed by CPV are not achieved by any other 

combination method in the comparison at any value of k. 

The results of figures 4 and 5 show that CPV clearly 

outperforms the other combination strategies in both 

image sets. Furthermore, the computational cost of CPV 

is not significant, because the probability distributions are 

used as feature vectors as themselves. Hence, in contrary 

to the other probability-based methods, any mathematical 

operation is not applied to probability distributions.   



 
Figure 4. The classification rate in the database I. 

 
Figure 5. The classification rate in the database II. 

 

4. DISCUSSION 

 

In this paper, we presented a method for combining 

classifiers in the classification of non-homogenous real-

world images. In the image classification, it is often 

beneficial to combine different descriptors to obtain the 

best possible classification result. Therefore, classifiers 

employing separate feature sets can be combined. We 

used natural rock images and industrial defect images as 

testing material. Due to their non-homogenous nature, the 

classification of these images is a difficult task.  

In our method, the feature vector that describes the 

image content is formed using the probability 

distributions of separate base classifiers. The probabilities 

provided by the base classifiers form a new feature space, 

in which the final classification is performed. Hence the 

final classification depends on the metadata of the base 

classification, not the image features directly. This way 

the non-homogeneities of individual features do not have 

direct impact on the final result. The usability of the 

proposed methods has been proved in the comparison 

with other probability-based classifier combination 

methods. The results show that CPV method clearly 

outperforms the other methods in the comparison. 
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Abstract. Color is an essential feature that describes the image content and 
therefore colors occurring in the images should be effectively characterized in 
image classification. The selection of the number of the quantization levels is an 
important matter in the color description. On the other hand, when color repre-
sentations using different quantization levels are combined, more accurate mul-
tilevel color description can be achieved. In this paper, we present a novel ap-
proach to multilevel color description of natural rock images. The description is 
obtained by combining separate base classifiers that use image histograms at 
different quantization levels as their inputs. The base classifiers are combined 
using classification probability vector (CPV) method that has proved to be an 
accurate way of combining classifiers in image classification. 

1   Introduction 

Image classification is an essential task in the field of image analysis. The classifica-
tion is usually based on a set of visual features extracted from the images. These fea-
tures may characterize for example colors or textures occurring in the images. Most of 
the real-world images are seldom homogenous. Especially, different kinds of natural 
images have often non-homogenous content. The division of natural images like rock, 
stone, clouds, ice, or vegetation into classes based on their visual similarity is a com-
mon task in many machine vision and image analysis solutions. In addition to non-
homogeneities, the feature patterns can be also noisy and overlapping. Due to these 
reasons, different classifiers may classify the same image in different ways. Hence, 
there are differences in the decision surfaces, which lead to variations in classification 
accuracy. However, it has been found that a consensus decision of several classifiers 
can give better accuracy than any single classifier [1],[8],[9]. This fact can be easily 
utilized in the classification of real-world images. 

The goal of combining classifiers is to form a consensus decision based on opinions 
provided by different base classifiers. Duin [5] presented six ways, in which consistent 
set of base classifiers can be generated. In the base classifiers, there can be differences 
in initializations, parameter choices, architectures, classification principle, training sets, 
or feature sets. Combined classifiers have been applied to several classification tasks, 
for example to face recognition [15], person identification [3] and fingerprint verifica-
tion [7]. Theoretical framework for combining classifiers is provided in [8]. 



902 L. Lepistö, I. Kunttu, and A. Visa 

 

In the image classification, several types of classifier combination approaches can 
be used. In our previous work [11],[13] we have found that different feature types can 
be easily and effectively combined using classifier combinations. In practice, this is 
carried out by making the base classification for each feature type separately. The 
final classification can be obtained based on the combination of separate base classifi-
cation results. This has proved to be particularly beneficial in the case of non-
homogenous natural images [11],[13]. Hence, the non-homogenous properties of 
individual features do not necessarily affect directly on the final classification. In this 
way, each feature has its own affect on the classification result. 

Rock represents typical example of non-homogenous natural image type. This is 
because there are often strong differences in directionality, granularity, or color of the 
rock texture, even if the images represented the same rock type [11]. Moreover, rock 
texture is often strongly scale-dependent. Different spatial multiscale representations 
of rock have been used as classification features using Gabor filtering [12]. However, 
the scale dependence of the rock images can be used also in another way, using color 
quantization. It has been found that different color features can be found from the 
rock images using different numbers of quantization levels. Hence, by combining the 
color representation at several levels, a multilevel color representation can be 
achieved. For this kind of combination, a classifier combination method can be used. 
In this paper, we present our method to make a classifier combination that is used to 
produce this multilevel color representation. The rest of this paper is organized as 
follows. Section two presents the main principle of classifier combinations as well as 
our method for that purpose. In section three, the principle of multilevel color repre-
sentation is presented. The classification experiments with natural rock images are 
presented in section four. The obtained results are discussed in section five. 

2   Classifier Combinations in Image Classification 

The idea of combining classifiers is that instead of using single decision making 
theme, classification can be made by combining opinions of separate classifiers to 
derive a consensus decision [8]. This can increase classification efficiency and accu-
racy. In this section, methods for combining separate classifiers are presented. Fur-
thermore, we present our approach to make a probability-based classifier combina-
tion. 

2.1   Methods for Combining Classifiers  

The general methods for combining classifiers can be roughly divided into two catego-
ries, voting-based methods and the methods based on probabilities. The voting-based 
techniques are popularly used in pattern recognition [10],[14]. In the voting-based clas-
sifier combinations, the base classifier outputs vote for the final class of an unknown 
sample. These methods do not require any additional information, like probabilities 
from the base classifiers. Voting has proved to be a simple and effective method for 
combining classifiers in several classification problems. Also in the comparisons with 
the methods presented by Kittler et al., voting-based methods have given relatively 
accurate classification results [8]. Lepistö et al. [11] presented a method for combining 
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classifiers using classification result vectors (CRV). In this approach, the class labels 
provided by the base classifiers are used as a feature vector in the final classification, 
and hence the result is not based on direct voting. CRV method outperformed voting 
method in the classification experiments. In [13] an unsupervised variation of CRV was 
presented and compared to other classifier combinations. 

Recently, the probability-based classifier combination strategies have been popu-
larly used in pattern recognition. In these techniques, the final classification is based 
on the a posteriori probabilities of the base classifiers. Kittler et al. [8] presented sev-
eral common strategies for combining base classifiers. These strategies are e.g. prod-
uct rule, sum rule, max rule, min rule, and median rule. All these rules are based on 
the statistics computed based on the probability distributions provided by the base 
classifiers. In [8], the best experimental results have been obtained using sum and 
median rules. Theoretical comparison of the rules has been carried out in [9]. Also 
Alkoot and Kittler [1] have compared the classifier combination strategies. 

2.2   Classification Probability Vector Method  

Our previous method for combining classifiers combined the outputs of the base clas-
sifiers into a feature vector that is called classification result vector (CRV) [11]. How-
ever, CRV method uses only the class labels provided by the base classifiers, and 
ignores their probabilities. In this paper, we use the probability distributions of the 
separate base classifiers as features in the final classification.  

In general, in the classification problem a pattern S is to be assigned to one of the 
m classes (ω 1,…,ω m) [8]. We assume that we have C classifiers each representing a 
particular feature type and we denote the feature vector used by each classifier by fi. 
Then each class ωk is modeled by the probability density function p( f I | ω k). The pri-
ori probability of occurrence of each class is denoted P(ω k ). The well-known Baey-
sian decision theory [4],[8] defines that S is assigned to class ω j if the a posteriori 
probability of that class is maximum. Hence, S is assigned to class ω k if:  

),,(max),,( 11 Ck
k

Cj ffPffP �� ωω =        (1) 

However, the probabilities of all the other classes than ωj have also significance in 
classification. They are particularly interesting when the pattern S is located near the 
decision surface. Therefore, we focus on the whole probability distribution 
 p(f i |ω 1,…,ω m) provided by each classifier. Hence, if the probability is defined for  
each m class, the obtained probability distribution is a C by m matrix for each pattern 
S. This  matrix  is used  as  a  feature  vector  in the final classification, and it is called 

 

Fig. 1. The outline of the CPV classifier combination method 
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classification probability vector (CPV). In the final classification, the images with 
similar CPV’s are assigned into same classes. The outline of the CPV method is pre-
sented in figure 1. 

The common probability-based classifier combinations [8] are used to calculate 
some statistics based on the probability distributions provided by the base classifiers. 
In contrary to them, CPV method uses the whole probability distribution as a feature 
vector in the final classification. The CPV method utilizes the fact that the separate 
base classifiers classify similar samples in the similar way, which leads to a similar 
probability profile. The final classification is based merely on the similarity between 
the probabilities of the base classifiers. Hence, in contrary to voting, in the CPV 
method the base classifier outputs (class labels) do not directly affect the final classi-
fication result.    

When image classification is considered, the CPV method has several advantages. 
CPV method considers each visual feature of the images in the base classifiers sepa-
rately. In the final classification, the probability distributions are employed instead of 
features. This way, the individual features do not directly affect the final classification 
result. Therefore, classification result is not sensitive to variations and non-
homogeneities of single images. 

3   Multilevel Color Representation Using Quantization 

3.1   Color Image Representation  

In digital image representation, an image has to be digitized in two manners, spatially 
(sampling) and in amplitude (quantization) [6]. The use of spatial resolutions is com-
mon in different texture analysis and classification approaches, whereas the effect of 
quantization is related to the use of image color information. The quantization can be 
applied to different channels of a color image. Instead of using common RGB color 
space, the use of HSI space has found to be effective, because it corresponds to the 
human visual system [16]. 
    A common way of expressing the color content of an image is the use of image 
histogram. Histogram is a first-order statistical measure that expresses the color dis-
tribution of the image. The length of the histogram vector is equal to the number of 
the quantization levels. Hence the histogram is a practical tool for describing the color 
content at each level. Histogram is also a popular descriptor in color-based image 
classification, in which images are divided into categories based on their color  
content. 

3.2   Multilevel Classification  

The classifier combination tools presented in section two provide a straightforward 
tool for making a histogram-based image classification at multiple levels. Hence the 
histograms at selected quantization levels and color channels are used as separate 
input features. Each feature is then classified separately at base classification. After 
that, the base classification results are combined to form the final classification. This 
way the final classifier uses multilevel color representation as classifying feature. 
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Fig. 2. Three example images from each rock type in the testing database 

4   Experiments 

In this section, we present the classification experiments using rock images. The pur-
pose of the experiments is to show that an accurate multilevel color representation is 
achievable using classifier combinations. We also compare the CPV method to other 
classifier combination approaches. 

4.1   Rock Images 

The experiments in this paper are focused on non-homogenous natural image data that 
is represented by a database of rock images. There is a practical need for methods for 
classification of rock images, because nowadays rock and stone industry uses digital 
imaging for rock analysis. Using image analysis tools, visually similar rock texture 
images can be classified. Another application field for rock imaging is geological 
research work, in which the rock properties are inspected using borehole imaging. 
Different rock layers can be recognized and classified from the rock images based on 
e.g. the color and texture properties of rock. The degree of non-homogeneity in rock 
is typically overwhelming and therefore, there is a need for an automatic classifier 
that is capable of classifying the borehole images into visually similar classes. The 
testing database consists of 336 images that are obtained by dividing large borehole 
images into parts. These images are manually divided into four classes by an expert. 
In classes 1-4, there are 46, 76, 100, and 114 images in each class, respectively.  
Figure 2 presents three example images of each four class.  
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4.2   Classification Experiments 

In the experimental part, the principle for classification was selected to be k-nearest 
neighbor (k-NN) method in base classification and final classification. Barandela et al. 
[2] have proved that nearest neighbor principle is efficient and accurate method to be 
used in classifier combinations. Classification results are obtained using leave one out 
validation principle [4]. The distance metrics for the comparison of histograms in the 
base classification was selected to be L1 norm. In the CPV method, the final classifier 
used L2 norm (Euclidean distance) to compare CPV:s. 

The histograms were calculated for the database images in HSI color space. In the 
classification experiments we used hue (H) and intensity (I) channels, which have 
been proved to be effective in color description of rock images [12]. The hue and 
intensity histograms were calculated for the images quantized to 4, 16, and 256 levels. 
Hence the number of the features was six. The classification was carried out using 
values of k varying between 1 and 15. In the first experiment, the classification rate of 
CPV method was compared to that of separate base classifiers which use different 
histograms. In this comparison, also the classification accuracy all the histograms 
combined into a single feature vector was tested. The average classification rates are 
presented in figure 3 as a function of k. The second experiment measured the classifi-
cation accuracy of different classifier combination strategies compared to CPV 
method. The idea of this experiment was to combine the six base classifiers that use 
different histograms as input features. In this case, CPV was compared to the most 
usual probability-based classifier combinations, sum, max and median rules [8].  
Product  rule  is  not  included  into  comparison,  because the probability estimates of  

 

Fig. 3. The average classification rates of the rock images using base classifiers that use differ-
ent histograms and the classifier combination (CPV) 
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k-NN classifiers are sometimes zero, which may corrupt the result. In addition to the 
selected probability-based combination methods, we used also majority voting and 
our previously introduced CRV method [11] in the comparison. Figure 4 presents the 
results of this comparison with k varying between 1 and 15. 

 

Fig. 4. The average classification rates of the rock images using different classifier  
combinations 

4.3   Results 

The results presented in figure 3 show that using CPV the classification accuracy is 
clearly higher than that of any single base classifier. The performance of CPV is also 
compared to the alternative approach, in which all the histograms are collected into a 
single feature vector. This vector is very high dimensional (552 dimensions), and its 
performance is significantly lower than in the case of CPV. This observation gives the 
reason for the use of classifier combinations in the image classification. That is, dif-
ferent features can be combined by combining their separate base classifiers rather 
than combining all the features into a single high dimensional feature vector in classi-
fication. This way, also the “curse of dimensionality” can be avoided. 

The results of the second experiment presented in figure 4 show that CPV method 
outperforms the other classifier combinations in the comparison with a set of rock 
images. Also the CRV [11] method gives relatively good classification performance. 
Only with small values of k CPV is not accurate one. This is due to the probability 
distributions used by CPV are able to effectively distinguish between image classes 
only when more than three nearest neighbors are considered in k-NN algorithm. 
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5   Discussion 

In this paper, we presented a method for combining classifiers in the classification of 
real rock images. Due to their non-homogenous nature, the classification of them is a 
difficult task.  We presented a method for an effective multilevel color representation 
using our classifier combination strategy, classification probability vector (CPV). In 
CPV method, the feature vector that describes the image content is formed using the 
probability distributions of separate base classifiers. The probabilities provided by the 
base classifiers form a new feature space, in which the final classification is made. 
Hence the final classification depends on the metadata of the base classification, not 
the image features directly. This way the non-homogeneities of individual features do 
not have direct impact on the final result.  

In the color-based image classification, like in image classification in general, it is 
often beneficial to combine different visual features to obtain the best possible classi-
fication result. Therefore, classifiers that use separate feature sets can be combined. In 
this study this feature combination approach was applied to color histograms with 
different numbers of bins. By combining the histograms using classifier combina-
tions, a multilevel color representation was achieved. The experimental results 
showed that this representation outperforms any single histogram in classification. 
Furthermore, CPV method also gives better classification accuracy than any other 
classifier combination in the comparison. 

Acknowledgement 

The authors wish to thank Saanio & Riekkola Oy for the rock image database used in 
the experiments. 

References 

1. Alkoot, F.M., Kittler, J.: Experimental evaluation of expert fusion strategies, Pattern Rec-
ognition Letters, Vol. 20 (1999) 1361-1369 

2. Barandela, R., Sánchez, J.S., Valdovinos, R.M.: New applications of ensembles of classifi-
ers, Pattern Analysis & Applications, Vol. 6 (2003) 245-256 

3. Brunelli, R., Falavigna, D.: Person Identification Using Multiple Cues, IEEE Transactions 
on Pattern Analysis and Machine Intelligence, Vol. 17 (1995) 955-966 

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd ed., John Wiley & Sons, 
New York (2001) 

5. Duin, R.P.W.: The Combining Classifier: to Train or Not to Train, In: Proceedings of 16th 
International Conference on Pattern Recognition, Vol. 2 (2002) 765-770 

6. Gonzales, R.C., Woods, R.E.: Digital Image Processing, Addison Wesley, 1993. 
7. Jain, A.K., Prabhakar, S., Chen, S.: Combining Multiple Matchers for a High Security Fin-

gerprint Verification System, Pattern Recognition Letters, Vol. 20 (1999) 1371-1379 
8. Kittler, J., Hatef, M., Duin, R.P.W., Matas J.: On Combining Classifiers, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, Vol. 20 (1998) 226-239 
9. Kuncheva, L.I.: A Theoretical Study on Six Classifier Fusion Strategies, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, Vol. 24 (2002) 281-286 



 Color-Based Classification of Natural Rock Images Using Classifier Combinations 909 

 

10. Lam, L., Suen, C.Y.: Application of majority voting to pattern recognition: An analysis of 
the behavior and performance, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 
27 (1997) 553-567 

11. Lepistö, L., Kunttu, I., Autio, J., Visa, A.: Classification of Non-homogenous Textures by 
Combining Classifiers, Proceedings of IEEE International Conference on Image Process-
ing, Vol. 1 (2003) 981-984 

12. Lepistö, L., Kunttu, I., Autio, J., Visa, A.: Classification Method for Colored Natural Tex-
tures Using Gabor Filtering, In: Proceedings of 12th International Conference on Image 
Analysis and Processing (2003) 397-401 

13. Lepistö, L., Kunttu, I., Autio, J., Visa, A.: Combining Classifiers in Rock Image Classifi-
cation – Supervised and Unsupervised Approach, In: Proceedings of Advanced Concepts 
for Intelligent Vision Systems, (2004) 17-22 

14. Lin, X., Yacoub, S., Burns, J., Simske, S.: Performance analysis of pattern classifier com-
bination by plurality voting, Pattern Recognition Letters, Vol. 24 (2003) 1959-1969 

15. Lu, X., Wang, Y., Jain, A.K.: Combining Classifiers for Face Recognition, In: Proceedings 
of International Conference on Multimedia and Expo, Vol. 3 (2003) 13-16 

16. Wyszecki, G., Stiles, W.S.: Color Science, Concepts and Methods, Quantitative Data and 
Formulae, 2nd Edition, John Wiley & Sons (1982) 

      





Publication VII 

Lepistö, L., Kunttu, I., Visa, A., 2006. Rock image classification based on k-nearest 
neighbour voting.  

© 2006 IEE. Reprinted with permission from IEE Proceedings of Vision, Image, and 
Signal Processing (to appear). 





Rock image classification based on k-nearest neighbour 

voting

Leena Lepistö1, Iivari Kunttu, and Ari Visa 

Tampere University of Technology, Institute of Signal Processing 

P.O. Box 553, FI-33101 Tampere, Finland 

E-mail: {Leena.Lepisto, Iivari.Kunttu, Ari.Visa@tut.fi} 

ABSTRACT 

Image classification is usually based on various visual descriptors extracted from the 

images. The descriptors characterizing for example image colours or textures are 

often high dimensional and their scaling varies significantly. In the case of natural 

images, the feature distributions are often non-homogenous and the image classes are 

also overlapping in the feature space. This can be problematic, if all the descriptors 

are combined into a single feature vector in the classification.

In this paper, we present a method for combining different visual descriptors in 

rock image classification. In our approach, k-nearest neighbour classification is first 

carried out for each descriptor separately. After that, the final decision is made by 

combining the nearest neighbours in each base classification. The total numbers of the 

neighbours representing each class are used as votes in the final classification. The 

experimental results with rock image classification indicate that the proposed 

classifier combination method is more accurate than the conventional plurality voting. 

1Corresponding author. tel: +358 3 3115 4964, fax: +358 3 3115 4989
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1. Introduction 

The division of natural images such as rock, stone, clouds, ice, or vegetation into 

classes based on their visual similarity is a common task in many machine vision and 

image analysis solutions [1],[2],[3]. Classification of natural images is demanding, 

because in the nature the objects are seldom homogenous. For example, when the 

images of rock surface are inspected, there are often strong differences in 

directionality, granularity, or colour of the rock, even if the images represented the 

same rock type. In addition to non-homogeneities, the feature patterns can be also 

noisy and overlapping, which may cause variations in the decision surfaces of 

different classifiers. Due to these reasons, different classifiers may classify the same 

image in different ways. These kinds of variations and non-homogeneities make it 

difficult to classify these images accurately using a single classifier. On the other 

hand, non-homogenous feature distributions of certain image types may also improve 

classification of these images in certain classifiers. Thus the fact that different 

classifiers often give varying decisions can be utilized in the classification. It has been 

found that a consensus decision of several classifiers can often give better accuracy 

than any single classifier [4],[5],[6],[7]. This fact can be easily utilized in the 

classification of real-world images. 

In the image classification, a number of visual descriptors are used to classify the 

images based on their content. The most typical descriptor types characterize colours, 

textures and shapes occurring in the images. The feature space is typically high 

dimensional and image categories are often overlapping in the feature space. A 

common approach in the image classification is to combine all the selected descriptors 

into a single feature vector. In the case of rock images, examples of this kind of 

classification are [2],[8]. The similarity between these vectors is defined using some 

distance metric and the most similar images are then classified (labelled) to the same 

category. However, when different types of descriptors are combined into the same 

feature vector, some large-scaled features may dominate the distance, while the other 

features do not have the same influence on the classification. It is clear that the effect 

of scaling can be minimized by using feature normalization. Especially, in the case of 

high dimensional descriptors combination into the same vector can be problematic 

and may yield to remarkable drawbacks in classification performance. This is known 

as “the curse of dimensionality” [9]. In addition, high dimensional descriptors may 

have stronger impact on the distance than low dimensional ones, even if the features 



3

were normalized. Therefore it is often more reasonable to consider each visual 

descriptor separately. This way, the descriptors are not needed to normalize to any 

particular scale. 

In images with non-homogenous content, visual features defined for a particular 

image vary in the extent of non-homogeneity of this sample image. In our previous 

work [10],[11],[12] we have found that different visual descriptors (feature sets) 

obtained from non-homogenous images can be easily and effectively combined using 

classifier combinations employing k-nearest neighbour (k-NN) classifiers. This is 

because the k-NN principle is robust to the variations and non-homogeneities in the 

dataset [13]. Furthermore, the k-NN method is simple and fast method and it is easy to 

implement [14]. It has also been indicated to be suitable method for feature spaces 

with overlapping classes [11],[12]. Furthermore, it has been found that the 

employment of k-NN base classifiers in classifier combinations is motivated, when 

separate feature sets are employed [13]. This is because by selecting appropriate 

feature sets for the base classification, diverse and accurate base classification can be 

achieved [13]. Our experiments with non-homogenous natural images have shown 

that diverse base classification results can be achieved also with quite similar input 

descriptors. One reason for this can be the non-homogenous content of the input 

images. In practice, the classification is carried out by making the base classification 

for each descriptor separately. The final classification can be obtained based on the 

combination of separate base classification results. This way, each descriptor has its 

own impact on the classification result independent of its scaling and dimensionality. 

This has proved to be beneficial in the case of non-homogenous natural texture 

images [11],[12].  

The use of classifier combinations has been a subject of an intensive research work 

during last ten years. Popular solution on this field has been bagging [15], which 

manipulates the training data sets with sub-sampling. Another common algorithm, 

boosting [16], also manipulates the training data, but it emphasizes the training of 

samples which are difficult to classify. These methods, however, sub-sample the same 

feature set and therefore they cannot be applied to classifier combination problems 

with separate descriptors. Recently, the probability-based classifier combination 

strategies have received much attention in the field of pattern recognition 
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[4],[5],[6],[7]. In these techniques, the final classifier makes the decision based on the 

a posteriori probabilities provided by base classifiers.

In voting-based techniques, the final decision is made based on the outputs of the 

base classifiers by voting. Hence, voting-based methods do not require any further 

training in the final classification, as most other combination methods. This makes 

them simple and computationally effective methods. In addition, the risk of 

overtraining can be avoided. Voting has found to be accurate and effective method for 

combining classifiers in several classification problems [17],[18],[19],[20]. Voting-

based methods can be divided into two classes, majority voting and plurality voting. 

Majority voting [19] requires the agreement of more than half of the participants to 

make a decision. If majority decision cannot be reached, the sample is rejected. On the 

other hand, plurality voting selects the sample which has received the highest number 

of votes. The comparisons of Lin et al. [20] have indicated that plurality voting is 

more efficient of these two techniques. Furthermore, using plurality voting, the 

problem rising with the rejected samples can be avoided because all the samples can 

be classified. In literature, there are several examples on the feature selection in 

classifier combinations. In [21], the features to be used in base classification are 

randomly selected. Also in [22], the feature space is partitioned into each dimension, 

and voting is applied to reach a consensus decision based on the classifications at each 

dimension.   

In this paper, we consider different visual descriptors extracted from the images as 

inputs for the base classifiers. Thus the descriptors are not divided into one 

dimensional features, as in [22]. Instead of that, we use the n-dimensional visual 

descriptors as themselves as inputs of the base classifiers. In our approach, we 

combine the method of plurality voting with k-nearest neighbour (k-NN) classification 

principle, which in fact is also based on voting. This is because in the k-NN principle, 

the class of unknown sample is decided based on the most frequent class within k

nearest neighbour samples of the sample in the feature space. In our approach, the 

votes of each k-NN base classifier are used to make the final voting. This kind of 

approach is able to improve the accuracy of “uncertain” k-NN base classifiers. For 

example, let us assume that a 5-NN classifier has to decide the class label of an 

unknown sample that is located at the decision boundary of classes A and B in the 

feature space. If two neighbours vote for class A and three neighbours vote for class 

B, then the 5-NN classifier decides that the class label of the sample is B. This 
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decision, however, is a weak one, because all the neighbours didn’t agree. Therefore, 

in the proposed classifier combination approach all the neighbour opinions are used as 

votes in the final voting. In contrary to this approach, conventional voting uses only 

the class labels provided by the base classifiers to make the decision. Hence, instead 

of the plain class labels, in the proposed approach the base classifiers provide a set of 

votes that are employed as a basis of the final voting. Therefore, k votes provided by 

each base classifier are in fact weights for final voting. This kind of weighted voting 

approach is particularly suitable for the combination of the base classifiers that exhibit 

different accuracies. This is typical in the classification of natural rock images. 

The experiments presented in this paper use the proposed classifier combination 

method to combine colour and texture descriptors extracted from the rock images. In 

the case of colour-based classification, histograms are used as input descriptors. In 

[10] we presented that an efficient multilevel colour-based rock image classification 

can be achieved by combining classifiers that employ histograms of different 

quantization levels and colour channels. The combination rule presented in [10], 

however, was not based on the voting as in this paper. The second of the experiments 

is related to texture analysis. In [2], we showed that an effective multiresolution 

texture representation for non-homogenous rock images can be obtained using band-

pass filters in Gabor space. Using ring-shaped Gaussian filters at different frequency 

bands; the frequency information of rock texture can be obtained. The problem with 

the multiresolution texture representation is to find a method how to combine the filter 

responses obtained from the different frequency bands. In [2], this problem was 

solved by combining the feature vectors of each band into a single feature vector. In 

the experiment presented in this paper, we show that the proposed voting-based 

classifier combination is a useful way of combining the filtering results in 

classification and gives more accurate classification result than the method used in 

[2].

The rest of this paper is organized as follows. Section two describes briefly the 

area of rock image analysis. In section three, the idea of the proposed classification 

method is presented. Section four presents the classification experiments, in which the 

proposed method is tested using a database of rock images. Section five includes 

discussion and conclusions.
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2. Rock image analysis 

2.1. Non-homogenous natural images 

Most of the real-world images are somehow non-homogenous, which means that there 

are clearly visible changes in their visual features [11]. Typical examples of these 

images are natural images like rock, stone, clouds, ice, or vegetation. In these images, 

the colour and texture properties may vary strongly, even if the sample images 

represented same image type. Rock is a typical example of natural images that is often 

non-homogenous. For example, rock sample presented in figure 1 is strongly non-

homogenous in terms of directionality, granularity, and colour. The homogeneity of a 

sample image can be measured by dividing the sample into blocks. If the visual 

properties do not vary between the blocks, the sample is homogenous. On the other 

hand, if these feature values have significant variance, the texture sample is non-

homogenous. In our previous approach [23], this division into blocks was applied.

2.2. Bedrock imaging and classification 

In the field of rock science, the development of digital imaging has made it possible to 

store and manage the images of the rock material in digital form. One typical 

application area of the rock imaging is bedrock investigation. In this kind of analysis, 

rock properties are analyzed by inspecting the images which are collected from the 

bedrock using borehole imaging.  

The borehole images can be obtained from the core samples drilled from the 

bedrock using core scanning techniques [1]. An example of an image that is scanned 

from the core surface is presented in figure 2. The purpose of the core sample 

classification is to find interesting sections of rock material. The classification tasks 

can be based on e.g. mineral content, physical properties or origin of the core samples. 

The essential visual features used in the classification can be for example texture, 

grain structure and colour distribution of the samples. The current core scanning 

techniques are able to produce high resolution images of rock material. The core 

images can be also acquired by using additional invisible light wavelengths, which 

can be used to discriminate between certain minerals or chemical elements [1]. 

Therefore, the number of images obtained from a deep drilled core is remarkable. The 

images of the core samples are stored into image databases, which can be utilized in 

the rock inspection. Due to relatively large sizes of these databases, automated image 

classification methods are necessary.
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3. Combining k-NN classifiers by voting 

In general, in the classification problem an unknown sample image S is to be assigned 

to one of the m classes ( 1,…, m) [9]. We assume that we have C classifiers each 

representing a particular visual descriptor extracted from the image. We denote the 

feature vector of the descriptor used by i:th classifier by fi. Then each class n is 

modelled by the probability density function p(fi| n). The probability of occurrence of 

nth class is denoted P( n). The well-known Bayesian decision theory [9] defines that 

S is assigned to class j if the a posteriori probability of that class is maximum. 

Hence, S is assigned to class j if:   

),,(max),,( 11 Cn
n

Cj ffPffP    (1) 

Based on this, base classifier gives a label j to an unknown sample image. When we 

have several base classifiers using different descriptors as their input feature vectors, 

each classifier provides a class label for the unknown image. 

3.1. k-NN classification 

In this paper, the classifier principle is selected to be k-nearest neighbour (k-NN)

method.     

In the k-NN classifier, a pattern S is to be assigned to one of the m classes 

( 1,…, m). The algorithm finds the k nearest patterns in the feature space [9]. Let 

Ni=( 1,…, m) i denote the number of these patterns in each m class in feature space fi.

Thus the probability set for a sample pattern S can be expressed as:

k
fP im

im

),...,()|,,( 1
1     (2) 

in which 

k
m

i

i

1

           (3) 

In k-NN classification, the pattern S is assigned to the class that has the highest 

probability according to Equation (2). In our approach, however, we utilize the 

number of nearest patterns in each m class ( 1,…, m) as votes in the final 

classification. Hence, if the same value of k is used for all classifiers, the set N is the 

same as the probability set P.
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3.2. Voting 

Plurality voting means that the sample that has received most votes is chosen [20]. In 

conventional plurality voting, each label j provided by C base classifiers equals to a 

vote that is used in final decision. Hence, the class that receives most of C votes is 

selected.

In our approach, we do not use class labels but we take the set of nearest patterns N

used in each C k-NN classification. This approach is called k-NN voting. The number 

of nearest patterns in each class is used as votes. Hence the total number of votes used 

in final classification is C*k. The votes received by each class can be combined by 

summing the sets N of each C base classifier: 

C

i

im

C

i

im NVV
1

1
1

1 ),...,(),...,(    (4) 

Hence the set of votes (V1,…,Vm) expresses the number of votes received by each 

class. Based on this, the final decision is reached using plurality voting. The outline of 

the k-NN voting approach is presented in figure 3. 

4. Classification experiments 

In this section, the performance of the proposed classifier voting-based classifier 

combination principle is examined using rock images. As presented in section 2, the 

geological research work uses borehole imaging to inspect the properties of rock. 

Different rock layers can be recognized from the borehole images based on the local 

colour and texture properties. Therefore, there is a need for an automatic classifier that 

is capable of classifying the borehole images into visually similar classes. A testing 

database used in this paper consists of 336 images that are obtained by dividing large 

borehole images into parts. These images are manually divided into four classes by an 

expert. The division is based on their colour and texture properties. Especially the 

granular size and colour distribution of the images are essential visual features that 

distinguish between the rock types. Figure 4 presents three example images of each 

four class. In classes 1-4, there are 46, 76, 100, and 114 images in each class, 

respectively.  

We made two experiments with the testing database. In the first experiment, we 

tested the proposed classifier combination principle to the colour-based rock image 

classification using histograms. The second experiment concentrated on the texture 
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properties of the images. In both experiments, the proposed classifier combination 

method was compared to the plurality voting and the results given by the separate 

descriptors. In all the experiments leave-one-out cross validation principle [9] was 

employed. In the leave-one-out method, only one sample is regarded as an unknown 

sample in turn, and all the other samples in the data set serve as training data. This 

way, all the samples in the dataset are classified. 

It is widely accepted that a classifier combination is capable of improving the 

classification rate of the base classifiers only if there is diversity between the base 

classifiers [13],[14]. This means that the base classifiers do not always agree. In other 

words, if all the base classifiers make the same error, their combination is not 

meaningful and provides no improvement. Moreover, several empirical and 

theoretical studies have found that the classifier combination is most successful when 

the errors of the base classifiers are as uncorrelated as possible [13],[24]. For this 

reason, the correlation between the base classifier errors is an issue of interest also in 

the experiments presented in this paper. On the other hand, when the visual 

descriptors extracted from an image are used as input features, there is often some 

correlation between these features. This is because for example individual colour 

descriptors or texture descriptors extracted from the same image are probably 

correlated. The results presented in figures 5 and 7 report varying results for each base 

classifier, which indicates that the errors are not equal, and classifier combination is 

able to improve the base classification results. The degree of agreement of the 

individual base classifier decisions can be estimated by investigating error residuals of 

the base classifiers. In practice, the residual function is formed by taking the 

difference between the classifier outputs and the real class numbers of the samples in 

the whole test set. Then the errors of different classifiers can be compared by counting 

the number of the differences between their residual functions. For this purpose, 

Hamming distance [25] can be employed. In our experiments, we have normalized the 

distances with the total number of the test set samples. This way, the normalized 

distance is between 0 and 1 such that 1 means that the residuals are totally different 

and 0 implies that the functions are equal. The normalized distances for the both 

experiments for k=5 are presented in tables 1 and 2.
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4.1. Multilevel colour classification of the rock images 

The results of previous classification experiments with rock images [10] have shown 

that the selection of quantization levels is an essential matter in histogram-based 

classification. Histogram is a first-order statistical measure that expresses the colour 

distribution of the image. The length of the histogram vector (the number of 

histogram bins) is equal to the number of the quantization levels. Hence the histogram 

is a practical tool for describing the colour content at each level. Histogram is also a 

popular descriptor in colour-based image classification, in which images are divided 

into categories based on their colour content. The problem with the use of multilevel 

colour representation using multiple histograms is the fact that when several 

histograms are combined into a single feature vector the resulting feature space is very 

high dimensional.  

   In this paper, we use the proposed voting-based classifier combination method to 

form a multilevel colour classifier for images in the testing database. The histograms 

were calculated for the database images in HSI colour space. In the classification 

experiments we used hue and intensity (grey level) channels, which have been shown 

to be effective in colour description of rock images [8]. The hue and intensity 

histograms were calculated for the images quantized to 16, 32, and 64 levels. The 

quantization level numbers above 64 were not used, because they gave lower base 

classification results in preliminary experiments. Hence the number of the descriptors 

was six. In the base classification, the similarity between the histograms was 

evaluated using L1-norm (Manhattan distance). The classification was carried out 

using values of k varying between 1 and 10. The average classification rates using 

separate base classifiers as well as classifier combinations are presented in figure 5 as 

a function of k. In addition, also the classification accuracy all the histograms 

combined into a single feature vector is tested. 

The results presented in figure 5 reveal that the proposed k-NN voting principle 

outperforms clearly the plurality voting, which in fact gives lower classification rate 

than the best of the histograms used in base classification (32 grey level histogram). 

When the histogram descriptors are considered, the results show that intensity 

histograms outperform those calculated for hue channels. However, the voting results 

are higher when they are evaluated for hue and intensity rather than merely intensity. 

This is the reason why both hue and intensity histograms were selected to be used in 
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the experiments. The approach that combines all the histograms into a single feature 

vector gives about the same classification rate as plurality voting.  

4.2. Multiresolution texture classification of the rock images 

In texture-based classification experiment, band-pass filters of five scales were used 

[2]. Amplitude responses of the five ring-shaped Gaussian filters are presented in 

figure 6. The intensity components of the rock texture images were filtered using the 

each five filters. The feature vector of each five scale was formed using the mean and 

standard deviation of the magnitude of the transform coefficients at the selected scale. 

These vectors were used as input descriptors for the base classifiers. The similarity 

between these descriptors was defined using L2-norm (Euclidean distance). The 

classification was carried out using values of k varying between 1 and 10. The average 

classification rates are presented in figure 7 as a function of k.

Also in the case of this experiment, the proposed k-NN voting principle gives 

better results than the plurality voting. As figure 7 reveals, the plurality voting has not 

been able to outperform the best base classification result (filtering at scale 4). In this 

experiment, also the conventional approach to combine all the features into a single 

feature vector [2] was tested. This approach was able to give slightly better 

classification result than plurality voting when k=5.

5. Discussion and conclusions 

In this paper, a method for image classification was presented. In the image 

classification, it is often beneficial to combine different visual descriptors to obtain 

improved classification result. Therefore, classifiers employing separate descriptors 

can be combined. When each base classifier uses a single visual descriptor as its 

input, all the descriptors have the same influence on the final classification 

independent of their scaling and dimensionality.  

The classifier combination method presented in this paper is based on voting. 

Voting-based classifier combination methods are simple and general methods to be 

used in all kinds of classification problems. Voting is also computationally an 

effective way of combining separate classification results, because the final 

classification result is decided merely based on the votes provided by the base 

classifiers and no classifier training is required in the final classification. In this paper, 

we have introduced a novel way of making a consensus decision using voting. In the 
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proposed approach, the base classifiers use k-NN classification principle, and the 

number of nearest neighbours in each individual base classifier are used as votes in 

the final classifier. This kind of approach outperforms the conventional plurality 

voting, in which only the base classifier outputs (class labels) are regarded as votes. 

On the other hand, the proposed voting-based approach is as simple and fast method 

as plurality voting. 

In conclusion, the experimental results show that the proposed voting-based 

method is able to give accurate results in the case of natural rock images, which are 

quite challenging classification task. The obtained results also indicate that the 

proposed classifier combination method provides an accurate and efficient way of 

combining separate visual descriptors in practical image classification tasks. 

6. Acknowledgments 

The authors wish to thank Professor Josef Bigun from Halmstad University, Sweden 

for his help in the filter design. The rock images used in the experiments were 

provided by Saanio & Riekkola Consulting Engineers Oy. 

7. References 

[1]J. Autio, L. Lepistö, and A. Visa, “Image analysis and data mining in rock material 
research,” Materia, (4), 36-40, (2004). 

[2]L. Lepistö, I. Kunttu, and A. Visa, “Rock image classification using color features 
in Gabor space,” To be published in Journal of Electronic Imaging.

[3]Visa, A., Iivarinen, J., Evolution and evaluation of a trainable cloud classifier. 
IEEE Transactions on Geoscience and Remote Sensing, 35(5), (1997).

[4]J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas, “On combining classifiers,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence 20(3), 226-239, 
(1998).

[5]F.M. Alkoot and J. Kittler, “Experimental evaluation of expert fusion strategies,” 
Pattern Recognition Letters 20, 1361-1369 (1999). 

[6] L. I. Kuncheva, “A theoretical study on six classifier fusion strategies,” IEEE

Transactions on Pattern Analysis and Machine Intelligence 24(2), 281-286, 2002. 
[7] R. P. W. Duin, “The combining classifier: to train or not to train,” Proceedings of 

16
th

 International Conference on Pattern Recognition, vol. 2, 765-770 (2002). 
[8]L. Lepistö, I. Kunttu, J. Autio, and A. Visa, “Classification method for colored 

natural textures using Gabor filtering,” Proceedings of 12
th

 International 

Conference on Image Analysis and Processing, 397-401, (2003). 
[9]R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd ed., John Wiley 

& Sons, New York (2001). 
[10] L. Lepistö, I. Kunttu, and A. Visa, “Color-based classification of natural rock 

images using classifier combinations,” Proceedings of 14
th

 Scandinavian 



13

Conference on Image Analysis, Joensuu, Finland, LNCS Vol. 3540, pp. 901-909, 
(2005).

[11]L. Lepistö, I. Kunttu, J. Autio, and A. Visa, “Classification of non-homogenous 
texture images by combining classifiers,” Proceedings of IEEE International 

Conference on Image Processing, Barcelona, Spain, Vol. 1, 981-984, (2003). 
[12]L. Lepistö, I. Kunttu, J. Autio, J. Rauhamaa, and A. Visa, Classification of non-

homogenous images using classification probability vector, Proceedings of IEEE 

International Conference on Image Processing, Genova, Italy, Vol. 1, 1173-1176, 
(2005).

[13]C. Domeniconi, B. Yan, “Nearest neighbor ensemble”, Proceedings of 17
th

International Conference on Pattern Recognition (2004) 
[14]R. Barandela, J.S. Sánchez, R.M. Valdovinos, ”New applications of ensembles of 

classifiers,” Pattern Analysis & Applications 6, 245-256, 2003. 
[15]L. Breiman, “Bagging predictors,” Machine Learning, 26(2), 123-140, (1996). 
[16] Y. Freund and R.E. Shaphire, “A decision-theoretic generalization of on-line 

learning and an application to boosting,” Journal of Computer and System Sciences 

55(1), 119-139, (1995). 
[17]L. Xu, A. Krzyzak, C.Y. Suen, “Methods for combining multiple classifiers and 

their applications to handwriting recognition,” IEEE Transactions on Systems, 

Man, and Cybernetics 22(3), 418-435 (1992). 
[18] T.K. Ho, J.J. Hull, S.N. Srirari, “Decision combination in multiple classifier 

systems,” IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (1), 
66-75 (1994). 

[19] L. Lam and C.Y. Suen, “Application of majority voting to pattern recognition: 
An analysis of the behavior and performance,” IEEE Transactions on Systems, 

Man and Cybernetics, Part A 27(5), 553-567, (1997). 
[20] X. Lin, S. Yacoub, J. Burns, and S. Simske, “Performance analysis of pattern 

classifier combination by plurality voting,” Pattern Recognition Letters 24, 1959-
1969, (2003). 

[21] R. Bryll, R. Gutirrez–Osuna, and F. Quek, “Attribute bagging: improving 
accuracy of classifiers ensembles by using random feature subsets,” Pattern

Recognition 36, 1291-1302, (2003). 
[22]A. Guvenir and I. Sirin, “Classification by feature partition,” Machine Learning

23, 47-67, (1996). 
[23]L. Lepistö, I. Kunttu, J. Autio, and A. Visa, “Rock image classification using non-

homogenous textures and spectral imaging.” WSCG Short papers proceedings, 82-
86, (2003).

[24]J.A. Bilmes, K. Kirchhoff, “Generalized rules for combination and joint training 
of classifiers.” Pattern Analysis & Applications 6, 201-211, (2003). 

[25]N. Gaitanis, G. Kapogianopoulos, D.A. Karras, “Pattern classification using a 
generalized Hamming distance metric.” In Proceedings of International Joint 
Conference on Neural Networks, pp. 1293-1296, (1993). 



14

Figure 1. An example of non-homogenous rock texture image. 

Figure 2. An example of borehole image used in bedrock investigation. 

Figure 3. The outline of the proposed classifier combination scheme. 
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Figure 4. Three examples from each class of the rock images in the testing 
database.

Figure 5. Average classification rates of the rock images using base classifiers that use 
different histograms as their input descriptors. The base classifiers are combined using 
the proposed k-NN voting method and plurality voting. The results are also compared 
to an approach, in which all the histograms are combined into a single feature vector. 
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Figure 6. The filters at five scales. 

Figure 7. Average classification rates of the rock images using base classifiers that use 
feature vectors obtained from band-pass filtering at different scales as their input 
descriptors. The base classifiers are combined using the proposed k-NN voting 

method and plurality voting. The results are also compared to an approach, in which 
the filtering results are combined into a single feature vector. 
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Table 1. The distance matrix for the error residuals of individual base classifiers in the 
histogram-based classification experiment 

 Hue 16 Grey 16 Hue 32 Grey 32 Hue 64 Gray 64 
Hue 16 0      
Grey 16 0.38 0     
Hue 32 0.11 0.38 0    
Grey 32 0.36 0.13 0.35 0   
Hue 64 0.18 0.39 0.12 0.37 0  
Grey 64 0.37 0.17 0.36 0.10 0.38 0 

Table 2. The distance matrix for the error residuals of individual base classifiers in the 
filtering-based classification experiment 

 Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 
Scale 1 0     
Scale 2 0.39 0    
Scale 3 0.47 0.41 0   
Scale 4 0.49 0.47 0.34 0  
Scale 5 0.49 0.47 0.38 0.34 0 
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