

Tampereen teknillinen yliopisto. Julkaisu 1224
Tampere University of Technology. Publication 1224

Juha Puttonen

A Semantically Enhanced Approach for Orchestration of
Web Services in Factory Automation Systems

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Festia Building, Auditorium Pieni Sali 1,
at Tampere University of Technology, on the 15th of August 2014, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2014

ISBN 978-952-15-3315-0 (printed)
ISBN 978-952-15-3339-6 (PDF)
ISSN 1459-2045

I

Puttonen, Juha: A Semantically Enhanced Approach for Orchestra-
tion of Web Services in Factory Automation Sys-
tems

Tampere University of Technology, Department of Mechanical Engineering and
Industrial Systems, Finland, 2014

Keywords: SEMANTIC WEB SERVICES, SERVICE ORCHES-
TRATION, FACTORY AUTOMATION, WEB SER-
VICES, CLOUD COMPUTING

Abstract

The Service-oriented Architecture (SOA) paradigm makes it possible to build sys-
tems from several independent components. Most typically, web services are chosen
as the building blocks of such a system. A web service is essentially a passive soft-
ware entity, which listens for request messages sent to it over the network, possibly
reacts to the requests by performing some operations, and finally sends response
messages to the request senders.

The traditional application domain of web services belongs to the so-called IT do-
main. While opening new horizons in software development life-cycles, web services
have been adopted in various new application domains, including the domain of
factory automation (software development for factory automation). Indeed, recent
research projects have experimented with controlling production system equipment
through web service interfaces. When migrated from pure software to the physical
realm involving industrial equipment, web services set additional demands for the
application domains. For example, since the domains involve operations with phys-
ical effects, roll-back or application recovery procedures become challenging. This
research work targets the orchestration of factory automation systems encapsulated
as web services and presents various techniques for overcoming the difficulties.

Orchestrating web services to accomplish a complicated production task can be dif-
ficult due to the transitoriness of both production equipment states and the set of
available web services. Nevertheless, the selection of appropriate web services can
be facilitated by augmenting each service with semantic information describing its
conditions and effects. Web services augmented with such descriptions are termed
semantic web services. While Web Ontology Language, OWL, is ideal for describ-
ing application domain concepts and property relationships, the OWL-S ontology,
which is based on OWL, has been specifically developed for describing web services.
Once the semantic service descriptions have been analyzed to find the appropri-

II

ate web services, the selected services can be invoked using their syntactic WSDL
descriptions.

In addition to automated web service selection, semantic descriptions allow the com-
position of web services to achieve production tasks. Service composition involves
first analyzing the descriptions to determine the appropriate service invocation pro-
cess for achieving the desired goal and then executing the process. This dissertation
presents an approach in which the production equipment and their states are rep-
resented using an ontology, and the model is dynamically used in decision-making.
In particular, the devices in the considered production systems provide web service
interfaces through which they can be controlled, while semantic web service descrip-
tions formulated in OWL-S make it possible to determine the conditions and effects
of invoking the web services. The approach presented in this research work addition-
ally involves a set of specialized web services that co-operate to achieve production
goals using the domain web services. One of the services maintains a semantic model
of the current system state, while another uses the model to compose the domain
web services so that they jointly achieve the desired goals. The semantic model of
the system is automatically updated based on event notifications sent by the domain
services.

Software agents controlling production devices must maintain an up-to-date view of
the physical world state in order to efficiently reason and plan their actions. Espe-
cially in a factory automation system, the world state undergoes rapid evolution,
and the world view must remain synchronized with the changes. This research dis-
cusses two approaches to updating the world view based on event notifications sent
by web services representing production devices in a manufacturing system. One of
the approaches is based on separately specified update rules, and one automatically
uses semantic web service descriptions formulated in OWL-S. While all of the ex-
amples presented in this research work specifically focus on the factory automation
domain, the presented approaches are applicable to all domains involving semantic
web services.

Semantic Web Service descriptions facilitate the automated discovery and compo-
sition of web services. Particularly in the production system domain, the service
condition and effect descriptions are essential in selecting the appropriate service
or service composition for a given task. OWL-S is one of the most popular se-
mantic web service description languages, and due to its XML syntax, OWL-S can
be effortlessly incorporated into service WSDL descriptions. However, developing
OWL-S documents for each service instance is laborious. This dissertation presents
an approach to automatically generating executable OWL-S descriptions from se-

III

mantically annotated service WSDL files.

Computing clouds facilitate rapid and effortless resource allocation. Cloud con-
sumers can generally be ignorant of the physical computing resources used or their
geographical location, as the resources are abstracted into a commodity that can
be dynamically leased from the cloud provider. In particular, Infrastructure-as-
a-Service clouds allow clients to dynamically lease virtual machines that behave
similarly to physical servers. However, executing an application by directly using
computing cloud resources is complicated and typically involves similar steps as in-
stalling and executing an application on a physical machine. Moreover, starting
numerous application instances on a single virtual machine may result in poor per-
formance. Thus, this dissertation considers the development of a web service that
facilitates the use of cloud resources by abstracting them. When the web service
is used, an application can be effortlessly started in a computing cloud by invoking
simple web service operations. Furthermore, when multiple applications are started,
the workload can be automatically distributed between several virtual machines, re-
sulting in higher performance.

To conclude, the results presented in this research work demonstrate that semantic
web service descriptions can indeed facilitate automatic web service composition and
invocation. However, the effort of developing semantic web service descriptions can
partly undermine the benefits achieved through their application. Therefore, new
tools and methods should be developed to minimize the effort of developing such
descriptions.

IV

Acknowledgements

I would like to thank Professor José L. Martinez Lastra for supervising this research
work and my doctoral studies. José also provided invaluable guidance in composing
this dissertation.

I am very grateful to Dr. Andrei Lobov for supervising my research work. Andrei has
provided the concepts for several of the software tools presented in this dissertation.

This research was made possible by all of the FAST Lab. members, who made the
working environment comfortable as well as motivated me through their interest in
the developed software tools and several useful improvement suggestions. Further-
more, the experiments with the production line devices were possible only because
of the abundant support from my co-workers. In addition, my co-workers provided
me descriptions of the production systems, and I have incorporated some of the
images into the figures in Chapter 5.

Finally, I want to thank my parents and brother for all of the support and advice
they have provided.

Pori, July 2014

Juha Puttonen

V

FOREWORD

The research presented in this dissertation was partly carried out in the context of
the SOCRADES and eSONIA projects.
SOCRADES1, contract number IST-5-034116, is part of the Information Society
Technologies (IST) initiative of the 6th Framework Programme of the European
Union.
eSONIA2 was funded by ARTEMIS Joint Undertaking3, and the project was carried
out by a consortium of 14 partner organizations.

1 http://www.socrades.eu/
2 http://esonia.eu/
3 http://www.artemis-ju.eu/

VI

CONTENTS

List of Figures . IX
List of Tables . XII
1. Introduction . 1

1.1 Motivation and Justification . 1
1.2 Problem Statement . 4
1.3 Research Objectives and Initial Hypotheses 4
1.4 Contributions . 5
1.5 Thesis Outline . 6

2. State of the Art . 7
2.1 Graphical BPEL Tools . 7
2.1.1 NetBeans . 7
2.1.2 ActiveBPEL . 8
2.1.3 Eclipse . 9
2.1.4 Other Tools . 10

2.2 Semantic Web Service Technologies 10
2.2.1 Semantic Service Description Languages 10
2.2.2 Semantic Web Service Orchestration 15
2.2.3 Automatic Web Service Composition 18
2.2.4 Semantic Domain Modeling . 21
2.2.5 OWL-S Generation . 23

2.3 Cloud Computing . 27
2.4 Multi-Agent Systems and Robotic Agents 28
2.5 Summary of the State of the Art . 29

3. Methods . 30
3.1 Web Service Orchestration Using BPEL 30
3.2 Ontology-based Service Invocation . 32
3.3 OWL-S and SPARQL-based Semantic Web Service Composition . . . 39
3.3.1 Composition Pattern Overview 40
3.3.2 Service Composition Algorithm 44

3.4 Event-based Updating of a Domain Model 46
3.4.1 Ontology Service . 47
3.4.2 The Ontology Manager Approach 49
3.4.3 The Service Monitor Approach 51
3.4.4 Comparison of the Approach Variants 55

3.5 Generating OWL-S from WSDL Documents 56
3.5.1 WSDL Operations . 57
3.5.2 WSDL Port Types . 58

VII

3.5.3 WSDL Outputs . 58
3.5.4 WSDL Message Parts . 59
3.5.5 XML Schema Definitions . 59

3.6 SWRL-based Semantic Web Service Composition 59
3.6.1 Composition Pattern Overview 60
3.6.2 Requirements . 60
3.6.3 Obtaining an AI Planning Problem 62
3.6.4 The Domain-independent Planning Algorithm 63

3.7 Cloud Resource Utilization Optimization 65
3.7.1 Adding and Executing Applications 65
3.7.2 Resource Consumption . 66
3.7.3 Cloud Gateway Networks . 68

3.8 Summary and Conclusions . 69
4. Implementation . 72

4.1 Service Explorer . 72
4.2 Olingvo . 73
4.3 Ontology Service . 74
4.4 Orchestration Engine . 75
4.5 Orchestrator . 76
4.6 Service Monitor . 77
4.7 SWRL Planner . 78
4.8 Ontology Manager . 79
4.9 Cloud Gateway . 80
4.10 Implementation APIs . 81

5. Application Experiments . 83
5.1 Application Domains . 83
5.1.1 The Light Tower Monitoring Device 83
5.1.2 Conveyor Device Control . 84
5.1.3 The Socrades Production Line 84
5.1.4 The Fastory Production System 85

5.2 Applying BPEL in Simple Case Studies 89
5.2.1 Creating Composite BPEL Processes 93
5.2.2 Executing BPEL Processes Programmatically 95

5.3 Application Examples of Semantic Web Service Orchestration 100
5.3.1 Light Tower Example . 101
5.3.2 Conveyor System Example . 104

5.4 Application Example of SPARQL-based Semantic Web Service Com-
position . 108

5.5 Application Examples of Dynamic Domain Model Updating 116

VIII

5.5.1 Applying the Ontology Manager Approach 117
5.5.2 Applying the Service Monitor Approach 120

5.6 Application Example of OWL-S Generation 123
5.7 Application Example of SWRL-based Semantic Web Service Compo-

sition . 127
5.8 Application of the Cloud Resource Utilization Approach 130
5.8.1 The Experiment Setup . 130
5.8.2 Performance Measurement . 130
5.8.3 Performance Measurement in a Network Setting 133
5.8.4 Inter-Cloud Experiment Scenario 134

5.9 Summary of Application Examples 136
6. Conclusions . 138

6.1 Contributions . 138
6.1.1 Experience on BPEL-based Orchestration 138
6.1.2 A Semantic Web Service Orchestration Framework 139
6.1.3 A Semantic Web Service Composition Framework 139
6.1.4 Domain Model Update Methods 140
6.1.5 Automated OWL-S Generation 140
6.1.6 More Optimal Cloud Resource Utilization 141

6.2 Potential Enhancements . 141
6.2.1 Enhanced BPEL Support . 141
6.2.2 More Advanced use of Semantic Service Descriptions 142
6.2.3 Support for Alternative Formalisms 142
6.2.4 Support for Real-time Requirements 142
6.2.5 Increased Decentralization . 143
6.2.6 Improved Service Description Derivation 144
6.2.7 Transparent Cloud Resource Reservation 144

6.3 Future Research Directions . 145
References . 146

IX

LIST OF FIGURES

2.1 OWL-S includes only an XML-based syntax, while WSML, which is
used by WSMO, comprises XML- and RDF-based syntaxes as well as
a human-readable plain-text (PT) syntax. 11

2.2 UML diagrams can be automatically converted to OWL-S descrip-
tions by applying XSLT transformations to the saved XMI files. . . . 24

3.1 WSDL2OWLS, which is an example application included in the OWL-
S API, generates OWL-S processes corresponding to operations de-
fined in WSDL files. 35

3.2 Ontology Service hosts the equipment ontology, which describes the
states of the domain web services, and Service Monitor hosts the web
service descriptions. 39

3.3 Orchestration Engine executes BPEL processes which request Service
Monitor to orchestrate domain web services with the aid of Ontology
Service. 41

3.4 The Ontology Service ExecuteUpdateWithMapping operation has a
complex input message XML structure. 48

3.5 An event listener service translates event notifications from domain
web services to appropriate updates to the domain OWL model. . . . 49

3.6 The conditions in Ontology Manager update rules directly refer to
notification message contents. 50

3.7 Rule conditions in the abandoned semantic update rule approach re-
ferred to OWL models through SPARQL expressions. 51

3.8 Service Monitor extracts a notification object model from OWL-S
processes representing event notifications. 53

3.9 SAWSDL annotations are added to WSDL operations, port types,
message parts and schema elements. 57

3.10 The generated OWL-S model both describes the service functionality
and provides sufficient data to invoke the service. 58

3.11 The StartGoal operation is invoked to initiate a new goal process. . . 61
3.12 A typical use scenario of Cloud Gateway includes starting a web ser-

vice and terminating it after use to conserve resources. 69
3.13 The proposed Orchestration Tools framework is composed of a set of

collaborating web services and applications. 71

4.1 Service Explorer allows a user to invoke web services. 73

X

4.2 Olingvo provides a user interface for creating, browsing, and editing
OWL models. 74

4.3 Ontology Service provides a web service interface through which other
software actors may query and update the hosted ontology model. . . 75

4.4 Orchestration Engine provides a web service interface for executing
BPEL processes. 76

4.5 Orchestrator tasks Orchestration Engines with servicing production
orders sent by an ERP service. 77

4.6 Service Monitor is a web service that additionally provides a graphical
user interface. 78

4.7 SWRL Planner provides a graphical user interface for testing different
planner implementations. 79

4.8 The Ontology Manager GUI provides fine-grained access to domain
model update rules. 80

4.9 The Cloud Gateway service interface makes it possible to extend the
Cloud Gateway network and deploy applications on the controlled
cloud resources. 81

5.1 The light tower scenario involves a light tower device controlled by
an RTU. 84

5.2 The six web services represent a loop of conveyor devices in the actual
production line. 85

5.3 The demonstration line includes 29 conveyor segments, of which five
are workstation processing locations. 86

5.4 The Fastory line consists of 12 robotic cells. 87
5.5 Each robotic cell contains five conveyor zones. 88
5.6 The Fastory robot service alternates between three states. 88
5.7 A system of two sequential conveyors. 90
5.8 A BPEL process which uses links to achieve sequential invocation. . . 92
5.9 A BPEL process in which conveyor B loads a pallet while conveyor

A is unloading. 93
5.10 The upper level BPEL process in the composite service. 94
5.11 Using Service Explorer to execute BPEL files. 96
5.12 A loop of four conveyors, top-down view. 97
5.13 A BPEL process which operates a loop of four conveyors. 98
5.14 Four client applications monitoring the execution of a BPEL process. 99
5.15 The lower-level BPEL processes used for unloading and loading. . . . 99
5.16 A BPEL process, which performs one of two operations based on a

parameter value. 100

XI

5.17 The main components of the light tower equipment ontology. 101
5.18 The light tower experiment sequence corresponds to the more general

pattern depicted in Figure 3.2. 103
5.19 The BPEL process invokes fewer operations when using the alterna-

tive light tower service interface. 104
5.20 The main components of the conveyor system ontology. 105
5.21 The BPEL process, which Orchestration Engine executes, uses Ontol-

ogy Service to determine the path between the start and destination
conveyor segments. 108

5.22 The path traversed by the pallet includes visiting each of the five
workstations. 109

5.23 The domain ontology contains product, equipment, and process de-
scriptions. All of the relations between the OWL classes are object
properties, and class attributes represent datatype properties. 110

5.24 The manufacturing system ontology contains classes representing the
production devices and product components. 116

5.25 The Ontology Manager user interface facilitates the creation and edit-
ing of update rules. 118

5.26 Service Monitor simultaneously applies ontology update rules during
domain web service invocation. 123

5.27 The test arrangement includes two physical machines, one of which
hosts a private cloud containing virtual machines (VMs). 131

5.28 The Cloud Gateway client application measures service deployment
durations using Cloud Gateway services. 132

5.29 The private cloud is hosted on a local machine. Each virtual machine
hosts four web services. 135

XII

LIST OF TABLES

3.1 Ontology Service provides a web service interface for querying and
manipulating the domain model. 33

3.2 Ontology Manager provides a web service interface through which it
is possible to specify the ontology update rules. 38

3.3 Service Monitor provides a web service interface that allows the reg-
istering of new production goals. 44

3.4 Ontology Service provides a web service interface for querying and
manipulating the domain model. 47

3.5 SWRL atoms are converted to SPARQL triples and FILTER patterns. 54
3.6 The domain model update approaches differ in the required source

data. 55
3.7 The Service Monitor interface provides operations for starting and

terminating goal processes as well as for monitoring their progress. . . 61
3.8 The Cloud Gateway service includes operations for querying the cur-

rent service status. 66
3.9 The Cloud Gateway service includes operations for managing the set

of available applications as well as executing and terminating them. . 67
3.10 The methods presented in this chapter address different problems. . . 70

5.1 The conveyor service provides three invokable operations and two
event notifications. 89

5.2 The robot service provides two invokable operations and one event
notification. 89

5.3 The effects of the robot services can be expressed with three update
rules. 119

5.4 The EquipmentChangeState OWL-S process has three output param-
eters. 120

5.5 Service Monitor converts result conditions and effects from SWRL to
SPARQL. 122

5.6 The Robot service WSDL operations are linked to SWRL rules through
SAWSDL annotations. 125

5.7 The Fastory domain ontology defines three SWRL rules representing
the tasks carried out by robots. 126

5.8 The number of conveyor service applications that can be started on
a virtual machine with 1.7 GB of RAM. 133

5.9 The duration of 20 cycles is quite similar regardless of whether cloud
resources are used instead of local resources. 135

XIII

5.10 The application examples involve different web-service-related stan-
dards. 136

XIV

LIST OF ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

BFS Breadth-First Search

BPEL Business Process Execution Language

CPU Central Processing Unit

DAML-S The DARPA Agent Markup Language for Services

DFS Depth-First Search

DL Description Logic

DPWS Devices Profile for Web Services

FIFO First In, First Out

GUI Graphical User Interface

IaaS Infrastructure as a Service

IDE Integrated Development Environment

MAS Multi-Agent System

OOP Object-Oriented Programming

OWL Web Ontology Language

OWL-S OWL for Service

PaaS Platform as a Service

PDDL Planning Domain Definition Language

PLC Programmable Logic Controller

RAM Random-Access Memory

RDF Resource Description Framework

RTU Remote Terminal Unit

SaaS Software as a Service

XV

SAWSDL Semantic Annotations for WSDL and XML Schema

SOA Service-Oriented Architecture

SQWRL Semantic Query-enhanced Web Rule Language

SWRL Semantic Web Rule Language

SWS Semantic Web Service

UDDI Universal Description Discovery and Integration

UML Unified Modeling Language

UPnP Universal Plug and Play

URI Uniform Resource Identifier

WS Web Service

WSDL Web Services Description Language

WSMO Web Service Modeling Ontology

WSRF Web Services Resource Framework

XML Extensible Markup Language

XPath XML Path Language

XSL Extensible Stylesheet Language Family

XSLT XSL Transformations

1

1. INTRODUCTION

Factory automation systems are modern, automated manufacturing systems. The
typical tasks of such a system include assembling of products from separate compo-
nents. A major task in the development of a factory automation system is the control
of the constituent devices, such as conveyors and assembly robots. Development of
embedded devices has made it possible to embed miniature computers into the pro-
duction equipment. In particular, the programmable logic controller (PLC) is uni-
versally applied in industry [126]. With the rapid increase in the computing capacity
of the controllers, factory automation systems have become software-intensive.

1.1 Motivation and Justification

Software engineering methodologies emphasize the encapsulation and reuse of soft-
ware components. Service-oriented architecture (SOA), on the other hand, makes
it possible to encapsulate both software and hardware inside web service interfaces
[35]. In manufacturing systems, such encapsulation facilitates the replacement of
devices without additional reprogramming efforts [12].

While web services are the preferred implementation mechanism for an SOA,
other technologies, such as UPnP (Universal Plug and Play), are also applicable
[35]. However, this dissertation considers only SOAs implemented on web services
based on the open web service specifications, such as WS-Discovery [68] and WS-
Eventing [119], although several of them remain unstandardized. The main research
target is the semantics-based orchestration of web services in factory automation
systems. Therefore, web services are primarily considered to conform to the DPWS
(Devices Profile for Web Services) [17] specification. DPWS specifies the minimal
implementation requirements for web services compliant with a core set of web
service specifications and is particularly intended for the device space; each web
service is hosted on a device [35].

Orchestration of web services fundamentally encompasses two interrelated prob-
lems. Firstly, it is necessary to compose service execution plans. Secondly, the plan
execution requires robust control methods.

To allow the remote discovery and control of production devices, web services
embedded at device-level are a natural solution. Each web service exposes an inter-
face containing different operations. Clients may invoke the operations by sending

1. Introduction 2

certain types of messages to the service over the network.
To encapsulate production devices as web services, the device controllers must

host the web service interfaces and mediate the service requests and responses.
Some commercially available RTUs (Remote Terminal Units) already provide this
capability.

The web service interfaces exposed by device controllers would typically contain
operations corresponding to the actions that the production devices are expected
to perform [36]. For example, the controller of a conveyor segment might expose
a web service interface containing operations for transferring a pallet in and out of
the segment. Encapsulating production equipment in web service interfaces enables
the range of tools and methodologies developed for describing and orchestrating
web services to be also applied in the factory automation domain. In particular, the
methodologies for orchestrating web services make it possible to prescribe production
processes without dependence on any vendor-specific languages [35]. In addition, the
process descriptions are independent of the hardware used in the production system.
If, for example, the controller devices were changed to a different model, it would
be sufficient to ensure that the new controllers expose similar web service interfaces
for all previous process flow descriptions to remain applicable. Thus, the approach
makes process descriptions applicable to several different settings and reduces the
complexity of production system device control.

The Service-oriented architecture (SOA) has been proposed for solving challenges,
such as dynamically connecting new devices, in manufacturing systems [35]. In
particular, when industrial devices are encapsulated and exposed as web services,
they can be controlled using public web service standards [35]. Furthermore, it is
straightforward to develop web service interfaces, even for most legacy systems [39].

For example, the Web Services Business Process Execution Language (WS-BPEL)
[3] allows the description of complex work-flows involving several manufacturing de-
vices. However, the direct application of BPEL in flexible manufacturing systems
can be challenging due to rapid changes in the available services and service inter-
faces [81].

Unfortunately, traditional web service description languages, such as the Web
Service Definition Language (WSDL) [8], convey only the information required to
invoke the services. In particular, they define the syntax of service requests and
responses. Effectively, the selection and composition of appropriate services for a
given task requires a human expert. For example, a WSDL document typically
lists the operations that the web service supports and describes the required input
parameters and the produced output parameters. Thus, a WSDL document only
describes the syntax of the information exchange with a web service, and further
knowledge is required to deduce the meaning of the operations and the exchanged

1. Introduction 3

data values.
As the traditional web service orchestration methodologies depend on syntactic

web service interfaces, changing a web service interface syntactically by, for exam-
ple, renaming an operation typically renders the service incompatible with existing
process descriptions. Semantic web service descriptions provide a solution to this
problem, as they describe the meaning of a web service and its effects. Hence,
syntactic differences in web service interfaces become less relevant.

Semantic representation languages also make it possible to model web service
states or the states of the devices represented by web services. An accurate model
of the world state is vital for efficient orchestration of web services; orchestrating
web services to co-operatively carry out a complex production process requires that
sudden changes in the states of the production equipment and available web ser-
vices are considered. For this purpose, this dissertation demonstrates the dynamic
updating of semantic production system equipment and web service models.

Web services enriched with semantic descriptions are called semantic web services
[62]. Semantic web service technologies facilitate the automation of web service
discovery, invocation, and composition [62]. The efficient application of semantic
web service technologies requires an automated framework. This dissertation focuses
on using a set of web services that co-operate to successfully orchestrate domain web
services.

For example, semantic annotations can facilitate the selection of matching web
services for the partner links declared in a BPEL process [80]. However, the approach
fails to exploit the full potential of semantic web service descriptions. In particular,
changes to the set of available web services tend to invalidate the BPEL processes.
Moreover, it is difficult to assess the semantic resemblance between two different
condition or effect expressions.

Semantic web service descriptions facilitate the automatic composition of web
services to achieve complex goals. Automatic service composition eliminates the
need to describe work flows syntactically. For example, the production of a certain
product can be accomplished by simply formulating an expression that describes
the desired goal state. Query languages, such as SPARQL [79], allow queries to be
formulated which, when evaluated over a semantic model of a production system,
specify whether a production goal has been satisfied. A software agent can then
use the queries and semantic web service descriptions for composing and executing
process prescriptions that achieve the goals [89]. However, the use of semantic
service descriptions enriched with condition and effect expressions in the achievement
of complex goals while maintaining an accurate domain description still requires
dedicated tools and methods, to which this research work contributes.

Computing processes require hardware resources, such as processing power and

1. Introduction 4

data storage capacity. Traditionally, the resources have existed on physical server
machines. Hence, organizations have had to purchase the hardware as well as al-
locate resources in installing and maintaining the systems. Moreover, the need for
computing resources tends to considerably fluctuate, causing the expensive systems
to be frequently idle. Adjusting the amount of computing resources to match the
current needs is typically expensive using traditional methods. Cloud computing
provides a solution to the problem by allowing organizations to lease computing
resources and only pay for the amount that they actually use [110]. In addition, the
cloud consumers can remain ignorant of service implementation details, such as the
physical location of the computing resources employed.

1.2 Problem Statement

Although web service interfaces considerably facilitate the control of production
devices, as such, they are insufficient to completely remove the difficulties in in-
structing a production system to perform the desired activities. In particular, when
the web services are described using traditional, syntactic languages, it is laborious
to formulate workflow prescriptions automating web service orchestration. Such pre-
scriptions are vulnerable to minor changes in the syntactic web service interfaces.
To automate the selection, invocation and composition of web services, semantic
web service descriptions have been proposed [62].

Web services are software and inherently require hardware resources on which to
run. A recent trend is to outsource computationally intensive tasks into computing
clouds. However, the workload in deploying an application on cloud resources can
still be considerable [93].

To summarize, the main questions that this research attempts to answer are:

• How to automate the development of semantic web service descriptions includ-
ing the service pre- and post-conditions?

• Given a certain production goal, how to automatically compose and control
the execution flow of the semantic web services that deliver the manufacturing
system functionality?

• How to facilitate the effective use of cloud-based computing resources?

1.3 Research Objectives and Initial Hypotheses

The main objective is to develop methodologies allowing the development of more
intelligent production systems. The production systems are able to reason on se-
mantic information and achieve production goals more autonomously. This will

1. Introduction 5

increase automation and eliminate the need to manually devise and modify detailed
workflow prescriptions.

An additional objective is to facilitate the use of resources leased from computing
clouds. In particular, a cloud consumer should be able to start applications on the
leased resources without detailed knowledge on the individual resources.

The main research hypothesis is that the second research problem listed in Section
1.2 can be solved through the following three principles.

• The production goals are expressed in machine-interpretable form.

• The functionalities provided by the web services are semantically represented.

• The aforementioned two principles form the basis for the automatic composi-
tion and execution of machine-interpretable web service workflows.

An additional research hypothesis is that a web service deployed on a virtual
machine in an Infrastructure-as-a-Service cloud can facilitate the use of the leased
computing resources. The web service interface provides operations allowing the
execution and termination of applications.

1.4 Contributions

This dissertation presents a semantic web service orchestration framework that is
capable of automatically composing and executing web service workflows when the
orchestrated services represent manufacturing equipment. In particular, the orches-
tration framework is implemented as a set of web services, and service composition
can be initiated by submitting a production goal through one of the web service in-
terfaces provided. Implementing the components of the orchestration framework as
web services renders them more robust to implementation changes and allows them
to be geographically dispersed as long as there is a network connection between the
web services.

The orchestration framework maintains a record of all available semantic web
services, and the AI planning process that forms the core of the service composition
task uses the semantic service descriptions as its main input data. Additionally, the
planning process input data includes a description of the current world state, which
is stored and constantly updated in an OWL model hosted by one of the framework
services.

The updating of the domain model is mainly based on event notifications received
from the domain web services, which in the factory automation domain are produc-
tion devices, such as robots and conveyors. As event notifications are automatically
received, it is unnecessary to periodically inquire service statuses. Nonetheless,

1. Introduction 6

periodic inquiry may be incorporated when the domain services provide no event
notifications.

Furthermore, the framework can execute web service workflows expressed as
BPEL processes. The BPEL processes may store production goals and submit them
to the orchestration framework, or they can contain specific domain web service
invocation work-flows.

As OWL-S descriptions and the embedded condition and effect expressions are
typically stored in XML text files, they can be created and edited without any
specialized tools. However, formulating a separate OWL-S document for each web
service can be laborious. Therefore, this dissertation presents an approach of au-
tomatically generating OWL-S descriptions for semantic web services based on the
service WSDL descriptions.

In addition, this dissertation presents a mechanism that assesses cloud resource
utilization rates to optimize web service deployment. The approach reduces the
amount of idle resources and increases the amount of resources available to the
deployed services.

1.5 Thesis Outline

The remainder of this dissertation is structured as follows.
Chapter 2 will present some of the most notable prior achievements in the research

field and briefly compare them to the new approaches presented in this dissertation.
Chapter 3 will then present the new concepts and solutions in detail. Chapter 4
will discuss how the developed approaches and the related software tools have been
implemented in practice. Chapter 5 will demonstrate the use of the tools in pro-
duction system scenarios. Finally, Chapter 6 will summarize the contributions and
identify issues to be addressed in further research.

7

2. STATE OF THE ART

This chapter reviews research that has been performed on web services, semantic
web services, and cloud computing. First, Section 2.1 presents a short survey of
graphical software tools facilitating the manual development of web service (WS)
workflow prescriptions. Then, Section 2.2 shifts the focus from traditional WS
to semantically described WS. Finally, Sections 2.3 and 2.4 briefly present recent
advancements in Cloud Computing and agent-based systems, respectively.

A large portion of the research presented in this chapter has provided foundations
for the new methods that form the topic of Chapter 3. The new methods aim to
solve the deficiencies that Section 2.5 identifies in the current state of the art.

2.1 Graphical BPEL Tools

BPEL processes and the activities of which they are composed can be graphically
visualized, and there are already several graphical BPEL editors available.

Graphical BPEL editors considerably reduce the burden on the developer, as
writing XML code by hand is somewhat error-prone. Furthermore, generating BPEL
processes with a graphical editor tends to result in much cleaner code [52]. In
addition, observing the overall structure of a web service is typically easier from the
graphical representation than the XML code.

2.1.1 NetBeans

NetBeans1 is an IDE which can be used for several purposes. Some versions also
include a graphical BPEL editor and a debugger. Web Services can be tested by
creating and executing test cases. In addition, NetBeans is integrated with an
application server for running the created web services.

For example, creating partner links with the graphical BPEL editor in NetBeans
is effortless. The user must only drag the partner link element from the palette
onto the canvas and select an existing partner link type. Alternatively, the user
can create a new partner link type definition to a WSDL file in a wizard that pops
up. Furthermore, NetBeans provides wide control over the created BPEL processes,
as it is also possible to manually edit the BPEL process XML source code. Thus,
1Available at https://netbeans.org/. Accessed on 2014-6-19.

2. State of the Art 8

it is possible to, for example, copy-paste BPEL code into the editor and manually
edit it to suit specific needs. Unfortunately, NetBeans supports only a subset of
the WS-BPEL 2.0 specification. More specifically, it uses the Sun BPEL Service
Engine (SE), which excludes some language constructs of WS-BPEL 2.0 [4]. These
limitations may cause difficulties in importing BPEL processes created using other
tools into NetBeans. Moreover, the graphical BPEL editor is somewhat inconvenient
in that the user can only drag and drop BPEL elements into fixed locations in the
canvas. In particular, NetBeans provides cursor hints to indicate the locations into
which a BPEL element can be placed in the canvas. Nevertheless, the approach
removes the need for separate location information, thereby facilitating the import
of BPEL processes from other BPEL editors, since the graphical layout of BPEL
processes is automatic.

Because NetBeans also supports Java development, web service processes can
also incorporate services implemented as, for example, Java Beans projects. Java
Beans projects can be deployed on the application server used by NetBeans and can
therefore easily be used as part of more complex web services.

At the time of writing this dissertation, BPEL process support has been removed
from the latest versions of NetBeans. Nonetheless, prior versions of NetBeans, in-
cluding those with BPEL support, are still available.

2.1.2 ActiveBPEL

ActiveBPEL Designer2 has been developed specifically for creating BPEL processes.
The graphical user interface (GUI) is based on Eclipse. ActiveBPEL Designer can
be downloaded free of charge. Although it is possible to view the XML source code
created by the graphical BPEL editor, the source code cannot be manually edited.
Effectively, the user is forced to use the GUI elements for all BPEL editing. This is a
considerable disadvantage because an experienced user may find direct source code
editing somewhat faster and easier than editing a BPEL process through the GUI
components. Moreover, copy-pasting BPEL source code into the editor does not
seem to be possible. On the other hand, the graphical editor is quite flexible, and
the user can freely place BPEL elements on the canvas. Although the locations of the
elements remain during saving and loading of projects, the location information is
not stored in the XML code of the BPEL processes. Thus, the generated BPEL files
contain completely valid BPEL code with no custom conventions, which might cause
compatibility problems with other tools. However, if a BPEL process is imported
into ActiveBPEL from some other tool, the location information is naturally missing,
and the BPEL elements appear on top of each other in the canvas. Then, the user
2Available at http://www.activevos.com/. Accessed on 2008-4-30

2. State of the Art 9

must drag them to the appropriate locations to make the diagram comprehensible.
ActiveBPEL Designer allows the simulation of processes without deploying them

on a server. Input values to the simulated BPEL process can be set before the
simulation is started, and the values of variables and the current execution state can
be observed at each step of the simulation.

The processes created using ActiveBPEL Designer can be deployed on an Ac-
tiveBPEL server. ActiveBPEL Designer includes an ActiveBPEL server, the Ac-
tiveBPEL Engine, which can be used in developing web services. In addition, the
proprietary ActiveBPEL Enterprise can be used to directly deploy web services.
ActiveBPEL Enterprise allows several versions of the same web service to run si-
multaneously.

When a new partner link type is created in ActiveBPEL, the user may specify
a new or existing WSDL file in which the new partner link type will be stored.
Unfortunately, partner link types refer to WSDL files to specify the port types used
by the partner link roles, and ActiveBPEL Designer includes no editing support for
WSDL files. Instead, WSDL files must be created using some other tool and then
imported into ActiveBPEL projects as web references. On the other hand, a plugin
allowing, for example, the graphical creation and editing of WSDL files is available
for ActibeBPEL Designer [1].

2.1.3 Eclipse

Eclipse is a general-purpose integrated development environment (IDE) that can be
extended to support various technologies through its built-in plugin mechanism. For
example, graphical BPEL editing tools can be installed into the Eclipse IDE free of
charge as a set of plugins.

Eclipse BPEL Designer is still under development. For example, direct XML
code manipulation and debugging support are yet to be included. The Eclipse
BPEL project web site3 also includes the project milestone plan.

At the moment, only limited online tutorials appear to be available for the Eclipse
BPEL Designer. For example, there are some videos which show how to perform
certain tasks, such as creating a new BPEL project or partner link.

Whenever a new partner link type is created in Eclipse, it is automatically added
to the WSDL file of the project. The file can import other WSDL files specifying
the port types to which the partner links refer.

In addition, Eclipse includes a tool for testing Web Services, the Web Services
Explorer. The tool is able to connect to a Universal Description Discovery & In-
tegration (UDDI) [105] registry. Then, it is possible to, for example, publish web
3Eclipse BPEL Project. Available at http://www.eclipse.org/bpel/. Accessed on 2008-4-30.

2. State of the Art 10

services in the registry. It is also possible to invoke the operations of web services
based on their WSDL files. However, in order to invoke an operation, a supporting
endpoint reference must be available. Otherwise, it is only possible to browse the
contents of WSDL files using the Service Explorer.

2.1.4 Other Tools

Several BPEL development tools can be found on the Internet in addition to those
presented above:

• Intalio|BPMS CE 4

• Oracle BPEL Process Manager 5

• Cape Clear 7.5 ESB 6

• Fiorano BPEL 7

• BizZyme BPEL Engine 8

• eClarus 9

Some of the tools are available as limited complimentary editions, and some offer
an evaluation period after which the product must be purchased to continue use. In
most of the cases, registration is required to obtain a trial version.

2.2 Semantic Web Service Technologies

This section reviews the previous advances in semantic web service research. It
starts with a brief overview of the most popular languages for semantic web service
descriptions.

2.2.1 Semantic Service Description Languages

Web service descriptions are typically formulated in WSDL (Web Services Descrip-
tion Language) [8], which only describes the syntax of communicating with a web
service. Semantic description languages are required for expressing the meaning of
service interface elements, such as operations and data types.
4 Available at http://bpms.intalio.com/. Accessed on 2008-4-30.
5 Available at http://www.oracle.com/technology/products/ias/bpel/index.html. Accessed on
2008-4-30.
6 Available at http://www.capeclear.com/. Accessed on 2008-4-30.
7 Available at http://www.jvl-fr.com/spip/IMG/pdf/fiorano_bpel_brochure.pdf. Accessed on
2008-4-30.
8 Available at http://www.creativescience.com/. Accessed on 2008-4-30.
9 Available at http://www.eclarus.com/. Accessed on 2008-4-30.

2. State of the Art 11

Figure 2.1: OWL-S includes only an XML-based syntax, while WSML, which is used by
WSMO, comprises XML- and RDF-based syntaxes as well as a human-readable plain-text
(PT) syntax.

The combinations of semantic descriptions and web services are called semantic
web services (SWS) [62]. Several approaches have been proposed for adding seman-
tic descriptions to web services. Figure 2.1 summarizes some of the most notable
approaches and their underlying methodologies. In particular, OWL-S ("OWL for
Services") [53] and WSMO (Web Service Modeling Ontology) [87] have attained
wide acceptance as semantic web service description languages. These alternative
approaches will be presented in more detail in the sequel.

OWL-S

Web Ontology Language (OWL) [61] is designed for formulating semantic descrip-
tions. It extends the RDF (Resource Description Framework) [43] syntax. While
RDF features a plain-text syntax, N-Triples, it is mainly applicable as a shorthand,
and RDF/XML (XML syntax for RDF) [86] is the recommended syntax for informa-
tion exchange. However, as such, OWL is a general purpose language for ontologies
and provides no standard constructs specifically designed for web service definitions.

OWL for Services (OWL-S) [71] is an OWL ontology for web services that has
attained wide acceptance in the research community. OWL-S makes it possible to
semantically describe service input and output parameters, service preconditions,
and conditional effects.

OWL-S service descriptions consist mainly of three types of elements, namely
ServiceProfiles, ServiceModels, and ServiceGroundings. This dissertation refers to
instances of these three element types respectively simply as profiles, processes and
groundings. Instances of other classes in the OWL-S ontology will be referred to by
writing the class names in lowercase italic letters. Some of the most essential classes
of the OWL-S ontology and the possible property relations between their instances
can be observed in Figure 3.10. Both profiles and processes are able to describe the
inputs, outputs, preconditions and effects of web services. While profiles are mainly
intended for use in web service discovery, the processes provide the information
necessary to invoke the services. However, an atomic OWL-S process can be executed
only if it is grounded to an underlying web service through an OWL-S grounding.

While OWL-S processes may include preconditions that specify when the pro-

2. State of the Art 12

cesses can be executed, the effects of processes are described through results. Each
process may have zero or more results, each with different conditions and effects.
Thus, a process may have different effects depending on the situation in which the
process is executed.

However, OWL-S defines no syntax for the actual condition and effect expressions
[53]. Instead, OWL-S defines only place-holders for the expressions and allows the
use of any expression language. The languages may incorporate both plain text and
XML-based formats. Some potential expression languages are XML-based, such as
SWRL [30], while others are textual, such as SPARQL [79]. In addition to selecting
the expression language, the details of applying the language are an unrestricted
design choice. For example, the SPARQL query language includes four different
query types, which yield different types of results.

Groundings provide the links from semantic web service descriptions to the un-
derlying syntactic web service interfaces. Thus, a grounding describes how to access
the service and communicate with it. Although several types of groundings can be
defined, WSDL groundings are the most widely used grounding type [53]. WSDL
groundings map atomic processes to WSDL operations [53]. Hence, modifications to
a syntactic web service interface typically necessitate modifications to the ground-
ings included in the semantic service description as well. Nevertheless, groundings
may also be provided dynamically [53].

Unfortunately, each service may contain only one process, and a process mainly
corresponds to a single web service operation [54]. Because OWL-S currently con-
tains no construct for grouping processes [54], and a typical web service interface
contains several operations, a complete semantic description of a web service inter-
face should obviously define several different services.

OWL-S has established a wide user community in the scientific field. For example,
Paolucci et al. [73] have developed an OWL-S virtual machine capable of parsing
OWL-S service descriptions and executing the processes. Vaculin and Sycara [109]
have further developed the virtual machine and extended it with an event mech-
anism, so that it is possible to monitor the execution state of an OWL-S process.
Paolucci et al. [73] use the term DAML-S, as which the previous versions of OWL-S
were known. However, in this dissertation, the term OWL-S is used in generally
referring to all versions of the specification.

OWL-S API [72] makes it possible to execute OWL-S processes from Java code.
A considerably newer version of the OWL-S API, which primarily supports OWL-S
version 1.2, is available at [108]. In particular, the API provides facilities for loading
OWL-S descriptions and creating Java object models representing their contents.
The object models include methods for retrieving OWL-S processes by their URIs,
setting values to their inputs, executing the processes and retrieving the output

2. State of the Art 13

values.

WSMO

Web Service Modeling Ontology (WSMO) is a widely-accepted alternative to OWL-
S for formulating semantic web service descriptions. While OWL-S is based on OWL
and requires the use of some other language in formulating web service conditions
and effects, WSMO descriptions are formulated entirely in a specific formal language,
WSML (Web Service Modeling Language) [87].

WSMO is conceptually based on the Web Services Modeling Framework (WSMF),
which aims to describe the interfaces of web services instead of their internal logic
[21]. Instead of OWL,WSMO relies on theWeb Service Modeling Language (WSML)
[120]. Actually, WSML is a family of languages featuring different syntaxes. Because
the human-readable syntax of WSML is problematic for automated processing, XML
and RDF based syntaxes, WSML/XML and WSML/RDF, have also been developed
[120]. WSML/RDF allows the representation of WSML descriptions as RDF graphs.
However, when WSML specifications are exchanged between computers, the WSM-
L/XML syntax is the most viable option [120]. Roman et al. [87] claim that WSMO
has several advantages over OWL-S. For example, WSMO allows several interfaces
to be defined for a web service, while OWL-S allows only one [87].

Wang et al. [116] perceive that WSMO lacks a sufficiently formal specification
and believe that this might cause developers to understand its semantics differently.
Thus, they have developed a formal description of the syntax and semantics of
WSMO.

A WSMO API for Java entitled wsmo4j has been developed as an open source
project10. The API also supports the SAWSDL specification. For example, it en-
ables programmatic addition of semantic annotations to WSDL files. However, it
appears that the API only supports WSDL 2.0. The project homepage provides
code examples of how ontologies and WSMO service descriptions can be program-
matically created using the API.

SAWSDL

SAWSDL (Semantic Annotations for WSDL and XML Schema) [20] provides a
standardized means of enriching web services with semantic descriptions. The Web
Services Description Language, WSDL [8], is commonly used for describing web
service interfaces. However, as such, WSDL is unable to describe the semantic
features of web services, such as the goals of web service operations or the meanings
of their inputs and outputs.

10Available at http://wsmo4j.sourceforge.net/index.html. Accessed on 2013-5-15.

2. State of the Art 14

SAWSDL defines an annotation mechanism for linking semantic descriptions to
the most closely corresponding WSDL elements and also makes it possible to specify
the translations between the XML message structures and the semantic concepts de-
scribing them. In particular, SAWSDL defines three extension attributes to the basic
WSDL syntax: modelReference, liftingSchemaMapping and loweringSchemaMap-
ping. In the sequel, the three attribute types are called model references, lifting
schema mappings, and lowering schema mappings instead of using the camel-back
notation.

Model references define the semantic concepts, such as OWL classes, correspond-
ing to the referencing WSDL or XML Schema entities. In specifying operation
input and output message structures, WSDL documents typically refer to XML
Schema types and elements. Lifting schema mappings define the translation from
the referencing XML structures to the semantic concepts expressed in the semantic
language, while lowering schema mappings define the opposite translation to the
XML structures. The transformation language used in schema mappings is unre-
stricted, although XSLT [9], which is part of the Extensible Stylesheet Language
Family (XSL)11, is frequently used.

All of the three extension attributes accept both single URIs and sets of URIs
as their values. For example, a model reference may point to several semantic
concepts, in which case all of them are considered to describe the element. In
addition, SAWSDL provides an extension element with the name attrExtensions to
maintain compatibility with WSDL 1.1. The extension element can only be used
in annotating WSDL 1.1 operations, which accept no extension attributes. The
modelReference attributes corresponding to the operations can then be added to
the attrExtensions elements.

While SAWSDL annotations typically reference concepts in OWL ontology mod-
els, SAWSDL mandates the use of no specific semantic modeling language. In
SAWSDL, references to semantic descriptions are made by using URIs, and the
URIs may point to semantic concepts defined in any semantic modeling language.

SAWSDL has been developed based on the preceding WSDL-S [2] language. On
the one hand, the two languages share several similar features. For example, WSDL-
S and SAWSDL both define a modelReference extension attribute. On the other
hand, SAWSDL also differs considerably from WSDL-S. For example, only WSDL-
S defines extension elements for adding precondition and effect annotations to web
service operations. Nonetheless, operation preconditions and effects can also be
expressed through themodelReference attribute. Hence, it seems that omitting these
constructs only simplifies the SAWSDL specification as well as removes potential
redundancies and inconsistencies in the created web service definitions.

11http://www.w3.org/Style/XSL/

2. State of the Art 15

SAWSDL is noncommittal regarding the semantic description language used or
the type of concepts referenced through SAWSDL annotations. Moreover, SAWSDL
itself defines no rules to how the semantic annotations are to be used or interpreted
[54]. Hence, Martin et al. [54] provide recommendations on using SAWSDL with
OWL-S. For example, since WSDL operations most directly correspond to OWL-
S processes, the SAWSDL annotations attached to WSDL operations should refer
to OWL-S processes [54]. Iqbal et al. [34] apply SAWSDL annotations in linking
WSDL operations to SPARQL [79] expressions defining the operation preconditions
and effects.

While semantic annotations in SAWSDL refer to semantic concepts through URIs,
the actual method of retrieving the semantic descriptions is unspecified. For exam-
ple, the URIs may resolve to external documents. Alternatively, XML-based seman-
tic descriptions, such as OWL-S, may be embedded into the WSDL document [20].
Indeed, as WSDL descriptions accept extension elements, the models may also be
directly embedded in the SAWSDL description, provided that they are expressed in
XML [20]. For example, OWL is based on XML, and the WSML family of languages,
which is used by WSMO, also includes an XML variant.

Although SAWSDL is a rather new specification, it is already supported by soft-
ware tools, such as an SAWSDL library for Java, SAWSDL4J12. Unfortunately, the
current version of the library appears to be based on a preceding version of the
SAWSDL specification, and it appears to be incompatible with the latest version
[20]. The main reason for the incompatibility is that the two versions of the speci-
fication use different namespace URIs for identifying the SAWSDL namespace. On
the other hand, the source code of the library is also publicly available, and thus
it is easier to overcome such difficulties in using it. Woden4SAWSDL13 is another
open source Java library which provides an object model for semantically annotated
WSDL documents. However, it only supports WSDL 2.0, whereas SAWSDL4J also
supports WSDL 1.1.

2.2.2 Semantic Web Service Orchestration

UDDI registries [105] permit web service providers to publish their services. How-
ever, Sycara et al. [99] point out that the UDDI standard is insufficient for discov-
ering web services based on their capabilities. Thus, they have developed a DAML-
S/UDDI Matchmaker, which allows services to be discovered based on semantic de-
scriptions written in OWL-S. The system contains a communication module which
receives semantic service advertisements. Once an advertisement is received, it is

12Available at http://sawsdl4j.sourceforge.net/. Accessed on 2013-5-15
13Available at http://lsdis.cs.uga.edu/projects/meteor-s/opensource/woden4sawsdl/index.html.
Accessed on 2009-11-11.

2. State of the Art 16

sent to a translator module which converts it to a UDDI service record and stores
the record in a UDDI registry. Finally, the advertisement is stored in a matching
engine together with the UDDI service record identifier. When the system receives a
semantic web service request, the matching engine compares it to the stored seman-
tic service advertisements. The comparison algorithms find the service descriptions
that semantically match the request. Furthermore, the found services are graded
based on how accurately they match the request. Because the system maintains
associations between the stored advertisements and the corresponding UDDI ser-
vice identifiers, the services associated to the matching descriptions can be retrieved
from the UDDI registry based on their identifiers [99].

Çelik and Elçi [6] propose an alternative approach to using OWL-S in web service
discovery. In their approach, a semantic search agent assists a user in finding an
appropriate web service from a UDDI registry. The user must first supply the
agent with search terms, which the agent uses to find potentially matching web
services in the service ontology. According to Çelik and Elçi [6], the agent also
compares the inputs and outputs of the services to those specified by the client.
Çelik and Elçi [6] claim that the matching algorithm implemented by Sycara et al.
[99] operates in UDDI, while in their approach the search algorithm is implemented
completely in the semantic search agent, which allows the UDDI registry to function
traditionally. Nevertheless, it appears that the system developed by Sycara et al.
[99] is implemented as a separate component that uses a UDDI registry but has
no impact on its internal operation. Thus, the UDDI registry could be operated
independently of the matching system, and it can be argued to function traditionally
also in the Matchmaker developed by Sycara et al. [99]. Hence, the two systems
appear to be based on somewhat similar principles. On the other hand, the approach
proposed by Çelic and Elçi [6] contains a search term enhancement phase which
precedes the actual semantic matching phase and is apparently omitted in the former
approach. In the search term enhancement phase, the search terms entered by the
user are enriched by finding synonyms and applying semantic is-a relationships.

Çelik and Elçi [7] have applied the semantic search agent approach in implement-
ing a semantic web service search system. The user enters required input and output
types to the system, and the system displays the results as a list of web services.
The system scores the services according to the semantic similarity of the inputs
and outputs to the search terms.

Song et al. [96] describe how SAWSDL can be used in automatically determining
services that semantically match search criteria specified by a user. They find the
SAWSDL annotation method simple and flexible. However, Iqbal et al. [34] claim
that SAWSDL alone is inadequate for specifying web service preconditions and post
conditions, which are essential in determining whether a web service matches the user

2. State of the Art 17

goals. Thus, Iqbal et al. [34] propose an approach that uses SPARQL [79] queries
to specify web service pre- and post conditions in SAWSDL files. In their method,
the SAWSDL modelReference attribute is used to refer to the SPARQL queries.
For example, the outcome of a service is represented by a SPARQL CONSTRUCT
query and the user goal is formulated as a SPARQL ASK query. The ASK query is
evaluated over the RDF graph that results from evaluating the construct query. If
the result is true, the service fulfills the goal.

Systems encompassing several heterogeneous web services may involve interop-
erability problems, which can be solved by using semantic web service descriptions
[39]. For example, Delamer and Martinez Lastra [13] present an SOA approach in
which service descriptions are augmented with semantic information to allow au-
tomated service selection and invocation in the domain of manufacturing systems.
Nevertheless, somewhat similar approaches are applicable in the medical domain as
well [44; 31]. In addition, Sasa et al. [88] present an approach applying agent tech-
nology and ontologies to automate decision-making in business system tasks that
would otherwise require human participation. This dissertation will focus on the
application of semantic web services in production system automation.

Various authors have proposed methods of combining the use of BPEL and se-
mantic service descriptions, and these methods have some features in common with
those proposed in this dissertation. For example, Verma [111] proposes defining
semantic templates in BPEL processes. The semantic web service descriptions are
achieved through the use of SAWSDL and OWL. However, while this dissertation
applies OWL-S in describing the functionality of web service operations, Verma [111]
defines functional concepts for this purpose. The functional concepts are then refer-
enced in the SAWSDL annotations added to WSDL operations similarly as Martin
et al. [54] suggest linking WSDL operations to OWL-S Processes. Indeed, the func-
tional concepts defined by Verma [111] appear to encompass OWL-S Processes: for
example, both include inputs, outputs, preconditions and effects.

Another approach that considerably resembles the methodology proposed in this
dissertation is the BPEL for Semantic Web Services (BPEL4SWS) [65] language,
which extends the standard WS-BPEL 2.0 specification. Unlike plain BPEL pro-
cesses, BPEL4SWS processes are independent of the WSDL descriptions of partner
web services. Instead, partner service requirements can be expressed semantically.
Hence, BPEL4SWS resembles the approach proposed by Verma [111]. Nevertheless,
the service orchestration approach proposed in this dissertation is different from both
of the aforementioned methodologies in that it only uses the standard WS-BPEL
2.0 language without any extensions. Instead, in the proposed approach, BPEL
processes refer to WSDL interfaces, and, because the interfaces are annotated with
semantic information, the proposed framework can automatically modify the BPEL

2. State of the Art 18

processes to use different WSDL interfaces depending on the results of semantic
service selection.

In addition to semantic descriptions, other methods of modeling the states of web
services have been developed. In particular, the Web Services Resource Framework
(WSRF) [121] facilitates accessing stateful resources through web services. Instead
of semantic models, WSRF uses plain XML schemas to describe resource proper-
ties. Clients can query and manipulate resource states through standard operations
specified in WSRF as well as through service-specific operations. WSRF has been
applied, for example, in the domain of grid services [117]. Unlike WSRF, semantic
web service descriptions set no requirements on the web service WSDL interfaces. In
particular, web services are not required to provide the special operations defined in
WSRF for querying and updating resource states. Furthermore, syntactic differences
in web service interfaces and the representation of resource states are considerably
less relevant when semantic descriptions are applied. While the approach requires
that semantic descriptions on available web services and domain resources are cre-
ated and made available, no changes to web service implementations are required.

In addition to BPEL, other techniques have also been developed for modeling
process workflows. For example, Petri Nets-based approaches have been applied
in cross-organizational workflow modeling [38]. Work on web service orchestration
using Petri Nets and Timed Net Condition/Event Systems, a Petri Nets-derived
formalism, can be found respectively in [63] and [77].

2.2.3 Automatic Web Service Composition

While OWL-S is suitable for formulating process prescriptions, BPEL can be consid-
ered more standardized [55]. For example, Martinek et al. [55] apply BPEL processes
in the domain of enterprise systems and dynamically generate mediator services that
automatically resolve syntactical incompatibilities between service interfaces. The
approach eliminates the need to manually prescribe data transformation scripts in,
for example, OWL-S groundings. However, the task of automatically prescribing
the appropriate data transformations appears rather complex. Moreover, the ap-
proach is noncommittal regarding the automatic composition of the overall process
prescription, which is the main focus of this dissertation.

Semantic web service description languages facilitate automated web service com-
position. However, the majority of publications focus mainly on determining ser-
vice suitability according to the input and output types, which may be due to the
neutrality of OWL-S with regard to expressing service conditions and effects [89].
While concentrating on input and output types may be sufficient with information-
providing web services, conditions and effects are essential in describing world-
altering web services. For example, in the factory automation domain, web services

2. State of the Art 19

typically represent production devices, such as conveyors. Therefore, the focus is on
world-altering web services.

Regardless of the semantic language selected, composing semantic web services
to achieve a goal essentially entails solving a planning problem. A planning problem
can be formulated as the tuple 〈S, s0, g, A,Γ〉, where S is the set of all possible states
the system may have, s0 is the initial state, g is the goal state, A is the set of actions,
and Γ ⊆ S × A × S is the state transition relation. Γ describes which actions may
be applied to each state, and to which state the system will transition as a result of
applying an action [85].

For example, Hatzi et al. [27] present a framework that converts web service
composition tasks into planning problems expressed in PDDL (Planning Domain
Definition Language) [60]. Once a solution plan has been found, the framework
converts it into an OWL-S composite process description. The framework translates
atomic OWL-S processes to planning operators, from which it derives the set of
actions.

Translating OWL-S descriptions to PDDL is advantageous because PDDL is
widely used in AI planning and supported by several planners. In addition, due
to the influence of PDDL on the development of OWL-S, translations between the
two languages can be automated [123].

To reduce the complexity of planning, hierarchical task network (HTN) planning
requires that the planning domain description includes a set of method definitions
that specify how complex tasks can be hierarchically decomposed into smaller tasks
[94]. The planning problem can then be specified as a list of tasks to perform given
a certain planning domain and initial state. The planner attempts to solve the
problem by applying the methods to each task in the task list. Thus the planner
hierarchically breaks down each task into a partially ordered set of subtasks, until a
sequence of atomic planning operators is obtained, which corresponds to a solution
plan [94]. For example, the SHOP2 planner [94] applies HTN planning.

To find a sequence of web service operations that leads to the fulfillment of a goal,
a software agent may build a graph rooted at the initial domain state, so that each
node represents a domain state resulting from different operation invocations [89].
If each operation is considered to result in a different domain state, the generated
graphs are trees [89]. Unfortunately, the number of web services and operations
available tends to dramatically impair web service composition efficiency [125].

Sbodio et al. [89] demonstrate the use of OWL-S and SPARQL in selecting web
services capable of achieving a goal. In particular, SPARQL ASK type queries, which
evaluate to Boolean values, are applicable for expressing goals, while CONSTRUCT
type queries allow the expression of web service operation conditions and effects [89].
While the SPARQL/Update language actually appears more suitable for expressing

2. State of the Art 20

effects, it is still at a rapidly evolving development stage, and hence Sbodio et al.
[89] represent effects using CONSTRUCT queries.

This dissertation will focus on the use of OWL-S with SPARQL and SPAR-
QL/Update as the expression languages. The approach applies the guidelines pre-
sented in [89] for representing the world states with RDF graphs. Nevertheless,
while [89] focuses on service discovery, or selection, and only outlines the possibility
of sequential service composition, this dissertation elaborates on the latter. Further-
more, this dissertation presents an approach to updating the semantic model of the
world state based on OWL-S, SPARQL, and event notifications.

The use of SPARQL in this dissertation differs from that presented in [89].
Mainly, instead of combining conditions and effects in SPARQL CONSTRUCT
queries, SPARQL ASK queries are used in expressing conditions and SPARQL/Up-
date statements in expressing effects. SPARQL/UPDATE appears preferable for
expressing effects because SPARQL CONSTRUCT queries can only express ‘posi-
tive effects’, i.e. statements that are true after executing a process. In contrast, the
INSERT/DELETE statement of SPARQL/Update also makes it possible to spec-
ify ‘negative effects’, i.e. statements that are false after executing a process, in a
single expression. While Sbodio et al. [89] point out that one could use two CON-
STRUCT queries to express both positive and negative effects, OWL-S appears to
provide no constructs for discriminating between expressions that represent positive
and negative effects.

While domain ontologies are essential in modeling production systems [56], there
is no definitive standard for structuring such ontologies. For example, Ferrarini et
al. [22] present the PABADIS’PROMISE approach, which includes a meta-model
for domain ontologies. Furthermore, Ferrarini et al. [22] demonstrate using the
model with agent-based control systems. Somewhat similarly, Uddin et al. [107] use
a domain model in optimizing a web service -based production system. Although
the domain ontology used in [107] is not based on a meta-model, the ontology is
divided into layers, so that specific use cases extend the concepts defined in the
template level. Martinez Lastra and Delamer [56] survey the current approaches of
using ontologies in describing manufacturing systems.

To reduce the effort involved in developing and maintaining domain ontolo-
gies, Segev and Sheng [90] propose an approach to automatically creating ontology
models for web service -based systems. However, it seems debatable whether an
automatically-generated model could be used in developing an expert system, such
as the optimization system presented in [107].

The Open, Object-Oriented kNowledge Economy in Intelligent inDustrial Au-
tomation (OOONEIDA) project [114] facilitates the reconfigurability of production
systems through the concepts introduced in the IEC 61499 standard [33]. In par-

2. State of the Art 21

ticular, OOONEIDA perceives the concept of an IEC 61499 function block as a
vehicle for intellectual property inserted into a reconfigurable device or machine.
Furthermore, Vyatkin et al. [114] propose building a knowledge repository using a
semantic language such as OWL. As the older IEC 61131-3 standard [32] still has
much wider support, Dai and Vyatkin [11] propose an automatic transformation
from IEC 61131-3 PLC programs to IEC 61499 function blocks. The transformation
includes first importing the PLC programs to an OWL knowledge base and then
applying rules formulated as SQWRL [69] queries to map the OWL instances to
another knowledge base containing function block descriptions [11].

This dissertation applies the service-based approach presented in [57], in which a
specialized web service carries out semantic web service composition and planning.
To achieve greater decentralization, the domain ontology, which includes product
definitions, is also hosted by another specialized web service. The two web services
will be called respectively the Service Monitor and the Ontology Service.

A more distributed service composition framework has been proposed in [104].
However, the approach presented in [104] relies on more sophisticated web services,
service agents, that combine web services and agent technology.

2.2.4 Semantic Domain Modeling

Controlling a manufacturing system requires developing a comprehensive knowl-
edge representation of the system. An ontology-based knowledge representation of
a factory automation system makes it possible to reuse the domain model in several
autonomous software agents [58]. The domain model must describe the different pro-
cesses performed in the production system and the services that offer the processes
[58]. OWL (The Web Ontology Language) [61] is currently the de facto standard for
representing ontologies in a machine-interpretable format. For example, the OWL-S
[53] ontology for web services is based on OWL.

In a flexible manufacturing system, whose devices expose web service interfaces,
the domain model must be populated at system start-up and continuously updated
at run-time. To this end, a client application may poll the state of the web services
by using the request-response type operations in the service interfaces [106]. How-
ever, the periodic polling introduces a steady overhead even during periods when no
changes occur in the system. Moreover, the polling period must be set sufficiently
short to reduce the risk of using outdated information.

The approaches presented in Section 3 are based on the assumption that there
exists an OWL model describing the controlled manufacturing system. The OWL
model contains statements describing the most current state of the system and thus
allows optimization decisions to be made. Such a knowledge-based approach to
flexible manufacturing system control reduces the overhead of raw data processing

2. State of the Art 22

and enables different software agents to interact using a common knowledge base
[106]. In the approaches presented in this dissertation, the OWL model contains the
concepts to which the service WSDL files refer through SAWSDL annotations. In
the sequel, the OWL model describing the system state will be called the domain
model.

Moser and Biffl [64] investigate semantic integration between different ontolo-
gies and present an approach for maintaining a common ontology model to which
tool-specific ontologies are mapped. The approach makes it possible for different
stakeholders to use their own local data models while still allowing the validation of
the entire combined runtime model [64].

Another approach to integrate different domain ontologies is to use a common
adaptable base ontology, which the domain specific ontologies extend [107]. Such a
hierarchical domain ontology can be constructed using a top-down or a bottom-up
approach or a combination of the two [101]. While using a common base ontology
facilitates the integration between different knowledge models [101], it considerably
restricts the development of domain-specific ontology models.

Loskyll et al. [51] point out that when web services are mapped to concrete de-
vices in the plant model, the service preconditions and effects make it possible to
automatically update the plant model. Similarly, one of the domain model update
approaches presented in this dissertation is based on the semantic web service pre-
conditions and effects.

The use of domain ontologies extends to several other application domains than
factory automation. For example, Evchina et al. [19] apply domain ontologies in the
control of automated systems installed into modern apartments. Tan et al. [100]
propose a general context model for businesses that appears independent of any
particular domain. Similarly to [107], in [100] the classes and properties in the main
ontology are shared by the more specific context models. However, Tan et al. [100]
point out that OWL alone is insufficient to express complex business rules involving,
for example, mathematical computations, and that such rules can be expressed in
SWRL [30].

In addition to the domain status description, the modeling of the available web
services is an equally essential requirement for reasoning on how the domain status
can be changed. In particular, the modeling of service conditions and effects is vital
for such decision-making. Furthermore, Delamer and Martinez Lastra [12] point out
that the effect descriptions enable the domain model to be updated as services are
invoked.

De Virgilio [113] proposes a meta-model for web services to facilitate the storage
and querying of web service descriptions. As the approach presented in [113] is
based on relational databases, thus allowing high data storage and access efficiency,

2. State of the Art 23

it focuses on a lower data abstraction level than this dissertation, which focuses on
operating with OWL models.

This dissertation discusses the updating of a common production system OWL
model, so that the model remains synchronized with all relevant changes in the
physical system. The classes, properties, and the number of OWL individuals in the
model remain constant, while the assertions that describe the current world state
are updated. Although the approach has been primarily developed to be applied in
production systems, it can be utilized in any scenario involving web services that
send event updates.

In this dissertation, all OWLmodels are expressed in OWLDL, which corresponds
to description logics [61]. In description logics [16], a knowledge base consists of a
set of intensional assertions called the TBox and a set of extensional assertions
called the ABox [5]. The TBox contains the general description on concepts and
relations, while the ABox contains the assertions on individual objects [5]. Thus,
updating a production system OWL model essentially involves updating the ABox.
Nevertheless, the Abox and TBox may actually reside in the same OWL model.

Legat et al. [46] demonstrate the use of a semantic production system model
without the assumption that the devices are modeled as web services. They pro-
pose automatically composing PLC code based on a semantic domain model, which
principally corresponds to the automatic composition of web services discussed in
this dissertation.

2.2.5 OWL-S Generation

While detailed guidelines for adopting semantic web services in the factory automa-
tion setting exist [57], the formulation of semantic descriptions currently forms a
considerable threshold to the industrial application of semantic technologies. For
example, Puttonen et al. [84] use the manufacturing system described in [112] as an
application scenario for semantic web service composition. The system includes 29
instances of a conveyor service and five instances of a workstation service. To apply
semantic web service technologies to the system, it is necessary to create an ontol-
ogy model of the system and a semantic description of each of the 34 web service
instances. The creation of the semantic service descriptions includes modifying both
the service WSDL file and the OWL-S document. While the process can be expe-
dited through meticulously planned copy-paste and search-and-replace techniques,
it typically results in a considerable delay as well as errors that occur at system
run-time and are difficult to trace. Hence, mitigating the effort in producing the
complete semantic web service descriptions should considerably reduce the threshold
for the industrial adoption of semantic web services in factory automation.

Although the approach presented in this dissertation somewhat increases the

2. State of the Art 24

modifications required to the service WSDL files, it completely automates the cre-
ation of service OWL-S description documents. The proposed approach is primarily
intended to be used by an autonomous software agent responsible for service com-
position based on a goal that is expressed in terms of an OWL domain model.
Therefore, the approach especially focuses on service conditions and effects to the
world state, whereas most current literature appears to focus on composing services
based on their input and output type compatibility possibly augmented with some
service classification criteria.

The service composition framework presented in [76] automates the generation
of OWL-S descriptions for web services. Furthermore, it automates even the gen-
eration of XSLT transformations between the XML data elements exchanged by
the services and the corresponding semantic concepts. In addition, the OWL-S
API [108] includes a sample GUI application for generating OWL-S descriptions for
WSDL operations. However, the sample application requires the user to manually
specify any XSLT transformations and omits service preconditions and effects.

OWL-S incorporates a rather complex syntax, which can form a considerable
learning barrier. Therefore, Timm and Gannod [102] have developed a methodology
that facilitates the adoption of OWL-S by exploiting the more familiar UML lan-
guage. Their approach involves first creating a UML class diagram representing the
service ontology using a UML editing tool. For this purpose, they have developed a
custom UML profile, in which classes are tagged with stereotypes. The stereotypes
indicate to which OWL-S constructs the classes are mapped. The diagram is saved
in XMI [122] format and processed by a conversion application. The conversion from
XMI to OWL-S is performed by applying XSLT transformations. Figure 2.2 illus-
trates the approach. The conversion result is an OWL-S description of the service
without a grounding. Timm and Gannod [103] have further developed the approach
by creating a software tool which also generates the OWL-S grounding. However,
the user is required to specify, for example, a mapping between WSDL operations
and OWL-S processes through a graphical user interface [103]. In addition, the tool
developed by Timm and Gannod [103] applies the OWL-S API [72] in executing
OWL-S processes and allowing the user to monitor the progress.

Figure 2.2: UML diagrams can be automatically converted to OWL-S descriptions by
applying XSLT transformations to the saved XMI files.

2. State of the Art 25

Grønmo et al. [26] point out that OWL-S descriptions are typically rather verbose
and difficult to read, which may impede an engineer from comprehending them.
Hence, they propose using transformations in both directions between OWL-S and
UML to facilitate web service composition. The approach involves first designing the
composite process in UML. Then, the individual tasks in the process are transformed
into semantic descriptions, which are used in semantic discovery of matching services.
The semantic descriptions of the matching services are transformed into UML for
manual examination and selection. Finally, the composite process is constructed
from the selected services as a UML model, and a semantic web service description
is generated from the model. Although the approach basically sets no restrictions
on the used semantic language, and Grønmo et al. [26] describe how WSMO [87]
could also be applied, they have only implemented transformations between UML
and OWL-S. Similarly to Timm and Gannod [102], they have developed their own
UML profile to be used in the transformations.

Yang and Chung [124] present a UML to OWL-S conversion method that addi-
tionally extracts service composition information from UML state diagrams.

Kim and Lee [41] also propose a method for converting UML diagrams to OWL-S
processes. Their method is similar to the one proposed by Timm and Gannod [102]
in that UML models are first saved in XMI format and then converted to OWL-S by
applying XSLT transformations. Nevertheless, their method, in addition to using
class diagrams for representing domain ontologies, also uses sequence and activity
diagrams for representing business process behavior. Kim and Lee [42] compare their
method with other proposed approaches to converting UML diagrams to OWL-S
models, such as that of Grønmo et al. [26]. Kim and Lee [42] point out that their
method also allows modeling of complex processes which comprise several control
constructs, whereas most of the earlier methods mainly focus on atomic processes.
In addition, experiments carried out by Kim and Lee [42] show that an automatic
conversion from UML to OWL-S following their approach seldom results in a higher
number of elements than a manual conversion performed by a human expert.

While it is straightforward to create a transformation script that converts XML
structure into RDF [20], it is considerably more difficult to define the translation in
the opposite direction due to the numerous different ways of serializing a single RDF
model to XML [54]. Hence, the XSLT transformation scripts used in lowering schema
mappings should consider all possible alternatives of serializing the RDF data. As
a solution, the SAWSDL specification [20] suggests using hybrid transformations
consisting of two scripts: the first one is a semantic query language expression,
such as a SPARQL query, and the last one is an XSLT transformation. As query
languages such as SPARQL define only one way of serializing the results into XML,
the XSLT transformation is straightforward to write. Unfortunately, the OWL-S

2. State of the Art 26

WSDL grounding allows only a single XSLT transformation script to be defined for
each variable through the datatype property xsltTransformationString, and there
is no corresponding property for specifying a preprocessing expression, such as a
SPARQL query. Nevertheless, a simple XSLT transformation may be sufficient even
for lowering schema mappings, since both Timm and Gannod [103] and Pi et al. [76]
present software tools able to automatically generate lowering XSLT transformation
scripts based on a mapping from semantic concepts to XML schema entities.

Paolucci et al. [74] examine the similarities between OWL-S and SAWSDL and
conclude that SAWSDL annotations provide sufficient information for generating
OWL-S service descriptions. However, SAWSDL provides no information allowing
the derivation of preconditions and effects for the OWL-S processes [74].

To allow lowering XSLT scripts to prepare for only a very restricted set of for-
matting options, the software tool that processes the OWL-S definitions to invoke
web services can preprocess the input data to the XSLT scripts. For example, the
software tool presented in this dissertation preprocesses the input data so that an
XSLT script can assume the input RDF graph to be only a small subgraph rooted at
the OWL individual representing the input value. Hence, there is only one possible
XML serialization for the input RDF data. The preprocessing approach has been
inspired by the OWL-S WSDL grounding implementation included in the OWL-S
API [108].

The approach proposed in this dissertation also includes generating the required
XSLT scripts unless they have been explicitly specified. Nevertheless, unlike the
tools presented in [76] and [103], the software tool presented in this dissertation
requires no user interaction during the OWL-S generation process. Instead, the tool
is implemented as a web service. In addition, the approach presented also considers
the service conditions and effects as well as the data interfaces.

The purpose of SAWSDL annotations in the approach presented in this disserta-
tion is somewhat different to their conventional use in the literature. For example,
Sellami and Boucelma [91], as well as Hobold and Siqueira [28], apply SAWSDL
annotations in service discovery and composition. Nonetheless, the generality of
the annotations allows them to be applied in a wider range of use cases, and Op-
dahl [70] applies SAWSDL annotations in improving the interoperability of different
software modeling languages. This dissertation proposes using SAWSDL annota-
tions as guidelines for generating the service OWL-S descriptions for web services
representing manufacturing devices. In particular, the approach uses SAWSDL an-
notations to generate the OWL-S process conditional effects and the XSTL trans-
formations used in the OWL-S groundings.

2. State of the Art 27

2.3 Cloud Computing

There are different types of cloud computing. In Infrastructure-as-a-Service (IaaS)
the leased resources are virtual computer infrastructure [40]. More specifically, the
resource units leased from IaaS clouds are virtual machines [97], which behave identi-
cally to actual servers connected to the internet. However, they are created through
virtualization from actual servers. Other types of cloud computing include Software-
as-a-Service (SaaS) and Platform-as-a-Service (PaaS). In SaaS, software vendors
make their applications accessible over the Internet, while in PaaS the cloud sys-
tems provide platforms that allow software vendors to implement their applications.
Then, the end users can access the applications over the Internet similarly to SaaS
[45].

Public IaaS clouds are typically commercial enterprises from which virtual ma-
chines can be leased at certain prices [97]. The Amazon Elastic Compute Cloud,
Amazon EC214, is a notable example of public IaaS clouds. Alternatively, orga-
nizations can create private clouds that are used internally and non-commercially
[97]. The main purpose of private clouds is to share existing resources, rather than
provide additional resources. On the other hand, private clouds may also use the
resources of public clouds, and the combinations are called hybrid clouds [97].

Cloud computing toolkits, such as Eucalyptus [66] allow the creation of private
and hybrid clouds. While there are no standard computing cloud interfaces, the
private clouds created using the Eucalyptus software framework conform to the
Amazon EC2 cloud interface and can be used with the same client tools [66].

For example, companies consisting of several departments can benefit from the
effortless resource allocation enabled by private IaaS clouds. If each department
were allocated physical servers, they would be idle for considerable periods of time.
While reallocating physical servers to different departments might cause consider-
able amount of additional work, it is straightforward to dynamically start virtual
machines and attach virtual storage volumes to the virtual machines with all the
necessary software and data pre-installed.

Although many IaaS clouds support similar interfaces, starting an application in
an IaaS computing cloud may be laborious due to the low-level nature of IaaS clouds
[93]. Indeed, to lease a virtual machine, a client must first select the appropriate
virtual machine image to use, and communication with a virtual machine instance
is typically performed by logging in to the instance with a terminal program.

For example, the semantic web services orchestration framework proposed in [80]
is implemented as a set of web services. The web services orchestrated using the
framework can be hosted in resource-constrained embedded devices. In the orches-

14http://aws.amazon.com/ec2/

2. State of the Art 28

tration framework, the performance issues related to memory and CPU resources
can be overcome by outsourcing some of the resource-demanding functions to the
cloud. Considering service oriented architecture (SOA), it would be natural for the
applications deployed in the cloud to provide web service interfaces. Fortunately,
computing clouds can facilitate the dynamic deployment of web services, such as
those forming the web service orchestration framework. Some web services may be
needed only for a limited time, after which the computing resources reserved by
them should be released. Moreover, deploying the services on physical server ma-
chines might require considerable effort in configuring and installing the hardware
and software. The use of cloud computing is a more feasible approach, as it allows
the dynamic creation of virtual machines for hosting the web services, thus reducing
the number of actual computer systems required and the amount of idle resources.

While Cloud computing is a fairly recent paradigm, it is closely related to the
more established concept of Grid Computing [23]. However, this research work will
only focus on cloud computing.

2.4 Multi-Agent Systems and Robotic Agents

Systems composed of web services appear to have several common features with
multi-agent systems (MAS). A MAS is modularly composed of several software
agents [127] similarly as the web service orchestration framework presented in this
research work is composed of individual web services. The agents co-operate to
achieve complex goals. In MASs, individual agents may fail in performing their
tasks, and ontologies can be used in diagnostics and error recovery [92].

The agents in MASs differ from web services in that agents integrally belong to
a larger system in which they have a specified role, whereas web services more typi-
cally exist individually. Furthermore, the communication standards for web services
are open, whereas agents typically rely on a specific communication infrastructure.
In addition, the topologies of MAS presented in [127] are less relevant for web ser-
vices, as web services can typically communicate with any other accessible endpoint
over the internet. However, the main difference between agents and web services is
perhaps in their nature. While agents actively pursue goals [127], web services are
typically passive until receiving a service request.

The advantages of MAS include the ability to reach great decentralization and
fault-tolerance. Furthermore, the roles of individual agents make it possible to
formally validate such systems. Leitão and Rodrigues [47] demonstrate the use of
Petri nets in formally validating production systems that are based on the MAS
paradigm.

It is possible to develop systems combining both web services and agents. For
example, Villaseñor et al. [112] have applied agents in implementing a decision-

2. State of the Art 29

support system for the orchestration of web service-based manufacturing systems.
The approach proposed in this research includes the assumption that the indi-

vidual devices in a production system are abstracted as web services that perform
little independent reasoning, while separate entities maintain a model of the world
state and coordinate the devices based on the current state. Thus, the approach is
somewhat opposite to certain approaches in robotics that aim to develop highly au-
tonomous robots capable of performing independent decisions based on sensory data
[98]. Nevertheless, the approach presented can also be used with devices equipped
with advanced sensory and reasoning capabilities. For example, manufacturing sys-
tem devices typically include sensors.

2.5 Summary of the State of the Art

The above discussion on related work shows that the application of semantic web
service technologies is still far from standardized. Therefore, the next chapter will
present a new methodology that builds on the work presented in this chapter.

While there exists a multitude of potential description languages and applica-
tion approaches, none of them is straightforward to apply in practice. Moreover, in
several cases, it appears questionable whether semantic technologies actually yield
additional value over traditional syntactic technologies. For example, most of the
techniques for selecting applicable semantic web services are based on examining
class hierarchies, which basically constitutes mere categorization. In contrast, the
next chapter will focus more on composing semantic web services based on their
world-altering effects than on evaluating the semantic resemblance between the ser-
vice parameters.

While there are several software tools capable of deriving OWL-S descriptions
fromWSDL documents, they appear to typically require direct user interaction. The
next chapter will present an approach that eliminates the requirement by relying
on SAWSDL annotations instead. Moreover, several of the current web service
composition tools are user interface applications, whereas this research work focuses
on a framework of co-operating web services, and the proposed service-composition
tool is itself a web service.

The full potential of cloud computing is yet to be achieved as well. After resources
have been dynamically leased from a cloud, their configuration and utilization still
requires a considerable amount of effort. Moreover, the mere dynamic leasing of
computing resources based on the current demand constitutes a considerable addi-
tional workload, unless it can somehow be automated.

30

3. METHODS

This chapter presents new methods that build on the related technologies presented
in the previous chapter. First, Section 3.1 presents an approach to using BPEL in
specifying workflow prescriptions for production systems. Then, Section 3.2 presents
an approach of using a set of web services to orchestrate semantic web services
through BPEL. Section 3.3 presents a semantic web service composition approach
which eliminates the need of manually prescribing workflows in BPEL. Section 3.4
elaborates on alternative approaches to maintaining a domain model synchronized
with changes in the production system state. As semantic web service descriptions
are typically somewhat laborious to create, Section 3.5 presents a method of partially
automating the process. Section 3.6 describes the details of a more advanced service
composition approach. Finally, Section 3.7 presents a method of optimizing the use
of resources leased from computing clouds.

The methods proposed in this chapter result in a framework of web service orches-
tration tools. The tools include a set of web services, of which Table 3.10 provides
a summary.

3.1 Web Service Orchestration Using BPEL

Traditionally, industrial systems have been controlled by Programmable Logic Con-
trollers (PLCs). With the advent of web service technologies, several research ini-
tiatives started investigating possible benefits that service oriented architectures
could bring for the systems in production industry. In such systems, the produc-
tion lines can be decomposed into smaller equipment pieces, so that each piece of
the equipment is abstracted through a web service. The automatic composition of
such services in order to fulfill customer needs allows the creation of loosely-coupled
production systems, which are reconfigurable to accommodate new and possibly
unforeseen needs [14].

Typically, a manufacturing line consists of a number of devices, each of which
can be abstracted as a service provider. The devices interact to jointly constitute a
more complex service. A manufacturing line may include several devices providing
a similar service, such as a conveyor segment. However, these services might not
be interchangeable. For example, different instances of a conveyor segment might
have different physical locations, and thus, for a pallet, it is imperative that the

3. Methods 31

correct segment provides the service at each time. Moreover, the services typically
have an internal state. For example, a conveyor segment may contain a pallet, in
which case it is unable to load a new pallet until the old pallet is first unloaded.
Thus, orchestrating a manufacturing line requires the ability to differentiate between
different devices.

The Web Services Business process execution language (WS-BPEL) [3], which is
abbreviated to BPEL in the rest of this dissertation, provides a standard manner
of representing web service workflows in XML. It follows the prior BPEL for web
services (BPEL4WS) language. BPEL makes it possible to orchestrate complex web
services from simpler ones. Thus, with BPEL, it is possible to create a web service
which performs some complex task through invoking the operations of some existing
web services. BPEL models the workflow and the flow of data between the member
services. These simple web services may remain unaware of each other. The inter-
action between separate web services occurs through partner links, which use the
WSDL (Web Service Description Language) [8] files describing the communicating
web services. As each BPEL process is a web service, it must have a WSDL file
which describes the service. A BPEL process operates on a higher level than the
WSDL files to which it refers. The WSDL files describe which operations can be
invoked, and the BPEL process describes a sequence which uses the operations. [75]

In a BPEL process, the operations of individual web services do not have to
be invoked sequentially. BPEL includes several control constructs which allow, for
example, concurrent execution and the branching of execution.

To orchestrate a composite web service, in which each individual service plays a
specific role, it would be necessary to create a set of instances of each service stat-
ically. As BPEL processes communicate with web services through partner links,
the partner links must be initialized to web service instances before use. Then, it is
possible to refer to those partner links when invoking operations. It is, for example
possible to use the BPEL Assign activity to copy the endpoint reference information
of a running service instance to a partner link. However, this requires that the ac-
tual service connection information is available at the time of writing the code of the
BPEL process. On the other hand, different BPEL execution engines provide vari-
ous methods of configuring partner link initialization at process deployment phase.
For example, in the ActiveBPEL server environment discussed in Section 2.1.2, one
can specify the endpoint references of the partner links in the process deployment
descriptor (PDD) file. It is even unnecessary to know the actual URIs of the end-
point references at the time of creating the PDD file: according to the ActiveBPEL
Designer help system, one can specify logical URIs in the PDD file and use the
ActiveBPEL Server Administration Console to map the logical addresses to actual
URLs subsequent to deploying the process.

3. Methods 32

Section 5.2 will exemplify BPEL-based web service orchestration.

3.2 Ontology-based Service Invocation

This dissertation experiments in representing the internal states of web services
with semantic models. In the sequel, the web services that represent production
equipment are called domain web services to differentiate them from the web services
forming the proposed orchestration framework. In each web service orchestration
scenario, the internal states of the domain web services are linked to the state of the
production system, which is represented by a single semantic model.

Since the domain web services represent production equipment, the semantic
model describing their internal states contains concepts representing objects in the
factory floor as well as their features and relationships. Thus, the model may be
called the equipment ontology or equipment model. The equipment ontology con-
tains both a static part, which mainly consists of class and property hierarchies, and
a dynamic part, which consists of class individuals and statements built from the
individuals and properties.

In the proposed orchestration framework, the equipment model is maintained by
a dedicated web service, which is entitled Ontology Service. As the internal states
of the services change, the dynamic part of the semantic model is updated, whereas
the static part consisting of class and property hierarchies remains unchanged. Gen-
erally, the equipment model is completely specific to the application scenario. While
some parts of an equipment model might be reusable in several problem domains,
it is unnecessary to define a concept ontology that would be applicable to several
scenarios.

Since semantic models contain classes and properties as well as statements, they
are effectively ontologies. In this dissertation, the word ontology is used as a syn-
onym for semantic model. In addition to Ontology Service, the web service orches-
tration framework includes three other support web services: Ontology Manager,
Orchestration Engine and Service Monitor. These four services and their interac-
tion are described in the sequel.

Ontology Service maintains a semantic domain model expressed in OWL and
provides a web service interface for query and update access to the model. The
service interface includes several operations, of which Table 3.1 summarizes those
that are used in this section, except for the SetBaseOntology operation, which will
be summarized in Table 3.4.

The Ontology Service has the operation ExecuteQuery, which executes SPARQL
SELECT queries [79] to obtain information on the semantic model, as well as the
operation ExecuteUpdate, which executes SPARQL/Update [25] statements to mod-
ify the equipment ontology. In addition, Ontology Service includes the operation

3. Methods 33

Table 3.1: Ontology Service provides a web service interface for querying and manipulating
the domain model.

Operation Name Inputs Outputs Purpose

GetNewerOntology-
Model

Model times-
tamp (integer)

• Model times-
tamp (integer)
• Model down-

load URL
(string)

Determines if a
newer domain
model is avail-
able and from
where it can be
downloaded.

ExecuteQuery SPARQL SE-
LECT query
(string)

Query result ta-
ble (XML)

Evaluates a
SELECT type
query against the
domain model.

ExecuteUpdate A SPARQL/Up-
date expression
(string)

Result code
(’SUCCESS’ /
’FAILURE’)

Updates the do-
main model with
a single SPAR-
QL/Update ex-
pression.

ExecuteSelectAnd-
Pick

• A SPARQL
SELECT query
(string)
• A query

variable name
(string)
• Result table

row index (non-
negative integer)

Result value
(string)

Executes a SE-
LECT type
query and picks
the value of the
specified variable
from the result
table.

FindShortestPath • Start node
URI (string)
• Property URI

(string)
• End node

URI (string)

A sequence of
URIs

Finds the short-
est path between
two nodes along
the given prop-
erty.

SetBaseOntology, which sets the hosted semantic model, to which all queries and
update statements will be applied. The latter operation is typically invoked near the
beginning of a BPEL process, and the URL of the appropriate ontology is provided
as an input parameter. Ontology Service loads the ontology from the specified URL
and creates a copy of it. The hosted ontology is encapsulated by the service, and
it can be accessed only through the ExecuteQuery and ExecuteUpdate operations.
Because the format of query results is rather complex, the results of the Execute-
Query operation are difficult to use directly, for example, in a BPEL process. Hence,

3. Methods 34

Ontology Service also includes two operations that return more refined data: Exe-
cuteSelectAndPick, which executes a SPARQL SELECT query and retrieves a single
value of the specified query variable, and FindShortestPath, which determines the
shortest path between two individuals based on the specified property. The former
operation returns a simple string value, while the latter returns an array of string
values. Hence, the return values of both of the operations can easily be used in a
BPEL process. Ontology Service also provides some variants of the aforementioned
operations, but they are ignored in this dissertation.

The equipment ontology hosted by an Ontology Service must constantly be up-
dated as the states of the web services evolve. Therefore, the domain web services
must include notification operations through which they notify all interested parties
of changes in their states. A dedicated web service, Ontology Manager, subscribes
to receive notifications from the domain web services. Based on the received noti-
fications, it sends update requests to the Ontology Service, so that the equipment
ontology remains synchronized with the states of the domain web services. A com-
patible domain web service must send a notification whenever the internal state of
the service changes.

All web services participating in the orchestration process are modeled using
OWL-S [71] descriptions, which the Orchestration Engine service uses in determin-
ing the service most suitable for performing each task. While the semantic descrip-
tion of a web service may be either embedded into the WSDL document describing
the service or available through a URI, the application experiments in Section 5.3
mainly use the former approach. Elements in the WSDL definition are linked to se-
mantic concepts by inserting SAWSDL [20] annotations into the WSDL definition.
In particular, WSDL port types are annotated with references to OWL-S Profiles
and WSDL operations are annotated with references to OWL-S Processes as recom-
mended by Martin et al. [54]. To initiate a production process, an engineer develops
overall orchestration instructions in BPEL and submits them to Orchestration En-
gine to be executed. For this purpose, Orchestration Engine service includes the
SwitchProcessSemantic operation.

Fortunately, several publicly available software tools facilitate the creation of
OWL-S descriptions. For example, OWL-S API [72] includes a sample application
which uses the API to generate OWL-S descriptions directly from a WSDL [8]
definition of a service interface. Figure 3.1 contains a screenshot of the application.
However, since plain WSDL is able to represent only the syntactic properties of
a service interface, the generated OWL-S descriptions should typically be further
edited to contain actual semantic information on the service. Although this semantic
information can be added with graphical tools, such as Protégé [78], it is practically
necessary to manually edit some parts of OWL-S descriptions. In particular, most

3. Methods 35

Figure 3.1: WSDL2OWLS, which is an example application included in the OWL-S API,
generates OWL-S processes corresponding to operations defined in WSDL files.

graphical tools currently include poor support for the editing of condition and effect
expressions.

The Orchestration Engine service is responsible for executing the BPEL processes,
which are essentially instructions of how to orchestrate other web services so that
they jointly achieve the overall task, such as producing a certain product. The part-
ner links defined in the BPEL processes describe which web services are required for
completing the processes. The partner link types are based on WSDL port types ac-
cording to the BPEL standard, and the WSDL definitions refer to semantic concepts
through SAWSDL annotations. Before starting to execute a process, Orchestration
Engine determines a suitable web service for each uninitialized partner link. To find
matching web services to be used in the partner links, Orchestration Engine depends
on Service Monitor.

Service Monitor is a web service that detects and maintains a record of all avail-
able web services. It stores both the syntactic WSDL descriptions of the service
interfaces and the semantic OWL descriptions. Service Monitor uses WS-Discovery
[68] Hello and Bye messages to detect when web services become available or un-
available. In addition, it includes the ScanNetwork operation, invoking which causes
Service Monitor to actively determine all available DPWS-compliant services.

Orchestration Engine invokes the MatchService operation of Service Monitor to
determine the potential matches for each uninitialized partner link and selects the

3. Methods 36

most accurate match for each link. Service Monitor assigns a rating for each match
indicating how accurately the candidate service matches the requested service. Since
the requested service is indicated as a semantically annotated WSDL port type, the
match rating is determined by comparing the semantic concepts referenced in the
semantic annotations of the requested port type and the port type supported by
the candidate service. A match rating of one indicates a perfect match, while zero
indicates that the candidate service is unsuitable for use with the partner link.

Whether a web service is compatible with a certain partner link is determined
by comparing the semantic concepts referenced by the WSDL definitions of the
port type in the partner link specification and the port types of the candidate web
service. Firstly, for a candidate port type to be compatible with a partner link port
type, it must include a SAWSDL annotation referring to similar OWL-S Profiles. A
candidate Profile matches exactly a request Profile, if it is the same OWL individual.
The match is partial if the candidate Profile is a different instance of the request
Profile class or one of its subclasses. In addition, the OWL-S Processes used in
annotating the port type operations must match the Processes used in annotating
the operations in the partner link port type. Service Monitor assumes a one to
one mapping between WSDL operations and OWL-S Processes. Thus, if a WSDL
operation is annotated with a list of references to several OWL-S Processes, only the
first one is considered. Comparing two OWL-S Processes with each other involves
comparing the input and output types as well as the preconditions and results. For
example, the OWL-S API and its embedded reasoner can be used for determining
whether the input of a candidate Process belongs to the same class as the input
of the requested Process or to one of its sub classes. In the former case, Service
Monitor awards a higher match rating to the two processes. The overall match
rating between two OWL-S Processes is also affected by the semantic resemblance
of the outputs, preconditions and effects of the Processes. The final match rating for
a given service is computed as an average of the Profile and Process match ratings.
However, if a single component evaluates to zero, then the overall match rating will
also be zero. This can occur, for example, if no match can be found for a certain
OWL-S Process.

Typically, one of the partner links in the executed BPEL process should repre-
sent the Ontology Service used in hosting the equipment ontology, based on which
the current status of the production equipment is determined. The BPEL process
may then contain an Invoke activity requesting Ontology Service to load a semantic
model from a certain URL. The BPEL process should also specify the update rules
for Ontology Manager to use in updating the semantic model. Furthermore, the
BPEL process specifies what information is queried from Ontology Service and how
that information is used in decision making. Nonetheless, the process contains only

3. Methods 37

standard BPEL constructs. Only the initial communication between Orchestration
Engine and Service Monitor to resolve partner links is pre-programmed into the soft-
ware components. This allows considerable flexibility in designing the orchestration
instructions in BPEL. For example, BPEL processes, in general, are not required
to use an Ontology Service or Ontology Manager. While Ontology Service and On-
tology Manager can support the decision making in a BPEL process, the developer
of the process has considerable freedom in defining the specifics of how these two
support services are used.

Orchestration Engine uses the syntactic web service interface information spec-
ified in WSDL when invoking web service operations. Thus, only Service Monitor
uses the semantic information in determining the compatible web services for each
task.

The PC-based (executed on Personal Computer) web services described in this
dissertation are compliant to the Devices Profile for Web Services, or DPWS [17],
specification. The OASIS [67] consortium has standardized the DPWS specification
version 1.1.

The web service interface of Ontology Manager includes several operations, of
which Table 3.2 lists the most notable. The ScanNetwork operation causes On-
tology Manager to detect all web services that may send event notifications and
subscribe to receive the notification messages. When a notification message is sent
by a service, Ontology Manager sends a request to Ontology Service to execute a
SPARQL/Update statement which will update the ontology model according to the
notification. In determining the SPARQL/Update statements to invoke, Ontology
Manager relies on a set of update rules. The rules may be set by invoking the Se-
tUpdateRules operation. Each update rule consists of a condition part and an action
part. The condition part refers to the type and contents of notification messages
and determines when the update rule should be applied. The condition part may
also specify the event source by its endpoint URI or some other string identifier.
The action part consists of a list of SPARQL/Update statements that are to be
executed when the condition part matches a received notification message. The
SPARQL/Update statements may actually be templates which contain keywords
that refer to the content of the notification message. The keywords are expanded
before the statements are executed. A keyword in a SPARQL/Update statement
template is indicated by start and end delimiters, and it should match the local
name of an element in a notification message. Each keyword is expanded by finding
the first element in the notification message with the local name specified by the
keyword and replacing the keyword, and the delimiters, with the text content of the
element. However, this approach may produce undesired results when a notification
message contains several elements sharing the same local name.

3. Methods 38

Table 3.2: Ontology Manager provides a web service interface through which it is possible
to specify the ontology update rules.

Operation Name Inputs Outputs Purpose

ScanNetwork Subscription du-
ration in millisec-
onds

The number of
web services to
which a subscrip-
tion was made

Discovers web
services and
subscribes to
receive event no-
tifications from
them.

SetUpdateRules The update rules
to use in XML
form

A success code
(‘SUCCESS’ /
‘FAILURE’)

Specifies the
rules for updat-
ing the domain
model.

SetEndpointMapping A list of string ID
- endpoint URI
pairs

A success code
(‘SUCCESS’ /
‘FAILURE’)

Specifies aliases
to endpoint
URIs.

SetActivityState The new op-
eration mode
(‘PASSIVE’ /
‘ACTIVE’)

A success code
(‘SUCCESS’ /
‘FAILURE’)

Selects between
the rule editing
and notification
listening modes.

Especially if the orchestration scenario involves several web services of the same
type, the update rules used by Ontology Manager should also specify the correct
event sources. Otherwise, a similar event notification received from different ser-
vice instances would cause the equipment model to be updated similarly. Service
instances can be identified by their endpoint URIs. However, since Orchestration
Engine may select any semantically compatible web service for any partner link,
using an endpoint URI to specify an event source is infeasible. Instead, the update
rules should specify the event sources using the correct partner link names. Or-
chestration Engine may then invoke the SetEndpointMapping operation of Ontology
Manager to indicate the mapping from partner link names to endpoint URIs based
on the results of semantic partner link resolution. That the update rules depend on
the executed BPEL process poses no problem, since the update rules are typically
specified in the BPEL process. It is, therefore, straightforward to modify both a
BPEL process and the corresponding update rules simultaneously.

Typically, a BPEL process initializes the Ontology Manager service by invoking
the operations ScanNetwork and SetUpdateRules near the beginning of the sequence.
Then, it activates the update rules by invoking the SetActivityState operation. While
the initialization may be alternatively performed through the graphical user interface
of Ontology Manager, programming it into the BPEL process reduces the amount of

3. Methods 39

Figure 3.2: Ontology Service hosts the equipment ontology, which describes the states of
the domain web services, and Service Monitor hosts the web service descriptions.

user interaction required. When the ontology update rules have been activated, and
Ontology Manager receives a notification message, it compares the URI of the source
web service and the contents of the message to the condition parts of all update rules.
All conditional effects of the matching update rules are executed by invoking the
operation ExecuteUpdateWithMapping of Ontology Service. Section 3.4.2 discusses
the details of Ontology Manager and the dynamic domain model update approach.

The abovementioned software components can be executed in remote locations.
The interaction of the software components is illustrated in the sequence diagram
of Figure 3.2. For clarity, the domain web services are represented as a single object
in the diagram. Orchestration Engine resolves the partner links before executing a
BPEL process. The executed BPEL processes are not required to fully conform to
the sequence in Figure 3.2, which only illustrates the most typical use case.

3.3 OWL-S and SPARQL-based Semantic Web Service Com-
position

The approach proposed in this section involves three web services with specialized
functionality to control production systems. The services have the following names:
Orchestration Engine, Ontology Service, and Service Monitor. Orchestration Engine

3. Methods 40

executes BPEL processes defining the desired production goals, Ontology Service
maintains an OWL model of the current world state, and Service Monitor composes
the available semantic web services to achieve the production goals considering the
current world model. The three web services can be used in BPEL-based web
service orchestration [80]. However, since BPEL operates primarily on syntactic
web service descriptions, it is considerably less essential for the approach described
in this section.

Similarly to [89], the approach proposed in this section uses OWL-S and SPARQL
to semantically describe the available web services while using OWL for describing
world states. In addition, the presented approach involves automatically updating
the world model based on event notifications sent by the semantic web services, as
described in Section 3.4.3.

3.3.1 Composition Pattern Overview

Figure 3.3 illustrates the interaction between Orchestration Engine, Ontology Ser-
vice, and Service Monitor to compose domain web services. Orchestration Engine
executes a BPEL process, which invokes the FulfilGoal operation of Service Monitor
with the appropriate production goal and restriction expressions. This step is repre-
sented by interaction 1 in Figure 3.3. Service Monitor then invokes Ontology Service
to determine the temporally accurate domain data (2). Based on the current do-
main state and the semantic domain web service descriptions, Service Monitor plans
a sequence of atomic process executions to achieve the goal. If Service Monitor finds
such a sequence, it generates and executes a corresponding OWL-S composite pro-
cess. The composite process comprises an OWL-S Sequence element which contains
Perform elements that sequentially execute the atomic processes with appropriate
input values. As each atomic process is grounded to a WSDL operation, Service
Monitor effectively invokes a sequence of domain web service operations (4). As the
web services are invoked, their internal states change, causing them to send event
notifications (5). Service Monitor analyzes the semantic descriptions of the noti-
fication operations, which are also included in the OWL-S documents, and sends
the appropriate domain model update requests to Ontology Service (6). Hence, the
domain model hosted on Ontology Service remains synchronized with the most re-
cent production system state while Service Monitor fulfills a production goal. The
latter step is described in detail in Section 3.4 and corresponds to the world state
transition described in [89].

To support scenarios in which domain web services send no event notifications,
Service Monitor has an optional mode that can be activated and deactivated by in-
voking the SetParameter operation with appropriate input parameters. By default,
Service Monitor reacts to incoming notifications. However, when the mode is deac-

3. Methods 41

Figure 3.3: Orchestration Engine executes BPEL processes which request Service Monitor
to orchestrate domain web services with the aid of Ontology Service.

tivated, Service Monitor ignores event notifications and, instead, each time Service
Monitor executes an atomic process, it generates a SPARQL/Update statement to
accordingly update the domain model and submits the statement to Ontology Ser-
vice by invoking the ExecuteUpdate operation.

Ontology Service hosts a semantic model of the production system, which is called
the domain ontology. To enable reliable decision-making, the domain model must
remain synchronized with any changes in the world state. Therefore, Ontology Ser-
vice provides the ExecuteUpdate and ExecuteUpdateWithMapping operations, which
execute SPARQL/Update expressions to update the model. The latter operation
additionally accepts a mapping for variable values and condition expressions for
deciding which of the update expressions to execute. In addition, the GetNewerOn-
tologyModel operation makes it possible to determine both the current time stamp
of the domain model and a network address from which the entire model can be
downloaded.

Service Monitor maintains a record of the OWL-S descriptions of all available
semantic web services. The combined semantic service descriptions form the service

3. Methods 42

model. Service Monitor discovers available web services using WS-Discovery. Af-
ter discovering a service, it retrieves the WSDL definition. Since WSDL can only
describe the syntactic interface of a web service, an OWL-S document is needed to
describe the service semantically. Therefore, Service Monitor searches each WSDL
document for an embedded OWL-S document. If the actual OWL-S document is
extensive, the embedded document may contain only a statement importing the
main document from an external URL.

When Service Monitor is used in BPEL-based web service orchestration, its pur-
pose is mainly to find semantic matches for web service interfaces appearing in
BPEL process partner links [80], while Orchestration Engine executes the workflow
described by the BPEL processes. Once Service Monitor determines a set of suit-
able web services, Orchestration Engine attempts to modify the BPEL process to
refer to the new syntactic interfaces. However, since the SPARQL expressions in the
OWL-S service condition and effect statements refer to instance data in the domain
ontology, selecting an appropriate web service requires that the latest domain data
is available. Moreover, calculating the semantic resemblance between two SPARQL
expressions is problematic. The current version of Service Monitor therefore follows
the common approach of ignoring condition and effect expressions when comput-
ing the semantic resemblance between two services. The new approach presented
in this section solves the problem by automatically composing appropriate process
prescriptions in OWL-S based on production goals formulated in SPARQL.

In the new approach, Service Monitor composes and executes semantic web ser-
vices based on the goal information sent to it by Orchestration Engine. In particular,
the BPEL processes executed by Orchestration Engine only specify the production
goal information instead of the actual web service invocation workflow. However,
Orchestration Engine still relies on Service Monitor in decision making as well as
discovery of suitable services to be used as partner services in executing the BPEL
processes.

A large set of Orchestration Engine service instances can exist, and the instances
can be geographically distributed. For example, each production plant might have
one or more Orchestration Engine services. A client can then select one of them
to produce a product. Because the process instructions are expressed as a BPEL
process and semantic information is used in expressing partner service requirements,
each instance of the Orchestration Engine service can interpret the same instruc-
tions, and the exact type of hardware present at the corresponding production plant
is irrelevant. If certain types of production equipment are unavailable at the selected
site, the orchestration framework will fail to find suitable partner web services and
will reject the process. In that case, the client may select another Orchestration En-
gine instance from another plant. Alternatively, a mediator service may be deployed

3. Methods 43

at each production site. Each mediator then coordinates the set of Orchestration
Engines available at that site to respond to received production requests. However,
this dissertation will focus on the functionality at the level of a single Orchestration
Engine.

When Service Monitor is used for semantic web service composition, it analyzes
the temporally accurate instance data as well as the service precondition and ef-
fect expressions to determine the applicability of services in achieving a specific
production goal. However, since instance data is required, the service selection, or
composition, must be performed immediately prior to attempting to achieve the goal
[89].

Service Monitor provides the FulfilGoal operation for achieving production goals.
When the operation is invoked, Service Monitor attempts to plan a process sequence
for achieving the goal. Once Service Monitor has found a solution plan, it generates
the corresponding OWL-S composite process description, stores it in its internal
OWL-S knowledge base, and executes the composite process. In addition to a single
SPARQL ASK query representing the goal, the FulfilGoal operation accepts addi-
tional parameters for guiding the planning process. The additional parameters are
discussed in the following paragraphs, and they should reduce the number of differ-
ent system state trajectories that Service Monitor will have to consider. Without
such a reduction, the search algorithm discussed in Section 3.3.2 may exhibit poor
performance and deplete the memory resources available.

Firstly, the service client may break down a complex goal into a set of sufficiently
simple subgoals. Hence, the inputs comprise an array of SPARQL queries represent-
ing the subgoals that must be fulfilled in order to achieve the final goal, which is
represented by the last array element. Provided that the client is able to break down
the goal into sufficiently simple subgoals, Service Monitor can sequentially solve the
subgoals instead of attempting to find a solution plan achieving the final goal at
once.

Finally, the FulfilGoal operation accepts as input a SPARQL ASK query rep-
resenting a restriction that all the intermediate domain states must satisfy. This
allows the planning algorithm to ignore any system trajectories traversing the disal-
lowed domain states. Table 3.3 summarizes those operations in the Service Monitor
service interface that are used in this section.

In summary, the approach presented in this section involves formulating a BPEL
process that invokes the FulfilGoal operation of Service Monitor with a SPARQL
ASK query stating the production goal. In the simplest case, the BPEL process
contains only a single invocation of the FulfilGoal operation preceded by the assign-
ment of the BPEL variables with the appropriate queries. Alternatively, the process
may contain more complex logic, such as a ForEach loop repeating a sequence of

3. Methods 44

Table 3.3: Service Monitor provides a web service interface that allows the registering of
new production goals.

Operation
Name

Inputs Outputs Purpose

ScanNetwork ‘CLEAR’ / ‘RE-
TAIN’

Number of semantic
web services discov-
ered

Discovers semantic
web services in the
local network.

SetParameter • Parameter type
• Value (‘true’ /

‘false’)

Response code
(‘SUCCESS’ /
‘FAILURE’)

Disables or enables
a feature specified
by the parameter
type.

FulfilGoal • A list of goals
(SPARQL ASK
queries)
• A state-space re-

striction (SPARQL
ASK query)

Response code
(‘SUCCESS’ /
‘FAILURE’ /
‘IMPOSSIBLE’ /
‘BUSY’)

Attempts to syn-
chronously fulfil a
goal.

FulfilGoal operation invocations. When Orchestration Engine executes the BPEL
process, it effectively requests Service Monitor to fulfill the production goals.

3.3.2 Service Composition Algorithm

When determining a service composition capable of accomplishing a production goal,
Service Monitor analyzes the changes different OWL-S processes would cause in the
domain state. As the search progresses, the algorithm builds a state-space graph
according to Algorithm 1. Following [89], the nodes of the graph are domain states,
each of which is represented by an RDF graph containing the statements that are
valid in the state. A directed arc between two nodes represents an OWL-S process
with a certain combination of input values causing a change in the domain model
and hence a transition to a new state-space node.

Algorithm 1 is based on Algorithm 1 in [89]. However, the algorithm presented in
this section is different in that it also considers conditional process effects, which in
OWL-S are called results. In addition, while the algorithm of [89] considers process
preconditions and effects to be grouped in a single CONSTRUCT query, Algorithm 1
first evaluates the preconditions (ASK queries) and then proceeds to evaluate the
conditions (ASK queries) of each process result. Only if both the preconditions of
the process and the conditions of the result evaluate to true does the algorithm
evaluate the result effect expressions (SPARQL/Update statements).

The main difference between Algorithm 1 and the algorithm in [89] is that while
the latter selects all operation invocations that directly lead from the current state

3. Methods 45

Algorithm 1 Compute the path to a goal state.
Require: StartNode.depth ≥ 0 ∧maxDepth ≥ 0
Unprocessed⇐ {StartNode}
while Unprocessed 6= ∅ do
choose the first node Current ∈ Unprocessed
Unprocessed⇐ Unprocessed \ {Current}
depth⇐ Current.depth + 1
if depth > maxDepth then
return failure

end if
domain⇐ Current.state
for all process in Processes do
if !evaluate(process.preconditions, domain) then
continue

end if
for all result in process.results do
effects⇐ result.effects
conditions⇐ result.conditions
value⇐ evaluate(conditions, domain)
if effects = ∅ ∨ !value then
continue

end if
solutions⇐ findSolutions(domain, conditions)
for all solution ∈ solutions do
state⇐ compute(domain, effects, solution)
Next.state⇐ state
Next.depth⇐ depth
Edge⇐ (Current,Next, process, solution)
Graph.nodes⇐ Graph.nodes ∪ {Next}
Graph.edges⇐ Graph.edges ∪ {Edge}
if Next.state satisfies the goal then
return Next

end if
Unprocessed⇐ Unprocessed ∪ {Next}

end for
end for

end for
end while

to the goal state, the former attempts to find the minimal sequence of operation
invocations that leads from the current world state to the goal state.

Because Algorithm 1 analyzes all system trajectories that are possible with the
set of OWL-S processes available, the state-space expands rapidly as the algorithm
proceeds to new levels. In each domain state, the algorithm considers each appli-
cable OWL-S process result. In addition, since different input values may cause

3. Methods 46

different changes in the domain state, the search algorithm considers all potential
combinations of input values for each result.

The search algorithm is based on breadth-first search and terminates after en-
countering a domain state satisfying the goal. Hence, the algorithm evaluates the
ASK query representing the goal in each encountered domain state. However, to
conserve memory and accelerate node comparison, the state-space graph nodes con-
tain only the differences in the associated domain states compared to the initial
state.

Using breadth-first search instead of depth-first search makes it possible to ex-
pand the search graph one level at a time, which guarantees that any solution plan
discovered is minimal. However, to avoid exceeding memory limits, the search algo-
rithm must contain an additional termination condition. For example, Algorithm 1
uses the maximum considered plan length, denoted by maxDepth, to determine when
to discontinue the search.

Both the memory requirements and computational complexity of Algorithm 1
are exponential in the number of OWL-S processes available. This is because the
algorithm will analyze the entire state space until finding a state satisfying the goal.
In particular, it does not prune branches of the state space that cannot lead to a
goal state. Nonetheless, because of the elaborate computation and evaluation of
each condition and effect expression, provided infinite memory and computational
resources, the planner will eventually find the minimal solution plan. Consequently,
the search algorithm is both sound and complete.

Despite the exponential complexity, Algorithm 1 is practically applicable, pro-
vided that the goal expression is accompanied by a restriction expression that al-
lows the planner to focus on only the state space trajectories that lead to the goal
state. The restriction expression is provided as an optional argument to the Service
Monitor FulfilGoal operation.

3.4 Event-based Updating of a Domain Model

The web service-based domain model hosting and updating approach applied in this
section was originally presented in [80]. It has later been somewhat refined, and the
current status in presented in Section 3.4.2. An alternative approach was presented
in [84], and its current status is briefly presented in Section 3.4.3. The main principle
in both approach variants is that a web service, Ontology Service, hosts a domain
model that is formulated in OWL and describes the current world state. Ontology
Service is described in Section 3.4.1.

3. Methods 47

3.4.1 Ontology Service

Ontology Service allows query and update access to the hosted OWL model through
a web service interface. Queries sent to Ontology Service follow the SPARQL [79]
syntax, and update requests are formulated in the SPARQL/Update [25] language.
When Ontology Service is started, it initially hosts no OWL model. Therefore,
it is necessary to invoke the SetBaseOntology operation. The single parameter to
the operation is the URL specifying the internet address from which Ontology Ser-
vice may read the domain description. Once the domain model has been set, it
is possible to evaluate SPARQL ASK queries against the model by invoking the
ExecuteAskWithMapping operation and modify the model with SPARQL/Update
expressions by invoking the ExecuteUpdateWithMapping operation. Ontology Ser-
vice additionally provides other operations that, for example, execute SPARQL SE-
LECT queries. Because only the aforementioned three operations are relevant for
the approach presented in this section, Table 3.4 omits the operations that are used
in other sections of this dissertation.

The input data for the ExecuteAskWithMapping operation can be a simple SPARQL

Table 3.4: Ontology Service provides a web service interface for querying and manipulating
the domain model.

Operation Name Inputs Outputs Purpose

SetBaseOntology OWL document URL Result code
(’SUCCESS’ /
’FAILURE’)

Reads in a do-
main descrip-
tion and re-
places the pre-
vious model.

ExecuteAskWith-
Mapping

• a SPARQL ASK-
type query
• a variable value

mapping (optional)

Query result
(’yes’ / ’no’)

Evaluates
a SPARQL
ASK-type
query against
the cur-
rent domain
model.

ExecuteUpdateWith-
Mapping

• A list of con-
ditional effects
(SPARQL ASK-
type queries, SPAR-
QL/Update expres-
sions)
• A variable value

mapping (optional)

Result code
(’SUCCESS’ /
’FAILURE’)

Updates the
domain model
with the effect
expressions
whose condi-
tions evaluate
to true.

3. Methods 48

ASK query. Alternatively, the query can be customized by additionally providing
a value binding to one or more variables occurring in the query. The value binding
is provided in the same format as for the ExecuteUpdateWithMapping operation,
which has a somewhat more complex input data XML structure due to the larger
variety of data elements. The UML class diagram in Figure 3.4 illustrates the input
data XML structure for the latter operation. The operation accepts conditional up-
date expression sets. Ontology Service will then evaluate the conditions against the
current domain model, and only if the conditions evaluate to true, Ontology Service
will update the domain model by executing the update expressions.

Another web service, Ontology Manager, selects an available Ontology Service
and sends update requests to it based on the received event notifications and a set
of user-specified update rules. The approach has later been refined so that a more
advanced web service, Service Monitor, replaces Ontology Manager. Service Monitor
retrieves the appropriate update requests from the semantic descriptions of the web
services [84]. Thus, no extra information, such as update rules, needs to be provided.

Figure 3.5 illustrates the role of the event listener service. The following subsec-
tions discuss both of the approach variants, in which the event listener service is
either Ontology Manager or Service Monitor.

Figure 3.4: The Ontology Service ExecuteUpdateWithMapping operation has a complex
input message XML structure.

3. Methods 49

Figure 3.5: An event listener service translates event notifications from domain web services
to appropriate updates to the domain OWL model.

3.4.2 The Ontology Manager Approach

Ontology Manager is a web service that connects with an Ontology Service to update
the domain model based on event notifications.

Ontology Manager provides all of its services through the web service interface
outlined in Table 3.2. The service interface enables remote software actors to interact
with Ontology Manager. In addition, Ontology Manager includes a graphical user
interface (GUI) for direct user interaction. The GUI is particularly useful for creating
update rules and is accessible through the Ontology Manager host computer.

To receive event notifications from domain web services, Ontology Manager must
subscribe to them. To this end, the Ontology Manager web service interface includes
the ScanNetwork operation. Invoking the operation causes Ontology Manager to
discover all available web services using the Web Services Dynamic Discovery (WS-
Discovery) [68] protocol. After discovering a service, Ontology Manager subscribes
to receive all event notifications from it using the Web Services Eventing (WS-
Eventing) [119] protocol. The ScanNetwork operation can also be invoked through
the GUI menu bar.

Whenever Ontology Manager receives an event notification, it consults a set of
update rules to determine the appropriate update request to send to Ontology Ser-
vice. An update rule essentially consists of a set of conditions and a set of effects
to be applied when the conditions match an incoming event notification. Ontology
Manager compares the conditions directly to the received event notification, and
if they match, applies the effects by invoking the Ontology Service ExecuteUpdate-
WithMapping operation.

Update rule conditions include the notification source endpoint URI, the WSDL

3. Methods 50

Figure 3.6: The conditions in Ontology Manager update rules directly refer to notification
message contents.

notification operation action URI and the conditions on notification message content.
The latter conditions are a list of pairs formed by an XPath [10] expression and a
string value. The XPath expression identifies an XML element or element attribute
in a notification message, and the string value specifies the required text content of
the element or the attribute value.

The update rule effects are a list of SPARQL/Update expression templates. The
templates may also contain keywords indicated by enclosing them within ’#$’ and
’$#’. The keywords must be XML element names. Before sending the update ex-
pressions to Ontology Service, Ontology Manager will replace each keyword with the
text content of the corresponding XML element in the received notification message,
so that the templates are expanded into valid SPARQL/Update expressions. In ad-
dition, update rules may contain variables. Each variable has the same name as
some SPARQL query variable occurring in the update expressions and an XSLT [9]
script that extracts the variable value from the received notification message. The
variable value mapping will then be included in the request message when Ontology
Manager invokes the ExecuteUpdateWithMapping operation. Figure 3.6 illustrates
the update rule structure.

The update rule conditions refer directly to the XML structure of the notifica-
tion messages. Hence, they require stable service interfaces. In particular, if the
XML Schema structure of a notification message is altered, the update rules refer-
ring to that notification will most probably cease to function as intended. There-
fore, an alternative update rule type called semantic update rules was proposed in
[83]. However, such an approach would require difficult rules on applying semantic
annotations and compromise the complete independence of the Ontology Manager

3. Methods 51

Figure 3.7: Rule conditions in the abandoned semantic update rule approach referred to
OWL models through SPARQL expressions.

approach from the service descriptions. Moreover, the only benefit of the alternative
approach, the ability to apply the same update rules regardless of modifications to
the service interface, would be merely artificial as it would only shift the effort into
the development of the service descriptions. Therefore, the alternative approach
has been abandoned in the current version of Ontology Manager, and any XSLT
transformation scripts must now be specified in the rules themselves as described
above.

Semantic update rules differ from the conventional update rules in that their con-
ditions do not refer directly to the notification message XML contents, but to an
OWL model generated from the message by applying an XSLT script. The XSLT
script must be referenced by the corresponding WSDL message part through an
SAWSDL (Semantic Annotations for WSDL and XML Schema) [20] liftingSchemaMap-
ping annotation. The condition list of a semantic update rule is a list of SPARQL
ASK type queries to be evaluated against the OWL model resulting from the trans-
formation. Ontology Manager would evaluate the condition expressions to determine
if a rule matches. Figure 3.7 illustrates the structure of semantic update rules.

Whenever Ontology Manager receives an event notification, it compares the no-
tification message to each update rule and executes each matching rule by invoking
the ExecuteUpdateWithMapping operation with appropriate parameters.

Instead of notification operations, update rules may alternatively refer to request-
response type operations. Ontology Manager will then invoke those operations peri-
odically to determine when the rules should be applied. This approach is useful when
a web service provides no event notifications but includes adequate request-response
type operations for accurately determining the service status. The time interval
of successive request-response operation invocations can be configured through the
Ontology Manager GUI.

3.4.3 The Service Monitor Approach

Service Monitor is a web service that maintains a semantic web service database. It
discovers semantic web services and stores their OWL-S descriptions. Then, when

3. Methods 52

the FulfilGoal operation is invoked, Service Monitor attempts to compose the OWL-
S processes and executes the composition to fulfill a production goal [84]. Similarly
to Ontology Manager, Service Monitor provides both a graphical user interface and
a web service interface. The former interface facilitates direct user interaction, while
the latter allows Service Monitor to act as a support service for other software-based
actors. In addition, Service Monitor subscribes to event notifications from semantic
web services, so that it may send update requests to Ontology Service.

After detecting a semantic web service, Service Monitor automatically reads the
service WSDL document and the potential OWL-S description of the service. If
the WSDL operations have SAWSDL annotations referring SWRL rules, Service
Monitor generates the OWL-S processes based on the SAWSDL annotations in the
WSDL document. Finally, Service Monitor extracts semantic update rule object
models from the generated OWL-S descriptions.

The OWL-S derivation approach is based on SAWSDL annotations. In particular,
Service Monitor generates one OWL-S process for each WSDL operation, and one
OWL-S Process Result for each SWRL rule in the SAWSDL annotations of the
operation. The result conditions and effects are extracted from the referenced SWRL
rule. Furthermore, Service Monitor can be configured to generate the condition and
effect expressions using either the SPARQL or SWRL expression language. The
details of the OWL-S derivation process and the associated SAWSDL annotation
conventions are described in Section 3.5.

Similarly to Ontology Manager, Service Monitor also provides a ScanNetwork
operation for discovering all available web services, and Service Monitor connects to
an Ontology Service instance, which it attempts to maintain synchronized with the
most current domain state. In addition to subscribing to event notifications from
web services, Service Monitor creates an object model quite similar to the Ontology
Manager update rules from those OWL-S processes corresponding to WSDL notifi-
cation operations. In OWL-S, an atomic process that has only output parameters
corresponds most closely to a WSDL notification operation [54]. Therefore, Service
Monitor converts each such process into a set of semantic notification objects. While
Service Monitor could simply use the OWL ontology model containing the OWL-S
processes, querying such an ontology at run-time would be slower than accessing
the Java object model. Figure 3.8 shows the structure of the extracted notification
objects next to the corresponding OWL-S process ontology concepts.

Each semantic notification object groups together a set of conditions and a set
of effects that are expected to realize when the conditions hold. The conditions and
effects are copied from the source OWL-S process results. In addition, a notification
object has a set of notification variables that correspond to the outputs of the
OWL-S process. Each variable has a name, type URI, and an XSLT script that

3. Methods 53

Figure 3.8: Service Monitor extracts a notification object model from OWL-S processes
representing event notifications.

specifies how to obtain the variable value from the XML content of the notification
message. The type URI is copied directly from the parameterType property value
of the corresponding OWL-S process output. The XSLT scripts are extracted from
the OWL-S atomic process groundings.

Each semantic notification object additionally includes an identifier URI, which
is a copy of the OWL-S process URI. The identifier URI is used in identifying
those semantic notification objects that may be discarded when a service leaves the
network.

Ontology Service can only operate on SPARQL expressions. Therefore, the con-
dition expressions in the update rules are SPARQL queries, and the effect expres-
sions are SPARQL/Update statements. Thus, if the OWL-S model uses SPARQL
and SPARQL/Update to represent condition and effect expressions, the expressions
may be copied directly into the generated rule objects. However, as SWRL is also a
popular expression language and integrates well with OWL due to its XML syntax,
Service Monitor contains an adapter component that translates SWRL condition ex-
pressions to SPARQL ASK queries and SWRL effect expressions to SPARQL/Up-
date expressions, which Service Monitor then copies into the rule objects gener-
ated. Since SWRL property atoms correspond quite directly to SPARQL subject-
predicate-object triples, the conversion process is quite straightforward. Table 3.5
summarizes the conversion rules.

Basic SWRL can only express positive conditions and effects, which only require
triples to be present in the model or add new triples into the model. Nevertheless,
SWRL can be extended by defining new built-ins. Hence, negative antecedents
and consequents can be formulated after defining custom built-ins called noValue
and remove. The noValue built-in can occur in both conditions and effects, where

3. Methods 54

Table 3.5: SWRL atoms are converted to SPARQL triples and FILTER patterns.

SWRL Entity SPARQL Conversion

Individual property atom
predicate(subject, object)

Triple
subject predicate object

Class atom
className(argument)

Triple
argument a className

Same individual atom
sameIndividual(arg1, arg2)

FILTER pattern
FILTER {arg1 = arg2}

Different individuals atom
differentIndividuals(arg1, arg2)

FILTER pattern
FILTER {arg1 != arg2}

Condition atom using the noValue
builtin
noValue(subject, predicate)
noValue(subject, predicate, subject)

FILTER pattern
FILTER NOT EXISTS
{subject predicate ?var}
FILTER NOT EXISTS
{subject predicate object}

Effect atom using the noValue builtin Triple in the DELETE pattern

Effect atom using the remove builtin
remove(0)

Triple in the DELETE pattern
(The triple converted from the first con-
dition atom)

it either requires that there are no statements matching the argument pattern in
the domain model or deletes the matching statements from the model, respectively.
The remove built-in can only occur in effects and deletes the statements that caused
the condition atom at the argument index to match. Both of the aforementioned
built-ins are custom SWRL extensions inspired by the descriptions in [37].

Even when the OWL-S descriptions use SPARQL as the expression language for
conditions and effects, the expressions may require some processing before they can
be inserted into the update rule objects. In particular, if the effect expressions are
SPARQL ASK queries, Service Monitor converts them into equivalent SPARQL/Up-
date expressions, which are suitable for update rule effect expressions.

When Service Monitor receives a notification from a domain web service, it re-
trieves the corresponding semantic notification object based on the service endpoint
URI and notification action path. Then, it obtains the values of the notification
variables by applying their XSTL scripts to the received notification message. Ser-
vice Monitor inserts the variable names and their values into the ExecuteUpdate-
WithMapping request message sent to Ontology Service. In addition, Service Mon-
itor copies all of the conditional effects from the semantic notification object to the
corresponding slots in the request message structure shown in Figure 3.4. When
Ontology Service processes the request, it evaluates each set of condition expres-

3. Methods 55

sions with the specified variable values and executes each set of effect expressions
for which the corresponding condition sets evaluate to true. Hence, depending on
the current domain model state, a rule may cause no changes in the domain model
even if the notification message matches the rule conditions.

While event notifications allow the passive reception of domain status updates,
request-response type operations make it possible to actively poll the status of the
services. Therefore, Service Monitor has recently been updated to extract similar
object models from request-response type operations. However, to receive the re-
sponse messages, Service Monitor must actively invoke the operations when it seems
probable that the domain model is inaccurate.

3.4.4 Comparison of the Approach Variants

Both Service Monitor and Ontology Manager send the update requests to Ontology
Service by invoking the ExecuteUpdateWithMapping operation upon receiving an
event notification. While Ontology Manager requires a set of user-specified update
rules to determine the appropriate updates to perform, Service Monitor extracts the
update rules directly from the semantic descriptions of the web services. Thus, the
Ontology Manager approach requires no semantically described web services; it only
requires the development of a set of update rules based on the WSDL files describing
the services. Table 3.6 summarizes the main differences and similarities between the
two approaches.

While Service Monitor extracts the update rules automatically from the seman-
tic descriptions of the web services, the approach requires quite extensive semantic
service descriptions. For example, source data required for the OWL-S derivation
process include SWRL rules in the domain model TBox, as well as semantic an-
notations in the service WSDL files referring to the appropriate TBox and ABox
concepts.

On the one hand, the Ontology Manager approach places no constraints on the
domain OWL model used, as it is typically possible to modify the update rules to
accommodate a different OWL model. On the other hand, developing the update
rules manually is laborious and more error-prone than the automatic rule derivation

Table 3.6: The domain model update approaches differ in the required source data.

Software Actor Update Trigger Required Data

Ontology Manager (web
service)

Event notifications from
domain web services

Update rules (SPARQL)

Service Monitor (web ser-
vice)

Event notifications from
domain web services

Semantic web service de-
scriptions

3. Methods 56

performed by Service Monitor.
The update rules used by Ontology Manager may specify restrictions on the

message content, which are then considered before applying the rule and sending
the request to Ontology Service. However, message content restrictions are absent
in the update rules used by Service Monitor, and all rule conditions are evaluated
by Ontology Service. Therefore, the latter approach may result in more network
traffic between Ontology Service and the event listener service.

3.5 Generating OWL-S from WSDL Documents

A WSDL document typically contains all of the information necessary to invoke a
web service. Therefore, executable OWL-S processes may be derived from WSDL
documents. However, the WSDL documents must contain SAWSDL annotations
from which it is possible to determine the semantic details of the OWL-S processes,
such as input parameter types as well as the conditions and effects of invoking the
services. The approach presented in this section includes the typical method of
annotating XML schema elements with references to OWL classes and providing
XSLT transformations for translation between the XML schema and OWL. Addi-
tionally, this section proposes several additional conventions for use in the derivation
of OWL-S descriptions from annotated WSDL documents.

Figure 3.9 illustrates the use of SAWSDL annotations in the proposed approach.
In the figure, diamond shapes represent aggregation relationships, dashed arrows
represent SAWSDL model references, and solid arrows represent other language-
dependent references, such as references to variables in SWRL rules. The model
references refer to OWL individuals by their URIs. XSLT transformation scripts
have no URIs. Nonetheless, they can be saved as XML files and made accessible
through URLs, so that the SAWSDL lowering and lifting schema mapping annota-
tions can refer to the URLs.

SAWSDL sets no restrictions on how the actual OWL descriptions are accessed.
In Figure 3.9, the WSDL document contains a small embedded OWL document
which imports the actual OWL descriptions, such as the domain ontology and the
referenced SWRL rules. In addition, the embedded OWL document may contain
the Binding instances to be used in replacing variables in the SWRL rule referents in
order to specialize the rule conditions and effects for the service instance described.

The software component that processes the service WSDL descriptions uses the
SAWSDL annotations in generating executable OWL-S processes, namely instances
of the class AtomicProcess defined in the OWL-S Process ontology. In the seman-
tic web service orchestration framework described in this dissertation, the software
component is a web service called Service Monitor [84]. Therefore, in the sequel, the
software component will be referred to as Service Monitor. To allow the generated

3. Methods 57

Figure 3.9: SAWSDL annotations are added to WSDL operations, port types, message
parts and schema elements.

processes to be executed, Service Monitor additionally generates a grounding for
each of the generated processes.

The UML class diagram in Figure 3.10 illustrates the structure of the OWL-S
documents that Service Monitor generates from the annotated WSDL documents.
Figure 3.10 represents the structure as a simplified UML class diagram, in which the
classes correspond to the classes in the OWL-S ontology for which Service Monitor
creates instances, and the associations represent the same-named OWL object prop-
erties in the OWL-S ontology. The attributes of the classes in the diagram represent
the OWL datatype properties for which Service Monitor writes values.

The following subsections describe the proposed approach of applying SAWSDL
annotations to specific WSDL entity types. The approach differs from the guidance
given in the SAWSDL specification [20], which appears to provide suggestions rather
than strict definitions [54].

3.5.1 WSDL Operations

The model references of WSDL operations may refer to SWRL rules and instances
of the Binding class defined in the OWL-S Process ontology. Each rule is the source
of the condition and effect expression extracted for one generated OWL-S Process

3. Methods 58

Figure 3.10: The generated OWL-S model both describes the service functionality and
provides sufficient data to invoke the service.

Result. Each binding specifies an OWL individual to replace a SWRL variable when
copying the conditions and effects from the rule references to the generated OWL-S
Process Results. Thus, it is possible to formulate the conditions and effects for a
group of web services of the same type using only a few SWRL rules.

As noted in Section 3.4.3, the SWRL rule syntax can be extended to also allow
negative conditions and effects.

3.5.2 WSDL Port Types

The model references of a WSDL port type may refer to instances of the Binding
class. Such references are a shorthand for annotating each of the port type operations
with the Binding instances.

3.5.3 WSDL Outputs

The model reference of an Output may refer to an OWL individual. Each refer-
ent is interpreted to represent the value of the output after a successfull service
invocation. Service Monitor will generate a corresponding OutputBinding for the
generated Process.

3. Methods 59

3.5.4 WSDL Message Parts

Service Monitor will generate an OWL-S Process Input or Output for each WSDL
message part used in an operation input or output. The model reference of the
message part may specify the SWRL variable that the generated parameter will
replace in the generated condition and effect expressions.

3.5.5 XML Schema Definitions

The model reference of a schema element may refer to an OWL class or to an OWL
datatype property. Service Monitor uses the referents in determining the parameter
types of the generated process parameters. The latter referent type is a special case,
in which the parameter type is the range of the referent property. Hence, a datatype
property referent indicates that the generated OWL-S parameter takes data values
instead of OWL individuals.

Regardless of the referent type, lifting schema mappings may additionally be
specified. Service Monitor will then download the XSLT scripts from the URIs used
as the annotation values and insert them into the generated OWL-S Groundings.
When an element used in an output message has no lifting schema mapping, Service
Monitor will generate the XSLT scripts by analyzing the model references. However,
for input messages, Service Monitor generates a single XSLT transformation script,
and lowering schema mappings specified for the individual elements are ignored.

If the referent is an OWL class, XSLT derivation requires that all individuals of
the class are known, and a mapping between string parameter values and the OWL
individuals is specified through SAWSDL model references. An example of such a
mapping can be found on lines 21-23 in Listing 5.9 in Section 5.6.

If the same XML schema type is used in several schema elements, it may be
convenient to add the SAWSDL annotations to the type definition. Service Monitor
will then interpret the annotations exactly similarly as if they had been attached to
the schema elements using the type definitions. Thus, it is unnecessary to explicitly
annotate the schema elements.

3.6 SWRL-based Semantic Web Service Composition

Section 3.5 proposed an approach to converting SAWSDL files referring to SWRL
rules into OWL-S Processes. This section describes how the generated OWL-S de-
scriptions can be used in semantic web service composition. The main difference to
Section 3.3 is that now the condition and effect expressions may be formulated in
SWRL instead of SPARQL, and therefore the planning solution presented in Sec-
tion 3.3 is inapplicable. Furthermore, this section presents an enhanced planner

3. Methods 60

component attached to Service Monitor. The planner can solve even relatively com-
plex problems without a separate restriction expression, which the planner presented
in Section 3.3 typically requires for other than the most trivial planning problems.

While the proposed composition approach is primarily based on the assumption
that the service pre- and postconditions are expressed using SWRL, it can sup-
port service descriptions using SPARQL as the expression language. However, the
SPARQL expressions must be restricted to a relatively simple syntax that can be
automatically translated to SWRL.

3.6.1 Composition Pattern Overview

The current version of Service Monitor supports the parallel achievement of several
production goals. A new goal can be registered by invoking the StartGoal operation,
which assigns the goal a unique identifier and initiates a process that first attempts
to compose a solution plan for achieving the goal and then executes the plan. The
process is automatically repeated until either the goal is achieved or the goal is
terminated by invoking the StopGoal operation. The repeating of the process is
required when either the AI planning algorithm fails to compose a solution plan for
achieving the goal or the execution of the obtained plan fails.

Figure 3.11 illustrates the registration of a new goal and the subsequent goal
achievement process through a sequence diagram. The main difference to the se-
quence diagram of Figure 3.3 is that now the registering of new goals and their
achievement is asynchronous. Furthermore, Service Monitor sendsGoalStatusChanged
event notifications to registered subscribers as the status of a goal process changes.
Table 3.7 summarizes the new operations in the Service Monitor interface.

3.6.2 Requirements

The requirements for using the enhanced planner are as follows:

• The semantic web service descriptions use SWRL or SPARQL (with some
syntax restrictions) in expressing conditions and effects.

• The number of objects in the domain model is constant.

SWRL has a somewhat simple syntax. Hence, when OWL-S Process conditions
and effects are expressed in SWRL, it is relatively effortless to convert the Processes
into planning operators that include both negative and positive conditions, as well
as negative and positive effects. Nonetheless, the requirement of using SWRL is
not absolute, since it is possible to automatically translate other languages, such as
SPARQL, into SWRL. On the other hand, some SPARQL constructs are somewhat

3. Methods 61

Figure 3.11: The StartGoal operation is invoked to initiate a new goal process.

Table 3.7: The Service Monitor interface provides operations for starting and terminating
goal processes as well as for monitoring their progress.

Operation
Name

Inputs Outputs Purpose

StartGoal A goal (SPARQL
ASK query)

Goal process ID
(string)

Initiates a new goal
process.

StopGoal Goal process ID
(string)

Response code
(’SUCCESS’ /
’FAILURE’)

Terminates a goal
process.

ListGoals No input parame-
ters.

List of goal process
statuses:
• ID (string)
• Status (’RUN-

NING’ / ’COM-
PLETED’ etc.)

Retrieves the list
of current goal pro-
cesses.

GoalStatus-
Changed

No inputs (event
notification)

Current process sta-
tus:
• ID (string)
• Status (’RUN-

NING’ / ’COM-
PLETED’ etc.)

Notifies of process
status changes.

challenging to translate into SWRL, and Service Monitor currently requires that
such constructs are avoided if the SWRL-based planning approach is used.

3. Methods 62

The most critical requirement is that none of the OWL-S Processes creates new
OWL instances in the domain model. In other words, the set of objects in the
domain model must be numerable. The requirement allows the planning component
to assign a unique ID number to each object. Thus, the planner can enumerate each
statement built using the objects and predicates, as well.

3.6.3 Obtaining an AI Planning Problem

While the enhanced planner is conceptually based on PDDL, it internally uses a
numeric representation of the domain and the planning operators. Nonetheless, the
numeric model is used only in computations and can be rapidly converted into the
human-readable PDDL syntax.

Before attempting to solve a planning problem, the planner instantiates all actions
in the planning problem. The action instantiation includes first determining all of
the applicable variable value combinations for each SWRL rule and then using each
combination to create a new planning operator, whose conditions and effects refer
only to ground instances. Thus, the number of the resulting planning operators
is typically considerably larger than the original number of SWRL rules extracted
from the OWL-S processes. After the instantiation, the effects and conditions of each
operator are sets of statements, which are internally represented as numbers. The
planning goals are instantiated similarly, and therefore a goal can be instantiated to
a set of alternative goals, each based on a different variable value combination.

After the aforementioned instantiation procedure, the input data used by the
planning algorithm includes the following:

• the set of all possible statements S ⊂ Z

• the initial state I ⊂ S

• the set of goal state alternatives G, where each g ∈ G is a tuple 〈g+, g−〉, so
that

– g+ ⊂ S is the set of positive goals

– g− ⊂ S is the set of negative goals

• the instantiated actionsA, where each a ∈ A is a tuple 〈pre+, pre−, post+, post−〉,
so that

– pre+ ⊂ S is the set of positive preconditions

– pre− ⊂ S is the set of negative preconditions

– post+ ⊂ S is the set of positive postconditions

3. Methods 63

– post− ⊂ S is the set of negative postconditions

While different versions of the planner component can be developed, the forward
search and backward search solutions appear the most viable. The backward search
planner preprocesses the domain description by eliminating all negative precondi-
tions from actions. The algorithm for eliminating negative preconditions is described
in [24]. After the preprocessing step, the instantiated actions can be expressed as
triples 〈pre, post+, post−〉, where pre ⊂ S denotes the set of statements that must
hold for the action to be applicable. However, the forward search algorithm de-
scribed in the sequel includes no preprocessing phase.

3.6.4 The Domain-independent Planning Algorithm

Thus far, the forward search algorithm appears the most efficient solution, since it
performs simple pruning of the state space by only considering those actions that
can be relevant for the desired production goal. The state space pruning technique
is essentially based on the concept of helpful actions described by Hoffmann and
Nebel [29]. An action a ∈ A is potentially relevant if it satisfies one of two conditions:

• The action directly achieves a proposition that is included in one of the alter-
native production goals: ∃g ∈ G : post+(a) ∩ g+ 6= ∅ ∨ post−(a) ∩ g− 6= ∅.

• The action directly achieves a proposition that is included in the conditions of
another action: ∃a2 ∈ A : post+(a) ∩ pre+(a2) 6= ∅ ∨ post−(a) ∩ pre−(a2) 6= ∅.

The set of potentially relevant actions remains constant for each goal, and hence
it is sufficient to compute it only once after instantiating the actions.

The planning algorithm is based on state space search. Each state is identified by
the set of statements that hold in that state. As each statement is enumerated, the
states are essentially sets of integers. However, the representation can be compacted
by only representing a state as a set of integers indicating the differences to the initial
state.

While forward search can be conducted in both Bread-First Search (BFS) and
Depth-First Search (DFS) manner, BFS is more applicable to the planning algo-
rithm, as it guarantees that only minimal solutions are discovered.

Algorithm 2 contains the pseudo-code for the planning algorithm. The forward
search planning algorithm starts from the initial state and considers all potentially
relevant actions to compute the successor states. As all successor states are added to
a First-In, First-Out (FIFO) stack of unprocessed states, the search space nodes are
processed in BFS-manner. Once the successor states have all been computed, the
algorithm retrieves the first state in the stack and continues search. The algorithm

3. Methods 64

Algorithm 2 The forward search algorithm prunes the state-space by only consid-
ering potentially relevant actions.
Require: maxNodeCount ≥ 0
depth⇐ 0
Relevant⇐ {a | a ∈ A ∧ isRelevant(a)}
StartNode⇐ I
Graph.nodes⇐ {StartNode}
Unprocessed⇐ {StartNode}
while Unprocessed 6= ∅ do
choose the first node Current ∈ Unprocessed
Unprocessed⇐ Unprocessed \ {Current}
for all a ∈ Relevant do
if pre+(a) ⊆ Current ∧ pre−(a) ∩ Current = ∅ then
NewState⇐ Current ∪ post+(a) \ post−(a)
Graph.nodes⇐ Graph.nodes ∪ {NewState}
Unprocessed⇐ Unprocessed ∪ {NewState}
Create a link between Current and NewState
if ∃g ∈ G | g+ ⊆ NewState ∧ g− ∩NewState = ∅ then
return NewState

else if |Graph.nodes| > maxNodeCount then
return failure

end if
end if

end for
end while

terminates if the state satisfies the goal or if there are no more unprocessed states
in the stack. The latter case indicates that there is no solution for the planning
problem. However, typically the amount of computing resources available is limited.
To avoid excessive use of resources, the search algorithm terminates after analyzing
the number of nodes indicated by the maxNodeCount parameter, which may be set
to, for example, 500000.

The output of Algorithm 2 is a state-space node that fulfills one of the alternative
goals. The links in the search graph correspond to instantiated planning operators,
each of which can be mapped to a source OWL-S Process and the appropriate se-
lection of input parameter values. Hence, the planner can extract a sequence of
semantic web service invocations that leads to a domain state fulfilling the goal ex-
pression. However, executing such sequential solution plans may be unnecessarily
slow, since only one operation is executed at a time. Therefore, the planner com-
ponent incorporates an additional solution plan refinement phase transforming the
sequence into a tree structure. The tree has a single root node, which corresponds
to the initial state and a single leaf node, which corresponds to the terminal node
of a plan execution. The links between the nodes correspond to OWL-S processes

3. Methods 65

and the associated input variable bindings. Each non-root and non-leaf node must
have one or more of input links and output links.

The plan execution begins from the root node of the plan tree. When all input
actions of a node have been executed, the output actions are executed in parallel.
The plan execution is completed when all input actions of the terminal node have
been executed.

3.7 Cloud Resource Utilization Optimization

Utilization of resources leased from IaaS clouds can be elaborate. To reduce the
workload, this section describes a web service that acts as a mediator between a
computing cloud and the cloud users, thus facilitating cloud usage. Henceforth, the
service will be called Cloud Gateway.

One instance of the Cloud Gateway service is started on each virtual machine
leased from an IaaS cloud. The service instances then enable a user to effortlessly
execute applications on the virtual machines. Moreover, the Cloud Gateway services
can form networks spanning several virtual machines that may reside in separate
computing clouds. Thus, when a Cloud Gateway is low on computing resources,
it can delegate a request for starting a new application to another Cloud Gateway
instance hosted by a less burdened virtual machine.

3.7.1 Adding and Executing Applications

Cloud Gateway provides operations for adding and removing applications to and
from its application library as well as starting and terminating instances of the ap-
plications. Cloud Gateway assigns a unique string identifier to each application in
its library and to each application instance started. The Cloud Gateway service
interface includes operations that can be categorized into query operations, which
take no input values, and effective operations, which cause Cloud Gateway to per-
form actions based on the input parameters. Table 3.8 lists the most important
query operations, and Table 3.9 summarizes the effective operations.

Cloud Gateway has been particularly tested in scenarios where each application,
when executed, creates and starts a web service compliant with the DPWS specifi-
cation [17]. Thus, in the sequel, such applications are called server applications.

To facilitate the effortless transfer and execution of the server applications, they
must be packaged into executable Java archive (JAR) files. Hence, Cloud Gateway
can download the applications as single files. Furthermore, the applications can
be executed on any platform that has a sufficiently new Java runtime environment
installed.

An application can be executed by invoking the StartApplication operation and

3. Methods 66

Table 3.8: The Cloud Gateway service includes operations for querying the current service
status.

Operation Outputs
ListApplications The list of applications available in the application library.

The identifier, JAR file name and default arguments are
listed for each application.

ListAll The list of all application instances. The instance iden-
tifier, application identifier, command-line arguments and
state (running or terminated) are listed for each instance.

GetResourceUsage Numeric values indicating the amount of free memory, total
memory, the number of CPUs, the system load average, as
well as the current memory and CPU utilization thresholds.

passing the application identifier as an input. Optionally, a list of command-line
arguments may be specified to override the default arguments. As a response, Star-
tApplication returns the identifier assigned to the new application instance or ’FAIL-
URE’ if it fails to start the application.

Command-line arguments may contain certain keywords that Cloud Gateway
expands before executing the corresponding application. Keywords are identified by
enclosing them between ’$#’ and ’#$’. For example, Cloud Gateway replaces each
occurrence of the string ’$#HOST#$’ with the host machine network address.

A typical server application needs several seconds to deploy a set of web services.
Web services compliant to the WS-Discovery specification [68] send Hello messages
when they enter a network. Hence, Cloud Gateway listens to Hello messages origi-
nating from the host machine. Whenever Cloud Gateway receives such a message, it
sends a ServiceStarted notification to all subscribed clients. The notifications allow
the clients to determine server application start-up times.

Cloud Gateway allows multiple instances of each application to be executed in
parallel. A running application can be terminated by executing the TerminateAp-
plication operation. Since Cloud Gateway is able to terminate applications only in
a forcible manner, the terminated applications must prepare for the abrupt termi-
nation of the underlying Java virtual machine and perform the necessary activities
at such an event. For example, DPWS-compliant web services should broadcast
WS-Discovery Bye messages when leaving the network. The Bye messages allow
clients to automatically detect when the web services become unavailable.

3.7.2 Resource Consumption

The number of applications that a Cloud Gateway is able to start depends on the
amount of hardware resources available to the virtual machine hosting the service.
Therefore, Cloud Gateway must use some metrics for determining the amount of idle

3. Methods 67

Table 3.9: The Cloud Gateway service includes operations for managing the set of available
applications as well as executing and terminating them.

Operation Inputs Outputs
AddApplication location - the URL from

which the JAR file can be
read
parameters - the default
command-line arguments

The identifier assigned to
the application or ’FAIL-
URE’ if reading the JAR
file from the specified
URL fails.

RemoveApplication id - the application iden-
tifier

’SUCCESS’ or ’FAIL-
URE’ if no application
with the specified iden-
tifier exists, or if a
running instance of the
application exists.

StartApplicationInNet id - the identifier of the
application to start
parameters - the list
of command-line argu-
ments, if empty, the de-
fault arguments will be
used

The identifier assigned to
the new application in-
stance or ’FAILURE’ if
starting the application
failed.
The endpoint URI of
the Cloud Gateway that
started the application.

TerminateApplication id - the identifier of the
application instance to
terminate

’SUCCESS’ if the appli-
cation was running, oth-
erwise ’FAILURE’.

SetThresholdInNet MemoryThreshold -
a floating point value
between 0 and 1
CPUThreshold - a non-
negative floating-point
value

’FAILURE’ if the thresh-
old values are outside the
allowed ranges, otherwise
’SUCCESS’.

RegisterCloudGateway URI - the endpoint URI
of the Cloud Gateway in-
stance to register

’FAILURE’ if the Cloud
Gateway service had
already been registered,
otherwise ’SUCCESS’.

DeregisterCloudGateway URI - the endpoint URI
of the Cloud Gateway in-
stance to deregister

’SUCCESS’ if the Cloud
Gateway service had
been registered, other-
wise ’FAILURE’.

resources. Furthermore, it must compare the resource utilization levels measured
to threshold values indicating the maximum levels allowed. Cloud Gateway accepts
a request to start an application only if the current resource utilization levels are
below those indicated by the threshold values.

The metrics that most clearly define the resource utilization of a virtual machine

3. Methods 68

are the random access memory (RAM) and central processing unit (CPU) usage. In
Linux systems, the percentage of RAM used can be measured fairly effortlessly by
examining the contents of the virtual /proc file system. The CPU usage level is more
problematic to determine but can be derived from the system load average, which
can also be determined from the /proc file system. The load average represents the
number of processes that are either in execution or queuing for CPU time. Hence,
the higher the value, the more burdened the CPU is. If the load average is equal to
the number of CPUs, CPU utilization is optimal [115]. Hence, to calculate a value
for the CPU utilization level, Cloud Gateway divides the system load average with
the number of CPUs.

If either the RAM or CPU usage value calculated is higher than the correspond-
ing threshold value, Cloud Gateway rejects all requests to start new application
instances. The threshold values can be specified by invoking the SetThreshold op-
eration.

3.7.3 Cloud Gateway Networks

The system resources of a virtual machine will inevitably be exhausted if several
application instances are executed on the machine. Therefore, Cloud Gateways re-
siding on separate machines can form networks to balance the load between several
machines. For this purpose, the Cloud Gateway service interface includes the op-
erations RegisterCloudGateway and DeregisterCloudGateway, which allow the reg-
istering and deregistering of partner Cloud Gateways that will be used in workload
balancing. The StartApplicationInNet operation will execute the application locally
on the host machine only if the resource utilization is within allowed boundaries.
Otherwise, the StartApplicationInNet operation is recursively invoked on the part-
ner Cloud Gateways to find one that is able to service the request. Similarly, the
SetThresholdInNet is a recursive version of the SetThreshold operation.

The sequence diagram in Figure 3.12 presents a typical use scenario of Cloud
Gateway. The Client object in Figure 3.12 can be an autonomous software agent or
a software tool operated by an end user. In the beginning of the example sequence,
the client registers Cloud Gateway 2 to Cloud Gateway 1 to form a Cloud Gateway
network. Then, the client registers a new server application to Cloud Gateway 1.
Once Cloud Gateway 1 has downloaded the application, the client executes it in the
cloud by invoking the StartApplicationInNet operation. Because Cloud Gateway 1 is
low on computing resources, it delegates the request to Cloud Gateway 2, which then
executes the application, effectively deploying a new web service. The response to
the original StartApplicationInNet request includes the endpoint URI of the selected
Cloud Gateway instance. Finally, the client requests Cloud Gateway 2 to terminate
the server application to release the computing resources for future use.

3. Methods 69

Figure 3.12: A typical use scenario of Cloud Gateway includes starting a web service and
terminating it after use to conserve resources.

If a Cloud Gateway selects another service instance in the network to execute
an application, it must first ensure that the other instance possesses a copy of the
application and obtain the application identifier by invoking the AddApplication
operation. In the sequence diagram of Figure 3.12, the other instance returns the
application identifier ‘APP-1’ as part of its response to the service request.

3.8 Summary and Conclusions

Table 3.10 summarizes the methods presented by each of the sections in this chapter.
While both Section 3.3 and 3.6 address automated service invocation, the latter
section presents a somewhat more advanced approach, in which the service condition
and effect expressions are processed to allow more efficient planning. However,
the latter section also sets some additional requirements on the semantic service
descriptions. In addition, Table 3.10 lists the framework web services used in each

3. Methods 70

Table 3.10: The methods presented in this chapter address different problems.

Section Problem Addressed Framework Web
Services

Application
Section

3.1 Manual service workflow
prescription

• Orchestration Engine 5.2

3.2 Automated service dis-
covery

• Ontology Service
• Ontology Manager
• Orchestration Engine
• Service Monitor

5.3

3.3 Automated service invo-
cation

• Ontology Service
• Orchestration Engine
• Service Monitor

5.4

3.4 The dynamic updating of
a world view

• Ontology Service
• Ontology Manager /

Service Monitor

5.5

3.5 Automated semantic web
service description devel-
opment

• Service Monitor 5.6

3.6 Automated service invo-
cation, advanced issues

• Ontology Service
• Orchestration Engine
• Service Monitor

5.7

3.7 Computing Cloud utiliza-
tion, web service deploy-
ment

• Cloud Gateway 5.8

of the methods and specifies the section of Chapter 5 in which each method is
applied.

This chapter has proposed a framework of software tools, Orchestration Tools,
and Figure 3.13 categorizes the individual software tools into two groups: web ser-
vices and applications that only include a graphical user interface (GUI). Chapter 4
describes each of the tools with particular focus on its implementation.

The arrows in Figure 3.13 indicate the dependencies between the tools. While
some of the tools substantially depend on others, two user-interface applications and
the Cloud Gateway web service have no dependencies on other tools.

SWRL Planner is a GUI application intended for visual experimenting on different
implementations of the planner component discussed in Section 3.6. Provided that
the planners implement a common Java interface, they can be effortlessly plugged
into SWRL Planner for testing. While the planner components are typically in-
tended for Service Monitor, SWRL Planner includes no direct dependencies on other
tools, and vice versa.

3. Methods 71

Figure 3.13: The proposed Orchestration Tools framework is composed of a set of collab-
orating web services and applications.

Ontology Service is an integral data container used by two other web services and
the Olingvo GUI application. Olingvo is an OWL model engineering tool which can
download a copy of the current OWL model from Ontology Service as well as upload
the OWL model currently open in Olingo to Ontology Service. Ontology Manager
is intended to update the OWL model hosted by Ontology Service based on update
rules specified by the user. Service Monitor downloads the current OWL model
from Ontology Service before attempting to solve a planning problem, in which the
model represents the initial state. Furthermore, Service Monitor updates the OWL
model hosted on Ontology Service based on update rules automatically extracted
from semantic web service descriptions. In addition, Service Monitor monitors the
plan execution progress by sending queries to Ontology Service.

The Orchestrator web service tasks Orchestration Engine service instances with
executing BPEL processes included in production orders. The Orchestration Engine
service depends on the Service Monitor web service to determine the semantic web
services that match BPEL partner links.

72

4. IMPLEMENTATION

This chapter describes the implementation of the software tools that aim to solve
the issues identified in Section 1.2. Together, the tools form a set called Orchestra-
tion Tools. The tools have been developed based on object oriented programming
(OOP). In OOP, software components consist of classes, which are instantiated at
run-time. In the development of Orchestration Tools, Java has been used as the sole
programming language due to its platform-independence and special emphasis on
OOP. The Java Swing library provides the foundation for all of the graphical user
interfaces in the software tools.

4.1 Service Explorer

Service Explorer is a graphical user interface application that makes it possible to
discover available web services and invoke their operations. Figure 4.1 depicts the
typical use cases of Service Explorer.

Before communicating with web services, Service Explorer must discover them
through the WS-Discovery protocol. While the Orchestration Tools API includes a
Java interface facilitating the development of custom WS-Discovery protocol imple-
mentations, the user can configure Service Explorer to use third-party WS-Discovery
implementations. Although Service Explorer defaults to a built-in implementation,
new discovery implementations can be dynamically added through the plug-in mech-
anism.

Once the user has initiated service discovery, the discovered services appear in a
tree view. The user may then request Service Explorer to process and display the
service WSDL descriptions.

Service Explorer is able to invoke operations and receive event notifications only
from web services whose WSDL descriptions it has successfully processed. WSDL
processing is initiated automatically whenever the user selects a web service in the
tree view. The user may then view the available WSDL port types and operations
in another tree view.

When the user chooses to invoke an operation, Service Explorer first displays a
dialog where the user must specify the input parameters for the operation. Finally,
Service Explorer displays the content of the potential response message received
from the service.

4. Implementation 73

Figure 4.1: Service Explorer allows a user to invoke web services.

Service Explorer includes additional utilities for various purposes, such as ex-
ecuting BPEL processes, testing XSLT scripts to transform XML fragments, and
generating OWL-S processes from web service operations.

While Service Explorer allows OWL-S processes to be executed, the current sup-
port for composite OWL-S processes is limited.

The use of Service Explorer in executing BPEL processes and invoking web ser-
vices is discussed in Section 5.2.2 as well as in [81].

4.2 Olingvo

Olingvo is a graphical user interface application allowing the creation, browsing, and
editing of OWL ontologies. Figure 4.2 depicts the typical use cases of Olingvo.

The OWL ontologies are stored in the RDF/XML format to OWL files. To specify
the file to load, the user may either use a file navigator dialog or type the URL of
the file.

The development of Olingvo has been inspired by the Protégé1 ontology editor,
and the two applications share several features. The main motivation for developing
Olingvo despite the pre-existing OWL editors is the ease of fixing problems and
1 Available at http://protege.stanford.edu/. Accessed on 2014-06-18.

4. Implementation 74

Figure 4.2: Olingvo provides a user interface for creating, browsing, and editing OWL
models.

adding new features to in-house developed software. For example, Olingvo has sup-
port for evaluating SPARQL queries and executing SPARQL/Update expressions.
Furthermore, Olingvo can interact with the Ontology Service, which is one of the
web services in the Orchestration Tools framework.

Olingvo extensively relies on the Apache Jena APIs2. Indeed, Olingvo can be
regarded as a GUI layer over the Jena APIs.

4.3 Ontology Service

Ontology Service is a web service that hosts an OWL model. Typically, the model
is composed of a static TBox describing the concepts in an application domain and
a dynamic ABox describing assertions. Hence, Ontology Service stores a view of
the current world state. In addition, the web service interface provides read and
write access to the OWL model, which makes it possible to update the world view
as changes occur and to make decisions based on the current world state. While
Ontology Service provides no graphical user interface for direct user access, the
service is extensively used by other software-based actors in the Orchestration Tools
Framework.

Ontology Service supports all SPARQL query types, except for the DESCRIBE
type. However, the service interface provides different operations for invoking each
2 http://jena.apache.org/

4. Implementation 75

Figure 4.3: Ontology Service provides a web service interface through which other software
actors may query and update the hosted ontology model.

type of query.
Figure 4.3 illustrates the use cases for Ontology Service. In the figure, the client

actor is a web service client, which may be any software actor. The client may also
be a human user communicating with Ontology Service through a web service client
application. However, the Ontology Service interface is primarily designed for use
by automated actors.

Sections 3.2 and 3.4.1 describe Ontology Service in detail. In addition, Sections
5.3, 5.4, 5.5, and 5.7 present application examples involving Ontology Service.

4.4 Orchestration Engine

Orchestration Engine is a web service that executes BPEL processes. As its name
implies, Orchestration Engine is one of the core components of the Orchestration
Tools Framework. However, with the adoption of semantic web service descriptions,
which allow Service Monitor to automatically compose and invoke web services to
achieve goals, Orchestration Engine has become a somewhat optional component.

Nonetheless, Orchestration Engine remains invaluable in invoking manually com-
posed service workflows. Indeed, such execution flows are necessary when the do-
main web services lack appropriate semantic descriptions, which typically renders
the services inapplicable to automatic service composition.

Similarly to Ontology Service, Orchestration Engine has been developed primarily
for use by other software-based actors, such as the Orchestrator service presented

4. Implementation 76

Figure 4.4: Orchestration Engine provides a web service interface for executing BPEL
processes.

in Section 4.5. Therefore, Orchestration Engine lacks a graphical user interface and
only displays minimal status windows without user control components. Instead,
the functionality of Orchestration Engine can only be accessed through the web
service interface. Figure 4.4 illustrates the typical use cases accessible through the
interface.

The client actor in Figure 4.4 can be any software component sending request
messages to the web service. For example, the executed BPEL process can be
switched using a dedicated Orchestration Engine Client application, which includes
a graphical user interface. Furthermore, Section 4.5 discusses a web service that
acts as a client for Orchestration Engine.

4.5 Orchestrator

Orchestration Engine is unable to autonomously compose service execution work-
flows and requires that another software component supplies the executed BPEL
processes. The Orchestrator service acts as a mediator between the workflow pre-
scription source, such as an Enterprise Resource Planning (ERP) system, and a set
of Orchestration Engine services. When it is first deployed, Orchestrator scans for
an ERP service, and, if it discovers such a service, subscribes to be notified of new
production orders.

Upon receiving a new production order, Orchestrator tasks an idle Orchestration
Engine with servicing the order. In addition, Orchestrator provides both a web
service interface and a graphical user interface for monitoring and controlling the
execution status of orders. Figure 4.5 illustrates the use cases of the Orchestrator
service. The ERP service in the diagram may be substituted by a human operator
using the Orchestrator GUI.

The Orchestrator web service interface provides no request-response type opera-
tions for querying the status of production orders. Instead, the service sends event

4. Implementation 77

Figure 4.5: Orchestrator tasks Orchestration Engines with servicing production orders sent
by an ERP service.

notifications through the WS-Eventing protocol. A notification is sent to each reg-
istered subscriber whenever the execution status of a production order changes.

4.6 Service Monitor

Service Monitor is the member of the Orchestration Tools framework services re-
sponsible for the composition of semantic web services to achieve goals formulated
as SPARQL ASK queries. While the service is mainly intended to interact with
other software actors through web service interfaces, it additionally includes a GUI
for direct user interaction. Figure 4.6 depicts the main use cases accessible through
both the WSDL service interface and the GUI.

Through the GUI, or the web service interface, the user may submit new goals for
Service Monitor to achieve. The GUI shows all submitted goals in a table. Selecting
a goal in the table will display the potential solution plan and its execution status
in a graph view. The user may then freely pause and resume the plan execution.
Stopping a plan execution will move the goal process into the ‘TERMINATED’
state, and Service Monitor will stop pursuing the goal.

To achieve goals, Service Monitor must be aware of semantic web services. There-
fore, Service Monitor automatically scans the network during the initialization phase.
In addition, Service Monitor constantly listens for Hello and Bye messages from new
services entering the network and discovered services leaving the network. Nonethe-
less, the user may at any time re-initiate WS-Discovery through the main menu bar
in the Service Monitor GUI.

In addition to fulfilling goals, Service Monitor reacts to event notifications from
domain web services and updates the domain model at Ontology Service accordingly.
However, Service Monitor automatically extracts the update rules from semantic
web service descriptions, and the GUI includes no user controls for the processing
of event notifications.

4. Implementation 78

Figure 4.6: Service Monitor is a web service that additionally provides a graphical user
interface.

4.7 SWRL Planner

Service Monitor can use various AI planner implementations in composing solution
plans. As different planners may fail to solve some planning problems, it is invaluable
to be able to observe planner performances. SWRL Planner provides a graphical
user interface, through which a developer may experiment with different planning
problems and examine the state space and solution plan generated by each planner.

The input data for SWRL Planner includes a goal, which is entered as a SPARQL
ASK query in one of the GUI text areas, a domain model, which is loaded from an
OWL file, and planning operators, which can be extracted from either the SWRL
rules defined in an OWL model or OWL-S Processes. After solving a planning
problem, SWRL Planner outputs two graphs representing the visited state space and
the obtained solution plan. Figure 4.7 illustrates the use cases of SWRL Planner.

4. Implementation 79

Figure 4.7: SWRL Planner provides a graphical user interface for testing different planner
implementations.

4.8 Ontology Manager

Ontology Manager reacts to event notifications from web services and updates the
domain model hosted by Ontology Service. Unlike the Service Monitor discussed
in Section 4.6, Ontology Manager includes no capabilities to achieve goals. The
web service performs the domain model updating based on update rules specified
by the user. Hence, the approach is fully applicable without semantic web service
descriptions.

Initially, Ontology Manager was a client application for Ontology Service. How-
ever, to allow other software agents to communicate with Ontology Manager, it was
later transformed into a web service. Ontology Manager is typically connected to
exactly one Ontology Service instance, to which Ontology Manager sends update
requests based on the user-specified update rules.

The user may create and edit update rules through the Ontology Manager GUI
controls. In addition, rules can be saved and loaded from an XML file. Figure 4.8
shows the main use cases accessible through the GUI.

Ontology Manager is typically in either the passive or active mode. In the former
mode, the user may create, edit, and delete update rules, but all rules are disabled.
In the latter mode, the update rules are uneditable, but Ontology Manager will
apply the rules in updating the domain model hosted by Ontology Service.

4. Implementation 80

Figure 4.8: The Ontology Manager GUI provides fine-grained access to domain model
update rules.

The more fine-grained rule-editing operations, such as creating a new update rule,
are only available through the GUI. Nevertheless, the Ontology Manager web service
interface provides access to all other operations, such as the loading of a new set of
update rules from a URL as well as switching between the active and passive modes.

Ontology Manager is described in Section 3.4.2. In addition, dynamic domain
model updating is discussed in [83].

4.9 Cloud Gateway

Cloud gateway optimizes the use of computing cloud resources by assessing the work-
load of the virtual machines available. As such, Cloud Gateway is a web service in-
cluding no graphical user interface, except for a simple status window. Nonetheless,
the Cloud Gateway client application, which is called Cloud Gateway Performance
Test, provides a simple GUI.

The Cloud Gateway service is primarily intended to be deployed as part of a larger
group in which each service instance is running on a separate virtual machine leased
from a computing cloud. Together, the group forms a network of Cloud Gateways.
Figure 4.9 illustrates the use cases of the Cloud Gateway service.

The Cloud Gateway service interface allows new applications to be registered

4. Implementation 81

Figure 4.9: The Cloud Gateway service interface makes it possible to extend the Cloud
Gateway network and deploy applications on the controlled cloud resources.

to the application library and instances of the applications already registered to
be started. When a new application instance is started, the Cloud Gateway group
collaboratively selects the virtual machine with the highest amount of idle resources,
thus optimizing resource utilization.

While the Cloud Gateway approach is described in Section 3.7, Cloud Gateway
and the client application were originally presented in [82].

4.10 Implementation APIs

The Orchestration Tools are implemented in Java, for which there exists a multitude
of libraries facilitating tasks that would be laborious to program. As many of these
libraries are under permissive licenses, they have reduced the programming effort of
Orchestration Tools.

Several of the Orchestration Tools, particularly Ontology Service and Olingvo,
frequently process OWL models. While developing such infrastructure code would
be laborious, open-source OWL Java libraries are readily available. While there
are several Java OWL APIs available, the Orchestration Tools only use the Apache
Jena framework APIs3. In particular, all OWL-related activities, such as executing
SPARQL queries, as well as reading and writing OWL data, are performed through
the Jena RDF and ARQ APIs due to their extensive support for various OWL
features as well as SPARQL and SPARQL/Update expression facilities.

Pellet4 is an OWL reasoner that is compatible with the Jena RDF API. Therefore,
3 Available at http://jena.apache.org/. Accessed on 2013-11-12.
4 Available at http://clarkparsia.com/pellet/. Accessed on 2013-11-12.

4. Implementation 82

Ontology Service and Olingvo include a dependency to Pellet. Although the use of
Pellet is currently disabled by default in both of the tools, the reasoner can be
activated through the Ontology Service WSDL interface and the Olingvo graphical
user interface.

A web service implementation requires a framework that enables the service to, for
example, be discovered through the WS-Discovery protocol and respond to WSDL
operation invocations. All web services described in this dissertation have initially
been implemented on one or several DPWS toolkits for Java5,6. However, the Or-
chestration Tools source code presently includes a web service framework based on
core Java components. The new web service framework supports the DPWS speci-
fication, and the Orchestration Tools services have fully been retrofitted to rely on
the new framework instead of third-party web service stacks.

Several web services in the Orchestration Tools framework host web resources. For
example, each of the services hosts a WSDL description document, and Cloud Gate-
way service can additionally deploy web services packaged in WAR (Web ARchive)
files. To be able to publish the resources, the services rely on the Jetty Web Server7.
The services run Jetty in embedded mode, which means that the services launch
one or several Jetty web servers at start-up and stop them when the services are
shut down.

5 DPWS4J Toolkit. Available at https://forge.soa4d.org/projects/dpws4j/. Accessed on 2013-12-
18.
6 WS4D.org Java Multi Edition DPWS Stack. Available at http://ws4d.e-technik.uni-
rostock.de/jmeds/. Accessed on 2013-12-18.
7 Available at http://www.eclipse.org/jetty/. Accessed on 2014-01-14.

83

5. APPLICATION EXPERIMENTS

This chapter will present application examples of the methods proposed in Chap-
ter 3.

5.1 Application Domains

This section will briefly describe the domains of the application examples presented
in the subsequent sections.

5.1.1 The Light Tower Monitoring Device

The light tower service encapsulates a simple signal tower device occasionally in-
cluded in production machinery to report the status of the equipment. Figure 5.1(a)
shows a photo of such a device. This scenario has been tested using both a purely
virtual web service and an actual light tower device controlled by an Inico S10001

controller. Figure 5.1(b) shows an S1000 controller installed to an actual production
system. The controller in the figure is connected to a network via a black Ethernet
cable. In addition, the controller is connected to a power source as well as signal
inputs and outputs.

When the controller is used with the signal tower device, the digital outputs of
the controller are connected to the inputs of the signal tower, so that the controller
can activate and deactivate the signal tower segments. The controller has been
programmed to host a web service, whose interface includes simple operations, such
as SwitchRed and GetRedStatus, for activating and deactivating the light segments
as well as for querying the current activation states. In addition, the interface
contains notification operations, such as RedStateChanged, which the service uses
for sending event notifications when changes occur in the light states. The controller
is connected to the same local network with the PC hosting the Ontology Service
and Ontology Manager, which enables the other web services to effortlessly discover
the light tower service.

The S1000 controller complies with the DPWS specification. Hence, software
tools can interact with the web services implemented on the controller similarly to
PC-based services.
1Inico Technologies. Available at http://www.inicotech.com/. Accessed on 2013-5-15.

5. Application Experiments 84

(a) The light tower web service repre-
sents a type of signal tower device used
in production systems.

(b) A production device can be viewed
as a web service when it is connected
to an appropriately programmed con-
troller.

Figure 5.1: The light tower scenario involves a light tower device controlled by an RTU.

5.1.2 Conveyor Device Control

When six unidirectional conveyors are connected in a loop as depicted in Figure 5.2,
a pallet may traverse the loop in only one direction, which is indicated by the arrows
in the figure.

The production equipment in the example system comprise six conveyor segments
of the same type. Hence, each of the devices exposes a similar web service interface.
The conveyor devices in the production line are controlled by STBs provided by
Schneider Electric, and the domain is in fact a fragment of the production line
which will be presented in Section 5.1.3.

5.1.3 The Socrades Production Line

The approach proposed in Section 3.3 has been tested on a virtual model of a pro-
duction line from the SOCRADES project [95]. While the application experiments
discussed in section 5.4 have only been performed on the model, a more detailed
description of the original production line can be found in [112]. The virtual system
consists of web services implemented using a DPWS toolkit for Java. While the
web services in the original system are hosted on the actual controller devices, the
virtual services are hosted on a PC. The production line includes 29 conveyor seg-
ments, three of which are lifters, as well as five workstations. As each of the devices
is abstracted as a web service hosted by the controller devices, the system includes
34 web services in total. Figure 5.3(a) shows a schematic of the demonstration line,
and Figure 5.3(b) shows a top-down map of the individual conveyor segments. The
two-dimensional map highlights the workstation locations with dotted rectangles
and the allowed pallet movement directions with arrows.

The five conveyor segments in the lower part of Figure 5.3(b) represent the lower

5. Application Experiments 85

Figure 5.2: The six web services represent a loop of conveyor devices in the actual produc-
tion line.

conveyor frame, which allows a pallet to be transported to an earlier position on
the line. The start lifter, S_ML_L1, allows a pallet to be transported from the lower
conveyor frame to the upper conveyor frame. The end lifter, E_ML_L1, allows a pallet
to be transported to the lower conveyor frame from the end of the production line.
The intermediate lifter, M_ML_L1, allows a pallet to be transported in both directions
between the upper and lower conveyor frame. In addition, the intermediate lifter
allows a pallet to traverse it, while remaining on the same conveyor frame.

5.1.4 The Fastory Production System

The Fastory line consists of 12 robotic cells connected by a circular conveyor line.
Each cell contains a conveyor consisting of five zones and a robot. The robot can
perform assembly operations on any pallet that enters a certain conveyor zone inside
the cell, which is called the robot processing location. In the test implementation,
the assembly operations are in fact draw operations, in which the robot draws a
mobile phone component onto the paper carried by the pallet. Thus, the papers
represents the products being assembled. Figure 5.4 illustrates the layout of the
simulated production line.

One of the robots, robot 1, is unable to perform assembly operations but can
instead replace the paper carried by a pallet. To replace the paper, it first elevates

5. Application Experiments 86

(a) The Socrades demonstration line consists of three portions sequentially connected.

(b) A 2D overhead illustration of the upper and lower conveyor lines.

Figure 5.3: The demonstration line includes 29 conveyor segments, of which five are work-
station processing locations.

the paper currently on the pallet and places it on the tray reserved for final products.
Then, the robot removes a paper from the tray reserved for blank papers and places
it onto the pallet.

Each cell includes a dedicated controller device for both the robot and the con-
veyor device. Each controller hosts a web service representing the controlled device.
The service interfaces provide operations through which the devices can be con-
trolled. While the interfaces for the robot and conveyor devices are significantly
different, the interfaces of different conveyor and robot instances are identical be-
tween the 12 robotic cells. Only the set of operations in the robot 1 interface is
somewhat different from the other robots. When the experiments described in this

5. Application Experiments 87

(a) The robotic cells form a circle. (b) Each robotic cell provides two web
services.

Figure 5.4: The Fastory line consists of 12 robotic cells.

chapter were carried out, the conveyor cell 7 provided a direct route from cell 6 to
cell 8. In particular, the cell included no functional robots but only a conveyor belt
connecting the two adjacent cells.

The five conveyor zones in each robotic cell form two lanes. One of the lanes
is traversed by pallets processed at the cell, whereas the other one is traversed by
pallets bypassing the robot. Figure 5.5 illustrates the structure of the individual
robotic cells in terms of the conveyor zones. Cell 1 differs from the other cells in
that zone 4 is absent, and zone 2 is the robot processing location instead of zone 3.

The conveyor service interface includes the Transfer operation, which transports
a pallet from one conveyor zone to an adjacent zone. In addition, the Transfer-
Out operation makes it possible to transport pallets between adjacent robotic cells.
Table 5.1 summarizes the operations supported by the conveyor service.

The final zone, zone 5, of each conveyor includes no pallet stopper. Hence, when
a conveyor transports a pallet from zone 3 or zone 4 to zone 5, the pallet stops at
zone 1 of the next conveyor on the line. However, one end of the pallet will still
reside on the former conveyor. Therefore, before requesting the latter conveyor to
move a pallet from zone 1 to zone 2 or zone 4, it is necessary to request the former
conveyor to start running by invoking its TransferOut operation. The conveyor
motor will remain active for a fixed time interval, and the service will send an
EquipmentChangeState notification both at the beginning and end of the interval.

The robot service Draw operation performs an assembly operation specified by the
input parameter on the pallet currently at the robot processing location. However,
for robot 1, the Draw operation is substituted by the ReplacePaper operation, which
replaces the assembly on the pallet with a new one and places the old one on the

5. Application Experiments 88

Figure 5.5: Each robotic cell contains five conveyor zones.

Figure 5.6: The Fastory robot service alternates between three states.

tray reserved for ready products. A robot can perform an operation only when a
pallet occupies the robot processing location. In addition, each robot service sends
the EquipmentChangeState notification whenever its internal state changes. For
example, a notification is sent whenever the robot finishes an assembly operation.
Table 5.2 summarizes the operations supported by the robot service.

The robot service is normally in one of three states: ‘idle with no pallet’, ‘idle
with a pallet’, or ‘performing an operation’. The three states are represented by the
constant string values ‘READY-IDLE-STARVED’, ‘READY-IDLE-BLOCKED’ and
‘READY-PROCESSING-EXECUTING’. The state diagram in Figure 5.6 illustrates
the transitions between the states. In the figure, the WSDL operations that trigger
the transitions are indicated by the labels attached to the transition arcs. Although
the Transfer operation actually belongs to the conveyor service, it may still cause
state changes in the robot service by transporting a pallet either into or out of the
robot processing zone.

The web services constituting the Fastory line have been implemented both on

5. Application Experiments 89

Table 5.1: The conveyor service provides three invokable operations and two event notifi-
cations.

Operation Name Type Description

Transfer Request-response Transfers a pallet between adjacent
zones.

TransferOut Request-response Transports a pallet to the next cell.

GetState Request-response Lists the pallets occupying the
zones.

TransferResultEvt Notification Indicates that a pallet has been suc-
cessfully transferred between zones
as a result of the Transfer opera-
tion.

PalletInEvt Notification Indicates that a pallet has arrived
to zone 1 from the preceding cell.

EquipmentChangeState Notification Indicates that the conveyor has
started or stopped unloading a pal-
let.

Table 5.2: The robot service provides two invokable operations and one event notification.

Operation Name Type Description

Draw Request-response Performs the requested assembly
operation.

ReplacePaper One-way Replaces the paper carried by a pal-
let.

EquipmentChangeState Notification Indicates changes in the robot sta-
tus.

S1000 controllers connected to actual devices and on Java applications simulating
the devices. Application experiments involving the Fastory line are described in
Sections 5.5, 5.6 and 5.7.

5.2 Applying BPEL in Simple Case Studies

This section presents an example of applying BPEL for service orchestration in a
simple factory automation scenario. Meanwhile, several issues that can arise during
the service orchestration are identified. The application scenario consists of a system
of two sequential conveyors. The conveyors include a sensor near each end for
detecting pallets. In the initial state, both of the conveyors are unoccupied. The
goal is to transport a pallet through the two conveyors. The system is illustrated in
Figure 5.7.

5. Application Experiments 90

Figure 5.7: A system of two sequential conveyors.

Each of the conveyors provides a similar web service. In this example scenario,
two of the operations supported by the service are relevant: LoadFromLeft, which
transports a pallet onto the conveyor from the left and runs the conveyor until the
pallet reaches the sensor near the right end, and UnloadToRight, which runs the
conveyor to the right until the pallet has exited the conveyor. The operations are
blocking, which means that they return a value only after they have completed.
If an operation succeeds, it returns the status code ‘SUCCESS’. The operation
LoadFromLeft fails if the conveyor is already occupied by a pallet, in which case the
operation returns the code ‘BUSY’, while the operation UnloadToRight fails if the
conveyor is unoccupied, in which case the operation returns the code ‘FAILURE’.
A failure is typically detected immediately after an operation is invoked, and thus
the blocking time is considerably shorter, as the actual transportation of the pallet
is omitted.

Three different approaches to the orchestration of the system can be considered.
Firstly, the conveyors may be started sequentially. Secondly, the conveyors may be
started concurrently. Finally, the conveyors may communicate, so that conveyor A
signals conveyor B to start running at the correct time.

If the conveyors are started sequentially, the composite service can be represented
in BPEL using a single Sequence activity. The sequence contains four Invoke activi-
ties, which are executed in order. First, conveyor A loads and then unloads. Finally,
the same actions are performed by conveyor B. Listing 5.1 shows an excerpt of the
BPEL code that could be used in this case. The code has been generated by the
NetBeans IDE from a workflow diagram created using the graphical editor. Since
the activities are carried out sequentially, the two conveyors can only run individ-
ually and only as long as required to complete the services. In a highly simplified
theoretical model, such a system appears to behave correctly. However, in practice,
that only one conveyor is running at a time may prevent the pallet from moving
from conveyor A to conveyor B. Because the latter remains stopped while the former
is unloading, the pallet stops at the end of conveyor A. Finally, when conveyor B
starts loading, the pallet remains on conveyor A.

5. Application Experiments 91

<sequence>
<receive name="Receive1" createInstance="yes"/>
<invoke name="Invoke1" partnerLink="ConveyorA" operation="LoadFromLeft"
xmlns:tns="http://www.example.org/ConveyorService"
portType="tns:ConveyorService" outputVariable="Out"/>

<invoke name="Invoke2" partnerLink="ConveyorA" operation="UnloadToRight"
xmlns:tns="http://www.example.org/ConveyorService"
portType="tns:ConveyorService" outputVariable="Out"/>

<invoke name="Invoke3" partnerLink="ConveyorB" operation="LoadFromLeft"
xmlns:tns="http://www.example.org/ConveyorService"
portType="tns:ConveyorService" outputVariable="Out"/>

<invoke name="Invoke4" partnerLink="ConveyorB" operation="UnloadToRight"
xmlns:tns="http://www.example.org/ConveyorService"
portType="tns:ConveyorService" outputVariable="Out"/>

</sequence>

Listing 5.1: The BPEL code for sequential conveyor operation.

The sequential starting of the operations can be achieved differently by using
links inside a Flow activity. The Link construct is part of the WS-BPEL standard
and makes it possible to specify dependencies between activities within an enclosing
Flow activity. The complete operation can then be expressed using a Flow activity,
which encloses four Invoke activities synchronized using three links, as illustrated in
Figure 5.8. As in the case of using the Sequence activity, the operations provided by
the conveyor service must be blocking. The first Invoke activity is declared the source
of one of the links, and the second Invoke activity is declared the target for the same
link. As each link has exactly one source and target, each Invoke activity is executed
in order. The links must define such a sequence that conveyor A will first load and
then unload, and finally conveyor B will perform the same activities. Unfortunately,
this configuration includes exactly the same problem as using the Sequence activity:
only one conveyor may run at a time. Thus, in practice the pallet would stop at the
end of conveyor A. Moreover, as the Sun BPEL SE excludes links, the NetBeans
IDE provides no support for creating a sequential invocation inside a Flow activity.
Instead, the Sequence activity must be used. Nonetheless, in ActiveBPEL Designer,
this appears the most straightforward approach to specifying a sequential invocation
of operations.

To solve the problem with sequential invocation, where the transfer of a pallet
from the first conveyor to the second fails, the two conveyors can be operated in
parallel by using the Flow activity of BPEL. In this case, a Sequence activity is
used as the main activity of the BPEL process. The first activity in the sequence,
after the initiating Receive activity, is an invocation of the operation LoadFromLeft
of conveyor A. The second activity is a Flow activity with two concurrent branches.
One branch invokes the operation UnloadToRight of conveyor A, and one branch
invokes LoadFromLeft of conveyor B. Thus, conveyor A will unload and conveyor B

5. Application Experiments 92

Figure 5.8: A BPEL process which uses links to achieve sequential invocation.

will load simultaneously. Thus, the pallet should be successfully transported from
conveyor A to conveyor B, even if a more realistic physical model were used. The
last Invoke activity in the sequence invokes the operation UnloadToRight of conveyor
B. Figure 5.9 shows the BPEL process as a flow chart.

Perhaps a more complex approach would be to use a communication mechanism
between the two instances of the conveyor service. The aim is that conveyor A is
responsible for signaling conveyor B to start loading when A is starting to unload.
This would ensure that neither conveyor runs longer than necessary and that the
transportation of the pallet from one conveyor to the other succeeds.

Although the three BPEL tools discussed in Section 2.1 allow complex orchestra-
tion of web services, they appear inapplicable to presenting direct communication
between web services, which is known as choreography. For example, ActiveBPEL
Designer provides full support for WS-BPEL 2.0, which includes abstract processes.
According to Pelz [75], abstract processes model web service choreography. However,
after experimenting with ActiveBPEL Designer, it remains unclear how to address
choreography using the tool. While WS-CDL (Web Services Choreography Descrip-
tion Language) [118] might be more applicable for this purpose, the reviewed tools
provide no support for it. On the other hand, it is possible to orchestrate composite
BPEL processes, as in fact each BPEL process models a web service which can be
invoked by another BPEL process.

5. Application Experiments 93

Figure 5.9: A BPEL process in which conveyor B loads a pallet while conveyor A is
unloading.

5.2.1 Creating Composite BPEL Processes

To exemplify a composite BPEL process, the scenario in which conveyor A unloads
and conveyor B loads concurrently is modeled with a composite BPEL process. The
process is composed hierarchically so that it consists of two levels. The lower level
involves two BPEL processes: one which models the loading and one which models
the unloading of a conveyor. Each of these web services supports only one operation,
which is named load or unload, respectively. The upper level contains only one BPEL
process, which orchestrates the entire transport operation over the two conveyors.
It is shown in Figure 5.10, which has been extracted from the NetBeans IDE.

The loading and unloading operations implemented by the two lower level BPEL
processes may fail. However, the upper level BPEL process omits failure handling,
as otherwise the process would be considerably more complex.

The upper level process invokes the services of four partner links. Two partner
links are required for both conveyors: one for loading and one for unloading. The
partner links use the WSDL files of the lower level BPEL processes. Thus, two
web services are created from each of the two lower level BPEL processes. Each
of the lower level BPEL processes uses directly the services of either conveyor A
or conveyor B. In this case, the lower level processes are implemented as composite
services; they do not rely on the LoadFromLeft and UnloadToRight operations of the
conveyor service. Instead, they use the simpler operations, such as SetMotorValue
and SetMotorDirValue to produce the same behavior. Therefore, the lower level
BPEL processes are rather large, and this section omits detailed descriptions of

5. Application Experiments 94

Figure 5.10: The upper level BPEL process in the composite service.

them.
Instantiating the upper level BPEL process results in a web service providing

one WSDL operation. The operation is named transport and returns no response
message. Invoking the operation results in the execution of the web service work
flow defined in the BPEL process.

Especially in the factory automation domain, the lower level BPEL processes
must frequently invoke operations on concrete physical devices rather than abstract
web services. Hence, it is possible that a hardware error occurs and prevents a
service from executing correctly, or that a device occasionally functions somewhat

5. Application Experiments 95

slower than usual. This might cause that a service fails to complete at the normal
time, resulting in indeterministic behavior. In these cases, the service is expected
to respond with an appropriate error message. On the one hand, the event that
a service requires a somewhat longer time to complete should typically pose no
problems: The invoking service can wait until the invoked service has finished before
continuing execution if synchronization is required. On the other hand, if strict
real-time requirements are imposed on the system, it can do little to recover, even
if it immediately detects the error. Hence, web services may be less applicable
to production systems with such requirements. Yet, this is more a problem of
web services in general than a problem of BPEL or the approach proposed in this
dissertation.

5.2.2 Executing BPEL Processes Programmatically

Orchestration Tools includes Service Explorer, which is capable of executing BPEL
files. Currently, the tool provides only partial support for the full WS-BPEL 2.0
specification; rather strict requirements have been set to the BPEL files that can be
executed in Service Explorer.

When executing a BPEL process, Service Explorer treats the process more as
a script than a web service. Thus, each execution of a BPEL process conceptu-
ally creates a temporary instance of the service represented by the BPEL process.
The approach is different to the one employed by the BPEL tools discussed in Sec-
tion 2.1, which create a web service instance of a BPEL process and deploy it on a
server. Figure 5.11 illustrates how Service Explorer can be used for executing BPEL
processes.

BPEL processes represent independent web services, but they frequently invoke
the operations of other web services. References to other web services are made
through partner links. When executing a BPEL process in Service Explorer, it is
necessary that each partner link is associated to an actual device hosting a compat-
ible service in the network. Thus, the user must select a device for each partner link
in a dialog before executing a BPEL process. Different instances of a similar device
type are identified by their serial numbers, which should typically be unique.

To associate devices to partner links, it is necessary that compatible devices
have first been discovered. Service Explorer can discover devices in the network
through the WS-Discovery protocol. Service Explorer considers only devices which
host exactly one service. To obtain information on the discovered services, Service
Explorer inquires the URLs to their WSDL files. Service Explorer can communicate
with a web service only if a WSDL file can be obtained from the received URL or if
the user specifies another valid WSDL file. However, the WSDL file must accurately
correspond to the actual web service for the communication to succeed.

5. Application Experiments 96

Figure 5.11: Using Service Explorer to execute BPEL files.

To determine whether a service hosted by a certain device is compatible with
a certain partner link, the contents of the WSDL file describing the service are
compared to the WSDL file specifying the requirements for the partner service in
the partner link type definition. However, Service Explorer compares only a few
properties between different WSDL files and may thus erroneously accept an incom-
patible service. If such a service is selected, Service Explorer may fail to execute the
corresponding BPEL process.

As a case study, a system of four conveyors is considered. The conveyors are
interconnected in a loop, as demonstrated in Figure 5.12. In the figure, the right
end of each conveyor is marked with the letter R. To simplify this scenario, it is
assumed that a conveyor can load a pallet from another conveyor using the same
operations even if the conveyors are perpendicular.

A BPEL process which uses the conveyors to make the pallet travel a full cycle
through the system can be swiftly created using NetBeans. Figure 5.13 shows a
flow chart of the BPEL process with the initiating Receive and the ending Reply
activities omitted. The final Assign activity simply assigns the string literal “DONE”
to the output variable, which is returned to the invoker by the Reply activity. Again,
error handling is omitted for the sake of simplicity.

The BPEL process illustrated in Figure 5.13 can be executed using the Service
Explorer application. The execution of the process can be monitored by starting
four instances of the conveyor client application, which can be used for displaying
the status of a conveyor segment and invoking its operations.

5. Application Experiments 97

Figure 5.12: A loop of four conveyors, top-down view.

Figure 5.14 shows four conveyor client applications while Service Explorer is ex-
ecuting the BPEL process described above. The client windows, from left to right
and top to bottom, represent the conveyors 1, 2, 3 and 4. The figure represents the
moment at which conveyor 2 is unloading and conveyor 3 is loading. Thus, in the
client applications, the pallet seems to appear on both conveyors for a short time.

The aforementioned loop of four conveyors can be implemented using a composite,
or hierarchical, BPEL process as well. Then, the upper level BPEL process is
otherwise similar to the one presented in Figure 5.13 except that eight partner links
are needed instead of four. These partner links are of two types, one for unloading
and one for loading a conveyor. Figure 5.15 illustrates the two BPEL processes that
are used in the partner links. One instance of each type is needed for each of the
four conveyors. Both processes include a similar partner link, which refers to an
actual conveyor segment and is named ‘Conveyor’ in the figure.

When using a composite BPEL process, the user must specify in Service Explorer
which of the partner links refer to a lower-level BPEL process instead of a device
and which files contain the lower-level BPEL processes. In addition, the user must
still specify for the lowest-level BPEL processes the devices to which the partner
links refer. For example, even in this relatively simple scenario, eight partner links
are used by the upper-level BPEL process, and each instance of the lower-level
BPEL processes uses one partner link. Hence, a BPEL file must be specified for
eight partner links and a device serial number for eight partner links. Currently,
the entire task must be performed manually. Nevertheless, in the finalized system,
this task will be automatically performed by an orchestration engine, which will
determine the correct web service instance to perform a particular task at runtime
[48].

Once the user has resolved the partner links in Service Explorer, the composite

5. Application Experiments 98

Figure 5.13: A BPEL process which operates a loop of four conveyors.

BPEL process can be executed. Each time the execution arrives to an Invoke activity
which uses a partner link that refers to another BPEL process, the lower-level BPEL
process is executed before continuing the execution of the upper-level BPEL process.
As expected, the effects of running the composite process are exactly similar as when
running the single-level BPEL process in Figure 5.13.

The number of partner links needed in the composite BPEL scenario could be
reduced to four if the lower-level BPEL processes were able to perform both the
loading and unloading operations. In standard BPEL, this can easily be achieved by
using the Pick activity. The Pick activity may contain several branches of which only
one is selected based on the received message [3]. Thus, the web service represented
by a BPEL file can support several operations. However, the current version of
Service Explorer is somewhat incomplete and provides no support for such use of
the Pick activity.

Another way to reduce the number of partner links in the case of a composite
BPEL process is to allow parameters to be passed to a BPEL process when it is
executed. In this manner, the number of partner links can be reduced to four in the
abovementioned scenario. Then, the lower-level BPEL processes perform either the
loading from left or unloading to right, depending on the parameter value. Thus,
only one lower-level BPEL process is required per conveyor segment. Figure 5.16

5. Application Experiments 99

Figure 5.14: Four client applications monitoring the execution of a BPEL process.

Figure 5.15: The lower-level BPEL processes used for unloading and loading.

shows the lower level BPEL process in this case. The initiating Receive activity
accepts one input variable. If the value of the input variable is ‘LOAD’, then the
operation LoadFromLeft is invoked on the conveyor segment. Otherwise the opera-
tion UnloadToRight is invoked. The upper-level BPEL process is otherwise similar
to the one in Figure 5.13 except that the sequence begins with an Assign activity
storing the correct values, ‘LOAD’ or ‘UNLOAD’, to the process variables subse-
quently provided as parameters to the lower-level BPEL processes. In addition, the
partner link type used by the upper-level BPEL process is different in that it only
contains one operation.

The approach to orchestrating web services using BPEL discussed in this dis-
sertation may appear somewhat inflexible. For example, a BPEL process must be

5. Application Experiments 100

Figure 5.16: A BPEL process, which performs one of two operations based on a parameter
value.

created in full before it can be executed. Moreover, a device requiring a specific
web service is currently unable to, for example, query available services and select
the most appropriate one at runtime. Instead, all interactions between web services
must be known at the time of starting the execution of the BPEL process, and the
endpoints to which the partner links refer must be specified. Nonetheless, in the
finalized system, flexibility will be increased by the orchestration engine, which will
automatically resolve partner links at runtime [48]. In addition, BPEL processes
could probably be loaded from a server during runtime. Increasing the flexibility of
the system to this level will require a considerable amount of further work.

5.3 Application Examples of Semantic Web Service Orches-
tration

This section presents two examples applying the web service orchestration approach
proposed in Section 3.2. The first example involves only a single domain web service,
whereas the second example involves several domain web services of the same type.

5. Application Experiments 101

Figure 5.17: The main components of the light tower equipment ontology.

5.3.1 Light Tower Example

This experiment scenario describes the orchestration of a process using the domain
web service representing a tower of three light segments described in Section 5.1.1.

The equipment ontology for the light tower web service contains a simple class
hierarchy, which represents the three types of light segments, and the functional data
type property isOn, which links each light segment to a Boolean value representing
the power state of the segment. The object property hasSegment links the sin-
gle LightTower individual to the three individuals representing the light segments.
Figure 5.17 illustrates the contents of the equipment ontology.

The PC-based services are deployed by running separate Java applications. In ad-
dition, four orchestration support services are deployed: Ontology Manager, which
updates the semantic model hosted by the Ontology Service, Orchestration Engine,
which executes the BPEL process functioning as the orchestration instructions for
this scenario, and Service Monitor, which assists the Orchestration Engine in ini-
tializing the partner links in the BPEL process.

The BPEL process developed for this experiment operates the light tower device
so that it implements the logic of traffic lights. That is, the device continuously
iterates through the four states typical to traffic lights in Finland. The BPEL
process includes delays to add a fixed duration to each state. In particular, the
state where only the red light is on continues for ten seconds, the state where both
the yellow and red lights are on for three seconds, the state where only the green
light is on for seven seconds, and the state where only the yellow light is on continues
for three seconds, after which the system returns to the state where only the red
light is on.

Before the Orchestration Engine begins executing the BPEL process, it uses Ser-
vice Monitor to find appropriate matches for the partner links representing the
aforementioned web services. The BPEL process first contains an Invoke activity to
request Ontology Service to load the equipment ontology. Then, the process invokes

5. Application Experiments 102

PREFIX lt:<http://www.ontologies.com/LightTower.owl#>
DELETE DATA
{

lt:GreenSegment_1 lt:isOn false .
}
INSERT DATA
{

lt:GreenSegment_1 lt:isOn true .
}

Listing 5.2: These SPARQL/Update operations modify the equipment ontology to reflect
that the green light segment is lighted.

PREFIX tower: <http://www.ontologies.com/LightTower.owl#>
SELECT ?value
{
tower:RedSegment_1 tower:isOn ?value .
}

Listing 5.3: This SPARQL query retrieves the current state of the red light segment.

the ScanNetwork operation of Ontology Manager to cause Ontology Manager to
subscribe to all event notifications sent by the light tower service. In addition, the
process sets the update rules for Ontology Manager by invoking its SetUpdateRules
operation and activates them by invoking the SetActivityState operation. In the
light tower scenario, six update rules are required. While three of the rules are
intended for reacting to the event that one of the light segments is activated, three
are intended for reacting to the event that a segment is deactivated. Then, each
time a light segment changes state, Ontology Manager receives a notification and
requests the Ontology Service to update the equipment ontology accordingly. Each
ontology update request contains a SPARQL/Update statement which the Ontol-
ogy Service executes to modify the semantic model. For example, when the light
tower service sends a notification message informing that the green segment has
been lighted, Ontology Manager requests Ontology Service to execute the SPAR-
QL/Update statement in Listing 5.2.

The BPEL process executed by Orchestration Engine invokes Ontology Service
to determine the status of each light segment. It obtains the state information by
requesting the Ontology Service to execute SPARQL SELECT queries such as the
one in Listing 5.3. Then, the process requests the light tower service to activate or
deactivate individual light segments so that the light tower enters the next traffic
light state in the cycle.

Figure 5.18 shows a sequence diagram representing the interaction of the five
web services in the experiment scenario. All of the components and relations in
the figure directly correspond to the more general components in Figure 3.2. In

5. Application Experiments 103

Figure 5.18: The light tower experiment sequence corresponds to the more general pattern
depicted in Figure 3.2.

this example scenario, the light tower service is the only domain web service. The
initialization of Ontology Service and Ontology Manager has been omitted from the
diagram because it is performed similarly as in Figure 3.2.

Similar experiments have been performed using an alternative light tower web
service interface. The alternative interface contains the composite operations Set-
ComplexStatus and ComplexStateChanged. The former is a request-response type
operation that makes it possible to set the states of all three light segments si-
multaneously, while the latter is an event notification sent by the service when the
former operation has been invoked. The notification carries the new state informa-
tion of all three light segments. The interface has been implemented for the light
tower web service based on the S1000 controller. When the alternative interface is
used, the BPEL process, which forms the execution logic of Orchestration Engine,
can be modified to use the new composite request-response operation. In addi-
tion, the ontology update rules must be modified, and the WSDL description of the

5. Application Experiments 104

Figure 5.19: The BPEL process invokes fewer operations when using the alternative light
tower service interface.

new interface must also be enriched with semantic information through the use of
SAWSDL and OWL-S. Nonetheless, creating the semantic service description is less
elaborate in this case, because the number of operations, and hence the number of
generated OWL-S Process descriptions, is smaller. The sequence diagram of Fig-
ure 5.18 also applies to the alternative light tower service interface, except that to
change the states of the light segments, only the SetComplexStatus operation needs
to be invoked instead of the operations SwitchRed, SwitchYellow and SwitchGreen.
In addition, only one notification is received after invoking the operation, namely
ComplexStateChanged, instead of the notifications RedStateChanged, YellowState-
Changed and GreenStateChanged. Ontology Manager compares the notification to
the conditions of the update rules and sends update requests to Ontology Service.
The scenario is illustrated in Figure 5.19.

5.3.2 Conveyor System Example

The conveyor system domain presented in Section 5.1.2 is more complex than the
Light Tower system considered in Section 5.3.1. In particular, the former includes
several web services representing conveyor devices, as opposed to a single web ser-
vice representing a light tower device. In addition, each of the conveyor devices
implements the service interface applied in Section 5.2. Nevertheless, the approach
for orchestrating the services remains the same as in the previous subsection.

5. Application Experiments 105

Figure 5.20: The main components of the conveyor system ontology.

Because the conveyors are part of the larger system presented in Section 5.1.3, this
section will consider only a simplified equipment ontology, which includes only those
parts of the overall system that are relevant for this example. Figure 5.20 shows a
class diagram of the simplified ontology. The ontology contains six individuals of
the class BasicConveyor, each of which represents one of the six conveyor segments.
Because the conveyor segments are connected in a circle, the individuals in the
ontology are connected in a loop by the hasNeighborOut property. Hence, a pallet
may travel from conveyor A to conveyor B if and only if A is related to B by the
hasNeighborOut property.

The conveyor system contains a pallet carrying a product, and the conveyor
services are orchestrated so that the pallet traverses the conveyor loop a fixed number
of times. The orchestration instructions are formulated as a BPEL process, which
is then submitted to Orchestration Engine for execution.

The main part of the BPEL process consists of a cycle repeated for a fixed amount
of times. In the beginning of each cycle, the Orchestration Engine sends a query
to the Ontology Service to determine on which conveyor segment the product cur-
rently resides. If the product is on segment 5, then the next destination is segment
2. Otherwise, the next destination is segment 5. Orchestration Engine then queries
from the Ontology Service the shortest path from the current location to the des-
tination segment. The SPARQL query uses the GLEEN2 library for requesting the
shortest path. Once the shortest path has been determined, Orchestration Engine
causes the pallet to traverse through the path by sequentially invoking the unloading
and loading operations of each of the conveyor segments on the path. Invoking the
operations causes the conveyor services to send event notifications, and Ontology
Manager constantly sends update requests to Ontology Service so that the semantic
2GLEEN: Regular Paths for ARQ SparQL. Available at http://sig.biostr.washington.edu/
projects/ontviews/gleen/index.html. Accessed on 2013-5-15.

5. Application Experiments 106

model remains synchronized with the actual location of the pallet.
The BPEL process, which Orchestration Engine executes, begins with the ini-

tialization of the orchestration support services: first, Orchestration Engine invokes
the SetBaseOntology operation on Ontology Service, as well as the operations Scan-
Network, SetUpdateRules, and SetActivityState on Ontology Manager. In addition,
during each cycle, Orchestration Engine invokes the ExecuteSelectAndPick opera-
tion to determine the current pallet location and the FindShortestPath operation to
determine the route to the next destination segment. After determining the path,
Orchestration Engine moves the pallet by sequentially invoking the LoadFromLeft
and UnloadToRight operations of the conveyor services representing the conveyor
segments on the path.

Resolving the partner links is more problematic than in the Light Tower scenario
because the number of domain web services is larger. In particular, because all
of the domain web services are of the same type, differentiating between various
instances of the same service type is crucial. Nonetheless, this can be achieved by
creating a separate partner link type for each of the partner links representing the
conveyor segments. The partner link type definitions are based on different WSDL
files representing the conveyor service. The syntactic interface definition is similar in
each file, but the port type SAWSDL annotations refer to different OWL-S Profiles.
Thus, six instances of the conveyor service profile are created, each of which denotes
a different conveyor segment. Then, to perfectly match a partner link, a conveyor
service must have a port type SAWSDL annotation referring to the correct profile
instance. Otherwise, the match rating will be lower. This allows Orchestration
Engine to select the correct conveyor service instance for each partner link.

In this example, six update rules must be used. Each update rule is intended
for reacting to the event that the pallet arrives on one of the conveyor segments.
Each update rule contains a condition that matches the event that a pallet arrives
on the latter sensor on the conveyor and an update statement which first erases any
previous pallet location information from the equipment ontology and then sets the
pallet location to the corresponding conveyor. In each update rule, the event source
is given the same name as the partner link in the BPEL process, and the BPEL
process contains an Invoke activity which reports the mapping between partner link
names and endpoint URIs to Ontology Manager by invoking its SetEndpointMapping
operation.

The notification Sensor2Changed is used in determining when a pallet arrives
on the latter sensor of a conveyor. The notification is sent each time the sensor
changes its state. The notification message contains the string ‘ON’ if the sensor
detects a pallet, or ‘OFF’ if the sensor no more detects a pallet. Thus, if conveyor
3 sends a Sensor2Changed notification carrying the string ‘ON’, then the ontology

5. Application Experiments 107

PREFIX ps: <http://www.owl−ontologies.com/ProductionSystem.owl#>
DELETE
{

?conveyor ps:containsPallet ?pallet .
}
WHERE
{

?conveyor a ps:BasicConveyor .
?pallet ps:containsProduct ps:productA .

}
INSERT
{

ps:bcBasicConv3 ps:containsPallet ?pallet .
}
WHERE
{

?pallet ps:containsProduct ps:productA.
}

Listing 5.4: These SPARQL/Update operations set the location of the pallet to conveyor
3 in the equipment ontology.

is updated so that the new location of the pallet is conveyor 3. This is achieved
by requesting the Ontology Service to execute the SPARQL/Update statement in
Listing 5.4. The same statement both erases the previous location information of
the pallet and writes the new information. This produces correct results because
the system contains only one pallet. Basically, another update rule could be used
to erase the previous information when a Sensor2Changed notification carrying the
string ‘OFF’ was received. However, then the number of ontology update rules
would be twice as large, which would require some additional work for performing
the experiment. Moreover, if such a rule was used, then the equipment ontology
would periodically reflect a state in which the pallet is on none of the conveyors.
This is because the LoadFromLeft operation of a destination conveyor is not invoked
until the UnloadToRight operation of the source conveyor has completed.

Figure 5.21 shows a sequence diagram representing the conveyor system experi-
ment scenario. The six conveyor services are represented as a single object for the
sake of simplicity. The diagram shows that once the Orchestration Engine has de-
termined the path from the source conveyor to the destination conveyor, it starts
repeating a cycle during which the pallet is moved to the next conveyor on the path.
The loop is repeated until the pallet reaches the destination segment. The outer loop
in the diagram corresponds to the BPEL ForEach activity that causes the pallet to
repeat the loop a fixed number of times.

5. Application Experiments 108

Figure 5.21: The BPEL process, which Orchestration Engine executes, uses Ontology
Service to determine the path between the start and destination conveyor segments.

5.4 Application Example of SPARQL-based Semantic Web
Service Composition

This section exemplifies web service composition in the domain presented in Sec-
tion 5.1.3. The example applies the semantic web service composition approach pre-
sented in Section 3.3. The goal is to compose and execute a service that completely

5. Application Experiments 109

Figure 5.22: The path traversed by the pallet includes visiting each of the five workstations.

manufactures a product denoted by product A. The production sequence involves
five operations performed on a pallet, and the two-dimensional map in Figure 5.22
indicates the path that the pallet must traverse to visit the necessary workstations.
In the figure, the starting and ending points of the path are indicated by a dot and
a rectangle, respectively. The numbers next to the workstations represent the order
in which the pallet must visit each workstation.

The production line is described with a domain ontology including a total of
36 classes, and the UML class diagram of Figure 5.23 illustrates the most relevant
concepts and relations in the ontology. While the domain ontology combines all
of the information corresponding to the process, product and equipment ontologies
described in [56], the product descriptions in particular are considerably simplified
compared to those outlined in [56]. Each product requires a sequence of opera-
tions, and the class Pair makes it possible to represent the ternary relation between
an operation sequence, an included operation, and a position in the sequence. In
the domain ontology, the operation sequence performed on a product is associated
with the pallet carrying the product. Therefore, instances of the class Pallet are
associated with instances of the class OperationSequence through the property has-
ReceivedProcessing.

The modeled production system includes two machine categories: conveyor seg-
ments and workstations. Each of the devices is represented by a web service, which
allows the devices to be controlled through web service interfaces. Hence, there are
two types of web services. For the sake of simplicity, in the virtual model, all services
of the same category are modeled using a similar web service. Only the semantic
descriptions differ between the service instances.

The virtual model of the system consists of 34 web services simulating the be-

5. Application Experiments 110

Figure 5.23: The domain ontology contains product, equipment, and process descriptions.
All of the relations between the OWL classes are object properties, and class attributes
represent datatype properties.

havior of the web services in the actual production line. The virtual web services
are implemented using a DPWS tool kit [18] for Java programming language. Each
of the services includes both a syntactic WSDL description and a semantic OWL-S
description.

The conveyor web service supports four WSDL operations relevant to the appli-
cation scenario: TransferIn, TransferOutStart, TransferOutStop and StatusChanged.
The former three operations are request-response type operations, and hence, their
SAWSDL annotations point to OWL-S atomic processes with both input and output
parameters, while the latter operation is a notification operation, hence its SAWSDL
annotation points to an OWL-S atomic process with output parameters only.

For example, unloading a pallet from one conveyor to an adjacent conveyor can
be achieved by first invoking the TransferOutStart operation on the former con-
veyor, then the TransferIn operation on the latter conveyor, and finally invoking
the TransferOutStop operation on the former conveyor.

The workstation web service includes only one request-response type operation,

5. Application Experiments 111

PerformOperation, and one notification operation, OperationCompleted. Hence, the
operations can be semantically described using only two OWL-S processes. However,
each of the five workstations and 29 conveyor segments is described by a separate
variant of the OWL-S description, and in total the semantic descriptions include 126
OWL-S processes. The service composition algorithms consider 92 of the processes
as planning operators, while the remaining 34 represent event notifications signaling
world state changes.

The following code examples focus on the web service representing the conveyor
segment M_LL_C2 in Figures 5.3(b) and 5.22. For the sake of simplicity, both the
conveyor segment and the corresponding web service will henceforth be denoted as
Conveyor 2.

Listing 5.5 shows the OWL-S process TransferInProcess2. The process corre-
sponds to the WSDL operation TransferIn of Conveyor 2. Listing 5.5 includes only
a partial view of the process including the conditions and effects of a successful
execution of the process. The conditions and effects are specified as SPARQL and
SPARQL/Update expressions embedded directly into the OWL-S document. The
expressions refer to the OWL individual bcBasicConv2, which represents Conveyor
2 in the domain model. For representation purposes, the code listing includes extra
line breaks, each of which is indicated by a pair of arrows.

Lines 10-16 in the condition expression of Listing 5.5 require that an initially
loaded source conveyor must be unloading to Conveyor 2, while lines 17-19 require
that the source conveyor is in the direction specified by the process input parameter
TransferInserviceIn2, which is represented by a SPARQL query variable with the
same name. The value of the variable denotes the direction from which Conveyor
2 should load a pallet. Finally, lines 20 and 21 require that Conveyor 2 is initially
unoccupied.

In the effect expression of Listing 5.5, lines 30-32 state that the source conveyor
no longer contains a pallet, while lines 33-35 state that Conveyor 2 contains a pallet
after the execution of the OWL-S process. In addition, lines 36-41 specify that the
pallet on Conveyor 2 is the one that was originally on the source conveyor.

The OWL-S process StatusChangedProcess2, which corresponds to the StatusChanged
event notification of Conveyor 2, has two results. One of these signals the event that
the conveyor motor state has changed, and the other additionally signals that a
pallet has been transferred to the conveyor. The effect and condition expressions
are quite similar to the those presented for TransferInProcess2. The WSDL notifi-
cation operation refers to the corresponding OWL-S process through an SAWSDL
annotation as illustrated in Listing 5.6.

The product, denoted as product A, requires five operations to be performed.
As each of the operations is performed by a different workstation, the pallet car-

5. Application Experiments 112

1 <process:AtomicProcess rdf:about="http://www.pe.tut.fi/fast/SocradesConveyors.owl#←↩
↪→ TransferInProcess2">

2 <process:hasResult>
3 <process:Result
4 rdf:about="http://www.pe.tut.fi/fast/SocradesConveyors.owl#←↩

↪→ IFTransferInSuccessResult2">
5 <process:inCondition>
6 <expr:SPARQL−Condition>
7 <expr:expressionData rdf:datatype="http://www.w3.org/2001/XMLSchema#←↩

↪→ string">
8 <![CDATA[PREFIX ps:<http://www.owl−ontologies.com/←↩

↪→ ProductionSystem.owl#>
9 ASK {
10 ?source ps:containsPallet ?pallet .
11 ?source ps:hasMotor ?motor .
12 ?motor ps:hasDirection ?outDirection .
13 ?source ps:hasOutFlow ?outFlow .
14 ?outFlow ps:hasDirection ?outDirection .
15 ?outFlow ps:hasFlowComponent ps:bcBasicConv2 .
16 ?motor ps:isInState ps:runningState .
17 ps:bcBasicConv2 ps:hasInFlow ?inFlow .
18 ?inFlow ps:hasDirection ?TransferInServiceIn2 .
19 ?inFlow ps:hasFlowComponent ?source .
20 OPTIONAL { ps:bcBasicConv2 ps:containsPallet ?palletB } .
21 FILTER (!BOUND(?palletB))
22 }]]>
23 </expr:expressionData>
24 </expr:SPARQL−Condition>
25 </process:inCondition>
26 <process:hasEffect>
27 <expr:SPARQL−Expression>
28 <expr:expressionData rdf:datatype="http://www.w3.org/2001/XMLSchema#←↩

↪→ string">
29 <![CDATA[PREFIX ps:<http://www.owl−ontologies.com/←↩

↪→ ProductionSystem.owl#>
30 DELETE {
31 ?inputConveyor ps:containsPallet ?pallet .
32 }
33 INSERT {
34 ps:bcBasicConv2 ps:containsPallet ?pallet .
35 }
36 WHERE {
37 ?inputConveyor ps:containsPallet ?pallet .
38 ps:bcBasicConv2 ps:hasInFlow ?inFlow .
39 ?inFlow ps:hasDirection ?TransferInServiceIn2 .
40 ?inFlow ps:hasFlowComponent ?inputConveyor .
41 }]]>
42 </expr:expressionData>
43 </expr:SPARQL−Expression>
44 </process:hasEffect>
45 </process:Result>
46 </process:hasResult>
47 </process:AtomicProcess>

Listing 5.5: The OWL-S description of Conveyor 2 TransferIn operation. Some alternative
process results as well as inputs and outputs have been omitted for brevity.

5. Application Experiments 113

<wsdl:operation name="StatusChanged">
<sawsdl:attrExtensions sawsdl:modelReference="http://www.pe.tut.fi/fast/←↩

↪→ SocradesConveyors.owl#StatusChangedProcess2" />
<wsdl:output message="tns:IFStatusChangedServiceResponse" />

</wsdl:operation>

Listing 5.6: WSDL operations refer to OWL-S processes via SAWSDL annotations.

rying the product must visit each of the workstations in the production line once.
Hence, although the domain ontology specifies the sequence of required operations,
a planning process is necessary to determine the exact procedure for performing the
operations on the product using the web services available.

To initiate the planning process, a BPEL process can be created to invoke the
FulfilGoal operation of ServiceMonitor with a goal expression requiring all necessary
operations to be performed on the pallet as well as a restriction expression specify-
ing that at most one conveyor may be unloading at a time and that the sequence
of performed operations must remain consistent with the required sequence in all
intermediate domain states. The restrictions effectively reduce the state-space graph
size and focus the search on only a few potential execution traces, thus allowing Al-
gorithm 1 to succeed. The SPARQL query in Listing 5.7 represents the production
goal, while Listing 5.8 expresses the aforementioned restrictions on the intermediate
states.

In the goal query, lines 3-7 count the number of operations performed on the
product, and lines 8-11 count the number of operations required to produce one
unit of product A. Lines 12-22 count the number of matching entries in the sequence
performed and the sequence required. Finally, line 27 uses the three computed values
to specify that the sequence performed should be equal to the sequence required. In
addition, lines 23-26 together with line 28 require that all conveyors are stopped in
the goal state.

In the restriction query, lines 3-9 count the number of operations performed on
the product, and lines 10-20 count the number of matches in the operation sequence
required and the sequence performed. Lines 22-25 count the number of conveyors
that are running, lines 26-28 determine the conveyor carrying the pallet, and lines
29-37 determine the conveyors that are unloading to the conveyor currently car-
rying the pallet. Finally, lines 39-41 use the computed values to require that the
operation sequence performed is a beginning subsequence of the sequence required,
that at most one conveyor motor may be active at a time, and that an active con-
veyor segment must be either the one currently holding the pallet or a neighboring
upstream conveyor segment.

When Service Monitor initially receives a request to fulfill the goal, it composes a
new composite OWL-S process with 128 web service invocations. The composed plan

5. Application Experiments 114

1 PREFIX ps: <http://www.owl−ontologies.com/ProductionSystem.owl#>
2 ASK {
3 {SELECT (count(?pair) AS ?numPerformed) WHERE {
4 ?pallet ps:containsProduct ps:productA .
5 ?pallet ps:hasReceivedProcessing ?sequence .
6 ?sequence ps:hasSequencePair ?pair .
7 }}
8 {SELECT (count(?requirement) AS ?numRequired) WHERE {
9 ps:productA ps:requiresProcessing ?requirements .
10 ?requirements ps:hasSequencePair ?requirement .
11 }}
12 {SELECT (count(?pair) AS ?numMatches) WHERE {
13 ?pallet ps:containsProduct ps:productA .
14 ?pallet ps:hasReceivedProcessing ?sequence .
15 ?sequence ps:hasSequencePair ?pair .
16 ?pair ps:hasOperation ?performedOperation .
17 ?pair ps:hasOrder ?performedOrder .
18 ps:productA ps:requiresProcessing ?requirements .
19 ?requirements ps:hasSequencePair ?requirement .
20 ?requirement ps:hasOrder ?performedOrder .
21 ?requirement ps:hasOperation ?performedOperation .
22 }}
23 OPTIONAL {SELECT ?runningConveyor WHERE {
24 ?runningConveyor ps:hasMotor ?motor .
25 ?motor ps:isInState ps:runningState .
26 }}
27 FILTER (?numMatches = ?numRequired && ?numPerformed = ?numRequired
28 && !BOUND(?runningConveyor))
29 }

Listing 5.7: The goal query requires that product A is completed and all conveyors are
stopped.

involves moving the pallet through the path depicted in Figure 5.22 and invoking
the workstation services with correct input parameters. On a desktop computer
with two 3 gigahertz CPU cores and 3.7 gigabytes of RAM, the associated planning
process is completed in approximately 20 seconds. On subsequent requests, after
the completed product has been removed from the system, Service Monitor may
directly reuse the previously composed OWL-S process if the pallet is at the same
initial location.

Service Monitor automatically composes the condition and effect expressions of
a composed OWL-S process, which may cause them to be somewhat inaccurate.
Therefore, whenever the solution plan discovered consists of a previously composed
OWL-S process, Service Monitor simulates the plan execution by considering the
condition and effect expressions of the atomic web service descriptions. Unless the
simulated resulting world state satisfies the goal, Service Monitor attempts to deter-
mine a new solution plan without the previously composed process. For example, in
the example scenario considered, Service Monitor simulates the execution result for

5. Application Experiments 115

1 PREFIX ps: <http://www.owl−ontologies.com/ProductionSystem.owl#>
2 ASK {
3 {SELECT (count(?motor) AS ?runningCount) WHERE {
4 ?motor ps:isInState ps:runningState .}}
5 {SELECT (count(?pair) AS ?numPerformed) WHERE {
6 ?pallet ps:containsProduct ps:productA .
7 ?pallet ps:hasReceivedProcessing ?sequence .
8 ?sequence ps:hasSequencePair ?pair .
9 }}
10 {SELECT (count(?pair) AS ?numMatches) WHERE {
11 ?pallet ps:containsProduct ps:productA .
12 ?pallet ps:hasReceivedProcessing ?sequence .
13 ?sequence ps:hasSequencePair ?pair .
14 ?pair ps:hasOperation ?requiredOperation .
15 ?pair ps:hasOrder ?requiredOrder .
16 ps:productA ps:requiresProcessing ?requirements .
17 ?requirements ps:hasSequencePair ?requirement .
18 ?requirement ps:hasOrder ?requiredOrder .
19 ?requirement ps:hasOperation ?requiredOperation .
20 }}
21 OPTIONAL {
22 {SELECT ?runningConveyor WHERE {
23 ?motor ps:isInState ps:runningState .
24 ?runningConveyor ps:hasMotor ?motor .
25 }}
26 {SELECT ?palletLocation WHERE {
27 ?palletLocation ps:containsPallet ?pallet .
28 }}
29 {SELECT ?runningSourceConveyor WHERE {
30 ?runningSourceConveyor ps:hasMotor ?sourceMotor .
31 ?sourceMotor ps:isInState ps:runningState .
32 ?palletLocation ps:hasPallet ?pallet .
33 ?sourceMotor ps:hasDirection ?runningDirection .
34 ?runningSourceConveyor ps:hasOutFlow ?outFlow .
35 ?outFlow ps:hasDirection ?runningDirection .
36 ?outFlow ps:hasFlowComponent ?palletLocation .
37 }}
38 }
39 FILTER (?numPerformed = ?numMatches && ?runningCount <= 1
40 && (!BOUND(?runningConveyor) || ?runningConveyor = ?runningSourceConveyor
41 || ?runningConveyor = ?palletLocation))
42 }

Listing 5.8: The restriction query specifies that only one conveyor may unload at a time
and that the operation sequence performed on product A must be consistent with the
operation sequence required.

a plan consisting of 131 web service invocations in approximately 400 milliseconds.

5. Application Experiments 116

5.5 Application Examples of Dynamic Domain Model Updat-
ing

The web service-based approach to hosting a domain model discussed in Section 3.4
is applied in [80] and [84]. In [80], the Ontology Manager based approach of updat-
ing the domain model is applied to maintain an accurate view of the manufacturing
system while another web service, the Orchestration Engine, executes BPEL pro-
cesses. In [84], the Service Monitor based approach is applied while Service Monitor
plans and executes a process fulfilling a production goal.

This section presents an application example using the two approaches presented
in Section 3.4 with the application domain described in Section 5.1.4. The prerequi-
site for both of the model update approaches is that an OWL model of the system

Figure 5.24: The manufacturing system ontology contains classes representing the produc-
tion devices and product components.

5. Application Experiments 117

is formulated. In the sequel, the OWL model used in these experiments will be
described. The OWL domain model of the system consists of a generic production
system ontology, which is designed to be applicable in various use cases, and a use
case specific ontology, which extends the former to accurately model the particular
production system considered. The use case specific OWL model is imported by a
third OWL model which contains instance data for the modeled system. The OWL
model containing the instance data will henceforth be called the ABox, while the
OWL model containing only the static data will be called the TBox. The ABox
contains all assertions of the current state of the system and is thus the only model
that needs to be updated at run-time. Figure 5.24 shows a simplified diagram of
the main concepts in the domain ontology.

The most integral concept in the domain ontology is the Pallet class, which repre-
sents the containers that carry the products being manufactured and are transported
on the conveyor line. The carried product templates are represented by instances of
the Assembly class. Each of the conveyors is composed of a number of zones, and
each pallet can reside on one of the conveyor zones at a time. Hence, each instance
of the ConveyorZone class is connected to at most one Pallet instance through the
object property hasPallet in the OWL model.

Each product must at any time reside either on a pallet or a product storage.
In the ABox, there are only two instances of ProductStorage class, which repre-
sent the two trays reserved for blank and completed product templates. Only the
Robot instance representing robot 1 is connected to the ProductStorage instances
through the OWL properties hasInputStorage and hasOutputStorage, as only robot
1 is able to retrieve empty product templates from the storage to a pallet occupying
its processing location and deposit completed products from the pallet into storage.

5.5.1 Applying the Ontology Manager Approach

The Ontology Manager approach is designed to be applicable to traditional web ser-
vices with no semantic descriptions. However, the update rules applied by Ontology
Manager conceptually substitute a semantic description of the services. Therefore,
the rules have to be manually created for each application scenario, such as the
experiment scenario considered in this section.

Figure 5.25 shows the Ontology Manager GUI window with an update rule se-
lected for editing. The selected rule, Assembly Loaded Rule, matches the event that
the robot in cell number 1, or simply robot 1, retrieves a product template from the
input storage onto an initially empty pallet. The tree in the left part of the window
shows the required XML content for the notification message. The right part of the
window shows the update actions to execute when the rule matches a notification.
Furthermore, the rule defines one notification variable, CellOutput, whose value is

5. Application Experiments 118

Figure 5.25: The Ontology Manager user interface facilitates the creation and editing of
update rules.

extracted from the notification message content using the XSLT script in the lower
right part of the window. The XSLT script extracts the value of the cellId attribute
in the notification message content and translates it into the appropriate instance of
the OWL class FastoryCell. The variable name and the translated value will then
be sent to Ontology Service for use in executing the update actions. In addition,
the rule contains one SPARQL ASK condition query, which will be included in the
request message sent.

Two additional rules, Assembly Switched Rule and Assembly Performed Rule are
necessary to accurately reflect the effects of the robot services on the domain state.
While the rule names have no effect on rule processing in Ontology Manager, their
main purpose is to allow a human user to interpret the rules.

Assembly Switched Rule corresponds to the event that the robot 1 service re-
placePaper operation is invoked when the pallet occupying the robot processing
location already carries an assembly, whereas Assembly Loaded Rule corresponds to

5. Application Experiments 119

Table 5.3: The effects of the robot services can be expressed with three update rules.

Rule Name SPARQL Condition

Assembly
Loaded Rule

PREFIX ns1: <http://www.pe.tut.fi/.../Fastory.owl#>
ASK {
?CellOutput ns1:hasRobot ?robot .
?robot ns1:hasInputStorage ?inputStorage .
?inputStorage ns1:stores ?newAssembly .
?robot ns1:hasProcessingLocation ?zone .
?zone ns1:hasPallet ?pallet .
FILTER NOT EXISTS { ?pallet ns1:carriesProduct ?oldContent
}
}

Assembly
Switched
Rule

PREFIX ns1: <http://www.pe.tut.fi/.../Fastory.owl#>
ASK {
?CellOutput ns1:hasRobot ?robot .
?robot ns1:hasProcessingLocation ?zone .
?zone ns1:hasPallet ?pallet .
?pallet ns1:carriesProduct ?oldContent .
?robot ns1:hasInputStorage ?inputStorage .
?inputStorage ns1:stores ?newAssembly .
}

Assembly
Performed
Rule

PREFIX ns1: <http://www.pe.tut.fi/.../Fastory.owl#>
ASK {
?Operation a ns1:InsertionOperation .
}

the event that the operation is invoked when the pallet is empty. Therefore, the
condition and effect expressions are somewhat different between the two rules.

Assembly Performed Rule corresponds to the event that a robot completes an
assembly operation, and the rule condition expression only specifies a restriction on
the type of the operation performed.

The rule condition expressions ensure that each rule is applied in the correct
domain state, even when the received event notifications alone are insufficient to
indicate the correct rule to apply. Table 5.3 lists the three update rules and their
condition expressions. For the sake of brevity, the table omits the SPARQL/Update
expressions specifying the rule effects.

Once all rules have been specified by either creating them in the Ontology Man-
ager GUI or by loading them from an XML file, Ontology Manager must be switched
to an active state. The activation can be performed either locally by selecting the
Activate Rules menu item in the Tools menu in Ontology Manager GUI or remotely
by invoking the SetActivityState operation in the Ontology Manager web service

5. Application Experiments 120

interface.

5.5.2 Applying the Service Monitor Approach

Service Monitor automatically detects the production system services as the devices
hosting them are activated. If Service Monitor is deployed after the domain services,
it discovers them during the automatic discovery process included in the Service
Monitor initialization phase.

The WSDL documents published by the production system services specify no
OWL-S processes. Instead, the WSDL operations include SAWSDL annotations
referring to SWRL rules defined in the TBox. Therefore, when Service Monitor
discovers, for example, the robot service, it generates an OWL ontology containing
OWL-S processes that correspond to the robot WSDL operations. The OWL-S
generation approach is based on SAWSDL annotations and its details are described
in Section 3.5.

For all of the robot service instances except robot 1, the OWL-S process derived
from the EquipmentChangeState WSDL notification operation includes three out-
put parameters, which correspond to different components of the operation output
message. Table 5.4 lists the output parameters, the types of their values, and their
definitions.

Service Monitor derives the types for the OWL-S process parameters from the
SAWSDL annotations of the XML schema type definitions used by the attributes
in the WSDL operation output message. While the message schema includes a few
other attributes, Service Monitor ignores them in the OWL-S derivation, since they
contain no SAWSDL annotations.

While robot 1 provides no assembly operations, it enables the transport of product
templates between the pallet occupying its processing location and the product
template storages. Therefore, the XML schema in the robot 1 WSDL document
contains no attribute indicating the performed operation, and the OWL-S process
derived from the notification operation includes only the first two of the outputs

Table 5.4: The EquipmentChangeState OWL-S process has three output parameters.

Output Name Type Description

EquipmentChangeStateOutput1 RobotStatus (OWL) The current robot sta-
tus.

EquipmentChangeStateOutput2 RobotStatus (OWL) The previous robot
status.

EquipmentChangeStateOutput3 Operation (OWL) The performed opera-
tion.

5. Application Experiments 121

listed in Table 5.4.
Once Service Monitor has derived the OWL-S descriptions for the discovered

robot services, it extracts domain model update rules from the OWL-S processes
representing the robot EquipmentChangeState WSDL notification operations. Thus,
for the robot 1 service, Service Monitor extracts one update rule with two conditional
effects and two rule variables. The condition and effect expression language used in
the OWL-S descriptions may be either SPARQL or SWRL, depending on the cur-
rent Service Monitor settings. In the former case, the expressions are all SPARQL
ASK queries, and therefore Service Monitor directly copies the condition expres-
sions into the rule objects and translates the effect expressions to SPARQL/Update
expressions. In the sequel, however, it is assumed that Service Monitor has been
configured to generate SWRL expressions.

Table 5.5 shows the condition and effect expression for the OWL-S process result
representing the case that robot 1 unloads the current product template from the
pallet to the output storage and loads a new template from the input storage onto
the pallet. While the first table column shows the SWRL condition expression on
the first row and the effect on the second row, the second table column shows the
SPARQL expressions to which Service Monitor translates the condition and effect
during the extraction of the update rule object models. While the SWRL expressions
embedded into the OWL-S documents are expressed in XML, the table shows them
as plain text for the sake of brevity. The symbol namespaces are omitted in the
table except for the swrlb namespace prefix denoting the namespace of SWRL built-
ins. The condition and effect expressions refer to the output parameters and the
corresponding notification variables by name.

Figure 5.26 shows the Service Monitor GUI displaying goal process statuses. In
the figure, only one goal process has been created, and it is currently running. The
top part of the GUI window displays the number of semantic web services discovered.
In the situation displayed, the number includes the 22 domain web services as well
as Ontology Service and Service Monitor itself. The lower left part of the window
shows the SPARQL ASK query representing the goal to be achieved. Service Monitor
has composed a solution plan consisting of a sequence of 43 web service operation
invocations, of which it has already invoked the first seven. While Service Monitor
executes the plan, it monitors the event notifications sent by the domain services
and updates the domain model accordingly. Service Monitor proceeds to the next
operation invocation in the sequence only when it detects that the previous operation
has caused the expected effects on the domain model.

As the update rules used by Service Monitor are automatically derived and uned-
itable, there is no need to explicitly activate Service Monitor similarly to Ontology
Manager. Instead, Service Monitor is typically in an active state and reacts to event

5. Application Experiments 122

Table 5.5: Service Monitor converts result conditions and effects from SWRL to SPARQL.

SWRL Expression SPARQL Expression

hasProcessingLocation(robot1, ?zone)
∧ carriesProduct(?pallet, ?assembly)
∧ hasPallet(?zone, ?pallet) ∧ canPer-
formOperation(robot1, ?operation) ∧
hasInputStorage(robot1, ?inputStack)
∧ isTopOf(?oldInputTop, ?inputStack)
∧ isOnTopOf(?oldInputTop, ?newIn-
putTop) ∧ stores(?inputStack, ?oldIn-
putTop) ∧ hasOutputStorage(robot1,
?storage) ∧ isTopOf(?oldTop,
?storage) ∧ PalletMoveOpera-
tion(?operation) ∧ sameIndivid-
ual(?EquipmentChangeStateOutput1,
blocked) ∧ sameIndivid-
ual(?EquipmentChangeStateOutput2,
executing)

ASK {
robot1 hasProcessingLocation ?zone .
?pallet carriesProduct ?assembly .
?zone hasPallet ?pallet .
robot1 canPerformOperation ?opera-
tion .
robot1 hasOutputStorage ?storage .
?oldTop isTopOf ?storage .
robot1 hasInputStorage ?inputStack .
?newAssembly isTopOf ?inputStack .
?newAssembly isOnTopOf ?newInput-
Top .
?inputStack stores ?newAssembly .
?operation a PalletMoveOperation .
FILTER (?EquipmentChangeSta-
teOutput1 = blocked && ?Equip-
mentChangeStateOutput2 = execut-
ing)
}

swrlb:remove(1) ∧ swrlb:remove(5) ∧
swrlb:remove(6) ∧ swrlb:remove(7) ∧
swrlb:remove(9) ∧ stores(?storage, ?as-
sembly) ∧ isTopOf(?assembly, ?stor-
age) ∧ isOnTopOf(?assembly, ?old-
Top) ∧ carriesProduct(?pallet, ?oldIn-
putTop) ∧ isTopOf(?newInputTop, ?in-
putStack)

DELETE {
?pallet carriesProduct ?assembly .
?oldTop isTopOf ?storage .
?newAssembly isTopOf ?inputStack .
?newAssembly isOnTopOf ?newInput-
Top .
?inputStack stores ?newAssembly .
}
INSERT {
?storage stores ?assembly .
?assembly isTopOf ?storage .
?assembly isOnTopOf ?oldTop .
?pallet carriesProduct ?newAssembly .
?newInputTop isTopOf ?inputStack .
}
WHERE {
(The same as the query body in the
above ASK query.)
}

notifications from the domain services by applying the corresponding update rules.

5. Application Experiments 123

Figure 5.26: Service Monitor simultaneously applies ontology update rules during domain
web service invocation.

5.6 Application Example of OWL-S Generation

This section exemplifies the application of the OWL-S derivation approach proposed
in Section 3.5.

The current implementation of the Service Monitor web service has been tested
both on PC-based web services implemented with Java and on web services im-
plemented on RTUs controlling the actual system described in Section 5.1.4. The
system is modeled by the OWL model described at the beginning of Section 5.5.
The OWL model contains individuals representing the system components, such as
the individual cells, robots, and conveyors.

Listing 5.9 shows the WSDL document describing the robot 2 service. The list-
ing has been abbreviated so that it only contains the most relevant parts, and some
parts and namespace URIs have been substituted with three dots. The WSDL op-
eration replacePaper, which is present only in the robot 1 WSDL document and

5. Application Experiments 124

1<wsdl:definitions name="RobComm1"...>
2 <wsdl:types>
3 <xs:schema targetNamespace="http://www.tut.fi/fast/robot"...>
4 <xs:element name="String" type="xs:string" />
5 <xs:element name="calibrateRobot" type="xs:string"/>
6 <xs:element name = "EquipmentChangeState">
7 <xs:complexType>
8 <xs:attribute name = "currentState" use = "required" type="tns:DeviceState" />
9 <xs:attribute name = "previousState" use = "required" type="tns:DeviceState" />...

10 </xs:complexType>
11 </xs:element>
12 <xs:simpleType name="DeviceState"
13 sawsdl:modelReference="...#RobotStatus">
14 <xs:restriction base="xs:string">
15 <xs:enumeration value="READY−IDLE−BLOCKED"
16 sawsdl:modelReference="...#blocked" />...
17 </xs:restriction>
18 </xs:simpleType>
19 <xs:simpleType name="RecipeType"
20 sawsdl:modelReference="...#Operation">
21 <xs:restriction base="xs:string">
22 <xs:enumeration value="1" sawsdl:modelReference="...#frameInsertion1" />...
23 </xs:restriction>
24 </xs:simpleType>
25 <xs:element name="DrawMsg">
26 <xs:complexType>
27 <xs:sequence>
28 ... <xs:element name="recipeNum" type="tns:RecipeType"/>...
29 </xs:sequence>
30 </xs:complexType>
31 </xs:element>
32 </xs:schema>
33 </wsdl:types>
34 <wsdl:message name="DrawRequest" sawsdl:modelReference="...#operation" >
35 <wsdl:part name="Request" element="tns:DrawMsg" sawsdl:modelReference="...#operation" />
36 </wsdl:message>
37 <wsdl:message name="DrawResponse">
38 <wsdl:part name="Response" element="tns:String" />
39 </wsdl:message>...
40 <wsdl:message name="EquipmentChangeState">
41 <wsdl:part name="EquipmentChangeState" element="tns:EquipmentChangeState"
42 sawsdl:modelReference="...#currentState ...#previousState ...#operation" />
43 </wsdl:message>
44 <wsdl:portType name="RobotPortType" ... sawsdl:modelReference="...#RobotVariableBinding2">
45 <wsdl:operation name="Draw">
46 <sawsdl:attrExtensions sawsdl:modelReference="...#robotOperationRule" />
47 <wsdl:input name="DrawRequest" message="tns:DrawRequest" />
48 <wsdl:output name="DrawResponse" message="tns:DrawResponse" />
49 </wsdl:operation>
50 <wsdl:operation name="EquipmentChangeState">
51 <sawsdl:attrExtensions sawsdl:modelReference="...#operationCompletedRule ...#

operationStartedRule" />
52 <wsdl:output name="EquipmentChangeState" message="tns:EquipmentChangeState" />
53 </wsdl:operation>
54 </wsdl:portType>
55 <!−− This embedded OWL document imports the actual OWL model that contains
56 the concepts referenced in the SAWSDL annotations. −−>
57<rdf:RDF ...>
58 <owl:Ontology>
59 <owl:imports rdf:resource="http://www.pe.tut.fi/fast/owl/models/Fastory−abox.owl" />
60 </owl:Ontology>
61 <process:Binding
62 rdf:about="...#RobotVariableBinding2">
63 <process:toVar
64 rdf:resource="...#robot" />
65 <process:valueObject
66 rdf:resource="...#robot2" />
67 </process:Binding>
68</rdf:RDF>
69</wsdl:definitions>

Listing 5.9: The WSDL operations of the robot service contain several SAWSDL model
references to SWRL rules.

5. Application Experiments 125

Table 5.6: The Robot service WSDL operations are linked to SWRL rules through
SAWSDL annotations.

Operation Name SAWSDL Model Reference

Draw (not robot 1) robotOperationRule

replacePaper (only robot 1) palletLoadRule, palletUnloadRule

EquipmentChangeState (robot 1) assemblyLoadedRule,
assemblyUnloadedRule

EquipmentChangeState (not robot 1) operationStartedRule,
operationCompletedRule

is therefore absent from the listing, includes model references to two SWRL rules:
palletLoadRule and palletUnloadRule. The former rule applies to the case that the
pallet is initially blank and the latter to the case that the pallet already carries an
assembly, which is then replaced. Therefore, Service Monitor generates two results
for the corresponding OWL-S process. The results represent the two alternative
consequences of the replacePaper operation, namely the placement and the replace-
ment of a paper. The WSDL operation Draw on line 46 in Listing 5.9 only contains
a model reference to the SWRL rule robotOperationRule, and hence Service Mon-
itor only generates one result for the process, which corresponds to the event that
the selected operation is performed on the assembly carried by the pallet occupy-
ing the robot processing location. Table 5.6 shows the SAWSDL model references
attached to the robot service operations, and Table 5.7 lists the three SWRL rules
referred to by the invokable operations. The WSDL notification operations refer to
four somewhat different SWRL rules, from which Service Monitor extracts domain
model update rules.

The generated OWL-S results include condition and effect expressions, which
Service Monitor derives from the corresponding SWRL rules. However, Service
Monitor applies the variable value bindings defined in the OWL model embedded
in the service WSDL file. For example, the OWL model in Listing 5.9 contains
one variable binding, RobotVariableBinding2, on lines 61-67. It specifies that the
SWRL variable robot should be substituted with the OWL individual robot2 in the
condition and effect expressions derived. Because the WSDL port type containing
the aforementioned operations includes an SAWSDL model reference to the binding
on line 44, the binding will be applied in deriving the condition and effect expressions
for the results in all of the OWL-S processes.

The conditions for the generated results are derived by copying all atoms from
the rule antecedents and applying the specified variable substitutions. For exam-
ple, RobotVariableBinding2 would be applied by substituting each occurrence of the
variable robot in Table 5.7 with the OWL individual robot2. In addition, SWRL

5. Application Experiments 126

Table 5.7: The Fastory domain ontology defines three SWRL rules representing the tasks
carried out by robots.

Rule Name Rule Expression

palletLoadRule hasProcessingLocation(?robot, ?zone) ∧
hasInputStorage(?robot, ?storage) ∧
stores(?storage, ?assembly) ∧
isOnTopOf(?assembly, ?newTop) ∧
isTopOf(?assembly, ?storage) ∧
hasPallet(?zone, ?pallet) ∧
canPerformOperation(?robot, ?operation) ∧
PalletMoveOperation(?operation) ∧ swrlb :
noV alue(?pallet, carriesProduct) ⇒ swrlb :
remove(2) ∧ swrlb : remove(3) ∧ swrlb :
remove(4) ∧ carriesProduct(?pallet, ?assembly) ∧
isTopOf(?newTop, ?storage)

palletUnloadRule hasProcessingLocation(?robot, ?zone) ∧
carriesProduct(?pallet, ?assembly) ∧
hasPallet(?zone, ?pallet) ∧
canPerformOperation(?robot, ?operation) ∧
hasInputStorage(?robot, ?inputStack) ∧
isTopOf(?oldInputTop, ?inputStack) ∧
isOnTopOf(?oldInputTop, ?newInputTop) ∧
stores(?inputStack, ?oldInputTop) ∧
hasOutputStorage(?robot, ?storage) ∧
isTopOf(?oldTop, ?storage) ∧
PalletMoveOperation(?operation) ⇒ swrlb :
remove(1) ∧ swrlb : remove(5) ∧ swrlb :
remove(6) ∧ swrlb : remove(7) ∧ swrlb :
remove(9) ∧ stores(?storage, ?assembly) ∧
isTopOf(?assembly, ?storage) ∧
isOnTopOf(?assembly, ?oldTop) ∧
carriesProduct(?pallet, ?oldInputTop) ∧
isTopOf(?newInputTop, ?inputStack)

robotOperationRule hasRobot(?cell, ?robot)∧hasRobotStatus(?robot, blocked)∧
hasProcessingLocation(?robot, ?zone) ∧
hasPallet(?zone, ?pallet) ∧ hasRfidTag(?pallet, ?rfid) ∧
carriesProduct(?pallet, ?assembly) ∧
canPerformOperation(?robot, ?operation) ∧
insertsComponent(?operation, ?component) ∧ swrlb :
noV alue(?assembly, hasComponent, ?component) ⇒
hasComponent(?assembly, ?component)

variables are substituted with the generated OWL-S process input or output pa-
rameters if the corresponding WSDL message parts contain model references to the

5. Application Experiments 127

variables. For example, on line 35 in Listing 5.9, the input message part of the Draw
operation contains a model reference to the SWRL variable operation. Therefore,
the variable is substituted with the generated OWL-S input parameter when copy-
ing the conditions from the SWRL rule robotOperationRule to the generated OWL-S
result. The effects are derived by applying the same variable substitutions to the
atoms in the SWRL rule consequents.

The WSDL files of the other robot services contain similar SAWSDL annota-
tions referring to the same SWRL rules. However, the embedded OWL documents
contain different variable substitutions. For example, the WSDL file of the service
corresponding to robot 3 contains an OWL document that substitutes the SWRL
variable robot with the OWL individual robot3. The parts that need to be altered
for the different instances of the robot service appear in bold font in Listing 5.9.

Listing 5.10 shows the abbreviated XML code for the OWL-S process generated
from the robot 2 Draw operation. For example, Service Monitor generates the XSLT
script for the XML schema element DrawMsg defined on line 25 in Listing 5.9 and
inserts the script on line 43 in Listing 5.10. However, the XSLT script, as well as the
SWRL condition expression of the process result, are quite verbose and therefore
omitted in the listing. The SWRL effect expression of the process result is less
verbose than the condition, since it only specifies that executing the process will
cause a new component to be attached the assembly carried by the pallet at the
robot 2 processing location. The effect is defined on lines 5-14 in Listing 5.10.

In the example presented in this section, Service Monitor generated condition
and effect expressions in SWRL. Alternatively, Service Monitor could be configured
to use SPARQL as the expression language, which might result in more human-
readable derivation results. When Service Monitor is configured to use SPARQL,
the OWL-S derivation process is otherwise identical except that the condition and
effect expressions in the generated OWL-S processes are different.

5.7 Application Example of SWRL-based Semantic Web Ser-
vice Composition

This section exemplifies the semantic web service composition approach presented
in Section 3.6. Because the experiments involve the application domain presented in
Section 5.1.4, the domain model illustrated in Figure 5.24 is reused in this application
scenario.

To initialize the service composition framework, the Ontology Service and Service
Monitor services must be deployed, and the domain model on Ontology Service must
be initialized by invoking the SetBaseOntology method.

The objective for the service composition scenario is that the storage reserved for

5. Application Experiments 128

1<process:AtomicProcess rdf:about="...#DrawProcess">
2 <process:hasResult>
3 <process:Result rdf:about="...#DrawProcessResult1">
4 <process:hasEffect>
5 <expression:SWRL−Expression>
6 <expression:expressionObject rdf:parseType="Collection">
7 <j.3:IndividualPropertyAtom>
8 <j.3:argument2 rdf:resource="...#component"/>
9 <j.3:argument1 rdf:resource="...#assembly"/>

10 <j.3:propertyPredicate rdf:resource="...#hasComponent"/>
11 </j.3:IndividualPropertyAtom>
12 </expression:expressionObject>
13 <expression:expressionLanguage rdf:resource="...#SWRL"/>
14 </expression:SWRL−Expression>
15 </process:hasEffect>
16 <process:inCondition>
17 <expression:SWRL−Condition>...</expression:SWRL−Condition>
18 </process:inCondition>
19 </process:Result>
20 </process:hasResult>
21 <process:hasOutput>
22 <process:Output rdf:about="...#DrawOutput1">
23 <process:parameterType rdf:datatype="...#anyURI"
24 >http://www.w3.org/2002/07/owl#Thing</process:parameterType>
25 </process:Output>
26 </process:hasOutput>
27 <process:hasInput rdf:resource="...#DrawInput1"/>
28 <service:describes>
29 <service:Service rdf:about="...#DrawService">
30 <service:supports>
31 <grounding:WsdlGrounding rdf:about="...#DrawGrounding">
32 <grounding:hasAtomicProcessGrounding>
33 <grounding:WsdlAtomicProcessGrounding rdf:about="...#DrawAtomicGrounding">
34 <grounding:wsdlOutput>
35 <grounding:WsdlOutputMessageMap>
36 <grounding:owlsParameter rdf:resource="...#DrawOutput1"/>
37 <grounding:xsltTransformationString>...</grounding:xsltTransformationString>
38 </grounding:WsdlOutputMessageMap>
39 </grounding:wsdlOutput>
40 <grounding:wsdlInput>
41 <grounding:WsdlInputMessageMap>
42 <grounding:owlsParameter rdf:resource="...#DrawInput1"/>
43 <grounding:xsltTransformationString>... </grounding:xsltTransformationString>
44 <grounding:wsdlMessagePart rdf:datatype="...#anyURI">.../FastoryRobot2.wsdl#Request

</grounding:wsdlMessagePart>
45 </grounding:WsdlInputMessageMap>
46 </grounding:wsdlInput>
47 <grounding:wsdlDocument rdf:datatype="...#anyURI">.../FastoryRobot2.wsdl</

grounding:wsdlDocument>
48 <grounding:wsdlOperation>
49 <grounding:WsdlOperationRef>
50 <grounding:operation rdf:datatype="...#anyURI">.../FastoryRobot2.wsdl#Draw</

grounding:operation>
51 </grounding:WsdlOperationRef>
52 </grounding:wsdlOperation>
53 <grounding:owlsProcess rdf:resource="...#DrawProcess"/>
54 </grounding:WsdlAtomicProcessGrounding>
55 </grounding:hasAtomicProcessGrounding>
56 </grounding:WsdlGrounding>
57 </service:supports>
58 <service:describedBy rdf:resource="...#DrawProcess"/>
59 </service:Service>
60 </service:describes>
61</process:AtomicProcess>

Listing 5.10: The OWL-S Process generated from the Draw WSDL operation includes one
OWL-S Result.

5. Application Experiments 129

completed products would contain a product comprising a type 1 phone frame, a
type 3 keypad, and a type 3 screen. Listing 5.11 contains the goal expression sent
to Service Monitor in this case. The objective can be submitted to Service Monitor
either by using the GUI displayed on the host computer or by invoking the StartGoal
operation in the Service Monitor web service interface.

Subsequent to receiving the objective, Service Monitor creates a new goal process
aiming to achieve it. Each goal process commences with a planning phase, which
is succeeded by a plan execution phase. If either phase fails, the goal process auto-
matically recommences and considers the current domain state as the initial state
of the planning problem.

Before starting to solve the problem, the planner performs an initialization phase
in which it instantiates the goal expression by resolving variables occurring in the
goal expression. The domain model ABox contains five assemblies and two storages,
one storage for blank product templates and one for completed products. Thus,
there are 10 possible value combinations for the variables. Furthermore, each of the
resulting statements is feasible in that it is present in the positive effects of at least
one action in the planning problem. Hence, after the planner has instantiated the
goal, the remaining goal is a list of ten conjunctions, each of which contains four
statements containing no variables but only ground instances.

The planning initialization phase takes a few seconds, and the actual planning
phase takes approximately 30 seconds. Subsequent to the planning phase, Service
Monitor begins executing the obtained solution plan.

The duration of the plan execution phase is longer when the approach is applied
on the actual production system instead of the web services implemented using Java,
because the actual assembly operations take longer to complete than the simulated
time delays in the Java-based services.

Regardless of whether the approach is applied on the actual or the simulated
system, the plan execution phase includes additional delays caused by the latency
in receiving event notifications from the web services, applying the update rules, as
well as verifying OWL-S process conditions and effects. The delays occur for each

1 PREFIX generic:<http://www.pe.tut.fi/fast/ontologies/ProductionSystem.owl#>
2 PREFIX fastory:<http://www.pe.tut.fi/fast/ontologies/Fastory.owl#>
3 PREFIX abox:<http://www.pe.tut.fi/fast/owl/models/Fastory−abox.owl#>
4 ASK {
5 ?assembly generic:hasComponent abox:phoneFrame_1 .
6 ?assembly generic:hasComponent abox:phoneKeypad_3 .
7 ?assembly generic:hasComponent abox:phoneScreen_3 .
8 ?storage fastory:stores ?assembly .
9 }

Listing 5.11: The production goal requires attaching three components to a phone assembly
and transporting the finished product into storage.

5. Application Experiments 130

executed OWL-S atomic process and are approximately a few hundred milliseconds
per process.

5.8 Application of the Cloud Resource Utilization Approach

The Cloud Gateway service presented in Section 3.7 has been tested both on a
private computing cloud created using the Eucalyptus [66] software framework and
on the Amazon EC2. This section will first present the experiment setup and then
describe the test results.

5.8.1 The Experiment Setup

The private cloud consists of only one computing cluster composed of a single desk-
top running a Linux operating system and Eucalyptus version 1.6.1. The restricted
computing cloud limits, for example, the number of virtual machines that may be
created; the performed experiments involve a maximum of two parallel virtual ma-
chine instances. Nonetheless, even such a limited setting suffices for testing the
proposed approach.

The virtual machines in the computing cloud are created from a disk image that
readily includes all of the software components necessary for starting the Cloud
Gateway server application. The Euca2ools3 command line utilities allow the upload
of the image to the cloud and the creation of virtual machines based on the image.

The Service Explorer application described in Section 4.1 facilitates interaction
with the Cloud Gateway services. The application includes a graphical user interface
allowing, for example, inspection of web services and invocation of their operations.
In the experiments described in this section, Service Explorer is run on a laptop
connected to the same local network as the desktop hosting the private computing
cloud. Thus, Service Explorer is able to automatically detect the web services started
on the virtual machines.

Each virtual machine executes a separate copy of the Cloud Gateway server ap-
plication. Figure 5.27 illustrates the experiment topology including two virtual
machine instances in the private cloud.

5.8.2 Performance Measurement

A test application called Cloud Gateway Performance Test allows measurement of
the delays present in the Cloud Gateway service operation. The test application
replaces Service Explorer in Figure 5.27. However, the simple user interface pro-
vided by the test application is specifically designed for interaction with the Cloud
3Available at https://www.eucalyptus.com/download/euca2ools. Accessed on 2014-06-16.

5. Application Experiments 131

Figure 5.27: The test arrangement includes two physical machines, one of which hosts a
private cloud containing virtual machines (VMs).

Gateway service. The purpose of the test application is to measure the time re-
quired for deploying several independent web services in a computing cloud. The
test application first invokes the AddApplication method to register an application
in the Cloud Gateway application library and then sequentially invokes the Star-
tApplicationInNet operation to execute the application a number of times specified
by the user. After each StartApplicationInNet request, the test application waits
for the Cloud Gateway to send a ServiceStarted notification before sending the next
request. The user interface includes text fields for specifying the JAR file URL and
the number of times to execute the JAR with Cloud Gateway. In addition, the
performance test application allows the user to specify threshold values, which the
application then requests Cloud Gateway to use by invoking the SetThresholdInNet
operation. The test results indicate the delay before a WS-Discovery Hello message
was received from each of the services deployed. Figure 5.28 shows a screenshot of
the Performance Test application.

Experimenting with different threshold values reveals that if only a RAM usage
threshold were used, it should be set to at most 0.98 because the operating system
never appears to let the RAM utilization reach 99 percent but retains a small amount
of memory as work space and compensates the missing memory with swap file usage.
For example, with one gigabyte of RAM, the memory utilization typically reaches
98 percent after Cloud Gateway has started 28 conveyor service server applications,
after which the proportion of used RAM fluctuates only marginally. However, the
increased page file usage burdens the CPU, resulting in very poor performance. To
prevent the CPU load from excessively increasing, a CPU utilization threshold value
should be specified.

In one of the test runs, setting the RAM threshold to 0.99 and CPU utilization

5. Application Experiments 132

Figure 5.28: The Cloud Gateway client application measures service deployment durations
using Cloud Gateway services.

threshold to 6.0 resulted in 42 applications being started before the CPU threshold
was exceeded. Cloud Gateway started the applications in 217 seconds. However, the
maximum number of applications and the start-up delay vary between different test
runs. Given that the virtual machine hosting Cloud Gateway comprises only one
(virtual) CPU, the load factor of 6.0 indicates that, on average, only five processes
are queuing for CPU time. However, the web services, including Cloud Gateway,
running on the machine seemed unable to respond to requests within the commu-
nication time out durations. Logging in to the virtual machine revealed that the
load average had exceeded 60. Afterwards, the virtual machine became unreachable.
Apparently, since the load average is computed over the previous minute [115], it is
difficult to use it as a measure of the workload of the machine at a specific instant.
On the other hand, the applications may temporarily have to queue for processing
time at start-up, while later they will require less CPU usage.

On a virtual machine with only 256 megabytes of RAM, the memory utilization
exceeds 98 percent after Cloud Gateway has only started six server applications,
and the overall delay is 22 seconds. When the memory threshold is set to 99 percent

5. Application Experiments 133

Table 5.8: The number of conveyor service applications that can be started on a virtual
machine with 1.7 GB of RAM.

Memory threshold Reason for
termination

Number of
instances

Total duration (s)

0.9 memory 28 138

0.98 memory 33 173

1 CPU > 50 85 652

1 failure 93 1379

and CPU threshold is set to 6.0, Cloud Gateway starts nine server applications, but
finally the virtual machine becomes unreachable.

The application start-up delay begins to increase rapidly after Cloud Gateway has
started a certain number of applications. This is obviously caused by the virtual
machine having to compensate the lack of physical memory with page file usage.
Moreover, the responsiveness of the applications running on a virtual machine is
very poor when the machine is simultaneously executing several applications.

In addition, experiments have been conducted running the Cloud Gateway ser-
vice on remote virtual machines leased from the Amazon EC2 cloud. In the exper-
iments, each virtual machine hosting a Cloud Gateway service has been allocated
1.7 gigabytes of RAM. However, Table 5.8 shows the test results using a single vir-
tual machine in the EC2 cloud. The table shows the memory threshold, number of
started application instances and overall start-up durations. It also lists the reasons
why Cloud Gateway ceased to start new server applications.

The last row in Table 5.8 represents a test scenario where the CPU threshold was
set to 100. In this case, the client connection to the virtual machine abruptly termi-
nated while starting the 94th application instance, apparently due to the excessive
workload on the virtual machine.

5.8.3 Performance Measurement in a Network Setting

This subsection summarizes performance tests carried out in a setting of two Cloud
Gateways running on separate virtual machines in a private computing cloud. Each
of the virtual machines is allocated one gigabyte of RAM and five gigabytes of disk
space. While the Cloud Gateway Performance Test application directly communi-
cates only with the main instance, it invokes the RegisterCloudGateway operation
on the main instance to add the auxiliary instance to the Cloud Gateway network.
The memory and CPU thresholds set in the user interface are submitted to each
Cloud Gateway in the network.

In the scenario of two Cloud Gateway instances, the main instance will serve the

5. Application Experiments 134

first application requests. However, once the main instance exceeds the memory
usage threshold, it commences delegation of incoming requests to start new appli-
cations to the auxiliary instance.

For example, in one of the test runs, the memory threshold of the two Cloud
Gateways was set to 98 percent, while the CPU threshold was set to five. Finally, the
performance test application started requesting the main Cloud Gateway instance
to start instances of the conveyor service server application. The main instance
exceeded the memory threshold after starting the 28th server application and started
delegating the requests to the auxiliary instance on the other virtual machine. The
auxiliary instance was able to start 27 applications before exceeding the memory
threshold. Hence, a total of 55 application instances were started, and the total
duration was approximately 210 seconds.

5.8.4 Inter-Cloud Experiment Scenario

To experiment web service orchestration across different computing clouds, exper-
iments can be performed using two remote virtual machines and one local virtual
machine. Unlike the previous experiment scenarios, the experiments described in
this subsection are performed without the Cloud Gateway Performance Test appli-
cation. The remote virtual machines are leased from the Amazon EC2 cloud, while
the local virtual machine is running in a private computing cloud.

Each virtual machine hosts one Orchestration Engine web service and three vir-
tual conveyor web services. In addition, a monitor application communicates with
the Orchestration Engine service running on the local virtual machine. Figure 5.29
illustrates the experiment topology and the web service invocations during the ex-
periments.

The experiment consists of a cycle commencing when the Orchestration Engine
on virtual machine 1 is requested to execute a BPEL process orchestrating the
three conveyor web services. At the end of the process, the Orchestration Engine
on virtual machine 1 requests the Orchestration Engine on virtual machine 2 to
execute a similar process, which is represented by step 4 in Figure 5.29. Then, the
Orchestration Engine on virtual machine 3 executes a similar BPEL process, which
finally requests the Orchestration Engine on virtual machine 1 to again execute the
BPEL process (step 12). Hence, the cycle continues indefinitely, so that only one
Orchestration Engine is executing a BPEL process at a time.

To measure cycle durations, a client application monitors the Orchestration En-
gine service on the local virtual machine. Whenever the Orchestration Engine sends
a notification signaling that it has commenced execution of a BPEL process, the
client application records the duration of the elapsed interval since the previous no-
tification. In addition, the monitor application determines the minimum, maximum

5. Application Experiments 135

Figure 5.29: The private cloud is hosted on a local machine. Each virtual machine hosts
four web services.

and average interval duration.
While research on BPEL-based web service orchestration is presented in [81], the

Orchestration Engine web service is described in [80] and [49].
Table 5.9 contains the minimum, maximum and average intervals observed in an

experiment consisting of 20 cycles. To provide a reference point, the table includes
the results for a repetition of the experiment performed so that all of the web ser-
vices were running on the local machine. The results in Table 5.9 indicate that
the average cycle duration is approximately two seconds longer when using com-
puting clouds. This constitutes less than five percent of the average cycle duration.
The minor performance degradation is presumably caused by the network traffic
between the web services on different virtual machines. Nonetheless, network traffic
is unavoidable when the Orchestration Engine services reside on different machines.

Table 5.9: The duration of 20 cycles is quite similar regardless of whether cloud resources
are used instead of local resources.

Minimum (ms) Maximum (ms) Average (ms)

1 local VM, 2 remote
VMs

47471 49106 47961

Only local web services 45519 46787 45682

5. Application Experiments 136

5.9 Summary of Application Examples

The application examples presented in this chapter commenced with applying the
traditional web service standards and orchestration tools in the factory automa-
tion domain. The subsequent examples involved exploiting semantic web service
descriptions, which required the use of additional tools. In the presented exam-
ples, the additional tools were mainly implemented as semantic web services that
co-operated to form a framework for the orchestration and composition of seman-
tic domain web services. In particular, the methods presented in Chapter 3 were
employed to develop semantic web service descriptions with reduced effort and to
apply semantic descriptions in maintaining an accurate semantic model of a pro-
duction system. Finally, Section 5.8 experimented with deploying web services on
cloud resources, albeit with no particular emphasis on semantic technologies.

The presented application examples have employed different technologies related
to semantic web services, and Table 5.10 summarizes the relationships between
individual application examples and technologies. On the one hand, some of the
technologies, such as WSDL, are de facto standards and applied in each of the
examples. On the other hand, both the approaches presented in Chapter 3 and
the application examples presented in this chapter have omitted some considerable
technology alternatives, such as WSMO.

While Table 5.10 indicates the technologies applied in each application example,
it provides no absolute indication of their applicability to each of the exemplified
approaches. For example, the OWL-S derivation approach presented in Section 3.5
can generate SPARQL expressions, but Section 5.6 exemplified only the derivation
of SWRL expressions.

While the presented experiments show that the methods outlined in Chapter 3
can be applied in practice, the methods evidently introduce additional workload.

Table 5.10: The application examples involve different web-service-related standards.

Technology/Section 5.2 5.3 5.4 5.5 5.6 5.7 5.8

WSDL X X X X X X X

BPEL X X X X

SAWSDL X X X X X

OWL X X X X X

SPARQL and SPARQL/Update X X X X

SWRL X X X

OWL-S X X X X X

WSMO

5. Application Experiments 137

For example, the initialization of the semantic web service composition framework
requires additional effort. The deficiencies and potential remedies will be described
in more detail in Section 6.2.

138

6. CONCLUSIONS

This dissertation has presented new methods of controlling SOA-based production
systems. While the new methods can drastically reduce the effort required to pre-
scribe workflows, they require that effort is invested in devising semantic service
descriptions. However, service descriptions must be developed only once, and the
methods eliminate the need to manually prescribe new process workflows whenever
a change occurs in the production system or the pursued production goal.

6.1 Contributions

This section summarizes the contributions this dissertation makes to SOA-based
production system control.

6.1.1 Experience on BPEL-based Orchestration

This dissertation has exemplified the issues that can arise in service orchestration in
the domain of factory automation. BPEL can be considered the de facto standard
language for the orchestration of web services. While a single step in the highest-
level business process expressed in BPEL can take several weeks, it is possible to
conceptually arrive to factory floor by clarifying each service with the corresponding
BPEL sub-process, eventually considering the level of atomic processes, such as the
activation of a motor or the examination of a sensor status.

Although BPEL is supported by a number of tools, this dissertation has suggested
that none of the tools perfectly addresses the needs of service orchestration, nor
provides full flexibility of the standards. One possible reason for the deficiencies is
that some of the standards still have a ‘candidate recommendation’ status of W3C
(e.g. [118]) or have been accepted as standards quite recently.

In addition, this dissertation has presented new tools for the execution of BPEL
processes. Instead of solving the problems identified in the prevalent tools, the new
tools apply an approach to executing BPEL processes that is fundamentally different
to the standard solution, in which BPEL processes are deployed as web services on
a server. On the one hand, executing BPEL processes as scripts somewhat restricts
the range of supported BPEL processes and constructs. On the other hand, when
applicable, the approach removes the need of a server engine and is somewhat more
efficient than deploying each BPEL process on a server.

6. Conclusions 139

6.1.2 A Semantic Web Service Orchestration Framework

This dissertation has proposed an approach to applying OWL in dynamically main-
taining a description of the states of web services, while OWL-S is applied in de-
termining the suitable partner web services to use in carrying out orchestration
instructions. Invoking operations on a web service causes changes in its internal
state, which can be detected by listening to notifications sent by the service. Ded-
icated system components are responsible for reasoning on the current state of the
system and deciding on the following actions. The proposed approach and the per-
formed experiments are initial steps towards common utilization of semantic web
services in the factory floor.

Semantic web services can considerably facilitate the control of production equip-
ment. Because the overall process instructions can be executed by a web service,
the main controller of a production system can basically be located anywhere re-
gardless of the location of the actual production system. Thus, it can be effortlessly
replaced, and it is unexposed to the hazards of a production environment. Indeed,
dedicated server equipment is unnecessary, as the controller service can be deployed,
for example, on a virtual machine in a computing cloud. New virtual machines can
be started as production requests arrive, and once the products are finished, the
virtual machines may be terminated, and the computing resources can be allocated
to other activities.

6.1.3 A Semantic Web Service Composition Framework

This dissertation has described a set of specialized web services that jointly apply
OWL and SPARQL in composing and invoking semantic domain web services. The
results show that the approach allows automatic achievement of complex goals while
maintaining a temporally accurate domain model, provided that the web services
are augmented with adequate semantic descriptions and event notifications.

While OWL, SPARQL, and SPARQL/Update are highly expressive languages,
developing an efficient planning algorithm appears to require that the semantic
descriptions are transformed into more suitable formats, such as PDDL, prior to
planning. The approach would allow domain engineers to model the systems and
web services in the abovementioned expressive and widely supported languages,
while still enabling the efficient and automatic composition of web services.

The reuse of previously composed OWL-S processes requires that Service Monitor
stores each process composed into the service model, which may excessively increase
the number of statements in the model and the knowledge access delays. Moreover,
modifications in the set of semantic web services available may render previously
composed composite OWL-S processes suboptimal or inapplicable. Nonetheless, it

6. Conclusions 140

will be unnecessary to store and reuse previously composed composite processes after
the development of a more sophisticated planning algorithm.

6.1.4 Domain Model Update Methods

This dissertation has presented two event-based approaches to updating production
system models and highlighted their main differences. In both approaches, a web
service called Ontology Service hosts an OWL domain model, and another service,
either Ontology Manager or Service Monitor, sends update requests to Ontology Ser-
vice based on event notifications. Both approaches have shown negligible domain
model update delays in the test scenarios involving simulated production systems.
However, the implementation still requires some optimization, and a more compre-
hensive performance evaluation in more demanding test scenarios should be carried
out before industrial application.

On the one hand, the Ontology Manager based approach fails to fully achieve the
benefits of semantic web services, since it ignores semantic web service descriptions.
Moreover, developing the Ontology Manager update rules and particularly the em-
bedded XSLT scripts may be difficult. On the other hand, semantic web service
descriptions typically refer to a specific domain model, and the update rules make
it possible to use whichever domain model is the most appropriate for the applica-
tion scenario, regardless of the semantic web service descriptions. In addition, the
Ontology Manager GUI could be improved so that it automatically generated the
XSLT scripts.

The Service Monitor based approach fully considers semantic service descriptions
but can only be applied once the domain web services have been enriched with
such descriptions. Fortunately, Service Monitor is able to automatically generate
the semantic descriptions, provided that the service WSDL files are appropriately
annotated to refer to an accessible domain model. Thus, neither one of the two
approaches is clearly superior to another. Instead, the applicability of each approach
depends on the scenario.

6.1.5 Automated OWL-S Generation

There are no standard rules for formulating semantic descriptions or attaching them
to web services. Nonetheless, to facilitate automatic web service composition and
execution, the semantic descriptions must be somewhat detailed. Consequently, for-
mulating dedicated semantic descriptions for all of the individual services can be
tedious and error-prone in application scenarios involving dozens of services. This
dissertation has proposed a set of conventions on the application of SAWSDL anno-
tations that facilitate the automatic derivation of detailed OWL-S descriptions from

6. Conclusions 141

service WSDL documents. The approach is particularly useful in scenarios involving
several services of the same type and reduces the effort of creating numerous seman-
tic service descriptions to only defining a modest set of SWRL rules and annotating
the service WSDL files accordingly.

The approach presented in this dissertation automates the generation of exe-
cutable OWL-S processes that include condition and effect expressions formulated
in either SWRL or SPARQL. On the one hand, applying the approach requires quite
extensive use of SAWSDL annotations. On the other hand, simply annotating the
WSDL files is considerably less laborious and difficult than manually duplicating
OWL-S descriptions for several instances of a web service, since the descriptions are
typically somewhat verbose and contain several complex expressions, such as XSLT
scripts.

6.1.6 More Optimal Cloud Resource Utilization

This dissertation has proposed a web service that facilitates the use of computing
cloud resources. The approach allows the use of cloud resources without knowledge
on the cloud interface or internal composition. In particular, the application exam-
ples show that a client can use the cloud resources by invoking simple web service
operations, without directly interacting with the leased virtual machines.

The performance of the proposed approach has been experimentally evaluated.
The experiments have shown that, while the automated execution of applications
is effortless, the resource limits of the underlying virtual machine are eventually
reached as the number of executed applications increases. Moreover, exhausting the
resources over a certain point tends to considerably decrease application respon-
siveness. Nonetheless, the experiments have also shown that networks comprising
several Cloud Gateway services are able to automatically balance the workload be-
tween different virtual machines.

6.2 Potential Enhancements

This section identifies possible enhancements to the proposed approaches and the
implemented software tools.

6.2.1 Enhanced BPEL Support

The Orchestration Tools framework currently provides only limited BPEL support
and flexibility. In particular, several BPEL constructs remain unsupported, and the
tools are capable of only synchronous BPEL execution. Asynchronous execution
would probably require a web-server-based approach.

6. Conclusions 142

6.2.2 More Advanced use of Semantic Service Descriptions

Further research is required to achieve automated service selection based on entire
semantic service descriptions. While Service Monitor currently considers only the
input and output types of OWL-S Processes in semantic service selection, it should
also consider the descriptions of the preconditions and results of the web service op-
erations. Since preconditions and results are essentially represented as expressions,
comparing their semantic meanings is problematic.

The selection of web services for BPEL partner links in the Orchestration En-
gine component should be further developed. Because only semantic information is
relevant in expressing service requirements, an apparently compatible service may
have an interface that is syntactically incompatible with the current BPEL process.
Hence, Orchestration Engine must modify the executed BPEL process so that it
refers to the new WSDL port types and operations after determining the services
that are semantically compatible with the partner links. However, the logic for
modifying the orchestration instructions to apply to unexpected service interfaces
remains largely unimplemented in Orchestration Engine. Modifying the various ex-
pressions that can be embedded into a BPEL process and refer to syntactic elements
appears to be a particularly difficult problem. On the other hand, Service Monitor
could probably be extended to provide support in BPEL modification as well.

6.2.3 Support for Alternative Formalisms

While orchestration instructions for the Orchestration Engine are currently devised
in BPEL, other languages should also be considered. In particular, OWL-S might
be a competitive alternative for BPEL, since it is able to express complex processes
and naturally uses semantic data, while BPEL purely relies on syntactic web service
interfaces.

The current Orchestration Engine implementation uses the syntactic WSDL de-
scription when invoking a web service. However, while the OWL-S specification
mainly presents WSDL groundings, it supports other types of groundings as well.
Hence, web service invocation based on the semantic OWL-S descriptions might al-
low the invocation of web services without WSDL descriptions. However, invoking
web services by executing their OWL-S processes would require either extending
the BPEL specification similarly to the BPEL4SWS [65] specification or entirely
switching to another modeling language, such as OWL-S, in specifying workflows.

6.2.4 Support for Real-time Requirements

Because the proposed web service orchestration framework is implemented in Java,
and the communication between the individual components depends on network con-

6. Conclusions 143

nections, the operation delays are indeterministic. For example, the communication
between Ontology Service and Ontology Manager includes the risk that a query is
performed while an update operation has been requested but is still pending. More-
over, an event notification sent by a domain web service may be delayed because of
high network traffic, causing Orchestration Engine to make decisions based on out-
dated information. On the other hand, the semantic service composition process, in
particular, includes noticeable delays, which may be unacceptable in settings impos-
ing strict real-time requirements. While some optimization can be performed to the
search algorithm, a domain-independent planning process must generally explore a
vast state space. Thus, high real-time performance is difficult to achieve.

Real-time or deterministic aspects are largely ignored in this dissertation, since
the main focus is on the overall approach. At the implementation level, the reason-
ing libraries may require optimization to allow deterministic performance in some
specific cases. For example, the libraries might perform unnecessary memory reser-
vation and release, since they are designed to be integrated in desktop environment
applications in which delays of a few seconds are tolerable. Nonetheless, the problem
is more related to implementation details than the actual research aspects.

The main research problems include estimation of the performance needs of rea-
soning to provide results before commencing the execution of a workflow. For ex-
ample, the requirement for deterministic performance can be mitigated if time-
consuming and indeterministic operations are performed only at initialization phase
before commencing the actual execution of a web service workflow. In the case of
geographically distributed applications, the communication delays can be estimated
at the system design phase and be taken into account at the right level of control
implementation. For example, considering the control of a robot manipulator, the
trajectories can be calculated remotely and uploaded to the manipulator controller
with arbitrary communication delays. Nevertheless, the actual interpolated motion
of the manipulator joints can be locally performed, complying to strict real-time
requirements. Some research that is related to distributed applications as well as
considers real-time performance and avoiding unnecessary memory reservations in
Java-based controllers can be found in [59; 50; 15].

6.2.5 Increased Decentralization

In the web service composition pattern proposed, decision-making is solely the re-
sponsibility of the Service Monitor web service. Currently, exactly one instance of
Service Monitor is assumed to exist at a time. While Service Monitor can com-
pose and execute solution plans that involve concurrent operations, parallel goal
processes typically lead to a conflict at plan execution time. Moreover, the case of
several Service Monitor instances would require the development of a coordination

6. Conclusions 144

mechanism.
All of the presented approaches are vulnerable to network disruptions. In partic-

ular, an event notification lost during transmission may render the domain model
inconsistent with the actual system status. To protect against such errors, the
approaches can incorporate periodic polling of web service states. Nonetheless, de-
centralization could be increased by developing a collaboration mechanism between
several Ontology Service instances.

Semantic integration between potential alternative ontologies is mainly ignored
in this dissertation. Consequently, the proposed approach should be extended to
allow the use of several alternative domain models instead of a single commonly
agreed ontology.

6.2.6 Improved Service Description Derivation

To improve the OWL-S derivation approach, results indicating failures should also
be considered. Currently, Service Monitor generates only process results represent-
ing successful service invocations. Nonetheless, the services may return special codes
indicating a failure to fulfill the request, for example if the input parameters con-
tain incorrect values. Currently, the failure cases can only be detected if none of
the results of the executed OWL-S process corresponds to the perceived results of
invoking a service.

6.2.7 Transparent Cloud Resource Reservation

A current limitation of the proposed approach is that cloud resources are somewhat
inefficiently used. While it is possible to create a network of Cloud Gateway services
residing on separate virtual machines, the machines must be leased in a static man-
ner, before launching the corresponding Cloud Gateways. Cloud Gateway could be
enhanced so that it dynamically created new virtual machines as the utilization of
the existing ones reached a certain level.

Cloud Gateway measures the percentage of used memory and the system load
average to avoid the overuse of computing resources. The method appears effective
in preventing severe performance degradation when starting several applications.
However, currently, Cloud Gateway is unable to estimate the amount of resources
an application will consume once it has been started. Therefore, future research
should target the implementation of a mechanism for evaluating the run-time re-
source consumption of the started applications.

In addition, this research work has experimented with web service Orchestration
spanning separate computing clouds. The results suggest that using computing
cloud resources causes no considerable performance drawbacks. However, deploying

6. Conclusions 145

several web services on separate virtual machines requires considerable effort. Future
research should investigate the use of Cloud Gateway in automating this task.

6.3 Future Research Directions

A sophisticated AI planner appears a necessary prerequisite for efficient domain-
independent service composition. While several such planners are already available,
many of them are restricted by licenses. The development of new planners should
involve both experimenting with the current planning algorithms and inventing com-
pletely new planning techniques.

146

REFERENCES

[1] ActiveBPELTM Designer and Eclipse Web Tools Project. http:
//www.activebpel.org/samples/samples-3/eclipseWTP_and_BPEL/
doc/index.html. Accessed: 2008-7-2.

[2] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth,
and K. Verma. Web service semantics - WSDL-S. http://www.w3.org/
Submission/WSDL-S/, 2005. Accessed: 2013-11-11.

[3] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Guízar, N. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin,
V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web ser-
vices business process execution language. http://docs.oasis-open.org/
wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007. Accessed: 2013-11-11.

[4] BPEL Service Engine User’s Guide. https://open-esb.dev.java.net/kb/
preview3/ep-bpel-se.html. Accessed: 2008-4-25.

[5] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. Artificial Intelligence,
195(0):335–360, February 2013.

[6] D. Çelik and A. Elçi. A semantic search agent approach: Finding appropriate
semantic web services based on user request term(s). In ITI 3rd International
Conference on Information and Communications Technology, ICICT 2005 -
Enabling Technologies for the New Knowledge Society, pages 675–688, 2005.

[7] D. Çelik and A. Elçi. Discovery and scoring of semantic web services based
on client requirement(s) through a semantic search agent. In Proceedings - In-
ternational Computer Software and Applications Conference, volume 2, pages
273–278, 2006.

[8] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web service
definition language (WSDL). http://www.w3.org/TR/wsdl, 2001. Accessed:
2013-11-11.

[9] J. Clark. XSL Transformations (XSLT). http://www.w3.org/TR/xslt, 1999.
Accessed: 2013-10-10.

[10] J. Clark and S. DeRose. XML Path Language (XPath). http://www.w3.org/
TR/xpath/. Accessed: 2014-6-19.

REFERENCES 147

[11] W. Dai and V. Vyatkin. Transformation from PLC to distributed control
using ontology mapping. In Industrial Informatics (INDIN), 2012 10th IEEE
International Conference on, pages 436–441, 2012.

[12] I. M. Delamer and J. L. Martinez Lastra. Ontology modeling of assembly
processes and systems using semantic web services. In Industrial Informatics,
2006 IEEE International Conference on, pages 611–617, 16-18 Aug. 2006.

[13] I. M. Delamer and J. L. Martinez Lastra. Service-oriented architecture for
distributed publish/subscribe middleware in electronics production. Industrial
Informatics, IEEE Transactions on, 2(4):281–294, 2006.

[14] I. M. Delamer and J. L. Martinez Lastra. Loosely-coupled automation systems
using device-level SOA. In Industrial Informatics, 2007 5th IEEE Interna-
tional Conference on, volume 2, pages 743–748, 2007.

[15] I. M. Delamer, J. L. Martinez Lastra, and O. Perez. An evolutionary algo-
rithm for optimization of XML publish/subscribe middleware in electronics
production. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006
IEEE International Conference on, pages 681–688, 2006.

[16] Description logics. http://dl.kr.org/, 05 2013. Accessed: 2013-5-27.

[17] OASIS Devices profile for web services (DPWS). http://docs.oasis-open.
org/ws-dd/ns/dpws/2009/01. Accessed: 2014-6-19.

[18] DPWS4J toolkit by Schneider Electric. https://forge.soa4d.org/
projects/dpws4j/. Accessed: 2014-6-19.

[19] Y. Evchina, A. Dvoryanchikova, and J. L. Martinez Lastra. Ontological frame-
work of context-aware and reasoning middleware for smart homes with health
and social services. In Systems, Man, and Cybernetics (SMC), 2012 IEEE
International Conference on, pages 985–990, 2012.

[20] J. Farrell and H. Lausen. Semantic annotations for WSDL and XML Schema.
http://www.w3.org/TR/sawsdl/, 2007. Accessed: 2014-6-19.

[21] D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF.
Electronic Commerce Research and Applications, 1(2):113–137, Summer 2002.

[22] L. Ferrarini, C. Veber, A. Lüder, J. Peschke, A. Kalogeras, J. Gialelis, J. Rode,
D. Wünsch, and V. Chapurlat. Control architecture for reconfigurable manu-
facturing systems: The PABADIS’PROMISE approach. In IEEE Symposium
on Emerging Technologies and Factory Automation, ETFA, pages 545–552,
2006.

REFERENCES 148

[23] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid comput-
ing 360-degree compared. In Grid Computing Environments Workshop, 2008.
GCE ’08, pages 1–10, 2008.

[24] B. C. Gazen and C. A. Knoblock. Combining the expressivity of UCPOP with
the efficiency of Graphplan. In Proceedings of the 4th European Conference on
Planning: Recent Advances in AI Planning, ECP ’97, pages 221–233, London,
UK, 1997. Springer-Verlag.

[25] P. Gearon, A. Passant, and A. Polleres. SPARQL 1.1 Update W3C
Proposed Recommendation 08 November 2012. http://www.w3.org/TR/
sparql11-update/. Accessed: 2013-11-11.

[26] R. Grønmo, M. C. Jaeger, and H. Hoff. Transformations between UML and
OWL-S, volume 3748 of Lecture Notes in Computer Science. Springer, 2005.

[27] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and I. Vlahavas.
Semantic awareness in automated web service composition through planning.
In S. Konstantopoulos, S. Perantonis, V. Karkaletsis, C. Spyropoulos, and
G. Vouros, editors, Artificial Intelligence: Theories, Models and Applications,
volume 6040, pages 123–132. Springer Berlin / Heidelberg, 2010.

[28] G. C. Hobold and F. Siqueira. Discovery of semantic web services compositions
based on SAWSDL annotations. In Web Services (ICWS), 2012 IEEE 19th
International Conference on, pages 280–287, June 2012.

[29] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:263–
312, 2001.

[30] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A semantic web rule language combining OWL and RuleML. http:
//www.w3.org/Submission/SWRL/.

[31] A. Hristoskova, D. Moeyersoon, S. V. Hoecke, S. Verstichel, J. Decruyenaere,
and F. D. Turck. Dynamic composition of medical support services in the
ICU: Platform and algorithm design details. Computer methods and programs
in biomedicine, 100(3):248–264, December 2010.

[32] IEC 61131-3 programmable controllers - part 3: Programming languages,
1993.

[33] IEC 61499-1 Function Blocks - Architecture, 2005.

REFERENCES 149

[34] K. Iqbal, M. L. Sbodio, V. Peristeras, and G. Giuliani. Semantic service
discovery using SAWSDL and SPARQL. In International Conference on Se-
mantics, Knowledge and Grid, pages 205–212, Los Alamitos, CA, USA, 2008.
IEEE Computer Society.

[35] F. Jammes and H. Smit. Service-oriented paradigms in industrial automation.
Industrial Informatics, IEEE Transactions on, 1(1):62–70, 2005.

[36] F. Jammes, H. Smit, J. L. Martinez Lastra, and I. M. Delamer. Orchestration
of service-oriented manufacturing processes. In Emerging Technologies and
Factory Automation, 2005. ETFA 2005. 10th IEEE Conference on, volume 1,
pages 8 pp.–624, 2005.

[37] Reasoners and rule engines: Jena inference support. http://jena.apache.
org/documentation/inference/index.html. Accessed: 2013-2-1.

[38] P. Jiang, X. Shao, L. Gao, H. Qiu, and P. Li. A process-view approach for
cross-organizational workflows management. Advanced Engineering Informat-
ics, 24(2):229–240, 2010.

[39] A. P. Kalogeras, J. V. Gialelis, C. E. Alexakos, M. J. Georgoudakis, and S. A.
Koubias. Vertical integration of enterprise industrial systems utilizing web
services. Industrial Informatics, IEEE Transactions on, 2(2):120–128, 2006.

[40] K. Keahey, M. Tsugawa, A. Matsunaga, and J. A. B. Fortes. Sky computing.
Internet Computing, IEEE, 13(5):43–51, 2009.

[41] I.-W. Kim and K.-H. Lee. Describing semantic web services: From UML to
OWL-S. In Web Services, 2007. ICWS 2007. IEEE International Conference
on, pages 529–536, 2007.

[42] I.-W. Kim and K.-H. Lee. A model-driven approach for describing semantic
web services: From UML to OWL-S. Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on, 39(6):637–646, 2009.

[43] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax, W3C Recommendation 10 February 2004. http://www.
w3.org/TR/2004/REC-rdf-concepts-20040210/. Accessed: 2014-6-19.

[44] T. A. Kvaløy, E. Rongen, A. Tirado-Ramos, and P. Sloot. Automatic com-
position and selection of semantic web services. Lecture Notes in Computer
Science, 3470:266–271, 2005.

[45] G. Lawton. Developing software online with platform-as-a-service technology.
Computer, 41(6):13–15, 2008.

REFERENCES 150

[46] C. Legat, D. Schütz, and B. Vogel-Heuser. Automatic generation of field
control strategies for supporting (re-)engineering of manufacturing systems.
Journal of Intelligent Manufacturing, pages 1–11, 03/03 2013.

[47] P. Leitão and N. Rodrigues. Modelling and validating the multi-agent system
behaviour for a washing machine production line. In Industrial Electronics
(ISIE), 2012 IEEE International Symposium on, pages 1203–1208, 2012.

[48] A. Lobov, J. Puttonen, V. Villasenor Herrera, R. Andiappan, and J. L. Mar-
tinez Lastra. Service oriented architecture in developing of loosely-coupled
manufacturing systems. In Industrial Informatics, 2008. INDIN 2008. 6th
IEEE International Conference on, pages 791–796, July 2008.

[49] A. Lobov, F. Ubis Lopez, V. Villasenor Herrera, J. Puttonen, and J. L. Mar-
tinez Lastra. Semantic web services framework for manufacturing industries.
In Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Con-
ference on, pages 2104–2108, February 2009.

[50] O. J. López Orozco and J. L. Martinez Lastra. A real-time interface for agent-
based control. In Industrial Embedded Systems, 2007. SIES ’07. International
Symposium on, pages 49–54, 2007.

[51] M. Loskyll, J. Schlick, S. Hodek, L. Ollinger, T. Gerber, and B. Pirvu. Seman-
tic service discovery and orchestration for manufacturing processes. In Emerg-
ing Technologies & Factory Automation (ETFA), 2011 IEEE 16th Conference
on, pages 1–8, 2011.

[52] P. Louridas. Orchestrating web services with BPEL. Software, IEEE, 25(2):85–
87, 2008.

[53] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci, K. Sycara,
D. L. McGuinness, E. Sirin, and N. Srinivasan. Bringing semantics to web
services with OWL-S. World Wide Web, 10(3):243–277, 07/ 2007.

[54] D. Martin, M. Paolucci, and M. Wagner. Bringing Semantic Annotations to
Web Services: OWL-S from the SAWSDL Perspective, volume 4825 of Lecture
Notes in Computer Science, pages 340–352. Springer Berlin / Heidelberg,
2007.

[55] P. Martinek, B. Tothfalussy, and B. Szikora. Implementation of semantic
services in enterprise application integration. WSEAS Transactions on Com-
puters, 7(10):1658–1668, 2008.

REFERENCES 151

[56] J. L. Martinez Lastra and I. Delamer. Ontologies for production automation.
In T. Dillon, E. Chang, R. Meersman, and K. Sycara, editors, Advances in
Web Semantics I, volume 4891 of Lecture Notes in Computer Science, pages
276–289. Springer, 2008.

[57] J. L. Martinez Lastra and I. M. Delamer. Semantic web services in factory
automation: fundamental insights and research roadmap. IEEE Transactions
on Industrial Informatics, 2(1):1–11, 2006.

[58] J. L. Martinez Lastra and I. M. Delamer. Ontologies for production automa-
tion, volume 4891 LNCS of Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics). Springer, 2008.

[59] J. L. Martinez Lastra, L. Godinho, A. Lobov, and R. Tuokko. An IEC 61499
application generator for scan-based industrial controllers. In Industrial Infor-
matics, 2005. INDIN ’05. 2005 3rd IEEE International Conference on, pages
80–85, 2005.

[60] D. McDermott. PDDL - the planning domain definition language version 1.2.
Technical report, Yale Center for Computational Vision and Control, 1998.

[61] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language
Overview. http://www.w3.org/TR/owl-features/, 2004. Accessed: 2013-
11-11.

[62] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. Intelligent
Systems, IEEE, 16(2):46–53, 2001.

[63] J. M. Mendes, A. Bepperling, J. Pinto, P. Leitao, F. Restivo, and A. W.
Colombo. Software methodologies for the engineering of service-oriented in-
dustrial automation: The continuum project. In Computer Software and Ap-
plications Conference, 2009. COMPSAC ’09. 33rd Annual IEEE International,
volume 1, pages 452–459, 2009.

[64] T. Moser and S. Biffl. Semantic integration of software and systems engineer-
ing environments. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 42(1):38–50, 2012.

[65] J. Nitzsche, T. V. Lessen, D. Karastoyanova, and F. Leymann. Bpel for se-
mantic web services (bpel4sws). In Proceedings of the 2007 OTM confederated
international conference on On the move to meaningful internet systems -
Volume Part I, OTM’07, pages 179–188, Berlin, Heidelberg, 2007. Springer-
Verlag.

REFERENCES 152

[66] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
and D. Zagorodnov. The eucalyptus open-source cloud-computing system.
In Cluster Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM
International Symposium on, pages 124–131, 2009.

[67] OASIS Consortium. https://www.oasis-open.org/. Accessed: 2013-5-15.

[68] OASIS Web Services Dynamic Discovery (WS-Discovery). http://docs.
oasis-open.org/ws-dd/ns/discovery/2009/01. Accessed: 2013-1-22.

[69] M. J. O’Connor and A. K. Das. SQWRL: A Query Language for OWL. In
OWLED, 2009.

[70] A. L. Opdahl. Semantic annotations for modelling language interoperability.
In ACM International Conference Proceeding Series, 2011.

[71] OWL-S. OWL for Services (OWL-S) Home Page. http://www.ai.sri.com/
daml/services/owl-s/. Accessed: 2013-11-11.

[72] OWL-S API. http://www.mindswap.org/2004/owl-s/api/index.shtml.
Accessed: 2013-5-15.

[73] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara. The DAML-S virtual
machine. Lecture Notes in Computer Science, 2870:290–305, 2003.

[74] M. Paolucci, M. Wagner, and D. Martin. Grounding owl-s in sawsdl. In Pro-
ceedings of the 5th international conference on Service-Oriented Computing,
pages 416–421, 2007.

[75] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–
52, 2003.

[76] B. Pi, G. Zou, C. Zhong, J. Zhang, H. Yu, and A. Matsuo. Flow editor: Seman-
tic web service composition tool. In Proceedings - 2012 IEEE 9th International
Conference on Services Computing, SCC 2012, pages 666–667, 2012.

[77] C. Popescu, A. Lobov, J. L. Martinez Lastra, and M. A. C. Soto. A modelling
approach to formally represent service orchestration. International Journal of
Computer Aided Engineering and Technology, 1(1):1–30, 01/01 2008.

[78] The Protégé Ontology Editor and Knowledge Acquisition System. http://
protege.stanford.edu/. Accessed: 2013-5-15.

[79] E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2008. Accessed: 2013-11-11.

REFERENCES 153

[80] J. Puttonen, A. Lobov, M. A. Cavia Soto, and J. L. Martinez Lastra. A se-
mantic web services-based approach for production systems control. Advanced
Engineering Informatics, 24(3):285–299, August 2010.

[81] J. Puttonen, A. Lobov, and J. L. Martinez Lastra. An application of BPEL for
service orchestration in an industrial environment. 2008 IEEE International
Conference on Emerging Technologies and Factory Automation, Proceedings,
pages 530–537, 2008.

[82] J. Puttonen, A. Lobov, and J. L. Martinez Lastra. An approach to service
deployment to the service cloud. In ICONS 2011 : The Sixth International
Conference on Systems, pages 122–127, from January 23 to January 28 2011.

[83] J. Puttonen, A. Lobov, and J. L. Martinez Lastra. Maintaining a dynamic
view of semantic web services representing factory automation systems. In
2013 IEEE 20th International Conference on Web Services, pages 419–426, 27
June-2 July 2013.

[84] J. Puttonen, A. Lobov, and J. L. Martinez Lastra. Semantics-based composi-
tion of factory automation processes encapsulated by web services. Industrial
Informatics, IEEE Transactions on, 9(4):2349–2359, 2013.

[85] J. Rao and X. Su. A survey of automated web service composition methods. In
In Proceedings of the First International Workshop on Semantic Web Services
and Web Process Composition, SWSWPC 2004, pages 43–54, 2004.

[86] RDF/XML Syntax Specification (Revised), W3C Recommendation 10 Febru-
ary 2004. http://www.w3.org/TR/REC-rdf-syntax/. Accessed: 2014-6-19.

[87] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,
A. Polleres, C. Feier, C. Bussler, and D. Fensel. Web service modeling on-
tology. Applied Ontology, 1(1):77–106, 2005.

[88] A. Sasa, M. B. Juric, and M. Krisper. Service-oriented framework for human
task support and automation. Industrial Informatics, IEEE Transactions on,
4(4):292–302, 2008.

[89] M. L. Sbodio, D. Martin, and C. Moulin. Discovering semantic web services
using SPARQL and intelligent agents. Web Semantics: Science, Services and
Agents on the World Wide Web, 8(4):310–328, November 2010.

[90] A. Segev and Q. Sheng. Bootstrapping ontologies for web services. Services
Computing, IEEE Transactions on, 5(1):33–44, Jan.-March 2012.

REFERENCES 154

[91] S. Sellami and O. Boucelma. Web services discovery and composition: A
schema matching approach. In Web Services (ICWS), 2011 IEEE Interna-
tional Conference on, pages 706–707, 2011.

[92] N. Shah, K. M. Chao, A. N. Godwin, and A. James. An abstract knowl-
edge based approach to diagnosis and recovery of plan failure in multi-agent
systems. Advanced Engineering Informatics, 21(2):183–190, 2007.

[93] A. Sheth and A. Ranabahu. Semantic modeling for cloud computing, part 1.
Internet Computing, IEEE, 14(3):81–83, 2010.

[94] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for web
service composition using SHOP2. Web Semantics: Science, Services and
Agents on the World Wide Web, 1(4):377–396, October 2004.

[95] Socrades project. http://wwww.socrades.eu. Accessed: 2012-2-21.

[96] T. X. Song, P. J. Tian, Y. H. Liu, and B. Q. Huang. Web services’ semantic
annotation and auto-matching based on sawsdl. In 2008 International Sympo-
sium on Information Science and Engineering, ISISE 2008, volume 2, pages
577–580, 2008.

[97] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual infrastruc-
ture management in private and hybrid clouds. Internet Computing, IEEE,
13(5):14–22, 2009.

[98] M. Spranger, C. Thiele, and M. Hild. Integrating high-level cognitive systems
with sensorimotor control. Advanced Engineering Informatics, 24(1):76–83,
2010.

[99] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discov-
ery, interaction and composition of semantic web services. Web Semantics,
1(1):27–46, 2003.

[100] P. S. Tan, A. E. S. Goh, and S. S. G. Lee. An ontology to support context-
aware b2b services. In Services Computing (SCC), 2010 IEEE International
Conference on, pages 586–593, 2010.

[101] S. tao Sun, D. sheng Liu, G.-Q. Li, W. yang Yu, and L. Pang. The research
on hierarchical construction method of domain ontology. In Semantics Knowl-
edge and Grid (SKG), 2010 Sixth International Conference on, pages 203–210,
2010.

REFERENCES 155

[102] J. T. E. Timm and G. C. Gannod. A model-driven approach for specifying
semantic web services. In Web Services, 2005. ICWS 2005. Proceedings. 2005
IEEE International Conference on, pages 313–320 vol.1, 2005.

[103] J. T. E. Timm and G. C. Gannod. Grounding and execution of OWL-S
based semantic web services. In Services Computing, 2008. SCC ’08. IEEE
International Conference on, volume 2, pages 588–592, 2008.

[104] H. Tong, J. Cao, S. Zhang, and M. Li. A distributed algorithm for web service
composition based on service agent model. IEEE Transactions on Parallel and
Distributed Systems, 22(12):2008–2021, 2011.

[105] UDDI. http://uddi.xml.org/. Accessed: 2013-5-15.

[106] M. K. Uddin, A. Dvoryanchikova, A. Lobov, and J. L. Martinez Lastra. An
ontology-based semantic foundation for flexible manufacturing systems. In
IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Soci-
ety, pages 340–345, 2011.

[107] M. K. Uddin, J. Puttonen, S. Scholze, A. Dvoryanchikova, and J. L. Mar-
tinez Lastra. Ontology-based context-sensitive computing for FMS optimiza-
tion. Assembly Automation, 32(2):163–174, 2012.

[108] University of Basel. ON :: OWL-S API - Introduction. http://on.cs.
unibas.ch/owls-api/index.html. Accessed: 2013-11-11.

[109] R. Vaculín and K. Sycara. Semantic web services monitoring: An owl-s based
approach. In Proceedings of the Annual Hawaii International Conference on
System Sciences, 2008.

[110] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in
the clouds: towards a cloud definition. SIGCOMM Comput.Commun.Rev.,
39(1):50–55, dec 2008.

[111] K. Verma. Configuration and adaptation of semantic web processes.
http://lsdis.cs.uga.edu/library/download/thesis/kunal/verma_
kunal_200608_phd.pdf, 2006. Accessed: 2013-11-11.

[112] V. Villaseñor Herrera, A. Vidales Ramos, and J. L. Martinez Lastra. An
agent-based system for orchestration support of web service-enabled devices
in discrete manufacturing systems. Journal of Intelligent Manufacturing,
23(6):2681–2702, Mon, 16 May 2012.

[113] R. D. Virgilio. Meta-modeling of semantic web services. In Services Computing
(SCC), 2010 IEEE International Conference on, pages 162–169, 2010.

REFERENCES 156

[114] V. V. Vyatkin, J. H. Christensen, and J. L. Martinez Lastra. OOONEIDA: An
open, object-oriented knowledge economy for intelligent industrial automation.
IEEE Transactions on Industrial Informatics, 1(1):4–16, 2005.

[115] R. Walker. Examining load average. http://www.linuxjournal.com/
article/9001. Accessed: 2013-5-14.

[116] H. H. Wang, N. Gibbins, T. R. Payne, and D. Redavid. A formal model of
the semantic web service ontology (wsmo). Information Systems, 37(1):33–60,
March 2012.

[117] G. Wasson and M. Humphrey. Exploiting WSRF and WSRF.NET for remote
job execution in grid environments. In Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, pages 12a–12a, 2005.

[118] Web services choreography description language version 1.0. http://www.w3.
org/TR/ws-cdl-10/. Accessed: 2013-5-16.

[119] Web Services Eventing (WS-Eventing). http://www.w3.org/Submission/
WS-Eventing/.

[120] D16 The WSML Specification. http://www.wsmo.org/TR/d16/, 2008. Ac-
cessed: 2013-11-11.

[121] OASIS Web Services Resource Framework (WSRF) TC. http://www.
oasis-open.org/committees/wsrf/. Accessed: 2013-5-15.

[122] XMI. http://www.omg.org/spec/XMI/. Accessed: 2013-5-15.

[123] B. Yang and Z. Qin. Composing semantic web services with PDDL. Informa-
tion Technology Journal, 9(1):48–54, 2010.

[124] J.-H. Yang and I.-J. Chung. A method for automatic generation of owl-s service
ontology. International Journal of Information Processing System, 2(2):114–
114–123, 2006.

[125] S. H. Yeganeh, J. Habibi, H. Rostami, and H. Abolhassani. Semantic web
service composition testbed. Computers & Electrical Engineering, 36(5):805–
817, 9 2010.

[126] D. Yulin and Z. Chunjiao. Design and research of embedded PLC develop-
ment system. In Computer Research and Development (ICCRD), 2011 3rd
International Conference on, volume 3, pages 226–228, 2011.

REFERENCES 157

[127] Q. Zhu. Topologies of agents interactions in knowledge intensive multi-agent
systems for networked information services. Advanced Engineering Informat-
ics, 20(1):31–45, 2006.

