


 
 
Tampereen teknillinen yliopisto. Julkaisu 1288 
Tampere University of Technology. Publication 1288 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Suvi Santala 
 
Developing Synthetic Biology Tools and Model Chassis: 
Production of Bioenergy and High-Value Molecules 
 
 
Thesis for the degree of Doctor of Science in Technology to be presented with due 
permission for public examination and criticism in Festia Building, Auditorium Pieni Sali 1, 
at Tampere University of Technology, on the 24th of April 2015, at 12 noon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tampereen teknillinen yliopisto - Tampere University of Technology 
Tampere 2015 



 
 
 
Supervisors: Professor Matti Karp 

Adjunct Professor Ville Santala 
 

Department of Chemistry and Bioengineering 
Tampere University of Technology 
Tampere 
Finland 

 
Reviewers: Professor Francesco Molinari 
 Department of Food, Environmental and Nutritional  

Sciences  
University of Milan 
Milan 
Italy 
 
Associate Professor Ichiro Matsumura 
Department of Biochemistry 
Emory University 
Atlanta, GA 
U.S.A 

         
 
Opponent:  Research Professor Merja Penttilä 

VTT Technical Research Centre of Finland,  
Industrial Biotechnology 
Espoo 
Finland 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN 978-952-15-3482-9 (printed) 
ISBN 978-952-15-3496-6 (PDF) 
ISSN 1459-2045 
 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aino-Mummulle 

 
 
 
 
 



 

 

 

 

  



 

 

i 

 

Abstract 

One of the aims of synthetic biology is the sustainable production of high-value 

compounds and bioenergy molecules. Synthetic biologists exploit fundamental 

engineering principles, such as DNA component standardization, modular genetic 

circuits, and de novo design, to create novel production pathways and products. A well-

characterized host cell serves as the chassis for the system construction; generally, the 

model bacterium Escherichia coli is applied. However, the metabolism and 

characteristics of E. coli are not ideal for all applications. Furthermore, many E. coli 

based systems are patent protected which restricts the use in forthcoming application. 

Acinetobacter baylyi ADP1 is a potential alternative host for synthetic biology. The 

metabolism and genetics of the strain are well-understood, and the engineering of its 

genome is technically straight-forward. The versatile and unusual metabolic pathways, 

including those producing long chain hydrocarbons, can be rerouted, modified, and 

integrated into novel ones. I exploited A. baylyi ADP1 as a model host for the 

production of high-value hydrocarbons, triacylglycerols and wax esters. I employed 

metabolic engineering, novel molecular monitoring tools, and synthetic pathway design 

to improve the production, and to demonstrate the utility of ADP1 as a synthetic biology 

host. In particular, the production of triacylglycerols was improved over 5-folds by 

targeted gene deletions which resulted in redirected carbon flux towards the product 

and elimination of competitive pathways. 

The long-chain hydrocarbon metabolism, including alcohol and wax ester biosynthesis, 

is not yet fully understood. These pathways are regulated through several mechanisms 

sensitive to specific environmental conditions and the cellular states. However, the lack 

of robust and straight-forward analysis tools has restricted the studies of lipid 

metabolism and production kinetics. I developed a simple in vivo tool for the 

investigation of the long chain hydrocarbon metabolism in real-time. The tool is based 

on a light-producing reporter enzyme, bacterial luciferase. The enzyme utilizes a 

specific intermediate of the hydrocarbon synthesis pathway as a substrate for 

bioluminescence production. Initially, the tool was applied for monitoring the wax ester 

metabolism of A. baylyi ADP1. Subsequently, I modified the monitoring tool for studying 

the degradation of alkanes. The studies suggest that the tool can be applied for 

production optimization in different hosts and for a variety of products. I also 

reconstructed the wax ester synthesis pathway of A. baylyi ADP1 by replacing a natural 
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key enzyme with an alternative well-characterized component, enabling a regulated 

production of unnatural wax esters.  

Bioprocess control and scale-up of production systems are challenging. Multispecies 

cultures are suggested to improve the robustness and performance of bacterial 

production processes. I exploited the metabolic versatility of A. baylyi ADP1 to 

construct a rationally engineered synthetic coculture with E. coli. The designed 

coculture exhibited improved biomass and recombinant protein production compared to 

the pure culture of E. coli. 

To conclude, I have shown that the strain ADP1 is a suitable host for synthetic biology 

applications, especially for long-chain hydrocarbon production, the development of 

novel tools for metabolic studies, and for exploiting the existing unusual metabolic 

networks of the cell. Thus, further studies of the remaining challenges related to ADP1 

bioprocess and as-of-yet uncharacterized cell mechanisms, are warranted. 
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Tiivistelmä 

Synteettinen biologia on tieteenala, joka yhdistää insinööritieteet, 

informaatioteknologian, ja molekulaarisen bioteknologian. Synteettisessä biologiassa 

hyödynnetään standardoituja biologisia elementtejä, kuten hyvin tunnettuja DNA-

komponentteja ja niistä koostuvia geneettisiä piirejä, joiden avulla voidaan 

systemaattisesta suunnitella ja rakentaa biologisia laitteita. Hyvin tunnetut työkalut 

mahdollistavat tiedon nopean lisääntymisen ja alan nopean kehityksen. Tämän 

tieteenalan teknologioiden avulla voidaan tuottaa teollisuuden kannalta arvokkaita 

molekyylejä, kuten bioenergiakomponentteja ja uusia älykkäitä lääkkeitä. Biologiset 

laitteet rakennetaan eläviin isäntäsoluihin, jotka toimivat systeemin biologisena 

kehyksenä ja ovat siten myös toimivuuden kannalta merkittävässä asemassa. 

Tunnetuin ja eniten käytetty isäntäsolu on Escherichia coli -bakteeri. Tämä bakteeri ei 

kuitenkaan ole ominaisuuksiensa puolesta optimaalisin vaihtoehto kaikkiin sovelluksiin, 

eikä sen aineenvaihdunta tarjoa mahdollisuutta tutkia kaikkia merkittäviä biokemiallisia 

reittejä. Aineenvaihduntareittien tuntemus on välttämätöntä, kun rakennetaan ja 

optimoidaan uusia tai muokattuja reittejä tärkeiden molekyylien tuottamiseksi.  

Acinetobacter baylyi ADP1 -bakteerikanta on yksi potentiaalisista, vaihtoehtoisista 

isäntäsoluista synteettisen biologian sovelluksiin. Kyseisen bakteerin genomi ja 

metabolia tunnetaan hyvin, ja sen geneettinen muokkaus on helppoa ja suoraviivaista. 

Lisäksi solun aineenvaihdunta on erittäin mielenkiintoinen; kannan luontainen kyky 

tuottaa pitkäketjuisia hiilivetyjä, kuten biopolttoainetuotantoon soveltuvia triglyseridejä 

ja vahaestereitä, tarjoaa hedelmällisen lähtökohdan aineenvaihdunnan tutkimiseen ja 

muokkaamiseen. 

Väitöskirjassani osoitan, että A. baylyi ADP1 -kantaa voidaan hyödyntää synteettisen 

biologian isäntäsoluna ja mallisysteeminä. Paransin tutkimuksessani bakteerikannan 

triglyseridituotantoa metaboliamuokkauksen keinoin: Aineenvaihdunnan mallintamisen 

perusteella identifioitiin geenejä, joiden poistaminen vaikuttaa suotuisasti triglyseridien 

tuottoon. Poistamalla tietty geeniyhdistelmä voitiin eliminoida solunsisäisiä kilpailevia 

reittejä ja ohjata hiilivuo kohti tuotetta. Muokkauksen tuloksena triglyseridituotanto 

parantui noin viisinkertaisesti. 

Pitkäketjuisten hiilivetyjen aineenvaihduntareitit eivät ole vielä hyvin tunnettuja. Tämä 

johtuu osittain siitä, että tutkimukseen tarvittavia yksinkertaisia ja dynaamisia työkaluja 
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ja menetelmiä ei ole ollut saatavilla. Tutkimuksessani kehitin uuden molekulaarisen 

työkalun, jonka avulla pitkäketjuisten hiiliyhdisteiden tuottoa voidaan monitoroida solun 

sisällä reaaliaikaisesti. Työkalu perustuu bakteerilusiferaasientsyymiin, joka tunnistaa 

spesifisesti ko. aineenvaihduntareittien välituotteen, pitkäketjuisen aldehydin, ja reagoi 

sen kanssa tuottaen näkyvää mitattavaa valoa eli bioluminesenssia. Työkalun 

toimivuus osoitettiin tutkimalla A. baylyi ADP1 -kannan vahaesterimetaboliaa, mutta 

sitä voidaan soveltaa myös muihin organismeihin ja tuotteisiin. Hyödynsin työkalua 

myös mukauttamalla sen detektoimaan alkaaneja ja diesel-peräisiä yhdisteitä sekä 

näiden yhdisteiden hajotusta.  

Rekonstruoin tutkimuksessani myös ADP1-kannan vahaesterituottoreitin: yksi reitin 

avainentsyymeistä korvattiin hyvin tunnetulla DNA-komponentilla, jota käytettiin täysin 

uudessa tarkoituksessa. Reitin uudelleensuunnittelun ja -rakentamisen tuloksena 

pystyttiin tuottamaan kontrolloidusti synteettisiä vahaestereitä, jotka eroavat 

ominaisuuksiltaan ADP1:n luonnollisista vahaestereistä. 

Yksi synteettisen biologian haasteista on rakennettujen systeemien toimivuus ja 

stabiilius suuren mittakaavan prosesseissa. Prosessit, joihin osallistuu useita 

yhteistyössä toimivia bakteerikantoja, ovat mahdollisesti vakaampia, sillä oikeanlaiset 

populaatioyhdistelmät edistävät suotuisten olosuhteiden säilyttämistä ja prosessin 

suorituskykyä. Tutkimuksessani osoitan, että ADP1-kantaa voidaan hyödyntää myös 

täysin uudella tavalla E. coli -pohjaisissa yhteiskasvatuksissa; geneettisen 

muokkauksen tuloksena luotiin synteettinen, keinotekoisesti symbioottinen 

yhteiskasvatus, jossa biomassan ja rekombinanttisen proteiinin tuotto parani verrattuna 

E. coli -puhdasviljelmään. 

Yhteenvetona totean, että A. baylyi ADP1 soveltuu synteettisen biologian 

isäntäorganismiksi erityisesti osa-alueilla, jotka liittyvät pitkäketjuisten hiiliyhdisteiden 

tuottamiseen sekä tutkimiseen ja jotka hyödyntävät solun omia aineenvaihduntareittejä. 

Kannan bioprosessin kehittäminen sekä toistaiseksi tuntemattomien mekanismien 

karakterisointi asettavat haasteita, mutta bakteerin moninaiset ominaisuudet ja 

potentiaali puoltavat sen jatkokehittämistä synteettisen biologian sovelluksiin.   
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1 Introduction 

Synthetic biology is a new emerging discipline combining life sciences, information 

technologies, and engineering. Synthetic biology seeks rational and sustainable 

solutions for improving human health, promoting energy self-sufficiency, producing 

important commodities, generating novel molecules and products with new features, 

and addressing environmental and agricultural issues. The most acute targets include 

reducing and preventing food shortage, developing novel drugs for complex diseases, 

and compensating for the depletion of fossil energy sources with green energy 

technologies.  

The fundamental philosophy of synthetic biology lies in redesigning biology, applying 

standard engineering principles, methods, and organisms. This ideology redefines 

biological systems and particularly the organisms, emphasizing their properties in 

terms of design, programmability, and modularity, rather than according to the 

taxonomical or microbiological characteristics or status. The new engineering principles 

and methodologies of synthetic biology have led to a tremendous increase in 

complexity and novelty of biocompounds and pathways, compared to typical products 

obtained by means of conventional genetic engineering, such as single proteins or 

small metabolites. However, increased complexity requires more comprehensive 

design and computation. Instead of the extensive and consuming work of trial and 

error, synthetic biology aims at providing tailored and well-characterized working 

platforms for construction of newly designed cells performing determined tasks. In 

addition, robust amenable monitoring tools and functional cellular working platforms are 

required to fulfill the increasing demands of the designed biological systems. 
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This thesis reviews some of the most important technologies, engineering principles, 

achievements, and challenges of synthetic biology, the main focus being on prokaryotic 

systems. Chapter 2 gives a general overview of what synthetic biology is, whereas 

Chapters 3 and 4 focus on more specific research topics, bioenergy production and 

multicellular systems. As a reflection of the potential deficiencies and gaps of the field 

emerged by the current literature, Chapter 5 outlines the hypotheses and objectives of 

my study. Chapters 6 and 7 summarize the methods and results presented in the 

original papers I-V and discuss the research outcomes and future prospects in the 

context of the current state of synthetic biology research.   
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2 Synthetic biology revolution 

The discovery of restriction enzymes in the 1970’s gave birth to recombinant DNA 

technology and molecular cloning, ushering in a discipline of modern biotechnology. An 

early success in the field is the production of recombinant human insulin in engineered 

Escherichia coli. These new technologies led to dramatic development in engineering 

microbial cells for producing important commodities for pharmaceutical and chemical 

industries, such as novel drugs, vitamins, antibodies, and fine chemicals.  

Roughly a decade later, the development of DNA sequencing techniques allowed the 

first complete genome sequence of an organism to be announced in 1995 

(Haemophilus influenzae) (Fleischmann et al. 1995), followed by the first drafts of 

human genome in 2000 (Venter et al. 2001). The rise of ‘scale-up’ systems biology 

brought computer scientists and biologists together, expanding the possibilities to 

combine experimental and computational data (Westerhoff and Palsson 2004; Lanza et 

al. 2012). At the same time, the term synthetic biology became established (Endy 

2005), emphasizing the urge for rational engineering, control, and programmability of 

newly designed cells; the traits lacking from conventional genetic engineering. During 

the past decade, the field and scope of synthetic biology has grown massively and 

made its breakthrough recognized largely by scientific communities as well as 

governmental and industrial players. 

The idea of computational design and construction of regulatory circuits performing 

desired functions became one of the central concepts of synthetic biology. The first 

synthetic toggle switch (Figure 2.1) was constructed in 2000, performing two-state 

transcriptional regulation for expression of fluorescent protein (Gardner et al. 2000).  
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FIGURE 2.1.The toggle switch constructed for on/off gene expression via dual-repressor 
system. In the circuit, only one of the two repressor genes is active at a given 
time, resulting in a stable transcriptional state defined by environmental 
stimulus (IPTG, Heat). Modified from (Gardner et al. 2000). 

Growing interest in engineered genetic switches analogous to electrical circuits has 

resulted in development of more sophisticated auto-regulatory feedback modules and 

oscillators, and devices displaying Boolean logic gate behavior (see chapter 2.1.1). The 

first circuits based on cell-cell communication were published shortly after, giving 

impulse to study and engineer synthetic microbial cocultures (Bulter et al. 2004). 

An interdisciplinary community of synthetic biologists had rapidly evolved, consisting of 

molecular biologists, chemists, computer scientists, and engineers. The first official 

meeting for Synthetic Biology (SB1.0) was held in 2004 at the Massachusetts Institute 

of Technology (MIT), USA. The same year another notable event – soon becoming a 

tradition – iGEM (International Genetically Engineered Machine) competition took place 

(http://igem.org/). The rapidly developing techniques produced a tremendous amount of 

new data, which soon led to an open-access philosophy within the community. As an 

example of the communal approach, The Registry of Standard Biological Parts was 

established in 2003, providing standard DNA components and devices for academic 

researchers free of charge (http://parts.igem.org/). At the moment, more than 15 000 

parts are registered.   

Whole-genome engineering was taken to the next level when a complete genome of 

Mycoplasma genitalium was synthesized by scientists of J. Craig Venter Institute 

(Gibson et al. 2008). Subsequently, Venter and colleagues created a viable synthetic 

cell with artificial genome of a size 1.1 Mbp, exploiting chemical synthesis and novel 

DNA assembly techniques (Gibson et al. 2010). After the first decade of the 

millennium, the scientists had taken the first steps toward the ultimate goal, a 

completely programmable cell with desired functions and characteristics. 
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2.1 Engineering principles 

Synthetic biology is all about design, rationalizing the complexity of natural systems by 

applying the key concepts of engineering. The main principles of synthetic biology 

involve standardization, specification, compatibility, modularity, and simplicity. 

Systematic design is described as a continuous cycle including a computer aided 

modeling, the implementation of the biological system, and testing and validation, 

finally leading to detailed specifications of the system (Baldwin et al. 2012). 

Standardized biocomponents can be assembled to create synthetic devices performing 

defined functions and devices comprise larger systems conducting complex tasks 

(Figure 2.2). 

 

FIGURE 2.2. The hierarchy of creating synthetic biology circuits and systems from standard 
parts. Modified from (Marchisio and Stelling 2009) 
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2.1.1 Standard parts 

Bioparts are pieces of DNA encoding designed biological functions. The first approach 

to facilitate a straight-forward engineering of biological systems was the creation of the 

BioBrick standard (Shetty et al. 2008). The well-characterized and compatible DNA 

components comprise a vast collection of a variety of reporters, enzyme coding genes, 

regulatory elements, degradation tags, multienzyme complexes, and ready-made 

pathways to ease the cellular engineering. The package also includes tailored 

protocols for BioBrickTM cloning, based on standard vectors and restriction sites. The 

number of deposited individual bioparts, or ”DNA components”, along with committed 

laboratories increase continuously. The Registry of Standard Parts serves as a 

reservoir for the defined DNA components, enabling the construction of genetic devices 

and systems of increasing complexity (iGEM.org). 

For part standardization, a comprehensive characterization with defined system 

specifications is carried out to produce a technical ‘datasheet’. The datasheet contains 

details such as the part number, static performance, a dynamic response, the used 

chassis, part compatibility, and reliability (Figure 2.3). The datasheet provides a 

general description and summary of characteristics of the part or device, enabling a 

straight-forward reuse of the component. (Canton et al. 2008) However, as a time-

consuming protocol, the in vivo part characterization remains a bottleneck in rational 

and predictable engineering. An alternative part standardization approach has been 

introduced, completely based on in vitro characterization of the DNA regulatory 

elements exploiting E. coli cell-free extract (Chappell et al. 2013). 
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FIGURE 2.3. An example of a technical datasheet for a standard biological part (Canton et 
al. 2008). Open access. 

Despite the attempts to control and instruct the part characterization, the concept of 

Canton et al. seem idealistic; the open access policy and the vast number of different 
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depositors have resulted in significant fluctuations in the quality and functionality of the 

deposited parts and devices in the registry. In addition, predicting the compatibility of 

different parts and especially the part function in different conditions and hosts has 

turned out to be very problematic.  

Recent advances in de novo DNA synthesis technologies have enabled a precise 

design and realization of modified and optimized genes for reasonable prices. 

Synthetically tailored genes are especially convenient for protein engineering (Fowler 

et al. 2010; Kim et al. 2013), orthogonal gene expression systems (Rhodius et al. 

2013), and customized pathways with synthetic control elements (Temme et al. 2012). 

Another approach to create new DNA components is ‘part mining’ using metagenomic 

libraries as source for the resynthesis of novel bioparts (Stanton et al. 2014). 

Altogether, if synthetic biologists seek standard parts with maximal orthogonality and 

predictability, de novo designed and synthesized bioparts may be the only practical 

way to increase the reliability of the part-based systems.      

2.1.2 Synthetic gene circuits 

Synthetic genetic circuits are functional entities performing defined tasks (Sprinzak and 

Elowitz 2005; Brophy and Voigt 2014). Circuit design is preferably assisted by 

computational tools (Clancy and Voigt 2010; MacDonald et al. 2011; Rodrigo and 

Jaramillo 2013) and well-characterized parts serve as building blocks for circuit 

modules (Weiss et al. 2003; Voigt 2006; Mutalik et al. 2013). The increasing complexity 

of bottom-up engineered gene networks requires a rational approach to design and 

predict the circuit behavior (Mukherji and van Oudenaarden 2009).  

Synthetic regulation is essential, since many natural genes and gene clusters are silent 

unless induced by a specific molecule or conditions that can be inconvenient or 

unknown (Frasch et al. 2013). Circuits can be regulated at either transcriptional or post-

transcriptional level. In digital transcriptional circuits, input and output promoters define 

the expression state to be simply either ON or OFF, and the circuit performance can be 

monitored using reporters such as fluorescent proteins (Wang et al. 2011). Digital 

circuits can be built based on logic gates with AND, NAND, OR, NOT, or NOR gates 

according to Boolean logic (Figure 2.4). In principle, Boolean logic gates consist of two 

or more input signals and return a single output, namely “true” or “false”. Dynamic 

circuits, such as oscillators, are more difficult to screen and monitor, and thus mainly 

proof-of-principle systems have been described (Elowitz and Leibler 2000; Stricker et 

al. 2008). Promoter architectures acting as circuit regulators typically involve DNA 

binding proteins such as LacI, LuxR, TetR or AraC or combinatorial approaches 
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exploiting them (Cox et al. 2007), but also RNA molecules (Lucks et al. 2011), 

metabolites or even changes in environmental stimulus (Levskaya et al. 2005; Tabor et 

al. 2011) can serve as transcription regulators.  

 

FIGURE 2.4. An example of an orthogonal logic NAND gate constructed in E. coli. Reporter 
protein (GFP) production is ON unless both external signals (IPTG and Arab.) 
are given. The dynamic range can be fine-tuned using modified RBS (rbs34, 
rbs30). Modified from (Wang et al. 2011). 

Post-transcriptional circuits typically involve interactions between non-coding RNAs 

and DNAs, proteins, or small molecules (Isaacs et al. 2004). RNAs are naturally 

modular multifunctional molecules possessing unique sequence-specific characteristics 

at both structural and functional levels, thus serving as a useful platform for the design 

and evolution of novel type of regulatory, control, and sensor devices (Liang et al. 

2011; Isaacs 2012; Mutalik et al. 2012). 

Regulatory devices functioning through protein-protein interactions and allosteric 

regulatory systems enable direct and dynamic spatio-temporal regulation of a protein 

function in cells (Grunberg and Serrano 2010; Olson and Tabor 2012). Post-

transcriptional regulation potentially puts less stress and burden on cells, which can be 

crucial in larger circuit designs. 

Genetic circuits hold huge potential for future applications in the fields of biomedicine 

and biotechnology (Lu et al. 2009). Ideally, circuits could be used for programming cells 

displaying precisely timed regulatory systems sensitive to specific signals, molecules, 

or environmental changes. Connected circuits constitute larger genetic programs, and 

the most complex recently reported circuits have involved up to 11 regulatory proteins 

and 38 additional genetic parts (Moon et al. 2012). However, the described synthetic 

systems are still limited in complexity compared to natural systems. In order to build up 

more complex circuits with broader dynamical range several major challenges must be 

overcome. For example, more efficient and precise design tools must be developed for 

obtaining correctly balanced systems. In addition, more robust monitoring tools with  a 

wider range of suitable reporters are required to screen for circuits with optimized 
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performance. Also, a better understanding about factors affecting the performance of a 

circuit and individual components within the context is required, and advances in 

technologies for building up larger circuits involving several devices and components 

are needed (Brophy and Voigt 2014). Moreover, even well-designed and tuned circuits 

often suffer from instability and loss-of-function in long term use (Sleight et al. 2010a).  

Genetic circuits are typically very sensitive to the cellular and environmental context. 

Cross-talk between exogenous and endogenous cellular systems can decrease the 

predictability and robustness of circuits and individual parts in cells (Cardinale and 

Arkin 2012). Thus orthogonal, i.e. isolated expression systems uncoupled from cellular 

regulation are generally a more preferable approach. Orthogonal expression can be 

defined either at cellular level as a host independent expression system diminishing 

any interaction between exogenous and endogenous reactions, or at circuit level, 

implicating an independent transcriptional regulation of different gates, devices, or 

modules in parallel. For example, an orthogonal gene expression pathway in E. coli 

based on specific transcription-translation machinery recognizing only defined 

sequences in DNA and mRNA was previously introduced (An and Chin 2009). Several 

other tools for orthogonal regulation have been also developed and introduced (Rao 

2012). For complex circuits, however, the number of well-known uncorrelated 

transcription factors is currently insufficiently low, limiting the circuit size. Part mining 

(Stanton et al. 2014), design and construction of novel regulatory elements, and 

evolution of existing transcription factors (Kamionka et al. 2004) are applied for 

facilitating the construction of orthogonal circuits consisting of a large number of 

elements.    

During the last decade, a wide-ranging set of different circuit designs were introduced. 

However, fundamental limitations still exist, thus preventing the final breakthrough and 

full-fledged exploitation of the synthetic programs. For example, constructing a 

functional and predictable circuit is still largely conducted by trial and error, which in 

practice means the screening of tens, hundreds, or even thousands of differentially 

constructed circuit candidates. The screening is dependent on convenient assay 

methods or sophisticated flow cytometry instrumentation exhibiting high-throughput cell 

sorting, as for partly limiting the circuit range and function. Moreover, the current 

systems often suffer from “a proof-of-principle syndrome”; the scale-up of circuits is still 

insufficient as the circuits operate correctly only at optimized conditions and in a 

defined cell environment. Other problems restricting the circuit robustness include a 

potential toxicity to cells, metabolic loading, inaccurate modeling, and lack of analysis 

and design tools. 
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A representative example of the challenges in circuit design is the rebuilding of the 

nitrogen fixation gene cluster in Klebsiella oxytoca (Temme et al. 2012). The cluster 

containing 20 genes in seven different operons was “refactored”. In the process, all the 

known and hidden natural regulatory elements, noncoding DNAs, and nonessential 

genes were removed. The genes were reorganized into new operons that function 

under the regulation of synthetic elements. The resulting synthetic cluster contained 89 

individual genetic parts. The maximal nitrogenase activity exhibited by the refactored 

system was approximately 7 % of that of the wild type system, and only 2 % when 

expressed in a non-native host, namely E. coli (Temme et al. 2012). More previously, 

the modularity of the system was exploited in creating genetic permutations to further 

investigate and optimize the cluster functionality (Smanski et al. 2014). More than a 

hundred different variants of each operon were combinatiorally assembled and 

analysed, and the information was applied in further design cycles. Eventually, a 

nitrogenase activity of 57 % of the wild type system in K. oxytoca could be achieved. 

This variant recovered 7 % activity in E. coli, whereas a variant specifically optimized 

for E. coli yielded nearly 20 % activity. The study demonstrates the complexity of 

redesigning highly evolved natural systems and the difficulty of maintaining and 

determining the functionality of corresponding synthetic systems, especially if non-

native hosts are used. Nevertheless, only two hosts were tested in the described study; 

thus it would be very interesting to investigate, how the activity range of the original 

refactored design would have changed in a broader range of different cellular 

environments. In another words, could choosing the “right” host in some cases 

compensate for the heavy optimization process?     

In opposite to building up circuits from scratch, integrated circuits directly exploit the 

host machinery and metabolism to carry out the functions (Nandagopal and Elowitz 

2011). Integration can occur at different levels from partially autonomous synthetic 

circuits to rewired or completely integrated pathways (Figure 2.5). Integrated synthetic 

circuits can improve functionality, allow more complex design, and broaden the 

usability of single bioparts in new contexts.   
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FIGURE 2.5. Integration of synthetic pathways to cellular environment. Modified from 
(Nandagopal and Elowitz 2011).   

     

2.1.3 Overview of recent DNA assembly and genome engineering 
methods 

An increasing number of novel methods for a rapid, reliable, and simple assembly of 

DNA components, and comprehensive genome engineering were introduced during the 

past decade. A dramatic drop in de novo DNA synthesis prices has changed the focus 

of molecular cloning from DNA restriction/ligation based protocols towards a more 

comprehensive design of seamless gene cassettes, complete pathways and even 

genomes. Figure 2.6 presents the frequency of use of recent DNA assembly methods 

in the field of synthetic biology in 2013.  
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FIGURE 2.6. The frequency of use of recent DNA assembly techniques in 2013. Modified 
from (Kahl and Endy 2013). 

Even though not being the most modern and convenient method for a rapid assembly 

of standard parts, the BioBrickTM cloning is still widely in use and can be granted as a 

forerunner to the upcoming approaches. It is based on specific restriction sites (namely 

EcoRI-NotI-XbaI-(-)-SpeI-NotI-PstI) present in all standard vectors and BioBricks, 

enabling a sequential addition of several parts to the same vector. As an advantage, 

the method does not require DNA amplification or design/use of oligonucleotides when 

available parts and vectors are exploited. However, for practical reasons the size and 

complexity of the insertion is quite limited, and the step-by-step addition of parts is 

time-consuming, and thus not significantly different from conventional molecular 

cloning. 

Probably the most revolutionary and today the most widely used DNA assembly 

method, Gibson assembly, was introduced in 2009 (Gibson et al. 2009). The method is 

based on overlapping sequencing in amplified target DNA fragments which are joined 

together by T5 exonuclease, DNA polymerase, and heat-labile ligase in a one-step 

isothermal reaction (Figure 2.7). The method requires specific synthesized 

oligonucleotides (or genes) for each insert fragment. This fast and straight-forward 

method is especially convenient for cloning several components simultaneously and for 

very large DNA fragments. 
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FIGURE 2.7.The Gibson Assembly method. The one-step reaction is carried out 
isothermally in 50 C exploiting a 5’ exonuclease, a DNA polymerase and a 
DNA ligase (here; T5 exonuclease, Phusion polymerase and Taq ligase, 
respectively). Target DNA fragments (synthesized or amplified by PCR) share 
an overlapping sequences that are treated with the exonuclease to create 
overhangs in the 5’ ends. Once the complementary 3’ overhangs anneal, the 
DNA polymerase and ligase fill and seal the gap, while the heat-labile 
exonuclease becomes inactivated.  

Other notable in vitro DNA assembly methods include In-Fusion (Clontech) (Sleight et 

al. 2010b), SLIC (Sequence and Ligation Independent Cloning) (Li and Elledge 2007), 

CPEC (Circular Polymerase Extension Cloning) (Quan and Tian 2014), GoldenGate 

(Engler and Marillonnet 2013), and USER (Uracil-Specific Excision Reagent; NEB) 

(Nour-Eldin et al. 2010). Recently, a biotechnology company DNA2.0 introduced a new 

promising method, Electra Vector System IP-free® cloning 

(http://www.prweb.com/releases/2013/6/prweb10802605.htm). The developers promise 

“a simple, PCR-free, one-tube universal cloning process that can be performed in a 

five-minute bench-top reaction with the fidelity of a restriction-based cloning system”. 

The method is based on a commercial reaction mixture and standard vectors. Most 

importantly, the use of the method is not restricted by intellectual property issues, 

enabling the utilization of the method also in industrial and commercial applications 

without a license. 

In general, in vitro assembly methods are faster, more stable, and easier to use 

compared to in vivo methods. At the moment, the bottleneck of in vitro methods is the 

amplification step, which is more prone to errors than cellular replication, and not 
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generally suitable for amplification of fragments as large as genome-size. For example, 

by exploiting the efficient DNA uptake and recombination machinery of S. cerevisiae 

whole genomes (to date up to 1.8 Mb (Karas et al. 2013)) can be constructed and 

amplified in the yeast cell (Gibson 2011; Benders 2012). 

In addition, efficient tools for whole-genome engineering have been developed. MAGE 

(Multiplex Automated Genome Engineering) is an in vivo method for editing and 

evolving the host genome (Wang et al. 2009), thus far mostly applied in E. coli. By 

MAGE, broad sequence diversity can be generated at many targeted genome locations 

in a large population of cells at high efficiency. Modifications in the genome are 

achieved by repeatedly introducing the designed fragments of synthetic DNA (oligos) 

targeted at the lagging strand of the replication fork in DNA replication, thus resulting in 

allelic replacement. The recombination is mediated by a bacteriophage λ-Red ssDNA-

binding protein β. The technologies have enabled the introduction of “genome 

rewriting”, demonstrated recently in E. coli: all the stop codons TAG were replaced with 

TAA, giving insights to possibilities for expanded biological functions, protein diversity, 

and viral resistance in genetically recoded organisms (Lajoie et al. 2013). Recently, a 

derived MAGE method, yeast oligo-mediated genome engineering (YOGE), has been 

introduced to S. cerevisiae (DiCarlo et al. 2013). For higher organisms, a revolutionary 

CRISPR-Cas9 (Cong et al. 2013) system based on a natural immune response to short 

RNAs has proven its power, and holds potential for future gene/genome therapeutics. 

2.1.4 Synthetic biology and metabolic engineering 

One major approach to realize synthetic biology is metabolic engineering. The more 

specific goal of metabolic engineering is to develop methods for designing, analyzing, 

and optimizing metabolic networks, typically with the objective of finding targets for 

engineering the cell factories (Bailey 1991; Nielsen et al. 2014). The directed and 

specific modifications of metabolic pathways are introduced to cells for an improved 

synthesis of products. Improving the host cell can involve strategies for broadening the 

substrate range, improving product/substrate tolerance, improving productivity or yield, 

or accelerating the cell growth rate. The systems biology driven approach exploits the 

computational analysis of metabolic models and simulations to calculate and redirect 

fluxes within the cell. To date, probably the most notable achievement in the field of 

metabolic engineering is the reconstruction of a synthesis pathway for the production of 

an anti-malaria drug precursor (Martin et al. 2003). As a result of years of optimization, 

the process was further developed for the commercial production of Artemisinin in 

metabolically engineered yeast (Paddon et al. 2013).  
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Metabolic engineering includes a comprehensive engineering of the essential pathways 

for converting the substrates to products. Foundational elements encompass the 

determination of pathway fluxes of both synthetic and native routes, genome-scale 

modeling for identifying optimal gene expression profiles and gene modulation targets, 

as well as the kinetic and thermodynamic analysis of pathways for identification of 

bottlenecks (Stephanopoulos 2012).  

While metabolic engineering is concentrated on manipulating and combining natural 

biochemical pathways, synthetic biology aims at reprogramming cellular behavior and 

creating advanced modular systems for novel products as of yet nonexistent in nature. 

However, synthetic biology and metabolic engineering are highly synergistic 

disciplines, as presented in Figure 2.8, and on the edge of comprising a 

comprehensive toolbox with efficient methodologies, tools, and intellectual scientific 

information. 
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FIGURE 2.8. The interface of metabolic engineering and synthetic biology.  



2 SYNTHETIC BIOLOGY REVOLUTION 

 

18 

 

2.2 Chassis 

2.2.1 Well-defined organisms as cellular frameworks 

In order to obtain an unambiguous response of a standardized component, and to 

understand the function of natural and non-natural circuits in a cellular environment, a 

host cell in synthetic biology must provide a specified, tractable, predictable, and well-

defined working platform. Basically, the host cell, i.e. chassis, serves as a framework 

for the installation of man-made biological devices. However, even though the number 

of complex program designs is increasing, only limited information is available for 

defining the chassis.  

Designing the genome, genes, and the integration of components into the host are 

crucial elements in the generation of functional and comprehensive biological systems. 

However, even the simplest natural pathways comprise a network of thousands of 

interactions at both transcriptional and post-translational levels. Thus orthogonal 

expression, as discussed in Chapter 2.1, is one of the major challenges in maintaining 

the fabricated system analogous to the original design. Whole-genome engineering 

and streamlining of the host, briefly discussed in the next subchapter, increase the 

level of orthogonality and thus the predictability of non-native cellular processes. On 

the other hand, the chassis can serve as a fruitful platform for constructing complex 

pathways with less effort of fabrication, and an intentional integration of non-natural 

components to the host metabolism can broaden the possibilities to exploit individual 

parts in novel ways.    

2.2.2 From minimal genomes to synthetic cells 

Minimal genomes help us better understand and predict cellular systems. The 

fundamental problem behind the construction of ultimately reduced genomes lies in the 

definition of ‘minimal genome’, which inevitably is specified by the environmental 

conditions, defined level of cell functionality and fitness, and the ability to perform 

specific tasks. The most notable attempts to establish minimalistic cells by a top-down 

approach include the engineering of M. genitalium (Glass et al. 2006) and E. coli 

(Posfai et al. 2006; Hirokawa et al. 2013) genomes.  

Nowadays, genome reduction, or synthetic genomics, is more considered as a tool for 

an increased functionality of a cell rather than aiming at as a small genome as 

possible. As one of the goals of synthetic biology is to increase the level of robustness 
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and functionality of a host cell, genome reduction is seen as an iterative method of 

finding the optimal set of essential genes to facilitate the desired functions of a 

programmed cell (Danchin 2012; Leprince et al. 2012b). Streamlining the host genome 

reduces the unnecessary or counterproductive reactions, and simplifies the interactions 

between cellular components. Genome reduction thus promotes the redesign of an 

optimal chassis enabling ‘plug-and-play’ engineering and takes a step closer towards 

an ultimately synthetic and artificial cell.  

At present, the design principles consider maintaining cellular properties such as 

fitness near to the one of the wild type strains, and more stable, flexible, and evolvable 

production platform with less redundancy. More specifically, the genome streamlining is 

concentrated on removing introns (in eukaryotes), tRNA genes, regulatory elements, 

transposons, and DNA repeat sequences. Novel genome engineering tools, such as 

MAGE and inducible evolution system SCRaMbLE (synthetic chromosome 

rearrangement and modification by loxP-mediated evolution) are employed (Dymond et 

al. 2011). An international on-going project called Sc2.0 is currently working on building 

up the first synthetic yeast genome by a bottom-up approach (Annaluru et al. 2014) 

(http://syntheticyeast.org/sc2-0/). The project aims at increasing fundamental 

knowledge on for example chromosome properties, genome structure and 

organization, the function of RNA splicing and small RNAs, and distinction between 

prokaryotes and eukaryotes. Furthermore, the resulting ‘synthetic yeast’ would possess 

unlimited possibilities for practical use in the field of synthetic biology. Advances in 

genome design and construction will allow us to fabricate minimal cells that can serve 

both as high-capacity test-beds for fundamental genomic studies and as a chassis for 

the installation of programmed circuits.  

2.2.3 Alternative hosts for synthetic biology 

The choice for an optimal chassis is dependent on multiple factors. Straight-forward 

genome engineering and efficient regulatory structure are evident requirements for a 

cell platform, but also other biophysical characteristics, such as metabolic resources, 

exploitable pathways, and robustness in challenging bioprocesses are essential (Foley 

and Shuler 2010; Fisher et al. 2014).  

The most conventional work-horse of all time is beyond dispute E. coli, exploited both 

as a model strain for prokaryotic systems and in commercial applications for production 

of a variety of important biocompounds such as recombinant proteins (Huang et al. 

2012), commodity chemicals (Yim et al. 2011; Chen et al. 2013), and drug molecules 

(Martin et al. 2003). The cumulative and comprehensive knowledge regarding E. coli 
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genome (Blattner et al. 1997; Baba et al. 2006) among other –ome levels information 

(Han and Lee 2006; Ishii et al. 2007) and bioprocess technologies (Lee 1996) has 

ensured the status as a cellular framework also for synthetic biology.  

E. coli serves as a convenient host platform, but as the scope of synthetic biology 

continuously expanding, domestication of other potential bacteria could provide certain 

advantages with regard e.g. to broader metabolic landscape, catalytic activity, and 

tolerance to chemicals and products. To cite an article of Nikel et al. (2014): “is this 

organism [E. coli] really the only bacterium that can be used in both fundamental 

synthetic biology and applied biotechnology?” To explore this, the following 

subchapters introduce some alternative bacterial hosts and describe their most 

important characteristics in terms of synthetic biology, the main focus being on 

Acinetobacter baylyi ADP1. For comparison with E. coli, some key features of the host 

candidates are collected in Table 2.1.  
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TABLE 2.1. Comparison between the model hosts Escherichia coli, Bacillus subtilis, Pseudomonas putida , and Acinetobacter baylyi  ADP1.

E. coli (K12) B. subtilis (168) P. putida (KT2440) A. baylyi  (ADP1)

Natural environment gastrointestinal tracts, water env. soil, water env., plant rhizosphere soil, plant rhizosphere soil, water environment, human skin

gastrointestinal tracts

Genome size 4.6 Mbp, 4288 CDS 4.2 Mbp, 4100 CDS 6.2 Mbp, 5420 CDS 3.6 Mbp, 3325 CDS

Genomic complexity Lot of repeat sequences, genes are 25 % duplicate genes Lot of repeat sequences, genes scattered no repeats, genes oriented as clusters 

scattered all  over the genome and 'catabolic islands'

Metabolic model available available available available

     Genes; reactions 1445; 2286 1103; 1437 900; 1071 774; 875

Databases EcoliWiki, EcoCyc SubtiWiki, BsubCyc Pseudomonas Genome Database AcinetoScope (in MicroScope)

Generation timea
40 min. 95 min. 100 min. 35 min. 

Temperature range for 30-38 °C 25-35 °C 18-30 °C 20-38 °C

efficient growth

Substrate utilization

     Substrate range narrow; simple sugars wide; simple and complex wide; sugars, organic acids, arom. comp., wide; sugars, organic acids, arom. comp.

carbohydrates, peptides long chain hydrocarbons, alcohols etc. long chain hydrocarbons, alcohols etc.

    typical aer./anaer. byproducts CO2 / acetate CO2 / lactate, acetate CO2 / - CO2 / - 

Natural products ethanol, hydrogen antimicr. compounds, 2,3-butanediol polyhydroxyalkanoates, antimicr. comp., Triacylglycerols, wax esters, cyanophysin, 

biosurfactants biosurfactants

Pathogenicity to humans wild type strains none; potentially probiotic none none

Generally regarded as safe (GRAS) approved approved approved N/A

Antibiotic sensitivityb
sensitive to common antibiotics sensitive to common antibiotics limited sensitivity sensitive to common antibiotics

Genetic tools widely available available available available

     Promoters e.g. T5, T7, Lac, tet, BAD e.g. T5, T7, Lac, tet, BAD (as in E. coli ) Lac, tet, BAD T5, T7, Lac, BAD

Transformability electroporation, calcium chloride treat. natural competence, electroporation electroporation natural competence, electroporation

Tolerance to toxic compoundsc
weak good very good good

Foundational research extensive extensive well established well established in defined fields

Existing applications, e.g. numerous1,3 numerous1 several2,3 few3

Commercial availability heavily patented, a true issue widely patented patents exist very few patents, not an issue

regarding patents
aMinimal medium, glucose or succinate (ADP1) as a sole carbon source
b e.g. ampicil l in, tetracycline, kanamycin, chloramphenicol
c e.g. aromatic compounds, solvents, halogens, heavy metals, hydrocarbons, alcohols
1 recombinant protein production
2 bioremediation
3 biosensors
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2.2.3.1 Bacillus subtilis  

Bacillus subtilis is the best characterized and the most widely exploited host of Gram-

positive bacteria (Dubnau 1982). The bacterium is both utilized as a model host for 

fundamental research and a work horse in biotechnological processes. Due to its 

superior bioprocess characteristics, that is, the lack of toxic byproducts, high production 

yields (up to 20-25 g/l), and the facility for efficient secretion of the products, B. subtilis 

has been broadly utilized in the production of recombinant proteins, antibiotics, and 

vitamins (Hao et al. 2013; van Dijl and Hecker 2013).  

Being a facultative aerobe and a biofilm and spore-forming bacterium, B. subtilis can 

resist harsh environmental stress and nutrient deprivation for long periods. Moreover, 

the bacteria possess a complex motility and chemotaxis system. The bacteria can also 

produce a variety of secondary metabolites including fungal and bacterial inhibitors, 

providing a competitive advantage in natural environments (Stein 2005). B. subtilis can 

utilize a variety of carbohydrates and peptides as a carbon source and is capable of 

nitrate assimilation. The widely used laboratory strain B. subtilis 168 is auxotrophic for 

tryptophan. 

B. subtilis 168 has been long exploited in molecular genetic, proteomic and biofilm 

studies (Lemon et al. 2008; Becher et al. 2011; Commichau et al. 2013). The genome 

of the strain was sequenced in 1997 (Kunst et al. 1997), followed by a construction and 

more recently enhanced metabolic model (Henry et al. 2009). In addition, a 

comprehensive database for B. subtilis genomic and metabolic information has been 

recently established (Michna et al. 2014).  

The laboratory strain can be induced for natural competence (Hamoen et al. 2003), 

which promotes genetic engineering. Genome engineering tools (Kumpfmuller et al. 

2013) and expression vectors (Nguyen et al. 2005), some being BioBrick compatible 

(Radeck et al. 2013), are widely available for the strain. Furthermore, a genome 

reduction approach has been applied to B. subtilis to increase the host robustness 

(Westers et al. 2003; Ara et al. 2007); subsequently it was also demonstrated that 

streamlining the genome resulted in improved biomass and protein productivity 

(Morimoto et al. 2008; Manabe et al. 2011). Recently, Tanaka et al. determined 

nonessential regions in the B. subtilis 168 genome by successfully deleting 146 

individual regions covering ~76 % of the genome (Tanaka et al. 2013) and information 

was exploited in further improvement of the model predictions regarding the cell 

viability. These studies demonstrate the potentiality of the strain for synthetic biology 

applications and pave the way for a minimal B. subtilis cell factory.  
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2.2.3.2 Pseudomonas putida 

The genus Pseudomonas comprises a vast number of Gram-negative, aerobic 

bacterial species involving both pathogenic and non-pathogenic strains (Palleroni 

2010). Common characteristics include the ability to adapt to different nutritional and 

physicochemical environments, the capability to survive stress, and the ability to 

synthesize bioactive compounds (Silby et al. 2011). The laboratory strain P. putida is a 

non-pathogenic soil bacterium possessing broad catabolic diversity for the utilization of 

various aliphatic, aromatic, and heterocyclic compounds, organic acids, alcohols and 

other complex hydrocarbons as carbon sources (Jimenez et al. 2002).  

P. putida has been widely exploited as a model bacterium in fundamental studies 

regarding environmental bacteria. The potential of the strain to efficiently degrade and 

convert toxic organic wastes and petroleum-based compounds to harmless or value-

added compounds has led to extensive studies and bioremediation applications in the 

field of environmental biotechnology (Poblete-Castro et al. 2012).   

Apart from being exploited in bioremediation and biocatalysis applications, P. putida 

has potential for the production of industrially relevant compounds. The strain naturally 

produces polyhydroalkanoate (PHA), biocompatible and biodegradable polymer 

exploited in biomaterial industries and tissue engineering (Tripathi et al. 2013). 

Moreover, Pseudomonas strains have been broadly exploited in de novo synthesis and 

bioconversion of chiralic compounds and other important chemicals (Poblete-Castro et 

al. 2012).  

The metabolic characteristics of P. putida promote its use in industrial scale processes; 

simple growth requirements, the versatile carbon metabolism, and efficient machinery 

for product tolerance and cofactor regeneration rate serve as a base for a promising 

cell factory for various applications. Moreover, P. putida KT2440 genome sequence 

(Nelson et al. 2002) and construction of a metabolic model (Nogales et al. 2008) have 

promoted the strain usability in biotechnology. For example, high butanol tolerance 

(Ruhl et al. 2009) and recombinant expression of alcohol producing genes from C. 

acetobutylicum have enabled the production of butanol in titres 120 mg/l (Nielsen et al. 

2009). Also, the substrate range has been further extended for the utilization of 

pentose sugars by metabolic engineering (Meijnen et al. 2008). In general, tools for 

gene and genome engineering in P. putida are sufficiently available (de Lorenzo et al. 

1990; Silva-Rocha et al. 2013). Genome streamlining, i.e. the removal of unnecessary 

parts of the chromosome, have been also applied to P. putida (Leprince et al. 2012a). 
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Recently, the P. putida strain has been increasingly brought up in the context of 

synthetic biology (Nikel et al. 2014). For example, in a previous study the TOL toluene 

degradation pathway of Pseudomonas was exploited in constructing a multicellular 

logic gate based on cell-cell communication and metabolic wiring (Silva-Rocha and de 

Lorenzo 2014). In the system, toluene served as in input for a sender strain converting 

the compound to benzoate, the output molecule. Benzoate was sensed by a receiver 

cell which responded to this input by producing visible light as a measurable output 

signal. 

2.2.3.3 Acinetobacter baylyi ADP1 

Acinetobacter baylyi ADP1 (here: ADP1), previously referred as BD413, is a Gram-

negative, non-motile, strictly aerobic laboratory strain. The strain was derived from a 

heavily encapsulated ubiquitous soil bacterium Acinetobacter baylyi BD4 by a single-

step mutation (Taylor and Juni 1961; Barbe et al. 2004). Acinetobacter spp. typically 

produce extracellular polysaccharides (EPS) to form a protecting capsule and to 

facilitate substrate uptake, but in contrast to BD4, the derived strain ADP1 possesses 

only a “mini-capsule” (Kaplan and Rosenberg 1982). The strain ADP1 is nutritionally 

versatile, possessing catabolic features similar to taxonomically close relatives P. 

aeruginosa and P. putida (Barbe et al. 2004). The strain does not, however, carry any 

virulence or pathogenicity factors.  

The genome of ADP1 consists of one circular chromosome containing 3.6 million base 

pairs with GC-content of 40.3 %. There are 3325 coding sequences of which 3197 are 

annotated as protein coding genes. About 20 % of ADP1 genes are associated to 

catabolic functions. Most of the catabolism related genes are organized in five clusters 

or ‘catabolic islands’, with operons tens of thousands base pairs long. (Young et al. 

2005) The genome possessing the exceptional orientation of genes serves as a highly 

convenient platform for genome editing. The strain ADP1 is closely related to E. coli, 

allowing the integration of existing knowledge about the genetics and metabolism. 

ADP1 exhibits most of the beneficial features of E. coli but there are also relevant 

differences that promote ADP1 as a potential host for synthetic biology. 

Acinetobacter strains are frequently found in a variety of growth environments with 

quickly changing conditions. This can be seen in the strain characteristics regarding 

catabolic diversity, wide growth temperature range, efficient substrate utilization, 

tolerance to toxic compounds, and production of storage compounds, such as 

cyanophycin granule peptide (CGP), triacylglycerols (TAG), and wax esters (WE) 

(Kalscheuer and Steinbüchel 2003; Elbahloul et al. 2005).  
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Acinetobacter strains efficiently utilize a wide range of polar and non-polar 

hydrocarbons such as aliphatic alcohols, carbohydrates, long-chain fatty acids, glycols 

and polyols, aromatic and halogenated compounds, amino acids, alkanes, and small 

organic acids as a sole carbon and energy source. A. baylyi strains lack the gene for 

pyruvate kinase, as well as for glucokinase, hexokinase and a glucose transporter 

phosphotransferase system (PTS), which are important enzymes in a carbohydrate 

metabolism (Barbe et al. 2004). Therefore ADP1 cannot directly phosphorylate 

glucose, and a glucose molecule is oxidized to gluconate on the outer surface of the 

inner membrane by an electron carrier associated to glucose dehydrogenase, 

pyrroloquinoline quinine (PQQ). Notably, due to exceptional glucose metabolism 

following a modified Entner-Duodoroff pathway (Entner and Doudoroff 1952), ADP1 

grows generally better on carbon sources that enter the main metabolic pathways 

through citric acid cycle (such as acetic acid) than on carbon sources that are 

processed in glycolysis (Barbe et al. 2004; Young et al. 2005).  

To briefly mention other important catabolic pathways, the degradation of aromatic 

compounds is mediated by the multistep β–ketoadipate pathway, similar to 

pseudomonads (Young et al. 2005; Williams and Kay 2008). Nine essential enzymes 

are involved in the conversion of aromatic compounds to protocatechuate, and further 

to β-ketoadiapate, and finally TCA cycle intermediates (Ornston 1966). Also, the 

utilization of alkanes is a wide spread trait among Acinetobacter species. In ADP1, the 

degradation is dependent on several genes including constitutively transcribed rubAB 

and xcpR. The terminal alkane hydroxylase alkM and the regulator alkR are inducible 

and found to be essential when grown on alkanes (Geissdorfer et al. 1995; Ratajczak 

et al. 1998; Ishige et al. 2000).  

With regard to valuable biocompounds, the most interesting pathways of ADP1 involve 

the synthesis of fatty acid (FA) derived long chain hydrocarbons, WEs and TAGs 

(Figure 2.10). TAGs are non-polar and hydrophobic glycerol triesters with three FAs, 

whereas WEs are oxoesters of long-chain primary fatty alcohols and long-chain FAs. 

Both molecules serve primarily as carbon storages and are mobilized under carbon 

limiting conditions, but they can also function against dehydration (Wältermann and 

Steinbüchel 2005). 

The key step in TAG synthesis is the esterification of a long chain FA with a 

diacylglycerol molecule, a common precursor to bacterial phospholipid synthesis. The 

esterification is carried out by a membrane-bound bifunctional wax ester synthase/acyl-

CoA:diacylglycerol acyltransferase enzyme WS/DGAT (atfA, ACIAD0832) (Kalscheuer 

and Steinbüchel 2003). TAGs are mainly produced in a stationary growth phase under 
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nitrogen limiting conditions, and they stored as intracellular lipid inclusions 

(Wältermann et al. 2005).  

Wax esters possess more dynamic nature compared to TAGs (Fixter et al. 1986) and 

they can occur as intracellular inclusions of various shapes (Ishige et al. 2002). In the 

natural WE synthesis pathway of ADP1, a NADPH dependent fatty acyl-CoA reductase 

Acr1 (Reiser and Somerville 1997) converts a fatty-acyl CoA molecule to a 

corresponding fatty aldehyde, followed by a conversion of fatty aldehyde to fatty 

alcohol by a yet uncharacterized alcohol dehydrogenase/aldehyde reductase(s). In the 

final step, the fatty alcohol molecule is esterified with a fatty acyl-CoA molecule by the 

well-characterized bifunctional enzyme WS/DGAT, resulting in the formation of a wax 

ester molecule. The natural WEs in ADP1 predominantly consist of monounsaturated 

C16 or C18 carbon chains when the cells are grown on glucose. However, the 

utilization of alkanes or alkanols as a substrate results in a significant accumulation of 

WEs (Ishige et al. 2002), and the alkyl chain lengths are determined by the used 

substrate.  

 

FIGURE 2.10. The biosynthetic pathways related to neutral lipid production of A. baylyi 
ADP1. 
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Another interesting biomolecule produced by Acinetobacter strains is cyanophycin 

granule peptide (CGP). The molecule is a branched polypeptide consisting of aspartate 

backbone and arginine residues exploitable e.g. in polyacrylics synthesis. The natural 

production of CGP is triggered by a phosphate starvation and excess provision of 

arginine (Elbahloul et al. 2005), and the synthesis is catalyzed by cyanophycin 

synthetase (CphA) (Krehenbrink et al. 2002). The enhanced production of CGP has 

been demonstrated in engineered ADP1 (Elbahloul and Steinbüchel 2006); the deletion 

of the arginine regulatory protein (argR) and the arginine succinyltransferase (astA), or 

the overexpression of phoB of phosphate regulon system increased the CGP 

production by up to 8.6 fold. 

The most impressive work done with ADP1 thus far constitutes a comprehensive 

analysis on ADP1 genome, transcriptome, and metabolome levels. The multiomics 

approach has involved the construction of a metabolic model (Durot et al. 2008) 

encompassing 875 reactions, 701 distinct metabolites, and 774 genes. In addition, a 

complete collection of a single gene knock-out mutant library was constructed (de 

Berardinis et al. 2008), followed by the experimental annotation of genes (Genoscope 

2009). Recently, an extensive analysis of ADP1 transcriptome and metabolome levels 

in response to different perturbations was carried out (Stuani et al. 2014). 

Most interestingly, the strain ADP1 is naturally transformable (Palmen and Hellingwerf 

1997), enabling straight-forward gene and genome engineering. Transformable 

Acinetobacter strains do not discriminate between homologous and heterologous DNA 

or display any sequence specificity at the stage of binding and uptake. Linear and 

plasmid DNA are brought into the cells by the same uptake system, followed by DNA 

incorporation to the chromosome by homologous recombination, or plasmid 

recircularization (Palmen et al. 1993). Thus single or multiple gene deletions and 

insertions using synthetic gene fragments or gene cassettes can be carried out in a 

high-throughput manner using an automated system (Figure 2.11). However, 

compared to for example the widely exploited λ red recombinase –mediated 

chromosomal incorporation and replacement (Datsenko and Wanner 2000), the 

recombination machinery of ADP1 requires relatively long homologous sequences 

(optimally >500 bp (Simpson et al. 2007)) for the genome target site, thus slightly 

complicating the construction of the genome engineering tools. In addition, relatively 

large amounts of DNA are required for transformations at sufficient rate. Therefore, 

increasing the efficiency of natural transformation and homologous recombination 

represent one important engineering target in developing the strain ADP1 as a chassis. 
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FIGURE 2.11. The method for a site-specific gene knock-out in A. baylyi ADP1 using a 
synthetic gene cassette. 

To further facilitate the use of ADP1 in metabolic engineering and synthetic biology, 

efficiently replicating expression vectors for the strain have been recently described 

(Bryksin and Matsumura 2010; Murin et al. 2012). The vectors are also compatible with 

the BioBrickTM standard. The study by Murin et al. also demonstrates that the 

commonly used promoters, such as T5, T7, and BAD, are functional in ADP1. 

Despite the attractive characteristics of ADP1 and the recently increased use as a 

model strain in fundamental genomic and metabolic studies (Metzgar et al. 2004; de 

Berardinis et al. 2009; Elliott and Neidle 2011; Zhang et al. 2012b), only a few true 

application platforms have been introduced, apart from exploiting the individual 

enzymes of ADP1 (see Chapter 3; (Stöveken and Steinbüchel 2008)). Table 2.2 

presents some described approaches to exploit Acinetobacter strains in biotechnology. 

Due to the versatile catabolic machinery of ADP1, the field is largely focused on 

biosensor and bioremediation applications in environmental bioengineering. However, 

industrially relevant biomolecules such as bioemulsifiers, lipases, and CGP that are 

naturally produced by Acinetobacter strains have also drawn interest. As P. putida, 

ADP1 holds potential for whole-cell biocatalysis and bioconversion processes. 
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TABLE 2.2. Examples of Acinetobacter based applications. 

Application or Product Field Strain Engineering Reference 

Detection of contaminants and Environmental biotech. ADP1 Expression of lux operon  (Zhang et al. 2012a) 

xenobiotics from soil and water / Bioremediation   under specific promoter (Abd-El-Haleem et al. 2006) 

environments by whole cell     
 

(Abd-El-Haleem et al. 2002) 

biosensors    
 

(Wang et al. 2014b) 

     

Cyanophycin Biotechnology   Inactivation of argR, astA, (Elbahloul and Steinbüchel 2006) 

 
   overexpression of phoB   

Crude oil removal from soil Bioremediation A3  (Hanson et al. 1997) 

Bioemulsan Biotechnology RAG-1 
 

(Shabtai 1990; Shabtai and Wang 1990) 

  (Several)  (Gutnick et al. 1989) 

Modified emulsan    Protein engineering (Dams-Kozlowska and Kaplan 2007) 

Modified emulsan    Transposon mutations (Johri et al. 2002) 

Bio-Pd catalysts    
 

(Baldi et al. 2011) 

Emulsan / adjuvant Biomedicine   
 

(Panilaitis et al. 2002) 

Wax esters Biotechnology M-1 
 

(Ishige et al. 2002) 

 
   

 
  

Lipases Biotechnology (Several)   (Snellman and Colwell 2004) 

 



 

 

30 

 

3 Synthetic biology for sustainable bioenergy 

In the times of consistently growing energy demand and increasing insecurity related to 

fossil fuels supply and environmental concerns, synthetic biology aims at fighting the 

challenges with novel microbial platforms for sustainable bioenergy production. 

Transportation fuels comprise a major share of the consumed energy, and biologically 

produced advanced biofuels are suggested to replace the fossil counterparts and food-

crop based first generation biofuels. The synthetic biology approach enables the 

production of customized drop-in liquid fuels with defined characteristics, not restricted 

to the properties of natural products. Despite the existing and optimized processes for 

bioethanol production, advanced biofuels (i.e. long chain (C≥4) alcohols, alkanes, FA 

alkyl esters, terpenes) have drawn a lot of attention due to their incomparable 

properties, higher energy content, and compatibility with existing engine systems and 

infrastructure. 

Atmospheric carbon dioxide and solar energy are stored in different forms of biomass. 

Microbes have the capability to convert the biomass into high-energy compounds 

exploitable in biofuels. Metabolic engineering and synthetic biology focus on enhancing 

the production systems to be more robust in terms of product quality, quantity, and 

sustainability. Optimally, custom-made fuel components compatible with the existing 

infrastructure could be produced from cheap and sustainable non-food substrates, 

such as agricultural or forest waste, or energy crops (Figure 3.1). In addition to 

constructing the actual metabolic pathways in cells, novel strategies for improved 

product titers involve a comprehensive omics –level analyses and sensor systems. The 

strategies promote the identification of the bottle necks, the alleviation of product 

toxicity, and the construction of protein scaffolds to facilitate optimal metabolic fluxes.  
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FIGURE 3.1. Sustainable production of advanced biofuels by the bacterium E. coli. 
Modified from (Peralta-Yahya et al. 2012) and (Kung et al. 2012) 

Despite the significant improvements achieved with the new strategies for redesigning 

and engineering cell factories, there are still unsolved issues related to process scale-

up and economy, insufficient product titers, the inhibitory effects of products and 

intermediates, the efficient utilization of cellulosic substrates, and constraints set by cell 

metabolism. In the following section, some of the major advances in the field of 

engineered bacterial production of advanced biofuels are described. Although the focus 

is on prokaryotic systems, it is noteworthy that several eukaryotic microbes, such as 

oleaginous yeasts Yarrowia lipolytica and Cryptococcus spp. (Beopoulos et al. 2009; 

Ageitos et al. 2011), and metabolically engineered S. cerevisiae (Runguphan and 

Keasling 2014; Zhou et al. 2014), represent important hosts in the production of 

bioenergy molecules.  
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3.1 Production of advanced biofuels 

3.1.1 Alcohols 

For short and medium-chain alcohol production, either fermentative or non-

fermentative pathways can be exploited. In a typical approach, acetyl-CoA dependent 

fermentative pathways (Figure 3.2) employing enzyme activities from Clostridium 

species have been used to produce isopropanol (Hanai et al. 2007; Inokuma et al. 

2010) and 1-butanol (Atsumi et al. 2008a) in an engineered E. coli. The titers for 1-

butanol have been further enhanced by metabolic engineering, applying several gene 

knock-outs for eliminating competitive pathways (Atsumi et al. 2008a) and further 

pathway optimization by replacing individual enzymes (Bond-Watts et al. 2011). By 

these approaches, titers up to 4.65 g/l have been achieved (Bond-Watts et al. 2011). 

Other reported recombinant prokaryotic hosts for the production of 1-butanol include P. 

putida and B. subtilis (Nielsen et al. 2009), justified by better product tolerance 

compared to E. coli. Photosynthetic carbon fixing cyanobacteria have been also 

employed (Machado and Atsumi 2012). Recently, a synthetic pathway for butanol 

production with improved oxygen tolerance was established by employing an acyl 

carrier protein (ACP) dependent pathway instead of the acyl-CoA dependent 

fermentative pathway; the expression of a thioesterase from Bacteroides fragilis and an 

aldehyde reductase ahr from E. coli resulted in a butanol titer of ∼300 mg/l (Pasztor et 

al. 2014).  
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FIGURE 3.2.A schematic overview of possible fermentative pathways for alcohol 
production. The pathways include reactions from both autotrophic and 
heterotrophic organisms. Modified from (Lamsen and Atsumi 2012).  

In 2008, Atsumi et al. introduced a synthetic non-fermentative pathway for the 

production of branched higher alcohols such as isobutanol and 2-methyl-1-butanol. 

Only traces of these compounds are naturally produced by bacteria. The pathway is 

taking advantage of the NADPH dependent amino acid biosynthesis pathway 

producing 2-ketoacids, which are further converted to alcohols through decarboxylation 

and reduction reactions by 2-keto acid decarboxylase KDC (e.g. kivD gene from 

Lactococcus lactis) and an alcohol dehydrogenase (e.g. ADH2 from S. cerevisiae), 

respectively (Atsumi et al. 2008b) (Figure 3.3). The pathway can be readily expressed 

in a variety of hosts, and toxic intermediates are not produced. A substantial number of 

studies exploiting the ketoacid pathway for the production of alcohols, chemicals, and 

other biocompounds have been reported (Jambunathan and Zhang 2014).  
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FIGURE 3.3.The aminoacid biosynthesis related ketoacid pathway for non-fermentative 
production of aliphatic and branched alcohols. KDC - 2-keto acid 
decarboxylase, ADH – Alcohol dehydrogenase. Modified from (Jambunathan 
and Zhang 2014). 

Another approach to produce higher alcohols is to exploit reverse fatty acid β-oxidation 

pathway, normally assigned for the degradation of acyl-CoAs in aerobic conditions. In 

semi-aerobic and anaerobic conditions with artificially regulated β-oxidation and alcohol 

producing pathway genes it has been possible to produce 1-butanol and longer n-

alcohols (Dellomonaco et al. 2011; Clomburg et al. 2012; Gulevich et al. 2012). 

3.1.2 Isoprenoid fuels 

To briefly introduce promising new candidates for advanced biofuel production, 

isoprenoids, i.e. terpenes are a functionally and structurally diverse group of 

hydrocarbons, typically serving as relevant precursors for medical industries. Some 

isoprenoid products, such as pinene and farnesene, can be potentially used as 

gasoline, diesel, or jet fuel. Isoprenoids are produced by an acetyl-CoA originated 

mevalonate (MEV) pathway or by a 1-deoxy-D-xylulose-5-phosphate (DXP) pathway 

beginning with glyceraldehyde-3-phosphate and pyruvate, resulting in universal 

precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate 

(DMAPP), respectively. These molecules can be further processed by classes of 

terpene synthases and cyclases to form a variety of mono- or polycyclic or aliphatic 

compounds. Farnesene and saturated farnesane have been produced in engineered E. 

coli from farnesyl pyrophosphate intermediate by introducing a codon optimized β-

farnesene synthase from Artemisia annua. The production process was scaled up by 



3 SYNTHETIC BIOLOGY FOR SUSTAINABLE BIOENERGY 

 

35 

 

Amyris Biotechnologies, Inc. for the mass production of farnesene as a fuel additive. 

(Renninger and McPhee 2008) 

3.1.3 Fatty acid derived compounds 

Fatty acids (FA) have high energy content and properties convenient for fuel purposes, 

but due to their ionic nature they cannot be directly exploited as biofuels. Fatty acids 

and ac(et)yl-CoAs are however important precursors for several interesting molecules, 

such as FA alkyl esters, alkanes, fatty alcohols, and triacylglycerols (TAG). Fatty acid 

and acyl-CoA synthesis pathways have been extensively studied and engineered, 

especially in E. coli, to facilitate the production of advanced biofuels (Handke et al. 

2011; Lennen and Pfleger 2012; Xu et al. 2013).   

TAGs constitute of three fatty acids esterified with a glycerol backbone, and they are 

considered as an appropriate feedstock for a biodiesel synthesis process. Even though 

the TAG molecules are not directly exploitable as drop-in in liquid fuels, they are 

compatible with existing production processes and infrastructure; TAGs can be derived 

to a mixture of esters constituting of long chain fatty acids and short chain alcohols, 

namely fatty acid alkyl esters, such as FA methyl esters (FAME) or ethyl esters (FAEE) 

suitable for traffic fuel. TAGs are neutral lipids and natural carbon and energy storages 

in animals, plants and in a number of bacteria such as Streptomyces, Nocardia, 

Acinetobacter, and Rhodococcus species (Alvarez and Steinbüchel 2002). 

Rhodococcus opacus cells, for example, can naturally accumulate up to 80 % TAG of 

cell dry weight in nitrogen limiting conditions (Alvarez et al. 1996). In a study of 

Kurosawa et al. (2010), a titer of 77.6 g/l TAGs could be obtained in a batch bioprocess 

of R. opacus containing high glucose concentration and critical C/N ratio of 17.8 

(Kurosawa et al. 2010). More recently, the same group demonstrated a more 

sustainable approach to TAG production with R. opacus engineered with Streptomyces 

DNA library for using high concentrations of xylose as a substrate (Kurosawa et al. 

2013).  

In a synthetic biology point of view, more readily engineered cell systems enable 

broader substrate and product range and regulated production, and thus serve as a 

more convenient approach for biodiesel production. The emphasis has been on the 

direct production of drop-in FA based fuels, for example FAEEs, exploiting the newly 

described acyl-coenzyme A, diacylglycerol acyltransferase WS/DGAT (atfA) from A. 

baylyi ADP1 (Kalscheuer and Steinbüchel 2003; Kalscheuer et al. 2004; Kalscheuer et 

al. 2006a). Fatty acid synthesis is strongly regulated, feedback inhibited, and 

dependent on acetyl-CoA supply, for which the engineering of the production of FA 
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based compounds is challenging. The earliest example of direct production of FAEEs 

(Kalscheuer et al. 2006a) in E. coli was achieved by the external supply of fatty acid 

substrate, followed by a pilot-scale production of FAEEs in an optimized bioprocess 

(Elbahloul and Steinbuchel 2010). In the study of Steen et al. (2010) no substrate 

addition was required; an improved carbon flux towards FA and acyl-CoA syntheses 

and eventually FAEE production was obtained by metabolic engineering. The 

modifications included the overexpression of modified cytosolic thioesterase ’TesA 

lacking the leader sequence for periplasmic expression, the elimination of the β-

oxidation cycle by fadE deletion, and overexpression of acyl-CoA ligases and fadD, 

facilitating the activation of FFAs to acyl-CoA. For FFAs, titers of 1.2 g/l could be 

obtained (Steen et al. 2010). Production of the alcohol counterpart (ethanol) was 

established by expression of pyruvate decarboxylase pdc and alcohol dehydrogenase 

adhB from Zymomonas mobilis. In the final step of the in vivo esterification of fatty acyl-

CoA and short chain alcohol, the above mentioned bifunctional and highly unspecific 

acyltransferase WS/DGAT was exploited, eventually resulting in titer of 674 mg/l 

FAEEs. In addition, the expression of an endoxylanase catalytic domain (Xyn10B) from 

Clostridium stercorarium and a xylanase (Xsa) from Bacteroides ovatus enabled a 

consolidated process of utilization of hemicellulosic substrate and production of biofuel. 

In the next step, the production of biofuel components directly from switch grass was 

demonstrated (Bokinsky et al. 2011). Shortly after, the FAEE titer could be increased to 

1.5 g/l with a sophisticated regulator/sensor system (see Chapter 3.2) responsive to FA 

and acyl-CoA levels in the cell (Zhang et al. 2012c). In the study by Choi and Lee 

(2013), FAEEs were produced by expressing a mutated alcohol dehydrogenase (adhE) 

from E. coli and the wax ester synthase WS/DGAT from ADP1, resulting in the titer of 

480 mg/l C10-C14 FAEEs. 

Fatty aldehydes, fatty alcohols, and wax esters are products of different stages of a 

single pathway derived from FAs (Figure 3.4). These long chain hydrocarbons are 

considered as high-value molecules (appr. 1500 $/t) exploited mainly in fine chemical, 

cosmetics, medicine, and food industries. Due to their properties, they are also 

convenient for bioenergy production. Fatty aldehydes and alcohols are produced from 

FA or fatty acyl-CoA/ACP substrates through reduction reactions by fatty acid/aldehyde 

reductases (FAR) (Table 3.1). Fatty alcohols with variable chain lengths have been 

produced in heterologous E. coli by altering the thioesterases used, i.e. BTE from 

Umbellularia californica or ‘TesA from E. coli, and the reductase counterpart, a 

bifunctional FA-CoA reductase from Simmondsia chinensis or Acr1 from A. baylyi 

ADP1, leading to an alternative synthesis of C12/14 or C16/18 fatty alcohols (Zheng et 

al. 2012b). More recently, significant amounts of C12-18 alcohols (1.725 g/l) were 
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produced in a fermentation process of engineered E. coli expressing a bifunctional 

acyl-CoA/aldehyde reductase from Marinobacter aquaeolei VT8 together with modified 

tesA and fadD genes (Liu et al. 2013), whereas high yields of C12-C14 alcohols (0.13 

g/g glucose with a titer 1.6 g/l) were produced in a study exploiting an acyl-ACP 

thioesterase (BTE), FadD, and the same M. aquaeolei reductase in an engineered E. 

coli (Youngquist et al. 2013). Improved yields could be obtained by gene expression 

level balancing and optimized fed-batch cultivation. The photosynthetic fatty alcohol 

production was enhanced in metabolically engineered cyanobacteria by introducing the 

fatty acyl-CoA reductase from M. aquaeolei VT8 combined with knock-outs of an acyl-

ACP reductase and an aldehyde-deformylating oxygenase genes (Yao et al. 2014).  

 

FIGURE 3.4. Biochemical pathways for the production of fatty acid derived compounds. 
The key enzymatic steps are numbered, and examples of enzymes are 
provided. FAEE – Fatty acid ethyl ester (biodiesel), FAAE – Fatty acid alkyl 
ester (wax ester).  
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Modified esters consisting of diverse fatty acid and alcohol (>C2) moieties can be 

produced in recombinant hosts. Conventionally, alkyl esters are chemically produced in 

harsh conditions by Fisher esterification using fossil feedstock, and thus an alternative 

biological production process is of high relevance. Guo et al. (2014) described an 

approach of combining a 2-keto acid pathway and an engineered FA synthesis 

pathway for the optimized production of a variety of branched and aliphatic FA short-

chain esters using glycerol as a substrate (Guo et al. 2014). Layton and Trinh (2014) 

introduced a modular platform for the anaerobic fermentative production of variable 

butyrate esters in engineered E. coli, involving knockouts to block e.g. the competitive 

fermentative pathways, and insertions of designed individual submodules for the 

production of acyl-CoAs, alcohols, and an alcohol acyltransferase (Layton and Trinh 

2014). In contrast, Rodriguez et al. (2014) constructed several aerobic acetate ester 

pathways in E. coli based on the esterification of acetyl-CoA with branched alcohols 

produced by the keto acid pathway. A remarkable titer of 17.2 g/l for isobutyl acetate 

from glucose was achieved, being 80 % of the theoretical yield (Rodriguez et al. 2014). 

In the same study, a fatty acid reductase complex LuxCDE from Vibrio harveyi was 

exploited for production long-chain tetradecyl-acetate. 

Among bacteria, wax esters (WE) are natural products e.g. of Marinobacter (Lenneman 

et al. 2013) and Acinetobacter (see Chapter 2.2.3.3) strains. For the recombinant 

production of WEs, an expression of FAR from S. chinesis and WS/DGAT from ADP1, 

with the supplementation of fatty alcohol substrate, have enabled the production of 

jojoba-like WEs in E. coli (Kalscheuer et al. 2006b). Steen et al. (2010) established the 

WE synthesis in recombinant E. coli without inclusion of external alcohols by a 

simultaneous expression of exogenous FAR, an endogenous alcohol dehydrogenase, 

and WS/DGAT. More recently, Kaiser et al. (2013) demonstrated the production of 

WEs in cyanobacteria by co-expression of the native acyl-ACP reductase, a long-chain 

alcohol dehydrogenase from Synechocystis sp PCC 6803 (slr1192), and WS/DGAT. 

However, for an unknown reason, the formed neutral lipid inclusions were found to be 

toxic to the Synechocystis cells.  
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TABLE 3.1. Some key reductases exploited in a recombinant production of fatty aldehydes, 
fatty alcohols, esters and alka(/e)nes. 

Enzyme Gene Strain of origin 
Preferred  
substrates Reference 

Fatty acyl-CoA 
reductase acr1 

Acinetobacter 
baylyi ADP1 

acyl-CoA;  
C16-18 (Steen et al. 2010) 

     
Fatty acyl-CoA 
reductase Maqu_2220 

Marinobacter 
aquaeolei VT8 

acyl-CoA; 
C12-18 

(Liu et al. 2013; Yao et al. 
2014) 

     
Carboxylic acid 
reductase 

 

Mycobacterium  
marinum FA; C6-18 (Akhtar et al. 2013) 

     
Fatty acyl-CoA 
reductase 

 

Simmondsia  
chinensis  acyl-Coa; C20- (Zheng et al. 2012b) 

     
Acyl-ACP reductase, 
AAR 

PCC7942_orf1
594 

Synechococcus  
elongates 

acyl-ACP;  
C14-18 

(Schirmer et al. 2010; 
Kaiser et al. 2013) 

     
FAR complex,  
LuxCDE luxCDE 

Photorhabdus  
luminescens 

FA (-CoA, -
ACP); C10-18 (Howard et al. 2013) 

     
FAR complex, 
LuxCDE luxCDE Vibrio harveyi 

FA (-CoA, -
ACP); C10-18 (Rodriguez et al. 2014) 

     
fatty acyl-CoA  
reductase acr 

Clostridium  
acetobutylicum  acyl-CoA; C8-14 (Choi and Lee 2013) 

     
Fatty acyl-CoA  
reductase, Cer4  

Arabidopsis  
thaliana acyl-CoA (Zheng et al. 2012b) 

Alkanes and alkenes are aliphatic hydrocarbons which are products of a different 

branch of the above described FA derived pathway typically employing fatty aldehydes 

as the key precursors. Alkanes can be directly exploited as the constituents of gasoline 

and jet fuel. Several approaches to microbial alkane production have been described. 

Schirmer et al. described the microbial production of alkanes by engineered E. coli 

exploiting the alkane synthesis pathway from cyanobacteria. The pathway consists of 

an acyl-ACP reductase and an aldehyde-deformylating oxygenase (ADO), which 

convert the intermediates from FA synthesis to alkanes and alkenes, the carbon chain 

profile ranging from C13 to C17 (Schirmer et al. 2010).  

In another study (Choi and Lee 2013) shorter chain ‘gasoline’ alkanes (C9-C14) were 

produced exploiting a similar pathway involving E. coli fatty acyl-CoA synthetase, 

Clostridium acetobutylicum fatty acyl-CoA reductase and Arabidopsis thaliana fatty 
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aldehyde decarbonylase. The titers were further improved employing metabolic 

engineering approach; β-oxidation pathway was blocked by deleting the fadE gene to 

increase the supply of fatty acyl-CoA substrates to hydrocarbon synthesis. Also, fadR 

was deleted in order to boost up the synthesis of suitable FAs and to hinder the 

synthesis of unsaturated FAs. To generate FFAs from acyl-ACPs for alkane synthesis, 

a modified thioesterase was used. A total titer of 580.0 mg/l alkanes could be 

produced.  

Very recently, a platform for the production of renewable short-chain alkane, i.e. 

propane, using a synthetic metabolic pathway was established in recombinant E. coli. 

The pathway employed a butyryl-ACP specific thioesterase and was complemented 

with an electron-donating module and elimination of endogenous aldehyde reductases 

(Kallio et al. 2014).  

For long chain alkene production, a three-gene cluster from Micrococcus luteus was 

introduced to FA overproducing E. coli strain, resulting in production of C27:3 and 

C29:3 alkenes (Beller et al. 2010). In a study by Akhtar et al, the expression of a wide 

substrate range carboxylic acid reductase (CAR) from Mycobacterium marinum and an 

aldehyde reductase, or alternatively an aldehyde decarbonylase resulted in production 

of C8-18 fatty alcohols and C7-15 alkanes, respectively (Akhtar et al. 2013).  

A reconstructed pathway for alkane production exploiting FA reductase complex 

LuxCDE from Photorhabdus luminescens and an aldehyde decarbonylase from Nostoc 

punctiforme was established, resulting in production of alkanes with rationally altered 

chain lengths (Howard et al. 2013). Further genetic manipulation of the FA substrate 

pool enabled the production of custom-made branched alkanes. 

3.2 Dynamic monitoring tools for enhanced bioproduction 

The activity of genes and individual enzymes are affected by several factors inside the 

cells, resulting in an extremely delicate system in terms of expression levels and 

productivity. Maximal expression guarantees no maximal productivity; the 

overproduction of enzymes consumes cellular building blocks and energy, and can be 

toxic to cells. Thus, optimal distribution of cellular resources and cofactors, and a 

dynamic response to fluctuations in internal and external stages are required to tune 

the production systems. Intracellular sensor devices facilitate the screening of optimal 

genotypes and conditions, and identification of potential pathway bottle-necks. Even 

more sophisticated integrated sensory-regulatory devices serve as dynamic tools for a 
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concurrent sensing of the cellular state and responsive regulation of key element 

expression, resulting in balanced metabolism and consequently improved production 

yields and titers. 

Monitoring tools can function either at transcriptional, translational, or at post-

translational levels (Figure 3.5). Sensors functioning at a transcriptional level typically 

comprise a promoter-transcription factor system responsive to a key metabolite of the 

pathway, regulating the expression of a reporter, such as green fluorescent protein 

(GFP). Artificial RNA elements such as riboswitches consisting of ligand-binding 

aptamer domain and expression platform can specifically regulate transcription or 

translation (Ceres et al. 2013; Wachsmuth et al. 2013; Berens and Suess 2014; Ma et 

al. 2014). Qi et al. described a combinatorial approach to engineer ligand-binding RNA 

fusion molecules that regulate both transcription and translation through allosteric 

regulation of trans-acting nc-RNAs (Qi et al. 2012). 

 

Figure 3.5. Different levels of intracellular monitoring of the product formation exploiting a 
reporter based sensor tool. The characteristic lag time between the occurrence 
of the target molecule and the initiation of signal formation is indicated. The 
approximate response times are adapted from (Olson and Tabor 2012). The 
time required for signal detection is not considered. A) Transcriptional level: the 
target molecule induces DNA transcription followed by protein synthesis and 
signal development. B) Translational level: The target molecule interacts with 
RNA molecule thus regulating the reporter expression and signal development. 
C) Post-translational: The target molecule interacts directly with the reporter 
molecule present in the cell, resulting in instant and dynamic signal production. 

A majority of the described sensor-regulatory systems are based on the regulation of 

key enzyme expression. These approaches suffer from a relatively slow response (up 
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to minutes) and the loss of temporal and dynamical range with respect to rapidly 

changing analyte concentrations, since removing a transcription inducer does not 

instantly remove the reporter signal (Olson and Tabor 2012). Furthermore, maintaining 

a transcription level sensor requires a significant input of cellular resources and 

machinery, such as the synthesis of transcription factors. Translational regulation 

based on RNA elements, on the other hand, is more prone to degradation, and thus 

less stable. Post-translational regulation and monitoring, which occur through enzyme-

enzyme or enzyme-metabolite interactions, can be therefore considered as a more 

dynamic and perceptive approach to manipulating, balancing, and analyzing the 

biosynthetic pathway or interest.  

An early example of an integrated regulatory circuit controlling gene expression in 

response to intracellular metabolic states is the improved lycopene production in E. coli 

(Farmer and Liao 2000). In the study, a global Ntr regulatory system was altered in E. 

coli. The engineered system regulated the expression of two key enzymes in lycopene 

synthesis in response to acetyl phosphate, a precursor to acetate and an indicator 

molecule for excess glycolytic flux, resulting in 18-fold improved lycopene production 

through metabolic balancing.  

In a more recent study briefly mentioned in Chapter 3.1.3, a dynamic sensor-regulator 

system for the improved production of FAEEs in E. coli was described (Zhang et al. 

2012c). The expression of key genes involved in the lipid synthesis was regulated by a 

specific DNA-binding transcription factor FadR sensing fatty acyl-CoAs combined with 

synthetic FadR and IPTG regulated promoters. Due to the balanced metabolism and 

stabilized expression system FAEE titers were significantly improved (1.5 g/l), reaching 

28 % of the theoretical maximum.   

Recently described de novo designed riboregulators called “toehold switches” regulate 

translation through the detection of endogenous cognate RNAs (Green et al. 2014). 

The functional sequences of the switches can be modified according to the target 

RNAs, and thus the switch can serve as an orthogonal and programmable regulator for 

gene expression. In addition, a switch coupled with a reporter can be potentially 

exploited as a sensor to monitor the transcriptome levels of the genes of interest. 

Furthermore, the switches provide wide dynamic range and low cross talk.    

Platforms exhibiting both regulation and monitoring function are still in scarce. Indeed, 

potential mechanisms and tools applicable to such approach have been found in 

nature, but only recently these complex systems have been employed in novel 

contexts. In the following subchapter, as an example of a natural robust tool package, a 
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lux multienzyme complex comprising of unique catalytic and signal producing modules 

is introduced and considered in the light of synthetic biology. 

3.2.1 Lux multienzyme complex 

Bioluminescence is a very convenient tool for sensor applications, due to the high 

specificity and sensitivity and the straight-forward signal determination methods. In 

nature, a taxonomically diverse group of bacteria can produce visible light, i.e. 

bioluminescence. The function of bioluminescence is suggested to be related to 

quorum sensing in dense populations, electron transport, and symbiotic life within the 

organelles of marine organisms (Meighen 1993). The bacterial luciferase (Lux) system 

is a multienzyme complex which has been characterized for several bacteria including 

both terrestrial and marine species, and the most widely studied and the best-

characterized Lux systems  belong to the bacteria of genus Vibrio, Photorhabdus (prev. 

Xenorhabdus), and Photobacterium (Engebrecht et al. 1983). Genes behind the 

multienzyme complex are clustered to form a lux operon, with a typical orientations of 

luxCDABE (Photorhabdus sp.) or luxABCDE, (Vibrio sp.), supported by several other 

related genes including cofactor (FMNH2) generating luxG and regulatory genes 

(Meighen 1994; Gray and Garey 2001; Nijvipakul et al. 2008).  

The reductase enzyme complex consists of an acyl transferase (LuxD), an acyl-protein 

synthetase (LuxE), and a FA reductase (LuxC). In the multistep reaction, LuxD cleaves 

an activated FA from its carrier and transfers the FA for LuxE. The maximal activity of 

the transferase is obtained with tetradecanoyl-ACP and tetradecanoyl-CoA substrates. 

The synthetase LuxE produces an acyl-protein thioester via a fatty acyl-AMP 

intermediate. Subsequently, the thioester is converted to corresponding fatty aldehyde 

by the reductase LuxC. The thioester and fatty aldehyde forming reactions require ATP 

and NADPH, respectively. The bacterial luciferase, consisting of two domains LuxA 

and LuxB, convert the fatty aldehyde to corresponding fatty acid molecule and visible 

light (Figure 3.6). In the reaction, a reduced form of flavin mononucleotide (FMNH2) and 

molecular oxygen form a complex which reacts with the fatty aldehyde, creating a 

slowly decaying intermediate compound. Light emission occurs along with the oxidation 

of FMNH2 and the aldehyde substrate. (Meighen 1991) 
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FIGURE 3.6. A schematic representation of the P. luminescens lux operon, and the 
enzyme reactions and cofactors required for bioluminescence production. 
RCOOH – fatty acid, RCHO – fatty aldehyde. 

A majority of bacterial luciferase applications are related to biomedicine (e.g. tumor 

research) or detection of xenobiotics, heavy metals, or antibiotics in environmental and 

food samples (D'Souza 2001; Galluzzi and Karp 2006; Close et al. 2012). In a typical 

whole-cell biosensor, the lux operon is expressed under an appropriate inducible 

promoter (Immonen and Karp 2007; Virolainen et al. 2008), and the bioluminescence 

production is thus regulated at transcriptional level as a result of defined external 

stimulus.  

As bacterial luciferase produces light specifically through the reaction with an aldehyde 

molecule, the system holds great potential for new metabolic level sensors; the 

mechanism enables highly specific and rapid detection which is not dependent on the 

regulation of transcription or translation. Moreover, the enzymatic reactions serve as 

indicators for intracellular cofactor metabolism. In a study by Falls et al, the P. 

luminescens lux operon was introduced to a complete library of E. coli single gene 

knock-out mutants. It was shown that the expression of a non-native pathway coupled 

with a specific gene deletion results in a rearranged distribution of cellular resources 

and changes in biomass production (Falls et al. 2014). Thus, expressing the Lux 

system can give implications to studying changes in the cellular performance and 

physiological state as a result of genetic modifications. The modularity, the instant and 

linear response to cellular metabolite and cofactor levels, and the long history of 
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consistent research on the lux mechanisms, promote the use of the enzyme complex 

as a valuable and competent tool for developing elaborate and sophisticated systems 

for synthetic biology applications (Reeve et al. 2014). 
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4 Synthetic cocultures 

Coculturing of genetically different strains or species is a rapidly evolving new trend in 

synthetic biology (Brenner et al. 2008; Goers et al. 2014). Cocultures can provide 

several advantages over monocultures by being catabolically more versatile, balancing 

biochemical and physical perturbations, increasing the level of modularity, and 

performing distributed multi-step tasks (Figure 2.12). As a result, more robust 

production systems with improved bioprocess characteristics and stability can be 

developed. 

Mixed populations with natural cooperation mechanisms and fluctuating population 

dynamics have been long exploited in applied microbiology, but such natural systems 

lack the possibility for systematic process control and genetic engineering. In recent 

years, the focus of studies has shifted from naturally evolved and differentiated strains 

(Le Gac et al. 2008) towards more controlled and predictable culture platforms. In the 

synthetic biology approach the principles of rational design and engineering are applied 

on the coculture systems allowing the establishment of defined artificial connections 

and cooperation in the consortia. 
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FIGURE 2.12. Cocultures can promote A) an efficient substrate utilization (Eiteman et al. 
2008; Eiteman et al. 2009), B) a stability and tolerance against 
environmental perturbations and rapidly changing conditions (Briones and 
Raskin 2003; Brenner and Arnold 2011), and C) the performance of 
complex multi-step tasks (Tsai et al. 2010; Regot et al. 2011). 

Coculture approach holds potential for a substantial number of industrial and medical 

applications (Bermudez-Humaran et al. 2011; Brune and Bayer 2012; Shong et al. 

2012; Ortiz-Marquez et al. 2013) and serves as a platform for foundational studies 

regarding population interactions and cell-cell communication (Xavier 2011; Pawelczyk 

et al. 2012; Tanouchi et al. 2012). Computational modeling and genome wide analyses 

of cocultures increase the level of understanding and the predictability of the complex 

interactions (Salimi et al. 2010; Hanly and Henson 2011; Bernstein and Carlson 2012). 

In several studies, coculturing has been shown to improve substrate utilization and 

biomass production, and benefit overall cell performance; in a study by Bernstein et al. 

(2011), a coculture of ‘primary’ glucose-positive and ‘secondary’ glucose-negative E. 

coli strains resulted in up to 50 % improvement in biomass productivity compared to the 

monocultures. The improvements were gained through the consumption of end-
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metabolites by the secondary strain, thus neglecting the growth inhibiting effects of 

byproducts, namely acetate (Bernstein et al. 2011). Using similar strategy, cocultures 

can be engineered for a simultaneous catabolism of different sugars allowing more 

efficient utilization of heterogeneous feedstocks such as lignocellulose hydrolysates 

(Eiteman et al. 2008). Interestingly, cocultures can also promote cell survival and 

resistance to environmental perturbations by coordinated cell self-organization; 

Brenner and Arnold demonstrated the formation of non-random spatial structures by 

symbiotic engineered E. coli strains resulting in improved biomass accumulation and 

population persistence (Brenner and Arnold 2011). 

As a topical subject, sustainable bioenergy production is a target field in which 

coculturing can be exploited to tackle challenges related to product tolerance, efficient 

utilization of industrial heterogeneous substrates, and endured robustness and stability 

in large-scale bioprocesses. For the improved production of bioethanol, cocultures 

employing task distribution in engineered populations have been described; in a study 

by Shin et al. (2010) two E. coli populations were differentially engineered to produce 

and secrete hemicellulases for hemicellulose hydrolysis, and to convert the sugars to 

ethanol in a single-step process (Shin et al. 2010). In another study by Tsai et al. 

(2010), a consortia comprising of three different yeast strains was engineered to 

display a minicellulosome for a direct conversion of cellulose to simple sugars, followed 

by a conversion of glucose to ethanol (Tsai et al. 2010). For improved hydrogen 

production, coculturing Clostridium butyricum and E. coli resulted in increased 

hydrogen titers and more efficient glucose utilization compared to the monocultures 

(Seppälä et al. 2011).  

Regot et al. (2011) introduced a synthetic biology approach to establish a multicellular 

network for distributed biological computing, enabling the construction of a complex 

synthetic device constituting of multiple Boolean logic gates (Regot et al. 2011). In the 

study, yeast cells were engineered to exhibit different functions according to defined 

inputs and an output, which could be combined and connected by multiple ways, 

resulting in the construction of complex synthetic circuits. It was demonstrated that 

using only 2-5 cell types and three inputs in the system, hundreds of different functions 

could be executed. Exploiting consortia instead of a single strain for computing allows 

the construction of more complex, combinatorially powerful, and programmable genetic 

circuits not realizable in a single cell.  

Harnessing quorum sensing mechanisms for coordinated task performance enables 

the construction of spatially and temporally defined networks. The study of Basu et al. 

(2005) beautifully demonstrates the power of engineered multicellular communication 
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systems in the formation of programmed visual patterns and shapes. The pattern 

formation is based on ‘sender’ cells producing acyl-homoserine lactone (AHL), typical 

bacterial signaling molecules, and ‘receiver’ cells, producing fluorescent protein in 

response to defined concentration of AHL. The sophisticated activator-repressor 

regulator system resulted in protein expression only at a certain distance from the 

sender cell (Basu et al. 2005). In a study by Tamsir et al. quorum sensing molecules 

were used as connectors between simple gates in different cells, allowing the 

construction of all 16 type of logic gates according to the spatial arrangement of sender 

and receiver cells (Tamsir et al. 2011).  

For the lack of universal genetic tools and limited knowledge on the metabolism and 

genetics of potential hosts, most of the reported rationally engineered coculture 

systems involve two or more strains or mutants of the same species. Especially in 

synthetic biology, the work is mostly concentrated on E. coli or S. cerevisiae based 

systems, thus partly limiting the coculture characteristics and potential. However, using 

different species in a coculture is supported by certain aspects; potentially more 

orthogonal process design can be achieved due to the lack of specific inter-species 

quorum sensing and regulatory mechanisms. Also, the different carbon metabolism 

patterns allow more efficient utilization of a wider range of carbon molecules and 

restrain the accumulation of a single compound in the culture. In scale-up processes, 

susceptibility to bacteriophage contamination can be decreased by using two species 

instead of a single strain. In future, the increasing number of well-characterized genetic 

tools and alternative synthetic biology hosts will probably expand the field of coculturing 

towards well-defined robust multicellular systems, with distinct properties superior to 

single-cell based pure cultures. 
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5 Hypotheses and objectives of the study 

The sustainable production of bioenergy molecules and other industrially relevant 

compounds is one of the central goals of synthetic biology. Long chain hydrocarbons 

such as fatty aldehydes, fatty alcohols, triacylglycerols and wax esters are exploited by 

several industries for a broad range of applications. The demand for biological 

production systems is growing to replace conventional processes using fossil or food-

chain related feedstock. In order to achieve sufficient production rates, profound 

understanding about the biosynthesis pathways and regulatory systems is required. As 

a major challenge with regard to hydrocarbon production is the limited availability of 

dynamic, high-throughput monitoring and analysis tools; the conventional methods are 

laborious, time-consuming, and they reveal no information about the production 

dynamics. 

Efficient tools and expression systems are required in the construction of a robust cell 

factory. However, an optimal chassis with desired characteristics is of equal 

importance. Certain aspects such as comprehensive knowledge on the cell genetics 

and metabolism, and availability of straight-forward engineering tools are essential, but 

the special features of the cellular machinery should be individually considered 

according to the application; does the cell provide the required precursors or cofactors 

at sufficient rate? Is there a need for extensive ‘construction work’ to enable the 

expression of the pathway? How does the cell cope with the physiological and 

environmental perturbations caused by the built system? How could the natural 

properties of the cell be efficiently exploited? In addition to optimizing the host cell, 

possibilities for multicellular approach promoting task distribution and metabolic 

balancing should be considered. 
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To fully realize the production process, that is, to take the process to an industrial 

scale, issues related to patents and licensing need to be considered. Despite 

Escherichia coli often being the most convenient choice for a process, IPR issues can 

put obstacles in the way. 

To sum up, my study considers the above mentioned limitations, issues, and 

challenges of existing synthetic biology production systems and approaches with 

regard to long chain hydrocarbon production and demonstrates the possibilities and 

benefits of exploiting an alternative bacterial host, Acinetobacter baylyi ADP1, as a 

cellular factory and model system for synthetic biology.    

The specific objectives and hypotheses of the study are: 

1. To establish a model platform based on A. baylyi ADP1 for the 

improved production of lipid compounds employing metabolic 

engineering approach (I) 

 

According to the hypotheses, the previously constructed metabolic model 

can be exploited to find gene deletion targets that beneficially affect the 

lipid, or more specifically, triacylglycerol production. The genome 

engineering can be conducted by established molecular methods and the 

predictions are verified experimentally. Single and/or multiple gene 

deletions increase the lipid titers, productivity or proportion of 

triacylglycerols in total lipids. The results give important clues of the 

significance of gene deletions to the lipid metabolism of A. baylyi ADP1.   

 

2. To develop a dynamic in vivo tool for studying and monitoring the 

long chain hydrocarbon metabolism (II) 

 

According to the hypotheses, the reporter enzyme bacterial luciferase can 

be employed as a sensor for intracellular long chain aldehydes. The 

presence of aldehydes can be detected by measuring bioluminescence 

produced by the bacterial luciferase. As aldehydes are specific and 

dynamic intermediates of the wax ester synthesis pathway in A. baylyi 

ADP1, monitoring the bioluminescence gives important information about 

the wax ester synthesis patterns and production kinetics. The monitoring 

system can be exploited in the optimization of the production host and 

conditions. The tool can be also applied to other pathways involving 

aldehyde intermediate. 



5 HYPOTHESES AND OBJECTIVES OF THE STUDY 

 

52 

 

 

3. To demonstrate the significance of an optimal chassis; developing a 

monitoring tool for studying alkane metabolism by the integration of a 

well-known DNA component to a novel context  (III) 

 

According to the hypotheses, previously described biosensors for alkane 

detection can be replaced with a simpler design by choosing an optimal cell 

framework exhibiting the relevant pathway(s) combined with an appropriate 

sensor element. A. baylyi ADP1 provides the required biocomponents for 

alkane uptake and processing. Degradation of alkanes produces an 

aldehyde intermediate which can be detected by the bacterial luciferase. 

The constructed system not only enables the detection of alkanes, but also 

provides fundamental information about the natural degradation kinetics 

and patterns.     

 

4. To reconstruct the wax ester synthesis pathway for modified products 

in A. baylyi ADP1 using synthetic biology tools (IV) 

 

According to the hypotheses, the chemical composition of the wax esters of 

A. baylyi ADP1 can be modified by replacing a natural key enzyme of the 

pathway with an alternative enzyme exhibiting a defined substrate range. A 

well-characterized biocomponent, fatty acid reductase complex LuxCDE, 

can be employed for the wax ester synthesis. The reductase complex 

provides aldehyde precursors mostly consisting of C10-14 chains, resulting 

in alcohol moieties of respective chain lengths in the final product. 

Introducing the synthetic pathway allows the regulated production of a 

custom-made bioproduct.  

 

5. To design and engineer a synthetic coculture for improved cell 

performance and product formation (V) 

 

According to the hypotheses, using a glucose-negative mutant strain of A. 

baylyi ADP1 supports E. coli growth in a coculture by efficiently removing 

toxic acetate from the culture medium. This improves the E. coli biomass 

production and reduces the need for process control and optimization. Both 

strains can be harnessed for the production of a relevant compound by 

well-established engineering tools. The product titers in a simple batch 
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process coculture are higher compared to the corresponding pure cultures 

of E. coli.    
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6 Summary of materials and methods 

The details for the materials and methods used in the studies are described in papers I-

V. 

6.1 Strains 

Acinetobacter baylyi ADP1 (available at German Collection of Microorganisms and Cell 

Cultures, under accession number DSM 24193) was used in the studies as the wild 

type strain. Single gene knockout mutant strains (Table 5.1) were kindly provided by 

Veronique de Berardinis (Genoscope, France). In the single gene knock-out mutants, 

the gene in question is replaced with a gene cassette containing a kanamycin 

resistance gene (kanr). Double and multiple gene knockout strain constructions are 

described in ‘genetic engineering’ section. For coculture studies (V), E. coli K12 

BW25113 (from Yale E. coli Genetic Stock Center CGSC, Connecticut, USA) was 

used.  
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TABLE 6.1. Single gene knockout mutant strains used in the studies. 

 

6.2 Genetic engineering 

The molecular work was carried out by standard procedures (Sambrook et al. 1990) or 

according to BioBrick cloning standard (Shetty et al. 2008). Primers were ordered from 

ThermoFisher Scientific (USA) with appropriate restriction sites. 

6.2.1 Plasmid and gene cassette construction 

An integrative gene cassette was used as a scaffold for genomic deletions and 

insertions (I, II, III, IV). The gene cassette (Figure 6.1) was constructed in vitro and 

contains the following components: 1) a flanking region upstream of the target gene, 2) 

a promoter, 3) a multiple cloning site (MCS), 4) a selection marker, 5) a transcription 

termination loop, and 6) a flanking region downstream of the target gene. 

gene ID Gene name Gene product EC Reference

ACIAD2837 dgkA diacylglycerol kinase EC 2.7.1.107 I

ACIAD3383 acr1 fatty acyl-CoA reductase EC 1.2.1.n2 I, II, III, IV

ACIAD2844 glpD
glycerol-3-phosphate 

dehydrogenase
EC 1.1.5.3 I

ACIAD2425 cyoA
cytochrome o ubiquinol 

oxidase subunit II
EC 1.10.3.- I

ACIAD2426 cyoB
cytochrome o ubiquinol 

oxidase subunit I
EC 1.10.3.- I

ACIAD2291 cydB

cytochrome d terminal 

oxidase polypeptide subunit 

II

EC 1.10.3.- I

ACIAD3381 poxB
pyruvate dehydrogenase 

(cytochrome)
EC 1.2.2.2 I

ACIAD3648 estA carboxylesterase EC 3.1.1.1 I

ACIAD1134 aesT esterase - I

ACIAD3309 - l ipase EC 3.1.1.3 I

ACIAD1121 lip1 triacylglycerol l ipase EC 3.1.1.3 I

ACIAD0544 gntT
high-affinity gluconate 

permease (GntP family)
- V
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FIGURE 6.1.The synthetic gene cassette employed for targeted gene deletions and 
chromosomal insertions. 5’ flank – a homologous region upstream the target 
site, T5/lac – a promoter, RBS – Ribosome binding site, MCS – multiple 
cloning site, cm(r) – chloramphenicol resistance gene cat, Ter – transcription 
termination loop, 3’ flank – a homologous region downstream of the target 
site.  

For plasmid expression in ADP1 (IV, V), vectors derived from pBAV1K (Murin et al. 

2012) were used (Figure 6.2).  

 

FIGURE 6.2.The expression vector pBAV1C-T5-gfp. The reporter eGFP is expressed 
under a T5/lac promoter. The vector contains the restriction sites for BioBrick 
cloning. The described construct was used in In paper V, whereas in paper IV 
pBAD and luxCDE replaced the T5/lac and gfp. 

All the genetic constructs used in the studies are listed in Table 6.2. 
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TABLE 6.2. The list of genetic constructs used in the studies. 

 

6.2.2 Transformation 

Transformations of E. coli were carried out by standard electroporation procedures 

(Sambrook et al. 1990). For natural transformation of ADP1, a methodology described 

previously was used (Metzgar et al. 2004); a linear DNA fragment (PCR product) with 

flanking regions of the target site in genome or plasmid vector was inserted to ADP1 

cultivation in an exponential growth phase. The cultivations were conducted at 30 °C 

and stirring of 300 rpm using LB medium or MA/9 minimal salts medium supplied with 

glucose. For transformation, 1-2 µg DNA was used per 1 ml of cultivation. After 

insertion, the cultivations were incubated for 2-3 h and then spread on a selective LA 

plate supplemented with glucose and appropriate antibiotic. Concentrations for 

selective antibiotics were 30-50 µg/ml for kanamycin, 25-50 µg/ml for chloramphenicol, 

and 10 µg/ml for tetracycline, respectively. The plates were incubated at 30 °C until 

colonies appeared. Negative controls were cultivated in the same method except for 

insertions sterile water was used instead of DNA. The constructs in the obtained strains 

were verified with colony PCR and further by sequencing. 

6.3 Cultivations 

A modified Luria-Bertani medium (V; 1 g/l NaCl, 5 g/l yeast extract, 10 g/l tryptone, 2 

mM MgSO4, 0.5 mM CaCl2, 3 µM FeCl3) or minimal salts medium MA/9 (I-V; Na2HPO4 ∙ 

2 H2O 5.518 g/l, KH2PO4 3.402 g/l, NH4Cl 1 g/l, nitrilotriacetic acid 0.008 g/l, NaCl 1.0 

g/l, 2 mM MgSO4, 0.5 mM CaCl2, 3 µM FeCl3, and trace element solution (I)) 

supplemented with a carbon source, casein amino acids, antibiotics, and an inducer, 

when appropriate, was used in the studies. Gluconate (I), glucose (II, III, IV, V), alkanes 

(III) or acetate (V) were used as carbon sources. For bioreactor cultivations (V), a 1-

litre vessel (Sartorius Biostat B plus Twin System, Germany) with online pH monitoring 

Name Type locus Promoter Insert Selection marker Reference

iSM100cz' Integ. cassette ACIAD3381-3383 T5/lac cm I

iluxAB_Cmr Integ. cassette ACIAD3381 T5/lac luxAB cm II, III, IV

pVKK81-T-lux plasmid lac luxCDABE tet V

pBAV1C-ara -luxCDE plasmid BAD luxCDE cm IV

pBAV1C-ara plasmid BAD cm V

pBAV1C-T5-GFP plasmid T5/lac gfp cm V

sfGFP/pAK400c plasmid lac gfp* cm V

*superfolder variant
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system, stirring, and oxygen supply was used. Cultivations were carried out at 20-

37 °C. 

6.4 Output analyses 

The analysis methods and instrumentation used in the studies are presented in Table 

6.3.  

TABLE 6.3. Analytical methods and instruments used in the studies. 

Analysis Method/Instrument Reference 

Biomass 
      Optical density Spectrophotometer, 600 nm I-V 

    Cell dry weight Freeze-drying; gravimetric I-V 

Metabolic predictions In silico simulations; FBA I, V 

Lipids 
       Total lipids Solvent extraction; gravimetric I, II, IV 

 
+ GC-FID I 

 
+ GC-MS IV 

 
+ TLC I, II, IV 

     TAG Solvent extraction I, IV 

 
+ SPE / FAME derivation, GC-FID I 

 
+ preparative TLC; gravimetric I 

 
+ HPLC-GPC IV 

     WE Solvent extraction I, II, IV 

 
+ TLC I, II, IV 

 
+ NMR 

      FA, Alcohols Solvent extraction, GC-FID, GC-MS IV 

Sugars, end-metabolites HPLC I, II, V 

Luminescence Microplate Reader (Victor 2) II, III, IV, V 

 
Xenogen IVIS Lumina II II, III 

Fluorescence Microplate Reader  
   (Fluoroskan Ascent FL, ex/em 485/538) V 
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7 Summary of results and discussion 

This chapter provides an overview of the results obtained in the research, and compiles 

the thoughts and future prospects arisen during the process. The individual results and 

observations are more specifically discussed in the original papers I-V. 

7.1 Improving the lipid quantity and quality (I, IV)  

For the improved production of TAGs in A. baylyi ADP1 (I), computational tools and 

manual comparative analysis were exploited in identifying target genes for the 

elimination of potential competitive pathways and the redirection of product precursors. 

An extended constraint-based metabolic model of ADP1 was employed for the 

computational analysis. After a preliminary screening of eleven potential individual 

single gene knock-out mutants (Figure 7.1), the four most relevant deletions, fatty acyl-

CoA reductase acr1 (ACIAD3383), pyruvate dehydrogenase poxB (ACIAD3381), 

diacylglycerol kinase dgkA (ACIAD2837), and a triacylglycerol lipase (ACIAD3309), 

were chosen for further studies. Briefly, the hypotheses of the effects of these deletions 

on TAG metabolisms were the following: A strain lacking a fatty-acyl-CoA reductase is 

incapable of wax ester synthesis, thus redirecting the carbon flow towards TAG 

synthesis. Eliminating the TAG lipase potentially prevents the degradation of the 

product of interest. The diacylglycerol kinase directs 1,2-diaclyglycerol, an important 

precursor of TAG, to phospholipid synthesis competing with TAG synthesis. The 

pyruvate dehydrogenase is associated to acetate production, and therefore the deletion 

can redirect the carbon flux towards storage lipid synthesis. 
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FIGURE 7.1.The metabolic pathways of ADP1 relevant to the storage lipid metabolism. The 
ACIAD gene numbers of the potentially beneficial gene deletions are shown. 
The specific functions of the genes and the effect of deletions on the TAG 
synthesis are described in paper I and in (Aho et al. 2012).  

Three of the deletions (i.e. acr1, poxB, and the triacylglycerol lipase) were combined in 

a single strain (referred as strain MT). As a result, the strain MT produced 5.6 fold more 

triacylglycerol (mg/g cell dry weight) compared to the wild type strain, and the 

proportion of triacylglycerols in total lipids was increased by 8-fold. Of individual 

deletions, the acr1 knock-out eliminating the WE pathway had the most impact on TAG 

synthesis; this was further confirmed by the subsequent analyses (IV) showing that the 

diacylglycerol precursors are strongly directed to TAG synthesis in the acr1 mutant. In 

addition, it has been suggested that when alcohol substrate is available in a cell, the 

activity of WS/DGAT is strongly shifted towards WE synthesis (Kalscheuer and 

Steinbüchel 2003; Kaiser et al. 2013), thus relatively increasing the TAG synthesis in 

the absence of fatty alcohols. By contrast, deleting the poxB or the hypothetical lipase 

ACIAD3309 results in an increased WE production (Aho et al. 2012).  

The study experimentally validated the computationally simulated effects of gene 

knock-outs on the lipid metabolism of ADP1 and proved the coupled effect of 
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combining several gene deletions. The study demonstrates the convenience of the 

strain ADP1 as a host for metabolic engineering purposes and the potential for further 

investigation as a lipid production platform.   

The obtained results give indications of the mechanisms affecting the natural lipid 

synthesis. While metabolic models can indeed predict the effect of gene deletions on 

the cell metabolism, the coverage of predictions is restricted to the predetermined 

reactions. Therefore, all potential bottlenecks and carbon consuming routes which 

indirectly affect the lipid production are not identified by the model. For example, the 

extracellular polysaccharide (EPS) production known to consume significant amounts 

of carbon (Kaplan and Rosenberg 1982) were not considered in the simulations. 

Furthermore, in the steady-state assuming constraint-based model the gene 

expression levels or the growth phase are not taken into account, resulting in a 

qualitative rather than a quantitative output. In addition, the homology-based annotation 

of genes can lead to inaccurate or false predictions.  

For a metabolic model to be truly useful, a continuous evolvement and validation are 

required. For example, the latest update of the genome-wide metabolic model of E. 

coli, EcoCyc–18.0–GEM, encompasses 1445 genes, 2286 reactions, and 1453 

metabolites, afforded by a comprehensive integration of computational and 

experimental data directly from EcoCyc database (Weaver et al. 2014). According to 

the developers, the new model offers easy operation, frequent updates, and more 

accurate predictions enabling the more advantageous use of the computational 

simulations. For ADP1, the on-going experimental annotation of genes and profound 

analyses of the transcriptomic and metabolic data can provide means to develop a 

more accurate and quantitative model for ADP1 (Genoscope 2009; Stuani et al. 2014). 

Owing to the laborious and multi-step nature of the preparative TLC analytics 

conducted, the TAG production of only a very limited number of knock-out strains was 

thoroughly studied. Furthermore, the screening of several knock-out combinations in a 

single strain could have resulted in further improved productivity. For example, the 

deletion of diacylglycerol kinase dgkA was considered an interesting knock-out target, 

but the low biomass yields prevented an accurate determination of the TAG yield of the 

strain. Recently, it was shown that the deletion of dgkA combined with the 

overexpression of WS/DGAT from ADP1 and fadD from E. coli resulted in a 

considerably improved production of TAG in E. coli (Janßen and Steinbüchel 2014). 

Similarly to our study, the negative effects of dgkA deletion on growth were observed. 

Nevertheless, in an optimized fed-batch bioprocess, TAG titers of 530 mg/l (8.5 % of 

CDW) could be achieved (Janßen and Steinbüchel 2014).  
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The study of Janßen and Steinbüchel demonstrates the necessity of both gene knock-

outs and gene overexpression in achieving significant improvements at the cell level. 

Moreover, a comprehensive bioprocess optimization is required to obtain improved 

volumetric yields, since the synthesis of neutral lipids strongly competes with biomass 

production. Although the main goal of my research was to investigate the effects of 

gene deletions on the lipid metabolism rather than to maximize the productivity, the 

overexpression of selected key enzymes could have provided important clues of the 

rate-limiting steps. For example, in the present E. coli based production systems the 

overexpression of fadD and ‘tesA, combined with the deletion of fadE, are almost 

routinely done to improve the supply of FA precursors (see Chapter 3.1.3). 

Interestingly, the overexpression of the ADP1 thioesterase, which is the corresponding 

enzyme for the widely applied TesA, has been shown to significantly improve the FA 

synthesis in E. coli (Zheng et al. 2012a). Therefore, in our on-going studies the early 

steps of the lipid production pathway are investigated, involving both the heterologous 

expression of non-native genes and regulation of the natural pathway (data not shown). 

In natural hosts, the synthesis of storage lipid is regulated by environmental conditions, 

a nutrition supply, and the growth phase. For example, nitrogen limitation in a 

stationary growth phase is known to induce lipid accumulation in bacteria (Ishige et al. 

2002; Wältermann et al. 2005). Bypassing the natural regulation can thus significantly 

increase the production rates. However, very little is known about the molecular 

mechanisms affecting the lipid accumulation. For R. opacus, a gene contributing to the 

regulation of lipid metabolism was previously identified (MacEachran and Sinskey 

2013). In nitrogen limiting conditions, the gene (referred as tadD) was shown to 

metabolize glyceraldehyde-3-phosphate to 3-phosphoglycerate yielding NAD(P)H, a 

crucial cofactor for fatty acid biosynthesis. For ADP1, however, protein homologous to 

the described TadD is not present. 

The first attempt to regulate the lipid synthesis of ADP1 was made in reconstructing the 

WE synthesis pathway (IV). The natural fatty-acyl CoA reductase Acr1 was replaced 

with a well-characterized FA reductase (FAR) complex LuxCDE from P. luminescens. 

The rewired pathway employing an inducible arabinose promoter pBAD enabled a 

regulated production of synthetic WEs. The study also revealed a strong temperature 

dependency of the WE production: within a range of 20-37 °C, most WEs were 

produced at 20 °C. Due to the different substrate specificity of LuxCDE compared to 

Acr1, the WE profile of the engineered strain was altered; the alkanol chains of the 

synthetic WEs were slightly shorter and more saturated in comparison with the WEs of 

the wild type strain, the major constituent being C16:0 alkanols. Furthermore, C12:0 

alkanols, which are very rare in the wild type strain, were detected in the engineered 
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strain. However, the most preferred substrates of LuxCDE, C14 alkyl groups, were 

absent. As discussed in paper IV, most probably the native aldehyde reductases affect 

the final product quality. Thus, a feasible approach for neglecting the endogenous 

aldehyde reductase(s) could be an expression of a multifunctional FAR that converts 

the FA (-CoA or -ACP) substrates directly to alcohols without the aldehyde 

intermediate.  

Even though the product titers were not improved by the synthetic pathway, the results 

encourage for further development and enhancement of the WE synthesis platform. 

Furthermore, demonstrating the utility of the well-characterized LuxCDE complex in the 

production of hydrocarbons extends the possibilities to choose the most optimal 

components to build up pathways with specified properties and modularity. Evidently, 

the increased knowledge on the enzyme functions and pathways facilitates the 

expansion of the synthetic biology product repertoire (Layton and Trinh 2014; 

Rodriguez et al. 2014). 

With regard to the obtained titers of synthetic WEs, there are several potential reasons 

why the reconstructed system did not increase the WE production rates. Firstly, 

considering the role of LuxCDE in its natural context, the activity of the enzyme 

complex is probably not very high; consuming large amounts of cofactors and valuable 

carbon molecules for bioluminescence production would not be energetically 

affordable. In addition, in the constructed expression platform natural regulatory 

elements upstream of LuxE were disrupted, thus potentially affecting the expression 

levels. Furthermore, the bacterial luciferase and the FAR complex assumingly recycle 

the FA substrate in the reactions, thus not significantly interfering with the natural lipid 

metabolism of the cell. This indicates a relatively low catalytic activity and affinity of 

LuxD towards the activated cellular FAs, which in turn implies minor contribution of 

LuxD to the WE synthesis, as discussed in paper IV. Furthermore, as implied by 

Smanski et al. (2014), a simple insertion of a component without further optimization 

very improbably increases the production rates.   

By contrast, the introduction of an alternative LuxCDE complex from Vibrio harveyi 

resulted in production of tetradecanol (C14) in E. coli (Rodriguez et al. 2014). A 

simultaneous expression of an ester forming acyltransferase Atf1 from S. cerevisiae led 

to the production of tetradecyl acetate. It is unclear why the described expression 

platform produced C14 acyl groups, while they were not detected in the WEs of the 

engineered ADP1 (IV). This discrepancy can be due to the very different cellular 

environments of the hosts. For example, the ADP1 enzymes involved in the lipid 

synthesis are typically membrane-bound and may possess unique enzymatic 
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interactions affecting the substrate flow and preference (Wältermann et al. 2005). In 

addition, the differences in the specificities between the endogenous alcohol 

dehydrogenases of E. coli and ADP1 probably affect the product quality. It is also 

possible that the V. harveyi and P. luminescens FAR complexes, and more specifically 

the LuxD counterpart, exhibit differential activity (the acyltransferases show 70 % 

similarity at the amino acid level). For example, the higher affinity of the V. harveyi 

LuxD towards tetradecanoyl-ACPs would theoretically terminate the FA elongation and 

allow the assimilation of C14 FA for aldehyde synthesis.  

The insufficiency of the P. luminescens LuxD to provide C14 acyl groups for aldehyde 

synthesis in a recombinant host was also observed by Howard et al (2013). The P. 

luminescens LuxCDE FAR complex and an aldehyde decarbonylase (NpAD) were 

exploited in the production of variable branched and aliphatic alkanes. The study 

utilized the FAR complex for a direct conversion of free FAs to aldehydes. This 

approach was suggested to allow a more tractable specification of the output products 

via the modifications of the cellular FA pool. It is noteworthy that the acyltransferase 

LuxD is previously described to utilizing activated FAs as a primary substrate (Meighen 

1991). To elucidate this contradiction, the study showed that free FAs can be directly 

converted to aldehydes by LuxE and LuxC solely. The potential of LuxC to directly 

accept activated FAs for the reduction reaction has been also discussed in the 

literature (Wall et al. 1986). In the study of Howard et al., providing exogenous FAs or 

introducing a specific thioesterase activity, such as FatB1 from Cinnamomum 

camphora, resulted in the production of alkanes with acyl groups of corresponding 

lengths. However, in the presence of LuxCDE and NpAD solely, only minor proportions 

of the predicted C13 alkanes (yielding from C14 aldehydes) were produced, thus 

demonstrating the redundancy of LuxD in terms of the transferase activity. However, it 

was proven that the role of LuxD, albeit not completely clarified, is significant for the 

catalytic activity of LuxC and LuxE through protein-protein interactions, thus supporting 

the findings of my study (paper IV, suppl.). Altogether, elucidating the role of LuxD, and 

especially the possibility to engineer the FA(-CoA) pool of ADP1 require further 

research efforts. Moreover, our future studies will involve the screening of other 

potential reductases and thioesterases in terms of improved WE production. 

Similarly to TAG production, not much is known about the regulation or expression 

levels of the key enzymes of the WE synthesis pathway. For example, the molecular 

mechanisms behind the temperature dependency of WE production are not 

established. It has been shown, however, that only a few copies of the terminal 

enzyme, WS/DGAT, are present in the cells (Wältermann et al. 2005). We have 

conducted preliminary studies to investigate whether an overexpression of the native 
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enzymes improves the WE production. The early results indicate that the 

overexpression of acr1 increases the amount of WEs in ADP1, whereas increased 

WS/DGAT levels do not significantly affect the WE production in the studied conditions 

(data not shown). Although numerous studies have exploited the ADP1 originated 

WS/DGAT in the production of esters, other potential acyltransferases/wax ester 

synthases have been introduced (Barney et al. 2012; Shi et al. 2012). Thus, in order to 

overcome the potential limitations with regard to the native regulation and product 

range, the expression of a non-native terminal acyltransferase for lipid production in 

ADP1 might be profitable. 

While only modest WE titers were achieved using glucose as a substrate (II, IV), it is 

known that ADP1 naturally produces large amounts of WEs when grown on alkanes. 

Ishige et al. (2002) obtained 17 % WEs of the cell dry weight in a 10 h cultivation using 

3 % n-hexadecane as a substrate. The WEs were almost exclusively (98 %) found to 

compose of hexadecyl-hexadecanoate, indicating the possibility for very precise 

determination of the product quality. Even though refined alkanes are not currently 

considered as a sustainable carbon source, elucidating the mechanisms behind the 

efficient conversion of long chain hydrocarbons to WEs could promote the processes 

exploiting more appropriate carbon sources. On the other hand, streams containing 

impure alkanes, such as waste streams or oil spills, could serve as an economical and 

sustainable substrate for an efficient recovery of the hydrocarbons in the form of 

valuable WEs. 

Altogether, ADP1 can be concluded to possess potential for the production of long 

chain hydrocarbons, especially WEs. What is more, a lot of engineering and research 

efforts have been dedicated to redirect and increase the central carbon flux of E. coli 

towards acyl-CoAs, the key precursors of valuable hydrocarbons (Xu et al. 2014). As a 

natural producer of acyl-CoA derived hydrocarbons, the central carbon metabolism of 

ADP1 is able to provide acyl-CoAs at sufficient rates. Furthermore, the existing 

metabolic network for the long chain hydrocarbon production endorses the 

straightforward construction of several relevant pathways in ADP1. However, in 

addition to engineering the individual enzymatic steps to increase the supply of 

precursors, the redox balance (Singh et al. 2011) and cofactor regeneration (Wang et 

al. 2013; Akhtar and Jones 2014) need to be considered. As an alternative to produce 

biomolecules through fermentations from simple sugars, the catalytic diversity of ADP1 

could afford selective biotransformations to produce enantiomerically pure 

biomolecules from provided precursors (Ishige et al. 2005; Molinari 2006). 
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7.2 Constructing tools for monitoring the hydrocarbon 
metabolism of ADP1 (II, III) 

Conventionally, the lux multienzyme complex has been utilized in an orthogonal 

manner, i.e. independent of the host metabolism. The complex can be divided into two 

functional parts, an aldehyde producing unit LuxCDE, as demonstrated in paper IV, 

and a fatty acid and light producing unit LuxAB. In my study, the functional units of the 

lux complex were exploited independently and integrated into the ADP1 metabolism. 

The aldehyde producing unit provides intermediates for the production of customized 

long chain hydrocarbons, and vice versa, the integration of the light producing unit 

enables the detection of endogenous long chain aldehyde formation. 

The bacterial luciferase LuxAB from P. luminescens was exploited in constructing a 

real-time monitoring tool for studying the WE production of ADP1 (II). The P. 

luminescens luciferase was chosen for its high stability (Szittner and Meighen 1990). 

The sensor represents a post-translational (metabolite level) detection of the target 

molecule; the detection of WE formation is based on the light-producing reaction 

between the bacterial luciferase enzyme and a fatty aldehyde molecule (Figure 7.2). 

The long-chain aldehyde molecule represents a specific intermediate of the WE 

synthesis route, enabling a very sensitive and specific detection of the molecule. 
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FIGURE 7.2.The proposed WE synthesis pathway of ADP1. The integration of the bacterial 
luciferase (LuxAB) enables the real-time detection of the fatty aldehyde 
intermediate. The fatty acid molecule produced in the reaction is returned to 
the carbon cycle (Modified from paper II). 

Monitoring the WE production in variable conditions showed correlation between the 

luminescence signal and the WE synthesis pattern, which was further verified with TLC 

and NMR analyses. The experiments revealed that WEs are dynamic storage 

molecules, which are produced and degraded in the cells in different phases of the 

cultivation. Furthermore, it was confirmed that the WE synthesis is activated in nitrogen 

limiting conditions. Expressing LuxAB in ADP1 did not significantly affect the WE 

production rates compared to the wild type strain, indicating that only minor metabolic 

burden is caused by the tool expression. 

The described monitoring system serves as a valuable tool for complementing the 

laborious lipid analysis methods, especially in high-throughput studies and screening 

purposes. The sensor does not require inclusion of an external substrate, and thus the 

monitoring of cultivations can be conducted in an automated manner without sampling. 

Moreover, the tool provides new information regarding the WE production dynamics, 

not interpretable by conventional means. In our recent studies, the monitoring tool has 

been exploited in screening optimal carbon sources and growth temperatures for WE 

production (data not shown).  
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The well-characterized and widely applied bacterial luciferase can be readily expressed 

in a variety of hosts. Apart from studying the native WE metabolism of ADP1, the tool 

has shown promise in searching novel reductase and dehydrogenase activities, 

demonstrating its applicability in a broad range of hosts and applications (data not 

shown). Furthermore, as the long chain aldehyde serves as the key intermediate of the 

pathways leading to fatty alcohol, fatty alkyl ester, and alkane synthesis, the tool could 

be potentially generalized for the optimization of advanced biofuel and other valuable 

hydrocarbon production.  

Given that the luminescence emission is a result of direct reaction between the 

substrate and the enzyme present in the cells, the described tool provides an instant 

and dynamic response to changing aldehyde levels in the cell. Thus, in contrast to the 

biosensors functioning through transcription regulation, the described system naturally 

exhibits very high dynamical range. Furthermore, it is not dependent on the 

transcription and translation machineries during the detection event, and the lag time 

between the aldehyde formation and luminescence emission is only dependent on the 

diffusion of the molecules (<0.1 s). Even though not investigated in paper II, the 

sensitivity and the rate of the tool can be potentially even further tuned by adjusting the 

luciferase expression levels. 

Despite solving some major limitations of lipid analytics, few issues that are not 

discussed in paper II exist. For example, the amplitude of the luminescence signal is 

dependent on the substrate, i.e. aldehyde chain length and properties, and thus the 

signal cannot be considered quantitative. Therefore, the signal patterns rather than 

absolute signals are of higher significance. Moreover, the different affinities towards the 

aldehyde substrates limit the comparability of results obtained from different culture 

types, hosts, and target products. As bacterial luciferases are generally applied for 

acting on aliphatic aldehydes with a typical range of C8-C14 acyl groups, it would be 

interesting to study the enzyme potential of utilizing other types of aldehydes, such as 

branched, unsaturated, or cyclic aldehydes as substrates. Thus, in order to take a full 

advantage of the tool harnessed for metabolic studies, insightful knowledge on the 

substrate range and engineering potential of bacterial luciferases in the light of 

synthetic biology is required. 

Furthermore, it should be taking into account that different bacterial luciferases (e.g. 

Vibrio vs. Photorhabdus) may possess different substrate preference and catalytic 

activity depending on the conditions. On one hand, the distinct properties of the 

luciferases, such as the heat lability of Vibrio spp. luciferases (Escher et al. 1991), can 
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be potentially exploited in selective and dynamic redirecting of metabolic fluxes, 

evolving the idea of Falls et al (2014) introduced in Chapter 3.2.1. 

Aldehydes themselves are important molecules. In addition to being key intermediates, 

i.e. one catalytic step away from alcohols, alkanes, FAs, and WEs (Kaiser et al. 2013), 

aldehydes have intrinsically industrial use, for example in the food industry, and in the 

synthesis of plastics and  rubbers. Moreover, compared to alcohols, the high volatility 

of aldehydes simplifies the product recovery and alleviates the product toxicity to cells. 

As a natural producer, the strain ADP1 serves as a potential host for the production of 

aldehydes. However, the endogenous aldehyde reductases which further convert the 

aldehydes to alcohols complicate the sufficient production of aldehydes as the final 

product. Rodriguez and Atsumi have comprehensively investigated the E. coli 

reductases to allow an efficient production of aldehydes and alkanes; the deletion of 

five potential reductases coupled with a relevant pathway engineering of E. coli 

resulted in production of 35 g/l isobutyraldehyde and 10 g/l isobutanol (Rodriguez and 

Atsumi 2012). The work was previously continued with the elimination of all 13 known 

aldehyde reductases, resulting in 90-99 % loss of aldehyde reducing activity 

(Rodriguez and Atsumi 2014). It can be speculated, that ADP1 probably contains 

several reductases exhibiting such activity. The key aldehyde reductase(s) involved in 

the WE synthesis pathways has yet to be characterized although some suggestions 

have been presented (Kaiser et al. 2013).   

It was proven that the degradation of WEs in carbon limiting conditions did not 

generate background luminescence emission and thus not interfered the specific 

monitoring of WE synthesis. It was shown, however, that the sensor system could be 

modified for the monitoring of alkane degradation (paper III). Deleting the fatty acyl-

CoA reductase acr1 eliminates the aldehyde production from endogenous sources, 

thus allowing the unambiguous detection of alkane degradation by the bacterial 

luciferase (Figure 7.3). 

The monitoring system was demonstrated to be applicable to the studied range of 

aliphatic alkanes C12-18 and for diesel fuel. The tool was functional both for cells 

actively growing on alkanes and for static cell cultures exposed to alkane samples. 

Furthermore, the tool possessed high stability in longer cultivations. Thus, the sensor 

can be proposed for investigating the kinetics of alkane degradation as well as for the 

detection of alkanes or fuel components in environmental samples. Furthermore, the 

tool holds potential for the screening of alkane degrading or alkane producing strains or 

new enzymatic activities. 
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FIGURE 7.3.The proposed alkane degradation pathway of ADP1. The integration of the 
bacterial luciferase (LuxAB) enables the real-time detection of the fatty 
aldehyde intermediate in the catabolic pathway. Elimination of the strain’s 
natural aldehyde producing pathway results in an unambiguous and simple 
monitoring system (modified from paper III). 

The study demonstrates the differences in kinetic responses and signal amplitudes with 

regard to various alkyl chain lengths. While the longer alkanes C16 and C18 turned out 

to be more convenient substrates for biomass production, the shorter C12 alkanes 

resulted in relatively higher luminescence signals. The variables affecting the signal 

development include the transportation efficiencies of different alkanes, and the 

substrate preference of both the bacterial luciferase and the enzymes catalyzing alkane 

oxidization. Furthermore, the tool also detects the extracellular long chain alcohols and 

aldehydes, which could reduce the tool specificity. Therefore, as for the WE monitoring, 

the tools should be further developed by specifying and validating the system for 

different substrates. 

In general, biological robustness can be improved by designing modular and 

hierarchical systems exhibiting dynamic control (Zhu et al. 2012). In addition, 

constructing an optimal genetic platform imposing minor stress to the cells promotes 

the persistence and performance of the host cell. However, it is very difficult to evaluate 

or predict the effects of heterologous gene expression on cells in response to 

environmental perturbations and changing metabolite levels, and introducing multiple 

non-native activities increase the metabolic and physiological burden. Thus, the 

ideology to choose an optimal host cell intrinsically promoting the application has been 

increasingly brought up in the context of synthetic biology (Nandagopal and Elowitz 
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2011; Fisher et al. 2014; Nikel et al. 2014). The described alkane monitoring tool 

represents an example of a systematic and rational approach to a step-wise 

construction of a stripped-down device exploiting an optimal host cell. The sequential 

steps include: 

1) the specification of the target pathway or the product,  

2) the choice and validation of an optimal cell framework to afford the system with 

minor modifications and convenient characteristics with regard to the device 

purpose,  

3) the determination of a specific intermediate or other key compound which is 

a) linked to the synthesis pathway, 

b) compatible with an amenable biosensing component 

4) the design, construction, and validation of the device with appropriate molecular 

components.  

The described monitoring tools demonstrate the straight-forward applicability of ADP1 

framework for integrating standard DNA components to create streamlined and 

operative devices with only few genetic modifications. Theoretically, the metabolic 

characteristics of ADP1 enable the utilization of the network for establishing several 

pathways for the studying and production of relevant biomolecules.  

7.3 Engineering a synthetic coculture (V) 

A rationally designed and engineered coculture of E. coli and A. baylyi ADP1 was 

constructed to improve the cell performance and product formation (V). The coculture 

was engineered to possess a carbon channeling system, which enables an efficient 

removal of a common inhibitory molecule, acetate, from the cultivation, and redirects 

the carbon flow to the biomass and the product. It was shown that using a glucose-

negative mutant strain of A. baylyi ADP1 supported the E. coli growth and recombinant 

protein (GFP) production in variable conditions; as a result of the cocultivation, the E. 

coli biomass and protein production were improved both in minimal and rich medium 

batch cultures without pH control or optimization. Furthermore, it was demonstrated 

that both the strains could be readily engineered to produce GFP with a single genetic 

construct, resulting in improved volumetric titers.  
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As discussed in paper V, the coculture most probably cannot exceed the maximal 

productivity of an optimized fed-batch monoculture. However, the results suggest faster 

growth for the coculture compared to the E. coli monoculture in all studied conditions. 

In batch processes, the cultivation time directly affects the process feasibility and is 

thus an important parameter to consider. The compromise between the maximal 

productivity and process timespan of the two culture types is illustrated in Figure 7.4. 

Furthermore, considering a process development for a new product starting from 

scratch, carefully designed cocultures with less need for optimization provide a shortcut 

to reach the critical level of productivity.   

 

FIGURE 7.4. A hypothetical illustration of a coculture and a monoculture batch processes. 
Productivity P is given as a function of time t. A threshold for an economically  
feasible process in terms of cultivation time and product yield is indicated in 
light grey. An optimized monoculture results in higher maximal productivity 
whereas coculture possesses faster growth.  

Evidently, several factors affect the choice between a monoculture and a coculture. 

Another benefit of the coculture can be realized in processes exploiting sustainable, but 

challenging feedstocks possessing varying sugar concentrations and limited possibility 

for process control and optimization. In such conditions, E. coli can readily shift to 

overflow metabolism, and the environmental perturbations cannot necessarily be 

balanced by a single strain population. Even though strategies for alleviating the 

negative effects of acetate in monocultures are proposed (Wang et al. 2014a), they are 
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often unable to address the other potential issues related to for example substrate and 

metabolite imbalance and carbon loss.  

Substrate costs constitute the major expense in bioprocesses, and therefore industrial 

secondary flows and lignocellulose hydrolysates are preferred substrates. However, 

the toxic compounds present in the liquors restrict their use (Palmqvist and Hahn-

Hägerdal 2000). Acinetobacter spp. are known to tolerate and/or degrade a variety of 

toxic compounds such as phenols, furfurals, and organic acids, including the 5-

hydroxymethylfurfural and ferulic acid present in lignocellulose hydrolysates (Beshay et 

al. 2002; Lopez et al. 2004). Furthermore, our preliminary studies indicate that some 

typical toxic compounds are not only metabolized into a harmless form, but can be 

directed to the synthesis of valuable compounds (data not shown). Thus, exploiting a 

well-designed coculture may broaden the possibilities to exploit challenging 

heterogeneous liquors as substrates. 

For the convenience of the product determination, the functionality of the coculture was 

demonstrated with GFP production. However, the coculture could be potentially 

harnessed for the production of industrially more relevant compounds, such as long 

chain hydrocarbons. Especially for products involving several enzymatic steps and 

intermediates, a task distribution could be a feasible option. Given that E. coli and 

ADP1 exhibit very different metabolic environments, employing the hosts for different 

tasks would allow the optimal use of the benefits and constraints of each host. For 

example, E. coli has been successfully engineered for the overproduction of free fatty 

acids, whereas engineered ADP1 could efficiently convert them e.g. to alkanes or wax 

esters (Lennen et al. 2010). Distribution of functions can solve issues related to 

metabolic burden, carbon flow, metabolite accumulation, and product tolerance. The 

possibilities of cocultures are beyond imagination; the “supercell” environment provides 

unique possibilities to build up dynamic sensory-regulatory interactions, precisely timed 

functions, and complex genetic circuits (Bacchus and Fussenegger 2013).      

Maintaining the robustness of expression systems in industrially relevant conditions is a 

major challenge. Upscaling often leads to the instability of genetic constructs and loss 

of functionality (Moser et al. 2012). In single strain processes, redundant synthesis 

pathways could provide stability, but they impose an unwanted burden to cells (Zhu et 

al. 2012). In contrast, the cocultures involving one common product target naturally 

possess “a genetic backup” facilitating the production stability and endurance. In paper 

V, E. coli and ADP1 were engineered for GFP production with the same genetic 

construct. However, depending on the product, using genetically different expression 

systems or biochemically alternative pathways for the production could improve the 



7 SUMMARY OF RESULTS AND DISCUSSION 

 

74 

 

process reliability and robustness. For example, employing alternative enzymes that 

consume different cofactors for a specific catalytic step could stabilize the redox 

balance and improve the energy distribution of a culture. Furthermore, the naturally 

different growth phases and metabolisms equalize the physicochemical characteristics 

and fluctuations of the culture.  

A major challenge in building up an ADP1 based process, albeit a coculture, is the lack 

of experience and knowledge on ADP1 bioprocessing. The unique sugar metabolism of 

ADP1 can set constraints for high-cell density cultivations, although efforts to improve 

the growth kinetics by metabolic engineering have been made (Kannisto et al. 2014). 

On the other hand, neither substrate inhibition nor overflow metabolite production has 

been recognized for ADP1, thus simplifying a bioprocess. Furthermore, the wide 

substrate range provides flexibility in terms of the available feedstocks. However, 

extensive investigations regarding the ADP1 bioprocess optimization need to be 

carried out before steps toward a further process development can be taken. 

Acinetobacter strains are conventionally exploited as model hosts in fundamental 

research regarding microbial genetics, metabolism, or mechanisms related to 

pathogenesis (A. baumannii). My research has introduced new aspects of utilizing the 

strain ADP1 in biotechnology and synthetic biology, and I want to challenge the 

tradition of using E. coli as the only worthy host in modern biosciences. In particular, 

the study reveals the opportunities for the production of fatty acid derived 

biocompounds in ADP1. Although modest improvements were gained in the study, the 

results encourage for further development of the strain for industrial purposes. Thus, I 

hope that my research will serve as a trigger for broader interest toward ADP1 based 

applications. In addition to ADP1 bioprocess development and optimization, I propose 

other acute research targets, such as improving the genomic stability, genome 

streamlining, increased transformation efficiency, engineering of the sugar metabolism, 

and harnessing the broad enzymatic repertoire of ADP1 for developing novel tools for 

synthetic biology.        

While developing an ultimately optimal chassis, the concepts of a minimal cell, a 

completely synthetic cell (Gibson et al. 2010), and an in vitro synthetic biology (Shin 

and Noireaux 2012; Chappell et al. 2013) are emerging. These systems provide a high 

level of programmability, orthogonality, and predictability, and are thus well suited for 

synthetic biology purposes. Is there a possibility that these synthetic platforms displace 

the natural cells in future applications, diminishing the need for further understanding 

about the complexity and behavior of natural cells? Regardless of the host or the 

platform origin, the elegant groundwork of the nature cannot be easily overridden.  
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8 Concluding remarks 

The metabolic diversity and genomic characteristics of A. baylyi ADP1 facilitate the 

strain utilization in synthetic biology applications. The unusual genomic environment 

featured with unique engineering opportunities creates an appealing playground for 

modifying and rewiring the existing pathways and designing new approaches to exploit 

the formable cellular machinery. The natural competence of ADP1 enables straight-

forward genomic insertions, deletions, and modifications in an automated manner, and 

the unique orientation of genes promotes the possibilities for further genomic 

streamlining. The strain ADP1 has been previously shown to be an ideal model host for 

genetic investigations and metabolic studies, and this research further supports the 

findings.  

The metabolic features of ADP1 were exploited in the development of a model platform 

for studying and engineering the long-chain hydrocarbon metabolism. The neutral lipid 

quantity and quality were improved by metabolic engineering and synthetic biology 

means, and ADP1 proved to be a superior platform for developing straight-forward 

tools for studying bacterial hydrocarbon metabolism. The developed monitoring tools 

were shown to fulfill the urgent needs for robust metabolic sensor devices.  

Furthermore, it was shown that ADP1 can serve as a potential counterpart for rationally 

engineered coculture systems, especially in processes involving inhibitory 

concentrations of substrates, metabolites, or toxic compounds. The findings support 

the views of cocultures providing metabolic balance and robustness for bioprocesses, 

and the introduced concept will be further developed in future.   
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Some Acinetobacter spp. have been proposed for industrial production of 

bioemulsifiers and lipases, as well as for bioremediation, biodetoxification, and 

biosensoring purposes in the field of environmental biotechnology. In addition, further 

development and engineering of the strain for the production of neutral lipids, 

especially wax esters, or other high-value hydrocarbons could be profitable, as 

demonstrated here. Nevertheless, to build up truly viable applications, further research 

efforts are required to uncover the mechanisms of the wide-ranging metabolism of A. 

baylyi ADP1. 

In synthetic biology, two trends in creating an optimal chassis hold the field: the other 

approach utilizes the rapidly evolving techniques to construct logic synthetic cells with 

streamlined genomes and programmable features, while the other aims at exploiting 

the natural machineries in the creation of “cyborg cells” with less need for engineering 

and more possibilities for complex designs. In the light of the findings provided by this 

research, A.baylyi ADP1 well represents the latter approach. ADP1 serves a platform 

for the creation of novel and unique metabolic tools and systems by an apt fusion of 

natural and synthetic traits. 

 



 

77 

 

References 

Abd-El-Haleem, D., S. Ripp, C. Scott and G. S. Sayler (2002). "A luxCDABE-based 
bioluminescent bioreporter for the detection of phenol." J Ind Microbiol Biotechnol 
29(5): 233-237. 
 
Abd-El-Haleem, D., S. Zaki, A. Abulhamd, H. Elbery and G. Abu-Elreesh (2006). 
"Acinetobacter bioreporter assessing heavy metals toxicity." J Basic Microbiol 46(5): 
339-347. 
 
Ageitos, J. M., J. A. Vallejo, P. Veiga-Crespo and T. G. Villa (2011). "Oily yeasts as 
oleaginous cell factories." Appl Microbiol Biotechnol 90(4): 1219-1227. 
 
Aho, T., M. Karp, V. Kivinen, P. Koskinen, A. Larjo, S. Myllyntausta and V. Santala 
(2012). Improvement of lipid production, Patent US20120151833. 
 
Akhtar, M. K. and P. R. Jones (2014). "Cofactor engineering for enhancing the flux of 
metabolic pathways." Front Bioeng Biotechno 2: 30. 
 
Akhtar, M. K., N. J. Turner and P. R. Jones (2013). "Carboxylic acid reductase is a 
versatile enzyme for the conversion of fatty acids into fuels and chemical commodities." 
Proc Natl Acad Sci U S A 110(1): 87-92. 
 
Alvarez, H. M., F. Mayer, D. Fabritius and A. Steinbüchel (1996). "Formation of 
intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630." Arch Microbiol 
165(6): 377-386. 
 
Alvarez, H. M. and A. Steinbüchel (2002). "Triacylglycerols in prokaryotic 
microorganisms." Appl Microbiol Biotechnol 60(4): 367-376. 
 
An, W. and J. W. Chin (2009). "Synthesis of orthogonal transcription-translation 
networks." Proc Natl Acad Sci U S A 106(21): 8477-8482. 
 
Annaluru, N., H. Muller, L. A. Mitchell, S. Ramalingam, G. Stracquadanio, S. M. 
Richardson, J. S. Dymond, Z. Kuang, L. Z. Scheifele, E. M. Cooper, Y. Z. Cai, K. Zeller, 



 

78 

 

N. Agmon, J. S. Han, M. Hadjithomas, J. Tullman, K. Caravelli, K. Cirelli, Z. Y. Guo, V. 
London, A. Yeluru, S. Murugan, K. Kandavelou, N. Agier, G. Fischer, K. Yang, J. A. 
Martin, M. Bilgel, P. Bohutski, K. M. Boulier, et al. (2014). "Total Synthesis of a 
Functional Designer Eukaryotic Chromosome." Science 344(6179): 55-58. 
 
Ara, K., K. Ozaki, K. Nakamura, K. Yamane, J. Sekiguchi and N. Ogasawara (2007). 
"Bacillus minimum genome factory: effective utilization of microbial genome 
information." Biotechnol Appl Biochem 46(Pt 3): 169-178. 
 
Atsumi, S., A. F. Cann, M. R. Connor, C. R. Shen, K. M. Smith, M. P. Brynildsen, K. J. 
Chou, T. Hanai and J. C. Liao (2008a). "Metabolic engineering of Escherichia coli for 1-
butanol production." Metab Eng 10(6): 305-311. 
 
Atsumi, S., T. Hanai and J. C. Liao (2008b). "Non-fermentative pathways for synthesis 
of branched-chain higher alcohols as biofuels." Nature 451(7174): 86-89. 
 
Baba, T., T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. 
Tomita, B. L. Wanner and H. Mori (2006). "Construction of Escherichia coli K-12 in-
frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2: 2006 0008. 
 
Bacchus, W. and M. Fussenegger (2013). "Engineering of synthetic intercellular 
communication systems." Metab Eng 16: 33-41. 
 
Bailey, J. E. (1991). "Toward a science of metabolic engineering." Science 252(5013): 
1668-1675. 
 
Baldi, F., D. Marchetto, S. Paganelli and O. Piccolo (2011). "Bio-generated metal 
binding polysaccharides as catalysts for synthetic applications and organic pollutant 
transformations." Biotechnol 29(1): 74-78. 
 
Baldwin, G., T. Bayer, R. Dickinson, T. Ellis, P. Freemont, R. I. Kitney, K. Polizzi and 
G.-B. Stan (2012). Synthetic Biology - A Primer, Imperal College Press. 
 
Barbe, V., D. Vallenet, N. Fonknechten, A. Kreimeyer, S. Oztas, L. Labarre, S. 
Cruveiller, C. Robert, S. Duprat, P. Wincker, L. N. Ornston, J. Weissenbach, P. 
Marliere, G. N. Cohen and C. Medigue (2004). "Unique features revealed by the 
genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation 
competent bacterium." Nucleic Acids Res 32(19): 5766-5779. 
 
Barney, B. M., B. D. Wahlen, E. Garner, J. Wei and L. C. Seefeldt (2012). "Differences 
in substrate specificities of five bacterial wax ester synthases." Appl Environ Microbiol 
78(16): 5734-5745. 
 
Basu, S., Y. Gerchman, C. H. Collins, F. H. Arnold and R. Weiss (2005). "A synthetic 
multicellular system for programmed pattern formation." Nature 434(7037): 1130-1134. 
 
Becher, D., K. Buttner, M. Moche, B. Hessling and M. Hecker (2011). "From the 
genome sequence to the protein inventory of Bacillus subtilis." Proteomics 11(15): 
2971-2980. 
 



 

79 

 

Beller, H. R., E. B. Goh and J. D. Keasling (2010). "Genes involved in long-chain 
alkene biosynthesis in Micrococcus luteus." Appl Environ Microbiol 76(4): 1212-1223. 
 
Benders, G. A. (2012). "Cloning whole bacterial genomes in yeast." Methods Mol Biol 
852: 165-180. 
 
Beopoulos, A., J. Cescut, R. Haddouche, J. L. Uribelarrea, C. Molina-Jouve and J. M. 
Nicaud (2009). "Yarrowia lipolytica as a model for bio-oil production." Prog Lipid Res 
48(6): 375-387. 
 
Berens, C. and B. Suess (2014). "Riboswitch engineering - making the all-important 
second and third steps." Curr Opin Biotechnol 31C: 10-15. 
 
Bermudez-Humaran, L. G., P. Kharrat, J. M. Chatel and P. Langella (2011). 
"Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and 
DNA vaccines." Microb Cell Fact 10(Suppl 1), S4. 
 
Bernstein, H. C. and R. P. Carlson (2012). "Microbial Consortia Engineering for Cellular 
Factories: in vitro to in silico systems." Comput Struct Biotechnol J 3: e201210017. 
 
Bernstein, H. C., S. D. Paulson and R. P. Carlson (2011). "Synthetic Escherichia coli 
consortia engineered for syntrophy demonstrate enhanced biomass productivity." J 
Biotechnol 157(1): 159-166. 
 
Beshay, U., D. Abd-El-Haleem, H. Moawad and S. Zaki (2002). "Phenol biodegradation 
by free and immobilized Acinetobacter." Biotechnol Lett (24): 1295–1297. 
 
Blattner, F. R., G. Plunkett, 3rd, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. 
Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. 
Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau and Y. Shao (1997). "The complete 
genome sequence of Escherichia coli K-12." Science 277(5331): 1453-1462. 
 
Bokinsky, G., P. P. Peralta-Yahya, A. George, B. M. Holmes, E. J. Steen, J. Dietrich, T. 
S. Lee, D. Tullman-Ercek, C. A. Voigt, B. A. Simmons and J. D. Keasling (2011). 
"Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using 
engineered Escherichia coli." Proc Natl Acad Sci U S A 108(50): 19949-19954. 
 
Bond-Watts, B. B., R. J. Bellerose and M. C. Chang (2011). "Enzyme mechanism as a 
kinetic control element for designing synthetic biofuel pathways." Nat Chem Biol 7(4): 
222-227. 
 
Brenner, K. and F. H. Arnold (2011). "Self-organization, layered structure, and 
aggregation enhance persistence of a synthetic biofilm consortium." PloS one 6(2): 
e16791. 
 
Brenner, K., L. You and F. H. Arnold (2008). "Engineering microbial consortia: a new 
frontier in synthetic biology." Trends Biotechnol 26(9): 483-489. 
 



 

80 

 

Briones, A. and L. Raskin (2003). "Diversity and dynamics of microbial communities in 
engineered environments and their implications for process stability." Curr Opin 
Biotechnol 14(3): 270-276. 
 
Brophy, J. A. and C. A. Voigt (2014). "Principles of genetic circuit design." Nat methods 
11(5): 508-520. 
 
Brune, K. D. and T. S. Bayer (2012). "Engineering microbial consortia to enhance 
biomining and bioremediation." Front Microbiol 3. 
 
Bryksin, A. V. and I. Matsumura (2010). "Rational design of a plasmid origin that 
replicates efficiently in both gram-positive and gram-negative bacteria." PloS one 5(10): 
e13244. 
 
Bulter, T., S. G. Lee, W. W. Wong, E. Fung, M. R. Connor and J. C. Liao (2004). 
"Design of artificial cell-cell communication using gene and metabolic networks." Proc 
Natl Acad Sci U S A 101(8): 2299-2304. 
 
Canton, B., A. Labno and D. Endy (2008). "Refinement and standardization of synthetic 
biological parts and devices." Nat Biotechnol 26(7): 787-793. 
 
Cardinale, S. and A. P. Arkin (2012). "Contextualizing context for synthetic biology--
identifying causes of failure of synthetic biological systems." Biotechnol J 7(7): 856-
866. 
 
Ceres, P., J. J. Trausch and R. T. Batey (2013). "Engineering modular 'ON' RNA 
switches using biological components." Nucleic Acids Res 41(22): 10449-10461. 
 
Chappell, J., K. Jensen and P. S. Freemont (2013). "Validation of an entirely in vitro 
approach for rapid prototyping of DNA regulatory elements for synthetic biology." 
Nucleic Acids Res 41(5): 3471-3481. 
 
Chen, X. Z., L. Zhou, K. M. Tian, A. Kumar, S. Singh, B. A. Prior and Z. X. Wang 
(2013). "Metabolic engineering of Escherichia coli: A sustainable industrial platform for 
bio-based chemical production." Biotechnol Adv 31(8): 1200-1223. 
 
Choi, Y. J. and S. Y. Lee (2013). "Microbial production of short-chain alkanes." Nature 
502(7472): 571-574. 
 
Clancy, K. and C. A. Voigt (2010). "Programming cells: towards an automated 'Genetic 
Compiler'." Curr Opin Biotechnol 21(4): 572-581. 
 
Clomburg, J. M., J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya and R. Gonzalez 
(2012). "A synthetic biology approach to engineer a functional reversal of the beta-
oxidation cycle." ACS Synth Biol 1(11): 541-554. 
 
Close, D., T. Xu, A. Smartt, A. Rogers, R. Crossley, S. Price, S. Ripp and G. Sayler 
(2012). "The evolution of the bacterial luciferase gene cassette (lux) as a real-time 
bioreporter." Sensors 12(1): 732-752. 
 



 

81 

 

Commichau, F. M., N. Pietack and J. Stulke (2013). "Essential genes in Bacillus 
subtilis: a re-evaluation after ten years." Mol Biosyst 9(6): 1068-1075. 
 
Cong, L., F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, 
L. A. Marraffini and F. Zhang (2013). "Multiplex genome engineering using 
CRISPR/Cas systems." Science 339(6121): 819-823. 
 
Cox, R. S., 3rd, M. G. Surette and M. B. Elowitz (2007). "Programming gene 
expression with combinatorial promoters." Mol Syst Biol 3: 145. 
 
D'Souza, S. F. (2001). "Microbial biosensors." Biosens Bioelectron 16(6): 337-353. 
 
Dams-Kozlowska, H. and D. L. Kaplan (2007). "Protein engineering of wzc to generate 
new emulsan analogs." Appl Environ Microbiol 73(12): 4020-4028. 
 
Danchin, A. (2012). "Scaling up synthetic biology: Do not forget the chassis." FEBS 
letters 586(15): 2129-2137. 
 
Datsenko, K. A. and B. L. Wanner (2000). "One-step inactivation of chromosomal 
genes in Escherichia coli K-12 using PCR products." Proc Natl Acad Sci U S A 97(12): 
6640-6645. 
 
de Berardinis, V., M. Durot, J. Weissenbach and M. Salanoubat (2009). "Acinetobacter 
baylyi ADP1 as a model for metabolic system biology." Curr Opin Microbiol 12(5): 568-
576. 
 
de Berardinis, V., D. Vallenet, V. Castelli, M. Besnard, A. Pinet, C. Cruaud, S. Samair, 
C. Lechaplais, G. Gyapay, C. Richez, M. Durot, A. Kreimeyer, F. Le Fevre, V. 
Schachter, V. Pezo, V. Doring, C. Scarpelli, C. Medigue, G. N. Cohen, P. Marliere, M. 
Salanoubat and J. Weissenbach (2008). "A complete collection of single-gene deletion 
mutants of Acinetobacter baylyi ADP1." Mol Syst Biol 4: 174. 
 
de Lorenzo, V., M. Herrero, U. Jakubzik and K. N. Timmis (1990). "Mini-Tn5 
Transposon Derivatives for Insertion Mutagenesis, Promoter Probing, and 
Chromosomal Insertion of Cloned DNA in Gram-Negative Eubacteria." J Bacteriol 
172(11): 6568-6572. 
 
Dellomonaco, C., J. M. Clomburg, E. N. Miller and R. Gonzalez (2011). "Engineered 
reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals." Nature 
476(7360): 355-359. 
 
DiCarlo, J. E., A. J. Conley, M. Penttilä, J. Jantti, H. H. Wang and G. M. Church (2013). 
"Yeast oligo-mediated genome engineering (YOGE)." ACS Synth Biol 2(12): 741-749. 
 
Dubnau, D. A. (1982). The Molecular biology of the bacilli. New York, Academic Press. 
 
Durot, M., F. Le Fevre, V. de Berardinis, A. Kreimeyer, D. Vallenet, C. Combe, S. 
Smidtas, M. Salanoubat, J. Weissenbach and V. Schachter (2008). "Iterative 
reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-
throughput growth phenotype and gene essentiality data." BMC Syst Biol 2: 85. 



 

82 

 

 
Dymond, J. S., S. M. Richardson, C. E. Coombes, T. Babatz, H. Muller, N. Annaluru, 
W. J. Blake, J. W. Schwerzmann, J. Dai, D. L. Lindstrom, A. C. Boeke, D. E. 
Gottschling, S. Chandrasegaran, J. S. Bader and J. D. Boeke (2011). "Synthetic 
chromosome arms function in yeast and generate phenotypic diversity by design." 
Nature 477(7365): 471-476. 
 
Eiteman, M. A., S. A. Lee and E. Altman (2008). "A co-fermentation strategy to 
consume sugar mixtures effectively." J Biol Eng 2: 3. 
 
Eiteman, M. A., S. A. Lee, R. Altman and E. Altman (2009). "A substrate-selective co-
fermentation strategy with Escherichia coli produces lactate by simultaneously 
consuming xylose and glucose." Biotechnol Bioeng 102(3): 822-827. 
 
Elbahloul, Y., M. Krehenbrink, R. Reichelt and A. Steinbüchel (2005). "Physiological 
conditions conducive to high cyanophycin content in biomass of Acinetobacter 
calcoaceticus strain ADP1." Appl Environ Microbiol 71(2): 858-866. 
 
Elbahloul, Y. and A. Steinbuchel (2010). "Pilot-scale production of fatty acid ethyl 
esters by an engineered Escherichia coli strain harboring the p(Microdiesel) plasmid." 
Appl Environ Microbiol 76(13): 4560-4565. 
 
Elbahloul, Y. and A. Steinbüchel (2006). "Engineering the genotype of Acinetobacter 
sp. strain ADP1 to enhance biosynthesis of cyanophycin." Appl Environ Microbiol 72(2): 
1410-1419. 
 
Elliott, K. T. and E. L. Neidle (2011). "Acinetobacter baylyi ADP1: transforming the 
choice of model organism." IUBMB life 63(12): 1075-1080. 
 
Elowitz, M. B. and S. Leibler (2000). "A synthetic oscillatory network of transcriptional 
regulators." Nature 403(6767): 335-338. 
 
Endy, D. (2005). "Foundations for engineering biology." Nature 438(7067): 449-453. 
 
Engebrecht, J., K. Nealson and M. Silverman (1983). "Bacterial bioluminescence: 
isolation and genetic analysis of functions from Vibrio fischeri." Cell 32(3): 773-781. 
 
Engler, C. and S. Marillonnet (2013). "Combinatorial DNA assembly using Golden Gate 
cloning." Methods Mol Biol 1073: 141-156. 
 
Entner, N. and M. Doudoroff (1952). "Glucose and gluconic acid oxidation of 
Pseudomonas saccharophila." J Biol Chem 196(2): 853-862. 
 
Escher, A., D. J. O'Kane and A. A. Szalay (1991). "The beta subunit polypeptide of 
Vibrio harveyi luciferase determines light emission at 42 degrees C." Mol Genet 
Genomics 230(3): 385-393. 
 
Falls, K. C., A. L. Williams, A. V. Bryksin and I. Matsumura (2014). "Escherichia coli 
deletion mutants illuminate trade-offs between growth rate and flux through a foreign 
anabolic pathway." PloS one 9(2): e88159. 



 

83 

 

 
Farmer, W. R. and J. C. Liao (2000). "Improving lycopene production in Escherichia 
coli by engineering metabolic control." Nat Biotechnol 18(5): 533-537. 
 
Fisher, A. K., B. G. Freedman, D. R. Bevan and R. S. Senger (2014). "A review of 
metabolic and enzymatic engineering strategies for designing and optimizing 
performance of microbial cell factories." Comput Struct Biotechnol J 11(18): 91-99. 
 
Fixter, L. M., M. N. Nagi , J. G. McCormack and C. A. Fewson (1986). "Structure, 
Distribution and Function of Wax Esters in Acinetobacter calcoaceticus " J Gen 
Microbiol 132: 3147-3157. 
 
Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. 
Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick and et al. (1995). 
"Whole-genome random sequencing and assembly of Haemophilus influenzae Rd." 
Science 269(5223): 496-512. 
 
Foley, P. L. and M. L. Shuler (2010). "Considerations for the design and construction of 
a synthetic platform cell for biotechnological applications." Biotechnol Bioeng 105(1): 
26-36. 
 
Fowler, D. M., C. L. Araya, S. J. Fleishman, E. H. Kellogg, J. J. Stephany, D. Baker and 
S. Fields (2010). "High-resolution mapping of protein sequence-function relationships." 
Nat methods 7(9): 741-746. 
 
Frasch, H. J., M. H. Medema, E. Takano and R. Breitling (2013). "Design-based re-
engineering of biosynthetic gene clusters: plug-and-play in practice." Curr Opin 
Biotechnol 24(6): 1144-1150. 
 
Galluzzi, L. and M. Karp (2006). "Whole cell strategies based on lux genes for high 
throughput applications toward new antimicrobials." Comb Chem High Throughput 
Screen 9(7): 501-514. 
 
Gardner, T. S., C. R. Cantor and J. J. Collins (2000). "Construction of a genetic toggle 
switch in Escherichia coli." Nature 403(6767): 339-342. 
 
Geissdorfer, W., S. C. Frosch, G. Haspel, S. Ehrt and W. Hillen (1995). "Two genes 
encoding proteins with similarities to rubredoxin and rubredoxin reductase are required 
for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus ADP1." 
Microbiology 141 (Pt 6): 1425-1432. 
 
Genoscope. (2009). "ORFeome of enzymes from Acinetobacter baylyi ADP1 - site du 
Genoscope."   Retrieved 08/26, 2014, from 
http://www.genoscope.cns.fr/spip/ORFeome-of-enzymes-from.html. 
 
Gibson, D. G. (2011). "Gene and genome construction in yeast." Current protocols in 
molecular biology / edited by Frederick M. Ausubel ... [et al.] Chapter 3: Unit3 22. 
 
Gibson, D. G., G. A. Benders, C. Andrews-Pfannkoch, E. A. Denisova, H. Baden-
Tillson, J. Zaveri, T. B. Stockwell, A. Brownley, D. W. Thomas, M. A. Algire, C. 



 

84 

 

Merryman, L. Young, V. N. Noskov, J. I. Glass, J. C. Venter, C. A. Hutchison, 3rd and 
H. O. Smith (2008). "Complete chemical synthesis, assembly, and cloning of a 
Mycoplasma genitalium genome." Science 319(5867): 1215-1220. 
 
Gibson, D. G., J. I. Glass, C. Lartigue, V. N. Noskov, R. Y. Chuang, M. A. Algire, G. A. 
Benders, M. G. Montague, L. Ma, M. M. Moodie, C. Merryman, S. Vashee, R. 
Krishnakumar, N. Assad-Garcia, C. Andrews-Pfannkoch, E. A. Denisova, L. Young, Z. 
Q. Qi, T. H. Segall-Shapiro, C. H. Calvey, P. P. Parmar, C. A. Hutchison, 3rd, H. O. 
Smith and J. C. Venter (2010). "Creation of a bacterial cell controlled by a chemically 
synthesized genome." Science 329(5987): 52-56. 
 
Gibson, D. G., L. Young, R. Y. Chuang, J. C. Venter, C. A. Hutchison, 3rd and H. O. 
Smith (2009). "Enzymatic assembly of DNA molecules up to several hundred 
kilobases." Nat Methods 6(5): 343-345. 
 
Glass, J. I., N. Assad-Garcia, N. Alperovich, S. Yooseph, M. R. Lewis, M. Maruf, C. A. 
Hutchison, 3rd, H. O. Smith and J. C. Venter (2006). "Essential genes of a minimal 
bacterium." Proc Natl Acad Sci U S A 103(2): 425-430. 
 
Goers, L., P. Freemont and K. M. Polizzi (2014). "Co-culture systems and technologies: 
taking synthetic biology to the next level." J R Soc Interface 11(96). 
 
Gray, K. M. and J. R. Garey (2001). "The evolution of bacterial LuxI and LuxR quorum 
sensing regulators." Microbiology 147(Pt 8): 2379-2387. 
 
Green, A. A., P. A. Silver, J. J. Collins and P. Yin (2014). "Toehold switches: de-novo-
designed regulators of gene expression." Cell 159(4): 925-939. 
 
Grunberg, R. and L. Serrano (2010). "Strategies for protein synthetic biology." Nucleic 
Acids Res 38(8): 2663-2675. 
 
Gulevich, A. Y., A. Y. Skorokhodova, A. V. Sukhozhenko, R. S. Shakulov and V. G. 
Debabov (2012). "Metabolic engineering of Escherichia coli for 1-butanol biosynthesis 
through the inverted aerobic fatty acid beta-oxidation pathway." Biotechnol Lett 34(3): 
463-469. 
 
Guo, D. Y., J. Zhu, Z. X. Deng and T. G. Liu (2014). "Metabolic engineering of 
Escherichia coil for production of fatty acid short-chain esters through combination of 
the fatty acid and 2-keto acid pathways." Metab Eng 22: 69-75. 
 
Gutnick, D. L., E. Nestaas, E. Rosenberg and N. Sar (1989). Bioemulsifier production 
by Acinetobacter calcoaceticus strains, Petroleum Fermentations N.V. (Curacao, AN)  
 
Hamoen, L. W., G. Venema and O. P. Kuipers (2003). "Controlling competence in 
Bacillus subtilis: shared use of regulators." Microbiology 149(Pt 1): 9-17. 
 
Han, M. J. and S. Y. Lee (2006). "The Escherichia coli proteome: past, present, and 
future prospects." Microbiol Mol Biol Rev 70(2): 362-439. 
 



 

85 

 

Hanai, T., S. Atsumi and J. C. Liao (2007). "Engineered synthetic pathway for 
isopropanol production in Escherichia coli." Appl Environ Microbiol 73(24): 7814-7818. 
 
Handke, P., S. A. Lynch and R. T. Gill (2011). "Application and engineering of fatty acid 
biosynthesis in Escherichia coli for advanced fuels and chemicals." Metab Eng 13(1): 
28-37. 
 
Hanly, T. J. and M. A. Henson (2011). "Dynamic flux balance modeling of microbial co-
cultures for efficient batch fermentation of glucose and xylose mixtures." Biotechnol 
Bioeng 108(2): 376-385. 
 
Hanson, K. G., A. Nigam, M. Kapadia and A. J. Desai (1997). "Bioremediation of crude 
oil contamination with Acinetobacter sp. A3." Curr Microbiol 35(3): 191-193. 
 
Hao, T., B. B. Han, H. W. Ma, J. Fu, H. Wang, Z. W. Wang, B. C. Tang, T. Chen and X. 
M. Zhao (2013). "In silico metabolic engineering of Bacillus subtilis for improved 
production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol." Mol Biosyst 
9(8): 2034-2044. 
 
Henry, C. S., J. F. Zinner, M. P. Cohoon and R. L. Stevens (2009). "iBsu1103: a new 
genome-scale metabolic model of Bacillus subtilis based on SEED annotations." 
Genome Biol 10(6): R69. 
 
Hirokawa, Y., H. Kawano, K. Tanaka-Masuda, N. Nakamura, A. Nakagawa, M. Ito, H. 
Mori, T. Oshima and N. Ogasawara (2013). "Genetic manipulations restored the growth 
fitness of reduced-genome Escherichia coli." J Biosci Bioeng 116(1): 52-58. 
 
Howard, T. P., S. Middelhaufe, K. Moore, C. Edner, D. M. Kolak, G. N. Taylor, D. A. 
Parker, R. Lee, N. Smirnoff, S. J. Aves and J. Love (2013). "Synthesis of customized 
petroleum-replica fuel molecules by targeted modification of free fatty acid pools in 
Escherichia coli." Proc Natl Acad Sci U S A 110(19): 7636-7641. 
 
Huang, C. J., H. Lin and X. Yang (2012). "Industrial production of recombinant 
therapeutics in Escherichia coli and its recent advancements." J Ind Microbiol 
Biotechnol 39(3): 383-399. 
 
iGEM.org. "Registry of Standard Biological Parts."   Retrieved 13.1., 2015, from 
http://parts.igem.org/Main_Page. 
 
Immonen, N. and M. Karp (2007). "Bioluminescence-based bioassays for rapid 
detection of nisin in food." Biosens Bioelectron 22(9-10): 1982-1987. 
 
Inokuma, K., J. C. Liao, M. Okamoto and T. Hanai (2010). "Improvement of isopropanol 
production by metabolically engineered Escherichia coli using gas stripping." J Biosci 
Bioeng 110(6): 696-701. 
 
Isaacs, F. J. (2012). "Synthetic biology: Automated design of RNA devices." Nature 
Chem Biol 8(5): 413-415. 
 



 

86 

 

Isaacs, F. J., D. J. Dwyer, C. Ding, D. D. Pervouchine, C. R. Cantor and J. J. Collins 
(2004). "Engineered riboregulators enable post-transcriptional control of gene 
expression." Nat Biotechnol 22(7): 841-847. 
 
Ishige, T., K. Honda and S. Shimizu (2005). "Whole organism biocatalysis." Curr Opin 
Chem Biol 9(2): 174-180. 
 
Ishige, T., A. Tani, Y. Sakai and N. Kato (2000). "Long-chain aldehyde dehydrogenase 
that participates in n-alkane utilization and wax ester synthesis in Acinetobacter sp. 
strain M-1." Appl Environ Microbiol 66(8): 3481-3486. 
 
Ishige, T., A. Tani, K. Takabe, K. Kawasaki, Y. Sakai and N. Kato (2002). "Wax ester 
production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular 
inclusions and role of acyl coenzyme A reductase." Appl Environ Microbiol 68(3): 1192-
1195. 
 
Ishii, N., K. Nakahigashi, T. Baba, M. Robert, T. Soga, A. Kanai, T. Hirasawa, M. Naba, 
K. Hirai, A. Hoque, P. Y. Ho, Y. Kakazu, K. Sugawara, S. Igarashi, S. Harada, T. 
Masuda, N. Sugiyama, T. Togashi, M. Hasegawa, Y. Takai, K. Yugi, K. Arakawa, N. 
Iwata, Y. Toya, Y. Nakayama, T. Nishioka, K. Shimizu, H. Mori and M. Tomita (2007). 
"Multiple high-throughput analyses monitor the response of E. coli to perturbations." 
Science 316(5824): 593-597. 
 
Jambunathan, P. and K. Zhang (2014). "Novel pathways and products from 2-keto 
acids." Curr Opin Biotechnol 29C: 1-7. 
 
Janßen, H. J. and A. Steinbüchel (2014). "Production of triacylglycerols in Escherichia 
coli by deletion of the diacylglycerol kinase gene and heterologous overexpression of 
atfA from Acinetobacter baylyi ADP1." Appl Microbiol Biotechnol 98(4): 1913-1924. 
 
Jimenez, J. I., B. Minambres, J. L. Garcia and E. Diaz (2002). "Genomic analysis of the 
aromatic catabolic pathways from Pseudomonas putida KT2440." Environ Microbiol 
4(12): 824-841. 
 
Johri, A. K., W. Blank and D. L. Kaplan (2002). "Bioengineered emulsans from 
Acinetobacter calcoaceticus RAG-1 transposon mutants." Appl Microbiol Biotechnol 
59(2-3): 217-223. 
 
Kahl, L. J. and D. Endy (2013). "A survey of enabling technologies in synthetic biology." 
J Biol Eng 7(1): 13. 
 
Kaiser, B. K., M. Carleton, J. W. Hickman, C. Miller, D. Lawson, M. Budde, P. 
Warrener, A. Paredes, S. Mullapudi, P. Navarro, F. Cross and J. M. Roberts (2013). 
"Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity 
of biofuel products." PloS one 8(3): e58307. 
 
Kallio, P., A. Pasztor, K. Thiel, M. K. Akhtar and P. R. Jones (2014). "An engineered 
pathway for the biosynthesis of renewable propane." Nat Commun 5: 4731. 
 



 

87 

 

Kalscheuer, R., H. Luftmann and A. Steinbüchel (2004). "Synthesis of novel lipids in 
Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial 
acyltransferase." Appl Environ Microbiol 70(12): 7119-7125. 
 
Kalscheuer, R. and A. Steinbüchel (2003). "A novel bifunctional wax ester 
synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and 
triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1." J Biol Chem 
278(10): 8075-8082. 
 
Kalscheuer, R., T. Stölting and A. Steinbüchel (2006a). "Microdiesel: Escherichia coli 
engineered for fuel production." Microbiology 152(Pt 9): 2529-2536. 
 
Kalscheuer, R., T. Stöveken, H. Luftmann, U. Malkus, R. Reichelt and A. Steinbüchel 
(2006b). "Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax 
esters and fatty acid butyl esters." Appl Environ Microbiol 72(2): 1373-1379. 
 
Kamionka, A., M. Sehnal, O. Scholz and W. Hillen (2004). "Independent regulation of 
two genes in Escherichia coli by tetracyclines and Tet repressor variants." J Bacteriol 
186(13): 4399-4401. 
 
Kannisto, M., T. Aho, M. Karp and V. Santala (2014). "Metabolic engineering of 
Acinetobacter baylyi ADP1 for improved growth on gluconate and glucose." Appl 
Environ Microbiol 80(22): 7021-7027. 
 
Kaplan, N. and E. Rosenberg (1982). "Exopolysaccharide Distribution of and 
Bioemulsifier Production by Acinetobacter calcoaceticus BD4 and BD413." Appl 
Environ Microbiol 44(6): 1335-1341. 
 
Karas, B. J., J. Jablanovic, L. Sun, L. Ma, G. M. Goldgof, J. Stam, A. Ramon, M. J. 
Manary, E. A. Winzeler, J. C. Venter, P. D. Weyman, D. G. Gibson, J. I. Glass, C. A. 
Hutchison, 3rd, H. O. Smith and Y. Suzuki (2013). "Direct transfer of whole genomes 
from bacteria to yeast." Nat Methods 10(5): 410-412. 
 
Kim, I., C. R. Miller, D. L. Young and S. Fields (2013). "High-throughput analysis of in 
vivo protein stability." Mol Cell Proteomics 12(11): 3370-3378. 
 
Krehenbrink, M., F. B. Oppermann-Sanio and A. Steinbüchel (2002). "Evaluation of 
non-cyanobacterial genome sequences for occurrence of genes encoding proteins 
homologous to cyanophycin synthetase and cloning of an active cyanophycin 
synthetase from Acinetobacter sp. strain DSM 587." Arch Microbiol 177(5): 371-380. 
 
Kumpfmuller, J., J. Kabisch and T. Schweder (2013). "An optimized technique for rapid 
genome modifications of Bacillus subtilis." J Microbiol Methods 95(3): 350-352. 
 
Kung, Y., W. Runguphan and J. D. Keasling (2012). "From fields to fuels: recent 
advances in the microbial production of biofuels." ACS Synth Biol 1(11): 498-513. 
 
Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G. 
Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. 
Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi, B. Caldwell, V. Capuano, N. 



 

88 

 

M. Carter, S. K. Choi, J. J. Cordani, I. F. Connerton, N. J. Cummings, R. A. Daniel, F. 
Denziot, K. M. Devine, A. Dusterhoft, S. D. Ehrlich, et al. (1997). "The complete 
genome sequence of the gram-positive bacterium Bacillus subtilis." Nature 390(6657): 
249-256. 
 
Kurosawa, K., P. Boccazzi, N. M. de Almeida and A. J. Sinskey (2010). "High-cell-
density batch fermentation of Rhodococcus opacus PD630 using a high glucose 
concentration for triacylglycerol production." J Biotechnol 147(3-4): 212-218. 
 
Kurosawa, K., S. J. Wewetzer and A. J. Sinskey (2013). "Engineering xylose 
metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel 
production." Biotechnol Biofuels 6(1): 134. 
 
Lajoie, M. J., A. J. Rovner, D. B. Goodman, H. R. Aerni, A. D. Haimovich, G. 
Kuznetsov, J. A. Mercer, H. H. Wang, P. A. Carr, J. A. Mosberg, N. Rohland, P. G. 
Schultz, J. M. Jacobson, J. Rinehart, G. M. Church and F. J. Isaacs (2013). 
"Genomically recoded organisms expand biological functions." Science 342(6156): 
357-360. 
 
Lamsen, E. N. and S. Atsumi (2012). "Recent progress in synthetic biology for 
microbial production of C3-C10 alcohols." Front Microbiol 3: 196. 
 
Lanza, A. M., N. C. Crook and H. S. Alper (2012). "Innovation at the intersection of 
synthetic and systems biology." Curr Opin Biotechnol 23(5): 712-717. 
 
Layton, D. S. and C. T. Trinh (2014). "Engineering modular ester fermentative 
pathways in Escherichia coli." Metab Eng. 
 
Le Gac, M., M. D. Brazas, M. Bertrand, J. G. Tyerman, C. C. Spencer, R. E. Hancock 
and M. Doebeli (2008). "Metabolic changes associated with adaptive diversification in 
Escherichia coli." Genetics 178(2): 1049-1060. 
 
Lee, S. Y. (1996). "High cell-density culture of Escherichia coli." Trends Biotechnol 
14(3): 98-105. 
 
Lemon, K. P., A. M. Earl, H. C. Vlamakis, C. Aguilar and R. Kolter (2008). "Biofilm 
development with an emphasis on Bacillus subtilis." Curr Top Microbiol Immunol 322: 
1-16. 
 
Lenneman, E. M., J. M. Ohlert, N. P. Palani and B. M. Barney (2013). "Fatty alcohols 
for wax esters in Marinobacter aquaeolei VT8: two optional routes in the wax 
biosynthesis pathway." Appl Environ Microbiol 79(22): 7055-7062. 
 
Lennen, R. M., D. J. Braden, R. A. West, J. A. Dumesic and B. F. Pfleger (2010). "A 
process for microbial hydrocarbon synthesis: Overproduction of fatty acids in 
Escherichia coli and catalytic conversion to alkanes." Biotechnol Bioeng 106(2): 193-
202. 
 
Lennen, R. M. and B. F. Pfleger (2012). "Engineering Escherichia coli to synthesize 
free fatty acids." Trends Biotechnol 30(12): 659-667. 



 

89 

 

 
Leprince, A., D. Janus, V. de Lorenzo and V. M. Santos (2012a). "Streamlining of a 
Pseudomonas putida genome using a combinatorial deletion method based on 
minitransposon insertion and the Flp-FRT recombination system." Methods Mol Biol 
813: 249-266. 
 
Leprince, A., M. W. van Passel and V. A. dos Santos (2012b). "Streamlining genomes: 
toward the generation of simplified and stabilized microbial systems." Curr Opin 
Biotechnol 23(5): 651-658. 
 
Levskaya, A., A. A. Chevalier, J. J. Tabor, Z. B. Simpson, L. A. Lavery, M. Levy, E. A. 
Davidson, A. Scouras, A. D. Ellington, E. M. Marcotte and C. A. Voigt (2005). 
"Synthetic biology: engineering Escherichia coli to see light." Nature 438(7067): 441-
442. 
 
Li, M. Z. and S. J. Elledge (2007). "Harnessing homologous recombination in vitro to 
generate recombinant DNA via SLIC." Nature methods 4(3): 251-256. 
 
Liang, J. C., R. J. Bloom and C. D. Smolke (2011). "Engineering biological systems 
with synthetic RNA molecules." Mol Cell 43(6): 915-926. 
 
Liu, A. Q., X. M. Tan, L. Yao and X. F. Lu (2013). "Fatty alcohol production in 
engineered E. coli expressing Marinobacter fatty acyl-CoA reductases." Appl Microbiol 
Biotechnol 97(15): 7061-7071. 
 
Lopez, M. J., N. N. Nichols, B. S. Dien, J. Moreno and R. J. Bothast (2004). "Isolation 
of microorganisms for biological detoxification of lignocellulosic hydrolysates." Appl 
Microbiol Biotechnol 64(1): 125-131. 
 
Lu, T. K., A. S. Khalil and J. J. Collins (2009). "Next-generation synthetic gene 
networks." Nat Biotechnol 27(12): 1139-1150. 
 
Lucks, J. B., L. Qi, V. K. Mutalik, D. Wang and A. P. Arkin (2011). "Versatile RNA-
sensing transcriptional regulators for engineering genetic networks." Proc Natl Acad Sci 
U S A 108(21): 8617-8622. 
 
Ma, A. T., C. M. Schmidt and J. W. Golden (2014). "Regulation of Gene Expression in 
Diverse Cyanobacterial Species Using Theophylline-Responsive Riboswitches." Appl 
Environ Microbiol. 
 
MacDonald, J. T., C. Barnes, R. I. Kitney, P. S. Freemont and G. B. Stan (2011). 
"Computational design approaches and tools for synthetic biology." Integr Biol (Camb) 
3(2): 97-108. 
 
MacEachran, D. P. and A. J. Sinskey (2013). "The Rhodococcus opacus TadD protein 
mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools." Microb 
Cell Fact 12: 104. 
 
Machado, I. M. and S. Atsumi (2012). "Cyanobacterial biofuel production." J Biotechnol 
162(1): 50-56. 



 

90 

 

 
Manabe, K., Y. Kageyama, T. Morimoto, T. Ozawa, K. Sawada, K. Endo, M. Tohata, K. 
Ara, K. Ozaki and N. Ogasawara (2011). "Combined effect of improved cell yield and 
increased specific productivity enhances recombinant enzyme production in genome-
reduced Bacillus subtilis strain MGB874." Appl Environ Microbiol 77(23): 8370-8381. 
 
Marchisio, M. A. and J. Stelling (2009). "Computational design tools for synthetic 
biology." Curr Opin Biotechnol 20(4): 479-485. 
 
Martin, V. J., D. J. Pitera, S. T. Withers, J. D. Newman and J. D. Keasling (2003). 
"Engineering a mevalonate pathway in Escherichia coli for production of terpenoids." 
Nat Biotechnol 21(7): 796-802. 
 
Meighen, E. A. (1991). "Molecular biology of bacterial bioluminescence." Microbiol Rev 
55(1): 123-142. 
 
Meighen, E. A. (1993). "Bacterial bioluminescence: organization, regulation, and 
application of the lux genes." FASEB J 7(11): 1016-1022. 
 
Meighen, E. A. (1994). "Genetics of bacterial bioluminescence." Annu Rev Genet 28: 
117-139. 
 
Meijnen, J. P., J. H. de Winde and H. J. Ruijssenaars (2008). "Engineering 
Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose." Appl 
Environ Microbiol 74(16): 5031-5037. 
 
Metzgar, D., J. M. Bacher, V. Pezo, J. Reader, V. Doring, P. Schimmel, P. Marliere and 
V. de Crecy-Lagard (2004). "Acinetobacter sp. ADP1: an ideal model organism for 
genetic analysis and genome engineering." Nucleic Acids Res 32(19): 5780-5790. 
 
Michna, R. H., F. M. Commichau, D. Todter, C. P. Zschiedrich and J. Stulke (2014). 
"SubtiWiki-a database for the model organism Bacillus subtilis that links pathway, 
interaction and expression information." Nucleic Acids Res 42(D1): D692-D698. 
 
Molinari, F. (2006). "Oxidations with isolated and cell-bound dehydrogenases and 
oxidases." Curr Org Chem 10(11): 1247-1263. 
 
Moon, T. S., C. Lou, A. Tamsir, B. C. Stanton and C. A. Voigt (2012). "Genetic 
programs constructed from layered logic gates in single cells." Nature 491(7423): 249-
253. 
 
Morimoto, T., R. Kadoya, K. Endo, M. Tohata, K. Sawada, S. Liu, T. Ozawa, T. 
Kodama, H. Kakeshita, Y. Kageyama, K. Manabe, S. Kanaya, K. Ara, K. Ozaki and N. 
Ogasawara (2008). "Enhanced recombinant protein productivity by genome reduction 
in Bacillus subtilis." DNA Res 15(2): 73-81. 
 
Moser, F., N. J. Broers, S. Hartmans, A. Tamsir, R. Kerkman, J. A. Roubos, R. 
Bovenberg and C. A. Voigt (2012). "Genetic circuit performance under conditions 
relevant for industrial bioreactors." ACS Synth Biol 1(11): 555-564. 
 



 

91 

 

Mukherji, S. and A. van Oudenaarden (2009). "Synthetic biology: understanding 
biological design from synthetic circuits." Nat Rev Genet 10(12): 859-871. 
 
Murin, C. D., K. Segal, A. Bryksin and I. Matsumura (2012). "Expression vectors for 
Acinetobacter baylyi ADP1." Appl Environ Microbiol 78(1): 280-283. 
 
Mutalik, V. K., J. C. Guimaraes, G. Cambray, C. Lam, M. J. Christoffersen, Q. A. Mai, 
A. B. Tran, M. Paull, J. D. Keasling, A. P. Arkin and D. Endy (2013). "Precise and 
reliable gene expression via standard transcription and translation initiation elements." 
Nat Methods 10(4): 354-360. 
 
Mutalik, V. K., L. Qi, J. C. Guimaraes, J. B. Lucks and A. P. Arkin (2012). "Rationally 
designed families of orthogonal RNA regulators of translation." Nature Chem Biol 8(5): 
447-454. 
 
Nandagopal, N. and M. B. Elowitz (2011). "Synthetic biology: integrated gene circuits." 
Science 333(6047): 1244-1248. 
 
Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. Martins dos 
Santos, D. E. Fouts, S. R. Gill, M. Pop, M. Holmes, L. Brinkac, M. Beanan, R. T. 
DeBoy, S. Daugherty, J. Kolonay, R. Madupu, W. Nelson, O. White, J. Peterson, H. 
Khouri, I. Hance, P. Chris Lee, E. Holtzapple, D. Scanlan, K. Tran, A. Moazzez, T. 
Utterback, M. Rizzo, K. Lee, D. Kosack, et al. (2002). "Complete genome sequence 
and comparative analysis of the metabolically versatile Pseudomonas putida KT2440." 
Environ Microbiol 4(12): 799-808. 
 
Nguyen, H. D., Q. A. Nguyen, R. C. Ferreira, L. C. Ferreira, L. T. Tran and W. 
Schumann (2005). "Construction of plasmid-based expression vectors for Bacillus 
subtilis exhibiting full structural stability." Plasmid 54(3): 241-248. 
 
Nielsen, D. R., E. Leonard, S. H. Yoon, H. C. Tseng, C. Yuan and K. L. Prather (2009). 
"Engineering alternative butanol production platforms in heterologous bacteria." Metab 
Eng 11(4-5): 262-273. 
 
Nielsen, J., M. Fussenegger, J. Keasling, S. Y. Lee, J. C. Liao, K. Prather and B. 
Palsson (2014). "Engineering synergy in biotechnology." Nature Chem Biol 10(5): 319-
322. 
 
Nijvipakul, S., J. Wongratana, C. Suadee, B. Entsch, D. P. Ballou and P. Chaiyen 
(2008). "LuxG is a functioning flavin reductase for bacterial luminescence." J Bacteriol 
190(5): 1531-1538. 
 
Nikel, P. I., E. Martinez-Garcia and V. de Lorenzo (2014). "Biotechnological 
domestication of pseudomonads using synthetic biology." Nat Rev Microbiol 12(5): 
368-379. 
 
Nogales, J., B. O. Palsson and I. Thiele (2008). "A genome-scale metabolic 
reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory." BMC Syst 
Biol 2: 79. 
 



 

92 

 

Nour-Eldin, H. H., F. Geu-Flores and B. A. Halkier (2010). "USER cloning and USER 
fusion: the ideal cloning techniques for small and big laboratories." Methods Mol Biol 
643: 185-200. 
 
Olson, E. J. and J. J. Tabor (2012). "Post-translational tools expand the scope of 
synthetic biology." Curr Opin Chem Biol 16(3-4): 300-306. 
 
Ornston, L. N. (1966). "The conversion of catechol and protocatechuate to beta-
ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway." J 
Biol Chem 241(16): 3787-3794. 
 
Ortiz-Marquez, J. C., M. Do Nascimento, J. P. Zehr and L. Curatti (2013). "Genetic 
engineering of multispecies microbial cell factories as an alternative for bioenergy 
production." Trends Biotechnol 31(9): 521-529. 
 
Paddon, C. J., P. J. Westfall, D. J. Pitera, K. Benjamin, K. Fisher, D. McPhee, M. D. 
Leavell, A. Tai, A. Main, D. Eng, D. R. Polichuk, K. H. Teoh, D. W. Reed, T. Treynor, J. 
Lenihan, M. Fleck, S. Bajad, G. Dang, D. Dengrove, D. Diola, G. Dorin, K. W. Ellens, S. 
Fickes, J. Galazzo, S. P. Gaucher, T. Geistlinger, R. Henry, M. Hepp, T. Horning, T. 
Iqbal, et al. (2013). "High-level semi-synthetic production of the potent antimalarial 
artemisinin." Nature 496(7446): 528-532. 
 
Palleroni, N. J. (2010). "The Pseudomonas story." Environ Microbiol 12(6): 1377-1383. 
 
Palmen, R. and K. J. Hellingwerf (1997). "Uptake and processing of DNA by 
Acinetobacter calcoaceticus--a review." Gene 192(1): 179-190. 
 
Palmen, R., B. Vosman, P. Buijsman, C. K. Breek and K. J. Hellingwerf (1993). 
"Physiological characterization of natural transformation in Acinetobacter 
calcoaceticus." J Gen Microbiol 139(2): 295-305. 
 
Palmqvist, E. and B. Hahn-Hägerdal (2000). "Fermentation of lignocellulosic 
hydrolysates. I: inhibition and detoxification." Bioresour Technol 74(1): 17-24. 
 
Panilaitis, B., A. Johri, W. Blank, D. Kaplan and J. Fuhrman (2002). "Adjuvant activity of 
emulsan, a secreted lipopolysaccharide from Acinetobacter calcoaceticus." Clin Diagn 
Lab Immunol 9(6): 1240-1247. 
 
Pasztor, A., P. Kallio, D. Malatinszky, M. K. Akhtar and P. R. Jones (2014). "A synthetic 
O -tolerant butanol pathway exploiting native fatty acid biosynthesis in Escherichia 
coli." Biotechnol Bioeng. 
 
Pawelczyk, S., K. A. Scott, R. Hamer, G. Blades, C. M. Deane and G. H. Wadhams 
(2012). "Predicting Inter-Species Cross-Talk in Two-Component Signalling Systems." 
PloS one 7(5). 
 
Peralta-Yahya, P. P., F. Zhang, S. B. del Cardayre and J. D. Keasling (2012). 
"Microbial engineering for the production of advanced biofuels." Nature 488(7411): 
320-328. 
 



 

93 

 

Poblete-Castro, I., J. Becker, K. Dohnt, V. M. dos Santos and C. Wittmann (2012). 
"Industrial biotechnology of Pseudomonas putida and related species." Appl Microbiol 
Biotechnol 93(6): 2279-2290. 
 
Posfai, G., G. Plunkett, 3rd, T. Feher, D. Frisch, G. M. Keil, K. Umenhoffer, V. 
Kolisnychenko, B. Stahl, S. S. Sharma, M. de Arruda, V. Burland, S. W. Harcum and F. 
R. Blattner (2006). "Emergent properties of reduced-genome Escherichia coli." Science 
312(5776): 1044-1046. 
 
Qi, L., J. B. Lucks, C. C. Liu, V. K. Mutalik and A. P. Arkin (2012). "Engineering 
naturally occurring trans-acting non-coding RNAs to sense molecular signals." Nucleic 
Acids Res 40(12): 5775-5786. 
 
Quan, J. and J. Tian (2014). "Circular polymerase extension cloning." Methods Mol Biol 
1116: 103-117. 
 
Radeck, J., K. Kraft, J. Bartels, T. Cikovic, F. Durr, J. Emenegger, S. Kelterborn, C. 
Sauer, G. Fritz, S. Gebhard and T. Mascher (2013). "The Bacillus BioBrick Box: 
generation and evaluation of essential genetic building blocks for standardized work 
with Bacillus subtilis." J Biol Eng 7(1): 29. 
 
Rao, C. V. (2012). "Expanding the synthetic biology toolbox: engineering orthogonal 
regulators of gene expression." Curr Opin Biotechnol 23(5): 689-694. 
 
Ratajczak, A., W. Geissdorfer and W. Hillen (1998). "Expression of alkane hydroxylase 
from Acinetobacter sp. Strain ADP1 is induced by a broad range of n-alkanes and 
requires the transcriptional activator AlkR." J Bacteriol 180(22): 5822-5827. 
 
Reeve, B., T. Sanderson, T. Ellis and P. Freemont (2014). How Synthetic Biology Will 
Reconsider Natural Bioluminescence and Its Applications. Bioluminescence: 
Fundamentals and Applications in Biotechnology - Volume 2. G. Thouand and R. 
Marks, Springer Berlin Heidelberg. 145: 3-30. 
 
Regot, S., J. Macia, N. Conde, K. Furukawa, J. Kjellen, T. Peeters, S. Hohmann, E. de 
Nadal, F. Posas and R. Sole (2011). "Distributed biological computation with 
multicellular engineered networks." Nature 469(7329): 207-211. 
 
Reiser, S. and C. Somerville (1997). "Isolation of mutants of Acinetobacter 
calcoaceticus deficient in wax ester synthesis and complementation of one mutation 
with a gene encoding a fatty acyl coenzyme A reductase." J Bacteriol 179(9): 2969-
2975. 
 
Renninger, N. S. and D. J. McPhee (2008). Petroleum component, fuel additive and 
microorganism produced isoprenoids; conversion of simple sugars, polysaccharides 
and/or nonfermentable carbon sources; diesel fuel, jet fuel, kerosene or gasoline 
replacements, Patent US20080098645 A1. 
 
Rhodius, V. A., T. H. Segall-Shapiro, B. D. Sharon, A. Ghodasara, E. Orlova, H. 
Tabakh, D. H. Burkhardt, K. Clancy, T. C. Peterson, C. A. Gross and C. A. Voigt 



 

94 

 

(2013). "Design of orthogonal genetic switches based on a crosstalk map of sigmas, 
anti-sigmas, and promoters." Mol Syst Biol 9: 702. 
 
Rodrigo, G. and A. Jaramillo (2013). "AutoBioCAD: full biodesign automation of genetic 
circuits." ACS Synth Biol 2(5): 230-236. 
 
Rodriguez, G. M. and S. Atsumi (2012). "Isobutyraldehyde production from Escherichia 
coli by removing aldehyde reductase activity." Microb Cell Fact 11: 90. 
 
Rodriguez, G. M. and S. Atsumi (2014). "Toward aldehyde and alkane production by 
removing aldehyde reductase activity in Escherichia coli." Metab Eng. 
 
Rodriguez, G. M., Y. Tashiro and S. Atsumi (2014). "Expanding ester biosynthesis in 
Escherichia coli." Nat Chem Biol 10(4): 259-265. 
 
Ruhl, J., A. Schmid and L. M. Blank (2009). "Selected Pseudomonas putida strains 
able to grow in the presence of high butanol concentrations." Appl Environ Microbiol 
75(13): 4653-4656. 
 
Runguphan, W. and J. D. Keasling (2014). "Metabolic engineering of Saccharomyces 
cerevisiae for production of fatty acid-derived biofuels and chemicals." Metab Eng 21: 
103-113. 
 
Salimi, F., K. Zhuang and R. Mahadevan (2010). "Genome-scale metabolic modeling of 
a clostridial co-culture for consolidated bioprocessing." Biotechnol J 5(7): 726-738. 
 
Sambrook, J., E. F. Fritsch and T. Maniatis (1990). Molecular Cloning: a Laboratory 
Manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press. 
 
Schirmer, A., M. A. Rude, X. Li, E. Popova and S. B. del Cardayre (2010). "Microbial 
biosynthesis of alkanes." Science 329(5991): 559-562. 
 
Seppälä, J., J. A. Puhakka, O. Yli-Harja, M. T. Karp. and V. Santala (2011). 
"Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in 
pure and cocultures." Int J Hydrogen Energ.(36): 10701-10708. 
 
Shabtai, Y. (1990). "Production of exopolysaccharides by Acinetobacter strains in a 
controlled fed-batch fermentation process using soap stock oil (SSO) as carbon 
source." Int J Biol Macromol 12(2): 145-152. 
 
Shabtai, Y. and D. I. Wang (1990). "Production of emulsan in a fermentation process 
using soybean oil (SBO) in a carbon-nitrogen coordinated feed." Biotechnol Bioeng 
35(8): 753-765. 
 
Shetty, R. P., D. Endy and T. F. Knight, Jr. (2008). "Engineering BioBrick vectors from 
BioBrick parts." J Biol Eng 2: 5. 
 
Shi, S., J. O. Valle-Rodriguez, S. Khoomrung, V. Siewers and J. Nielsen (2012). 
"Functional expression and characterization of five wax ester synthases in 



 

95 

 

Saccharomyces cerevisiae and their utility for biodiesel production." Biotechnol Biofuels 
5: 7. 
 
Shin, H. D., S. McClendon, T. Vo and R. R. Chen (2010). "Escherichia coli binary 
culture engineered for direct fermentation of hemicellulose to a biofuel." Appl Environ 
Microbiol 76(24): 8150-8159. 
 
Shin, J. and V. Noireaux (2012). "An E. coli Cell-Free Expression Toolbox: Application 
to Synthetic Gene Circuits and Artificial Cells." ACS Synth Biol 1(1): 29-41. 
 
Shong, J., M. R. Jimenez Diaz and C. H. Collins (2012). "Towards synthetic microbial 
consortia for bioprocessing." Curr Opin Biotechnol 23(5): 798-802. 
 
Silby, M. W., C. Winstanley, S. A. C. Godfrey, S. B. Levy and R. W. Jackson (2011). 
"Pseudomonas genomes: diverse and adaptable." FEMS Microbiol Rev 35(4): 652-
680. 
 
Silva-Rocha, R. and V. de Lorenzo (2014). "Engineering multicellular logic in bacteria 
with metabolic wires." ACS Synth Biol 3(4): 204-209. 
 
Silva-Rocha, R., E. Martinez-Garcia, B. Calles, M. Chavarria, A. Arce-Rodriguez, A. de 
Las Heras, A. D. Paez-Espino, G. Durante-Rodriguez, J. Kim, P. I. Nikel, R. Platero 
and V. de Lorenzo (2013). "The Standard European Vector Architecture (SEVA): a 
coherent platform for the analysis and deployment of complex prokaryotic phenotypes." 
Nucleic Acids Res 41(Database issue): D666-675. 
 
Simpson, D. J., L. F. Dawson, J. C. Fry, H. J. Rogers and M. J. Day (2007). "Influence 
of flanking homology and insert size on the transformation frequency of Acinetobacter 
baylyi BD413." Environ Biosafety Res 6(1-2): 55-69. 
 
Singh, A., K. Cher Soh, V. Hatzimanikatis and R. T. Gill (2011). "Manipulating redox 
and ATP balancing for improved production of succinate in E. coli." Metab Eng 13(1): 
76-81. 
 
Sleight, S. C., B. A. Bartley, J. A. Lieviant and H. M. Sauro (2010a). "Designing and 
engineering evolutionary robust genetic circuits." J Biol Eng 4: 12. 
 
Sleight, S. C., B. A. Bartley, J. A. Lieviant and H. M. Sauro (2010b). "In-Fusion BioBrick 
assembly and re-engineering." Nucleic Acids Res 38(8): 2624-2636. 
 
Smanski, M. J., S. Bhatia, D. Zhao, Y. Park, B. A. W. L, G. Giannoukos, D. Ciulla, M. 
Busby, J. Calderon, R. Nicol, D. B. Gordon, D. Densmore and C. A. Voigt (2014). 
"Functional optimization of gene clusters by combinatorial design and assembly." Nat 
Biotechnol 32(12): 1241-1249. 
 
Snellman, E. A. and R. R. Colwell (2004). "Acinetobacter lipases: molecular biology, 
biochemical properties and biotechnological potential." J Ind Microbiol Biotechnol 
31(9): 391-400. 
 



 

96 

 

Sprinzak, D. and M. B. Elowitz (2005). "Reconstruction of genetic circuits." Nature 
438(7067): 443-448. 
 
Stanton, B. C., A. A. Nielsen, A. Tamsir, K. Clancy, T. Peterson and C. A. Voigt (2014). 
"Genomic mining of prokaryotic repressors for orthogonal logic gates." Nat Chem Biol 
10(2): 99-105. 
 
Steen, E. J., Y. Kang, G. Bokinsky, Z. Hu, A. Schirmer, A. McClure, S. B. Cardayre and 
J. D. Keasling (2010). "Microbial production of fatty-acid-derived fuels and chemicals 
from plant biomass." Nature 463: 559-562. 
 
Stein, T. (2005). "Bacillus subtilis antibiotics: structures, syntheses and specific 
functions." Mol Microbiol 56(4): 845-857. 
 
Stephanopoulos, G. (2012). "Synthetic biology and metabolic engineering." ACS Synth 
Biol 1(11): 514-525. 
 
Stricker, J., S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring and J. Hasty 
(2008). "A fast, robust and tunable synthetic gene oscillator." Nature 456(7221): 516-
519. 
 
Stuani, L., C. Lechaplais, A. V. Salminen, B. Segurens , M. Durot, V. Castelli, A. Pinet, 
K. Labadie, S. Cruveiller, J. Weissenbach, V. de Berardinis, M. Salanoubat and A. 
Perret (2014). "Novel metabolic features in Acinetobacter baylyi ADP1 revealed by a 
multiomics approach." Metabolomics. 
 
Stöveken, T. and A. Steinbüchel (2008). "Bacterial acyltransferases as an alternative 
for lipase-catalyzed acylation for the production of oleochemicals and fuels." Angew 
Chem Int Ed Engl 47(20): 3688-3694. 
 
Szittner, R. and E. Meighen (1990). "Nucleotide sequence, expression, and properties 
of luciferase coded by lux genes from a terrestrial bacterium." J Biol Chem 265(27): 
16581-16587. 
 
Tabor, J. J., A. Levskaya and C. A. Voigt (2011). "Multichromatic control of gene 
expression in Escherichia coli." J Mol Biol 405(2): 315-324. 
 
Tamsir, A., J. J. Tabor and C. A. Voigt (2011). "Robust multicellular computing using 
genetically encoded NOR gates and chemical 'wires'." Nature 469(7329): 212-215. 
 
Tanaka, K., C. S. Henry, J. F. Zinner, E. Jolivet, M. P. Cohoon, F. Xia, V. Bidnenko, S. 
D. Ehrlich, R. L. Stevens and P. Noirot (2013). "Building the repertoire of dispensable 
chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale 
metabolic model." Nucleic Acids Res 41(1): 687-699. 
 
Tanouchi, Y., R. P. Smith and L. You (2012). "Engineering microbial systems to explore 
ecological and evolutionary dynamics." Curr Opin Biotechnol 23(5): 791-797. 
 



 

97 

 

Taylor, W. H. and E. Juni (1961). "Pathways for biosynthesis of a bacterial capsular 
polysaccharide. I. Characterization of the organism and polysaccharide." J Bacteriol 81: 
688-693. 
 
Temme, K., D. Zhao and C. A. Voigt (2012). "Refactoring the nitrogen fixation gene 
cluster from Klebsiella oxytoca." Proc Natl Acad Sci U S A 109(18): 7085-7090. 
 
Tripathi, L., L. P. Wu, D. C. Meng, J. C. Chen, Q. Wu and G. Q. Chen (2013). 
"Pseudomonas putida KT2442 as a platform for the biosynthesis of 
polyhydroxyalkanoates with adjustable monomer contents and compositions." 
Bioresour Technol 142: 225-231. 
 
Tsai, S. L., G. Goyal and W. Chen (2010). "Surface display of a functional 
minicellulosome by intracellular complementation using a synthetic yeast consortium 
and its application to cellulose hydrolysis and ethanol production." Appl Environ 
Microbiol 76(22): 7514-7520. 
 
Wachsmuth, M., S. Findeiss, N. Weissheimer, P. F. Stadler and M. Morl (2013). "De 
novo design of a synthetic riboswitch that regulates transcription termination." Nucleic 
Acids Res 41(4): 2541-2551. 
 
Wall, L., A. Rodriguez and E. Meighen (1986). "Intersubunit transfer of fatty acyl groups 
during fatty acid reduction." J Biol Chem 261(34): 15981-15988. 
 
van Dijl, J. M. and M. Hecker (2013). "Bacillus subtilis: from soil bacterium to super-
secreting cell factory." Microb Cell Fact 12: 3. 
 
Wang, B., R. I. Kitney, N. Joly and M. Buck (2011). "Engineering modular and 
orthogonal genetic logic gates for robust digital-like synthetic biology." Nat Commun 2: 
508. 
 
Wang, H., F. Wang, W. Wang, X. Yao, D. Wei, H. Cheng and Z. Deng (2014a). 
"Improving the Expression of Recombinant Proteins in E. coli BL21 (DE3) under 
Acetate Stress: An Alkaline pH Shift Approach." PloS one 9(11): e112777. 
 
Wang, H. H., F. J. Isaacs, P. A. Carr, Z. Z. Sun, G. Xu, C. R. Forest and G. M. Church 
(2009). "Programming cells by multiplex genome engineering and accelerated 
evolution." Nature 460(7257): 894-898. 
 
Wang, Y., K. Y. San and G. N. Bennett (2013). "Cofactor engineering for advancing 
chemical biotechnology." Curr Opin Biotechnol 24(6): 994-999. 
 
Wang, Y., D. Zhang, P. A. Davison and W. E. Huang (2014b). "Bacterial whole-cell 
biosensors for the detection of contaminants in water and soils." Methods Mol Biol 
1096: 155-168. 
 
Weaver, D. S., I. M. Keseler, A. Mackie, I. T. Paulsen and P. D. Karp (2014). "A 
genome-scale metabolic flux model of Escherichia coli K-12 derived from the EcoCyc 
database." BMC Syst Biol 8: 79. 
 



 

98 

 

Weiss, R., S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja and I. Netravali 
(2003). "Genetic circuit building blocks for cellular computation, communications, and 
signal processing." Nat Comput 2(1): 47-84. 
 
Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. 
Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M. 
Ballew, D. H. Huson, J. R. Wortman, Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen, M. 
Skupski, G. Subramanian, P. D. Thomas, J. Zhang, G. L. Gabor Miklos, C. Nelson, S. 
Broder, A. G. Clark, J. Nadeau, V. A. McKusick, N. Zinder, et al. (2001). "The sequence 
of the human genome." Science 291(5507): 1304-1351. 
 
Westerhoff, H. V. and B. O. Palsson (2004). "The evolution of molecular biology into 
systems biology." Nat Biotechnol 22(10): 1249-1252. 
 
Westers, H., R. Dorenbos, J. M. van Dijl, J. Kabel, T. Flanagan, K. M. Devine, F. Jude, 
S. J. Seror, A. C. Beekman, E. Darmon, C. Eschevins, A. de Jong, S. Bron, O. P. 
Kuipers, A. M. Albertini, H. Antelmann, M. Hecker, N. Zamboni, U. Sauer, C. Bruand, 
D. S. Ehrlich, J. C. Alonso, M. Salas and W. J. Quax (2003). "Genome engineering 
reveals large dispensable regions in Bacillus subtilis." Mol Biol Evol 20(12): 2076-2090. 
 
Williams, P. A. and C. M. Kay (2008). The Catabolism of Aromatic Compounds by 
Acinetobacter. Acinetobacter Molecular Biology. U. Gerischer. Norfolk, UK, Caister 
Academic press: 99-118. 
 
Virolainen, N. E., M. G. Pikkemaat, J. W. Elferink and M. T. Karp (2008). "Rapid 
detection of tetracyclines and their 4-epimer derivatives from poultry meat with 
bioluminescent biosensor bacteria." J Agric Food Chem 56(23): 11065-11070. 
 
Voigt, C. A. (2006). "Genetic parts to program bacteria." Curr Opin Biotechnol 17(5): 
548-557. 
 
Wältermann, M., A. Hinz, H. Robenek, D. Troyer, R. Reichelt, U. Malkus, H. J. Galla, R. 
Kalscheuer, T. Stöveken, P. von Landenberg and A. Steinbüchel (2005). "Mechanism 
of lipid-body formation in prokaryotes: how bacteria fatten up." Mol Microbiol 55(3): 
750-763. 
 
Wältermann, M. and A. Steinbüchel (2005). "Neutral lipid bodies in prokaryotes: recent 
insights into structure, formation, and relationship to eukaryotic lipid depots." J Bacteriol 
187(11): 3607-3619. 
 
Xavier, J. B. (2011). "Social interaction in synthetic and natural microbial communities." 
Mol Syst Biol 7: 483. 
 
Xu, P., Q. Gu, W. Wang, L. Wong, A. G. Bower, C. H. Collins and M. A. Koffas (2013). 
"Modular optimization of multi-gene pathways for fatty acids production in E. coli." Nat 
Commun 4: 1409. 
 
Xu, P., L. Li, F. Zhang, G. Stephanopoulos and M. Koffas (2014). "Improving fatty acids 
production by engineering dynamic pathway regulation and metabolic control." Proc 
Natl Acad Sci U S A 111(31): 11299-11304. 



 

99 

 

 
Yao, L., F. Qi, X. Tan and X. Lu (2014). "Improved production of fatty alcohols in 
cyanobacteria by metabolic engineering." Biotechnol Biofuels 7: 94. 
 
Yim, H., R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. 
D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. 
Andrae, T. H. Yang, S. Y. Lee, M. J. Burk and S. Van Dien (2011). "Metabolic 
engineering of Escherichia coli for direct production of 1,4-butanediol." Nature Chem 
Biol 7(7): 445-452. 
 
Young, D. M., D. Parke and L. N. Ornston (2005). "Opportunities for genetic 
investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species 
that is highly competent for natural transformation." Annu Rev Microbiol 59: 519-551. 
 
Youngquist, J. T., M. H. Schumacher, J. P. Rose, T. C. Raines, M. C. Politz, M. F. 
Copeland and B. F. Pfleger (2013). "Production of medium chain length fatty alcohols 
from glucose in Escherichia coli." Metab Eng 20: 177-186. 
 
Zhang, D., Y. He, Y. Wang, H. Wang, L. Wu, E. Aries and W. E. Huang (2012a). 
"Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil 
spills." Microb Biotechnol 5(1): 87-97. 
 
Zhang, D., Y. Zhao, Y. He, Y. Wang, Y. Zheng, X. Wei, L. Zhang, Y. Li, T. Jin, L. Wu, 
H. Wang, P. A. Davison, J. Xu and W. E. Huang (2012b). "Characterization and 
modeling of transcriptional cross-regulation in Acinetobacter baylyi ADP1." ACS Synth 
Biol 1(7): 274-283. 
 
Zhang, F., J. M. Carothers and J. D. Keasling (2012c). "Design of a dynamic sensor-
regulator system for production of chemicals and fuels derived from fatty acids." Nat 
Biotechnol 30(4): 354-359. 
 
Zheng, Y., L. Li, Q. Liu, W. Qin, J. Yang, Y. Cao, X. Jiang, G. Zhao and M. Xian 
(2012a). "Boosting the free fatty acid synthesis of Escherichia coli by expression of a 
cytosolic Acinetobacter baylyi thioesterase." Biotechnol Biofuels 5(1): 76. 
 
Zheng, Y. N., L. L. Li, Q. Liu, J. M. Yang, X. W. Wang, W. Liu, X. Xu, H. Liu, G. Zhao 
and M. Xian (2012b). "Optimization of fatty alcohol biosynthesis pathway for selectively 
enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia 
coli." Microb Cell Fact 11: 65. 
 
Zhou, Y. J., N. A. Buijs, V. Siewers and J. Nielsen (2014). "Fatty Acid-Derived Biofuels 
and Chemicals Production in Saccharomyces cerevisiae." Front Bioeng Biotechnol 2: 
32. 
 
Zhu, L., Y. Zhu, Y. Zhang and Y. Li (2012). "Engineering the robustness of industrial 
microbes through synthetic biology." Trends Microbiol 20(2): 94-101. 

 

 



 

 

ORIGINAL PAPERS 

 

 

I  

 

 

IMPROVED TRIACYLGLYCEROL PRODUCTION IN ACINETOBACTER 
BAYLYI ADP1 BY METABOLIC ENGINEERING 

 

 

 

 

by 
 

Suvi Santala, Elena Efimova, Virpi Kivinen, Antti Larjo, Tommi Aho, Matti Karp & Ville 
Santala, 2011 

 
Microbial Cell Factories 10:36 

 
 

Open access 
  



 

 

 

 

 

II   

 

 

REAL-TIME MONITORING OF INTRACELLULAR WAX ESTER 
METABOLISM 

 

 

 

 

 
by 
 

Suvi Santala, Elena Efimova, Matti Karp & Ville Santala, 2011 
 

Microbial Cell Factories 10:75 
 
 

Open access 
  



 

 

 

 

 

III  

 

 
MONITORING ALKANE DEGRADATION BY SINGLE BIOBRICK 

INTEGRATION TO AN OPTIMAL CELLULAR FRAMEWORK 

 

 

 

 

by 
 

Suvi Santala, Matti Karp & Ville Santala, 2012 
 

ACS Synthetic Biology 1:2, 60-4 
 
 

Reproduced with kind permission by American Chemical Society. 
  



 

 

 

 

 

IV  

 

 

REWIRING THE WAX ESTER PRODUCTION PATHWAY OF  
ACINETOBACTER BAYLYI ADP1 

 

 

 

 

by 
 

Suvi Santala, Elena Efimova, Perttu Koskinen, Matti Karp & Ville Santala, 2014 
 

ACS Synthetic Biology 3:3, 145-51 
 
 

Reproduced with kind permission by American Chemical Society. 
  



 

 

 

 

 

V  

 

 

RATIONALLY ENGINEERED SYNTHETIC COCULTURE FOR  
IMPROVED BIOMASS AND PRODUCT FORMATION 

 

 

 

 

by 
 

Suvi Santala, Matti Karp & Ville Santala, 2014 
 

PLOS ONE 9(12): e113786 
 
 

Open access. 
 

 




