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Abstract

Particle Swarm Optimization (PSO) is a stochastic nature-inspired optimization method.
It has been successfully used in several application domains since it was introduced in 1995.
It has been especially successful when applied to complicated multimodal problems, where
simpler optimization methods, e.g., gradient descent, are not able to find satisfactory
results. Multidimensional Particle Swarm Optimization (MD-PSO) and Fractional Global
Best Formation (FGBF) are extensions of the basic PSO. MD-PSO allows searching
for an optimum also when the solution dimensionality is unknown. With a dedicated
dimensional PSO process, MD-PSO can search for optimal solution dimensionality. An
interleaved positional PSO process simultaneously searches for the optimal solution in
that dimensionality. Both the basic PSO and its multidimensional extension MD-PSO
are susceptible to premature convergence. FGBF is a plug-in to (MD-)PSO that can help
avoid premature convergence and find desired solutions faster. This thesis focuses on
applications of MD-PSO and FGBF in different machine learning tasks.

Multiswarm versions of MD-PSO and FGBF are introduced to perform dynamic opti-
mization tasks. In dynamic optimization, the search space slowly changes. The locations
of optima move and a former local optimum may transform into a global optimum and
vice versa. We exploit multiple swarms to track different optima.

In order to apply MD-PSO for clustering tasks, two key questions need to be answered:
1) How to encode the particles to represent different data partitions? 2) How to evaluate
the fitness of the particles to evaluate the quality of the solutions proposed by the particle
positions? The second question is considered especially carefully in this thesis. An
extensive comparison of Clustering Validity Indices (CVIs) commonly used as fitness
functions in Particle Swarm Clustering (PSC) is conducted. Furthermore, a novel approach
to carry out fitness evaluation, namely Fitness Evaluation with Computational Centroids
(FECC) is introduced. FECC gives the same fitness to any particle positions that lead to
the same data partition. Therefore, it may save some computational efforts and, above
all, it can significantly improve the results obtained by using any of the best performing
CVIs as the PSC fitness function.

MD-PSO can also be used to evolve different neural networks. The results of training
Multilayer Perceptrons (MLPs) using the common Backpropagation (BP) algorithm
and a global technique based on PSO are compared. The pros and cons of BP and
(MD-)PSO in MLP training are discussed. For training Radial Basis Function Neural
Networks (RBFNNs), a novel technique based on class-specific clustering of the training
samples is introduced. The proposed approach is compared to the common input and
input-output clustering approaches and the benefits of using the class-specific approach are
experimentally demonstrated. With the class-specific approach, the training complexity
is reduced, while the classification performance of the trained RBFNNs may be improved.
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ii Abstract

Collective Network of Binary Classifiers (CNBC) is an evolutionary semantic classifier
consisting of several Networks of Binary Classifiers (NBCs) trained to recognize a certain
semantic class. NBCs in turn consist of several Binary Classifiers (BCs), which are trained
for a certain feature type. Thanks to its topology and the use of MD-PSO as its evolution
technique, incremental training can be easily applied to add new training items, classes,
and/or features.

In feature synthesis, the objective is to exploit ground truth information to transform the
original low-level features into more discriminative ones. To learn an efficient synthesis for
a dataset, only a fraction of the data needs to be labeled. The learned synthesis can then
be applied on unlabeled data to improve classification or retrieval results. In this thesis,
two different feature synthesis techniques are introduced. In the first one, MD-PSO is
directly used to find proper arithmetic operations to be applied on the elements of the
original low-level feature vectors. In the second approach, feature synthesis is carried out
using one-against-all perceptrons. In the latter technique, the best results were obtained
when MD-PSO was used to train the perceptrons.

In all the mentioned applications excluding MLP training, MD-PSO is used together
with FGBF. Overall, MD-PSO and FGBF are indeed versatile tools in machine learning.
However, computational limitations constrain their use in currently emerging machine
learning systems operating on Big Data. Therefore, in the future, it is necessary to divide
complex tasks into smaller subproblems and to conquer the large problems via solving the
subproblems where the use of MD-PSO and FGBF becomes feasible. Several applications
discussed in this thesis already exploit the divide-and-conquer operation model.
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1 Introduction

Over the years, numerous definitions of machine learning have been given. Some of the
most quoted include

Field of study that gives computers the ability to learn without being explicitly
programmed (Arthur Samuel, 1959)

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E. (Tom Mitchell, 1997)

Tom Mitchell defined the objectives of machine learning research as

The field of Machine Learning seeks to answer the question: How can we build
computer systems that automatically improve with experience, and what are
the fundamental laws that govern all learning processes?

(Tom Mitchell, 2006)

Typically, machine learning tasks can be divided into supervised and unsupervised learning.
In supervised learning, the desired outputs are given to the algorithm and the objective
is to find a general rule that maps the inputs to the desired outputs. In unsupervised
learning, the desired output is not available, but the objective is to find some internal
data structures. Classification and clustering are perhaps the most obvious examples of
supervised and unsupervised learning, respectively. Semi-supervised learning typically
exploits a small amount of labeled data and complements the learning using a large
amount of unlabeled data.

To succeed in machine learning, it is usually necessary to solve complex optimization
tasks in a high-dimensional and multimodal search space. Due to local optima and a huge
search space, deterministic gradient-descent-based optimization methods often cannot find
proper solutions. Thus, stochastic alternatives are needed. Several stochastic optimization
algorithms are inspired by natural phenomena such as genetics (e.g., Genetic Algorithm
(GA) [41]) or behavior of animal populations (e.g., Ant Colony Optimization (ACO) [31],
Particle Swarm Optimization (PSO) [59]). The common factor of these algorithms is
that they strive for better results using an intelligent strategy while preserving some
randomness in the process. This randomness can help them escape local optima and find
the global optimum faster than their deterministic counterparts. The PSO algorithm
mimics the interactions of an animal swarm, e.g., a bird flock or a fish school, in its
search for food. The individuals are attracted toward the best feeding areas found by the

1



2 Chapter 1. Introduction

other swarm members, but simultaneously they perform their own search in a stochastic
manner and may discover even better areas.

This thesis seeks to answer the questions posed by Tom Mitchell when Multidimensional
Particle Swarm Optimization (MD-PSO) and Fractional Global Best Formation (FGBF)
[67], which are extensions of the basic PSO, are used as tools to learn. That is, the thesis
builds machine learning techniques using MD-PSO and FGBF and tries to understand the
laws governing the learning processes to further improve the processes. The considered
machine learning tasks include dynamic optimization, clustering, classification, image
retrieval, and feature synthesis.

1.1 Thesis Objectives

The objective of this thesis was to explore the ability of MD-PSO and FGBF to solve
different machine learning tasks and to modify the algorithms or applications in order to
obtain a maximal benefit. More specific objectives for different applications were:

• to develop an algorithm suitable for dynamic optimization by combining MD-PSO
and FGBF with multiswarms

• to improve Particle Swarm Clustering (PSC) by investigating different options for
fitness evaluation

• to analyze the suitability of MD-PSO and FGBF for training neural networks and to
improve training of Radial Basis Function Neural Network (RBFNN) by exploiting
the divide-and-conquer paradigm

• to use MD-PSO and FGBF to learn better features for image classification and
retrieval using Collective Network of Binary Classifiers (CNBC) and feature synthesis

• to develop and experimentally evaluate new methods for feature synthesis

1.2 Thesis Outline

Chapter 2 introduces the basic PSO algorithm along with its extensions. The extensions
applied throughout this thesis, MD-PSO and FGBF, are introduced in sections 2.4 and
2.5. At the end of Chapter 2, multiswarm versions of PSO are discussed.

Chapter 3 concentrates on dynamic optimization. A publicly available test bench,
Moving Peaks Benchmark (MPB), is introduced along with its multidimensional extension
proposed in Publication IV. The chapter continues with a discussion on how to apply
multiswarm FGBF and MD-PSO on (MD-)MPB. Finally, the chapter presents some
experimental results from Publication IV.

PSC is the topic of Chapter 4. Different particle encoding options are explained and PSC
techniques based on Multi-Elitist Particle Swarm Optimization (MEPSO) and MD-PSO
with FGBF are introduced in detail. The last section discussing how to evaluate fitness
in PSC is based on Publication VIII.

Chapter 5 discusses Artificial Neural Networks and how to train them with MD-PSO.
Section 5.1 focuses on Multilayer Perceptrons (MLPs) and Section 5.2 on RBFNNs. For
MLPs, Backpropagation (BP) and PSO training methods are compared (Publication I).
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For RBFNNs, a novel approach to carry out training using class-specific clustering is
introduced (Publication VII).

In Chapter 6, the CNBC classifier is introduced along with its application to Content-based
Image Retrieval (CBIR). Chapter 6 is based on Publication II.

Chapter 7 explains the concept of feature synthesis and its objectives. Section 7.2 describes
how to use MD-PSO for Evolutionary Feature Synthesis (EFS) as originally proposed in
Publication III. An improved fitness evaluation technique designed for MD-PSO-based
EFS is also introduced following Publication V. Section 7.3 introduces a different feature
synthesis method based on one-against-all perceptrons. This technique was originally
proposed in Publication VI.

Chapter 8 concludes the introductory part of the thesis. Publications are provided at the
end of the thesis.

1.3 Author’s Contribution to Publications

I The publication compares PSO and BP in training MLPs applied for solving
medical diagnosis problems. The author contributed to the implementation and the
simulations reported in the paper and to the writing of the paper.

II The publication proposes using CNBC for general CBIR. Experiments on benchmark
image databases show that with CNBC a significant performance improvement is
achieved over traditional retrieval techniques. The author contributed to the
formulation of the problem, to the design and implementation of the experiments,
and to the writing of the paper.

III The publication proposes using MD-PSO for EFS. In the proposed method,
MD-PSO is used to search for optimal arithmetic operators to transform selected
elements of original low-level features into more discriminative features. The experi-
ments on an image database show that the synthesized features exhibit an increased
discrimination between different classes. The original idea of using MD-PSO for
feature synthesis was invented by Prof. Serkan Kiranyaz. The author contributed
to the design and implementation of the proposed method and to the writing of the
paper.

IV The publication proposes a multiswarm version of FGBF and MD-PSO. This
version is beneficial in dynamic optimization, where the search space is slowly
changing. Multiple swarms can track multiple optima and detect immediately if a
former local optimum becomes the global optimum. The paper also extends MPB
to a multidimensional version that allows testing in an environment where also
the solution dimensionality is unknown and changing. The author implemented
the multiswarm extensions of FGBF and MD-PSO as well as the multidimensional
extension of MPB. She carried out the experiments, wrote several sections of the
paper, and created figures 3-11.

V An improved version of feature synthesis using MD-PSO is proposed in this publi-
cation. In the improved version, a target output vector is defined for each class and
MD-PSO is looking for such feature transformations that modify all the feature
vectors of a class toward these target vectors. Fitness of a particle is then evaluated
as the Mean Squared Error between the obtained and target feature vectors. The
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computational complexity of the new fitness evaluation approach is reduced and
the obtained results are better than with the approach used in Publication III. The
author invented and implemented the novel approach for fitness evaluation. Prior
to this publication, the improved fitness evaluation was published in another paper
[82]. However, it was originally invented for this work. The author carried out the
experiments and wrote the paper.

VI The publication proposes a novel technique for feature synthesis. The technique
uses parallel one-against-all perceptrons to generate new features with a higher
discrimination power. This in turn leads to improved classification and retrieval
results. The main merits of the proposed technique are its simplicity and faster
computation compared to existing feature synthesis methods. Extensive simulations
show a significant improvement in the features’ discrimination power. The author
designed the work, made the required implementations, carried out the experiments,
and wrote the paper.

VII The publication proposes to train RBFNNs through class-specific clustering (i.e.,
clustering each class separately to obtain Radial Basis Function centers). This
has been done in some earlier works but without considering its impact. It is
shown in the paper that the class-specific approach significantly reduces the overall
complexity of the clustering. Experimental comparisons against the traditional
input and input-output clustering approaches are carried out using the MD-PSO,
APC-III, and K-means algorithms. The results show that the class-specific approach
can also lead to a significant gain in the classification performance especially when
used on networks with relatively few neurons. The author designed the work, made
the required implementations, carried out the experiments, and wrote the paper.

VIII The publication proposes a new way to perform fitness evaluations in PSC, namely
Fitness Evaluation with Computational Centroids (FECC). An extensive compar-
ison of different fitness functions in PSC is carried out using both MD-PSO and
MEPSO. The proposed FECC approach is found to significantly improve clustering
results. Different Clustering Validity Indices (CVIs) as fitness functions are ranked
and their benefits in different situations are analyzed. The idea of FECC was born
is discussions with Kaveh Samiee. The author implemented the compared CVIs,
their FECC versions, and some changes to MD-PSO and FGBF. Kaveh Samiee
helped checking the correctness of implemented CVIs. The author carried out the
experiments and wrote the paper.



2 Particle Swarm Optimization and
Extensions

2.1 Stochastic Optimization

When randomness is involved in optimization, the process is called stochastic optimization.
The randomness can occur in two ways: there is random noise in the fitness evaluations
and/or there is randomness in the selection of the search direction. In this thesis, only
the latter case is further considered. Stochastic algorithms have become popular during
the last few decades in several application areas. They are mainly used in optimization
problems which can be highly nonlinear, multimodal, high-dimensional, or otherwise too
difficult to be solved using deterministic methods. The problems are often so challenging
that it is not feasible to find the global optimum, but the randomness can help stochastic
methods in avoiding some local optima and in achieving satisfactory final results. [108]

In 1983, Kirkpatrick et al. proposed Simulated Annealing (SA) [71] that emulates annealing
in metallurgy. In annealing, metals are first heated and then slowly cooled to improve
their crystal structure and remove defects. This reduces internal stress and makes metals
stronger. In SA, the search process is heated by allowing the algorithm to proceed also to
solutions having worse fitness values with a certain probability. In the cooling phase, the
probability of accepting worse fitness values decreases and, finally, the algorithm only
accepts better solution and converges to an optimum. If the optimization problem is
difficult, the final solution is still likely a local optimum. Nevertheless, annealing can
help the algorithm to escape from some local optima and the final solution is usually
significantly improved compared to the deterministic counterpart.

Evolutionary Algorithms (EAs) are stochastic optimization methods using techniques from
biological evolution. Well-known evolutionary algorithms are Genetic Algorithm (GA) [41],
Genetic Programming (GP) [8], Evolutionary Programming (EP) [36], and Evolutionary
Strategies (ES) [36]. GA evolves solutions mimicking operations from genetics: mutation,
crossover, and selection. Solutions are typically represented using fixed-length arrays. GP
is a similar technique, but uses variable-size tree representation for the candidate solutions.
Also the genetic operations used in GA and GP are slightly different. Nevertheless, the
difference between the two algorithms is small [121]. Also EP and ES are similar to GA,
but they emphasize different parts of natural evolution. GA emphasizes chromosomal
operators, EP behavioral changes at the level of the species, and ES behavioral changes
at the level of the individual [36]. Extensions of these basic algorithms have made it
sometimes hard to distinguish between the methods.

Particle Swarm Optimization (PSO) belongs to the class of swarm intelligence algorithms.
They are considered relatives of EAs, but, instead of natural evolution, they mimic the

5



6 Chapter 2. Particle Swarm Optimization and Extensions

behavior of animal swarms in their search for food. In addition to PSO, Ant Colony
Optimization (ACO) [31] is a widely-used swarm intelligence algorithm. ACO is inspired
by foraging ants. Initially, ants search randomly the surroundings of their nest. When
they find some food, they deposit chemical pheromones to guide other ants toward the
food.

Several comparisons of different stochastic optimization algorithms have been conducted,
e.g., [5, 37, 75]. However, most comparisons are restricted to the basic versions of
the stochastic optimization methods, while probably hundreds of versions of each base
algorithm have been suggested. Furthermore, the comparisons usually concentrate
on a very specific application area and the manually selected parameter values may
significantly affect the ranking. Not surprisingly, the available comparison results are
often contradictory and incomplete. Some more systematic comparison approaches have
been suggested (e.g., [91]), but they have not been extensively applied. Also theoretically,
it is not possible to find an optimization method that is universally successful in all kinds
of problems. The no free lunch theorem for optimization [120] basically states that any
algorithm which is successful on certain class of optimization problems is guaranteed
to perform poorly on another class. Luckily, many real world optimization problems
have a similar nature and it is still possible to find algorithms performing well on several
problems which are important in practice [53].

2.2 PSO Algorithm

The basic form of the PSO algorithm was introduced in [59] and later modified in [107].
In the algorithm, a swarm of S particles explores a d-dimensional search space, where
particle positions are potential solutions to an optimization problem. Initially, each
particle, p, has a random position, xp, and velocity, vp. At the beginning of each iteration,
t, the new particle positions are evaluated using a problem-specific fitness function, f(xp).
Each particle remembers its personal best solution so far, bp, and the swarm as a whole
remembers the overall best solution globally achieved so far, bS . If the new particle
positions reveal better solutions, bp and bS are updated. Then the particles are moved
to a new position using the following velocity and position update functions:

vp(t+ 1) = w(t)vp(t) + c1r1(t) ◦ (bp(t)− xp(t)) + c2r2(t) ◦ (bS(t)− xp(t))
xp(t+ 1) = xp(t) + vp(t+ 1),

(2.1)

where w(t) is the inertia weight, c1 and c2 are the acceleration constants, r1(t) ∼ U(0, 1)
and r2(t) ∼ U(0, 1) are vectors of random variables uniformly distributed between
0 and 1, and ◦ denotes a Hadamard (i.e., element-wise) product of vectors. A larger
value of w(t) favors exploration, while smaller inertia weight values favor exploitation.
Therefore, the inertia weight is often linearly decreased from a high value (e.g., 0.9) to a
low value (e.g., 0.4) during iterations of a PSO run as suggested in [107]. For relatively
low-dimensional problems (e.g., d < 50), the number of particles, S, is usually set higher
than the dimensionality, S > d. However, it has been observed that the number of
iterations, R, required for convergence does not significantly depend on the number of
particles. Therefore, it is not meaningful to increase the number of particles when the
problem dimensionality increases. Instead, the number of fitness evaluations (i.e., the
number of particles multiplied by the number of iterations) should be increased at least
linearly with respect to the problem dimensionality [20].
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The original PSO is not guaranteed to converge. Instead, the particle velocities have to be
controlled by setting a system coefficient, the maximum allowed velocity, vmax, to prevent
particle trajectories from swinging out of control. A lot of research has been conducted
to study particle trajectories and to find such parameters that guarantee convergence. In
[24], Clerc and Kennedy showed that setting the inertia weight as w = 0.7298 and the
acceleration constants as c1 = c2 = c = 1.4961 results in convergent behavior. Thereafter,
these parameters have been used in most standard PSO versions. The system coefficient
vmax is no longer needed to guarantee convergence. However, it is still often used, set to
a very liberal value, in order to achieve more efficient swarm behavior [58].

Several studies have attempted to derive theoretically a parameter region guaranteeing
convergence [22, 40, 57, 96, 116], but these studies have made different simplifying
assumptions of the PSO process. The assumptions include, e.g., the deterministic
assumption, where r1 and r2 have fixed values, or the stagnation assumption, where bp
and bS have fixed values. Due to different assumptions, the studies have resulted in
different parameter regions. In [96], Poli derived the following inequality guaranteeing
convergence using only the stagnation assumption:

c <
12(w2 − 1)

5w − 7
(2.2)

In [23], this parameter region was also empirically tested to strongly correlate with the
PSO convergence. However, it was noticed that setting the parameter values near the
region edge leads to extremely slow convergence. Thus, the parameter values should be
selected from a slightly smaller region.

It should be noted that there are no such parameters that could guarantee the basic
PSO to converge to an (local) optimum [117]. The algorithm will simply reach a point of
equilibrium if the parameters are properly set. Guaranteed Convergence Particle Swarm
Optimization (GCPSO) [115] is a modification of the basic PSO, which has been shown to
converge to an optimum. However, GCPSO only improved PSO performance on unimodal
problems, especially with small swarms. On multimodal problems, GCPSO did not offer a
clear advantage over the basic PSO [117]. Therefore, in general, not having a guaranteed
convergence to an optimum is not a problem on more complex problems, where PSO is
commonly applied.

Instead, a significant problem with the basic PSO is premature convergence to a local
optimum. Even though as a stochastic search algorithm PSO can avoid some local optima,
the particles typically gather close to an optimum too early. The global optimum has
not been reached yet, but the algorithm loses its ability to explore new areas of the
search space. Over the years, numerous modifications of the basic form of the PSO
algorithm have been suggested to overcome the problem. Many modifications are based
on different swarm topologies. The basic PSO uses gbest topology, where each particle
receives information of the best solutions found by the entire swarm. In the lbest topology,
a particle is only connected to its n nearest neighbors. The particle neighborhoods overlap
and form a ring topology. In the lbest topology, the information flow through the swarm is
slower and a newly found global best solution will not affect the whole swarm immediately.
This has been repeatedly found to help avoid converging to a local optima [58]. However,
Engelbrecht claims in [33] that gbest and lbest topologies have been previously compared
only on very limited datasets. In his extensive comparison, neither approach was clearly
better, not even for specific problem classes.
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Several PSO variants somehow modify the original bS solution to prevent premature
convergence: In Multi-Elitist Particle Swarm Optimization (MEPSO) [26], which is
better introduced in Section 2.3, bS is selected among the bp based on their growth rate
βp. In Stochastic Approximation -driven Particle Swarm Optimization (SAD-PSO) [62],
stochastic approximation is used to guide the bS solution. In Particle Swarm Optimization
with an Aging Leader and Challengers (ALC-PSO) [21], other swarm members challenge
the current leader when it becomes aged. The lifespan of the leader correlates with
its leading power, i.e., its ability to guide the swarm toward better solutions. In Self
Regulating Particle Swarm Optimization (SRPSO) [110], a self-regulating inertia weight
is used for the bS solution. In Fractional Global Best Formation (FGBF) [67], an
artificial global best solution is created to compete with bS . FGBF is introduced in detail
in Section 2.5. It is also common to combine PSO with other learning strategies: In
Levy Flight Particle Swarm Optimization (LFPSO) [43], Levy flight method is used to
redistribute poorly performing particles. In SRPSO [110], the particles use self-perception
to select their direction. In Orthogonal Learning Particle Swarm Optimization (OLPSO)
[126], Orthogonal Experimental Design (OED) is used to develop a new orthogonal
learning strategy that allows PSO particles to use their previous search experience more
efficiently. In Particle Swarm Optimization with Multiple Adaptive Methods (PSO-MAM)
[47, 48], a non-uniform mutation-based search method, an adaptive subgradient search
method, and Cauchy mutation are combined with PSO.

Another problem besides the premature convergence is that the basic form of the PSO
algorithm and also nearly all the variants operate in a fixed dimensionality. For clustering,
this means that the number of clusters should be known a priori or, for neural network
training, that the network structure has to be fixed. Similarly, for other optimization tasks
in data analysis, the optimal solution dimensionality is usually unknown. An amendment
to this problem is introduced in Section 2.4.

Finally, the well-known curse of dimensionality problem affects PSO. The size of the search
space increases exponentially with respect to the problem dimensionality, d. However,
due to computational limitations, it is not possible to similarly increase the number of
fitness evaluations. As the number of iterations, R, affects the performance more than
the number of particles, S, the number of particles is kept relatively low to allow more
iterations. Therefore, for high-dimensional problems, S � d. S positions in a search
space form a (S − 1)-dimensional hyperplane and the attraction toward bS and bp makes
it difficult to leave the hyperplane. Even though the randomness and the border effects
enable escaping the current hyperplane, most of the exploration concentrates on the
hyperplane. This increasingly deteriorates the results when the problem dimensionality
increases [20]. FGBF can decrease the effect of the curse of dimensionality by providing
an additional mechanism to leave the current hyperplane.

In the next sections, the PSO extensions applied in this thesis are introduced in detail.
MEPSO (Section 2.3) was used in Publication VIII for Particle Swarm Clustering (PSC).
Multidimensional Particle Swarm Optimization (MD-PSO) (Section 2.4) and FGBF
(Section 2.5) were used in Publications II-VIII for several applications. Multiswarm
versions (Section 2.6) were used in Publication IV for dynamic optimization.

2.3 Multi-Elitist Particle Swarm Optimization

In MEPSO [26], each particle has a growth rate βp. If the fitness value of particle p at
iteration t is better than at iteration t− 1, βp is increased. The new global best, bS(t), is
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the particle having the highest growth rate among the particles whose current position
has a higher fitness than the previous global best, bS(t− 1). Thus, the new global best
may not have the highest fitness value, but it has improved more during the last iteration.
This can help avoid premature convergence, because the global best position will vary
more. The pseudocode of MEPSO, as applied in Publication VIII, is given in Listing 2.1.
MEPSO is run for R iterations.

Listing 2.1: Pseudocode of MEPSO

% Initialization
1 for p = 1 to S do:

1.1 randomize xp(1),vp(1)
1.2 initialize bp(0) = xp(1)

2 initialize bS(0) = x1(1)
3 initialize βp(0) = 0

% MEPSO process
4 for t = 1 to R do:

% Updates of growth rate and personal best solutions
4.1 for p = 1 to S do:

4.1.1 evaluate the fitness of particle position f(xp(t))
4.1.2 if f(xp(t)) < f(xp(t− 1)) then set βp(t) = βp(t− 1) + 1
4.1.3 if f(xp(t)) < f(bp(t− 1)) then set bp(t) = xp(t)
4.1.4 else set bp(t) = bp(t− 1)
4.1.5 if f(xp(t)) < f(bS(t− 1)) then move particle p to a candidate group B

% Update global best
4.2 if |B| > 0 set h to be index the particle with the highest β and set bS(t) = bh(t)
4.3 else set bS(t) = bS(t− 1)

% Velocity and position updates
4.4 for p = 1 to S do:

4.4.1 compute vp(t+ 1) and xp(t+ 1) using Eq. (2.1)

2.4 Multidimensional Particle Swarm Optimization

MD-PSO [63, 67] is an extension of the basic PSO algorithm providing a solution to the
problem of fixed solution dimensionality. MD-PSO particles perform interleaved dimen-
sional and positional PSO processes. The former optimizes the solution dimensionality,
while the latter aims at finding the positional optima in particles’ current dimensionalities.

For the dimensional process, each particle p knows its current dimensionality, dp, dimen-
sional velocity, dvp, and personal best dimensionality so far, dbp. The swarm as a whole
keeps track of the overall best dimensionality globally achieved so far, dbS . In the same
manner as the regular positional PSO, the dimensional PSO process uses the personal
best dimensionality of each particle and the global best dimensionality to attract the
particles toward better dimensional solutions.

For each dimensionality, d ∈ {dmin, . . . , dmax}, particles have separate positional PSO
components. Positional PSO processes correspond to traditional PSO processes running
in a given dimensionality. For the positional processes, the swarm keeps track of the
global best position so far achieved, bdS , and the particles keep track of their last position,
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Figure 2.1: MD-PSO particles have dimensional and positional components, while basic PSO
(bPSO) particles only have positional components. Here, the dimensional range of MD-PSO is
{2, . . . , 9} and the dimensionality of the PSO solutions is fixed to 5. The current dimensionality,
dp, of MD-PSO position is 2 and the personal best dimension, dbp, is 3.

xdp, velocity, vdp, and personal best position, bdp. Thus, the particles can continue their
positional search whenever the dimensional updates move them into the particular
dimensionality d. The difference of MD-PSO particles and regular PSO particle is
illustrated in Fig. 2.1.
As with the basic PSO algorithm, a fitness score for each particle p in its current dimen-
sionality, dp, is computed at the beginning of MD-PSO iterations. After this, personal best
solutions for all particles in their current dimensionalities, bdpp ,∀p ∈ {1, . . . , S}, personal
best dimensionalities for all particles, dbp,∀p ∈ {1, . . . , S}, the global best solution in
each dimensionality, bdS ,∀d ∈ {dmin, . . . , dmax}, and the global best dimension, dbS , are
updated, if necessary. Then particle positions and velocities are updated in their current
dimensionality using (regular) positional PSO updates. The updates are the same as
those given in Eq. (2.1), except now the dimensionality of the components depends on
the particle’s current dimensionality, i.e., the positions and velocities in a particular
dimensionality d have d elements.

vdpp (t+ 1) = w(t)vdpp (t) + c1r1(t) ◦
(

bdpp (t)− xdpp (t)
)

+ c2r2(t) ◦
(

bdpS (t)− xdpp (t)
)

xdpp (t+ 1) = xdpp (t) + vdpp (t+ 1).
(2.3)

After the positional updates, the particle’s new position, xdpp (t+ 1), still has the same
dimensionality, dp(t). Next, the particle goes through dimensional updates, which may
move it into another dimensionality. The positional search will continue from xdpp (t+ 1),
if the particle is later moves back to dimensionality dp(t). Therefore, in all the other
dimensionalities, the positional PSO components for iteration t + 1 are equal to those
for iteration t (i.e., vdp(t + 1) = vdp(t), xdp(t + 1) = xdp(t), bdp(t + 1) = bdp(t),∀d ∈
{dmin, . . . , dmax}, d 6= dp). The dimensional PSO updates closely resemble the positional
ones:

dvp(t+ 1) = bdvp(t) + c1r1(t) (dbp(t)− dp(t)) + c2r2(t) (dbS(t)− dp(t))c
dp(t+ 1) = dp(t) + dvp(t+ 1),

(2.4)
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where b· c denotes the floor operator. At the end of the MD-PSO algorithm (after R
iterations), the global best dimensionality, dbS , and the global best solution in that
dimensionality, bdbSS , represent the optimal dimensionality and solution, respectively. The
pseudocode of MD-PSO is given in Listing 2.2 and further details of the algorithm can
be found in [63].

Listing 2.2: Pseudocode of MD-PSO

% Initialization
1 for p = 1 to S do:

1.1 randomize dp(1), dvp(1)
1.2 initialize dbp(0) = dp(1)
1.3 for d = dmin to dmax do:

1.3.1 randomize xd
p(1),vd

p(1)
1.3.2 initialize bd

p(0) = xd
p(1)

2 initialize dbS(0) = d1(1)
3 for d = dmin to dmax do:

3.1 initialize bd
S(0) = xd

1(1)

% MD-PSO process
4 for t = 1 to R do:

% Updates of personal and global best solutions
4.1 for d = dmin to dmax do:

4.1.1 set bd
S(t) = bd

S(t− 1)
4.1.2 for p = 1 to S do:

4.1.2.1 set bd
p(t) = bd

p(t− 1)

4.2 for p = 1 to S do:
4.2.1 compute the fitness of particle position, f(xdp(t)

p (t))
4.2.2 if f(xdp(t)

p (t)) < f(bdp(t)
p (t− 1)) then set bdp(t)

p (t) = xdp(t)
p (t)

4.2.3 if f(xdp(t)
p (t)) < f(bdb(t−1)

p (t− 1)) then set dbp(t) = dp(t)
4.2.4 if f(bdp(t)

p (t)) < f(bdp(t)
S (t)) then set bdp(t)

S (t) = bdp(t)
p (t)

4.3 dbS(t) = arg min
d∈{dmin,...,dmax}

(f(bd
S(t)))

% Velocity and position updates
4.4 for p = 1 to S do:

% Regular positional PSO updates
4.4.1 compute vdp(t)

p (t+ 1) and xdp(t)
p (t+ 1) using Eq. (2.3)

4.4.2 in other dimensions than dp(t), update vd
p(t+ 1) = vd

p(t) and
xd

p(t+ 1) = xd
p(t)

% Dimensional PSO updates
4.4.3 compute dvp(t+ 1) and dp(t+ 1) using Eq. (2.4)

2.5 Fractional Global Best Formation

The basic PSO algorithm, as well as its multidimensional extension MD-PSO, may
suffer from premature convergence to a local optimum particularly in high-dimensional
multimodal optimization tasks. FGBF [67] is a plug-in to the (MD-)PSO process that
can efficiently address the premature convergence problem. FGBF can also decrease the
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Figure 2.2: FGBF used in a unimodal (left) and a multimodal (right) optimization problem.
The overall fitness surface is shown by the background color and the global optimum with x.
On both sides, the fractional fitness function is a distance to reference O and the bA solution
created by FGBF turns out to be better than the bS solution.

effect of the curse of dimensionality by providing an additional mechanism to leave the
current hyperplane in high-dimensional problems, where S < d. The main idea of FGBF
is to create an artificial global best solution, bA, at every iteration by combining the
best elements/dimensions of particles’ current solutions. This artificial solution then
competes with bS and the winner with a higher fitness value is then used in the update
function Eq. (2.1) or Eq. (2.3). The jth element of a particle solution can be evaluated
using a special fractional fitness function, fj(xdp,j). In the same manner as the ordinary
PSO fitness function, the fractional fitness function must be designed separately for each
class of optimization problems and the main challenge is to find such a function that will
correlate well with the overall fitness function.

A simplified 2D example of the FGBF process and different fitness functions is shown in
Fig. 2.2. On both sides, the fractional fitness score is simply a distance from a reference
O (i.e., fj(xp,1) = ∆x and fj(xp,2) = ∆y). Based on this measure, the best 1st element
is found to be in particle b and the best 2nd element in particle a, and thus, the b2

A

solution is created by combining those elements. The overall fitness surface is shown
by the background color. Darker color means higher fitness and the global optimum is
marked with x. On the left side, the optimization problem is unimodal, and the fractional
fitness function perfectly correlates with the overall fitness function. In such cases, the
bA solution will be always better or at least equally good as the bS solution. On the
right side, the overall fitness surface is multimodal and it usually means that it is not
possible to find a fractional fitness function perfectly matching with the surface. However,
even then, the bA solution may win the bS solution as on the right side of Fig. 2.2. If the
bA solution turns out to be worse than the bS solution, bS will be used in the updates
as usual.

When FGBF is used together with MD-PSO, a separate artificial solution, bdA, is created
for every dimensionality d within the dimensionality range {dmin, . . . , dmax}. In every
dimensionality, the bdA solution competes with the bdS solution. In most optimization
tasks, including those discussed in this thesis, it is possible to combine elements from
particle positions with different dimensionalities when creating bdA. This is illustrated in
Fig. 2.3, where the b4

A solution with dimensionality 4 is created by combining elements
from the current positions of particles a, b, and c with dimensionalities 2, 9, and 3. Two
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Figure 2.3: FGBF has created an artificial global best solution with dimensionality 4, b4
A, by

combining elements from the current positions of particle a, b, and c. The dimensionalities of
bA, xa, xb, and xc are all different.

elements are taken from particle b. The figure also illustrates, how only the current
solutions with the particle’s current dimensionality are considered when creating bA. The
velocities or personal best solutions are not used. bA itself is simply a position/solution.
It does not need velocity or personal best as it is created separately at every iteration.
The pseudocode of FGBF in MD-PSO is given in Listing 2.3 assuming that elements
from particle positions with different dimensionalities can be combined. The pseudocode
is plugged in between Steps 4.3 and 4.4 in Listing 2.2. Further details of FGBF can be
found in [63].

Listing 2.3: Pseudocode of FGBF in MD-PSO

% Compute fractional fitness scores
1 for p = 1 to S do:

1.1 for j = 1 to dp(t) do:
1.1.1 compute fj(xdp(t)

p,j (t))

% Find the best fractional fitness score for each element j
2 for j = 1 to dmax do:

2.1 set p[j] = arg min
p∈{1,...,S}

(fj(xd
p,j(t)))

% Create solution bA in every dimension of the search space
3 for d = dmin to dmax do:

3.1 for j = 1 to d do:
3.1.1 bd

A,j(t) = xd
p[j],j(t)

% In each dimension compete bA with bS

3.2 if f(bd
A(t)) < f(bd

S(t)) then bd
S(t) = bd

A(t)

% Update dbS

4 set dbS(t) = arg min
d∈{dmin,...,dmax}

(f(bd
S(t)))

5 return

2.6 Multiswarm PSO

When PSO or its extension is applied, the swarm will eventually converge close to the best
solution found by the swarm. In static environments, this can help fine-tune the solution
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to reach the exact optimum and it can be considered a desired property if convergence is
not premature. In dynamic environments, the locations and heights of the optima can
vary and a former local optimum may later become the global optimum. If the whole PSO
swarm is gathered around the initially global optimum, it can probably follow moderate
changes in the location of this optimum. However, if another optimum becomes the global
optimum, the swarm may not detect the change.

Blackwell and Branke [15] addressed this problem by introducing multiswarms. The
main idea of multiswarms is that swarms can converge on separate promising optima and
together they can establish a comprehensive coverage of the whole search space. The
multiswarms are basically separate PSO processes. The particles are only aware of their
own process. The only interaction between the swarms is a mutual repulsion preventing
two swarms from converging on the same optimum. For this purpose, a repulsion radius,
rrep, is defined according to the average radius of the peak basin, rbas. If P peaks are
evenly distributed in a d-dimensional space whose extent is X, the repulsion radius can
be defined as rrep = rbas = X/P 1/d. If two swarms move within rrep from each other, the
worse performing swarm is simply reinitialized. Physical repulsion is not used, because
it could lead to an equilibrium where the mutual repulsion prevents both swarms from
approaching an optimum. In an optimal case, the number of multiswarms coincides with
the number of optima to be followed. However, in real-life problems the number of optima
is usually unknown and may also vary. Therefore, Blackwell suggested also self-adapting
multiswarms [12], which can be created or removed during the PSO process.

For a single swarm converging to an optimum, it is essential to maintain enough diversity
to be able to follow the optimum despite small changes in its location. Early attempts to
maintain required diversity include charged swarms [13] and quantum swarms [15]. In [98]
and in Publication IV, we proposed using FGBF as the mechanism to ensure sufficient
diversity.

2.6.1 Multiswarms with FGBF and MD-PSO
When multiswarms and FGBF are combined as originally proposed in [98], the mul-
tiswarms can track different optima, while FGBF ensures that each swarm can keep
tracking an optimum regardless of minor changes in its location. In Publication IV,
we proposed combining multiswarms, FGBF, and MD-PSO. This allows us to perform
dynamic optimization also in environments where the solution dimensionality is unknown
and varying.

We use the above described repulsion radius to reinitialize swarms, if they get too close
to each other. We compute the distance between two swarms as the distance of their
bS positions. To add further diversity, we reinitialize randomly the particle velocities
after each environmental change. In the multidimensional case, particle dimensions and
dimensional velocities are also reinitialized.



3 Dynamic Optimization

Many real-world datasets have a dynamic nature. Data may be added or removed and
data values may be updated. Solving optimization tasks in such constantly changing
environments requires specialized techniques. Restarting an optimization algorithm
after each system and/or environmental change would lead to a significant loss of useful
information when the change is not too drastic. For example, handling video segmentation
as a series of static image segmentation tasks without exploiting the similarities between
consecutive frames would waste computational resources. Most dynamic optimization
problems in machine learning are also multimodal and, therefore, the need of efficient
optimization techniques, which are capable of adapting to the changes, is imminent.

EAs designed for dynamic environments started appearing at the end of 1990s, e.g., [3, 6,
17]. Soon many PSO-based approaches were also suggested, e.g., [14, 15, 32, 55, 78]. For
dynamic optimization, we proposed in Publication IV to use a combination of multiswarms
and FGBF in a fixed dimension and a combination of multiswarms, FGBF, and MD-PSO
when the solution dimension is unknown. These algorithms were introduced in Chapter 2.
They were tested on Moving Peaks Benchmark (MPB) and its multidimensional extension
proposed in Publication IV.

3.1 Moving Peaks Benchmark

MPB [18] is a configurable dynamic environment designed for testing dynamic optimization
algorithms in a standard way in a multimodal environment. MPB allows the creation of
different dynamic fitness surfaces consisting of a number of peaks with varying locations,
heights, and widths. The primary performance measure used is offline error, which is
the average difference between the optimum and the best solutions found since the last
environmental change.

A d-dimensional fitness surface with P peaks is expressed as

F (x, t) = max
(
B(x), max

q∈{1,...,P}
(A (x, hq(t), wq(t), cq(t)))

)
, (3.1)

where B(x) is a time invariant basis landscape, whose utilization is optional, and A is
a function defining the height of the qth peak at position x. Each of the P peaks has
its own dynamic parameters: height hq(t), width wq(t), and position of the peak center
cq(t).

Each peak parameter can be initialized randomly or set to a certain value and then after
every ∆t iterations the parameter values are changed. The change over a single peak q at
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iteration t can be defined as

hq(t) =hq(t−∆t) + r(t)∆h
wq(t) =wq(t−∆t) + r(t)∆w
cq(t) =cq(t−∆t) + sq(t),

(3.2)

where r(t) ∼ U(0, 1) is a random variable, ∆h and ∆w are the height and width change
severities, and sq(t) is a shift vector, which is a linear combination of a random vector
r(t) and the previous shift vector sq(t−∆t). The shift vector sq(t) is always normalized
to length Λ, which is called change severity. Accordingly, the shift vector sq(t) can be
defined as

sq(t) = Λ (1− λ)r(t) + λsq(t−∆t)
||(1− λ)r(t) + λsq(t−∆t)|| , (3.3)

where ||·|| denotes the Euclidean norm and λ is the correlation factor, which defines the
level of randomness of a location change.

The peak type cone used in the most experiments is defined with the following equation:

A(x, hq(t), wq(t), cq(t)) = hq(t)− wq(t) ||x− cq(t)|| . (3.4)

Note that for cone peaks, a higher value of width wq actually means a narrower cone.
’Slope’ could be a better term, but ’width’ is used in the original work.

MPB defines three standard settings of parameters, so called Scenarios, to allow easier
standard comparative evaluations among different algorithms. MPB is no longer available
in its original locations, but can be found in [16].

3.1.1 Multidimensional Moving Peaks Benchmark
In the original MPB, the search space dimensionality is fixed a priori and it is not varying
during the experiment. As discussed earlier, for many real-life optimization problems (e.g.,
image segmentation), the optimal solution dimensionality is not known. Furthermore, for
dynamic optimization problems (e.g., video segmentation) the optimal dimensionality may
also be varying. Therefore, in Publication IV, we proposed Multidimensional Moving Peaks
Benchmark (MD-MPB) to simulate multidimensional dynamic optimization problems.
MD-MPB is a multidimensional extension of MPB. In MD-MPB, the optimal solution
dimensionality can vary within a dimensionality range, {dmin, . . . , dmax}. Peak positions
in different dimensionalities share common elements, which allows exploitation of the
information gathered in other search space dimensions.

In MD-MPB, the initialization and changes of peak center positions are carried out
only in the highest possible search space dimensionality, dmax. Positions in the other
dimensionalities are obtained by leaving out the redundant (non-existing) elements.
The optimal dimensionality is chosen randomly every time the environment is changed.
Therefore, the fitness function with P peaks in a multidimensional environment can be
expressed as

F (xd, t) = max
(
B(xd), max

q∈{1,...,P}

(
A
(
xd, hq(t), wq(t), cdq(t)

)))
− (dopt − d)2, (3.5)

where d ∈ {dmin, . . . , dmax} is the dimensionality of the position xd, cdq(t) refers to the
first d elements of the peak center position, and dopt is the current optimal dimensionality.
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In comparison to Eq. (3.1) for unidimensional MPB, Eq. (3.5) has an additional penalty
term (dopt − d)2, which is subtracted from the whole environment in the non-optimal
dimensionalities.

In MD-MPB, the widths wq (i.e., the slopes) of cone peaks are scaled by 1/d, which will
make the peaks wider. Thus, the cone peaks are defined as

A
(
xd, hq(t), wq(t), cdq(t)

)
= hq(t)− wq(t)

∣∣∣∣xd − cdq(t)
∣∣∣∣ /d. (3.6)

The scaling is done to prevent the benchmark from favoring solutions with lower dimen-
sionalities. Otherwise, a solution whose elements differs from the optimum by 1.0 each,
would be a clearly better solution with a lower dimensionality as the Euclidean distance
is used.

3.2 Multiswarm FGBF and MD-PSO on (MD-)MPB

3.2.1 Algorithm Adaptation for MPB

To apply multiswarm FGBF on MPB, the PSO fitness function can be set as the com-
plement of MPB fitness function defined by Eq. (3.1), i.e., f(xp(t)) = −F (xp, t). The
fractional fitness function needs to be defined. We used the following fractional fitness
function (to be minimized) to evaluate the jth (j ∈ {1, ..., d}) element of the position of
particle p:

fj (xp,j(t)) = (xp,j(t)− cq,j(t))2
, (3.7)

where cq is the centroid of the peak yielding the maximum A(x, hq(t), wq(t), cq(t))) either
for the position xp or, alternatively, for the entire swarm. We call the former mode the
current peak mode and the latter the swarm peak mode. Both modes were considered and
evaluated separately. For MD-MPB, the same fj was used (here given with a notation
considering also the solution dimensionality):

fj

(
xdp(t)
p,j (t)

)
=
(

xdp(t)
p,j (t)− cdp(t)

q,j (t)
)2
. (3.8)

When solution bA is created in a certain dimensionality d, we allowed the FGBF algorithm
to use elements from particle positions in different dimensionalities. As a matter of fact, as
the peaks in MD-MPB directly share the common elements, it is enough to create just one
bA solution in dimensionality dmax and then the bA solutions with lower dimensionalities
can be obtained by leaving the excess elements out. To pick the jth element from a
solution xdp when creating bA, its dimensionality naturally has to be j or higher. This
approach allows FGBF to exploit the similarity of different dimensionalities and the
information gathered in other dimensionalities. Note that it is still possible that, in some
search space dimensionalities, bdA beats the current global best solution, bdS , while in
other dimensionalities it does not.

Due to the shared elements of the peak positions in different dimensionalities in MD-MPB,
allowing swarms to converge on the same peak in different dimensionalities would be
squandering. Therefore, we extended the mutual repulsion between the swarms to affect
swarms in different dimensionalities. To accomplish this, we compute the distance of two
swarms still as the distance between their bS solutions. If the solutions have different
dimensionalities, only the common elements are considered.
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3.2.2 Experimental results

In Publication IV, the multiswarm FGBF was tested on MPB Scenario 2 and evaluated
against other dynamic optimization methods. The results are given in Table 3.1. The
multiswarm FGBF achieved clearly better results than any earlier PSO-based dynamic
optimization method. The overall best results were obtained using a method based on
the Extremal Optimization algorithm [88], but this algorithm was designed specifically
for MPB and its applicability for other practical dynamic problems is not clear. The
best FGBF results given in the table were obtained using the swarm peak mode with 10
swarms and 4 particles in each swarm.

Table 3.1: Best results on MPB Scenario 2 [Publication IV]

Source Base algorithm Offline error
Blackwell and Branke [14] PSO 2.16± 0.06
Li et. al [78] PSO 1.93± 0.06
Mendes and Mohais [84] Differential Evolution 1.75± 0.03
Blackwell and Branke [15] PSO 1.75± 0.06
Multiswarm FGBF PSO 1.03± 0.35
Moser and Hendtlass [88] Extremal Optimization 0.66± 0.02

When we examined the current error (the difference between the current global maximum
and the current best result achieved by the algorithm) during the test runs, we observed
the expected behavior illustrated in Fig. 3.1. The error temporarily grew larger after each
environmental change, but soon the algorithm usually caught the global optimum again.
Importantly, at the very beginning, the error was generally clearly larger than immediately
after later environmental changes. This shows the benefit of using an algorithm designed
for dynamic optimization instead of restarting the algorithm after each environmental
change. It was also observed that, during the first few ∆t iterations, the current error was
generally higher and the global optimum (zero error) was not yet reached. We concluded
that at least some of the swarms did not yet converge on a peak. Generally, the initial
convergence seems to be more difficult than to keep tracking a peak after environmental
changes. In the few cases where the algorithm could not find the global optimum between
environmental changes a swarm had most likely lost its followed peak for some reason.
Possibly a peak became too narrow and/or low or maybe two peaks were so close to each
other that the swarm was reinitialized as a result of repulsion.

We also evaluated the effect of multiswarms and FGBF on the current error by running
experiments without multiswarms or without FGBF. In these experiments the swarm
peak mode was used. The results are illustrated in Fig. 3.2. Both multiswarms and FGBF
proved to be essential for the algorithm performance. Without multiswarms, the single
PSO swarm is most likely converging to a single peak and keeps following that peak. The
changed center position can be found quickly, but the solution quality is limited by the
current fitness of the peak. The multiswarms alone without FGBF performed somewhat
better. Immediately after environment changes, the current error was only slightly worse
than with FGBF. However, without FGBF, the algorithm could seldom find the global
optimum. Either there was no swarm converging to the highest peak or the changed peak
center position could not be found before the environment changed again.

On MD-MPB, we could not make comparisons against other methods as they were not
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Figure 3.1: Current error for multiswarm FGBF on MPB Scenario 2 [Publication IV]

(a) (b)

Figure 3.2: Effect of multiswarms (left) and FGBF (right) on current error on MPB Scenario 2
[Publication IV]

designed to handle multidimensional environments. The best results were now obtained
using the swarm peak mode with 10 swarms and 7 particles in each. The combination
of multiswarms with MD-PSO and FGBF was able to track the changes of optimal
dimensionality usually immediately. This can be largely accredited to FGBF. Also a
single swarm with FGBF could effectively track the optimal dimension, but multiswarms
without FGBF did not have this ability. Otherwise, the observations on the effect of
multiswarms and FGBF were similar to the unidimensional case. Generally, it took a bit
longer to overcome the initial phase of a higher current error and to recover from losing
peak tracking. This is natural, i.e., as the search space is more complex, the algorithm
converges slower.





4 Particle Swarm Clustering

Clustering is an unsupervised process aiming at dividing dataset items into natural groups.
Items in one group should be as similar as possible and items in different groups should
be well separated. Clustering can be exploited in many more advanced data analysis
activities, such as classification, object recognition in images, social network analysis
etc. Due to numerous applications benefiting from improved clustering quality, a lot of
research activities have focused on different clustering methods and on evaluating the
results, i.e., clustering validity assessment.

The most well-known and widely used clustering algorithm is K-means [109]. K-means
iteratively finds K centroids and each data item is then assigned to the cluster defined by
the closest centroid. Thus, the algorithm always partitions the dataspace into Voronoi
cells. While this approach cannot produce partitions with arbitrary shapes (two examples
are given in Fig. 4.1), this is usually not a severe problem, since natural data classes
commonly have near-Gaussian distributions. Another serious drawback of the K-means
algorithm is that it assumes the number of clusters, K, known a priori. K-means is also
a hill climbing algorithm that will get stuck in the nearest local optimum in the search
space. Therefore, when used with complex datasets, the global convergence capability of
the K-means algorithm is fully dependent on its initialization. However, K-means is a
fast algorithm and can be run several times and using different values of K. For simple
datasets, some of the obtained solutions are likely to be sufficiently good and a properly
chosen Clustering Validity Index (CVI) can be used to select the best partition and the
best cluster number.

(a) (b)

Figure 4.1: Two examples of data distributions, which cannot be successfully clustered into
Voronoi cells
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When the dataset complexity increases, more and more K-means runs are required to
find satisfactory partitions until at some point it is probable that all the K-means runs
get stuck into local optima far from a satisfactory result. Therefore, with more complex
datasets, a more powerful clustering method, such as an evolutionary algorithm [45],
deterministic annealing [100], or a swarm intelligence algorithm [1], is needed.

Using PSO for clustering is generally referred as PSC. In PSC, as in other PSO appli-
cations, each particle’s position represents a complete solution to the problem. This
is commonly realized using either partition-based or centroid-based particle encoding.
In partition-based encoding [56], each particle is a vector of I integers, where the
jth element represents the cluster label assigned to item j, j ∈ {1, .., I} and I is the
number of data items to be clustered. In centroid-based encoding, the position of
particle p defines a set of potential cluster centroids in an d-dimensional data space:
xp = {mp,1, . . . ,mp,j , . . . ,mp,K}, where mp,j represents the jth cluster centroid and K
is the number of clusters. In the same manner as K-means, PSC with the centroid-based
encoding divides the dataspace into Voronoi cells. The partition-based encoding can
produce clusters of arbitrary shape, but for larger datasets, the particle dimension gets
too high, and therefore, the centroid-based encoding is more commonly used.

The first centroid-based PSC technique was proposed in [93]. Its major limitation was the
need to manually define the number of clusters, K, a priori. Another clustering technique
proposed in [94] overcame this limitation by using binary PSO to select which of the
potential particle centroids should be included in the final solution, but in this technique
the K-means algorithm was used to refine centroid positions.

4.1 Clustering with MEPSO

Das et al. [26] proposed an algorithm using MEPSO (described in Section 2.3) for selecting
the number of clusters and finding the centroid positions. They proposed also a particle
encoding scheme where each particle position consists of a user-defined maximum number
of cluster centroids, Kmax, along with activation thresholds for each centroid. The position
of particle p is encoded as a Kmax +Kmax ∗d-dimensional vector: xp = {Tp,1, . . . , Tp,Kmax ,
mp,1, . . . ,mp,Kmax}, where Tp,j , j ∈ {1, . . . ,Kmax} is an activation threshold in the range
of [0, 1] and mp,j represents the jth (potential) cluster centroid. The activation thresholds
can inactivate cluster centroids, and thus, the final number of clusters can be below Kmax.
The jth centroid is included in the solution proposed by particle p only if Tp,j > 0.5.
If there are less than two active clusters in a solution, one or two randomly selected
activation thresholds, Tp,j < 0.5, are reinitialized to a random value in the range of
]0.5, 1]. Xu et al. used similar particle encoding for Differential Evolution Particle Swarm
Optimization (DEPSO) in [122, 123]. They also deactivated any cluster having less than
two items by setting its activation threshold to a random value in the range of [0, 0.5] and
then checked whether the condition on the minimum number of clusters is still satisfied.
In Publication VIII, this slightly modified approach was applied with MEPSO.

We observed in Publication VIII that the above described particle encoding is susceptible
to underclustering, i.e., often finds too few clusters. A probable reason is that each
particle position basically represents partitions with all the considered numbers of clusters
simultaneously. The algorithm will likely first encounter some decent solutions with
smaller numbers of clusters and particle positions will be attracted closer to these
solutions. However, in clustering, the same centroid positions are usually not optimal
for higher numbers of clusters. This is illustrated in Fig. 4.2. If the algorithm first finds
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Figure 4.2: Possible cluster centroids (stars) for a dataset. Filled large stars form a desired
solution with three clusters and unfilled large stars with two clusters. [Publication VIII]

a near-optimal two-cluster solution shown by unfilled large stars, just adding a third
centroid does not form a proper three-cluster solution. This means that the particle
encoding creates strong local optima with lower numbers of clusters. Often the final
number of clusters is too low because one of such optima has been too difficult for the
applied algorithm to escape.

4.2 Clustering with MD-PSO and FGBF

MD-PSO and FGBF were first applied to clustering in [67]. Later, clustering with
MD-PSO and FGBF has been applied, for example, for dominant color extraction [69],
Holter register classification [64], and Radial Basis Function Neural Network (RBFNN)
training ([54, 60], Publication VII). It has been observed that, when adapted properly,
MD-PSO with FGBF can lead to an optimal clustering performance even in highly
complicated datasets.

A straightforward multidimensional extension of the basic centroid-based encoding can
be used with MD-PSO. In the extension, particles can move in every search space dimen-
sionality d ∈ {dmin, . . . , dmax} and in the dth dimensionality particle positions represent d
potential cluster centroids, i.e., xdp = {mp,1, . . . ,mp,j , . . . ,mp,d}. The dimensional PSO
process guides particles toward the optimal number of clusters, while the positional PSO
process helps refine the centroid locations with a certain number of clusters. As MD-PSO
has separate solutions for different cluster numbers, it will not encounter similar strong
local optima with low numbers of clusters as MEPSO (described in Section 4.1) and
underclustering is not a problem to the same extent.

FGBF can improve the clustering performance by combining the best individual elements
of cluster positions, i.e., cluster centroids. It creates an artificial solution, bdA, to compete
with the bdS solution in every dimensionality d ∈ {dmin, . . . , dmax}. However, it is
challenging to evaluate individual solution elements, because the quality of a certain
centroid always depends on the other selected centroids. This is evident in Fig. 4.2.
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Figure 4.3: To ensure selecting centroids representing different natural clusters, the FGBF
operation exploits MSTs

Combining the unfilled large stars to form b2
A or the filled large stars to form b3

A would
probably help MD-PSO find better overall clustering solutions, but combining both
filled and unfilled stars into a single solution is clearly not desired. A poorly chosen
centroid combination can also result in a situation where no data items are assigned to the
clusters defined by certain centroids. It is not feasible to consider all the possible centroid
combinations when creating bdA solutions, but purely local centroid fitness evaluation
based only on the data items without consideration of other centroids in the solution
would likely produce undesired solutions.

To ensure that at least one data item is assigned to each cluster, the FGBF operation uses
only centroids which, among all the possible centroids, are closest to at least one data item.
To avoid selecting centroids representing the same natural data cluster, spatially close
centroids are first grouped into centroid groups using a Minimum Spanning Tree (MST)
[74]. A certain number of centroid groups, d ∈ {dmin, . . . , dmax}, can be obtained from
the MST simply by breaking the d − 1 longest MST branches. The artificial solution
bdA is then formed by choosing only one centroid form each group. This is illustrated
in Fig. 4.3. Potential cluster centroids are represented by stars. The filled stars form
the subset of centroids having at least one data item closest to them, while the unfilled
stars will not be used in the creation of bdA. When creating b4

A, the 4 − 1 = 3 longest
MST branches marked with dashed line would be first broken to obtain 4 centroids group.
Only one centroid is then selected from each group.

Originally, in [67] and in most applications thereafter, the fitness function for MD-PSO
clustering was set as the quantization error or the average distance of data items to their
cluster centroids:

f(xdp) = 1
d

d∑
j=1

∑
z∈Cj

‖z−mp,j‖
Ij

, (4.1)
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where d is the solution dimensionality (number of clusters), a data item z belongs to the
cluster Cj , if the centroid mp,j is closer to it than any other centroid in xdp, and Ij is
the number of data items belonging to Cj . The fractional fitness function to evaluate
the individual element xdp,j (i.e., centroid mp,j) was simply the average distance between
the centroid and the data items belonging to that cluster in the overall solution defined
by xdp:

fj(xdp,j) =
∑

z∈Cj

‖z−mp,j‖
Ij

. (4.2)

Naturally, it is not guaranteed or even probable that the same data items will be assigned
to the cluster defined by the centroid xdp,j when combined with different centroids in
solution bdA. Nevertheless, these fractional fitness function values are easy to compute
simultaneously with computing the overall fitness function values according to Eq. (4.1)
and they serve as a proper approximation of the centroid quality.

In Publication VIII, we conducted an extensive comparison of CVIs that can be used for
fitness evaluation in PSC. The quantization error was not among the best performers.
We also proposed an improved strategy to carry out fitness evaluation. The findings
of Publication VIII are discussed in Section 4.3. The fractional fitness score used in
Publication VIII was slightly modified from Eq. (4.2) to

fj(xdp,j) =
M∑
i=1

‖z[i] −mp,j‖
M

, (4.3)

where M = min (10, Ij) and z[i] represents the ith closest data item to mp,j . Due to
computational simplicity, only data items assigned to cluster Cj defined by mp,j in
solution xdp were considered. It should be remembered that the FGBF operation is only
used as means to avoid premature convergence. If FGBF cannot improve the results, it
will not have any effect on MD-PSO as the artificial solutions will not be used.

To further fine-tune the FGBF operation for clustering, the fractional fitness function
could be selected together with the clustering fitness function. This could allow computing
the fractional fitness functions values simultaneously with computing the overall particle
fitness as in the earlier works where Eq. (4.1) and Eq. (4.2) were used as the overall and
fractional fitness functions, respectively. In addition to the computational benefit, further
resemblance of the overall and fractional fitness functions might also result in improved
bA solutions, but this remains a topic for future research.

4.3 Evaluation of Clustering Validity in Particle Swarm
Clustering

The quality of a clustering result, i.e., a data partition, can be evaluated using a CVI.
External CVIs compare the partitions with some ground truth information such as item
labels. In general, there is no need for clustering if such ground truth data is available, and
therefore, external CVIs are mainly used for verification purposes. Internal CVIs evaluate
partitions purely based on some internal data properties such as cluster compactness and
separation. Relative CVIs allow ranking of different partitions. PSC methods generally
select an internal relative CVI as their fitness functions. The selection of a proper CVI
is essential to obtain proper results. If the selected fitness function does not model the
search space well, the clustering results will be poor no matter how advanced the applied
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algorithm is. Nevertheless, fitness function selection in PSC has received surprisingly little
attention. Xu et al. [123] provide some insight into selecting the PSC fitness function, but
most new PSC applications simply adopt a fitness function from an earlier work, while
often changing it would be an easy way to improve the results. There are several general
CVI comparisons, e.g., [4, 29, 86, 118], but their results are not consistent and may not
directly correlate with the suitability of the CVIs to be fitness functions in dynamic PSC.

Because in dynamic clustering the number of clusters is unknown, it is important to know
how a specific CVI will behave with varying cluster numbers. Several CVIs which have
been successful in general CVI comparisons do not get their minimum/maximum value
on the optimal number of clusters. With them, different statistics, such as maximum
increase/decrease or maximum/minimum of the second differences, are better suited to
detect the optimal number of clusters [29, 38]. Such CVIs as fitness functions may mislead
PSO, which is simply searching for the optima. It should also be noted that PSC is often
a pre-step to a more advanced operation, such as Electrocardiogram (ECG) classification
in [64] or training of RBFNNs in Publication VII. Each obtained cluster is processed
in a certain manner, and commonly, it is easy to process few clusters similarly, but it
is more problematic if the items assigned to a single cluster should not have the same
treatment. Therefore, if the partitions are otherwise meaningful, CVIs causing the PSC
application to overcluster can be usually preferred to those CVIs that will more likely
lead to underclustering.

Most existing CVIs depend on the cluster centroids in some way. In PSC fitness evaluation,
the centroid locations in CVI formulas are traditionally directly replaced by the particle
positions [67, 93, 122]. This seems appropriate, as the purpose of the fitness function is to
evaluate the fitness of the particle position as a clustering solution. However, usually the
computational centroid of the items assigned to the corresponding cluster differs from the
exact position defined by the particle as illustrated in Fig. 4.4. It can be argued that, if
two different sets of centroids result in the same final data partition, their fitness should
be equal. Furthermore, in a situation similar to that in Fig. 4.4, the traditional PSC
approach would most probably later converge so that particle positions and computational
centroids match, but the computational effort required would be wasted in the sense that
the final data partition would not improve further.

In Publication VIII, we proposed using Fitness Evaluation with Computational Centroids
(FECC), where the fitness of a particle position is computed using the values of the
corresponding computational centroids. With FECC, the particle positions resulting in
the same final partition will get the same fitness value. However, in real-life clustering
problems, clusters are usually not as well separated as in Fig. 4.4. Moving the particle
centroids to match with the computational centroids would result in different cluster
memberships, which is a well-known fact from the functioning principle of K-means. We
believe that in such situations FECC has a greater potential to guide the PSC process
toward better partitions. With the traditional approach, a promising partition may be
penalized and lost only because the particle positions are somewhat outside the data
distribution. The FECC approach can be easily used with any PSC method where the
fitness evaluation is performed using a CVI depending on the cluster centroids. The
only modification needed is the computation of the mean of the data items assigned to a
certain cluster before computing the value of the selected CVI.

In Publication VIII, we also conducted an extensive comparison of CVIs as PSC fitness
functions. We considered 17 CVIs. 14 of them could be applied using both the traditional
and FECC approaches. The experiments were conducted over 720 synthetic and 20 real
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Computational 
centroids

Centroids proposed by 
a particle position

Figure 4.4: An example of different centroids proposed by a particle and computational
centroids [Publication VIII]

datasets with varying properties. Both MEPSO and MD-PSO were used for clustering
and three different external CVIs were used to evaluate the obtained partitions.

The overall fitness function ranking over the synthetic datasets is given in Fig. 4.5. The
fitness functions operating with the FECC approach are denoted with an asterisk. All
the best ranking indices were using FECC. The conducted statistical significance analysis
confirmed that, for all the best performing CVIs, the FECC approach indeed improved
the performance significantly. The winner fitness function was Xu index defined as

Xu = d log
(√

ssw

dI2

)
+ logK, (4.4)

where I is the number of data items, d is data dimension, K is number of clusters, and
ssw is the within-cluster sum-of-squares defined as

ssw =
K∑
i=1

sswi =
K∑
i=1

∑
z∈Ci

‖z−mi‖2. (4.5)

Here mi is the centroid (the computational centroid for Xu* and the centroid defined by
a particle position for Xu) of cluster Ci. The definitions of the other evaluated CVIs are
given in Publication VIII. The publication compares the fitness functions under various
conditions and provides further recommendations on fitness function selection for different
situations.
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Figure 4.5: Average fitness function ranks for PSC over 720 synthetic datasets [Publication
VIII]



5 Training of Artificial Neural
Networks

The human brain has an amazing ability to learn from experience and to gain deeper
understanding of why things happen the way they do. Artificial Neural Networks (ANNs)
have been inspired by the brain and other biological nervous systems. They strive for
the same learning and understanding ability and the models have some similarities with
biological nervous systems. The purpose has not been to build a faithful model, but to
gain a maximal learning ability with feasible computational and memory requirements.
Generally, all ANN models are defined using the following three properties [81]:

• Architecture defines the network topology and parameters.

• Activity rules define how a neuron responds to its inputs.

• Learning rules specify how the network parameters change with time.

ANNs can be described as directed graphs whose nodes (i.e., neurons) perform some
activation function to their inputs and then give the results forward to be one of the
inputs for another node until the output neurons are reached. ANNs can be divided
into feedforward and recurrent networks based on their connectivity. The recurrent
topology can contain backward loops, while the feedforward topology has only forward
connections. The feedforward networks are significantly more common due to their easier
training. Usually, they are organized into layers of neurons and only the neurons in
adjacent layers can be connected. The input layer is commonly just a passive layer, where
no computations are carried out. Therefore, it is not counted to the total number of
layers, L. The layers between the input and output layers are called hidden layers. A
typical activation function is of the form

ylk = a

 N∑
j=1

ωljkzj − θlk

 , (5.1)

where ylk is the output of neuron k in layer l, N is the number of inputs, zj is the jth
input to the neuron, ωljk is the weight for the connection between neuron k and its jth
input, and θlk is the bias of the neuron k in layer l. The number of input neurons, N i,
and the number of output neurons, No, are defined by the problem, while the number of
hidden layers and the number of neurons in each hidden layer must be somehow decided
during the network design. A sample feedforward ANN is illustrated in Fig. 5.1. It has
three layers: two hidden layers and the output layer. The figure also shows the connection
weights w2

j1 and the bias θ2
1 for the first neuron in layer 2.

29
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Figure 5.1: An example of fully-connected feedforward ANN [Publication I]

Typical applications for neural networks are classification, regression, data processing (e.g.,
clustering, filtering), and robotics. Some commonly known network models are Multilayer
Perceptrons (MLPs), RBFNNs, Recurrent Neural Networks (RNNs) [89], Autoencoders
[9], and Convolutional Neural Networks (CNNs) [73]. In this thesis, MLPs and RBFNNs
applied to classification are covered in more detail.

5.1 Multilayer Perceptrons

MLPs are feedforward networks having a topology similar to Fig. 5.1. They have smoothly
nonlinear (differentiable everywhere) activation functions. The nonlinearity is important,
because otherwise MLPs could always be reduced to Single-layer Perceptrons (SLPs)
having equal capabilities. A commonly used activation function is the sigmoid function:

ylk = 1

1 + e
−
∑Nl−1

j=1
ωl
jk
yl−1
j
−θl

k

, (5.2)

where N l−1 is the number of neurons in the previous layer l−1. When computing outputs
of the first hidden layer, yl−1

j refers to the jth element of the network input, zj .

5.1.1 Training MLPs with Backpropagation

The most common approach to MLP training is Backpropagation (BP). The early versions
of the algorithm date back to 1970s. Rumelhart et al. [101] significantly contributed to
the popularization of BP in 1986. During 1990s and 2000s several improvements to the
BP algorithm were proposed, but only in 2010s BP has gained its current huge popularity
thanks to the emerging deep learning techniques [102].

The BP algorithm can be considered to be a generalization of the least mean squares
method. It is an iterative gradient descent technique aiming to minimize the Mean
Squared Error (MSE) between the target outputs and actual computed outputs. The BP
algorithm consists of two passes: during the forward pass, the input pattern is propagated
through the network, and during the backward pass, the error is propagated backwards
through the network to update the weights. The general idea of the BP algorithm can be
summarized as follows:



5.1. Multilayer Perceptrons 31

1. Initialize randomly all the network weights, ωljk, and biases, θlk.

2. Feed a training pattern p to the network. Compute the outputs, ylkp, for all the
neurons.

3. Calculate the error between the computed output, yokp, and the desired output, tkp,
as ekp = tkp − yokp for each output layer neuron k.

4. For each neuron k and for each network parameter hk (either ωljk or θlk) calculate
the partial derivatives ∂Ep

∂hk
, where Ep is the total training error computed over

all No output neurons when training pattern p is fed to the network defined as
Ep = 1

2
∑No

k=1 e
2
kp. The name of the BP algorithm comes from this step: for MLPs

it is necessary to start calculating the partial derivatives from the output layer and
then iteratively proceed backwards toward the input layer. The formulas for the
partial derivatives can be found in [44].

5. Update the parameters as

hk[t+ 1] = hk[t]− η ∂Ep
∂hk

, (5.3)

where η is the learning rate.

6. Repeat steps 2-5 until a stopping criterion is reached. To reduce the risk of being
trapped into a local minimum, it is recommended to randomize the order of the
training samples at every epoch (full presentation of the whole training set).

The BP algorithm is computationally efficient training algorithm, which explains its
current popularity. It can handle huge datasets in a reasonable time. However, it has also
some disadvantages. It is, after all, just a gradient descent method, which can get trapped
into a local optimum and is dependent on its initialization. The learning rate parameter,
η, is very important. Failing to set it properly may lead to either oscillations or extremely
long training times. Furthermore, BP can operate in a fixed network architecture only.
This means that the architecture must be set prior to training. Usually the architecture
is set based on general rules or previous experiments and, therefore, may not be optimal
for the current problem.

5.1.2 Training MLPs with Particle Swarm Optimization
To use PSO to train MLPs, the problem must be formulated as a solution space suitable
for PSO search. The particle positions can be formed as

xp = {{ω1
jk}, {θ1

k}, {ω2
jk}, {θ2

k}, . . . , {ωLjk}, {θLk }}, (5.4)

where {ωljk} and {θlk} are sets of weights and biases needed for layer l.
The quality of the obtained networks can be evaluated using MSE, which is now computed
over all I training patterns.

MSE = 1
2INo

I∑
p=1

No∑
k=1

(tkp − yokp)2. (5.5)

The MSE is directly used as the fitness function for PSO particles.
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5.1.3 Comparison of BP and PSO for Training MLPs
Early comparisons of BP and PSO include [83, 114]. In [114], different PSO-based
training techniques were shown to be superior to BP and GA-based training in terms of
the obtained classification accuracy in the test set. The results obtained by Mazurowski
et al. [83] were quite the opposite and the BP training was superior on imbalanced classes.
Also in other studies comparing BP with evolutionary training methods such as GA,
contradictory conclusions are drawn. We believe that the contradictory conclusions can
be explained by the fact that in the earlier comparisons only one or few MLP topologies
have been considered. However, the topology selection should not be neglected. It can
drastically change the results and for any given problem it may be possible to find a
topology where either of the compared algorithm performs better.

In Publication I, we proposed a new comparison procedure that systematically and
exhaustively considered all the network architectures within an architecture space defined
by the range of layers, {Lmin, Lmax}, and the range of numbers of neurons in each hidden
layer l, {N l

min, N
l
max}. The creation of the architecture space is defined in more detail

in Section 5.1.4 and the architecture space used in Publication I is shown in Table 5.2.
Furthermore, both algorithms were applied using two different iteration numbers (high
and low).

The most important result in Publication I was that the comparison results indeed
varied between the different architectures and the iteration numbers. The variation over
different architectures is illustrated in Fig. 5.2. It is clear that in the comparisons and
the applications, it is not enough to consider a single architecture. Table 5.1 shows the
best average test classification errors obtained on different datasets and whether it was
obtained using the low or the high iteration number. As can be seen, the iteration number
is also an important factor that can change results. In Publication I, PSO demonstrated
better average test classification error.

Table 5.1: The best average test classification errors for BP and PSO [Publication I]

Dataset Method Test CE It. number

Breast cancer BP 0.0101± 0.0024 low
PSO 0.0078± 0.0024 low

Diabetes BP 0.2175± 0.0112 low
PSO 0.2135± 0.0024 high

Heart disease BP 0.2222± 0.0087 low
PSO 0.2043± 0.0031 low

5.1.4 Evolving MLPs with Multidimensional Particle Swarm
Optimization

MD-PSO was suggested for evolving MLPs in [66]. The dimensional search process of
MD-PSO can be dedicated to search for an optimal network topology. This is realized
by proposing a systematic way to enumerate all the architectures in the architecture
space defined by two given range arrays, Rmin = {N i, N1

min, . . . , N
Lmax−1
min , No} and

Rmax = {N i, N1
max, . . . , N

Lmax−1
max , No}. The numbers of neurons in the input and output

layers, N i and No are defined by the problem at hand and, thus, are the same in both
arrays. All the architectures are enumerated into hash indices using a hash function. The
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Figure 5.2: Train (top) and test (bottom) error statistics for BP and PSO on the architectures
0-40 defined in Table 5.2 over Diabetes dataset [Publication I]

hash function starts from the simplest network, either a SLP or a MLP with Lmin − 1
hidden layer and N l

min neurons in each layer, and continues to the most complex MLP
having Lmax − 1 hidden layers and N l

max neurons in each layer.

The hash table for sample range arrays Rmin = {N i, 1, 1, No} and Rmax = {N i, 8, 4, No}
is given in Table 5.2. The hash function associates the first index (d = 0) with the simplest
considered architecture (SLP) and the most complex architecture receives the highest
index (d = 40). MD-PSO can then perform its dimensional search by navigating between
the network architectures according to the hash table.

For each network topology, MD-PSO performs the regular positional search. The particle
encoding is a straightforward multidimensional extension of the encoding in Eq. (5.4):

xdp = {{ω1
jk}, {θ1

k}, {ω2
jk}, {θ2

k}, . . . , {ωdjk}, {θdk}}. (5.6)

In addition to the optimal solution found in the optimal dimension, dbS , MD-PSO provides
optimal solutions in all the other considered architectures. In dynamic systems, where
the solution space changes over time, MD-PSO can exploit the other optimal solutions
with different architectures when it continues its search in an altered solution space. In
this way, the MD-PSO can easily fine-tune the solutions in other architectures as well
and it may help it to find better solutions. In this thesis, this property is exploited in
Collective Network of Binary Classifiers (CNBC) discussed in Chapter 6. MLPs trained
with MD-PSO are also used for feature synthesis as described in Section 7.3.

Fig. 5.3, originally published in [66], illustrates the ability of MD-PSO to find optimal
network architecture. In the upper part, the statistics for BP training over all the
architectures in the architecture space in Table 5.2 are given. The lower part, shows a
histogram of the final best architectures found by 100 MD-PSO evolutions. Clearly, the
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Table 5.2: Architecture space defined by range arrays Rmin = {N i, 1, 1, No} and Rmax =
{N i, 8, 4, No}

Index Configuration Index Configuration Index Configuration
0 N i ×No 14 N i × 6× 1×No 28 N i × 4× 3×No

1 N i × 1×No 15 N i × 7× 1×No 29 N i × 5× 3×No

2 N i × 2×No 16 N i × 8× 1×No 30 N i × 6× 3×No

3 N i × 3×No 17 N i × 1× 2×No 31 N i × 7× 3×No

4 N i × 4×No 18 N i × 2× 2×No 32 N i × 8× 3×No

5 N i × 5×No 19 N i × 3× 2×No 33 N i × 1× 4×No

6 N i × 6×No 20 N i × 4× 2×No 34 N i × 2× 4×No

7 N i × 7×No 21 N i × 5× 2×No 35 N i × 3× 4×No

8 N i × 8×No 22 N i × 6× 2×No 36 N i × 4× 4×No

9 N i × 1× 1×No 23 N i × 7× 2×No 37 N i × 5× 4×No

10 N i × 2× 1×No 24 N i × 8× 2×No 38 N i × 6× 4×No

11 N i × 3× 1×No 25 N i × 1× 3×No 39 N i × 7× 4×No

12 N i × 4× 1×No 26 N i × 2× 3×No 40 N i × 8× 4×No

13 N i × 5× 1×No 27 N i × 3× 3×No

chosen architectures match with the best BP statistics. Simpler architectures can be seen
somewhat favored.

5.2 Radial Basis Function Neural Networks

RBFNNs have been successfully applied in several areas such as medical diagnostics [2],
robotics [79], dynamic system design [124], and stock index forecasting [104]. They are
feedforward neural networks with universal approximation ability. They always have a
single hidden layer of Radial Basis Function (RBF) neurons and a linear output layer. The
RBF neurons use a strictly positive radially symmetric activation function to transform
the input data to a new feature space usually having a higher dimensionality than the input
space. The mathematical justification behind this is Cover’s theorem on the separability
of patterns [25, see 44 p. 258] stating: “A complex pattern-classification problem cast
in a high dimensional space nonlinearly is more likely to be linearly separable than in
a low-dimensional space”. The number of hidden RBF units is usually high due to the
same theorem. The output layer then supplies the network’s response to the transformed
input data.
RBFNNs commonly have Gaussian basis functions as their activation functions:

g(z) = e

(
−||z−m||2

2σ2

)
, (5.7)

where m and σ are the center location and width of a Gaussian neuron and z is an input
vector. The outputs of RBFNNs are weighted sums of all the Gaussian neuron outputs:

yj =
N∑
k=1

ωkjgk(z) =
N∑
k=1

wkje

(
−||z−mk||2

2σ2
k

)
, (5.8)

where N is the number of Gaussian neurons and wkj is the weight between the kth
Gaussian neuron and the jth output neuron.
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Figure 5.3: Training MSE for exhaustive BP training on architectures 1-41 (top) and archi-
tecture histogram of 100 MD-PSO evolutions (bottom) over Heart Disease dataset. Originally
published in [66].

5.2.1 RBFNN Training

The training of RBFNNs consists of deciding the number of hidden neurons, assigning
the values of their center locations and widths, and finally assigning the weight values.
The center locations have been observed to have a more critical impact on the network
performance than their widths or the weights [119]. Also the number of hidden neurons is
important: too few neurons may be insufficient to learn a model, while too many neurons
may lead to overfitting [11, 35].

It is also possible to train RBFNN using BP or MD-PSO as described in sections 5.1.1
and 5.1.4 for MLP. A limitation with BP is that it cannot evolve the network architecture,
but it must be fixed a priori. Simultaneous search for the network topology and its
parameters can be performed using MD-PSO or some evolutionary or genetic algorithms,
but these methods are generally slow. A more common approach is to first define the
center locations and widths and then determine weights separately in the second phase.
Possible techniques for solving the center positions include supervised vector quantization
algorithms or supervised training of decision trees [103]. However, the most common
approach is to cluster the input items and put the RBF centers to the found cluster
centroids.

Originally, clustering was based on fully unsupervised input clustering approach, but soon
some partially supervised techniques were introduced. In the commonly used input-output
clustering approach, the input vectors are concatenated with the target output vectors,
and clustering is performed using these concatenated vectors. In Publication VII, we
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proposed a novel approach to bring supervision into the clustering step. We simply
clustered items class-by-class. The approach is called class-specific clustering.

In addition to RBF center locations, their widths have to be determined. Often acceptable
classification results can be obtained even by using the same widths for all centroids [44].
However, using a single width value may harm performance if there is a reason to assume
that RBF centroids correspond to clusters with varying sizes. This is typical for the
class-specific clustering approach as the distributions of different classes may be completely
different. Varying width values for each RBF neuron can be obtained using a simple
heuristic [52, 87] where, for each center, mk, the distance to the nearest RBF center is
computed and multiplied by γ:

σk = γmin
k 6=j

(‖mk −mj‖). (5.9)

With the class-specific clustering, only the clusters belonging to the specific class can be
considered when computing the distance. In [52], γ = 5 was applied.

In the second learning phase, the network weights are determined typically using either
BP [87, 90] or the linear least squares technique [44]. As the only parameters to be set
are the weights between the RBF and output neurons, BP reduces to a linear regression
task.

5.2.2 Different Clustering Approaches in RBFNN Training
5.2.2.1 Input Clustering

The input clustering refers to the basic unsupervised clustering, where the available class
information is not considered in any way. The input clustering has been widely used in
RBFNN training, e.g., in [42, 44, 92].

5.2.2.2 Input-output Clustering

In the input-output clustering, the vectors to be clustered, zIOp , are formed by concate-
nating the input vectors and the corresponding target output vectors weighted by a factor
β:

zIOp = [zp, βtp], (5.10)

where zp is the pth input vector in the training set and tp is the corresponding target
output vector. The weight β is commonly selected so that each element in the augmented
vector will have a similar order of magnitude [19]. As a result, the output part will be
emphasized more when the number of classes is higher and, thus, the 1-of-C-encoded
output vector (e.g., [1 -1 -1], [-1 1 -1], and [-1 -1 1] for the classes of a 3-class problem)
longer. After the input-output clustering, the RBF centers are obtained from the cluster
centroids by discarding the output part. The final network will operate with the inputs
only, as usual. It has been shown that with a suitable weight β the training error can
be made arbitrarily small by choosing a sufficiently large number of hidden neurons
[112]. However, this may lead to poor generalization ability and to an undesired network
structure.

While the input-output clustering is assumed to be superior to the input clustering, only
few studies have actually compared the two approaches. In [19], a better performance
as a dynamic model for a time series system was obtained when using the input-output
clustering approach, but in that comparison also different RBF center widths were assigned



5.2. Radial Basis Function Neural Networks 37

for the two approaches. In [113], the input-output clustering outperformed the input
clustering in function prediction on two datasets. Besides Publication VII, we are not
aware of any comparisons on classification tasks.

5.2.2.3 Class-specific Clustering

In Publication VII, we introduced supervision into RBFNN training simply by clustering
items class-by-class. We call the resulting approach class-specific clustering. Our mo-
tivation was the success of several divide-and-conquer methods, which obtain a better
final solution by dividing a complicated problem into several simpler subproblems. In this
case, it is significantly easier to perform clustering in a single class only. Even though the
clustering must be performed separately for each class, the smaller number of items to be
considered in each clustering guarantees a clear saving in the overall computational re-
quirement. The class-specific clustering approach has been applied in some earlier studies
[34, 50–52]. However, no comparisons against the traditional clustering approaches are
carried out, and the number of applications exploiting the class-specific clustering is still
marginal.

After the initial clustering, the results of the class-specific clustering can be further
improved by considering the centroid distribution. If two centroids for different classes
happen to be co-located or very close to each other, it clearly indicates that the surrounding
area should be modeled with more RBF centers in order to better discriminate these
classes. A possible rule for handling overlapping clusters from different classes is presented
in [34]. However, in Publication VII, we did not apply any post-processing, as we wanted
to clearly see the impact of the plain clustering approaches.

5.2.2.4 On Time and Memory Complexity

The time and memory complexities of most clustering algorithms depend on the number
of items I, the number of clusters K, and the data dimensionality d (e.g., O(IKd) for a
linear algorithm). The data dimensionality, d, for the input and class-specific clustering
approaches is directly the dimensionality of the input feature vectors, whereas for the
input-output clustering approach the data dimensionality is increased when creating
its input vectors according to Eq. (5.10). The final dimensionality is the sum of the
input vector dimensionality and the number of classes. Class-specific clustering must be
repeated for all C classes, but the number of items and clusters per clustering is smaller.
If it is assumed that items are uniformly distributed between classes, the total number of
clusters is the same as for input clustering, and an equal number of clusters is assigned
for each class, ICS = II/C and KCS = KI/C, where CS and I refer to the class-specific
and input clustering approaches, respectively.

The final cost of each clustering approach is determined by the selected clustering algorithm
and the data properties. For most real-life benchmark datasets, dIO ≈ dI (IO refers
to the input-output clustering) and, thus, the complexities of input and input-output
clustering approaches are about the same. However, for some datasets, dIO > 2dI . In
the latter situation, the input-output clustering would take more than twice the time
required for the input clustering approach even when a clustering algorithm with a linear
complexity is applied. The class-specific approach is C times faster than the input-output
clustering with an algorithm having a linear complexity, if the clustering algorithm is not
otherwise affected by the clustering approach. More benefit is gained if a slower algorithm
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is used. Furthermore, the class-specific approach may reduce the number of required
iterations, which will further increase the computational benefit.

5.2.2.5 Experimental Comparison Results

In Publication VII, we performed an extensive comparison of the input, input-output, and
class-specific clustering approaches over 25 benchmark classification datasets. We applied
three different clustering algorithms, namely K-means, APC_III [52], and MD-PSO. For
K-means, three different numbers of clusters were used: 3C, max(5C,

√
I), and I/3. For

MD-PSO clustering, the winner of the fitness function comparison of Publication VIII
discussed in Section 4.3, the Xu index (Eq. (4.4)), was used as the fitness function.
However, we did not use the FECC approach, as it was not published at the time.
Eq. (4.3) was used as the fractional fitness function. The results were evaluated by the
classification accuracy and the geometric mean of recall values on the test set.

APC_III method and K-means with I/3 clusters produced the highest numbers of RBF
neurons. There was no statistically significant difference between the different clustering
approaches for these highest neuron numbers. Therefore, as the class-specific approach is
computationally the most efficient, it should be applied. For smaller numbers of neurons,
the class-specific approach also resulted in better classification results.

For MD-PSO and K-means with 3C and max(5C,
√
I) clusters, we detected statistically

significant difference in the overall results. Therefore, we further analyzed the pair-wise
differences using Wilcoxon Signed-Ranks test. For 25 datasets, the null hypothesis can
be rejected at the 0.05 significance level if T is less than 89 and at the 0.01 significance
level if T is less than 68. The obtained T -values are given in Table 5.3. On each line, we
compare two clustering approaches for one clustering method. Classification accuracy
and geometric mean of recall values are considered separately. The better performing
approach is bolded and the corresponding T -value is bolded if it signals that the null
hypothesis can be rejected at the 0.05 significance level. When the input and input-output
clustering approaches are compared with MD-PSO and K-means with 3C clusters, the
winner approach is different for the classification accuracy and the geometric mean values.
Therefore, the table has two lines for these comparisons. However, the differences in these
cases are insignificant.

Clearly, in addition to its easier computation, the class-specific clustering approach
resulted in significantly better clustering results when the final number of neurons was
relatively small. Between the input and input-output clustering approaches, there were no
significant differences. However, we observed that the input-output clustering approach
can be beneficial when the number of classes is low in comparison with the feature vector
dimension. When the number of classes is high, the input-output clustering approach can
make the results deteriorate.
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Table 5.3: Wilcoxon Signed-Ranks test T -values for comparisons performed with different
clustering algorithms and performance measures (Acc.=accuracy, G-mean=geometric mean
of recall values, CS=class-specific clustering, I=input clustering, IO=input-output clustering)
[Publication VII]

Approach 1 T (Acc.) T (G-mean) Approach 2
MD-PSO

CS 34 46.5 IO
CS 57 68.5 I
IO 141 I
IO 154.5 I

K-means with 3C clusters
CS 25 17.5 IO
CS 27 9.5 I
IO 143 I
IO 146.5 I

K-means with max(5C,
√

I) clusters
CS 56 55.5 IO
CS 64 49.5 I
IO 129 144.5 I





6 Collective Network of Binary
Classifiers

CNBC has strong similarities to the ensembles of classifiers. The main idea of the
ensembles of classifiers comes from the observation that different classifiers typically make
mistakes on different samples. If the error rates of individual classifiers are below 50%, it
is likely that the majority vote of the ensembles will result in the correct classification
decision. Also in practice, the ensembles of classifiers typically perform much better than
the individual classifiers that make them up [27].

To form a successful ensemble, classifiers should be accurate enough and diverse. The
diversity can be obtained in several ways. The classifiers can be of different type, but also
a single classifier type can provide diversity if the classifiers are based on different feature
sets or if they are trained using different subsets of the training samples [27]. Another
important question is how to make the final classification decision. The most typical
approach is majority voting, but there are also several other options, which can be used
if the classifiers output also the probabilities of each class [72]. One possibility is to give
the outputs of the initial classifiers as inputs to a separately trained output classifier [49].

The term ensemble of classifiers typically refers to classification systems where all the
individual classifiers simultaneously classify all the considered classes. It is also common
to divide the classification task into simpler binary classification problems. Each classifier
concentrates on a one-versus-all or one-versus-one classification subtask and the final
decision is reached considering all the binary decisions. A well-known example is the
multiclass Support Vector Machine (SVM) [46]. Typical aggregation techniques include
binary voting, i.e., MaxWins rule, for one-against-one classification and maximum confi-
dence strategy for one-against-all classification, but several other techniques have been
suggested. [39]

For any classification system, possibility for incremental training is a desired property.
This means that, when new data are added to the training set, it is not necessary to
retrain everything, but the new information can be learned on the top of the previously
obtained learning. The new data may mean new samples from the current classes, new
samples from a currently unknown class, or new features. New samples from the current
classes are easiest to accommodate and techniques are abundant. Also the addition of
new classes has been considered in several works. In [97], Polikar et al. introduced a
type of ensemble of classifiers, Learn++, that can be trained incrementally and also
accommodate later added new classes. The main idea of Learn++ is to select the training
subset used to train each new classifier so that samples misclassified by the ensemble of the
previously trained classifiers are more likely to be included. The class-incremental training
of one-against-all multiclass SVM is proposed in [127]. To the best of our knowledge,
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CNBC was a pioneer work in the sense that, in addition to new samples and new classes,
it can also incorporate new features without losing the already acquired learning.

CNBC is a semantic dynamic classification system based on the divide-and-conquer
paradigm. Learning of different classes is distributed to binary one-against-all classifiers
and, if there are several features available, the learning based on each feature is further
distributed for separate binary classifiers. Thanks to this approach and the applied
evolution technique, CNBC can incrementally learn both new classes and new features.
In Publication II, the CNBC classifier was used in the general image classification and
retrieval (see Section 6.2). In [70], the focus was especially on incremental training
results. In addition to general image databases, CNBC has been applied to databases
of macroinvertebrate images [61], polarimetric Synthetic Aperture Radar (SAR) images
[65, 111], and audio [68].

6.1 CNBC Topology

CNBC encapsulates several Networks of Binary Classifiers (NBCs) and each NBC corre-
sponds to a different semantic class, c ∈ {1, . . . , C}, where C denotes the total number
of classes. They, in turn, contain a number of evolutionary Binary Classifiers (BCs)
corresponding to available features, f ∈ {1, . . . , F}, where F denotes the number of
features. A single BC, BCf , in NBCc is thus trained to solve the binary (i.e., two-class)
classification problem of whether its inputs belong to class c according to feature f . The
outputs of all the BCs within NBCc are evaluated with a specific fuser BC. The inputs of
the fuser BC are the outputs of the other BCs and it has a single binary output indicating
the relevance of each media item to class c. The main idea of the CNBC framework is
to avoid the need of very complex classifiers by distributing the massive learning task
between numerous simple (or at least significantly simpler) BCs. The overall CNBC
topology is illustrated in Fig. 6.1.

Figure 6.1: Topology of the CNBC framework with C classes and F features [Publication II]
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Due to the scalability of CNBC it is easy to add or remove classes, i.e., NBCs, if the
database classes are modified. Furthermore, if new features are extracted, new BCs
can be similarly added in each NBC in order to take advantage of the new feature.
When such a modification is done, the existing NBCs or BCs need to be evolved only if
their performance is affected. Any classifier type and/or training method can be used
for the BCs. Using MLPs trained with MD-PSO as explained in Section 5.1 enables
efficient incremental training of the classifier. In addition to the current best network
topologies and parameters, the best networks in other solution space dimensionalities (i.e.,
network topologies) are saved. When an existing BC needs to be further evolved after a
change in classes or features, a MD-PSO swarm is initialized randomly as usual except
for a single particle, which is placed to the previous best position (in all the considered
dimensionalities). This allows the training procedure to widely exploit information
gathered during the previous training iterations, while it can still effectively adapt to the
updated solution space.

The evolution of the CNBC classifier is performed separately for each NBC following
a two-phase training strategy. In the first phase, all the BCs in the input layer are
trained. In the second phase, the training samples are propagated through the best BC
configurations found in the first phase and the outputs are concatenated to form the input
features for evolving the fuser BCs. In this way, the fuser BCs learn the significance of
each individual BC (or the corresponding feature) for the discrimination of that particular
class. Some features may not be very discriminative or useful at all for certain classes
and, during the second training phase, the fuser BCs can learn which features are the
most relevant for each class.

6.2 Experimental Results

In Publication II, CNBC was used for classification over two image databases: Corel_10
consisting of 10 classes and 1000 images and Corel_Caltech_30 consisting of 30 classes
and 4245 images. On both databases, we evolved CNBC using MD-PSO and exhaustive
BP applied separately over each network architecture. Also two different feature sets
with 7 (188 elements in total) and 14 (2335 elements) features were used. The results are
summarized in terms of MSE and Classification Error (CE) in Table 6.1.

The results indicate that CNBC does not suffer from the major dimension increase (from
188-D to 2335-D). Instead, it shows better generalization ability with the larger feature set.
Thanks to the divide-and-conquer paradigm, CNBC can benefit from each new feature.
On Corel_10, MD-PSO training gives better training results, while BP outperforms
MD-PSO on the test set. Most likely overfitting to the training data occurs for MD-PSO.
On the larger Corel_Caltech_30 database, exhaustive BP yields better training results
than MD-PSO, but the test results are similar. The test classification error for both
training methods has increased in comparison to the results on Corel_10. This is an
expected result for a larger database.

For Corel_10, we also experimented with incremental training and performed testing in 3
separate stages: classes 1-5, classes 6-8, and classes 9-10. The existing NBCs were further
evolved only if their performance fell below the minimum classification accuracy threshold.
The results labeled as Corel_10 incr. in Table 6.1 are the final results after all three
stages. The statistics have slightly deteriorated, which is expected as some retraining of
existing NBCs was purposefully skipped.
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Table 6.1: Classification statistics for CNBC [Publication II]

Database No. feat. Method Train MSE Train CE Test CE

Corel_10
7 MD-PSO 0.32 3.55 20.18

BP 0.45 4.88 18.36

14 MD-PSO 0.28 3.18 18.63
BP 0.34 3.33 14.54

Corel_10 incr.
7 MD-PSO 1.36 6.89 28.63

BP 0.82 4.22 21.63

14 MD-PSO 1.23 6.66 26.36
BP 0.91 7.55 23.81

Corel_Caltech_30
7 MD-PSO 0.54 8.10 33.40

BP 0.24 2.95 34.67

14 MD-PSO 0.33 5.47 36.33
BP 0.074 1.31 33.86

Table 6.2: CBIR statistics for CNBC [Publication II]

No. features Evol. method Corel_10 Corel_Caltech_30
ANMRR AP ANMRR AP

7 MD-PSO 33.09 64.01 43.04 54.47
None 55.81 42.15 60.21 37.80

14 BP 22.21 76.20 32.00 65.37
None 47.19 50.38 62.94 34.92

In Publication II, CNBC was also applied for Content-based Image Retrieval (CBIR) by
using its outputs as new features. The results are given in terms of Average Normalized
Modified Retrieval Rank (ANMRR) and Average Precision (AP) in Table 6.2 accompanied
with results obtained by using the original low level features (Evol. method: None). It
is evident from the results that CNBC has significantly enhanced the retrieval results
regardless of the evolution method.
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CBIR and image classification systems generally operate on image features and their
performance is limited by the features’ discrimination power. Especially low-level features
automatically extracted from images are usually not discriminative enough to fully enable
distinction among images belonging to different classes. Visually very similar images
may belong to different classes or, vice versa, images belonging to the same class may
have completely different features. Higher level of understanding of image content is
required to understand the correct classes. This is known as the semantic gap problem.
To overcome the semantic gap, ground truth information is gathered from users. Several
different techniques to exploit the gathered information have been proposed. For example,
feature selection uses image labels to select features best discriminating certain classes
from each other. The original features are not changed, but the purpose is to find a subset
of features that best fits the current application and database.

Feature synthesis is a more advanced tool to tackle the semantic gap. It aims at trans-
forming the original features into more discriminative ones by applying some arithmetic
operations. This is illustrated in Fig. 7.1, where a successful feature synthesis operation
is applied on 2D features of a 3-class database. The discrimination power of the features
has clearly increased. In the figure, the dimensionality of the new synthesized features
equals to the original dimensionality, but the new features can also have a different
dimensionality. Even a very limited set of operators brings about an enormous number of
possible ways to combine elements of the old feature vectors. Together all the options
form a complicated multimodal search space. Therefore, the first efforts to carry out
feature synthesis were based on different EAs [7].

Class 1
Class 2
Class 3

feature
synthesis

Figure 7.1: An illustrative feature synthesis, which is applied to 2D feature vectors of a 3-class
database [Publication VI]
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7.1 Related Work

Already in 1983, Michalski proposed a methodology for inductive learning, which can
be considered as feature synthesis approach [85]. In his work, inference rules were used
to learn new structural symbolic descriptions from original observations. Sherrah et. al
[105, 106] used GP to combine selected original measurements with selected operators.
In their work, individuals were parse trees for functional expressions. The leaf nodes
were original measurements, constants, and statistics. The internal nodes were different
functions operating on the leaf node inputs. The features formed by the individuals
were evaluated according to the classification error obtained using simple classifiers. The
method was computationally heavy, but the classification error was significantly improved
in comparison to the original measurements classified with the same classifiers. In [95],
a similar GP-based method was applied on audio signals to automatically evolve music
descriptors. A feature generation method based on GA was introduced in [99] and applied
on artificial data and chromatography. The term feature synthesis was not used in these
early works, but different terminology was used to refer to the similar concepts, e.g.,
inductive learning, automatic feature selection and generation, or automatic evolution of
descriptors.

The term feature synthesis was adopted in [10, 125], where the first efforts in feature
synthesis for images were presented. GP was utilized to synthesize features for face
expression recognition. The individuals were composite operators represented by binary
trees whose internal nodes were primitive operators and leaf nodes were primitive features.
The primitive features were generated by filtering the original images using a Gabor
filter bank at 4 scales and 6 orientations (i.e., 24 images per an original image) and the
primitive operators were selected among 37 different options. To evaluate the fitness of
individuals, a Bayesian classifier was trained simultaneously with evolving the feature
synthesis and its classification accuracy in the training set gave the fitness values. Finally,
the whole database was synthesized using the best individual, and the corresponding
Bayesian classifier was used to classify the images into 7 expressions classes. In comparison
to similar classification methods not using feature synthesis, this approach brought only
a minor improvement to the expression recognition rate.

In [80], a similar feature synthesis technique based on Co-evolutionary Genetic Pro-
gramming (CGP) was applied on object recognition in SAR images. Now separate
subpopulations were used to evolve several feature synthesis operations, but the primitive
features were only one-dimensional properties computed from the images, and thus, each
operation produced a single one-dimensional composite feature. At the end, 20 feature
synthesis operations produced by 20 subpopulations were applied on all images and the
features were combined into 20-dimensional feature vectors. The classification accuracy
obtained with the synthesized features only occasionally surpassed the accuracy obtained
directly with the primitive features. The same technique was applied in [30] for image
classification and retrieval. The CGP was used to evolve 10-dimensional feature vectors
from the original 40-dimensional feature vectors. The classification accuracy obtained
using the new features was compared against the performance of a classifier using 10-
dimensional feature vectors generated by Multiple Discriminant Analysis (MDA) and a
SVM classifier using the original 40-dimensional feature vectors. The features synthesized
by CGP turned out to perform better than the features produced by MDA in all the tests.
Compared to the SVM classifier, the results were similar or better when the database
classes consisted of multiple clusters in the original feature space.
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In [76, 77], the CGP-based features synthesis method and the Expectation-Maximization
(EM) algorithm were combined into Co-evolutionary Feature Synthesized Expectation-
Maximization (CFS-EM). CFS-EM first uses a minor part of the training data to reduce
the feature space dimensionality and simultaneously learns an initial Bayesian classifier
using the CGP-based feature synthesis method. Then the whole database (the rest may
be unlabeled) is synthesized into a lower dimensionality, and finally, the classifier is refined
with the EM algorithm. The classification and retrieval results obtained by CFS-EM
were both improved compared to the CGP-only approach.

While the number of methods specially developed for feature synthesis is quite modest,
several classifier types, such as ANNs and SVMs, can also be considered as feature
synthesizers. For example, ANNs take the original features as inputs and try to learn
such internal parameters that would transform the inputs into 1-of-C-encoded (where
C is the number of classes) output vectors. In the optimal case, the network defines
a synthesizer which can transform all inputs into the corresponding class vector (i.e.,
[1, 0, ..., 0] for the first class and so on), and thus, the discrimination power of the features
has increased significantly. The simplest ANNs, SLPs, form in each neuron a weighted
sum of all input vector elements and pass it through a bounded non-linear function (e.g.,
hyperbolic tangent or sigmoid) to get one of the output vector elements. When the
network is trained, only the network weights and biases are optimized. Otherwise, the
synthesis based on SLPs follows a fixed path. MLPs have a more complicated network
structure, but they similarly learn a feature synthesis operation via weight optimization.

7.2 Evolutionary Feature Synthesis Using MD-PSO

In Publication III and Publication V, we proposed using MD-PSO for Evolutionary
Feature Synthesis (EFS). Our objective was to define an EFS method that can

• perform an optimal feature selection,

• search for optimal weights for each selected feature,

• search for optimal arithmetic, linear or non-linear, operators,

• search for the optimal output feature vector dimensionality,

• using any given fitness function to measure the quality of the solution.

To achieve the objectives, we used MD-PSO to

1. select W + 1 original (or already synthesized) feature elements, f0, ..., fW ,

2. scale the selected features using proper weights, w0, ..., wW ,

3. selectW operators, Θ1, ...,ΘW , to be performed over the selected and scaled features,

4. bound the results using a non-linear operator (e.g., hyperbolic tangent, tanh).

If the application of a specific operator, Θi, on features fj and fk is denoted as Θi(fj , fk),
a formula for the overall synthesis of a single element of the output feature vector can be
given as

yj = tanh(ΘW (...Θ2(Θ1(w0f0, w1f1), w2f2), ...), wW fW ). (7.1)
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In other words, the operator Θ1 is first applied to the scaled features f0 and f1, then
operator Θ2 is applied to the result of the first operation and the scaled feature f2 and so
on, until the last operator ΘW is applied to the result of the previous operations and the
scaled feature fW . The positional PSO process within MD-PSO can select the proper
feature elements, weights, and operators, while the dimensional PSO process can optimize
the dimensionality of the synthesized feature vector (i.e., the number of feature elements).
The MD-PSO-based EFS can also be applied iteratively. The output of the previous
synthesis is simply given as the input for the next EFS run. The number of runs, R, can
be either specified in advance or adaptively determined so that more runs are carried out
until the fitness improvement is no longer significant.

The above described feature synthesis can be seen as a generalization of ANNs. A SLP
performs steps 2 and 4, but it does not apply feature or operator selection. A SLP
also adds a bias value to the sum of scaled features. To allow a similar mechanism, we
complement each input feature vector by a constant value of one. When a bias is beneficial,
MD-PSO can select this constant value instead of selecting one of the actual feature
vector elements, scale it, and combine it with other scaled features. Instead of summing
the bias as in SLPs, it may be combined using also another operator. Now setting R to 1,
W + 1 to be the dimensionality of input features, d, each feature selection as fi = f[i],
where f[i] denotes the ith element of the input feature vector, and each operator Θj to
be “+” limits the MD-PSO-based EFS technique to be equivalent to a SLP. Performing
several EFS runs leads to a system similar to a MLP. The output dimensionality of ANNs
is fixed, but MD-PSO can optimize also the output feature dimensionality. Furthermore,
a major difference between MLPs and MD-PSO-based EFS is that MD-PSO evaluates
the fitness of the synthesized feature vectors at every run, while in a MLP only the final
fitness score (i.e., MSE between the actual and target output vectors) is considered.

7.2.1 MD-PSO Particle Encoding in EFS
The MD-PSO particles should be encoded in such a way that each particle position,
xdp, represents a full set of parameters required for feature synthesis. The search space
dimensionality corresponds to the dimensionality of synthesized features. A position in
that dimensionality should then give all the information required to carry out feature
selection, feature weighting, and operator selection to form all the output elements.
Accordingly, each element of a position, xdp,j , defines a way to synthesize the jth output
feature element. It should encapsulate theW+1 features,W+1 weights, andW operators
needed to perform the described synthesis. We encode it as a 2W + 1 dimensional vector
with W + 1 A-type and W B-type elements, which define the corresponding feature
synthesizer parameters as follows,

fi =bAic+ 1, i ∈ 0, ...,W
wi =Ai − bAic, i ∈ 0, ...,W
Θj =dBje, j ∈ 1, ...,W ,

(7.2)

where bxc and dxe denote the floor and ceiling operators, respectively. The ranges for
the A- and B-type elements are set according to the dimensionality of the input feature
vector, d, and the number of operators available, U , i.e., Ai ∈ [0, d[ and Bj ∈]0, U ]. The
weights, wi, are thus limited to the range 0 ≤ wi < 1.

The particle encoding is illustrated in Fig. 7.2, where a position of particle p in dimension-
ality 6, x6

p, is shown. As the position dimensionality is 6, the synthesized feature vector,



7.2. Evolutionary Feature Synthesis Using MD-PSO 49

Θ  1   

+ - * / min 

6 
5 
4 
3 
2 
1 

y(t-1)

y(t)

Θ  2   Θ  3   

3 
2 

8 
7 
6 
5 

9 

4 

A3B3A2B2A1B1A0

tanh

f0  

w3w2w1w0

1 2 3 4 5 6 

10 

1 

f 1  

f 3  

f 2  

6
p

6
p,1x

x

Figure 7.2: An illustrative example of particle encoding of a position in dimensionality 6. W is
set to 3.

y(t), will have six elements and each feature vector element will be synthesized according
to the corresponding position element. In the figure, W is set to 3, which means that
3+1=4 elements of the input feature vector, y(t− 1), will be combined using 3 operators,
and the dimensionality of each element of the position, x6

p,j , is 7 (2W + 1 = 7). Only the
first element, x6

p,1, is fully shown. If the ith element of the input feature vector is denoted
as f[i], the formula for the synthesis of the first output feature defined by x6

p,1 can be
given as

yj = tanh(min((w0f[8] + w1f[3]), w2f[5]) ∗ w3f[3]). (7.3)

7.2.2 MD-PSO Fitness Evaluation in EFS
In Publication III, the synthesized features were used in image retrieval. There, AP, or
more precisely its additive inverse, was directly used as the fitness function for MD-PSO.
It is evident, however, that this fitness function is not applicable on larger databases,
because the computation of AP requires querying with every database image. When AP
is used for fitness evaluation, this must be done for every particle at every iteration.

In Publication V, we adapted a method similar to the one used in ANNs: We assigned
target vectors for each class and then evaluated the fitness in terms of MSE between the
synthesized output vectors and the target output vectors. However, we wanted to allow
MD-PSO to find the optimal output feature dimensionality and not to decide it a priori
as in ANNs. Therefore, we generated target output vectors for all dimensionalities within
the range {dmin, ..., dmax}. When generating the target vectors, we tried to achieve the
two criteria for a good Error Correcting Output Code (ECOC) suggested in [28], i.e.,
large row and column separation.

• Row separation: Each target vector should be well-separated in the sense of Hamming
distance from each of the other target vectors.
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• Column separation: Each column in the vector table should be well-separated in
the sense of Hamming distance from each of the other columns.

With large row separation, the final synthesized vectors can somewhat differ from the
target output vectors and still be able to discriminate between classes. Each column of
the target vector table can be seen as a different binary classification task. The original
classes having value 1 in the specific column form the first metaclass and the rest of the
classes having value -1 in that column form the second one. Depending on the similarity
of the original classes, some binary classification tasks are likely to be notably easier than
others. Since the same target output vectors should be used with any given input classes,
and thus, nothing can be assumed about their similarity, it is beneficial to keep the binary
classification tasks as different as possible, i.e., maximize the column separation.

There is no simple and fast method available to generate target vectors with maximal
row and column separation, but we used the following simple approach to create target
output vectors with row and column separations satisfactory for our purposes:

1. Form an empty target vector table with C rows and dmax columns.

2. Assign bmin as the minimum number of bits needed to represent C values. Form a
bit table having C rows, bmin columns, and the binary representation of the row
numbers {0, ..., C − 1} as its rows.

3. For each row of the target vector table, assign the first empty bmin values equal to
the corresponding row in the bit table.

4. Move the first row of the bit table to the end of the table and shift the other rows
up by one row.

5. Repeat the previous two steps until the target vector table is filled.

Experimentally we observed that it is beneficial to add the following steps to the target
vector creation procedure:

6. Replace the first C values in each target vector by a 1-of-C-encoded section.

7. Replace each 0 by -1 in the target vectors.

While step 6 reduces row and column separation, it is generally easiest to find a binary
classifier that separates a single class from the others. Therefore, adding the 1-of-C-
encoded section usually improves the results. The target vectors for dimensionalities
below dmax can be obtained by leaving out the excess elements at the end of the target
vectors. Since the common elements in the target vectors for different dimensionalities
are identical, FGBF can freely combine elements taken from particle positions in any
dimensionality.

The target output vector generation for a 4-class case is illustrated in Fig. 7.3. At the
beginning, there is a 1-of-C-encoded section of four elements, while the remaining elements
are consecutive binary representations of the row numbers 0-3 (i.e., bmin = 2). dmax is set
to 10. For the sake of clarity, the elements set to -1 are shown as empty boxes.
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Figure 7.3: A sample target vector encoding for 4 classes.

Using the created target vectors, the fractional fitness scores for FGBF are computed as

fj

(
xdpp,j(t)

)
=

C∑
k=1

∑
∀y∈ck

(tk,j − yj)2
, (7.4)

where tk,j and yj denote the jth elements of the target output vector for class ck and
the synthesized output vector, respectively. To compute the overall fitness score, the
fractional fitness scores for different dimensionalities are added together and the score is
then normalized with respect to the number of dimensionalities. As mentioned earlier, we
observed that the first C elements are usually the easiest to encode due to the 1-of-C-
encoded target vector section. To slightly increase the probability of MD-PSO to converge
on higher dimensions, we handle the first C elements separately in the summation and
favor the remaining dimensionalities, d > C, by strengthening their normalizing divisor
with an additional power parameter, α > 1. We also set dmin > C. Consequently, the
overall fitness function for MD-PSO can be given as

f
(
xdpp (t)

)
= 1
C

C∑
j=1

C∑
k=1

∑
∀y∈ck

(tk,j − yj)2 + 1
(dp − C)α

dp∑
j=C+1

C∑
k=1

∑
∀y∈ck

(tk,j − yj)2
.

(7.5)

7.2.3 Experimental Results
The MD-PSO-based EFS where 1-AP was used as the fitness function was tested in
Publication III on a 5-class database with 100 images in each class. 45% of the database
was used for evolving the EFS. Retrieval results using the original (RGB histogram) and
synthesized (after one and three EFS runs) features in terms of the standard ANMRR
measure are given in Table 7.1. The discrimination power of the features clearly increased
after applying EFS, but as mentioned, the computational effort required for all the fitness
evaluations is so large that the method is not feasible for much larger databases.

In Publication V, the MD-PSO-based EFS was used with the improved fitness evaluation.
CBIR results on a 10-class database with 100 images in each class are given in Table 7.2
in terms of ANMRR and classification results in Table 7.3 in terms of test classification

Table 7.1: CBIR results on a 5-class database [Publication III]

Features ANMRR
Original RGB 0.472
Synt. 1st run 0.392
Synt. 3rd run 0.277
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Table 7.2: CBIR results (ANMRR) on a 10-class database [Publication V]

Features RGB YUV LBP Gabor all
Original 0.589 0.577 0.635 0.561 0.504

Synt. 1st run 0.500 0.505 0.519 0.520 0.357
Synt. best run 0.385 0.397 0.396 0.428 0.280

Table 7.3: Test classification error on a 10-class database [Publication V]

Features RGB YUV LBP Gabor
Original 0.420 0.371 0.560 0.433

Synt. 1st run 0.312 0.307 0.422 0.367

error. Again 45% of the database was used for evolving the EFS. In CBIR experiments,
the whole database was considered, while classification was conducted in the remaining
55% only.

Both CBIR and classification results exhibit a clear increase in discrimination ability.
It was also observed that while the CBIR results kept improving during several EFS
runs, the classification results barely improved after the first run. Most likely, the EFS
overlearns the training data on later runs. It can help further improve the CBIR results as
the training set is also considered, but the test set features are not improving anymore. On
larger databases, overlearning might not be encountered so early. However, initial testing
on much larger databases showed that MD-PSO-based EFS was no longer performing
well. Possible reasons are considered in the next section.

7.3 Feature Synthesis via One-against-all Perceptrons

The MD-PSO-based feature synthesis performs well on small (e.g., 1000 images) databases,
but the results are not equally good on larger databases. We assume that the performance
deteriorates because the method attempts to find a synthesizer which can simultaneously
discriminate all the classes from each other. When the number of classes grows, finding
a good solution capable of doing that soon becomes a practically impossible problem
for any optimization method. Also the GP-based methods introduced in Section 7.1
follow a similar approach, where all the classes are considered simultaneously no matter
how many and how complex classes there may be. Their application is further limited
by their computational complexity, which makes it infeasible to significantly increase
database size. In Publication VI, we proposed a simple alternative, which relies on the
divide-and-conquer paradigm and is significantly faster than the earlier feature synthesis
techniques.

The feature synthesis technique proposed in Publication VI transforms the original features
using parallel one-against-all perceptrons. We call it Perceptron Feature Synthesis (PFS).
Each perceptron is trained to discriminate a single class from the rest. During the training
phase, only the images belonging to that particular class are considered positive samples
and all the other images negative samples. For perceptrons, we use the typical 1-of-C-
encoded target output (i.e., [1 -1] for positive samples and [-1 1] for negative samples).
After the training phase, the new synthesized features can be formed by propagating the
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Figure 7.4: Feature synthesis via parallel one-against-all perceptrons for a simplified 3-class
database with 5D original feature vectors [Publication VI]

original features through all the perceptrons and concatenating the outputs. In that way,
the dimensionality of the synthesized features is always twice the number of classes.

The whole PFS process is illustrated in Fig. 7.4. In the figure, the database consists of
three classes with five items in each class. However, the class information is only needed
for the training set and PFS can be applied also when the majority of the database is
unlabeled. The original feature vector dimensionality is five. For three classes, three one-
against-all perceptrons are trained. For the first perceptron, only the training items from
class 1 are given as positive samples (their target output vector set to [1 -1]). Similarly,
for the second perceptron only items from class 2 are considered positive samples and for
the third perceptron only items from class 3. Finally, after training all the perceptrons, all
original feature vectors (belonging to both train and test sets) are propagated through all
the three perceptrons and the outputs are concatenated to form new 6-dimensional feature
vectors. As in the figure, the perceptron outputs are typically not 1 and -1 but somewhere
between these two extremes. This may be also a desired property as it preserves some
intra-class variations. For example in CBIR, a user probably prefers receiving the most
similar database items within a class first.

It is also possible to incrementally train the PFS system. When a new class is added
to the database, a new perceptron will be trained for the new class. The previously
trained perceptrons need to be retrained only if they fail to classify the new samples with
a required accuracy. Training of the affected perceptrons may also be started from the
previous state or even the whole architecture space can be evolved in the same manner as
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in the incremental training of CNBC, discussed in Chapter 6. Furthermore, PFS can be
performed in several runs by using the synthesized feature vectors from the previous run
as the input feature vectors for the next.

7.3.1 Experimental Results
In Publication VI, PFS was applied on low-level features extracted from three general
image databases: C_10 database had 10 classes and 1000 pictures, CC_30 database
had 30 classes and 4245 images, and the largest F_20 database had 20 classes and 34481
images with a very imbalanced distribution. CBIR results in terms of ANMRR using
the original and synthesized features are given in Table 7.4 and test classification errors
obtained using the simple Nearest Centroid Classifier (NCC) in Table 7.5. CSD, DOCQ,
etc. are different low level features, whose details can be obtained from Publication VI.
In column All, all the features are used for retrieval/classification with equal weights. In
CBIR, the whole databases were considered, while the classification experiments were
carried out in the test set only. For C_10 and CC_30 databases, 20 PFS runs were
applied. For F_20, we only performed three runs due to the large database size. In these
experiments, MD-PSO was used as the perceptron training method.

The results confirm that PFS can effectively increase the features’ discrimination power.
As with the MD-PSO-based EFS, it was observed that CBIR results keep improving
during several PFS runs, while the classification results mainly improve during the first
run. Thus, we assume that the majority of the improvement of the CBIR results happens
in the training set, which means that PFS is overlearning it. However, it was also observed
that on the larger databases, especially on F_20, overlearning is less of a problem as also
the test classification error keeps improving during the later runs.

In Publication VI, we also compared the classification error obtained using a NCC
over the synthesized features against some well-known classifiers: MLP, SVM, and
Random Forest (RF). The results of these comparisons showed that PFS can improve
the discrimination power of the low-level features to such level that after the synthesis
even the simple NCC can achieve results comparable to the best results obtained with
several state-of-the-art classifiers. Furthermore, the classification results obtained by the
NCC and PFS features turned out to vary significantly less among the different low-level
features than the results obtained by the other classifiers. As a result, NCC+PFS had
the best average classification results. It was also observed that PFS could effectively
increase the discrimination power of the features of the minority classes in an imbalanced
class distribution.

Finally in Table 7.6, CBIR results obtained using features synthesized by PFS and CNBC
outputs as described in Chapter 6 are compared in terms of both ANMRR and AP. The
underlying low-level features were the same in both cases. Clearly, the PFS features
provide a better performance.
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Table 7.4: ANMRR using original and synthesized features [Publication VI]

C_10 CSD DOCQ EHD HSV LBP ORDC Gabor All
Original 50.12 73.17 61.68 61.93 68.62 62.28 56.13 43.86
Synt. 1st run 24.73 49.08 47.20 32.47 46.30 42.13 34.61 18.15
Synt. best run 24.73 42.51 41.14 32.40 36.80 34.08 31.24 17.14
CC_30 CSD DOCQ EHD HSV LBP ORDC Gabor All
Original 67.84 81.84 76.38 78.31 80.67 75.98 70.71 60.39
Synt. 1st run 47.42 72.35 67.92 63.86 67.33 63.88 50.82 41.60
Synt. best run 44.51 63.48 63.49 59.22 56.40 54.51 42.80 33.49
F_20 CSD DOCQ EHD HSV LBP ORDC Gabor All
Original 71.21 75.74 70.12 74.96 70.89 71.91 72.57 69.91
Synt. 1st run 66.23 72.66 66.17 69.63 65.17 64.42 64.79 61.52
Synt. best run 65.99 72.29 66.06 69.18 64.55 63.40 64.08 60.21

Table 7.5: Test classification errors of the nearest neighbor classifier using original and synthe-
sized features [Publication VI]

C_10 CSD DOCQ EHD HSV LBP ORDC Gabor All
Original 31.82 50.36 45.09 44.55 62.36 54.36 43.27 20.91
Synt. 1st run 25.29 43.56 38.31 33.04 35.87 32.18 29.67 14.55
Synt. best run 25.29 43.45 38.31 33.04 35.87 31.78 29.67 14.55
CC_30 CSD DOCQ EHD HSV LBP ORDC Gabor All
Original 62.39 77.50 77.80 71.00 84.72 77.84 65.28 51.72
Synt. 1st run 46.93 61.05 58.40 60.16 55.40 51.13 41.02 30.69
Synt. best run 46.93 60.53 56.78 57.47 52.48 49.80 40.86 29.99
F_20 CSD DOCQ EHD HSV LBP ORDC Gabor All
Original 75.64 97.31 85.65 91.68 77.03 81.30 77.73 73.57
Synt. 1st run 46.22 67.09 87.05 53.66 75.02 87.29 82.32 57.02
Synt. best run 43.90 55.55 86.25 51.02 68.60 44.95 50.28 44.21

Table 7.6: ANMRR and AP using features synthesized by PFS and CNBC outputs [Publica-
tion VI]

Method C_10 CC_30
ANMRR AP ANMRR AP

PFS 17.14 80.86 33.49 63.17
CNBC (MD-PSO) 31.09 65.01 43.04 54.47
CNBC (BP) 23.86 74.26 46.44 52.21





8 Conclusions

This thesis shows that Multidimensional Particle Swarm Optimization (MD-PSO) is indeed
a versatile tool for different machine learning applications. The thesis covers applications
of MD-PSO to dynamic optimization, clustering, training both Multilayer Perceptrons
(MLPs) and Radial Basis Function Neural Networks (RBFNNs) for classification, image
retrieval and classification using the Collective Network of Binary Classifiers (CNBC)
framework, and finally feature synthesis. MD-PSO is a global optimization technique with
a special ability to optimize the solution dimensionality simultaneously with optimizing
the solution parameters in that dimensionality. This ability is its greatest advantage in
comparison to other Particle Swarm Optimization (PSO) variants. It allows to optimize,
for example, the number of clusters, the network architecture for MLPs and RBFNNs,
and the dimensionality of the features produced by feature synthesis as a natural part of
the optimization process.

In most considered applications (except MLP training), MD-PSO was accompanied by
Fractional Global Best Formation (FGBF). FGBF is a plug-in to (MD-)PSO that creates
at every iteration an artificial global best solution from the best elements of the particle
positions. The artificial global best competes against the current global best solution,
and if it brings about a higher fitness, it will replace the global best solution in the PSO
update functions. FGBF can effectively prevent premature convergence and lead the PSO
process faster toward optimal solutions.

Besides highlighting the versatility of MD-PSO and FGBF as tools for machine learning,
this thesis also improved the algorithms and the underlying processes in several ways.
For dynamic optimization, the MD-PSO algorithm was combined with a multiswarm
approach. Multiswarms allow multiple optima to be tracked in dynamic optimization
problems. This, in turn, allows the algorithm to rapidly find the new global optimum
when the ranking of optima is changed. FGBF, on the other hand, provides a sufficient
amount of diversity to maintain the tracking of optima when their locations undergo
moderate changes. Compared to earlier PSO multiswarm approaches, FGBF turned out
to be the best way to ensure sufficient diversity within multiswarms. Furthermore, the
test bench was modified to model also multidimensional dynamic optimization problems,
where the dimensionality of the optima can change over time.

A new approach to perform fitness evaluation in Particle Swarm Clustering (PSC), namely
Fitness Evaluation with Computational Centroids (FECC), was presented. The FECC
approach was experimentally shown to lead to significant improvements in the clustering
performance. Any PSC method whose fitness function somehow depends on cluster
centroid positions, can be easily made to use FECC.

In RBFNN training, the most important task is to define center locations for Radial Basis
Function (RBF) neurons. This is typically done by clustering the input items and placing
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RBF centers to the cluster centroids. For this purpose, a novel class-specific approach was
proposed. The proposed approach is clearly faster than traditional input and input-output
clustering approaches. In the extensive comparisons conducted, it was also shown to
significantly improve the classification performance of the RBFNNs especially when the
number of Gaussian neurons was kept relatively low.

Finally, two novel feature synthesis techniques were presented. In the first technique,
MD-PSO is directly used to search for an optimal synthesis that can transform the original
low-level features into more discriminative ones. In the second technique, the feature
synthesis is carried out using parallel one-against-all perceptrons. Both techniques were
shown to produce a clear increase in the features’ discrimination power. The technique
based on parallel one-against-all perceptrons is faster and applicable to larger databases.

While the results of applying MD-PSO to various machine learning tasks were satisfactory,
the thesis work also showed its limitations. All the datasets considered in this thesis
were small in the current research environment, where Big Data has become the default.
The presented applications cannot be extended to required data volumes directly. The
computational limitations are the most imminent problem, but the global approach of
the PSO paradigm is an even more problematic. MD-PSO tries to optimize everything
at once. When the number of parameters to be optimized rises to millions, it is simply
not possible to handle the resulting search space.

However, I still believe that MD-PSO and similar nature-inspired stochastic optimization
algorithms have a future also in the world of Big Data. Already this thesis showed glimpses
of what I believe to be the key to their large scale application, e.g., in the class-specific
training of RBFNN, in CNBC, and in the feature synthesis based on one-against-all
perceptrons. To extend MD-PSO applications toward Big Data, one must divide the
problem into smaller subproblems and then conquer the big problem piece by piece. This
will be a major future research topic and will require smaller pieces, novel approaches to
find solvable subproblems, and also adaptation of the algorithm itself to allow smoother
division and combination of subproblems. This could mean, searching for clever ways to
organize the data in smaller chunks, for example, using self-data organization, dividing
the training of deep neural networks into smaller tasks where MD-PSO can be exploited,
or modifying the algorithm to target cloud computing environments.
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Errata for Publications

• Publication I: Table 1, step 3.1.1.: Eq. (1) should be Eq. (2), steps 3.4.1.1. and
3.4.1.3.: Eq. (2) should be Eq. (3).

• Publication II: Table 2 illustrates the architecture space defined by Rmin = {Ni, 1, 2}
and Rmax = {Ni, 16, 2}. Only the dimensions 0 and 8-16 belong to the architecture
space used in the experiments.

• Publication II: Table 7: the original ANMRR and AP values for Corel_10 database
with 7 sub-features (i.e., 55.81 and 42.15) should be switched.

• Publication III: Page 3647, just under Fig. 4: K = N . Fig. 5 caption: "A sample
query...".

• Publication IV: Eq. (5) and Eq. (16) should be given as Eq. (3.4) and Eq. (3.6) in
this thesis.

• Publication IV: Page 2217, under Eq. (6): "for each dimensional component except
xda(t)" should be "in each dimension except xda(t) for each dimensional component
j". Same page, above Eq. (8): "in iteration t+ 1" should be "in iteration t".

• Publication V: Sect. 3.4: "in that dimensionality, t" should be "in that dimensionality,
da". Sect 3.5., item 2: "a bit table with bmin rows" should be "a bit table with C
rows". Fig. 2: xxa[6] and xxa,j [6] should be x6
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a,j . Eq. 6: f(xdpp,j(t)) should

be f(xdpp (t)).

• Publication VI: Tables 2, 4, 8: CC_30 should be C_30.

• Publication VII: Page 2463: µa,j should be µp,j .
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a b s t r a c t

In this paper, we investigate the performance of global vs. local techniques applied to the training of neu-
ral network classifiers for solving medical diagnosis problems. The presented methodology of the inves-
tigation involves systematic and exhaustive evaluation of the classifier performance over a neural
network architecture space and with respect to training depth for a particular problem. In this study,
the architecture space is defined over feed-forward, fully-connected artificial neural networks (ANNs)
which have been widely used in computer-aided decision support systems in medical domain, and for
which two popular neural network training methods are explored: conventional backpropagation (BP)
and particle swarm optimization (PSO). Both training techniques are compared in terms of classification
performance over three medical diagnosis problems (breast cancer, heart disease, and diabetes) from Pro-
ben1 benchmark dataset and computational and architectural analysis are performed for an extensive
assessment. The results clearly demonstrate that it is not possible to compare and evaluate the perfor-
mance of the two algorithms over a single network and with a fixed set of training parameters, as most
of the earlier work in this field has been carried out, since training and test classification performances
vary significantly and depend directly on the network architecture, the training depth and method used
and the available dataset. We, therefore, show that an extensive evaluation method such as the one pro-
posed in this paper is basically needed to obtain a reliable and detailed performance assessment, in that,
we can conclude that the PSO algorithm has usually a better generalization ability across the architecture
space whereas BP can occasionally provide better training and/or test classification performance for some
network configurations. Furthermore, we can in general say that the PSO, as a global training algorithm, is
capable of achieving minimum test classification errors regardless of the training depth, i.e. shallow or
deep, and its average classification performance shows less variations with respect to network architec-
ture. In terms of computational complexity, BP is in general superior to PSO for the entire architecture
space used.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial neural networks (ANNs) are known as ‘‘universal
approximators” and ‘‘computational models” with particular char-
acteristics such as the ability to learn or adapt, to organize or to
generalize data. Based on the literature in medical domain, com-
puter-aided diagnostic systems with embedded artificial intelli-
gence algorithms have increasingly been used to assist medical
experts in diagnosing a patient (Lisboa & Taktak, 2006). Due to
their automatic (self-adaptive) process and capability to learn
complex, nonlinear surfaces among different classes, ANN classifi-
ers have become a popular choice for decision support in medical
diagnosis and have been shown to be effective in the clinical do-

main (Lisboa, 2002). Most of these neural network classifier studies
have used feed-forward, fully-connected ANNs, the well-known
multilayer perceptrons (MLPs), with the back-propagation (BP)
training algorithm (Lisboa & Taktak, 2006). BP is a gradient descent
method on an error surface, which has a local search capability.
However, such a capability causes it to get trapped into the nearest
local minimum, and thus the training outcome becomes entirely
dependent on the initial (weight) settings (Kolen & Pollack,
1990). Therefore, a single BP run is in general unreliable, unrepeat-
able and sub-optimum, especially in the case of a large number of
local minima. In practice, the performance of a BP-ANN classifier
depends on the particular pattern recognition or classification
problem, description of the input space (extracted features), train-
ing sample size, and initial settings of the parameters (i.e. weights,
learning rate, and momentum). Currently, there are many variants
and extensions of BP to address some of these issues, which in-
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clude gradient descent with momentum, scaled conjugate gradient
(SCG), resilient propagation (RPROP), BFGS quasi-Newton, and
Levenberg–Marquardt (LM) algorithms (Gudise & Venayagamoor-
thy, 2003). However, the practitioner must still choose the correct
parameter settings with the corresponding algorithm for a specific
network and a particular problem.

For many real-world applications, which can be formulated as
complex, nonlinear, and multi-modal problems, the global search
techniques may perform better since they are capable of finding
the global optimum solutions; however, this is never guaranteed.
As a recent optimization technique, the particle swarm optimiza-
tion (PSO) was proposed by Kennedy and Eberhart (1995). It is a
population based stochastic search and optimization process. PSO
originated from computer simulation of the individuals (particles
or living organisms) in a bird flock or a fish school which basically
show a natural behavior when they search for some target (e.g.
food). The goal is, therefore, to converge to the global optimum
of some multi-dimensional and possibly nonlinear function or sys-
tem. In principle, PSO follows the same path as the existing evolu-
tionary algorithms (EAs). In addition to strong global searching
ability, the EA family of algorithms have the advantage of being
applicable to any type of ANN, feed-forward or not, with any acti-
vation function, differentiable or not. Several researchers have suc-
cessfully applied PSO for training feed-forward (Carvalho &
Ludermir, 2007; Meissner, Schmuker, & Schneider, 2006; Yu, Xi,
& Wang, 2007) and recurrent ANNs (Hu & Shi, 2004; Settles,
Rodebaugh, & Soule, 2003) to solve classification problems.

Many studies for performance evaluation of neural network clas-
sifiers using local and global learning algorithms have recently been
presented in the literature. In Hosseini, Luo, and Reynolds (2006),
the performance of six feed-forward ANN architectures (four sin-
gle-hidden layer and two double-hidden layer networks) is investi-
gated for electrocardiogram (ECG) signal diagnosis. The double-
hidden layer ANN classifier is shown to enhance the ECG signal clas-
sification process. In another study (Van den Bergh, 2002), the
author compared the training and testing (generalization) perfor-
mance of PSO-based algorithms in terms of mean square error
(MSE) with BP and Genetic Algorithm (GA)-based techniques. In this
study, simple one-hidden layer MLPs with a suitable number of hid-
den units that are determined by an ANN pruning technique for each
problem were used to solve a variety of classification problems
including three medical diagnosis problems (breast cancer, diabetes,
and hepatitis) from the UCI Machine Learning repository (Prechelt,
1994). It is further shown that PSO-based algorithms can achieve a
superior learning ability compared to other algorithms in terms of
accuracy and speed. BP and PSO-training for MLPs has also been
compared and evaluated over nonlinear function approximation in
Kolen and Pollack (1990) and surprisingly it has been shown that
PSO outperforms BP in terms of computation complexity required
to achieve the same MSE level. In Sexton and Dorsey (2000),
researchers performed a direct comparison of BP with the genetic
algorithm (GA) for training ANNs over 10 real-world benchmark
classification problems from Prechelt (1994). In this study, only
three feed-forward network architectures, specifically single-hid-
den layer MLPs with 3, 6, and 12 hidden nodes, were used for all
problems. According to the results, the GA performed consistently
better than BP in terms of average classification error (CE) for all
10 problems. In a recent study (Mazurowski et al., 2008), two
feed-forward ANN training methods, the traditional BP and PSO
are compared by training a single hidden layer MLP with three hid-
den neurons on real clinical data for breast cancer diagnosis and in
contradiction with the aforementioned results, it has been claimed
that for imbalanced datasets, BP training yields better results than
PSO in terms of average classification performance over the test set.

In this paper, in order to clarify such varying or even contradic-
tory results of the previous studies, we first propose an accurate

and in-depth performance assessment approach for comparing lo-
cal and global training methods, namely BP and PSO for MLPs, par-
ticularly over medical diagnosis problems. We shall particularly
show that the major problem with the aforementioned evalua-
tions is the usage of only one or few architecture(s) with a static
training scheme for a given problem. In this case, one can find a
unique architecture and a training depth for a particular problem,
over which BP or PSO can surpass the other. In other words, it is
quite evident that the performance of both BP and PSO may signif-
icantly vary with respect to the network architecture, the training
depth and parameters used, and even the classification problem
for which the training method is applied. Moreover, PSO and par-
ticularly BP yield significantly varying network parameters
(weights and biases) after each training session and thus require
an exhaustive number of training runs in order to determine sta-
tistically significant performance measures and accurate evalua-
tions. In the current work, we focus especially on the average
and the best performances that a particular training method can
achieve whilst considering both training MSE and test classifica-
tion error (CE) as the performance criteria. In the current assess-
ment scheme, to avoid the bias of the network architecture
used, rather than focusing only one or few architectures, we pro-
pose that the evaluations shall be performed over an architecture
space containing a large variety of ANNs, from the simplest single-
layer perceptrons (SLPs) to the MLPs with several hidden layers
and neurons. Furthermore, the training depth is another impor-
tant factor, which particularly affects the performance of local
methods such as BP. For instance a shallow training (with a few
iterations), BP is likely to yield a high training MSE and a low test
classification error, and vice versa for a deep (or over-) training. As
a global search method, PSO may or may not exhibit a similar phe-
nomenon, depending on the other factors, such as the network
architecture and training dataset used. Therefore, in this paper,
both shallow and deep training depths shall be investigated dis-
tinctively while evaluating the performances of both methods in
terms of training error (MSE over the training set), generalization
capability (CE over the test set) and computational complexity
level.

The rest of the paper is organized as follows. Section 2 surveys
the related work on BP and PSO and their applications for training
ANNs over medical diagnosis problems. Section 3 provides
description of the proposed methodology to assess the perfor-
mance of the corresponding local (BP) and global (PSO) methods
for training feed-forward ANNs and discuss the results of the
extensive set of experiments conducted over three benchmark
problems from the field of medical diagnosis. Finally, Section 4
draws some conclusive remarks and discusses topics for future
research.

2. Related work

2.1. The standard BP algorithm

Backpropagation (BP) (Rumelhart, Hinton, & Williams, 1986) is
a well-known and widely used supervised training technique for
multilayer ANNs with application to pattern recognition and clas-
sification in many areas including medical diagnostics. After the
development of the BP training algorithm, multilayer perceptron
networks have become the standard toolbox of neural network re-
search. MLPs are feed-forward networks with one or more layers of
nodes between the input and output nodes (Fig. 1). These addi-
tional (hidden) layers contain hidden neurons with nonlinear acti-
vation functions. Unlike single-layer perceptrons or multilayer nets
with linear elements, a three-layer perceptron was proven to be
capable of generating arbitrarily complex decision regions and
computing any continuous likelihood function required in a classi-
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fier (Lippmann, 1987). The BP algorithm may be viewed as a gen-
eralization of the least-mean-square (LMS) algorithm. It is an iter-
ative gradient search technique designed to minimize the mean
square error between the desired and actual net outputs. Back-
propagation learning consists of two computational passes
through the layers of an MLP: a forward pass which is a feed-for-
ward propagation of input pattern signals through network, and
a backward pass during which an error signal is computed at out-
put units and propagated backwards through network. The stan-
dard BP algorithm can be summarized as follows:

1. Initialize the weights wl
jk and biases hl

k randomly.
2. Feed pattern p to the network and compute the output yp;l

k of
each neuron.

3. Calculate the error between the computed output yp;o
k of each

output neuron and the desired output tp
k as ep;o

k ¼ tp
k � yp;o

k .
4. For each neuron k, calculate the local gradients @Ep

@hl
k

, where Ep is

the total error energy defined as Ep ¼ 1
2

P
k2oðe

p;o
k Þ

2 and hl
k is a

uniform symbol for each parameter wl
jk and hl

k. The name of
the backpropagation algorithm comes from this, as it is neces-
sary to start calculating the local gradients from the output
layer and then recursively proceed backwards toward the input
layer. Note that smooth (differentiable) nonlinear activation
functions must be used for computing the local gradients. The
formulas for calculating the local gradients at the output and
hidden nodes of MLP can be found in Haykin (1999).

5. Update the parameters as follows:

hl
kðt þ 1Þ ¼ hl

kðtÞ � g
@Ep

@hl
k

ð1Þ

where g is the learning-rate parameter.

BP has the advantage of directed search, in that weights are al-
ways updated in such a way that minimizes the error. However,
there are several aspects, which make the algorithm not guaran-
teed to be universally useful. Most troublesome is its strict depen-
dency on a learning-rate parameter, which, if not set properly, can
either lead to oscillation or indefinitely long training time. Network
paralysis might also occur (Back & Tsoi, 1994), i.e. as the ANN
trains, the weights tend to be quite large values and the training
process can come to a virtual standstill. Furthermore, BP eventually
slows down by an order of magnitude for every extra (hidden)
layer added to ANN. Above all; BP is just a gradient descent algo-
rithm in the error space, which can be complex and contain many
deceiving local minima (multi-modal). Therefore, BP gets most
likely trapped into a local minimum, making it entirely dependent
on initial (weight) settings. There are many BP variants and exten-
sions trying to address some or all of these problems such as (Hay-

kin, 1999; Joost & Schiffmann, 1998; Riedmiller & Braun, 1993); yet
the performance and computational cost of each algorithm varies
with respect to the problem at hand; and the question of which
ANN architecture (number of layers and interconnections, number
of nodes, etc.) should be used for a particular problem still remains
unanswered. More detailed information about BP can be found in
Chauvin and Rumelhart (1995).

2.2. The basic PSO algorithm

Particle swarm optimization (PSO) was introduced by Kennedy
and Eberhart (1995) in 1995 as a population based stochastic
search and optimization process. It is originated from a computer
simulation of individuals (particles or living organisms) in a bird
flock or a fish school (Wilson, 1975), which basically show a nat-
ural behavior when they search for some target (e.g. food). The
goal is, therefore, to converge to the global optimum of some mul-
ti-dimensional and possibly nonlinear function or system. In prin-
ciple, PSO follows the same path as other evolutionary algorithms
(EAs) such as Genetic Algorithm (GA) (Goldberg, 1989), Genetic
Programming (GP) (Koza, 1992), Evolutionary Strategies (ES)
(Back & Kursawe, 1995), and Evolutionary Programming (EP) (Fay-
yad, Shapire, Smyth, & Uthurusamy, 1996). In a PSO process, a
swarm of particles, each of which represents a potential solution
in an optimization problem, navigates through the search space.
Particles are initially distributed randomly over the search space
and the goal is to converge to the global optimum of a function
or a system. Each particle keeps track of its position in the search
space and its best solution so far achieved. This is the personal
best value (the so-called pbest in Kennedy and Eberhart (1995))
and the PSO process also keeps track of the global best solution
so far achieved by the swarm with its particle index (the so-called
gbest in Kennedy and Eberhart (1995)). During their journey with
discrete time iterations, the velocity of each particle in the next
iteration is affected by the best position of the swarm (best per-
sonal position of the particle gbest as the social component), the
best personal position of the particle (pbest as the cognitive com-
ponent, and its current velocity (the memory term). Both social
and cognitive components contribute randomly to the position
of the particle in the next iteration. As a stochastic search algo-
rithm in a multi-dimensional (MD) search space, PSO exhibits
some major shortcomings similar to the other EAs. A crucial prob-
lem for PSO is that parameter variations may result in large
performance shifts (Lovberg & Krink, 2002). The second shortcom-
ing is due to the direct link of information flow between particles
and gbest, which then ‘‘guides” the rest of the swarm and thus
resulting in the creation of ‘‘similar” particles with a loss of diver-
sity. Hence this phenomenon increases the probability of being
trapped in local optima (Riget & Vesterstrom, 2002) and it is the
main source of premature convergence especially when the search
space is in high dimensions (Van den Bergh, 2002) and the prob-
lem to be optimized is multi-modal (Riget et al., 2002). Another
reason for the premature convergence is that particles are flown
through a single point which is (randomly) determined by gbest
and pbest positions and this point is not even guaranteed to be
a local optimum (Van den Bergh, 2002). Various modifications
and PSO variants have been proposed in order to address this
problem such as (Christopher & Seppi, 2004; Clerc, 1999; Higashi
& Iba, 2003; Lovberg, 2002; Riget et al., 2002; Shi & Eberhart,
1998).

In the basic PSO method, a swarm of particles fly through an N-
dimensional search space where each particle represents a poten-
tial solution to the optimization problem. Each particle a in the
swarm n = {x1, . . . , xa, . . . , xS}, is represented by the following
characteristics:

Fig. 1. A sample three-layer perceptron network with continuous valued inputs
{x1, . . ., xn}, two outputs and two layers of hidden units.

8452 T. Ince et al. / Expert Systems with Applications 37 (2010) 8450–8461



xa,j(t) jth dimensional component of the position of particle
a, at time t

va,j(t) jth dimensional component of the velocity of particle a,
at time t

ya,j(t) jth dimensional component of the personal best (pbest)
position of particle a, at time t

ŷjðtÞ jth dimensional component of the global best (gbest)
position of swarm, at time t

Let f denote the fitness function to be optimized. Without loss of
generality assume that the objective is to find the minimum of f
in N-dimensional space. Then the personal best of particle a can
be updated in iteration t + 1 as,

ya;jðt þ 1Þ ¼
ya;jðtÞ if f ðxaðt þ 1ÞÞ > f ðyaðtÞÞ
xa;jðt þ 1Þ else

� �
j ¼ 1;2; . . . ;N ð2Þ

Since gbest is the index of the global best (GB) particle, then
ŷðtÞ ¼ ygbestðtÞ ¼ arg min8i2½1;S�ðf ðyiðtÞÞÞ. Then for each iteration in a
PSO process, positional updates are performed for each dimension
component, j e [1, N] and for each particle index, a e [1, S], as
follows:

va;jðtþ1Þ¼wðtÞva;jðtÞþc1r1;jðtÞðya;jðtÞ�xa;jðtÞÞþc2r2;jðtÞðŷjðtÞ�xa;jðtÞÞ
xa;jðtþ1Þ¼xa;jðtÞþva;jðtþ1Þ

ð3Þ

where w(t) is the inertia weight and c1, c2 are the acceleration con-
stants which are initially set to 2 (Shi and Eberhart, 1998).
r1,j � U(0, 1) and r2,j � U(0, 1) are random variables with uniform
distribution. Although the use of inertia weight, w(t), was later
added by Shi and Eberhart (1998), into the velocity update equa-
tion, it is widely accepted as the basic form of PSO algorithm. A lar-
ger value of w(t) favors exploration while a small inertia weight
favors exploitation. As originally introduced, w(t) is often linearly
decreased from a high value (e.g. 0.9) to a low value (e.g. 0.4) during
iterations of a PSO run, which updates the positions of the particles
using Eq. (3). Depending on the problem at hand, PSO iterations can
be repeated until a specified number of iterations, say IterNo, is ex-
ceeded, velocity updates become zero, or the desired fitness score is
achieved (i.e. f < eC). Accordingly, the general pseudo-code of the
PSO is presented in Table 1.

2.3. Applications of BP and PSO over ANNs

For the purpose of medical diagnostics, ANNs have been pro-
posed as decision support tools and have been successfully applied
to a wide range of problems such as automated ECG signal diagno-
sis (Hosseini et al., 2006), electroencephalogram (EEG) waveform
classification (Haselsteiner & Pfurtscheller, 2000), decision support
systems for breast cancer diagnosis (Lisboa & Taktak, 2006), diag-
nosis of acute myocardial infarction (coronary occlusion) (Baxt,
1990), recognition of tumors in ultrasound images of the eye (Silv-
erman & Noetzel, 1990), diagnosis of acute pulmonary embolism
(Tourassi, Floyd, Sostman, & Coleman, 1993), and differential diag-
nosis of six dermatology (erythamatous–squamous) diseases
(West & West, 2000). MLPs trained with the BP algorithm are used
in the majority of the techniques proposed for medical decision
support systems where the primary purpose is to augment the
physician’s decision making in a disease or anomaly diagnosis.
However, there are several issues that should be addressed when
applying ANN-based classifiers in the medical domain. Besides
the selection of the network architecture (type of network, number
of layers and interconnections, number of nodes, etc.) and settings
of training parameters, the effects of limited training data, descrip-
tion of the input space, large number of features, and class imbal-

ance should be considered during the development phase and the
subsequent performance evaluation. Interestingly, despite the fact
that many new studies using neural network classifiers have re-
cently been proposed for medical decision making with promising
results, only few techniques were able to find their way into clin-
ical use mainly due to poor benchmarking and especially the lack
of a proper assessment methodology (Lisboa & Taktak, 2006).
One important implication is the need of more extensive and rigor-
ous methodologies for evaluating neural network systems used in
medical diagnosis.

Several researchers have successfully applied PSO to train
feed-forward and recurrent ANNs that are used in classification
problems, some of which are from the medical field. One of the
advantages of PSO-based neural network training is that any
proper objective function which is more relevant to a particular
problem can be chosen and PSO is applicable to any type of
ANN, with any activation function. In Eberhart and Hu (1999), a
PSO was applied to evolve (train) a feed-forward neural network,
which would distinguish between normal subjects and those with
tremor (Parkinson’s disease or essential tremor) and encouraging
results were obtained. Another comparative study over MLPs,
which investigates training methods based on many PSO variants,
such as multi-start PSO, guaranteed convergence PSO, the tradi-
tional BP method, and GA-based techniques was presented in
Van den Bergh (2002). This study shows that over the three med-
ical datasets (breast cancer, diabetes, and hepatitis) from Proben1
(Prechelt, 1994), PSO and its variants achieve a superior training
performance compared to the others in terms of classification
accuracy on the test set and the training speed. Recently, the ef-
fect of class imbalance in the training dataset over the perfor-
mance of feed-forward ANN classifiers for medical diagnosis
was investigated in Mazurowski et al. (2008). As in Van den Bergh
(2002), a feed-forward ANN with a single-hidden layer with three
neurons was used and BP and PSO were both employed to evalu-
ate the classifier performance using a clinical dataset for breast
cancer diagnosis. However, contrary to Van den Bergh (2002),
BP training was found to be superior to PSO in terms of (average)
test performance.

As one of the most widely applied ANNs, in this study we shall
focus on the (supervised) training process of MLP networks. Let Nl

h

be the number of hidden neurons in layer l of a MLP with input and
output layer sizes NI and NO, respectively. The input neurons are
merely fan-out units since no processing takes place. Let F be the

Table 1
Pseudo-code for PSO algorithm.

PSO (termination criteria: {IterNo, eC,. . .}, Vmax)
1. For "a e [1, S] do:

1.1. Randomize xa (1), va (1)
1.2. Let ya(0) = xa (1)
1.3. Let ŷð0Þ ¼ xað1Þ

2. End For.
3. For "t e [1, IterNo] do:

3.1. For "a e [1, S] do:
3.1.1. Compute ya(t) using Eq. (1)

3.1.2. If (f ðyaðtÞÞ < min f ðŷðt � 1Þ; f ðyiðtÞ
16i<a

ÞÞ
 !

then gbest = a and

ŷðtÞ ¼ yaðtÞ
3.2. End For.
3.3. If any termination criterion is met, then Stop.
3.4. For "a e [1, S] do:

3.4.1. For "j e [1, N] do:
3.4.1.1. Compute va,j(t + 1) using Eq. (2)
3.4.1.2. If(|va,j(t + 1)| > Vmax) then clamp it to |va,j(t + 1)| = Vmax

3.4.1.3. Compute xa,j(t + 1) using Eq. (2)
3.4.2. End For.

3.5. End For.
4. End For.
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activation function applied over the weighted inputs plus a bias, as
follows:

yp;l
k ¼ Fðsp;l

k Þ where sp;l
k ¼

X
j

wl�1
jk yp;l�1

j þ hl
k ð4Þ

where yp;l
k is the output of the kth neuron of the lth hidden/output

layer when the pattern p is fed, wl�1
jk is the weight from the jth neu-

ron in layer l � 1 to the kth neuron in layer l, and hl
k is the bias value

of the kth neuron of the kth hidden/output layer. The training mean
squared error, MSE, is formulated as:

MSE ¼ 1
2PNO

X
p2T

XNO

k¼1

tp
k � yp;O

k

� �2
ð5Þ

where tp
k is the target (desired) output and yp;O

k is the actual output
from the kth neuron in the output layer, l = O, for pattern p in the
training set T with size P. The error measure of MSE is set as an
objective (fitness) function of both BP and PSO-training methods
to assess their performance under equal training conditions. In
PSO, each particle a in the swarm, n = {x1, . . . , xa, . . . , xS}, has the

positional component formed as, xa;jðtÞ ¼ w0
jk

n o
; w1

jk

n o
;

n
h1

k

� �
; w2

jk

n o
; h2

k

� �
; . . . ; wO�1

jk

n o
; hO�1

k

� �
; hO

k

� �
g where wl

jk

n o
and hl

k

n o
represent a potential solution to the problem (the set of weights
and biases of layer l). Note that the input layer (l = 0) contains only
weights whereas the output layer (l = O) has only biases. Setting
MSE in Eq. (5) as the fitness function enables PSO to perform evolu-
tions of each network parameters within its native process and con-
verge to the best global position found during all iterations.

3. BP vs. PSO: comparative performance evaluation over
medical data

3.1. The experimental setup

The architecture space can be defined over a wide range of con-
figurations, i.e. say from a single-layer perceptron (SLP) to complex
MLPs with many hidden layers. Suppose, for the sake of simplicity,
a range is defined for the number of layers, [Lmin, Lmax] and another

for the number of neurons for each hidden layer l, Nl
min;N

l
max

h i
.Without loss of generality, assume that the size of both input
and output layers is determined by the problem and hence fixed.
Consequently, the architecture space can now be defined by only
two (MLP) configuration sets, Rmin ¼ NI;N

1
min; . . . ;NLmax�1

min ;NO

n o
and Rmax ¼ NI;N

1
max; . . . ;NLmax�1

max ;NO�
n o

, one for minimum and the
other for maximum number of neurons allowed for each layer of
a MLP. The size of both arrays is naturally Lmax + 1 where corre-
sponding entries define the range of neurons possible on the lth
hidden layer for all those MLPs, which can have an lth hidden layer.
The size of input and output layers, NI;NOf g, is fixed and remains
the same for all configurations in the architecture space within
which any l-layer MLP can be defined providing that Lmin 6 l 6 L-
max. Lmin P 1 and Lmax can be set to any value meaningful for the
problem at hand. In this way, all network configurations in the
architecture space are enumerated into a hash table with a proper
hash function, which basically ranks the networks with respect to
their complexity, i.e. associates higher hash indices to networks
with higher complexity. The hash function then enumerates all po-
tential MLP configurations into hash indices, starting from the sim-
plest MLP with Lmin � 1 hidden layers, each of which has a
minimum number of neurons given in Rmin, to the most complex
network with Lmax � 1 hidden layers, each of which has a maxi-
mum number of neurons given in Rmax. Take, for instance, the fol-
lowing configuration sets, Rmin = {9, 1, 1, 2} and Rmax = {9, 8, 4, 2},
which indicate that Lmax = 3. If Lmin = 1 then the hash function enu-

merates all MLP configurations in the architecture space as shown
in Table 2. Note that in this example, the input and output layer
sizes are 9 and 2, which are eventually fixed for all MLP configura-
tions. The hash function associates the first index (d = 0) with the
simplest possible architecture, i.e., a SLP with only input and out-
put layers (9 � 2). From indices 1 to 8, all configurations belong
to 2-layer MLP with a single-hidden layer containing a varying
number of neurons between 1 and 8 (as specified in the 2nd entries
of arrays Rmin and Rmax). Similarly, for indices 9 and up, 3-layer
MLPs are enumerated in which the number of neurons in the 1st
and 2nd hidden layers sizes are varied according to the corre-
sponding entries in Rmin and Rmax. Finally, the most complex MLP
with the largest number of possible layers and the highest number
of neurons is associated with the highest index, d = 40. Therefore,
all 41 entries in the hash table span the architecture space with re-
spect to the configuration complexity.

The comparative evaluations of both training algorithms were
performed using medical diagnosis benchmark dataset from the
UCI Machine Learning repository (Prechelt, 1994), which is parti-
tioned into three sets: training, validation and testing. There are
several techniques (Amari, Murata, Muller, Finke, & Yang, 1997)
to use training and validation sets individually to prevent over-fit-
ting and thus to improve the classification performance in the test
data. However, there is no universally effective technique and
there are several research articles reporting against the use of
the cross-validation technique in the design and training of MLP
networks (Amari et al., 1997; Andersen & Martinez, 1999). In this
study, for simplicity and to obtain an unbiased performance mea-
sure under equal training conditions, the validation and training
sets are simply combined to be used for training. From Proben1
repository (Prechelt, 1994), three benchmark classification prob-
lems, breast cancer, heart disease and diabetes, are selected, which
were commonly used by the previous studies. These are medical
diagnosis problems, which present the following attributes:

� All of them are real-world problems based on medical data from
human patients.
� The input and output attributes are similar to those used by a

medical doctor.
� Since medical examples are expensive to get, the training sets

are quite limited.

We now briefly describe each classification problem next.

Table 2
A sample architecture space for MLP configuration sets Rmin = {9, 1, 1, 2} and
Rmax = {9, 8, 4, 2}.

Index Configuration Index Configuration

0 9 � 2 21 9 � 5 � 2 � 2
1 9 � 1 � 2 22 9 � 6 � 2 � 2
2 9 � 2 � 2 23 9 � 7 � 2 � 2
3 9 � 3 � 2 24 9 � 8 � 2 � 2
4 9 � 4 � 2 25 9 � 1 � 3 � 2
5 9 � 5 � 2 26 9 � 2 � 3 � 2
6 9 � 6 � 2 27 9 � 3 � 3 � 2
7 9 � 7 � 2 28 9 � 4 � 3 � 2
8 9 � 8 � 2 29 9 � 5 � 3 � 2
9 9 � 1 � 1 � 2 30 9 � 6 � 3 � 2
10 9 � 2 � 1 � 2 31 9 � 7 � 3 � 2
11 9 � 3 � 1 � 2 32 9 � 8 � 3 � 2
12 9 � 4 � 1 � 2 33 9 � 1 � 4 � 2
13 9 � 5 � 1 � 2 34 9 � 2 � 4 � 2
14 9 � 6 � 1 � 2 35 9 � 3 � 4 � 2
15 9 � 7 � 1 � 2 36 9 � 4 � 4 � 2
16 9 � 8 � 1 � 2 37 9 � 5 � 4 � 2
17 9 � 1 � 2 � 2 38 9 � 6 � 4 � 2
18 9 � 2 � 2 � 2 39 9 � 7 � 4 � 2
19 9 � 3 � 2 � 2 40 9 � 8 � 4 � 2
20 9 � 4 � 2 � 2
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3.1.1. Breast cancer
The objective of this data set is to classify breast lumps as either

benign or malignant according to microscopic examination of cells
that are collected by needle aspiration. There are 699 exemplars of
which 458 are benign and 241 are malignant and they are origi-
nally partitioned as 350 for training, 175 for validation and 174
for testing. The data set consists of nine input attributes and two
output attributes, i.e. each input pattern is described by 9-dimen-
sional vector and there are two possible outcomes of the classifier.
It is created at University of Wisconsin Madison by Dr. William
Wolberg.

3.1.2. Heart disease
The initial data set consists of 920 exemplars with 35 input

attributes, some of which are severely missing. Hence a second
data set is composed using the cleanest part of the preceding set,
which was created at Cleveland Clinic Foundation by Dr. Robert
Detrano. The Cleveland data is called ‘‘heartc” in Proben1 reposi-
tory and contains 303 exemplars but six of them still contain miss-
ing data and are hence discarded. The remaining examplars are
partitioned as follows: 149 for training, 74 for validation and 74
for testing. There are 13 input and 2 output attributes. The purpose
is to predict the presence of a heart disease according to the input
attributes.

3.1.3. Diabetes
This dataset is used to predict diabetes diagnosis among Pima

Indians. The data is collected from female patients, aged 21 years
or older. There are total of 768 exemplars of which 500 are classi-
fied as diabetes negative and 268 as diabetes positive. The data set
is originally partitioned as 384 for training, 192 for validation and
192 for testing. It consists of eight input attributes and two output
attributes.

The input attributes of all data sets are scaled within the range
[0, 1] by a linear function. Their output attributes are encoded
using a 1-of-c representation using c classes. The winner-takes-
all methodology is applied so that the output of the highest activa-
tion designates the class. Overall, our experimental setup becomes
identical to those used in the previous studies and thus fair com-

parative evaluations can now be made over the classification error
rate of the test data. In all experiments in this section we use the
sample architecture space given in Table 2, which has the general-
ized form as, Rmin = {NI, 1, 1, NO} and Rmax = {NI, 8, 4, NO} containing
the compact 1-, 2- or 3-layer MLPs where NI and NO, are deter-
mined by the number of input and output attributes of the classi-
fication problem. For BP, all networks were trained with 500
(shallow training) and with 5000 (deep training) iterations with
a low learning rate of 0.02. For PSO-training, in addition to default
settings for the standard algorithm parameters as defined in Sec-
tion 2.3, the number of particles was set to 40 (S = 40) and the
number of training iterations was set to 200 for shallow and
2000 for deep training case. For all experiments in this section, un-
less stated otherwise, 100 independent runs are performed for
each configuration to compute the error statistics plots for each
dataset. We mainly consider two major criteria for the perfor-
mance assessment: (1) training MSE, which indicates the error
minimization achieved by each method and (2) test CE, which is
the primary objective of the classifier as it shows the classification
accuracy level achieved as well as the generalization capability of
each method. Using the corresponding error statistics plots, both
criteria shall then be statistically evaluated by considering on the
average (i.e. mean MSE and CE) and the best (i.e. minimum MSE
and CE) performances achieved by each method, BP and PSO.

3.2. Evaluations of results with the proposed methodology

In order to perform a comprehensive and systematic assess-
ment of predictive performance of ANN classifiers in medical diag-
nosis, we apply exhaustive BP- and PSO-training for each network
configuration in the architecture space, which is defined over MLPs
with sigmoid activation functions. In this way we can escape from
the bias or possible effect of a particular network over the perfor-
mance, which was the case of many of the aforementioned studies
that were mostly performed using only one or few fixed network
architecture(s). Furthermore, to assess the effect of the training
depth on both BP and PSO, both shallow and deep training will
be applied over every network configuration in the architecture
space by setting the number of iterations appropriately.
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Fig. 2. Train (top) and test (bottom) error statistics vs. hash index plots from shallow BP- and PSO-training over the breast cancer dataset.
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Fig. 2 presents the corresponding error statistics plots from the
shallow training over the breast cancer dataset. BP in general
achieves the lowest average training MSEs within a narrow vari-
ance except few network configurations with the corresponding
indices, d e [13, 16] where PSO slightly surpasses BP. On the other
hand, PSO achieves the best training performances (i.e. minimum
MSEs) over the majority of network configurations except for the
compact ones (d e [0, 9]) where BP is consistently more successful.
The lowest overall training MSE (both average and minimum) is
too achieved by PSO using the configuration with the hash indices
d = 14 and d = 16 (MLPs: 9 � 6 � 1 � 2 and 9 � 8 � 1 � 2), respec-
tively. In terms of the classification performances over the test
set, the results are consistently in favor of PSO, which performs
better than BP with respect to both performance criteria. Particu-
larly, PSO achieved the optimal 0% CE (i.e.100% classification accu-
racy) as its best performance among all networks except for only
two networks (d = 9 and d = 10), whereas BP managed to achieve
this only over the compact networks (i.e. d = 0 and d e [2, 8], plus
the complex MLP with d = 39. Overall, PSO usually demonstrates
a better classification performance for the breast cancer dataset
with the shallow training.

The error statistics plots obtained from deep training of all net-
works in the architecture space by both methods are shown in
Fig. 3. In this case, both BP and PSO achieve lower training MSEs
as a natural consequence of the deep- or over-training, and BP in
general achieves the lowest average training MSEs, particularly
on complex networks with two hidden layers but it also surpasses
PSO in terms of the minimum training MSEs except for only few
networks. Due to such over-training, the classification perfor-
mance of both methods is expected to degrade, which is the case
as shown by the bottom plots of Fig. 3. However, the degradation
on PSO’s performance is not as severe as that of BP. Furthermore,
note that there is almost no performance loss in the case of com-
pact networks, due to PSO’s global search ability. Particularly for
complex networks, a significant performance gap in terms of aver-
age test CE occurs between the two methods in favor of PSO since
BP, as a deterministic local search method, is drastically affected by
the over-fitting of the training data and thus exhibits significantly
worse average classification performance. This is somewhat true

for PSO too; especially its minimum CE cannot anymore guarantee
0% CE level for all network configurations.

Fig. 4 presents the corresponding error statistics plots from the
shallow training over the heart disease dataset. Both average and
minimum training MSE statistics of both methods vary signifi-
cantly with respect to the network configuration, making either
method better than the other for a given network and error crite-
rion. This is a good example that clearly shows the effect of differ-
ent network configurations over the performance of each method.
Therefore, as discussed earlier about the aforementioned studies in
this field, using only one or few architectures for comparative eval-
uations may favor either method and hence such a static and lim-
ited approach is not sufficient to draw reliable conclusions. The
lowest training MSE (both average and minimum) is achieved by
PSO using the network with the hash index d = 16 (MLP:
13 � 8 � 1 � 2). As in the previous dataset, about the classification
performances over the test set, the results are consistently in favor
of PSO, which performs better than BP for all networks in the archi-
tecture space with respect to both performance criteria.

On contrary to shallow training results, the top plot in Fig. 5
indicates that whenever deep training is performed over this data-
set, BP surpasses PSO with respect to the training MSEs (both aver-
age and minimum) for all networks. Hence due to the over-fitting
of training data, the classification performance of BP over the test
set is quite degraded whilst no significant performance degrada-
tion occurs for PSO. PSO, once again, exhibits its immunity against
over-training due to its global search ability and proves to yield the
best classification performance over the test set (i.e. well general-
ization) regardless of the training depth. This is true for both aver-
age and the best performance criteria considered (see red1 and blue
curves of the bottom plot in Fig. 5). PSO achieves the overall best
classification performance, �13% CE, from the three different net-
works with the corresponding hash indices, d = 14, 30 and 39
although no network configuration makes too much difference
when on the average classification performance is concerned.
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Fig. 3. Train (top) and test (bottom) error statistics vs. hash index plots from deep BP- and PSO-training over the breast cancer dataset.

1 For interpretation of color in Fig. 5, the reader is referred to the web version of
this article.
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Fig. 6 presents the corresponding error statistics plots from the
shallow training over the diabetes dataset. Similar comments can be
made about the training performance of PSO and BP as in the shal-
low training experiments over the heart disease dataset, i.e.
although BP is consistently better than PSO for compact networks,
their training performances (minimum and average MSEs) are
quite comparable and varying along with the network configura-
tion. In terms of the classification performance over the test set,
PSO usually achieves slightly lower CEs but the results are again
quite comparable. When the minimum CEs are concerned, from
the network with the hash index d = 16 (MLP: 8 � 8 � 1 � 2) PSO
achieved a minimum of 17.1% CE that is slightly lower than the

18.8% minimum CE achieved by BP from the network with the hash
index d = 4 (MLP: 8 � 4 � 2). Finally, according to the error statis-
tics plots in Fig. 7 obtained by deep training over the same dataset,
similar comments can be made about both training (MSE) and gen-
eralization (test CE) performances of PSO and BP as in the deep
training experiments over the heart disease dataset, i.e. PSO yields
almost the same average training MSE levels and BP significantly
reduces both average and minimum MSE levels, as expected. One
observation worth mentioning here is that the training and test
performances of BP in both deep and shallow training exhibits a
large variation with respect to the network configuration used
(e.g. compare for instance the mean BP training MSE or test CE
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Fig. 4. Train (top) and test (bottom) error statistics vs. hash index plots from shallow BP- and PSO-training over the heart disease dataset.
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Fig. 5. Train (top) and test (bottom) error statistics vs. hash index plots from deep BP- and PSO-training over the heart disease dataset.
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for d = 8 and d = 9), whereas the corresponding performance levels
of PSO are more stable and usually with a smaller variance, regard-
less of the network configuration.

The overall test CE statistics of both training techniques (BP and
PSO) computed over all configurations in selected MLP architecture
spaces for each dataset are enlisted in Table 3. We used the follow-
ing three statistics: minimum min, mean l, and standard deviation
r, respectively, which are computed per training depth (deep and
shallow) and separately for the minimum and the mean test CEs.
For all datasets, minimum test CE statistics in the table clearly indi-
cates that the overall best classification performances are achieved
by PSO-training independent from the training depth. This is also

true for the average classification performances with the only
exception that in the heart disease dataset, minimum of the mean
test CEs (corresponding to the best ‘‘on the average” test perfor-
mance) is achieved by BP with the shallow training.

Finally, in order to accomplish the comparative performance
evaluations of each method with respect to the variations in the
training depth, we have selected a particular network configura-
tion with the hash index d = 16, which is a relatively compact
and one of the best-performing classifier configuration within the
sample architecture space, and we have performed exhaustive
training (with 100 runs) for each of the 10 intermediate (training)
depths, between the corresponding shallow and deep training, i.e.
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[500, 5000] for BP, and [200, 2000] for PSO. Fig. 8 shows the train-
ing MSE and test CE plots vs. training depth for all three medical
problems. From the figure, it is clear that both methods reduce
training MSE with increasing training depths, as a natural conse-
quence of over-fitting of the training data. On the other hand,
PSO achieves lower average and minimum training MSEs for the
breast cancer, higher for the diabetes and quite similar for the heart
disease datasets, respectively. The classification performance of
PSO shows a strong immunity against variations in training depth
and it generally achieves the lowest minimum CEs. For this partic-
ular network, either BP or PSO can achieve a better average classi-
fication performance than the other, depending on the training
depth. Hence this clearly draws the conclusion that the training

depth too should be considered while comparing and/or analyzing
individual performance of each method.

3.3. Discussion and computational complexity analysis

The overall experimental results, first of all, show that the per-
formance of both methods, BP and PSO, directly depends on the
network architecture used and the training depth applied, each
of which has varying effects on the two performance criteria em-
ployed, minimum and average training MSE and test CE. The for-
mer basically shows the search or optimization performance of
the method in the training set whereas the latter signifies the gen-
eralization ability and the main objective of any ANN training
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Fig. 8. Error statistics (for network configuration with the hash index d = 16) vs. training depth plots using BP and PSO over the breast cancer (top), heart disease (middle), and
diabetes (bottom) datasets.

Table 3
The overall test CE statistics. The minimum CE statistics are highlighted.

Data set Training method Training depth Min. test CE statistics Mean test CE statistics

min l r min l r

Breast cancer BP Shallow 0 0.0045 0.0024 0.0003 0.0101 0.0024
PSO 0 0.0003 0.0013 0 0.0078 0.0024
BP Deep 0 0.0055 0.0036 0 0.0176 0.0064
PSO 0 0.0015 0.0026 0 0.0121 0.0052

Diabetes BP Shallow 0.1875 0.2002 0.0063 0.2101 0.2175 0.0112
PSO 0.1719 0.1878 0.0067 0.2079 0.2137 0.0028
BP Deep 0.1719 0.1941 0.0129 0.2135 0.2246 0.0068
PSO 0.1667 0.1836 0.0101 0.2069 0.2135 0.0040

Heart disease BP Shallow 0.1757 0.1928 0.0100 0.1893 0.2222 0.0087
PSO 0.1471 0.1603 0.0092 0.1957 0.2043 0.0031
BP Deep 0.1486 0.1773 0.0171 0.2150 0.2340 0.0096
PSO 0.1324 0.1578 0.0151 0.1976 0.2060 0.0054
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method, i.e. the classification performance within the test set. The
results justify the use of the proposed assessment technique for
both methods, BP and PSO, over the medical datasets. Otherwise,
it would be inevitable to obtain varying or even worse contradict-
ing and biased results, which make them all unreliable. For exam-
ple in Sexton and Dorsey (2000), it is evident that the performance
of BP method is significantly underestimated, i.e. the authors of
Sexton and Dorsey (2000) reported mean test CE as 3.01% for the
breast cancer, 24.89% for the heart disease, and 29.62% for the diabe-
tes datasets where they used only three single-hidden layer MLPs
with 3, 6, and 12 hidden nodes, and performed only 10 training
runs. In another study (Mazurowski et al., 2008), the authors per-
formed comparative evaluations between the traditional BP and
PSO methods over a breast cancer dataset and by using only a sin-
gle-hidden layer MLP with three hidden neurons. With such a lim-
ited approach, they made a general conclusion that BP performs
better than PSO for imbalanced medical datasets. BP perhaps may
surpass PSO on that particular MLP, for that dataset and under
those specific conditions they employed; however, it is demon-
strated in the current work that such an approach is nevertheless
not sufficient to draw such a general and decisive conclusion.

Finally, we shall perform computational complexity analysis,
which mainly depends on some common properties such as the
size of the input and output layers along with the size of the train-
ing set (problem specific), and the total number of connections in
the network (network complexity). All experiments in this section
are performed on a computer with P-IV 3 GHz CPU and 1 GB RAM.
BP method consists of one forward and one backward propagation,
which requires computation of the error at the output nodes and
back-propagating it to the hidden nodes in each hidden layer by
calculating the error derivative with respect to weights. Thus the
backpropagation of the error (MSE) is computationally the most
expensive operation, (it was noticed that backward propagation
is 4–8 times more computationally expensive than forward propa-
gation). On the other hand, during a PSO process, at each iteration
and for each particle, first the network parameters are extracted
from the particle and input vectors are only forward propagated
to compute the average error (MSE) at the output layer. Let T be
the size of the training data set, S be the swarm size, E be the total
number of iterations (epochs) in a PSO run, and lt be the average
time for a forward propagation. Since the computational complex-
ity is proportional to the total number of forward propagations
performed, then the overall computational load for PSO will be in
the order O(SETlt). Table 4 presents average training times for
three medical benchmark problems by BP and PSO over the sample
architecture space given in Table 2. The results clearly indicate that
BP is computationally more efficient than PSO with the current
parameters of BP and PSO. Since the computational complexity of
both methods strictly depends on their parameters (e.g. E for both
BP and PSO and S for PSO), it is nevertheless difficult to perform a
decisive comparison between them.

4. Conclusions

In this paper, the performance of the two well-known training
techniques, BP and PSO, for neural network classifiers over medical

datasets was evaluated by using a new assessment methodology,
based on a systematic and exhaustive evaluation of the classifier
performance over an architecture space and with respect to differ-
ent training depths. The proposed assessment method can thus
evaluate each method’s training (error minimization) and test
(generalization) performances with respect to different network
configurations and training depths whilst considering two statisti-
cal criteria, ‘‘on the average” and ‘‘the best” within an exhaustive
number of (training) runs. An extensive experimental study was
performed over the three benchmark medical diagnosis problems
from Proben1 repository. In this study, the architecture space was
defined over the feed-forward, fully-connected ANNs (the so-called
MLPs), which have been widely used in computer-aided decision
support systems in medical domain. The experimental results
clearly demonstrate that both training and generalization perfor-
mance of each method depend on the network configuration, the
training depth and the particular application at hand. This is basi-
cally what has been missing in the related works in this field and
that is why there are many variations and even contradictory or
mismatching results among them. We strongly believe that this
work has important implications for researchers designing neural
network classifiers for medical diagnosis systems.

Regarding the performances of both methods, it is concluded
first of all that PSO-training has demonstrated relatively better
generalization ability across the architecture space whereas BP
with deep training always achieved the lowest MSE levels. Further-
more, the classification performance of PSO shows a strong immu-
nity against variations in the training depth, and it generally
achieves the lowest minimum CEs. BP, on the other hand, is consis-
tently better than PSO for compact networks, yet the training per-
formances (minimum and average MSEs) of both BP and PSO are
quite comparable and usually varying with different network con-
figurations. Contrary to the results published in Mazurowski et al.
(2008), we proved that PSO, in both shallow and deep training
schemes, usually yields a better classification performance than
BP, especially when the minimum CE is taken into account (i.e.
the best classification performance). We have further shown statis-
tically that the performance of BP method is drastically underesti-
mated in Sexton and Dorsey (2000) as it can achieve much better
classification performance over the entire architecture space used.
Finally, as expected, BP is found to be more computationally effi-
cient than PSO.

The proposed method for performance assessment of ANN clas-
sifiers can also be used for other types of ANNs with different
architecture spaces and in other application areas. This is subject
to our future work, which will focus on the application of the pro-
posed assessment methodology for radial basis function (RBF) neu-
ral networks over the same benchmark medical datasets. The
results will allow us to compare, not only the training methods,
BP vs. PSO, but also both types of ANNs, i.e. MLPs vs. RBFs.
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Abstract—The content-based image retrieval (CBIR) has been an 
active research field for which several feature extraction, 
classification and retrieval techniques have been proposed up to 
date. However, when the database size grows larger, it is a 
common fact that the overall retrieval performance significantly 
deteriorates. In this paper, we propose collective network of 
(evolutionary) binary classifiers (CNBC) framework to achieve a 
high retrieval performance even though the training (ground 
truth) data may not be entirely present from the beginning and 
thus the system can only be trained incrementally. The CNBC 
framework basically adopts a “Divide and Conquer” type 
approach by allocating several networks of binary classifiers 
(NBCs) to discriminate each class and performs evolutionary 
search to find the optimal binary classifier (BC) in each NBC. In 
such an evolution session, the CNBC body can further 
dynamically adapt itself with each new incoming class/feature set 
without a full-scale re-training or re-configuration. Both visual 
and numerical performance evaluations of the proposed 
framework over benchmark image databases demonstrate its 
scalability; and a significant performance improvement is 
achieved over traditional retrieval techniques. 

Keywords- evolutionary classifiers, content-based image 
retrieval, multi-dimensional particle swarm optimization 

I.  INTRODUCTION  

For content-based image classification and retrieval, the 
key questions, e.g. 1) how to select certain features so as to 
achieve highest discrimination over certain classes, 2) how to 
combine them in the most effective way, 3) which distance metric 
to apply, 4) how to find the optimal classifier configuration for the 
classification problem in hand, 5) how to scale/adapt the classifier 
if large number of classes/features are incrementally introduced 
and finally, 6) how to train the classifier efficiently to maximize 
the classification accuracy, still remain unanswered. The current 
state-of-the-art classifiers such as SVMs, Bayesian, Artificial 
Neural Networks (ANNs), etc. cannot cope with such requirements 
since a single classifier, no matter how powerful and well-trained 
it may be, cannot discriminate efficiently a vast amount of classes, 
over an indefinitely large set of features. Furthermore, since both 
classes and features are not static, rather dynamically varying, as a 
natural consequence of image repositories, static and fixed-
structured single classifiers cannot scale such changes without 
proper configuration updates and a full-scale re-training.  

In order to address these problems and hence to maximize 
the classification accuracy which will in turn boost the retrieval 

performance, in this paper, we shall focus on a global framework 
design that embodies a collective networks of evolutionary 
classifiers. Specifically in this approach, the following objectives 
will be targeted: 

I. Evolutionary Search: Seeking for the optimum network 
architecture among a collection of configurations (the so-
called Architecture Space, AS). 

II. Evolutionary Update in the AS: Keeping only ”the best” 
individual configuration in the AS among indefinite number 
of evolution runs. 

III.  Feature Scalability: Support for varying number of features. 
Any feature can be dynamically integrated into the 
framework without requiring a full-scale initialization and 
re-evolution.   

IV. Class Scalability: Support for varying number of classes. 
Any class can dynamically be inserted into the framework 
without requiring a re-evolution. 

V. High efficiency for the evolution (or training) process: Using 
as compact and simple classifiers as possible in the AS. 

VI. Online (incremental) Evolution: Continuous 
online/incremental training (or evolution) sessions can be 
performed to improve the classification accuracy. 

VII.  Parallel processing: Classifiers can be evolved using 
several processors working in parallel. 

In this way, we shall achieve as compact classifiers as 
possible, which can be evolved and trained in a much more 
efficient way than a single but complex classifier, and the optimum 
classifier for the classification problem in hand can be searched 
with an underlying evolutionary technique, e.g. as in [1]. At a 
given time, this allows creation and designation of a dedicated 
classifier for discriminating a certain class type from the others 
based on a single feature. Each incremental evolution session will 
“learn” from the current best classifier configurations and can 
improve them further, possibly as a result of an (incremental) 
optimization, which may find another configuration in the 
architecture space (AS) as the “optimal”. Moreover, with each 
incremental evolution, new classes/features can also be introduced 
which signals the collective classifier network to create new 
corresponding networks and classifiers within to adapt 
dynamically to the change. In this way the collective classifier 
network will be able to dynamically scale itself to the indexing 
requirements of the image database whilst striving for maximizing 
the classification and retrieval accuracies thanks to the dedicated 
classifiers within. In order to achieve all these objectives, we adopt 
a Divide and Conquer type of approach, which is based on a novel 



framework encapsulating a network of (evolutionary) binary 
classifiers (NBCs). Each NBC is devoted to a unique class and 
further encapsulates a set of evolutionary Binary Classifiers (BCs), 
each of which is optimally chosen within the AS, discriminating 
the class of the NBC with a unique feature set (or sub-feature).  
The optimality therein can be set with a user-defined criterion. The 
proposed Collective NBC (CNBC) framework currently supports 
two common ANN types, the Multi-Layer Perceptrons (MLPs) 
and the Radial Basis Function (RBF) networks. Besides the 
exhaustive search with the numerous runs of the Back-Propagation 
method, the recently proposed multi-dimensional Particle Swarm 
Optimization (MD-PSO) [2], [1] is used as the primary evolution 
technique. In the current work, due to space limitations we shall 
restrict only on the CNBC design with evolutionary MLPs. 

The rest of the paper is organized as follows. Section II 
presents evolutionary artificial neural networks. The proposed 
CNBC framework along with the evolutionary update mechanism 
is explained in detail in Section III. Section IV provides an 
extensive set of classification and retrieval results over two 
benchmark image repositories along with evaluations of the 
proposed incremental CNBC evolution. Finally, Section V 
concludes the paper and discusses topics for future work. 

II. EVOLUTIONARY NEURAL NETWORKS 

In this section we shall discuss the methodology for 
achieving the first objective that is the evolutionary search for the 
optimal classifier configuration. First the evolutionary technique, 
MD-PSO, will be briefly explained and then its application over 
feed-forward ANNs (the MLPs) shall be introduced. Finally, an 
overview for the well known training method, the Back 
Propagation, which can be used exhaustively to search for the 
optimal classifier in an AS, will briefly be presented. 

A. Multi-Dimensional Particle Swarm Optimization 

As the evolutionary method, we shall use the multi-dimensional 
(MD) extension of the basic PSO (bPSO) method, the MD-PSO, 
recently proposed in [2]. Instead of operating at a fixed dimension 
N, the MD-PSO algorithm is designed to seek both positional and 

dimensional optima within a dimension range, },{ maxmin DD . In 

order to accomplish this, each particle has two sets of 
components, each of which has been subjected to one of the two 
independent and consecutive processes. The first one is a regular 
positional PSO, i.e. the traditional velocity updates and due 
positional shifts in N dimensional search (solution) space. The 
second one is a dimensional PSO, which allows the particle to 
navigate through dimensions. Accordingly, each particle keeps 
track of its last position, velocity and personal best position 
(pbest) in a particular dimension so that when it re-visits the same 
dimension at a later time, it can perform its regular “positional” 
update using this information. The dimensional PSO process of 
each particle may then move the particle to another dimension 
where it will remember its positional status and will be updated 
within the positional PSO process at this dimension, and so on. 
The swarm, on the other hand, keeps track of the gbest particle in 
each dimension, indicating the best (global) position so far 
achieved. Similarly, the dimensional PSO process of each particle 
uses its personal best dimension in which the personal best fitness 
score has so far been achieved. Finally, the swarm keeps track of 
the global best dimension, dbest, among all the personal best 
dimensions. The gbest particle in the dbest dimension represents 
the optimum solution and dimension, respectively.  

In a MD-PSO process at time (iteration) t, each particle a 
in the swarm with S particles, },..,,..,{ 1 Sa xxx=ξ ,  is represented by 

the following characteristics: 
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Let f denote the fitness function that is to be optimized 
within a certain dimension range, },{ maxmin DD . Without loss of 

generality assume that the objective is to find the minimum of f at 
the optimum dimension within a multi-dimensional search space. 
Assume that the particle a visits (back) the same dimension after 
T iterations (i.e. )()( Ttxdtxd aa += ), then the personal best 

position can be updated in iteration t+T as follows,  
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Furthermore, the personal best dimension of particle a can be 
updated in iteration t+1 as follows, 
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Figure 1: Sample MD-PSO (left) vs. bPSO (right) particle 
structures. For MD-PSO }9,2{ maxmin == DD  and at time t, 

2)( =txda
and 3)(

~
=tdx a

. 

 
Figure 1 shows sample MD-PSO and bPSO particles denoted as 
a. Particle a in bPSO particle is at a (fixed) dimension, N=5, and 
contains only positional components; whereas in MD-PSO 
particle a contains both positional and dimensional components, 
respectively. In the figure the dimension range for MD-PSO is 
given by }9,2{},{ maxmin =DD , therefore the particle contains 9 sets 

of positional components. In this example the particle a currently 
resides at dimension 2 ( 2)( =txda

); whereas its personal best 
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dimension is 3 ( 3)(
~
=tdx a

). Therefore, at time t a positional PSO 

update is first performed over the positional elements, )(2 txxa  and 

then the particle may move to another dimension with respect to 
the dimensional PSO. Recall that each positional element, )(2 txxa

, 

represents a potential solution in the search space of the problem.  

B. MD-PSO for Evolving MLPs 

As a stochastic search process in multi-dimensional search space, 
MD-PSO seeks (near-) optimal networks in an architecture space 
(AS), which can be defined over any type of ANNs with any 
properties. All network configurations in the AS are enumerated 
into a hash table with a proper hash function, which ranks the 
networks with respect to their complexity, i.e. associates higher 
hash indices to networks with higher complexity. MD-PSO can 
then use each index as a unique dimension of the search space 
where particles can make inter-dimensional navigations to seek an 
optimum dimension (dbest) and the optimum solution on that 

dimension, dbestyxˆ . The former corresponds to the optimal 

architecture and the latter encapsulates the optimum network 
parameters (connections, weights and biases). Suppose for the 
sake of simplicity, a range is defined for the minimum and 
maximum number of layers, },{ maxmin LL and number of neurons 

for the hidden layer l, },{ maxmin
ll NN . The sizes of both input 

and output layers are determined by the problem and hence fixed. 
The AS can then be defined only by two range arrays,  

},,...,,{ 1
min

1
minmin

max
o

L
i NNNNR −

= and },,...,,{ 1
max

1
maxmax

max
o

L
i NNNNR −

= , 

one for minimum and the other for the maximum number of 
neurons allowed for each layer of a MLP. The size of both arrays 
is naturally 1max +L  where the corresponding entries define the 

range of the l th hidden layer for all those MLPs, which can have 
an l th hidden layer. The size of the input and output layers,

},{ oi NN , is fixed and is the same for all configurations in the 

AS. 1min ≥L  and maxL  can be set to any value meaningful for the 

problem encountered. The hash function then enumerates all 
potential MLP configurations into hash indices, starting from the 

simplest MLP with 1min−L  hidden layers, each of which has 

minimum number of neurons given by
minR , to the most complex 

network with 1max−L  hidden layers, each of which has a 

maximum number of neurons given bymaxR . 

Let l
hN be the number of hidden neurons in layer l of a 

MLP with input and output layer sizesiN and oN , respectively. 

The input neurons are merely fan-out units since no processing 
takes place. Let F be the activation function applied over the 
weighted inputs plus a bias, as follows: 
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where lp
ky , is the output of the kth neuron of the l th hidden/output 

layer when the pattern p is fed, 
1−l

jkw is the weight from the j th 

neuron in layer l-1 to the kth neuron in layer l, and l
kθ is the bias 

value of the  kth neuron of the l th hidden/output layer. The training 
mean square error, MSE, is formulated as follows: 
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where p
kt is the target (desired) output and ,p o

ky is the actual 

output from the kth neuron in the output layer, l=o , for pattern p in 
the training dataset T with size P, respectively. At a time t, 
suppose that particle a, has the positional component formed as, 

{ }( ) ( ) 0 1 1 2 2 1 1( ) { },{ },{ },{ },{ },...,{ },{ },{ }a axd t xd t o o o
a jk jk k jk k jk k kxx t w w w wθ θ θ θ− −=Ψ  

where }{ l
jkw  and }{ l

kθ  represent the sets of weights and biases of 

the layer l of the MLP configuration, )(txdaΨ . Note that the input 
layer (l=0) contains only weights whereas the output layer (l=o) 
has only biases. By means of such a direct encoding scheme, 
particle a represents all potential network parameters of the MLP 
architecture at the dimension (hash index) )(txda

. As mentioned 

earlier, the dimension range, },{ maxmin DD  , where MD-PSO 

particles can make inter-dimensional jumps, is determined by the 
AS defined. Apart from the regular limits such as (positional) 
velocity range, },{ maxmin VV , dimensional velocity range, 

},{ maxmin VDVD , the data space can also be limited with some 

practical range, i.e. max
)(

min )( XtxxX txd
a

a << . Setting MSE in Eq. 

(4) as the fitness function enables MD-PSO to perform evolutions 
of both network parameters and architectures within its native 
process.  

Further details and an extensive set of experiments 
demonstrating the optimality of the networks evolved with respect 
to several benchmark problems can be found in [1]. 

C. The Back Propagation Algorithm 

Back Propagation (BP) [3] is the most commonly used training 
technique for feed-forward ANNs. It is a supervised training 
technique which has been used in pattern recognition and 
classification problems in many application areas. BP has the 
advantage of applying directed search and has a local search 
ability. However, BP is just a gradient descent algorithm in the 
error space, which can be complex and may contain many 
deceiving local minima (multi-modal). Therefore, BP gets most 
likely trapped into a local minimum, making it entirely dependent 
on the initial (weight) settings. Yet due to its simplicity and 
relatively lower computational cost, BP can be applied 
exhaustively over the network architectures of AS with random 
initializations to find out the optimal architecture for the problem 
in hand.  Since AS is composed of only compact networks, with 
such an exhaustive application, the probability of finding 
(converging) to a (near-) optimum solution in the error space is 
significantly increased.  
The BP algorithm can be summarized as follows: 

1. Initialize the weights 
l
jkw  and biases l

kθ  randomly.  

2. Feed pattern p to the network and compute the output ,p l
ky of 

each neuron. 

3. Calculate the error between the computed output ,p o
ky of each 

output neuron and the desired output p
kt  as , ,p o p p o

k k ke t y= − .  
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4. For each neuron k, calculate the partial derivatives 
p

l
k

E

h

∂
∂

, where 

pE is the total error energy defined as , 21
( )

2
p p o

k
k o

E e
∈

= ∑ and l
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is a uniform symbol for each parameterl
jkw , l

kθ , 
kµ and 

kσ .  

5. Update the parameters as follows: 
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where η  is the learning rate parameter.   

6. Repeat steps 2-5 until some stopping criteria is reached. 
In the above realization of the BP algorithm the network 

parameters are updated after every training sample. This is called 
the online or sequential mode.  The other possibility is the batch 
mode, where all the training samples are first presented to the 
network and then the parameters are adjusted so that the total 
training error is minimized. The sequential mode is often favored 
over the batch mode as it requires less storage space.  Moreover, 
the sequential mode is less likely to get trapped in a local 
minimum as updates at every training sample make the search 
stochastic in nature.  Hence sequential BP mode is used for MLP 
training/evolution. Further details about BP training can be found 
in [3] and are hence skipped. 

III.  THE CNBC FRAMEWORK 

This section describes in detail the proposed framework: 
Collective Network of (Evolutionary) Binary Classifiers, the 
CNBC, which uses the training dataset to configure its internal 
structure and to evolve its binary classifiers (BCs) individually. 
Before going into details of CNBC, the evolutionary update 
mechanism, which keeps only the best networks within the AS of 
each BC will be detailed next. 

A. Evolutionary Update in the Architecture Space 

Since the evolutionary technique, MD PSO, is a stochastic 
optimization method, in order to improve the probability of 
convergence to the global optimum, several evolutionary runs can 
be performed. Let RN be the number of runs and 

CN  be the 

number of configurations in the AS. For each run the objective is 
to find the optimal (the best) classifier within the AS with respect 
to a pre-defined criterion. Note that along with the best classifier, 
all other configurations in the AS are also subject to evolution and 
therefore, they are continuously (re-) trained with each run. So 
during this ongoing process, between any two consecutive runs, 
any network configuration can replace the current best one in the 
AS if it surpasses it. Besides the MD PSO evolutionary search, this 
is also true for the exhaustive search, i.e. each network 
configuration in the AS is trained by RN  BP runs and the same 
evolutionary update rule applies. Figure 2 demonstrates an 
evolutionary update operation over a sample AS containing 5 MLP 
configurations. The table shows the training MSE which is the 
criterion used to select the optimal configuration at each run. The 
best runs for each configurations are highlighted and the best 
configuration in each run is tagged with ‘*’. Note that at the end of 
the three runs, the overall best network with MSE = 0.10 has the 
configuration: 15x2x2 and thus used as the classifier for any 
classification task until any other configuration surpasses it in a 
future run. In this way, each BC configuration in the AS can only 
evolve to a better state, which is the main purpose of the proposed 
evolutionary update mechanism. 

 

Figure 2: Evolutionary update in a sample AS for MLP 
configuration arrays }2,1,15{min =R  and }2,4,15{max =R  where 

3=RN  and 5=CN . The best run for each configurations is 

highlighted and the best configuration in each run is tagged 
with ‘*’.  

B. Collective Network of Binary Classifiers 

1) The Topology 

To achieve the third and fourth objectives mentioned earlier, i.e. 
the scalability with respect to a varying number of classes and 
features, a novel framework encapsulating a network of binary 
classifiers (NBCs) is developed, where NBCs can evolve 
continuously with the ongoing evolution sessions i.e. using the 
training dataset which is in practice obtained by cumulating the 
ground truth data (GTD) from several relevance feedback 
sessions. Each NBC corresponds to a unique image class and 
shall contain varying number of evolutionary binary classifiers 
(BCs) in the input layer where each BC performs binary 
classification using a single (sub-) feature. Therefore, whenever a 
new feature is extracted, its corresponding BC will be created, 
evolved (using the available GTD so far), and inserted into each 
NBC, yet keeping each of the other BCs “as is”. On the other 
hand, whenever an existing feature is removed, the corresponding 
BC is simply removed from each NBC in the system. In this way 
scalability with respect to any number of features is achieved and 
the overall system can avoid re-evolutions from scratch.  
 

 

Figure 3: Topology of the proposed CNBC framework with C 
classes and N FVs (sub-features). 
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and generates a single binary output, indicating the relevancy of 
each FV to the NBC’s corresponding class.  

Furthermore, CNBC is also scalable to any number of 
classes since whenever a new class is defined by the user, a new 
NBC can simply be created (and evolved) only for this class 
without requiring any need for change or update the other NBCs 
unless their performance significantly deteriorates with the 
introduction of the new class This way the overall system 
dynamically adapts to varying number of image classes.  

As shown in Figure 3, the main idea in this approach is to 
use as large number of classifiers as necessary, so as to divide a 
massive learning problem into many NBC units along with the 
BCs within, and thus prevent the need of using complex 
classifiers as the performance of both training and evolution 
processes degrades significantly as the complexity rises due to the 
curse of dimensionality. A major benefit of our approach with 
respect to efficient training and evolution process is that the 
configurations in the AS can be kept as compact as possible 
avoiding unfeasibly large storage and training time requirements. 
This is a significant advantage especially for the training methods 
performing local search, such as BP since the amount of 
deceiving local minima is significantly low in the error space for 
such simple and compact ANNs. Furthermore, when BP is 
applied exhaustively, the probability of finding the optimum 
solution is significantly increased.  

In order to maximize the classification accuracy, we 
applied a dedicated class selection technique for CNBC. We used 
1-of-n encoding scheme in all BCs, and the output layer size of all 

BCs is always two (i.e. n = 2). Let 1,cCV and 2,cCV be the first and 

second output of the cth BC’s class vector (CV). The class 
selection in 1-of-n encoding scheme can simply be performed by 
comparing the individual outputs, e.g. say a positive output if 

1,2, cc CVCV > , and vice versa for negative. This is also true for 

the fuser BC, the output of which makes the output of its NBC. 
FVs of each dataset item are fed to each NBC in the CNBC. Each 
FV is propagated through its corresponding BC in the input layer 
of the NBC. The outputs of these BCs are then fed to the fuser BC 
of each NBC to produce all CVs. Finally, the class selection block 
shown in Figure 3 collects them and selects the positive class(es) 
of the CNBC as the final outcome. This selection scheme, first of 
all, differs with respect to the dataset class type, i.e. the dataset 
can be called as “uni-class”, if an item in the dataset can belong to 
only one class, otherwise called as “multi-class”. Therefore, in a 

uni-class dataset there must be only one class, the
*c , selected as 

the positive outcome whereas in a multi-class dataset, there can 

be one or more NBCs, }{ *c , with a positive outcome. In the 

class selection scheme the winner-takes-all strategy is utilized. 

Therefore, for uni-class datasets, the positive class index, 
*c , 

(“the winner”) is determined to be the class where the difference  

1,2, cc CVCV − is maximal, i.e.,  

)(maxarg 1,2,
]1,0[

*
cc

Cc
CVCVc −=
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In this way the erroneous cases (false negative and false positives) 
where none or more than one NBC exists with a positive outcome 
can be properly handled. However, for multi-class datasets the 
winner takes all strategy can only be applied when no NBC yields 

a positive outcome, i.e. [ ]1,01,2, −∈∀≤ CcCVCV cc , otherwise 

multiple NBCs with positive outcome may indicate the multiple 
true-positives and hence cannot be further pruned. As a result, for 

a multi-class dataset the (set of) positive class indices, }{ *c , is 

selected as follows: 
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2) Evolution of the CNBC 

The evolution of a subset of the NBCs or the entire CNBC is 
performed for each NBC individually with a two-phase operation, 
as illustrated in Figure 4. As explained earlier, using the feature 
vectors (FVs) and the target class vectors (CVs) of the training 
dataset, the evolution process of each BC in a NBC is performed 
within the current architecture space (AS) in order to find the best 
(optimal) BC configuration with respect to a given criterion (e.g. 
training/validation mean-square-error (MSE) or classification 
error (CE)). During the evolution, only NBCs associated with 
those classes represented in the training dataset are evolved. If the 
training dataset contains new classes, which do not have a 
corresponding NBC yet, a new NBC is created for each, and 
evolved using the training dataset.  

In Phase 1, see top of Figure 4, the BCs of each NBC are 
evolved given an input set of FVs and a target CV. Recall that 
each CV is associated with a unique NBC. The fuser BCs are not 
used in this phase. Once an evolution session is over, the AS of 
each BC is then recorded so as to be used for potential 
(incremental) evolution sessions in the future. 

 
Figure 4: Illustration of the two-phase evolution session over 

BCs’ architecture spaces in each NBC. 
Recall that each evolution process may contain several 

runs and according to the aforementioned evolutionary update 
rule, the best configuration achieved will be used as the classifier. 
Hence once the evolution process is completed for all BCs in the 
input layer (phase 1), the best BC configurations are used to 
forward propagate all FVs of the items in the training dataset to 
compose the FV for the fuser BC from their output CVs, so as to 
evolve the fuser BC in the second phase. Apart from the 
difference in the generation of the FVs, the evolutionary method 
(and update) of the fuser BC is same as any other BC has in the 
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input layer. In this phase, the fuser BC learns the significance of 
each individual BC (and the corresponding sub-feature) for the 
discrimination of that particular class. This can be viewed as the 
adaptation of the entire feature space to discriminate a specific 
class in a large dataset, or in other words, as a way of applying an 
efficient feature selection scheme as some FVs may be quite 
discriminative for some classes whereas others may not and the 
fuser, if properly evolved and trained, can “weight” each BC 
(with its FV), accordingly. In this way the usage of each feature 
(and its BC) shall optimally be “fused” according to their 
discrimination power of each class. Similarly, each BC in the first 
layer shall in time learn the significance of individual feature 
components of the corresponding FV for the discrimination of its 
class. In short the CNBC, if properly evolved, shall learn the 
significance (or the discrimination power) of each FV and its 
individual components. 
 

3) Incremental Evolution of the CNBC 

To accomplish yet another major objective, the proposed CNBC 
framework is designed for continuous “incremental” evolution 
sessions where each session may further improve the 
classification performance of each BC using the advantage of the 
“evolutionary updates”. The main difference between the initial 
and the subsequent incremental evolution sessions is the 
initialization of the evolution process: the former uses random 
initialization for each configuration in the AS whereas the latter 
starts from the best parameters found for each classifier 
configurationin the last AS for each BC. Note that the training 
dataset used for the incremental evolution sessions may be 
different from the previous ones, and each session may contain 
several runs. Thus the evolutionary update rule compares the 
performance of the last recorded and the current (after the run) 
network over the current training dataset. During each 
incremental evolution phase, existing NBCs are (incrementally) 
evolved only if they cannot accurately classify the training dataset 
of the new (emerging) classes. In that, an empirical threshold 
level (e.g. 95%) is used to determine the level of classification 
accuracy required. The NBCs for the new classes are obviously 
due for evolution without any such verification. 

Consequently, the proposed MD PSO evolutionary 
technique used for evolving MLP configurations is initialized 
with the current AS parameters of the network. That is the swarm 
particles are randomly initialized (as in the initial evolutionary 
step) except that one of the particles (without loss of generality 
we assume the first particle with a=0) has its personal best set to 
the optimal solution found in the previous evolutionary session. 
For MD PSO evolution over MLPs, this can be expressed as, { }
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where }{ l
jkw  and }{ l

kθ  represent the sets of weights and biases 

of the layer l of the MLP network,
dΨ , which is the dth (MLP) 

configuration retrieved from the last AS record. It is expected that 
especially at the early stages of the MD PSO run, the first particle 
is likely to be the gbest particle in every dimension, guiding the 
swarm towards the last solution otherwise keeping the process 
independent and unconstrained. Particularly if the training dataset 
is considerably different in the incremental evolution sessions, it 
is quite probable that MD PSO can converge to a new solution 
whilst taking the past solution (experience) into account.  

In the alternative evolutionary technique, the exhaustive 
search via repetitive BP training of each network in the AS, the 
first step of an incremental training will simply be the 

initialization of the weights 
l
jkw  and biases 

l
kθ  with the 

parameters retrieved from the last AS of that BC. Starting from 
this as the initial point, and using the current training dataset with 
the target CVs, the BP algorithm can then perform its gradient 
descent in the error space to converge to a new solution. 

 

IV. EXPERIMENTAL RESULTS 

In this section, we first detail the benchmark datasets used and the 
feature extraction techniques performed for the extensive set of 
classification and content-based image retrieval experiments. We 
then investigate the classification performance of the proposed 
CNBC framework using  different  feature combinations and we 
also compare the results obtained with batch training and 
incremental evolutions. Finally we shall demonstrate the 
performance gain in terms of improved retrieval accuracy that can 
be achieved using the proposed CNBC framework as compared to 
the traditional (dis-) similarity based retrievals.   

A. Database Creation and Feature Extraction 

We used MUVIS framework [4], to create and to index the 
following two image databases by extracting 14 (sub-) features for 
each.  

1) Corel_10 Image Database: There are 1000 medium 
resolution (384x256 pixels) images obtained from Corel 
repository [5] covering 10 diverse classes: 1 - Natives, 2 - Beach, 
3 - Architecture, 4 - Bus, 5 - Dino Art, 6 - Elephant, 7 - Flower, 8 
- Horse, 9 - Mountain, and 10 - Food.   

2) Corel_Caltech_30 Image Database: There are 4245 
images from 30 diverse classes that are obtained from both Corel 
and Caltech [6] image repositories.   

 

Table 1: 14 Features extracted per MUVIS database. 
FV Feature Parameters Dim. 
1 

HSV Color Histogram 
H=6, S=2, V=2 24 

2 H=8, S=4, V=4 128 
3 

Dominant Color 
27 

4 35 
5 

Color Structure 

32 bins 32 
6 64 bins 64 
7 128 bins 128 
8 256 bins 256 
9 512 bins 512 
10 1024 bins 1024 
11 Local Binary Pattern 

 16 
12 Gabor scale=4, orient.=6 48 

13 
Ordinal Co-
occurrence 

d=3, o=4 36 

14 Edge Histogram Dir. 
 5 

 

As detailed in Table 1, some of the basic color (e.g. 
MPEG-7 Dominant Color Descriptor, HSV color histogram and 
Color Structure Descriptor [7]), texture (e.g. Gabor [8], Local 

15%,2,6max
=== SADC TTN

15%,2,8max
=== SADC TTN



Binary Pattern [9], and Ordinal Co-occurrence Matrix [10]) and 
edge (e.g. Edge Histogram Direction [7]) features, are extracted. 
Some of them are created with different parameters to extract 
several sub-features and the total feature dimension is obtained as 
2335. Such a high feature space dimension can thus give us 
opportunity to test the performance of the proposed CNBC 
framework against the “curse of dimensionality” and scalability 
with the varying number of features. 

 

B. Classification Results 

Both databases are partitioned in such a way that the majority 
(55%) of the items is spared for testing and the rest was used for 
evolving the CNBC. To demonstrate the feature scalability 
property of the CNBC, we evolved two CNBCs individually using 
7 (FVs 1, 3, 5, 11, 12, 13 and 14 in Table 1 with total dimension of 
188) and 14 (all FVs with total dimension of 2335) features. 
Therefore, the first CNBC has 7+1=8 BCs and the second has 
14+1=15 BCs in each NBC. The evolution (and training) 
parameters are as follows: For MD-PSO, we use the termination 
criteria as the combination of the maximum number of iterations 

allowed (iterNo = 100) and the cut-off error ( 410−

=Cε ). Other 

parameters were empirically set as: the swarm size, S=50, 
2.05/maxmax == xV  and 5max =VD , respectively. For exhaustive 

BP, the learning parameter is set as 01.0=λ  and iteration number 
is 20. We use the typical activation function: hyperbolic tangent (

xx

xx

ee

ee
x

−

−

+

−
=)tanh( ). For the AS, we used simple configurations 

with the following range arrays: }2,8,{min iNR =  and

}2,16,{max iNR = , which indicate that besides the single layer 

perceptron (SLP), all MLPs have only a single hidden layer, i.e.
2max =L , with no more than 16 hidden neurons. Besides the SLP, 

the hash function enumerates all MLP configurations in the AS, as 
shown in Table 2. Finally, for both evolution methods, the 
exhaustive BP and MD PSO, 10=RN independent runs are 
performed. Note that for exhaustive BP, this corresponds to 10 
runs for each configuration in the AS. 

Table 2: The architecture space used for MLPs. 
Dim. Conf. Dim. Conf. Dim. Conf. 

0 iN x 2 6 iN x6x2 12 iN x12x2 

1 iN x1x2 7 iN x7x2 13 iN x13x2 

2 iN x2x2 8 iN x8x2 14 iN x14x2 

3 iN x3x2 9 iN x9x2 15 iN x15x2 

4 iN x4x2 10 iN x10x2 16 iN x16x2 

5 iN x5x2 11 iN x11x2 
  

 

Table 3 presents the classification performances achieved for 
Corel_10 database by both evolutionary techniques over the 
sample AS given in Table 2. The results indicate that MD PSO 
achieves the lowest MSE and CE levels (and hence the best 
results) within the training set whereas vice versa is true for the 
exhaustive BP within the test set. CNBC in general demonstrates a 
solid robustness against the major feature dimension increase (i.e. 

from 7 (188-D) to 14 sub-features (2335-D)) since the 
classification performance does not show any deterioration, on 
contrary, with both techniques a better performance is achieved 
with enhanced generalization ability. This is an expected outcome 
since CNBC can benefit from the additional discrimination 
capability of each incoming (sub-) feature thanks to its “Divide 
and Conquer” type design where an efficient feature selection 
scheme is embedded.   

Table 3: Classification performance of each evolution method 
per feature set for Corel_10 database. 
Feature 
Set 

Evol. 
Method 

Train 
MSE 

Train 
CE % 

Test 
MSE 

Test 
CE % 

7 sub-
features 

MDPSO 0.32 3.55 1.61 20.18 

BP 0.45 4.88 1.27 18.36 

14 sub-
features 

MDPSO 0.28 3.18 1.46 18.63 

BP 0.34 3.33 1.25 14.54 

 

Table 4 presents the confusion matrix of the best 
classification result over the test set, i.e. achieved by the 
exhaustive BP method using 14 sub-features. It is worth noting 
that the major source of error results from the confusion between 
the 2nd (Beach) and 9th (Mountain) classes where low-level 
features cannot really discriminate due to excessive color and 
texture similarities among those classes. This is also true for the 6th 
class (Elephant) from which the background of some images share 
a high similarity with both classes.  

Table 4: Confusion matrix of the evolution method, which 
gave the best (lowest) test CE in Table 3. 
Actual 1 2 3 4 5 6 7 8 9 10 

Truth 

1 42 2 1 1 0 5 0 0 1 3 
2 2 37 4 1 0 0 0 1 9 1 
3 2 3 46 1 0 1 0 0 1 1 
4 2 0 0 53 0 0 0 0 0 0 
5 0 0 0 0 55 0 0 0 0 0 
6 2 4 2 0 0 37 0 1 8 1 
7 1 0 0 0 0 0 53 1 0 0 
8 0 0 0 0 0 0 0 55 0 0 
9 0 8 1 0 0 0 0 0 46 0 

10 1 1 0 1 1 2 1 0 2 46 
            

The CNBC evolutions so far performed are much alike to 
the (batch) training of traditional classifiers (such as ANNs, k-NN, 
Bayesian) where the training data (the features) and (number of) 
classes are all fixed and the entire GTD is used during the training 
(evolution). As detailed earlier, the CNBC can also be evolved 
incrementally, i.e. incremental evolutions can be performed 
whenever new features/classes can be introduced and the CNBC 
can dynamically create new BCs and/or NBCs as the need arises. 
In order to evaluate the incremental evolution performance, the 
training dataset is divided into three distinct partitions, each of 
which contains 5 (classes 1-5), 3 (classes 6-8) and 2 (classes 9 and 
10) classes, respectively. Therefore, three stages of incremental 
evolutions have been performed where at each stage the CNBC is 
further evolved only with the particular dataset partition, which 
belongs to the new classes in that partition. After the first phase, 



only three out of five existing NBCs were incrementally evolved 
over the training dataset of the three new classes (classes 6-8). 
Similarly, at the third phase, three out of 8 NBCs did not undergo 
for incremental evolution since their classification accuracy over 
the training dataset of those new classes (9 and 10) are already 
above the minimum classification accuracy threshold (95%) 
required.  

Due to space limitations, we had to skip details on the 
classification performances achieved at the intermediate stages. 
Table 5 presents the final classification performance of each 
evolution method per feature set. The results indicate a few percent 
losses on both training and test classification accuracies, which can 
be expected since the incremental evolution was purposefully 
skipped for some NBCs whenever they surpass 95% classification 
accuracy over the training dataset of the new (emerging) classes. 
This means, for instance, some NBCs (e.g. the one corresponds to 
class 4, the Bus) evolved with only over a subset of the entire 
training dataset.  

Table 5: Final classification performance of 3-stage 
incremental evolution per evolution method and feature set 
for Corel_10 database. 
Feature 
Set 

Evol. 
Method 

Train 
MSE 

Train 
CE % 

Test 
MSE 

Test 
CE % 

7 sub-
features 

MDPSO 1.36 6.89 2.61 28.63 

BP 0.82 4.22 1.85 21.63 

14 sub-
features 

MDPSO 1.23 6.66 2.39 26.36 

BP 0.91 7.55 1.83 23.81 

 

Finally, the CNBC evolution for Corel_Caltech_30 
database allows testing and evaluation of its classification 
performance when the database size and number of classes are 
significantly increased. For both evolution techniques, we used the 
same parameters as presented earlier except that the number of 
epochs (iterations) for BP and MD PSO were increased to 200 and 
500 in order to compensate the increase in the database size. Table 
6 presents the classification performances of each evolution 
method per feature set. Due to space limitations we had to skip the 
results from incremental evolutions in this dataset. As compared 
with the results from Corel_10 database in Table 3, it is evident 
that both evolution methods achieved a similar classification 
performance in the training set (i.e. similar train CEs) whilst 
certain degradation occurs in the classification accuracy in test set 
(i.e. 10-15% increase in the test CEs). This is an expected outcome 
since the lack of discrimination within those low-level features can 
eventually yield a poorer generalization especially when the 
number of classes is tripled.  

Table 6: Classification performance of each evolution method 
per feature set for Corel_Caltech_30 database. 
Feature 
Set 

Evol. 
Method 

Train 
MSE 

Train 
CE 

Test 
MSE 

Test 
CE 

7 sub-
features 

MD PSO 0.54 8.1 2.3 33.40 

BP 0.24 2.95 2.16 34.67 

14 sub-
features 

MD PSO 0.33 5.47 2.52 36.33 

BP 0.074 1.31 2.69 33.86 

 

Figure 5: 4x2 sample queries in Corel_10 (qA and qB), and  
Corel_Caltech_30 (qC and qD) databases Top-left is the query 
image. 
 



C. Retrieval Results 

The traditional retrieval process in MUVIS is based on the query 
by example (QBE) operation. The (sub-) features of the query item 
are used for (dis-) similarity measurement among all the features 
of the visual items in the database. Ranking the database items 
according to their similarity distances yields the retrieval result. 
The traditional (dis-) similarity measurement in MUVIS is 
accomplished by applying a distance metric such as L2 
(Euclidean) between the feature vectors of the query and each 
database item. When a CNBC is used for the purpose of retrieval, 
the same (L2) distance metric is now applied to the class vectors at 
the output layer of the CNBC (10x2=20-D for Corel_10 and 
30x2=60-D for Corel_Caltech_30 databases). In order to evaluate 
the retrieval performances with and without CNBC, we use 
average precision (AP) and average normalized modified retrieval 
rank (ANMRR) measures, both of which are computed querying 
all images in the database (i.e. batch query) and within a retrieval 
window equal to the number of ground truth images, N(q) for each 
query q. This henceforth makes the AP identical to average recall 
and average F1 measures, too.  

Over each database, four batch queries are performed to 
compute the average retrieval performances, two with and two 
without using the CNBC. Whenever used, the CNBC is evolved 
with the MD PSO and the exhaustive BP, the former with 7 and 
the latter with 14 sub-features, respectively.  As listed in Table 7, it 
is evident that the CNBC can significantly enhance the retrieval 
performance regardless of the evolution method, the feature set 
and the database size. The results (without CNBC) in the table also 
confirm the enhanced discrimination obtained from the larger 
feature set, which led to better classification performance and in 
turn, leads to a better retrieval performance. 
 
Table 7: Retrieval performances (%) of the four batch queries 
in each MUVIS databases. 

Feature 
Set 

Evol. 
Method 

Corel_10 Corel_Caltech_30 

ANMRR AP ANMRR AP 

7 sub- 
features 

MD PSO 33.09 64.01 43.04 54.47 
None 55.81 42.15 60.21 37.80 

14 sub- 
features 

BP 22.21 76.20 32.00 65.37 
None 47.19 50.38 62.94 34.92 

 
For visual evaluation, Figure 5 presents four typical 

retrieval results with and without using the proposed CNBC 
framework. All query images are selected among the test set and 
the query is processed within the entire database. 

 

V. CONCLUSIONS 

In this paper, a novel CNBC framework is introduced to address 
the problem of efficient and accurate content-based classification 
and retrieval within large image databases. CNBC is a Divide and 
Conquer type of approach, which reduces both feature and class 
vector dimensions for individual classifiers significantly to enable 
the use of  as compact classifiers as possible. Such compact 
classifiers can be evolved and trained better than a single yet more 

complex classifier. The optimum classifier for each classification 
problem at  hand can be searched separately and at a given time, 
this allows to create  new dedicated classifiers (BCs) for 
discriminating a certain class type from the others with the use of a 
single (sub-) feature to accommodate new features or to create a 
new NBC to allow introduction of new classes. Each (incremental) 
evolution session “learns” from the current best classifier and can 
improve it further, possibly using another configuration in the AS. 
Moreover, when trained properly, the fuser BC can correct the 
erroneous classification of any BC in the input layer, which further 
increases the classification accuracy. Thus classification 
performance, the main advantages of the proposed framework  are 
the improved classification performance and  the efficient solution 
provided to the problems of scalability and dynamic adaptability 
by allowing both feature space dimensions and the number of 
classes in a database to be unlimited and dynamic (incremental). 
Furthermore, the CNBC framework is designed for both online 
(incremental) and offline (batch) evolutions, which can be 
performed in multiple runs. During each run, any new 
configuration can replace the current one in the AS if it 
outperforms it. Such an evolutionary update mechanism ensures 
that the AS containing the best configurations, is always kept 
intact and that only the best configuration at any given time is used 
for classification and retrieval.  

Although the results indicate that all the aforementioned 
objectives have been successfully fulfilled, even higher accuracy 
levels can still be expected from the CNBC framework with the 
addition of new powerful features with superior discrimination and 
content description capabilities.  
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ABSTRACT 

 
Low-level features (also called as descriptors)  play  a  central  role  in  
content-based image retrieval (CBIR) systems. Features are various 
types of information extracted from the content and represent some of its 
characteristics or signatures. However, especially the (low-level) 
features, which can be extracted automatically usually lack the 
discrimination power needed for accurate description of the image 
content and may lead to a poor retrieval performance. In order to 
efficiently address this problem, in this paper we propose a multi-
dimensional evolutionary feature synthesis technique, which seeks for 
the optimal linear and non-linear operators so as to synthesize highly 
discriminative set of features in an optimal dimension. The optimality 
therein is sought by the multi-dimensional particle swarm optimization 
method along with the fractional global-best formation technique. 
Clustering and CBIR experiments where the proposed feature 
synthesizer is evolved using only the minority of the database, 
demonstrate a significant performance improvement and exhibit a major 
discrimination between the features of different classes.  
 

Index Terms— Evolutionary feature synthesis, Content-based 
image retrieval, multi-dimensional particle swarm optimization.  
 

1. INTRODUCTION 
 
It  can  be  foreseen  that  the  future  CBIR  systems  require  a  decisive  
solution for the well-known “Semantic Gap” problem. In general, 
narrowing the semantic gap basically requires advanced approaches 
that depend on a central element to describe the image content: the 
features. Features are the fundamental elements of CBIR. They are 
the information extracted from an image, represented in a suitable 
way, stored in an index, and used during query processing. They 
characterize the content characteristics and signatures. However, 
especially the (low-level) features, which can be extracted 
automatically, usually lack the discrimination power needed for 
accurate retrievals in large image collections. Furthermore, among a 
vast number of feature extraction techniques, the question of how to 
select the most appropriate set of features still remained unanswered.  

The efforts addressing the aforementioned problems can be 
categorized into two feature transformation types: feature selection 
and feature synthesis. The former does not change the original 
features; instead selects a particular subset of them to be used in 
CBIR. So no matter how efficient the feature selection method may 
be, the final outcome is nothing but a subset of the original features 
and may still lack the discrimination power needed for an efficient 
CBIR. The latter basically performs a transformation, linear and/or 
non-linear, to synthesize new features. For both approaches 
evolutionary algorithms (EAs) [1] such as Genetic Algorithm (GA) 
[2] and Genetic Programming (GP) [3] are mainly used.   

Evolutionary feature synthesis (EFS) is still in its infancy as 
there are only few successful methods proposed up to date. In a 
recent work [4], GA was used to evolve texture features for CBIR on 
skin lesions. Although only 6 simple arithmetic operators were used 
in a small-scale database with 100 images, the retrieval performance 
(i.e. the precision) was slightly improved (7%) with the proper 
settings of parameters. In [5], co-evolutionary GP (CGP) was 
utilized in sub-populations to synthesize features for object 

recognition. Although some performance improvement has been 
observed, in both methods, the improvement (in retrieval 
performance or in recognition rate) may be insignificant or as in [5], 
original features may even surpass the synthesized features in some 
cases. This is due to several facts. First of all, only few (non-)linear 
operators are used in order to avoid a high search space dimension 
due to the fact that the probability of getting trapped into a local 
optimum significantly increases in higher dimensions [6]. Similarly 
in both methods, the synthesized feature space dimension is kept 
quite low not to increase computational complexity, i.e. in [5] the 
number of sub-populations is equal to the dimension of the 
synthesized (or the so-called composite) features. Furthermore, both 
methods suffer from the manual and sub-optimal setting of several 
GA and CGP parameters (e.g. in [5] there are more than 10 
parameters that should be properly set in advance). The most critical 
drawback among all is that both GA and CGP can only work in a 
search space with a dimension fixed a priori. This leads that the 
optimum dimension for the feature synthesis will remain unknown. 

To address these problems, in this paper we propose an 
evolutionary feature synthesis technique that is based on multi-
dimensional particle swarm optimization (MD-PSO) [7], which can 
find the optimum dimension of the solution space and hence voids 
the need of fixing the dimension of the solution space in advance. 
MD-PSO can also work along with the fractional global best 
formation scheme (FGBF) [7] to avoid the premature convergence 
problem. With the proper encoding scheme that encapsulates several 
linear and non-linear operators (applied to a set of selected features), 
and their scaling factors (weights), MD-PSO particles can therefore, 
perform an evolutionary search to find out the optimal feature 
synthesizer to generate new features in the optimal dimension. The 
optimality therein can be set by such a proper fitness measure that 
maximizes the overall CBIR (or clustering) performance.  

 The rest of the paper is organized as follows. The motivation 
and details of the proposed EFS along with the underlying 
evolutionary search technique, the MD-PSO, are presented in 
Section 2. Section 3 introduces EFS experiments that are performed 
in Corel image databases, and presents the clustering and retrieval 
results along with the comparative evaluations. Finally, Section 4 
concludes the paper and discusses topics for future work. 
 

2. EVOLUTIONARY FEATURE SYNTHESIS  
 
2.1. The Motivation 
As mentioned earlier, the motivation behind the proposed 
evolutionary feature synthesis (EFS) technique is to maximize the 
discrimination power of low-level features so that CBIR 
performance can be significantly improved. In a broader sense, well-
known classifiers such as Artificial Neural Networks (ANNs) and 
Support Vector Machines (SVMs) can be thought as a special kind 
of feature synthesizers. Commonly ANNs used as classifiers take the 
original  feature  vector  as  an  input  and,  in  an  optimal  case,  their  
output is a vector corresponding to the image class (e.g. for c=1, {1, 
0, … , 0}). Thus the ANNs try to learn a feature synthesizer that 
transforms each feature vector in a certain class to one corner of the 
d-dimensional cube (where d is the number of classes). SVMs, on 
the other hand, attempt to transform the original features into a new 



(higher) dimension where linear separation is possible. A major 
drawback of these kinds of feature synthesizers is the critical choice 
of the (non-)linear kernel (or activation) function that may not be a 
proper choice for the problem in hand. Consider for instance, two 
sample feature synthesizers (FS-1 and FS-2) illustrated in Figure 1 
where for illustration purposes features are only shown in 1-D and 2-
D,  and  only  two-class  problem  is  considered.  In  the  case  of  FS-1, 
SVM with a polynomial kernel in quadratic form can make the 
proper transformation into 3-D so that the new (synthesized) features 
are linearly separable. However, for FS-2, a sinusoid with a proper 
frequency, f, should instead be used for a better class discrimination. 
Therefore, searching for the right transformation (and hence for the 
linear and non-linear operators within) is of paramount importance, 
which  is  not  possible  for  static  (or  fixed)  ANN  and  SVM  
configurations. Since there is no feature selection (all features are 
used to synthesize a single synthesized feature output), during 
training especially multi-layer ANNs may further suffer from the 
high complexity in terms of massive number of parameters (weights 
and thresholds). They are also prone to limited performance due to 
the sub-optimal dimension setting for the synthesized features. In 
order to maximize the discrimination among classes, the dimension 
into which new features are synthesized, should also be optimized 
by the evolutionary search technique. 

 
Figure 1: Two sample feature synthesis performed on 2-D (FS-1) 
and 1-D (FS-2) feature spaces. 

2.2. Multi-Dimensional Particle Swarm Optimization 
As the evolutionary search method, we use the multi-dimensional 
(MD) extension of the basic PSO (bPSO) method, the so-called MD-
PSO, recently proposed in [7]. Instead of operating at a fixed 
dimension d, the MD-PSO algorithm is designed to seek both 
positional and dimensional optima within a given dimension range, 

},{ maxmin DD . In order to accomplish this, each particle has two sets 
of components, each of which has been subjected to one of the two 
independent and consecutive processes. The first one is a regular 
positional PSO, i.e. the traditional velocity updates and due 
positional shifts in N dimensional search (solution) space. The 
second one is a dimensional PSO, which allows the particle to 
navigate through dimensions. Accordingly, each particle keeps track 
of its last position, velocity and personal best position (pbest)  in  a  
particular dimension so that when it re-visits the same dimension at 
a later time, it can perform its regular “positional” update using this 
information. The dimensional PSO process of each particle may then 
move the particle to another dimension where it will remember its 
positional status and will be updated within the positional PSO 
process at this dimension, and so on. The swarm, on the other hand, 
keeps track of the gbest particle in each dimension, indicating the 
best (global) position so far achieved. Similarly, the dimensional 
PSO process of each particle uses its personal best dimension in 

which the personal best fitness score has so far been achieved. 
Finally, the swarm keeps track of the global best dimension, dbest, 
among all the personal best dimensions. The gbest particle in the 
dbest dimension represents the optimum solution and dimension, 
respectively.  

In a MD-PSO process at time (iteration) t, each particle a in 
the swarm with S particles, },..,,..,{ 1 Sa xxx=x ,  is represented by the 
following characteristics: 

:)()(
, txx txd
ja
a  jth component (dimension) of the position of particle a, 

in dimension )(txda
 

:)()(
, tvx txd
ja
a  jth component (dimension) of the velocity of particle a, 

in dimension )(txda
 

:)()(
, txy txd
ja
a  jth component (dimension) of the personal best position 

of particle a, in dimension )(txda
 

 gbest(d) : Global best particle index in dimension d 
:)(ˆ tyx d

j  jth component (dimension) of the global best position of 

swarm, in dimension d 
)(txda : Dimension of particle a 

)(tvda
: Dimensional velocity  of particle a 

)(~ tdx a : Personal best dimension component of particle a 
Further algorithmic details of the MD-PSO method can be found in 
[7] and are skipped in this paper due to the page limitations. 
 
2.3. Evolutionary Feature Synthesis by MD-PSO 

2.3.1. The Overview 
As shown in Figure 2, the proposed evolutionary feature synthesis 
(EFS) can be performed in one or several runs where each run can 
further synthesize the features generated from the previous run. The 
number of runs, R, can be specified in advance or adaptively 
determined, i.e. runs are carried out until a point where the fitness 
improvement  is  no  longer  significant.  The  EFS  dataset  can  be  the  
entire image database or a certain sub-section of it where the ground 
truth is available. If there is more than one Feature eXtraction (FeX) 
module, an individual feature synthesizer can be evolved for each 
module and once completed, each set of features extracted by an 
individual FeX module can then be passed through the individual 
synthesizers to generate new features for CBIR.  
 

 
Figure  2:  The  block  diagram  of  Feature  eXtraction  (FeX)  and  
the proposed EFS technique with R runs. 

2.3.2. Encoding of the MD-PSO particles 
The position of each MD-PSO particle in a dimension [ ]maxmin, DDdÎ , 
represents a potential feature synthesizer, which generates a d-
dimensional feature vector using a set of applied operators over 
some selected features within N-dimensional source (original) 
feature vector. Therefore, the jth component (dimension) of the 
position of particle a, in dimension d and at an iteration t, 
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, synthesizes the jth feature of the d-dimensional 

feature vector.  
Table 1: F=20 operators used in evolutionary synthesis. 

Along with the operators and the feature selection, encoding of 
the MD-PSO particles is designed to enable a feature scaling 
mechanism with the proper weights. As illustrated in Figure 3, 

[ ]1,0),(, -Î djtxxd
ja

 is a 2K+1  dimensional vector encapsulating 1) 

the selection of K+1 (input) features (with feature indices, 
[ ]1,0,...,1,1 -Î NKbba ), 2) their weights ( 1,0 1 <£ iww ba ) and 3) 

K operators (via indices, [ ]Ki ,1Îq  enumerated in Table 1). As a result 

of this K-depth feature synthesis, the jth element of the d-dimensional 
feature vector can be generated as,  

( )( )( )( )...,,...,, 111112221 aabbbbbb xwxwxwxwy KKKKj QQQQ= -
 (1) 

 
Figure 3: Encoding jth dimensional component of the particle a 
in dimension d for K-depth feature synthesis.  

Note that letting K=N+1 and fixing the operator KQ to a typical 
activation function such as sigmoid or tangent hyperbolic,  and  the  
rest, [ ]1,1 -ÎQ Ki , to “+” operator (Operator(6) in Table 1) makes the 

proposed feature synthesis technique equivalent to a basic feed-
forward ANN (or single-layer perceptron, SLP). Similarly, if more 
than  one  EFS  runs  performed  (R>1), the overall scheme is 
equivalent  of  a  typical  MLP.  In  short,  feed-forward  ANNs  are  
indeed a special case of the proposed EFS technique, yet the most 
complex one due to the usage of all input features (K=N+1), which 

voids the feature selection. Moreover, this makes it the most limited 
case, since it uses only two operators among many possibilities. 
Therefore, the focus is drawn to achieve a low complexity by 
selecting only a reasonable number of features (with a low K value) 
and performing as few MD-PSO runs as necessary (with a low R 
value). 
2.3.3. The Fitness Function  
Since the main objective is to maximize the CBIR performance, a 
straightforward fitness function (to be minimized) is the inverse 
average precision (-AP or 1-AP) or alternatively, the average 
normalized modified retrieval rank (ANMRR), both of which can 
directly be computed by querying all images in the ground truth 
dataset and averaging individual precision or NMRR scores. This, 
however, may turn to a costly operation especially for large 
databases with many classes. An alternative fitness function that 
seeks to maximize discrimination among distinct classes can be a 
clustering validity index (CVI) where each cluster corresponds to a 
distinct class in the database. CVI can be formed with respect to two 
widely used criteria in clustering: , intra-cluster compactness and 
inter-cluster separation. 

For each potential EFS encoded in a MD-PSO particle, the CVI 
computed over the d-dimensional synthesized features, 

},{ jpp czzZ Î= , for each class, [ ]Cici ,1, Î , can be computed as in 

Eq. (2). 
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where S,cm be the centroid vector computed for all classes, and 

),( , ZQ ce Sm  is the quantization error (or the average intra-cluster 

distance). mind is the minimum centroid (inter-cluster) distance 

among all classes and ),( , ZFP c Sm  is the number of false positives 

i.e. synthesized feature vectors which are closer to another class 
centroid than their own. So the minimization of the validity index 

),( , Zf c Sm will simultaneously try to minimize the intra-cluster 

distances (for better Compactness) and maximize the inter-cluster 
distance (for better Separation), both of which lead to a low 

),( , ZFP c Sm value or in the ideal case 0),( , =S ZFP cm , meaning 

that each synthesized feature is in the closest proximity of its own 
class centroid, thus leading to high discrimination. 
 
 

3. EXPERIMENTAL RESULTS 
 
For the EFS experiments performed in this section, we used MUVIS 
framework [8], to create and to index two image databases from 
Corel image collection [9]: 1) Corel_10 Image Database: There are 
1000 medium resolution (384x256 pixels) images obtained from 
Corel repository [9] covering 10 diverse classes: 1 - Natives, 2 - 
Beach, 3 - Architecture,  4  -  Bus, 5 - Dino Art,  6  -  Elephant, 7 - 
Flower,  8  -  Horse, 9 - Mountain,  and  10  –  Food, and 2) Corel_5 
Image Database: Composed of images taken from the first 5 diverse 
classes in Corel_10 database. In order to evaluate the proposed EFS 
technique and test its efficacy for both CBIR and clustering, we 
purposefully extract a well-known low-level descriptor, 64-bins 
RGB color histogram (unit normalized), which has a limited 
discrimination power and a severe deficiency for a proper content 
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0 A 7 A-B 14 tan(2πfAB) 
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3 min(A, B) 10 sin(2πfAB) 17 0.5exp(-(A-B)2)
 

4 A2 11 cos(2πfAB) 18 log((A+B)2)
 

5 B2 
12 sin(2πf (A+B)) 19 log((A-B)2)

 

6 A+B 13 cos(2πf(A+B))   



description. The performance of the proposed EFS technique for 
improving CBIR accuracy is tested over Corel_5 database by using 
the (inverse) average precision (1-AP) directly as the fitness 
function. Similarly, assigning the CVI given in Eq. (2) as the fitness 
function, the clustering performance of the features synthesized is 
tested over Corel_10 database. Both databases are partitioned in 
such a way that the majority (55%) of the images is spared for 
testing and the rest (45%) is used as the EFS dataset. For MD-PSO, 
we use the swarm size, S=100 and the termination criteria as the 
maximum number of iterations allowed (iterNo=1000). The 
dimensional range, [ ]maxmin, DD , that the optimum dimension for 
EFS will be searched is set as, [ ]120,40 . The rest of the internal 
MD-PSO parameters are used as recommended in [7].  

The  depth  of  the  EFS,  K, is  set  as  low  as  3  for  CBIR  in  
Corel_5 to test its performance for such a quite low value and also to 
avoid further complexity. For experiments in Corel_10, K is 
otherwise set to 10, which allows selecting (up to) 10 features  
among 64 (RGB histogram bins). Finally, multiple runs are allowed 
as long as a significant AP improvement between consecutive runs is 
observed (i.e. > 5%).   

Table 2: Fitness scores (1-AP) and CBIR performances of the 
original and synthesized features per run. 

 
Original 
(64-D) 

Run-1 
(75-D) 

Run-2 
(56-D) 

Run-3 
(91-D) 

Fit. Score  0.429 0.337 0.211 0.146 
AP (%) 51.1 59.01 67.1 70.48 

ANMRR (%) 47.2 39.2 30.72 27.67 

Table 2 presents the fitness scores (1-AP) achieved by the original 
and synthesized features in the best dimension converged per MD-
PSO run over the EFS dataset of the Corel_5 database. Furthermore, 
the overall CBIR performances computed by querying all databases 
items (batch query) are also presented with standard AP and ANMRR 
measures. 

 
Figure 4: Four sample queries from class 2 (Beach) performed 
using original and synthesized features at each run. Top-left is 

the query image. 

Figure 4 shows four sample queries, each of which is 
performed either using the original features or synthesized features 
per EFS run. The query operation using the synthesized features 
from the last two EFS runs (2 and 3) retrieved the same 12 images. It 
is obvious that the synthesized features further improve their 
description power at each run and in turn, better CBIR performance 
is achieved. Finally, Table 3 presents the clustering performances of 
the original and synthesized features measured by the CVI (

),( , Zf c Sm ) given in Eq. (2) and also by the number of false 

positives ( ),( , ZFP c Sm ). As discussed earlier, this is an alternative 

way of evaluating the improvement on the discrimination power of 
the synthesized features from which it is evident that a significantly 
higher clustering performance can be achieved.  

Table 3: Fitness score (CVI) and the number of false positives 
(FP) of the original and synthesized features. 

Dataset: EFS  Corel_10  
Features: Original Synth. Original Synth. 

Fit. Score (CVI) 186.98 69.28 431.17 268.65 
FP 144 46 357 236 

  
4. CONCLUSIONS 

 
In this paper, we proposed a multi-dimensional evolutionary feature 
synthesis technique, which aimed to improve the discrimination 
among the low-level features and in turn to enhance the CBIR and 
clustering performances. As the evolutionary search technique, we 
used MD-PSO and FGBF that have recently been proposed as a cure 
to common drawbacks of the PSO family. Particularly, MD-PSO 
based EFS has the advantage to search the optimal dimension for the 
synthesized feature vectors. This is, to our knowledge, an 
unprecedented advantage that none of the earlier feature synthesis 
methods have accomplished before. Moreover, by means of the 
proposed encoding technique, MD-PSO particles can perform an 
evolutionary search for the optimum operators, scales (weights) and 
selection of the (original) features, all simultaneously in an 
interleaved way. As discussed earlier, this alone provides a higher 
flexibility and better feature (or data) adaptation than the regular 
ANNs and SVM classifiers, since the proposed EFS technique can 
utilize a large set of (non-linear) operators and have the advantage of 
selecting proper features. Finally, the proposed technique does not 
have critical parameters or thresholds that may significantly affect 
the performance.  

Experimental results over benchmark image databases have 
demonstrated that the proposed EFS technique has synthesized more 
discriminative features with a lower CVI and with a significantly 
higher  CBIR  performance.  We  can  conclude  that  as  long  as  some  
ground truth is available for an image database (i.e. via relevance 
feedback), the low-level feature extraction will just be the initial 
step, because features with a higher discrimination (and description) 
capability can effectively be synthesized from them.  
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Multi-dimensional particle swarm optimization in dynamic environments
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a b s t r a c t

Particle swarm optimization (PSO) was proposed as an optimization technique for static environments;
however, many real problems are dynamic, meaning that the environment and the characteristics of the
global optimum can change in time. In this paper, we adapt recent techniques, which successfully address
several major problems of PSO and exhibit a significant performance over multi-modal and non-station-
ary environments. In order to address the pre-mature convergence problem and improve the rate of PSO’s
convergence to the global optimum, Fractional Global Best Formation (FGBF) technique is used. FGBF
basically collects all the best dimensional components and fractionally creates an artificial Global Best
particle (aGB) that has the potential to be a better ‘‘guide” than the PSO’s native gbest particle. To estab-
lish follow-up of local optima, we then introduce a novel multi-swarm algorithm, which enables each
swarm to converge to a different optimum and use FGBF technique distinctively. Finally for the multi-
dimensional dynamic environments where the optimum dimension also changes in time, we utilize a
recent PSO technique, the multi-dimensional (MD) PSO, which re-forms the native structure of the swarm
particles in such a way that they can make inter-dimensional passes with a dedicated dimensional PSO
process. Therefore, in a multi-dimensional search space where the optimum dimension is unknown,
swarm particles can seek for both positional and dimensional optima. This eventually pushes the frontier
of the optimization problems in dynamic environments towards a global search in a multi-dimensional
space, where there exists a multi-modal problem possibly in each dimension. We investigated both
standalone and mutual applications of the proposed methods over the moving peaks benchmark
(MPB), which originally simulates a dynamic environment in a unique (fixed) dimension. MPB is appro-
priately extended to accomplish the simulation of a multi-dimensional dynamic system, which contains
dynamic environments active in several dimensions. An extensive set of experiments show that in tradi-
tional MPB application domain, FGBF technique applied with multi-swarms exhibits an impressive speed
gain and tracks the global peak with the minimum error so far achieved with respect to the other com-
petitive PSO-based methods. When applied over the extended MPB, MD PSO with FGBF can find optimum
dimension and provide the (near-) optimal solution in this dimension.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Many real-world problems are dynamic and thus require sys-
tematic re-optimizations due to system and/or environmental
changes. Even though it is possible to handle such dynamic prob-
lems as a series of individual processes via restarting the optimiza-
tion algorithm after each change, this may lead to a significant loss
of useful information, especially when the change is not too dras-
tic. Since most of such problems have a multi-modal nature, which
further complicates the dynamic optimization problem, the need
for powerful and efficient optimization techniques is imminent.

In the last decade the efforts have been focused on evolutionary
algorithms (EAs) (Bäck & Schwefel, 1993) such as Genetic Algo-
rithms (GA) (Goldberg, 1989), Genetic Programming (GP) (Koza,
1992), Evolution Strategies (ES), (Bäck & Kursawe, 1995) and Evo-
lutionary Programming (EP) (Fayyad, Shapire, Smyth, & Uthurus-
amy, 1996). The common point of all EAs, which have population
based nature, is that they may also avoid being trapped in local op-
tima. Thus they can find the optimum solutions; however, this is
never guaranteed.

Conceptually speaking, particle swarm optimization (PSO)
(Engelbrecht, 2005; Kennedy & Eberhart, 1995; Omran, Salman, &
Engelbrecht, 2006), which has obvious ties with the EA family, lies
somewhere in between GA and EP. Yet unlike GA, PSO has no com-
plicated evolutionary operators such as crossover, selection and
mutation and it is highly dependent on stochastic processes. PSO
is originated from the computer simulation of individuals (parti-
cles or living organisms) in a bird flock or fish school (Wilson,

0957-4174/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2010.08.009
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1975), which basically show a natural behavior when they search
for some target (e.g. food). Their goal is, therefore, to converge to
the global optimum of a possibly non-linear function or system.
Similarly, in a PSO process, a swarm of particles (or agents), each
of which represents a potential solution to an optimization prob-
lem, navigate through the search space. The particles are initially
distributed randomly over the search space with a random velocity
and the goal is to converge to the global optimum of a function or a
system. Each particle keeps track of its position in the search space
and its best solution so far achieved. This is the personal best value
(the so-called pbest in Kennedy & Eberhart (1995)) and the PSO
process also keeps track of the global best solution so far achieved
by the swarm by remembering the index of the best particle (the
so-called gbest in Kennedy & Eberhart (1995)). During their journey
with discrete time iterations, the velocity of each agent in the next
iteration is affected by the best position of the swarm (the best po-
sition of the particle gbest as the social component), the best per-
sonal position of the particle (pbest as the cognitive component),
and its current velocity (the memory term). Both social and cogni-
tive components contribute randomly to the velocity of the agent
in the next iteration.

There are some efforts for simulating dynamic environments in
a standard and configurable way. Some early works such as (Ange-
line, 1997, 1998; Eberhart & Shi, 2001) use experimental setup
introduced by Angeline (1997). In this setup the minimum of the
three-dimensional parabolic function, f(x,y,z) = x2 + y2 + z2, is
moved along a linear or circular trajectory or randomly. Three dif-
ferent update frequencies (200, 1000 and 2000 evaluations) and
change severities (0.01, 0.1, 0.5) are used. However, this setup en-
ables testing only in a uni-modal environment. Branke (2008) has
provided a publicly available Moving Peaks Benchmark (MPB) to
enable different dynamic optimization algorithms to be tested in
a standard way in a multi-modal environment. MPB allows the cre-
ation of different dynamic fitness functions consisting of a number
of peaks with varying location, height and width. The primary
measure for performance evaluation is offline error, which is the
average difference between the optimum and the best evaluation
since the last environment change. Obviously, this value is always
a positive number and it is zero only for perfect tracking. Several
PSO methods have been developed and tested using MPB such as
(Blackwell & Branke, 2004a; Blackwell & Branke, 2004b; Li, Branke,
& Blackwell, 2006; Mendes & Mohais, 2005). Particularly Blackwell
& Branke (2004a) proposed a successful multi-swarm approach.
The idea behind this is that different swarms can converge to dif-
ferent peaks and track them when the environment changes. The
swarms interact only by mutual repulsion that keeps any two
swarms from converging to the same peak.

Similar to the aforementioned EAs, PSO might exhibit some ma-
jor problems and severe drawbacks such as parameter dependency
(Lovberg & Krink, 2002) and loss of diversity (Riget & Vesterstrom,
2002). Particularly the latter phenomenon increases the probabil-
ity of being trapped in a local optimum and it is the main source
of premature convergence especially when the dimensionality of
the search space is large (Van den Bergh, 2002) and the problem
to be optimized is multi-modal (Esquivel & Coello, 2003; Riget &
Vesterstrom, 2002). Another reason for premature convergence is
that particles are flown through a single point, which is (randomly)
determined by gbest and pbest positions and this point is not even
guaranteed to be a local optimum (Van den Bergh & Engelbrecht,
2002). Since PSO was proposed for static problems in general, ef-
fects of such drawbacks eventually become much more severe
for dynamic environments. Various modifications and PSO variants
have been proposed in order to address these problems such as
(Abraham, Das, & Roy, 2007; Chen & Li, 2007; Chen, Peng, & Jian,
2007; Christopher & Seppi, 2004; Clerc, 1999; Eberhart, Simpson,
& Dobbins, 1996; Higashi & Iba, 2003; Ince, Kiranyaz, & Gabbouj,

2009; Janson & Middendorf, 2005; Kaewkamnerdpong & Bentley,
2005; Krohling & Coelho, 2006; Liang & Qin, 2006; Li et al., 2006;
Lovberg, 2002; Lovberg & Krink, 2002; Mendes, Kennedy, & Neves,
2004; Peng, Reynolds, & Brewster, 2003; Peram, Veeramachaneni,
& Mohan, 2003; Ratnaweera, Halgamuge, & Watson, 2003; Ratn-
aweera, Halgamuge, & Watson, 2002; Riget & Vesterstrom, 2002;
Richards & Ventura, 2003; Shi & Eberhart, 1998; Shi & Eberhart,
2001; Van den Bergh & Engelbrecht, 2002; Van den Bergh & Enge-
lbrecht, 2004; Xie, Zhang, & Yang, 2002a; Xie, Zhang, & Yang,
2002b; Xie, Zhang, & Yang, 2002c; Yasuda, Ide, & Iwasaki, 2003;
Zhang & Xie, 2003). Such methods usually try to improve the diver-
sity among the particles and the search mechanism either by
changing the update equations towards more diversified versions
or adding more randomization to the system (to particle velocities,
positions, etc.) or simply resetting some or all of them randomly
when some conditions are met. However, their performance
improvement might be quite limited even in static environments
and most of them use more parameters and/or thresholds to
accomplish this whilst making the PSO variant even more param-
eter dependent. Therefore, they do not yield set a reliable solution
for dynamic environments, which usually have a multi-modal nat-
ure and high dimensionality.

Another major drawback of the basic PSO and the aforemen-
tioned variants is that they can only be applied to a search (solution)
space with a fixed dimensionality. However, in many optimization
problems, the optimum dimension is also unknown (e.g. data clus-
tering, object extraction, optimization of the dynamic functions,
etc.) and should thus be determined within the PSO process. Take
for example the color-based image segmentation as a data clustering
application, where the optimum dimension of the solution space
corresponds to the true number of clusters (segments) in the data
(color) space, which cannot be known beforehand. In such a case
the PSO process should perform a multi-dimensional search in order
to determine both the true (optimum) number of clusters and the
optimum centroid location for each cluster. The problem becomes
even more challenging when it is applied over a dynamic environ-
ment such as a video where both the number of clusters (segments)
and their centroids (dominant colors) are changing over time. Yet
since the change between consecutive frames is not drastic but
rather minor, instead of performing a new clustering in the color do-
main via multi-dimensional search for each frame in the video, for a
new (next) frame, the PSO process can establish a follow-up mech-
anism to track the optimum (number of) clusters (segments) from
the previous frame. Therefore, using the past history about global
and local optima becomes a crucial information to search for the
current optima (both dimension and location).

In this paper, we shall first introduce a recent technique that
significantly improves the global convergence performance of
PSO by forming an artificial Global Best particle (aGB) fractionally.
This algorithm, the so-called Fractional Global Best Formation
(FGBF), collects the best dimensional components from each
swarm particle and fractionally creates the aGB, which will replace
gbest as a guide for the swarm, if it turns out to be better than the
swarm’s native gbest particle. We then propose a novel multi-
swarm algorithm, which combines multi-swarms with the FGBF
technique so that each swarm can apply FGBF distinctively. Via
applying the proposed techniques on conventional MPB we shall
show that they can find and track the global peak in an efficient
way and usually in earlier stages. For the multi-dimensional dy-
namic environments where the optimum dimension also changes
over time, we shall then introduce a multi-dimensional (MD) PSO
technique, which re-forms the native structure of swarm particles
in such a way that they can make inter-dimensional passes with a
dedicated dimensional PSO process. Therefore, in a multi-dimen-
sional search space where the optimum dimension is unknown,
swarm particles can seek for both positional and dimensional
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optima. This eventually pushes the frontier of optimization prob-
lems in dynamic environments towards a global search in a mul-
ti-dimensional space, where the problems in each dimension are
possibly multi-modal and dependent on each other in a certain
manner. Since the conventional MPB is created for a unique (fixed)
dimensionality, we shall propose multi-dimensional extension of
the benchmark in which there exists a unique optimum dimension
where the global (highest) peak is located. Also the optimum
dimension can change over time within a dimension range. In or-
der to provide a certain degree of dependency among individual
dimensions, peaks in different dimensions share the common coor-
dinates of the peak locations. This is basically accomplished by
subtracting a penalty term, whose magnitude depends on a dimen-
sional error, from the landscape height in non-optimal dimensions.
As a result, over the extended MPB, MD PSO can seek for both the
optimum dimension and the global peak on it simultaneously.
FGBF is an add-on to both multi-swarms and MD PSO which can
enhance their performance. We shall show when the multi-dimen-
sional search is needed, the best performance is achieved by their
mutual operation. In recent works, both MD PSO and FGBF have
been successfully applied over static problems such as general data
clustering (Kiranyaz, Ince, Yildirim, & Gabbouj, 2010) and evolu-
tionary artificial neural networks (Ince et al., 2009), respectively.

The rest of the paper is organized as follows. Section 2 surveys
related work on PSO and MPB. The proposed techniques, MD PSO,
multi-swarms with FGBF and their applications over the (ex-
tended) MPB are presented in detail in Section 3. Section 4 pro-
vides the experiments conducted and discusses the results.
Finally, Section 5 concludes the paper.

2. Related work

2.1. The basic PSO algorithm

In the basic PSO method, (bPSO), a swarm of particles flies
through an N-dimensional search space where each particle repre-
sents a potential solution to the optimization problem. Each parti-
cle with index a in the swarm, n = {x1, . . . ,xa ,. . . ,xS}, is represented
by the following characteristics:

xa,j(t): jth dimensional component of the position of particle a,
at time t.
va,j(t): jth dimensional component of the velocity of particle a,
at time t.
ya,j(t): jth dimensional component of the personal best (pbest)
position of particle a, at time t.
ŷjðtÞ: jth dimensional component of the global best position of
the swarm, at time t.

Let f denote the fitness function to be optimized. Without loss of
generality assume that the objective is to find the maximum of f in
an N-dimensional space. Then the personal best of particle a can be
updated at iteration t as,

ya;jðtÞ ¼
ya;jðt � 1Þ if f ðxaðtÞÞ < f ðyaðt � 1ÞÞ
xa;jðtÞ else

� �
j ¼ 1;2; . . . ;N

ð1Þ

Since gbest is the index of the GB particle, ŷðtÞ ¼ ygbestðtÞ. Then at
each iteration in a PSO process, positional updates are performed
for each dimensional component, j 2 [1,N] and for each particle,
a 2 [1,S], as follows:

va;jðt þ 1Þ ¼ wðtÞva;jðtÞ þ c1r1;jðtÞðya;jðtÞ � xa;jðtÞÞ
þ c2r2;jðtÞðŷjðtÞ � xa;jðtÞÞ

xa;jðt þ 1Þ ¼ xa;jðtÞ þ va;jðt þ 1Þ
ð2Þ

where w is the inertia weight, (Shi & Eberhart, 1998) and c1, c2 are
the acceleration constants which are usually set to 1.49 or 2. r1,j

� U(0,1) and r2,j � U(0,1) are random variables with uniform distri-
bution. Recall from the earlier discussion that the first term in the
summation is the memory term, which represents the contribution
of the previous velocity over the current velocity, the second term is
the cognitive component, which represents the particle’s own expe-
rience and the third term is the social component through which the
particle is ‘‘guided” by the gbest particle towards the GB solution so
far obtained. Although the use of inertia weight, w, was later added
by Shi & Eberhart (1998), into the velocity update equation, it is
widely accepted as the basic form of PSO algorithm. A larger value
of w favors exploration while a small inertia weight favors exploita-
tion. As originally introduced, w is often linearly decreased from a
high value (e.g. 0.9) to a low value (e.g. 0.4) during iterations of a
PSO run. Depending on the problem to be optimized, PSO iterations
can be repeated until a specified number of iterations, say IterNo, is
exceeded, velocity updates become zero, or the desired fitness score
is achieved (i.e. f > eC). Accordingly the general pseudo-code of the
bPSO can be given as follows:

bPSO (termination criteria: {IterNo,eC, . . .}, Vmax)

1. For "a 2 [1,S] do:

1.1 Randomize xa(1), va(1)

1.2 Let ya(0) = xa(1)

1.3 Let ŷð0Þ ¼ xað1Þ
2. End For.

3. For " t 2 [1, IterNo] do:

3.1 For "a 2 [1,S] do:

3.1.1 Compute ya(t) using (1)

3.1.2 If ðf ðyaðtÞÞ > maxðf ðŷðt � 1Þ; f ðyiðtÞÞÞ
16i<a

Þ then

gbest = a and ŷðtÞ ¼ yaðtÞ
3.2 End For.

3.3 If any termination criterion is met, then Return.

3.3 For "a 2 [1,S] do:

3.4.1 For " j 2 [1,N] do:

3.4.1.1 Compute va,j(t + 1) using (2)

3.4.1.2 If (jva,j(t + 1)j > Vmax) then clamp it to

jva,j(t + 1)j = Vmax

3.4.1.3 Compute xa,j(t + 1) using (2)

3.4.2 End For.

3.5 End For.

4. End For.

5. Return.

Velocity clamping also called ‘‘dampening” with the user-de-
fined maximum range Vmax (and �Vmax for the minimum) as in
Step 3.4.1.2 is one of the earliest attempts to control or prevent
oscillations. Such oscillations are indeed crucial since they broaden
the search capability of the swarm; however, they have a potential
drawback of oscillating continuously around the optimum point.
Therefore, such oscillations should be dampened and the conver-
gence is achieved with the proper use of the velocity clamping
and the inertia weight. Furthermore, this is the bPSO algorithm
where the particle gbest is determined within the entire swarm.
Another major topological approach, the so-called lbest, also exists
where the swarm is divided into overlapping neighborhoods of
particles and instead of defining gbest and ŷðtÞ ¼ ygbestðtÞ over the
entire swarm, for a particular neighborhood Ni, the (local) best par-
ticle is referred as lbest with the position ŷiðtÞ ¼ ylbestðtÞ. Neighbors
can be defined with respect to particle indices (i.e. i 2 [j � l,. . .,j + l]
or by using some other topological forms (Suganthan, 1999). It is
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obvious that gbest is a special case of lbest scheme where the
neighborhood is defined as the entire swarm. The lbest approach
is one of the earlier attempts, which usually improves the diver-
sity; however, it is slower than the gbest approach. PSO variants
for dynamic environments will be reviewed in Section 2.3.

2.2. Moving Peaks Benchmark

Conceptually speaking, MPB developed by Branke (2008), is a
simulation of a configurable dynamic environment changing over
time. The environment consists of a certain number of peaks with
varying locations, heights and widths. The dimensionality of the
fitness function is fixed in advance and thus is an input parameter
of the benchmark. An N-dimensional fitness function with m peaks
is expressed as,

Fð~x; tÞ ¼max Bð~xÞ; max
p¼1...m

Pð~x; hpðtÞ;wpðtÞ;~cpðtÞÞ
� �

ð3Þ

where Bð~xÞ is a time variant basis landscape, whose utilization is op-
tional, and P is the function defining the height of the pth peak at
location ~x, where each of the m peaks can have its own dynamic
parameters such as height, hp(t), width, wp(t) and location vector
of the peak center,~cpðtÞ. Each peak parameter can be initialized ran-
domly or set to a certain value and after a time period (number of
evaluations), Te, at time (evaluation) t, a change over a single peak,
p, can be defined as follows:

hpðtÞ ¼ hpðt � TeÞ þ rDh
wpðtÞ ¼ wpðt � TeÞ þ rDw
~cpðtÞ ¼~cpðt � TeÞ þ~vpðtÞ

ð4Þ

where r � U(0,1), Dh and Dw are the heights and width change
severities, respectively, and ~vpðtÞ is a shift vector, which is a linear
combination of a random vector and the previous shift vector,
~vpðt � TeÞ. The shift vector ~vpðtÞ is always normalized to length
vlength, which is called change severity. Accordingly, the shift vec-
tor ~vpðtÞ can be defined as

~vpðtÞ ¼ v length
ð1� kÞ~rðtÞ þ k~vpðt � TeÞ
kð1� kÞ~rðtÞ þ k~vpðt � TeÞk

;

where k is the correlation factor, which defines the level of location
change randomness. The types and number of peaks along with their
initial heights and widths, environment (search space) dimension
and size, change severity, level of change randomness and change
frequency can be defined. To facilitate standard comparative evalu-
ations among different algorithms, three standard settings of such
MPB parameters, the so-called Scenarios, have been defined. Scenario
2 is the most widely used and it allows a range of values, among
them the following are commonly used: number of peaks = 10,
change severity vlength = 1.0, correlation value k = 0.0 and peak
change frequency = 5000. In Scenario 2 no basis landscape is used
and the peak type is a simple cone with the following expression,

Pð~x;hpðtÞ;wpðtÞ;~cpðtÞÞ¼hpðtÞ� spðtÞk~x�~cpðtÞk where

spðtÞ¼
hpðtÞ
wpðtÞ

and k~x�~cpðtÞk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

ðxi�cpiÞ2
vuut 8xi 2~x; 8cpi 2~cpðtÞ

ð5Þ
where sp(t) is the slope and k.k is the Euclidean distance between
two N-dimensional vectors, ~x and ~cpðtÞ. More detailed information
on MPB and the rest of the parameters used in this benchmark
can be obtained from Branke (2008).

2.3. Multi-swarm PSO

The main problem of using the basic PSO algorithm in a dy-
namic environment is that eventually the swarm will converge to

a single peak – whether global or local. When another peak be-
comes the global maximum as a result of an environmental
change, it is likely that the particles keep circulating close to the
peak to which the swarm has converged and thus they cannot find
the new global maximum. Blackwell and Branke have addressed
this problem in Blackwell & Branke (2004a, 2004b) by introducing
multi-swarms that are actually separate PSO processes. Each parti-
cle is now a member of one of the swarms only and it is unaware of
other swarms. The main idea is that each swarm can converge to a
separate peak. Swarms interact only by mutual repulsion that
keeps them from converging to the same peak. For a single swarm
it is essential to maintain enough diversity so that the swarm can
track small location changes of the peak to which it is converging.
For this purpose Blackwell and Branke introduced charged and
quantum swarms, which are analogues to an atom having a nu-
cleus and charged particles randomly orbiting it. The particles in
the nucleus take care of the fine tuning of the result while the
charged particles are responsible of detecting the position changes.
However, it is clear that, instead of charged or quantum swarms,
some other method can also be used to ensure sufficient diversity
among particles of a single swarm so that the peak can be tracked
despite of small location changes.

As one might expect, the best results are achieved when the
number of swarms is set equal to the number of peaks. However,
it is then required that the number of peaks is known beforehand.
Blackwell (2007) presents self-adapting multi-swarms, which can
be created or removed during the PSO process and, therefore, it
is not necessary to fix the number of swarmsbeforehand.

The repulsion between swarms is realized by simply re-initial-
izing the worse of the two swarms if they move within a certain
range from each other. Using physical repulsion could lead to equi-
librium, where swarm repulsion prevents both swarms from get-
ting close to a peak. A proper limit closer to which the swarms
are not allowed to move, rrep is attained by using the average radius
of the peak basin, rbas. If p peaks are evenly distributed in XN,
rrep = rbas = X/p1/N. Detailed information about multi-swarms can
be obtained in Blackwell & Branke (2004a, 2004b).

3. The proposed optimization technique for dynamic
environments

In this section, we first introduce the multi-swarms with FGBF
technique and its application to MPB. The multi-dimensional
extension of PSO, the so-called MD PSO, will be detailed next. Fi-
nally we show their mutual application over the (extended) MPB.

3.1. FGBF technique

For those problems where dimensional fitness evaluation is
possible, Fractional Global Best Formation (FGBF) can be used to
avoid the pre-mature convergence by providing a significant diver-
sity obtained from a proper fusion of the swarm’s best components
(the individual dimension(s) of the current position of each particle
in the swarm). Some problems such as data clustering, on the other
hand, can exhibit some kind of non-trivial interdependency among
the dimensional components of the search space. For these cases, a
proper approximation for the fractional fitness evaluation, if possi-
ble, should be designed to perform FGBF. In either case, FGBF frac-
tionally creates an artificial GB particle, called aGB, at each
iteration in a PSO process by selecting the best particle (dimen-
sional) components from the entire swarm. Therefore, especially
during the initial steps, aGB can be and, most of the time, is a better
alternative than the native gbest particle since it has the advantage
of assessing each dimension of every particle in the swarm individ-
ually, and forming the aGB particle fractionally by using the best
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components among them. This process naturally uses the available
diversity among individual dimensional components and thus it
can prevent the swarm from being trapped in local optima due
to its ongoing and ever-varying particle creations. At each iteration
FGBF is performed after the assignment of the swarm’s gbest parti-
cle (i.e. performed between Steps 3.2 and 3.3 in the pseudo-code of
bPSO) and, if aGB turns out to be better than gbest, the personal best
location of the gbest particle is replaced by the location of the aGB
particle and, since ŷðtÞ ¼ ygbestðtÞ, the artificially created particle is
thus used to guide the swarm through the social component in (2).
In other words, the swarm will be guided only by the best (winner)
between the native gbest and aGB particle at any time. In the next
iteration, a new aGB particle is created and it will again compete
against the personal best of gbest (which can be also a former
aGB now).

Suppose that for a swarm n, FGBF is performed in a PSO process
in dimension N. Recall from the earlier discussion that in a partic-
ular iteration, t, each PSO particle, a, has the following compo-
nents: position (xa,j(t)), velocity (va,j(t)) and the personal best
position (ya,j(t)), j 2 [1,N]. As the aGB particle is fractionally (re-)
created from the individual dimensions of some swarm particles
at each iteration, it does not need the velocity term and, therefore,
it does not have to remember its personal best location.

Let f(a, j) be the dimensional fitness score of the jth component
of the position of particle a and f(gbest, j) be the dimensional fitness
score of the jth component of the personal best position of the
gbest particle. Suppose that all dimensional fitness scores (f(a, j),
"a 2 [1,S] and f(gbest, j)) can be computed in Step 3.1 and FGBF
can then be plugged in between Steps 3.2 and 3.3 of bPSO’s pseu-
do-code. Accordingly, the pseudo-code for FGBF can be expressed
as follows:

FGBF in bPSO (n, f(a, j))

1. Let a[j] = arg maxa2nj2[1,N] (f(a, j)) be the index of particle

yielding the maximum f(a, j) for the jth dimensional

component.

2. xaGB,j(t) = xa[j],j(t) for " j 2 [1,N]

3. If f(gbest, j) > f(a[j], j) then xaGB;jðtÞ ¼ ygbest;jðtÞ
4. If (f(xaGB(t)) > f(ygbest(t))) then ygbestðtÞ ¼ xaGBðtÞ and

ŷðtÞ ¼ xaGBðtÞ
5. Return.

Note that Step 1 along with the computation of f(a, j) depends
entirely on the optimization problem. It keeps track of partial fit-
ness contributions from each individual dimensional component
of each particle’s position (the potential solution). Take for instance
the function minimization problem as illustrated in Fig. 1 where
2D space is used for illustration purposes. In the figure, three par-
ticles in a swarm are ranked as the 1st (or the gbest), the 3rd and
the 8th with respect to their proximity to the target position (or
the global solution) of some function. Although gbest particle (i.e.
1st rank particle) is the closest in the overall sense, the particles
ranked 3rd and 8th provide the best x and y dimensions (closest
to the target’s respective dimensions) in the entire swarm and
hence the aGB solution via FGBF yields a better (closer) particle
than the swarm’s native gbest. Particularly in Kiranyaz et al.
(2010), the usage and merits of FGBF for the optimization of several
multi-modal, non-linear (benchmark) functions in high dimen-
sions have been shown where all MD PSO runs with FGBF found
the global minimum at the target dimension for all runs, over all
functions, regardless of the dimension, swarm size and modality,
and without any exception. This is the case where the function

to be optimized is known a priori and FGBF is easier to use. For
those problems where the knowledge of how each fractional
dimension contributes to the overall fitness is no longer available
(i.e. black-box problems), FGBF can still be adapted with respect
to the problem, e.g. in Kiranyaz et al. (2010), see the usage of FGBF
over general data clustering where the optimum dimension of the
search space (number of clusters) is also unknown and hence MD
PSO with the proper application of FGBF is used to find the opti-
mum (number of) clusters in a data space.

3.2. FGBF application for MPB

The previous section introduced the principles of FGBF theory
within a bPSO process in a single dimension and referred to some
of its applications in other domains, each of which is in a static
environment. However, in dynamic environments this approach
eventually leads the swarm to converge to a single peak (whether
global or local) and therefore, it may lose its ability to track other
peaks. As any of the peaks can become the optimum peak as a re-
sult of environmental changes, it is likely to lead to a suboptimal
solution. This is the basic reason of utilizing the multi-swarms
along with the FGBF operation. As described in Section 2.3, the mu-
tual repulsion between swarms is performed and for computing
the distance between two swarms, we use the distance between
the swarms’ global best locations. Instead of charged or quantum
swarms, FGBF is the mechanism alternatively used to provide nec-
essary diversity and thus to enable peak tracking if peaks’ location
are changed. We also re-initialize the particle velocities after each
environment change to further contribute to the diversity.

A particle with index a in a swarm n, represents a potential solu-
tion and therefore, the jth component of an N-dimensional point (xj,
j 2 [1,N]) is stored in its positional component, xa,j(t), at a time t. The
aim of the PSO process is to search for the global optimum point,
which maximizes Pð~x;hpðtÞ;wpðtÞ;~cpðtÞÞ, in other words, finding
the global (highest) peak in MPB environment. Recall that in
Scenario 2 of MPB the peaks used are cone shaped, as given in (5).
Since in (5), hp(t) and sp(t) are both set by MPB, finding the highest
peak is equivalent to minimizing the k~x�~cpðtÞk term, yielding
f(a, j) = �(xj � cpj)2. Step 3.1 in bPSO’s pseudo-code computes the
(dimensional) fitness scores (f(a, j), f(gbest, j)) of the jth components
(xa,j,ygbest,j) and in Step 2 of the FGBF process, the dimensional
component yielding the maximum f(a, j) is then placed in aGB. In
Step 3 these dimensional components are replaced by dimensional
components of the personal best position of the gbest particle, if they
yield higher dimensional fitness scores. We do not expect that

Fig. 1. A sample FGBF operation in 2D space.
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dimensional fitness scores can be evaluated with respect to the opti-
mum peak since this requires the a priori knowledge of the global
optimum, instead we use either the current peak where the particle
resides on or the peak to which the swarm is converging (swarm
peak). We shall thus consider and evaluate both modes separately.

3.3. MD PSO algorithm

Instead of operating in a fixed dimension N, the MD PSO algo-
rithm is designed to seek both positional and dimensional optima
within a dimension range, (Dmin 6 d 6 Dmax). In MD PSO each par-
ticle has two sets of components, each of which is subjected to one
of two independent and consecutive processes. The first one is the
regular positional PSO, i.e. the traditional velocity updates and due
positional shifts in a d-dimensional search space. The second one is
the dimensional PSO, which allows the particle to navigate through
dimensions. Accordingly, each particle keeps track of its last posi-
tion, velocity and personal best position (pbest) in a particular
dimension so that when it re-visits the same dimension at a later
time, it can perform its regular ‘‘positional” fly using this informa-
tion. The dimensional PSO process of each particle may then move
the particle to another dimension where it will remember its ear-
lier positional status and keep ‘‘flying” within the positional PSO
process in this dimension, and so on. The swarm, on the other
hand, keeps track of the gbest particles in all dimensions, each of
which respectively indicates the best (global) position so far
achieved and can thus be used in the regular velocity update equa-
tion for that dimension. Similarly the dimensional PSO process of
each particle uses its personal best dimension in which the per-
sonal best fitness score has so far been achieved. Finally, the swarm
keeps track of the global best dimension, dbest, among all the per-
sonal best dimensions. The gbest particle in dbest dimension repre-
sents the optimum solution and dimension, respectively.

The MD PSO process at time (iteration), is represented by the
following characteristics:

xxxdaðtÞ
a;j ðtÞ: jth component (dimension) of the position of particle

a, in dimension xda(t).
vxxdaðtÞ

a;j ðtÞ: jth component (dimension) of the velocity of particle
a, in dimension xda(t).
xyxdaðtÞ

a;j ðtÞ: jth component (dimension) of the personal best
(pbest) position of particle a, in dimension xda(t).
gbest (d): Global Best particle index in dimension d.
xŷd

j ðtÞ: jth component (dimension) of the global best position of
swarm, in dimension d.
xda(t): current dimension of particle a.
vda(t): dimensional velocity of particle a.
x~daðtÞ: personal best dimension of particle a.

Fig. 2 shows sample MD PSO and bPSO particles with indices a.
bPSO particle that is at a (fixed) dimension, N = 5, contains only
positional components whereas MD PSO particle contains both
positional and dimensional components, respectively. In the figure
the dimension range for the MD PSO is between 2 and 9, therefore
the particle contains eight sets of positional components. In this
example the current dimension where the particle with index a re-
sides is 2 (xda(t) = 2) whereas its personal best dimension is 3
ðx~daðtÞ ¼ 3Þ. Therefore, at time t, a positional PSO update is first
performed over the positional elements, xx2

aðtÞ and then the parti-
cle may move to another dimension with respect to the dimen-
sional PSO. Recall that each positional element, xx2

a;jðtÞ; j 2 f1;2g,
represents a potential solution in the data space of the problem.

Let f denote the fitness function that is to be optimized within a
certain dimension range, [Dmin,Dmax]. In accordance with the scope
of the current work and without loss of generality assume that the
objective is to find the maximum (position) of f in the optimum
dimension within a multi-dimensional search space. Assume that
the particle a visits (back) the same dimension after T iterations
(i.e. xda(t) = xda(t + T)), then the personal best position can be up-
dated in iteration t + T as follows,

xyxdaðtþTÞ
a;j ðt þ TÞ ¼

xyxdaðtÞ
a;j ðtÞ

if f xxxdaðtþTÞ
a ðt þ TÞ

� �
< f xyxdaðtÞ

a ðtÞ
� �

xxxdaðtþTÞ
a;j ðt þ TÞ

else

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

j ¼ 1;2; . . . ; xdaðt þ TÞ ð6Þ

To overcome the necessity to remember the iteration numbers,
when a particle has visited a certain dimension last time, the fol-
lowing updates are performed for each dimensional component ex-
cept xda(t), i.e. j 2 [1,d] where d 2 [Dmin,Dmax] � {xda(t)} and for
each particle, a 2 [1,S],

xyd
a;jðtÞ ¼ xyd

a;jðt � 1Þ; xŷd
j ðtÞ ¼ xŷd

j ðt � 1Þ;
for 8d 2 ½Dmin;Dmax� � fxdaðtÞg

ð7Þ

Furthermore, the personal best dimension of particle a can be up-
dated in iteration t + 1 as follows,

x~daðtÞ ¼
x~daðt � 1Þ if f xxxdaðtÞ

a ðtÞ
� �

< f xyx~daðt�1Þ
a ðt � 1Þ

� �
xdaðtÞ else

( )

ð8Þ

Recall that gbest (d) is the index of the Global Best particle in dimen-
sion d and so xŷdðtÞ ¼ xyd

gbestðdÞðtÞ. For a particular iteration t, and for
a particle with index a 2 [1,S], first the positional components are
updated in its current dimension, xda(t) and then the dimensional

Fig. 2. Sample MD PSO (right) vs. bPSO (left) particle structures. For MD PSO {Dmin = 2,Dmax = 9} and at the current time t, xda(t) = 2 and x~daðtÞ ¼ 3. For bPSO N = 5.

S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223 2217



update is performed to determine its next dimension, xda(t + 1). The
positional update is performed for each dimension component,
j 2 [1,xda(t)], as follows:

vxxdaðtÞ
a;j ðt þ 1Þ ¼ wðtÞvxxdaðtÞ

a;j ðtÞ þ c1r1;jðtÞ xyxdaðtÞ
a;j ðtÞ � xxxdaðtÞ

a;j ðtÞ
� �

þ c2r2;jðtÞ xŷxdaðtÞ
j ðtÞ � xxxdaðtÞ

a;j ðtÞ
� �

xxxdaðtÞ
a;j ðt þ 1Þ ¼ xxxdaðtÞ

a;j ðtÞ þ Cvx vxxdaðtÞ
a;j ðt þ 1Þ; fVmin;Vmaxg

h i
xxxdaðtÞ

a;j ðt þ 1Þ  Cxx xxxdaðtÞ
a;j ðt þ 1Þ; fXmin;Xmaxg

h i
ð9Þ

where Cxx[.,.] � Cvx[.,.] are the clamping operators applied over each
positional component, xxd

a;j and vxd
a;j. Cxx[.,.] may or may not be ap-

plied depending on the optimization problem but Cvx[.,.] is basically
needed to avoid exploding. Each operator can be applied in two dif-
ferent ways, such as,

Cxx xxd
a;jðtÞ; fXmin;Xmaxg

h i
¼

xxd
a;jðtÞ if Xmin 6 xxd

a;jðtÞ 6 Xmax

Xmin if xxd
a;jðtÞ < Xmin

Xmax if xxd
a;jðtÞ > Xmax

8><
>:

9>=
>;
ð10:aÞ

Cxx xxd
a;jðtÞ;fXmin;Xmaxg

h i
¼ xxd

a;jðtÞ if Xmin6 xxd
a;jðtÞ6Xmax

UðXmin;XmaxÞ else

( )

ð10:bÞ

where option (a) is a simple thresholding to the range limits and (b)
re-initializes randomly the jth positional component (j 6 d).

Note that the particle’s new position, xxxdaðtÞ
a ðt þ 1Þ, will still be in

the same dimension, xda(t); however, the particle may jump to an-
other dimension afterwards. Therefore, for all the other dimensions
in the dimensional range except xda(t), i.e. "d 2 {Dmin,. . .,Dmax} �
{xda(t)}, the following updates are necessary for each dimensional
component, j 2 [1,. . .,d] and for each particle, a 2 [1,S]:

vxd
a;jðt þ 1Þ ¼ vxd

a;jðtÞ; xxd
a;jðt þ 1Þ ¼ xxd

a;jðtÞ
for8d 2 ½Dmin;Dmax� � fxdaðtÞg

ð11Þ

The dimensional updates are computed with the following
equations:

vdaðt þ 1Þ ¼ bvdaðtÞ þ c1r1ðtÞðx~daðtÞ � xdaðtÞÞ
þ c2r2ðtÞðdbest � xdaðtÞÞc

xdaðt þ 1Þ ¼ xdaðtÞ þ Cvd½vdaðt þ 1Þ; fVDmin;VDmaxg�
xdaðt þ 1Þ  Cxd½xdaðt þ 1Þ; fDmin;Dmaxg�

ð12Þ

where b.c is the floor operator, Cxd [.,.] and Cvd[.,.] are the clamping
operators applied over dimensional components, xda(t) and vda(t),
respectively. As in (2), we employ the inertia weight for positional
velocity update; however, we have witnessed no benefit of using
it for dimensional PSO, and hence we left it out of (12) for the sake
of simplicity. Cvd[.,.] is similar to Cvx[.,.], which is basically applied to
avoid exploding and we use the basic thresholding for this, ex-
pressed as follows:

Cvd½vdaðtÞ;fVDmin;VDmaxg� ¼
vdaðtÞ if VDmin 6 vdaðtÞ6 VDmax

VDmin if vdaðtÞ< VDmin

VDmax if vdaðtÞ> VDmax

8<
:

9=
;

ð13Þ
Cxd[.,.], on the other hand, is a mandatory clamping operator, which
keeps the dimensional jumps within the dimension range of the
problem, [Dmin, Dmax]. Furthermore within Cxd[.,.], an optional in-
flow buffering mechanism can also be implemented. This can be a
desired property, which allows only sufficient number of particles
in a certain dimension and thus avoids the redundancy. Particularly
dbest and dimensions within the close proximity have a natural

attraction and without such buffering mechanism, the majority of
swarm particles may be hosted within this local neighborhood
and hence other dimensions might encounter a severe depletion.
To prevent this, the buffering mechanism should control the in-flow
of the particles (by the dimensional velocity updates) to a particular
dimension. On some early bPSO implementations over problems
with low (and fixed) dimensions, 15–20 particles were usually suf-
ficient for a successful operation. However, in high dimensions this
may not be so since more particles are usually needed as the dimen-
sion increases. Therefore, we empirically set the limit to be propor-
tional to the solution space dimension and not less than 15. At time
t, let Pd(t) be the number of particles in dimension d. Cxd[.,.] can then
be expressed with the (optional) buffering mechanism as follows:

Cxd½xdaðtÞ;fDmin;Dmaxg�¼

xdaðt�1Þ if PxdaðtÞðtÞP maxð15;xdaðtÞÞ
xdaðt�1Þ if xdaðtÞ<Dmin

xdaðt�1Þ if xdaðtÞ>Dmax

xdaðtÞ else

8>>><
>>>:

9>>>=
>>>;

ð14Þ

In short, the clamping and buffering operator, Cxd[.,.], allows a
dimensional jump only if the target dimension is within dimen-
sional range and has space for a newcomer. Accordingly, the general
pseudo-code of the MD PSO method can be expressed as follows:

MD PSO (termination criteria: {IterNo,eC, . . .})

1. For "a 2 [1,S] do:

1.1. Randomize xda(1), vda(1)

1.2. Initialize x~dað0Þ ¼ xdað1Þ
1.3. For "d 2 {Dmin,Dmax} do:

1.3.1. Randomize xxd
að1Þ, xvd

að1Þ
1.3.2. Initialize xyd

að0Þ ¼ xxd
að1Þ

1.3.3. Initialize xŷdð0Þ ¼ xxd
að1Þ

1.4. End For.

2. End For.

3. For " t 2 [1, IterNo] do:

3.1. For "a 2 [1,S] do:

3.1.1. If (f xxxdaðtÞ
a ðtÞ > f xyxdaðtÞ

a ðt � 1Þ
� �� �

then do:

3.1.1.1. xyxdaðtÞ
a ðtÞ ¼ xxxdaðtÞ

a ðtÞ
3.1.1.2. Update x~daðtÞ according to (8)

3.1.2. Else xyxdaðtÞ
a ðtÞ ¼ xyxdaðtÞ

a ðt � 1Þ
3.1.3. End If

3.1.4. If (f xxxdaðtÞ
a ðtÞ

� �
> max f xŷxdaðtÞðt � 1Þ

	
; max

16p<a

�
f xxxdaðtÞ

p ðtÞ
� �� �

Þ then do:

3.1.4.1. gbest (xda(t)) = a

3.1.4.2. If f xxxdaðtÞ
a ðtÞ

� �
> f ðxŷdbestðt � 1ÞÞ

� �
then

dbest = xda(t)
3.1.5. End If

3.1.6. Do updates in other dimensions according to (7)

3.2. End For.

3.3. If the termination criteria are met, then Stop.

3.4. For "a 2 [1,S] do:

3.4.1. For " j 2 [1,xda(t)] do:

3.4.1.1. Compute vxxdaðtÞ
a;j ðt þ 1Þ and xxxdaðtÞ

a;j ðt þ 1Þ
using (9)

3.4.1.2. Update velocities and locations in other

dimensions using (11)

3.4.2. End For.

3.4.3. Compute vda(t + 1) and xda(t + 1) using (12)

3.5 End For.

4. End For.
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Once the MD PSO process terminates, the optimum solution
will be xŷdbest in the optimum dimension, dbest, achieved by the
particle with the index gbest (dbest) and finally the best (fitness)
score achieved will naturally be f ðxŷdbestÞ. Note that MD PSO is only
a natural extension or a generic form of the basic PSO, as it
searches for both optimum dimension and solution (in the opti-
mum dimension). Note that this is not a ‘superiority’ in terms of
convergence, rather the ability of searching the optimum solution
space dimension while searching for the positional optimum, in a
simultaneous way. In other words, the basic PSO is a MD PSO pro-
cess in a fixed dimension, which basically means that bPSO is iden-
tical to MD PSO for a particular (fixed) dimension. However,
contrary to bPSO, due to its ability to simultaneously search for
both optimum dimension and solution, MD PSO can conveniently
be used in many applications where the optimum dimension is un-
known. For instance in Kiranyaz et al. (2010) MD PSO (with FGBF)
has been used to find the true number of clusters in a complex data
space. This is obviously a tremendous advantage since with a tra-
ditional approach such as K-means, the number of clusters, K, has
to be given a priori and this may not be possible for many complex
problems. In another work (Ince et al., 2009), MD PSO has been
used for the automatic design of Artificial Neural Networks (ANNs)
by evolving to the optimal network configuration(s) for a particular
problem. Thus MD PSO can seek for the positional optimum in the
error space and dimensional optimum in the architecture space.
The optimum dimension converged at the end of a MD PSO process
corresponds to the best ANN configuration (or the most appropri-
ate ANN for that problem) where the trained network parameters
(connections, weights and biases) can then be resolved from the
positional optimum reached in that dimension. This presents a sig-
nificant advantage over many traditional training methods such as
the well-known back-propagation algorithm, which can only be
used to train a single ANN with a fixed configuration.

3.4. The proposed techniques over multi-dimensional MPB

For testing the proposed multi-dimensional optimization tech-
nique, we extended Branke’s MPB into a multi-dimensional version,
in which there exists many search space dimensions within a dimen-
sional range [Dmin,Dmax], and the optimal dimension changes over
time in addition to the dynamic nature of the conventional MPB. Peak
locations in different dimensions share the common peak center
coordinates and thus such an extension further allows exploitation
of the information gathered in other search space dimensions.

The multi-dimensional extension of the MPB is simple. The ini-
tialization and changes of peak locations must now be done in the
highest possible search space dimension, Dmax. Locations in the
other dimensions can be obtained simply by leaving out the redun-
dant coordinates (non-existing dimensions). The optimal dimen-
sion is chosen randomly every time the environment is changed.
Therefore, the fitness function with m peaks in multi-dimensional
environment can be expressed as,

Fð~xd; tÞ ¼max Bð~xdÞ; max
p¼1...m

P ~xd;d;hpðtÞ;wpðtÞ;~cd
pðtÞ

� �� �
ð15Þ

where d 2 [Dmin,Dmax] is the dimension of position ~xd and ~cd
pðtÞ re-

fers to the first d coordinates (dimensions) of the peak center loca-
tion. A cone peak is now expressed as follows:

Pð~xd;hpðtÞ;wpðtÞ;~cpdðtÞÞ¼hpðtÞ� spðtÞ � ~xd�~cd
pðtÞ




 


=d�ðDopt�dÞ2 where

spðtÞ ¼
hpðtÞ
wpðtÞ

and ~xd�~cd
pðtÞ




 



¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

i¼1

xd
i �cd

pi

� �2

vuut 8xd
i 2~xd; 8cd

pi 2~cd
pðtÞ

ð16Þ

where Dopt is the current optimal dimension. If compared with
expression (5), now for all non-optimal dimensions a penalty term
(Dopt � d)2 is subtracted from the whole environment. In addition to
that the peak slopes are scaled by the term 1/d. The purpose of this
scaling is to prevent the benchmark from favoring the lower dimen-
sions. Otherwise a solution, whose every coordinate differs from the
optimum by 1.0 would be a lot better solution in a lower dimension
as the Euclidian distance is used.

Similar to the uni-dimensional (PSO) case, each positional com-
ponent xxd

aðtÞ of MD PSO particle represents a potential solution in
dimension d. The only difference is that now the dimensionality of
the optimal solution is not known beforehand, but it can vary with-
in the defined range. Even a single particle can provide potential
solutions in different dimensions as it makes inter-dimensional
passes as a result of MD PSO process. Our dynamic multi-dimen-
sional optimization algorithm combines multi-swarms and FGBF
with MD PSO. As in the different dimensions the common coordi-
nates of the peak locations are the same, it does not seem purpose-
ful for two swarms to converge to the same peak in different
dimensions. Therefore, the mutual repulsion between swarms is
extended to affect swarms that are in different dimensions. Obvi-
ously, only the common coordinates are considered when the
swarm distance is computed.

FGBF naturally exploits information gathered in other dimen-
sions. When the aGB particle is created, FGBF algorithm is not lim-
ited to use dimensional components from only those particles
which are in a certain dimension, but it can combine dimensional
coordinates of particles in different dimensions. Note that as we
still use the dimensional fitness score, f(a, j) = �(xj � cpj)2, the com-
mon coordinates of the positional components of the aGB particle
created in different search space dimensions, d 2 [Dmin,Dmax], shall
be the same. In other words, it is not necessary to create the posi-
tional components of the aGB particle from scratch in every search
space dimension d 2 [Dmin,Dmax], instead in dimensions higher
than Dmin, only one (new) coordinate (dimension) to the aGB par-
ticle is created and added. Note also that it is still possible that
in some search space dimensions aGB beats the native gbest parti-
cle, while in other dimensions it does not. In the multi-dimensional
version also the dimension and dimensional velocity of each parti-
cle are re-initialized after an environmental change in addition to
the particle velocities in each dimension.

4. Experimental results

An extensive set of experiments was conducted over both con-
ventional (uni-dimensional) MPB and the extended (multi-dimen-
sional) MPB and the results will be presented in the following sub-
sections.

4.1. Results on conventional MPB

We conducted an exhaustive set of experiments over the MPB
Scenario 2 using the settings given in Section 2.2. In order to inves-
tigate the effect of multi-swarm settings, we used different num-
bers of swarms and numbers of particles in a swarm. We applied
both FGBF modes using the current peaks and the swarm peaks.
To investigate how FGBF and multi-swarms individually contribute
to the results, we also made experiments without using either of
them.

Fig. 3 presents the current error plot, which shows the differ-
ence between the global maximum and the current best result dur-
ing the first 80,000 function evaluations, when 10 swarms each
with four particles are used and the swarm peak mode is applied
for the FGBF operation. It can be seen from the figure that as the
environment changes after every 5000 evaluations, it causes the
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results to temporarily deteriorate. However, it is clear that after
environment changes the results are better than at the very begin-
ning, which shows the benefit of tracking the peaks instead of ran-
domizing the swarm when a change occurs. The figure also reveals
other typical features of the algorithms behavior. First of all, after
the first few environment changes the algorithm has not yet been
behaving as well as later. This is because the swarms have not yet
converged to a peak. Generally, it is more difficult to initially con-
verge to a narrow or low peak than to keep tracking a peak that be-
comes narrow and/or low. It can also be seen that typically the
algorithm gets close to the optimal solution before the environ-
ment is changed again. In few cases, where the optimal solution
is not found, the algorithm has for some reason been unable to
keep a swarm tracking that peak, which is too narrow.

In Figs. 4 and 5 the contributions of multi-swarms with FGBF
are demonstrated. The algorithm is run on MPB applying the same
environment changes, first with both using multi-swarms and
FGBF, then without multi-swarms and finally without FGBF. The
same settings are used as before. Without multi-swarms the num-
ber of particles is set to 40 to keep the total number of particles
unchanged.

As expected, the results without multi-swarms are significantly
deteriorated due to the aforementioned reasoning. When the envi-
ronment is changed, the highest point of the peak to which the
swarm is converging can be found quickly, but that can provide
good results only when that peak happens to be the global opti-
mum. When multi-swarms are used, but without using the FGBF,
it is clear that the algorithm can still establish some kind of fol-
low-up of peaks as the results immediately after environment
changes are only slightly worse than with FGBF. However, if FGBF
is not used, the algorithm can seldom find the global optimum.
Either there is no swarm converging to the highest peak or the
peak center just cannot be found fast enough.

For comparative evaluations, we selected five of the state-of-
the-art methods, which use the same benchmark system, the
MPB with the same settings. The best MPB results published so
far by these competing methods are listed in Table 1.

The overall best results have been achieved by the Extremal
Optimization algorithm (Moser & Hendtlass, 2007); however, this
algorithm is specially and only designed for MPB and its applicabil-
ity for other practical dynamic problems is not clear. The best re-
sults by a PSO-based algorithm have been achieved by Blackwell
and Branke’s multi-swarm algorithm described in Section 2.3.

The numerical results of the proposed technique in terms of the
offline error are listed in Table 2. Each result given is the average of
50 runs, where each run consists of 500,000 function evaluations.
As expected the best results are achieved when 10 swarms are
used. Four particles in a swarm turned out to be the best setting.
Between the two FGBF modes, better results are obtained when
the swarm peak is used instead of the peak closest to each particle.

4.2. Results on multi-dimensional MPB

On the extended MPB we conducted experiments with settings
similar to those used in the fixed dimension except that the change
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Fig. 3. Current error at the beginning of a run.
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Fig. 4. Effect of multi-swarms on results.
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Fig. 5. Effect of FGBF on results.

Table 1
Best results on MPB up to date.

Source Base algorithm Offline error

Blackwell and Branke (2004a) PSO 2.16 ± 0.06
Li et al. (2006) PSO 1.93 ± 0.06
Mendes and Mohais (2005) Differential evolution 1.75 ± 0.03
Blackwell and Branke (2004b) PSO 1.75 ± 0.06
Moser and Hendtlass (2007) Extremal optimization 0.66 ± 0.02
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frequency used is set to 15,000. The search space dimension range
used is d 2 [5,15]. Fig. 6 shows how the global optimal dimension
changes over time and how MD PSO is tracking these changes. Cur-
rent best dimension represents the dimension, where the best
solution is achieved among all swarms’ dbest dimensions. Ten mul-
ti-swarms are used with seven particles in each. FGBF is used with
the swarm peak mode. It can be seen that the algorithm always
finds the optimal dimension, even though the difference in peak
heights between the optimal dimension and its neighbor dimen-
sions is quite insignificant (=1) compared to the peak heights
(30–70). Fig. 7 shows how the current error behaves during the
first 250,000 evaluations, when the same settings are used. It can
be seen that the algorithm behavior is similar to the uni-dimen-
sional case, but now the initial converging phase, when the algo-
rithm is not yet behaving at its best is longer. Similarly it takes a
longer time to regain the optimal behavior if follow-up of some
peaks is lost for some reason (it is, for example, possible that high-
er peaks hide other lower peaks under them).

Figs. 8 and 9 illustrate the effect of using multi-swarms on the
results. Without multi-swarms the number of particles is set to
70. Fig. 8 shows that a single swarm can also find the optimal
dimension easily; however, as in the uni-dimensional case, with-
out use of multi-swarms, the optimal peak can be found only if it
happens to be the peak to which the swarm is converging. This
can be seen in Fig. 9. During the initial converging phase of the
multi-swarm algorithm results with and without multi-swarms
are similar. This indicates that both algorithms initially converge
to the same peak (highest) and as a result of the first few environ-

mental changes some peaks that are not yet discovered by multi-
swarms become the highest.

Figs. 10 and 11 illustrate similarly the effect of FGBF on the re-
sults. In Fig. 10 it can be seen that without FGBF the algorithm has
severe problems in tracking the optimal dimension. In this case, it
loses the benefit of exploiting the natural diversity among the
dimensional components and also it is not able to exploit informa-
tion gathered in other dimensions. Therefore, even if some parti-
cles visit the optimal dimension, they cannot track the global
peak fast enough that they would hence surpass the best results
in other dimensions. Therefore, the algorithm gets trapped in some
sub-optimum dimension where it happens to find the best results
in an early phase. Such reasons also cause the current error to be
generally higher without FGBF, as can be seen in Fig. 11.

The numerical results in terms of offline error are given in Ta-
ble 3. Each result given is the average of 50 runs, where each run
consists of 500,000 function evaluations. As in the uni-modal case,
best results are achieved when the number of swarms is equal to
the number of peaks, which is 10. Interestingly when the swarm
peak mode is used the optimal number of particles becomes seven
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Fig. 7. Current error at the beginning of a MD PSO run.

0 0.5 1 1.5 2 2.5

x 105

5

6

7

8

9

10

11

12

13

14

15

Number of evalutions

S
ea

rc
h 

sp
ac

e 
di

m
en

si
on

optimal dimension
current best dimension

Fig. 6. Optimum dimension tracking in a MD PSO run.
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Fig. 8. Optimum dimension tracking without multi-swarms in a MD PSO run.

Table 2
Offline error using Scenario 2.

No. of swarms No. of particles Swarm peak Current peak

10 2 1.81 ± 0.50 2.58 ± 0.55
10 3 1.22 ± 0.43 1.64 ± 0.53
10 4 1.03 ± 0.35 1.37 ± 0.50
10 5 1.19 ± 0.32 1.52 ± 0.44
10 6 1.27 ± 0.41 1.59 ± 0.57
10 8 1.31 ± 0.43 1.61 ± 0.45
10 10 1.40 ± 0.39 1.70 ± 0.55

8 4 1.50 ± 0.41 1.78 ± 0.57
9 4 1.31 ± 0.54 1.66 ± 0.54

11 4 1.09 ± 0.35 1.41 ± 0.42
12 4 1.11 ± 0.30 1.46 ± 0.43
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while with the current peak mode it is still four. Note that these re-
sults cannot be directly compared with the results on the conven-
tional MPB since the objective function of the multi-dimensional
MPB is somewhat different.

5. Conclusions

In this paper, we presented two PSO techniques, namely, FGBF
with multi-swarms and MD PSO for an efficient and robust optimi-
zation over the dynamic systems. Both MD PSO and FGBF have
been successfully used in static optimization problems particularly
as a cure to common drawbacks of the family of PSO methods such
as a priori fixation of the search space dimension and pre-mature
convergence to local optima. MD PSO efficiently addresses the for-
mer drawback by defining a new particle structure and embedding
the ability of dimensional navigation into the core of the process. It
basically allows particles to make inter-dimensional ‘passes’ with a
dedicated PSO process whilst performing regular positional up-
dates in every dimension they visit. Although the ability of deter-
mining the optimum dimension where the global solution exists
is gained with MD PSO, its convergence performance is still limited
to the same level as bPSO, which suffers from the lack of diversity
among particles. This leads to a pre-mature convergence to local
optima especially when multi-modal problems are optimized in
high dimensions. Realizing that the main problem lies in fact at
the inability of using the available diversity among the dimen-
sional components of swarm particles, the FGBF technique adapted
in this paper addresses this problem by collecting the best compo-
nents and fractionally creating an aGB particle that has the poten-
tial to be a better ‘‘guide” than the swarm’s native gbest particle. On
MPB we do not expect to receive fractional scores with respect to
the global (highest) peak, but instead we use either the peak, on
which the particle is currently located (current peak) or the peak
to which the swarm is converging (swarm peak). Especially swarm
peak mode makes it possible to find and track the global highest
peak quite successfully in a dynamic environment.

In order to make comparative evaluations with the current
state-of-the-art, FGBF with multi-swarms is then applied over a
benchmark system, the MPB. The results over the conventional
MPB with common settings used (i.e. Scenario 2) clearly indicate
the superiority of the proposed technique over other PSO-based
methods. To make the benchmark more generic for real-world
applications where the optimum dimension can be unknown too,
MPB is extended to a multi-dimensional system in which there is
a certain amount of dependency among dimensions. Note that
without such dependency embedded, the benchmark would be
just a bunch of independent MPBs in different dimensions and thus
a distinct and independent optimization process would be suffi-
cient for each dimension. Recall that the convergence behavior of
both bPSO and MD PSO is the same since MD PSO is only an exten-
sion of PSO for the multi-dimensional search. The performance of
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Fig. 9. Effect of multi-swarms on the performance.

Table 3
Offline error on extended MPB.

No. of swarms No. of particles Swarm peak Current peak

10 4 2.01 ± 0.98 3.29 ± 1.44
10 5 1.77 ± 0.83 3.41 ± 1.69
10 6 1.79 ± 0.98 3.64 ± 1.60
10 7 1.69 ± 0.75 3.71 ± 1.74
10 8 1.84 ± 0.97 4.21 ± 1.83
10 10 1.96 ± 0.94 4.20 ± 2.03

8 7 1.79 ± 0.91 3.72 ± 1.86
9 7 1.83 ± 0.84 4.30 ± 2.15

11 7 1.75 ± 0.91 3.52 ± 1.40
12 7 2.03 ± 0.97 4.01 ± 1.97
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Fig. 10. Optimum dimension tracking without FGBF in a MD PSO run.
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both methods degrades with the increasing modality and dimen-
sionality due to the reasons mentioned earlier. When performed
with FGBF and multi-swarms, MD PSO exhibits both global conver-
gence ability and an impressive speed gain so that their mutual
performance surpasses bPSO by several magnitudes. The experi-
ments conducted over the extended MPB approve that the pro-
posed MD PSO technique with multi-swarms and FGBF always
finds and tracks the optimum dimension where the global peak re-
sides. On both (conventional and extended) MPBs, the proposed
techniques generally find and track the global peak, yet they can
occasionally converge to a near-optimum peak, particularly if the
height difference happens to be insignificant.

Overall, the proposed techniques fundamentally upgrade the
particle structure and the swarm guidance, both of which accom-
plish substantial improvements in terms of speed and accuracy.
Both techniques are modular and independent from each other,
i.e. one can be performed without the other whilst other PSO meth-
ods/variants can also be performed conveniently with (either of)
them.
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ABSTRACT

Several existing content-based image retrieval and classifica-
tion systems rely on low-level features which are automati-
cally extracted from images. However, often these features
lack the discrimination power needed for accurate descrip-
tion of the image content and hence they may lead to a poor
retrieval or classification performance. This article applies
an evolutionary feature synthesis method based on multi-
dimensional particle swarm optimization on low-level image
features to enhance their discrimination ability. The pro-
posed method can be applied on any database and low-level
features as long as some ground-truth information is avail-
able. Content-based image retrieval experiments show that a
significant performance improvement can be achieved.

Index Terms— Content-based image retrieval, Evolu-
tionary feature synthesis, Multi-dimensional particle swarm
optimization

1. INTRODUCTION

In content-based image retrieval (CBIR) systems, features
used to describe the image content play a key role. Cur-
rently the attention in this research field has been mostly
turned toward deep learning, which has indeed provided
a fast improvement in quality of available features in the
recent years. Furthermore, most efforts on this field are cur-
rently headed towards huge online datasets. However, several
small-scale image visualization or image search tools are still
based on low-level features only. Such systems may be self-
implemented and very specialized (e.g. certain types of med-
ical images). If this is the case, pretrained general-purpose
deep learning feature extraction approaches will probably fail
and retraining is laborious or may not be even possible due to
low image volumes. In some cases, the original images are
not even available anymore as only the extracted low-level
features has been saved and, thus, it not possible to extract
better features from the images. In this article, we concen-
trate on evolutionary feature synthesis (EFS), which is an
ideal tool to improve such specialized small-scale systems. It
does not need the original images, but operates directly on the

Class 1
Class 2
Class 3

feature
synthesis

Fig. 1. An illustrative evolutionary feature synthesis, which
is applied to 2D feature vectors of a 3-class database

extracted low-level features. As long as some labeled train-
ing images are available, the proposed EFS can be used as
a black-box tool, which takes the original low-level features
and transforms them into more discriminative features. From
the user point of view, it is not important to understand the
details of the EFS. No parameter adjustment is needed and
the new obtained features can directly replace the old features
in the system.

The purpose of the proposed EFS system is to transform
the available low-level features so that the discrimination
power of the synthesized features is maximized. This will
directly improve the results on CBIR or image classification.
Fig. 1 illustrates an ideal EFS operation where 2D features
of a 3-class database are successfully synthesized in such a
way that the discrimination ability of the features has clearly
increased.

In this article, we propose an EFS method, which aims
to achieve the highest possible discrimination between image
features belonging to different classes by simultaneously

1. performing an optimal feature selection,
2. searching for optimal arithmetic, linear, or non-linear,

operators,
3. searching for optimal weights for each selected feature,
4. searching for the optimal output feature vector dimen-

sionality,
5. using any given fitness function to measure the quality

of the solution.

If the target system requires the feature vectors to have a fixed
dimensionality, it is also possible to omit the fourth bullet



and still efficiently exploit all the other properties. The pro-
posed EFS system has been previously successfully applied
on audio features [1]. An initial version of the proposed EFS
has been also applied on image features in [2], but the fitness
functions were not generic nor applicable in real life as they
required classification or retrieval over the whole EFS dataset
for every fitness evaluation.

The rest of the paper is organized as follows. Related
work on feature synthesis is considered in Section 2. The
proposed EFS system is introduced in Section 3. Experimen-
tal results are given in Section 4. Finally, Section 5 concludes
the paper and discusses topics for future work.

2. RELATED WORK ON EVOLUTIONARY
FEATURE SYNTHESIS

Most existing methods specifically designed for feature syn-
thesis are based on genetic programming (GP). These meth-
ods synthesize new features by applying a series of compos-
ite operators on the original low-level features. The compos-
ite operators, which are also the individuals of GP are rep-
resented by binary trees whose internal nodes are primitive
operators and leave nodes are primitive features. The goal of
the composite operators is to map the original feature space
to a low-dimensional synthesized feature space, in which the
items belonging to the same class form a Gaussian component
no matter how these images are distributed in the original fea-
ture space. The fitness of the composite operators is typically
evaluated in terms of the classification accuracy (in the train-
ing set) of a Bayesian classifier learned simultaneously with
the operators. EFS approaches based on these ideas have been
applied face expression recognition [3], object recognition in
synthetic aperture radar images [4], and image classification
and retrieval [5]. The publications report improved results
compared to the original low-level features, even though com-
putational limitations force to keep the dimensionality of the
synthesized feature vectors low and to consider only a few
possible operators.

In a broader sense, besides the methods specially devel-
oped for feature synthesis, also well-known classifiers such
as artificial neural networks (ANNs) and support vector ma-
chines (SVMs) can be thought as a special kind of feature
synthesizers. Commonly ANNs used as classifiers take the
original feature vectors as inputs and use 1-of-C output en-
coding (where C is the number of classes). Their output in an
optimal case is a vector corresponding to the image class (e.g.
the target vector [1, 0, ..., 0] corresponds to first class and so
on). Thus ANNs try to learn a specific feature synthesizer that
transforms each feature vector in a certain class to one corner
of the C-dimensional cube.

Also several state of-the-art techniques in computer vision
and image categorization can be considered as feature synthe-
sis methods. Different methods to find compact codes to rep-
resent images, such as PiCoDes [6] or semantic hashing [7],

generally start with some low-level features and after a train-
ing process a different set of features is obtained. Similarly
mid-level feature learning [8] transforms low-level features
into semantically more meaningful features via a training pro-
cess. Generally these methods are not aiming to improve ar-
bitrary low-level features but, on the contrary, their success is
dependent on carefully selected low-level features. They aim
at preserving the discrimination power of the original features
while transforming it into a form more suitable for very large-
scale image datasets. They may require manual selection of
training categories or the training may require a large number
of training samples and a computationally expensive training
process. In both cases, the idea is to do training with a sep-
arate training data and then apply them on similar general-
purpose datasets. Thus, it is hardly feasible to apply any of
these methods for feature synthesis over arbitrary low-level
features extracted from any (small-scale) dataset especially if
the dataset is highly specialized.

3. THE PROPOSED EVOLUTIONARY FEATURE
SYNTHESIS METHOD

We propose an EFS method based on multi-dimensional par-
ticle swarm optimization (MD PSO) and fractional global
best formation (FGBF) [9]. These method are extensions of
the well-known particle swarm optimization (PSO) paradigm.
As such, they are computationally less demanding than GP,
which allows to synthesize features with higher dimensionali-
ties. Also more different operators can be considered without
exceeding computational resources. Neither MD PSO nor
FGBF have parameters that should be separately adjusted for
new datasets. MD PSO also allows optimizing over differ-
ent dimensionalities. In feature synthesis it means that it is
possible to simultaneously optimize the dimensionality of the
synthesized features.

3.1. Multi-dimensional particle swarm optimization

MD PSO [10] is an extension of the basic PSO algorithm,
where particles can search for solutions with different dimen-
sionalities within a given dimensionality range, {dmin, ...,
dmax}. In order to accomplish this, each particle has two sets
of components, each of which has been subjected to one of
the two independent and consecutive processes. The first one
is the regular positional PSO, which takes place in current di-
mensionality, da, of each particle a and the second one is the
dimensional PSO, which allows particles to move between
dimensionalities. For each dimensionality d, the swarm keeps
track of the best global position so far achieved, ydS , and each
particle a keeps track of its last position xda, velocity vda, and
personal best position yda in that particular dimensionality
so that when it re-visits the same dimensionality at a later
time, it can perform the regular positional updates using this
information. The dimensional PSO process may then again



move the particle to another dimensionality, where it will re-
member its positional status and will be updated through the
positional PSO process, and so on. Similarly to the positional
PSO, the dimensional PSO process uses the personal best
dimensionality (in which the personal best fitness score so far
has been achieved) of each particle, dya, and the global best
dimensionality, dyS , to attract the particles toward a better
dimensional solution. Finally, the global best solution in di-
mensionality dyS , ydySS , represents the optimal solution and
dimensionality, respectively.

Similarly to the basic PSO algorithm, each iteration t of
MD PSO starts with the computation of fitness scores for each
particle a in its current dimensionality da. After this, per-
sonal best solutions for all particles in their current dimen-
sionalities (ydaa ,∀a ∈ {1, ..., S}), personal best dimensional-
ities for all particles (dya,∀a ∈ {1, ..., S}), the global best
solution in each dimensionality (ydS ,∀d ∈ {dmin, ..., dmax})
and the global best dimension (dyS) are updated if necessary.
Then each particle’s position and velocity will be updated in
their current dimensionality using (regular) positional PSO
updates:

vdaa (t+ 1) =w(t)vdaa (t) + c1r1(t)
(
ydaa (t)− xdaa (t)

)
+

c2r2(t)
(
ydaS (t)− xdaa (t)

)

xdaa (t+ 1) =xdaa (t) + vdaa (t+ 1).
(1)

The particle’s new position xdaa (t + 1) still has the same
dimensionality da. However, the dimensional PSO process
may now throw the particle into another dimensionality. The
search will continue from xdaa (t + 1) if the particle later re-
turns to dimensionality da(t). The dimensional PSO updates
closely resemble the positional ones:

dva(t+ 1) =bdva(t) + c1r1(t) (dya(t)− da(t)) +

c2r2(t) (dyS(t)− da(t))c
da(t+ 1) =da(t) + dva(t+ 1),

(2)

where dva is the dimensional velocity of particle a and b· c de-
notes the floor operator. Further details and MD PSO pseudo-
code can be found in [10].

3.2. Fractional global best formation

Both the basic PSO algorithm and its multi-dimensional ex-
tension MD PSO suffer from premature convergence to a lo-
cal optimum particularly when a high dimensional optimiza-
tion problem with a multi-modal fitness surface is encoun-
tered. The premature convergence is mainly caused by a loss
of diversity i.e. the particles gather too close to yS in an early
phase and lose their ability to explore new potential solutions.
FGBF [10] that is a plug-in to the (MD) PSO process can
efficiently address the premature convergence problem. The
main idea of FGBF is to create at every iteration an addi-
tional artificial solution yA by combining the best individ-
ual elements of particles’ solutions. This artificial solution is

then compared to yS and, if it turns out to have a higher fit-
ness value, yA will replace yS in Eq. (1). If solution yA is
not better than yS , the PSO process will proceed as usually.
When FGBF is used in combination with MD PSO a sepa-
rate artificial solution, ydA, is created for every dimension-
ality d within the dimensionality range {dmin, ..., dmax} and
in every dimensionality ydA solution competes with ydS solu-
tion. However, depending on the optimization task, during
the formation of ydA it may be possible to combine elements
from particle positions with different dimensionalities. The
fitness of elements is evaluated using a specific fractional fit-
ness function, whose selection is problem-dependent similar
to the selection of traditional fitness score. For further details
and FGBF pseudo-code the reader is referred to [10].

3.3. Overview of the proposed feature synthesis system

For each new feature, the proposed evolutionary search tech-
nique performs the following steps:

1. selectsK+1 original (or already synthesized) features,
f0, ..., fK

2. scales the selected features using proper weights,
w0, ..., wK

3. selects K operators, Θ1, ...,ΘK , to be performed over
the (selected and scaled) features

4. bounds the results using a non-linear operator (i.e. tan-
gent hyperbolic, tanh).

If the application of a specific operator, Θi, on features fa and
fb is denoted as Θi(fa, fb) the synthesis formula used to form
each new feature may be given as follows:

yj = tanh(ΘK(...Θ2(Θ1(w0f0, w1f1), w2f2), ...), wKfK).
(3)

In other words, the operator Θ1, is first applied to the scaled
features f0 and f1, then operator Θ2 is applied to the result of
the first operation and the scaled feature f2 and so on, until
the last operator ΘK is applied to the result of the previous
operations and the scaled feature fK . Furthermore, the di-
mensionality of the synthesized feature vector (i.e the number
of features) is optimized simultaneously with the rest of the
synthesizer parameters, as a result of MD PSO’s dimensional
search process.

The proposed EFS can be performed in one or several
runs, where each run can further synthesize the features gen-
erated from the previous run. The number of runs, R, can be
specified in advance or adaptively determined, i.e. runs are
carried out until the point where the fitness improvement is
no longer significant. The EFS dataset can be the entire im-
age database or a certain sub-set of it where the ground truth
is available.

Note that the proposed EFS can be seen as a generaliza-
tion of ANNs. A single-layer perceptron (SLP) neuron only
performs steps 2 and 4 listed above, while no feature selec-
tion (step 1) or operator selection (step 3) is applied. A SLP



also sums an additional bias with scaled features. To allow a
similar mechanism, we simply initially complement each in-
put feature vector by a constant value of one. When a bias
is beneficial, the proposed EFS can select this constant value,
scale it, and combine with other scaled features. The output
dimensionality of a SLP is fixed unlike in the proposed EFS.
Performing several EFS runs leads to a system similar to a
multi-layer perceptron (MLP).

3.4. Encoding of the MD PSO particles in EFS

As evident from the explanation of the MD PSO algorithm in
Section 3, the particles are encoded in such a way that the po-
sition of particle a at a time t, xdaa (t) , represents a potential
solution in the search space dimensionality, da. In the pro-
posed EFS, the search space dimensionality corresponds to
the dimensionality, or simply the number of features, of the
synthesized feature vector. Each position in that dimension-
ality, t, xdaa (t), then encapsulates the complete set of param-
eters (feature selection, weights, and operators) of a feature
synthesizer which transforms the input feature vector into a
new feature vector in that dimensionality. Accordingly, each
element of the position, xdaa,j(t), corresponds to a way of syn-
thesizing the jth output feature in the synthesized feature vec-
tor. Note that this element should encapsulate the K + 1 fea-
tures, K + 1 weights, and K operators in an encoded form so
as to be used to synthesize the corresponding output feature
when decoded. Therefore, we encode xdaa,j(t) as a 2K + 1
dimensional vector form, with K + 1 A-type and K B-type
elements, which set the corresponding feature synthesizer pa-
rameters as follows,

fi =bAic+ 1, i ∈ 0, ...,K

wi =Ai − bAic, i ∈ 0, ...,K

Θj =dBje, j ∈ 1, ...,K,

(4)

The ranges for the A- and B-type elements can now be set
according to number of features in the input feature vector, F ,
and the number of operators available, T , i.e. Ai ∈ [0, F [ and
Bj ∈]0, T ]. The weights, wi, are thus limited to the range,
0 ≤ wi < 1 .

A sample encoding scheme of MD PSO particles is il-
lustrated in Fig. 2, where the position of particle a in di-
mensionality 6, x6

a(t), is shown. The corresponding fea-
ture synthesizer will produce 6-dimensional synthesized fea-
ture vectorFV (i) and each element of the particle position,
x6
a,j(t), dictates the synthesis of the corresponding jth fea-

ture in the output feature vector. The figure shows in detail
the synthesis of the first feature dictated by x6

a,1(t), while
the synthesis of the other elements is similarly encoded in
the corresponding elements, x6

a,2(t),...,x6
a,6(t). In the figure,

K is set to 3. If the ith feature of the input feature vector
is denoted as f[i], the formula for the synthesis of the first
output feature can be now given as

yj = tanh(min((w0f[8] + w1f[3]), w2f[5]) ∗ w3f[3]). (5)

Fig. 2. An illustrative example of particle encoding where its
current position is in dimensionality 6 and K is set to 3.

Note that fixing K + 1 = F , each feature selection as
fi = f[i], and each operator Θj to operator “+” makes the pro-
posed feature synthesis technique equivalent to a SLP. Sim-
ilarly, if more than one EFS runs are performed (R > 1),
the overall scheme resembles a typical MLP. In short, feed-
forward ANNs are indeed a special case of the proposed EFS
technique, yet the most complex one due to the use of all in-
put features (K + 1 = F ), which voids the feature selection.
Moreover, it is the most limited case, since it uses only a sin-
gle operator among many possibilities.

3.5. Fitness evaluation

In evaluating the fitness of the feature synthesizers repre-
sented by particle positions, we apply a method similar to the
one used in ANNs, i.e. we assign target vectors for synthesis
of the features from each class, let the EFS system search
for a proper synthesis to get to this desired output, and then
evaluate the fitness in terms of the mean square error (MSE)
between the synthesized output vectors and the target output
vectors. However, we do not want to fix the output dimen-
sionality as in ANNs, but instead let the EFS system search
for an optimal output dimensionality. Therefore, we generate
target output vectors for all dimensionalities within the range
of {Dmin, ..., Dmax}. For C classes the target vectors first
have the 1-of-C section similar to ANN. In generation of
the remaining target vector elements, we try to achieve the
two criteria for a good error correcting output code (ECOC)
suggested in [11], i.e. large row and column separation.

The following procedure is used to generate the target
vectors:

1. Assign bmin as the minimum number of bits needed to
represent C classes.

2. Form a bit table with bmin rows where each row is the
binary representation of the row number.



3. Assign the first bmin target vector values for each class
ci equal to the ith row in the bit table.

4. Move the first row of the bit table to the end of the table
and shift the other rows up by one row.

5. Repeat the previous two steps until Dmax target vector
values have been assigned.

6. Replace the first C values in each target vector by a
1-of-C coded section.

7. Replace each 0 by -1 in the target vectors.

Fig. 3. A sample target vector en-
coding for 4 classes.

The target output
vector generation for a
4-class case is illus-
trated in Fig. 3. For
the sake of clarity the
elements set to -1 are
shown as empty boxes.
Dmax is set to 10 and
for 4 classes bmin is 2.

The fitness of the
particle position xdaa (t) is evaluated as

f(xdaa,j(t)) =
1

C

C∑

j=1

C∑

k=1

∑

∀y∈ck
(tjck − yj)2 +

1

(d− C)α

d∑

j=C+1

C∑

k=1

∑

∀y∈ck
(tjck − yj)2

(6)

where tjck and yj denote the jth elements of the target output
vector for class ck and the synthesized output vector. The
fractional fitness score of a particle element xdaa,j(t) , needed
for the FGBF process, is simply evaluated as

f(xdaa,j(t)) =

C∑

k=1

∑

∀y∈ck
(tjck − yj)2 . (7)

A detailed explanation on reasons for using such fitness eval-
uation can be found in [1].

4. EXPERIMENTAL RESULTS

The database used in the experiments contains 1000 medium
resolution (384*256 pixels) images obtained from Corel im-
age collection covering 10 classes (natives, beach, architec-
ture, busses, dinosaurs, elephants, roses, horses, mountains,
and food). In order to demonstrate the efficacy of the pro-
posed EFS technique for CBIR, we used well-known low-
level descriptors that have a limited discrimination power and
a severe deficiency for a proper content description. The de-
scriptors used are 64-bins unit normalized RGB and YUV
color histograms, 57-D Local Binary Pattern (LBP) and 48-
D Gabor texture descriptors. The synthesis depth, K, was set
to 7 meaning that only 7 operators and 8 features were used to

Table 1. The set of 18 operators used in the proposed EFS

Θj Formula Θj Formula
1 −A 10 A ∗B
2 −B 11 10(A ∗B)
3 max(A,B) 12 A/B
4 min(A,B) 13 sin(100π(A+B))
5 A ∗A 14 cos(100π(A+B))
6 B ∗B 15 tan(100π(A ∗B))
7 A+B 16 tan(100π(A+B))
8 10(A+B) 17 0.5 ∗ exp(−(A−B) ∗ (A−B))
9 A−B 18 0.5 ∗ exp(−(A+B) ∗ (A+B))

compose each element of the new feature vector. The param-
eter α in (6) was set to 1.1. The set of 18 empirically selected
operators given in Table 1 was used within the EFS.

In all the experiments MD PSO parameters were set
as follows: The swarm size, S, was set to 200 and the
number of iterations, iterNo, to 2000. The positional
search space range, {Xmin, ..., Xmax}, was set according
to the number of operators in use, T , and the number of
features in the input feature vectors, F . The positional
velocity range, {Vmin, ..., Vmax}, was empirically set to
{−(Xmax − Xmin)/10, ..., (Xmax − Xmin)/10}. The di-
mensionality range,{Dmin, ..., Dmax}, was set to {11, ..., 40}
and the dimensional velocity range {DVmin, ..., DVmax}, to
{−4, ..., 4}. All the EFS results are given as the average of
10 separate repetitions of the experiment.

To evaluate the effect of the proposed EFS, we compare
the performances obtained using the original and synthesized
features on CBIR and image classification. In all cases 45%
of the dataset was used to evolve the EFS. CBIR results are
evaluated over the whole dataset, while for classification the
same 45% is used to train a K-nearest neighbors classifier and
the results are evaluated over the remaining 55%. CBIR re-
sults for the original features are given in Table 2 and for the
synthesized features in Table 3. In Table 3 results are given
after a single EFS run and by repeating the EFS process until
the results are no longer improved. The average dimension
of the synthesized features is also give along with the aver-
age number of iterations needed to obtain the best result. For
comparison, we also used a 3-layer MLPs for feature synthe-
sis (Table 4). The MLPs are trained using the MD PSO algo-
rithm [12] (Rmin = {Ni, 8, 4, No}, Rmax = {Ni, 16, 8, No},
iterNo = 3 ∗ 2000 = 6000 ) and the results are obtained us-
ing the best architecture found. The classification results over
the original features and features synthesized by a single run
of the proposed EFS are given in Table 5.

The results clearly indicate a crucial improvement in both
CBIR and classification performances. The classification
result has been computed over a test set which is separate
from the EFS set. The improved result shows that the learned
feature synthesis can successfully generalize and be applied



Table 3. CBIR results using features synthesized by the proposed EFS
Corel RGB(1) RGB(n) YUV(1) YUV(n) LBP(1) LBP(n) Gabor(1) Gabor(n) all(1) all(n)

ANMRR 0.500 0.385 0.505 0.397 0.519 0.396 0.520 0.428 0.357 0.280
AP 0.478 0.596 0.477 0.584 0.465 0.589 0.464 0.559 0.619 0.694

dim. 35.7 12.4 34.7 17.8 35.5 11.2 27.0 11.0
iter. 19.6 18.7 22.8 24.5

Table 2. CBIR results using the original low-level features
Corel RGB YUV LBP Gabor all

ANMRR 0.589 0.577 0.635 0.561 0.504
AP 0.391 0.405 0.349 0.417 0.473

Table 4. CBIR results using features synthesized by MLPs
Corel RGB YUV LBP Gabor all

ANMRR 0.442 0.558 0.545 0.547 0.348
AP 0.543 0.433 0.475 0.442 0.633

on unseen samples. Also it is evident that multiple runs of
the proposed EFS can further improve the results. The fea-
ture vector dimension decreases during repeated runs, which
shows that the proposed EFS can also compress the essential
information. The comparison against MLP shows that except
for RGB histograms, the retrieval performance statistics for
features synthesized by the proposed EFS even with a single
run are better than the ones achieved by the best MLP. This
basically demonstrates the significance of the feature and
operator selection.

5. CONCLUSIONS

In this paper, we proposed an evolutionary feature synthesis
technique, which can be used to improve the discrimination
power of any the low-level features as long as some ground
truth information is available. The proposed EFS simultane-
ously performs feature selection and an evolutionary search
for optimal weights (for the selected features), linear/non-
linear operators (to transform the scaled features) and the
optimal output feature vector dimensionality, all in an in-
terleaved way. The quality of the EFS can be ensured by
a proper fitness function designed with respect to the main
objective of the feature synthesis operation. The proposed
technique does not have critical parameters or thresholds that
may significantly affect the performance. Experimental re-

Table 5. Test classification error using the originall features
and features synthesized by a single run of the proposed EFS

Corel RGB YUV LBP Gabor
Original 0.420 0.371 0.560 0.433

Synthesized 0.312 0.307 0.422 0.367

sults demonstrate that the proposed system can significantly
improve the discrimination power of the original features
and thus achieve a crucial improvement in classification and
CBIR performances. To further improve the performance,
different feature synthesizers may be evolved for different
classes, since the features essential for discrimination of a
certain class may vary. This will be the research topic of our
future work.
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Abstract Most existing content-based image retrieval and

classification systems rely on low-level features which are

automatically extracted from images. However, often these

features lack the discrimination power needed for accurate

description of the image content, and hence, they may lead

to a poor retrieval or classification performance. We pro-

pose a novel technique to improve low-level features which

uses parallel one-against-all perceptrons to synthesize new

features with a higher discrimination power which in turn

leads to improved classification and retrieval results. The

proposed method can be applied on any database and low-

level features as long as some ground-truth information is

available. The main merits of the proposed technique are

its simplicity and faster computation compared to existing

feature synthesis methods. Extensive simulation results

show a significant improvement in the features’ discrimi-

nation power.

Keywords Content-based image retrieval and

classification � Feature synthesis � Multi-dimensional

particle swarm optimization � Multi-layer perceptrons

1 Introduction

Most existing content-based image retrieval (CBIR) and

classification systems rely on low-level features automati-

cally extracted from the images. These features should be

discriminative enough to enable highest possible distinc-

tion among images belonging to different classes. A lot of

work has been done to develop more discriminative fea-

tures, but it is a well-known fact that there is no such

feature extractor that could automatically extract features

always matching the human visual perception of the image

similarity, since two images belonging to the same class

may be visually different and only higher level under-

standing of the image content can reveal that they should

be classified into a common class. This is generally known

as the semantic gap problem, and different ways to narrow

this gap have been under extensive research in recent years.

One of the most obvious ways is to gather knowledge of

human perception of image similarity directly from the

users. User labeling of the images may be exploited, for

example, for feature selection among the vast number of

available feature extraction techniques or for feature syn-

thesis to generate a new set of features better matching the

human visual perception.

In feature selection, the original features are not

changed, but a particular subset of them is selected to be

used in content-based image retrieval or classification.

So no matter how efficient the feature selection method

may be, the final outcome is nothing but a subset of the

original features and may still lack the discrimination

power needed for an efficient retrieval. In feature syn-

thesis, a linear and/or nonlinear transformation is applied

to the original features to synthesize new features. Even

if a very limited set of possible transformations is con-

sidered, there are such a huge number of possibilities
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that it is not feasible to go through all of them. The

search space most probably also contains many local

optima. Therefore, most existing feature synthesis

methods are based on evolutionary algorithms (EAs) [1]

such as genetic algorithm (GA) [9] and genetic pro-

gramming (GP) [18]. The common point of all EAs is

that they are stochastic population-based optimization

methods that can avoid being trapped in a local opti-

mum. Thus, they can find the optimal solutions; how-

ever, this is never guaranteed. The most critical

drawback of EA-based methods is their computational

complexity, which severely limits the number of prob-

lems to which they can be practically applied. Their

other common drawback is that they attempt to find a

synthesizer which can simultaneously discriminate all

the classes from each other. When the number of classes

grows, finding a good solution capable of doing that

soon becomes an impossible problem for any optimiza-

tion method.

In this paper, we propose a new approach to feature

synthesis where the original features are transformed using

parallel one-against-all perceptrons. The proposed method

is simple and significantly faster than EA-based methods,

and the obtained results still show a significant improve-

ment in both retrieval and classification performances

indicating an increase in the features’ discrimination abil-

ity. The one-against-all topology of the proposed method

divides the problem of finding an efficient synthesizer

simultaneously discriminating all the classes into several

easier problems targeting to discriminate a single class

from the rest. At the end of the process, the outputs of each

one-against-all perceptron are concatenated into a single

feature vector.

The proposed method is generic and applicable to any

set of low-level features without requiring manual selection

or tuning from the user. This property makes it desirable

for those applications where mid-level feature extraction is

not a viable option and/or only a certain set of features is

available, while the original data is either missing or

incomplete. If desired or if there is a reason to assume that

a certain classifier is better for a certain type or distribution

of data, the proposed approach can be also easily exploited

with another one-against-all classifier type besides the

perceptrons.

The rest of the paper is organized as follows: Related

work on feature synthesis is discussed in Sect. 2. The

proposed feature synthesis system is introduced in Sect. 3.

Section 4 concentrates on feature synthesis experiments

conducted using the proposed method and gives retrieval

and classification results along with the comparative eval-

uations. Finally, Sect. 5 concludes the paper and discusses

topics for future work.

2 Related work on feature synthesis

Feature synthesis is still in its infancy as there are only few

successful methods proposed up to date. Most existing

feature synthesis systems are based on GP [18]. In [3] and

[27], GP is utilized to synthesize features for face expres-

sion recognition. The individuals are composite operators

represented by binary trees whose internal nodes are

primitive operators and leaf nodes are primitive features.

The primitive features are generated by filtering the orig-

inal images using a Gabor filter bank at 4 scales and 6

orientations (i.e., 24 images per an original image), and the

primitive operators are selected among 37 different

options. The fitness of the composite operators is evaluated

in terms of the classification accuracy (in the training set)

of a Bayesian classifier learned simultaneously with the

composite operator. Finally, the best composite operator

found is used to synthesize a feature vector for each image

in the database and the corresponding Bayesian classifier is

then used to classify the image into one of 7 expressions

types. The expression recognition rate was only slightly

improved compared to similar classification methods

where no feature synthesis was applied.

In [22], co-evolutionary genetic programming (CGP) is

used to synthesize features for object recognition in syn-

thetic aperture radar (SAR) images. The approach is similar

to one in [3, 27], but separate sub-populations are utilized

to produce several composite operators. On the other hand,

the primitive features used in this application are only

1-dimensional properties computed from the images and

thus each composite operator only produces a single 1-di-

mensional composite feature. The final feature vector is

formed by combining the composite features evolved by

different sub-populations. Although both the final feature

vector dimension (20) and the number of classes to be

recognized (5) were low, the classification accuracy

obtained using the synthesized features was only occa-

sionally better than the classification accuracy obtained

directly with the primitive features.

In [7], a similar CGP approach is applied for image

classification and retrieval. The original 40-D feature

vectors are synthesized into 10-D feature vectors. The

results were compared in terms of classification accuracy

against 10-D feature vectors obtained using multiple dis-

criminant analysis (MDA) and also against a support vector

machine (SVM) classifier using the original 40-D feature

vectors. The databases used for testing consisted of

1200–6600 images from 12 to 50 classes. In all cases, the

classification results obtained using the features synthe-

sized by CGP were superior compared to features produced

by MDA. Compared to the SVM classifier, the results were

similar or better in a case where the database classes
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consisted of multiple clusters in the original feature space.

Also, the retrieval performance was compared using CGP

and MDA generated features, and the CGP features were

observed to yield better retrieval results than MDA

features.

In [20, 21], the CGP-based features synthesis method

and the expectation-maximization (EM) algorithm are

combined into co-evolutionary feature synthesized expec-

tation–maximization (CFS-EM). The main idea is to first

use a minor part of the training data to reduce the feature

space dimensionality and simultaneously to learn an initial

Bayesian classifier using the CGP-based feature synthesis

method and then to refine the classifier by applying the EM

algorithm on the whole training data (the rest of which may

be unlabeled) synthesized into the lower dimensionality.

The classification and retrieval results obtained by CFS-

EM were both improved compared to the CGP-only

approach.

In our prior work [14], we introduced a new evolu-

tionary feature synthesis method using multi-dimensional

particle swarm optimization (MD PSO) [13, 17]. MD PSO

is an extension of the well-known particle swarm opti-

mization (PSO) [11], and it basically reforms the native

structure of swarm particles in such a way that they can

make inter-dimensional jumps with a dedicated dimen-

sional PSO process. Therefore, in a multi-dimensional

search space where the optimal solution dimensionality is

also unknown, swarm particles can then seek for both

positional and dimensional optima. In [14], new features

are synthesized by applying a set of operators (mostly

arithmetic) on a set of selected original low-level feature

vector elements. The MD PSO particles are encoded so that

the feature vector elements and operators are selected

through the positional PSO process and the dimensional

search in MD PSO allows the dimensionality of the new

feature vectors to be optimized simultaneously. Compared

to the original low-level features, this method could

improve the retrieval performance measured using average

normalized modified retrieval rank (ANMRR) [24] on an

image database with 1000 images uniformly categorized

into 10 classes about 0.14–0.25 depending on the original

features. Over the same database, the classification accu-

racy was improved about 7–14 % units. The same method

was also applied on audio classification and retrieval in

[23] and it provided up to 15–25 % improvement in the

retrieval performance. However, the performance of this

method over larger image databases is quite modest due to

the fact that only a single feature synthesis process has

been used to synthesize features that discriminate all items

in the database. This is indeed a serious drawback also for

other standalone feature synthesizers proposed in the lit-

erature because it will be increasingly harder, if feasible at

all, to find out a single set of transformations which can

discriminate the items of all classes from each other when

the number of classes is beyond a certain magnitude.

In a broader sense, besides the methods specially

developed for feature synthesis, also well-known classifiers

such as artificial neural networks (ANNs) and SVMs can be

thought as a special kind of feature synthesizers. Com-

monly, ANNs used as classifiers take the original feature

vectors as inputs and use 1-of-C output encoding (where C

is the number of classes). Their output in an optimal case is

a vector corresponding to the image class (e.g., the target

vector 1; 0; :::; 0½ � corresponds to first class and so on).

Thus, ANNs try to learn a specific feature synthesizer that

transforms each feature vector in a certain class to one

corner of the C-dimensional cube. The simplest ANNs,

single-layer perceptrons (SLPs), synthesize the original

input features by forming in each neuron a weighted sum of

all the input vector elements and passing it through a

bounded nonlinear function (e.g., tangent hyperbolic or

sigmoid) to give one of the output vector elements. Usu-

ally, only the weights of each input feature (and a bias) are

optimized via the training algorithm used (e.g., back-

propagation), while otherwise the synthesis follows a fixed

path. In multi-layer perceptrons (MLPs), the network

architecture is more complicated and must be set by the

user or optimized with an algorithm capable of doing this

simultaneously with weight optimization (e.g., MD PSO),

but the principal approach remains the same than with

SLPs.

SVMs, on the other hand, with a proper choice of the

kernel used, can transform the original features of a two-

class problem where the features are not linearly separable

into new features in a higher dimension where linear sep-

aration is possible. The major drawback is the critical

choice of the (non)linear kernel function along with its

intrinsic parameters that may not be a proper choice for the

problem at hand. Consider for instance, two sample feature

synthesizers (FS-1 and FS-2) illustrated in Fig. 1, where for

illustration purposes features are only shown in 1-D and

2-D, and only two-class problems are considered. In the

case of FS-1, SVM with a polynomial kernel in quadratic

form can make the proper transformation into 3-D so that

the new (synthesized) features are linearly separable.

However, for FS-2, a sinusoid with a proper frequency, f,

should be used instead for a better class discrimination.

Also, several state-of-the-art techniques in computer

vision and image categorization can be considered as fea-

ture synthesis methods. Different methods to find compact

codes to represent images, such as classemes [26], PiCoDes

[2] or semantic hashing [10, 19], generally start with some

low-level features and after a training process a different

set of features is obtained. Similarly, mid-level feature

learning [25] transforms low-level features into semanti-

cally more meaningful features via a training process.

Neural Comput & Applic

123



Generally, these methods are not aiming to improve arbi-

trary low-level features, but on the contrary, their success is

dependent on carefully selected low-level features. They

may require manual selection of training categories [26], or

their training may require a large number of training

samples and a computationally expensive training process

[25]. In both cases, the idea is to do training with a separate

training data and then apply on similar general-purpose

datasets. Compact binary codes provide a way to efficiently

store millions of images in memory and to quickly find

similar images in huge datasets where traditional image

representations and search methods are impractical or

impossible to use. They aim at preserving the discrimina-

tion power of the original features while transforming it

into a form more suitable for large-scale image datasets.

Thus, it is hardly feasible to apply any of these methods for

feature synthesis over arbitrary low-level features extracted

from any dataset especially if the dataset is highly spe-

cialized (e.g., different insects photographed in laboratory

conditions). Such datasets will likely require retraining

with manual selection and tuning operations because more

specialized learning is needed to discriminate among

similar classes.

3 Feature synthesis via one-against-all
perceptrons

3.1 Motivation and objectives

As mentioned earlier, the motivation behind feature syn-

thesis is to maximize the discrimination power of low-level

features so that image classification and/or retrieval per-

formance can be improved. Figure 2 illustrates an ideal

feature synthesis operation where 2-D features of a 3-class

database are successfully synthesized in such a way that the

discrimination ability of the features clearly increases.

The main problem with the existing feature synthesis

methodsbasedongenetic programming is their computational

complexity that restricts their practical usability in larger

image databases. Also, a large number of image classes

quickly forms an obstacle for a wider use of these methods

even if enormous computational resources are available. To

find a proper feature transformation that can simultaneously

discriminate even a couple of dozen classes, is already such a

complex task that any feature synthesis method will face

severe problems in trying. Furthermore, most existing meth-

ods are quite dependent on several intrinsic parameters, which

must be set manually and in advance. Our objective is to

address all the above-mentioned deficiencies simultaneously.

Wewant to create a feature synthesismethod that canbe easily

(without parameter tuning or kernel selection) and relatively

quickly applied on any kind of image database and with any

low-level features extracted from the database.

The main realization behind the proposed feature syn-

thesis method is that no matter how advanced the feature

synthesis technique might be, the task of finding a trans-

formation discriminating all the classes simultaneously will

become too hard or even impossible when the number of

classes grows sufficiently large. To remedy this drawback,

we propose to use a synthesizer that is designed to dis-

criminate one class from the rest at a time. We shall

demonstrate that such a two-class problem is simple

enough that ordinary perceptrons can handle it equally well

or even better than more advanced evolutionary methods

requiring significantly more computational resources. This

will, in turn, allow the proposed feature synthesis method

to better scale up to the larger databases.

Fig. 1 Two sample feature

synthesis performed on 2-D

(FS-1) and 1-D (FS-2) feature

spaces
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3.2 Proposed feature synthesis method based

on parallel one-against-all perceptrons

We propose a feature synthesis method based on parallel

one-against-all perceptrons. Each perceptron is trained to

discriminate a single class from the rest. We use original

feature vectors directly as input vectors, and during the

training, only the features of images belonging to that

particular class are considered positive samples and fea-

tures from the rest of the images negative. As usual with

perceptrons, we use an output neuron per class i.e., each

perceptron has two output neurons. We use [1 �1] as the

target vector for positive items and [�1 1] for negative

items. Finally, a new synthesized feature vector for a par-

ticular image is formed by giving its original feature vector

as an input to each of the trained one-against-all percep-

trons and concatenating all the outputs. Thus, the length of

the new feature vector is twice the number of classes.

The whole feature synthesis process is illustrated in

Fig. 3 for a limited sample case with three image classes

and the original feature vector dimensionality being 5. It is

necessary to train a one-against-all perceptron per each

class i.e., three perceptrons are required. For the first per-

ceptron, only the training samples from class 1 are given as

positive samples (target output vector is set to [1 �1]),

while the target output vector for the other training samples

is set to [�1 1]. Similarly, for the second perceptron, only

items from class 2 are considered positive samples, and for

the third perceptron, only items from class 3. Finally, after

training all the perceptrons, each original feature vector

(belonging to both train and test sets) is given as an input to

all the three perceptrons and the outputs are concatenated

to form a new 6-dimensional feature vector for that item. In

a very clear case, all the values in the new feature vector

would be either 1s or �1s, but in reality, the values are

usually somewhere between these two extremes. This

might be also a desired property as it preserves some intra-

class variations, and in CBIR, a user might want to get the

most similar database items within a class first. Further

note that, while in the figure, all the original feature vectors

are illustrated with different symbols, the class information

is only necessary for the training samples. Thus, the pro-

posed method can also be used to synthesize more

discriminative features even when only a minor part of the

database has been labeled. Also, it is possible to easily

replace perceptrons in the proposed approach with another

one-against-all classifier with a similar output format.

The chosen approach with one-against-all perceptrons is

easier and faster to train than all-at-once approaches due to

its ‘‘divide and conquer’’ nature. Furthermore, it may be

possible to train the proposed system incrementally. If a new

class is added to the dataset, a new perceptron will be trained

for the new class. The previously trained perceptrons need to

be retrained only if they fail to classify the new samples with

a required accuracy. Also, one-against-one classifiers could

be used for similar feature synthesis; however, while the one-

against-all approach will create new feature vectors, whose

length is 2n for an n-class dataset, the feature vector length

with one-against-one classifiers would be nðn� 1Þ, which is
significantly larger and hence may be non-desirable or even

infeasible for certain applications.

Fig. 2 An illustrative feature

synthesis, which is applied to

2-D feature vectors of a 3-class

database

(a)

(b)

(c)

Fig. 3 Feature synthesis via parallel one-against-all perceptrons for a

simplified 3-class database with 5-D original feature vectors
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The proposed feature synthesis method can successfully

increase the discrimination power of even the most basic

low-level features used in CBIR as will be demonstrated in

Sect. 4. Naturally, the original features should have a

certain description power. If (some elements of) the orig-

inal features for a certain class are either isolated or if they

contain some distinctive patterns, perceptrons can learn this

and synthesize new features with superior discrimination

power. On the other hand, if the original features totally

lack description power, e.g., features created by a random

number generator, there exists no distinct pattern that could

be learned, and therefore, a successful feature synthesis is

not possible. Moreover, if two images from different

classes have a similar color structure while having a dis-

tinct texture or shape features, it is obvious that it is not

possible to find a successful feature synthesizer for color

features because they are not descriptive at all. Therefore,

it is advantageous to have several different low-level fea-

ture types and to train a designated synthesizer for each

feature type to maximize the overall benefit of the feature

synthesis process.

The proposed perceptron-based feature synthesis (PFS)

can be performed in several runs by using the synthesized

feature vectors from the previous run as the input feature

vectors for the next. This is illustrated in Fig. 4. The

number of runs, R, can be specified in advance or adap-

tively determined, i.e., runs are carried out until the point

where the fitness improvement is no longer significant.

3.3 Training and evolution methods

The proposed PFS can be used with any perceptron

architecture and training method. To clarify the concepts

used when introducing the experimental results, we will

here briefly discuss the training and evolution algorithms

applied, namely back-propagation (BP) and MD PSO. BP

is the most well-known ANN training technique, which can

be applied to a specific ANN architecture where the

number of layers and the number of neurons in each layer

has to be fixed a priori. BP sets the weights of each neuron

exploiting gradient descent optimization. Like any gradient

descent optimization method, BP is susceptible to getting

trapped into local minima, and therefore, its performance is

dependent on the initialization. Also, the selected network

architecture may critically affect the final network

performance.

MD PSO [13, 17] is a multi-dimensional (MD) exten-

sion of the basic PSO method [11]. In MD PSO, locations

of the particles are candidate solutions similar to PSO, but

unlike in basic PSO, MD PSO particles can search for

solutions with different dimensionalities within a given

dimensionality range, fDmin; :::;Dmaxg. In order to

accomplish this, each particle has two sets of components,

each of which has been subjected to one of the two inde-

pendent and consecutive processes. The first one is the

regular positional PSO, which takes place in the particles’

current dimensionalities and the second one is a dimen-

sional PSO, which allows particles to move between

dimensionalities. The positional PSO comprises the tradi-

tional velocity updates and due positional shifts in the N-

dimensional search (solution) space. Accordingly, for each

dimensionality, the swarm keeps track of the best global

position so far achieved (gbest) and each particle keeps

track of its last position, velocity and personal best position

in that particular dimensionality so that when it revisits the

same dimensionality at a later time, it can perform the

regular positional updates using this information. The

dimensional PSO process may then move the particle to

other dimensionalities where it will remember its positional

status and will be updated through the positional PSO

process, and so on. Similarly to the positional PSO, the

dimensional PSO process uses the personal best dimen-

sionality (in which the personal best fitness score has so far

been achieved) of each particle and the global best

dimensionality (dbest) to attract the particles toward a

better dimensional solution. Finally, the gbest solution with

dimensionality dbest represents the optimal solution and

dimensionality, respectively. As the termination criterion

for the MD PSO process we simply use a specified number

of iterations.

When evolving ANNs with MD PSO, the positional

PSO process can be used to optimize the neuron weights of

a single ANN architecture, while the dimensional PSO

process can simultaneously search for the optimal ANN

architecture. The dimensionality range is replaced by an

architecture space defined by the minimum and maximum

number of hidden layers and the minimum and maximum

number of neurons in each hidden layer (the number of

neurons in input and output layers will be always dictated

by the classification problem at hand). All the architectures

within the architecture space will be enumerated and MD

PSO can move between different architectures via the

dimensional PSO process. The applied fitness function is

simply the training mean squared error between the output

of the corresponding MLP and the target output. A more

Fig. 4 Block diagram of Feature eXtraction (FeX) and proposed

perceptron-based feature synthesis (PFS) method with consecutive

R runs
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detailed description of using MD PSO for evolving MLPs

can be found in [12].

When training with BP, to compensate for MD PSO’s

ability to search for the optimal network architecture

simultaneously with the training of network weights, we

will train separately each MLP configuration in the archi-

tecture space and use the best performance obtained by the

optimal architecture found as the final performance. We

will call this sequential search method exhaustive BP

training over the architecture space.

4 Experimental results

4.1 Databases, features, and test settings

We used MUVIS framework (http://muvis.cs.tut.fi/) to

create and index three different databases that are used in

the experiments in this section. The databases are:

1. C_10 image database: There are 1000 medium reso-

lution (384 � 256 pixels) images obtained from Corel

repository covering 10 diverse classes: 1—Natives,

2—Beach, 3—Architecture, 4—Bus, 5—Dino Art, 6—

Elephant, 7—Flower, 8—Horse, 9—Mountain, and

10—Food. Each class has 100 images.

2. CC_30 image database: There are 4245 images from

30 diverse classes that are obtained from both Corel

and Caltech [8] image repositories. The number of

images in a class varies from 80 to 435.

3. F_20 image database: There are 34481 images from 20

diverse classes obtained by selecting the first 20 classes

from Flickr database [5] and removing all the images

with multiple tags. The number of images in database

classes is heavily imbalanced varying from 12 to

17252.

The features extracted from the databases along with the

parameters used are given in Table 1. It should be noted

that the choice of the original features and their parameters

is irrelevant to the proposed feature synthesis approach due

its generic nature and the details are given here only for

reproducibility of the experiments. We chose a set of basic

low-level features with varying (but limited) discrimination

abilities and CBIR performance. Neither manual feature

selection nor parameter tuning is applied to boost the

performance. As a preprocessing step, all the features were

normalized between 0 and 1.

In most of the experiments (Sects. 4.2, 4.3), we used

MD PSO for evolving MLPs. In these sections, we used an

architecture space with the maximum of one hidden layer

and number of neurons in this layer set to 4–10. The MD

PSO parameters were set as follows: The swarm size, S,

was set to 200 and the number of iterations to 2000. The

positional search space range, fXmin; :::;Xmaxg, was set to

f�2; :::; 2g and positional velocity range, fVmin; :::;Vmaxg,
to f�Xmax=10; :::;Xmax=10g. The dimension range,

fDmin;...,Dmaxg, was set according to the architecture space

and the dimensional velocity range fVDmin; :::;VDmaxg, to
f�5; :::; 5g. See [12] for a detailed description of the

meaning of these parameters in evolving MLPs with MD

PSO.

The maximum number of PFS runs (as illustrated in

Fig. 4) is set to 20 for C_10 and CC_30 databases and to

three for F_20 database. All the feature synthesis results

are presented by computing the average of the classifica-

tion or CBIR performances from 10 separate repetitions

In Sect. 4.2, PFS is applied for image classification and

in Sect. 4.3 for CBIR. Besides comparing the results

against those obtained by using the original features,

comparisons against state-of-the-art methods are also

conducted. Section 4.4 evaluates the significance of the

selected training method and architecture space for PFS.

4.2 Feature synthesis experiments for classification

First, we evaluated the discrimination ability of the original

features by using 45 % of the images to train a nearest

centroid classifier and computing classification error

among the remaining 55 % of the images. In the feature

synthesis experiments, we used the same 45 % of images to

train the synthesizer first and then used the synthesized

features of these same images to train the nearest centroid

classifier. The overall classification performance was

computed by normalizing the centroid distances of the

Table 1 Features extracted

from databases and parameters

used

Feature Parameters Dim.

HSV color histogram (HSV) H ¼ 6; S ¼ 2;V ¼ 2; SimTh ¼ 30 24

Dominant color histogram(DOCQ) NDC
max ¼ 6; SimTh ¼ 15;AD ¼ 0:02 27

Color structure descriptor (CSD) Bins ¼ 32 32

Local binary pattern (LBP) A ¼ 3; qTh ¼ 5 16

Gabor Scale ¼ 4;Orient ¼ 6 48

Ordinal co-occurence (ORDC) d ¼ 3; o ¼ 4 36

Edge histogram Dir. (EHD) Bsiz ¼ 4;DC ¼ 11 5
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individual features (the maximum distance between an

item and the centroid was set to one for each feature) and

setting the final class according to the combined distance.

The nearest centroid classification results in terms of the

average test classification error are given in Table 2.

For F_20 database, evaluating classification perfor-

mance in terms of classification error is not enough as the

class sizes are so imbalanced that simply classifying all the

items into one or two classes would also significantly

improve the classification performance. Therefore, we used

also GPR, the geometric mean of true positive rate (recall)

and precision rate (precision). In [6], GPR has been found

to effectively compromise between the success in the

minority class and the error in the majority class in a two-

class classification problem. In this work, we computed the

GPR values on the test dataset individually for each class

and took the average (AGPR) as the final classification

measure. The nearest centroid classification results in terms

of AGRP for F_20 database are given in Table 3.

The results clearly indicate a crucial improvement in the

classification accuracy, leading to a conclusion that the

proposed feature synthesis method can indeed synthesize

such features that can be classified more efficiently and

accurately. The only exception is that PFS fails to improve

the classification performance of the EHD feature for F_20

database. On C_10 database, the best possible classification

performance has practically been achieved already at the

first run (only minimal improvement on LBP and ORDC

features at later iterations), but with the larger CC_30

database, the latter runs have been more beneficial. On

F_20 database, the improvement at later iterations is gen-

erally even more significant. For the ORDC feature, the

results at the first iteration are worse than the original

results, but a significant improvement at later iterations has

still been obtained. It should be also noted that with F_20

database only three consecutive PFS runs (R ¼ 3) were

performed due to the large size of the database and it is

highly probable that further improvement could be

obtained with more runs.

To better evaluate the obtained discrimination power,

we compare our classification results against some of the

most powerful generally known classifiers: MLPs, SVMs

and RF. For MLPs, we apply exhaustive BP training

over the architecture space defined above. For BP

training, the learning rate parameter, g, was set to 0.02

and the number of iterations to 5000. For SVMs, we

employed the libSVM library [4] using the one-against-

one topology. We used all standard kernel types (linear,

polynomial, radial basis function (RBF) and sigmoid)

and for each kernel type, we applied a similar exhaustive

search to find out the best parameters, i.e., we trained

with all the combinations of the penalty parameter C ¼
2n for n ¼ 0; :::; 4 and parameter c ¼ 2�n for n ¼ 0; :::; 4

and finally used the results obtained by the best

parameter combination. For RF, we similarly selected

the best number of trees within the forest, searching

from 10 to 50 in steps of 10. For all classifiers, 45 % of

the items were used for training. The results in terms of

the classification error are given in Table 4. For F_20

database, the results are also given in terms of AGPR in

Table 5.

The results on C_10 and CC_30 databases show that the

proposed feature synthesis method can improve the dis-

crimination power of the low-level features to such level that

using the synthesized features even the simple nearest cen-

troid classifier can obtain results comparable to best results

Table 2 Test classification

errors of the nearest neighbor

classifier using original and

synthesized features

CSD DOCQ EHD HSV LBP ORDC Gabor All

C_10

Orig.a 31.82 50.36 45.09 44.55 62.36 54.36 43.27 20.91

PFS1b 25.29 43.56 38.31 33.04 35.87 32.18 29.67 14.55

PFSc 25.29 43.45 38.31 33.04 35.87 31.78 29.67 14.55

C_30

Orig.a 62.39 77.50 77.80 71.00 84.72 77.84 65.28 51.72

PFS1b 46.93 61.05 58.40 60.16 55.40 51.13 41.02 30.69

PFSc 46.93 60.53 56.78 57.47 52.48 49.80 40.86 29.99

F_20

Orig.a 75.64 97.31 85.65 91.68 77.03 81.30 77.73 73.57

PFS1b 46.22 67.09 87.05 53.66 75.02 87.29 82.32 57.02

PFSc 43.90 55.55 86.25 51.02 68.60 44.95 50.28 44.21

Best values are in bold
a Original features

b Features synthesized by one iteration of PFS
c Best features synthesized by PFS
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obtained with several state-of-the-art classifiers trained

using the best possible parameters. Furthermore, the pro-

posed method usually generates the near top classification

results for every feature, while for the other classifiers

performance level varies significantly among different fea-

tures. This is demonstrated also by the fact that the best

average classification result is obtained by the proposed

method. ForF_20 database, the classification errors obtained

Table 3 Average geometric mean of true positive rate and precision rate on testing data for a nearest centroid classifier using original and

synthesized features

F_20 CSD DOCQ EHD HSV LBP ORDC Gabor All

Orig.a 0.105 0.039 0.081 0.059 0.076 0.080 0.089 0.128

PFS1b 0.131 0.077 0.075 0.100 0.096 0.076 0.098 0.151

PFSc 0.133 0.082 0.080 0.104 0.105 0.126 0.139 0.171

Best values are in bold
a Original features

b Features synthesized by one iteration of PFS
c Best features synthesized by PFS

Table 4 Test classification

errors of a nearest centroid

classifier using synthesized

features and state-of-the-art

classifiers using original

features

CSD DOCQ EHD HSV LBP ORDC Gabor Aver.

C_10

PFS+NCCa 25.29 43.45 38.30 33.04 35.87 31.78 29.67 33.92

SVM (lin.) 24.18 40.73 38.18 33.09 55.09 39.82 29.45 37.22

SVM (polyn.) 25.64 41.09 43.64 61.82 62.73 30.55 28.36 41.97

SVM (RBF) 22.91 39.45 37.64 30.73 53.45 36.55 26.36 35.30

SVM (sigm.) 30.00 55.27 54.36 50.55 66.73 58.91 49.82 52.23

RF 30.36 38.00 48.91 31.82 40.73 44.36 36.55 38.68

MLP, BP 27.95 48.80 41.93 34.45 40.22 35.22 31.55 37.16

C_30

PFS+NCCa 46.93 60.53 56.78 57.47 52.48 49.80 40.86 52.12

SVM (lin.) 44.14 61.88 59.74 58.29 68.61 53.56 40.68 55.27

SVM (polyn.) 42.99 54.37 69.13 73.65 70.41 46.91 38.42 56.55

SVM (RBF) 40.43 56.55 57.10 57.14 67.29 49.30 37.61 52.20

SVM (sigm.) 57.48 81.11 80.43 76.67 81.30 81.11 71.81 75.70

RF 49.85 55.82 60.77 61.11 55.91 55.69 47.63 55.25

MLP, BP 52.64 61.66 55.03 57.44 53.11 50.74 44.89 53.64

F_20

PFS+NCCa 43.90 55.55 86.25 51.02 68.60 44.95 50.28 57.22

SVM (lin.) 38.87 44.53 35.58 41.68 35.35 33.07 33.38 37.49

SVM (RBF) 35.36 41.57 35.46 39.52 34.78 31.67 32.13 35.78

Best values are in bold
a Nearest centroid classifier using features synthesized by the proposed method

Table 5 Average geometric mean of true positive rate and precision rate of a nearest centroid classifier using synthesized features and state-of-

the-art classifiers using original features on testing data

F_20 CSD DOCQ EHD HSV LBP ORDC Gabor Aver.

PFS+NCCa 0.133 0.082 0.080 0.104 0.105 0.126 0.139 0.110

SVM (lin.) 0.077 0.058 0.086 0.063 0.082 0.094 0.094 0.079

SVM (RBF) 0.118 0.063 0.087 0.066 0.086 0.096 0.097 0.087

Best values are in bold
a Nearest centroid classifier using features synthesized by the proposed method
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by both applied SVM configurations are clearly lower than

those obtained by PFS. However, further examination of the

confusion matrices shows that this superiority can be fully

explained by the fact that SVMs classify all the items into

2–3 classes. The proposed method can, on the other hand,

synthesize from all the low-level features (except EHD),

such features that the classification performance can be

improved also onminority classes as evident fromTable 5. In

other words, the discrimination power of the features can be

improved also in such an imbalanced case.

4.3 Feature synthesis experiments for content-based

image retrieval

Our second goal was to synthesize such feature vectors that

their performance in CBIR is superior to the original low-

level features. We evaluate the CBIR performance in terms

of ANMRR and average precision (AP) computed by the

batch query, i.e., querying all images in the database. For

each feature (both low-level and synthesized), Euclidean

distance measure between feature vectors is used to com-

Table 6 Average normalized

modified retrieval rank using

original and synthesized

features

CSD DOCQ EHD HSV LBP ORDC Gabor All

C_10

Orig.a 50.12 73.17 61.68 61.93 68.62 62.28 56.13 43.86

PFS1b 24.73 49.08 47.20 32.47 46.30 42.13 34.61 18.15

PFSc 24.73 42.51 41.14 32.40 36.80 34.08 31.24 17.14

C_30

Orig.a 67.84 81.84 76.38 78.31 80.67 75.98 70.71 60.39

PFS1b 47.42 72.35 67.92 63.86 67.33 63.88 50.82 41.60

PFSc 44.51 63.48 63.49 59.22 56.40 54.51 42.80 33.49

F_20

Orig.a 71.21 75.74 70.12 74.96 70.89 71.91 72.57 69.91

PFS1b 66.23 72.66 66.17 69.63 65.17 64.42 64.79 61.52

PFSc 65.99 72.29 66.06 69.18 64.55 63.40 64.08 60.21

Best values are in bold
a Original features

b Features synthesized by one iteration of PFS
c Best features synthesized by PFS

Table 7 Average precision

using original and synthesized

features

CSD DOCQ EHD HSV LBP ORDC Gabor All

C_10

Orig.a 47.70 25.20 36.49 35.89 29.93 36.20 41.73 53.47

PFS1b 73.35 49.17 51.41 65.51 52.36 56.24 63.71 79.94

PFSc 73.35 55.57 57.53 65.56 61.83 64.31 66.93 80.86

CC_30

Orig.a 30.40 17.03 22.34 20.85 18.11 22.50 27.55 37.30

PFS1b 50.35 26.14 30.82 34.59 30.99 34.37 47.14 56.00

PFSc 53.90 35.30 35.48 39.62 44.42 41.40 55.96 63.17

F_20

Orig.a 28.45 24.12 29.41 24.73 28.66 27.49 27.00 29.58

PFS1b 33.50 27.21 33.59 30.10 34.60 35.30 34.91 38.00

PFSc 33.77 27.61 33.72 39.62 35.28 36.47 35.72 39.31

Best values are in bold
a Original features

b Features synthesized by one iteration of PFS
c Best features synthesized by PFS
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pute the (dis-)similarity distance. In case of the overall

retrieval performance, each feature was given an equal

weight when evaluating the overall distance between two

images. The training set size of 45 % was used, while the

retrieval performance is given over the whole database.

The results in terms of ANMRR are given in Table 6 and in

terms of AP in Table 7.

The results indicate that a significant improvement in

retrieval performance has been obtained. Compared to the

test classification errors on C_10 and CC_30 databases

given in Table 2, a higher level of improvement can now be

achieved during the latter iterations of the proposed feature

synthesis technique. This leads to the assumption that most

of this improvement is within the training set, while the

performance on the test set (majority of the database) does

not significantly change. On F_20 database, similar

behavior cannot be observed most likely because only three

PFS runs were performed and also the classification per-

formance on the test set (Tables 2, 3) was still significantly

improving.

Table 8 shows comparison to Collective Network of

Binary Classifier Framework (CNBC) [16, 17], which has

been shown to produce competitive CBIR results using

low-level features [15]. The same databases, low-level

features and training sets were used to evolve/train the

CNBC by both techniques: MD PSO and exhaustive BP.

Table 8 Average normalized modified retrieval rank and average

precision using features synthesized by the proposed method and

features produced by Collective Network of Binary Classifier

Framework

C_10

ANMRR

AP CC_30

ANMRR

AP

PFS 17.14 80.86 33.49 63.17

CNBC (MD PSO) 31.09 65.01 43.04 54.47

CNBC (BP) 23.86 74.26 46.44 52.21

Best values are in bold

Fig. 5 Two sample queries on C_10 database using original (left) and synthesized features with single (middle) and two (right) runs. Top-left is

the query image
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Based on the overall retrieval performances given in

Table 8, it is clear that the proposed method can achieve a

superior retrieval performance on both databases.

Figure 5 illustrates two sample queries on C_10 data-

base where neither of the selected query images is not in

the training set. Both queries are performed using the

original features, features synthesized by a single run and

by two runs of the proposed feature synthesis method. It is

obvious that the synthesized features have a superior dis-

crimination power than the original features, and in turn, a

better retrieval performance can be achieved. Most of the

improvement generally takes place at the first run, but

further runs help to fine-tune the result. Figure 6 similarly

shows two sample queries on CC_30 database with the

exception that the last query snapshots are taken after 5

PFS runs.

4.4 Comparative evaluations on training methods

and architecture spaces

To evaluate the significance of the training method and the

architecture space used, we repeated the earlier classifica-

tion and retrieval experiments using different architecture

spaces and either MD PSO evolution or exhaustive BP

training. Besides the changing architecture space, we used

MD PSO with the same parameters defined in Sect. 4.1.

For BP, the learning rate parameter, g, was set to 0.02 and

the number of iterations to 5000. The smallest architecture

space consisted of only a SLP, the medium architecture

space had the maximum of one hidden layer and number of

neurons in this layer set to 4–10, and the large architecture

space had the maximum of two hidden layers with 4–8

neurons in the first hidden layer and 8–16 neurons in the

Fig. 6 Two sample queries on CC_30 database using original (left) and synthesized features with single (middle) and five (right) runs. Top-left is

the query image
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second. As similar results were observed with all the fea-

tures used, only the results using all the features listed in

Table 1 are given here. Classification results are given in

Table 9 and retrieval results in Table 10.

Generally, the difference between the results obtained

by MD PSO and exhaustive BP training methods is small.

The main benefit of using MD PSO seems to be its better

capability to improve the synthesis on latter runs, espe-

cially on CC_30 database. For C_10 database, also the

differences between different architectures in terms of

classification and retrieval performances are modest. SLPs

achieve the lowest test classification error, but their initial

retrieval performance is worse than the performance

obtained with medium and large architecture spaces. This

suggests that for the larger architecture spaces, some

overlearning has already occurred at the first run, while

with the simplest architecture, SLP, similar overlearning

only takes place after a couple of iterations (until some

point the overlearning on training set will improve the

retrieval accuracy as the whole database including the

training set is considered when the retrieval scores are

computed). CC_30 database, on the other hand, is so much

more complex that SLPs cannot find best solutions any-

more. With larger architectures, the test classification error

more often keeps improving during several iterations i.e.,

overlearning on training set is no longer such a problem for

them.

5 Conclusion

In this paper, we proposed a new feature synthesis technique,

PFS,which transforms the original features using parallel one-

against-all perceptrons. PFS can be easily applied on any low-

level features and on any database, where some ground-truth

data exists. The main advantage of the proposed method is its

computational simplicity compared to the existing feature

synthesis methods commonly based on evolutionary algo-

rithms. Along with its simplicity, its one-against-all topology

is essential when applied on larger databases. Finding such a

feature synthesizer that can simultaneously discriminate all

the database classes fromeach othermay become a too hard or

even an impossible problem when the number of classes

grows. To overcome this problem, the proposedmethod trains

a dedicated one-against-all perceptron for each class to effi-

ciently discriminate that class from the rest. Only at the end of

the process, these class-specific syntheses are concatenated

into one composite feature vector. It is obvious that this is a

Table 9 Test classification

errors for a nearest neighbor

classifier using features

synthesized with different

training methods and

architecture spaces

C_10 MD PSO MD PSO MD PSO BP BP BP

Small Medium Large Small Medium Large

Run 1 14.85 14.55 15.13 14.53 16.00 16.42

Best run 14.62 14.55 15.13 14.47 16.00 16.42

CC_30 MD

PSO

MD

PSO

BP BP

Small Medium Small Medium

Run 1 32.42 30.69 33.67 31.66

Best

run

30.21 29.99 33.49 31.66

Best values are in bold

Table 10 Average normalized

modified retrieval rank for

features synthesized with

different training methods and

architecture spaces

C_10 MD PSO MD PSO MD PSO BP BP BP

Small Medium Large Small Medium Large

Run 1 23.62 18.15 19.03 24.77 18.02 17.69

Best run 17.26 17.14 17.39 18.20 17.95 17.69

CC_30 MD

PSO

MD

PSO

BP BP

Small Medium Small Medium

Run 1 50.09 41.60 51.02 39.32

Best

run

42.60 33.49 50.95 34.13

Best values are in bold
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‘‘divide and conquer’’ type of approach that divides a difficult,

for larger databases probably infeasible, synthesis problem

into several easier two-class synthesis problems. This kind of

problem implementation also allows efficient exploiting of

modern parallel processing facilities.

Experimental results over benchmark image databases

demonstrate that the proposed system can significantly

improve the discrimination power of the original features

and thus achieve a crucial improvement in classification

and CBIR performances. We can conclude that as long as

some ground-truth information is available for a subset of

an image database, any low-level features extracted from

the database can be easily replaced with new features

having a higher discrimination (and description) capability.

This is appealing especially for existing applications where

mid-level feature extraction is not a viable option and/or

only a certain set of features is available, while the original

data is either missing or incomplete.

In the future, we aim to apply the proposed feature syn-

thesis method on significantly larger databases. While its

computational simplicity and one-against-all topology sup-

port increasing database sizes, larger databases (� 100

thousands images) will still require certain modifications. For

instance, an efficient training sample selection should be

applied to obtain the maximum performance with the mini-

mum amount of training. Furthermore, some large image

classes may be so diverse that also their discrimination from

the other classes using a single synthesizer gets difficult. It can

be possible to find clusters of similar itemswithin such diverse

classes and to train a separate one-against-all perceptron for

each cluster. These are topics for our future research.
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Training Radial Basis Function Neural Networks for
Classification via Class-specific Clustering
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Abstract—In training radial basis function neural networks,
the locations of Gaussian neurons are commonly determined by
clustering. Training inputs can be clustered either on a fully
unsupervised manner (input clustering) or some supervision
can be introduced, for example, by concatenating the input
vectors with weighted output vectors (input-output clustering).
In this paper, we propose to apply clustering separately for
each class (class-specific clustering). The idea has been used in
some previous works, but without evaluating the benefits of the
approach. We compare the class-specific, input, and input-output
clustering approaches in terms of classification performance and
computational efficiency when training radial basis function
neural networks. To accomplish this objective, we apply three
different clustering algorithms and conduct experiments on 25
benchmark datasets. We show that the class-specific approach
significantly reduces the overall complexity of the clustering and
our experimental results demonstrate that it can also lead to
a significant gain in the classification performance especially
for the networks with relatively few Gaussian neurons. Among
other applied clustering algorithms, we combine for the first time
a dynamic evolutionary optimization method, multi-dimensional
particle swarm optimization, and the class-specific clustering to
optimize the number of cluster centroids and their locations.

Index Terms—radial basis function networks, clustering meth-
ods, supervised learning, particle swarm optimization

I. INTRODUCTION

RADIAL basis function neural networks (RBFNNs) have
been successfully applied in several areas such as med-

ical diagnostics [1], robotics [2], dynamic system design [3],
and stock index forecasting [4]. RBFNNs are three-layered
feedforward neural networks with universal approximation
ability. The input layer is passive, the hidden radial basis
function (RBF) neurons transform the input data to a new
feature space using a strictly positive radially symmetric
activation function, and the linear output layer supplies the
network’s response to the transformed input data. Gaussian
basis functions are commonly used as activation functions.
The output of the jth output neuron can be given as

yj =
K∑

k=1

wkjgk(x) =
K∑

k=1

wkj exp

(
−‖x− µk‖2

2σ2
k

)
, (1)

where K is the number of Gaussian neurons, wkj is the
weight between the kth Gaussian neuron and the jth output
neuron, µk and σk are the center location and width of the
kth Gaussian neuron respectively, and x is an input vector.

The most significant step in the training of RBFNNs is the
selection of the number of centroids and their locations. The
selection is commonly performed by clustering the training
items. The clustering can be performed on a fully unsu-
pervised manner (input clustering) or some supervision can

be incorporated into the clustering process. In input-output
clustering the input vectors are concatenated with the outputs
and the clustering is performed on these concatenated vectors.
In this paper, we propose to perform clustering separately for
each class. Some individual works [5], [6] have previously
applied this approach. However, these works do not com-
pare their class-specific approach with the other clustering
approaches and the approach is still rarely used.We show
that the class-specific clustering approach is faster than the
traditional clustering approaches and our experimental results
show that also significantly better classification results can
be obtained using the class-specific approach especially when
networks with lower number of RBF neurons are trained.
We perform an extensive set of the experiments using three
different clustering approaches. We apply the most well-known
clustering algorithm, K-means, with three different cluster
numbers. We use APC-III, which is a dynamic clustering
method earlier used for the class-specific clustering in RBFNN
training. We now apply the same algorithm also with the
input and input-output clustering approaches. Finally, we
carry out experiments using multi-dimensional particle swarm
optimization (MD PSO) and fractional global best formation
(FGBF). As a dynamic clustering method based on stochastic
optimization, this method can avoid local optima and is not
dependent on the starting point, but it is also computationally
more expensive than the other considered algorithms. To
our knowledge this is the first time of proposing such a
combination of an evolutionary method and the class-specific
clustering approach. Our main objective is to show that all
these different clustering algorithms can benefit from the class-
specific clustering approach. Furthermore, we want to clearly
show the significance of the different clustering approaches
and, therefore, we keep the rest of training process as simple
as possible.

The rest of the paper is organized as follows. In Section II,
the RBFNN training process is introduced in detail and recent
advances on the topic are also introduced. The input, input-
output, and class-specific clustering approaches are presented
in detail in Section III. The clustering algorithms used in
the experiments are introduced in Section IV and in Section
V we introduce the experimental setup and give the results
with comparative evaluations. Finally, Section VI concludes
the paper and suggests topics for future work.

II. RBFNN TRAINING

To train a RBFNN, one needs to decide the number of
hidden neurons, assign the values of their center locations
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and widths, and finally assign the weight values. It has
been experimentally demonstrated that the RBF neuron center
locations are more significant to the evaluation performance
than their widths or the weights [7]. Also the number of hidden
neurons impacts the network’s performance significantly: too
few neurons may be insufficient to learn a model, while too
many neurons may lead to overfitting [8], [9].

The traditional RBFNN training strategies can be divided to
one-phase, two-phase, and three-phase learning [10]. In one-
phase learning only the weights between the Gaussian and
output neurons are adjusted using a supervised optimization
method. The center locations are set by randomly selecting a
desired number of training items as RBF centers and the center
widths are typically set to a fixed value. In two-phase learning,
the center locations and widths are assigned in the first phase
and the network weights are determined in the second phase.
In the three-phase training the RBFNN is first initialized
using two-phase learning and in the third phase the whole
network is further adjusted using an optimization procedure,
e.g. back-propagation learning [11]. The third training phase
can generally improve the performance obtained by the first
two phases [10]. However, in this article we will mainly
concentrate on the two-phase learning.

Originally, in their regularization networks quite similar
to RBFNNs, Poggio and Girosi placed the RBF centers at
each training item [12]. However, this may lead to overfitting
and to computationally expensive large networks when the
number of training items is high. In [13], Poggio and Girosi
suggested that a smaller number of centers should be used
to overcome these problems. They also showed that updating
the centers using a gradient descent based algorithm makes
them move toward the majority of the data. Thereafter, the
centers in RBFNNs have been commonly solved by a clus-
tering method. First, only fully unsupervised clustering of
input items (input clustering) was applied, but soon some
supervision was brought also to the clustering step. In the
commonly used input-output clustering approach, the input
vectors are concatenated with the target output vectors and
the clustering is performed on these concatenated vectors.
We propose to introduce supervision into RBFNN training
simply by clustering items class-by-class. We call this the
class-specific approach. All these clustering approaches are
introduced in detail in Section III.

Besides clustering, the RBF center locations can be de-
termined e.g. by supervised vector quantization algorithms
[10] or supervised training of decision trees [10]. In [14],
the RBF center locations and widths are solved along with
the number of centers using hybrid forward algorithm (HFA),
which tackles the mixed integer hard problem of simultaneous
network structure determination and parameter optimization on
the continuous parameter space using an integrated analytic
framework.

Once clustering has been performed, a RBF neuron is
placed at each cluster centroid. Next, one needs to assign
neuron widths and the network weights. Often acceptable
classification results can be obtained even by using the same
widths for all the centroids [15]. However, using a single width
value may harm the performance if there is reason to assume

that the RBF centroids correspond to clusters with varying
sizes. This may be the case, when the class-specific clustering
is applied as the distributions of different classes may be
quite different. Varying width values for each RBF neuron
can be obtained using a simple heuristic [16], [5], where, for
each center, the distance to the nearest other cluster center is
computed and multiplied by γ.

σ = γmin
j 6=i

(‖µj − µi‖). (2)

If the class-specific clustering is used, only the clusters belong-
ing to different classes can be considered when computing the
distance. In [5], γ = 5 was applied. A few more possible ways
to find a simple center-specific width value are given in [10].

In the second learning phase the weights are determined.
They are typically solved either using back-propagation [16],
[11] or linear least squares technique [15]. As the only param-
eters to be set are the weights between the RBF and output
neurons, back-propagation reduces to a linear regression task.

The linear least squares technique aims at minimizing the
sum of squared errors between the obtained outputs, yij , and
target outputs, tij , computed over N training items and C
output neurons

SE =

N∑

i=1

C∑

j=1

‖yij − tij‖2 = ‖Y−T‖2 = ‖GW−T‖2, (3)

where Y = [yij ] and T = [tij ] are N × C matrices, G =
[gk(xi)] is a N ×K matrix and gk is as defined in Eq. (1),
W = [wkj ] is a K×C matrix and wkj is the weight between
the kth RBF neuron and jth output neuron. The weights are
solved as

W = [GTG]−1GTT. (4)

The problem with the above equation is that, if GTG is
singular, it does not have a unique solution and with close to
singular values the solution is not stable. To overcome these
problems, in [15], a regularized least squares solutions was
suggested:

W = [GTG+ λG0]
−1GTT, (5)

where λ is a regularization constant and G0 = [gi(µj)] is a
symmetric C×C square matrix whose elements are the outputs
of RBF units when the RBF centers are given as inputs. With
the regularized least squares technique, the choice of a proper
value for the regularization constant λ is important, but far
from simple [17].

There are also several training methods that do not fit to
the traditional categorization of one-, two-, or three-phase
learning. Back-propagation or other gradient descent methods
used in the third-phase of the three-phase learning can be
applied also with a random initialization [16], [11], [18] i.e.
without any other training. A limitation with back-propagation
is that it cannot evolve the network architecture, but it must
be fixed a priori. Evolutionary and genetic learning algorithms
[19], [20] can simultaneously search for all the network pa-
rameters including the network architecture, but these methods
are generally very slow.

In the recent years, extreme learning [21] and different
sequential training methods [22] have obtained very promising
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results in the RBFNN training. In the sequential methods, the
RBF centers are selected from the training items presented
one-by-one by applying different growing and pruning strate-
gies. Also the other network parameters are generally updated
item-by-item, if the new item provides some new information
to the network. In [23], it has been experimentally shown
that for the sequential methods it is beneficial to apply also
class-specific criteria and not only criteria based on overall
approximation error.

Other advances in the area of RBFNN training include
optimization of the widths of the Gaussian neurons [24],
metacognitive learning [22], and second order training meth-
ods [25]. These methods either apply or can be applied with
clustering. In this article, we are not trying to present a
new state-of-the-art RBFNN training method, but we only
consider different clustering approaches with otherwise simple
training steps to clearly see the significance of the compared
approaches. However, in the future, the comparison results can
be exploited with such state-of-the-art techniques to further
improve them. Similarly, the results can be also exploited with
modifications of the basic RBFNNs such as hybrid radial basis
function and data envelopment analysis neural networks [26],
polynomial RBFNNs [27], or networks with different radial
functions and shape parameters [28].

III. DIFFERENT CLUSTERING APPROACHES IN RBFNN
TRAINING

A. Input Clustering

The input clustering refers to the basic unsupervised clus-
tering, where only the training inputs are clustered without
considering the available class information. This kind of
clustering has been widely used in RBFNN training e.g. in
[15], [29], [30].

B. Input-output Clustering

In the input-output clustering, the vectors to be clustered,
xIOi are formed by concatenating the input vectors with the
target output vectors weighted by a factor β:

xIOi = [xi, βti], (6)

where xi is the ith input vector in the training set and ti is the
corresponding target output vector. The weight is traditionally
set so that each element in the augmented vector will have
a similar order of magnitude [31]. Such a weighting will
naturally place more emphasis on the output part, if the input
feature vector dimension is lower or the number of classes
is higher (longer 1-of-C-encoded output vector). After the
clustering phase, the outputs are discarded and the RBF neuron
centers are set in the input space. It has been shown that for
a suitable weighting factor the training error can be made
arbitrarily small by choosing a sufficiently large number of
hidden neurons [32], but naturally this may lead to poor
generalization ability and an undesired network structure.

While the input-output clustering is assumed to lead to a
better performance than the input clustering, only few compar-
isons have been carried out to compare the approaches. In [31],
the input-output clustering approach gave a better performance

as a dynamic model for a time-series system, but in this
comparison also different RBF center widths were assigned
for the two approaches. In [33], the input-output clustering
outperformed the input clustering in function prediction on two
datasets. We are not aware of any comparisons on classification
tasks.

Several modifications or extensions of the basic input-
output clustering have been proposed for RBFNN training
[33], [34], [35]. Also several supervised clustering techniques,
which perform clustering in a single process, but take the
class information somehow into account, can be considered
as input-output clustering. In [36], constraints based on class
information were placed for the fuzzy C-means algorithm. In
[37], a similar modification of the fuzzy C-means algorithm
was applied, but now the objective function was modified
to take into account also class information. In [35], a new
network type, radial basis perceptron (RBP) neural network,
was introduced and trained with a specific input-output clus-
tering method. In [10], supervised vector quantization was
performed by considering also the class information in the
applied learning rule. In [38], clustering was done using a
minimum spanning tree (MST). All the training items were
first considered as vertices of a MST and the edges were
weighted with the squared Euclidean distances of the items.
All the edges connecting items from different classes were
then removed and the remaining connected components thus
represented clusters having items from a single class only.
However, all these methods require using the specific cluster-
ing algorithm, while the basic input-output clustering approach
can be easily used with any available clustering algorithm.

C. Class-specific Clustering

We propose to introduce supervision into RBFNN training
simply by clustering items class-by-class. We call this ap-
proach class-specific clustering. Also clustering-inside-class or
within-class clustering are used to refer to the same approach.
We are motivated by several successful divide-and-conquer
methods, which obtain a better final solution by dividing a
complicated problem into several sub-problems. In this case,
performing the clustering operation per class will make the
task significantly easier and more efficient. This is due to the
fact that there are fewer local optima. Clustering will be also
significantly faster due to the smaller number of items. Also
each cluster centroid now corresponds to a single class.

In this paper, no post-processing of the centroids is consid-
ered. Even if two centroids of two different classes happen to
be co-located, they will both be used as RBF centers as such.
For overlapping data distributions, the centroids may naturally
be close to each other and such a case could be directly used
to indicate that the area should be modeled with more RBF
centers. A possible rule for handling overlapping clusters from
different classes is presented in [6]. However, this is left for
further work to clearly see the impact of the simplest versions
of different clustering approaches.

The idea of the class-specific clustering in the RBFNN
training has been previously used at least in [5], [6], [39],
[40]. In [39], [40], and [5], APC-III clustering method is
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used to select RBF neuron locations separately for each class.
All these works concentrate on a single handwritten digit
recognition dataset and the significance of the class-specific
clustering compared to the traditional clustering approaches is
not evaluated. In [6], the RBF centers are initially assigned to
the centroids of each class and all the items are assigned to
these clusters. Then an iterative method is applied, where the
overlap between clusters from different classes is evaluated
and the clusters are further divided if they are detected to
overlap. The paper concentrates on a single face recognition
dataset. The applied clustering method is compared with
unsupervised K-means, but only in terms of clustering error.
K-means is not used to initialize RBF centers. The training
items are handled class-by-class also in [41], but, instead of
clustering, a density estimation algorithm is applied and the
significance of the class-specific approach is not evaluated.

D. On Time and Memory Complexity

The time and memory complexity of most clustering al-
gorithm is dependent on the number of items N , number of
clusters K, and the data dimensionality d (e.g. O(NKd) for
a linear algorithm). For the input and class-specific clustering
approaches d is directly the dimensionality of the input feature
vectors, whereas for the input-output clustering approach the
data is formed by concatenating the input features vectors and
target output vectors i.e. dIO = dI+C, where IO and I refer
to the input-output and input clustering approaches and C is
the number of classes. The class-specific clustering approach
must be repeated C times, but the number of items and clusters
per clustering is smaller. If it is assumed that the items are
equally distributed between classes and that the total number
of clusters is the same and an equal number of clusters is
assigned for each class, NCS = NI/C and KCS = KI/C,
where CS refers to the class-specific clustering approach.

The effect of the above changes naturally depends on the
complexity of applied clustering algorithm as well as the data
properties. For most real-life benchmark datasets dIO ≈ dI ,
but for some datasets dIO > 2dI . In the latter situation, the
input-output clustering would take more than twice longer
than the input clustering approach even when a clustering
algorithm with a linear complexity is applied. If the clustering
algorithm is not otherwise affected by the clustering approach
(e.g. number of iterations), the class-specific approach is C
times faster if an algorithm with linear complexity is applied
and more if a slower algorithm is used. In the next section, we
will shortly consider the complexity of the applied clustering
algorithms as examples.

IV. APPLIED CLUSTERING ALGORITHMS

A. K-means

K-means is the most widely-used and well-known cluster-
ing algorithm. Therefore, we will not introduce it here. A
description can be found e.g. in [42]. The popularity of the
algorithm can be explained by its speed and the relatively good
results obtained using it. However, as a heuristic algorithm K-
means will converge to the any encountered local optimum
and, therefore, initialization of the algorithm may affect the

results significantly. Its main drawback is that the number of
clusters must to be assigned a priori.

The time complexity of the K-means algorithm is
O(iNKd). In practice, the algorithm often converges in tens
of iterations and, therefore, the practical complexity is close to
linear. However, the theoretical upper bound for the expected
number of iterations is O(N

34 log4NK34d8

σ6 ), where σ is the
standard deviation of the Gaussian perturbations [43].

B. APC-III

APC-III is a simple one-pass clustering algorithm [5], [39],
which solves also the number of clusters during the clustering
process. It has been previously applied for RBFNN training
via the class-specific clustering in [5], [39], [40] and also via
the input clustering in [44], [45] , but the two approaches have
not been compared.

All the items are considered one by one. If an item is
within a defined cluster radius, R0, of the centroid of any
existing cluster, the item is added to that cluster by adjusting
its centroid accordingly. Otherwise, a new cluster is created
and the item is assigned as its first centroid. This way the
data space will always be divided into clusters of fixed size
even if the data distribution would indicate totally different true
clusters. The algorithm is further described in Algorithm 1.

input : x1,x2, ...,xN – datasamples
output : K – number of clusters

µ1,µ2, ...,µK – cluster centroids
variables: R0 – cluster radius

Ni – number of items in the ith cluster
dij – distance between xi and µj

1 Compute R0 = α 1
N

N∑
i=1

mini 6=j(‖xi − xj‖)
2 Set K = 1,µ1 = x1, Ni = 1
3 for i := 2→ N do // For each item
4 for j := 1→ K do // For each cluster
5 Compute dij
6 if dij ≤ R0 then

// Include xi into jth cluster
7 µj ← (µjNj + xi)/(Nj + 1)
8 Nj ← Nj + 1
9 Exit the for-loop

10 end
11 end
12 if xi was not included into any cluster then

// Create a new cluster
13 K ← K + 1
14 µK ← xi
15 NK ← 1
16 end
17 end

Algorithm 1: APC-III algorithm

The result of APC-III is quite dependent on the presentation
sequence of the items and the number of clusters produced
heavily depends on parameter α. As a one pass algorithm it
has the complexity of O(NKd).
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C. Multi-dimensional Particle Swarm Optimization and Frac-
tional Global Best Formation

Recently, MD PSO and FGBF have been successfully used
for dynamic clustering e.g. in [46]. As a clustering method
based on stochastic optimization, the method can avoid local
optima and is not dependent on the starting point. Clustering
based on MD PSO and FGBF was further applied for the
RBFNN training e.g. in [47], but only the input or input-
output clustering approaches have been used. To the best of
our knowledge, the combination of an evolutionary dynamic
clustering method and the class-specific clustering approach
has not been proposed before.

In the following subsections, we will first describe the
basic particle swarm optimization (PSO) algorithm, then its
extension MD PSO, and the FGBF plug-in. Finally, in Section
IV-C4 we describe how to apply the methods for clustering.

1) Particle Swarm Optimization: The basic form of the
PSO algorithm was introduced by J. Kennedy and R. Eberhart
in [48] and later modified by Shi and Eberhart in [49]. In
the algorithm, a swarm of S particles flies through an D-
dimensional search space where each particle’s position rep-
resents a potential solution to an optimization problem. Each
particle p with current position ap and current velocity vp
remembers its personal best solution so far, bp. The swarm as
a whole remembers the overall best solution globally achieved
so far, bS .

At every iteration t, a fitness function value is first computed
for all particle positions. The personal best solutions, bp, for
all particles and the global best solution, bS , are updated if
necessary. Then the following velocity and position updates
are applied on each particle p:

vp(t+ 1) =w(t)vp(t) + c1r1(t) (bp(t)− ap(t))+

c2r2(t) (bS(t)− ap(t))

ap(t+ 1) =ap(t) + vp(t+ 1),

(7)

where w(t) is an inertia weight, c1 and c2 are acceleration
constants, which are usually set to 2, and r1(t) and r2(t) are
vectors of random variables uniformly distributed between 0
and 1. A larger value of w(t) favors exploration while smaller
inertia weight values favor exploitation. Often w(t) is linearly
decreased from a high value (e.g. 0.75) to a low value (e.g.
0.2) during the iterations of a PSO run.

The random initialization and the random variables r1 and
r2 make PSO a stochastic search method. Thus, it can avoid
some local optima. However, for the basic form of the PSO
algorithm, premature convergence to a local optimum is still
a common problem.

2) Multi-dimensional Particle Swarm Optimization:
MD PSO [46] is an extension of the basic PSO algorithm
where particles can search for optimal solutions with dif-
ferent dimensionalities within a given dimensionality range,
{dmin, ..., dmax}. For example, in the clustering case this
would mean that the algorithm can be used to search for the
optimal number of clusters simultaneously to searching for the
optimal cluster centroid locations. In order to accomplish this,
each particle has two sets of components, each of which has
been subjected to one of the two independent and consecutive

PSO processes. The first one is the regular positional PSO,
which takes place in each particle’s current dimensionality,
dp, and the second one is a dimensional PSO, which allows
particles to move among search spaces with different dimen-
sionalities. For each dimensionality d, the swarm keeps track
of the best global position so far achieved, bdS , and each
particle p keeps track of its last position adp, velocity vdp,
and personal best position bdp in that particular dimensionality
so that when it re-visits the same dimensionality at a later
time, it can perform the regular positional updates using
this information. The dimensional PSO process may then
again move a particle to another dimensionality, where it will
remember its positional status and will be updated through the
positional PSO process, and so on.

The positional PSO updates take place in each particle’s
current dimensionality, dp, according to Eq. (7). The particle’s
new position a

dp
p (t+ 1) still has the same dimensionality dp.

However, the dimensional PSO process may move the particle
into another dimensionality. The search will continue from
a
dp
p (t+1) if the particle later returns to dimensionality dp(t).
Similarly to the positional PSO, the dimensional PSO pro-

cess uses the personal best dimensionality of each particle, dbp,
and the global best dimensionality, dbS , to attract the particles
toward a better dimensional solution. The dimensional PSO
updates are:

dvp(t+ 1) =bdvp(t) + c1r1(t) (dbp(t)− dp(t))+
c2r2(t) (dbS(t)− dp(t))c

dp(t+ 1) =dp(t) + dvp(t+ 1),

(8)

where dvp is the dimensional velocity of particle p and b· c
denotes the floor operator. Finally, the global best dimension,
dbS , and the global best solution with that dimensionality,
bdbSS , represent the optimal dimensionality and the optimal
solution respectively. Further details and the pseudo-code of
MD PSO can be found in [46] and [50].

3) Fractional Global Best Formation: Both the basic PSO
algorithm and its multi-dimensional extension, MD PSO, may
suffer from premature convergence to a local optimum par-
ticularly when a high dimensional optimization problem with
a multi-modal fitness surface is encountered. The premature
convergence is mainly caused by a loss of diversity i.e. the
particles gather too close to bS in an early phase and lose
their ability to explore new potential solutions. The FGBF
process presented in [46] can efficiently address the premature
convergence problem. The main idea of FGBF is to create at
every iteration an additional artificial solution bA by combin-
ing the best individual elements of particles’ solutions. This
artificial solution is then compared to bS and, if it turns out
to have a higher fitness value, bA will replace bS in Eq. (7).
If the solution bA is not better than bS , the PSO process will
proceed as usual. To decide which elements of the particles’
solutions should be combined when creating bA, the elements
are evaluated with a fractional fitness function. The fractional
fitness function for FGBF should be specifically designed for
each optimization problem similarly to designing the fitness
function for MD PSO.

When FGBF is used in combination with MD PSO, a sepa-
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rate artificial solution, bdA, is created for every dimensionality
d within the dimensionality range and in every dimensionality
bdA competes with bdS . Depending on the optimization task,
during the formation of bdA it may be possible to combine el-
ements from particle positions with different dimensionalities.

4) Clustering with MD PSO and FGBF: In clustering, sim-
ilar to other PSO applications, each particle’s position should
represent a potential solution to the problem. Most often this is
realized in clustering by encoding the position of particle p as
ap = {µp,1, ...,µp,j , ...,µp,K}, where µa,j represents the jth

(potential) cluster centroid in an D-dimensional data space and
K is the number of clusters [51]. When MD PSO is used for
clustering, also K can be optimized via the dimensional PSO
process. Any given clustering validity index function (CVI)
can be used as the fitness function.

MD PSO and FGBF were first applied to clustering in
[46]. The particle encoding used is a straightforward multi-
dimensional extension of the centroid-based encoding used
in [51], i.e. adp = {µp,1, ...,µp,j , ...,µp,d}. Now each particle
has a position in every dimensionality d ∈ {dmin, ..., dmax}
and, in the dth dimensionality, particle positions represent d
potential cluster centroids. The dimensional PSO process leads
particles towards solutions with a better cluster number while
the interleaved positional PSO process helps to find better
centroids for a certain number of clusters.

The objective of the FGBF process is to combine the best
individual elements (cluster centroids in this case) to create
artificial solutions bdA to compete with bdS solutions. However,
finding the best cluster centroid combinations among all the
possibilities is not simple, since in clustering the quality of a
certain centroid always depends on the other centroids. It is
not feasible to consider all the possible centroid combinations,
but if the quality of a certain centroid is evaluated purely
locally with respect to the data items without considering
other centroids, then, it is likely that only undesired solutions
would be obtained. It should be remembered, however, that the
FGBF operation is only used as a means to avoid premature
convergence. If FGBF cannot form competent solutions, it will
not have any effect on MD PSO as the artificial solutions will
not be used.

To ensure that at least one data item is assigned to each
cluster, the FGBF operation uses only the centroids which
are closest to at least one data item. To avoid selecting
centroids representing the same natural cluster, centroids are
first grouped into centroid groups using a MST [52]. A certain
number of centroid groups, say d ∈ {dmin, ..., dmax}, can be
obtained from the MST simply by breaking the d− 1 longest
MST branches. The artificial solution bdA is then formed by
choosing only one centroid form each group. Note that the
solution elements (centroids) can now be combined regardless
of the dimensionality (number of clusters) of the original
particle positions.

We use Xu CVI [53] as the fitness function for MD PSO. It
attempts to minimize the within-cluster sum-of-squares, ssw,
defined as

ssw =
K∑

i=1

∑

x∈ci
‖x− µi‖2, (9)

where µi is the centroid of ith cluster ci, x is a data item,
and K is the number of clusters. The Xu CVI is defined as

Q(adp) = D log

(√
ssw

DN2

)
+ logK, (10)

where D is the data dimension and N is the total number
of data items. The fractional fitness function for the FGBF is
defined as

Q(adp,j) = Q(µp,j) =
M∑

i=1

‖x[i] − µp,j‖
M

, (11)

where µp,j is the centroid defined by the jth element of
particle p’s position in dimensionality d and x[i] represents
the ith closest data item to µp,j . For computational simplicity,
only data items assigned to cluster cj defined by µp,j in
solution adp are considered. M = min (10, Nj), where Nj is
the number of data items assigned to cluster cj in solution adp.

The computational complexity of the MD PSO algorithm
is mainly caused by the fitness function evaluations, as they
must be performed for every particle at every iteration. In
this work, a fixed iteration number is used and thus the
complexity is of form O(SO(FF )), where S is the swarm
size and O(FF ) is the complexity of the fitness function.
The complexity of the Xu CVI is of form O(NKddata),
where ddata is the dimensionality of the input items and
K is at highest dmax assigned for MD PSO. The FGBF
operation is performed once per iteration. It requires, first of
all, evaluating, which fractional solutions are closest to some
data item. This evaluation is of complexity O(SKNddata).
Then artificial solutions are created, which requires forming a
MST. Computational complexity of the algorithm applied for
MST formation is O(n log n), where n refers to the number
of considered fractional solutions. In practice, it takes less
time than the rest of the FGBF operation even for the largest
considered datasets. After creating the artificial solutions, they
must be evaluated using the fitness measure. These evaluations
are of complexity O((dmax − dmin)NKddata). When the
class-specific clustering approach is applied, dmax can be
divided by C and the average number of items considered
per clustering is also divided by C. Thus, computation time
will be significantly reduced in different parts of MD PSO.
Repeating the clustering operation for each class is a minor
cost in comparison to all the savings and, also in practice,
significant reductions in computation times are observed.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup and Parameters

We compare the class-specific, input, and input-output clus-
tering approaches for RBFNN training using K-means, APC-
III, and MD PSO algorithms. In each case, the rest of the
training is carried out in a similar way. After the RBF center
locations have been determined via clustering, the center
widths are computed according to Eq. (2). The parameter γ
is set to 5 and the class information is not considered even
for the class-specific approach. The weights are determined
by solving Eq. (4) using functions provided by ALGLIB
numerical analysis and data processing library [54]. The linear
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least squares problem is solved using a numerical iterative
algorithm LSQR, which has been observed to usually provide
acceptable solutions also for singular problems [55].

We evaluate the results mainly in terms of the average
classification accuracy. As the overall classification accuracy
is not properly evaluating the performance, when the class dis-
tribution is highly imbalanced, we also compute the geometric
mean of recall values for each class [56]:

G−mean =

(
C∏

i=1

Ri

)1/C

=

(
C∏

i=1

nii∑K
j=1 nji

)1/C

, (12)

where nii and nji refer to the elements of the corresponding
confusion matrix. It should be remembered, however, that the
network weights have been assigned by minimizing the sum of
squared errors between the obtained outputs and target outputs
computed over all N training items and C output neurons.
This also aims at minimizing the overall error. Therefore, the
computed G-mean values cannot directly evaluate the ability
of different clustering approaches to handle imbalanced class
distribution, but also the rest of training process should be
modified accordingly if this was the main objective.

For K-means, we used three different total numbers of
cluster, 3C, max(5C,

√
N), and N/3. For the input and input-

output clustering approaches K was directly set to these
numbers, while the numbers were divided by the number of
classes, C, for the class-specific approach. For APC-III, the
only parameter α was set to 1.5. This value was used also in
[5], when comparing with other methods.

For MD PSO the total number of clusters was allowed
to vary from C to max(5C,

√
N). For the class-specific

clustering the numbers were divided by C. The parameters
for MD PSO were set as follows: The swarm size, S, was set
to 100 and the number of iterations to 200. The dimensionality
ranges, {dmin, ..., dmax}, were set according to the cluster
number ranges specified above and the dimensional velocity
range, {dvmin, ..., dvmax}, to {−2, ..., 2} for all the experi-
ments. The positional search space range {amin, ...,amax} was
set according to the data values as {0, ..., 1}. The positional
velocity range, {vmin, ...,vmax}, was set to {−0.1, ..., 0.1}.
The inertia weight w(t) was linearly decreased from 0.75 to
0.2 during the MD PSO iterations. The acceleration constants
c1 and c2 in Eq. (7) and (8) were set to 2. In [15], the MD PSO
parameters were analyzed and the algorithm was tested not be
sensitive to parameter changes. Naturally, the swarm size and
iteration number could be adjusted according to the difficulty
of the problem. However, in this paper we did not aim at
the maximal performance, but the objective was to compare
different clustering approaches under equal conditions.

The clustering approaches were compared using random 5-
fold cross validation on each dataset. As the applied clustering
methods were stochastic, we created two different divisions
into folds and repeated the training process 10 times on each
training subset (i.e. each clustering approach was evaluated
100 times on each dataset). An exception was made with K-
means and 3C clusters. Due to the higher standard deviations
observed, we repeated the experiment additional 40 times on
each training subset (i.e. a total of 500 evaluations). The

weight β used to scale outputs for the input-output clustering
was set to 1. The experiments were carried out using the
Merope grid of Tampere Center for Scientific Computing [57].

B. Datasets

Evaluations were performed on 25 benchmark classification
datasets from UCI Machine Learning Repository [58]. To
reduce the probability of outliers affecting the results signif-
icantly, we removed all the classes containing less than 20
items. Thus all the datasets contain at least four items from
each class in each fold. The characteristics of the datasets are
shown in Table I. In the class column, we show the number
of used classes over the total number of classes. All the data
values were normalized between 0 and 1. The outputs are
given using 1-of-C encoding i.e. the output [0 1 0] means that
the item belongs to the second class in a three-class dataset.

Table I
CHARACTERISTICS OF THE DATASETS OBTAINED FROM UCI REPOSITORY

Dataset No. of objects Dimensionality No. of classes

Banknote auth. 1372 4 2/2
Breast Wisconsin 569 30 2/2
Dermatology 366 33 6/6
Ecoli 336 7 5/8
Haberman 306 3 2/2
Heart Cleveland 297 13 5/5
Ionosphere 351 34 2/2
Iris 150 4 3/3
Letter recognition 20000 16 26/26
Magic G. Telescope 19020 11 2/2
Movement libras 360 90 15/15
Musk 476 166 2/2
Parkinsons 195 22 2/2
Pima Ind. Diabetes 768 8 2/2
Seeds 210 7 3/3
Segmentation 2310 19 7/7
Sonar all 208 60 2/2
Spectf 267 44 2/2
Transfusion 748 4 2/2
Vehicle 846 18 4/4
Vertebral column 310 6 3/3
Vowel context 990 10 9/11
Wine 178 13 3/3
Winequality red 1599 11 4/6
Yeast 1484 8 9/10

C. Results of the Comparative Evaluations

The comparison results using MD PSO are given in Table II,
using APC-III in Table III, and using K-means with different
values of K in Tables IV-VI. CS, I, and IO refer to the class-
specific, input, and input-output clustering approaches. The
results are averages over all the folds and runs and the standard
deviations are reported next to accuracies and geometric mean
values. In Table VII, we give the total cluster numbers pro-
duced by different clustering approaches when MD PSO and
APC-III methods were used. In Table VIII, iteration numbers
required for completion of the K-means algorithm, when the
total number of clusters is 3C or max(5C,

√
N), are given.

For the class-specific approach we show the total numbers of
iterations required for all the classes together, but in brackets
we also show the average iteration number per class for easier
comparison.

The results clearly indicate that the class-specific clustering
approach is superior to the other approaches, when MD PSO,
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Table II
CLASSIFICATION ACCURACIES AND GEOMETRIC MEAN VALUES OF RBFNNS TRAINED USING MD PSO FOR CLUSTERING

Accuracy G-mean
Dataset CS IO I CS IO I
Banknote auth. 0.990± 0.006 0.996± 0.002 0.993± 0.004 0.991± 0.005 0.996± 0.002 0.994± 0.004
Breast Wisconsin 0.959± 0.007 0.956± 0.010 0.957± 0.008 0.945± 0.010 0.944± 0.013 0.944± 0.011
Dermatology 0.976± 0.006 0.966± 0.017 0.969± 0.012 0.972± 0.007 0.959± 0.025 0.964± 0.017
Ecoli 0.872± 0.005 0.867± 0.020 0.882± 0.008 0.797± 0.009 0.732± 0.102 0.807± 0.011
Haberman 0.747± 0.002 0.744± 0.005 0.741± 0.007 0.371± 0.016 0.265± 0.084 0.074± 0.085
Heart Cleveland 0.599± 0.013 0.619± 0.015 0.622± 0.016 0.058± 0.062 0.131± 0.055 0.105± 0.088
Ionosphere 0.909± 0.011 0.896± 0.013 0.884± 0.049 0.875± 0.017 0.849± 0.020 0.832± 0.071
Iris 0.970± 0.006 0.966± 0.013 0.957± 0.019 0.969± 0.006 0.964± 0.014 0.955± 0.020
Letter recognition 0.741± 0.005 0.361± 0.102 0.578± 0.014 0.725± 0.005 0.010± 0.032 0.474± 0.077
Magic G. Telescope 0.819± 0.024 0.710± 0.052 0.690± 0.044 0.760± 0.031 0.471± 0.243 0.386± 0.232
Movement libras 0.788± 0.015 0.758± 0.022 0.758± 0.021 0.487± 0.139 0.427± 0.144 0.408± 0.111
Musk 0.782± 0.025 0.749± 0.027 0.749± 0.030 0.774± 0.027 0.738± 0.029 0.738± 0.032
Parkinsons 0.857± 0.012 0.856± 0.012 0.848± 0.020 0.710± 0.020 0.707± 0.008 0.696± 0.032
Pima Ind. Diabetes 0.756± 0.009 0.691± 0.021 0.701± 0.020 0.684± 0.011 0.523± 0.068 0.574± 0.041
Seeds 0.948± 0.007 0.940± 0.012 0.949± 0.007 0.946± 0.007 0.938± 0.013 0.947± 0.007
Segmentation 0.902± 0.005 0.877± 0.035 0.898± 0.005 0.893± 0.006 0.859± 0.048 0.888± 0.006
Sonar all 0.751± 0.031 0.734± 0.038 0.738± 0.040 0.747± 0.032 0.729± 0.039 0.732± 0.041
Spectf 0.819± 0.016 0.810± 0.020 0.804± 0.018 0.583± 0.044 0.515± 0.058 0.438± 0.062
Transfusion 0.782± 0.007 0.785± 0.005 0.788± 0.007 0.432± 0.033 0.465± 0.020 0.472± 0.022
Vehicle 0.737± 0.015 0.743± 0.010 0.742± 0.016 0.702± 0.019 0.712± 0.012 0.712± 0.018
Vertebral column 0.818± 0.014 0.810± 0.020 0.810± 0.023 0.769± 0.020 0.735± 0.044 0.742± 0.052
Vowel context 0.722± 0.017 0.671± 0.027 0.668± 0.041 0.642± 0.026 0.555± 0.049 0.541± 0.075
Wine 0.987± 0.004 0.899± 0.046 0.989± 0.004 0.988± 0.003 0.901± 0.046 0.989± 0.003
Winequality red 0.592± 0.007 0.559± 0.002 0.548± 0.033 0.000± 0.000 0.000± 0.000 0.000± 0.000
Yeast 0.591± 0.009 0.569± 0.018 0.592± 0.011 0.000± 0.000 0.000± 0.000 0.000± 0.000

Table III
CLASSIFICATION ACCURACIES AND GEOMETRIC MEAN VALUES OF RBFNNS TRAINED USING APC-III FOR CLUSTERING

Accuracy G-mean
Dataset CS IO I CS IO I
Banknote auth. 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
Breast Wisconsin 0.974± 0.006 0.971± 0.005 0.971± 0.005 0.968± 0.007 0.964± 0.006 0.964± 0.006
Dermatology 0.981± 0.003 0.978± 0.006 0.979± 0.006 0.978± 0.004 0.974± 0.007 0.975± 0.006
Ecoli 0.867± 0.013 0.871± 0.009 0.869± 0.009 0.797± 0.017 0.802± 0.013 0.798± 0.013
Haberman 0.716± 0.016 0.727± 0.013 0.721± 0.014 0.473± 0.039 0.488± 0.033 0.482± 0.033
Heart Cleveland 0.571± 0.023 0.585± 0.026 0.572± 0.020 0.191± 0.083 0.181± 0.133 0.165± 0.072
Ionosphere 0.921± 0.014 0.917± 0.013 0.917± 0.013 0.892± 0.021 0.885± 0.019 0.886± 0.020
Iris 0.953± 0.008 0.959± 0.008 0.958± 0.009 0.951± 0.008 0.957± 0.009 0.956± 0.009
Magic G. Telescope 0.869± 0.001 0.867± 0.001 0.867± 0.001 0.830± 0.002 0.827± 0.001 0.828± 0.002
Movement libras 0.824± 0.015 0.804± 0.018 0.816± 0.018 0.706± 0.047 0.678± 0.077 0.705± 0.113
Musk 0.885± 0.016 0.882± 0.018 0.875± 0.021 0.883± 0.017 0.881± 0.017 0.873± 0.021
Parkinsons 0.878± 0.025 0.883± 0.025 0.879± 0.024 0.797± 0.038 0.792± 0.040 0.784± 0.031
Pima Ind. Diabetes 0.758± 0.012 0.759± 0.011 0.759± 0.011 0.698± 0.016 0.703± 0.014 0.701± 0.015
Seeds 0.957± 0.010 0.955± 0.009 0.961± 0.011 0.955± 0.011 0.953± 0.010 0.959± 0.011
Segmentation 0.959± 0.004 0.956± 0.003 0.957± 0.003 0.958± 0.004 0.954± 0.003 0.955± 0.003
Sonar all 0.793± 0.029 0.774± 0.036 0.768± 0.033 0.787± 0.029 0.768± 0.037 0.762± 0.034
Spectf 0.829± 0.017 0.822± 0.020 0.822± 0.019 0.657± 0.039 0.625± 0.039 0.625± 0.050
Transfusion 0.778± 0.009 0.787± 0.009 0.783± 0.009 0.548± 0.024 0.564± 0.023 0.559± 0.025
Vehicle 0.829± 0.012 0.826± 0.011 0.825± 0.011 0.816± 0.014 0.813± 0.013 0.812± 0.013
Vertebral column 0.831± 0.015 0.838± 0.012 0.844± 0.014 0.773± 0.017 0.777± 0.015 0.786± 0.014
Vowel context 0.919± 0.011 0.909± 0.011 0.909± 0.011 0.900± 0.013 0.887± 0.013 0.886± 0.014
Wine 0.988± 0.004 0.990± 0.006 0.989± 0.006 0.988± 0.004 0.990± 0.006 0.989± 0.006
Winequality red 0.604± 0.011 0.613± 0.008 0.611± 0.009 0.040± 0.038 0.029± 0.016 0.022± 0.019
Yeast 0.587± 0.010 0.591± 0.007 0.590± 0.007 0.000± 0.000 0.000± 0.000 0.000± 0.000

K-means with 3C clusters, or K-means with max(5C,
√
N)

clusters are used. When APC-III or K-means with N/3 clusters
are used, no such superiority is observed. Table VII reveals
that APC-III leads to cluster numbers which are even higher
than N/3. Thus, the first conclusion is that the class-specific
clustering approach performs especially well, when a smaller
amount of RBF centers is generated, but for higher cluster
numbers the different clustering approaches give results closer
to each other. We assume that with such high RBF center
numbers their exact location is no longer that significant
and, therefore, the results obtained by different clustering
algorithms and approaches are closer to each other.

The differences when using APC-III and K-means with N/3

centroids are so small that we abstain from making further
analysis on these cases, but we concentrate on the other three
cases. The class-specific approach has at least 0.01 better
accuracy than the other approaches on Letter recognition,
Movement libras, Musk, and Vowel context datasets. All these
datasets are among the most complex ones in terms of item
number, dimensionality, or class number. This is an expected
result since on such datasets the task of clustering the whole
dataset at once is already a complicated task and, therefore,
the class-specific clustering approach based on the divide-and-
conquer principle has potential to yield a better performance.

The differences between the input and input-output cluster-
ing approaches are generally small. The input-output clustering
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Table IV
CLASSIFICATION ACCURACIES AND GEOMETRIC MEAN VALUES OF RBFNNS TRAINED USING K-MEANS WITH 3C CLUSTERS IN TOTAL

Accuracy G-mean
Dataset CS IO I CS IO I
Banknote auth. 0.960± 0.016 0.899± 0.063 0.962± 0.021 0.959± 0.017 0.895± 0.067 0.964± 0.021
Breast Wisconsin 0.945± 0.015 0.945± 0.016 0.936± 0.019 0.927± 0.020 0.930± 0.020 0.917± 0.027
Dermatology 0.972± 0.008 0.969± 0.013 0.971± 0.010 0.968± 0.009 0.961± 0.019 0.966± 0.012
Ecoli 0.879± 0.015 0.877± 0.017 0.879± 0.016 0.801± 0.030 0.793± 0.036 0.801± 0.031
Haberman 0.750± 0.015 0.745± 0.014 0.748± 0.012 0.394± 0.080 0.317± 0.110 0.348± 0.076
Heart Cleveland 0.611± 0.021 0.622± 0.020 0.617± 0.022 0.081± 0.099 0.092± 0.092 0.072± 0.103
Ionosphere 0.893± 0.022 0.846± 0.065 0.857± 0.049 0.847± 0.031 0.773± 0.102 0.795± 0.071
Iris 0.969± 0.016 0.960± 0.027 0.964± 0.024 0.967± 0.017 0.957± 0.030 0.961± 0.027
Letter recognition 0.727± 0.004 0.677± 0.008 0.690± 0.005 0.710± 0.005 0.645± 0.012 0.665± 0.006
Magic G. Telescope 0.787± 0.003 0.781± 0.019 0.757± 0.001 0.720± 0.010 0.713± 0.034 0.666± 0.002
Movement libras 0.758± 0.022 0.724± 0.026 0.729± 0.027 0.412± 0.238 0.278± 0.240 0.298± 0.235
Musk 0.710± 0.033 0.656± 0.053 0.622± 0.049 0.700± 0.036 0.637± 0.059 0.596± 0.057
Parkinsons 0.862± 0.013 0.835± 0.021 0.826± 0.018 0.713± 0.021 0.671± 0.035 0.649± 0.027
Pima Ind. Diabetes 0.764± 0.011 0.741± 0.026 0.732± 0.016 0.697± 0.015 0.652± 0.046 0.638± 0.027
Seeds 0.937± 0.019 0.937± 0.024 0.932± 0.020 0.936± 0.020 0.935± 0.025 0.931± 0.020
Segmentation 0.898± 0.006 0.891± 0.010 0.897± 0.008 0.888± 0.008 0.878± 0.013 0.887± 0.010
Sonar all 0.752± 0.036 0.747± 0.041 0.723± 0.056 0.747± 0.038 0.741± 0.044 0.715± 0.059
Spectf 0.814± 0.024 0.805± 0.023 0.799± 0.020 0.525± 0.089 0.407± 0.137 0.409± 0.118
Transfusion 0.774± 0.008 0.772± 0.005 0.773± 0.003 0.308± 0.073 0.276± 0.042 0.299± 0.026
Vehicle 0.664± 0.033 0.664± 0.030 0.648± 0.026 0.618± 0.039 0.608± 0.042 0.576± 0.038
Vertebral column 0.804± 0.025 0.805± 0.029 0.790± 0.024 0.747± 0.034 0.728± 0.048 0.728± 0.035
Vowel context 0.657± 0.024 0.612± 0.025 0.626± 0.023 0.539± 0.048 0.441± 0.089 0.475± 0.063
Wine 0.985± 0.011 0.973± 0.023 0.983± 0.015 0.987± 0.010 0.975± 0.022 0.985± 0.014
Winequality red 0.593± 0.012 0.587± 0.009 0.588± 0.008 0.000± 0.000 0.000± 0.000 0.000± 0.000
Yeast 0.585± 0.011 0.588± 0.009 0.590± 0.008 0.000± 0.000 0.000± 0.000 0.000± 0.000

Table V
CLASSIFICATION ACCURACIES AND GEOMETRIC MEAN VALUES OF RBFNNS TRAINED USING K-MEANS WITH max(5C,

√
N) CLUSTERS IN TOTAL

Accuracy G-mean
Dataset CS IO I CS IO I
Banknote auth. 0.997± 0.003 0.997± 0.004 0.997± 0.003 0.997± 0.003 0.997± 0.003 0.997± 0.003
Breast Wisconsin 0.961± 0.009 0.959± 0.008 0.957± 0.009 0.949± 0.011 0.945± 0.011 0.943± 0.013
Dermatology 0.975± 0.007 0.974± 0.008 0.975± 0.008 0.971± 0.008 0.970± 0.009 0.971± 0.009
Ecoli 0.879± 0.010 0.881± 0.010 0.882± 0.011 0.805± 0.015 0.807± 0.019 0.810± 0.018
Haberman 0.753± 0.015 0.751± 0.014 0.753± 0.016 0.485± 0.039 0.476± 0.040 0.485± 0.044
Heart Cleveland 0.604± 0.022 0.622± 0.017 0.620± 0.020 0.104± 0.099 0.129± 0.070 0.111± 0.085
Ionosphere 0.919± 0.015 0.920± 0.013 0.916± 0.013 0.888± 0.022 0.890± 0.020 0.883± 0.021
Iris 0.967± 0.017 0.961± 0.021 0.967± 0.021 0.966± 0.017 0.959± 0.022 0.965± 0.022
Letter recognition 0.757± 0.003 0.723± 0.005 0.736± 0.004 0.742± 0.004 0.703± 0.006 0.718± 0.005
Magic G. Telescope 0.853± 0.002 0.850± 0.002 0.850± 0.002 0.811± 0.003 0.805± 0.003 0.806± 0.003
Movement libras 0.781± 0.021 0.755± 0.024 0.771± 0.023 0.508± 0.135 0.451± 0.191 0.497± 0.198
Musk 0.800± 0.023 0.790± 0.027 0.769± 0.029 0.793± 0.024 0.782± 0.027 0.758± 0.030
Parkinsons 0.871± 0.017 0.859± 0.016 0.864± 0.018 0.734± 0.026 0.716± 0.025 0.716± 0.030
Pima Ind. Diabetes 0.770± 0.011 0.768± 0.009 0.770± 0.011 0.710± 0.016 0.708± 0.013 0.708± 0.014
Seeds 0.945± 0.014 0.948± 0.013 0.945± 0.012 0.943± 0.015 0.946± 0.014 0.943± 0.013
Segmentation 0.910± 0.006 0.905± 0.005 0.905± 0.005 0.902± 0.007 0.896± 0.006 0.896± 0.006
Sonar all 0.757± 0.037 0.746± 0.033 0.745± 0.038 0.753± 0.038 0.742± 0.033 0.739± 0.039
Spectf 0.824± 0.023 0.823± 0.022 0.822± 0.025 0.597± 0.066 0.583± 0.064 0.569± 0.067
Transfusion 0.783± 0.010 0.784± 0.009 0.786± 0.009 0.480± 0.040 0.464± 0.033 0.477± 0.037
Vehicle 0.750± 0.017 0.749± 0.016 0.736± 0.016 0.719± 0.021 0.721± 0.021 0.703± 0.021
Vertebral column 0.822± 0.018 0.814± 0.014 0.811± 0.014 0.765± 0.028 0.751± 0.022 0.753± 0.020
Vowel context 0.726± 0.021 0.691± 0.021 0.702± 0.020 0.649± 0.031 0.588± 0.033 0.601± 0.033
Wine 0.989± 0.009 0.983± 0.016 0.987± 0.009 0.990± 0.008 0.984± 0.014 0.988± 0.008
Winequality red 0.611± 0.011 0.601± 0.010 0.602± 0.010 0.000± 0.000 0.000± 0.000 0.000± 0.000
Yeast 0.591± 0.009 0.589± 0.009 0.593± 0.009 0.000± 0.000 0.000± 0.000 0.000± 0.000

outperforms the input clustering by 0.01 or more at least
once on Ionosphere (34/2), Magic G. Telescope (11/2), Musk
(166/2), Sonar all (60/2), Vehicle (18/4), Vertebral column
(6/3), and Winequality red (11/4), while the input clustering
similarly outperforms the input-output clustering on Banknote
auth. (4/2), Ecoli (7/5), Ionosphere (34/2), Letter recognition
(16/26), Movement (90/15), Pima Ind. Diabetes (8/2), Segmen-
tation (19/7), Vowel context (10/9), Wine (13/3), and Yeast
(8/9), where the dimensionality and class number are given
for each dataset. Ionosphere is the only dataset appearing
in both lists. Otherwise, the input-output clustering yields a
better performance on datasets, where the number of classes

is low, while the opposite is true for the input clustering. The
input clustering outperforms the input-output clustering most
clearly on Letter recognition dataset, which has 26 classes
while the data dimensionality is only 16. Thus, the augmented
feature vectors clustered in the input-output approach have
more output than input elements. Clearly, this gives too much
emphasis on the output part. It is also possible that there are
more local optima when considering the augmented vectors
and, therefore, on relatively complicated datasets the input
clustering can find better solutions.

Between the applied performance measures, classification
accuracy and geometric mean, there are no major differences.
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Table VI
CLASSIFICATION ACCURACIES AND GEOMETRIC MEAN VALUES OF RBFNNS TRAINED USING K-MEANS WITH N/3 CLUSTERS IN TOTAL

Accuracy G-mean
Dataset CS IO I CS IO I
Banknote auth. 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
Breast Wisconsin 0.971± 0.007 0.971± 0.006 0.972± 0.008 0.964± 0.008 0.965± 0.007 0.965± 0.010
Dermatology 0.979± 0.007 0.980± 0.006 0.979± 0.006 0.975± 0.008 0.976± 0.008 0.974± 0.008
Ecoli 0.868± 0.013 0.870± 0.012 0.870± 0.016 0.799± 0.020 0.801± 0.018 0.800± 0.025
Haberman 0.715± 0.023 0.725± 0.019 0.724± 0.017 0.472± 0.054 0.489± 0.050 0.487± 0.045
Heart Cleveland 0.586± 0.024 0.597± 0.020 0.590± 0.024 0.181± 0.120 0.140± 0.121 0.139± 0.107
Ionosphere 0.931± 0.018 0.933± 0.017 0.931± 0.015 0.908± 0.025 0.912± 0.023 0.910± 0.022
Iris 0.960± 0.010 0.959± 0.013 0.959± 0.013 0.958± 0.011 0.957± 0.013 0.957± 0.013
Magic G. Telescope 0.869± 0.002 0.869± 0.001 0.869± 0.001 0.831± 0.002 0.831± 0.002 0.832± 0.002
Movement libras 0.795± 0.022 0.768± 0.024 0.786± 0.025 0.578± 0.118 0.534± 0.199 0.601± 0.168
Musk 0.875± 0.019 0.871± 0.019 0.871± 0.022 0.873± 0.019 0.869± 0.019 0.869± 0.022
Parkinsons 0.885± 0.026 0.876± 0.029 0.874± 0.027 0.802± 0.040 0.778± 0.047 0.780± 0.039
Pima Ind. Diabetes 0.759± 0.013 0.761± 0.012 0.763± 0.012 0.697± 0.019 0.700± 0.016 0.702± 0.016
Seeds 0.951± 0.010 0.950± 0.010 0.950± 0.007 0.949± 0.011 0.948± 0.010 0.948± 0.008
Segmentation 0.963± 0.004 0.962± 0.004 0.964± 0.004 0.962± 0.004 0.961± 0.005 0.963± 0.005
Sonar all 0.805± 0.035 0.785± 0.035 0.782± 0.042 0.799± 0.036 0.779± 0.035 0.776± 0.042
Spectf 0.816± 0.021 0.815± 0.022 0.819± 0.024 0.644± 0.043 0.654± 0.045 0.654± 0.041
Transfusion 0.779± 0.011 0.787± 0.012 0.784± 0.010 0.546± 0.030 0.559± 0.032 0.553± 0.025
Vehicle 0.817± 0.014 0.816± 0.014 0.818± 0.017 0.803± 0.016 0.802± 0.016 0.804± 0.020
Vertebral column 0.833± 0.015 0.833± 0.013 0.831± 0.015 0.773± 0.019 0.774± 0.016 0.772± 0.019
Vowel context 0.862± 0.018 0.846± 0.018 0.855± 0.019 0.830± 0.022 0.809± 0.024 0.818± 0.023
Wine 0.986± 0.009 0.989± 0.008 0.989± 0.009 0.986± 0.009 0.989± 0.008 0.989± 0.008
Winequality red 0.609± 0.010 0.609± 0.011 0.606± 0.010 0.018± 0.039 0.014± 0.044 0.024± 0.062
Yeast 0.591± 0.010 0.589± 0.008 0.588± 0.008 0.000± 0.000 0.000± 0.000 0.000± 0.000

Table VII
AVERAGE RBF NEURON NUMBERS WHEN MD PSO AND APC-III WERE USED FOR CLUSTERING

MD PSO APC-III
Dataset CS IO I CS IO I
Banknote auth. 26.9± 4.7 32.7± 1.5 28.3± 5.7 525.0± 9.9 522.1± 10.9 530.4± 8.9
Breast Wisconsin 19.5± 2.5 18.5± 4.8 21.5± 0.6 138.3± 5.3 139.4± 5.0 136.7± 5.2
Dermatology 27.1± 1.2 17.2± 7.2 26.0± 4.5 108.1± 3.9 106.3± 4.3 107.1± 4.4
Ecoli 23.0± 1.0 19.0± 7.0 23.5± 1.4 100.9± 6.1 78.6± 7.9 109.4± 7.4
Haberman 4.7± 0.8 8.4± 4.9 2.7± 1.5 96.6± 4.1 92.1± 4.1 95.3± 6.9
Heart Cleveland 17.6± 1.2 18.2± 3.0 19.0± 1.2 106.3± 3.6 98.9± 2.0 97.7± 3.9
Ionosphere 10.9± 0.9 16.9± 1.2 15.2± 4.9 108.1± 3.5 81.8± 2.4 79.1± 2.4
Iris 13.3± 1.3 14.1± 0.7 13.0± 2.3 56.2± 3.4 53.5± 2.4 54.2± 2.7
Letter recognition 96.5± 3.8 26.0± 0.0 26.0± 0.0
Magic G. Telescope 38.6± 25.5 2.0± 0.0 2.0± 0.0 5271.1± 34.5 4383.9± 29.6 4174.4± 27.2
Movement libras 74.8± 0.5 74.8± 0.5 74.8± 0.5 145.8± 2.9 142.4± 3.9 144.5± 3.5
Musk 15.6± 2.8 18.9± 2.0 18.8± 1.8 151.6± 6.2 152.2± 5.2 148.1± 5.5
Parkinsons 12.8± 1.1 13.3± 1.0 13.4± 0.8 65.6± 2.2 65.7± 2.5 64.1± 2.3
Pima Ind. Diabetes 4.4± 0.6 2.7± 0.4 2.8± 0.4 236.4± 7.6 236.5± 6.8 238.7± 5.0
Seeds 13.4± 1.4 11.7± 3.7 13.7± 1.5 81.2± 4.3 79.7± 3.7 80.9± 3.3
Segmentation 41.8± 2.7 29.4± 14.7 46.8± 2.7 610.0± 15.4 558.0± 10.0 575.7± 10.3
Sonar all 13.2± 0.7 13.4± 0.7 13.6± 0.5 65.3± 3.4 65.8± 3.1 63.2± 2.8
Spectf 15.0± 0.7 15.7± 0.5 15.6± 0.5 62.8± 4.7 58.8± 3.4 56.5± 3.4
Transfusion 19.3± 4.3 23.7± 3.0 23.5± 2.4 189.3± 12.0 185.1± 12.1 186.4± 12.1
Vehicle 24.3± 1.6 26.5± 1.8 26.8± 1.1 292.1± 5.5 293.6± 6.8 285.6± 6.3
Vertebral column 10.4± 2.3 16.6± 2.0 14.7± 2.9 99.4± 7.1 92.4± 9.5 86.7± 9.1
Vowel context 43.1± 1.0 41.8± 5.1 35.9± 7.0 409.0± 5.9 398.2± 5.7 398.9± 6.2
Wine 11.4± 1.5 4.9± 2.9 14.3± 0.6 55.9± 2.9 51.5± 2.8 52.2± 2.7
Winequality red 19.4± 2.3 5.0± 0.7 9.0± 9.5 542.8± 12.4 506.8± 14.9 545.3± 7.4
Yeast 33.6± 2.3 20.9± 13.4 41.1± 7.7 435.2± 15.6 410.1± 13.8 455.4± 7.4

In most cases, the same clustering approach achieves the
best performance according to the both measures. The class-
specific approach tends to have a slightly better success in
comparison with other approaches, when the geometric mean
is used as the performance measure. This is also expected
as the class-specific approach ensures that also the minority
classes will have some clusters assigned to the vicinity of
their items. We do assume that the class-specific clustering
can be beneficial in classification of imbalanced datasets or if
it is important to minimize error on a certain class. However,
as mentioned already, the rest of the training process aims
at optimizing the overall performance. To really evaluate the
clustering approaches in such cases, also the rest of the training

process should be modified accordingly.

Table VII reveals that, while the total cluster numbers
proposed by different clustering approaches are similar in
most cases, for the two largest datasets, Letter recognition and
Magic G. Telescope, the input and input-output clustering ap-
proaches always propose the smallest possible cluster number
(C), when MD PSO is applied. For these datasets, the size of
the clustering problem is already so large that these approaches
fail to find good solutions with higher cluster numbers with the
available particles and iterations and they converge to a local
optimum with C centroids. Also for Winequality red, which
is one of the largest datasets, the class-specific clustering
approach proposes a clearly higher cluster number, while for
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Table VIII
ITERATIONS REQUIRED FOR K-MEANS CONVERGENCE WHEN THE TOTAL NUMBER OF CLUSTERS WAS 3C AND max(5C,

√
N)

K-means with 3C clusters K-means with max(5C,
√
N) clusters

Dataset CS IO I CS IO I
Banknote auth. 26.6± 7.8(13.3) 16.5± 7.5 19.8± 7.0 33.4± 8.6(16.7) 19.9± 6.5 18.5± 5.3
Breast Wisconsin 25.2± 7.1(12.6) 15.7± 5.8 18.4± 6.7 23.7± 5.7(11.9) 13.3± 4.1 14.6± 3.8
Dermatology 30.7± 5.0(6.1) 8.2± 2.3 8.9± 2.5 30.1± 5.1(5.0) 7.7± 1.8 7.8± 1.7
Ecoli 31.1± 5.7(6.2) 10.0± 2.8 12.3± 4.2 32.4± 5.4(6.5) 9.8± 3.0 10.4± 2.9
Haberman 14.3± 3.7(7.2) 9.9± 3.3 11.7± 4.3 16.9± 4.5(8.5) 10.5± 3.3 10.8± 3.4
Heart Cleveland 17.1± 3.2(3.4) 7.9± 2.4 8.3± 2.7 18.0± 2.9(3.6) 7.2± 2.0 7.4± 2.0
Ionosphere 16.4± 6.0(8.2) 10.7± 4.6 12.1± 5.1 17.2± 5.4(8.6) 11.0± 4.1 11.8± 4.0
Iris 15.5± 3.5(5.2) 6.7± 2.3 7.5± 2.3 15.0± 3.0(5.0) 6.5± 2.2 7.0± 2.0
Letter recognition 353.4± 31.7(13.6) 29.1± 6.6 72.2± 20.6 393.8± 30.4(15.1) 33.4± 7.2 60.1± 17.0
Magic G. Telescope 69.5± 23.2(34.8) 38.8± 14.4 51.9± 27.3 135.0± 26.5(67.5) 76.7± 19.1 89.6± 26.2
Movement libras 49.6± 5.5(3.3) 7.1± 1.8 7.6± 1.9 48.2± 4.8(3.2) 6.2± 1.4 6.2± 1.5
Musk 13.6± 5.1 (6.8) 10.2± 3.7 10.0± 3.8 15.0± 3.3(7.5) 10.1± 2.9 9.3± 2.6
Parkinsons 14.2± 4.1(7.1) 9.4± 3.8 10.9± 4.1 13.3± 3.4(6.7) 8.5± 2.6 8.8± 2.7
Pima Ind. Diabetes 23.4± 6.6(11.7) 15.0± 5.7 20.6± 8.4 27.0± 7.2(13.5) 16.4± 5.5 17.1± 4.4
Seeds 19.3± 4.6(6.4) 8.0± 2.5 10.2± 3.3 18.4± 3.8(6.1) 8.1± 2.4 8.9± 2.4
Segmentation 67.3± 11.4(9.6) 15.9± 4.8 20.8± 6.9 77.9± 10.1(11.1) 17.9± 4.4 20.5± 4.9
Sonar all 14.2± 4.3(7.1) 9.2± 3.5 8.8± 3.0 12.3± 3.1(6.2) 7.3± 2.4 8.2± 2.9
Spectf 14.1± 4.5(7.1) 10.8± 4.7 11.2± 4.1 13.7± 3.5(6.9) 9.4± 3.0 9.4± 2.7
Transfusion 21.6± 7.4 (10.8) 15.4± 6.7 20.6± 8.4 28.6± 8.3(14.3) 17.3± 6.4 16.4± 5.7
Vehicle 34.4± 7.7(8.6) 12.9± 4.2 19.9± 7.7 41.4± 8.6(10.4) 13.7± 3.6 16.9± 5.2
Vertebral column 21.4± 4.5(7.1) 10.1± 3.5 13.5± 4.7 23.7± 5.6(7.9) 10.6± 3.4 12.3± 4.6
Vowel context 54.6± 7.9(6.1) 11.4± 3.3 17.0± 5.3 56.4± 7.7(6.3) 10.7± 3.2 13.9± 3.4
Wine 16.6± 3.5(5.5) 6.9± 2.1 7.9± 2.6 16.1± 3.1(5.4) 6.5± 1.8 7.7± 2.3
Winequality red 42.3± 9.6(10.6) 18.4± 6.2 26.5± 9.1 48.5± 8.1(12.1) 19.9± 5.1 20.9± 6.5
Yeast 67.0± 10.3(7.4) 20.9± 6.5 26.7± 7.8 75.1± 11.4(8.3) 19.8± 4.9 22.3± 6.3

the smaller datasets such a behavior is not observed. The
input-output clustering produces the lowest cluster numbers
on several datasets (Dermatology, Ecoli, Segmentation, Wine,
Winequality red). On most of these datasets the performance
obtained by the approach is worse than with other approaches
and the weight of the output part is high. This supports the as-
sumption that overly weighted output part creates sub-optimal
local optima on lower dimensions (as the items from the same
class are attracted to each other due to the shared output part)
and, therefore, the input-output clustering approach can harm
the performance of the RBFNNs in such cases.

When APC-III is applied, the cluster numbers are quite
similar for all the clustering approaches. The class-specific
approach often leads to a slightly higher cluster number. This
is also expected as APC-III always divides the data space into
clusters with a fixed radius. For the class-specific clustering
approach some overlap of clusters is probable as the classes
are handled separately.

Table VIII shows that without any exceptions K-means
converges with least iterations for (a single clustering of) the
class-specific clustering approach. As discussed in Section
IV-A, the class-specific approach would be C times faster
than the input clustering, if the iteration number for a single
clustering would be the same. As the iteration number is even
lower, the computational benefit of using the class-specific
approach is larger.

D. Statistical Evaluation of the Results

To evaluate whether the differences observed between the
compared clustering approaches are statistically significant, we
first perform the Friedman test to control the family-wise error.
It is a rank-based non-parametric test to evaluate, whether the
null-hypothesis can be rejected and the results show some
statistically significant differences. A detailed description of
the test can be found in [59]. We applied the test separately

for each clustering algorithm and performance measure. The
obtained ρ-values are given in Table IX. The null-hypothesis
can be rejected at 0.05 significance level if the ρ-value is below
0.05. Such values are bolded in the table. The results of the
Friedman test confirm the observations made above. There are
no statistically significant differences between the clustering
approaches, when APC-III and K-means with N/3 clusters
are applied, but in the other cases differences are significant.

Table IX
FRIEDMAN TEST ρ-VALUES FOR COMPARISONS PERFORMED WITH

DIFFERENT CLUSTERING ALGORITHMS AND PERFORMANCE MEASURES

Algorithm ρ (Acc.) ρ (G-mean)
MD PSO 0.0057 0.0087
APC-III 0.9575 0.1699

K-means (3C) 0.000018 0.0000018

K-means (max(5C,
√
N)) 0.0207 0.0147

K-means (N/3) 0.8721 0.5682

Next we perform the Wilcoxon Signed-Ranks test for those
cases in which statistically significant differences were de-
tected to evaluate the significance of the pair-wise differences.
The Wilcoxon Signed-Ranks test ranks the differences in
performances of two classifiers for each dataset, ignoring
the signs, and compares the ranks for the positive and the
negative differences. The ranks are used to compute a T -
value as described e.g. in [59] and this value is compared to a
critical value to evaluate whether the difference is statistically
significant. For 25 datasets, the null hypothesis can be rejected
at the 0.05 significance level if T is less than 89 and at the
0.01 significance level if T is less than 68. The obtained T -
values are given in Table X. In each case the better performing
approach is bolded and the corresponding T -value is bolded
if it signals that the null hypothesis can be rejected at the 0.05
significance level.

The results confirm that when using MD PSO, K-means
with 3C clusters and K-means with max(5C,

√
N) clusters
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Table X
WILCOXON SIGNED-RANKS TEST T VALUES FOR COMPARISONS
PERFORMED WITH DIFFERENT CLUSTERING ALGORITHMS AND

PERFORMANCE MEASURES

Approach 1 T (Acc.) T (G-mean) Approach 2
MD-PSO

CS 34 46,5 IO
CS 57 68,5 I
IO 141 I
IO 154,5 I

K-means with 3C clusters
CS 25 17.5 IO
CS 27 9.5 I
IO 143 I
IO 146.5 I

K-means with max(5C,
√
N) clusters

CS 56 55.5 IO
CS 64 49.5 I
IO 129 144,5 I

the class-specific clustering approach produces significantly
better results than other clustering approaches according to
the both applied performance measures. Between the input and
input-output clustering approaches no statistically significant
differences are detected.

VI. CONCLUSIONS

In this paper, we proposed using class-specific clustering
approach in RBFNN training. We demonstrated that it can
achieve the best performance in terms of both classification
accuracy and computational efficiency in comparison to tra-
ditional clustering approaches. This is in accordance with the
success of the divide-and-conquer paradigm over several other
data analysis problems. In this case, depending on the dataset,
clustering the whole dataset at once can be a complicated task
due to the occurrence of local optima in the solution space.
Therefore, performing the class-specific clustering approach
can help in finding a better solution. Furthermore, the pro-
posed class-specific clustering approach provides a simple way
to exploit class-information and make each cluster centroid
correspond to a cluster of items belonging to a single class.

For an extensive and detailed comparison of the class-
specific approach with the input and input-output clustering
approaches, we first analyzed their computational complexities
and concluded that the class-specific approach can reduce the
overall complexity even for the simplest clustering methods
as it reduces both the number of items to be clustered at once
and the number of clusters to be found. The only cost is that
the clustering must be repeated separately for each class, but
this cost is compensated by the reduced complexity of the
clustering process. If a more complicated clustering algorithm
is applied, the computational gain obtained by using the class-
specific clustering approach increases proportional with the the
complexity of the algorithm. Therefore, the class-specific clus-
tering approach should be favored even without improvements
in the classification performance. However, an extensive set
of experiments on 25 benchmark datasets demonstrated that
the class-specific clustering approach can also produce better
classification results than the other clustering approaches. One
of the applied algorithms was a dynamic clustering method
using MD PSO, which is an evolutionary optimization algo-
rithm. We are not aware of any earlier proposed combination

of an evolutionary optimization method and the class-specific
clustering approach, while the approach is especially useful
for evolutionary methods due to their higher computational
complexity.

Our results and statistical evaluations show that, when
the RBF center number is kept relatively low (up to the
square root of the number of training items), the class-specific
clustering can indeed produce centroids that lead to significant
improvements in the final classification accuracy compared
to the other approaches. For larger numbers of RBF centers
no statistically significant differences between the approaches
were observed. On the other hand, for these higher cluster
numbers the computational gain obtained by using the class-
specific clustering approach becomes even more significant.

Our results further show that there were no significant
differences between the input and input-output clustering
approaches. However, we observed that the input-output clus-
tering approach can be beneficial when the number of classes
is low in comparison with the feature vector dimension. When
the number of classes is high, the results suffer from the use
of the input-output clustering approach.

In this study, we did not apply any post-processing on
the clustering results and the RBF neurons were directly
placed at the cluster centroids even for the proposed class-
specific approach when two different classes have completely
overlapping centroids. Such a case obviously indicates that
the area should be modeled with more RBF centers, but we
have not adapted the RBFNN topology on purpose for a fair
comparison and left it as future work. Similarly, the rest of
training process was now kept simple, but will be improved to
the level of the state-of-the-art in the future. Finally, the class-
specific clustering approach can be very useful when working
with imbalanced datasets or in cases where a particular class
is crucial to classify correctly. These will be topics for our
future work.
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Abstract

In this paper, we propose a new way to carry out fitness evaluation in dynamic
Particle Swarm Clustering (PSC) with centroid-based encoding. Generally,
the PSC fitness function is selected among the clustering validity indices and
most of them directly depend on the cluster centroids. In the traditional fit-
ness evaluation approach, the cluster centroids are replaced by the centroids
proposed by a particle position. We propose to first compute the centroids
of the corresponding clusters and then use these computational centroids
in fitness evaluation. The proposed way is called Fitness Evaluation with
Computational Centroids (FECC). We conducted an extensive set of com-
parative evaluations against the traditional approach. The results show that
FECC leads to a clear improvement in clustering results with the most of
the fitness functions considered in this study. The proposed approach was
found especially beneficial when underclustering is a problem. Furthermore,
we evaluated 31 fitness functions based on 17 clustering validity indices using
two PSC methods over a large number of synthetic and real data sets with
varying properties. We used three different partition similarity measures to
compare the clustering results against the ground-truth data. The top three
fitness functions were Xu index, WB index, and Dunn variant DU23 applied
using FECC. These indices were consistently performing well for both PSC
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methods, for all data distributions, and according to all the partition simi-
larity measures. Further guidance for improved fitness function selection in
different situations is provided in the paper.

Keywords: Particle swarm optimization, Pattern clustering, Validity index,
Swarm intelligence

1. Introduction

Particle Swarm Optimization (PSO) has global convergence ability and,
due to its stochastic nature, it can avoid local optima. Therefore, it has been
widely exploited to solve complex clustering tasks, where simpler clustering
algorithms, such as K-means, are likely to get stuck into a local optimum
– possibly far from a satisfactory result. PSO can be also used to simul-
taneously optimize the number of clusters. It is known that proper fitness
evaluation is critical to obtain successful clustering solutions. However, the
Particle Swarm Clustering (PSC) fitness evaluation has not received much
attention before. Most novel PSC applications simply adopt their fitness
evaluation approach from a previous work, while in most cases, the results
could be easily improved via minor modifications in the fitness evaluation as
will be shown in this paper.

We propose a novel approach to compute the fitness of a particle po-
sition. We call the approach Fitness Evaluation with Computational Cen-
troids (FECC). It is usable with the most clustering validity index func-
tions (CVIs), each of which can generally be used as the fitness function
for PSC. The idea behind FECC is to replace the particle position in the
fitness function with the true computational centroids of the corresponding
clusters. We conduct a thorough comparison of FECC and the traditional
fitness evaluation with several different CVIs to show the superiority of the
new approach.

Our second objective is to exhaustively investigate which CVIs are the
most suitable fitness functions for PSC. Despite the importance of this ques-
tion, exhaustive comparisons of PSC fitness functions are lacking. While
several general CVI comparisons can be found in the literature, the results
cannot be directly assumed to help in PSC fitness function selection due to
different requirements. In this paper, we will discuss previous CVI compar-
isons and the results relevant for PSC fitness function selection. Thereafter,
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we conduct an extensive comparison of PSC fitness functions based on dif-
ferent CVIs.

As different fitness functions or a different approach to perform fitness
evaluation may be optimal for different data types, we will evaluate the effect
of typical dataset characteristics (true number of clusters, dimensionality,
asymmetric density, overlap, and noise). The results will be analyzed with
statistical significance tests. In the experiments, we use two different PSC
approaches, namely Multi-elitist Particle Swarm Optimization (MEPSO) [1]
and Multi-dimensional Particle Swarm Optimization (MD-PSO) along with
the Fractional Global Best Formation (FGBF) method [2]. Both approaches
use centroid-based particle encoding and can be used for dynamic clustering,
where the optimal number of clusters is searched for simultaneously with the
optimal centroid positions.

The rest of the paper is organized as follows. PSC and the applied PSC
methods, MEPSO and MD-PSO, are briefly described in Section 2. Fit-
ness evaluation in PSC is discussed in Section 3. First, the importance and
problems of selecting a proper CVI as the fitness function are discussed in
Subsection 3.1 and the proposed FECC approach is introduced in Subsec-
tion 3.2. Section 4 introduces a rich set of CVIs considered in this paper along
with previous CVI comparisons. Experimental results are given in Section 5
and, finally, Section 6 concludes the paper.

2. Particle Swarm Clustering

The basic form of the PSO algorithm was introduced in [3] and later
modified in [4]. In the algorithm a swarm of S particles flies stochastically
through an N -dimensional search space where each particle’s position repre-
sents a potential solution to an optimization problem. Each particle p with
current position xp and current velocity vp remembers its personal best so-
lution so far, bp. The swarm as a whole remembers the overall best solution
globally achieved so far, bS. The particles experience attraction toward the
best solutions and, after some time, the swarm typically converges to an
optimum.

Due to its stochastic nature, PSO can avoid some local optima. However,
for the basic form of the PSO algorithm, premature convergence to a local
optimum is a common problem and, therefore, several modifications or exten-
sions of the basic form have been introduced [5], such as the Perturbed PSO
[6], Orthogonal Learning PSO [7], or different local neighborhood topologies
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[8], e.g. the Fully Informed PSO [9]. In this paper, we will concentrate on
two different PSO modifications, which can avoid premature convergence to
some extent, namely MEPSO (Section 2.1) and MD-PSO with FGBF (Sec-
tion 2.2).

In clustering, similar to other PSO applications, each particle’s position
should represent a potential solution to the problem. Most often this is real-
ized by encoding the position of particle p as xp = {mp,1, . . . ,mp,j, . . . ,mp,K},
where mp,j represents the jth (potential) cluster centroid in an N -dimensional
data space andK is the number of clusters. Each element of theK-dimensional
position of the particle xp is now an N -dimensional position in the data space.
Also different particle encodings have been proposed such as partition-based
encoding [10], where each particle is a vector of n integers, where n is the
number of data items to be clustered and the ith element represents the
cluster label assigned to item i, i ∈ {1, .., n}, but only the centroid-based
encoding will be further discussed in this article.

The first centroid-based PSC technique was introduced in [11]. The ma-
jor limitation of the proposed method was the need to manually define the
number of clusters, K, a priori. Another clustering technique proposed in
[12] overcame this limitation by using binary PSO to select which of the po-
tential particle centroids should be included in the final solution, but in this
technique the K-means algorithm was used to refine centroid positions.

Das et al. proposed in [1] an algorithm using MEPSO for both cluster
number selection and the actual clustering. They proposed a particle en-
coding scheme, where each particle has a user-defined maximum number of
cluster centroids along with activation thresholds for each centroid. The ac-
tivation thresholds were optimized simultaneously to optimizing the centroid
positions and they defined which centroids were included in the actual solu-
tions represented by the particle. The same particle encoding was adopted
in [13, 14] for Differential Evolution Particle Swarm Optimization (DEPSO).
A different particle encoding allowing optimization of K was proposed in [2].
Each particle has a position in every solution space dimensionality from Kmin

to Kmax and the proposed MD-PSO algorithm is able to move particles from
one dimensionality to another. More PSO variants applied for clustering are
reviewed in [15, 16].

2.1. Clustering with Multi-Elitist Particle Swarm Optimization

In MEPSO [1], each particle has a growth rate βp. If the fitness value of
particle p at iteration t is better than at iteration (t − 1), βp is increased.
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At iteration t, after the particle fitness evaluations have been performed, all
the particles having a better local best value, bp(t), than the previous global
best, bS(t− 1), are moved into a candidate area. The local best having the
highest growth rate is assigned as the new global best, bS(t). Thus, the new
global best may not have the highest fitness value, but it has improved more
during the last iteration. This can prevent the swarm from gathering too
close to a suboptimal global best solution in an early phase of the search
process. The pseudo-code of MEPSO can be found in [1].

The particle encoding used for MEPSO clustering was also proposed in
[1]. Given a user defined maximum number of clusters, Kmax, the position
of particle p is encoded as a Kmax +Kmax ∗N vector xp = {Tp,1, . . . , Tp,Kmax ,
mp,1, . . . ,mp,Kmax}, where Tp,j, j ∈ {1, . . . , Kmax} is an activation threshold
in the range of [0, 1] and mp,j represents the jth (potential) cluster centroid.
If Tp,j > 0.5, the corresponding jth centroid is included in the solution. Oth-
erwise, the cluster defined by the jth centroid is inactive. The minimum
cluster number is defined to be two. If there are less than two active clusters
in a solution, one or two randomly selected activation thresholds, Tp,j < 0.5,
are re-initialized to a random value in the range of ]0.5, 1]. In our imple-
mentation, similar to [13], we also deactivate any cluster having less than
two items by setting its activation threshold to a random value in the range
of [0, 0.5] and then check whether the condition on the minimum number of
clusters is still satisfied.

The problem with this kind of particle encoding is that basically each
particle position represents partitions with all the considered numbers of
clusters. Most likely the algorithm will first encounter some decent solutions
with smaller numbers of clusters. The purpose of the algorithm is to grad-
ually guide the particles toward better solutions. However, the same cluster
positions are often not ideal for different numbers of clusters as illustrated in
Fig. 1. If the algorithm first finds a near-optimal solution with two clusters,
just adding a third cluster centroid will not be a good solution with three
clusters. Therefore, this particle encoding creates strong local optima with
lower numbers of clusters and, indeed, underclustering (i.e. finding partitions
with too few clusters) is a common problem.

Originally, MEPSO was proposed with the kernelized CS CVI, but we
found this index computationally too expensive for larger datasets and, there-
fore, it was excluded from this paper.
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Figure 1: Possible cluster centroids (stars) for a dataset. Filled large stars form a desired
solution with three clusters and unfilled large stars with two clusters.
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2.2. Clustering with Multi-dimensional Particle Swarm Optimization
MD-PSO [2, 17] is an extension of the basic PSO algorithm, where par-

ticles can search for solutions with different dimensionalities within a given
dimensionality range, {dmin, . . . , dmax}. In order to accomplish this, each par-
ticle has two sets of components, each of which has been subjected to one
of the two independent and consecutive PSO processes. The first one is the
regular positional PSO, which takes place in each particle’s current dimen-
sionality, dp, and the second one is a dimensional PSO, which allows particles
to move among search spaces in different dimensions. For each dimension-
ality d, the swarm keeps track of the global best position so far achieved,
bd
S, and each particle p keeps track of its last position xd

p, velocity vd
p and

personal best position bd
p in that particular dimensionality d so that when

it re-visits the same dimensionality at a later time, it can perform the regu-
lar positional updates using this information. The dimensional PSO process
may then again move the particle to another dimensionality, where it will
remember its positional status and will be updated through the positional
PSO process, and so on. Similarly to the positional PSO, the dimensional
PSO process uses the personal best dimensionality (in which the personal
best fitness score has so far been achieved) of each particle, dbp, and the
global best dimensionality, dbS, to attract the particles toward a better di-
mensional solution. Finally, the global best solution in dimensionality dbS,
bdbS
S , represents the optimal solution and dimensionality, respectively.

Both the basic PSO algorithm and its multi-dimensional extension MD-PSO
suffer from premature convergence to a local optimum particularly when a
high dimensional optimization problem with a multi-modal fitness surface
is encountered. The premature convergence is mainly caused by a loss of
diversity i.e. the particles gather too close to bS in an early phase and lose
their ability to explore new potential solutions. FGBF [2] that is a plug-in
to the (MD-)PSO process can efficiently address the premature convergence
problem. The main idea of FGBF is to create at every iteration an additional
artificial solution bA by combining the best individual elements of particles’
solutions evaluated by fractional fitness scores, f(p, d, j). This artificial so-
lution is then compared to bS and, if it turns out to have a higher fitness
value, bA will replace bS as the global best. If, on the other hand, the new
solution bA is not better than bS, the latter will be used in the subsequent
iteration. When FGBF is used in combination with MD-PSO a separate
artificial solution, bd

A, is created for every dimensionality d within the di-
mensionality range {dmin, . . . , dmax} and in every dimensionality bd

A solution
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competes with bd
S solution. However, depending on the optimization task,

during the formation of bd
A it may be possible to combine elements from

particle positions with different dimensionalities (In the clustering case, this
means that cluster centroids can be collected from solutions with different
K).

MD-PSO and FGBF were first applied to clustering in [2] and the method
was also exploited, for example, in [18, 19, 20], where it has been shown that
MD-PSO with FGBF can achieve an optimal clustering performance even in
highly complicated datasets. The particle encoding used is a straightforward
multi-dimensional extension of the centroid-based encoding used in [11], i.e.
xd
p = {mp,1, . . . ,mp,j, . . . ,mp,d}. Now each particle has a position in every

dimensionality d ∈ {dmin, . . . , dmax} and in the dth dimensionality particle
positions represent d potential cluster centroids. The dimensional PSO pro-
cess leads particle towards solutions with a better number of clusters while
the interleaved positional PSO process helps find better solutions with a cer-
tain number of clusters. Having separate solutions for each cluster number,
this particle encoding is not creating similar strong local optima with low
numbers of clusters as the particle encoding used with MEPSO (described
in Section 2.1) and underclustering is not a problem to the same extent.

The objective of the FGBF process is to combine the best individual
elements (cluster centroids in this case) to create artificial solutions bd

A to
compete with bd

S solutions in every dimensionality d ∈ {dmin, . . . , dmax}. If
among all possible cluster centroids represented by stars in Fig. 1, one could
combine the unfilled large stars when creating b2

A and the filled large stars
when creating b3

A, these solutions could help the PSO process converge to
a better overall clustering solution. However, finding these desired cluster
centroid combinations among all the possibilities is not simple. It is not
feasible to consider all the possible centroid combinations, but if the qual-
ity of a certain centroid is evaluated only locally with respect to the data
items without considering other centroids, undesired solutions are likely to
be obtained. Therefore, the FGBF operation exploits Minimum Spanning
Trees (MSTs) [21] to ensure that the selected centroids represent different
natural clusters. The pseudo-codes and further details of MD-PSO, FGBF,
and their application to clustering can be found in [2, 17].

Originally in [2], the fractional fitness scores for centroids were evaluated
based on their distances to the data items clustered into the corresponding
cluster in the PSO position from which the centroid has been taken. The
main reason to use such approach was that the fractional fitness scores could
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thus be calculated simultaneously to computing the CVI used as a fitness
function (Eq. (2)). Naturally it was not guaranteed that the same data
items would be assigned to the cluster defined by the centroid when com-
bined with different centroids in solution bd

A. Nevertheless, this approach
gave a functioning approximation of the centroid quality. In this paper, we
use a slightly different fractional fitness score, f(p, d, j), to approximate the
quality of the centroid defined by the jth element of particle p’s position in
dimensionality d, xd

p,j = mp,j

f(p, d, j) =
M∑

i=1

‖x[i] −mp,j‖
M

(1)

where x[i] represents the ith closest data item to mp,j. Due to computational
simplicity, only data items assigned to cluster Cj defined by mp,j in solution
xp are considered. M = min (10, nj), where nj is the number of data items
assigned to cluster Cj.

3. Fitness Evaluation in Particle Swarm Clustering

3.1. Fitness Function Selection

The quality of a partition produced by a clustering method can be eval-
uated with three types of CVIs: external, internal, and relative. External
CVIs compare clustering results with the ground truth information. As PSC
is usually exploited in situations, where no such information is available, ex-
ternal CVIs are cannot be used as fitness functions. Instead, they provide
a means to evaluate the performance achieved using internal and relative
CVIs as fitness functions in test circumstances where the optimal partition is
known. Internal CVIs evaluate clusters solely based on the data itself. Com-
monly used measures are, for example, cluster compactness and separation.
Relative CVIs can be used to compare two clustering results and to indicate
which one is better. While most external CVIs are relative, the term usually
refers to internal relative CVIs. In this paper, to avoid any confusion be-
tween internal and external CVIs, we call external CVIs partition similarity
measures.

Most novel PSC techniques or application (e.g. [22, 23]) simply adopt
a certain relative CVI as their fitness function without any justification for
the selection, but in general any PSC technique can be easily modified to
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use any CVI as its fitness function. The fitness function selection can signif-
icantly affect the clustering results and should be thus carefully considered.
A poorly selected fitness function will lead to undesired partitions no matter
how advanced the applied PSC technique is. As different CVIs are designed
to address different data distributions, they may lead to completely different
partitions. A certain CVI may be able to handle unbalanced data well, while
having a moderate performance on overlapping clusters. Therefore, it would
be best to select the CVI to be used as a fitness function according to the
data type to be clustered. However, the data properties are usually unknown
to the user of a PSC method. When this is the case, it would be recommend-
able to use several CVIs [14] or a combined CVI [24, 25]. Whether using a
single CVI or a group of CVIs, it is important to know how these CVIs are
performing on different data types.

Most CVIs work best with spherical clusters having equal number of
data items, but there are mechanisms to accommodate unbalanced data,
anisotropic data distribution, or arbitrarily shaped clusters, while usually
such mechanisms come with a trade-off and the performance may suffer in
other cases. Similar to K-means, in PSC with centroid-based particle encod-
ing, the data space is always partitioned into Voronoi cells. Therefore, it is
not meaningful to use CVIs that are able to handle data with peculiar cluster
shapes or significant anisotropy. On the other hand, the ability to handle
unbalanced data is usually desired.

Furthermore, when the number of clusters is unknown, this raises an
important question: how the selected CVI behaves with varying number of
clusters? It is important to note that not all the CVIs reach their optimal
value for the optimal number of clusters, but for some CVIs different statistics
such as maximum increase/decrease or maximum/minimum of the second
differences, are better suited to detect the optimal number of clusters [26,
27]. However, PSO can only optimize its fitness function and, therefore,
the optimum of the selected CVI should also indicate the optimal number
of clusters in order to simultaneously optimize the number of clusters and
obtain the corresponding optimal partition. For this reason, CVIs which are
performing well in general comparisons may not be successful as PSC fitness
functions.

When considering the behavior of a certain CVI for different numbers of
clusters, it should be also noted that clustering is often used as a part of a
more complicated system (e.g. ECG classification in [28] or training of radial
basis function networks in [19]). Commonly the obtained clusters will be
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afterward labeled or processed in a certain manner and, generally, it is not a
problem to give the same label or treatment for several clusters. Instead, it
is more problematic if the items assigned to a single cluster do not represent
a single natural class. Therefore, if the partitions are otherwise meaningful,
CVIs that have a tendency to suggest too many clusters (i.e. overclustering)
can usually be preferred over those CVIs that are more apt to undercluster.

3.2. Fitness Evaluation with Computational Centroids

Most existing CVIs depend on the cluster centroids in one way or an-
other. As the purpose of the PSO fitness function is to evaluate the fitness
of a particle and in PSC each particle represents a set of candidate cluster
centroids, it seems natural to simply replace the cluster centroids in CVIs
with centroids proposed by particle positions. This approach has been used
e.g. in [2, 11, 13, 29].

However, usually the centroids proposed by particle positions are different
from the computational centroids of the items assigned to the correspond-
ing clusters as illustrated in Fig. 2. We propose to apply FECC, where the
fitness function values are computed using the latter. While the traditional
approach better corresponds with the actual fitness of the particle positions,
the final goal of the PSC process is to find a dataset partition i.e. a cluster
label for each data item. Therefore, it can be argued that, if two candidate
sets of centroids result in the same final data partition, their fitness should
be the same. In a situation similar to that in Fig. 2, the clustering process
using the traditional way to compute the fitness score would most probably
later converge so that particle positions and computational centroids match,
but the computational effort required would be wasted in the sense that the
final data partition would not further improve. Using FECC this compu-
tational effort is saved. In real clustering problems, clusters are commonly
not that well separated and moving the particle positions to match with the
computational centroids would result in different cluster memberships (this
is a well-known fact from the functioning principle of K-means). We believe
that in such situations FECC has a greater potential to guide the PSC pro-
cess toward better partitions. With the traditional approach, a promising
partition may be penalized and lost only because the particle positions are
somewhat outside the data distribution.

FECC can be used with any PSC method, where fitness evaluation is
performed using a CVI depending on the cluster centroids, as the only modi-
fication needed is the computation of the mean of the data items assigned to
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Figure 2: Centroids proposed by a particle position and computational centroids of items
belonging to the corresponding clusters usually differ
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a certain cluster before computing the value of the selected CVI. In some ear-
lier PSC applications, FECC has been possibly used, as the details of fitness
evaluation are often discarded, but to the best of our knowledge, it has not
been specifically proposed, evaluated, or compared against the traditional
fitness evaluation in any earlier publication.

4. Clustering Validity Indices

4.1. CVI Definitions

In this section, we introduce the 17 CVIs selected for comparative evalu-
ations. All the selected indices except SIL, Dunn, and Ratkowsky & Lance
directly depend on the cluster centroids and they are used in fitness evalu-
ation in the traditional way and with the FECC approach. The considered
fitness functions are listed in Table 1. The FECC version is denoted with an
asterisk after the abbreviation (e.g. BH*). As PSC fitness functions, CVIs
are minimized even if another approach (e.g. knee-point detection) would
better indicate the optimal number of clusters. The indices to be maximized
are negated. Below, the formulas and explanations for all the CVIs are given.
The notations used in the CVI formulas are defined in Table 2.

A CVI commonly used with particle swarm clustering (e.g. in [1, 29]) is
the quantization error defined as

QE =
1

K

K∑

i=1

∑

x∈Ci

‖x−mi‖
ni

. (2)

Lower values of the quantization error indicate better partitions.
Ball & Hall index ([30]) is simply the average distance of each item to

their respective cluster centroid:

BH =
1

n

K∑

i=1

∑

x∈Ci

‖x−mi‖. (3)

Lower values of the index indicate better partitions. When this index has
been previously used to decide the number of clusters, the maximum differ-
ence between two hierarchy levels has been typically used as the indicator of
the best number of clusters [31, 32].

Several commonly used CVIs aim at minimizing the within-cluster sum-
of-squares, ssw. Many of them also simultaneously attempt to maximize the
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Table 1: PSC fitness functions compared in this article. Asterisks denote FECC approach.

Notation CVI Formula

QE,QE∗ Quantization error (2)
BH,BH∗ Ball & Hall index (3)
CH,CH∗ Calinski-Harabasz index (4)
HA,HA∗ Hartigan index (5)
Xu,Xu∗ Xu index (6)
WB,WB∗ WB index (7)
RL Ratkowsky & Lance index (8)
SIL Silhouettes index (9)
I, I∗ I index (12)
DB,DB∗ Davies-Bouldin index (14)
mDB,mDB∗ Modified DB index (17)
Γ,Γ∗ Normalized modified Hubert Γ index (18)
CS,CS∗ CS index (19)
DU Dunn index (20)
DU23, DU23∗ Dunn variant DU23 (23) and (26)
DU33, DU33∗ Dunn variant DU33 (24) and (26)
DU53, DU53∗ Dunn variant DU53 (25) and (26)
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Table 2: Notations used in CVI formulas
Explanation Notation and formula

Data item x
Set of all items C
Total mean vector m = 1

n

∑
x∈C

x

Number of items n
Data dimension N
Number of clusters K
ith cluster Ci

Number of items in cluster Ci ni

Centroid of cluster Ci mi = 1
ni

∑
x∈Ci

x

Sum-of-squares for cluster Ci sswi =
∑
x∈Ci

‖x−mi‖2

Within-cluster sum-of-squares ssw =
K∑
i=1

sswi

Between-cluster sum-of-squares ssb =
K∑
i=1

ni‖mi −m‖2

Total sum-of-squares sst =
∑
x∈C
‖x−m‖2
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between-cluster sum-of-squares, ssb. Since the total sum-of-squares, sst =
ssw + ssb, is constant for a given dataset, these objectives are overlapping
[33]. This group of CVIs includes Calinski-Harabasz index or CH index
(as given in [31])

CH =
ssb

ssw
× n−K
K − 1

(4)

Hartigan index (as given in [31])

HA = log
ssb

ssw
(5)

Xu index [34]

Xu = N log

(√
ssw

Nn2

)
+ logK (6)

WB index [35]

WB = K
ssw

ssb
(7)

and Ratkowsky & Lance index (as given in [31, 36])

RL =

1
N

∑N
d=1

√
ssbd
sstd√

K
(8)

where ssbd and sstd are separately computed for each dimension of the data.
In our experiments, we removed any dimension for which sstd = 0 for this
index. As evident from the definitions, CH, Hartigan, and Ratkowsky &
Lance indices are to be maximized, while Xu and WB indices should be
minimized. In [31, 32], the optimal number of clusters is directly decided
using the maximum value of CH and Ratkowsky & Lance indices, while
for Hartigan index the maximum difference is used. In [26], the second
differences are also used for CH and Ratkowsky & Lance indices, but in
that study the definition of Ratkowsky & Lance index was given without
the denominator

√
K in Eq. (8). The inventors of WB index [35] claim that

it should determine the optimal number of cluster directly by its minimum
value, while for other ssw-based indices a knee-point is a better indication.

Silhouettes or SIL index [37] can be computed as the average of sil-
houette widths si of all data items xi,

SIL =
1

n

n∑

i=1

si =
1

n

n∑

i=1

bi − ai
max (ai, bi)

(9)
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where ai is the average distance of item xi to the other items belonging to
the same cluster Cj,

ai =
1

nj − 1

∑

xk∈Cj ,
k 6=i

‖xi − xk‖ (10)

and bi is the minimum average distance of item xi to the items belonging to
some other cluster Ch,

bi = min
h∈{1,...,K},

h6=j

1

nh

∑

x∈Ch

‖xi − x‖. (11)

If there is only a single item xl in a cluster, sl is set to zero. Thus, for each
data item xi, −1 ≤ si ≤ 1. When si is close to 1, item xi is well clustered,
i.e. it is significantly closer to items in its own cluster than items in any other
cluster. When si is close to -1, item xi has been clearly misclustered. Thus,
larger values of SIL index indicate better partitions.

I index [38] is defined as

I =

(
1

K

E1

EK

max
i,j∈{1,...,K}

‖mi −mj‖
)p

(12)

where p ≥ 1 (following [38], we set p to 2) and

EK =
K∑

i=1

∑

x∈Ci

‖x−mi‖. (13)

Thus, E1 is constant for a given dataset. It is used as a ”normalizing factor”
to avoid extremely low index values. Partitions with larger values of I index
are preferred.

Davies-Bouldin index or DB index [39] is one of the classical validity
indices. It attempts to minimize the intra-cluster distances and maximize
the inter-cluster distances for each cluster Ci as follows:

DB =
1

K

K∑

i=1

max
j∈{1,...,K},j 6=i

(
ei + ej
Mij

)
(14)

where ei is the dispersion of cluster Ci,

ei =

(
1

ni

∑

x∈Ci

‖mi − x‖q
) 1

q

(15)
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and Mij is the distance between the centroids of clusters Ci and Cj,

Mij =

(
N∑

d=1

|mid −mjd|p
) 1

p

. (16)

The minimum value of DB indicates the best partition. We set q = 1 and
p = 2 similar to [31, 32, 40].

The modified DB index [41] is defined as

mDB =
1

K

K∑

i=1

maxj=1,...,K,j 6=i (ei + ej)

mink=1,...,K,k 6=i (Mik)
(17)

where q = 1 and p = 2 are used in Eq. (15) and Eq. (16).
The normalized modified Hubert Γ index [42] is defined as

Γ =
1

M

n−1∑

i=1

n∑

j=i+1

(Pij − µP )(Qij − µQ)

σPσQ
(18)

where M = n(n−1)/2, P is the proximity matrix of the dataset, Q is a n×n
matrix, whose element Qij is the distance of the centroids of the two clusters,
which include data items xi and xj, µP , µQ, σP , and σQ are the means and
variances of P and Q matrices. Higher values of the index indicate better
clustering results. According to [43], knee-point detection should be applied
for this index to decide the optimal number of clusters.

CS index [44] is defined as

CS =

K∑
i=1

(
1
ni

∑
xj∈Ci

max
xl∈Ci

‖xj − xl‖
)

K∑
i=1


 min

j∈{1,...,K},
j 6=i

‖mi −mj‖




(19)

and lower values of the index indicate better partitions.
Dunn index [45] is defined as

DU =

min
i,j∈{1,...,K},i 6=j

δ(Ci, Cj)

max
k∈{1,...,K}

∆(Ck)
(20)
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where δ(Ci, Cj) is the distance of two clusters Ci and Cj defined as

δ(Ci, Cj) = min
x∈Ci,y∈Cj

‖x− y‖ (21)

and ∆(Ck) is the cluster diameter defined as

∆(Ck) = max
x,y∈Ck

‖x− y‖. (22)

Higher values of the index indicate better partitions.
Bezdek and Pal [43] proposed five alternative ways to compute δ(Ci, Cj)

and two alternative ways to compute ∆(Ck). Different combinations of the
original and alternative formulas give 17 variants of Dunn index. The fol-
lowing alternatives for cluster distance and cluster diameter were shown to
yield some of the best results:

δ2(Ci, Cj) = max
x∈Ci,y∈Cj

‖x− y‖ (23)

δ3(Ci, Cj) =
1

ninj

∑

x∈Ci

∑

y∈Cj

‖x− y‖ (24)

δ5(Ci, Cj) =
1

ni + nj


∑

x∈Ci

‖x−mj‖+
∑

y∈Cj

‖y −mi‖


 (25)

and

∆3(Ck) = 2

∑
x∈Ck
‖x−mk‖
nk

. (26)

In this paper, we will consider variants DU23, DU33, and DU53.

4.2. Earlier CVI Comparisons

4.2.1. Description of Comparative Evaluations

Over the years, several comparative studies over different CVIs have been
published. In a classical study of Milligan and Cooper [31], 30 different CVIs
were compared. They applied hierarchical clustering using only simple arti-
ficial datasets which contained at most five distinct nonoverlapping clusters.
Each dataset had only 50 items and data dimensionality was set to 4, 6, or 8.
Both balanced and unbalanced classes were considered. Milligan and Cooper
mainly compared CVIs in terms of the numbers of clusters suggested by
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them, but they also verified using the Jaccard index and the Adjusted Rand
statistic that the obtained partitions exhibit desired properties. Another ex-
tensive CVI comparison by Dimitriadou et al. was published in [26]. In this
study, 15 CVIs were compared over 162 12-dimensional binary datasets us-
ing K-means and Hard Competitive Learning (HCL). Each dataset had 6000
items, the optimal cluster number was 4-6 and both balanced and unbalanced
classes were used. Besides the number of clusters obtained, Dimitriadou et
al. compared CVIs in terms of absolute and relative profile identification as
well as classification rate. Many other CVI comparisons, which use more
complicated datasets including real-life datasets, just adopt the assumption
that the obtained clusters exhibit desired properties if the suggested cluster
number is correct without separately verifying the assumption [43, 46, 47, 48].
This approach is criticized in [32, 49].

Vendramin et al. [32] state that CVIs should not be compared using only
resulting cluster numbers, because beside the (near)optimal partition with
the correct cluster number, there exist naturally several suboptimal parti-
tions with the same number of clusters. Thus, finding the correct number of
clusters may not guarantee a high quality clustering. Similarly, they state
that the error made by a certain CVI should not be measured in terms of the
absolute difference between the suggested cluster number and the optimal
cluster number, because it is possible that a partition with a wrong cluster
number is still closer to the optimal partition than a partition with the cor-
rect number of clusters. Furthermore, they criticize the common approach
to assess each CVI solely based on the correctness (with respect to the num-
ber of clusters) of the partition elected as the best one according to that
index. They state that it is also important to assess whether the indices can
meaningfully rank the suboptimal partitions. As an overall solution to these
concerns, they propose that for each dataset one should generate several par-
titions with varying qualities and numbers of clusters, compute CVI values
for each partition, and finally evaluate the correlation between the CVI val-
ues and the values obtained using a partition similarity measure to evaluate
the similarity with the ground-truth data. In [32], the classical study of [31]
was first reproduced with 40 different CVIs and with a different criterion to
select the optimal number of clusters. The new criterion they adopted was
the difference between hierarchy levels. Then the same CVIs were compared
on the same datasets using the proposed comparison protocol. The results
were indeed quite different. Finally, they conducted a more comprehensive
comparison on 972 datasets of 500 items using the proposed approach. In
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this larger comparison only 14 CVIs were considered.
Gurrutxaga et al. [49] share the concerns mentioned above over the method-

ology commonly used in CVI comparisons, but they formulate their concerns
somewhat differently. As the main problem, they see ”the algorithm cor-
rectness assumption”, i.e., the assumption that, if an algorithm can produce
partitions with different cluster numbers, it will produce them so that the
partition with the correct cluster number fits the data better than any other
partition. If this is not true and a partition with a wrong cluster number is
closer to the optimal partition, it is not fair to assume that CVIs should be
able to still predict the correct number of clusters. Therefore, Gurrutxaga et
al. suggest that instead of comparing CVIs in terms of the cluster number,
one should compare the similarity of the correct partition and the partition
receiving the highest CVI value using a partition similarity measure. To get
more robust results, they suggest combining the results obtained by several
similarity measures, several clustering algorithms, and using several different
datasets with varying properties. In [49], they compare seven well-known
CVIs over seven synthetic datasets and three datasets from real applications
using both traditional and proposed methodologies. The results show that
the obtained CVI ranking is indeed different with different methodologies.
In [40], the proposed methodology was applied to compare 30 CVIs over 720
synthetic and 20 real datasets.

While we agree with the above principles, our objectives are naturally
somewhat different than those discussed in [32, 49]. Both works attempted
to find out, which CVI can select the best partition among several possible
partitions or rank these partitions, while we want to know which CVI can
be most successfully used for fitness evaluation in PSC. Nevertheless, the
above listed reasons explain, why the CVI ranks obtained in earlier compar-
isons are varying significantly and why the majority of the results may not
really describe which CVIs produce best partitions. Furthermore, it can be
concluded that the best ranking CVIs in general comparisons may not be
the ones most suitable for fitness evaluation in PSC. Thus, the most rele-
vant CVI comparison for this study has been published in [14]. In this work,
the authors compared 8 common CVIs over 6 synthetic and 4 real datasets
using DEPSO for dynamic PSC. Beside the cluster number, they used four
different partition similarity measures to evaluate the quality of the obtained
partitions.
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4.2.2. Overview of Earlier Comparison Results

An overview of the results obtained in the earlier comparisons of the CVIs
introduced in Section 4.1 is shown in Table 3, where lighter color means a
better relative performance in the comparison and ’X’ means that the CVI
was not considered at all in the comparison. As explained above, the applied
methods and evaluation criteria vary a lot and, therefore, a clear comparative
evaluation of the results from different comparisons is not meaningful. Also
it should be noted that the ranks shown in the table are somewhat arbitrary.
The rank may be based on only one of several criteria and in some cases
the differences between the CVIs were insignificantly small, but we still used
them to rank the CVIs.

Quantization error has not been considered in the earlier comparisons.
Ball & Hall index was not successful in the classical study of Milligan and
Cooper [31]. However, when the study was reproduced in [32] with a different
criterion to decide the optimal hierarchy level this CVI became one of the
best in the comparison (6a). With the new comparison approach proposed
by Vendramin et al., this CVI was less successful (6b). In [26, 35], a different
formula was used for Ball & Hall index ( ssw

K
).

Among CVIs aiming at minimizing ssw, CH index was the winner of
the classical comparison study of [31] and it has been successful also in the
later comparisons. Interestingly, the index has produced good results when
used either with the maximum [31, 32] or the maximum difference [26, 35]
as the indicator of the optimal number of clusters. Hartigan index has not
been among the top CVIs in any of the previous comparisons. Ratkowsky
& Lance and Xu indices were the top two overall performers in the com-
parison of [26], but in that study the definition of Ratkowsky & Lance index
was given without the denominator

√
K in Eq. (8). Ratkowsky & Lance

index was also ranked high in [32], when the proposed comparison approach
was used (6b), but further analysis carried out by the authors showed that
the success was misleading and the index was dominated by the number of
clusters. In [31], Ratkowsky & Lance was ranked below average. WB index
has not been considered in extensive comparisons, but in the original paper
[35] it outperformed several other indices, when the ability to find the correct
number of clusters was evaluated.

SIL index has been the best performing CVI in several comparisons [14,
32, 40], but it is also among the computationally most complex indices [32].
Also I index has been relatively successful in recent comparisons [14, 32]. In
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Table 3: An overview of results obtained in earlier CVI comparisons. Lighter color means
better relative success.

Q
E

B
H

C
H

H
A

X
u

W
B

R
L

S
IL I

D
B

m
D

B

Γ C
S

D
U

D
U

23

D
U

33

D
U

53

1 X X X X X X X X X X X X
2 X X X X X X X X X X X
3 X X X X X X X X X X X X X X
4 X X X X X X X X X X X
5 X X X X X X X X X X X X X
6a X X X X X X
6b X X X X X X X X X
6c X X X X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X X X X X X
9 X X X X X X X X X
10 X X X X X X X X

1 [31]
2 [26], ranking based on Table 2
3 [47], ranking according to the overall number of runs where the true

cluster number was found on the first 4 datasets
4 [43], ranking based on Table VIII
5 [48], ranking based on Table 2
6 [32] a) ranking based on the reproduced study of Milligan and Cooper,

Table 9, b) ranking based on the same comparison with the proposed
approach, Table 10, c) ranking based on the more comprehensive com-
parison with the proposed approach, Table 17

7 [40], ranking based on Table 2
8 [49], ranking based on Table 4
9 [14], ranking based on average rank in Table IV
10 [35], ranking based on Table 2
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[31, 32, 40], DB index was used setting q = 1 and p = 2, while in [26], ei was
replaced by sswi. In all these comparisons, DB index was among the upper
mid-level performers. In the extensive comparison of [40], also a modified
version introduced in [41] was evaluated and found to be performing better
than the original version. The normalized modified Hubert Γ index has
been considered only in [43], where it was an average performer. CS index
has been evaluated in [14] and [40] to have worse than average performance.

In most earlier comparisons, Dunn index has not been among the best
performing CVIs (e.g. [40, 32]), whereas in [14, 49] it was relatively suc-
cessful. In [43], [32] (6a), and [40], the considered Dunn variants clearly
outperformed the original Dunn index. A contrary result was obtained in
[14] were the original Dunn index was better than DU33 and DU53 variants.

5. Experimental Results

5.1. Partition Similarity Measures

We use three different partition similarity measures (external CVIs) to
evaluate the similarity of the ground-truth partitions and the obtained parti-
tions: the Jaccard index [50], the Adjusted Rand index [51], and the labeling
error. If Preal is the ground-truth partition and PPSO is the partition ob-
tained by PSC, for each pair of items xi,xj, i 6= j there are four possible
cases: 1) they belong to the same cluster in both Preal and PPSO, 2) they
belong to the same cluster in Preal, but different clusters in PPSO, 3) they
belong to different clusters in Preal, but to the same cluster in PPSO, or 4)
they belong to different clusters in both Preal and PPSO. If a, b, c and d
are used to denote the number of item pairs for each case, respectively, the
Jaccard index can be defined as

Jaccard = a/(a+ b+ c) (27)

and the Adjusted Rand index as

AR =
M(a+ d)− ((a+ b)(a+ c) + (c+ d)(b+ d))

M2 − ((a+ b)(a+ c) + (c+ d)(b+ d))
(28)

whereM = a+b+c+d. The Adjusted Rand index is corrected for randomness
so that its values around zero indicate that the similarity of two partitions
could be due to chance. For (near) perfectly agreeing partitions, the Adjusted
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Rand index value is (close to) one. The value can also be less than zero,
indicating less than chance agreement between partitions.

To compute the labeling error, we label each cluster in PPSO according
to the majority Preal label present and, using these cluster labels, we com-
pute the percentage of mislabeled data items. We do not care about the
number of clusters when computing the clustering error, i.e., in an extreme
case one could assign each data item into a different cluster and still ob-
tain a zero percent labeling error. However, the defined dimensionality range
{dmin, . . . , dmax} limits the maximum number of clusters to be dmax and sub-
jectively we feel that for many real life applications it does not matter if the
obtained cluster number, KPSO, is higher than the optimal, Kreal, as long as
KPSO << n and the labeling error is low.

5.2. Datasets

We created 720 synthetic datasets using the methodology introduced in
[40]. All the datasets are sampled inside a fixed hypercubic window defined by
coordinates {0, 0, . . . , 0} and {50, 50, . . . , 50}. Similarly a reduced sampling
window defined by coordinates {3, 3, . . . , 3} and {47, 47, . . . , 47} is used to
sample the cluster centroids. Once a cluster centroid, mi has been chosen, all
cluster items are drawn from a multivariate normal distribution with mean
mi and identity covariance matrix. Any item outside the sampling window
is resampled.

The datasets cover all the possible combinations of the parameters given
in Table 4. The meaning of the number of clusters, K, and the dimensionality,
d, is obvious. If the density, den, is set to 1, all the clusters have nmin items.
If the density is set to 4, the first cluster has 4 ∗ nmin items, while all the
other clusters have nmin items. This produces a density asymmetry, because
different numbers of items are located in the approximately same volume.
When the overlap, ov, is bounded, all the cluster centroids are drawn from a
uniform distribution inside the reduced sampling window. If the strict overlap
is used, the first centroid is similarly drawn from a uniform distribution
inside the reduced sampling window, while the remaining centroids are set to
random points located at distance 2∗ov from a randomly selected previously
created cluster centroid, mk. For both overlap types, all the cluster centroids
must be separated by the minimum Euclidean distance of 2 ∗ ov, i.e., if ∃i 6=
j, ‖mi −mj‖ < 2 ∗ ov, or the newly created centroid, mj, will be resampled.
If a noise level, nl, greater than zero is used, nl∗N ′ noise items are randomly
drawn from a uniform distribution inside the sampling window, where N ′ is
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Table 4: Parameters of the created synthetic datasets. All possible combinations were
used.

Parameter Values

Number of clusters, K 2,4,8
Dimensionality, d 5,10,20
Density den 1,4
Minimum number of items per cluster, nmin 100
Overlap, ov 2 (strict), 5 (bounded)
Noise level, nl 0, 0.1

the number of non-noise items in the dataset (N ′ = nmin ∗ (den + K − 1)).
Using each parameter combination we created 10 datasets, resulting in a
total of 720 synthetic datasets. For further details regarding the synthetic
dataset creation process, the reader is referred to [40].

Similar to [40], we also evaluate fitness functions on 20 real datasets ob-
tained from UCI Machine Learning Repository [52]. The characteristics of
the datasets used in this paper are shown in Table 5. All the dataset val-
ues were normalized between 0 and 1. As the use of benchmark classification
datasets to evaluate clustering algorithms may be misleading [53], we concen-
trate mainly on thorough analysis of the fitness function behavior on different
synthetic datasets and only briefly examine whether the results are similar
on the selected real datasets.

5.3. Experimental Setup

The parameters for the MD-PSO and MEPSO processes were set as fol-
lows: The swarm size, S, was set to 100 and the number of iterations to 200.
The dimensionality range {dmin, . . . , dmax} was set to {2, . . . , 15} and the
dimensional velocity range {dvmin, . . . , dvmax}, to {−4, . . . , 4} for all the ex-
periments. The positional search space range (xmin,xmax) was set according
to the data values so that each element of potential cluster centroids, mp,j,
defined by particle position xp can vary withing the data range [xmin, xmax]
(i.e., [0, 50] for synthetic datasets and [0, 1] for real datasets). The posi-
tional velocity range, (vmin,vmax) was always set similarly with respect to
[−xmax/10, xmax/10]. The inertia weight w(t) is linearly decreased from 0.9
to 0.4 during iterations of a MD-PSO run. The acceleration constants c1 and
c2 in are set to 2 as originally suggested in [3, 54] and used widely thereafter
[55].
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Table 5: Characteristics of the real datasets obtained from UCI repository

Dataset No. of objects Dimensionality No. of classes

Banknote auth. 1372 4 2
Breast tissue 106 9 6
Breast Wisconsin 569 30 2
Dermatology 366 33 6
Ecoli 336 7 8
Glass 214 9 6
Heart Cleveland 297 13 5
Ionosphere 351 34 2
Iris 150 4 3
Movement libras 360 90 15
Parkinsons 195 22 2
Pima Ind. Diabetes 768 8 2
Seeds 210 7 3
Segmentation 2310 19 7
Vehicle 846 18 4
Vertebral column 310 6 3
Vowel context 990 10 11
Wine 178 13 3
Winequality red 1599 11 6
Yeast 1484 8 10

27



For each examined fitness function, we run both MEPSO and MD-PSO 10
times for each synthetic dataset and 100 times for each real dataset. Then we
compute the average performance scores using each partition similarity mea-
sure for each evaluated fitness function on each dataset. For each dataset, we
rank the fitness functions based on their performance and finally we evaluate
the overall results using the average ranks as recommended in [56].

5.4. Results of Comparative Evaluations

The overall results for synthetic datasets are given in Fig. 3. The top
five fitness functions in our comparison are all using the proposed FECC
approach, along with Xu, WB, Dunn variant DU23, Ball & Hall, and CH
indices. Also for the majority of the other CVIs, which can be applied using
FECC, the FECC approach has produced better results than the traditional
way to carry out fitness evaluation. This is a significant outcome suggesting
that the previously applied PSC algorithms can generally be improved by
simply modifying the algorithms to use FECC.

The top two fitness functions in Fig. 3 are interesting. Xu index was
ranked second by [26], but it has not been considered in more recent com-
parisons. WB index is a relatively new index and it has not been previously
considered in any major CVI comparisons. For the other top performing fit-
ness functions there are more comparison results available. Ball & Hall index
and Dunn variant DU23 were successful also in the comparison conducted in
[32] and CH index has been consistently successful in many comparisons.
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Figure 3: Average ranks over all synthetic datasets, all partition similarity measures, and
both PSC algorithms

In Fig. 4, we show the average ranks based on a single partition similarity
measure at a time. It can be seen that for most fitness functions almost the
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same ranks have been obtained using different partition similarity measures,
but some fitness functions are ranked clearly higher when the labeling error
is used as the evaluation method. Such fitness functions include Ball & Hall,
Hartigan, quantization error, and Γ index with FECC and at some level Ball
& Hall, Hartigan, and quantization error applied the traditional way. As
explained above, a better ranking obtained using the labeling error probably
means that the CVIs tend to overcluster. While the other used partition
similarity measures penalize overclustering, the labeling error can still find
the partition successful, if the clusters are uniform.
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Figure 4: Average ranks over all synthetic datasets and both PSC algorithms obtained
using different partition similarity measures for evaluation

In Fig. 5, we show the average ranks separately for the MEPSO and
MD-PSO algorithms. As the main difference between the two algorithms
is in their way to select the optimal number of clusters, we show also the
average errors on the number of clusters found in Fig. 6 for the MEPSO al-
gorithm and Fig. 7 for the MD-PSO algorithm. In Fig. 8, we show the number
of times each fitness function proposed the correct number of clusters with
each PSC algorithm. Figures 6-7 do confirm that the particle encoding used
with MEPSO often leads to underclustering, while for MD-PSO the average
cluster number is clearly higher. The figures also show that FECC almost
always (the only exception being CS index for MEPSO) results in higher
cluster numbers than the traditional way of fitness evaluation. Thus, it is
not surprising that, according to Fig. 5, FECC is relatively more successful
with MEPSO. The difference is clearest for Ball & Hall, Hartigan, quanti-
zation error, and Γ index, which were already found to have a tendency to
overcluster.
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Figure 5: Average ranks over all synthetic datasets separately for both PSC algorithms
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Figure 6: Average error on the number of clusters found when using the MEPSO algorithm
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Figure 7: Average error on the number of clusters found when using the MD-PSO algo-
rithm
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Figure 8: Number of runs out of 7200, when the correct number of clusters was found
with each PSC algorithm

Fig. 8 clearly shows that evaluating fitness functions based on their ability
to find the correct number of clusters would result in quite a different ranking.
For example, SIL index and I and Davies-Bouldin indices with FECC would
be ranked clearly higher, while Ball & Hall index would be among the poorest
performing indices. Most fitness functions produce slightly more often the
correct number of clusters with the MD-PSO algorithm, but the opposite is
true for those fitness functions resulting in overclustering in Fig. 7.

For Ball & Hall, Hartigan, and Γ indices, the previous works have rec-
ommended using the maximum difference to find the correct cluster number,
which is not followed when they are used as PSC fitness functions. Indeed,
the number of correctly proposed cluster numbers is low for all of these.
Nevertheless, these indices are ranked higher than several indices with a bet-
ter ability to detect the correct cluster numbers. This is true even when
evaluated by the Jaccard index or the Adjusted Rand index, which penalize
overclustering. Thus, their ability to locate proper cluster centroid positions
must be competitive and they are good fitness function choices especially
when overclustering is not a problem. Also CH and Ratkowsky & Lance
indices were used with the maximum difference in [26]. Ratkowsky & Lance
is among the poorest cluster number detectors, but especially the FECC ver-
sion of CH index is one of the top indices, when evaluated according to its
ability to find correct cluster numbers.

In figures 9-13, the average ranks are shown individually for each dataset
property listed in Table 4. All these results are computed over all the parti-
tion similarity measures and both PSC algorithms. It should be kept in mind
here that even if a fitness function yields a better ranking with more difficult
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data properties (e.g. with overlap or noise) it does not mean that its absolute
performance is better in those cases. The performance of all fitness functions
suffers from noise or overlapping clusters, but some suffer relatively less than
others and, therefore, their average ranks get higher in these cases. Fig. 9
shows that the most of the top 5 fitness functions (Xu, WB, Dunn variant
DU23, and CH indices with FECC) are consistently top performing for all
numbers of clusters. Both versions of Ball & Hall, Hartigan, and quantization
error and Γ index with FECC have higher ranks when the number of clusters
increases. This is not surprising as for K = 8 they undercluster less likely
than other fitness functions as shown in Fig. 7. Data dimensionality does not
have a significant influence on the fitness function ranking as shown in Fig. 10.
Data density affects the fitness function ranking even less (Fig. 11). Overlap
and noise have a larger impact on the fitness function ranking. Fig. 12 shows
that SIL index and I, Davies-Bouldin, Dunn variant DU53, and the modified
Davies-Bouldin with FECC suffer relatively the most from the overlapping
clusters, whereas especially Dunn variant DU23 with both approaches, Ball
& Hall with FECC, and WB and CH indices with the traditional approach
have higher ranks when clusters are overlapping. Similarly, Fig. 13 shows
that one or both versions of Xu, WB, CH, and the normalized modified Hu-
bert Γ indices lose ranks when noise is introduced, while Ball & Hall, Dunn
variant DU23, and Hartigan with FECC and quantization error with both
approaches are ranked higher. Interestingly the simplest index, Ball & Hall
performs always relatively better when the clustering task gets more difficult
in some way.
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Figure 9: Average ranks over synthetic datasets with different cluster numbers

Finally, figures 14-16 show the average ranks on the real datasets. Now
WB index with FECC has the overall best performance. The second place
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Figure 10: Average ranks over synthetic datasets with different data dimensions
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Figure 11: Average ranks over synthetic datasets with different cluster densities

0

5

10

15

20

25

30

X
u

*

W
B

*

D
U

2
3

*

B
H

*

C
H

*  Γ
 

 Γ
* 

H
A

*

SI
L

Q
E* H
A I* X
u

W
B

D
U

2
3

B
H

Q
E

D
U

3
3

* R
L

D
B

*

C
H

D
U

5
3

*

m
D

B
*

C
S* D
U C
S

D
B

D
U

3
3

m
D

B

D
U

5
3 I

Overlap

No overlap

Figure 12: Average ranks over synthetic datasets with and without overlap
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Figure 13: Average ranks over synthetic datasets with and without noise

is occupied by Ratkowsky & Lance index, which was not among the top
performers for synthetic datasets. These results must be interpreted with
caution and with some reserves. For example, it is possible that a class
consists of several natural clusters (groupings in the feature domain) and,
therefore, the best clustering result may not coincide with the best classifi-
cation result. From Fig. 15 we conclude that such a scenario likely occurs
at least for some datasets. In that case the labeling error could be low for
indices that tend to overcluster, if they correctly detect the natural clusters,
but the scores of the other partition similarity measures would suffer signifi-
cantly. Fig. 15 shows that for certain fitness functions (e.g. Xu*, BH*, BH,
HA*, HA) the rank based on the labeling error is clearly better than the
ranks based on the Adjusted Rand or Jaccard indices. Fig. 16 shows that
there are no major differences between the two PSC algorithms.
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Figure 14: Average ranks over all real datasets, all partition similarity measures, and both
PSC algorithms

34



0

5

10

15

20

25

30

X
u

*

W
B

*

D
U

2
3

*

B
H

*

C
H

*  Γ
 

 Γ
* 

H
A

*

SI
L

Q
E* H
A I* X
u

W
B

D
U

2
3

B
H

Q
E

D
U

3
3

* R
L

D
B

*

C
H

D
U

5
3

*

m
D

B
*

C
S* D
U C
S

D
B

D
U

3
3

m
D

B

D
U

5
3 I

Adjusted Rand

Jaccard

Labeling Error

Figure 15: Average ranks over all real datasets and both PSC algorithms obtained by
using different partition similarity measures for evaluation
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Figure 16: Average ranks over all real datasets separately for both PSC algorithms
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5.5. Statistical Evaluation of Results
We first evaluated whether the differences between the compared fitness

functions are statistically significant overall. We used the Friedman test as
recommended in [56]. The results confirm that the differences are statisti-
cally significant when all the datasets are considered. The differences are
statistically significant without exceptions also when the results are sepa-
rately evaluated for each subset of datasets selected so that they share a
data property (i.e., similar to separate cases handled in figures 9-13).

Next, we conducted a pairwise comparison between each pair of fitness
functions by applying Wilcoxon Signed-Ranks test [56]. We evaluated the
statistical significance of the observed differences separately for each partition
similarity measure and for both PSC techniques. In Table 6, we show the
cases where the difference between the two fitness functions is statistically
significant according to at least 2 partition similarity measures. A negative
number denotes that the lower ranked fitness function is statistically better
in that case. The results for each pair of fitness functions using the same CVI
with the traditional and FECC approaches are bolded. In the upper triangle,
the results are given for MD-PSO and in the lower triangle for MEPSO.

In the most cases, the differences between the fitness function pairs are
statistically significant according to all the applied partition similarity mea-
sures. The above discussed differences between the two PSC algorithms are
also statistically visible. For MD-PSO algorithm alone, the ranks would be
worse, e.g., for Ball & Hall, Hartigan, and quantization error applied using
FECC, which is shown by negative values against some other fitness func-
tions. Similarly, for MEPSO the ranks would be worse, e.g., for WB, Dunn
variant DU23, and CH applied using the traditional approach. There are
also significant differences between the considered partition similarity mea-
sures and sometimes opposite statistically significant difference is detected
with different measures. The labeling error, for example, does not penalize
overclustering but penalizes underclustering more than the other measures,
which may lead to opposite ranking of under/overclustering fitness functions.

The bolded significance evaluation results between the fitness function
pairs applied using both the traditional and the FECC approaches over the
same CVI show that in the most cases (Xu, WB, CH, I, Davies-Bouldin,
modified Davies-Bouldin, CS, Dunn variants DU23, DU33, and DU53) the
FECC approach is better for both PSC algorithms with a statistical signifi-
cance according to all the three partition similarity measures. For MEPSO,
this is true also for Ball & Hall and quantization error. In the remaining
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Table 6: Number of partition similarity measures having a statistically significant differ-
ence between the two fitness functions according to Wilcoxon Signed-Ranks test with a
0.05 significance level. The number is shown only when two or three measures agree on
the significance. Negative numbers mean that lower ranked fitness function is better. In
the upper/lower triangle, the numbers for MD-PSO/MEPSO are given.
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6 cases, the partition similarity measures are not unanimous. There is no
such case, where the traditional approach would be evaluated better with a
statistical significance by all the measures.

We further analyzed the difference of the traditional and proposed FECC
approaches by applying Wilcoxon Signed-Ranks test separately for each test
case from figures 9-13. There are 12 different cases and in each case 3 different
partition similarity measures are used as explained. Thus, the total number
of analyzed comparisons between each fitness function pair is 36 per PSC
algorithm. Table 7 shows how many times either approach was evaluated to
perform better with a statistical significance for the MEPSO algorithm and
Table 8 for the MD-PSO algorithm. The results support the above conclu-
sions. For most fitness function pairs FECC is significantly better in almost
all the cases and for both PSC algorithms. For Ball & Hall, the normalized
modified Hubert Γ, Hartigan, and quantization error the difference is not
so clear. Further analysis shows that in all the cases where opposite sig-
nificances are detected, the labeling error generally favors FECC, while the
other partition similarity measures more often favor the traditional approach.
FECC is more successful also in the most difficult situations. When there
is noise present, all the partition similarity measures always find the FECC
approach better with a statistical significance. The same is often true also
for overlapping clusters and larger numbers of clusters. When the clustering
task is more difficult, there are more local optima and it is more probable
to get stuck in a local optimum in lower dimensions. FECC seems to be
beneficial is such situations.

Table 7: Number of test cases where the traditional fitness evaluation or FECC performs
statistically better according to Wilcoxon Signed-Ranks test with a 0.05 significance level
for the MEPSO algorithm. The total number of cases is 36.

Xu WB BH DU23 CH Γ HA
Traditional approach better 0 0 6 0 0 7 7

FECC approach better 36 36 27 36 33 18 18
I DB DU33 mDB DU53 QE CS

Traditional approach better 0 2 0 2 0 5 2
FECC approach better 36 33 33 33 35 23 28
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Table 8: Number of test cases where the traditional fitness evaluation or FECC performs
statistically better according to Wilcoxon Signed-Ranks test with a 0.05 significance level
for the MD-PSO algorithm. The total number of cases is 36.

Xu WB BH DU23 CH Γ HA
Traditional approach better 0 0 13 0 0 23 19

FECC approach better 33 36 18 36 36 13 15
I DB DU33 mDB DU53 QE CS

Traditional approach better 0 2 0 3 0 7 1
FECC approach better 36 32 34 33 36 17 33

6. Conclusions

Traditionally in dynamic PSC with centroid-based particle encoding, the
fitness of particle positions is evaluated using a CVI as a fitness function.
Most CVIs somehow depend on the cluster centroids. In fitness evaluation,
the cluster centroids are traditionally replaced by centroids proposed by a
particle position. In this paper, we propose a new way to conduct fitness
evaluation in PSC. In the proposed FECC approach, the actual centroids
of the items belonging to the corresponding clusters are first computed and
then these computational centroids are used in the fitness evaluation.

We conducted an extensive comparative evaluation of FECC against the
traditional approach using 14 different CVIs as the fitness function for two
different dynamic PSC algorithms, namely MEPSO and MD-PSO along with
FGBF. The selected algorithms represent commonly used particle encoding
schemes and they have been successfully used in PSC applications. The
FECC approach was observed to bring a clear improvement to the clustering
result with the most considered fitness functions. For a few fitness func-
tions, there was no clear difference between the two approaches, but FECC
was never clearly disadvantageous. Further analysis showed that FECC is
even more beneficial with more difficult datasets (noise, overlapping clusters,
higher cluster number). With difficult datasets there are more local optima
and it is more probable to get stuck in a local optimum in lower dimen-
sions. FECC seems to help avoid those local optima and find more optimal
solutions with higher cluster numbers. Indeed, FECC was observed to pro-
duce higher cluster numbers than the traditional approach with the same
CVI. As underclustering is a common problem in PSC, this explains the
supremacy of FECC. The only fitness functions which did not clearly ben-
efit from FECC were those having a tendency to overcluster already using
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the traditional fitness evaluations. MEPSO benefited from FECC slightly
more than MD-PSO, because with the particle encoding used in MEPSO
underclustering is a more severe problem.

Our second objective was to carry out an extensive comparison between
different fitness functions for PSC. The selection of a proper fitness function
is critical for PSC performance, but, nevertheless, the topic has not received
much attention in the PSC literature. There are general CVI comparisons,
but due to reasons discussed in the paper, they cannot be assumed to directly
indicate best fitness functions for PSC. We conducted an extensive com-
parison of 31 different fitness functions based on 17 different CVIs (fitness
functions based on 14 CVIs were used using the traditional fitness evaluation
and FECC). We performed our tests on 720 synthetic and 20 real datasets.
The clustering performance was measured against the ground-truth parti-
tions using three different partition similarity measures. Since averages over
different dataset can be meaningless, the CVI performances over different
datasets were ranked and the final comparison was conducted over the aver-
age ranks. The statistical significance of the observed differences was finally
evaluated using the Friedman test for the overall evaluation and Wilcoxon
Signed-Ranks test to evaluate the significance of pairwise differences.

The top two fitness functions in this comparison were Xu and WB in-
dices with the FECC approach. Both “winner” CVIs have been excluded
from other recent major comparisons. These fitness functions were followed
by Dunn variant DU23, Ball & Hall, and CH indices with FECC. These CVIs
have been among the top performers also in other recent comparisons. How-
ever, further analysis of results shows that the ranking is not unambiguous,
but there are differences between the different partition similarity measures,
different data distributions, and different PSC methods. Most of these dif-
ferences are related to tendency of the fitness functions to under/overcluster.
The labeling error, which was one the applied measures, does not penalize
overclustering and, therefore, it ranks higher the fitness functions having this
tendency (e.g., Ball & Hall, Hartigan, and quantization error with FECC).
If the PSC application is used only as a pre-step, for example, for classifica-
tion, overclustering may be even a desired property if the resulting clusters
are more uniform. On the other hand, for applications where it is important
to detect the correct cluster number, completely different fitness functions
should be favored. The best accuracy in detecting the correct cluster number
was achieved by Xu, WB, Dunn variant DU23, and CH with FECC and SIL.
The used particle encoding should be also considered in fitness function se-
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lection. The common encoding, used with MEPSO in this paper, is liable to
undercluster. Therefore, for that particle encoding scheme, the above men-
tioned fitness functions with a tendency to overcluster are more beneficial
than for MD-PSO, for which underclustering is not a big problem. Further-
more, if the properties of data are known, it can be used to help in the fitness
function selection. However, commonly data properties are not known or one
wants to use the same settings for several different datasets. In such cases,
we recommend Xu, WB, or Dunn variant DU23 with FECC. They are con-
sistently successful for different measures, algorithms, and data properties.
Dunn variant DU23 with FECC is the most successful on the most difficult
data distributions (noise and/or overlapping clusters), while WB with FECC
was the winner also when tested on real datasets.

In this work, we have not considered CVIs based on different distance
measures such as point symmetry distance [57] and comparative evaluations
of different distance measures used in PSC belong to our future plans.
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