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ABSTRACT 

 
The bioleaching of metal sulphide ore has developed into an important industrial process to recover 
valuable base metals from low-grade ores, because high grade ore resources are depleting. The 
Talvivaara deposits in Finland have been known for decades, but have not been utilized until now, 
because of the low nickel concentration. The aim of this work was to study the bioleaching process of a 
Finnish complex multimetal black schist ore in boreal conditions. The effects of pH and leaching 
temperature on the dissolution of valuable metals and gangue minerals were studied. The effect of low 
temperature on iron oxidation and mineral bioleaching was investigated. Microbial community 
development at different pH values and temperatures was tested in laboratory-scale bioleaching 
columns and finally the community dynamics were studied in a demonstration-scale bioheap over a 
period of three years in Talvivaara Finland.  
 
The experiments were carried out using laboratory-scale columns containing about 9 kg of 
agglomerated ore. The columns were loaded with the ore, irrigated with pregnant leaching solution 
(PLS) by recycling and aerated from the bottom. The tested pH range was from 1.5 to 3.0 at 21 ºC  and 
temperature range was from 7 to 50 ºC at pH 2.5. The particle size (d80) of the ore was 7.6 mm. Surface 
water taken from lake near the Sotkamo deposit (slightly affected by acid mine drainage) supplemented 
with nutrients was used for irrigation. Aeration was provided through a diffuser inserted at the base of 
the column. The iron- and sulphur-oxidizing bacterial culture used in inoculation of the columns, was 
enriched from surface water samples (pH 4.5-6.9) obtained from the ore deposit. The pH of irrigation 
solution was maintained with continuous titration with H2SO4. The ore was acid consuming in all tested 
conditions. The actual pH of the irrigation solutions after 140 days were 0.1-0.5 units over the target 
values in all columns. Leaching at low pH resulted in increased acid consumption of 160 and 38 H2SO4 

g kg-1 ore at pH 1.5 and 2.0 after 140 days. Temperature, at pH 2.5, had also effect on acid 
consumption. At 50 ºC acid consumption was highest and lowest at 21 ºC, being 29 and 8 H2SO4 g kg-1 
ore, respectively. 
 

The pH of the irrigation solution clearly affected to the dissolution of nickel and zinc. Nickel 
solubilization rate was 3.3 times higher at pH 1.5 than at pH 3.0, being 0.42 and 0.13 % (Ni) d-1, 
respectively. At pH 1.5 valuable metals yields were 59 % for Ni, 52 % for Zn, 13 % for Cu and 16 % 
for Co, whereas at pH 3.0 yields were 15 % for Ni, 10 % for Zn, 0.5 % for Cu and 6 % for Co after 140 
days of bioleaching. No significant bioleaching happened after that at pH 1.5, 2.5 or 3.0. At pH 2.0 the 
maximum yields were achieved after 230 days of bioleaching. Nickel and zinc leaching rates and yields 
decreased nearly linearly as pH increased. Copper did not bioleach at high pH (2.5-3.0). After the 
beginning, no further cobolt dissolution happened at pH 3.0. Decrease in leaching rates may be due to a 
lack of dissolved ferric iron, serving as a leaching agent, or metal dissolution barriers created by 
precipitates on the ore surfaces. The ferric iron concentration in PLS increased all the time at pH 1.5, 
being 36 g l-1 after 140 days. At pH 2.0 the ferric iron concentrations varied, being highest 3.8 g l-1 after 
97 days. At 2.5 and 3.0 no ferric iron was present in PLS and iron concentration remained low, being 
15 mg l-1.  
 
After 60 days of bioleaching the leach liquor at pH 1.5 became jelly-like due to solubilization of Si 
from the ore, which contained 42 % (w w-1) of SiO2. Quartz, phlogopite, and feldspars (anorthite and 
microcline) were the main Si-containing phases. After 110 days the Si concentration reached 2.96 g L-1 
at pH 1.5. Soluble Si increases the solution viscosity and thus hinders leach liquor percolation trough 
the heap, lowers the oxygen transfer rate, and complicates subsequent metal extraction. Although, 
dissolved Si did not affect the solubilization of valuable metals, the pH value of the PLS must be kept 
at over 1.5 to slow down Si-containing mineral dissolution. At pH 2.5 less than 200 mg L-1 Si was 
solubilized and different temperatures had no effect on Si dissolution at that pH.  
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Based on an optimisation between the maximum valuable metal yields, leaching rates, the acid 
consumption, and the low dissolution of cations (Si, Al, Ca, Mg and Mn), the leaching solution pH of 
2.0 was recommended for a bioheap application. At pH 2.0, the maximum leaching yields were 
achieved after 230 days, being 54 % for Ni, 37 % for Zn, 13 % for Cu and 12 % for Co.  
 
Temperature strongly affected the valuable metal yields at pH 2.5. Leaching at low temperature (7 ºC) 
resulted in yields of 24 % for Ni, 17 % for Zn, 2 % for Cu and 6 % for Co after 496 days. The Cu 
leaching increased all the time during the experiment at 7 ºC, while at other temperatures it slowed 
down after 100 days. The highest yields were obtained at 21 ºC (26 % for Ni, 18 % for Zn, 0.5 % for 
Cu and 6 % for Co) after 153 days. After re-inoculation (day 65) with a thermophilic Sulfolobus 
culture, leaching at 50 ºC accelerated but slowed down soon and resulted in 18 % for Ni, 11 for Zn, 
0.3% for Cu and 2% for Co (after 140 days). In the column leaching study, after the maximum yields, 
longer leaching time did not result more metals in solutions. 
 
The redox increased during the first two months at 7 ºC and reflected the start of ferrous iron oxidation 
and microbial activity. The concentration of ferric iron was around 400 mg L-1 after two months. After 
that ferric iron was present all the time at 7 ºC and this demonstrated that more ferric iron was available 
for the oxidation of the mineral sulphide than at other temperatures. The leach liquor redox potential 
stabilized to 500-600 mV (Ag0/AgCl reference) at 7 ºC after 40 days and at 21 ºC right after beginning, 
whereas at 35 ºC and at 50 ºC it varied between 300-500 mV. At 50 ºC, all dissolved iron was in 
ferrous form inspite the variation of redox. After 50 days Fe2+ and Fetot were both 350 mg L-1 indicating 
that iron oxidation and precipitation occurred at the same time. Brown precipitates accumulated to the 
surfaces of the agglomerated ore in columns from 7 ºC to 50 ºC. Additionally, bright yellow 
precipitates were formed indicating elemental sulphur or Na-jarosite accumulation at 7 ºC and 21 ºC.  
 
After 50 days of bioleaching, at 7 ºC leach liquor total cell counts (108-109 cells mL-1) were 
significantly higher than at other temperatures (106-107 cells mL-1). Cell counts remained that high 
troughout the column study. At the end of the experiment, total cell counts in the leach residues were 
studied. At 7, 21, 35 and 50 ºC cell counts of the leach residues were 3.4·108, 2.3·108, 1.1·107 and 
8.7·106 cells ore g-1, respectively. The pH did not affect at 21 ºC the numbers of microorganisms in the 
PLS and cell counts remained at 106-108 cell mL-1 throughout the study and the leach residues 
contained about 108 cells g ore-1.  
 
The microbial community composition and dynamics was by investigated by DNA extraction PCR-
DGGE-sequencing approach. The microbial community were not affected by pH. In contrast, 
temperature affected the microbial populations. After the first months, Acidithiobacillus ferrooxidans 
AP 310 (96-99% sequence similarity, accession DQ35518) was the only species detected at 7 ºC and 
was also present at other temperatures. After the data of this study was published (2007), two new 
Acidithiobacillus species were described, A. ferrivorans and A. ferridurans. Genetically these species 
are very near each other. The 16S rRNA gene sequences of the bands that corresponded 99% of A. 
ferrooxidans AP310 (DQ35518) were identified again in 2015 using the basic local alignment search 
tool (BLAST). The 16S rRNA gene sequences of A. ferrooxidans at temperatures of 7 and 21 ºC 
corresponded 99% as A. ferrivorans SS3 (CP002985). One of the 16S rRNA gene sequences of A. 
ferroxidans strains at 35 ºC corresponded 99% as A. ferridurans ATCC 3302 (NR_117036). At 50 ºC, 
no proper A. ferroxidans 16S rRNA gene sequences were gained with the used methods. The presence 
of A. ferroxidans at 50 ºC was concluded based on the fact that the DGGE band was in the same place 
as the other A. ferrooxidans bands. The 16S rRNA gene sequences of Acidithiobacillus ferrooxidans 
strains in pH between 1.5 and 3.0, at 21 ºC, corresponded also 99% as A. ferrivorans SS3 (CP002985). 
In the light of increased knowledge, these species cannot be separated with the denaturing gradient 
from 40 to 70% that were used in the DGGE. A. ferrooxidans, A. ferrivorans and A. ferridurans are 
able to oxidize both iron and sulphur compounds. 
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Leptospirillum ferrooxidans DSM 2705 (98-100%, X86776) and Sulfobacillus thermotolerans KR-1 
(99%, DQ124681) were mainly detected at 21 ºC and 35 ºC. Sb. thermotolerans was present at 50 ºC. 
L. ferriphilum D1 (99 %, DQ665909) appeared after 300 days of bioleaching and was present in every 
leach residue, except at 7 ºC and pH 3.0. L. ferrooxidans and L. ferriphilum are able to oxidize only 
iron. Sb. thermotolerans is able to oxidize both iron and sulphur compounds. 
 
Archaeal species were analyzed two times from leach liquors and three species were detected. A 
species related to an uncultured archaeon clone ant b7 (99%, DQ303249), nearest known species 
Thermoplasma acidiphilum DSM1728 (91%, AL445067) was present in all of the leach liquors except 
at pH 1.5. Archaea related to Sulfolobus metallicus DSM 6482 (98%, SM16SRRN1) were present at 
pH values 2.5 and 3.0 and in all other temperatures, except at 7 ºC. Sulfolobus metallicus is able to 
oxidize both iron and sulphur compounds. Ferroplasma acidiphilum DR1 (98%, AY222042) that can 
oxidize only iron, was present at pH 2.5 and 2.0, and in all temperatures, expect at 35 ºC.  
 
The mixed iron- and sulphur-oxidizing culture in the recirculation solution at 7 ºC was used in the 
experiments where Fe2+-oxidation rate and optimum temperature were determined over a temperature 
range of 2-40 ºC. Two temperature optima of 22.4 ºC and 32.4 ºC were observed. This indicated the 
presence of both psychrotolerant and/ or mesophilic microorganisms in the culture. This supports the 
suggestion that A. ferrooxidans was actually A. ferrivorans, or both species were present. The specific 
oxidation rates for the culture were similar, with 13.5·10-8 and 12.8·10-8 mg Fe2+ cell-1  h-1 for 22.4 ºC 
and 32.4 ºC, respectively. 
 
The two demonstration-scale bioheaps (17 000 t) at the Talvivaara mine site were operated and 
monitored by Talvivaara Mining Company for 30 months. After the start-up of heap irrigation, 
oxidation of pyrrhotite and pyrite increased the heap temperature in central locations up to 90 ºC. In the 
second winter temperatures inside the heaps decreased being still 80 ºC at the hottest spots. Leach 
liquor temperatures varied between 60 ºC and 15 ºC over the whole operation period. The target pH of 
the PLS was 2.0. Inspite of continuous titration pH varied during the 10 months between 3.5 and 3.0 
and after that between 3.0 and 2.5. 
 
The bacterial community composition on the heaps was monitored over time from manholes and the 
leach liquor collection ponds. At the end of the primary bioleach phase (18 months) cell counts were 
around 106 cells mL-1. Large temperature gradients resulted in the simultaneous presence of mesophilic 
and thermophilic iron- and sulphur-oxidisers in the heap. In the beginning diversity was broad, but 
decreased with time. A. ferrooxidans/ ferrivorans SS3 (99%, CP002985) was the dominant bacterium 
and an unknown bacterium related to clone H70 (91%, DQ328625) was present. After six months of 
bioheap operation L. ferrooxidans DSM 2705 (98%, X86776) was observed for the first time and it was 
present thereafter in nearly all samples. Archaea were analysed during the primary leaching phase from 
leach liquors. Two novel archaea and one archaea related to Thermoplasma acidophilum strain 122-
1B2  (91-93%, NR_028235) were detected. 
 
Several ore samples were drilled from the primary bioheaps after one year of bioheap operation. A. 
ferrooxidans/ A. ferrivorans SS3 (99%, CP002985) was present in nearly all samples. The novel 
bacterium related to clone H70 (91%, DQ328625) and A. caldus related bacteria (95%, AY427958) 
was detected from the areas of wide temperature variation. Sb. thermosulfidooxidans strain YN22  
(99%, DQ650351) was found from the high temperature zones of the heap. Ferrimicrobium 
acidiphilum T23 (99%, AF251436) was present in the areas where temperature varied between 20 and 
35 ºC. After 18 months of demonstration-scale heap operation, the heaps were reclaimed and restacked 
to the secondary bioheap. At the secondary leaching phase the community remained steady. A. 
ferrooxidans/ ferrivorans SS3 (99%, CP002985) dominated and the novel bacterium related to a clone 
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H70 (91%, DQ328625) and L. ferrooxidans DSM 2705 (98-100%, X86776) were present in the leach 
liquors of secondary phase bioheaps.   
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TIIVISTELMÄ  

 
Bioliuotusta käytetään yhä yleisemmin metallien erottamiseen köyhistä sulfidimalmeista, koska 
korkealaatuiset malmiesiintymät ovat ehtymässä. Tässä työssä tutkittiin kompleksisen monimetallisen 
mustaliuskemalmin soveltuvuutta bioliuotukseen pohjoisissa olosuhteissa. Talvivaaran 
malmiesiintymät ovat olleet tiedossa jo vuosikymmeniä, mutta niitä ei ole hyödynnetty aiemmin 
alhaisen nikkelipitoisuuden vuoksi. Laboratoriomittakaavan kolonneissa tutkittiin kasteluliuoksen pH:n 
ja liuotuslämpötilan vaikutusta arvometallien ja sivukiven liukenemiseen sekä mikrobiyhteisön 
kehitykseen. Lisäksi tarkasteltiin raudan vaikutusta arvometallien liukenemiseen. Lopuksi 
mikrobiyhteisön dynamiikkaa seurattiin kolmen vuoden ajan pilot-mittakaavan bioliuotuskasalla, joka 
sijaitsi Talvivaarassa. 
 
Kokeissa käytetyissä kolonneissa oli n. 9 kg malmia, jonka raekoko oli 7.6 mm. Kolonneja ilmastettiin 
pohjasta ja kasteltiin päältä kierrätysliuoksella. Kierrätysliuos oli Sotkamosta toimitettua järvivettä, 
joka oli lievästi hapanta. Veteen lisättiin pieniä määriä ravinteita. Kolonnikokeen testattavat pH:t olivat 
1,5; 2,0; 2,5 ja 3,0 (21 asteessa) sekä lämpötilat 7, 21, 35 ja 50 ºC (pH:ssa 2,5). Kolonnit ympättiin 
rautaa ja rikkiä hapettavalla mikrobiviljelmällä, joka oli rikastettu malmiesiintymän pintavesistä (pH 
4,5-6,9). Kierrätysliuoksen pH:ta säädettiin jatkuvasti titraamalla liuosta rikkihapolla. Malmi kulutti 
happoa kaikissa testatuissa olosuhteissa. Kasteluliuoksen pH oli 140 päivän jälkeen 0,1-0,5 yksikköä 
korkeampi kuin tavoite pH kaikissa kolonneisssa. Haponkulutus oli suurinta pH:ssa 1,5. Haponkulutus 
oli 140 päivän jälkeen 160 H2SO4 g/kg malmia. Vastaava haponkulutuksen määrä pH:ssa 2,0 oli 38 
H2SO4 g/kg malmia. Lämpötilalla oli myös vaikutusta haponkulutukseen pH:ssa 2,5. 50 asteessa 
haponkulutus oli suurinta (29 H2SO4 g/kg malmia) ja pienentä 21 asteessa (8 H2SO4 g/kg malmia). 
 
Kierrätysliuoksen pH vaikutti merkittävästi nikkelin ja sinkin liukenemiseen. Nikkelin liukeneminen oli 
3,3 kertaa nopeampaa pH:ssa 1,5 kuin 3,0:ssa. Liukenemisnopeus pH:ssa 1,5 oli 0,42 % (Ni) /d ja 
pH:ssa 3,0 liukenemisnopeus oli 0,13 % (Ni) /d. 140 päivän bioliuotuksen jälkeen nikkelisaanto pH:ssa 
1,5 oli 59 prosenttia. Muista arvometalleista oli liuennut 52 % sinkkiä, 13 % kuparia ja 16 % kobolttia. 
Kasteluliuoksen pH:n ollessa kolme, vastaavat arvot olivat 15 % nikkeliä, 10 % sinkkiä,  0,5 % kuparia 
ja 6 % kobolttia. Merkittävää arvometallien liukenemista ei tapahtunut enää 140 päivän jälkeen pH:ssa 
1,5; 2,5 tai 3,0. Suurimmat metallisaannot pH:ssa 2,0 saavutettiin 230 päivän jälkeen. Nikkelin ja 
sinkin liukenemisnopeus väheni lähes lineaarisesti pH:n noustessa. Kupari ei liuennut korkeimmissa 
pH-arvoissa (2,5-3,0). Alun jälkeen koboltti ei liuennut pH:ssa 3,0. Liukenemisnopeuksien laskuun voi 
olla syynä liuenneen ferriraudan puute kierrätysliuoksessa tai saostumien muodostuminen malmin 
pinnalle. Ferriraudan määrä pH 1,5 kierrätysliuoksessa lisääntyi koko ajan, ollen 36 g/l 140 päivän 
jälkeen. Ferriraudan konsentraatio vaihteli pH:ssa 2,0; ollen korkeimmillaan 3,8 g/l 97 päivän jälkeen. 
Ferrirautaa ei ollut kierrätysliuoksissa, joiden tavoite pH oli 2,5-3,0. Kokonaisraudan määrä oli tällöin 
myös alhainen (15 mg/l).  
 
60 päivän bioliuotuksen jälkeen kasteluliuos pH:ssa 1,5 muuttui hyytelömäiseksi johtuen piin (Si) 
liukenemisesta sivukivestä. Malmi sisälsi 42 % (w/w) silikaattia (SiO2). Kvartsi, flogopiitti ja 
maasälvät (anortiitti ja mikrokliini) sisälsivät pääosan piistä. Liuenneen piin konsentraatio oli 110 
päivän jälkeen 2,96 g/l pH:ssa 1,5. Liuennut pii ei vaikuttanut arvometallien liukenemiseen. 
Kierrätysliuoksen viskositeetti kuitenkin lisääntyi. Se hidastaa virtausta kasan läpi, alentaa hapen 
kulkeutumista ja vaikeuttaa metallien talteenottoa. Tutkimus osoitti, että pH tulee pitää yli 1,5 
silikaattimineraalien liukenemisen hidastamiseksi. Piitä liukeni pH:ssa 2,5 vähemmän kuin 200 mg/l ja 
lämpötilalla ei ollut vaikutusta silikaattien liukenemiseen tässä pH:ssa.  
 
Perustuen arvometallien liukenemisnopeuteen, maksimisaantoihin, hapon kulutukseen ja kationien (Si, 
Al, Ca, Mg ja Mn) liukenemiseen, pH:ta 2,0 suositeltiin käytettäväksi kompleksisen sulfidimalmin 
biokasaliuotuksessa. Arvometallien saannot 230 päivän bioliuotuksen jälkeen pH:ssa 2,0 olivat 54 % 
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nikkeliä, 37 % sinkkiä, 13 % kuparia ja 12 % kobolttia.   
 
Lämpötila vaikutti merkittävästi arvokkaiden metallien liukenemiseen. Metalleista liukeni seitsemässä 
asteessa 24 % nikkeliä, 17 % sinkkiä, 2 % kuparia ja 6 % kobolttia 496 päivässä. Kuparin liukeneminen 
jatkui koko kokeen ajan 7 ºC:ssa, kun muissa lämpötiloissa kupari ei liuennut 100 päivän jälkeen. 
Eniten arvokkaita metalleja liukeni 21 ºC:ssa (26 % nikkeliä, 18 % sinkkiä, 0,5 % kuparia ja 6 % 
kobolttia, 153 päivän jälkeen). Kolonni, joka oli 50 ºC:ssa, ympättiin uudelleen 65 päivän jälkeen 
termofiilisellä Sulfolobus-viljelmällä. Bioliuotus nopeutui hetkellisesti ja saannot olivat parhaimmillaan 
140 päivän jälkeen (18 % Ni, 11 % Zn, 0,3 % Cu ja 2 % Co). Maksimisaantojen jälkeen, 
kolonnikokeen jatkuessa metallien konsentraatio liuoksissa ei kasvanut.  
 
Raudan hapettuminen ja mikrobitoiminta alkoi 7 ºC:ssa kahden kuukauden viiveen jälkeen, jolloin 
redox-potentiaali lähti nousemaan. Ferriraudan pitoisuus oli tämän jälkeen kierrätysliuoksessa noin 400 
mg/l. Ferriraudan, jota tarvitaan sulfidisidoksen katkaisemiseen, pitoisuus oli muissa lämpötiloissa 
vähäisempi. Kierrätysliuoksen redox-potentiaali stabiloitui 7 ºC:ssa 40 päivän jälkeen ja 21 ºC:ssa heti 
alun jälkeen 500-600 millivolttiin (Ag0/AgCl referenssielektrodi). 35 ja 50 ºC:ssa redox-potentiaali 
vaihteli välillä 300-500 mV. Kaikki liukoinen rauta oli 50 ºC:ssa ferromuodossa, huolimatta redox-
potentiaalin vaihtelusta. Kokonaisraudan konsentraatio oli 50 päivän jälkeen 350 mg/l. Tämä osoitti, 
että raudan hapetus ja saostuminen tapahtuivat samanaikaisesti. Ruskean värisiä saostumia kertyi myös 
muiden lämpötila-kolonnien (7-50 ºC) malmin pinnalle. Lisäksi kirkkaan keltaisia rikki tai Na-jarosiitti 
saostumia muodostui 7 ja 21 ºC:ssa oleviin kolonneihin. 
 
50 päivän jälkeen kierrätysliuoksen solumäärä oli 7 ºC:ssa (108-109 solua/ml) merkittävästi suurempi 
kuin muissa lämpötiloissa (106-107 solua/ml). Solumäärät pysyivät kolonnien kierrätysliuoksessa 
samassa tasossa koko tutkimuksen ajan. Liuotusjäännöksien solumäärät 7 ja 21 ºC:ssa olivat n. 108 
solua/g malmia. Lämpötiloissa 35 ja 50 ºC liuotusjäännöksen solumäärät olivat 1,1·107 ja 8,7·106 
solua/g malmia. Kierrätysliuoksen pH ei vaikuttanut huoneen lämpötilassa (21 ºC) olevien kolonnien 
solumääriin. Solumäärät olivat  106-108 solua/ml kierrätysliuoksessa ja noin 108 solua/g malmia 
liuotusjäännöksessä. 
  
Mikrobiyhteisön rakennetta ja sen muutoksia tutkiittin ensin uuttamalla DNA ja monistamalla 16S 
rRNA-geeni polymeraasiketjureaktiolla (PCR). Sen jälkeen eri lajien 16S rRNA-geenit erotetiin 
denaturoivalla gradientti geeli elektroforeesilla (DGGE). Kasteluliuoksen pH ei vaikuttanut 
mikrobiyhteisön rakenteeseen. Sen sijaan lämpötilalla oli huomattava vaikutus. Ensimmäisien 
kuukausien jälkeen Acidithiobacillus ferrooxidans AP 310 (96-99% vastaavuus, paikka DQ35518) oli 
ainoa mikrobi 7 ºC:ssa. A. ferrooxidans esiintyi myös muissa lämpötiloissa. Tutkimuksen tietojen 
julkaisun jälkeen on tunnistettu kaksi uutta Acidithiobacillus-lajia, A. ferrivorans ja A. ferridurans. 
Näytteiden, joiden 16S rRNA-geenin DNA-sekvenssit vastasivat A. ferrooxidans -lajia, DNA-
sekvenssit analysoitiin uudelleen v. 2015 käyttäen apua BLAST-hakutyökalua. Ohjelma etsii 
hakusekvenssin kanssa samankaltaisia sekvenssejä ja rinnastaa ne. DNA-sekvenssit 7 ja 21 ºC:ssä 
vastasivat 99 prosenttisesti A. ferrivorans SS3 -kantaa (CP002985). Yksi 35 asteen 16S rRNA-geenin 
DNA-sekvenssi vastasi 99% A. ferridurans ATCC 3302 -kantaa (NR_117036). 50 asteessa olevasta 
kierrätysliuoksesta ei käytetyillä menetelmillä saatu riittävän hyvää A. ferrooxidans -lajin 16S rRNA-
geenin DNA-sekvenssiä. 50 asteen kolonnissa oletettiin esiintyvän sama A. ferrooxidans, kuin 
muissakin kolonneissa, joiden DNA-sekvenssin bändi oli DGGE-kuvassa samassa paikassa. Myös pH-
kolonnien A. ferrooxidans -lajin 16S rRNA-geenin DNA-sekvenssit vastasivat 99% A. ferrivorans SS3 
-kantaa (CP002985). Denaturoivalla gradientilla 40-70%, jota tutkimuksen DGGE:ssä käytettiin, ei 
pysty erottamaan näitä Acidithiobacillus-lajeja, jotka ovat geneettisesti hyvin lähellä toisiaan. A. 
ferrivorans, A. ferridurans ja A. ferrooxidans voivat hapettaa rautaa ja rikkiyhdisteitä.  
 
Leptospirillum ferrooxidans DSM 2705 (98-100%, X867769) ja Sulfobacillus thermotolerans KR-1 
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(99%, DQ124681) esiintyivät huoneenlämmössä ja 35 ºC:ssä. Sb. thermotolerans oli läsnä 50 ºC:ssa. L. 
ferriphilum D1 (99%, DQ665909) ilmestyi kierrätysliuoksiin 300 päivän jälkeen ja se havaittiin myös 
jokaisesta liuotusjäännöksestä, paitsi 7 ºC:sta ja pH:sta 3,0. L. ferrooxidans ja L. ferriphilum pystyvät 
hapettamaan vain rautaa. Sb. thermotolerans pystyy hapettamaan rautaa ja rikkiyhdisteitä. 
 
Kolonnikokeen aikana kierrätysliuoksista analysoitiin kahdesti arkkeja, lajeja löydettiin kolme. Laji, 
joka vastasi 91%:sti Thermoplasma acidophilumia DSM1728 (AL445067), löydettiin kaikista muista 
kierrätysliuoksista, paitsi pH:sta 1,5. Sulfolobus metallicus DSM 6482 (98%, SM16SRRN1) oli läsnä 
pH:ssa 2,5 ja 3,0 sekä kaikissa lämpötiloissa, paitsi 7 asteessa. Sulfolobus metallicus pystyy 
hapettamaan sekä rautaa, että rikkiyhdisteitä. Ferroplasma acidophilum DR1 (98%, AY22042) esiintyi 
pH:ssa 2,0 ja 2,5 sekä lämpötiloissa 7, 21 ja 50 ºC. 
 
Kolonnin, joka oli 7 ºC:ssa, kierrätysliuoksesta otettiin ymppi kokeeseen, jossa määritettiin raudan 
hapettumisen nopeus ja viljelmän lämpötilaoptimi. Testattu lämpötilaväli oli 2-40 ºC. 
Lämpötilaoptimeita löytyi kaksi; 22,4 ja 32,4 ºC. Tämä osoitti, että viljelmässä oli psykrotolerantteja ja/ 
tai mesofiilisiä mikrobeja. Tulokset tukevat myös tulkintaa, jonka mukaan A. ferrooxidans olikin A. 
ferrivorans tai molemmat lajit olivat läsnä. Raudan hapettumisnopeudet olivat 22,4 ºC:ssa 13,5·10-8 mg 
Fe2+/solua·h ja 32,4 ºC:ssa 12,8·10-8 mg Fe2+/solua·h. 
 
Talvivaaran kaivosyhtiö operoi pilot-mittakaavan bioliuotus kasoja (17 000 t) Talvivaarassa 30 
kuukautta. Käynnistysvaiheen jälkeen magneetti- ja rikkikiisun hapettuminen nostivat kasan keskustan 
lämpötilan jopa 90 ºC:seen. Toisena talvena, kasan sisälämpötila oli edelleen kuumimmissa kohdisssa 
80 ºC. Kierrätysliuoksen lämpötila vaihteli 60 ja 15 ºC:teen välillä. Kierrätysliuoksen tavoite pH oli 
2,0. Huolimatta jatkuvasta pH:n säädöstä, pH vaihteli molemissa kasoissa 3,0 ja 3,5:den välillä 
ensimmäiset kymmenen kuukautta. Tämän jälkeen se vaihteli välillä 2,5 ja 3,0.  
  
Bioliuotuskasojen mikrobiyhteisöä tarkkailtiin kaivoista ja kierrätysliuoksen keräysaltaista. Solumäärä 
oli n. 106 solua/ml primaarivaiheen (18 kuukautta) jälkeen. Suurten lämpötilagradienttien vuoksi 
kasassa oli läsnä molempia meso- ja termofiilisiä raudan ja rikin hapettajia. Kierrätysliuoksen 
mikrobidiversiteetti oli alussa laaja, mutta erilaisten mikrobien määrä väheni liuotuksen edistyessä. 
Hallitsevana bakteerina oli A. ferrooxidans/ ferrivorans SS3 (99%, CP002985) ja tuntematon bakteeri, 
joka vastasi kloonia H70 (91%, DQ328625) esiintyi usein näytteissä. L. ferrooxidans DSM 2705 (98-
100%, X86776) havaittiin ensimmäistä kertaa kuuden kuukauden jälkeen. Sen jälkeen se esiintyi lähes 
kaikissa näytteissä. Primaarivaiheen aikana kierrätysliuoksessa löydettiin kolme arkkia, Thermoplasma 
acidophilum (91-93%, AL445067) sekä kaksi tuntematonta arkkia.  
 
Kasoista porattiin useita malminäytteitä vuoden bioliuotuksen jälkeen. A. ferrooxidans/ ferrivorans SS3 
(99%, CP002985) esiintyi suuresta lämpötilavaihtelusta (20-90 ºC) huolimatta lähes kaikissa näytteissä. 
Lisäksi A. caldus (96-99%, AY427958) ja tuntematon bakteeri, joka oli sukua kloonille H70 (91%, 
DQ3286259) olivat läsnä. Sb. thermosulfidooxidans YN22 (99%, DQ650351) esiintyi kasan kuumilla 
alueilla. Ferrimicrobium acidiphilum T23 (99%, AF251436) esiintyi alueella, joissa lämpötila vaihteli 
välillä 20 ja 35 ºC. Bioliuotus kasat putettiin ja kasattiin 18 kuukauden jälkeen uudelleen. 
Mikrobiyhteisö säilyi toisen liuotusvaiheen samankaltaisena. A. ferrooxidans/ ferrivorans SS3 (99%) 
oli hallitseva bakteeri kierrätysliuoksessa, jossa esiintyi myös tuntematon bakteeri, joka vastasi kloonia 
H70 (91%), ja L. ferrooxidans DSM 2705 (98-100%).  
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1. INTRODUCTION AND BACKROUND 
 
 
1.1 NICKEL ORE RESOURCES 
 
To meet the growing global nickel demand, mining and metal industry must develop technologies for 
utilization of low grade nickel ore resources. The growth of stainless steel industry, the primary user of 
nickel has increased quite steadily during the 40 years. Japan, China and the countries of the European 
Union are the largest Ni consumers. After 2011 the world nickel consumption has been over 1.5 million 
tons per year. Althought metal prices have been fluctuating since summer 2011 investments in industry 
have been made. Figure 1 presents world nickel production from 1900s to present. Nickel is a finite 
natural resource and sustainable principles to mining are challenging as there is global pressure to 
reduce energy consumption and gaseous emissions. (Kuck 2011). Recycled nickel accounts 
approximately 42 % of the nickel used in stainless steel production (Nickel Institute 2015). For 
economic and technical reasons low grade ore resources are not amenable to high energy demanding 
pyrometallurgical recovery. Biohydrometallurgy has the potential of increasing resource utilization.  
 

 
 

Figure 1. World nickel production (data derived from Anonymous 2014a).  
 
 
The known reserves of nickel ore in the world are approximately 23 billion tons with an average grade 
0.97 %. Nickel is an important metal in modern infrastructure. In addition to stainless steel, it is used in 
demanding corrosion- and heat-resistant applications, and in areas such as information technology, 
coinage, batteries, and magnetic superconductors. 
 
Nickel is the earth´s fifth most abundant element by weight comprising about 3 % of the earth’s total 
composition and mostly present in earth’s core. Almost 200 hundred nickel-bearing minerals have been 
identified, but relatively few are abundant enough to be industrially significant. The mined nickel ores 
are divided into sulphide ores and oxide ores called laterites. The world nickel supply has been 
predominantly from sulphide deposits. Nickel occurs mainly as pentlandite [(Ni, Fe)9S8] in association 
with large amounts of pyrrhotite (Fen-1Sn). (Kelly and Matos 2014). 
 
World largest nickel sulphide deposits are located in Sudbury, Ontario, Canada; in Norilsk, Siberia, 
Russia; in the Kola Peninsula bordering Finland; in Western Australia and in South Africa. Figure 2 
presents largest nickel deposits in the world. Sulphide ores are generally found in areas where glacial 
action has removed much of the overburden of weathered rock (Hoatson et al. 2006). Sulphide ores can 
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be concentrated by using mechanical means, such as magnetic separation or flotation. The nickel grade 
of sulphide ore typically ranges from 0.5 - 4 % (w w-1). Economic exploitation usually depends on the 
recovery of valuable by-products (Berger et al. 2011). Bioleaching is usually applied when ore contains 
below 0.5 % (w w-1) metals, otherwise pyrometallurgical application can be used. (Mudd 2009, Mizzi 
1987). For nickel no full-scale operations were in use at the time of Talvivaara pilot-scale bioheap in 
2007. In China, Jinchuan Group Ltd owns about 400 Mt of low grade nickel sulfide mineral ore 
deposit. Bioleaching column tests are done by Zhen et al. (2008 and 2009). Several columns were filled 
with 200 kg of ore and bioleached 252 days. 
 
Nickel is also found in manganese crusts and nodules covering large areas of the ocean floor. The long-
term decline in discovery of new sulfide deposits in traditional mining districts has forced exploration 
teams to shift to more challenging locations like east-central Africa and the Subarctic. (U.S. Geological 
Survey 2013). 
 
About 70 % of world nickel resources are lateritic. Laterite ores are not readily amenable to 
pyrometallurgical recovery and alternative technologies are required. Unlike sulphide metals, the 
valuable metals in laterites are present within the structures of host minerals. (du Plessis et al. 2011). 
Nickel recovery from laterites requires more energy per ton than from sulphides. Intensive ammonia 
leach technology or more complex high pressure acid leach processing combined with solvent 
extraction and electrowinning have been used. (Hoatson et al. 2006).  Laterite deposits tend to be lower 
in grade but larger in total size compared to sulphides. In future laterite projects will have significant 
impact on the nickel supply. (Hoatson et al. 2006). Major new laterite projects are being developed e.g. 
in Australia and New Caledonia. (Jessup and Mudd 2014). The potential of bio-process laterites is 
under research. The process called Ferredox is targeted to tropical limonite, specially goethite 
[FeO(OH)]. The reductive leaching results the release of valuable metals (Ni, Co and Cu). The process 
has been demonstrated in anaerobic, acidic conditions (pH 1.5-2) at atmospheric pressure and ambient 
temperature (25-30 ºC). A. ferroxidans has been used in a process, as it can use ferric iron as an 
electron acceptor, as an alternative to oxygen. In that case an electron donor is required e.g. sulphur. 
(Hallberg 2011, du Plessis 2011).  
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Figure 2. Largest nickel deposits in the world by Hoatson et al. 2006. 
 
 

1.1.1.  Global nickel mining companies 
 
The global nickel marked is led by a number of major producers (Table 1) followed by a range of 
moderate to minor producers. Russia is the largest nickel-producing nation in the world, followed by 
Philippines and Indonesia. In 2011, Russia produced 280 000 t of nickel. Philippines and Indonesia 
both around 230 000 t, Canada 200 000 t and Australia 180 000 t. (Anonymous 2013).  
 
Table 1. The world's ten largest refined nickel producers in 2011. (Derived from anonymous 2014b). 
Operation Produced Ni in 2011 (Mt) Largest mines 

Norilsk Nickel Ltd 286 Polar division and Kola MMC* in Russia (Cu, Ni) 
Vale SA 206 Creighton mine in Canada (Ni) 

Jinchuan Group Ltd 127 Jin Chuan mines in China (Ni) 

Xstrata  106 Nickel Rim South mine (Ni, Cu, Pt) 

BHP Billiton 83 Nickel West in Australia (Ni) 

Sumimoto Metal Mining Co 65 Hishikari in Japan (Au) 

Eramet SA 54 Moanda Mine in Congo (Mn) 

Anglo American Plc 48 Minas-Rio in  Brazil (Fe) 
*the Kola Mining and Metallurgical Company 

 
 
In Russia, nickel production is pre-dominantly by MMC Norilsk Nickel Ltd, from the Kola region of 
north-western Russia and the Taimyr Peninsula in north-central Russia (Siperia), with all mines 
extracting Ni-Cu sulphide ores. Norilsk Nickel is the world’s largest producer of nickel and palladium 
and one of the largest of platinum and copper. Norilsk Nickel has production facilities also located in 
four other countries: Australia, Botswana, Finland and South Africa. In 2012, Norilsk Nickel produced 
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300 000 tons of nickel and 364 000 tons of copper (Norilsk Nickel 2014). In Finland, Norilsk Nickel 
operations include a nickel refining plant in Harjavalta.  
 
In Canada, nickel production is dominated by two companies, Vale SA and Xstrata. Vale operates at 
large Ni-Cu sulphide deposits at Sudbury in Ontario and at Thompson in Manitoba. Xstrata Nickel Ltd 
operates also in the Sudbury district, as well as at Raglan in Quebec. All Canadian projects are based 
on Ni-Cu sulphide ores. 
 
In Australia, nickel production is dominated by BHP Billiton (2014) operating three major Ni sulphide 
mines at Mt Keith, Leinster and Kambalda. There are some nickel laterite projects, as an example in 
Murrin Murrin and Cawse. (Hoatson et al. 2006). 
 
  
1.2 BIOLEACHING APPLICATIONS  
 
Biohydrometallurgy is the processing of metal containing sulphidic ores and ore concentrates using 
micro-organisms. Bioleaching is a process where an insoluble mineral, usually a metal sulphide, is 
oxidized into a soluble form in water in a process catalysed by microorganisms. There are several 
applications where bioleaching is used. Copper and other base metals are recovered from sulphides 
such as covellite (CuS), chalcocite (Cu2S), bornite (Cu5FeS4), chalcopyrite (CuFeS2), pentlandite 
(Ni,Fe)9S8, millerite (NiS), sphalerite (ZnS) and galena (PbS). These occur usually with pyrrhotite (Fen-

1Sn) and pyrite (FeS). In the case of refractory gold ores microorganism are used to oxidize sulphide 
minerals, which encapsulate gold particles. By dissolving these sulphide minerals, the gold particles 
can be recovered by further treatments. In gold recovery, the term biooxidation is usually used. (Brandl 
2001, Ehrlich 2001). 
 
 
1.2.1 History of bioleaching 
 
Microorganisms have participated in the oxidation of sulphidic ores in the earth’s crust since 
geologically ancient times. In 1800th century the copper mine in Rio Tinto in Spain was the first large-
scale operation where microorganism played a major role (Brierley 1982). At that time there was no 
understanding of the leaching process or the role of microorganisms. In 1947 bacteria belonging to the 
genus Thiobacillus (later Acidithiobacillus) were described in acid mine waters by Colmer and Hinkle 
(1947), and their role in metal oxidation was demonstrated. (For the reviews, see Brierley and Brierley 
2001, Morin et al. 2006, Mousavi et al. 2006). 
 
In the period of 1950-1980 bioleaching was used for the recovery of copper and other metals from 
waste material and low-grade ores in dumps (Gentina and Acevedo 1985). In the beginning, the dumps 
were piles of different sizes of minerals and no effort was made to optimize metal dissolution or 
activate microorganisms. While understanding of bioleaching evolved and metal consumption 
increased, hydrometallurgical processes developed. The first international biohydrometallurgy meeting 
was held in 1977 in Braunschweig, Germany. Minera Pudahuel (Lo Aquirre) copper mine in Chile is 
usually considered as the first heap bioleaching plant. Pudahuel’s mine was started in 1980 and closed 
in 1996 due to ore depletion. First commercial refractory gold biooxidation plant started  in 1986 in 
Fairview in South Africa. (Brierley and Brierley 2001, Morin et al. 2006, Mousavi et al. 2006). 
 
In 1995, work with bioleaching of chalcopyrite concentrate developed and evaluated on commercial 
scale at the Chuquicamata Mine in Chile, with a design production rate of 20 000 t copper per annum. 
(Batty and Rorke 2006). 
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Today, many industrial-scale hydrometallurgical processes are used for recovery of gold and copper. 
Table 2 lists examples of commercial heap and dump bioleaching plants, all recovering copper. 20 % of 
the annual demand of copper production is produced via hydrometallurgical processes (Watling 2006). 
The applications continue to develop further and expand for lower grade nickel, zinc and cobalt ores. 
Future mining applications will be directed more on lower-grade, lower-quality and complex ores. 
Developing countries share over 50 % of the world copper production (Pradhan et al. 2008) and their 
role continues to increase with the diminishinging ore resources. (Dew and Miller 1997, Rawlings 
2002, Watling 2008).  
 
Table 2. Examples of commercial, copper recovering heap and dump bioleaching plants. 

 
 
  

Plant Country
Ore processed

 (t /day)
Years in 

operation
References

Cerro Verde Peru 32000 1977 [1], [2]
Lo Aquirre Chile 16000 1980-1996 [1], [2]
Lince II Chile 3000 1991 [1], [2]
Mt Leyshon Australia 1300 1992-1997 [1], [2]
Cerro Colorado Chile 16000 1993 [1], [2]
Ivan Zar Chile 1500 1994 [1], [2]
Quebrada Blanca Chile 17300 1994 [1], [2]
Punta del Cobre Chile 3300 1994 [1], [2], [3]
Andacollo Cobre Chile 15000 1996 [1], [2]
Dos Amigos Chile 3000 1996 [1], [2]
Phoenix deposit Cyprus 3000 1996 [1], [3]
Zaldivar Chile 20000 1998 [1], [2]
Lomas Bayas Chile 36000 1998 [1], [2]
Nifty Copper Australia 5000 1998 [1], [2]
Escondida Chile 110000 2006 [1], [3]
Monywa Myanmar 18000 1998 [1], [2]
Toquepala & Cuajone Peru 128500 [1], [3]
Morenci Arizona 75000 2001 [1], [2]
Girilambone Australia 2000 1993-2003 [1], [2]
Zijinshan Copper Mine China 8400 2008 [3], [4]
Whim Creek and 
Mons Cupri

Australia 1700 2006 [1], [2]

Lisbon Valley USA, Utah 18300 2006 [2],[3]
Jinchuan Copper China 2006 [2]
Spence Chile 50000 2007 [2],[3]
Talvivaara Finland 72000 2008 [3]

*Talvivaara heap bioleaching plant in Finland produces nickel, zinc, copper and cobalt.

[1] = Watling 2006 [3] = Neale et al. 2011
[2] = Brierley 2008 [4] = Xing-yu et al. 2008
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1.3 MICROBICALLY CATALYSED METAL SOLUBILISATION  
 
Metals are leached from sulphide minerals by the attack of ferric iron (Fe3+) and hydrogen ion (H+) on 
the metal sulphide bond. Fe3+ and H+ are formed as a consequence of microbial oxidation. The 
mechanism includes the following reactions (Sand et al. 1995, Rawlings et al. 2003, Daoud and 
Karamanev 2005): 
 
MS + 2 Fe3+ → M2+ + S0 + 2 Fe2+   (1) (chemically catalyzed reaction) 
S0 + 1.5 O2 + H2O → SO4

2- + 2 H+  (2) (bacterially catalyzed reaction) 
4 Fe2+ + O2 + 4 H+ → 4 Fe3+ + 2 H2O   (3) (bacterially catalyzed reaction) 
MS + 2 O2 → M2+ + SO4

2-   (4) (chemically/ bacterially                    
M is metal.      catalyzed reaction)  
 
The electron acceptors (ferric iron and oxygen) and the activity of hydrogen ions are the driving forces 
of metal solubilisation. The leach kinetics depend on pH (the activity of H+) and the oxidation potential 
(measured as redox). Ferric iron is a strong oxidizing agent and redox potential is used to tell the ratio 
of ferric to ferrous ions in the solution. Because microorganisms are efficient at oxidizing ferrous iron 
to ferric state, the bioleaching conditions typically have a high redox potential (> 500 mV). Usual level 
with chemical oxidation is around 200 - 400 mV. Thus lowering the pH increases the redox potential 
via the increasing amount on soluble ferric iron in the solution and that increases the metal 
solubilisation. (Ahonen and Tuovinen 1995).  
 
Table 3 presents sulphide mineral leaching reactions, their elemental composition and end products. 
Reactions represented are highly simplified and no intermediates or reaction mechanisms are presented. 
(For the reviews, see Watling 2008 and Schippers and Sand 1999). Bioleaching mechanisms (indirect 
or direct) and oxidation pathways are discussed by Rohwerder and Sand (2007) and by Rohwerder et 
al. (2003). 
 
Table 3. Most common bioleaching reactions. Reactions are highly simplified and no intermediates or  
reaction mechanisms are presented. Reactions happen in aquaphase in the present of microorganisms and air.  

 

 
 
As in the case of pyrite and pyrrhotite the reaction products are ferrous iron and reduced inorganic 
sulphur compounds (RISCs). Microorganisms then reoxidize the ferrous iron back to ferric state. RISCs 
are metabolized by sulphur-oxidizers. Oxidation of RISCs yields more energy than oxidation of ferrous 
iron. Therefore, microorganisms that are able to oxidize iron and sulphuric compounds may be 
perceived to dominate on bioleaching environments, unless there are other factors, such as temperature 
or pH, with overriding effects. (Sand et al. 1995, Rawlings 2002). Sulphur oxidation is the most 

Mineral Reactants Products Reference 
Pentlandite (Ni,Fe)9S8 Ni2+ + Fe2+ + S  Watling 2008. 
Millerite NiS + H2SO4 Ni2+ + SO4

2- + H2S Watling 2008. 

 NiS + Fe3+  Ni2+ + Fe2+ + S  Watling 2008. 

Violarite FeNi2S4 Ni2+ + Fe2+ + S Watling 2008. 

Pyrrhotite Fe1-xS + H2SO4 Fe2+ + SO4
2- + H2S Schippers and Sand 1999. 

Pyrite FeS2 + Fe3+ + H2O Fe2+ + S2O3
2- + H+ Schippers and Sand 1999. 

Sphalerite ZnS + Fe3+ Zn2+ + Fe2+ + S Fowler and Grundwell 1998. 

Chalcopyrite CuFeS2 + Fe3+ Cu2+ + Fe2+ + S  Erlich 1997. 

Chalcocite Cu2S + Fe3+ Cu2+ + Fe2+ + S  Erlich 1997. 

 Cu2S + O2 + H+ CuS + H+ + Cu2+ + H2O Erlich 1997. 

Sulphur reactions S + H2O + O2 SO4
2- + H+ Watling 2008.  

 H2S + O2 S + H2O Watling 2008. 
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significant acid-generating process in bioleaching (Wakeman et al. 2008). By transforming sulphur 
compounds to sulphuric acid they reduce accumulation of elemental sulphur. (Ahonen and Tuovinen 
1992, Crundwell, 2003, Rohwerder et al. 2003). Combination of iron- and sulphur- oxidizing microbes 
has been considered effective in bioleaching processes. (Rawlings 2005). 
 
Pyrrhotite and pyrite comprise over 80% of the complex sulphide ore deposits and therefore play a 
significant role in bioleaching. Pyrrhotite and pyrite oxidation delivers ferric ions into the leaching 
solution. However, high ferric ion concentrations may be inhibitory, especially to A. ferrooxidans. This 
changes the microbial population when leaching progresses. Precipitated iron products can cover the 
ore surfaces and thus decrease leaching rates. (Watling 2008). Iron control strategies are therefore 
needed in downstream processing. (Nurmi et al. 2010). Pyrrhotite oxidation generates significant 
amounts of heat. Metal dissolution rates are usually increased at higher temperatures, unless, there are 
no active thermophilic microorganisms. (Watling 2008). 
 
 
1.4 TYPICAL GANGUE MINERALS 
 
The mineralogical composition of the is of the primary importance. Physical and chemical properties of 
the ore impact the technique to be chosen and the metal recovery rate. The development of bioleaching 
consortia is affected on the ore mineralogy. The type and composition affect the need of acid and pH. 
(Watling 2006). Many gangue materials e.g. carbonates and some silicates (e.g. mica, feldspar) are 
acid-consuming (Table 4, Rawlings et al. 2003, Strömberg and Banwart 1999). The term ‘gangue’ is 
used to describe the valueless minerals in an ore deposit. The leaching rate of silicate ores is lower than 
that of carbonate ores (Ahonen and Tuovinen 1995). The dissolution of silicates results in gelling of the 
leach liquor. Ganque minerals can also form alteration (weathering) products. (Rimstidt 1997, 
Rawlings et al. 2003, Strömberg and Banwart 1999). In aluminosilicates ruptures of Si-O and Al-O 
bonds are common. (Ehrlich 2001, Pietrobon et al. 1997). Silicate minerals are subject to microbially 
enhanced solubilisation mediated by ferric iron and sulphuric acid. (Puhakka and Tuovinen, 1986a). 
The total dissolution of minerals generally consumes more acid than weathering and the acid demand is 
difficult to predict. (Jansen and Taylor 2014). Dissolution of gangue minerals may also release metals 
that are toxic to bioleaching (Paper IV, reviewed by du Plessis et al. 2007). 
 
Table 4. Examples of acid consuming gangue reactions. Adapted from Jansen and Taylor (2014). (Reactions are  
not balanced). 
 Start products End products 

Silicate breakdown   
K feldspar KAlSi3O8 + H+      K+ + Al3+  +  H4SiO4 

Na feldspar NaAlSi3O8 + H+  Na+ + Al3+  +  H4SiO4 

Ca plagioclase  CaAlSi3O8 + H+  Ca2+ + Al3+  +  H4SiO4 

Carbonate minerals   

Calcite CaCO3 + H+  Ca2+ + H2O + CO2 
  Alteration        

Plagioclase H4SiO4 CaAlSi3O8 + H4SiO4 CaSO42H2O +  HAl(Si3O)2 + H2O 
 Biotite  (H,K)2(Mg,Fe)2Al2(SiO4)3 + H+  +O2  + Fe3+  SO4

2- Mg2Al2Si3O10(OH)2 +  KFe3(SO4)2(OH)6 +  SiO2 

Limonite breakdown   

Hematite Fe2O3 + H+    Fe3+ + H2O  

Goethite FeO(OH) + H+   Fe3+  + H2O  
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1.5 THE PH CONTROL  
 
In the beginning of bioleaching, acid consumption is often high since initial acid consuming reactions 
occur. Highly reactive gangue minerals (e.g. carbonates) react in short time according to Table 4. In the 
beginning, agglomeration of the ore with sulphuric acid reduces pH changes and the occurrence of pH 
gradients. (Rawlings et al. 2003, Strömberg and Banwart 1999).  
 
In spite of breakdown and alteration reactions, formation of solid products is common in leaching 
environments. Table 5 presents examples of precipitation reactions. Jarosite [MFe3(OH)6(SO4)2] and 
gypsum (CaSO4·2H2O) precipitations are common. Elemental sulphur can also accumulate and form a 
rim around the ore particles (Ahonen and Tuovinen 1992, Watling et al. 2006). Precipitates affect metal 
recovery rates by forming diffusion barriers on mineral surfaces. Precipitates accumulate also in 
pipelines, pumps and valves making maintenance and repair challenging. Precipitation is pH and 
temperature dependent. (Ahonen and Tuovinen 1995, Bhatti et al. 2012a and b). 
 
Jarosite is formed in conditions where pH is less than 3 and above 1.5 in temperature range between 4 
and 35 ºC (Baron and Palmer 1996, Das et al. 1996). The concentration of ferric iron and sulphate (e.g. 
continuous addition of acid to the heaps) affects the amount of precipitated jarosite (Ahonen and 
Tuovinen 1995, Bhatti et al. 2012b). Monovalent alkali cation is also needed. (Watling 2006). The 
dissolution of silicates leads to a constant supply of cations and increase jarosite precipitations. If 
solution pH increases, jarosite will precipitate releasing H+ (lowering pH), but consuming Fe3+ 
(lowering Eh). Jarosite formation reaction is presented in Table 5. The formation of jarosite can be also 
seen as a proof of microbial activity and mineral dissolution. (Jansen and Taylor 2014, Bhatti et al. 
2012 a and b, Tuovinen and Bhatti 1999, Baron and Palmer 1996). When pH rises, jarosite is 
transformed to various FeO(OH) compounds, including goethite or hematite, depending on 
temperature. (For a review see Das et al. 1996). In most ores, acid consuming silicate minerals result in 
Eh-pH conditions within the jarosite field. (Nazari et al. 2014). 
 
Formation of amorphous, gelatinous silicate precipitates may cause solution flow barriers on the 
surface of minerals that hinder the dissolution of metals, increase the viscosity of the leach liquor, 
lower the gas transfer rates and inhibit the leach liquor percolation through the heap. Dissolution of 
silicate minerals increases acid consumption (Brierley 2001, Rawlings et al. 2003, Strömberg and 
Banwart 1999, Bhatti 2012b). In this study, the dissolution of silicate minerals was evident at pH 1.5. 
This increased the viscosity of PLS and gelatinous precipitates were formed. In extreme cases, this can 
clog the flow of solution. (Rawlings et al. 2003, Strömberg and Banwart 1999, Bhatti 2012b). 
 
Table 5. Examples of most common precipitation reactions. Adapted from Jansen and Taylor 
(2014). (Reactions are not balanced). 

Start products End products  

Fe3+ +  M+ + SO4
2- + H2O MFe3(SO4)2(OH)6 + H+ Jarosite 

H4SiO4 SiO2 + H2O Silica 

Ca2+ + SO4
2- + H2O CaSO42H2O Gypsum 

Where M = K+, Na+, NH4+, Ag+, Pb+, or H3O
+  

 
 
Changes in mineralogical composition of the multimetal black schist ore from Talvivaara mine site 
were monitored in the study of Bhatti et al. (2010). The transformation of main mica mineral, 
phlogopite [KMg3(AlSi3O10)(F,OH)2] to vermiculite (Mg2+, Fe2+, Fe3+)3[(AlSi)4O10](OH)24H2O was 
complete. That alteration was mainly dependent of the pH of the leach solution and the formation of K-
jarosite. Table 6 summarizes gangue silicate leaching reactions arranged by reaction type. Reaction 
products are classified as precipitation, alteration or solution product. 
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Table 6. Silicate mineral leaching reactions. Adapted from Jansen and Taylor (2014). (Reactions are not balanced). 

Reaction type Feed mineral Solution 
reactants 

Precipitation 
products 

Alteration 
product 

Solution products 

Breakdown K/ Na feldspar H++ SO4
2-      H4SiO4 + Al3+  + Na/K+   

 Ca plagioclase H++ SO4
2-      H4SiO4 + Al3+  + Ca2+   

 Biotite  H++ SO4
2-      

H4SiO4 + Al3+  + Ca2+  + 
Fe2+  +  Mg2+   

Precipitation 
 

SO4
2-

 + K+  + 
Fe3+    

Jarosite  H++ SO4 
2-    

  H4SiO4  Silica 

  
SO4

2-
 + K+  + 

Al 3+    
Alunite H++ SO4

2-    

  SO4
2-

 + Ca2+ Gypsum   

  H4SiO4 + Al3+   Pyrophyllite/ Kaoline H++ SO4
2-    

  
H4SiO4 + Al3+ 

+ Mg2+   
Vermicullite   

Alteration  Plagioclase H++ SO4
2-    Gypsum Pyrophyllite H++ SO4

2-    

 Biotite 
H++ SO4

2- + 
Fe3+      

Jarosite, silica Vermiculite 

 
 
Due to a concurrent dissolution, precipitation, oxidation and reduction reactions the net acid 
consumption or acid production prevails in bioleaching systems (Ahonen and Tuovinen 1995). It is 
difficult to maintain the solution pH within the desired range without constant pH adjustment 
(Rawlings et al. 2003). Sulphuric acid consumption can, therefore, become a major operating cost 
(Watling 2006).  
 
 
1.6 TECHNIQUES USED IN BIOLEACHING 
 
To bioleach valuable metals, different engineering approaches have been developed, including dump, 
heap, reactor and in situ bioleaching techniques. The process selection depends on the grade of the ore. 
(For the reviews see, Bosecker 1997, Brandl 2001, Rawlings 2002, Johnson 2008 and Watling 2008). 
 
 
1.6.1 In situ leaching 
 
In situ leaching (ISL) has been used in sites where the ore body is inaccessible or rather poor. ISL is 
used in production of uranium and copper. (Rawlings 2004). The ore is not brought to the surface in 
this process. The visual environmental impact is lower than in open pit infrastructures. Leaching 
solution is injected through an array of wells into the mineral deposit. The liquor gravitates through the 
ore and is collected in a centrally placed well where it is pumped to the surface (Figure 3) (Sand et al. 
1993). The ore body can be artificically fractured, for example, by blasting, to improve the permeability 
before leaching (Wadden and Gallant 1985). Extensive knowledge of the hydrology and geology of the 
area is needed so that the process solutions do not migrate away from the mining area. (Kinnunen and 
Puhakka 2004, Nurmi et al. 2009). In many trial projects the use of ISL has been considered 
problematic or mining has not been approved by authorities. (Wadden and Gallant 1985, Tuovinen and 
Bhatti 2001, Mudd 2001a).  Table 7 lists commercial uranium and copper mines. 
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Figure 3. Schematic diagram of In situ leaching. 
 
 
Uranium  
According to World Nuclear News (2014) 45 % of uranium is produced by ISL and the production is 
increasing together with diminishing high grade ore resources. Many ISL uranium mines have operated 
in the area of former Soviet Union and Eastern Europe. Kazakhstan became the world’s leading 
uranium producer in 2009, with close to 28 % of world production and 38 % in 2013. (Mudd 2001b, 
World Nuclear Association 2014). In Kazakhstan the ISL technology displaced the conventional 
techniques in uranium production by 1990s. (Tuovinen and Bhatti 2001). There are several operating 
uranium mines (Table 7). Kazatomprom, owned by Cameco (2014) is one of the newest operation in 
Kazakhstan.  
 
 
Copper 
Beside the uranium, ISL mining has been applied succesfully to recover copper, especially in the area 
of the Arizona copper belt in the US. The Miami unit of Pinto Valley is an open cut copper and gold 
mine. The Gunnison copper ISL project is located at the same area and is predicted to produce 50 000 t 
of copper for the first 14 years. (Excelsiormining Corporate 2014).  
 
Table 7. Commercial uranium and copper ISL mines.  
Country Mine Production 

(t/a) 
Product Reference www-page 

 

Australia Beverley 453 U3O8 world-nuclear.org 
Australia Honeymoon  Na 

feldspar 
124  U3O8 world-nuclear.org 

Kazakhstan JV Inkai Mine 2 000 
8 200 

U3O8 cameco.com/mining/inkai/jv_inkai 

USA Mc Arthur River 8 200 U3O8 cameco.com/mining/mcarthur_river 

USA Smith Ranch-Highland 772 U3O8 cameco.com/mining/highland_smith 

USA Crow Butte 320 U3O8 cameco.com/mining/crow_butte 

USA Pinto Valley and  
Miami Unit 

26 800 Cu 
 

capstonemining.com/s/pinto.asp?Repor
tID=606362 

USA 
Pinto Valley and  
Miami Unit 

49 kg 
 

Au bhpbilliton.com  

USA Florenze starting Cu florencecopper.com/s/Home.asp 

 
 
Gold 
In situ bioleahing applications for low grade and refractory gold ores have been evaluated by The 
Commonwealth Scientific and Industrial Research Organisation (CSIRO). ISL is a potential 
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pretreatment method to remove pyrite and elemental sulphur before syanidisation. It is expected to 
enhance gold leaching with chemical lixiviants and to decrease the lixiviant consumption. (Kaksonen 
2014a and b). 
 
 
1.6.2 Reactor-based techniques 
 
The higher value minerals or ore concentrates may be bioprocessed using reactor based techniques. The 
times required for mineral processing to be completed are usually days and thereby shortest compared 
to other techniques. Stirred tank reactors are used commonly in practice compared to other 
configurations such as bubbling columns, airlift columns, percolation columns, Pachuca tanks and 
rotary reactors. (Rossi 2001). Usually in commercial bioleach plants finely milled mineral concentrate 
or ore is feed as batches or continuously to two or three primary reactors in parallel, feeding two to 
three secondary reactors in series. The reactors are aerated, pH- and temperature- controlled. (Atkins et 
al. 1986, Dew et al. 1997, Rossi 2001, Acevedo and Gentina 2007). 
 
The first commercial bioleching application was the BIOX® process owned by Gencor at that time. 
Development of the process started in the late 1970s at Gencor Process Research, in Johannesburg, 
South Africa. The pilot plant was commisioned in 1986 to treat 10 t per day refractory gold-bearing 
sulphide concentrates with mesophilic microorganisms. Gencor operated the first demonstration plant 
in Faiview mine, then at Ashanti Shansu and nowadays there are more plants e.g. in Australia and in 
South America. A typical BIOX® plant operates at 40-45 ºC about an 18 % w v-1 solids concentration 
with a total solids retention time of around 4 days. (van Aswegen et al. 2007). 
 
An alternative to the BIOX® process is the process developed by BacTech. The BacTech and BIOX® 
processes use similar highly aerated stirred-tanks. The major difference is that the BacTech process is 
operated at close to 50 ºC with moderately thermophilic bacteria and thus, less cooling is required. One 
disadvantage is that the solubility of oxygen and carbon dioxide is lower at the higher temperatures. 
(Neale et al. 2000). 
 
Billiton (which bought Gencor) continued to develop bioleaching to low-grade nickel ores, and the 
followed process was termed the BioNIC®. The success inspired Billiton to continue to develop 
bioleaching process to treat copper minerals, such as chalcopyrite. The process was named BioCOPTM. 
Mesophilic microorganisms were not effective to bioleach primary copper minerals, especially 
chalcopyrite. The work continued and improved copper extraction was achieved with thermophilic 
microorganisms. The development of the BioCOPTM Process continued from pilot-scale to full-scale 
commercial demonstration at the Chuquicamata Mine in Chile, with a design production rate of 
20 000 t copper per annum. BioCOPTM process has six equal size continuos fed reactors. The first three 
reactors are in parallel and last three reactors in a series. 50-70 % of the metal dissolution occurs in the 
primary reactors. Each of the reactors is aerated and agitated. High rate of iron oxidation is achieved 
with the resulting redox potential of 700 mV. Limestone is used to maintain the pH and to provide 
carbon dioxide for bacterial growth. SX-EW process (described in Chapter 1.6.6) is used to recover 
metal from pregnant leaching solution (PLS). Typical BioCOPTM process values are given in Table 8. 
(Clark et al. 2006). 
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Table 8. Typical BioCOPTM thermophilic tank bioleaching operating conditions.  
Adapted from du Plessis et al. (2007). 
Operating condition Value 
Temperature (ºC) 78 
Pulp density of concentrate feed % (w w-1) 12 

Primary reactor residence time (h) 48 
Overall residence time (h) 96 
pH 1.5 
DO (mg l-1 ) 1-4 

Microbial cell concentration in solution 
(cells ml-1) 

109 

CO2 supplementation (% of total gas flow) 1 

Copper recovery (%) > 98 

Microbial population 
Sulfolobus spp., 
Metallospaera spp., 
Acidianus spp. 

Redox potential  (mV Ag0/AgCl) 700 

 
 
Biological extraction of cobalt from pyritic concentrates was commercialized in 1999 by the Bureau de 
Recherches Géologiques et Minières (BRGM) at Kasese Project at the Kilembe mine in Uganda. A 1.1 
million ton stockpile of pyrite concentrate contains 1.38 % cobalt. Continuously operated stirred-tank 
recovers about 92 % of that cobalt. Mesophilic iron-oxidizing bacteria in this process grow optimally at 
37 ºC. (Rawlings 2002). 
 
Today several reactor-based technologies are commercialized and patented for base metal recovery and 
for biooxidation of refractory gold ores. (Pradhan et al. 2008, Watling 2008). Figure 4 presents 
bioleachingreactors in series. Reactor waste products are usually neutralized e.g. with limestone before 
final disposal (Johnson 2003).  
 
 

 
 
Figure 4. Schematic diagram presenting bioleaching reactors in a series. 
 
 
1.6.3 Design parameters 
 
The kinetic and engineering fundamentals of the design of reactors for bioleaching have been addressed 
by several authors (Gormely and Brannion 1989, Harvey et al. 1999, Acevedo 2000, Rossi 2001, 
Acevedo and Gentina 2007). The key design factors and their typical values are presented in Table 9. 
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Table 9. Important design factors of bioleaching reactors and their typical values. 

Design parameter Typical value Ref. 
Hydraulic retention time (HRT) 11-17 h Crundwell 2001 
Pulp density < 20 % Dew et al. 1995 

Particle size < 75 µm  Ahonen and Tuovinen 1995 

Dissolved oxygen (DO) 1.5-4.1 mg l-1 Kock et al. 2004 

pH 1.5-2.5 Nemati et al. 1998 

Carbon dioxide (CO2) 5-8 % Niemelä et al. 1994, Mason and Rice 2002 

Possible nutrients N, P, K Dew et al. 1997 

Temperature control Depends on the process Plumb et al. 2008 

 
 
Bioleaching environments are highly acidic and corrosive. Materials of construction are usually rubber-
lined mild steel or stainless steel. The selection of appropriate equipment affect the costs of care and 
maintenance. Precipitates accumulate in pipelines, valves and pumps. Availability of skilled human 
resources, energy and water costs, delivery of reactants and spare parts must be considered. 
 
 
1.6.4 Dump leaching 
 
Dump leaching has been typically used to leach copper from low-grade or run-of-mine material (0.1-
0.5 % Cu) with minimal ore preparation. The dump is irrigated from the top with acidified water, the 
leach liquor. Leach liquor then percolates through the dump and pregnant leaching solution (PLS) is 
collected from the bottom and recycled again to the dump. When the desired metal concentration is 
achieved, PLS is collected and replaced or small side flow is taken continuously for metal recovery e.g. 
to a solvent extraction - electrowinning (SX-EW) process (described in chapter 1.6.6). Raffinate from 
the circuit is usually recycled to the top of the dump (Brierley 2001). Dump leaching is relatively 
inefficient because of large particle sizes whilst small particles block solution flows and impede 
aeration. (Watling 2006). In 2006, BHP Billiton started the largest dumpleaching operation in the world 
in Escondida Mine in Chile. It is expected to produce 180 000 - 200 000 t of copper per year over the 
40 years. (Gentina and Acevedo 2013). 
 
 

 
Figure 5. Schematic diagram of the heap and dump bioleaching. 
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1.6.5 Heap bioleaching 
 
Heap bioleaching principle is rather similar to dump leaching. Heaps are better designed than dumps 
and efforts are made to enhance leaching rates. The process has been optimized successfully during the 
last thirty years. (Brierley and Brierley 2001). Heap leaching offers a number of advantages as 
compared to dumpleaching, including rather low investment and operation cost with reasonable yields 
over a period of recirculation. Metal recovery times are usually months rather than years. Suitable ore 
particle size, access of oxygen and geometry are engineered particularly for the processed mineral and 
are often based on laboratory or pilot-scale tests. However, even the most carefully engineered, 
bioheaps always form gradients of temperature, pH, DO and irrigation. Typical heap design parameters 
are presented in Table 10. The variability of microorganisms is much greater in heaps than in strirred 
tanks. Heaps can be inoculated, but in general, bioleaching micro-organisms grow naturally in heap 
environments. Inoculation can be done by including the microorganisms into the agglomeration 
solution. (Watling 2006, Gentina and Acevedo 2013, Strömberg and Banwart 1999, Riekkola-
Vanhanen et al. 2001, this study).  
 
Agglomeration 
Ore particles are agglomerated in rotating drums with acidified water and piled to 6-10 m high heaps, 
called pads, on an impermeable ground e.g. high-density polyethylene. Agglomeration of the ore 
attaches the fine particles to the surfaces of the larger particles. This improves the permeability of the 
heap, minimises the channelling and reduces acid consumption in the beginning thus, providing better 
conditions for microorganisms (Acevedo et al. 1993). Microorganisms are distributed evenly, which 
may speed-up the start of the bioleaching operation. (Walsh et al. 1997).  
 
Irrigation 
The heap is irrigated with the leach liquor from the top of the heap. PLS is collected from the bottom 
and recycled again to the top of the heap. Leach liquor pH can be adjusted before irrigation. Irrigation 
can be continuos or discontinuous. Discontinuos irrigation is considered more effective. (Lizama et al. 
2005).  During irrigation, the capillary forces draw the liquid inside the ore particles. Porosity of the ore 
allows the leaching solution to penetrate more in to the ore. When irrigation stops, the liquid drains out 
from the capillary and remains on the surfaces. New irrigation carries it with the dissolved metals and 
the process begins again. The ionic diffusion though a state capillary full of fluid is considerably 
slower. The frequency of irrigation cycle is determined by the rate of evaporation and the concentration 
of the metal in the exiting liquid phase. (Lizama et al. 2005).  Typical irrigation rate is 5-10 l h-1m-2. 
The heap surface degrades or can compact easily as an effect of irrigation with sprinklers and the 
percolation rate can drop significantly decreasing the metal yields. Heap top can be ripped if solution 
forms ponds on the top of the heap. (Lizama et al. 2005, Pradhan et al. 2008).  
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Figure 6. Photographs of the irrigation lines from Talvivaara bioheap. Photos: Marja Riekkola-Vanhanen. 
 
Aeration 
In bioleching systems sufficient supply of O2 and CO2 are important. Most of the bioleaching bacteria 
are aerobic and chemolithotrops. Oxygen is the electron acceptor of ferrous iron oxidation. CO2 serves 
as the carbon source for biomass generation. As oxygen is required for oxidative metabolism, its 
depletion has a rate limiting effect. Reactors are easier to aerate than heaps and dumps, in which 
oxygen gradients may prevail. Constant O2 concentration through the heap can not be attained (Jensen 
and Webb 1995). Natural convection occurs when temperature inside the heap is greater than that of 
outside. As the aeration rate is increased, the heat rises upward (Dixon 2000). Air is also dissolved to 
the leach liquor. In large heaps, natural convection does not provide enough oxygen deep within the 
heap for the microorganisms as it is consumed before it reaches the middle parts (Leahy et al. 2006, 
Gentina and Acevedo 2013).  
 
Air is blown to the process by compressors via network of pipes installed at the bottom of the heap. 
Distribution network may include e.g. 500 mm headers and 50 mm diameter laterals at 2 m spacing. 
The density of the holes is dependent of the size of the heap. (Pradhan 2008) The depletion of oxygen 
may produce H2S gas catalysed by acidophilic sulphate reducing bacteria (SRB) or pyrrhotite can 
directly dissolve under acidic conditions forming H2S and Fe2+ (Sen and Johnson 1999, Gunsinger et al. 
2006). Sulphate reducing bacteria grows usually in neutral pH, but some acidophilic SRBs have been 
detected (Sen and Johnson 1999). H2S may react with metals and form insoluble sulphates (Dvorak et 
al. 1992). 
 
Table 10. Typical heap design parameters. (du Plessis et al. 2007, Brierley 2001). 

Parameter Typical value  
Height (m) 4-10  
Leaching perioid (d) 300-450  

Air-flow rate (N m3 t-1 h-1) 0.02-0.08  

Irrigation (L m2 h-1) 4-18  

 
 
Temperature effects on bioleaching 
In heaps and dumps temperature depends on the climatic conditions, ore chemistry and process design. 
Temperatures are affected by the composition and concentration of the sulphidic minerals due to their 
exothermic oxidation reactions. (Dixon 2000). The outer layers of a bioheap are affected by climatic 
conditions. (van Aswegen et al. 2007, Leahy et al. 2005). The relationship between the chemical and 
microbial reaction rates and temperature are described in Chapter 1.8.1. 
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Heap bioleaching at low temperatures faces several challenges. At low temperatures all physical and 
chemical reactions are slowed down. The relationship between the chemical reaction rate and 
temperature is as described by Arrhenius equation (Franzmann et al. 2005): 
 

 
, where            (5) 
 

 
lnk = the natural log of the first-order rate coeffient or similar rate measure for any temperature T (in 
Kelvin) 
Ea = the activation energy, R is the gas constant (8.314 J K-1 mol-1)  
 A = the pre-exponential factor 
 
 
For example, the activation energy for mesophilic bioleaching of chalcocite is about 98 kJ mol-1, so that 
for each 10 increase in temperature the reaction rate increases 3 times. (Franzmann et al. 2005). 
 
The relationship between microbial growth and temperature is as described by the Ratkowsky equation 
(Ratkowsky et al. 1983): 
 
 

, where (6) 
 
T = temperature (ºC) 
B and c = fitting parameters 
 
 
Potential inhibitors of bioleaching organisms 
Bioleaching microbes are usually adapted to high metal concentrations. Various strains may tolerate up 
to 50 g L-1 Ni, 55 g L-1 Cu and 112 g L-1 of Zn. (Bosecker 1997). Recirculation of PLS back to the 
process may lead to the accumulation of high concentrations of ions. The accumulation can lead to 
toxic concentrations and inhibite microbial growth and activity. If the consentration is enough high, the 
osmotic stress can also cause plasmolysis to micro-organisms, instead of metal toxicity. (Hedrich and 
Johnson 2013). Nickel toxicity varies greatly between species and strains. Subculturing and adaptation 
enhance tolerance to higher metal concentrations. (Rawlings 2005, Watling 2008). Arsenic, uranium, 
chloride, nitrate and fluoride inhibit microbial growth. (Hallberg et al. 1996b and Leduc et al. 1997, 
Dopson et al. 2003). In Paper IV fluoride (F-) was released from the chalcopyrite in the concentrations 
of 15.2 and 5.8 mM and that inhibited microbial activity. Table 11 lists product and ferrous iron 
concentrations reported to inhibite A. ferrooxidans and L. ferriphilum. In the study of Nurmi et al. 
(2009) with L. ferriphilum Fe2+ oxidation proceed at the tested maximum Fe2+ 20 g L-1 and Fe3+ 60 g L-

1 concentrations, althought  Fe2+ oxidation rate decreased at above Fe2+ 4 g L-1 and Fe3+ 5 g L-1 
indicating substrate and product inhibition. With A. ferrooxidans concentration of 20 g L-1 of ferrous 
iron has been found to completely inhibit the oxidation of ferrous iron (Barron and Lueking 1990). 
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Table 11. Product and ferrousiron inhibition concentrations reported to A. ferrooxidans and L. ferriphilum. 

Metal 
Concentration 
(g L-1) Strain Reference 

Ni2+ 31, 9.7, 60  A. ferroxidans Carbera et al. 2005, Nemati et al. 1998, Dopson et al. 2003 

Zn2+ 31 
11 

A. ferroxidans Carbera et al. 2005 

Cu2+ 11 A. ferroxidans Carbera et al. 2005 

Fe2+ 20 A. ferroxidans Barron and Lueking 1990 

Fe3+ 5-10 * A. ferroxidans Das et al. 1997 

Fe2+ 30, >20 L. ferriphilum Kinnunen and Puhakka 2005, Nurmi et al. 2009 

Fe3+ >20, >60 L. ferriphilum Kinnunen and Puhakka 2005, Nurmi et al. 2009 

Fe2+ + Ni2+ 40 + 10 L. ferriphilum Nurmi et al. 2009 

Fe2+ + Zn2+ 30 + 40 L. ferriphilum Nurmi et al. 2009 

Zn2+ + Ni2+ 60 + 10 L. ferriphilum Nurmi et al. 2009 

Ni2+ >60 L. ferriphilum Nurmi et al. 2009 

Zn2+ >60 L. ferriphilum Nurmi et al. 2009 

* partial inhibition 
 
Most of bioleaching microorganisms are sensitive to organic material, notably Leptospirillum spp., and 
the growth can be inhibited (Johnson 1995 and 2001). Organic acids, like humic acid from the water 
used as PLS, cell lysates of bioleaching microorganisms and organic solvents used in downstream 
processing, might also lead to inhibition problems. (Mazuelos et al. 1999). Heterotrophic 
microorganisms do not participate in actual bioleaching reactions, but rather oxidize organic carbon 
and thus are part of the bioleaching ecosystem. (Johnson 1998, Frattini et al. 2000, Matlakowska and 
Sklodowska 2011). 
 
Monitoring 
The extent of the bioheap monitoring varies and may change with the process of bioleaching. The PLS 
is usually analysed for pH, redox potential, temperature and dissolved oxygen, total and ferrous iron 
concentrations and different metal concentrations. These analyses provide information on mineral 
dissolution and the activity of the iron-oxidizing bacteria. (Brierley 2001). Samples of the leached ore 
are analysed for residual metals. Temperatures are measured at various depths and locations troughout 
the bioheap. Oxygen measurements indicate whether the aeration is sufficient. (Brierley 2001).  
 
Bacterial counts and molecular techniques together with chemical and physical tests give valuable 
information on the performance of heap operation. (Brierley 2001).  
 
 
1.6.6 Iron removal 
 
Iron plays a key role when valuable metals are dissolved from sulphide ores (Please see Section 1.3). 
Before the valuable metal recovery process, iron needs to be removed by precipitation. Being inhibitory 
at high concentrations (Please see Table 11) part of the iron can be removed also before recycling the 
effluent. Iron is commonly removed through hydroxide precipitation by adding lime or limestone to 
increase the pH approxmately to 3. In addition to chemicals, the pH can be increased also with the help 
alkaline producing microorganisms (Kaksonen and Puhakka 2007). (For the reviews, see Johnson 2003 
and 2006). 
 
Iron-oxidizing microorganisms can also be used in a separate bioreactor to oxidize ferrous iron to ferric 
state. That allows optimization of the conditions e.g. temperature for both stages. (Rawlings and 
Johnson 2007). High-rate iron oxidation has been achieved with bioreactors using immobilized iron-
oxidizing microorganisms. In the study of Nurmi et al. (2010) PLS after the recovery of target metals 
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from Talvivaara was used in a fluidized bed reactor (FBR) for biological oxidation of ferrous iron by a 
L. ferriphilum. After oxidation iron was precipitated with or without pH adjustment and settled with 
gravitation in a subsequent settling tank. The pH was adjusted with CaCO3 or KOH. When pH was 
increased to 3.5 with KOH, the maximum oxidation rate 3.7 g Fe2+ L-1h-1 was achieved. Without chemical 
addition the iron precipitate as jarosite and pH increased. When pH was increased with KOH or 
CaCO3, the formation of goethite or gypsum was also observed.  
 
Produced sludge must be finally disposed. Jarosite precipitation is a common iron removal method 
especially in zinc industry. Downside is that other metals may co-precipitate. (Cunha et al. 2008, 
Ismael and Carvalho 2003, Puhakka and Tuovinen 1986a). Iron can be precipitated also as goethite or 
hematite. Precipitated iron should have good settling properties. The end product is strongly dependent 
on pH. Many neutralizing materials can be used, e.g KOH or CaCO3. (Nurmi et al. 2010). Hematite is 
the most stable form, which can be sold or stored without special precautions. The jarosite and goethite 
products are less stable and contain heavy metals that are easily released into the environment, resulting 
in the requirement of strict and costly final disposal systems. (Ismael and Carvalho 2003, Wang et al. 
2007). Besides iron effluents contain high concentrations of sulphate. Also sulphate can be precipitated 
as a stable endproduct. Biological and chemical iron and sulphate removal systems have been examined 
especially for acid mine drainage (AMD). (Chapter 1.6.7.).  
 
 
1.6.7 Metal recovery processes 
 
In the beginning of hydrometallurgical solvent extraction - electrowinning process (SX-EW) metal rich 
solution is mixed with organic solvent (SX). Organic solvent selectively removes metals from original 
solution. The organic solvent is then separated and metals are stripped from it with a fresh acidic 
solution. That solution is led to electrowinning (EW), where metal-rich solution is filtered to remove 
entrained organics, heated, and passed through a series of electrolytic cells where metals are 
precipitated to form high quality cathodes. (Bartos 2002). 
 
 
1.6.8 Environmental control 
 
One of the major concerns arising from bioleaching operations is the potential long-term environmental 
impact. Bioleaching effluents can cause severe problems if they are released to the environment. 
Effluents are acidic and contain metals in addition to sulphate and iron. (Gray 1997). Acid mine 
drainage (AMD) can also form in natural conditions where sulphide minerals are exposed to oxidizing 
conditions (Johnson and Hallberg 2003). The regeneration of ferric iron is the key reaction that 
accelerates the AMD production. AMD can be prevented by excluding water or oxygen from the 
mineral. One way of doing this is to isolate minerals eg. by using layers of sediment (Johnson 2000, 
Johnson and Hallberg 2003). Another way is to change the top soil and replace it with vegetation. In 
practice, the AMD cannot be prevented totally and remediation applications are needed. (For a review 
see, Johnson and Hallberg 2005).  
 
AMD and effluents from bioleaching operations are chemically neutralized or precipitated. The used 
techniques include neutralization and precipitation with alkaline material. Various neutralising reagents 
have been used, including lime (CaO), Ca- and Na-carbonates (CaCO3, Na2CO3), Na- and Mg-
hydroxides (NaOH, Mg(OH)2). (Banks et al. 1997). Effectiveness and cost of these chemicals vary. 
Problem is that many of the metals co-precipitate. The result is iron-rich sludge that contains various 
other metals. The controlled final disposal increases the costs of the process. (For a review see, Johnson 
and Hallberg 2005).  
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Biological remediation is based to microorganisms that are able to generate alkality and thereby 
immobilise metals. Microbiological processes that generate alkality include denitrification, 
ammonification, methanogenesis, sulphate-, Fe- and Mn-reduction. Treatment systems vary from 
actively monitored reactor types to passive wetlands. (Figure 7). Passive treatment applications are 
relatively low cost and easier to maintain compared to active treatment methods. (For a review see, 
Johnson and Hallberg 2005). 
 

 
 
 
 
Figure 7. Options for preventing the formation and remediation applications of AMD (adapted from Johnson and Hallberg 
2005).  
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1.7 THE COMPLEX MULTI-METAL BLACK SCHIST ORE DEPOSIT 
 
Talvivaara complex multi-metal black schist sulphide ore deposit is located in north-eastern Finland 
with 1550 million ton of classified resources. The mineralogy and geochemistry of the deposit have 
been characterized in the literature (Airo and Loukola-Ruskeenniemi 2004, Loukola-Ruskeenniemi 
1996). The Talvivaara deposits comprise two different polymetallic ore bodies hosted by a black schist, 
Kuusilampi and Kolmisoppi. The deposits are relatively easy to mine as an open pit. The nickel deposit 
has been known for decades, but it is not been used until now, because of the low nickel concentration.  
 
The Geological Survey of Finland carried out a detailed exploration in the Talvivaara area from 1977 to 
1983 and continued the geological work in the late 1980’s and early 1990’s. The resource was found to 
be large but of very low grade. The Talvivaara deposits remained unexploited until the Talvivaara 
Project acquired the rights to the deposits in February 2004 and continued the geological work by 
focusing on sampling for processin purposes. (Riekkola-Vanhanen 2010, 2013). The mineral 
composition of the sulfide component of the ore was 61.2 % pyrrhotite (FeS), 24.3 % pyrite (FeS2), 5 
% pentlandite [(Fex/Ni9−x)9S8], 6.5 % alabandite (MnS) and 2.4 % chalcopyrite (CuFeS2).  
 
In the ore, pentlandite contains between 75-88 % of the contained nickel and pyrrhotite is the second 
most important mineral in terms of nickel content. Pyrite contains the main share (between 67-90 %) of 
contained cobalt while chalcopyrite is carrying copper and sphalerite zinc. The mineral resources have 
been classified with 0.07 % Ni cut-off at 1004 million tons, containing 0.23 % of nickel, 0.51 % of 
zinc, 0.13 % of copper and 0.02 % of cobalt (Riekkola-Vanhanen 2010, 2013). Si-containing minerals 
are anorthite (CaAl2Si2O8), biotite (K(Mg,Fe)3[AlSi3O10(OH,F)2]), microline (KAlSi3O8), phlogopite 
[KMg3(Si3Al)O10(F,OH)2], plagioclase [(Na,Ca)(Si,Al)4O8] and quartz (SiO2). (Bhatti et al. 2012b). 
 
During the summer of 2005, a 17 000 t demonstration plant was constructed at the Talvivaara mine site. 
Results were encouracing and the building of a full-scale commercial plant was started. Commercial 
bioleaching process was in operation in April 2008 and first nickelsulphide product was delivered in 
February 2009 to Norilsk Nickel Harjavalta plant. (Riekkola-Vanhanen, personal communication 
2015).  
 
Figure 8 presents the overall process from mining to metal recovery. The process involves four 
crushing stages, followed by agglomeration with PLS. After 13-14 months of bioleaching on the 
primary pad, the leached ore is reclaimed, conveyed and re-stacked onto the secondary heap pad. 
Ongoing metals recovery takes place on the secondary pads for a further three and a half years. At the 
conclusion of this phase, the barren ore remains on the secondary pads permanently. In metal recovery, 
nickel, copper, zinc and cobalt are precipitated using hydrogen sulphide from PLS and filtered. After 
the metals are removed, the solution is purified and returned to the heaps. The resulting products, 
copper-, zinc sulphides and mixed nickel cobalt sulphides are transported to customers. (Talvivaara 
2014). The Talvivaara heap bioleaching has been described by Riekkola-Vanhanen (2010).  
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a) 

 

 
Figure 8. a) Schematic diagram of the Talvivaara process from mining to metal recovery. b) Photograph of the mine site. c) 
Heap stacking. Photos: Marja Riekkola-Vanhanen. 
 
 
In November 2012, the gypsum pond leaked and 1.2 million cubic meters of water containing metals 
and sulphate were released to the mining area and outside the area of around 240 000 m3. The gypsum 
pond was used as storage for too much PLS caused by the rains. The released water was neutralized 
with limestone in order to reduce its acidity and to precipitate its metal content. However, the effects of 
the discharge were seen as temporarily increased metal concentrations in the nearby waters. The 
recovery plant was shut down at 4th of the November and further started at 21th of November 2012, 
after the permission from the Kainuu Centre for Economic Development, Transport and the 
Environment. Leakage resumed in April 2013, but the built safety dam hindered the leakage outside the 
mining area. After these leakages, safety and risk management were improved. (Riekkola-Vanhanen 
2015, personal communication). 
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1.8 MICROORGANISMS INVOLVED IN BIOLEACHING 
 
 
1.8.1 Microbial ecology in heaps 
 
Microbial ecology involves the study of the relationship of microorganisms to their environment and to 
each other (Johnson 2001). Microorganisms growing optimally at pH < 3 are defined acidophiles 
(Norris and Johnson 1998). Mineral processing technologies have developed extremely acidic, metal-
rich environments that are quite young when compared to natural occurring sites. However, metal 
mining has a long history in some regions of the world such as RioTinto Spain (Lopez-Archilla and 
Amils 1999). This has facilitated the emergence of acidophilic communities at these sites. These 
naturally occurring communities are often more complex and diverse compared to man-made reactors. 
(Johnson 2001). 
 
Iron- and sulphur-oxidizing chemolithotrophic microorganisms in the heaps are indigenous. Heaps or 
dumps have rarely been inoculated. The temperature and acidity gradients in bioleaching environments 
support a wide diversity of microorganisms. Survival of the species depends on adaptability and 
diversity to function in varying conditions (Brandl 2001). Temperature, pH and aeration efficiency vary 
creating different kind of microenvironments where microorganisms habit. Conditions change during 
the time of stacking and leaching. Heaps heat up due to exothermic bioleaching reactions and ferric 
iron concentrations tend to increase after start-up.  
 
Acidophilic microorganisms can be divided into the groups with respect to their growth temperatures. 
As temperature increases to more than 40 ºC mesophiles are displaced by the moderately thermophilic 
and thermophilic microorganisms. Mesophiles have an optimum temperature around 20-40 ºC. Extreme 
thermophile grow optimally at temperatures higher than 60 ºC. Mesophilic acidophiles are dominantly 
rod-shaped, Gram-negative eubacteria. Moderate thermophiles include archaea and eubacteria, the 
majority of which being Gram-positive. In contrast, extreme thermophiles are exclusively archaea. 
(Johnson 1998, 2008). Thermophiles generally have higher growth rates and faster substrate utilization 
rates than mesophiles (Brandl 2001). Metal leaching at low temperatures has also been reported and 
cold tolerant acidophiles have been identified (Ahonen and Tuovinen 1992). Studies of low-
temperature bioleaching microorganisms have been reported by Johnson et al. 2001 and  Hallberg et al. 
2010. Psychrophiles, grow optimally at temperatures below 15 ºC, whilst psychrotolerant 
microorganisms preferentially grow at higher temperatures but are also able to grow at temperatures 
below 10 ºC. Bioheaps that are located in cold areas may benefit inoculation of thermophilic 
microorganisms since the temperatures inside the heap may reach temperatures near 90 ºC. (Rawling 
and  Johnson 2007). 
 
Althought microbes in leaching environments survive at high metal concentrations and can adapt to 
physico-chemical changes to some extent, there are limits to which this may occur. Product and 
substrate inhibition has been discussed in Section 1.6.5.  
 
Most acidic environments, including surface water in the Sotkamo deposit, contain dissolved organic 
carbon in low concentrations (< 20 mg L-1), and are therefore considered as oligotrophic. Many of the 
autotrophic acidophiles are sensitive to organic matter. Therefore, heterotrophic acidophiles found in 
leaching environments are important in consuming organic material and thereby, detoxify the local 
environment. (Brandl 2001, Johnson 1998, 2008, Robbins 2000, Matlakowska and Sklodowska 2011). 
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1.8.2 Bioleaching bacteria 
 
Iron- and sulphur-oxidizing chemolithotrophic microorganisms are the most important mineral-
oxidizing microbes. They grow autotrophically by fixing CO2 from the atmosphere and obtain their 
energy by using ferrous iron (Fe2+) or reduced inorganic sulphur compounds (RISCs), or both, as an 
electron donor. (For the reviews see, Johnson 1998, Rawlings 2002). 
 
The first bioleaching bacteria Thiobacillus (later Acidithiobacillus) were described in acid mine waters 
by Colmer and Hinkle (1947). It was long considered to be the most important bioleaching 
microorganisms. It can use ferrous iron, sulphur and pyrite as a substrate, that were usually used  in 
enrichment cultures for purpose to isolate acidophilic microorganisms. In the light of nowadays 
knowledge this may select for a relatively narrow range of acidophiles and give a false impression of 
the population in situ. Besides the key players, a variety of micro-organisms are detected in bioleaching 
environments. (Rawlings 2002, 2005, Brierley 2001). Characteristics of most studied iron- and sulphur-
oxidizing chemolithotrops are presented in Table 12. Occurrence of them in bioleaching heaps are 
listed in Table 14. 
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Table 12. Characteristics of some most studied iron- and sulphur-oxidizing chemolithotrops. 

Genus Species 
Oxidation 
Fe/S Temperature  pH 

Hetero-/ 
autotroph 

Reference 

Bacteria       
Mesophiles       

Acidithiobacillus ferrooxidans Fe, S 10-37, 30-35* 1.3-4.5, 2.5* A Kelly and Wood 2000, Valdes et al. 2008 

Acidithiobacillus thiooxidans S 10-37, 28-30* 0.5-5.5, 2.0-3.0* A Kelly and Wood 2000 

Acidithiobacillus ferrivorans** Fe, S 4-37, 27-32* 1.9-3.4, 2.5* A Hallberg et al. 2010 

Leptospirillum ferrooxidans Fe, S <10-45, 30-37* >1.1, 1.3-2.0* A Johnson 2001a 

       

Thermophiles       

Acidithiobacillus caldus S 32-52, 45* 1.0-3.5, 2.0-2.5* A Hallberg et al. 1996, Kelly and Wood 2000 

Leptospirillum ferriphilum Fe 30-45, 30-37* 1.4-1.8 A Coram and Rawlings 2002 

Leptospirillum thermoferrooxidans 
10 

Fe 30-55, 45-50* >1.3, 1.65-1.90* A Golovacheva et al. 1992, Johnson 2001 

Sulfobacillus acidophilus Fe, S 45-50* 2.0* A and H Norris et al. 1996 

Sulfobacillus thermosulfidooxidans Fe, S 28-60, 50* 1.9-3.0, 1.9-2.4* A and H Brandl 2001, Robbins 2000 

       

Archaea       

Acidianus brierley Fe, S 45-75, 70* 1-6, 1.5-2* A and H Huber and Stetter 2001 

Ferroplasma acidiphilum Fe 15-45, 35* 1.3-2.2 A/ mixotroph Golyshina et al. 2000 

Sulfolobus acidocaldarius S 55-85, 70-75* 2-3*, 1-6 A and H Brock et al. 1972, Chen et al. 2005 

Sulfolobus metallicus Fe, S 50-75, 65* 1-4.5, 1.3-1.7* A Huber and Stetter 2001 

*optimum, **psychrotolerant      
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Acidithiobacillus 
The first described acidophilic iron- and sulphur-oxidizing bacterium was Acidithiobacillus 
ferrooxidans (formerly Thiobacillus, Kelly and Wood 2000). For many years it was considered to be 
the most important bioleaching microorganism in environments at 40 ºC or less (for a review, see 
Brierley 1982). A. ferrooxidans grows optimally at 30-35 ºC and at temperature range from 10 to 37 ºC. 
Many bioleaching operations favor A. ferrooxidans at the beginning when little ferric iron is released. 
This situation also prevails natural environments where leaching solutions are not circulated. However, 
in commercial bioleaching plants, leach solutions are circulated and steady-state conditions are 
achieved. Usually this results in accumulation of ferric iron, which decreases the role and occurrence of 
A. ferrooxidans. A. ferrooxidans is able to use ferrous iron, hydrogen, citric acid and sulphur as 
electron donors. (Johnson Hallberg et al. 2010). It is facultative anaerobe, being able to grow trough 
ferric iron respiration in anoxic environment (Pronk et al. 1992). 
 
The species of Acidithiobacillus consists of many strains and it has been a question whether these 
strains actually comprise different species (Ni et al. 2008, Amouric et al. 2011). In 2010 Hallberg et al. 
described A. ferrivorans that was previously considered to a cold-tolerant strain of A. ferrooxidans by 
Johnson et al. 2001. A. ferrivorans grows in the range of 5-37 ºC (Table 12). Both bacteria have similar 
optimum temperature (Hallberg et al. 2010). Mykytczuk et al. (2010 and 2011) reported also 
psychrotolerant A. ferrooxidans strains. However, according to phylogenetic analysis it belongs to A. 
ferrooxidans group II.  
 
The genus Acidithiobacillus includes A. thiooxidans (Kelly and Wood 2000) and A. caldus (Hallberg et 
al. 1996a).  A. thiooxidans and A. caldus are incapable of pyrite oxidation, but they can utilize the 
sulphide moiety of the mineral when it is first released by the action of iron-oxidizing bacteria like A. 
ferrooxidans (Hallberg et al. 1996a). A. caldus reflects its thermotolerance with growth rate that 
exceeds that of A. thiooxidans at temperatures over 30 ºC. A. caldus dominates at temperatures around 
50 ºC (Norris et al. 1996). 
 
A. ferridurans was described in 2013 by Hedrich and Johnson. For the strain isolated from drainage 
water at a uranium mine in Japan, the pH and temperature optima were 2.1 and 29 ºC, respectfully. A. 
ferridurans tolerates higher iron concentrations than A. ferrooxidans. A. albertensis is the least studied 
species in the genus and the affiliation remains uncertain. It has an optimum growth temperature of 
about 30 ºC and grows between 10-35 ºC, although lower temperatures have not been tested. (Kelly 
and Wood 2000, Xia et al. 2007).  
 
Leptospirillum 
In 1972 Markosyan described L. ferrooxidans isolated from mine water of the Alaverda copper deposit 
in Armenia. At least three major groups of leptospirilli exist (Goltsman et al. 2013). Leptospirilli have 
been positioned within division of Nitrospira group. L. ferrooxidans has been increasingly studied 
since its capacity to grow more successfully in certain circumstances than A. ferrooxidans (For a 
review, see Rawlings et al. 1999). Leptospirilli are the primary iron-oxidizers in several industrial 
continuous-flow biooxidation tanks (Coram and Rawlings 2002). The reason for this bacteria's 
domination in tanks is most likely due to the fact that the high ferric-ferrous iron ratio inhibits other 
species but not Leptospirillum. L. ferrooxidans has inhibition constant (Ki) of 42.8 mM, while, for 
example, A. ferrooxidans has Ki of 3.10 mM. The growth temperature of L. ferrooxidans is also wider 
compared to A. ferrooxidans being <10-45 ºC and <10-37 ºC for A. ferrooxidans (Kelly and Wood 
2000, Johnson 2001). Leptospirillum ferriphilum is a thermotolerant mesophile that dominates in tank 
bioleaching operations at 35-50 ºC (Coram and Rawlings 2002). Moderately thermophilic L. 
thermoferrooxidans grows solely with ferrous iron but not with sulphide minerals on growth range 30-
55 ºC and optimal temperature 45-50 ºC (Golovacheva et al. 1992, Hippe 2000). Unfortunately L. 
thermoferrooxidans has been lost (Coram and Rawlings 2002). Two rather new species “L. 
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ferrodiazotrophum”  and “L. rubarum”  have been isolated from the Richmond Mine in Canada (Tyson 
et al. 2005, Goltsman et al. 2009, 2013). 
 
Sulfobacillus  
The genus Sulfobacillus includes Gram-positive, endospore forming acidophilic bacteria that grew 
autotrophically and mixotrophically on ferrous iron, on elemental sulphur in the presence of yeast 
extract and heterotrophically on yeast extract. (Bogdanova et al. 2006, Watling et al. 2008). The genus 
was first described in 1978 by Golovacheva and Karavaiko. Several species of the genus Sulfobacillus 
have been isolated from various mine sites and they are mostly moderately thermophilic. The taxonomy 
of the genus Sulfobacillus has suffered from incomplete description of species and thus they taxonomy 
has not been properly validated (Johnson et al. 2003, 2005). Sb. acidophilus and Sb. 
thermosulfidooxidans are acidophilic, moderately thermophilic Gram-positive rods. (Norris et al. 1996) 
Optimal conditions for growth of Sb. acidophilus are 45-50 ºC and pH of 2. Sb. thermosulfidooxidans 
grows optimally at 50 ºC (Brandl 2001) and at pH 1.9-2.4 (Robbins 2000). The ability of Sb. 
thermotolerans to form endospores is advantageous for survival of bacteria during low temperature 
periods in heaps, where high seasonal variation in temperature occurs. The optimum temperature of Sb. 
thermotolerans is 40 ºC and the growth range 20-60 ºC (Bogdanova et al. 2006). Sb. sibiricus has an 
pH optimum of 1.5, the growth range of 1.1-2.4 and Topt 52 ºC with the unusual wide growth range of 
16-62 ºC (Watling et al. 2008, Melamud et al. 2003). 
 
Alicyclobacillus 
The first Alicyclobacillus was isolated in 1982 and was originally thought to be strictly limited to 
thermophilic and acidic environments. After that, the genus has gained more attention in beverage 
industry due to its ability to survive commercial pasteurization processes and produce off-flavors in 
fruit juices. Several strains of Bacillus and some Sulfobacillus strains have been reclassified to genus 
Alicyclobacillus (Wisotkey et al. 1992, Karavaiko et al. 2005) including over 20 species in the genus. 
 
Alicyclobacillus disulfidooxidans (formerly Sb. disulfidooxidans, Karavaiko et al. 2005) is a mesophilic 
aerobic bacterium, originally isolated from wastewater sludge (Dufresne et al. 1996). The optimal pH 
of growth is between 1.5 and 2.5 and the growth temperature range from 4 to 40 ºC, with an optimum 
at 35 ºC.  
 
Archaea 
The role of archaea in the biomining community has been considered to rather scavenge the organic 
material than leach minerals. As actual bioleaching species, the use of thermophilic archaea e.g. 
Acidianus brierleyi and Sulfolobus metallicus are gaining attention. (Johnson 1998, 2001). 
 
Acidianus 
Acidianus brierleyi is the first discovered iron- and sulfur-oxidizing archaea (1965). It was found  from 
acidic hot springs of Yellowstone National Park, USA (Brierley and Brierley 1973). A. brierleyi was 
initially placed in the genus Sulfolobus but after further investigation of its metabolic properties, it was 
reaffiliated to the genus Acidianus (Segerer et al. 1986).  A. brierleyi can both oxidize and reduce sulfur 
depending on the availability of oxygen. It grows between 45 and 75 ºC and pH from 1 to 6; optimum 
growth occurs at 70 ºC and pH 1.5 to 2.0. A. brierleyi grows heterotrophically on yeast extract and 
autotrophically on carbon dioxide. (Segerer et al. 1986).  
 
Sulfolobus 
The genus Sulfolobus contains microorganisms that live in acidothermophilic environments. Members 
of this genus grow aerobically at pH range between 0.9 and 5.8 and at high temperatures in the 
presence of elemental sulphur. This genus was the first acidothermophilic genus of archaea described 
(Brock et al. 1972). Several species have been described e.g. S. metallicus (Norris et al. 1996, Huber 
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and Stetter 2001) and S. acidocaldarius  (Brock et al. 1973 and Chen et al. 2005). S. acidocaldarius 
grows on sulphur or on a variety of simple organic compounds. S. metallicus, instead, is obligately 
chemolithoautotrophic elemental sulphur and ferrous iron-oxidizer. S. metallicus grows at temperatures 
of 50-75˚C with a growth optimum at 65˚C (Huber and Stetter 2001).         
 
Ferroplasma 
Currently three species of Ferroplasma are recognized. F. acidarmanus, F. acidiphilum and F. 
thermophilum (Dopson et al. 2004, Golyshina et al. 2000, Okibe et al. 2003, Zhou et al. 2008). They 
are extremely acidophilic, with a pH optimum below 2.0 grow as low as pH 0 (Dopson et al. 2004). 
Usually, they grow mixotrophically on ferrous iron and an organic substrate, such as yeast extract, even 
though F. acidiphilum has the ability to grow autotrophically. The growth temperature for F. 
acidiphilum is 15-45 ºC and its pH range is from 1.3 to 2.2. The optimal temperature is 35-36 ºC and 
the optimal pH is 1.7. (Golyshina et al. 2000). 
 
Heterotrophic microorganisms 
Acidophilic heterotrophic microorganisms have been found in bioleaching operations e.g. 
Pseudomonas spp., Bacillus spp. and some fungi like Penicillium and Aspergillus (Johnson et al. 2001, 
Xie et al. 2007, Matlakowska and Sklodowska 2011). They are considered important for the 
bioleaching activity because they remove inhibitory organic compounds. (Matlakowska and 
Sklodowska 2011). Commonly they do not directly assist in the solubilization of metals from sulphide 
mineral ores. (Johnson 1998 and 2001, Matlakowska and Sklodowska 2011). Al though, they have been 
reported to be able to leach metals by producing organic acids. (Burgstaller and Schinner 1993, Rezza 
et al. 2001).  
 
 
1.9 MICROBIAL COMMUNITIES IN MINING ENVIRONMENTS 
 
Understanding the microbial aspects of bioleaching facilitates heap design and operation. Different 
techniques have been developed, althought investigation of microorganisms inhabiting bioleaching 
environments exhibits some challenges. The limited number of microorganisms that have been 
discovered may be a consequence of the methods used to identify microorganimsms (Watling 2006). 
Common microbiological methods based on incubation are usually not amenable to these 
microorganisms. Normal agar or agarose is hard to solidify at low pH and chemolithotrophs are 
sensitive to organic material. The most successful approach has been the use of a double-layer plating 
technique with an alternative gelling agent. (Johnson 1995 and Okibe et al. 2003).  
 
A breakthrough was achieved when molecular techniques (gene libraries, DGGE, fluorescence in situ 
hybridizations) could be applied for samples from mining environments. No growth of the 
microorganisms are required. PCR-based technique was first used successfully with bioleaching 
microbes in 1994 by Stackebrandt and Goebel. They investigated the bacteria present in laboratory-
scale batch and continuous-flow bioreactors treating a mixed zinc-lead ore at 35-40 ºC.  
 
The DNA approaches used in these analyses are based in the detection and amplification of one 
specific gene, mainly 16S rRNA gene, indicating the presence of the microorganism containing that 
gene (Johnson and Hallberg 2007). However, some of the microorganisms may be latent or even dead 
and still retain stable DNA. Instead, experiences with pure cultures have shown that cells with 
significant ribosome content are living and metabolically active (Schippers et al. 2005). To obtain 
information on the active microorganisms, RNA-based analysis should be performed. In recent years 
important advancement has been the use of oligonucleotide arrays (Yin et al. 2007, Remonsellez et al. 
2009). The use of quantitative real-time PCR is an approach to quantitatively describe the community 
composition (Kock and Schippers 2006, 2008; Remonsellez et al. 2009). Liu et al. (2006) developed a 
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SybrGreen real-time PCR assay of DNA isolated from representative strains of A. brierleyi, Sulfolobus 
spp., Sb. thermosulfidooxidans, Sb. acidophilus, A. caldus, and L. ferrooxidans. Different techniques to 
assess microbial community structure, function and dynamics in the bioleching environments have 
been used (Table 13). 
 
Table 13. Techniques to assess microbial community structure, function and dynamics in the bioleaching environment. 

TECHNIQUE Reference 

Double-layer plating technique Johnson 1995 
Genetic Fingerprinting Techniques:  

DGGE Denaturing Grandient Gel Electrophoresis Muyzer 1999 

TGGE Temperature Grandient Gel Electrophoresis 
Muyzer and Smalla 1998, Muyzer 1999,  
Mikkelsen 2009 

SSCP Single-Strand Conformation Polymorphism Hayashi 1991, Battaglia-Brunet et al. 2002 

RAPD Random Amplified Polymophic DNA Williams et al. 1990, Novo et al. 1996 

ANDRA Amplified Ribosomal DNA Restriction Analysis Smit et al. 1997, Qiu et al. 2011 

T-RFLP 
Terminal Restriction Fragment Length 
Polymorphism 

Thies 2007, Bryan et al. 2005 

LH-PCR Lenght Heterogeneity PCR Mills et al. 2007 

RISA Ribosomal Intergenic Spacer Analysis Ranjard et al. 2001, Espejo and Romero 1997 

DNA Microarrays  Gentry et al. 2006, Yin et al. 2007 

Q-PCR Quantitative PCR (or real-time PCR) Heid et al. 1996, Liu et al. 2006 

FISH Fluorecence in Situ Hybridization Amann et al. 1995, Bouchez et al. 2006 

Microbial lipid analysis Banowetz et al. 2006, Ben-David et al. 2003 

G+C Guanine plus Cytosine Content Fractionation Nusslein and Tjedje 1999 

 
 
Microbial community structures and dynamics have mainly been studied microorganisms in PLS. 
Representative ore samples are challenging to obtain as the enormous bioheaps include a huge variety 
of microenvironments. Attached microorganisms are difficult to release from solid ore particles. 
According to Remonsellez (2009), the comparison between the microbial communities in associated 
mineral and solutions of industrial and laboratory samples show enough similarity to be considered as 
indicator of the community inside the heap. Community structures and dynamics of attached 
microorganisms during bioleaching operation have been studied by Diaby et al. (2007), Zeng et al. 
(2010) and by Lizama et al. (2012). Microbial diversities in heap and dump bioleaching operations are 
summarized in Table 14. 
 
Lizama et al. (2012) studied microorganisms in a zinc bioheapleaching plant. Two 6 m high heaps were 
sampled from different dephts and at different stages of the leaching cycle. Nine bioleaching 
microorganisms were identified several times including: A. ferrooxidans, A. thiooxidans, A. 
alberttensis, Thiomonas sp., Ferroplasma acidophilum, L. ferriphilum, A. caldus, Sulfobacillus sp. and 
Sb. thermosulfidooxidans. Eight other microorganisms were also present, but not considered to have a 
role in the actual bioleaching. The highest measured temperature was at the bottom of the heap, being 
60 ºC and no extreme thermophiles were found. Suprisingly, Leptospirillum species were almost 
missing. Heaps were inoculated in the beginning with A. caldus and Sb. thermosulfidooxidans. 
However, these species did not present in bioheap profiles and A. caldus was detected only once. 
 
Remonsellez et al. (2009) reported a quantitative description of the dynamics of active communities in 
an industrial bioleaching heap from Escondida Mine, Chile. A. ferrooxidans was the most abundant 
during the first part of the leaching cycle, whilst the abundance of L. ferriphilum and Ferroplasma 
acidiphilum increased with the age of the heap. A. thiooxidans remained constant throughout the 
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leaching cycle and Firmicutes group showed a low and patchy distribution in the heap. By prokaryotic 
acidophile microarray (PAM) Alphaproteobacteria were found in all samples and Sulfobacillus genus 
in older samples. Actinobacteria and Acidobacteria were also detected by PAM. A. ferrooxidans 
phylotypes reached its highest abundance when pH values were over 2 and the ferric and total iron 
concentrations were less than 1.2 g l-1. Leptospirillum species reached their highest abundance when 
the pH was below 2 and high ferric ion concentration prevailed. The tolerance to high redox potential 
and ferric ion concentration (Rawlings et al. 1999) could be the reason for their dominance as also 
described previously (Demergasso et al. 2005). The presence of archaea like Thermoplasma and 
Ferroplasma has been related to high amount of total iron and low pH values. (Remonsellez et al. 
2009, Xiao et al. 2008).  
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Table 14. Microbial diversities in large-scale bioheap operations. 

Heap type Location 
A. 
ferrooxidans 

L. 
ferrooxidans/ 
ferriphilum 

Acidiphilium  
spp. 

Sulfobacillus  
spp. 

A. caldus/ 
thiooxidans/ 
alberttensis 

Ferroplasma 
spp. 

Non-bioleaching 
microorganisms or 
unknow species 

Reference 

Chalcopyrite 
overburden 

Australia X X X   X   
Goebel and 
Stackebrandt 1994 

Copper 
sulphide/ 
oxide dump 

Southwest 
USA 

X X X     Bruhn et al. 1999 

Chalcocite 
heap 

Australia  X   X X X Proteobacteria Hawkes et al. 2006 

Low-grade 
Cu sulphide 
heap 

Chile, 
Escondida 
Mine 

X X   X X X 

Firmicutes, 
Acidiphilum-like, 
Alicyclobacillus 
spp. 

Remonsellez et al. 
2009 

Low-grade 
Cu sulphide 
test heap 

Chile, 
Escondida 
Mine 

X X   X  X 
Chrenarchaeota,  
Sulfurisphaera spp. 

Demergasso et al. 
2005 

Copper 
leaching 
plant 

Chile, Lo 
Aguirre 

X X    X  Several 
Espejo and Romero 
1997 

Copper and 
iron bioheap 

China, 
Tong 
Shankou 

X X X     Several Xie et al. 2007 

Lead-Zn 
mine 

China, 
Yinshan 
mine 

 X   X X X Several He et al. 2008 

Copper mine 
China, 
Dongxiang  

X X X   X  Several Xiao et al. 2008 

Zinc 
sulphide 
bioheap 

USA, 
Alaska  

X X   X X X Several Lizama et al. 2012 
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2. AIMS OF THE PRESENT WORK 
 
Biohydrometallurgy enables the use of low-grade ore resources to recover valuable metals. Bioleaching 
is based on activity of a wide variety of mesophilic and thermophilic iron- and sulphur- oxidizing 
microorganisms. Bioleaching technology is site-specific and technology needs to be developed, 
including laboratory tests complemented with demonstration plant. Full-scale heap leaching depends on 
the amenability of ore resources for bioleaching, the environmental conditions, the amenability of the 
leach liquors to metal extraction and finally the overall economic and environmental analysis of the 
process. 
 
Bioleaching of a complex Finnish multimetal black schist ore was studied. The diversity and dynamics 
of the bioleaching communities were studied over time in different experimental and demonstration 
systems. The specific aims of this study were as follows: 
 

- To assess the effects of pH and leaching temperature on the dissolution of valuable metals. 
- To reveal the microbial community diversity and development at different pH values and 

temperatures. 
- To monitor the microbial community composition dynamics during a demonstration-scale 

bioheap over a period of three years. 
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3. MATERIALS AND METHODS 
 
 
3.1 SOURCE OF MICROORGANISMS FOR COLUMN LEACHING EXPERI MENTS  
 
The enrichment culture used for the inoculation of the bioleaching columns was obtained by combining 
several acidic (pH 4.5-6.9) water samples from the Sotkamo ore deposit. The cultures were first 
enriched in shake flasks at 25 ºC on three different acidic media. All the media contained basal salts 
[0.4 g L-1 each K2HPO4, (NH4)2SO4, MgSO4·7 H2O], supplemented with either ferrous iron (4.5 g L-1), 
elemental sulphur (1 % wt vol-1) or black schist ore powder (1 % wt vol-1) from the Sotkamo deposit. 
Basal salts were diluted with the surface water originating from the deposit (containing about 20 mg L-1 
dissolved organic matter, pH 6.9) and solutions were adjusted to pH 1.8 with sulfuric acid. After 
inoculation (10 % vol vol-1), the suspensions were incubated in orbital shakers at 180 rpm at 25 ºC. 
After one month of incubation the enrichments cultures were combined to a medium containing basal 
salts, ferrous iron (4.5 g L-1), sulphur (1 % wt vol-1) and black schist ore powder (1 % wt vol-1). The 
enrichment culture was subcultured three times with this medium prior transfer to the bioleaching 
columns. Microbial growth in media was monitored by phase contrast microscopy (Zeiss Axioskop 2). 
 
 
3.2 BIOLEACHING COLUMN EXPERIMENTS 
 
Seven columns at different target pH values (1.5, 2.0, 2.5 and 3.0 at 21 ºC) and temperature (7 ºC, RT, 
35 ºC, 50 ºC at pH 2.5) values containing about 9 kg of agglomerated ore were set up and inoculated 
(Papers I and II). For attempting to increase the bioleaching rate at 50 ºC, the column was re-inoculated 
with a Sulfolobus culture (Salo-Zieman et al. 2006) on day 65. 
 
The mineral composition of the sulphide ore was  61.2 % pyrrhotite [(Fe1 − x)(S2), where X = 0.7–0.9], 
24.3 % pyrite (FeS), 5 % pentlandite [(Fe,Ni,Co)9S8], 6.5 % alabandite (MnS), 2.4 % chalcopyrite 
(CuFeS2) and 1% sphalerite [(Zn,Fe)S]. Valuable metal contents were as follows: 0.27 % Ni, 0.56 % 
Zn, 0.14 % Cu and 0.02 % Co (for detailed description see Riekkola-Vanhanen 2007). Si-containing 
minerals are anorthite (CaAl2Si2O8), biotite (K(Mg,Fe)3[AlSi 3O10(OH,F)2]), microline (KAlSi3O8), 
phlogopite [KMg3(Si3Al)O10(F,OH)2], plagioclase [(Na,Ca)(Si,Al)4O8] and quartz (SiO2). The total 
amount of SiO2 of the ore was 42 % (w w-1). (Bhatti et al. 2012b). 
 
The columns had a volume of 7.9 L, a height of 100 cm and an inner diameter of 10 cm. The column at 
7 ºC was placed in a refridgerator and had a volume of 6.7 L, a height of 85 cm and an inner diameter 
of 10 cm. The leach liquor containers had a volume of 5 L and were provided with magnetic stirrers. In 
order to maintain temperatures at 35 ºC and 50 ºC, the columns were equipped with a water jacket 
connected to a heating thermostat. The solution container at 35 ºC had a heating fabric and the 
container at 50 ºC was placed in a water bath. A perforated plate and a filter cloth were inserted at the 
bottom of each column. Aeration was provided through a diffuser inserted at the base of the column at 
the rate of (8-11) m3 m-2 h-1. Ore was irrigated at a rate of 10 L m-2 h-1 by liquid recirculation. A 
titration apparatus connected to a PC was used to control the pH. Glass beads with a total bulk-volume 
of 270 ml were placed in the upper part of the column to enable even distribution of the leach liquor. A 
paraffin paper was set on the top of each column to prevent evaporation. A schematic diagram of a 
bioleaching column (not drawn to scale) is given in Figure 9 and a photo in Figure 10.  
 
Once the nickel concentration reached 2.50 g L-1 in the leach liquor was replaced with fresh liquor in 
order to decrease possible toxic effects of metals. After 110 and 140 days at pH 1.5, Ni concentration 
of PLS exceeded 2.5 g L-1 and on both times 1 L was replaced with fresh solution. At pH 2.0 that was 
done after 237 days. Columns at pH 2.0 (after 82 d), pH 2.5 (RT) and 35 ºC (after 117d) were blocked 
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at the bottom during the bioleaching. The ore was placed back to the columns and the experiment was 
continued. Surprisingly, in each column, about 200g of ore did not fit back to the column. The mixed 
sulphur- and iron-oxidizing culture was drawn from the recirculation solution at 7 ºC and used in the 
experiments where the Fe2+ oxidation rate and optimum temperature were determined over a 
temperature range of 2-40 ºC (Paper III). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
Figure 9. A schematic diagram of a bioleaching column (not drawn to scale). 
 

 
Figure 10. Photograph of the bioleaching columns used in Papers I-IV.  
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3.3 DEMONSTRATION-SCALE BIOHEAP 
 
In the summer of 2005, a 17 000 t demonstration plant was constructed at the Sotkamo mine site by 
Talvivaara Mining Company. A representative ore sample was mined, crushed to 80 % -8 mm, 
agglomerated and stacked in a two-part heap (8 m high, 30 × 120 m). Heap 1 was agglomerated with 
sulphuric acid solution (pH 1.8) including inoculum (Paper V). Heap 2 was agglomerated with 
sulphuric acid solution only. Irrigation water was taken from the drilled well on the area (pH 6) and 
irrigation of the heaps was started in August 2005. The irrigation flow rate was 10 L m-2 h-1 in the 
beginning on Heap 1 and 20 L m-2 h-1 on Heap 2. Irrigation was decreased later to 5 L m-2 h-1 on both 
heaps. The mineral composition of the sulphides used in the demonstration-scale bioheaps was as 
described in Chapter 1.7. 
 
Leach liquors were collected by subsurface drains below the heaps and directed to manholes. From the 
manholes liquors flowed to PLS ponds and back to irrigation. Both heaps had separate liquid 
circulations. The operational volumes of ponds 1 and 2 were 175 m3

 
and 136 m3, respectively. Heaps 

were 8 m high, 30 m wide and 60 m long. The amount of the ore of Heap 1 and 2 were 10 255 t and 6 
703 t, respectively. Figure 11 shows the sampling points (manhole 1 and 2, pond 1 and 2) with the 
direction of the liquid flow in tubes marked with arrows. 
 

 
Figure 11. Schematic diagram of the sampling points of the demonstration-scale bioheaps with the direction of the liquid 
flow marked with arrows.  
 
 
Ten percent side stream of the leach liquor was continuously removed for metal recovery and replaced 
with surface water. After the start-up of irrigation, the oxidation of pyrrhotite and pyrite increased the 
heap temperature up to 90 ºC. Heaps were covered with plastic lining to minimize evaporation and to 
prevent pipelines from freezing during winter time. Leach liquor temperatures remained always above 
15 ºC during the operation period, even during the boreal winter. Figure 12 presents three photograps 
of the bioheaps. The description of demonstration-scale bioheap is provided by Riekkola-Vanhanen 
2007. 

 
 Heap 1  Heap 2 
 
 
 
 
 
 
 

 Manhole 1    Manhole 2 
       
 
 
 
 
 
  
 
  PP 

Pond 1 
V=175 m3 

Pond 2 
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Figure 12. Photographs of demonstration-scale bioheap. a) Top of the heap covered with the plastic lining. b) Side view of 
the heap. c) Pond of the leach liquors. Photos: Kirsi Määttä. 
 
 
Secondary bioheaps 
After 18 months of demonstration-scale heap operation (February 2007), the heaps were reclaimed and 
restacked to the secondary bioheap. In secondary heap irrigation rate was 2 L m-2 h-1. No aeration was 
provided.  
 
  

a) b) 

c) 
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3.4 ANALYTICAL TECHNIQUES 
 
The frequency of analyses used laboratory-scale columns tests was as summarised in the Table 15. The 
modified most probable number (MPN) technique is described in Paper I. 
 
Table 15. Summary of the analyses used in the study. 
Physicochemical 
analyses 

Method  Interval Reference 
pH Electrode Continuously Papers I-V 
Redox potential Electrode (mV Ag0/AgCl) Once a day Papers I-V 

Dissolved Oxygen Electrode Once a week Papers I-V 

Temperature Digital thermometer Once a day Papers I-V 

Fe2+ AAS or ICP-AES Once a week Anon. 1992 

Total Fe AAS or ICP-AES Once a week SFS 1980a, b 

Ni, Zn, Cu, Co, AAS or ICP-AES Once a week SFS 1980a, b 

Al, Ca, Mg, Mn, Si AAS or ICP-AES Once  a month Papers I-V 

Identification of 
minerals 

XRD 
At the time of column 
blockage 

Paper IV 

  

Microbial analyses  

Enumeration DAPI, MPN-Fe Once  a month Papers I-V, SFS 4447 

Diversity and 
identification 

PCR, DGGE, 16S rRNA 
sequencing 

Once  a month Muyzer et al. 1996 

  

The following computer programs were used in the microbial community profiling: BLAST (Altshul et 
al. 1990), BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit.html) and phylogenetic analyse (Dereeper et 
al. 2008 and 2010). 
 
 
3.4.1 Microbial community analysis 
 
Microbial communities were investigated by DNA extraction and Polymerase Chain Reaction (PCR) - 
Denaturing Gradient Gel Electrophoresis (DGGE); followed by partial sequencing of 16S rRNA gene. 
For DNA extraction, a 15-20 mL sample was filtered. The filters were rinsed with NaCl at pH 1.8 to 
remove the excess metals and then neutralized with Na-EDTA. The filters were stored at -20 ºC prior to 
nucleic acid extraction. DNA was extracted from preserved filter samples with a DNA isolation kit. 
The crude DNA was used as a template for PCR. Partial 16S rRNA genes (550 bp) were amplified. The 
PCR products were checked with agarose gel electrophoresis prior to DGGE. Archaea were 
characterised using nested PCR approach.  
 
DGGE was performed with the INGENYphorU2×2-system (Ingeny International BV, The Nether- 
lands) as described in Paper I. The denaturing gradient range first from 10 to 80 % and after from 40 to 
70 %. Individual bands were excised from the gel, eluted and then stored at -20 ºC. PCR was performed 
from aliquots (1-2 µL) of the eluate. Before being sequenced, each PCR product was run in an agarose 
gel to confirm the size and the concentration of the product. The PCR products were purified and 
sequenced at the DNA Sequencing Facility, Institute of Biotechnology, Helsinki University. To 
identify the microorganisms, the sequence data was compared with 16S rRNA gene sequences in the 
GenBank database using the basic local alignment search tool (BLAST, Altschul et al. 1997).  
 
The ore samples (15 g each) were taken according to the Finnish standard SFS-EN 932-2 (Anon. 1997). 
The sample was mixed with the washing solution as described in Paper I. The mixture was shaken and 
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sonicated 5×1 min in order to detach microorganisms from ore particles. Thereafter, the sample was 
allowed to settle. Supernatant (15-20 ml) was filtered for DNA extraction. Microbial numbers were 
counted from supernatant in order to estimate the amount of attached cells. If no respectable PCR 
product was gained, a nested PCR approach was used. (Paper I). Otherwise the method was same as 
with PLS samples. Figure 13 summarizes the microbial community profiling procedure. 
 
 

 
 
Figure 13. Analysis of the microbial diversity of the ore samples or PLS by denaturing gradient gel electrophoresis (DGGE) 
and polymerase chain reaction (PCR) - amplified 16S rRNA genes. 
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4. RESULTS AND DISCUSSION 
 
 
4.1 SOLUBILISATION OF METALS FROM LOW-GRADE ORE 
 
Starting from the early studies by Puhakka and Tuovinen (1986a, b, c), several laboratories have tested 
the amenability of the ore to bioleaching (Niemelä et al. 1994, Riekkola-Vanhanen and Heimala 1999, 
Wakeman et al. 2008, this study and Bhatti et al. 2010, 2012a, b). The results from the studies are 
summarized in Table 17 and 18. The effect of different factors such as pH, particle size, pulp density, 
bioleaching method, nutrient additions and temperature has been tested with different acidophilic 
inocula.  
 
In the present study seven columns with different pH of the PLS (1.5, 2.0, 2.5 and 3.0, at 21 ºC) and 
different temperatures (7, 21, 35 and 50 ºC, at pH 2.5) were set up. The actual pH of the PLS after 140 
days were 0.1-0.5 units over the target values despite the continuous titration. Metal dissolution of 
valuable metals during the bioleaching experiment at different target pH values are presented in Figure 
14.  
 
 

 
 
Figure 14. Dissolution of valuable metals during the experiment of column bioleaching of the ore at different target pH 
values at 21 ºC. (Paper I). 
 
 
The pH was the most significant factor affecting the dissolution of nickel and zinc. Nickel 
solubilization was 3.3 times faster at pH 1.5 than at pH 3.0. The leaching rates for nickel, after 140 
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days of bioleaching were 0.42, 0.29, 0.19, 0.13 % (Ni) d-1, corresponding target pH values 1.5, 2.0, 2.5 
and 3.0, respectively. The metal leaching rates are presented in Figure 15.  
 

 
Figure 15. Metal leaching rates of the ore at target pH values 1.5, 2.0, 2.5 and 3.0 at 21 ºC (Paper I) and at temperatures 
between 7 and 50 ºC at pH 2.5 (Paper II), calculated after 140 days.  
 
 
After 140 days at pH 1.5, the extracted metal rates were 59 % for Ni, 52 % for Zn, 13 % for Cu and 16 
% for Co. After 230 days of bioleaching, the extraction of nickel at pH 2.0 reached nearly the same 
yield % as at pH 1.5, with no significant dissolution thereafter. The maximum yields are presented in 
Table 16. At pH 2.5 and 3.0 no further extraction of metals occurred after 150 days. That was probably 
due to the formed precipitates. Brown precipitates increased from pH 1.5 to pH 3.0 on the surfaces of 
the ore.  
 
 
Table 16. The maximum metal yields of Talvivaara complex 
multimetal black schist ore at different target pH values at 21 ºC  
and at temperatures between 7 and 50 ºC at pH 2.5.  

                                    Max yield (%)   
pH Time (d) Ni Zn Cu Co 

1.5 140 
 

59 
 

52 13 16 

2.0 230 54 37 13 12 
2.5 
 

153 26 18 0.5 6 

3.0 140 15 10 0.5 6 

      

T (ºC)      

7 
 

496 
 

24 17 2 6 

21 153 26 18 0.5 6 
 35 

 
140 22 12 0.3 3.5 

50 140 18 11 0 2 
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Similar bioleaching behavior was seen in the study of Bhatti et al. (2012a and b). The dissolved Ni and 
Zn decreased with increasing pH. But in contrast to our study, the reverse pH effect was seen in the 
bioleaching of Cu. Cu concentrations were lower at pH 1.5 than at higher pH values. They suggest that 
is due to the passivation that is caused to elemental sulfur accumulation of chalcopyrite surfaces.  
 
At all temperatures, the dissolution of nickel was similar over the first 90 days. Following that period, 
the highest bioleaching of valuable metals took place at 21 ºC. Decrease in leaching rates, especially at 
temperatures of 35 and 50 ºC, may have been due to the lack of dissolved ferric iron serving as a 
leaching agent, or barriers created by precipitates. On the other hand, Riekkola-Vanhanen and Heimala 
(1999) have concluded that the iron precipitation did not interfere bioleaching of a black schist ore. 
Brown precipitates were observed to accumulate on the surfaces of the ore material in columns from 7 
ºC to 50 ºC. Additionally, bright yellow precipitates were formed indicating elemental sulfur or Na-
jarosite accumulation at 7 ºC and 21 ºC as in the study of Ahonen and Tuovinen 1990. Bioleaching at 7 
ºC continued until 500 days, while the maximum yields at other temperatures were achieved near 150 
days of bioleaching.  
 

  
Figure 16. Dissolution of valuable metals during the experiment of column bioleaching of the ore at temperatures between 7 
and 50 ºC at target pH 2.5 (Paper II). 
 
 
In bioheaps gradients of pH and temperatures are always formed. Thus, the bioleaching rates will 
change at different parts of the heap. 
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Table 17. Summary of the studies done with the Talvivaara complex multimetal black schist ore. RT = Room temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reference Method Particle size 
T 
(ºC) 

pH 
Suspension  
or amount 

Leaching 
 time (d) 

Yield % 
 

Ni       Zn     Cu       Co 
 

Puhakka and 
Tuovinen 1986a 

Aerated column 90%-200 mesh 
RT 
RT 

2.0* 
2.0* 

20% (1 500 ml) 
30% (1 500 ml) 

76 
97 

53 
81 

50 
55 

39 
27 

57 
30 

Puhakka and 
Tuovinen 1986b 

Shake flasks 
Air-lift 
percolation 
Airlift  reactor 
Aerated column 

90%-200 mesh 
50%- 16 mesh 
90%-200 mesh 
90%-200 mesh 

28 
23 
23 
23 

3.0* 

50 g L-1 
800 g / 800 ml 
100 g / 1 000 ml 
100 g / 1 000 ml 

28 
180 
100 
90 

100 
100 
>84 
** 

100 
78 
>91 
 

30 
18 
31-39 
 

57 
30 
65-79 
 

Puhakka and 
Tuovinen 1986c 

Percolation 
system 
(see Table 18) 

50%-16 mesh  
< 1 mm 

23 
RT 

3.0* 800 g / 800 ml 
Half 
year 

 

100 
22 
31 
28 
44 

78 
14 
19 
19 
25 

18 
2 
2 
1 
8 

47 
9 
11 
10 
18 

Niemelä et al. 
1994 

Shake flask 0-59 µm 
30 or 
35 

1.5* 5 % wt vol-1 10 or 15 Not measured 

Examined the influence of inorganic nitrogen and phosphate on bioleaching. 
Phosphate, ammonium or nitrate amendment did not enhance Fe2+ oxidation. 

Paper I-V 
Aerated column, 
inoculated 

< 8 mm 

RT 
RT 
RT 
RT 
7 
21 
35 
50 

1.5 
2.0 
2.5 
3.0 
2.5 
2.5 
2.5 
2.5 

9 kg 140 

59 
41 
26 
15 
17 
26 
22 
18 

52 
31 
18 
10 
9 
18 
12 
11 

13 
7 
0.6 
0.5 
0.4 
0.6 
0.2 
1.4 

16 
8 
6 
6 
3 
6 
2 
5 

* not controlled thereafter 
** additional ore added 
 

Continues on the next page. 
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Continued from the previous page. 
 
 
 

Reference Method Particle size 
T 
(ºC) 

pH 
Suspension  
or amount 

Leaching 
 time (d) 

Yield  
 

Ni          Zn       Cu           Co 
 

Wakeman et al. 
2008 

Shake flask 
column bioreactor 
column bioreactor 

0-2 mm 
2-6.5 mm 
6.5-12 mm 

37 2.0* 
50g/ 500ml 
3 kg 
3 kg 

6 weeks 
40 weeks 
40 weeks 

80 
22 
8 

68 
8 
7 

20 
0 
0 

nm 

Bhatti et al. 
2012a 

Shake flask 0-59 µm 22 
1.5 
and  
over 

5 g 
 

30 d 20-30 20-30 40-60 80 

* not controlled thereafter, nm = not measured 
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4.2 LEACHING OF NON-VALUABLE MINERALS AND PH CONTROL 
 
Dissolution of aluminum, calcium, magnesium, manganese and silicon was highest at pH 1.5. After 50 
days of bioleaching, the leach liquor at pH 1.5 became viscous and difficult to filter trough the 0.45 µm 
pore size membrane filter and indicated possible problems for heap leaching. After 110 days the Si 
concentration peaked 2.96 g L-1 and with the formation of jelly with prevented membrane filtration 
(Table 18). However, dissolved Si did not influence the solubilization of valuable metals. After 140 
days, the dissolved concentrations Si were 1 730, 811, 181 and 152 mg L-1 at pH values 1.5, 2.0, 2.5 
and 3.0, respectively. The study showed that the pH of the PLS needs to be maintained over 1.5 to 
prevent jelly formation and problems in downstream processing. Temperature did not significantly 
affect the silicate leaching at pH 2.5. At all temperatures, leach liquors became saturated with dissolved 
calcium and manganese during the first 100 days but the aluminium concentration rose linearly over 
this period. The figures of aluminum, calcium, magnesium, manganese and silicon concentrations in 
leach liquors during the bioleaching at different pH values and temperatures are presented in Papers I 
and II. 
 
Leaching at low pH values resulted increased acid consumption, being after 140 days 160, 38, 8 and 3 
H2SO4 g kg-1 ore at pH 1.5, 2.0, 2.5 and 3.0, respectively. Temperature, at pH 2.5, had also effect on 
acid consumption. At 50 ºC acid consumption was highest and lowest at 21 ºC, being 29 and 8 H2SO4 g 
kg-1 ore, respectively. In the study of Ahonen and Tuovinen (1995), the acid consumption of the black 
schist ore from Keretti mine Finland, was at pH 2.5 around 50 H2SO4 g kg-1 ore after same time of 
column bioleaching. In their study, the acid production took place after beginning, but the net process 
remained acid consuming. Acid consumption depends on the amount of gangue minerals and activity 
of sulphur oxidizers. If minerals dissolve completely, they will consume more acid than during 
weathering. Complete dissolution is likely to occur at pH values lower than 2. At higher pH values, 
clay minerals, that are expansible, are likely formed. (Jansen and Taylor 2014). After column 
blockages, (pH 2.0 and pH 2.5 after 82d, and 35 ºC after 117d) about 200g of the ore did not fit back to 
each of the column. Blockages are easily managed in laboratory conditions, but in real heaps, it causes 
severe problems in aeration, irrigation and overall bioheap operation.  
 
The study of Bhatti et al. (2012a and b), with the Talvivaara ore, at pH 1.5, mica was mostly 
solubilized. If the leaching solution was not pH controled, mica was converted to vermiculite. Gypsum 
was present most extensively at pH 1.5 than at higher pHs, presumably due to higher sulphate levels 
and extensive dissolution of Ca-containing phases. Leaching of Si and Al were almost an inverse 
function of pH as in our study. They suggested that probably it was only one type of silicate that was 
the source of Si and Al. In their study, at pH values of 3.3 and 3.4, the dissolved Si and Al 
concentrations were 5-7 times lower than at pH 1.5. In our study, the concentrations were over 20 times 
lower at pH 3.0 than at 1.5. They suggested that the proton attack caused the massive silicate 
dissolution. Protons were from sulphuric acid or produced by sulphur oxidation.  
 
  



         44 

 

Table 18. Silicate mineral studies done with the Talvivaara complex multimetal black schist ore.  

Reference Method Particle size 
T 
(ºC) 

pH 
Suspension  
or amount 

Leaching 
time (d) 

Si (mg L-1) Al (mg L -1) 

Paper IV 
Aerated column, 
inoculated 

< 8 mm 

RT 
RT 
RT 
RT 
7 
21 
35 
50 

1.5 
2.0 
2.5 
3.0 
2.5 
2.5 
2.5 
2.5 

9 kg 140 

1 730 
811 
181 
152 
212 
181 
183 
164 

 

10 300 
4 210  
704 
437 
979 
704 
842 
1 160 
 

Bhatti et al. 
2012b 

Shake flask, 
inoculated 

0-59 µm 
22 
22 

~1.5 
2.3 

5 g 30 
~800 
~700 

~800- 1000 
~800 

Bhatti et al. 
2012b 

Shake flask, not 
inoculated 

0-59 µm 
22 
22 

~1.5 
3.4 

5 g 30 
~600-800 
~200 

~800- 1000 
~100 

        
Al2O3 (mg L-1) 

 

Puhakka and 
Tuovinen 
1986a 

Aerated column 90%-200 mesh 
RT 
RT 

2.0* 
2.0* 

20% (1 500 ml) 
30% (1 500 ml) 

76 
97 

~2 200 
~1 000 

 

Puhakka and 
Tuovinen 
1986b 

Shake flasks 
Air-lift percolation 
Airlift  reactor 
Aerated column 

90%-200 mesh 
50%- 16 mesh 
90%-200 mesh 
90%-200 mesh 

28 
23 
23 
23 

3.0* 

50 g L-1 
800 g / 800 ml 
100 g / 1 000 ml 
100 g / 1 000 ml 

28 
180 
100 
90 

>600 
>2 000 
>2 000 
>3 200 

 

Puhakka and 
Tuovinen 
1986c 

Percolation system  < 1 mm RT 3.0* 800 g / 800 ml ~180 

~650 
~300 
~250 
~550 

continuous recirculation, ore material was not flooded 
2h d-1 recirculation, ore material was flooded 
8h d-1 recirculation, ore material was flooded 
continuous recirculation, ore material was flooded 

* not controlled thereafter  
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4.3 FERROUS IRON OXIDATION AND REDOX POTENTIALS  
 
The redox potentials in the column leach liquors at pH values between 1.5 and 3.0 varied between 515-
580 mV (Pt electrode against an Ag0/AgCl reference), being highest at pH 2.0 and lowest at pH 1.5. 
The concentrations of ferric and total dissolved iron increased with the decrease in pH. The 
concentration of dissolved ferrous and ferric iron remained low throughout the experiment at pH 3.0 
due to the precipitations. Figures of redox potentials and the concentrations of total dissolved iron and 
ferrous ion in leach liquors at different pH values are presented in Paper I. Also, Ahonen and Tuovinen 
(1995) and Nemati et al. (1998) have reported negligible amounts of ferric iron in leach liquors above 
pH 2.5. The results demonstrated that highest metal yields are achieved at low pH values at high redox 
conditions where ferric iron remains in solutions, as also reported earlier by Ahonen and Tuovinen 
(1995).  
 
At 7 ºC the redox increased during the first two months and reflected the start of ferrous iron oxidation 
and microbial activity. The leach liquor redox potential stabilized to 500-600 mV at 7 ºC and at 21 ºC, 
whereas at 35 ºC and at 50 ºC it varied between 300-500 mV. According to Brierley (2003) the 
thermophilic bacteria require greater concentrations of ferrous iron which results in a higher ferrous to 
ferric iron ratio and low redox potential. Figures of the redox potentials and the concentrations of total 
dissolved iron and ferrous iron, in leach liquors during the bioleaching of the ore, at different pH values 
and temperatures, are presented in Paper I and II. Low redox conditions reflect high Fe2+/Fe3+ ratio 
(Ahonen and Tuovinen 1992, Brierley 2003). In the study of Ahonen and Tuovinen the lag period at 4 
ºC was 110 days. In our study, after 60 days of bioleaching, total iron and Fetot/Fe2+ ratio was higher in 
the 7 ºC column leach liquor than at other temperatures where ferrous iron concentration was 
approximately 50 mg L-1 and Fetot approximately 700 mg L-1. Ferric iron remained in solution at 7 ºC. 
The decreased ferric iron precipitation at low temperatures has been previously observed (Leduc et al. 
1993). At 50 ºC, all dissolved iron was in ferrous form indicating that iron oxidation and precipitation 
happened at the same time or there weren’t enough active iron-oxidizers. Probably therefore, the 
leaching rates of valuable metals were low. Also, due to lower solubility of oxygen and carbon at high 
temperatures, the gas-liquid transfer limitation could have negative impact on bioleaching efficiency.  
 
Higher redox potentials, 800 mV, have been achieved with shake flask experiments with fine-grain ore 
and metal yields have been significantly higher. (Puhakka and Tuovinen 1986a, b and c, Wakeman et 
al. 2008). Shake flask experiments simulate more reactor leaching than conditions in heap leaching.  
 

 

4.4  MICROBIAL COMMUNITY OF BIOLEACHING COLUMNS 
 
Cell counts 
Bioleaching columns were inoculated as described in Paper I. Cell counts from the study are presented 
in Table 19. At 7 ºC leach liquor the total counts (108-109 cells mL-1) were significantly higher than at 
other temperatures (106-107 cells mL-1). In pilot-scale bioheap the cell counts were to some extent 
lower (106 cells mL-1, Table 20). In the study of Wakeman et al. (2008) cell count in leach liquors were 
in average 106-107 cell mL-1 after 40 weeks of bioleaching.  
 
The cell counts decreased slightly in all leach liquors during the leaching. This was likely due to 
attachment of cells to the agglomerated ore and to the formed precipitates. Increasing attachment with 
incubation time of the acidophilic bacterial cells to pyrite ore and ferric hydroxysulphates was shown 
by Ghauri et al. (2007) though the attachment of A. ferrooxidans was slower than the attachment of L. 
ferrooxidans. The cell numbers of ferrous iron-oxidizers in column leach liquors, determined by MPN-
Fe, were nearly the same than the total cell count determined by 4’,6-diamidino-2-phenylindole (DAPI) 
- method. In leach residues the amount of total cell counts were 103 than that of ferrous iron oxidizers. 
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At pH 3 and temperature of 50 ºC the difference was 105. That probably reflects to high ferrous iron 
concentration and low leaching rates. 
 
Total cell counts in the leach residues at pH columns at room temperature were about 108 cells g ore-1. 
At 7, 35 and 50 ºC the total cell counts of the leach residues were 3.4·108, 1.1·107 and 8.7·106 cells ore 
g-1. In the study of Bruhn et al. (1999), cell numbers varied from 0-106 cell ore g-1 in the mixed copper 
oxide/sulfide dump leach operation. The decreased amount of cell counts at 50 ºC is in line with 
leaching rates. In the study of Ahonen and Tuovinen (1992), the column leaching expreriment at 46 ºC 
was discontinued due to the lack of bacterial activity. It might be that cultures derived from borealic 
conditions are not active in thermophilic conditions. After re-inoculation (day 65) with a thermophilic 
Sulfolobus culture, leaching at 50 ºC accelerated but slowed down soon. Sulfolobus was detected on 
both times when archaea were analysed with DGGE after re-inoculation day. It was also present at 
room temperature and at 35 ºC. Columns might have been transmitted or the ore or inoculum contained 
another Sulfolobus strain. 
 
 
Table 19. Total cell counts as an average from the  
columns during the bioleaching of the ore at different  
target pH values at 21 ºC and at temperatures between  
7 and 50 ºC at pH 2.5. 
 COLUMNS 
pH PLS 

average 
 
stdev 

Leach  
residue 

1.5 3.0 x 107 5.4 x 107 1.5 x 108 
2.0 
 

4.7 x 107 5.1 x 107 8.4 x 107 

2.5 4.0 x 107 4.6 x 107 2.3 x 108 

3.0 5.3 x 107 3.1 x 107 1.2 x 108 

T (°C)  
7 
 

3.6 x 108  2.0 x 108 3.9 x 108 

21 4.0 x 107 4.6 x 107 2.3 x 108 

35 7.6 x 106 3.0 x 106 1.1 x 107 

50 4.3 x 106 2.4 x 106 8.7 x 106 

 
 
Table 20. Total cell counts as an average the pilot-scale bioheap during the bioleaching. MH = Man hole, P = Pond, 
IR = Irrigation, stdev = standard deviation. Samples from ponds were taken from primary heaps, irrigation samples from 
secondary pilot-scale bioheaps. 
PILOT 
Primary heaps  
PLS            average 

 
stdev 

Secondary heaps 
average 

 
stdev 

Ore Samples 
 T (ºC) 

Depth 
(m) 

 
average 

MH1  8.1 x 105     4.0 x 105 8.1 x 108 2.0 x 105 80-90 1-2 7.8 x 105 
MH2 8.1 x 105 2.6 x 106 1.7 x 107 3.2 x 107 80-90 3-4 9.1 x 106 

P1 1.1 x 106 8.7 x 105   65-75 1-2 2.5 x 106 

P2 4.8 x 106 3.3 x 106   65-75 4-5 1.5 x 106 

IR1   2.7 x 106 2.1 x 106 20-35 0-1 1.9 x 107 

IR2   8.0 x 106 7.1 x 106 20-35 4-5 9.7 x 106 
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4.5 COMPOSITION AND DYNAMICS OF MICROBIAL COMMUNITIES 
 
Studies done with the black schist ore harboured a diverse microbial population that consisted of well 
known acidophilic microorganisms, and a few species that are not closely related to existing GenBank 
sequences, and may possibly be novel species (Figure 17). Microorganisms that were present in the 
columns or in the pilot-scale bioheap application more than two times are presented in Table 21 and 22. 
Microorganisms that were detected only in the beginning, or occasionally only one or two times are not 
presented. The study shows that they are not the key iron-oxidizers in this bioheap application.  
 
After the data of this study was published (2007), two new species of Acidithiobacilli were described, 
A. ferrivorans (Hallberg et al. 2010) and A. ferridurans (Hedrich and Johnson 2013). Genetically these 
species are very near each other. The 16S rRNA gene sequences of the bands that corresponded 99% of 
A. ferrooxidans AP310 (DQ35518) were identified again in 2015 using the basic local alignment search 
tool (BLAST). The 16S rRNA gene sequences of A. ferrooxidans at temperatures of 7 and 21 ºC 
corresponded 99% as A. ferrivorans SS3 (CP002985). One of the 16S rRNA gene sequences of A. 
ferroxidans strains at 35 ºC corresponded 99% as A. ferridurans ATCC 3302 (NR_117036). At 50 ºC, 
no proper A. ferroxidans 16S rRNA gene sequences were gained. The presence of A. ferroxidans at 50 
ºC was concluded based on the fact that the DGGE band was in the same place as the other bands of A. 
ferrooxidans.  
 
The 16S rRNA gene sequences of Acidithiobacillus ferrooxidans strains in pH between 1.5 and 3.0, at 
21 ºC, corresponded also 99% as A. ferrivorans SS3 (CP002985). The pH range for growth is reported 
to be 1.9-3.4 (Hallberg et al. 2010). In the light of increased knowledge, these species cannot be 
separated with the denaturing gradient from 40 to 70% that were used in the DGGE. A. ferrooxidans, A. 
ferrivorans and A. ferridurans are able to oxidize both iron and sulphur compounds. 
 
Mixed cultures are often more effective in accelerating metal dissolution than pure cultures (Okibe and 
Johnson 2004). Community changes seem to be related to dynamics of the main substrate such as 
ferrous iron availability. The most prominent microorganisms in communities were 
Gammaproteobacteria (A. ferrivorans/ A. ferrooxidans and A. caldus) and member of phylym 
Nitrospira (L. ferrooxidans). There is no conclusive explanation why A. thiooxidans disappeared after 
beginning from the column leach liquors. The shift in predominance of Acidithiobacillus to 
Leptospirillum coincides with decreasing concentrations of ferrous iron in the leach liquor. Leptospirilli 
were not detected at 7 ºC.  
 
Temperature gradient incubation revealed that ferrous iron oxidation by the 7 ºC enrichment culture 
had temperature optima of 22.4 ºC and 32.4 ºC (Paper III). This indicated the presence of both 
psychrotolerant and/ or mesophilic microorganisms in the culture. This supports the suggestion that A. 
ferrooxidans was actually A. ferrivorans, or both species were present. The specific oxidation rates for 
the culture were similar, with 13.5·10-8 and 12.8·10-8 mg Fe2+ cell-1  h-1 for 22.4 ºC and 32.4 ºC, 
respectively. By far, A. ferrivorans is the only described psychrotolerant acidophilic bioleaching 
bacteria (Hallberg et al. 2010). A. ferrivorans SS3 (99%, CP002985)/ A. ferrooxidans AP 310 (96-
100%, DQ355183) was the dominant bacteria of the pilot-scale bioheap in primary and secondary 
leaching phase. These species are genetically very near each other and probably both existed in the 
bioheap application. 
 
At the end of the column experiment (around 350 d), a bacterium related to L. ferriphilum D1 (99 %, 
DQ665909) was seen at pH from 1.5 to 2.5. It has been previously detected in bioleaching tank reactors 
with high ferric iron concentrations (Coram and Rawlings, 2002). Leptospirilli have generally been 
described to dominate in high redox potential and ferric iron concentration (Rawlings et al. 1999, 
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Demergasso et al. 2005). L. ferriphilum dominated the microbial consortium at 37 ºC with Talvivaara 
ore for the greater part during the bioleaching in the study of Wakeman et al. (2008).  
 
Sb. thermotolerans KR-1 (99%, DQ124681) was the major species at 50 ºC during the bioleaching and 
were detected in the leach liquors at pH values from 1.5 to 3.0. The reported optimum temperature of 
Sb. thermotolerans is 40 ºC and growth range 20-60 ºC (Bogdanova et al. 2006).  Sb. 
thermosulfidooxidans N19-50-01 (99-100%, EU499919) was found from the high temperature zones of 
the pilot-scale heap. Sulfobacillus is commonly present in bioheap operations but is not considered to 
be the main player. In the study of Cameron et al. (2010) Sulfobacillus spp. were dominant in the 
bioreactor at 45 ºC. In pilot-scale bioheap a novel bacterium related to clone H70 (91%, DQ328625) 
was present nearly in all samples. The DGGE band was cut out, DNA isolated, PCR amplified and 
sequenced and submitted to GenBank (accession JQ941953). The phylogenetic analysis (Figure 17) 
revealed that the novel bacterium belonged to the Firmicutes. The role is possibly important and that 
would need future research. 
 
Detectable archaea in the column leaching study (Table 21) were Ferroplasma acidiphilum DR1 (98%, 
AY222042), a species related to an uncultured archaeon clone ant b7 (99%, DQ303249, nearest known 
species Thermoplasma acidophilum DSM1728, 91%, AL445067) and Sulfolobus metallicus DSM 6482 
(98%, SM16SRRN1). Surprisingly, S. metallicus was present at room temperature. The growth 
temperature for S. metallicus has been reported by Huber and Stetter (2001) of 50-75 ºC, with a growth 
optimum at 65 ºC. For attempting to increase the bioleaching rate at 50 ºC, the column was re-
inoculated with a Sulfolobus culture on day 65. The growth temperature of that culture was reported to 
be 35-76 ºC. (Salo-Zieman et al. 2006). No mesophilic Sulfolobus spp. has been described (Salo-
Zieman et al. 2006). Columns at 21, 35 ºC and at pH 3.0 might have been transmitted from the re-
inoculation of  the column at 50 ºC, or the ore or the original inoculum contained another Sulfolobus 
strain. The uncultured archaeon clone ant b7 (99%, DQ303249) was present in all of the leach liquors 
except at pH 1.5. Ferroplasma acidiphilum DR1 (98%, AY222042) that can oxidize only iron, was 
present at pH 2.5 and 2.0, and in all temperatures, expect at 35 ºC. In the pilot-scale bioheap the 
archaeal species present were related to uncultivated species, from which, one was related to 
Thermoplasma acidophilum (91-93%). 
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Table 21. Micro-organisms detected from the columns during the bioleaching of the ore at different target pH at 21 ºC and 
at temperatures between 7 and 50 ºC at pH 2.5.  RT = Room temperature, LR = Leach residue.  
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1 
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1 
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ºC 
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Table 22. Micro-organisms detected  from the pilot-scale bioheap during the bioleaching. MH = Man hole, P = Pond,  
IR = Irrigation. Samples from ponds were taken from primary heaps, irrigation samples from secondary bioheaps.  
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9 ++    + ++     
10 ++    + ++     

ORE 80-90 ºC 
(pilot) 

+  +  +   
*na 

ORE 65-75 ºC 
(pilot) 

+ + +     

ORE 20-35 ºC 
(pilot) 

+ +   +  + 

12 

IR1 and IR2 
(pilot ) 

+   +    *na 
15 ++ +   ++ +  
16 ++ +   ++ +  
17 ++ +   ++ +  

*na= not analyzed 
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4.5.1 Community structure analysis 
 
To determine the phylogenetic diversity, a phylogenetic tree was generated. A. brierleyi was used as 
outgroup to root the tree. The scale bar represents 0.2 nucleotide substitutions per nucleotides. 16S 
rRNA gene sequences of bacteria were distributed into four main phyla Firmicutes, Actinobacteria, 
Proteobacteria and Nitrospira. Microorganisms that were detected several times during the study 
(columns and pilot-scale bioheap) are presented. 
 

 
Figure 17. The phylogenetic tree generated using distance matrix and neighbour joining methods based on the 16S rRNA. A. 
brierley was used as outgroup. Numbers at nodes represent bootsrap values based on 1 000 samplings. The scale bar 
indicates the estimated number of base changes per nucleotide sequence position. 
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5. CONCLUSIONS  
 
The bioleaching of the complex multimetal black schist ore containing mainly pyrrhotite and pyrite 
together with minor pentlandite and chalcopyrite originating from the Sotkamo deposit, Finland was 
studied.  
 
Dissolution of nickel and zinc were mostly affected by the pH value of the irrigation solution. The 
fastest bioleaching and greatest yields of valuable metals were achieved at pH 1.5. Nickel and zinc 
leaching rates and yields decreased nearly linearly as pH increased. Nickel solubilization was 3-4 times 
faster at pH 1.5 than at pH 3.0, being 0.42 and 0.13 % (Ni) d-1, respectively. The maximum metal 
yields were achieved after 140 days at pH 1.5, and were 59 for % Ni, 52 % for Zn, 13 % for Cu and 16 
% for Co. At pH 2.0 maximum yields were achieved over 230 days (54 % for Ni, 37 % for Zn, 13 % 
for Cu and 12 % for Co). Copper did not bioleach at high pH (2.5-3.0). That was probably due to the 
passivation of chalcopyrite. After the beginning, no further cobolt dissolution happened at pH 3.0. Low 
concentrations of ferrous iron demonstrated the activity of iron-oxidizers at all room temperature 
columns (pH 1.5-3.0). The concentration of ferric iron in solution increased significantly with the 
decrease in pH. At pH 1.5, ferric iron concentration increased all the time, being 36 g l-1 after 140 days. 
At pH 2.0 the ferric iron concentrations varied, being highest 3.8 g l-1 after 97 days. At pH 2.5 and 3.0 
the total dissolved iron remained low throughout the experiment due to iron precipitation. The redox 
potential (Pt electrode against an Ag0/AgCl reference) varied between 515 and 580 mV, being highest 
at pH 2.0. The study confirms that the ferric iron and the activity of hydrogen ions were the driving 
forces of metal solubilisation of the complex multimetal black schist ore. Leaching was acid consuming 
in all conditions. The acid consumption of the ore overdrive the production of hydrogen ions by 
sulphur-oxidizers. Leaching at low pH resulted in increased acid consumption of 160 and 38 H2SO4 g 
kg-1 ore at pH 1.5 and 2.0 after 140 days. Temperature, at pH 2.5, had also effect on acid consumption. 
At 50 ºC acid consumption was highest and lowest at 21 ºC, being 29 and 8 H2SO4 g kg-1 ore, 
respectively. 

Temperature affected significantly to the metal yields (at pH 2.5). The highest yields were obtained at 
room temperature (21 ºC). After 153 days the maximum yields were 26 % for Ni, 18 % for Zn, 1 % for 
Cu and 6 % for Co. The redox increased during the first two months at 7 ºC and reflected the start of 
ferrous iron oxidation and microbial activity. After that ferric iron was present all the time at 7 ºC and 
this demonstrated that more ferric iron was available for the oxidation of the mineral sulphide than at 
other temperatures. The leach liquor redox potential stabilized to 500-600 mV (Ag0/AgCl reference) at 
7 ºC after 40 days and at 21 ºC right after beginning. Leaching at low temperature (7 ºC) resulted in 
yields of 24 % for Ni, 17 % for Zn, 2 % for Cu and 6 % for Co after 496 days. The Cu leaching 
increased all the time during the experiment at 7 ºC, while at other temperatures it slowed down after 
100 days. The leach liquor redox potential at 35 ºC and at 50 ºC varied between 300-500 mV. At 50 ºC, 
after 50 days Fe2+ and Fetot were both 350 mg L-1. The lack of soluble ferric ion, i.e. presence of iron 
oxide precipitates, slowed down the bioleaching of valuable metals. After re-inoculation (day 65) with 
a thermophilic Sulfolobus culture, leaching at 50 ºC accelerated but slowed down soon and resulted in 
maximum yields 18 % for Ni, 11 % for Zn, 0.3 % for Cu and 2 % for Co (after 140 days). In the 
column leaching study, after the maximum yields, longer leaching time did not result more metals in 
solutions. 

The evaluation of metal solubilisation at higher temperatures than tested, cannot be done with the used 
inocula that included mostly mesophilic microorganisms. In the real bioheap microorganisms are often 
indigenous and may include thermophilic bacteria as in the pilot-scale bioheap. 



         53 

 

Dissolution of gangue minerals was highest at lowest pH. Large amounts of aluminium, manganese and 
silicon were leached. After 60 days of bioleaching, the leach liquor at pH 1.5 became jelly like and 
after 110 days Si reached the concentration of 2.96 g L-1. Amorphous precipitates have the potential to 
interfere liquid flow in heap leaching and subsequent recovery of base metals. Althought, Si did not 
affect the solubilization of valuable metals, the pH value of the PLS needs to be kept above 1.5, to 
prevent these problems. The dissolution of silicate minerals also increases the pH and thus, sulphuric 
acid consumption can be the major cost. At pH 2.5 less than 200 mg L-1 Si was solubilized and 
different temperatures had no effect on Si dissolution at that pH. After the column blockages, (columns 
at pH 2.0 and pH 2.5 after 82d, and column at 35 ºC after 117d) about 200g of the ore did not fit back 
to each of the column. Clay minerals, that are expansible, were likely formed. Blockages are easily 
managed in laboratory conditions. In real heaps, blockages cause severe problems in aeration, irrigation 
and overall bioheap operation. 
 
The pH value of the column leach liquor did not affect significantly to cell numbers. At 7 ºC leach 
liquor the total counts (108-109 cells mL-1) were significantly higher than at other temperatures (106-107 
cells mL-1). In pilot-scale bioheap, the cell counts were to some extent lower (106 cells mL-1). The cell 
counts decreased slightly in all column leach liquors during the leaching. This was likely due to 
attachment of cells to the agglomerated ore and to the formed precipitates. Total cell counts in the leach 
residues at room temperature were about 108 cells g ore-1. At 7, 35 and 50 ºC the total cell counts of the 
leach residues were 3.4·108, 1.1·107 and 8.7·106 cells ore g-1, respectfully. 
 
In conclusion leaching rates of valuable metals were increased, when ferric iron was in solution, the 
amount of active iron-oxidizers were suffient and dissolution of Si were moderate. Leaching solution 
pH of 2.0 was recommended for a bioheap application. The two demonstration-scale bioheaps (17 000 
t) at the Talvivaara mine site were operated and monitored by Talvivaara Mining Company for 30 
months. After the start-up of heap irrigation, oxidation of pyrrhotite and pyrite increased the heap 
temperature in central locations up to 90 ºC. In the second winter temperatures inside the heaps 
decreased being still 80 ºC at the hottest spots. Leach liquor temperatures varied between 60 ºC and 15 
ºC over the whole operation period. The target pH of the PLS was 2.0. Inspite of continuous titration 
pH varied during the 10 months between 3.5 and 3.0 and after that between 3.0 and 2.5. 
 
Bioleaching with the black schist ore (column bioleaching and pilot-scale bioheap) harboured diverse 
microbial population that consisted well known acidophilic microorganisms, and few species that were 
not closely related to existing GenBank sequences, and may possibly be novel species. Community 
changes seem to be related to the main substrate such as ferrous iron availability and temperature. The 
most prominent microorganisms in communities were Gammaproteobacteria, A. ferrivorans (99%)/ 
A.ferrooxidans (99%) and A. caldus (95-99%), and member of phylym Nitrospira, L. ferrooxidans (98-
100%). After the data of this study was published (2007), two new Acidithiobacillus species of were 
described, A. ferrivorans and A. ferridurans. Genetically these species are very near each other. The 
16S rRNA gene sequences of the bands that corresponded 99% of A. ferrooxidans AP310 (DQ35518) 
were identified again in 2015 using the basic local alignment search tool (BLAST). Most of the 16S 
rRNA gene sequences of A. ferrooxidans corresponded 99% also as A. ferrivorans SS3 (CP002985). In 
the light of increased knowledge, these species cannot be separated with the denaturing gradient from 
40 to 70 % that were used in the DGGE.  
 
In general, in column leaching study, temperature affected the microbial community structure more 
than pH did. The dominant species at 7 ºC were unique, whereas at room temperature microbial 
community exhibited similarity. Also higher temperatures (35 and 50 ºC) showed similarities. A. 
ferrivorans (99%)/ ferrooxidans (99%) was the dominant microorganisms at 7 ºC. The shift in 
predominance of Acidithiobacillus to Leptospirillum coincides with decreasing concentrations of 
ferrous iron in the leach liquor. At the end of the column experiment (around 350 d), a bacterium 
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related to L. ferriphilum (99%) was seen at pH from 1.5 to 2.5. Leptospirilli have generally been 
described to dominate in high redox potential and ferric iron concentration. Sb. thermotolerans (99%) 
was the major species at 50 ºC during the leaching and was also detected in the leach liquors at pH 
from 1.5 to 3.0. Sb. thermosulfidooxidans (100%) was found from the high temperature zones of the 
pilot-scale heap. Sulfobacillus is often present in bioheap operations but is not considered to be the 
main player.  

In pilot-scale bioheap, large temperature gradients resulted in the simultaneous presence of mesophilic 
and thermophilic iron- and sulphur-oxidisers. During the first six months the microbial communities of 
the leach liquors were diverse and dominated by A. ferrivorans (99%)/ A. ferrooxidans (99%), Sb. 
thermosulfidooxidans (100%) and a novel bacterium related to clone H70 (91%). After 6 months of 
bioheap operation L. ferrooxidans (100%) was first observed and it was present thereafter in nearly all 
samples. The microbial diversity in both heaps varied and decreased with time, with A. ferrivorans 
(99%)/ A. ferrooxidans remaining as the dominant bacterium and the novel bacterium related to clone 
H70 (91%) being present. The role of that novel bacterium is probably important and would need 
future research. In the secondary leaching phase, it was present with A. ferrivorans (99%)/  
ferrooxidans (99%) and L. ferrooxidans (98%).  

Detectable archaea in the column leaching study were Ferroplasma acidiphilum (98%), a novel species 
that was related to an uncultured archaeon clone ant b7 (nearest known species Thermoplasma 
acidophilum, 91-93%) and Sulfolobus metallicus (98%). Sulfolobus was present at 21, 35 and at 50 ºC. 
No mesophilic Sulfolobus spp. has been described (Salo-Zieman et al. 2006). Columns might have been 
transmitted from the re-inoculation of  the column at 50 ºC, or the ore or inoculum contained another 
Sulfolobus strain. In the pilot-scale bioheap the archaeal species present were related to uncultivated 
species, from which, one was related to Thermoplasma acidophilum (91-93%). 
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The effect of pH on the bioleaching of a low-grade, black schist ore from Finland containing pyrrhotite, pyrite,
pentlandite, chalcopyrite and other mineral sulfides was studied using columns containing 9.0 kg of
agglomerated ore that was irrigated with nutrient supplemented surface water from the deposit at ambient
temperature. Iron and sulfur-oxidizing enriched culture was used to inoculate the columns. Iron oxidation
and metal leaching increased with decreasing pH. At pH 1.5, 59% Ni was bioleached after 140 days together
with 59% Zn, 13% Cu and 16% Co. In comparison, at pH 3.0 only 15% Ni, 10% Zn, 5% Cu and 0.5% Co were
leached; while at pH 2, 53% Ni was bioleached after 230 days. Based on an optimization between the leaching
of metals, the acid consumption, the concentration of soluble iron and the dissolution of other gangue
minerals, leaching at pH of 2.0 were recommended for this heap bioleaching application.
The microbial composition as determined by a combination of Polymerase Chain Reaction (PCR)–Denaturing
Gradient Gel Electrophoresis (DGGE)-sequencing approach was not significantly affected by pH. Acidithio-
bacillus ferrooxidans and Leptospirillum ferrooxidans were the dominant species in all the leach liquors. In
addition, L. ferriphilum was detected for the first time in extracted leach residue liquor after 300 days of
bioleaching. Sulfobacillus thermotolerans, A. caldus, A. thiooxidans and some unknown species were found to
lesser extent. Archaeal species were also present in all leach liquors.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Biohydrometallurgical processes are widely used for the recovery
of gold and copper (Brierley and Brierley, 2001; Morin et al., 2006;
Watling 2006) and similar techniques for low-grade nickel sulfide
ores are under development (Dew and Miller, 1997; Rawlings, 2002;
Watling, 2008). The bioleaching applications involve the presence of
acidophilic microorganisms that grow between pH 0 and 3 and
oxidize ferrous ion to ferric ion to generate solutions with relatively
high redox potential that leach the sulfide minerals. However, ferric
ion easily hydrolyzes and forms iron(III) hydroxides or jarosite.
Precipitation of jarosite has been reported even in the pH range of
1.35–1.5 (Boon, 2000).

Due to a concurrent dissolution, precipitation, oxidation and
reduction reactions, both acid consumption and acid production
prevails in bioleaching processes (Riekkola-Vanhanen et al., 2001).
Many gangue minerals such as chlorite, potassium- and calcium-
feldspar are acid-consuming and agglomeration of the ore with
sulfuric acid reduces major pH changes at the beginning of leaching

(Rawlings et al., 2003; Strömberg and Banwart, 1999). In practice, it is
difficult to maintain the solution pH within the desired range without
constant pH adjustment and sulfuric acid consumption can be a major
operating cost (Watling, 2006).

Bioleaching of nickel bearing complex black schist sulfide ore from
Sotkamo deposit, Finland was demonstrated in the early studies of
Puhakka and Tuovinen (1986a,b,c). In later studies, heap bioleaching
was simulated in columns where the leach liquor percolated through
the ore material by gravity (Riekkola-Vanhanen and Heimala, 1999;
Wakeman et al., 2008). The aim of the present work was to study the
effects of pH (1.5–3.0) on bioleaching this ore using bench scale
columns and to compare the dynamics of the microbial community
structure over time.

2. Materials and methods

2.1. Ore

The mineral composition of the sulfide component of the ore
was 61.2% pyrrhotite (FeS), 24.3% pyrite (FeS2), 5% pentlandite [(Fex/
Ni9− x)9S8], 6.5% alabandite (MnS) and 2.4% chalcopyrite (CuFeS2).
Valuable metal contents were 0.29% Ni, 0.53% Zn, 0.20% Cu and 0.035%
Co. The mineral with the highest nickel content was pentlandite that
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contained about 80% of the total nickel present in the ore. The rest of
the nickel was present in pyrrhotite and pyrite. Zinc was present as
sphalerite [(Zn,Fe)S], copper as chalcopyrite and cobalt was found in
pyrite, pyrrhotite and pentlandite. The crushed ore (approximately
17% 8–12 mm, 38% 3.15–8 mm and the rest 0.020–3.15 mm) was
agglomerated using dilute sulfuric acid (pH 1.5), in order to bind fine
particles to the surfaces of the coarser particles. The agglomerated ore
was kindly provided by the Geological Survey of Finland.

2.2. Enrichment culture

The enrichment culture used for the inoculation of the bioleaching
columns was obtained by combining several acidic water samples
from the Sotkamo ore deposit. The pH of the water samples varied
between 3 and 4 and samples contained red–brown iron(III)
precipitates. The cultures were first enriched in shake flasks at 25 °C
in three different acidic media. All the media contained basal salts
(0.4 g L−1 each K2HPO4, (NH4)2SO4, MgSO4·7H2O), supplemented
with either ferrous ion (4.5 g L−1), elemental sulfur (1% wt/vol) or
black schist ore powder (1% w/v) from the Sotkamo deposit. Basal
salts were diluted with the surface water originating from the deposit
containing about 20 mg L−1 dissolved organic matter and solutions
were acidified to pH 1.8 with concentrated sulfuric acid. Basal salts
media were sterilized by autoclaving (30 min, 121 °C). Sulfur was
sterilized by heating at 105 °C for at least 24 h. For addition of ferrous
ion, the stock solution of 112 g L−1 FeSO4·7H2O at pH 1.8 was
prepared and sterilized by filtration through 0.2 μm polyvinylidene
fluoride membrane (Whatman). Sulfur and the ferrous ion solution
were aseptically added to themedium. Ore powderwas sterilizedwith
the basal salts. After inoculation (10% v/v), the suspensions were
incubated at 180 rpm min−1 at 25 °C.

After one month of incubation the enrichment cultures were
combined with the medium. The enrichment culture was sub-
cultured three times on this medium prior to transferring to the
bioleaching columns. Microbial growth was monitored by phase
contrast microscopy (Zeiss Axioskop 2).

2.3. Bioleaching column and start-up

Four columns at different target pH values (1.5, 2.0, 2.5 and 3.0)
containing about 9 kg of agglomerated ore were set up. The description
of the columns used in the study is given in Halinen et al. (2009-this
issue). The columns were inoculated with 200 mL of the microbial
solution and the percolated solutionswere collected from the bottom of
the column. The cellswere counted before and after inoculation by 4′, 6-
diamidino-2-phenylindole (DAPI) staining and Most Probable Number
(MPN) technique adapted for mesophilic iron oxidizers. After inocula-
tion, containers equippedwithpHelectrodes andmagnetic stirrerswere
placed below the columns and leach liquor (5 L), consisting of surface
water from the Sotkamo deposit supplemented with basal salts, was
used in each column. The pH was adjusted by continuous titration
(Metrohm 719 S Titrino) with concentrated sulfuric acid. The ore in the
columnwas irrigated at the rate of 10 Lm−2 h−1 by liquid recirculation.
Aeration was provided through a diffuser inserted at the base of the
column blown at the rate of (8–11) m3 m−2 h−1.

2.4. Monitoring metal concentrations and cell counts

The recycle of the leach liquors were initially monitored on a
weekly basis and later every second week for pH, redox (Pt electrode
Ag0/AgCl reference), dissolved oxygen (WTWCellOx 325), ferrous ion
and soluble Fe, Zn, Ni, Co and Cu. The column and leach liquor
temperatures, sulfuric acid consumption and leach liquor pH values
were recorded five times per week. The leach liquors of the columns
were sampled once a month to estimate the total numbers of
microorganisms and every second month to characterize the micro-

bial communities. Samples of leach liquor were replaced with equal
volumes of sterile basal salt solution. Losses due to evaporation were
estimated on a volumetric basis and compensated by adding distilled
water on a day before sampling.

Soluble metals were determined according to the Finnish Standard
Methods SFS 3044 and SFS 3047 (Anon.,1980a,b) byatomic absorption
spectrophotometer AAS (Perkin Elmer 1100B) and once a month with
inductively coupled plasma ICP-AES (ThermoElemental, USA). Ferrous
ion concentrations were determined using the UV 1601 spectro-
photometer (Shimadzu Europa GmbH) by the colorimetric ortho-
phenanthroline method, according to Standard Methods Method no.
3500-Fe (Anon.,1992)modified as follows: 100 μL of concentratedHCl,
900 μL MQ-water, 2 mL of 1,10-phenanthroline (10 g L−1) and 1 mL of
ammonium acetate buffer were added to 1 mL of sample.

Total cell counts were estimated with 4′, 6-diamidino-2-phenylin-
dole (DAPI) staining techniqueusingepifluorescencemicroscopy. Viable
counts of mesophilic iron-oxidizing bacteria in the sample were
estimated with Most Probable Number technique (MPN) modified
fromtheFinnishStandardMethodsSFS 4447 (Anon.,1979). The samples
were diluted 10−1–10−8-fold with basal salts solution and 20 μL of the
diluted sample was added to a well containing 180 μL of the growth
medium on a multiple well plate. Each dilution was analyzed in five
parallel wells. Plates were incubated for four weeks at 25 °C in a box
moisturized with wet hand towels to prevent wells from drying.

2.5. Microbial community analysis

The microbial communities were investigated by Polymerase
Chain Reaction (PCR)–Denaturing Gradient Gel Electrophoresis
(DGGE); followed by partial sequencing of 16S rRNA gene. For DNA
extraction, a 15–20 mL sample was taken from column liquor and
filtered immediately on a 0.2 μm pore size polycarbonate filter
(Cyclopore Track Etched Membrane, Whatman). The filters were
rinsed with 0.9% (w/v) NaCl at pH 1.8 for 1 min to remove the excess
metals and then neutralized with 40 mM Na–EDTA in phosphate
buffered saline (PBS; 130 mM NaCl, 5 mM Na2HPO4, and 5 mM
NaH2PO4 adjusted to pH 7.2) for 1 min. The filters were stored at
−20 °C prior to nucleic acid extraction. DNA was extracted from
preserved filter samples with a Power Soil DNA isolation kit or Ultra
Clean Soil DNA Isolation Kit (MoBio Laboratories, Inc.) according to
the manufacturer's instructions for DNA yield maximization.

The crude DNA was used as a template for PCR. Partial 16S rRNA
genes (550 bp) were amplified using bacterial-specific forward primer
357F 5′-CCT ACG GGA GGC AGC AG-3′ (E. coli 16S rRNA gene positions
341–357, Muyzer et al., 1993) and universal reverse primer 907R 5′-
CCG TCA ATT CMT TTG AGT TT-3′ (E. coli 16S rRNA positions 907–926,
Muyzer et al., 1996). The forward primer had a GC-clamp in the 5′-end
(5′-GCG CCG CCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGG-3′)
to stabilize the melting behavior of the DNA fragments in the DGGE
(Muyzer et al., 1993).

PCR reaction mixtures contained 5 μL of 10×PCR buffer IV
(200 mM (NH4)2SO4, 750 mM Tris–HCl, and 0.1% (vol/vol) Tween,
pH 8.8), 2 mM MgCl2, 100 μM deoxynucleoside triphosphates, 0.5 μM
of each primer, 0.8 U of Dynazyme II DNA polymerase, 400 ng bovine
serum albumin (BSA) μL−1, and sterile ddH2O water to a final volume
of 50 μL, to which 1–2 μL of template was added. PCR was performed
using the following temperature program: initial denaturation at
95 °C for 5 min, 31 cycles of denaturation at 94 °C for 0.5 min,
annealing at 50 °C for 1 min and extension at 72 °C for 2 min, followed
by final extension at 72 °C for 10 min. The PCR products were checked
with 1% (wt/vol) agarose gel electrophoresis using ethidium bromide
staining (final concentration 1 μg L−1) prior to DGGE.

Archaea were characterized using nested PCR approach. First
partial 16S rRNA gene (933 bp) was amplified using the Archaea-
specific primers (Jurgens et al., 2000) ArUn4F 5′-TCY GGT TGA TCC
TGC CRG-3′ (E. coli 16S rRNA positions 8–25, Hershberger et al., 1996)
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and Ar958R 5′-YCC GGC GTT GAV TCC ATT T-3′ (E. coli 16S rRNA
positions 958–976, Delong, 1992). The inner-PCR (601 bp) was
conducted using the product from the former, outer-PCR as a template
and Archaea-specific primers GC-ArchV3F 5′-CCC TAC GGG GYG CAS
CAG-3′ (E. coli 16S rRNA positions 340–357, Øvreås et al., 1997) and
Ar958R. The forward primer included a GC-clamp. Otherwise, the PCR
mixture was the same as for bacterial PCR. The outer-PCR was
performed using the following temperature program: initial dena-
turation at 95 °C for 4 min, 40 cycles of denaturation at 92 °C for 1min,
annealing at 57 °C for 1 min and extension at 72 °C for 2 min, followed
by final extension at 72 °C for 10min. The inner-PCRwas performed as
the outer-PCR, but initial denaturation was at 94 °C for 1 min.
Annealing was at 61 °C and number of cycles 32. The PCR products
were checked as described above. DGGE was performed with the
INGENYphorU2×2-system (Ingeny International BV, The Nether-
lands) as previously described (Dopson et al., 2007b). Individual
bands were excised from the gel with a sterile scalpel and eluted in
20 μL of DNase and RNase free water overnight at 4 °C and then stored
at −20 °C. Aliquots (1–2 μL) of the eluate were used as templates in
bacterial PCR with primers 357F (without GC-clamp) and 907R.
Archaeal templates were amplified with ArchV3F and Ar958R. The
PCR mixture (BSA replaced with sterile water) and the PCR programs
described abovewere used. Before being sequenced, each PCR product
was run in a 1% (w/v) agarose gel stained with ethidium bromide to
confirm the size and the concentration of the product. The PCR
products were purified and sequenced at the DNA Sequencing Facility,
Institute of Biotechnology, Helsinki University. To identify the
microbes, the sequence data was compared with 16S rRNA gene
sequences in the GenBank database using the basic local alignment
search tool (BLAST; http://www.ncbi.nlm.nih.gov/blast/, Altschul
et al., 1997).

2.6. Microbial analysis of the leach residue

Bacterial species of the leach residue were analyzed at the end
of the experiment. Circulation of the leach liquor was stopped one

day prior to ore removal from the column. The ore samples (15 g
each) were taken by squaring according to the Finnish Standard
SFS-EN 932-2 (Anon., 1997). The sample was mixed with 40 mL of
sterile Zwittergent-washing solution (0.38 g L−1 EGTA, 3.35−4 g L−1

Zwittergent, 3.73 g L−1 KCl, pH adjusted to 2.5 with 2 M HCl). The
mixture was shaken and sonicated 5×1 min in order to detach
microorganisms from ore particles. Thereafter, the sample was
allowed to settle for about 30 min to prevent the small ore particles
from interfering with DAPI staining and DNA extraction. 15–20 mL of
supernatant was filtered for DNA extraction. Microbial numbers were
counted from supernatant in order to estimate the amount of attached
cells. If no respectable PCR product was gained using primers 357F
and 907R, a nested PCR approach was used. The forward bacterial-
specific primer 27F 5′-AGA GTT TGA TCM TGG CTC AG-3′ (E. coli 16S
rRNA positions 8–27, Lane, 1991) and the reverse universal primer
1099R 5′-GGG TTG CGC TCG TTG-3′ (E. coli 16S rRNA positions 1099–
1114, Lane, 1991) were used to perform outer-PCR. The outer-PCR was
done using the following touchdown temperature program: initial
denaturation at 95 °C for 15 min, 30 cycles of denaturation at 94 °C for
1.0 min, annealing starting at 53 °C for 0.5 min and extension at 72 °C
for 2 min. Annealing temperature was decreased 0.1 °C/s to 48 °C,
followed by final extension at 72 °C for 10 min. The inner-PCR primers
(357F with GC-clamp and 907R) and the PCR program were as
described above.

2.7. Leach residue analysis

The solid residues of the ore from columns at pH 2.0 and 2.5 were
studied after 80–90 days of bioleaching after the columns became
blocked at the bottom. Circulation of the leach liquors was stopped
and the solutions were allowed to flow out of the columns. The
mineralogical compositions of solid samples were examined by X-ray
diffraction (XRD) (Siemens AG D500) and Scanning Electron Micro-
scopy (SEM) (Stereoscan 360, Cambridge Instruments) coupled with
an energy dispersive spectroscope (EDS) (INCA-energy ISIS-300,
Oxford Instruments) at Outokumpu Research Oy.

Fig. 1. Redox potentials and the concentrations of total dissolved iron and ferrous ion in leach liquors during the bioleaching of the ore at different pH values.
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3. Results and discussion

3.1. H2SO4 consumption during bioleaching

The acid consumptions to obtain desired pH levels of 1.5, 2.0, 2.5
and 3.0 were determined for the black schist ore. Acid was steadily
consumed in all columns and the pH initially climbed to pH 4–5 before
slowly falling. After 140 days of bioleaching leach liquor pH values
were 1.5, 2.2, 3.2 and 3.5 after continuous titration of the leach liquor
and the cumulative acid consumptions were 160, 38, 8 and 3 g kg−1

ore at the respective pH values. Considering the heap bioleaching
application, the sulfuric acid consumption at pH 1.5 is too clearly high
for the process to be economical. In the study of Hallberg et al. (2007),
the pH was adjusted to 1.8 entering the 110 ton-scale column filled
with the agglomerated black schist ore and averaged pH 2.7 when
leaving the column.

3.2. Redox potential and the fate of iron

Redox potentials and iron concentrations during the bioleaching
are presented in Fig. 1. The redox potentials in the column leach
liquors varied between 515 mV at pH 1.5 and 580 mV (Ag0/AgCl
reference). The concentrations of ferric and total dissolved iron
increased steadily at pH 1.5 and 2.0. At pH 1.5, the average
concentration of ferrous ion after 140 days of bioleaching was
800 mg L−1 while ferric ion was 20.6 g L−1, which may cause
problems inmetal recovery process. At pH 2, the concentration of total
iron was significantly lower (2.1 g L−1, including 140 mg L−1 Fe(II)),
while at pH 3, total iron remained below 25 mg L−1 throughout the
experiment due to brown iron(III) oxide precipitates on the surfaces
of the ore material. However, Riekkola-Vanhanen and Heimala (1999)
concluded that iron precipitation did not interfere with the bioleach-
ing of a black schist ore.

3.3. Bioleaching of metals

The bioleaching of Ni, Cu, Zn and Co from the ore are presented in
Fig. 2. After 140 days at pH 1.5, the concentrations in solution were
2.64 g L−1 Ni, 4.20 g L−1 Zn, 0.37 g L−1 Cu and 0.08 g L−1 Co
corresponding to 59% Ni, 52% Zn,12% Cu and 13% Co extraction. The rate
of bioleaching nickel and zinc was dependent upon pH and was 3–4
times faster at pH 1.5 than at pH 3. Once the nickel concentration
reached2.50 g L−1, 20%of the leach liquorwas replacedwith fresh liquor
in order to decrease possible toxic effects of high metal concentrations.

After 290 days of bioleaching, the extraction of base metals at pH
2.0 reached the same % level as at pH 1.5, and thereafter remained
steady. However, at pH 2.5 and 3.0, there was no further extraction of
metals after 150 days, possibly due to metal adsorption onto the iron
oxide precipitate. The results demonstrate that the highest leaching of
base metals is achieved at low pH values under high redox conditions
where ferric ion remains in solutions. Riekkola-Vanhanen and
Heimala (1999) achieved 40% bioleaching of nickel in 200 days
when leaching black schist ore in column tests at pH 1.8–2.7; while the
Talvivaara demonstration plant achieved 94% Ni extraction in
16 months with low pH acid irrigation (Riekkola-Vanhanen, 2007).

The dissolution of gangue minerals at different pH values during
column leachingbrings aluminum, calcium,magnesium,manganese and
silicon into solution as presented in Fig. 3. The highest concentration of
these elements occurred at pH1.5 resulting in10.3 g L−1Al, 0.57 g L−1 Ca,
1.2 g L−1Mg,15.6 g L−1Mn and 1.7 g L−1 Si after 140 days of bioleaching.
Dissolvedmanganese and silica did not affect the bioleaching of valuable
metals, but at pH1.5 it increasedacid consumptionand it becamedifficult
to filter the leach liquor samples due to amorphous gelatinous silica. This
may create solution flow barriers hindering oxygen transfer and liquor
percolation the leaching of valuable metals from ore. Dissolution of
gangueminerals are furher discussed in the studyof Dopson et al., 2007a.

Only a few studies report the effects of different metals on
microorganisms and bioleaching rates. In high concentrations, metals

Fig. 2. Bioleaching of base metals during bioleaching of the ore at different pH values.
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may interferewithmicrobial ferrous ion oxidation. High concentrations of
Mg (Li and Ke, 2001) and Al (Ojumu et al., 2007) have been reported to
inhibitbioleachingmicrobes.Thus, adjusting thepHto2.0 is recommended
for heap bioleaching application to minimize gangue mineral dissolution.

3.4. Total and viable counts

Total cell counts in leach liquors and residues were determined once
amonth by DAPI staining technique and the viable counts of mesophilic
iron oxidizers by MPN technique. The results are presented in Table 1.
The enrichment culture used as inoculum contained approximately
108 cells mL−1 counted by DAPI and MPN. About 99% of the cells of the
inoculum became attached to the agglomerated ore corresponding to
1010–1011 cells in the column. The pH did not affect the numbers of
microorganism in the leach liquor and cell counts (DAPI) remained at
106–108 cell mL−1 throughout the study. The cell counts decreased
slightly in all leach liquors during the leaching. This was likely due to
attachment of cells to the agglomerated ore and to the formed
precipitates. Increasing attachment with incubation time of the
acidophilic bacterial cells to pyrite ore and ferric hydroxysulfates was
shown by Ghauri et al. (2006) though the attachment of A. ferrooxidans
was slower than the attachment of Leptospirillum ferrooxidans. Jarosites
were shown to play an important role in retaining iron oxidizers in a
ferric ion-generating fluidized-bed reactor (Kinnunen and Puhakka,
2004; Van der Meer et al., 2007).

The number of mesophilic iron oxidizers in the leach liquor was
107–108 cells mL−1 at the start of bioleaching and decreased during
the bioleaching to 104–106 cells mL−1. Total cell counts in the leach
residue were about 108 cells g ore−1.

3.5. Microbial composition by PCR-DGGE

Bacterial 16S rRNA gene fragments obtained by PCR amplification
of DNA extracted from the leach liquor were analyzed by DGGE.
Duplicate DGGE profiles (from 10–80% of denaturing gradient) of the
original enrichment and after 27 days of leaching are shown in Fig. 4.
Several bands were observed in the samples of all pH columns. The
sequence data showed the presence of bacteria in the inoculum and
most of the leach liquors related to A. ferrooxidans AP310 (99%

Table 1
The average cell counts.

pH Cell count

Leach liquor Leach residue

DAPI MPN-Fe DAPI MPN-Fe

1.5 3.0×107 8.0×107 1.5×108 3.0×105

2.0 4.7×107 3.1×107 8.4×107 4.0×104

2.5 4.0×107 1.4×107 2.3×108 6.5×105

3.0 5.3×107 1.2×107 1.2×108 3.5×103

Fig. 3. Aluminum, calcium, magnesium, manganese and silicon concentrations in leach liquors during bioleaching of the ore at different pH values. (Decrease in metal concentrations
at pH 2.5 due to leach liquor loss and replacement after 57 days.)
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sequence similarity; accession DQ355183), A. caldus MTH-04 (96%,
AY427958), A. thiooxidans ORCS8 (100%, AY830900), L. ferrooxidans
DSM 2705 (98%, X86776) and Sulfobacillus thermotolerans KR-1 (99%,
DQ124681). A. ferrooxidans grows at pH between 1.3 and 4.5 (Kelly
and Wood, 2000).

All the detected bacteria from the leach liquors and leach residues
are presented in Tables 2–5. where + corresponds to a weak band on
DGGE and ++ corresponds to a strong band on DGGE. A. ferrooxidans
and L. ferrooxidans were the predominant species in leach liquors
during the bioleaching at all pH values. Bothwere found from all of the
leach residues, except that L. ferrooxidans was not observed in leach
residue at pH 3 (Fig. 5). L. ferrooxidans oxidizes only ferrous ion and

the optimum pH range is between 1.3 and 2.0 according to Johnson
(2001). Coram and Rawlings (2002) reported a pH range of 1.6 to 2.0
for L. ferrooxidans.

At the beginning of the experiment, A. caldus, A. thiooxidans and a
species closely related to S. thermotolerans were detected in the leach
liquors. A. caldus was found at pHN1.5, which is consistent with the
pH optimum of 2.0–2.5 reported by Kelly and Wood (2000). A. caldus
uses only S as electron donor (Kelly and Wood, 2000). A. thiooxidans
and S. thermotolerans were present to lesser extent at pH 3.0. These
findings are consistent with earlier studies on bioleaching operations,
in which iron-oxidizing leptospirilli are generally reported to coexist
with a sulfur-oxidizing bacterium such as A. caldus or A. thiooxidans
(for review, see Rawlings, 2002). After one month of bioleaching
A. thiooxidans was no longer detected and A. caldus only once after
that (pH 3.0, after 246 days). The absence of these sulfur oxidizers
contributes to the high sulfuric acid consumption as suggested by
Wakeman et al. (2008). Maeda et al. (1996) showed that 300 mg L−1

Ni was inhibitory to A. thiooxidans.
Bogdanova et al. (2006) reported the pH range of 1.2–2.4 or pH

2.0–5.0 for the growth of S. thermotolerans on media containing
ferrous ion or S0, respectively. At the end of the experiment (around
350 days) a bacterium related to L. ferriphilum D1 (99%, DQ665909)
was seen in the leach liquor at pH 1.5 and 2.0 and also from leach
residue at pH 2.5. Coram and Rawlings (2002) reported a pH range of
1.4 to 1.8 for L. ferriphilum.

Archaea were analyzed with DGGE after 111 days (Fig. 6, Table 6)
and after 246 days of bioleaching. Archaea related to Ferroplasma
acidiphilumDR1 (98%, AY222042) were found from leach liquors at pH
1.5 and pH 2.0. Currently two species of Ferroplasma are recognized,
the other being F. acidarmanus (Dopson et al., 2004; Golyshina et al.,
2000; Okibe et al., 2003). F. acidiphilum oxidizes ferrous ion as the sole
energy source and fixes inorganic carbon as the sole carbon source
and has a growth range of pH 1.3 and 2.2 (Golyshina et al., 2000). The

Table 3
Detected bacterial species from column at pH 2.0.

Microorganism days 27 111 197 302 426 531 Leach
residue

A. ferrooxidans AP310 (99%, DQ355183) ++ ++ + ++ ++ ++ ++
A. caldus MTH-04 (96%, AY427958) +
A. thiooxidans ORCS8 (100%, AY830900) +
L. ferrooxidans DSM 2705 (98%, X86776) ++ ++ ++ ++ + ++ ++
Sulfobacillus thermotolerans KR-1
(99%, DQ124681)

+

L. ferriphilum D1 (99%, DQ665909)
Gram-positive iron-oxidizing
acidophile G1 (99%, AY529492)

+ + +

Table 4
Detected bacterial species from column at pH 2.5.

Microorganism days 27 56 111 197 302 426 Leach
residue

A. ferrooxidans AP310 (99%, DQ35518) ++ ++ + + + + ++
A. caldus MTH-04 (96%, AY427958) +
A. thiooxidans ORCS8 (100%, AY830900) +
L. ferrooxidans DSM 2705 (98%, X86776) ++ ++ + + + + +
Sulfobacillus thermotolerans KR-1
(99%, DQ124681)

+

Uncultured bacterium clone DX30
(99%, DQ458028)a

+

L. ferriphilum D1 (99%, DQ665909)
Uncultured bacterium clone QBS9
(99%, DQ840470)a

+

Alicyclobacillus tolerans DSM 16297
(99%, AB222265)

+

a No nearest known species.

Table 2
Detected bacterial species from column at pH 1.5.

Microorganism days 27 56 111 197 302 Leach
residue

Acidithibacillus ferrooxidans AP310
(99%, DQ355183)

++ ++ + + ++ ++

A. caldus MTH-04 (96%, AY427958) +
A. thiooxidans ORCS8 (100%, AY830900) +
L. ferrooxidans DSM 2705 (98%, X86776) ++ ++ + + +
Sulfobacillus thermotolerans KR-1
(99%, DQ124681)

+ + +

Ferrimicrobium acidophilum T23
(98%, AF 251436)

+

L. ferriphilum D1 (99%, DQ665909) ++
Ferroplasma acidiphilum DR1
(98%, AY222042)

++

Fig. 4. Bacterial DGGE profiles of partial 16S rRNA gene fragments retrieved from the
inoculum and the leach liquor of the columns operated at pH 1.5–3.0 after 27 days. Std =
standard. Identity of DGGE bands: a) Acidithiobacillus ferrooxidans AP310; b) A. caldus
MTH-04; c)A. thiooxidansORCS8; d) Leptospirillum ferrooxidansDSM 2705; e) Sulfobacillus
thermotolerans KR-1.
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pH of the leach liquor from column at pH 2 was slightly over the
optimal pH range for this organism. Ferroplasma was also detected
intermittently after PCR performed with bacterial-specific forward
primer 357F (Muyzer et al., 1993) and universal reverse primer 907R
(Muyzer et al., 1996), which can be a result of unspecific amplification.

A species related to an uncultured archaeon clone ant b7 (99%,
DQ303249, nearest known species Thermoplasma acidiphilum
DSM1728, 91%, AL445067) was present in all of the leach liquors
except at pH 1.5. Surprisingly, at higher pH values (2.5–3.0), archaea
related to Sulfolobus metallicus DSM 6482 (98%, SM16SRRN1) were
present. The growth temperature for S. metallicus has been reported
byHuber and Stetter (2001) to be 50–75 °C, with a growth optimum at
65 °C in a pH range of 1.0–4.5. The growth temperature of
thermophilic culture VS2, dominated by a Sulfolobus sp. was reported
to be 35–76 °C. No mesophilic Sulfolobus sp. has been described (Salo-
Zieman et al., 2006).

3.6. Leach residue analysis

The solid residues of the agglomeratewere studied after 80–90 days,
when the columns at pH 2.0 and 2.5 became blocked from the bottom.
The main sulfides were pyrrhotite, pyrite, sphalerite, chalcopyrite and

violarite. Jarosite and goethite were found on the surfaces. However,
therewas no evidence of gypsum or gelatinous silica acid. Bright yellow
precipitates, possibly elemental sulfur, were observed at pH 1.5 and 2.0.

Fig. 5. Bacterial DGGE profiles of partial 16S rRNA gene fragments of the leach liquors
and leach residues at pH 1.5 and pH 3.0 after 300 days. Std= standard. Identity of DGGE
bands: a) and e) Acidithiobacillus ferrooxidans AP310; b) Uncultured bacterium clone
DX30; c) Leptospirillum ferrooxidans DSM 2705; d) Leptospirillum ferriphilum DI;
f) Sulfobacillus thermotolerans KR-1.

Fig. 6. Archaeal DGGE profiles of partial 16S rRNA gene fragments from the leach liquor
of the columns operated at pH 1.5–3.0 after 110 days. Std = standard. Identity of DGGE
bands: a) Ferroplasma acidiphilum DR1; b) and c) uncultured archeon ant b7; Thermo-
plasma acidiphilum DSM1728, d) Sulfolobus metallicus DSM 6482.

Table 5
Detected bacterial species from column at pH 3.0.

Microorganism days 27 56 111 197 302 Leach
residue

Acidithibacillus ferrooxidans AP310
(99%, DQ355183)

++ ++ + ++ ++ ++

A. caldus MTH-04 (96% AY427958) +
A. thiooxidans ORCS8 (100%, AY830900) +
L. ferrooxidans DSM 2705 (98%, X86776) ++ ++ ++ ++ + +

Table 6
Detected archaeal species from columns at pH 1.5–3.0.

Time (d)

111 246

Archaea from column at pH 1.5
Ferroplasma acidiphilum DR1 (98%, AY222042) ++ +

Archaea from column at pH 2.0
Ferroplasma acidiphilum DR1 (98%, AY222042) ++ +
Uncultured archeon ant b7 (99%, DQ303249, nearest species
Thermoplasma acidiphilum DSM 1728 (91%, AL445067)

++ +

Archaea from column at pH 2.5
Uncultured archeon ant b7 (99%, DQ303249, nearest species
Thermoplasma acidiphilum DSM 1728 (91%, AL445067)

++

Sulfolobus metallicus DSM 6482 (98%, SM16SRRN1) ++

Archaea from column at pH 3.0
Uncultured archeon ant b7 (99%, DQ303249, nearest species
Thermoplasma acidiphilum DSM 1728 (91%, AL445067)

++

Sulfolobus metallicus DSM 6482 (98%, SM16SRRN1) ++
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4. Summary

The effects of pH on bioleaching of a complex sulfide ore
originating from the Sotkamo deposit, Finland were as follows:

1) The sulfuric acid consumption increasedwith decreasing pH. At pH
1.5 the cumulative sulfuric acid consumption was 160 g kg−1 ore,
while for pH 2.0 the acid consumption was 38 g kg−1 ore.

2) The redox potential (ref. Ag/AgCl) was highest at pH 2 (580 mV)
and lowest at pH 1.5 (515 mV). Low concentrations of Fe(II)
demonstrated the activity of ferrous ion oxidizers at all pH values.
The concentration of Fe(III) increased significantly with the
decrease in pH, but at pH 2.5 and 3.0 the total dissolved iron
remained low throughout the experiment due to iron(III) oxide
precipitation.

3) The highest bioleaching of base metals were achieved at pH 1.5
where the ferric concentration remained high. After 140 days, 59%
Ni, 52% Zn, 12% Cu and 13% Co were extracted. At pH 2.0 similar
extractions were achieved over 220 days. The rate of bioleaching of
nickel and zinc was 3–4 times faster at pH 1.5 than at pH 3.0.

4) The lack of dissolved ferric ion and diffusion barriers created by
iron(III) oxide precipitates slowed down metal leaching at pH 2.5
and 3.0.

5) Dissolution of gangue minerals was significant at pH 1.5 giving
high concentrations of aluminium, manganese and amorphous
silica which have the potential of interfering with liquid flow in
heap leaching and subsequent recovery of base metals.

6) The numbers of microorganism in the leach liquors were 106–
108 cell mL−1 and the total cell counts in the leach residues were
about 108 cells g ore−1 throughout the pH range. A. ferrooxidans
and L. ferrooxidans were the dominant species throughout the
study.

7) Based on an optimization between the bioleaching of base metals,
acid consumption, the concentration of soluble iron and the
leaching of undesired cations (Si, Al, Ca, Mg and Mn), a leaching
solution of pH 2.0 is recommended for the heap bioleaching
application.
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The effect of low tomoderate temperatures (7 to 50 °C) on the bioleachingof a low-grade,multi-metal black schist
ore from Finland in which pentlandite was the main valuable mineral, was studied using columns at set
temperatures. The iron and sulfur-oxidizing microbial culture used were enriched from the ore deposit water
samples. At 7 °C and 21 °C, the leach liquor redoxpotential stabilized to 500–600mV,whereas at 35 °C and at 50 °C
it varied between 300 and 500 mV. Microbial iron oxidation started after a lag phase of 20 days at 7 °C and after
60 days of operation, total iron and Fetot/Fe2+-ratio were higher in the 7 °C column leach liquor than at other
temperatures. At 50 °C, all dissolved iron remained in ferrous form and did not indicatemicrobial activity. Highest
bioleaching recoveries of Ni (26%), Zn (18%) and Co (6%) were obtained after 140 days at 21 °C. At 50 °C,
bioleaching decreased due to the lack of ferric ion. The microbial composition, as measured by Polymerase Chain
Reaction (PCR)–Denaturing Gradient Gel Electrophoresis (DGGE)-sequencing approach, was affected by
temperature. Acidithiobacillus ferrooxidans was the most common species in the leach liquor at 7 °C; while at
35 °C Leptospirillum ferrooxidans dominated and at 50 °C, Sulfobacillus thermotolerans was the most common
organism.Total liquid-phase cell countswerehigher at7 °C thanatother temperatures. Thus theboreal oredeposit
enrichment culture was composed of microorganisms capable of being active over a wide temperature range.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Temperature affects the organisms that inhabit the bioleaching
systems. At 40 °C or below, mesophilic Gram-negative bacteria Aci-
dithiobacillus ferrooxidans and Leptospirillum ferrooxidans dominate,
while moderately thermophilic A. caldus and Sulfobacillus thermosulfi-
dooxidans dominate at temperatures around 40–60 °C (Kelly andWood
2000; Brandl, 2001). Extreme thermophiles, like Sulfolobus metallicus,
grow optimally at temperatures higher than 60 °C (Huber and Stetter,
2001). Moderate thermophiles include archaea and eubacteria, the
majority of which are Gram-positive. Furthermore, archaea prevail at
higher temperatures (up to 90 °C) (Johnson,1998). In some bioleaching
operations the temperature rise due to the exothermal oxidation
reactions is above the maximum growth temperature of microorgan-
isms. In particular, the oxidation of pyrrhotite in the presence of
moisture andoxygen is characterizedby significantheat generation (van
Aswegen et al., 2007). If no thermophilic micro-organisms are present,
high temperatures may be detrimental to the biological process
(Franzmann et al., 2005). Since large temperature gradients can prevail
in heaps, the presence of microorganisms active in a range of different
temperatures is beneficial (Brierley, 2003).

Microbial iron oxidation is one of the key features of bioleaching
(Ahonen and Tuovinen, 1995; Deveci et al., 2004). According to
Dopson et al. (2007) at low temperatures, chemical oxidation of the
sulfide minerals by ferric iron is the rate limiting step in bioleaching
rather than the biological ferrous ion oxidation. Ferric ion easily
hydrolyzes in acidic conditions and forms a variety of precipitates
including hydroxides and hydroxysulfates e.g. schwertmannite [Fe8O8

(OH)6SO4], jarosite [MFe3(SO4)2(OH)6] and goethite (α-FeOOH).
Precipitation may cause diffusion barriers on mineral surfaces and
thereby hinder bioleaching. Temperature significantly affects pre-
cipitation rates. In the study of Wang et al. (2006) two months was
required for jarosite to form at room temperaturewhereas it took only
7 days at 36 °C. (Daoud and Karamanev, 2005; Wang et al., 2006).

The aim of the present work was to study the effects of
temperature (7–50 °C) on heap bioleaching of a black schist ore
from the Sotkamo deposit, Finland, using bench scale columns and on
understanding the development of corresponding bioleaching com-
munities. In Finland, heaps are subject to extreme climatic conditions
and large temperature variations.

2. Materials and methods

2.1. Column configuration

This study was performed in parallel with the study of Halinen
et al. (2009-this volume) on the effect of pH, except that four columns

Hydrometallurgy 98 (2009) 101–107

PII of original article: S0304-386X(09)00077-2.
⁎ Corresponding author. Tel. +358 50 346 3935.

E-mail address: anna-kaisa.halinen@tut.fi (A.-K. Halinen).

0304-386X/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.hydromet.2009.04.004

Contents lists available at ScienceDirect

Hydrometallurgy

j ourna l homepage: www.e lsev ie r.com/ locate /hydromet

mailto:anna-kaisa.halinen@tut.fi
http://dx.doi.org/10.1016/j.hydromet.2009.04.004
http://www.sciencedirect.com/science/journal/0304386X


(100 cm×10 cm) at different temperatures (7, 21, 35 and 50 °C) were
used with a total volume of 7.9 L. The column at 7 °C was refrigerated,
whilst the columns at 35 °C and 50 °C were water jacketed and
connected to a heating thermostat. A perforated plate and a filter cloth

were inserted at the bottom of each column. Aeration was provided
through a diffuser inserted at the base of the column and blown at the
rate of (8–11) m3 m−2 h−1. Desired leach liquor pH was 2.5 in all
columns and the ore was irrigated at the rate of 10 L m−2 h−1 by
liquid recirculation. A titration apparatus connected to PC was used to
control the pH. Glass beads with the total bulk-volume of 270mLwere
placed on the upper part of the column to enable even distribution of
the leach liquor. Paraffin paper was set on the top of each column to
prevent evaporation.

2.2. Operation of the bioleaching columns

The sulfide component of the ore was mainly pyrrhotite and pyrite
with minor pentlandite, alabandite (MnS) and chalcopyrite and
contained 0.29% Ni, 0.53% Zn, 0.20% Cu and 0.035% Co. The mineral
composition, agglomeration, inoculation procedure, operation of the
columns and monitoring were as reported in Halinen et al. (2009-this
volume). The short description of operation is given as follows. The
enrichment culture used to inoculate columns was derived from the
acidic water samples from the ore deposit and initially grown on S0,
Fe2+ and ore powder at pH 1.8. The inoculumwas poured onto the top
of the each column and allowed to percolate through the column. The
solutions were collected at the bottom of the columns and the leach
liquor circulations were started. In addition thermophilic culture VS2
dominated by Sulfolobus spp. (Salo-Zieman et al., 2006) was
inoculated the column at 50 °C on day 65.

The recycle of the leach liquors was initially monitored on aweekly
basis and later every second week for pH, redox (Pt/Ag0/AgCl
reference), dissolved oxygen, ferrous ion and soluble Fe, Zn, Ni, Co
and Cu. The column and leach liquor temperatures, sulfuric acid
consumption and leach liquor pH values were recorded five times per
week. The leach liquors of the columns were sampled once a month to

Fig. 1. Leach liquor pH and sulfuric acid consumption during the bioleaching of the ore
at different temperatures.

Fig. 2. Redox potentials and the concentrations of total dissolved iron and ferrous ion in bioleach liquors at different temperatures.
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estimate the total numbers of micro-organisms and every second
month to characterize the microbial communities.

3. Results and discussion

3.1. H2SO4 consumption during bioleaching

The acid consumption during bioleaching at the different tem-
peratures was determined for the ore. Leach liquor pH was
continuously titrated and the process was acid-consuming in all
tested temperatures as presented in Fig. 1. After 30 days of bioleaching
the pH remained below 3 at temperatures of 7 °C, 21 °C and 35 °C.
Highest sulfuric acid consumptionwas 29 g kg−1 of ore after 140 days
of bioleaching at 50 °C. At temperatures of 7, 21 and 35 °C acid
consumptions were 14, 8 and 13 g kg−1 ore, respectively. The effect of
pH on bioleaching the same black schist ore is reported in Halinen
et al. (2009-this volume).

Wakeman et al. (2008) studied the same black schist ore and three
columns filled with 3 kg of ore were set-up and operated as a “plug-
flow”. The pH of leaching solution was adjusted to 2.0 and changed
every third week. Without further acid additions pH dropped to 3.5–
4.0 after 40 weeks of bioleaching.

3.2. Redox potential and the fate of iron

During column leaching, the redox potentials, ferrous and ferric
ion in leach liquors were monitored. At 7 °C and at 21 °C, the leach
liquor redox potential stabilized to 500–600 mV, whereas at 35 °C and
at 50 °C it varied between 300 and 500 mV (Fig. 2). Low redox
conditions reflect a high Fe2+/Fe3+ ratio (Brierley, 2003). The total
dissolved iron and ferrous ion concentrations at different tempera-
tures are presented in Fig. 2. The redox increase during the first two
months of bioleaching at 7 °C reflected the start of ferrous ion
oxidation and microbial activity. After 60 days of bioleaching, total
iron (700 mg L−1) and Fetot/Fe2+ ratio (14:1) were higher in the 7 °C
column leach liquor than at other temperatures. Ferrous ion was
oxidized and ferric ion precipitated in leach liquors at 21 and 35 °C. At

35 °C, ferrous ion concentrationwas 130 mg L−1 and Fetot 220 mg L−1

whilst at 50 °C, all the dissolved iron after 50 days (350mg L−1) was in
the ferrous form due to the fast chemical reaction of Fe(III) with the
sulfide minerals. Brown precipitates were observed to accumulate on
the surfaces of the ore material in all columns from 7 °C to 50 °C.
Additionally, bright yellow precipitates were formed indicating
elemental sulfur accumulation at 7 °C and 21 °C.

In the study of Dopson et al. (2007) the Fe2+ oxidation rates of the
culture derived from column leach liquor at 7 °C were tested over the
temperature range 2–40 °C. Temperature optima of 22.4 °C and 32.4 °C
indicated the presence of both psycho-tolerant and mesophilic
microorganisms. However, only A. ferrooxidans was found from the
column leach liquor in this work (Table 2). Ferric ion precipitation
linearly increased with temperature, the maximum amount at 40 °C.
The decreased Fe3+ precipitation at low temperature results in a
greater availability of Fe3+ for the mineral sulfide oxidation and thus
increased rates of metal dissolution (Dopson et al., 2007).

3.3. Bioleaching of valuable metals

The bioleaching of Ni, Cu, Zn and Cowas affected by temperature as
presented in Fig. 3. Over the first 90 days bioleaching of nickel was
similar at all temperatures. Following that period the highest
bioleaching of the metals took place at 21 °C and after 140 days,
715 mg L−1 Ni, 800 mg L−1 Zn, 11 mg L−1 Cu, and 20 mg L−1 Co were
leached corresponding to 26% Ni, 18% Zn, 1% Cu, and 6% Co extraction.

Fig. 3. Bioleaching of base metals after 140 days at different temperatures.

Table 1
The average cell counts.

T (°C) Cell count

Leach liquor Leach residue

DAPI MPN-Fe DAPI MPN-Fe

7 3.6×108 2.2×108 3.9×108 1.3×105

21 4.0×107 1.4×107 2.3×108 6.5×105

35 7.6×106 1.5×106 1.1×107 2.3×106

50 4.3×106 1.1×105 8.7×106 b1.0×102
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At 7 °C, the corresponding percentage extractions were 17, 9, 0.4 and
3.4%, respectively. Not surprisingly, the bioleaching of metals
increased when soluble ferric ion was present in the leach liquors.
Hence at 50 °C, the extraction was similar to that at 7 °C (18% Ni, 11%
Zn, 0% Cu and 2% Co) due to the precipitation of dissolved ferric ion
(Fig. 2). At 50 °C bioleaching of Ni, Zn and Co accelerated after
inoculation with Sulfolobus culture on day 65 (Salo-Zieman et al.,
2006), but slowed soon after as the pH increased.

The dissolution of gangueminerals producing aluminium, calcium,
magnesium, manganese and silicon in solution was also measured at
different temperatures during 140 days of bioleaching. Dissolution of
these cations were most significant at 50 °C resulting in 1160 mg L−1

Al, 570 mg L−1 Ca, 240 mg L−1 Mg, 7.4 g L−1 Mn, and 165 mg L−1 Si
after 140 days. At all temperatures, leach liquors became saturated
with dissolved calcium and manganese during the first 100 days but

the aluminium concentration rose linearly over this period. Tempera-
ture did not significantly affect silicate leaching.

3.4. Total and viable counts

Total cell counts were determined once a month by 4′, 6-diamidino-
2-phenylindole (DAPI) staining and Most Probable Number (MPN)
technique adapted for mesophilic iron oxidizers. Average cell counts are
presented in Table 1. The liquid-phase total counts (108–109 cells mL−1)
were significantly higher at 7 °C leach liquor than at other temperatures
(106–107 cells mL−1). The viable counts of mesophilic iron oxidizers
varied between 105 and 106 cells mL−1 at 21 °C and 35 °C, while at 7 °C
the count was 108–109 cells mL−1. At 50 °C the number of mesophilic
iron oxidizers was considerably lower. Overall, as the temperature
increased the total cell counts of the leach residues decreased. In the
study ofWakeman et al. (2008), with the same black schist ore, the total
cell counts present in leach liquors from the column reactors (3 kg
column−1) were around 106–107 cells mL−1 at 37 °C.

3.5. Microbial composition by PCR-DGGE

Bacterial 16S rRNAgene fragments obtainedbyPCR amplification of
DNA extracted from the leach liquor and leach residues communities
were separated by DGGE. Duplicate DGGE profiles of the inoculum
after 27 days of leaching are shown in Fig. 4. Bands excised from the
DGGE gel and the DNA fragments obtained by PCR amplification were
sequenced. The sequence data showed the presence of bacteria in the
inoculum related to A. ferrooxidans AP310 (99% sequence similarity;
accession DQ355183), A. caldus MTH-04 (96%, AY427958), A. thioox-
idans ORCS8 (100%, AY830900), L. ferrooxidans DSM 2705 (98%,
X86776) and Sulfobacillus thermotolerans KR-1 (99%, DQ124681).

During the study, the leaching temperature changed the dom-
inance of liquid-phasemicroorganisms in the columns as presented in
Tables 2–6— where + corresponds to a weak band on DGGE and ++
corresponds to a strong band on DGGE. At 7 °C A. ferrooxidans,
A. thiooxidans and A. caldus were initially present, whereas L.
ferrooxidans and S. thermotolerans were not observed. After the first
months, A. ferrooxidans was the only species detected at 7 °C. In the
earlier studies, only the activity of Acidithiobacillus-like bacteria has
been observed at low temperatures down to 0 °C (Elberling et al.,
2000; Kupka et al., 2007; Langdahl and Ingvorsen, 1997; Sand et al.,
1992). Finally, after 500 days of leaching, A. ferrooxidans, Gram-

Fig. 4. Bacterial DGGE profiles of partial 16S rRNA gene fragments retrieved from the
inoculum (Inoc.) of bioleaching columns and the leach liquor of the columns operated
at 7, 21, 35 and 50 °C after 27 days. Std=Standard. Identity of DGGE bands: a) Aci-
dithiobacillus ferrooxidans AP310; b) A. caldus MTH-04; c) A. thiooxidans ORCS8;
d) Leptospirillum ferrooxidans DSM 2705; e) Sulfobacillus thermotolerans KR-1; f) Thio-
monas cuprina DSM 5498; g) Alicyclobacillus tolerans K1.

Table 2
Detected bacteria from column at 7 °C.

Microorganism days 27 161 302 426 531 Leach
residue

A. ferrooxidans AP310 (99%, DQ35518) ++ ++ ++ ++ ++ ++
A. caldus MTH-04 (96%, AY427958) +
A. thiooxidans ORCS8 (100%, AY830900) ++
Ferrimicrobium acidiphilum T23
(98%, AF 251436)

++

Gram-positive iron-oxidizing acidophile
G1 (99%,AY529492)

++

Table 3
Detected bacteria from column at 21 °C.

Microorganism days 27 161 246 302 426 Leach
residue

A. ferrooxidans AP310 (99%, DQ35518) ++ + + ++ + ++
A. caldus MTH-04 (96%, AY427958) +
A. thiooxidans ORCS8 (100%, AY830900) +
L. ferrooxidans DSM 2705 (98%, X86776) ++ + + ++ ++ +
L. ferriphilum D1 (99%, DQ665909) +
Alicyclobacillus tolerans K1 (100%, AF137502) +
Sulfobacillus thermotolerans KR-1
(99%, DQ124681)

+

Uncultured bacterium clone QBS9
(99%, DQ840470), no near known species

++ ++

Table 4
Detected bacteria from column at 35 °C.

Microorganism days 27 111 197 302 400 Leach residue

A. ferrooxidans AP310 (99%, DQ35518) + + ++
A. caldus MTH-04 (96%, AY427958) ++
L. ferrooxidans DSM 2705 (98%, X86776) ++ ++ + + +
L. ferriphilum D1 (99%, DQ665909) ++ ++ ++
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positive iron-oxidizing acidophile G1-like bacterium (99% AY529492),
nearest known species Alicyclobacillus disulfidooxidans (90%,
AB089843) and Ferromicrobium acidophilum T23 (98%, AF251436)
were found in the leach residue. These species were not detected in
the leach liquor, which may be due to the attachment of most
bioleaching microbes onto the ore particles (Rohwerder et al., 2003).
The role of F. acidophilum has been suggested to be the removal of
organic compounds that can be toxic for autotrophic bacteria that are
mainly responsible for leaching reactions (Johnson, 1995).

At room temperature A. ferrooxidans and L. ferrooxidans were the
dominant species throughout the study. In addition to these A. caldus,
A. thiooxidans and S. thermotolerans were detected at the beginning.
During the study, an uncultured bacterium similar to the clone QBS9
from acid mine drainage from the Qibaoshan copper mine (99%,
DQ840470; no nearest known species) was detected in the leach
liquor several times. L. ferriphilum and Alicyclobacillus tolerans K1
(100%, AF137502) were detected in the leach residue in addition to
A. ferrooxidans and L. ferrooxidans. In the study of Hallberg et al.
(2007) at least two strains of A. ferrooxidanswere present in the leach
liquor of a 110 ton scale bioleaching columnwith the same ore. When
the temperature of that column was increased from ~20 to 35 °C, the
relative abundance of A. ferrooxidans-like bacteria decreasedwhile the
abundance of unidentified bacteria (Gram-positive iron-oxidizing
acidophile G1, AY529492) increased. Total cell counts did not change

considerably after the temperature change. Gram-positive iron-
oxidizing acidophile G1 was also detected in our study at pH 2.0
from column leach liquor and residue (Halinen et al., 2009-this
volume) and in the study of Wakeman et al. (2008).

At 35 °C, the microbial community included A. ferrooxidans, L.
ferrooxidans as the dominating species. A. caldus was detected at the
beginning and later L. ferriphilum species was present. A. ferrooxidans
and L. ferrooxidanswere also found in the leach residue. The growth of
L. ferrooxidans has been reported at temperatures below 45 °C (Coram
and Rawlings, 2002). Furthermore, leptospirilli are rarely detectable at
temperatures below 20 °C (Coram and Rawlings 2002). Unlike with A.
ferrooxidans, the ability of L. ferrooxidans to oxidize ferrous iron is not
inhibited by ferric iron (Rawlings, 2002). In the work on this ore by
Wakeman et al. (2008) using 24 different acidophilic microorganisms
from different sources at 37 °C, A. ferrooxidans dominated the early
phase of the experiment, while L. ferriphilum dominated the microbial
consortium for the greater part of the experiment. L. ferrooxidans and
A. calduswere detected in relatively small proportions. As in our study,
some microorganisms were found in the leach liquor that did not
correspond to any of the microorganisms present in the inoculum.

By contrast, S. thermotolerans was the major species during
leaching at 50 °C, although a PCR product was not gained every
month. S. thermotolerans was also detected in leach residue with L.
ferriphilum. The ability of S. thermotolerans to form endospores would

Table 5
Detected bacteria from column at 50 °C.

Microorganism days 27 111 246 302 419 Leach
residue

A. ferrooxidans AP310 (99%, DQ35518) + +
A. caldus MTH-04 (96%, AY427958) ++
L. ferrooxidans DSM 2705 (98%, X86776) +
Sulfobacillus thermotolerans KR-1
(99%, DQ124681)

+ + + +

L. ferriphilum D1 (99%, DQ665909) + + +
Alicyclobacillus acidocaldarius DSM 455
(98%, AB059665)

+ +

Thiomonas cuprina DSM 5498
(99%, AB331954)

+

Alicyclobacillus tolerans K1 (100%, AF137502) +

Table 6
Detected archaeal species from columns at 7–50 °C.

Archaea from column at 7 °C Time (d)

111 246

Ferroplasma acidiphilum DR1 (98%, AY222042) +
Uncultured archaeon ant b7 (99%, DQ303249, nearest known
species Thermoplasma acidiphilum DSM 1728 (91%, AL445067)

++ ++

Archaea from column at 21 °C Time (d)

111 246

Ferroplasma acidiphilum DR1 (98%, AY222042) +
Uncultured archaeon ant b7 (99%, DQ303249, nearest known
species Thermoplasma acidiphilum DSM 1728 (91%, AL445067)

++

Sulfolobus metallicus DSM 6482 (98%, SM16SRRN1) +

Archaea from column at 35 °C Time (d)

111 246

Uncultured archaeon ant b7 (99%, DQ303249, nearest known
species Thermoplasma acidiphilum DSM 1728 (91%, AL445067)

+

Sulfolobus metallicus DSM 6482 (98%, SM16SRRN1) ++ ++

Archaea from column at 50 °C Time (d)

111 246

Ferroplasma acidiphilum DR1 (98%, AY222042) +
Uncultured archaeon ant b7 (99%, DQ303249, nearest known
species Thermoplasma acidiphilum DSM 1728 (91%, AL445067)

++ ++

Sulfolobus metallicus DSM 6482 (98%, SM16SRRN1) + +

Fig. 5. Archaeal DGGE profiles of partial 16S rRNA gene fragments from the leach liquor
of the columns operated at 7, 21, 35 and 50 °C after 110 days. Std=Standard. Identity of
DGGE bands: a) and b) Ferroplasma acidiphilum DR1; c) uncultured archaeon clone ant
b7; d) and e) Sulfolobus metallicus DSM 6482.
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be advantageous for survival of bacteria during low temperature
periods in a heap operated in boreal conditions, where high seasonal
variation in temperature occurs. The reported optimum temperature
of S. thermotolerans is 40 °C and growth range 20–60 °C (Bogdanova
et al., 2006). A. tolerans K1 (100%, AF137502) and Thiomonas cuprina
DSM 5498 (99%, AB331954) were also detected at 50 °C after a month,
although the DGGE bands were weak. A bacterium related to
thermoacidophilic Gram-positive Alicyclobacillus acidocaldarius
DSM 455 (98%, AB059665) (previously Bacillus acidocaldarius,
Wisotzkey et al., 1992) was also detected at the beginning.

A. acidocaldarius has been reported to grow at temperatures from
45–70 °C, with an optimum of 60–65 °C and in a quite wide pH range
from 2 to 6 (optimum pH 3–4) (Darland and Brock, 1971). A. caldus
has been found to dominate at temperatures around 50 °C (Norris
et al., 1996), but it was detected in leach liquor only at the beginning of
the experiment. After re-inoculating with Sulfolobus dominated
culture on a day 65, the leaching activity at 50 °C accelerated, but
decreased soon as did the cell counts.

Archaea were analyzed two times during bioleaching as presented
in Table 5. Fig. 5 presents the first archaeal DGGE after 111 d of
bioleaching. Besides the uncultured archaeon clone ant b7 (99%,
DQ303249, nearest known species Thermoplasma acidiphilum, 91%,
AL445067), the species Ferroplasma acidiphilumDR1 (98%, AY222042)
was found at all temperatures. S. metallicus – a related species – was
surprisingly found in column leach liquor at 21 °C. Sulfolobus species
have been reported earlier to grow at higher temperatures. Salo-
Zieman et al. (2006) reported the growth range to be 34–76 °C for their
strain of Sulfolobus whilst Plumb et al. (2002) and Zillig et al. (1980)
have reported growth at temperatures ranging from 50 to 90 °C.

The absence of sulfur-oxidizing bacteria, mainly A. caldus and A.
thiooxidans, could explain the continuous acid-consumption as
Wakeman et al. (2008) suggested. The conditions in the bioheaps
are never completely uniform and large temperature gradients may
prevail. Therefore different microorganisms with different optimum
temperatures were beneficial. In heap bioleaching applications the
control of microorganisms is usually not worthwhile to try as it is
an open environment. Adaptation of certain individual strains has
been shown possible, but no large differences can be attained. Mixed
cultures from native conditions tend to give better mineral leaching
results than pure cultures (Brierley, 2001).

In summary, the microbial enrichment culture and the possible
microorganisms from the ore from boreal minesite samples contained
a wide variety of microorganisms ranging from psychrotrophs to
thermophiles.

4. Conclusions

In the present work the effect of temperature (7 to 50 °C) on
bioleaching of a low-grade, multi-metal black schist ore was studied
containing mainly pyrrhotite and pyrite together with minor
pentlandite and chalcopyrite originating from the Sotkamo deposit,
Finland. The following conclusions can be drawn:

1) The redox potential during bioleaching was highest (500–600mV)
at 21 °C and lowest at 50 °C where ferrous ion predominated. At
7 °C, the redox increases with time reflecting ferrous ion oxidation
is faster than ferric ion leaching.

2) The acid consumptionwas lowest at 21 °C where significant Fe(III)
is precipitated and highest at 50 °C.

3) Highest bioleaching was obtained at 21 °C after 140 days with 26%
Ni extracted together with 18% Zn, 1% Cu and 6% Co.

4) Dissolution of non-valuable metals was considerable at 50 °C
resulting in 1160 mg L−1 Al, 570 mg L−1 Ca, 240 mg L−1 Mg, 7.4 g
L−1 Mn, and 165 mg L−1 Si after 140 days.

5) The lack of ferric ion, or presence of iron oxide precipitates,
appears to hinder the bioleaching of base metals at 50 °C.

6) The microbial composition and dynamics in the columns were
affected by temperature. The cell counts (108–109 cells mL−1)
were significantly higher at 7 °C in the leach liquor than at other
temperatures (106–107 cells mL−1).

7) The dominant species were A. ferrooxidans, A. ferrooxidans and
L. ferrooxidans, L. ferrooxidans and S. thermotolerans at correspond-
ing temperatures of 7, 21, 35 and 50 °C. In heap bioleaching
applications, large temperature gradients are likely resulting in
corresponding microbial activities at different parts of the heap.
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In the present work the microbial community of a low grade nickel ore demonstration-scale bioheap was
examined under varying weather (outside air temperature between +30 and −39 °C) and operational
conditions over a period of three years in Talvivaara, Finland. After the start-up of heap irrigation, oxidation
of pyrrhotite and pyrite increased the heap temperature up to 90 °C. Leach liquor temperatures varied
between 60 and 15 °C over the operation period, affecting the progress of sulfide ore oxidation.
The microbial communities were profiled by polymerase chain reaction (PCR) — denaturing gradient gel
electrophoresis (DGGE) followed by partial sequencing of 16S rRNA gene. Large temperature gradients
prevailed resulting in the simultaneous presence of active mesophilic and thermophilic iron- and/or
sulfur-oxidisers in the heap. As mineral oxidation progressed microbial diversity decreased and
Acidithiobacillus ferrooxidans became increasingly dominant. The number of bacteria in the leach liquors
was in the range of 105–107cells mL−1. After one year of bioheap operation several ore samples were
drilled from the heap and A. ferrooxidans, Acidithiobacillus caldus, an uncultured bacterium clone H70 related
organism, Ferrimicrobium acidiphilum and a bacterium related to Sulfobacillus thermosulfidooxidans were
found. Cell counts from the ore samples varied between 105 and 107cells g−1 ore sample. The archaeal species
present in leach liquors were novel and related to uncultivated species. During the secondary leaching phase
the leaching community remained steady. A. ferrooxidans dominated, and an uncultured bacterium clone H70-
related organism and Leptospirillum ferrooxidans were present.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Heap bioleaching of low-grade sulfide ores has become an important
process for metal recovery (for reviews, see: Rawlings, 2002; Watling,
2008). During the last twenty years the process has been optimized suc-
cessfully including ore crushing, agglomeration, aeration, leach liquor dis-
tribution and stacking stages (Brierley and Brierley, 2001). Leach liquor
pH can be adjusted before irrigation. Temperatures are affected by the
composition and concentration of the sulfidic minerals because of exo-
thermic oxidation reactions. Aeration and irrigation rates affect evapora-
tion and heat dissipation (Ehrlich, 2001; Rawlings, 2002;Watling, 2006).

Microorganisms present in bioheaps are mainly ferrous iron- and
sulfur-oxidizing chemolithotrophs, although some heterotrophs have
been reported (Hallberg and Johnson, 2001). The regeneration of ferric
iron (Fe3+) and proton release (H+) are essential for metal sulfide

oxidation and dissolution of valuable metals. As sulfuric acid is produced
by the oxidation of sulfur, these organisms generate an acidic growth en-
vironment.Many of the chemolithotrophic acidophiles are sensitive to or-
ganic matter and thus heterotrophic acidophiles detoxify the bioleaching
environment. A small fraction of the bioleachingmicroorganisms is found
in the leach liquor, while most of the microorganisms adhere to the min-
eral surfaces (Rohwerder et al., 2003; Crundwell, 1996). Studies ofmicro-
bial communities inhabiting commercial reactor based, bioleaching
processes have been successfully carried out in recent years (Pradhan et
al., 2008). However, microorganisms inhabiting industrial bioheaps and
dumps have gained less attention (Demergasso et al., 2005).

The aim of the present work was to study the microbial community
structures and their dynamics during a demonstration-scale complex
sulfide ore (17 000 tons) bioheap leaching operation. Spatial and tempo-
ral changes in microbial communities were monitored and included
strong fluctuations.

1.1 . Talvivaara ore deposit

Talvivaara complex multi-metal black schist ore deposit is located
in central-eastern Finland with 1550 million tons of classified
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resources (Talvivaara, 2012). The mineral composition of the
sulfides used in the demonstration-scale bioheaps was 61.2%
pyrrhotite [(Fe1−x)(S2), where X=0.7–0.9], 24.3% pyrite (FeS),
5% pentlandite [(Fe,Ni,Co)9S8], 6.5% alabandite (MnS), 2.4% chal-
copyrite (CuFeS2) and 1% sphalerite [(Zn,Fe)S]. Valuable metal
contents were as follows: 0.27% Ni, 0.56% Zn, 0.14% Cu and 0.02% Co
(for detailed description see Riekkola-Vanhanen, 2007). Prior to the
bioheap demonstration, laboratory scale studies had demonstrated
the amenability of Talvivaara ore to bioleaching (e.g. Puhakka and
Tuovinen, 1986a, b, c; Riekkola-Vanhanen and Heimala, 1999;
Wakeman et al., 2008; Halinen et al., 2009a, b). After a year of bio-
leaching 65% of nickel and 60% of zinc were leached. After 48 months,
99% of nickel and zinc were leached.

2. Materials and methods

2.1. Design and start-up of the demonstration heaps

During summer 2005, a 17 000 ton demonstration plant was
constructed at the Talvivaara mine site (Fig. 1). A representative
ore sample was mined, crushed to 80% —8 mm, agglomerated and
stacked in a two-part heap (8 m high, 30×120 m). Heap 1 was
agglomerated with sulfuric acid solution (pH 1.8) including inocu-
lum (described below). Heap 2 was agglomerated with sulfuric
acid solution only. Irrigation of the heaps was started in August
2005. The irrigation flow rate was at the beginning 10 L m−2 h−1

on Heap 1 and 20 L m−2 h−1 on Heap 2. It was decreased later to
5 L m−2 h−1 on both heaps.

Leach liquors were collected by subsurface drains below the
heaps and directed to manholes. From the manholes liquors flowed
to pregnant leach solution (PLS) ponds and back to irrigation
(Fig. 1). The operational volumes of ponds 1 and 2 were 175 m3

and 136 m3, respectively. Ten percent side stream was removed
continuously for metal recovery and replaced with well water.
After the start-up of irrigation, the oxidation of pyrrhotite and pyrite

increased the heap temperature up to 90 °C. Leach liquor tempera-
tures remained always at above 15 °C over the operation period,
even during the boreal winter.

2.2. Inoculation of Heap 1

The iron and sulfur-oxidizing enrichment culture was originally
enriched from mine site water samples on Fe2+, S0 and Talvivaara
ore powder at pH 1.8 (Halinen et al., 2009a). The enrichment culture
was grown in laboratory to the volume of 4.5 m3 (Geological Survey
of Finland (GTK), Outokumpu). It was transported to the mine site
and pumped into a microbial pond (MP) with initial water volume
of 40 m3. Most of the water used originated from on-site drilled
well (temperature 5 °C). Liquid pH in the pond was adjusted to 1.8
with sulfuric acid and pulp concentration (w v−1) was set to 1%
prior to inoculation. After the inoculation ammonium sulfate concen-
tration was increased stepwise to 0.4 g L−1 using 25% (v v−1) stock
solution and 500 kg of elemental sulfur was added. No liquid heating
or cover was used. The volume of 40 m3 was increased to 150 m3

with well water. Inoculation of Heap 1 was accomplished during ag-
glomeration and by irrigating the heap by acidic microbial solution,
total inoculum volume being 99 m3. Heap 2 was not inoculated.

2.3. Secondary bioheaps

On February 2007 after 18 months of operation, the heaps were
reclaimed and restacked to the secondary bioheap. Irrigation rate
was 2 L m−2 h−1. No aeration was provided. Bioleaching of copper
and cobalt was continued (data not shown). Minor amounts of nickel
and zinc were bioleached, probably from the parts that were not
reached during the primary phase.

2.4. Sampling

First samples for microbiological analyses were taken from the
microbial pond (MP), where the inoculum was grown, and from
the manholes (MH 1 and 2) that collected the irrigation and rain
water that percolated trough the heaps. Next samples were taken
after 3 months of bioleaching. Samples (50 mL) from manholes
and ponds (P 1 and 2) were collected thereafter every month. In
July 2006 pond samples were changed to irrigation samples (IR 1
and 2). Sampling was continued when primary bioheaps were
reclaimed to the secondary bioheaps. Fig. 1 shows the sampling points
and the sampling and analysis program was as presented in Fig. 2.

2.5. Cell counts

Total cell counts were estimated from the samples with 4′,
6-diamidino-2-phenylindole (DAPI) staining technique using epi-
fluorescence microscopy. Microbes were detached from the ore sam-
ples according to methods described in Halinen et al. (2009a). 15 g
of the ore sample was mixed with 40 mL of sterile Zwittergent-
washing solution (0.38 g L−1 ethylene glycol tetraacetic acid,
3.35−4 g L−1 Zwittergent, 3.73 g L−1 KCl, pH adjusted to 2.5 with
2 M HCl). The mixture was shaken and sonicated 5×1 min in order
to detach microorganisms from ore particles. Thereafter, the sample
was allowed to settle for about 30 min to prevent the small ore

Heap 1 Heap 2 

 Manhole 1   Manhole 2 

  PP 
Irrigation 1 Irrigation 2 
   PPon 

Pond 1 
V=175 m3

Pond 2 
V=136 m3

Fig. 1. Diagram of the sampling points of the Talvivaara bioheaps with the direction of
the liquid flow marked with arrows. Each heap had its own liquid circulation. The
amount of the ore of Heap 1 was 10 255 tons and for Heap 26 703 tons, respectively.

Primary heap construction   MH1, MH2, P1, P2                   Heaps are reclaimed to              

 2, 4, 6, 7, 10 and 12/2007 9/2005             
           +Ore samples Samples from the secondary bioheaps 

MH1, MH2, IR1, IR2 

 End of phase twoMH1, MH2, IR1, IR2 
 November 2008  2/2007 bioheaps secondary2007 -1/11/2006   8/2006,  12/2005      August 2005 -6/2006

   8/2006 1/2006    12/2005,   
+Ore samples    +Archaea MP, MH1, MH2 

Fig. 2. Timescale of sampling. MP = microbial pond, MH1 = manhole 1, MH2 = manhole 2, P1 = pond 1, P2 = pond 2, IR1 = irrigation 1, IR2 = irrigation 2.
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particles from interfering with DAPI staining. Microbial numbers were
counted from supernatant to account for attached cells.

2.6. Microbial community analyses

The microbial communities were investigated during the bio-
leaching from the leach liquors. Samples were sent to Tampere Uni-
versity of Technology and 15 mL duplicates of every sample were
filtered on a 0.2 μm pore size polycarbonate filter prior to concentrat-
ing the microorganisms for DNA extraction (Cyclopore Track Etched
Membrane, Whatman). The filters were rinsed with 5 mL of 0.9%
(wt vol−1) NaCl at pH 1.8 for 1 min to remove the excess metals
and then neutralized with 5 mL of 40 mM Na-EDTA in phosphate
buffered saline (PBS; 130 mM NaCl, 5 mM Na2HPO4, and 5 mM
NaH2PO4 adjusted to pH 7.2) for 1 min. The filters were stored at
−20 °C prior to nucleic acid extraction. The microbial communities
were investigated by polymerase chain reaction (PCR) — denaturing

gradient gel electrophoresis (DGGE) followed by partial sequencing
of 16S rRNA gene as described previously (Halinen et al., 2009a).

In October 2006 several ore samples were obtained by drilling
from the heaps. The first samples were drilled from a part of Heap 1
where the temperature was 80–90 °C at the depths of 1–2 m and
3–4 m. Next samples were taken from Heap 1, from the depth of
1–2 m and 4–5 m in area where the temperature was 65–75 °C. Last
samples were drilled from Heap 2 from area where the temperature
was 20–35 °C, from the depth of 0–1 m and 4–5 m (Fig. 5). Character-
istic leach liquor at the time when ore samples were drilled from
Heap 1 (PLS1) were as follows: temperature (T) 46.5 °C, dissolved ox-
ygen (DO) 2.2 mg L−1, pH 2.75, redox 331 mV (Pt electrode against
an Ag0/AgCl reference), soluble Fe2+ 12.6 g L−1, soluble Fetot
13.7 g L−1 and from the Heap 2: T 35.1 °C, DO 2.1 2 mg L−1, pH
2.67, redox 392 mV, soluble Fe2+ 6.2 g L−1, soluble Fetot 7.4 g L−1.

3. Results and discussion

3.1. Bioleach conditions in heaps

Ferrous iron concentrations were high during the first half year of
bioleaching, being mainly between 20 and 35 g L−1 and between 10
and 20 g−1 L−1 in Heaps 1 and 2, respectively. After 6 months ferrous
iron concentrations started to decrease steadily, being between 10
and 20 g−1 L−1 in both heaps. Ferric iron concentration remained
low in both heaps (data not shown). Leach liquor pH values of both
heaps were quite similar varying during the 10 months between 3.5
and 3.0 and after that between 3.0 and 2.5. The pH was maintained
by continuous adjustment by dosing sulfuric acid. Redox potentials
varied between 200 and 400 mV in both heaps increasing toward
400 mV as leaching progressed. At the beginning (autumn 2005)
leach liquor temperatures were between 25 and 55 °C in both
heaps. During the first year, temperatures varied between 20 and
50 °C in Heap 1 and between 20 and 40 °C in Heap 2. In the second
winter leach liquor temperatures were between 20 and 40 °C in
Heap 1 and between 15 and 25 °C in Heap 2. Temperatures inside
the heaps varied greatly, being between 15 and 90 °C during the
first year. In the second winter temperatures inside the heaps started
to drop being still 80 °C in the hottest zone.

3.2. Cell counts

Total cell counts (DAPI staining) in leach liquors from the primary
and secondary phase were as presented in Fig. 3. Liquid volumes
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Fig. 5. The average cell counts from the drilled ore samples from Talvivaara bioheaps.
The locations and temperatures of the sample sites are shown in a side view of the
heaps.
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Table 1
Bacteria present in demonstration-scale bioheaps for complex sulfide ore during the primary leaching phase. MP =microbial pond, MH1 =manhole 1, MH2=manhole 2, P1 = pond 1, P2 = pond 2, IR1 = irrigation line 1, IR2 = irrigation
line 2. + corresponds weak band on DGGE and ++ corresponds strong band on DGGE, empty cell = not detected.

Date Time
(months)

Sample\
species

Acidithiobacillus
ferrooxidans
AP310 (99%,
DQ355183)

A. caldus
MTH-04
(99–96%,
AY427958)

A. thiooxidans
ORCS8
(100%,
AY830900)

Thiomonas
arsenivorans
(100%,
AY950676)

Sulfobacillus
thermosulfidooxidans
N19-50-01
(100%, EU499919)

Bacterium
related to
clone H70
(91%, DQ328625)

Leptospirillum
ferrooxidans
DSM 2705
(98%, X86776)

Alicyclobacillus
acidocaldarius
(99%, AB059665)

Alicyclobacillus tolerans
(100%, AF137502)

Ferrimicrobium
acidiphilum T23
(100%, AF251436)

8/2005 0 MP ++ + ++ + ++ ++ +
9/2005 1 MH 1 + + +
12/2005 4
1/2006 5 + + ++
2/2006 6 + + + +
3/2006 7 + +
4/2006 8 ++ +
5/2006 9 ++ + +
6/2006 10 ++ + +
8/2006 12 + + +
11/2006 15 ++ + + ++
12/2006 16 ++ ++ +
1/2007 17 ++ ++ +
9/2005 1 MH 2 ++ + + ++ +
12/2005 4 + + ++ +
1/2006 5 ++ ++ +
2/2006 6 ++ ++ ++ ++
3/2006 7 +
4/2006 8 ++ +
5/2006 9 ++ + +
6/2006 10 ++ + ++
8/2006 12 ++ +
11/2006 15 ++ + +
12/2006 16 ++ ++ +
1/2007 17 ++ + +
12/2005 4 P1 + + ++ +
1/2006 5 + + +
2/2006 6 + +
3/2006 7 ++ + +
4/2006 8 ++ + +
5/2006 9 ++ + ++
6/2007 10 ++ + ++
12/2005 4 P2 ++ + ++ ++ +
1/2006 5 ++ ++ ++
2/2006 6 ++ ++ + ++
3/2006 7 +
4/2006 8 ++ + +
5/2006 9 ++ + +
6/2007 10 ++ + +
8/2006 12 IR1 + +
11/2006 15 ++ + ++ +
12/2006 16 ++ ++ +
1/2007 17 ++ + ++ +
8/2006 12 IR2 +
11/2006 15 ++ ++ +
12/2006 16 ++ + + +
1/2007 17 ++ + ++ +
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increased drastically during the first four months resulting in dilution
of leach liquors. During the primary phase cell counts were higher in
Heap 2 leach liquors than in Heap 1 even though Heap 2 was not in-
oculated. The high ferrous iron concentrations in Heap 1 may have af-
fected the growth of microorganisms.

At the end of the primary bioleach phase, cell counts were quite
similar in all samples being between 3.2×106 mL−1 and 7.2×
106cells mL−1. Cell counts increased most in manhole 1 being
1.5×105 mL−1 at the beginning and 5.2×106cells mL−1 in the
end on primary phase. In the secondary phase, cell counts varied be-
tween 1.8×106 and 6.0×107cells mL−1, being higher than in pri-
mary phase, likely resulting from the stabilized growth conditions.
All cell counts decreased toward the end of the secondary phase.
After restacking of the ore, the oxygen supply likely improved and de-
creased again toward the end.

The total cell count in the drilled ore samples averaged
106 cells ore g−1. Highest cell counts (1.8×107cell ore g−1) were
detected from Heap 2 near the surface where the temperature varied
between 20 and 35 °C (Fig. 5). A rough estimate based on liquid and
solid sample analysis and associated volumes gives a total of 2×1016

cells in the heap, while the liquid phase estimate is 3×1014 cells. This
shows that more than 98% microorganisms were attached.

3.3. Microbial community characteristics

3.3.1. Start-up phase
Duplicate DGGE profiles after 4 months of bioleaching were as shown

in Fig. 4. The enrichment culture used in Heap 1 inoculation contained
Acidithiobacillus ferrooxidans (99% 16S rRNA gene sequence similarity),
Acidithiobacillus thiooxidans (100%), Leptospirillum. ferrooxidans (98%),
Sulfobacillus thermotolerans (99%) and a species related toAcidithiobacillus
caldus (96%) (Halinen et al., 2009a). When the inoculums was grown
in the microbial pond (MP) A. ferrooxidans (100%), A. caldus (99%), A.
thiooxidans (100%), L. ferrooxidans (98%), Alicyclobacillus acidocaldarius
(99%), Alicyclobacillus tolerans (100%) and Ferrimicrobium acidiphilum
(100%) were present. Several acidophilic microorganisms were also
detected at the beginning from the manhole samples. A. ferrooxidans
(99%), A. caldus (96%), A. acidocaldarius (99%), Thiomonas arsenivorans
(100%) and S. thermosulfidooxidans (100%)were present (Fig. 4). During
thefirst sixmonths themicrobial communities of the leach liquorswere
diverse and dominated by A. ferrooxidans (99%). S. thermosulfidooxidans
(100%) and a bacterium related to Firmicutes clone H70 (91%)were also
detected frequently. The DGGE band of the novel bacterium related to
clone H70 was cut out, DNA isolated, PCR amplified and sequenced
and submitted to GenBank (accession JQ941953).

Table 2
Archaea present in demonstration-scale bioheaps for complex sulfide ore during the primary leaching phase. MH1 = manhole 1, MH2 = manhole 2, P1 = pond 1, P2 = pond 2. +
corresponds weak band on DGGE and ++ corresponds strong band on DGGE, empty cell = not detected.

Date Time (months) Species\sample Uncultured crenarchaeote
clone JG36-GR-88 (100%, AJ535129)

Thermoplasma acidiphilum
strain 122-1B2 (93%, NR_028235)

Uncultured archaeon SAGMA-X
(99%, AB050229)

12/2005 4 MH1
1/2006 5 ++
12/2005 4 MH2
1/2006 5 ++
12/2005 4 P1 ++ ++
1/2006 5 ++ ++
12/2005 4 P2 ++
1/2006 5 ++

Table 3
Bacteria present in demonstration-scale bioheaps for complex sulfide ore during the secondary leaching phase. MH1=manhole 1, MH2=manhole 2, IR1 = irrigation line 1, IR2=
irrigation line 2. + corresponds weak band on DGGE and ++ corresponds strong band on DGGE, empty cell = not detected.

Date Time (months) Sample\species Acidithiobacillus ferrooxidans
AP310 (100%, DQ355183)

Bacterium related to clone
H70 (91%, DQ328625)

Leptospirillum ferrooxidans
DSM 2705 (100%, X86776)

2/2007 0 MH1 ++ ++ +
4/2007 2 ++ ++
6/2007 4 ++ ++ +
7/2007 5 ++ ++
10/2007 8 ++ ++ +
12/2007 9 ++ ++
2/2007 0 MH2 ++ ++ +
4/2007 2 ++ ++ +
6/2007 4 ++ ++ +
7/2007 5 ++ ++
10/2007 8 ++ ++ +
12/2007 9 ++ ++ ++
2/2007 0 IR1 ++ + +
4/2007 2 ++ +
6/2007 4 ++ ++ +
7/2007 5 ++ +
10/2007 8 ++ +
12/2007 9 ++ + ++
2/2007 0 IR2 ++ ++ +
4/2007 2 ++
6/2007 4 ++ ++ +
7/2007 5 ++ + +
10/2007 8 ++ +
12/2007 9 ++ + +
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3.3.2. Temporal dynamics of microbial communities
The bacterial community composition was monitored over time

from manholes (MH) and ponds (P) that collected the leach liquor.
Bacterial species detected throughout the primary leaching phase
were as presented in Table 1. After 6 months of bioheap operation
L. ferrooxidans (100%) was first observed and it was present thereaf-
ter in nearly all samples. The microbial diversity in both heaps varied
and decreased with time, with A. ferrooxidans remaining as the dom-
inant bacterium and the bacterium related to clone H70 (91%) being
present.

Archaea were analyzed after 133 and 163 days of bioleaching from
leach liquors of primary heaps and three uncultured species were
found (Table 2). One specieswas related to anuncultured Crenarchaeote
(100%) retrieved from uraniummining waste from the pond 1 on both
days. From the same sample a species related to other uncultured
archaeon SAGMA-X (99%), also found in deep South African gold
mines, was detected. This species is a crenarchaeotic phylotype (Takai
et al., 2001). In Pond 2 on day 133 one species related to a clone with
the nearest known species of Thermoplasma acidophilum (93%) was
detected. This species was also present on day 163 from samples
MH1, MH2 and P2.

At the secondary leaching phase the leaching community
remained steady. A. ferrooxidans dominated and the bacterium related
to clone H70 and L. ferrooxidans were present (Table 3).

3.3.3. Microbial communities on mineral surfaces
Several ore samples were drilled from the primary bioheaps in Oc-

tober 2006 and their microbial communities were as shown in
Table 4. A. ferrooxidans (99%) was present in nearly all samples. The
bacterium related to clone H70 (90%) and A. caldus was detected
from the areas of wide temperature variation. S. thermosulfidooxidans
(99%) was found from the high temperature zones of the heap.
F. acidiphilum (99%) was present in the areas where temperature
varied between 20 and 35 °C.

3.3.4. Mesophiles present in demonstration scale bioheaps
Temperatures of the leach liquors were mainly between 20 and

50 °C. Microorganisms were therefore mainly mesophilic and moder-
ately thermophilic. Genus Acidithiobacillus (formerly Thiobacillus) in-
cludes e.g., A. ferrooxidans, A. thiooxidans and A. caldus that were
detected at the primary phase. A. ferrooxidans was the dominating
micro-organisms during the operation time. A. ferrooxidans grows op-
timally at 30–35 °C and at temperature range of 10–37 °C (Kelly and

Wood, 2000). A. ferrooxidans was also detected from the ore samples
from the high temperature area (80–90 °C), even though the temper-
ature greatly exceeded their growth temperature. A. ferrooxidans is
able to oxidize reduced inorganic sulfur compounds (RISCs), ferrous
iron molecular hydrogen, formic acid and some other metal ions
(Rohwerder et al., 2003). It can also grow anaerobically with H2 or
S0 as an electron donor and S0 or Fe3+ as an electron acceptor
(Ohmura et al., 2002).

A. thiooxidans grows in a temperature range of 10–37 °C and has
optimum temperature at 28–30 °C. A. caldus has a growth rate that
exceeds that of A. thiooxidans at temperatures over 30 °C (Norris et
al., 1986). It has been reported as the dominant sulfur-oxidizing bac-
terium in bioleaching reactors at temperatures between 40 and 50 °C
(Dopson and Lindström, 1999; Okibe et al., 2003). A. caldus has a
growth temperature range of 32–52 °C and optimum temperature of
45 °C (Kelly and Wood, 2000). A. thiooxidans and A. caldus that are in-
capable of pyrite degradation utilize the sulfide moiety of the mineral
when it is first released by the action of iron-oxidizing bacteria like
A. ferrooxidans.

L. ferrooxidans was detected in leach liquors for the first time after
6 months of bioleaching even though it was present in the inoculum.
Competition between A. ferrooxidans and Leptospirillum species has
been reviewed (Rawlings et al., 1999; Coram and Rawlings, 2002).
Leptospirillum species dominate in environments with greater con-
centrations of ferric iron. The environments classified by high ferrous
iron concentration (>5 g L−1) seem to select for A. ferrooxidans
(Pizarro et al., 1996). A. ferrooxidans and Sulfobacillus spp. are able
to oxidize both ferrous iron and RISCs and might exploit the leaching
environment more effectively than A. caldus or L. ferrooxidans that are
specialized to oxidize iron or sulfur oxidizers. However, growth
ranges and other factors may have overriding effects. The growth
temperature range of L. ferrooxidans is wider (b10–45 °C) compared
to that of A. ferrooxidans (Johnson, 2001).

Other mesophiles detected were F. acidiphilum and Thiobacillus
arsenivorans. F. acidiphilum has been found in several acidophilic
environments (Johnson et al., 2009). It is mesophilic iron-oxidizing
obligate heterotroph and grows below 37 °C with the optimum pH
2. T. arsenivorans has been originally isolated from a disused mine
site by growth using arsenite [As(III)] as energy source. Optimum
growth occurred at temperatures between 20 and 30 °C, and at pH
between 4.0 and 7.5 (Battaglia-Brunet et al., 2006).

3.3.5. Thermophiles present in demonstration scale bioheaps
At the beginning of bioleaching, temperatures of the Talvivaara

demonstration-scale heaps were high and thermophilic and
thermotolerant microorganisms were present in leach liquors.
S. thermosulfidooxidans was detected from leach liquors several
times during the first six months of bioleaching. It was also present
in ore samples where temperatures were between 65 °C and 90 °C.
The genus Sulfobacillus includes Gram-positive rods that obtain en-
ergy by oxidizing both ferrous iron and elemental sulfur (Norris
et al., 1996). S. thermosulfidooxidans grows optimally at 50 °C and
at pH 1.9–2.4 (Brandl, 2001; Robbins, 2000). The optimum temper-
ature of S. thermotolerans is 40 °C and growth range 20–60 °C
(Bogdanova et al., 2006). The ability to form endospores is advanta-
geous for survival of bacteria during low temperature periods in a
heap operated in boreal conditions, where high seasonal variation
in temperature occurs. Sulfobacillus species and their occurrence
in acidic and bioleaching environments have been reviewed by
Watling et al. (2008).

The genus Alicyclobacillus was also detected at the beginning of
the bioleaching. It was reclassified from genus Bacillus by Wisotzkey
et al. (1992). They are heterotrophic, aerobic or facultative aerobic,
gram-positive or gram variable, spore-forming bacteria and grow at
temperatures between 25 and 70 °C and pH values of 2.5 to 6.0.

Table 4
Bacteria present in the drilled ore samples from the demonstration-scale bioheaps for
complex sulfide ore during the primary leaching phase. First sample was drilled in a
part of the Heap 1 where temperature was 80–90 °C in the depth of 1–2 m. Second
was taken in the same place in the depth of 4–5 m. Next samples were taken from
Heap 1 in the area where temperature was 65–75 °C. Last samples were drilled from
the Heap 2 from the area were temperature was 20–35 °C in the depths of 0–1 m
and 4–5 m, respectively.

Species\sample 80–90 °C 65–75 °C 20–35 °C

1–
2 m

3–
4 m

1–
2 m

4–
5 m

0–
1 m

4–
5 m

Acidithiobacillus ferrooxidans
AP310 (99%, DQ355183)

+ + + + +

A. caldus related bacterium
(95%, AY427958)

+ +

Bacterium related to clone H70
(90%, DQ328625)

+ + + +

Sulfobacillus thermosulfidooxidans
strain YN22 (99%, DQ650351)

+ + + +

Ferrimicrobium acidiphilum T23
(99%, AF251436)

+ +
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The novel bacterium that was related to uncultured Firmicutes
clone H70 (91%) was present during the whole bioleaching time, ex-
cept in the enrichment culture. Clone H70 was detected in acidic hot
springs (T=55 °C) in North America (Wilson et al., 2008).

The use of extremely thermophilic archaea (e.g., Sulfolobus and
Acidianus) in bioleaching processes is getting more attention. The
role of archaea in the biomining community has been considered to
rather scavenge the organic material than leach minerals (Johnson,
1998, 2001) but their activity in mineral sulfide oxidation of the bio-
heap cannot be ruled out. The archaeal species present in the
Talvivaara demonstration-scale bioheap leach liquors were related
to uncultivated species.

4. Conclusion

The following conclusions can be drawn from the microbial charac-
terization in demonstration-scale bioheap leaching of a complex sulfide
ore:

1. The temperature conditions and profiles varied over a wide range
(15–90 °C) during the 30 months of operation of the bioheaps.

2. The temperature increased due to exothermic biologically catalyzed
oxidation of the sulfidic materials and especially that of pyrrhotite.

3. The total numbers of microbial cells in the heap were estimated to
be approximately 2×1016 with over 98% of cells being on the ore
surfaces.

4. When the enrichment culture was grown in the microbial pond A.
ferrooxidans, A. caldus, A. thiooxidans, L. ferrooxidans, A. acidocaldarius,
A. tolerans and F. acidiphilumwere present.

5. During the first six months the microbial communities of the leach
liquors were diverse and dominated by A. ferrooxidans (99%). An
uncultured bacterium related to Firmicutes clone H70 (91%) and
S. thermosulfidooxidans (100%) were also detected frequently.

6. L. ferrooxidans was first observed after 6 months of bioheap opera-
tion and in all subsequent samples. The microbial diversity in both
heaps varied and decreased with time, A. ferrooxidans remaining
the dominating bacterium.

7. At the secondary leaching phase the leaching community
remained steady. A. ferrooxidans dominated and the bacterium re-
lated to an uncultured clone H70 and L. ferrooxidans were present.

In conclusion the multi-metal, low-grade nickel bioheap har-
bored a diverse microbial community that underwent spatial and
temporal changes during leaching. It should be pointed out that
DNA based community profiling indicates the presence of a microor-
ganism but not it's activity in a given sample. Microorganisms
having different growth temperatures were considered beneficial
to the bioheap leaching.
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