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Abstract 

Electronic components must be cooled to maintain their operating temperatures below the 

specified limits. If the maximum permissible limit of a component is exceeded, its service life 

decreases considerably.  With increasing power densities in recent decades, the use of heat sinks 

to improve component cooling has become virtually mandatory in many applications. However, 

designing a heat sink, which optimally compromises its material weight and its heat transfer 

performance, is a difficult task because the result depends heavily on its geometrical structure 

and its operating conditions.  

In this thesis, a fast way to optimize industrial heat sinks with a fixed set of heat dissipating 

components is presented. In a typical optimization case, several hundred temperature field 

evaluations are needed to find the optimal geometry. These evaluations consume a lot of CPU -

time if done with conventional CFD. The main objective of this thesis is, therefore, to present a 

new calculation model, which can handle these temperature field evaluations in a much shorter 

time. In the model, the speedup is obtained by replacing the slow 3D CFD -solution of air velocity 

and temperature distributions with 1D solutions for the mean values of these distributions, where 

convective heat transfer and shear stress are calculated from analytical correlations. A complete 

3D numerical solution is only performed for the solid temperature field. These modifications 

make the new model at least a thousand times faster than CFD. 

The calculation model is then tested for accuracy in many test cases, where its results are 

compared to those calculated with CFD and analytical solutions. These comparisons ensure that 

the model operates with the precision needed for optimization to predict the maximum 

temperature of the components. This is important because, in optimization, the maximum 

temperature of the components is the most crucial quantity. 

After accuracy testing, the use of the model as part of an efficient multi-objective optimization 

algorithm is demonstrated in many distinct cases. Instead of just one optimal solution, multi-

objective optimization results in a set of best compromise solutions, called the Pareto optimal set, 

according to the chosen criteria. Usually, the optimization criteria are the maximum temperature 

of the components and the weight of the material, or the external volume, of the heat sink. A well-

performed optimization can allow a significant reduction of the solid material used. In the heat 

sink manufacturing industry, the potential for total savings in material, energy, and CO2 emissions 

is significant as the global market size of thermal management technology is vast. 

 

 

 

  



ii 

 

  



iii 

 

Tiivistelmä 

Elektroniset komponentit tarvitsevat jäähdytystä, jotta niiden käyttölämpötilat pysyvät sallittujen 

raja-arvojen sisällä. Mikäli sallitut käyttölämpötilat ylitetään, komponenttien käyttöikä laskee 

merkittävästi. Haasteena onkin, että komponenttien tehotiheydet ovat kasvaneet merkittävästi 

viime vuosikymmeninä, jolloin niiden lämmönpoisto vaatii käytännössä jäähdytyspinta-alan 

kasvattamista jäähdytysrivastojen avulla. Optimaalisen jäähdytysrivaston suunnittelu ei ole 

kuitenkaan helppoa, koska sen geometrinen rakenne, ja käyttöympäristö, vaikuttavat sen 

lämmönsiirtotehoon. 

Tässä työssä esitetään nopea metodi tietyn komponenttijakauman jäähdyttämiseen tarkoitetun 

jäähdytysrivaston optimoinnille. Optimoinnissa vaaditaan yleensä vähintään satojen erilaisten 

rakenteiden lämpötilajakaumien laskeminen, jotta löydetään optimaalinen geometria. Nämä 

laskennat kuluttavat paljon CPU-aikaa, jos ne tehdään virtauslaskennalla (CFD). Ratkaisuna tässä 

työssä esitetään nopea laskentamalli, joka suoriutuu lämpötilakentän laskennasta huomattavasti 

CFD:tä nopeammin. Laskentamallissa hyödynnetään nopeita 1D-ratkaisuja ilmavirtauksen 

keskimääräisille nopeus- ja lämpötilajakaumille, ja niillä korvataan CFD:n yksityiskohtaisemmat 

ilman nopeus- ja lämpötilajakaumien 3D-ratkaisut. Ainoastaan jäähdytysrivaston lämpötilakenttä 

ratkaistaan kolmiulotteisesti. Näillä muutoksilla uusi laskentamalli on yli tuhat kertaa CFD:tä 

nopeampi jäähdytysrivaston lämpötilakentän laskennassa. 

Laskentamallin soveltuvuutta optimointiin testattiin vertailemalla sillä laskettuja arvoja 

analyyttisiin laskentoihin, CFD-laskentoihin ja kokeellisiin tuloksiin. Laskentamallin antamat 

tulokset komponenttien maksimilämpötiloille poikkesivat alle 10 % vertailuarvoista kaikissa 

testitapauksissa. Tulos oli hyvä, koska maksimilämpötilan tarkka laskenta on tärkeää optimoinnin 

onnistumisen kannalta.  

Laskentamallia käytettiin maksimilämpötilojen määrittämiseen monitavoitteisessa 

optimoinnissa, jossa etsitään matemaattisesti parhaat kompromissit, Pareto optimaaliset ratkaisut, 

valittujen kriteerien mukaan. Useimmiten optimointikriteerit ovat komponenttien 

maksimilämpötilat, rivaston massa ja ulkotilavuus. Optimoinnin avulla voidaan saavuttaa 

merkittäviä materiaalisäästöjä. Esimerkiksi tyypillisessä tämän työn tapauksessa 

jäähdytysrivaston massaa saatiin vähennettyä noin 50 %. Koska kansainvälisten markkinoiden 

koko tehostetulle lämmönsiirrolle on valtava, optimoinnilla voidaan saavuttaa merkittäviä 

kokonaissäästöjä materiaalin ja energian kulutuksessa sekä CO2-päästöissä. 
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Introduction 

Electronic components require cooling to keep their operating temperatures below specified 

limits. If the maximum permissible limit is exceeded, the service life of a component decreases 

significantly. As pointed out in [1] when the first digital computers, such as the Harvard Mark I, 

shown in Fig. 1, were used between the 1940s and -60s, sufficient thermal control was achieved 

by simply removing the hot air from the computer room. In the 1970s and 1980s, transistors were 

made smaller, and the components were mounted on a printed circuit board (PCB). Adequate 

cooling was achieved by stacking the PCBs in a row as a card cage and by creating sufficient 

airflow through the channels, as shown in Fig. 2. After the 1990s, sole reliance on these cooling 

methods has become obsolete, because of continually increasing power densities. Currently, an 

average heat flux from a component may correspond to that of a nuclear blast, and the maximum 

heat flux from hot spots may equal even that of the outer surface of the Sun. However, the surface 

temperature of the Sun is about 5800 K, but these components must operate typically at around 

300 – 400 K. In power electronics, similar challenges has been encountered in cooling of IGBT 

devices, where the cooling requirements have become the major barrier for developing advanced 

power electronics for electronic vehicles [2]. These constantly increasing challenges have been 

the main driver behind the development of cooling equipment.  

The heat sink cooled by forced (in Fig. 3a) or natural convection (in Fig. 3b) has served as a 

typical solution for enhancing heat transfer from electronic components and other engineering 

applications [3]. The main idea of a heat sink is to extend the size of the heat transfer surface that 

is in direct contact with the cooling medium. Forced convection heat sinks can remove much 

larger heat loads, but because of a possible fan failure, natural convection heat sinks have also 

many applications, such as those used in base station cooling in Fig. 3c. The performance of a 

heat sink is sensitive to its geometrical structure because the overall heat transfer is constrained 

by conduction resistance imposed by the solid geometry and the convection resistance of the 

airflow in the heat sink channels. Consequently, the optimal dimensions of a heat sink are highly 

application dependent, and designing a well performing heat sink is a challenging task. 
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Figure 1. Harvard Mark I of the 1950s. 

 

Figure 2. Example of a card cage cooled by a fan. 

 

                (a)                      (b)                               (c) 

Figure 3. Cooling of two heat dissipating components (shown green) with a heat sink 

operated by forced convection (a) or natural convection (b), and also a base station 

cooled by natural convection (c). 

Buoyancy driven natural flow

http://www.google.fi/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://www.scaruffi.com/politics/computing.html&bvm=bv.116573086,d.bGs&psig=AFQjCNFEOTFWMj8NhxVCiOp1Mn3fsT8I6A&ust=1457771234701834
http://www.google.fi/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://www.scaruffi.com/politics/computing.html&bvm=bv.116573086,d.bGs&psig=AFQjCNFEOTFWMj8NhxVCiOp1Mn3fsT8I6A&ust=1457771234701834
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In industry, a typical heat sink has many different components mounted on its base plate, and the 

optimal heat sink design must be determined case specifically. Lehtinen [4] pointed out that the 

optimal design should minimize the following criteria: component maximum temperatures, heat 

sink mass, outer volume, manufacturing and operating costs, and noise level. When the designer 

optimizes a heat sink, the most challenging task is to determine its temperature distribution for a 

given set of components. The maximum temperature depends on component locations, heat 

dissipation rates, heat sink dimensions, and flow condition, i.e., whether the flow is created by a 

fan or a buoyant force. The requirement of minimizing several conflicting design criteria forms a 

multi-objective optimization problem, as pointed out in Publications II and IV.  

Computational fluid dynamics (CFD) software is a good option to obtain a temperature field for 

single case calculation. However, it is typically too slow for optimization, because hundreds of 

different geometries must be evaluated in order to obtain an optimum solution. One alternative is 

to build multiple different prototypes and measure them directly. However, this is an expensive 

and slow process and one not typically carried out without special reasons.  

Finally, the materials selected for a heat sink may significantly affect its performance. Typically, 

selection is made between aluminum and copper. Copper has about two times higher thermal 

conductivity but 3.3 times higher density than aluminum. The price of copper is currently about 

three times higher per mass unit than that of aluminum [5]. When the density difference is taken 

into account, the price of copper is about ten times higher per volume unit than that of aluminum. 

In many cases, the extra price of copper is not worth the marginal increase in heat transfer 

capability, and aluminum has been the most used material. Copper is mainly used in special 

environments, such as ships and other marine vessels, where corrosion restricts using aluminum. 

1.1 Objective of present thesis 

The main objective of the present thesis is to provide a fast performing way to optimize material 

weight, maximum temperature, and outer volume of industrial heat sinks with a fixed set of heat 

dissipating components. The main emphasis is in material weight reduction where a well-

performed optimization may allow significant reductions (up to 60 %). However, even small 

improvements have a meaningful impact because the global saving potential is huge. The thermal 

management technology market is expected to reach $ 14.7 billion by 2019, and fans and heat 

sinks account about 84 % of the size [6]. When inspecting an individual heat sink, an estimate of 

energy consumption in the manufacturing process was about 85 kWh/kg in 1999 [7]. This 

approximate figure takes into account the energy used for extrusion, assembly and transportation, 

and includes material wastage and use of some recycled material in the process. The efficiency 

of the process has probably improved over the last two decades, yet the above energy 

consumption figure is still likely to be a good approximation when estimating potential savings. 

To fulfill the objective of a fast performing optimization tool, the selected approach in the present 

thesis is to create a new calculation model, which yields the temperature field evaluations of a 

heat sink in a much shorter CPU -time than conventional CFD. This allows the new model to be 

used as a part of an efficient multi-objective optimization algorithm, which finds optimal 

geometry candidates according to selected criteria. In a typical optimization case, this approach 
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allows a significant reduction in heat sink mass without affecting the heat sink performance. Such 

reductions do matter as saved energy (see the previous paragraph) and CO2 emissions when a 

company produces heat sinks in large quantities.  

Understanding how CO2 emissions affect our planet's climate have increased in recent decades. 

Therefore, companies must pay for CO2 emission allowances, which were between €4 to €6 per 

CO2 tonne throughout 2016 and 2017 in the European Union [8]. The price of emission 

allowances may increase in future, because the EU has set a goal for reducing greenhouse gas 

emissions by 2030. Currently (2018), these reduction goals depend on the country between 0 - 40 

% of the CO2 emission levels in 1990 [9]. For Finland, the present target is -39 %.  

The specific objectives of the thesis are to: 

 present a calculation model for forced convection heat sinks (Publication I) 

 extend the model for natural convection heat sinks (Publication IV) 

 test the model accuracy against analytical, experimental, and CFD results (Publications 

I, II, III, IV and V) 

 demonstrate the use of the model in multi-objective optimization (Publications II, III, 

IV and V) 

1.2 State-of-the-art in optimization of heat sinks 

The optimization of a single fin has been studied extensively, and solutions for a constant heat 

transfer coefficient with constant fin mass exist in the literature [3]. Optimal solutions for fins, 

which take into account the effect of surface temperature distribution on the heat transfer 

coefficient, are presented in [10, 11]. Optimal dimensions can be obtained from non-dimensional 

variables, and these results are also presented in Publication III. These single fin optimization 

results can help to understand the effect of fin shape on heat transfer performance in heat sinks. 

However, optimizing fin arrays is a more complicated problem than single fin optimization, 

because the flow in the channels must be taken into account. 

The simplest case to optimize is an isothermal heat sink, which is presented in forced convection 

cases in the literature [12, 13, and 14]. Optimization was performed using a numerical and an 

analytical approach, and optimal fin spacing was obtained for various flow boundary conditions. 

The analytical formula was based on intersection of asymptotes, which is a simple and effective 

way to obtain optimal fin spacing. Muzychka [15] used the same method of intersection of 

asymptotes to derive optimal channel passage size to its length -ratio for various different cross 

sectional channel shapes. Lindstedt and Karvinen [16] conducted multiple different multi-

objective optimization studies for isothermal arrays, such as “minimum thermal resistance with 

fixed volume and pressure drop”. The results of optimal structures were presented using three 

different non-dimensional variables. They made also an important finding that at least one design 

parameter from fin height, fin thickness, number of fins, or flow mean velocity has to be fixed in 

the optimization, or no meaningful geometry can be found. 

For a constant heat flux base plate, which resembles more electronics cooling applications, many 

optimization studies in forced convection case have been published in the literature. In [17] Ruy 
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et al. found that the channel width is the most crucial parameter in optimization if pumping power 

is fixed. In [18] Kim et al. found surprising result that the optimal fin thickness was independent 

of the pumping power, and the length of the channels. Additional finding was that the optimal fin 

thickness was proportional to the fin height linearly. In [19] Kim et al. studied the effect of 

variable fin thickness and found that when minimizing the thermal resistance with a fixed 

pumping power, the optimal fins are those whose are thinnest at the base plate and increase their 

thickness towards their tips (upward trapezoidal shape). Of course, this fin shape is not probably 

optimal if also fin mass is taken in the consideration in optimization.  

If the heat flux is brought to the base plate from a smaller area than the entire base plate, such as 

from individual components, the temperature distribution of the base plate changes considerably. 

Biswal et al [20] made an interesting analytical study of cooling a single heat source with forced 

convection using liquid as a coolant. The flow was laminar in the study, and they studied how 

different design parameters effect on total heat transfer. The varied parameters were the thickness 

of the base plate, the channel aspect ratio, the number of channels, etc. For a single centered heat 

source case they found that if the base plate thickness is too thin, the spreading resistance disturbs 

efficient heat transfer, but too thick values also have large conduction resistances. Therefore, an 

optimal base plate thickness exists for the best thermal performance.  

For multiple components in a full 3D heat sink case cooled by a forced convection, Lehtinen [4] 

constructed an analytical formula using a truncated Fourier series for plate fin heat sinks and 

tested it in the case of laminar flow. Lindsted [21] exploited the formula and optimized a fin array 

with nine components in the case of turbulent flow. In his thesis, Aho [22] performed an 

interesting study of the optimal location of components on a printed wired board (PWB). He 

conducted a multi-objective optimization whose conflicting criteria were average maximum 

temperatures of the components and the total wiring length between the components. He also 

extensively reviewed the work done in the field.  

Researchers have also developed alternative approaches to finding the optimal structures inspired 

by thermodynamics. Examples of these are the cases of entropy generation minimization [23] or 

entransy minimization [24]. Of these two, the more recent, entransy, has lately been subjected to 

criticism [25, 26] in that it is, e.g., an unnecessary, redundant, and not a new physical quantity. 

However, some authors such as [27] are more open to a new concept and remind us that its 

applications are still being developed. Entropy generation minimization has been used, e.g., in 

[28] to optimize an example heat sink and examined in more detail in [7], where also total energy 

consumption (manufacturing, transportation, operational costs) was a subject of minimization. In 

the latter paper, an interesting finding was also that in a turbulent flow situation typically from 

20 to 90 W of cooling power of heat dissipating components can be cooled with a 1 W power fan. 

For practical problems, however, the complex concepts of entropy and entransy may be too 

sophisticated, and they have not been widely used [21]. 

In optimization of natural convection, the paper of Bar-Cohen et al. [29] was the starting point. 

The authors optimized an isothermal 2D channel for its width with several different boundary 

conditions. Later Bar-Cohen et al. optimized natural convection heat sinks with an isothermal 

base plate [30]. They found out that the classical least material optimum of single fin in Ref. [3] 

can be combined with the optimum spacing result from [29]. When they are combined, a 
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thermally superior optimum is obtained easily for isothermal base plate heat sink without any 

mathematical optimization process.  

In a case of natural convection cooled heat sink with a constant heat flux at the base plate, Kim 

[31] optimized the fin shape in respect to its thermal resistance. He found that if the fin thickness 

was let to vary, the thermal resistances were reduced up to 10 % from the uniform fin thickness 

case. However, he also pointed out that the obtained benefit decreases if the heat flux to the base 

plate or the length of the heat sink in the flow direction decreases. 

In natural convection cooling, the direction of gravitational field in respect to heat sink orientation 

affects the behavior of buoyant plumes. The cases mentioned in the paragraphs above dealt with 

vertically oriented natural convection heat sinks. Shen et al. [32] studied the effect of orientation, 

and found that arrays with denser fins were more sensitive to orientation, and that small 

inclinations from vertical position do not affect significantly to heat transfer performance.  

Besides rectangular heat sinks, another interesting heat sink type in natural convection cooling is 

a radial heat sink. It is often used to cool a single heat source, such as LED, and some important 

experimental work has been carried out recently in the literature [33, 34, and 35] considering 

calculation of heat transfer coefficient for radial heat sinks in natural convection with straight, 

triangular and branching fins. 

All the cases above dealt with plate fins. In forced convection, a pure plate fin heat sink can be 

improved by introducing a combination of a plate fin heat sink and a pin fin heat sink. Pin fins 

are placed in between two parallel plate fins to increase the turbulence in the channels. According 

to Yu [36], the intrinsic shortcoming of plate fin heat sinks is that airflows in them are smoother 

than with pin fins, which act as turbulence promoters. In their example comparison case of plate-

pin fin and pure plate heat sinks, thermal resistance dropped about 30 %, but the pressure drop 

was many times larger.  

Simpler methods, such as cutting unified rectangular fins as a series of short fins in flow direction, 

have same kind effects. These interrupted fins enhance the heat transfer by increasing the flow 

mixing and thus thinning the thermal boundary layers. Teertsrta et al. [37] showed experimentally 

that the interrupted fins enhance the heat transfer significantly in forced convection. In natural 

convection, Ahmadi et al. [38] encountered similar heat transfer improvement and they also 

published an analytical formula, from which the optimal gap length between two fins in flow 

direction can be calculated. 

Information supporting the optimality of the interrupted plate and pin fins has also been obtained 

in other studies. Ndao et al. [39] compared plate, pin and interrupted fins in forced convection in 

their multi-objective optimization study and found that when pressure drop was constrained the 

interrupted fins outperformed pin fins, which again outperformed plate fins with same pumping 

power. Another interesting way to optimize heat sinks is to use topology optimization, whereby 

the heat sink material is removed bit by bit according to selected criterion. In a natural convection 

study, Bornoff et al. [40] chose the criterion to be a so-called BottleNeck number, which is the 

dot product of heat flux and temperature gradient vectors. It was used in their CFD-based 

calculations to find the thermally least important parts of a heat sink during the topology 



7 

 

optimization process. This gradual material reduction changed the heat sink geometry 

significantly during the process. As a solution, they obtained a curve of thermal resistances as a 

function of material weight. Even the starting point was a plate fin heat sink; it quickly became 

some combination of uniform and interrupted plate fins. In their case, mass was reduced about 

40 % without significant increase in thermal resistance. Some of the interrupted plate fins were 

short and resembled pin fins.  

1.3 Outline of the thesis 

The present thesis has the following structure: Following the introduction in Chapter 1, Chapter 

2 presents the background of the governing equations of fluid flow and heat transfer, fin theory, 

and fin array heat transfer. Chapter 3 introduces multi-objective optimization and the optimization 

algorithms used. Chapter 4 focuses on the calculation model, the test cases for studying the model 

accuracy, and the multi-objective optimization cases. Chapter 5 reports the results of the test cases 

and optimizations. Chapter 6 summarizes the most important results of the work. Chapter 7 

proposes future study in the field. 
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Fin array heat transfer 

This chapter deals with the general equations governing fluid flow and temperature distributions 

and the theory of fin array heat transfer. With aluminum heat sinks, the main heat transfer 

mechanisms are heat conduction and convection. Thermal radiation is ignored due to the low 

emissivity of aluminum surfaces. Heat conduction is caused by the temperature gradient, and heat 

convection is the transport of heat carried by a flowing fluid, either gas or liquid. Heat flow 

through a solid-fluid interface, namely convective heat transfer, is a complex combination of heat 

conduction and transport within a thin boundary layer close to a solid surface. It is 

computationally time consuming to solve the governing partial differential equations, and thus 

results are usually presented in a compact form using dimensionless Nusselt number correlations, 

which depend on geometry and surface temperature distributions. Heat conduction and 

convection are coupled in fin array applications and must be solved simultaneously as a 

conjugated heat transfer problem. [3, 41] 

2.1 General equations of fluid flow 

The partial differential equations that govern the general fluid flow and heat transfer phenomena 

are in the case of incompressible fluid given with constant thermal properties. In fin arrays, 

temperature and pressure variations within the fluid are small, and thus in practical engineering 

justify the assumption of flow incompressibility and constant thermal properties. With these 

assumptions, the continuity equation is 

∇ ∙ 𝑽 = 0, 
  

(2.1)

where V = (u, v, w)T is the velocity vector, and u (ms-1), v (ms-1) and w (ms-1) are its components

in the x, y and z-directions, respectively. The fluid velocity distribution is governed by its

momentum equations, which are presented using vector notations as

 (𝑽 ∙ ∇)𝑽 = −
1

𝜌
∇𝑝 + 𝜈∇2𝑽 + 𝒈, (2.2) 

In the above equation, p (Pa) is the pressure, 𝜈 (m²s-1) is the kinematic viscosity, 𝜌 (kgm-3) is the 

density and g (ms-2) is the vector of gravitational acceleration. The temperature distribution is 

governed by the fluid energy equation, which for an incompressible constant property fluid is 

without frictional heating terms 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ (𝑽 ∙ ∇)𝑇) = 𝑘𝑓∇

2𝑇. 
  

(2.3) 
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In Eq. (2.3), 𝑐𝑝 (Jkg-1K-1) is the specific heat, T (K) is the temperature, t (s) is time, and                       

kf (Wm-1K-1) is the thermal conductivity of fluid. An additional useful equation for ideal gas is 

the equation of state  

𝑝

𝜌
= 𝑅𝑇 

  

(2.4) 

where R (Jkg-1K-1) is the gas specific constant (for air = 287 Jkg-1K-1). In numerical modelling of 

the above equations (CFD), the effect of temperature on viscosity is easily taken into account by 

using the Sutherland viscosity law: 

𝜇 = 𝜌𝜈 = 𝐶1

𝑇3/2

(𝑇 + 𝑆)
 

  

(2.5) 

where 𝜇 (Pas) is the dynamic viscosity, and for air 𝐶1 = 1.458 × 10−6 (kgm−1s−1K−1/2) and 

𝑆 = 110.4 (K). 

2.2 Convective heat transfer 

Convective heat transfer is a complex phenomenon, in which heat is exchanged at the fluid-solid 

interface between the regions. In heat sink channels, flow can be laminar or turbulent, and the 

surface temperature distribution can be arbitrary. Such phenomena are particularly complex, 

because convection and conduction occur simultaneously in the fluid. In addition, if turbulence 

occurs, it adds a complex momentum and energy mixing to the flow. Therefore, convective heat 

transfer analysis of heat sinks is often time consuming with CFD. A computationally faster way 

is to use convective heat transfer correlations, which are obtained either analytically from 

fundamental equations or from a vast number of published experimental results in the literature. 

These results are presented using the basic formula of convective heat transfer, so-called 

Newton’s law of cooling, which is 

𝜙 = ℎ𝐴𝑤Δ𝑇, (2.6) 

where 𝜙 (W) is the heat transfer rate, 𝐴𝑤 (m2) is the surface area of a wall, h (Wm-2K-1) is the 

convective heat transfer coefficient, and Δ𝑇 (K) is the case specific temperature difference. 

Newton, however, did not formulate the concept of the heat transfer coefficient [42] but merely 

said that heat transfer is proportional to the temperature difference between the surface and 

flowing air temperatures. The concept of the heat transfer coefficient was later developed by 

Fourier in the 1800s, and it was presented in its modern form by Nusselt in 1915 [43]. The most 

difficult part of convective heat transfer analysis is to evaluate the heat transfer coefficient, which 

is usually presented using the non-dimensional Nusselt number 

Nu =
ℎ𝐿

𝑘𝑓
 (2.7) 

where 𝐿 (m) is the case specific charasteristic length. The Nusselt number can be a local Nu𝑥 or 

a mean value Nu, which is obtained by integrating Nu𝑥 over the heat transfer surface. 
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2.2.1 Forced convection in channels 

Airflow in fin channels can be approximated as a 2-dimensional flow between the adjacent 

parallel plates. The mean Nusselt numbers for forced flow between isothermal parallel plates of 

length L (m) are [44, 45]  

Nu =
ℎ𝑑ℎ

𝑘𝑓
=

{
  
 

  
 

  

7.55 +
0.024(𝐿∗)−1.14

1 + 0.0358(𝐿∗)−0.64Pr0.17
                  for laminar flow    

   

(
𝑓
2
) (Re − 1000)Pr

1 + 12.7 (
𝑓
2
)

1
2
(Pr2/3 −1)

[1 + (
𝑑ℎ

𝐿
)
2/3

]     for turbulent flow
, (2.8) 

where the dimensionless length 𝐿∗ = 𝐿/(RePr𝑑ℎ) (-), the Reynolds number Re = 𝑉𝑑ℎ/𝜈 (-), the 

Prandtl number Pr = 𝜇𝑐𝑝/𝑘𝑓 (-) (for air = 0.7), the mean velocity in the channel 𝑉 (ms-1), and the 

Fanning friction factor 𝑓 =
𝜏𝑠

1/2𝜌𝑉2 (-), where 𝜏𝑠 (Pa) is shear stress at the surface. The friction 

factor correlations are presented later in Chapter 4. The hydraulic diameter is defined as 𝑑ℎ =

4𝐴𝑐𝑠/𝑃 (m), where 𝐴𝑐𝑠 (m2) is the cross-sectional flow area and P (m) is the wetted perimeter of 

the channel cross-section. In the case of a parallel plates channel 𝑑ℎ = 2𝑑, where 𝑑 (m) is the 

channel width. For turbulent flow, heat transfer is nearly independent of the boundary condition, 

which in a practical heat sink means that the wall temperature distribution does not significantly 

affect the Nusselt number.  

The laminar flow case, however, is highly sensitive to the wall temperature distribution. For an 

arbitrary surface temperature distribution, we can obtain the local heat flux in laminar flow by 

using the superposition principle and the step change solution of temperature for a fully developed 

velocity profile (Pr ≥ 1). Graetz [46] was the first to study this problem, known as the Graetz 

problem. An extension to the parallel plates channel can be found e.g. in Ref. [41]. Heat flux from 

the parallel plates channel with an arbitrarily varying surface temperature is 

𝑞(𝑥) =
4𝑘𝑓

𝑑ℎ

∑𝐺𝑛 [𝜃0𝑒
−2𝜆𝑛

2𝑥∗
+ ∫ 𝑒−2𝜆𝑛

2 (𝑥∗−𝜉)
𝜕𝜃𝑚(𝜉𝑑)

𝜕𝜉𝑑
𝑑𝜉𝑑

𝑥∗

0

]

∞

𝑛=0

 (2.9) 

where the eigenvalues 𝜆𝑛 (-) and eigen functions 𝐺𝑛 (-) are presented in Table 1. In Eq. (2.9),   

𝑞(𝑥) (Wm-2) is the local heat flux, 𝑥∗ = 𝑥/(RePr𝑑ℎ) (-) the dimensionless coordinate, 𝜉𝑑 (-) the 

dummy integration variable,  𝜃0 = 𝑇0 − 𝑇𝑤(0) (K) the temperature excess at x = 0, and 𝜃𝑚 =

𝑇𝑚(𝑥) − 𝑇𝑤(𝑥) (K) the temperature difference between local fluid mean temperature 𝑇𝑚(𝑥) (K) 

and wall temperature 𝑇𝑤(𝑥) (K). 

Table 1. Eigenvalues and -functions for an isothermal parallel plates duct 
n 𝜆𝑛 𝐺𝑛 

0 3.885 1.717 

1 13.09 1.139 

2 22.32 0.952 

> 2 
16

√3
𝑛 +

20

3√3
 2.68𝜆𝑛

−1/3
 

The local heat flux from the wall surface to flowing air is 
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𝑞(𝑥) = ℎ(𝑥)(𝑇𝑚(𝑥) − 𝑇𝑤(𝑥)) (2.10) 

The total heat transfer from a parallel plates channel is 𝜙 = ∫ 𝑞(𝑥, 𝑦)
𝐴

dA over the whole channel 

heat transfer area. In turbulent flow, the heat transfer coefficient can be assumed constant ℎ(𝑥) =

ℎ without losing accuracy in applications.  

2.2.2 Natural convection between parallel plates 

Elenbaas [47] was the first to experimentally study heat transfer in vertical isothermal parallel 

plates (see Fig. 4) in natural convection in the 1940s. From measured results, he obtained a 

correlation for the mean Nusselt number [48] 

Nu =
ℎ𝑑

𝑘𝑓
=

1

24
El [1 − exp (−

35

El
)]

3/4

 ,    El =
𝑔𝛽(𝑇𝑤 − 𝑇∞)𝑑3

𝜈2
Pr

𝑑

𝐿
 (2.11) 

where El (-) is the Elenbaas number, 𝛽 (K-1) the thermal expansion coefficient (for gas 𝛽 =

1/𝑇∞), and d (m)  the distance between parallel plates. 

 

Figure 4. Single channel. 

Later Bar-Cohen et. al. [29] used an approximate composite relation technique developed by 

Churchill and Usagi [49] to correlate the experimental data obtained by Elenbaas into an easy-to-

use formula. This technique requires only two limiting asymptotic solutions to form a smooth and 

continuous fit for the intermediate Nusselt number values. A fully developed channel flow 

asymptote, d/L small, and a vertical isothermal plates asymptote, d/L large, are  

Nua =
ℎ𝑑

𝑘𝑓
= {

1

24
El                   fully developed channel flow, 𝑑/𝐿 small

 0.59El1/4               vertical isothermal surface, 𝑑/𝐿 large 

, (2.12) 

𝐿

𝑑

 

𝑇∞

𝑇𝑤

𝑇 

𝑡 

𝑥
 

𝑦



13 

 

where Nua (-) is the asymptotic Nusselt number. The generalized Nusselt number relation 

becomes 

Nu = [(
1

24
El)

−𝑛

+ (0.59El1/4)
−𝑛

]

−1/𝑛

 (2.13) 

where Bar-Cohen et al. [29] optimized the exponent 𝑛 ≈ 2 to fit the experimental data, and the 

resulting correlation is 

Nu =
ℎ𝑑

𝑘𝑓
= (

576

El2
+

2.873

√El
)
−1/2

  (2.14) 

The total heat transfer rate of an isothermal channel in Fig. 4 where Tw = Tb is  

𝜙𝑖 = 2ℎ𝐿 (𝑇𝑤 − 𝑇∞) (2.15) 

An interesting detail is that the vertical isothermal surface limit in Eq. (2.12) is not the same as 

that of an isothermal vertical plate, which is [50] 

Nu =
ℎ𝐿

𝑘𝑓
= 0.68 +

0.670 RaL
1/4

[1 + (
0.492
Pr

)
9/16

]

4/9
         RaL =

𝑔𝛽Δ𝑇𝐿3

𝜈2 
Pr ≤ 109. 

(2.16) 

In the above equation, RaL (-) is the Rayleigh number, and the Nusselt number constant 0.68 takes 

into account conduction without convective heat transfer. This constant is usually added to the 

Nusselt number formula to give values at low Rayleigh numbers. Equation (2.16) gives for air 

(Pr = 0.7) 

Nu = 0.68 + 0.513 RaL
1/4

         RaL ≤ 109, (2.17) 

where the result 0.513 RaL
1/4

 is the solution of boundary layer equations.  

To compare Eqs. (2.12) and (2.17) they are first written in a slightly different way. If the 

characteristic length in the Nusselt number formula from Eq. (2.12) is changed the formula 

becomes Nu = ℎ𝐿/𝑘𝑓 = 𝐶 RaL
1/4

. The value of coefficient C from Eq. (2.12) is now C = 0.59. If 

Eq. (2.17) is written as Nu = ℎ𝐿/𝑘𝑓 = 𝐶 RaL
1/4

, the value of coefficient C would vary between 

0.55 and 0.515 depending on the value of RaL. The reason for the difference between a single 

vertical surface channel from Eq. (2.17) and a channel flow from Eq. (2.12) is called the chimney 

effect. It is discussed in Chapter 4. 

2.2.3 Natural convection in rectangular channels 

Heat transfer from isothermal channels with shapes other than parallel plates, such as a 

rectangular channel in Fig. 5, can be treated with the model proposed by Aihara [51]. In a natural 

convection case, short fins may change the aspect ratio of the channel (defined as 𝛼 =

 𝑜𝑛𝑔𝑒𝑟 𝑤𝑎  /𝑠ℎ𝑜𝑟𝑡𝑒𝑟 𝑤𝑎  ) so noticeably that the parallel plates result becomes inadequate.  
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Figure 5. Natural convection heat transfer in rectangular channels. 

The heat transfer rate of a single isothermal channel where Tw = Tb in Aihara’s method is 

calculated from   

𝜙 = ℎ𝐴(𝑇𝑤 − 𝑇∞) (2.18) 

where the heat transfer area is 𝐴 = 2𝑑𝐿(1 + 𝛼) (m2), and heat transfer coefficient h (Wm-2K-1) is 

obtained from 

ℎ =
Nuξ𝑘𝑓

𝜉
 (2.19) 

where the Nusselt number correlation is 

Nuξ = Raξ (1 − exp {−(2Raξ)
−0.75

}) (2.20) 

The Rayleigh number is defined as 

Raξ =
𝑔𝛽Δ𝑇𝜉3

𝜈2
Pr

𝜉

𝐿
  (2.21) 

and the characteristic length 𝜉 (m) is 

ξ =
𝛼

(1 + 𝛼)(𝑓Re)1/3
𝑑,  (2.22) 

where 𝑓Re = 24(1 − 1.3553𝛼−1 + 1.9467𝛼−2 − 1.7012𝛼−3 + 0.9564𝛼−4 − 0.2537𝛼−5) [44]. 

2.3 Heat conduction in a solid 

In a steady state case without volumetric heat sources the governing heat conduction equation for 

a base plate and fins is  

𝐿

𝑑

𝛼𝑑

𝑇∞

𝑇𝑤

𝑇 

 

𝑡 

𝑥
 

𝑦
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𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕 2
= 0. (2.23) 

It can be solved analytically for fins with different cross-sections, if the heat transfer coefficient 

is constant everywhere. The literature [11, 52] contains results also for more complex cases, 

which take into account the changing fin surface temperature distribution in the calculation of the 

heat flux distribution. 

 

Figure 6. Schematics of a rectangular (a) and pin fin (b). 

2.3.1 Single fin with an isothermal base 

In Fig. 6, single fins with constant thickness (tb = tt) can be approximated as thin bodies, where 

the diffusion term in the fin thickness direction (𝜕2𝑇/𝜕𝑦2) can be ignored. The temperature of 

the surroundings is constant = 𝑇∞ as is also the fin base temperature = 𝑇 . If the surface heat 

transfer coefficient is also constant, 𝜕2𝑇/𝜕𝑥2 can also be ignored. After these simplifications, we 

have only one temperature diffusion term in Eq. (2.23). By using the temperature excess 𝜃 = 𝑇 −

𝑇∞ (K) and by assuming a constant convective heat transfer coefficient h at the fin surface, we 

get the classical one-dimensional fin equation for a rectangular fin in Fig. 6a 

𝜕2𝜃

𝜕 2
−

2ℎ

𝑘𝑠𝑡 
 𝜃 = 0, (2.24)

where 𝑘𝑠 (Wm-1K-1) is the thermal conductivity of solid, 𝑡  (m) the fin thickness, and h (Wm-2K-

1) is the heat transfer coefficient. The above assumptions are, in fact, a subset of so-called Murray-

Gardner assumptions [3 p. 10]. Equation (2.24) is solved when the fin tip is assumed insulated

𝜃

𝜃 

=
cosh(𝑚𝑐( −  ))

cosh(𝑚𝑐 )
, (2.25) 

𝑡 

𝐿

 

𝑇 

𝑇∞,  ∞

𝑇∞,  ∞

 

𝑑 

𝑇 

𝑥
 𝑦

(𝑎) ( )

𝑔



16 

 

where 𝜃 = 𝑇 − 𝑇∞ (K) is the temperature excess at the fin base (z = 0), l (m) is the fin height, 

z (m) is the coordinate, and the fin constant mc (m-1) is defined in Eq. (2.26). Solution (2.25) is 

also valid for a pin fin in Fig. 6b, when the constant mc of a pin fin in Eq. (2.26) is used:   

𝑚𝑐 =

{
  
 

  
 

 

√
2ℎ

𝑘𝑠𝑡 
                                       𝑟ectangular fin 

√
4ℎ

𝑘𝑠𝑑 

                                    cylindrical pin fin 

  , (2.26) 

Total heat transfer is obtained by integrating local heat flux over both fin surfaces, or by taking 

the derivative from Eq. (2.25) 𝜙 = 𝑘𝑠𝑡 𝐿 d𝜃/d |𝑧=0. For a rectangular fin, we obtain 

𝜙 = 𝑚𝑐𝑘𝑠𝑡 𝐿 tanh(𝑚𝑐 )𝜃  (2.27) 

where 𝜙 (W) is the fin heat transfer rate. We can present the same result using fin efficiency by 

comparing the heat transfer of an actual fin to an isothermal fin of equal size, where T(z) = Tb 

𝜙 = 𝜂𝜙𝑖 , (2.28) 

where 𝜂 (-) is the fin efficiency and 𝜙𝑖 = 2ℎ𝐿 (𝑇 − 𝑇∞) (W) is the heat transfer rate from an 

isothermal fin at the fin base temperature. The fin efficiency of a rectangular fin and that of a pin 

fin is 

𝜂 =
tanh(𝑚𝑐 )

𝑚𝑐 
 (2.29) 

The fin efficiency concept in Eq. (2.29) is used also for shapes other than rectangular or pin fin. 

As mentioned in Ref. [3], Harper and Brown originally proposed a method, in which the fin tip 

area is added to the total fin height as an imaginary extension while the tip is still considered 

insulated. For instance, the fin efficiency of a trapezoidal fin in Fig. 7 is 

𝜂 =
𝜇 

2𝐾2 𝑒

𝐾1(𝜇𝑎)𝐼1(𝜇 ) − 𝐼1(𝜇𝑎)𝐾1(𝜇 )

𝐼0(𝜇 )𝐾1(𝜇𝑎) + 𝐼1(𝜇𝑎)𝐾0(𝜇 )
 (2.30) 

where extended fin height  𝑒  =    + 𝑡 /2, and In and Kn are the modified Bessel functions of the 

first and second kind, respectively. The coefficients 𝜇𝑎 (-) and 𝜇  (-) are defined as 

𝜇𝑎 = 2𝐾 [
𝑡 (1 − tan𝛼)

2 tan𝛼
]

1/2

 

𝜇 = 2𝐾 [ 𝑒 +
𝑡 (1 − tan 𝛼)

2 tan 𝛼
]

1/2

 

(2.31) 

where 𝐾 = (ℎ/(𝑘𝑠 sin 𝛼 ))
1/2 (m-1/2). The triangular fin is a special case of a trapezoidal fin (tt = 

0), and the result is  

𝜂 =
𝐼1(2𝑚𝑐 )

(𝑚𝑐 )𝐼0(2𝑚𝑐 )
, (2.32) 
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where mc is the same as for the rectangular fin in Eq. (2.26). Next, single fin results are extended 

to an isothermal base fin array. 

 

Figure 7. Schematics of trapezoidal fin. 

2.3.2 Fin array with an isothermal base 

To study a fin array with an isothermal base, we must first understand the performance of an 

isothermal fin array. The fin array in Fig. 8 is composed of multiple fins attached to the same 

base plate. In an isothermal array, both the base plate and fins are isothermal at temperature = 𝑇 , 

and its total heat transfer can be obtained by calculating only a single fin (or channel) and 

multiplying the result with the number of fins. 

 

Figure 8. Forced convection heat sink with isothermal base plate. 
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In natural convection, calculation is straightforward because the varying mixed mean temperature 

is already included in the heat transfer coefficient with the result of 𝜙𝑖 = 2𝐿 ℎ(𝑇 − 𝑇∞). In 

forced convection, the heat transfer coefficient is expressed usually using the temperature 

difference between the wall and the flow mixed mean temperature, as in Eq. (2.10). The solution 

of a single channel heat transfer can be presented using the energy balance of flowing air 

𝜙𝑖 = 𝜌𝑉𝑑 𝑐𝑝(𝑇𝑚(𝐿) − 𝑇∞), (2.33) 

where 𝑇𝑚(𝐿) is the mixed mean temperature at the channel outlet. This temperature 𝑇𝑚(𝐿) can 

be calculated using Eq. (4.5) by substituting the length of a channel for 𝐿 instead of Δ𝑥, and using 

the heat transfer coefficient from Eq. (2.8). Noting that 𝑇𝑚(𝐿) − 𝑇∞ = (𝑇 − 𝑇∞) − (𝑇 −

𝑇𝑚(𝐿)) and combining the results above, the forced convection heat transfer from a single fin in 

an isothermal fin array is calculated as 

𝜙𝑖 = 𝜌𝑉𝑑 𝑐𝑝(𝑇 − 𝑇∞) [1 − exp (−
2ℎ𝐿

𝜌𝑉𝑐𝑝𝑑
)] = 2𝐿 ℎ𝑒𝑓𝑓(𝑇 − 𝑇∞), (2.34) 

where heat transfer coefficient h is obtained from Eq. (2.8), and ℎ𝑒𝑓𝑓  (Wm-2K-1) is an effective 

heat transfer coefficient, which takes into account the decreasing temperature difference in the 

flow direction 

To calculate an isothermal base plate fin array with non-isothermal fins, we can use the model 

presented by Teertstra et al. [37]. The model exploits the result for a single fin in Eq. (2.28) but 

modifies the heat transfer coefficient inside the fin coefficient mc in Eq. (2.26) by employing 

ambient temperature as a reference temperature. In forced convection, an effective heat transfer 

coefficient ℎ𝑒𝑓𝑓  (Wm-2K-1), must be introduced to change the reference temperature. In natural 

convection, the heat transfer coefficient already uses ambient temperature as a reference and 

ℎ𝑒𝑓𝑓 = ℎ. In forced convection, ℎ𝑒𝑓𝑓  it is obtained from Eq. (2.34), and the result is 

ℎ𝑒𝑓𝑓 = {

ℎ                                                          nat. conv.  ℎ from Eq. (2.11)

𝜌𝑐𝑝𝑉𝑑

2𝐿
(1 − exp (−

2ℎ𝐿

𝜌𝑐𝑝𝑉𝑑
))      forc. conv.  ℎ from Eq. (2.8).

 (2.35) 

The heat transfer rate from an isothermal base plate fin array is obtained by multiplying the result 

of a single fin Eq. (2.28) by the number of fins N and by using ℎ𝑒𝑓𝑓  from Eq. (2.35) in Eq. (2.26) 

instead of h 

𝜙 = 𝑁𝜂𝜙𝑖 (2.36) 

Interesting limits in an isothermal base plate cooling with forced convection are a very short and 

wide channel (𝐿 → 0 and 𝑑 → ∞), and a very long and narrow channel (𝐿 → ∞ and 𝑑 → 0). By 

introducing a new variable for ratio 𝑟 = 𝐿/𝑑, the first case above approaches the limit 𝑟 → 0, and 

the latter 𝑟 → ∞. At the short and wide channel limit 𝑟 → 0, the flowing air mean temperature at 

the outlet approaches the ambient temperature, and the effective heat transfer coefficient 

approaches the channel heat transfer coefficient value ℎ𝑒𝑓𝑓 → ℎ. Practically this means that the 

mixed mean temperature is not changing in the channel, because it is short and wide. On the other 

hand, the very long and narrow channel, 𝑟 → ∞, has the effective heat transfer coefficient 
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approaching ℎ𝑒𝑓𝑓 → 0. This means that the mixed mean temperature of flowing air has already 

heated up to its maximum value, the same as with the base plate 𝑇 , and adding any extra length 

to the heat sink does not improve the overall thermal performance. 
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Multi-objective optimization 

Optimization is defined by the Merriam-Webster dictionary [53] as “an act, process, or 

methodology of making something (as a design, system, or decision) as fully perfect, functional, 

or effective as possible; specifically: the mathematical procedures (as finding the maximum of a 

function) involved in this”.  

The methods of single objective optimization are well known and have been used for decades as 

long as modern computers have been available [54]. However, many practical cases benefit from 

the simultaneous optimization of multiple objective functions. In the case of a fin array, e.g., 

optimizing only the heat transfer rate does it at the expense of pressure loss or material weight. 

One option in optimization is to constrain the other quantities, such as pressure loss, that the result 

still has practical value. The main drawback here is that it is often difficult before optimization to 

decide on adequate constraining limits. In multi-objective optimization, we need not decide on 

the constraining limits a priori, because we can obtain an infinite number of mathematically 

equally good compromises between all the important criteria. In the present thesis, we use multi-

objective optimization as a tool to minimize heat sink material weight by minimizing their 

maximum temperature or outer volume simultaneously.  

As a general note about practical optimization, we must remember that our calculation model is 

based on several assumptions and is thus approximate. In addition, evaluating the thermal 

properties of air at a slightly different temperature can affect the optimal geometry dimensions. 

The goal of practical industrial optimization cases is, therefore, to obtain an optimal geometry 

within limited time resources as accurately as it is reasonable with the calculation model, and to 

cut down any further objective function evaluations because of the diminishing return. Next, we 

discuss some key concepts of general optimization not given in Publications. 

3.1 Background concepts 

3.1.1 Multi-objective optimization problem 

Multi-objective optimization (MOO) is an extension of single objective optimization (SOO). In 

both, the design variables, which are presented as the design variable vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇, 

are subject to improvement during optimization in order to find a better design. In a typical fin 

array case, these design variables are the geometrical dimensions of the base plate and fins, 

component locations, and the number of fins. In a SOO problem, the goodness of the design is 

calculated with the chosen objective function f(x), also known as criterion, which is evaluated for 

each candidate design variable vector in search for an optimum combination. In a typical fin array 

case, the objective function is the maximum temperature of an array, array weight, or array outer 

volume. The difference between SOO and MOO problems is that, instead of just one criterion in 
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SOO problems, MOO problems have at least two conflicting criteria, which are minimized 

simultaneously. The general formulation of an MOO problem is to 

find                     𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇  ∈ Ω 

where       Ω = {𝒙𝑙 ≤ 𝒙 ≤ 𝒙𝑢: 𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1,2, … , 𝑛𝑖𝑒; ℎ𝑗(𝒙) = 0, 𝑗 = 1,2, … , 𝑛𝑒𝑐} 

to minimize     𝒇(𝒙) = (𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑚(𝒙))
𝑇
 

(3.1) 

where Ω is the feasible region, 𝒙𝑙 and 𝒙𝑢 are the lower and upper bound for design variable space, 

g(x) is a vector of inequality constraints, and h(x) is a vector of equality constraints. Because of 

an increased number of criteria in MOO problems, the goodness or optimality of a design variable 

vector x must be defined in a way different from that with SOO problems, where it was adequate 

to find the minimum value of only one objective function. The extension of optimality concept 

in MOO problems is called Pareto optimality. 

3.1.2 Pareto optimality 

Optimality is the most important concept of optimization, and the generalization of optimality to 

multiple conflicting objectives is called Pareto optimality. The term derives from the French-

Italian economist Vilfredo Pareto [55], though Edgeworth [56] discussed the concept earlier in 

his text on economical calculus. Because not all criteria can achieve minimum values with same 

design variable vector 𝒙 ∈ Ω, the result of a multi-objective optimization is a set of 

mathematically equally good compromises called the Pareto optimal set. The Pareto optimal 

solution vector is defined mathematically as follows: the design variable vector 𝒙∗ ∈ 𝛀 is Pareto 

optimal only if no other vector 𝒙 ∈ Ω exists to satisfy the conditions 

 

𝑓𝑖(𝒙) ≤ 𝑓𝑖(𝒙
∗)   for all 𝑖 = 1, … ,𝑚 and 

𝑓𝑖(𝒙) < 𝑓𝑖(𝒙
∗)   for at least one 𝑖 = 1,… ,𝑚. 

(3.2) 

 

An equal verbal expression is that if any criterion cannot be improved without worsening at least 

one other criterion, the solution is Pareto optimal. In practical heat sink optimization, e.g., if you 

cannot lower the maximum temperature of the heat sink without adding any extra mass, the 

solution is Pareto optimal, as noted in Publication IV. Fig. 9 below shows Pareto optimal solutions 

in a criteria space in a bold line. The design variable vector can also be weakly Pareto optimal if 

no other feasible vector exists that improves all the objective functions simultaneously. 

3.1.3 Feasible region 

The feasible region Ω, defined in Eq. (3.1), is a subset of the design variable space confined by 

the design variable vector bounds and constraint functions. The image of the feasible region 

𝒇: ℝ𝑛 → ℝ𝑚 to an objective space, shown in Fig. 9, is called the feasible objective region [57], 

and it is a subset of the objective space ℝ𝑚. The best compromise solutions, i.e., the Pareto 

optimal set, are shown at the boundary of feasible region in bold line. During multi-objective 

optimization, so-called Ideal and Nadir vectors are used to normalize the values of objectives to 

assure their equal treatment in multi-objective optimization, as discussed in Publications II and 

IV. Practical examples of Pareto optimal sets are shown in Chapter 5, where the objective 

functions f1 and f2 are the heat sink material weight and maximum temperature. 
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Figure 9. Pareto-optimal set shown in bold line and the feasible objective region f(Ω) in a 

criteria space with the Nadir and Ideal point. 

3.1.4 Pareto front and dominance 

In optimization, we expect to find no Pareto optimal solutions immediately at the first time steps, 

but only at the end. During optimization, we obtain the constantly updating Pareto front, which 

so far consists of best-found compromises. This Pareto front then advances during optimization 

towards the actual Pareto optimal set shown in Fig. 9 in bold line. The update rule for the Pareto 

front at every time step is to compare all solution candidates, new and pre-existing ones, against 

each other and remove the dominated candidates from this set. Pareto dominance is defined in 

objective space as [58] 

vector 𝒖 =  (𝑢1, … , 𝑢𝑚)𝑇 is said to dominate 𝒗 =  (𝑣1, … , 𝑣𝑚)𝑇   if and only if 

∀𝑖 ∈ {1, … ,𝑚}, 𝑢𝑖 ≤ 𝑣𝑖 ∧ ∃𝑖 ∈ {1, … ,𝑚}: 𝑢𝑖 < 𝑣𝑖  
(3.3) 

which put verbally says that the vector u must be at least partially less than vector v in the criteria 

space to dominate it. 

3.1.5 Decision maker and analyst 

Multi-objective optimization results in a set of mathematically equally good compromises. 

However, we usually need a final solution when dealing with industrial problems. The decision 

maker, with some preferences, is responsible for a final solution among all the possible 

compromises. Usually, the decision maker is a person or a group with a better understanding of 

and insight into the problem than outsiders [57]. The decision maker’s preferences can be taken 

into account, e.g., directly by weighting the objective functions and setting the constraint bounds 

appropriately, or after the optimization by identifying the preferable final solution from the 

Pareto-optimal set. Unlike the decision maker, an analyst is a person or computer program 

responsible for the mathematical side of the multi-objective optimization problem.  

For example, in the present thesis, solutions to multi-objective optimization problems are given 

as Pareto optimal sets. The reader can see and judge from the figures how different Pareto optimal 

solutions correspond to the given objective functions but does not know the actual geometry of 

these solutions. The author is the decision maker who selects certain Pareto optimal solutions for 

f2

f1

Ideal point

Nadir point

f(Ω)
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detailed presentation of their geometry in separate figures for the reader. In this case, the author’s 

preference is to demonstrate that by optimizing different heat sinks, the material used can be 

significantly reduced without affecting performance. The role of the analyst is taken care of by 

the computer aided optimization algorithm, chosen by the author. In industry, the decision maker 

may have additional considerations, such as, the effect of manufacturability on the final solution. 

3.1.6 External penalty function 

In Publications II and IV, a constrained optimization problem can be converted to an 

unconstrained optimization problem by using an exterior penalty function. The evaluation of the 

object function fi(x) is replaced by Fi(x) [59]:  

 
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In Eq. (3.4) only the inequality constraints are summed, because a common practice is to convert 

the equality constraints into new inequality constraints as 𝑔𝑗+𝑛𝑖𝑒
≡ |ℎ𝑗(𝒙)| − 𝜎 ≤ 0, where 𝜎 is 

a small number [59]. Using the exterior penalty function allows us to treat the vectors outside the 

feasible region as if they were inside the region. If at least one constraint is violated, the vector is 

not feasible, and the evaluated value fi(x) is changed into a large number fmax, to which we add 

the total constraint violation by summing up the values of all inequality constraints larger than 

zero. This constraint violation summing has the advantage that the solution gets worse if the total 

constraint violation gets larger. This property helps the optimization algorithm to find a direction 

towards the feasible area by generating the necessary gradient from the total summation of 

constraint violation. 

3.2 Optimization methods 

Multi-objective optimization can be performed with several different methods as mentioned in 

Publications IV and V. Traditional methods convert a multi-objective optimization problem to a 

single objective one. Examples of these are the weighted sum and the ε-constraint method [60, 

61, and 62]. These methods are still popular today, but especially the weighted sum method has 

its drawbacks. It rarely produces an even distribution of Pareto optimal solutions [63] and may 

not find all Pareto optimal solutions unless the problem is convex [57]. However, most problems 

presented in the literature have a convex Pareto-optimal solutions surface [64], though exceptions 

are not rare (see, e.g., [65, 66]). The greatest drawback with both of the above traditional methods 

is that they produce only one Pareto optimal solution per one optimization run. This leads to a 

large number of total objective function evaluations, which in turn makes these methods 

computationally time consuming. The bright side is that these Pareto optimal points are usually 

fully optimized because of the great effort put in their finding. The ε-constraint method is used to 

optimize forced convection heat sinks in Publication III. 

Over the past decades, more advanced methods have emerged. These are multi-objective versions 

of the genetic algorithm (GA) or particle swarm optimization (PSO), which can be used to find 

all the Pareto optimal solutions in one optimization run and compared to traditional methods, save 
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CPU-time in multi-objective optimization [67]. Some examples of effective multi-objective GAs 

are the “nondominated sorting genetic algorithm” NSGA, introduced in 1994 [68], and its popular 

successors NSGA-II in 2002 [67] and NSGA-III in 2014 [69].  

Some comparisons between GA and PSO have been made in Aho’s thesis [22], where he found 

that PSO appeared to perform a broader search in the design space and find the optimum with 

less computational effort than GA. Similar performance tests between GA and PSO was 

performed in [70], in which PSO also outperformed GA. In addition, PSO algorithms are usually 

simpler to implement. For these reasons, in this thesis, multi-objective versions of PSO 

algorithms were chosen to perform optimization in Publications II and IV. These algorithms 

generate new Pareto optimal candidates at each iteration, which are checked for Pareto 

dominance, and dominated vectors are sorted out from the current Pareto front. Another extra 

benefit is that these algorithms can deal with discrete variables with no added problems.  

It must be noted that evolutionary multi-objective algorithms, such as PSO algorithms, are not 

guaranteed to find Pareto optimal solutions, but only a set of non-dominated solutions. Due to the 

partially random nature of the algorithms, they also give slightly different results in each 

optimization run. 

3.2.1 ε-Constraint method 

The ε-constraint method was introduced by Haimes et. al in 1971 [62]. In the method, one 

objective function 𝑓𝑢(𝒙) is chosen to be optimized, and all the other objectives functions 𝑓𝑖(𝒙) 

(𝑖 ≠ 𝑢) are treated as constraints. The multi-objective optimization problem is now an ordinary 

constrained single objective problem: 

minimize          𝑓𝑢(𝒙) 

subject to          𝑓𝑖(𝒙) ≤ 𝜀𝑖      for all    𝑖 = 1, … ,𝑚, 𝑖 ≠ 𝑢 

                            𝒙 ∈ Ω . 

(3.5) 

With this method, one Pareto-optimal solution can be obtained at a time with all of them 

accessible regardless of the convexity of the problem [57]. However, the analyst must pay 

attention to the selection of constraint 𝜀𝑖 values, because improper selection can lead to a situation 

with no feasible solutions [71]. This method is used in Publication III to optimize forced 

convection heat sinks. 

3.2.2 Particle Swarm Optimization 

In nature, swarming of, e.g., bird flocks and fish schools, has given an evolutionary advantage 

for many species. In his book, Wilson [72] suggests that, theoretically at least, flocks offer 

protection from predators, improve feeding ability, help energy conservation, and facilitate 

reproduction. Kennedy and Erbhart [73] were inspired by this swarming phenomenon and sought 

to model flying bird flocks by using a few simple rules that each bird follows, and a real-like 

swarming behavior emerged. In simulating flock movements, the developers discovered 

accidentally that the algorithm could be used to optimize nonlinear problems. It proved to be an 

effective method for a variety of difficult functions. This optimization version of the algorithm 

was named Particle swarm optimization (PSO), later known as the standard PSO (sPSO). For 
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SOO problems, the algorithm itself is simple. A swarm has N members and at initialization, the 

swarm members occupy the feasible search space randomly 

𝒙𝑖,𝑘=0 = 𝒙𝑙 + 𝒓𝑖(𝒙𝑢 − 𝒙𝑙),   𝑖 = 1, … , 𝑁 

𝑉𝑖,𝑘=0 = 𝒓𝑖,   𝑖 = 1, … , 𝑁 , 
(3.6) 

  

where 𝒙𝑖,𝑘=0 is the location vector (design variable vector) for a swarm member i at the initial 

time step k = 0, 𝒓𝑖 is a random number vector between 0 and 1, and 𝒙𝑙 and 𝒙𝑢 are the lower and 

upper bound of the design variable space, respectively. The swarm member initial velocity vector 

is 𝑉𝑖,𝑘=0, which is set as a new random number vector 𝒓𝑖. In the sPSO – algorithm, the velocity 

update rule for subsequent time steps (k + 1) is 

𝒙𝑖,𝑘+1 = 𝒙𝑖,𝑘 + 𝑽𝑖,𝑘+1 

𝑽𝑖,𝑘+1 = 𝑐1𝒓𝑖,1(pbests[𝑖] − 𝒙𝑖,𝑘) + 𝑐2𝒓𝑖,2(gbest − 𝒙𝑖,𝑘) + 𝑐3𝑽𝑖,𝑘 
(3.7) 

  

where 𝒓𝑖,1 and 𝒓𝑖,2 are random number vectors between 0 and 1, pbests[i] is the location vector 

of the best result found by the individual swarm member i, gbest is the location vector of the 

global optimum found by the whole swarm, and 𝑽𝑖,𝑘 is the velocity vector of the swarm member 

i at the time step k. These three components of the velocity update rule in Eq. (3.7) are known as 

cognitive, social, and momentum components, respectively. In the sPSO algorithm, the values of 

c1 = c2 = 2 and c3 = 1 were used. Shi and Erbhart [74] improved this algorithm by modifying the 

inertia weight coefficient c3 by proposing that its initial value be equal to 1.4, and that it be 

decreased during optimization run to a final value of about 0.5. The explanation for the decreasing 

value was that by having a changing inertia weight coefficient, the relative importance between 

the exploration phase of the search space and the fine-tuning phase of finding the final optimum 

could be adjusted during optimization run. The high value at the beginning of optimization puts 

more weight on the exploration of the search space, and the low value at the end focuses the 

search on the best candidate. Later they suggested that a constant value of about c3 = 0.8 will 

generally work better [75]. Clerc and Kennedy suggested a formula from which optimal 

coefficient values can be calculated [76]. The paper is a somewhat difficult to follow, but after a 

careful reading, the resulting values c1 = c2 = 1.4962 and c3 = 0.7298 can be obtained. These 

values have been used in several versions of PSO [77]. 

To perform a multi-objective optimization run, we need a modified version of the algorithm. The 

most famous multi-objective PSO, called MOPSO, was introduced by Coello Coello et. al [58], 

where the current Pareto front design variable vectors (non-dominated solutions) are stored in 

repository called REP. In the present thesis, a modified version of this algorithm was used. In 

optimization, the target for each swarm member i in the beginning (for example first 25 % of the 

time steps) is selected to be the second nearest repository point from REP measured by the 

Euclidian norm in the design variable space, which sets the swarm for initial exploration of design 

space. In later phase, the target is changed to be the nearest repository point. Details and some 

previous optimization cases performed with the algorithm can be found in Ref. [78]. The norm 

di,h is calculated between each particle i and each repository point h in normalized design variable 

space in respect of its upper and lower bounds from  
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𝑑𝑖,ℎ = √∑[
𝑅𝐸𝑃[ℎ]𝑗 − 𝑥𝑖,𝑗

𝑥𝑢,𝑗 − 𝑥𝑙,𝑗

]

2𝑛

𝑗=1

, (3.8) 

where REP is the repository of the current Pareto front. After each time step, Pareto dominance

is checked, and dominated solutions are removed from the Pareto front. In Publication II, Eqs.

(3.6), (3.7) and (3.8) were used (In (3.7) gbest is replaced with REP[h]) with the coefficient val-

ues c1 = c2 = 2, and c3 = 1.4 in the beginning and decreasing during optimization run to 0.5.

However, in Publication IV the algorithm was updated. The idea for update was taken from the

Bonyadi et al. [77] LcRiPSO algorithm. The actual target coordinates of a swarm member (pbest

or repository point) are replaced by a Gaussian distributed hyper-sphere. In this modification, a

swarm member i does not aim exactly at a repository point, but at a random location near it. This

adds some randomness to the algorithm and, at the same time, removes some problems associated

with the sPSO algorithm [77]. One problem is stagnation or dimensional stagnation, whereby

particles are stuck in some dimensions without any improvement. Other problems, which this

modification solves, are bad performance with small swarms, local convergence issues, and

rotational variance. Rotational variance means that if we rotate a design variable space, the

performance of the optimization algorithm changes. Optimization is initialized as before with Eq.

(3.6), but the velocity update rule is now

𝒙𝑖,𝑘+1 = 𝒙𝑖,𝑘 + 𝑽𝑖,𝑘+1

𝑽𝑖,𝑘+1 = 𝑐1𝒓𝑖,1 (NDR (REP[h], 𝐻𝑘
2(𝒙𝑖,𝑘 , REP[h])) − 𝒙𝑖,𝑘)

+ 𝑐2𝒓𝑖,2 (NDR(pbests[i], 𝐻𝑘
2(𝒙𝑖,𝑘, pbests[i])) − 𝒙𝑖,𝑘) + 𝑐3𝑽𝑖,𝑘 

(3.9) 

where pbests[i] is the current personal Pareto optimal solution found by a swarm member. 

Variables c1 = c2 = 1.4962, c3 = 0.7289, ri,1, and ri,2 are random number vectors in the range of [0, 

1], and NDR(x, σ²I) is the normally distributed random number with mean value of x, variance 

σ², and identity matrix I. In this case, the mean value in NDR is the target (REP[h] or pbests[i]) 

in Eq. (3.9), and the variance is calculated for time step k using squared value of Hk function, 

which is defined as 

𝐻𝑘(𝒚𝑘 , 𝒛𝑘) = {
  |𝒚𝑘−1 − 𝒛𝑘−1|,                   if |𝒚𝑘 − 𝒛𝑘| = 𝟎

  |𝒚𝑘 − 𝒛𝑘|,                                     otherwise,
 (3.10) 

where lt = 0.4641/(N0.21n0.58), N is the swarm size, and n is the number of design variables. In 

practice, Eq. (3.10) calculates the Euclidian distance between particle i (yk in Eq. (3.10)) and 

target point (zk in Eq. (3.10)), and multiplies the result with constant lt, which is determined case 

specifically. In addition, if the current location of particle i is the same as REP[h] or pbests[i] 

value, the distance from previous time step k - 1 is used. The variance is, therefore, larger if the 

distance between the particle and the target is larger, which is the case in the exploration phase 

of optimization. Later, when the particles settle down and these distances get smaller, the variance 

also settles down and the fine-tuning phase of the optimization is performed. Details considering 

Eqs. (3.9) and (3.10) is presented in Ref. [77]. 
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Optimization method 

This chapter introduces a method for multi-objective optimization of forced and natural 

convection fin arrays. The method combines a multi-objective optimization algorithm and a 

calculation model for a heat sink temperature field. This method can be used to find an optimal 

heat sink geometry with an arbitrary number of heat dissipating components, which must be 

maintained within a temperature limit they can withstand.  A typical heat sink optimization case 

in industry consists of several hundred different geometry evaluations in order to find the 

optimum one. However, if new heat sink designs are to be optimized frequently, these evaluations 

must be accomplished in short time, a requirement that in practice limits the use of general 

purpose CFD because of its too long CPU –time consumption to evaluate one temperature field. 

A key part of the present method is a fast calculation model, developed to replace CFD solutions 

in optimization. The new model is a combination of analytical and numerical solutions, and it 

reduces the required CPU -time significantly. The validity of the model to give a maximum 

temperature value is tested with suitable test cases. Several multi-objective optimization cases 

are presented to demonstrate the usefulness of the calculation model as a part of multi-objective 

optimization. 

4.1 Calculation model 

The calculation model cuts down on the CPU –time needed to predict the heat sink maximum 

temperature at least by a factor of one thousand when compared to CFD, as mentioned in 

Publications IV and V. This speedup is achieved by limiting the use of full numerical 3D solution 

only to solid and by solving the fluid mean temperature as a system of individual 1D solutions, 

which are then coupled at the solid-fluid interface with convective heat transfer coefficients 

obtained from analytical correlations. These steps in the calculation model are the same for both 

forced and natural convection flows. For forced flow, a constant mean velocity value can be used, 

which is solved from the fan and system characteristic curves. With natural flow, coupling of 

velocity with the fluid temperature distribution must be taken into account. The coupling equation 

is obtained from the force balance between the driving buoyant force in a channel and the 

opposing shear stress from the channel walls. These solutions are then calculated sequentially 

until convergence is achieved.  

4.1.1 Calculation of a solid temperature field 

The heat sink temperature field requires a full 3D solution for the base plate to accurately capture 

the most important result, i.e., the maximum temperature of the heat sink. For fins, a 2D solution 

is adequate because they are thin structures with no significant temperature gradient existing in 

the direction of their thickness. Several methods can be used to obtain the solution, e.g., the 
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analytical method presented by Lehtinen [4], which solves Eq. (2.23) with truncated Fourier 

series. It is a computationally inexpensive method but suitable only for rectangular fins. The 

method used in the present thesis is the finite volume method (FVM), which is flexible for 

arbitrary fin cross-sectional shapes. Another principle advantage of the FVM is that global 

conservation is inherently part of the model, because of the integral form of conservation equation 

for each control volume [79 p. 72].  

Heat conduction is mathematically a diffusion phenomenon. When using central difference 

scheme the FVM and finite difference methods give the same algebraic equations as a result. An 

example discretization is done in Publications I and II for an individual fin cell indexed (i,j) shown 

in Fig. 10.  

 

 

Figure 10. Discretization of single fin (Solid) and schematics of sub channel (Fluid)

discretization.

The heat balance of a single discretized solid area cell from Fig. 10 is

𝑘𝑠

Δ 
(𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗)tbΔ𝑥+

𝑘𝑠

Δ 
(𝑇𝑖,𝑗−1 − 𝑇𝑖,𝑗)𝑡bΔ𝑥+

𝑘s

Δ𝑥
(𝑇𝑖+1,𝑗 − 𝑇𝑖,𝑗)𝑡bΔ 

+
𝑘s

Δ𝑥
(𝑇𝑖−1,𝑗 − 𝑇𝑖,𝑗)𝑡bΔ + ℎ1(𝑇𝑚1 − 𝑇𝑖,𝑗)Δ𝑥Δ + ℎ2(𝑇𝑚2 − 𝑇𝑖,𝑗)Δ𝑥Δ = 0.

(4.1) 

Coupling of the heat flux between the local fin temperature 𝑇𝑖,𝑗 (K) and the fluid mean 

temperatures 𝑇𝑚1, 𝑇𝑚2 (K) from Fig. 10 is done with the local heat transfer coefficients ℎ1, ℎ2 

(Wm-2K-1). Suitable heat transfer coefficients are calculated from Eq. (2.8) for a known mean 

ℎ1(𝑇𝑖,𝑗 − 𝑇𝑚1)Δ𝑥Δ 

x

z

y

𝑑

ℎ(𝑇𝑤  
  𝑇𝑚)Δ𝑥Δ 

ℎ(𝑇𝑤 
  𝑇𝑚)Δ𝑥Δ 

𝜌𝑐𝑝𝑉𝑑Δ 𝑇𝑚(𝑥)

𝜌𝑐𝑝𝑉𝑑Δ 𝑇𝑚(𝑥 + Δ𝑥)

ℎ2(𝑇𝑖,𝑗 − 𝑇𝑚2)Δ𝑥Δ 

𝑘s(𝑇𝑖+1,𝑗  
  𝑇𝑖,𝑗)tbΔ 
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  𝑇𝑖,𝑗)tbΔ𝑥
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velocity by first calculating the Reynolds number and then the corresponding Nusselt number.

Eq. (4.1) can then be rearranged to a standard algebraic system form

𝐴𝑃𝑇𝑖,𝑗 + 𝐴𝑁𝑇𝑖,𝑗+1 + 𝐴𝑆𝑇𝑖,𝑗−1 + 𝐴𝑊𝑇𝑖−1,𝑗 + 𝐴𝐸𝑇𝑖+1,𝑗 = 𝑄𝑃  (4.2)

where 𝐴𝑁 = 𝐴𝑆 = 𝑘𝑠𝑡bΔ𝑥/Δ  (WK-1), 𝐴𝑊 = 𝐴𝐸 = 𝑘𝑠𝑡bΔ /Δ𝑥 (WK-1), 𝐴𝑃 =−[2(𝐴𝑁 + 𝐴𝑊)+

(ℎ1 + ℎ2)Δ𝑥Δ ] (WK-1) and 𝑄𝑃 = −(ℎ1𝑇𝑚1 + ℎ2𝑇𝑚2)Δ𝑥Δ  (W). Equations similar to Eq. (4.2)

are obtained for each control volume inside the fins and the base plate. In the base plate, the 𝑄𝑃

term is the heat transfer rate from a local component, if the control volume surface touches it.

Heat flux from component to base plate is assumed uniform. In the cells touching the base plate-

fin interface shown in Fig. 11, the coefficients 𝐴𝑁 and 𝐴𝑆 in Eq. (4.2) are replaced with 𝐴 −𝑓

(WK-1), which takes into account the different cross-sections between the cells. From Fig. 11, the

heat transfer rate 𝜙 (W) between cells 1 and 2 can be calculated as 𝜙 = 𝐴 −𝑓(𝑇1 − 𝑇2), where

𝐴 −𝑓 =
Δ 

2𝑘𝑠Δ𝑥

1

Δ𝑦
+

Δ 2
𝑡

 

 

(4.3) 

Δ 1 (m) is the control volume height of the base plate, Δ 2 (m) the fin control volume height, Δ𝑦 

(m) the base plate control volume width, and t (m) the fin control volume thickness. 

 

Figure 11. Interface between base plate and fin. 

4.1.2 Calculation of fluid mean temperature 

Using a general purpose CFD, the solution for fluid temperature and velocity distributions 

consumes most of the CPU calculation time because of the large number of control volumes 

necessary in a full heat sink calculation. In the present model, the greatest saving in CPU -time 

consumption is achieved by using 1D solutions for mean temperature and mean velocity 

distributions. Figure 10 shows one example how the calculation domain for the fluid region is 

discretized with the same number of control volumes as for the fins in the above solution of the 

solid region. For example, if fins are discretized using 30 volumes in the flow x -direction and 15 

𝑇1

𝑇2

Δ 1

Δ 2

Δ𝑦

b

𝑡b
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volumes in the fin height z -direction, the corresponding fluid side discretization is also 30 times 

15 for every channel between two fins. This means that the control volume length Δ𝑥 and height 

Δ  are the same for both regions, and only the control volume width of the fin 𝑡 is replaced with 

the channel width 𝑑 on the fluid side, as is shown for one sub channel discretization in Fig. 10. 

One-dimensional solutions of forced channel flow are then applied to these control volumes. This 

requires a considerably smaller number of control volumes than a full 3D CFD solution, because 

we need to solve only the mean values of velocity and temperature.  

 

Figure 12. Heat balance in a differential element on the fluid side.  

In the present model, we ignore axial heat conduction in the x-direction within the fluid, because 

in a typical heat sink the Peclet number Pe =  RePr ≥ 100, and in that case axial conduction is 

not important [80]. Another simplification is to ignore conduction and convection in air in the z-

direction (see Fig. 10). In the model, fluid properties are assumed constant, and the wall 

temperature remains constant within one control volume. We obtain an equation for the fluid 

mean temperature by using the general fluid energy equation (2.3) in a steady flow situation. 

Because the problem is essentially one-dimensional, the governing equation can be easily derived 

from the heat balance in Fig. 12. 

𝜌𝑐𝑝𝑉𝑑
𝜕𝑇𝑚(𝑥)

𝜕𝑥
= 2ℎ(𝑥)(𝑇𝑤 − 𝑇𝑚(𝑥)). (4.4) 

Integration of Eq. (4.4) for one control volume with a length Δ𝑥 in the x-direction gives 

  
𝑇𝑚(𝑥 + Δ𝑥) − 𝑇𝑤

𝑇𝑚(𝑥) − 𝑇𝑤
= 𝑒

−
2ℎΔ𝑥
𝜌𝑐𝑝𝑉𝑑 . (4.5) 

Equation (4.5) is the solution to a temperature change in a 1D-flow situation inside the control 

volume with a constant wall temperature (see Fig. 10). The local mean heat transfer coefficient 

in Eq. (4.5) is obtained from Eq. (2.8). The flow type, i.e., laminar or turbulent, is checked from 

the Reynolds number. In a laminar flow case, use of the isothermal wall Nusselt number from 

Eq. (2.8) is assumed in the calculation model, and its effect on total heat transfer is tested in 

Section 4.3.1. With turbulent flow, it is adequate to use isothermal Nusselt number from Eq. (2.8). 

4.1.3 Calculation of fluid velocity 

Mean velocity values are calculated in the same mesh as the mixed mean temperature discussed 

above. In the model, shear stress is ignored between air-air interfaces in the z-direction in Fig. 

10, because channel walls cause virtually all the shear stress. In the case of forced convection 

heat sinks, where a fan creates the flow, the mean velocity V in the channels can be solved from 

d𝑥

𝜌𝑐𝑝𝑉𝑑𝑇𝑚(𝑥)

2ℎ(x)d𝑥(𝑇𝑚(𝑥) − 𝑇𝑤)

𝜌𝑐𝑝𝑉𝑑𝑇𝑚(𝑥) +
𝜕

𝜕𝑥
𝜌𝑐𝑝𝑉𝑑𝑇𝑚(𝑥)d𝑥

𝑥𝑦

𝑉
  𝑇∞
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the operating point based on the fan and system characteristic curves. Alternatively, it can be 

given as a fixed value. The system characteristic curve is determined by the pressure loss equation 

for a channel of length L and hydraulic diameter  𝑑ℎ = 2𝑑 

  Δ𝑝 =
1

2
𝜌𝑉2  [4𝑓

𝐿

𝑑ℎ

+ ∑𝐾𝑖

𝑖

]. (4.6) 

In Eq. (4.6), f (-) is the Fanning friction factor presented in Eq. (4.7), and ∑ 𝐾𝑖𝑖  (-) is the sum of 

minor losses, such as entrance and exit losses. The fan operating point is obtained at the 

intersection of the pressure drop curve in Eq. (4.6) and the fan characteristic curve. The mean 

friction factor for developing laminar [44] and turbulent flow between parallel plates is  

𝑓 =

{
 
 

 
 
3.44(𝑥+)−0.5 +

0.647
4𝑥+ + 24 − 3.44(𝑥+)−0.5

1 + 0.000029(𝑥+)−2

Re
           laminar flow

0.0791 (
2

3
Re)

−0.25

                                                 turbulent flow,

 (4.7) 

where the dimensionless length 𝑥+ = 𝑥/(Re 𝑑ℎ) (-). For turbulent flow, results of a fully

developed flow can be used, such as the above Blasius correlation. The hydraulic diameter is

replaced with the effective diameter of 2/3𝑑ℎ to improve accuracy [81].

In the trapezoidal fin case, mean velocities are evaluated individually for each sub channel in the

z-direction by setting the total pressure loss in the x-direction the same in each sub channel. In

the case of natural convection only (see Fig. 13), we have a different mean velocity in every sub 

channel in the z-direction even for rectangular fins, because the mean velocity is not driven by 

a uniform pressure gradient but by a buoyant force. The results are presented in Publications I, 

II, IV and V.

 

Figure 13. Natural convection fin array. 
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Figure 14. Velocity and temperature profiles in a channel. 

In natural convection channel in Fig. 14, we need the mean velocity. One way to derive equation 

for mean velocity is to assume that the fluid average temperature in a channel creates the driving 

force for buoyancy, and the forced convection friction factor is used to calculate friction from the 

channel wall shear stress. Using the Boussinesq approximation, i.e., the density change of air is 

taken into account only in the channel, we get from the force balance in a channel 

−𝜌𝑎𝑣𝑔𝑑𝑔 − 2𝜏𝑠 + 𝜌∞𝑑𝑔 = 0 (4.8) 

where 𝜌𝑎𝑣𝑔 is the average air density in a channel, calculated from the equation of state using the 

fluid average temperature defined in Eq. (4.10). The surface shear stress 𝜏𝑠 is calculated using the 

friction factor 𝑓 =
𝜏𝑠

1/2𝜌𝑎𝑣𝑔𝑉2 from Eq. (4.7).  

By introducing the Reynolds number Re = 𝑉𝑑ℎ/𝜈 and by combining the above equations, as is 

done in Publication IV, we obtain  

  𝑉 =
𝑔𝛽𝑑ℎ

2

2𝜈 𝑓𝑅𝑒
(𝑇𝑎𝑣𝑔 − 𝑇∞), (4.9) 

where the thermal expansion coefficient 𝛽 = 1/𝑇∞. This is the solution to mean velocity in a 1D 

sub channel when the air average temperature in the channel 𝑇𝑎𝑣𝑔 (K) is  

  𝑇𝑎𝑣𝑔 =
1

𝐿
∫𝑇𝑚 𝑑𝑥

𝐿

0

. (4.10) 

The average temperature in Eq. (4.10) is integrated from the fluid mean temperature distribution 

in the channel, which is obtained from numerical 1D calculations. As a side note, Eq. (4.9) is also 

used in the literature [82] in the case of isothermal channels when Tavg is replaced with Tw, which 

is true for long channels, and also in [31] where average temperature 𝑇𝑎𝑣𝑔 is the total volume 

average fluid temperature of the channel in the case of constant heat flux base plate. 
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4.2 Accuracy of the calculation model

The presented calculation model is tested against experimental, analytical, and CFD solutions in

some cases. In the model, it is assumed that the heat transfer coefficient is obtained from the

Nusselt number correlations of an isothermal wall channel in forced flow, and that shear stress is

calculated from the forced channel flow friction factor correlation. These assumptions are used

also for natural convection, in which case it is also assumed that the buoyancy term is calculated

using the average fluid temperature in a channel, and that any extra flow from the fin tip area is

ignored.

Because the validity of a calculation model is the key part in multi-objective optimization, its

accuracy is tested. In practice, the fins are not isothermal, and the use of an isothermal wall

Nusselt number may affect the results noticeably. For some idea of accuracy, some test cases are

presented in the natural convection case of linearly varying wall temperature.

In addition, the chimney effect mentioned in Chapter 2 is discussed, because the present

calculation model is partly verified against the analytical Bar-Cohen solution in Eq. (2.14), where

the chimney effect is present.

4.2.1 Test cases for forced convection

Analytical test case: The forced convection model is first tested in an isothermal base plate case

against the analytical model presented by Teertstra [37]. The test covers 15 cases, and the total

heat transfer rate ϕ (W) is compared to analytical results. The cases are shown in Table 2, and the

dimensions are the same as in Fig. 8, the flow mean velocity is V and the base temperature 

of the fin is constant Tb.

Table 2. Geometrical and temperature values of tested isothermal base plate cases
Case

number 
𝑑 [𝑚𝑚] 𝑡 [𝑚𝑚]   [𝑚𝑚] 𝐿 [𝑚𝑚] 𝑇  [𝐾] 𝑇∞ [𝐾] 𝑉 [𝑚/𝑠]

1 3 1 40 100 313 293 10

2 3 1 40 100 313 293 20

3 3 1 40 100 353 293 10

4 3 1 40 100 353 293 20

5 3 1 40 200 313 293 10

6 3 1 40 200 313 293 20

7 3 1 40 200 353 293 10

8 3 1 40 200 353 293 20

9 3 1 80 100 313 293 10

10 3 1 80 100 313 293 20

11 3 1 80 100 353 293 10

12 5 2 80 200 353 293 20

13 5 2 80 200 353 293 10

14 5 2 80 200 313 293 20

15 5 2 80 200 313 293 10
 

CFD test case: The forced convection model is also compared in Publication I with CFD results 

of an isothermal base plate in Fig. 8, where the base plate temperature is Tb = 373 K. The other 

b
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values are tb = 2 mm, d = 3 mm, l = 110 mm, T∞ = 300 K, Re = 10000. Now the fins are 

not isothermal. Thermal properties of air are taken at 308 K, and ks = 200 (Wm-1K-1). 

The grid independency of the solution was checked. Details are given in Publications I and II.

Experimental test case: The experimental validation case from industry (in Publication I) is

illustrated in Fig. 15. It differs from test cases above that now a heat generating component is

mounted on the base plate. The component generates a constant heat transfer rate 𝜙 = 1200 W,

and is located 50 mm from the leading edge in the x-direction. The component’s length is 104

mm and its width is the same as the base plate width, W = 132 mm. The array contains 27 fins

with height l = 110 mm and a base plate of thickness  = 20 mm and length L = 300 mm.

Temperature was measured with thermocouples at the base plate center line, 3 mm under the

surface, where the component is mounted. The volumetric airflow in the measurements was 0.16

m³s-1, which produced a Reynolds number of Re = 7100 in the channels, when the inlet air

temperature was 𝑇∞ = 24 °C. In the experiments, an inverter controlled fan was used. The

flowrate was measured using an IRIS - flange with an estimated accuracy of 2 %. The fin array

was inserted in a channel with equal cross-sectional area thereby blocking all bypass flow.

 

Figure 15. Schematic of experimental test case. 

4.2.2 Test cases for natural convection 

In the natural convection case, the model is tested in several different cases for isothermal 

channel, isothermal base plate, and also for full 3D heat sink. 

Isothermal channel test: The isothermal channel is compared using the Bar-Cohen Eq. (2.14) 

and CFD in 144 different cases in Publication IV. All the variations of channel dimensions, 

ambient 𝑇∞, and wall temperatures  𝑇𝑤 appear in Table 3. CFD calculations were performed using 

OpenFOAM with a buoyantPimpleFoam solver for compressible flow with ideal gas law. 

Calculations made use of 2D laminar flow, the Sutherland viscosity law, Pr = 0.7, and a constant 

cp = 1006 J/kgK. 

50 mm

104 mm

300 mm

132 mm

20 mm

centerline

𝜙 = 1200  

x
y

z

110 mm
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Table 3. Dimensions and temperatures of tested isothermal 2D channels 
   

Variable Value Unit 

L 50; 100; 200; 400    mm 

d 5; 7.5; 10; 15         mm 

Tw 310; 320; 330 K 

T∞ 280; 290; 300 K 

 
Isothermal base plate test: These test cases were originally presented in Ref. [83]. The first test

case is a single channel with isothermal fins and the second a single channel with an isothermal

base plate. The fin height l was selected to be relatively large in comparison to the channel width

d to ensure non-isothermal fins. In calculations, the channel width d was varied between 1 and

20 mm. Dimensions and temperatures were L = 250 mm, l = 200 mm, Tw = 320 K, and T∞ = 300

K. In the case of an isothermal base plate, dimensions are the same, but, in addition, the fin

thickness tb = 2 mm and the heat conductivity of solid ks = 200 Wm-1K-1. Calculation are com-

pared with the results of an analytical Teertstra’s model and with CFD. CFD solutions were cal-

culated with the commercial Ansys Fluent.

 

Figure 16. Reference array in full 3D test case in natural convection. 

 

Full 3D test: A full 3D reference heat sink in Fig. 16 was calculated with the present model. The 

comparison solution was calculated with CFD using an OpenFOAM chtMultiRegionFoam 

solver, which can solve conjugated heat transfer. For a conjugated solution, fluid and solid region 

temperature fields must be calculated and coupled at the fluid-solid interface. In the solid region, 

L

b

l

W

Dimension Value [mm]

L 200

l 120

W 100

b 10

t 1

d 10

Lc 32

Wc 30

Ld 24

N 10

𝜙𝑐 = 32.3  

Lc

Wc

Ld

x

y

z

d tbtb

tb
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the mesh had about 5 ∙ 104 cells and in the fluid region about 106 cells. The solution was laminar, 

and the Sutherland viscosity law in Eq. (2.5) was used. Transient approach was selected to help 

the solution being stable. A coupled transient solution takes a long time to achieve a steady state 

temperature distribution in the solid region because of the large thermal capacity of an aluminum 

array. Therefore, an assumption was made to use a low value of the thermal capacity 𝜌𝑐𝑝 in the 

solid region to significantly reduce the CPU -time of CFD solution. Inspecting the transient 

energy equation (4.11) below 

𝜌𝑠𝑐𝑝
𝜕𝑇

𝜕𝑡
 = 𝑘𝑠∇

2𝑇, (4.11) 

reveals us that the thermal capacity of solid (𝜌𝑠𝑐𝑝 term) does not affect to the spatial temperature 

distribution term 𝑘𝑠∇
2𝑇. The author decided to decrease the value of  𝜌𝑠𝑐𝑝 by a factor of one 

thousand, which helped to achieve a steady state distribution of the solid region temperature field 

in 3 seconds in transient CFD calculations. Without a modification of the 𝜌𝑠𝑐𝑝 value, the required 

time t is many orders of magnitude larger. 

4.3 Special features of natural convection 

Natural convection flows have special features that are absent in forced convection flows. Such 

features are caused by buoyancy-induced flow and the way in which natural convection arrays 

are installed for cooling. Because natural convection arrays are usually installed in an open space 

instead of tightly fitted ventilation channels of forced convection, the open space allows the flow 

to enter from all sides. When flow patterns are carefully studied in CFD calculations, flow has 

been found to come mainly from the open bottom with a small portion of it entering from the fin 

tip area. However, as noted in Publication V, the additional flow from the open fin tip area has 

only a small effect on the results, such as the maximum temperature of the array. In the calculation 

model, the fin tip area is thus assumed closed, and all flow is assumed to be in a vertical direction. 

However, the non-isothermal channel wall and the effect of parallel channels, namely the 

chimney effect, can affect the results. 

4.3.1 Non-isothermal channels 

The calculation of convective heat transfer is based on the Nusselt number correlations. In forced 

convection, flow is usually turbulent, and using a constant heat transfer coefficient is adequate, 

because the value of the coefficient is not sensitive to the boundary condition at the walls. In 

natural convection, where flow is usually laminar, the use of a heat transfer coefficient based on 

the isothermal wall correlations is only approximatively correct. In Publication IV, some tests 

were made to compare the use of the isothermal wall correlation Eq. (2.8). An exact solution to 

the arbitrarily varying wall temperature (2.9) was also used, when the wall temperature changed 

linearly in the flow direction 𝑇(𝑥) = 𝑇0 + 𝑥/𝐿(𝑇𝐿 − 𝑇0), where 𝑇0 (K) is the wall temperature at 

x = 0, and 𝑇𝐿  at x = L. These tests gave some idea of the accuracy of the present model. The tested 

cases are shown in Table 4, and detailed solutions and results appear in Publication IV.  
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Table 4. Dimensions and temperature pairs of a tested non-isothermal 2D channel with 

the wall temperature distribution 𝑇𝑤(𝑥) = 𝑇0 + 𝑥/𝐿(𝑇𝐿 − 𝑇0) 

Dimension Values Unit 

L 100 mm 

d 5; 10 mm 

[T0, TL] [300, 320]; [300, 350]; [320, 300]; [350, 300] K 

T∞ 280 K 

 

4.3.2 Chimney effect 

Enhancement of heat transfer in fin array channels, when compared to a single vertical surface or 

channel, is called the chimney effect. This means that the total heat transfer of an array is greater 

than heat transfer from a similar number of single channels. In addition, the total heat transfer of 

a single channel is also greater than heat transfer from two vertical surfaces. Heat transfer 

enhancement caused by the chimney effect can be more than 10 % over that of vertical surfaces. 

Some test cases with a varying number of channels Nch, shown in Table 5, were studied 

numerically with CFD using OpenFOAM.  

Table 5. Isothermal channel test cases for the chimney effect 
L [mm] Ts [°C] T∞ [°C] d [mm] Nch [-] 

100 80 20 10 1 

100 80 20 10 3 

100 80 20 10 5 

100 80 20 10 7 

100 80 20 10 9 

100 80 20 10 11 

100 80 20 10 13 

100 80 20 10 15 

100 80 20 20 1 

100 80 20 20 3 

100 80 20 20 5 

100 80 20 20 7 

100 80 20 40 1 

100 80 20 80 1 

100 80 20 160 1 

100 80 20 ∞  single surface 

4.4 Heat sink optimization 

A single heat sink can be modeled efficiently with sophisticated models, such as CFD. However, 

when performing an optimization, which requires hundreds or thousands of different geometries 

to be evaluated using an optimization algorithm, CFD becomes too time consuming. A solution 

proposed here is to combine the presented new calculation model with a state-of-the-art multi-

objective optimization algorithm to form an effective optimization method for practical industrial 

heat sinks. An example of saving CPU -time is the optimization case in Section 4.4.3 below, 

which required thousands of temperature field evaluations, but took only about two hours to 
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perform it with a new method running on a laptop (Intel i-7-3520M @ 2.90 GHz processor with 

8 GB of RAM). Two hours is also approximately the minimum required CPU -time for a single 

CFD case calculation of natural convection cooling with the same computer (saving of CPU -

time is discussed more in Publications IV and V). The optimization cases discussed here were 

first presented in Publications II, III, IV, and V. Some additional information is given below. 

4.4.1 Forced convection case I 

A multi-objective optimization case in Publication II is optimized with a slightly modified 

MOPSO algorithm in Section 3.2.2. The reference array shown in Fig. 17 consists of two 100x100 

mm² components with heat dissipation rates of 550 and 450 W. In optimization, components are 

clustered together in in-line arrangement with a 50 mm distance between them. The component 

cluster is shown in a dashed line in Fig. 18 below. In optimization, this component cluster is 

treated as one entity composed of two components. It generates two new design variables for 

optimization, its locations X and Y. The velocity boundary condition was given using a fan curve 

Δ𝑝 = −1000𝑄 + 400 (Pa), where Q (m³s-1) is the volumetric flow. Optimization was performed 

for the rectangular and triangular fins separately. This multi-objective optimization problem is 

written formally as (See Eq. (3.1)) 

find                          𝒙 = (𝐿, ,  , 𝑁, 𝑡 , 𝑡 ,  , 𝑋, 𝑌)𝑇  ∈ 𝛀 

to minimize          𝒇(𝒙) = (𝑚(𝒙), 𝑇𝑚𝑎𝑥(𝒙))
𝑇

 

subject to 

𝛀 = {𝒙 ∈ ℝ9  |   𝒙𝑙 ≤ 𝒙 ≤ 𝒙𝑢   ;  𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1,2,… ,7} 

𝒙𝑙 = (𝐿𝑚𝑖𝑛 , 𝑚𝑖𝑛 ,  𝑚𝑖𝑛 , 𝑁𝑚𝑖𝑛 , 𝑡 𝑚𝑖𝑛
, 𝑡 𝑚𝑖𝑛

,  𝑚𝑖𝑛 , 𝑋𝑚𝑖𝑛 , 𝑌𝑚𝑖𝑛)
T
 

𝒙𝑢 = (𝐿𝑚𝑎𝑥 , 𝑚𝑎𝑥 ,  𝑚𝑎𝑥 , 𝑁𝑚𝑎𝑥 , 𝑡 𝑚𝑎𝑥
, 𝑡 𝑚𝑎𝑥

,  𝑚𝑎𝑥 , 𝐿𝑚𝑎𝑥 − 𝐿𝐶 , 𝑚𝑎𝑥 − 𝑐)
T
 

𝑔1 = 𝐿  𝜌𝑠 + 𝑁𝐿 𝜌𝑠

𝑡 + 𝑡 
2

− 𝑚𝑚𝑎𝑥 ≤ 0 

𝑔2 = −(𝐿  𝜌𝑠 +𝑁𝐿 𝜌𝑠

𝑡 + 𝑡 
2

− 𝑚𝑚𝑖𝑛) ≤ 0 

𝑔3 =  +  −  𝑚𝑎𝑥 ≤ 0 

𝑔4 = 𝑑𝑚𝑖𝑛 −
 − 𝑁𝑡 
𝑁 − 1

≤ 0 

𝑔5 = 𝑑𝑚𝑖𝑛 −
 − 𝑁𝑡 
𝑁 − 1

≤ 0 

𝑔6 = 𝑋 + 𝐿𝐶 − 𝐿 ≤ 0 

𝑔7 = 𝑌 + 𝐶 −  ≤ 0 

with dimensions shown in Figs. 17 and 18. The used solid density 𝜌𝑠 = 2700 kgm-3. The 

inequality constraints gi, where i = 1,…,7 are expressed in words in Table 6 below. The reference 

was originally presented in Lehtinen's thesis [4] except that the distance between the components 

was 60 mm and the thickness of fins was 1 mm. Moreover, in the original case, the Reynolds 

number was held constant, 2000, and the flow was laminar.  
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Figure 17. Reference geometry in optimization. 

 

Figure 18. Location of component cluster on the base plate. 

 

Table 6. Inequality constraints 

Inequality constraint Expression in words 

g1 heat sink mass m ≤ mmax 

g2 heat sink mass m ≥ mmin 

g3 heat sink total height ≤ lmax 

g4 and g5 distance between adjacent fin surfaces ≥ dmin at every z-location 

g6 component cluster must be located on the base plate in x-direction 

g7 component cluster must be located on the base plate in y-direction 

𝐿 =  300 𝑚𝑚

 = 100 𝑚𝑚

 = 200 𝑚𝑚

𝑡 = 2 𝑚𝑚

𝜙2 = 450  

𝜙1 = 550  
 = 10 𝑚𝑚

𝑡 = 2 𝑚𝑚

𝑁 = 34

x

y

X

Y

Lc

Wc

L

W
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4.4.2 Forced convection case II 

This multi-objective optimization case and its results are presented in detail in Publication III. 

The reference array, an existing industrial heat sink, is shown in Fig. 19, and the details of nine 

components are given in Table 7. In optimization, the Reynolds number was fixed to a value of 

3300, and the flow was turbulent.  

Table 7. Component details 
Component Size (mm²) Heat dissipation (W) 

1-3 94 × 48 450 

4-6 93 × 20 150 

7-8 29 × 69 15 

9 34 × 94 0 

 

 

Figure 19. Reference array (m = 6.65 kg). 

The resulting temperature field in Fig. 19 for the reference case was calculated using two different 

calculation models. The model in this thesis gave the heat sink a maximum temperature of 109.6 

°C. The other method was that of Lehtinen [4], presented also briefly in Publication III. With 

Lehtinen’s method, the maximum temperature was 109.1 °C. A different numbers of discretized 

control volumes in calculations and pressure loss evaluation probably caused this small difference 

between the models. As mentioned in Publication III, the multi-objective optimization was 

performed with a Matlab’s fmincon algorithm and the ε-constraint method presented in Section 

3.2.1. The multi-objective optimization problem is (see Eq. (3.1)) 

 

 

 

 

 

x

yz
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find                          𝒙 = (𝑁, 𝑉, 𝑑, 𝐿,  , 𝑡 , 𝑡 ,  , 𝑑𝐿𝐸)
𝑇  ∈ 𝛀 

to minimize          𝒇(𝒙) = (𝑚(𝒙), 𝑇𝑚𝑎𝑥(𝒙))
𝑇

 

subject to 

𝑃 = 6   

Re = 3300 

 = 242 𝑚𝑚 

𝑑𝐿𝐸 + 156 𝑚𝑚 ≤ 𝐿 

156 𝑚𝑚 ≤ 𝐿 ≤ 220 𝑚𝑚 

1.5 𝑚𝑚 ≤ 𝑡 ≤ 3 𝑚𝑚 

0.3 𝑚𝑚 ≤ 𝑡 ≤ 3 𝑚𝑚 

6 𝑚𝑚 ≤  ≤ 26 𝑚𝑚 

4 𝑚𝑚 ≤ 𝑑𝐿𝐸 ≤ 45 𝑚𝑚 

𝑁 ∈ [38, 39, … , 55] 

The case was optimized for each fin number N between 38 and 55. In the ε-constraint method, 

the mass was kept as constraint, and Tmax was subjected to optimization because mass can be 

calculated relatively quickly, and if its constraint is violated, no evaluation for Tmax need to be 

performed. By using Re = 3300 = 𝑉2𝑑/𝜈, 𝑃 = 6 = (𝑁 − 1) 𝑑𝑉Δ𝑝, Δ𝑝 = 0.5𝜌𝑉2 [𝐾𝑖𝑛 +
4𝑓𝐿

2𝑑
+

𝐾𝑜𝑢 ], and 𝑑 = ( −𝑁𝑡 )/(𝑁 − 1), we can eliminate almost half the design variables. In the 

rectangular fin heat sink case, the remaining design variables in optimization are 𝐿,  , 𝑡 , 𝑑𝐿𝐸  and 

in the trapezoidal fin case additionally fin thickness at its tip 𝑡  (see Fig. 7). The total number of 

function evaluations is large with this approach, and optimization consumed considerably more 

CPU-time in this optimization case when compared with other optimization cases presented in 

this thesis. 

4.4.3 Natural convection case III 

In Publication IV, the natural convection heat sink in Fig. 16 was optimized with the multi-

objective optimization algorithm “updated MOPSO”, mentioned in Section 3.2.2. Here the 

components were not treated as a component cluster, as in Fig. 18, but as independent heat sources 

capable of moving individually. Each component generates two additional design variables, 

which are the coordinates in the x- and y-direction. They also create an extra constraint, because 

two components are not allowed to occupy the same space. The optimization problem of the case 

in Publication IV is defined as 

find                          𝒙 = (𝐿, ,  ,  , 𝑡, 𝑁, 𝑿𝑐 , 𝒀𝑐)
𝑇  ∈ 𝛀 

to minimize          𝒇(𝒙) = (𝑚(𝒙), 𝑇𝑚𝑎𝑥(𝒙))
𝑇

 

subject to 

𝑔1 =  +  −  𝑚𝑎𝑥 ≤ 0 

𝑔2 = 𝑑𝑚𝑖𝑛 −
 − 𝑁𝑡

𝑁 − 1
≤ 0 

In addition, a constraint was used for overlapping components based on the calculation of the 

overlapping areas. If overlapping areas exists, the constraint is violated. In this optimization case, 

b
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the reference array, shown in Fig. 16, is the same as was used in the testing of natural convection 

calculation model in Section 4.2.2. 

4.5 Developed software 

The method to optimize forced convection heat sinks with the presented calculation model is 

implemented as standalone software for commercial use. Implementation is done using Matlab, 

because it enables the use of fast linear algebra matrix calculation operations based on the 

FORTRAN lapack libraries [84]. In the software, the user first fills the heat sink dimensions, 

component locations, heat dissipation rates, and the fan curve for volumetric flow in the GUI. 

The software then calculates the temperature field of the heat sink based on these values. The 

user can also optimize the heat sink for a given set of heat dissipating components by choosing 

the optimization module in the software. In the optimization module, user gives the upper and 

lower bound values for different design variables and constraining limit values for minimum 

channel width, heat sink maximum height, and heat sink mass. The software then performs multi-

objective optimization of the heat sink using the maximum temperature and heat sink mass as 

optimization criteria. The optimization algorithm is the MOPSO algorithm described in this 

thesis. Optimization is generally complete in a couple of hours and the user can see the results on 

the screen. 

4.6 Summary of the method 

The developed multi-objective optimization method for forced and natural convection heat sinks 

is summarized in Fig. 20. The method consists of a calculation model for a heat sink and a multi-

objective optimization algorithm. The calculation model is composed of a numerical finite 

volume solution of solid and fluid temperature fields and an analytical solution of convective heat 

transfer coefficients and friction factors for channel flow. These equations are written in a linear 

system in matrix notation and solved using MATLAB implementation. The calculation model 

was first applied to a forced convection heat sink in Publication I. Later, the calculation model 

was expanded to a natural convection case in Publication IV. The model was tested with 

experimental and CFD results, which are shown in Publications I, II and IV. Forced convection 

results were also compared to those obtained by Lehtinen’s method [4, 21] in Publication III.  
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Figure 20. Overview of method. 

According to the test cases, the calculation model worked within engineering accuracy, and it is 

well suited for calculating the heat sink temperature field in optimization. The main advantage of 

the present calculation model is its relatively fast calculation time over CFD. As pointed out in 

Publications IV and V, savings in CPU -time are many orders of magnitude over CFD solutions. 

Multi-objective optimization has been performed with different algorithms, as discussed in 

Publications II, III, and IV. Furthermore, the method is implemented as standalone software for 

use in an industrial predesign process.  
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Results and discussion 

This Chapter compares the results on the test cases in Chapter 4 with the experimental, analytical, 

or numerically calculated CFD results in 2D and 3D cases. These tests were run because the 

accuracy of the calculation model constitutes the essential part of heat sink optimization. After 

its accuracy is tested, the model is used in multi-objective optimization of test cases presented in 

Chapter 4. All these results have been reported in Publications I, II, III, IV and V, but some 

additional results on the chimney effect are given here.  

5.1 Accuracy of the calculation model 

The accuracy of the calculation model is tested in cases of forced and natural convection, all of 

them originally reported in Publications I, II, IV, and V. Chapter 4 summarized the tested 

geometries and details, and the key results are given below. 

5.1.1 Forced convection tests 

Analytical test case: The first test case is an isothermal base plate heat sink cooled by forced 

convection. This is the simplest test case of fin array heat transfer, because its mean flow velocity 

is fixed and the base plate remains at a constant temperature. Results of the calculation model are 

compared with analytical results obtained with the model presented by Teertstra, described in 

Section 2.3.2. The dimensions and temperatures of the tested cases are given in Table 2. Results 

on comparison of calculations are shown in Table 8, testifying to an excellent agreement. The 

greatest deviation is less than 1.2 % with most of them within 0.5 % as shown in Table 8, where 

the present calculation model results are shown with 𝜙𝑚 and those of the Teertstra model with 

𝜙𝑇.  

CFD test case: One CFD test case with isothermal base plate was also compared with CFD in 

Publication I (see Section 4.2.1). The flow mixed mean temperature and the pressure loss in the 

channels were the main items compared and results of them are given in Table 9 below. These 

results differ slightly from those in Publication I, because now a somewhat more accurate 

temperature integration was used. In Table 9, the result on the mean temperature difference of air 

is about 5 % and that on pressure loss about 8 % between the calculation model and CFD.  

Additional result was also calculated with the Teertstra analytical model, which gave ΔT = 18.52 

K, to confirm that they all are approximately similar. CFD result was calculated using the k-ε 

model with enhanced wall functions with Ansys Fluent. If k-ω SST had been used as a turbulence 

model, the CFD result may have been slightly different and probably closer to analytical results. 
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Table 8. Heat transfer results of test cases from Table 2, present calculation model 

(𝜙𝑚), and the Teertstra model (𝜙𝑇). 
Case number 𝜙𝑚 [ ] 𝜙𝑇 [ ] difference [%] 

1 7.51 7.52 -0.17 

2 12.00 12.01 -0.08 

3 22.21 22.34 -0.58 

4 35.71 35.86 -0.41 

5 12.60 12.60 0.024 

6 20.75 20.72 0.14 

7 36.86 37.28 -1.13 

8 61.37 61.78 -0.67 

9 9.56 9.57 -0.09 

10 13.55 13.58 -0.18 

11 28.50 29.59 -0.3 

12 102.44 102.76 -0.31 

13 69.65 69.96 -0.44 

14 34.32 34.35 -0.08 

15 23.43 23.45 -0.08 

Table 9. Mean temperature difference ΔT = Tm(L) - T∞, and pressure loss of a heat 

sink in CFD test case. 
Quantity CFD Calculation model Teertstra model 

∆𝑇 [K] 19.96 18.92 18.52 

∆𝑝 [Pa] 1099 1013 - 

 

Experimental test case: An experimental heat sink was also presented in Publication I with a 

component dissipating 1200 W. The component is mounted on a 20 mm thick base plate 50 mm 

from the leading edge of the heat sink. Experimental results are obtained by measuring seven 

spatial temperatures with thermocouples in the base plate centerline, 3 mm under the surface. The 

calculated temperature distribution is shown in Fig. 21 and its comparison with experiments in 

Fig. 22.  

 

Figure 21. Calculated temperature distribution. 

centerline

x
y

z
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Figure 22. Centerline temperature distribution, 3 mm under surface in Fig. 21. 

The calculated temperature distribution on the centerline in Fig. 22 agrees reasonably well with 

measurements. The difference at one point may be a measurement error. However, the pressure 

loss calculation differed from the measured data. The measured value was 435 Pa, but calculation 

gave a value of 501 Pa, probably because velocity was not uniformly distributed before the test 

section.  

Concluding forced convection tests: Based on the above test results, we can conclude that the 

calculation model is in good agreement in all cases tested in forced convection cooling, especially 

in the isothermal base plate tests. This is not surprising, since the Gnielinski Nusselt number 

correlation in Eq. (2.8) for convective heat transfer is very accurate in the channel flow, as is the 

numerical finite volume solution for heat conduction in the solid. The largest uncertainty in the 

industrial forced convection calculations with the fan curve is probably due to the uncertainty 

taking into account the laminar / turbulent transition point of the flow in low Reynolds numbers, 

and the prediction of the pressure loss to solve accurately the fan operating point from the 

characteristic curves of the fan and the system. 

5.1.2 Natural convection tests 

Isothermal channel test: The present model was tested in the case of isothermal 2D channels 

with CFD and the Bar-Cohen correlation Eq. (2.14). The combinations for calculations are given 

in Table 3 with only some results shown in Fig. 23.  
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Figure 23. Results of different methods in isothermal 2D channel. 

The results between the calculation model, CFD, and the Bar-Cohen equation are in good 

agreement as a function of the Elenbaas number. An interesting finding is that in each case the 

results obtained with CFD gave slightly lower Nusselt number values. 

Isothermal base plate case: Comparison is made between the results of the new calculation 

model, CFD, and the results obtained with the Bar-Cohen and Teertstra models in Chapter 2. 

These results were originally published in [83]. The heat transfer rate ϕ is shown in Fig. 24 as 

divided by the channel width d. We can see that the results of different models agree well in the 

isothermal channel (Case 1 in Fig. 24) as well as in the isothermal base plate case (Case 2 in Fig. 

24). We can observe that if L and l are fixed, the optimal channel width d to maximize the heat 

transfer of a fin array is about 10 mm and 9 mm in the isothermal channel and the base plate case, 

respectively. 

 
Figure 24. Results of different methods when L = 0.25 m, l = 0.2 m, Tb = 320 K, and T∞ = 

300 K, t = 2 mm and ks = 200 W/mK. 
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Full 3D case: The model was tested also in a practical 3D case with two heat dissipating 

components. The test case is discussed in Section 4.2.2 in Fig. 16, and the results are shown in 

Fig. 25. The results of the 3D heat sink agree well in Fig. 25, and the maximum and minimum 

temperature excess is given in Table 10. 

 

                                    (A)                              (B) 

Figure 25. Temperature fields calculated with the new model (A) and CFD (B). 

Table 10. Minimum and maximum temperature difference ΔT = Tw - T∞ in Fig. 25 
    

 CFD Model Difference 

minT  23.5 21.4 -8.9 % 

maxT  41.7 38.9 -6.7 % 

Concluding natural convection tests: The above analytical equations, which were used in 

comparison, are based on experimental results, and all CFD results were for laminar flow, where 

no turbulence model is used. This means that these comparison results are generally of high 

quality and can be used for comparison with confidence. Later, CFD results, which were also 

tested with these 2D solutions, were used for comparison in full 3D cases. From the overall results 

presented in this Section, we can conclude that in isothermal 2D channels, non-isothermal 3D 

channels and full 3D cases, the calculation model works well. These tests were important, because 

the natural convection model included several assumptions discussed in Chapter 4. Interesting 

side note is that the results obtained for the heat transfer rate with the present calculation model 

tend to be slightly higher in all cases compared to those obtained with CFD. 

5.1.3 Discussion about model accuracy 

The difference between the results obtained with the calculation model and the comparison results 

obtained by analytical solutions, CFD or experimental results, were less than 10 % in each case 

tested. This is a good result, because often heat transfer correlations include uncertainty in the 

same order of magnitude. As a tool in industrial optimization, this accuracy is sufficient because 

typically in heat sink case optimization a plenty of room for improvement exists. If only minor 

improvements (less than 10 %) were available, the accuracy of the model should be improved. 

However, in practice, the potential for improvement is of the order of 50 %, for which the current 

accuracy is sufficient. 
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5.2 Tests of special features in natural convection 

5.2.1 Non-isothermal wall effect 

The calculation model uses the Nusselt number correlation of an isothermal wall, which is a good 

approximation in forced convection cooling, where the flow is mainly turbulent. However, in 

natural convection, the flow is usually laminar, and the temperature distribution on the wall 

affects the heat transfer coefficient. In Publication IV, a test was carried out in which the 

temperature on the channel walls varied linearly in the flow direction. Different test combinations 

are given in Table 4 and heat transfer results in Table 11. The channel wall temperature 

distribution is 𝑇(𝑥) = 𝑇0 + 𝑥/𝐿 × (𝑇𝐿 − 𝑇0). 

We can generally conclude from the results in Table 11 that the model works quite well in the 

case of an increasing wall temperature (↗). This is the case in a typical cooling array, because the 

cooling air flows in at the bottom of the array, and because the heat dissipating components cause 

the wall temperature to increase in the flow direction. In the case of a decreasing wall temperature 

(↘), the model is not so accurate. In that case, using the superposition principle in Eq. (2.9), which 

takes into account the varying surface temperature, improves results, as can be seen in Table 11.  

Overall, the results obtained with the superposition principle were better than with the isothermal 

correlation, as shown in Publication IV. However, in the case of an increasing wall temperature, 

the results of the current model were acceptable. 

Table 11. Heat transfer of different channels with varying wall temperature from 

Table 4; T∞ = 280 K, ϕ′p solutions of the new model, ϕ′CFD with CFD, and ϕ′sp based on 

Eq. (2.9). (Increasing wall temperature (↗), decreasing wall temperature (↘)) 
          

L 

[mm] 

d 

[mm] 

T0   

[K] 

TL 

[K] 

T(x) 

change 

ϕ′CFD 

[W/m] 

ϕ′p 

[W/m] 

difference 

to CFD [%] 

ϕ′sp 

[W/m] 

difference    

to CFD [%] 

100 5 300 320 ↗ 22.7 23.3 2.7 23.5 3.8 

100 5 300 350 ↗ 46.2 47.6 3.0 48.7 5.4 

100 5 320 300 ↘ 14.6 15.9 9.0 15.5 5.9 

100 5 350 300 ↘ 23.4 27.5 17.7 25.8 10.5 

100 10 300 320 ↗ 42.8 41.9 -2.2 43.5 1.5 

100 10 300 350 ↗ 74.4 68.7 -7.7 74.5 0.2 

100 10 320 300 ↘ 36.6 42.1 14.9 37.9 3.6 

100 10 350 300 ↘ 58.1 71.5 23.2 60.2 3.7 

5.2.2 Chimney effect 

An isothermal vertical channel can be solved analytically in two limiting cases, if we have a long 

and narrow or a very short and wide channel. The solution of a wide isothermal channel should 

be the same as that of vertical isothermal surfaces Nu ≈ 0.52 Ra1/4. However, the coefficient 

0.52 does not correlate well with experimental data in channels. For example in the Bar-Cohen 

Eq. (2.14), the asymptote of an isothermal wide channel was selected as Nu = 0.59 RaL
1/4

, which 

correlates better with data obtained by Elenbaas [30]. This enhancement of heat transfer is called 

the chimney effect.  
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For example, Raithby and Hollands mention the chimney effect [85], that a channel has higher 

heat transfer than isolated plate, and quote Miyatake and Fuijii [86] as having claimed “because 

the chimney effect is important, even at large spacing”. In analytical solution, the asymptotic 

value of the coefficient C in the Nusselt number Nu = 𝐶RaL
1/4

 is C = 0.55 [85]. However, Raithby 

and Hollands discovered that Elenbaas experimental data fits better when the value of C is about 

0.60. Different research groups have fitted the same coefficient. For instance, Miyatake and Fuijii 

discovered that the constant C should be 0.613. Martin et al. [82] proposed C = 0.62, which 

correlates best with the data of Augn [87].  

The CFD calculations in the present thesis give the coefficient C a value of 0.528 for a single 

vertical surface and variations between 0.53 … 0.65 for channels. Solutions are shown in detail 

in Table 12. Heat transfer is likely to increase for two reasons. First, in a single vertical surface 

case, the surrounding air is stagnant, but in the case of a channel, the centerline velocity is not 

zero. This lower velocity gradient decreases shear stress and allows the mean velocity to increase. 

Secondly, after the channel outlet, the buoyant plume is not exposed to stagnant air but to other 

plumes next to it as seen in Fig. 26. This reduces shear and mixing above the channel outlets and 

allows warmer air to flow higher as a coherent entity. These two factors increase the mean 

velocity in channels compared to a single surface and thus increase the total heat transfer. 

  

Figure 26. Temperatures of five parallel channels and corresponding velocity profiles at 

channel outlets (x = 0.1 m). 
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Table 12. Results of coefficient C = Nu/Ra1/4 for a different channel number Nch 
d [mm] Nch [-] ϕ/Nch C 

10 1 44.8 0.584 

10 3 46.1 0.601 

10 5 47.0 0.612 

10 7 47.3 0.617 

10 9 47.6 0.620 

10 11 48.1 0.627 

10 13 49.4 0.644 

10 15 49.6 0.646 

20 1 43.8 0.572 

20 3 45.0 0.587 

20 5 45.7 0.596 

20 7 45.9 0.599 

40 1 42.0 0.548 

80 1 41.3 0.538 

160 1 41.0 0.534 

∞  1 40.9 0.533 

vertical surface 1 40.5 0.528 

The following observation was made from the results in Table 12. Many channels exhibit larger 

heat transfer than a single channel, which also again has larger heat transfer than two vertical 

surfaces. These solutions explain better why different values have been proposed for the 

coefficient C in the literature. It all depends on the number of fins in tested heat sinks. 

5.3 Optimization results 

In the optimization cases in Section 5.3.1 and 5.3.3, the size of 30 and 40 swarms were used in 

the modified MOPSO algorithm with 100 and 150 rounds of iterations. These different 

optimization parameter combinations yielded the same results within good accuracy in both cases 

(at maximum a few percentage deviations between the runs). It was a good observation because 

it means that these optimization problems are not highly sensitive to selected parameter values. 

Because the main importance of optimization results is to demonstrate how much room for 

improvement exists in a typical heat sink case, results of one representative optimization run was 

selected for presentation in each case. In Section 5.3.2, the fmincon algorithm of MATLAB was 

used with ε-constraint method and optimization runs were repeated with many different fin 

numbers for one constrained mass value. This vastly larger number of total function evaluations 

yielded results that are probably slightly closer to actual Pareto optimums than in the case of the 

MOPSO algorithm. 

5.3.1 Forced convection optimization: Case I 

The first calculation model in multi-objective optimization was done for the reference heat sink 

in Fig. 17 in Section 4.4.1, a heat sink consisting of two heat dissipating components. In 

optimization, the components were considered as a component cluster, and their relative position 

was fixed. The heat sink is cooled by forced convection with a given fan curve of Δ𝑝 =

−1000𝑄 + 400 (Pa), where Q (m³/s) is the volumetric flow. Criteria in multi-objective 

optimization were the maximum temperature of the heat sink and its material weight. Pareto 
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optimal solutions of rectangular and triangular fins are shown in Fig. 27. They are compared in 

detail with the same maximum temperature as in the reference solution. These solutions appear 

in Fig. 27 in the line of maximum allowed temperature with their geometrical details shown in 

Fig. 28. Detailed dimensions of the original reference case and optimized heat sinks are shown in 

Table 13. 

 

Figure 27. Pareto-optimal results. 

 

  (a)                                   (b)                                     (c) 

Figure 28. Reference design (a) and selected Pareto-optima with rectangular (b) and 

triangular fins (c) from Fig. 27. 
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Table 13. Dimensions of heat sinks in Fig. 28. 
Original design Optimized design 

  Rectangular Triangular 

Tmax (°C) 53.8 53.8 53.8 

m (kg) 7.13 3.85 3.35 

L (mm) 300 288.8 286.5 

W (mm) 200 189.1 195.9 

b (mm) 10 12.8 12.4 

N (mm) 34 58 62 

tb (mm) 2 0.77 1.04 

tt (mm) 2 0.77 0 

l (mm) 100 56.4 59.4 

X (mm) 20 14.4 12.7 

Y (mm) 50 42.4 53.9 

 

In Fig. 27, we can see that the mass criterion can be improved significantly from the reference 

design. Results show that in optimal cases, triangular fins with a smaller mass perform the same 

as rectangular fins. However, the total mass reduction between a rectangular and a triangular 

optimum (about 13 %) is not as significant as one would expect from the results of single fin 

optimization, as discussed in Publication II.  

The main reason for the above is that about half the mass is in the base plate, which enables heat 

to spread effectively into fins. In the single fin case, all mass is concentrated in the fin. However, 

fin mass drops by about 25 % between a rectangular and a triangular optimum (from 1.96 kg to 

1.47 kg). Additionally, the flow is not evenly distributed in array channels. In a channel, flow 

velocity is highest in the fin tip area, which is the coldest. In a single fin case, the flow is uniform 

over the fin surface.  

5.3.2 Forced convection optimization: Case II 

The original array mass in Fig. 19 is 6.65 kg. Its maximum temperature and mass were subjected 

to multi-objective optimization with the Reynolds number kept at a constant value of 3300. The 

ε-constraint method was used with MATLAB’s fmincon algorithm and details about optimization 

can be found in Publication III. Results are shown in Fig. 29 with two optimal geometries from 

the Pareto optimal set shown in Figs. 30 and 31. The optimal geometries are rectangular and 

triangular in cross section in Fig. 29, respectively. In Fig. 29, the optimal solution of rectangular 

fins, shown with a circle, and optimal solution of trapezoidal fins, shown with square, have the 

same maximum temperature as the reference solution but significantly lower mass. With 

rectangular fins, heat sink mass was reduced about 51 % and with trapezoidal fins by about 59 

%. 
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Figure 29. Pareto-optimal solutions. 

 

 

Figure 30. Optimal heat sink with rectangular fins (m = 3.41 kg). 
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Figure 31. Optimal heat sink with trapezoidal fins (m = 2.75 kg).

The most interesting result, mentioned in Publication III, is that the trapezoidal fin array, in fact,

performs better than a triangular one. The result is different for a single fin, where triangular was

better than trapezoidal, as mentioned in Publication III. The reason is flow distribution. In the

array, flow is distributed unevenly with the highest volumetric flow at the tip of the fin where the

channel is at its widest. Consequently, the fin tip cools too much, lowering the efficiency of the

fin. In the trapezoidal case, the thickness of the fin tip still enables sufficient conduction.

5.3.3 Natural convection optimization: Case III

In the natural convection case, a reference fin array shown in Fig. 16 was the subject of multi-

objective optimization. In Publication IV, optimization was performed with two different sets of

criteria, because the first selection of maximum temperature and mass gave inconveniently large

arrays as an optimal result. A second optimization was performed whose criteria were fin array

mass and outer volume with the components’ maximum temperature held as a constraint in

optimization. The constraining value was equal to 38.9 °C, which was the value of the reference

design. One possibility could also have been that all the three criteria would have been optimized

simultaneously. However, this approach was simplified here by changing the maximum

temperature criterion as a constraint, since it provides sufficient information on the amount of

mass that can be reduced by maintaining the same heat sink performance.

In the original reference, the array data is shown in Fig. 16, and the components are located

symmetrically in the center. Results of multi-objective optimization are shown in Fig. 32, where

mass and outer volume of the array constituted the criteria. The dimensions of one selected Pareto

optimum, which is believed to represent a good comparison point (marked #1 in Fig. 32), and 

where mass was reduced by about 50 % and outer volume by about 40 % are N = 36, tb = 0.54

mm, L = 68 mm, W = 256 mm, b = 6 mm, l = 82 mm; component locations are shown in Fig. 33.
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Figure 32. Pareto-optimal results. 

 
Figure 33. Selected solution. 

The reference and final cases in Fig. 33 were also calculated using CFD. When the CFD results 

were compared with those in Fig. 33, the maximum temperature of components differed by less 

than 10 %. However, the lowest CPU -time consumption was about 1 hour with the CFD (with 

two CPUs) and with the calculation model less than 5 seconds (with single CPU). Based on these 

numbers, it is safe to say that the model is more than one thousand times faster than the CFD 

approach. In addition, preprocessing time was not included in the numbers above. It makes the 

model even faster in comparison because, with the CFD approach, considerable time is used to 

mesh the domain and choose the appropriate boundary conditions, whereas with the model, only 

a few numerical parameters are modified and the calculations are ready to operate.  

# 1

Reference
m = 1.19 kg
V = 2.6 dm³
ΔTmax = 38.9 K

# 1
m = 0.57 kg
V = 1.53 dm³
ΔTmax = 38.9 K

37

33
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25

21

ΔT [K]
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5.4 Discussion 

In the case of isothermal wall and isothermal base plate tests, the new calculation model 

accurately predicted the heat transfer rate of the channel. In the complete 3D heat sink cases with 

discrete components, the prediction of the maximum temperature was almost precise in the 

experimental case of forced convection, and acceptable in cases of natural convection. In forced 

convection, all the constituent parts of the calculation model are as accurate as are the Nusselt 

number and friction factor correlations used, and thus the obtained results are excellent. In natural 

convection, the error is greater because the mean flow velocity is calculated from the equilibrium 

of forces using assumptions, such as the average fluid temperature in the channel to predict 

buoyancy, and forced convection friction factor for shear stress. In addition, the flow is laminar 

and the effect of the wall temperature distribution must be taken into account when calculating 

the wall heat flux distribution. However, this was simplified in the model by using isothermal 

wall Nusselt number since, as indicated in Section 5.2.1, its use has only a minor effect on the 

total heat transfer rate if the wall temperature increases in the flow direction. In practice, this is 

the case in a typical industrial heat sink. 

In this thesis, the comparing solutions from the literature were mainly analytical solutions for the 

cases of isothermal channels and isothermal base plates. These analytical solutions of Bar-Cohen 

and Teertstra (see Chapter 2) are based on experiments or they have been validated 

experimentally. In addition, a comparison was made in the case of a heat sink with nine 

components between the Lehtinen’s model and the present calculation model in Publication III, 

and no significant difference was found between the models. However, no other relevant data in 

the literature has been found for discrete components cases than those of Lehtinen and Lindstedt 

[4, 21]. The rare cases encountered by the author concerned other liquids and were not suitable 

for comparison. Because of the rare data, CFD was used as a main comparison tool in 3D 

calculations, and its feasibility was confirmed in the same analytical tests that were performed 

for the present calculation model.  

After testing the model, it was used in several different multi-objective optimization cases, where 

it demonstrated that significant material savings are realized when optimization is performed. In 

a typical case presented in this thesis, about 50% of the total mass was reduced in result of 

optimization without affecting the performance of the heat sink. In conclusion, the optimization 

cases presented in this thesis show that existing heat sinks have generally too thick fins. The 

optimum thicknesses of the fins was found to be a rather thin, of the order of 1 mm and 0.5 mm 

respectively, in the cases of forced and natural convection. The exact dimensions are influenced 

by the components and the operating conditions and, therefore, these figures should not be taken 

in general. Another interesting finding was that in the case of heat sinks, the trapezoidal fins are 

more efficient than the triangular fins, which is not predictable on the basis of single-fin analysis. 
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Summary & Conclusions 

This thesis introduces a new model to calculate the heat sink temperature distribution in forced 

and natural convection cooling. This presentation is based on that in Publication V, which 

combines the separate models for forced and natural convection in Publications I and IV, 

respectively. The main advantage of the new model is that it significantly reduces CPU 

calculation time over CFD. The speedup is achieved by replacing the slow 3D -solution of air 

velocity and temperature distributions in CFD with 1D -solutions of air mean velocity and 

temperature distributions in the channels, where the convective heat transfer and friction is 

calculated from analytical correlations. Numerical solution is performed only for the temperature 

field of the solid.  

The calculation model was tested for its accuracy in many test cases, and the results obtained 

were compared with those with CFD and analytical solutions: the maximum temperature 

difference was within 10 % between the solutions. This is important, because in optimization the 

maximum temperature of the components constitutes the most important quantity. However, the 

modifications mentioned above make the new model at least a thousand times faster than CFD. 

This holds true even after the transient natural convection CFD solutions were made faster by 

modifying the thermal capacity (𝜌𝑐𝑝 –value) of the aluminum array. Thermal capacity value was 

reduced to one thousandths of the original, which allowed temperature distribution to reach the 

steady state levels in a relatively short time, as mentioned in detail in Publication IV. 

The main advantage of the new model is in its ability to calculate quickly many completely 

different heat sink geometries. This allowed the new calculation model being used in multi-

objective optimization, because it helps us to arrive at the best compromise solutions, called the 

Pareto optimal set, with in practical time period. In optimization, the chosen criteria are usually 

components’ maximum temperature, and mass or outer volume of the heat sink. The multi-

objective optimization version of the PSO algorithm was chosen as the optimization algorithm, 

because it is effective and simultaneously capable of dealing with both discrete (the number of 

fins) and continuous (all geometrical dimensions) variables.  

The suitability of the model in optimization was demonstrated in several cases in the thesis. The 

chosen optimization cases, originally published in Publications II, III, and IV, are common, e.g., 

in the power electronics industry. These examples showed that multi-objective optimization helps 

to reduce the mass of a heat sink significantly, as long as optimization criteria and constraints are 

chosen carefully. The new method thus benefits optimization in industrial use, where time 

consumption in pre-design is an important consideration. In fact, as a demonstration of the 

achieved speedup, one multi-objective optimization using the new model consumes typically 

fewer CPU -resources than one heat sink CFD -solution.  
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The method can be easily implemented as a stand-alone software package. It needs a suitable 

programming platform such as MATLAB or Python, which supports the fast linear algebra 

solution libraries. The calculation model has already once been implemented and is currently 

being used in industry. 

In summary, the main contributions of this thesis are to 

 present the calculation model for forced convection, which combines effectively 

analytical and numerical solutions. 

 extend the calculation model for natural convection by utilizing the average fluid 

temperature and forced convection friction factor results in channel flow.  

 use the calculation model as a part of a multi-objective optimization method and show 

how it can benefit heat sink design process by helping to find efficient geometries with 

significantly fewer material used. 
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Future work 

In this thesis, the calculation model constitutes a key element of the optimization method. 

However, it has many built-in assumptions, some of which were tested here. Yet some other 

assumptions, e.g., the impact of radiation heat transfer on the model’s accuracy should be tested 

in future work. In this thesis, it was assumed that all the heat sink surfaces are made of bright 

aluminum, whose emissivity is about ≈ 0.05, a rather low value, which in the case of forced 

convection has no significant impact on the total heat transfer rate. In a natural convection case 

in Ref. [30], it was also concluded that in the case of an isothermal heat sink the thermal radiation 

had typically only a small effect on total heat transfer. However, the issue should still be examined 

in a case of many hot discrete components. 

A further important topic for future studies is to investigate enhancement of heat transfer with pin 

fins and other alternative fin structures, a subject that was briefly studied in Publication V. For 

example, fins cut in the flow direction break the developing temperature boundary layers and 

increase mixing and turbulence in the cutoff section, resulting in an increased heat transfer 

coefficient. On the other hand, cutting shortens the heat transfer area, because of removed 

material. However, previous studies [38] suggest that there is an optimal cutting length to 

maximize heat transfer in the array, a topic that should be studied. 

Yet another important topic for future studies is to determine optimal layout patterns and heat 

sink dimensions for different sets of components. It would be ideal to find some non-dimensional 

variables that would immediately indicate how to size the heat sink dimensions and arrange 

component locations for maximum performance. A possible correlation need not be perfect to be 

helpful. Such guidelines could then be used in pre-design without running actual optimization, or 

at least, they could serve as a good starting point for actual optimization. 
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ABSTRACT Fins and fin arrays are used for cooling heat generating components in electronics.
Heat transfer composed of simultaneous convection and conduction can be solved numerically
using commercial CFD codes but this is time consuming, especially if the goal is to optimize the
geometry. A faster method is obtained by adopting analytical expressions for convection and
solving only conduction numerically. In the paper this type of approach and equations are
presented. The validity of the method is checked by comparing the results to measured data and to
results obtained purely numerically. It was observed that the calculation time using the method
presented is much shorter compared to that if velocity and temperature fields of the flow and solid
are solved numerically. Thus, the method is a very suitable tool, for instance, in a multiobjective
optimization where hundreds of solutions are required.

NOMENCLATURE

fluid specific heat
channel width
hydraulic diameter
Fanning friction factor
apparent friction factor
eigenfunction
heat transfer coefficient
thermal conductivity of fluid
thermal conductivity of solid
fin height
fin length
dimensionless length,
Nusselt number
Prandtl number
heat rate
heat flux
Reynolds number,
fin temperature
base plate temperature
fluid mean temperature
fluid inlet temperature
surface temperature



fin thickness
mean velocity in channel
dimensionless coordinate,
dimensionless coordinate,
cartesian coordinates

Greek symbols

momentum velocity distribution factor
temperature difference,
temperature difference,
eigenvalue
dynamic viscosity
kinematic viscosity
dummy variable, Eq. (7)
density
expansion ratio

INTRODUCTION

Fins and fin arrays are used in the cooling of components in electronics. In Fig. 1 a typical array is
shown, in which heat generating components are located on the lower surface of the base plate.
When the heat release rate is known, the array should be designed in such a way that maximum
temperatures are below the values which components can withstand without failure. In addition, the
volume and mass of an array should be small and the pressure drop and fan power low. The flow in
channels can be laminar or turbulent.

In principle, the solution of the convection-conduction problem in Fig. 1 can be obtained by solving
numerically the partial differential equations governing fluid flow and temperatures. However, if
the optimization of geometry is required, it takes much effort to approach the problem this way.
Instead of employing a numerical approach, convection in channels can be treated very accurately
using analytical expressions. This type of treatment also helps in finding non-dimensional variables
from which the optimal geometry can be easily found.

Simultaneous use of analytical and numerical treatment has successfully been applied by Karvinen
[2010] to find optimal geometries of fins. A similar type of approach can also be applied to fin
arrays with isothermal fins [Lindstedt and Karvinen], and some new results have been obtained and
found compared to those presented in the literature by Bejan et al. [1992]. Also non-isothermal fin
arrays with a fixed temperature or heat flux in the base plate can be dealt with quite easily, as shown
by Lindstedt and Karvinen [2011] and Lehtinen [2005]. An approximate analytical treatment of
non-isothermal fin array with a constant base temperature by Teertstra et al. [2000] is also worthy
of mention. Here they used the mean heat transfer coefficient of isothermal channel walls and the
concept of fin efficiency.

Purely numerical solutions of non-isothermal arrays are also found. For example, Li and Peterson
[2007] minimized the thermal resistance of a micro-channel fin array with a fixed base area for
various values of pumping power. A fully developed laminar flow in the channel was assumed. This
type of assumption is correct when the channel length is large compared to the channel width, and
especially in the case of large Prandtl number fluids. In fact the governing equations are the same
for micro scale and larger geometries. Many studies, such as those of Wang et al. [2011] and Ryu et
al. [2002], have employed numerical modeling to optimize microchannel heat sinks.



Figure 1. Plate fin array.

The present paper is based on a project in which the goal has been to develop a rapid method for the
optimization of heat sinks in power electronics. Here convection in channels has been calculated
using analytical expressions, and only conduction in fins and in the base plate is solved numerically.
Very accurate expressions have been used that are based on the step change in a surface temperature
and the superposition technique to take into account an arbitrarily varying surface temperature. For
turbulent flow, even the assumption of a constant heat transfer coefficient is often accurate enough.

A comparison between the present solution and the purely numerical solution in the case of a
turbulent flow in channels is shown concerning the calculation time. For laminar flow, the validity
of the proposed model has already been presented in the literature by Lindstedt and Karvinen. It
was observed that the calculation time was some orders of magnitude smaller compared to that of a
purely numerical solution when use is made simultaneously of analytical expressions for convection
and a numerical solution only for conduction. As for optimization, the results of a constant
temperature base plate are a good starting point for multiobjective optimization, where the array
volume and mass as well as the pressure drop or fan power are optimized simultaneously.

MODEL

Heat conduction in fin and base plate Temperature distributions  of fins differ according
to the location of the heat generating components on the lower surface of  the base plate shown in
Fig. 1. Only if the base plate temperature is constant are they similar. In addition, the fluid mean
temperature varies not only in the x- direction but also in the z- direction, depending on the fin
temperature distribution. Thus, temperatures of fluid and fins are coupled together.

The temperature of a thin fin is assumed to be constant in the fin thickness direction and solved in
the x- and z- directions. The edges of the fins and base plate in Fig.1 are insulated as is the lower
surface of the base plate, except where the heat generating components are located. In these
locations a known heat flux is given.

If heat transfer coefficients ( ) and fluid mean temperatures  on both sides of the fin
in Fig. 2 are known at the location , the equation for temperature  taking into account
convection and conduction using the finite difference method is



Figure 2. Heat balance of fin nodal point.

(1)

In equation (1) above, heat transfer coefficients  and  are obtained from the analytical
expressions given below. Conduction in the base plate is also treated with the 3D finite difference
method.

If heat transfer coefficients and mean fluid temperatures are known everywhere in an array, the
temperature distribution of fins and base plate is governed by the system of finite difference
equations in matrix notation as , from which  can be solved. The calculation of mean
temperatures and heat transfer coefficients are explained below.

Convective heat transfer  Heat transfer coefficients are needed in Eq. (1) in order to solve the fin
temperature distributions. Because the heat transfer coefficient depends on the fin temperature
especially in laminar flow, the use of an isothermal result yields errors in a non-isothermal channel.
For example, the numerical values of heat transfer coefficients are different for constant surface
temperature and heat flux boundary condition. Real fins are not isothermal, especially if the amount
of material is optimized.

If a fully developed velocity profile is assumed, the local heat flux is obtained as a solution of the
Graetz problem. For an isothermal parallel plate channel it is given by Shah et al. [1978] and Kays
et al. [2005] as

(2)

t

h1(Ti,j Tm1) x z

h2(Ti,j Tm2) x z

k(Ti-1,j Ti,j)t z
x

k(Ti+1,j Ti,j)t z
x

k(Ti,j-1 Ti,j)t x
z

k(Ti,j+1 Ti,j)t x
z

x
z

y



Table 1
Eigenvalues and functions for isothermal parallel plates

n
0
1
2

> 2

where eigenfunctions  and eigenvalues are given in Table 1. The non-dimensional distance in
Eq. (2) is defined as

(3)

In Eq. (3) the Reynolds number  is defined using the hydraulic diameter .

The solution (2), which is based on a fully developed velocity profile, is very accurate for high
Prandtl number liquids. For small Prandtl numbers, Eq. (2) underestimates heat transfer near the
inlet, but for long channels it is very accurate [Shah et al. 1978]. For air with , Eq. (2)
gives an exact result when . A very accurate correlation of the mean Nusselt number for
an isothermal channel is [Shah et al. 1978]

(4)

which also takes into account hydrodynamically developing velocity profile. Equation (4) is given
because by using the mean heat transfer coefficient from Eq. (4), very good approximate results are
obtained for the fin design. The heat transfer rate from an isothermal channel with wall
temperatures  and the length  are obtained from equation

(5)

where the non-dimensional length is defined

(6)

Because the energy equation, the solution of which is Eq. (2), is linear for a fully developed velocity
profile, the superposition principle can be used to derive the solution for arbitrarily varying surface
temperature [Kays et al. 2005]

(7)

If the channel wall temperature  is known, the local heat flux is obtained from Eq.
(7). The total heat transfer from the channel wall to the flow is also obtained from Eq. (7) by
integrating it as a function of distance. The mean fluid temperature is obtained as



(8)

Now, the wall and mean fluid temperatures are known and heat transfer coefficients can be
calculated everywhere

(9)

When these are substituted into heat conduction Eq. (1), we obtain the equations which give the
new temperature of the fin array. If the result from the solution  is not the same as the
original temperature distribution, new heat fluxes are solved from Eq. (7) and the process is
repeated.

For turbulent flow, a similar type of solution as that for the laminar one exists, but the eigenvalues
and eigenfunctions depend on the Reynolds number. In many cases an assumption of a constant
heat transfer coefficient obtained, for instance, from the Gnielinski correlation [Hewitt 1998]

(10)

can be used. In Eq. (10),  is the friction factor of a fully developed turbulent flow. For turbulent
flow, heat transfer coefficients are calculated from Eq. (10) and substituted into Eq. (1), as in the
laminar case.

Pressure drop If the pressure drop across the array is the focus of interest, it consists of three
parts: inlet loss, friction loss in a channel and exit loss. The apparent friction factor caused by the
wall friction and velocity profile development can be solved for laminar flow using the correlation
[Shah et al. 1978]

(11)

where

(12)

In addition to friction above, losses are also caused at the channel inlet and outlet. The inlet losses
are especially difficult to evaluate because they depend on the shape of the inlet geometry, i.e., is
there flow separation. If it is assumed that there are no losses at the inlet, the overall pressure drop
can be expressed as

(13)

In Eq. (13),  is the contraction ratio and  the correction factor of momentum. For
fully developed velocity profile when , its value is 1.2. Details concerning the
evaluation of inlet and exit losses are found in the literature [Webb 2006].

For turbulent flow  at the exit and the flow development is very rapid in the inlet region.
Thus, the first assumption is to use the friction factor of a fully developed turbulent flow



(14)

A slightly more accurate result for a parallel plate channel flow is obtained if, in the equation above,
the Reynolds number is calculated using  as a characteristic length instead of  [White
1986].

RESULTS

The validity of the method presented above has already been tested for laminar flows. Next, some
results of the proposed approach for turbulent flows concerning calculation times are compared to
those needed in purely numerical solutions. Problems in numerical modeling are also discussed.
Only one channel with an isothermal base plate is modeled when a comparison between the present
method and numerical modeling is made. In addition, the results for the same array when a heat
generating component is located on the base plate is compared to measured data.

Test case 1  The test case is an aluminum array shown in Fig.1 with dimensions ,
,  and . Other values in the calculations were: ,
 and constant thermal properties , ,

,  and .

For numerical modeling a commercial computer code Fluent was used. Since the base plate
temperature is constant, only one half of the channel and fin needs to be considered. The grid was
refined in the flow direction near the channel inlet and also after the channel exit. The number of
control volumes affects the result, which is shown in Fig. 3. Grid independence for heat transfer and
pressure loss was examined by calculating the same case with different grids and comparing the
mean temperature rise, i.e., the temperature distribution integrated over the channel exit area in an
array  and the total pressure loss . The smallest grid contained 4410 control
volumes and the largest one 1008000. It can be seen that when the number of control volumes is
greater than 5  we have a grid-independent result.

It was also noticed that in the standard k-epsilon method, an enhanced wall treatment [Chen et al.
1988] was required in order to get the solution to converge. If use is made of standard wall
functions, the increase in control volumes does not give convergence. As a matter of fact, it is very
difficult to know what theories commercial codes are using.

In the proposed model only 450 control volumes were needed in a fin; 30 control volumes in the x-
direction and 15 control volumes in the z-direction. Table 2 shows a comparison between different
methods for the temperature change and pressure drop in the channel.  Corresponding fin
temperature distributions are also shown in Fig. 4.

Table 2.
Results of purely numerical solution and proposed model

Quantity numerical Current Method Difference

[Pa] 1013



Figure 3. Effect of control volumes on outlet temperature (left) and pressure loss (right).

Figure 4. Fin temperature distribution of test case. Current method (left) and numerical solution
(right).

On the basis of Table 2 and Fig. 4, it can be concluded that the proposed model is accurate enough
for practical design purposes. It should also be noted that the results of numerical modeling depend
very much on the type of turbulence model adopted. As regards time consumption, the current
method is several orders of magnitude faster than purely numerical modeling.

Test case 2 The results of the present method are also compared to measurements made with a real
heat sink. The geometry of the array was the same as in Test Case 1. The component, which
generates constant heat flux of  was located on the base plate, 50 mm from the leading
edge in Fig 1. The component length was 104 mm and its width was the same as the base plate
width, 134 mm. Altogether the array contained 27 fins and the base plate, the thickness of which
was  Temperature was measured with thermocouples in the base plate at its center line, 3
mm under the lower surface. The Reynolds number in the measurements was  and the
inlet air temperature .

The calculated temperature distribution at the center line in Fig. 5 is in reasonable agreement with
the measurements. There is one point that differs but this may be due to a measurement error.
However, the pressure loss calculation differed from the measured data. The measured value was
435 Pa but the calculation gave a value of 501 Pa. The reason for this may be that the velocity
distribution before the test section was not uniform.
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Figure 5. Measured and calculated temperature at center line of base plate.

CONCLUSIONS

In the paper a method is presented in which analytical solutions for fluid flow and forced
convection are applied simultaneously with the numerical calculation of conduction in a solid. The
solution procedure of conjugated convection and conduction problem is given. The method is
suitable for laminar and turbulent flows. An essential advantage of the method presented is that the
solution time of a three dimensional problem is very small. Thus, it is very suitable for
multiobjective optimization where heat transfer, pressure drop, the amount of material or array
volume must be simultaneously optimized.

It is important to note that the results obtained by using the simple method presented in the paper do
not differ much from the results obtained with CFD modeling. It should also be noted that in the
case of a turbulent flow, numerically obtained results are also very sensitive to the turbulence model
adopted. Differences of the same magnitude may be obtained using different values for thermal
properties in practical calculations. CFD calculations require much more time. This means that
purely numerical modeling is an impractical tool for optimization. In practical fin arrays the
temperature field is three dimensional and every fin and the base plate must be modeled, which
entails very many control volumes, depending on the size of fin array. In such cases the overall
design time of industrial fin array applications is long because optimization involves calculating
hundreds of solutions in order to achieve good results. The method presented here can also be used
in transient cases by assuming a quasi-static treatment in which the heat capacity of fluid is ignored.
This type of assumption is valid especially for gases [Karvinen 1988].
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Fig. 4 Fin temperature distributions with proposed method (top)
and CFD solution (bottom).
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4.2 Case 1

150 mm

132 mm
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T = 27 C
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N = 30
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Tmax = 71.8 C
p = 274  Pa

= 1200 W

air
Fig. 7 Reference heat sink 1: m = 3.31 kg
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Fig. 8 Optimized array with rectangular fins: m = 0.78 kg

T = 27 C
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1.47 mm
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Tmax = 71.8 C
p = 283  Pa

= 1200 W
Heat generation

air
Fig. 9 Optimized array with triangular fins: m = 0.68 kg

Table 1. Comparison of original array dimensions with optimized
values for case 1.

Original design Optimized design
Rectangular Triangular

Tmax (°C) 71.8 71.8 71.8
m (kg) 3.31 0.78 0.68
L (mm) 150 115.0 123.4
W (mm) 132 134.7 137.1
b (mm) 12 0.01 0.025
N (mm) 30 59 46
tb (mm) 2 0.77 1.47
tt (mm) 2 0.77 0
l (mm) 110 55.0 60.1
X (mm) 23 0 0.6
Y (mm) 0 1.7 1.3

4.3 Case 2

300 mm

200 mm

110 mm

T = 27 C
2 mm

N = 34

Heat generation
= 550 W

air

Heat generation
= 450 W

Fig. 10 Reference heat sink 2: m = 7.13 kg
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Fig. 11 Optimized array with rectangular fins: m = 3.85 kg

287 mm

196 mm

72 mm
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1.04 mm
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Heat generation
= 550 W
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Heat generation
= 450 W

Fig. 12 Optimized array with triangular fins: m = 3.35 kg
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54
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m [kg]

Tmax [°C]

Pareto optimal results
for triangular fins

Pareto optimal results
for rectangular fins

(Fig. 12)

Maximum allowed temperature

Reference design (Fig. 10)

(Fig. 11)

Original design Optimized design
Rectangular Triangular

Tmax (°C) 53.8 53.8 53.8
m (kg) 7.13 3.85 3.35
L (mm) 300 288.8 286.5
W (mm) 200 189.1 195.9
b (mm) 10 12.8 12.4
N (mm) 34 58 62
tb (mm) 2 0.77 1.04
tt (mm) 2 0.77 0
l (mm) 100 56.4 59.4
X (mm) 20 14.4 12.7
Y (mm) 50 42.4 53.9

5 Conclusions
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Optimal Shapes of Straight Fins
and Finned Heat Sinks
Finned heat sinks are used to cool power electronics components. We present optimiza-
tion results for single rectangular, triangular, and trapezoidal fins. After that, we minimize
the mass of an existing heat sink consisting of a base plate and a fin array by optimizing
the geometrical variables and component locations on the base plate. An analytical solu-
tion is used with rectangular fins and a numerical model with trapezoidal fins. Whereas
the triangle is the best shape for single fins, in a heat sink flow velocity coupled with
geometry favors trapezoids over triangles and rectangles. [DOI: 10.1115/1.4029854]

Keywords: heat sink, trapezoidal fin, forced convection, analytical solution, optimization,
component placement

1 Introduction

Plate fin heat sinks cooled with forced air flow are commonly
used to thermally manage electronics components in many appli-
cations [1]. Though air-cooling is typical in industrial inverters,
there is an increasing trend to adopt liquid or two-phase cooling
[2]. Reduction of available space and limitations of mass and
consumed fan power continuously call for more efficient cooling
systems. In this respect, there is no difference between air and
liquid cooling.

The design of finned heat sinks often relies on fin theory, which
assumes one-dimensional heat conduction, a constant heat transfer
coefficient, and a uniform base temperature TB [3]. This approach
is correct for the fin in Fig. 1(a), when the mean heat transfer
coefficient of the flow over an isothermal surface is used [4].
Consequently, simple analytical expressions have been found for
optimal fin geometries [5].

Many recent numerical optimization studies on heat sinks focus
on the whole base plate receiving a uniform heat flux from the
components [6–9]. On the other hand, in the analytical model of
Muzychka et al. [10], three-dimensional heat conduction in the
base plate was solved with discrete heat sources at the bottom, but
on the fin side, thermal resistance was modeled with a uniform
effective heat transfer coefficient. This method was applied in the
study of T€urkakar and Okutucu-€Ozyurt [11]. A channel side heat
transfer coefficient can be obtained, e.g., from the model of
Teertstra et al. [12].

Heat sinks have also been studied using methods that differ
from traditional ones. Entropy methods, developed by Bejan
[13], have been suggested to replace the traditional criteria in
optimization, and some related studies have been published [14].
Although minimum entropy design may be interesting from a
theoretical point of view, it does not guarantee that the underly-
ing important quantities, e.g., thermal resistance and mass, are
optimal.

Lehtinen [15] derived an analytical solution for a plate fin heat
sink with fluid heating in the flow direction, conjugate heat trans-
fer in fins, and the effect of component locations on the base plate
temperature taken into account. The model gives the temperature
field in the base plate and fins in 3D and 2D Fourier series expan-
sion. For a laminar, thermally developing (Graetz) flow, the

solution is exact, and for a turbulent flow, a uniform heat transfer
coefficient in channels can be used in practical applications.

In the literature, the results of optimal fin geometry are often
presented in a difficult manner, and in many cases, an arbitrary
heat transfer coefficient is used. The underlying optimal dimen-
sions of the fin may be hard to acquire, even if all the appropriate
initial values are given. Results on heat sinks are inevitably less
general because of a larger number of constraints.

In this paper, we give simple explicit expressions for the opti-
mal dimensions of rectangular, triangular, and trapezoidal fins,
when the fin is cooled by forced convection. After that, we present
a case study in which the mass of a plate fin heat sink is mini-
mized while the fan power is fixed. Every geometrical design vari-
able as well as component locations on the base plate are used as
design variables. We show that the effect of fin shapes, i.e., rec-
tangular, triangular, and trapezoidal, is different from that of sin-
gle fins because of the constraint on fan power.

2 Optimization of Heat Transfer

The purpose of a heat sink is to limit the temperature of heat
generating components. The optimization criteria could then be
heat transfer rates, temperature limits of components, mass, vol-
ume, and pressure drop, and the power of the fan used for forced
cooling. Other aspects such as noise and fouling may also count.
The criteria are conflicting in that, e.g., lowering the fan power
increases the maximum temperature of the components.

In practice, there is only one objective function that is mini-
mized or maximized, whereas the other criteria are constrained to
remain at, below, or above some fixed values. The standard form
of this constrained optimization problem is

find x

to minimize f xð Þ
subject to hi xð Þ ¼ 0; i ¼ 1; 2;…;m

gj xð Þ � 0; j ¼ 1; 2;…; n

(2.1)

where x is the design variable vector, f xð Þ is the objective func-
tion, and hi xð Þ and gj xð Þ are equality and inequality constraints. In
fin design, the design variable vector contains, e.g., the fin dimen-
sions. To be a solution of problem (2.1), the design x� must satisfy
the Karush–Kuhn–Tucker (KKT) conditions [16, p. 321]
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rf x�ð Þ þ
Pm
i¼1

kirhi x�ð Þ þ
Pn
j¼1

ljrgj x�ð Þ ¼ 0

hi x�ð Þ ¼ 0; i ¼ 1; 2;…;m
gj x�ð Þ � 0; j ¼ 1; 2;…; n
ljgj x�ð Þ ¼ 0; j ¼ 1; 2;…; n
lj � 0; j ¼ 1; 2;…; n

(2.2)

where ki and lj are unknown KKT multipliers. Many optimization
methods seek directly to solve the set of Eq. (2.2).

Gradient-based optimization methods usually converge on a
local minimum that is nearest to the initial guess. In our case, this
was sufficient, and methods suitable for global optimization, such
as particle swarm optimization and genetic algorithm, were not
needed.

Sequential quadratic programming (SQP) is a gradient-based
optimization method suitable for solving problem (2.1). The idea
behind SQP is to construct a quadratic model for the objective
function f xð Þ using a Hessian matrix, i.e., a matrix of second
derivatives with respect to each variable. The quadratic model

function is minimized subject to linearized constraints. The Hes-
sian matrix and the linearization of the constraints are updated
during every iteration round. Nodecal and Wright [16] discuss
many different ways to implement the algorithm. In our study, we
used MATLAB’s fmincon-function [17], which includes an efficient
implementation of the SQP-algorithm.

3 Optimal Shape of Straight Fins

The fin in Fig. 1(a) is a basic element of a larger system such as
the heat sink in Fig. 1(b). As observed, when such a single fin is
placed in a free stream, the total heat flux can be calculated very
accurately by using the mean heat transfer coefficient of an iso-
thermal surface in fin theory [4]. When the mean heat transfer
coefficient is expressed with the mean Nusselt number [18]

Num;T ¼
C

m

U1L

�

� �m

Prn (3.1)

the fin parameter XT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hl2=kst

p
becomes

XT ¼
l

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

C

m

U1L

�

� �m

Prn kfL

kstb

s
(3.2)

The constants in Eqs. (3.1) and (3.2) are given in Table 1 for lami-
nar and turbulent boundary layers.

Table 2 shows the thermal resistance R for different fin shapes
in the above notation when the fin base is isothermal and the fin
tip and edges are insulated.

R ¼ Tb � T1
U

(3.3)

The functions I0 and I1 are modified Bessel functions of the first
kind of order 0 and 1, and K0 and K1 are modified Bessel func-
tions of the second kind of order 0 and 1. The solutions for rectan-
gular (tt ¼ tb) and triangular (tt ¼ 0) fins are, in fact, limiting
cases of the solution for a trapezoidal fin. These models also
require that the thermal conductivity of the fin material be high
and the heat transfer coefficient low so that the temperature gra-
dients across the fin thickness can be ignored. These assumptions
are justified for air cooled aluminum fins.

Table 1 Constants for Eq. (1) [18]

Flow type C m n

Laminar 0.332 1/2 1/3
Turbulent 0.0287 4/5 3/5

Table 2 Thermal resistance of straight fins [3]. XT is given in
Eq. (3.2).

Rectangular
R ¼ l

LtbksXT tanh XT

Triangular
R ¼ l

Ltbks

I0 2XTð Þ
XTI1 2XTð Þ

Trapezoidal
R ¼ 1

Lkslb tan j
I0 lbð ÞK1 lað Þ þ I1 lað ÞK0 lbð Þ
K1 lað ÞI1 lbð Þ � I1 lað ÞK1 lbð Þ

j ¼ atan
tb � tt

2l

la ¼ 2XT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tb

2l2 sin j

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tt 1�tan jð Þ

2 tan j

q

lb ¼ 2XT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tb

2l2 sin j

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ tt 1�tan jð Þ

2 tan j

q
Fig. 1 Schematics of a single fin (a) and a plate fin heat sink
(b)
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3.1 Optimal Fin Geometry. Studies of fin optimization usu-
ally focus on minimizing thermal resistance with a fixed volume
[3,5,19–21], which gives the maximum heat transfer rate when the
base temperature is fixed. Equivalent results are obtained also
when volume is minimized and thermal resistance is fixed. In
practice, fin dimensions are limited due to spatial restrictions and
manufacturing techniques, which lead to the following optimiza-
tion problem:

find x ¼ L; tb; tt; lf g
to minimize R xð Þ

subject to V ¼ V0

Lmin � L � Lmax

tb;min � tb � tb;max

tt;min � tt � tt;max

(3.4)

The fixed volume constraint can be used to eliminate the fin height
l; thus, l is not listed as a design variable. The limits for thickness
at the tip tt are used only with trapezoidal fins.

Solutions of problem (3.4) for rectangular and triangular fins
are often found either at the maximum admissible length Lmax or
at the minimum admissible thickness tb;min. Consequently, gener-
ally valid results have been obtained when thermal resistance is
minimized with volume and when either L or tb is fixed. The
method to find optimal geometries for a rectangular plate fin is
given in Ref. [21] and applied to other fin shapes in Ref. [5]. The
case where l is fixed has no solution.

The optimal fin geometry derived for different fin shapes in
Ref. [5] was presented using nondimensional variables, which
might be difficult to use. We present these results in a simplified
form in Tables 3 and 4. Table 3 gives explicit expressions for tb
and l and also for the minimum thermal resistance R for a case in
which the fin volume V and fin length L are fixed. The correspond-
ing results on a case in which tb is fixed are given in Table 4. The
results are different for laminar and turbulent flows, because the
exponent m in Eq. (3.1) changes with the flow type.

The results in Tables 3 and 4 are simpler to use than any previ-
ous results on fin optimization; no calculation of heat transfer
coefficients or Bessel functions is necessary, because detailed con-
vection and optimization criteria are already included in the given
expressions. The same results are valid also when thermal resist-
ance is fixed and volume is minimized. In this case, the minimum
volume can be solved from the expression for thermal resistance.

3.2 Comparison of Fin Shapes and Flow Types. To illus-
trate the differences between different fin shapes and flow types,
we present a simple example where aluminum (ks ¼ 170 W=mK)
fins were cooled with air flow (U1 ¼ 10 m=s). The fin thickness
at base was a fixed tb ¼ 1 mm; thus, the results in Table 4 were
used. The base temperature was Tb ¼ 80 �C and the flow tempera-
ture T1 ¼ 20 �C. The air properties were taken at Tref ¼ 67 �C.

The optimal thermal resistances from Table 4 are shown in
Fig. 2 as a function of the available volume V. For instance, when
the fin volume is a fixed V ¼ 2 � 10�6 m3, and when the boundary
layer is laminar, the maximum heat transfer rate of an optimally

Table 3 Optimal fin geometry and R with fixed V and L for lam-
inar (m ¼ 1=2) and turbulent (m ¼ 4=5) flow

Rectangular
tb ¼ 0:998L�1 C

m
V2 U1L

�

� �m

Prn kf

ks

� �1=3

l ¼ V= Ltbð Þ

R ¼ 0:796 ksVð Þ�1=3 C

m

U1L

�

� �m

Prnkf

� ��2=3

Triangular
tb ¼ 1:671L�1 C

m
V2 U1L

�

� �m

Prn kf

ks

� �1=3

l ¼ 2V= Ltbð Þ

R ¼ 0:704 ksVð Þ�1=3 C

m

U1L

�

� �m

Prnkf

� ��2=3

Trapezoidal Optimal trapezoidal fins take triangular shape

Table 4 Optimal fin geometry and R with fixed V and tb for lam-
inar (m ¼ 1=2) and turbulent (m ¼ 4=5) flow

Rectangular
L ¼ n V2 C

m

U1
�

� �m

Prn kf

ks

t�3
b

� � 1
3�m

;

n ¼ 1:411; laminar;
2:323; turbulent

�
l ¼ V= Ltbð Þ

R ¼ n
1

kstb

V

tb

� �mþ1
m�3 C

m

U1
�

� �m

Prn kf

kstb

� � 2
m�3

;

n ¼ 0:7526; laminar

0:6523; turbulent

�
Triangular

L ¼ n V2 C

m

U1
�

� �m

Prn kf

ks

t�3
b

� � 1
3�m

;

n ¼ 2:793; laminar

5:176; turbulent

�
l ¼ 2V= Ltbð Þ

R ¼ n
1

kstb

V

tb

� �mþ1
m�3 C

m

U1
�

� �m

Prn kf

kstb

� � 2
m�3

;

n ¼ 0:5346; laminar

0:3834; turbulent

�
Trapezoidal Optimal trapezoidal fins take triangular shape

Fig. 2 Minimum thermal resistance as a function of volume for
rectangular and triangular fins with an isothermal base.
U‘ 5 10 m=s, tb 5 1 mm, and Tb 2 T‘ 5 60 �C.

Fig. 3 Original heat sink, M ¼ 6:65 kg
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designed triangular fin is approximately 40% more than that of a
rectangular fin. If the boundary layer is turbulent, heat transfer is
almost twice as large as in a rectangular fin of the same volume.
A turbulent boundary layer can be created, e.g., with a small
roughness at the leading edge.

Results for trapezoidal fins are not given in Tables 3 and 4 or in
Fig. 2, because when the fin thickness at the tip tt is allowed to
vary freely between 0 and tb, optimal trapezoidal fins assume a tri-
angular shape (tt ¼ 0) regardless of whether the fin length L or
thickness tb is fixed. This is consistent with a previous finding that
triangular fins are better than parabolic fins, which again are better
than rectangular fins [5]. In other words, making the fin surface
more concave is the best compromise between mass and thermal
resistance for single straight fins.

4 Optimal Geometry of Finned Heat Sinks

In Sec. 3, we presented some theoretical results on optimal fin
geometry. A major approximation in these results was that we
assumed a boundary layer flow over the fin surface. To judge the
value of these results for dense fin arrays, we present a case study
in which the mass of an existing industrial heat sink was mini-
mized. Simple optimum results such as those with single fins
above are difficult to obtain with heat sinks due to a larger number
of variables and constraints. Such design is constrained not only
by volume or mass, but also by the available fan power.

An optimal fin shape in a heat sink depends on the initial values
of the problem, the locations and power of the heat sources, and
other constraints. We could combine the manufacturing, transpor-
tation, and operational costs into a single cost function and find a
fin geometry to minimize the life time costs. However, many of
these costs are unknown at the time of manufacturing. To
simplify, we minimized the material costs (mass), while the
operational cost (fan power) remained fixed.

In Sec. 4.1, we present the original heat sink design and discuss
the selection of design variables and constraints for optimization.
In Sec. 4.2, we examine rectangular fins and use an analytical so-
lution for a plate fin heat sink, which is presented in Appendix A.
A numerical finite volume model is used in Sec. 4.3 to study how
much mass can be reduced by using trapezoidal or triangular fins
instead of rectangular ones.

4.1 Case Study. Figure 3 shows the geometry and tempera-
ture field of the original heat sink together with the locations of
nine heat producing components. The temperature field was calcu-
lated using the analytical solution in Appendix A with component
sizes and heat powers given in Table 5. The original design geom-
etry is given in detail in Table 6.

The inlet air temperature was T1 ¼ 40 �C and fan power
P0 ¼ 6 W, which was estimated based on the existing system
using the pressure drop equations in Appendix B. The mass of the
original heat sink was M0 ¼ 6:65 kg, and the maximum base tem-
perature near the center of component 2 was Tmax;0 ¼ 109:1 �C.
The material properties of air and aluminum were taken at
Tref ¼ 67 �C.

4.1.1 Objective Function. The objective function in optimiza-
tion is the heat sink mass

M ¼ qsL Nl
tb þ ttð Þ

2
þ ðN � 1Þ Dþ tbð Þb

� �
(4.1)

where qs ¼ 2700 kg=m3 is the density of aluminum.

4.1.2 Design Variables. Treating the location and orientation
of each component as a separate design variable would lead to a
difficult optimization problem with many continuous and discrete
variables and many constraints. To simplify optimization, the
components were first located in a new arrangement shown in
Fig. 4 and then fixed relative to each other into a component

cluster. The distance between components 1–3 and 4–6 in the
flow direction was kept as in the original design.

Consequently, the design variable vector x ¼ N;U;D;L; b;f
tb; l; dLEg contains the number of fins, flow velocity, geometrical
variables, and the distance dLE of the component cluster from the
leading edge. In Sec. 4.2, the fins have a uniform thickness
(tt ¼ tb), but in Sec. 4.3, they are triangular (tt ¼ 0) or trapezoidal
with the fin thickness at the tip tt as an additional design variable.

4.1.3 Constraints. The design was primarily constrained by
space availability and manufacturing techniques. The fin thickness
had to be more than tb � 1:5 mm and the base plate thicker than
b � 6 mm. The width was a fixed W0 ¼ N Dþ tbð Þ
�D ¼ 242 mm. The components had to lie a minimum of 4 mm
from the edges of the base plate. Further, the optimization algo-
rithm in Sec. 2 requires that each design variable has a lower and
upper limit. The variable limits were selected so that the original
heat sink could be modified within realistic limits.

The maximum temperature of the components was limited to
below the maximum temperature in the original design:
Tmax;0 ¼ 109:1 �C. The fan power was fixed to P0 ¼ 6 W, even
when the geometry of the heat sink was altered. Fan power was
calculated using the equations in Appendix B. This constraint
allows the flow velocity to change when the geometry is changed
unlike with single fin mentioned earlier. To reduce the error asso-
ciated with using the Nusselt number correlation Eq. (A8) at low
Reynolds numbers, the Reynolds number was kept constant and
equal to Re0 ¼ 3300. With certain initial values, the Reynolds
number can become too low without this constraint.

4.1.4 Problem Statement. Based on the above discussion
about the objective function, design variables, and constraints, we
have the following optimization problem:

find x ¼ N;U;D; L; b; tb; l; dLEf g
to minimize M

such that Tmax � 109:1 �C
P ¼ 6 W

Re ¼ 3300

W ¼ 242 mm

dLE þ 156 mm � L
156 mm � L � 220 mm

1:5 mm � tb � 3 mm

0:3 mm � tt � 3 mm

6 mm � b � 26 mm

4 mm � dLE � 45 mm

N 2 38; 39;…; 55½ �

(4.2)

Problem (4.2) is solved separately for each value of N to avoid
discrete variables in optimization.

With rectangular fins, the equality constraints for width, fan
power, and Reynolds number were treated by elimination as fol-
lows. First, the channel width D was calculated from
N Dþ tbð Þ � D ¼ 242 mm. Then, the flow velocity U was calcu-
lated from 2DU=� ¼ 3300. Last, the fin height l was calculated
from Eq. (B2). With these simplifications, only four design varia-
bles, namely, L, b, tb, and dLE remained for numerical
optimization.

With trapezoidal and triangular fins, the finite volume method
was adopted because an analytical solution, as that in

Table 5 Component properties

Component Size (mm2) Heat power (W)

1–3 94	 48 450
4–6 93	 20 150
7–8 29	 69 15
9 34	 94 0
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Appendix A, was not available. The fin thickness at the tip tt was
an additional design variable, and the channel width D at the base
was calculated as with rectangular fins. The constraints for the
Reynolds number and fan power could not be used to further elim-
inate variables, because the channel width was not constant in the
y-direction. The calculation method is explained in Sec. 4.3.

4.2 Results With Rectangular Fins. With rectangular fins,
we used Lehtinen’s analytical solution [15] presented in
Appendix A. It comprises a set of equations to calculate tempera-
ture at any prescribed location in the fins and base plate. Finding
the location and value of the maximum base temperature required
an optimization routine of its own. This subroutine was performed
by starting the search from the midpoint of component 1, which
was the hottest component in the new component arrangement in
Fig. 4. Thus, maximization of a function with two variables (x-
and z-positions) was required.

Figure 4 and Table 6 show the details of the optimized heat
sink. In spite of strict design constraints, optimization reduced the
heat sink mass considerably over the original design, from 6.65 kg
to 3.41 kg. Most of the saving came from thinner fins and base
plate and from shorter length in the flow direction. The key factor
here was that the components which generated most heat were
located farther apart. This resulted in a more uniform temperature
distribution in the base plate—which, however, can also be a dis-
advantage. In the original design, high temperature affected only
components 1–3, but in the optimized heat sink also components
4–6 were subjected to high temperature. However, the maximum
temperatures of each component could be kept below those of the
original design by accepting less reduction in mass.

The lower limit for fin thickness was the only active variable
limit in the optimal design. Lowering this limit would further
decrease the mass. Depending on the variable limits and other ini-
tial values, more than one limit can be active. Moreover, the com-
ponent placement has a considerable effect on how small a mass
can give the required thermal resistance. These issues prevent us
from finding simple general rules for the optimal design of heat
sinks.

4.3 Results With Triangular and Trapezoidal Fins. The
heat sink in Fig. 4 could be further improved by using triangular

or trapezoidal fins. No analytical solution applied then, but the
temperature field in the base plate and fins was calculated using
the finite volume method. In the model, the fins and the channels
between the fins were divided into rectangular control volumes in
x- and y-directions, but only one volume was used in z-direction
for the fins and channels. The base plate in turn was divided into
several control volumes in all three directions.

Because the fin thickness decreased towards the tip, the mean
flow velocity was lower near the base and higher near the tip.
Each control volume with the same y-coordinate had the same
flow velocity. Flow velocities were calculated from the pressure
loss equation (B1) from the condition that pressure loss over the
channel was equal independent of the y-coordinate. The total flow
rate had to satisfy the constraint for fixed fan power in Eq. (B2).
The Reynolds number was calculated based on the mean flow
velocity.

Heat transfer coefficients at fin surfaces were obtained from Eq.
(A8) and given as boundary conditions for control volumes in the
fins. Heat flux from the components was used as a boundary con-
dition at the base plate, and all the other boundaries were

Table 6 Geometrical details of original (Fig. 3) and optimized (Figs. 4 and 5) heat sinks

Case N U m=sð Þ D mmð Þ L mmð Þ b mmð Þ tb mmð Þ l mmð Þ dLE mmð Þ tt mmð Þ

Original 41 8.0 4.0 190 20 2.00 99 — 2.00
Optimized rectangular 48 8.8 3.6 176.4 8.8 1.50 69.7 19.4 1.50
Optimized trapezoidal 53 8.7 2.9–4.3 174.5 8.8 1.71 68.3 15.0 0.33

Fig. 4 Optimized heat sink with rectangular fins using the ana-
lytical solution in Appendix A, M ¼ 3:41 kg

Fig. 5 Optimized heat sink with trapezoidal fins using the finite
volume method M ¼ 2:75 kg

Fig. 6 Mass and maximum temperature of optimized heat
sinks with rectangular, triangular, and trapezoidal fins. The per-
formance of heat sinks in Figs. 4 and 5 is marked with a circle
and a square.

Journal of Heat Transfer JUNE 2015, Vol. 137 / 061006-5



considered thermally insulated. Temperature fields of the heat
sink and fluid were solved iteratively. At first, air was at ambient
temperature, and the temperature field in the solid was calculated.
Then, the air temperature field was calculated, whereas the solid
part temperature distribution remained fixed. Solid and air temper-
atures were calculated repeatedly until the change in the maxi-
mum temperature in subsequent iteration rounds was under
10�6 �C.

In case of the original heat sink in Fig. 3, the finite volume
method gave a maximum temperature of 109.6 �C, which was
slightly higher than the 109.1 �C obtained with the analytical
method. Yet the difference was small, and Tmax;0 ¼ 109:6 �C was
used as the temperature limit in finite volume calculations. Opti-
mization was performed using trapezoidal fins with the heat sink
in Fig. 4 as the initial guess. The resulting geometry is shown in
Fig. 5, and the details of the geometry are given in Table 6. By
changing the fin shape, the heat sink mass could still be reduced
from 3.41 kg to 2.75 kg. The saving came from the reduced
volume of fins.

In optimization, the fin shapes were limited by the lower and
upper limits for tb and tt. Because the optimal fin thickness at tip
tt ¼ 0:33 mm is higher than the lower limit of 0:3 mm in problem
(4.2), the same optimal design would be also obtained without this
constraint. When the fin shape is allowed to change freely, optimi-
zation does not yield triangular or rectangular fins. The best result
is obtained with a trapezoidal shape.

The optimization problem (4.2) was solved with many different
fixed values of maximum temperature (results shown in Fig. 6).
Figure 6 shows directly how much mass can be reduced by chang-
ing the shape of the fins while keeping the same maximum tem-
perature. As an example, the optimized heat sink with rectangular
fins from Sec. 4.2 is shown as a circle in Fig. 6. When the maxi-
mum temperature was kept constant and trapezoidal fins were
used, optimization gave the heat sink shown in Fig. 5. The corre-
sponding point is marked with a square in Fig. 6.

When all geometrical variables were included in optimization,
minimum mass was obtained by using trapezoidal fins. Further-
more, triangular fins are problematic to manufacture. These results
can be explained as follows: with triangular fins, too much flow
passes near the fin tip, where temperature is low. On the other
hand, with rectangular fins, the mean flow velocity does not vary
in the y-direction, but too much mass is used near the tip region.
The trapezoidal fin is the best practical compromise between
thermal resistance, mass, and fan power.

5 Conclusions

We have presented optimization results for a single fin and heat
sinks. Using analytical expressions for convection heat transfer,
we derived simple equations in Tables 3 and 4, which explicitly
give an optimal geometry for rectangular, triangular, and trapezoi-
dal fins of fixed volume. Because of coupling convection and
conduction, the most concave form, i.e., triangular, is the best.

The thermal performance of heat sinks depends on fin and base
plate geometry and the locations and power of the heat sources on
the base plate. With rectangular fins, an analytical solution gives
2D and 3D temperature fields in fins and base plate with fluid
heating between fins taken into account. A finite volume solution
was used with triangular and trapezoidal fins.

The mass of an existing heat sink was minimized by keeping
maximum base temperature and fan power fixed. Heat generating
components were rearranged on the base plate, and all geometrical
variables were optimized, which resulted in a considerable reduc-
tion in mass. With a single fin, where ambient flow velocity was
constant over the fin surface, triangular fin gave the smallest mass.
On the other hand, with heat sinks, trapezoidal fins worked better
than rectangular or triangular. Flow velocity was linked with fin
geometries, because of the constraint on fan power. Consequently,
with triangular fins, too much flow passes near the tip where the
fins are thin and at low temperature. With rectangular fins, flow

velocity is the same near the base and tip, but too much mass is
located at the tip area. Trapezoidal fins are the best practical com-
promise for thermal resistance, fan power, and mass in heat sinks.
This result shows that optimized shapes of single fins cannot be
used to optimize fin arrays in heat sinks. In the future, we will
present corresponding optimization results for single fins and
finned heat sinks cooled with natural convection.

Nomenclature

b ¼ base plate thickness m
C ¼ constant given in Table 1
cp ¼ fluid specific heat at constant pressure, J=kgK
D ¼ channel width, m

dLE ¼ distance of components 4–6 from leading edge, m
Dh ¼ hydraulic diameter, 2D, m

f xð Þ ¼ objective function
gj xð Þ ¼ inequality constraint

h ¼ mean heat transfer coefficient
hi xð Þ ¼ equality constraint

kf ¼ fluid thermal conductivity, W=mK
ks ¼ solid thermal conductivity, W=mK
l ¼ fin height in y-direction, m

L ¼ fin (heat sink) length in x-direction, m
M ¼ heat sink mass, kg

m; n ¼ constants given in Table 1
N ¼ number of fins
Ni ¼ largest Fourier mode

Num;T ¼ mean Nusselt number of isothermal surface
P ¼ fan power, Eq. (B2), W

Pr ¼ Prandtl number, �qcp=kf

qc x; zð Þ ¼ heat flux distribution at base plate, W=m2

R ¼ thermal resistance, in Eq. (3.3) and Table 2, K=W
Re ¼ Reynolds number, UDh=�
tb ¼ fin thickness at base, m
tt ¼ fin thickness at tip, m

Tb ¼ uniform temperature at fin base, K
T1 ¼ ambient temperature, K

U ¼ mean flow velocity in channel, m=s
U1 ¼ ambient flow velocity, m=s

V ¼ fin volume, m3

W ¼ heat sink width in z-direction, m
x ¼ design variable vector
x ¼ coordinate in flow direction, m

x� ¼ optimal design variable vector
XT ¼ fin parameter in Eq. (3.2)

y ¼ coordinate normal to base plate, m
z ¼ coordinate normal to fin surface, m

Greek Symbols

cij ¼ see Eq. (A10)
Dp ¼ pressure drop, Eq. (B1), Pa

h ¼ temperature excess, T � T1, K
hb ¼ temperature excess in base plate, K
hf ¼ temperature excess in fins, K
� ¼ kinematic viscosity of fluid, m2=s
q ¼ density of fluid, kg=m3

U ¼ total heat transfer rate, W

Subscript

0 ¼ original design

Appendix A: Analytical Solution for Heat Sink

The analytical solution for a plate fin heat sink presented here
was derived by Lehtinen [15].

The temperature field in the fins and base plate of the heat sink
in Fig. 1(b) is governed by the following equations:
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@2hb

@x2
þ @

2hb

@y2
þ @

2hb

@z2
¼ 0 (A1)

@2hf

@x2
þ @

2hf

@y2
¼ 0 (A2)

Lehtinen wrote the temperature field in the base plate and fins in a
truncated 3D and 2D Fourier series

hb x; y; zð Þ ¼
XNi

i¼0

hb;ij yð Þ cos
ipx

L

� �
cos

jpz

W

� �
(A3)

hf x; yð Þ ¼
XNi

i¼0

hf;i yð Þ cos
ipx

L

� �
(A4)

where hb;ij yð Þ and hf;i yð Þ are yet unknown Fourier coefficients.
The heat sink surface, except for fin surfaces and the area under

the components, is insulated. At the junction of fins and base, tem-
peratures and heat flows are continuous.

hbjy¼0�¼ hf

��
y¼0þ

(A5)

kb

@hb

@y

����
y¼0�
¼ t

tþ D
ks

@hf

@y

����
y¼0þ

(A6)

where y ¼ 0� and y ¼ 0þ refer to locations directly below and
above the junction. In Eq. (A6), kb is the thermal conductivity of
the base material, which can differ from that of fins.

Fluid heating in fin channels is taken exactly into account by
the equation

q x; yð Þ ¼ Num;Tkf

2D
hf x; yð Þ � 4L�Num;T

L

ðx
0

0
@

	 exp
4L�Num;T

L

n� x

L

� �� �
hf n; yð Þdn

�
(A7)

where L� ¼ L= 2DRePrð Þ and Num;T is the mean Nusselt number
[22].

Num;T ¼
f=2ð Þ Re� 1000ð ÞPr

1þ 12:7
ffiffiffiffiffiffiffi
f=2

p
Pr2=3 � 1
	 
 1þ Dh

L

� �2=3
" #

(A8)

The assumption that the heat transfer coefficient is uniform over
the fin surfaces is the largest approximation in the solution.

Equations (A1)–(A8) constitute a linear system of differential
equations, from which the Fourier coefficients hb;ij and hf;i can be
solved. Lehtinen [15] started with a general solution for the base
plate

hb x; y; zð Þ ¼ A00 þ B00y

þ
XNi

i¼0

XNi

j ¼ 0

iþ j 6¼ 0

"
Aij cosh cijy

	 


þ Bij

cij

sinh cijy
	 
#

cos
ipx

L

� �
cos

jpz

W

� �
(A9)

where

cij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ipx

L

� �2

þ jpz

W

� �2
s

(A10)

Equation (A9) was also derived earlier by Muzychka et al. [10].
Accurate results are obtained with Ni ¼ 50. Lehtinen obtained
matrices A and B from the boundary conditions at the base plate
and from Eqs. (A5) and (A6), which connect the fins with the base
plate. The j:th columns of these matrices are

aj ¼ E�1
j

qj

kb

(A11)

bj ¼ �
kst

k2
bl Dþ tð ÞRE�1

j qj (A12)

In Eqs. (A2) and (A3), qj is the j:th column of the coefficient
matrix for the base heat flux

Qij ¼

ðL

0

ðL

0

qc x; zð Þ cos
ipx

L

� �
cos

jpz

W

� �
dzdxðL

0

ðL

0

cos2 ipx

L

� �
cos2 jpz

W

� �
dzdx

(A13)

where qc x; zð Þ is the distribution of the component heat flux at the
bottom of the base plate.

Matrix R in Eq. (A12) is obtained from the solution of a fin
with an arbitrary temperature at the base together with the convec-
tion model in Eq. (A7)

R ¼Ml tanh Mlð Þ (A14)

which reduces into the familiar one-dimensional fin solution when
Ni ¼ 0. The diagonal and off-diagonal elements of matrix M2 are

M2
ii ¼

ip
L

� �2

þNum;Tkf

ks2Dt

ipð Þ2

N2
tu þ ipð Þ2

"

þ 2N3
tu

1þ d ið Þ

� �
1� �1ð Þiexp �Ntuð Þ

N2
tu þ ipð Þ2

� �2

0
B@

1
CA
3
75 (A15a)

M2
iI ¼

Num;Tkf

ks2Dt

2Ntu

1þ d ið Þ

� � N2
tu 1� �1ð Þiexp �Ntuð Þ
� �

N2
tu þ ipð Þ2

� �
N2

tu þ Ipð Þ2
� �

2
4

þ
I2 1� �1ð ÞiþI
� �

i2 � I2ð ÞN2
tu þ ipð Þ2

0
@

1
A
3
5 (A15b)

Matrix M2 has the eigenvalue decomposition M2 ¼ VK2V�1, and

thus M ¼ VKV�1, where K ¼
ffiffiffiffiffiffi
K2
p

is obtained by elementwise
operation. The Delta-function is d xð Þ ¼ 1, when x ¼ 0 and
d xð Þ ¼ 0, when x 6¼ 0.

The diagonal and off-diagonal elements of matrices
Ej; j ¼ 1::Ni needed in Eqs. (A10) and (A11) are

Ej;ii ¼ cij sinh cijb
	 


þ cosh cijb
	 
 kst

kbl Dþ tð ÞRii (A16a)

Ej;iI ¼ cosh cijb
	 
 kst

kbl Dþ tð ÞRiI (A16b)

Appendix B: Calculation of Pressure Drop

Pressure drop in a flow over a channel can be calculated as

Dp ¼ 1

2
qU2 Kin þ 4f

L

Dh
þ Kout

� �
(B1)

Fan power depends also on flow rate

P ¼ N � 1ð ÞlDUDp (B2)
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The friction factor for a turbulent flow between parallel plates can
be obtained from the Blasius correlation, when the effective Reyn-
olds number of Jones [23] is used.

f ¼ 0:0791
2

3
Re

� ��1=4

(B3)

The inlet loss coefficient Kin has been curve fitted from Fig. 5 by
Kays [24],

Kin ¼ 0:4 1� r2:1
	 


(B4)

where the contraction ratio is

r ¼ D

Dþ t
(B5)

The outlet loss coefficient Kout can be derived from one-
dimensional momentum equation [24]

Kout ¼ 1� 2brþ r2 (B6)

where b ¼ 1 is the momentum correction factor. For a turbulent
flow, the value is near unity. If b were modeled, it would have to
be taken into account in the apparent friction factor as well. When
b ¼ 1 and fully developed turbulent friction factor are used, most
of the error is canceled out.
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