
���������	
�������
���������	
�

�����������	
�

����������	�
��

������
����
��������
��	
�
���
	���������������������
��
������������
�����
�����
�����

���
��������

Tampereen teknillinen yliopisto. Julkaisu 521
Tampere University of Technology. Publication 521

Juha Hautamäki

Pattern-Based Tool Support for Frameworks
Towards Architecture-Oriented Software Development
Environment

Thesis for the degree of Doctor of Technology to be presented with due permission for
public examination and criticism in Tietotalo Building, Auditorium TB104, at Tampere
University of Technology, on the 4th of February 2005, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2005

ISBN 952-15-1299-7 (printed)
ISBN 952-15-1508-2 (PDF)
ISSN 1459-2045

Abstract

Software engineering aims at techniques for producing better software prod-
ucts with less resources. A central concept for achieving this goal is a product
line architecture. Frameworks are a popular object-oriented way to implement
product line architectures. However, frameworks are often difficult to learn
and their specializations consist of small and crosscutting logical entities that
overlap with other design solutions of the software product. Implementation
becomes fragmented, difficult to trace, and the original reasoning of the de-
sign is easily forgotten. Thus, the essential problems to be solved are the fol-
lowing:

• How to teach the software developer to understand different frame-
works and design principles in the context of her software product?

• How to guide the software developer to use frameworks and product
line architectures?

• How to maintain and document implemented design solutions and
framework specializations?

In this dissertation it is argued that a practical pattern-based approach can be
used to support the software developer to learn, implement, and sustain de-
sign solutions in her software project. Instructions, like how to use a particu-
lar framework, can be given as simple pattern specifications; a tool takes these
specifications as input and generates tasks as output. The generated pro-
gramming tasks will guide the software developer to gradually instantiate the
patterns, repair possible violations, and in that way to adopt and maintain the
design. Integrating the pattern-based tool support with a common software
development environment makes that environment architecture-oriented in
terms of the patterns used.

The main contributions of this dissertation are the following:

• Participation in the development of the Fred/JavaFrames tool concept.

• A description of a general pattern-based tool support that allows the
use of the pattern concept in different software development environ-
ments, making the environment architecture-oriented.

• Integration of such a tool platform into the Eclipse environment.

• A goal-oriented process to use the pattern-based tool support to spe-
cialize frameworks.

• A specification of the extension interface of the tool platform using the
tool itself.

• An evaluation of the pattern-based approach for framework engineer-
ing using case studies.

Keywords: framework, framework specialization, pattern, product line archi-
tecture, programming environment, separation of concerns, software architec-
ture, software development environment, software engineering, software re-
use, variability management.

Acknowledgements

First of all, I would like to thank my supervisor Professor Kai Koskimies for
his support. Kai encouraged me to start writing this thesis and he gave me a
lot of useful feedback and pieces of advice during the writing process. I am
also grateful to Professors Tarja Systä and Tommi Mikkonen for reading the
draft version of my dissertation. They gave me a number of good comments
and proposals of improvements. I would also like to thank my thesis review-
ers Professors Eila Niemelä and Marcelo Campo for their constructive com-
ments and feedback.

In addition, I would like to thank the members of the research team. During
the past few years, I have had a privilege to work with Markku Hakala, Esa
Heino, Imed Hammouda, Miko Nieminen, Jukka Paakki, Mika Pussinen,
Pekka Savolainen, Jyrki Tuomi, Antti Viljamaa, and Jukka Viljamaa. This dis-
sertation is closely related to other theses and papers written by the research
group. Developing our pattern methodology and tools has been intensive and
interesting teamwork.

This thesis is a result of prolonged co-operation between academe and indus-
try. It emerges from the research projects that created the JavaFrames system
(formerly known as Fred). First versions of the system were released during
the FRED project (FRamework EDitor for Java – Support for Framework De-
velopment and Use) 1997-1999. The project was carried out at University of
Tampere and University of Helsinki. The project was financially supported by
Finnish National Technology Agency (TEKES) and several industrial partners:
Dycom, ICL Data, Major Blue Company, Necsom, Nokia Telecommunica-
tions, Nokia Research Center, Novo Group, Profit, Stonesoft, Sun Microsys-
tems, Sonera, TietoEnator, and Valmet Automation. Since then, the method-
ology was further evolved and tested with the Nokia Networks case study in
the JavaFrames project between Tampere University of Technology and Uni-
versity of Helsinki. The financiers of the JavaFrames project were TEKES,
Nokia Networks, Necsom, Sensor SC, and SysOpen. I have also been finan-
cially supported by Tampere Graduate School in Information Science and En-
gineering (TISE).

Finally, I want to thank my parents for their support during my studies.

 i

CONTENTS

INTRODUCTION..1
1.1 CONTEXT ..2

1.1.1 Software Development Process..3
1.1.2 Software Architecture ..4
1.1.3 Product Line Architecture..5
1.1.4 Frameworks and Middleware ..6

1.2 PROBLEMS ..7
1.2.1 Understanding Fragmented Design Solutions of Frameworks7
1.2.2 Specializing Complex Frameworks..8
1.2.3 Preserving Coherence of Framework-Based Applications....................9

1.3 PATTERN-BASED TOOL SUPPORT..10
1.3.1 Patterns as a Solution ..10
1.3.2 Towards an Architecture-Oriented Environment12

1.4 CONTRIBUTIONS ...13

PATTERNS IN SOFTWARE ENGINEERING...15
2.1 INTRODUCTION TO PATTERNS ...16

2.1.1 Alexander’s Pattern Concept...16
2.1.2 Variety of Patterns ...19
2.1.3 Elements of a Pattern...22
2.1.4 Example: Abstract Factory Pattern ...24
2.1.5 About Writing Patterns ..25

2.2 FROM PATTERNS TO IMPLEMENTATION AND BACK.......................................27
2.2.1 Pattern Instantiation ..27
2.2.2 Patterns after Instantiation ..29
2.2.3 Pattern Mining ...30

2.3 FORMAL VS. INFORMAL PATTERN DESCRIPTIONS ...31

FRAMEWORKS IN SOFTWARE ENGINEERING ..34
3.1 INTRODUCTION TO FRAMEWORKS...35

3.1.1 Characteristics of a Framework ..35
3.1.2 Advantages of Frameworks..37
3.1.3 Problems with Frameworks ...38
3.1.4 Framework Categories ..38

3.2 DESIGNING AND MAINTAINING FRAMEWORKS ...40
3.2.1 Development Phase..40
3.2.2 Evolution with Iteration ...42
3.2.3 Documentation with Patterns ..43

3.3 USING FRAMEWORKS..44
3.3.1 Framework Specialization ...44
3.3.2 Pattern-Based Tool Support for Frameworks......................................45

 ii

OUTLINING A TOOL PLATFORM FOR PATTERNS48
4.1 REQUIREMENTS...49
4.2 OVERVIEW ..51

4.2.1 Problems with Patterns..51
4.2.2 Use and Users of the Tool Platform ..53
4.2.3 Pattern Specifications and the Core of the Tool Platform...................55
4.2.4 Pattern Tools and Integration into other Environments......................55

4.3 CONCEPTS OF A PATTERN STRUCTURE..56
4.3.1 Roles, Dependencies, Multiplicities, and Bindings..............................57
4.3.2 Role Properties and Pattern Semantics ...58
4.3.3 Constraints...59
4.3.4 Example: Specification for the Abstract Factory Pattern....................59
4.3.5 Tasks and the Pattern Engine ..60
4.3.6 Task Automaton ...62

4.4 SYSTEM OF PATTERN SPECIFICATIONS..68
4.4.1 Pattern Instances ...68
4.4.2 Pattern Interface ..69
4.4.3 Pattern Layers as a Chain of Refinements...70
4.4.4 Pattern Composition ..71

4.5 PATTERN TOOLS ...72
4.5.1 Development Tools...73
4.5.2 Deployment Tools ..73
4.5.3 Analysis Tools ..75
4.5.4 Documentation Tools ...75

4.6 INTEGRATION..77
4.6.1 Requirements for the Environment ..78
4.6.2 Outlining the Integration ...78
4.6.3 Real Time vs. Turn-Based Pattern Support ...80

JAVAFRAMES ECLIPSE INTEGRATION..81
5.1 THE INTEGRATION ..82

5.1.1 Eclipse..82
5.1.2 Integrating JavaFrames...84

5.2 JAVAFRAMES PATTERN TOOLS ...86
5.2.1 Architecture View...86
5.2.2 Pattern View: Instantiating Patterns ...87
5.2.3 Pattern View: Developing Patterns ...88
5.2.4 Pattern Recorder..90
5.2.5 Other Tools ..92

A GOAL-ORIENTED APPROACH TO SPECIALIZE FRAMEWORKS94
6.1 GOAL-ORIENTED APPROACH ..95

6.1.1 Find Goals ...96
6.1.2 Write Patterns ..98
6.1.3 Tool-Supported Pattern Interface ..99

6.2 EXAMPLE: PATTERN INTERFACE FOR A FRAMEWORK100
6.2.1 About the Framework ..101
6.2.2 Find Goals ...102
6.2.3 Write Patterns ..103

 iii

6.2.4 Tool-Supported Pattern Interface ..104

SPECIALIZING PATTERN SEMANTICS..106
7.1 PATTERN SPECIFICATION FRAMEWORK ..107

7.1.1 Role Types..107
7.1.2 Properties...109
7.1.3 User Interface ..110
7.1.4 Eclipse Plugin ..111

7.2 PATTERN INTERFACE TO ACHIEVE GOALS ..112
7.2.1 Goals to Extend the Pattern Specification Framework112
7.2.2 Instance Semantics Pattern..114
7.2.3 Constraint Semantics Pattern ..115
7.2.4 Semantics Wizard Pattern..116
7.2.5 Eclipse Plugin Pattern ...117

7.3 USING THE PATTERN INTERFACE ..117
7.3.1 Demonstration..118
7.3.2 Creating Two New Role Types...119

7.4 EXPERIENCES..120
7.4.1 Support for Code Generation...121
7.4.2 Support for Fragmented Design Solutions ..122

CASE STUDY: INDUSTRIAL FRAMEWORK ..124
8.1 PATTERN INTERFACE TO ACHIEVE GOALS ..125

8.1.1 Goals to Specialize the Framework ...125
8.1.2 Application Patterns ..127
8.1.3 MVC Patterns...128
8.1.4 Service Patterns ...130

8.2 USING THE PATTERN INTERFACE ..130
8.3 EXPERIENCES..132

8.3.1 Support for Code Generation...132
8.3.2 Support for Fragmented Design Solutions ..134

RELATED WORK ..137
9.1 PATTERN TOOLS ...137
9.2 TOOL SUPPORT FOR FRAMEWORK SPECIALIATION......................................141

9.2.1 Visual Builders...141
9.2.2 Expert Systems ...142
9.2.3 Feature-Based Framework Specialization ..143
9.2.4 Tool Supported Cookbooks ..143
9.2.5 Using Pattern Tools in Framework Specialization............................144

9.3 ARCHITECTURE-ORIENTED SOFTWARE DEVELOPMENT ENVIRONMENTS....146
9.3.1 UML CASE Tools...146
9.3.2 High Level Specifications and Tools..148

9.4 APPROACHES TO OBTAIN PATTERN INTERFACES ..148
9.4.1 Systematic Approach..149
9.4.2 Concern-Oriented Approach ...149

CONCLUSION ..152
10.1 JAVAFRAMES AS A PATTERN TOOL PLATFORM...152

 iv

10.2 SUMMARY OF CONTRIBUTIONS ...154
10.3 FUTURE WORK ...156
10.4 CONCLUDING REMARKS ...156

REFERENCES...158

APPENDIX A: ABSTRACT FACTORY PATTERN SPECIFICATION174

APPENDIX B: FIGURE PATTERN SPECIFICATION177

APPENDIX C: INSTANCE SEMANTICS PATTERN SPECIFICATION179

APPENDIX D: CONSTRAINT SEMANTICS PATTERN SPECIFICATION 184

APPENDIX E: SEMANTICS WIZARD PATTERN SPECIFICATION190

APPENDIX F: ECLIPSE PLUGIN PATTERN SPECIFICATION...................199

CHAPTER 1

INTRODUCTION

Software engineering aims at techniques for producing better software prod-
ucts with less resources. This encourages the reuse of existing architectural
solutions and software systems. A central concept for achieving this goal is
product line architecture [Bosch 2000; Jazayeri et al. 2000; Clements and
Northrop 2001], which describes a family of software products and captures
the variability between them. Object-oriented frameworks [Fayad et al. 1999],
in turn, are a popular way to implement this variability. With a framework,
different products in the product family are created by implementing and
configuring the application-specific parts of the product.

However, frameworks are often difficult to learn because their use consists of
small and crosscutting logical entities that overlap with other design solutions
of the software product. It is not always obvious which parts of the frame-
work should be customized and how. The use of the framework may become
fragmented, difficult to trace, and the original reasoning of the application-
specific solutions is easily forgotten. For human it is hard to know and predict
every detail of the complex use of the framework and to remember those de-
tails afterwards. Because of this, software product lines and frameworks need
tools and techniques to manage the variability and traceability. Besides tradi-
tional interfaces and class hierarchy, such tools promote the crosscutting and
fragmented design solutions and support their implementation, documenta-
tion, and maintenance during the software development process.

This dissertation presents a practical pattern-based [Alexander et al. 1977;
Alexander 1979] approach to help the software developer to use frameworks

 1

in her software project. Instructions, like how to use a particular framework,
are given as simple pattern specifications, which are precise pattern descrip-
tions that can be used and manipulated by a tool. A tool takes these specifica-
tions as input and generates tasks as output. The generated programming
tasks will guide the software developer to gradually instantiate the patterns,
repair possible violations, and in that way to use the framework. Simultane-
ously, the software developer can concentrate on her software project as a
whole, letting the tool to manage and generate much of the uninteresting im-
plementation details. In addition, if creating a new framework, the software
developer herself can use the tool to describe and document the intended us-
age of the framework, making it easier to learn and reuse by other software
developers. Integrating the pattern-based tool support with a common soft-
ware development environment makes that environment architecture-
oriented in terms of the patterns used.

In this dissertation it is argued that a practical pattern-based approach can be
used to support the software developer to learn, implement, and sustain de-
sign solutions in her software project. How could this kind of tool support be
constructed and how it works? What are the true benefits and problems of
such a system? Is it scalable for a wide range of application-domains? Can it
be used from the highest level of architecture to the lowest level of implemen-
tation? In which stage of the software development process? These, and re-
lated questions are discussed in this dissertation.

The context of this dissertation is discussed in Section 1.1. The addressed
problems and questions are given in Section 1.2. As a solution, the concept of
patterns and a general pattern-based tool support are introduced in Section
1.3. Overview and contributions of this dissertation are given in Section 1.4.

1.1 Context

The context of this dissertation is the use of software architectures, product
line architectures, and particularly the reuse of their concrete implementa-
tions in the form of object-oriented frameworks. One of the main goals of this
dissertation is to describe a pattern-based approach to support this reuse. The
context is introduced in the following subsections:

• Software development process. The aim of the software development
process is to create software products. The ultimate goal of software
engineering is to make this process faster, cheaper, more reliable, and
improve the quality of the implemented software product. Subsection
1.1.1.

 2

• Software architecture. Software architecture is a view of the whole de-
sign of the software product. It describes the high-level structure and
behavior of the implementation. Subsection 1.1.2.

• Product line architecture. A product line architecture is a software archi-
tecture to create a family of software products. It promotes reuse of de-
sign solutions. Subsection 1.1.3.

• Frameworks and middleware. The software development process may
utilize existing software, like object-oriented frameworks and middle-
ware. They are used to implement product line architectures. Subsec-
tion 1.1.4.

1.1.1 Software Development Process

Designing and implementing a software system is hard. The software devel-
opment process is a creative human activity, in which a group of people try to
solve conceptual and computational problems in order to construct a working
software product. Jacobson et al. [1999, p. 24] defines the software develop-
ment process as follows:

“A software development process is a definition of the complete set of activities needed
to transform a user’s requirements into a consistent set of artifacts that represent a
software product and, later, to transform changes in those requirements into a new,
consistent set of artifacts.”

The software development process is an extensive concept. Besides imple-
mentation and coding, it includes also the used technology, project organiza-
tion, and marketing issues. According to Fuggetta [2000], the software devel-
opment process includes the following concepts:

• Software development technology. Technological support used in the
process, including tools, infrastructures, and environments.

• Software development methods and techniques. Guidelines on how to use
technology and accomplish software development activities.

• Organizational behavior. In general, software development is carried out
by teams of people that have to be coordinated and managed within an
effective organizational structure.

• Marketing and economy. Software must address real customer’s needs in
specific market settings.

 3

Thus, the software development process is a complex effort with many as-
pects, from the applied tools, programming languages, and development en-
vironments to different design techniques, project management issues, and
marketing strategies. From the viewpoint of the software developer concen-
trating on the design and implementation issues, the software development
process includes all stages from finding and understanding the requirements
to implementing, documenting, and maintaining the software product.

In this thesis, we will show that a pattern-based tool support can provide
technological assistance to select, learn, program, document, and maintain de-
sign solutions on the implementation level.

1.1.2 Software Architecture

There are numerous definitions of software architecture, stressing that the ar-
chitecture represents the design of a software product. For instance, Busch-
mann et al. [1996, p. 384] defines software architecture as follows:

“A software architecture is a description of the subsystems and components of a soft-
ware system and the relationships between them. Subsystems and components are
typically specified in different views to show the relevant functional and non-
functional properties of a software system. The software architecture of a system is an
artifact. It is the result of the software design activity.”

IEEE [2000], in turn, gives the following definition:

“Software architecture is the fundamental organization of a system embodied in its
components, their relationships to each other and to the environment, and the princi-
ples guiding its design and evolution.”

In practice, when planning a software product, software developers create
and use different models (views) to figure out the system characteristics. De-
pending on the needs and skills of the software developer, modeling can be
anything from informal discussions and superficial drafts to more precise and
formal representations. For example, the Unified Software Development
Process [Jacobson et al. 1999] includes business model, use-case model, analy-
sis model, design model, deployment model, implementation model, and test
model. Typically, models are related to each other; a single model may be
based on other models and it describes a particular thing or feature belonging
to the software architecture. Together the models describe the software archi-
tecture and define the structure and functionality of the software product.

According to Garlan [2000], software architecture plays an important role in
at least six aspects of software development: understanding, reuse, construc-
tion, evolution, analysis, and management. It has also a key role as a bridge

 4

between requirements and implementation of the software system. The archi-
tecture may take different forms that are complementary to each other, like a
class diagram and a statechart diagram. In an optimal situation, it provides
sufficient and up to date information about the software product.

In this dissertation it is shown that a pattern-based tool support can be used
to establish the connections between architectural solutions and the elements
of the concrete software product. We believe that this kind of concrete and
practical tool support is useful, as the design solutions tend to be overlapping
and fragmented structures, making their implementation and maintenance
difficult with traditional software development environments.

1.1.3 Product Line Architecture

Product line architecture [Bosch 2000; Jazayeri et al. 2000; Clements and
Northrop 2001] is software architecture for a family of software products. In
the software product family, individual products share common parts and
functionality, but some parts are different and must be customized. Jazayeri et
al. [2000, p. 27] defines a product line architecture as follows:

“A product family software architecture (a product line architecture) defines the con-
cepts, structure, and texture necessary to achieve variation in features of variant prod-
ucts while achieving maximum sharing parts in the implementation.”

One of the key issues of software product lines is variability management. Ac-
cording to Gurp et al. [2001], the aim of variability management is to change,
customize, or configure a software system for use in a particular context. Ja-
cobson et al. [1997, pp. 440], in turn, defines the concepts of variant and varia-
tion point as following:

“A variant is a type-like construct, typically use case or object type or class, intended to
be inserted at an appropriate variation point to specialize an abstract type or class.”

“A variation point identifies one or more locations at which variation will occur within
a class, type or use case.”

A product line architecture emphasizes variability management, i.e., the use
of variants and variation points. Frameworks, discussed in the next subsec-
tion, are an object-oriented way to implement this variability. In this disserta-
tion it is proposed that the pattern-based tool support can help the variability
management by guiding the software developer to use frameworks. Particu-
larly, as will be shown, the tool can make the connections between the frame-
work and the derived applications more explicit.

 5

1.1.4 Frameworks and Middleware

The importance of good software architecture and the benefits of reusing ap-
proved architectural solutions are widely recognized in software engineering.
Object-oriented frameworks [Fayad et al. 1999] are a way to improve the qual-
ity and effectiveness of the software development process by reusing and
standardizing existing knowledge. In literature, using a framework is often
called framework specialization, framework adaptation, or framework instantiation.
Throughout this thesis the term framework specialization is used to mean the
process to implement an application or a part of it with a framework.

Typically, a framework implements the crucial parts of a product line archi-
tecture and captures the programming expertise necessary to solve problems
in a particular problem domain. Technically, Johnson and Foote [1988] define
a framework as follows:

“A framework is a set of classes that embodies an abstract design for solutions to a
family of related problems.”

Another definition is given, for example, by Roberts and Johnson [1996]:

“Frameworks are reusable designs of all or part of a software system described by a set
of abstract classes and the way instances of those classes collaborate.”

Thus, a framework is a kind of class library, but with the framework the flow
of control is bi-directional between the application and the library. This fea-
ture is achieved by dynamic binding in object-oriented languages where an
operation can be defined in a library class or interface but implemented in a
subclass in the application. A framework can be used to implement a part of a
system, such as the application’s user interface, though application specific
frameworks sometimes describe the domain of an entire application.

Middleware [Schmidt and Buschmann 2003], in turn, is a piece of software
that increases reuse by providing usable, standard solutions to common prob-
lems, like how to implement a persistent storage. Examples of middleware
standards are Common Object Request Broker Architecture (CORBA)
[CORBA 2004] and Java 2 Enterprise Edition (J2EE) [J2EE 2004]. Typically,
middleware system may include a number of frameworks, class libraries, pre-
implemented components, and documentation.

We will show that the pattern-based tool support proposed in this disserta-
tion can be used to map the desired use of frameworks and middleware sys-
tems. For example, a set of pattern specifications can describe how to use the
framework’s specialization interface to program applications. By using the

 6

given specifications, a tool can support the framework specialization and re-
use in other software projects.

1.2 Problems

Frameworks are an object-oriented way to support product line architectures.
However, working with frameworks is not always straightforward. The main
problems to use frameworks are the following:

• Understanding fragmented design solutions of frameworks. How to teach
the software developer to understand different frameworks and design
principles in the context of her software product? Subsection 1.2.1.

• Specializing complex frameworks. How to guide the software developer to
use frameworks and product line architectures? Subsection 1.2.2.

• Preserving coherence of framework-based applications. How to maintain and
trace implemented design solutions and framework specializations?
Subsection 1.2.3.

1.2.1 Understanding Fragmented Design Solutions of Frameworks

When using a framework the software developer often wants to design, im-
plement, or learn a certain part or a subsystem of the wholeness and tries to
figure out the required participants and their interactions. Typically, the solu-
tion constitutes a crosscutting structure inside the application and between
the application and the framework. For example, Bosch [2003] discusses de-
sign fragments, which are logical units that capture a certain portion of design,
its participants and their interactions. Here the design fragment is a synonym
for the design solution, which emerges from the practical demands of the soft-
ware developer during the use of the framework. Such a design solution con-
sists of elements and relationships that are needed to construct a thing that is
meaningful from the viewpoint of the application.

So, why it is difficult for the application developer to understand a particular
design solution? As discussed by Tarr et al. [1999], all formalisms, including
object-oriented languages, tend to have restricted sets of decomposition and
composition mechanisms. This means that they support only a single, domi-
nant view at a time. In the case of object-orientation, decomposition is based
on objects, while in procedural programming languages it is based on func-
tions. This “tyranny of the dominant decomposition” causes some problems:

 7

• Scattering. A single design solution may affect multiple design and
code modules. In the case of object-oriented languages, the solution is
scattered across classes and their internals.

• Tangling. Multiple design solutions may affect the same implementa-
tion unit. That is, a particular block of code may be involved in a num-
ber of solutions.

Traditional software development environments and programming lan-
guages do not support the scattering and tangling problems directly. Instead,
additional documentation is needed to map the fragmented design solutions.
We will show that a pattern-based tool support can be used to highlight and
maintain these solutions, thus reducing the scattering and tangling problems.

1.2.2 Specializing Complex Frameworks

Reusing approved design improves the software development process. How-
ever, reusing existing solutions requires knowledge and experience. The soft-
ware developer must know which design to reuse and how it should be re-
used. For example, to specialize a framework may require that the application
developer uses different components to configure and compose her applica-
tion. In addition, she may have to derive new subclasses from the abstract
base classes of the framework, implement required operations, and so on.
This can be difficult, as the framework may contain a number of rules and
conventions that cannot be determined directly from its class hierarchy and
interfaces.

Thus, from the viewpoint of the application developer, a typical problem
when specializing a framework is that the framework is often hard to learn
and comprehend. However, she must know the purpose and invisible rules of
the framework in order to use it in the context of her application. Due to the
fragmented design solutions it may be very laborious to figure out how the
framework should be used. In addition, after specializing the framework, it is
difficult to ensure that the implemented solution is not violated later, when
the application evolves.

We believe that a pattern-based tool support can be used to support the reuse
of approved design solutions and framework specialization. A tool can guide
the application’s implementation and check that the specialization obeys the
framework-specific rules. The system ensures that the framework is under-
stood and correctly used in different software projects.

 8

1.2.3 Preserving Coherence of Framework-Based Applications

One of the essential problems of the software development process is how to
manage the evolution of the software product; how to keep different models,
documentation, and implementation consistent? This is difficult, because the
software development process is often iterative, making it necessary to mod-
ify existing models and implementation. In addition, an application is often
based on multiple frameworks; how to keep the different framework speciali-
zations consistent when the application evolves during the software devel-
opment process? More precisely, Gurp and Bosch [2002] enumerate several
reasons for design erosion:

• Traceability of design decisions. Typically, connections between different
models and the implementation have no direct and explicit form.

• Increasing maintenance cost. Design decisions may be suboptimal either
because software developers do not understand the architecture or be-
cause a more optimal decision would be too effort demanding.

• Accumulation of design decisions. Whenever a decision needs to be re-
vised, other design decisions may need to be reconsidered as well.

• Iterative methods. Software development is often iterative because of un-
forseen requirement changes and suboptimal design decisions.

Unfortunately, current software development environments do not usually
support the demand for traceability between different design models, frame-
works, and the final application. Ideally, besides the traceability between the
application’s design models and source code, the implementation should also
be traced to the used frameworks and product line architectures. Change in
the source code should be checked against the design models and frame-
work’s specialization rules.

Clearly, new kinds of tools are needed to solve the traceability problem. As
suggested in this dissertation, this could be done by using patterns as a bridge
between higher-level specifications and their implementation. In the case of
product line architectures and framework specialization, patterns could be
used to validate and point out the implemented variants in the application’s
source code, and in that way to reduce the overall design erosion. However,
the software developer would still be responsible for finding the requirements
and selecting the most suitable design decisions and frameworks.

 9

1.3 Pattern-Based Tool Support

This dissertation oulines the characteristics of a general tool platform for pat-
terns that supports framework specialization and the reuse of approved de-
sign solutions. The approach is introduced in the following subsections:

• Patterns as a solution. During the software development process, pat-
terns can be used to document and apply approved design solutions.
Subsection 1.3.1.

• Towards an architecture-oriented environment. If patterns are transformed
into a more specific form, a tool can manipulate and support their use.
This leads to a pattern-based architecture-oriented software develop-
ment environment. Subsection 1.3.2.

1.3.1 Patterns as a Solution

In software engineering, patterns and pattern languages [Alexander et al.
1977; Alexander 1979] can be used to document the crosscutting structures of
a software architecture and the way that those structures should be imple-
mented. Originally, the pattern concept was introduced by the architect Chris-
topher Alexander; he defines a pattern as follows:

“Each pattern describes a problem which occurs over and over again in our environ-
ment, and then describes the core of the solution to that problem in such a way that
you can use this solution a million times over, without ever doing it the same way
twice.” [Alexander et al. 1977, p. x]

 “The pattern is, in short, at the same time a thing, which happens in the world, and the
rule which tells us how to create that thing, and when we must create it.” [Alexander
1979, p. 247]

Though Alexander’s idea of patterns was intended to create buildings and
towns, it has been more successfully used in software industry. Together re-
lated patterns form a pattern language, in which patterns may refer to each
other, until the solution has been implemented. Coplien [2004] defines a pat-
tern language as follows:

“A pattern language defines a collection of patterns and the rules to combine them into
an architectural style. Pattern languages describe software frameworks or families of
related systems.”

Thus, a pattern is descriptive, generative, and informal documentation, which
describes, on general level, a problem that occurs in a certain context, and a
recipe-like solution to solve that problem. Like instantiating a class, a concrete

 10

manifestation of a pattern is called a pattern instance. It contains the elements
and their interactions that participate in the solution described by the pattern.

Patterns are often confused with frameworks. A framework is a more concrete
software product, implementing product line architecture, while a pattern is
an abstract informal documentation. A framework may utilize several pat-
terns in its design and contain several pattern instances in its implementation.
Patterns can also be used to describe smaller architectural entities, like the use
of a particular extension point (or hot spot) of the framework. In this disserta-
tion it will be demonstrated how patterns can be used to document a frame-
work’s specialization interface; that is, how the customisable parts of the
framework should be implemented in order to create a working application.

Patterns encapsulate logical steps to generate solutions for different problems.
The scale of the problems varies; a problem may be how to specialize a frame-
work, or how to iterate a data structure, or how to separate the user interface
issues from the rest of the application logic. In any case, patterns offer com-
mon vocabulary and understanding, supporting the software development
process by making it easier for software developers to communicate and im-
plement complex design. For example:

• Using patterns to design software architecture. In general, designing good
software architecture requires a substantial amount of skills and ex-
perience. The use of patterns does not remove the burden of design,
but selecting and using a suitable pattern may help to solve some of the
design problems. A good example of architectural patterns is the MVC
(Model-View-Controller) pattern [Krasner and Pope 1988]; it makes a
standardized separation between the graphical user interface and the
rest of the application.

• Using patterns to implement design solutions. At some point the blueprint
and models must be used to build the software system. Implementa-
tion may be error-prone and requires substantial amount of program-
ming skills. Patterns are generative; recipe-like patterns can be used to
guide the implementation.

• Using patterns to document design solutions. Original software developers
may leave the company and new members of the development team
must learn the software system as soon as possible. In the case of reuse,
other software developers should learn typical use cases of the frame-
work or middleware with reasonable efforts. Patterns are descriptive;
they are especially useful for teaching and documenting purposes, to
augment the more traditional documentation. As an example, Johnson
[1992] has used patterns to document the design and the use of a
framework.

 11

• Using patterns to maintain design solutions. The software development
process is often iterative as requirements change when the understand-
ing of the problem domain grows. This causes the software system to
evolve. However, there is a danger of design erosion if different mod-
els, the implementation, and the documentation are not continuously
and carefully updated and reconsidered. Managing the consistency is a
difficult and time-consuming task. Patterns can help, as they make
fragmented design solutions more understandable. The used patterns
emphasize crosscutting behavior and complex solutions that would
otherwise be hard to comprehend.

1.3.2 Towards an Architecture-Oriented Environment

We believe that a tool that systematizes the use of patterns is useful in the
software development process. Especially, if integrated with a real software
development environment, such a pattern-based tool support can generate,
document, and manage pattern instances, reducing the problems with design
erosion and fragmented design solutions. If the software developer makes a
mistake or wants to change or refine her solution, the system can utilize the
applied patterns to keep track of the involved software elements. Also, if the
user just wants to learn how a particular piece of design should be imple-
mented and how it works, she can use the system as a mentor, experiment
with real examples, and learn the design by instantiating and studying the
underlying patterns.

JavaFrames (formerly known as Fred) [Hakala et al. 2001b, 2001c, 2001d; Hau-
tamäki 2002; Viljamaa A. 2001, 2004; Viljamaa J. 2002, 2003, 2004; JavaFrames
2004] is an integrable system where patterns are used as simple but precise
specifications. JavaFrames takes these pattern specifications as input and gen-
erates programming tasks as output to instantiate the selected patterns. De-
pending on the current stage of the pattern instantiation, each task may re-
quire some actions from the software developer; she may have to create or se-
lect a new subclass, implement a new operation, fix violations, like the opera-
tion’s return type, and so on. Each task provides also some documentation
and implementation hints, like the possibility to generate source code.

In JavaFrames, the list of pattern instantiation tasks is not linear or predeter-
mined. Instead, normal programming actions, like changing or removing a
portion of source code, have effects on the pattern instantiation, generating
new tasks, documentation, and proposed default implementations. In this
way, the pattern instantiation is carried out by adapting the selected patterns
gradually to the current application. When integrated to a real software de-
velopment environment, JavaFrames brings the idea of patterns into every
day use and enables a progressive pattern instantiation that agrees with the

 12

idea of piecemeal growth [Alexander et al. 1975], in which the whole emerges
from local acts.

Based on the gained experiences with JavaFrames and different case studies,
this dissertation outlines the characteristics of a general tool platform for pat-
terns. The idea is illustrated as an UML package diagram [Booch et al. 1999] in
Figure 1. The core of the platform must provide algorithms, services, and con-
cepts to create, instantiate, and manage pattern specifications. Various pattern
semantics provide building blocks to model these pattern specifications, for
example, to support solutions in different programming languages and appli-
cation domains. Different specifications can then be constructed to guide the
application developer how to achieve design solutions. As a platform, the sys-
tem provides a common foundation to implement a rich set of pattern tools,
for instance, to develop, instantiate, analyze, and document pattern specifica-
tions. For the software developer the use of patterns must be as easy as possi-
ble. Therefore the platform and the implemented pattern tools should be
seamlessly integrated into some software development environment.

Pattern Tool Platform

Pattern Semantics

Platform Core

<<integration>>
Pattern Tools

Software Development
Environment

Figure 1. A general pattern-based tool support.

By integrating the pattern tool platform into a software development envi-
ronment makes that environment architecture-oriented in terms of the pattern
specifications used. Such an environment acts like an architecture-sensitive
compiler or interpreter that reports conflicts with the architecture described
by the underlying pattern specifications.

1.4 Contributions

The main contributions of this dissertation are the following:

• Participation in the development of the Fred/JavaFrames tool concept.
As a member of the research group, the author has been responsible of
developing the user interface framework for the pattern tools. The au-
thor has also carried out different case studies [Hautamäki 2002] to test

 13

the developed tools and methodology. The core of the
Fred/JavaFrames pattern system, including an algorithm to instantiate
patterns, has been implemented by other team members [Hakala et al.
2001d; Hakala 2002; Viljamaa A. 2004; Viljamaa J. 2004].

• A description of a general pattern-based tool support that allows the
use of the pattern concept in different software development environ-
ments, making the environment architecture-oriented. The outlined
platform is an integrable and universal approach that combines many
of the best practices and experiences gained from the pattern literature
and from the Fred/JavaFrames tool concept. The platform can be aug-
mented with wide range of pattern tools and the ways of using pat-
terns (Chapter 4).

• Integration of such a tool platform into the Eclipse environment. The
author has integrated the JavaFrames system into the Eclipse software
development environment (Chapter 5).

• A goal-oriented process to use the pattern-based tool support to spe-
cialize frameworks. During an industrial case study, the author has de-
veloped a goal-oriented approach to find, construct, and use pattern
specifications with JavaFrames. This goal-oriented approach is a prac-
tical way to document the intended use of a framework (Chapter 6).

• A specification of the extension interface of the tool platform using the
tool itself. JavaFrames can be extended with new pattern tools and se-
mantics. The author has implemented a set of patterns to create new
pattern semantics and to add these extensions to JavaFrames (Chapter
7).

• An evaluation of the pattern-based approach for framework engineer-
ing using case studies (Chapter 7 and Chapter 8).

As a background, patterns in software engineering are discussed in Chapter 2
and object-oriented frameworks are discussed in Chapter 3. Related work is
discussed in Chapter 9. Conclusion is given in Chapter 10.

 14

CHAPTER 2

PATTERNS IN SOFTWARE
ENGINEERING

The concept of a pattern is central throughout this dissertation. It is based on
the work of the architect Christopher Alexander [Alexander et al. 1977; Alex-
ander 1979] and a number of authors that have used and developed the con-
cept in the field of software engineering. Particularly, in the object-oriented
community, patterns have been used as a methodology to document the best
practices and experiences of object-oriented software systems. Perhaps the
most well-known examples of this are the design patterns [Gamma et al. 1995]
that describe solutions to common object-oriented design problems. As said
by Gamma et al., none of the design patterns describe new or unproven de-
sign. Instead they record experience, the folklore of the object-oriented com-
munity, in a form that people can use effectively. Thus, instead of rediscover-
ing a solution to a common problem, the software developer can use a suit-
able pattern to reproduce the solution in the application-specific context.

Patterns were briefly discussed in Section 1.3. A more detailed introduction to
the pattern concept and its applicability in software engineering is given in
Section 2.1. Using patterns to create new pattern instances and the process to
find the applied patterns from existing software systems are discussed in Sec-
tion 2.2. To enable pattern-based tool support, patterns must be presented
precisely with some specification language or formalism; this is discussed in
Section 2.3.

 15

2.1 Introduction to Patterns

The original pattern concept and the ways it has been used in the field of
software engineering are discussed in the following subsections:

• Alexander’s pattern concept. The architect Christopher Alexander devel-
oped the pattern concept to create buildings and towns. However, the
concept has been succesfully adopted in software engineering. Subsec-
tion 2.1.1.

• Variety of patterns. A number of authors have developed the idea of pat-
terns and invented more sophisticated concepts and forms to use them.
Subsection 2.1.2.

• Elements of a pattern. Despite of different forms and variations, patterns
share a common set of features that can be found from their descrip-
tions. Subsection 2.1.3.

• Example: Abstract Factory pattern. The well-known Abstract Factory pat-
tern [Gamma et al. 1995, p. 87-95] is used as an example in this disserta-
tion. It is employed to demonstrate the general pattern-based tool sup-
port discussed in Chapter 4. Subsection 2.1.4.

• About writing patterns. Writing patterns is a creative human activity for
human audience. Subsection 2.1.5.

2.1.1 Alexander’s Pattern Concept

Originally, the architect Christopher Alexander developed the idea of pat-
terns to enable people to design their own homes and communities [Alexan-
der 1979, 1981; Alexander et al. 1975, 1977, 1985, 1987]. His pattern language
was a set of patterns, each describing how to solve a particular kind of a de-
sign problem. The pattern language starts at a very large scale, explaining
how the world should be broken into nations and nations into smaller re-
gions, and goes on to explain how to arrange roads, parking, shopping, places
to work, homes, and so on. The patterns focus on finer and finer levels of de-
tail where each pattern was written in a particular format, leading into the
next one(s). The patterns in the pattern language were not only descriptive
but also generative; besides describing the architecture they also described
how to implement the architecture in practice.

Intuitively, a pattern describes recurring solution that has stood the test of
time. Each pattern is an essay that describes a problem to be solved, a solu-
tion, and the context in which that solution works. A pattern describes costs
and benefits of the solution and makes design trade-offs explicit. It names a

 16

technique and gives people a common vocabulary to discuss their designs.
Patterns may refer to other patterns and constitute a pattern language. Pat-
terns are descriptive, generative, and informal documentation to be used by
humans, but if the core of that information could be precisely specified, it
could be computationally manipulated and the use of patterns could be
automatically supported and documented.

Beck and Cunningham [1987] applied the concept of patterns to the develop-
ment of graphical user interfaces in Smalltalk. Since then, patterns have been
succesfully used to describe and document object-oriented design. Obviously,
as widely embraced in the object-oriented community [Lea 1994; Gamma et
al. 1995; Coplien 1996; Harrison N. et al. 1999], the concept of a pattern,
though exemplified with architectural artifacts, is suitable to describe soft-
ware architectures. Lea [1994] enumerates a number of differences between
building a house and building a software, but adds that most of the differ-
ences are matters of degree:

• Software entities engage in greater dynamic interaction (e.g., send mes-
sages to each other).

• Sometimes, describing software is the same as constructing it (as in
programming).

• More of a software design is hidden from its users.

• Software generally has many fewer physical constraints.

• Some software requirements are allegedly more explicit and precise
than “build a house here”.

Lea continues that ideally a pattern has the following properties:

• Encapsulation. A pattern encapsulates a well-defined problem and solu-
tion.

• Generativity. A pattern describes how to construct its realizations (pat-
tern instances).

• Equilibrium. By balancing forces and constraints, a pattern attempts to
minimize the downsides of the solution and maximize the benefits.

• Abstraction. A pattern represents abstraction of empirical experience
and everyday knowledge.

• Openness. Patterns have no top or bottom; a pattern can be extended
down to arbitrarily fine levels of detail.

 17

• Composibility. Patterns are hierarchically related. A pattern language
expresses this layering.

Patterns can be seen as parts or building blocks of a software architecture, de-
scribing and encapsulating architectural rules and implementation instruc-
tions. Alexander [2004] himself discusses how patterns are used in software.
According to Alexander, people have done the obvious thing and developed
patterns that are a prescription of how to solve particular problems that come
up in the software development process. A pattern language provides com-
mon vocabulary, common base of understanding what’s important in pro-
gramming, and a large corpus of solutions that make software developers ef-
fective.

A typical pattern encapsulates an approved and elegant object-oriented solu-
tion, which looses the coupling between the participating components in the
solution. This lessens the need for class-refactoring and re-design during later
implementation, when the software system evolves. For instance, Helm [1995]
has noticed that designs based on patterns seem to be more reusable and
more tolerant of requirement changes. In addition, patterns provide a valu-
able teaching resource to improve the productivity and knowledge of the
software developers. Thus, in general, using patterns improves the under-
standability of the software system and makes it flexible.

Vlissides [1997] discusses some of the most common misconceptions about
patterns. He says that patterns do not guarantee reusable software, higher
productivity, or generate whole architectures; patterns do nothing to remove
the human from the creative process. The software developer must under-
stand the problem to select and use a right pattern. Vlissides also argues that
the benefit from patterns comes mostly from applying them as they are, with
no tool support of any kind.

However, as explained in Section 1.3, the author of this dissertation is con-
vinced that patterns provide a good basis for a practical and easy-to-use tool
support in software engineering. Nevertheless, to enable a tool support it is
important to admit that one must make some compromises over the universal
applicability of the original pattern documentation; as such, they are excellent
for human but too abstract and ambiguous for a tool. This is discussed more
precisely in Section 2.3.

 18

2.1.2 Variety of Patterns

The idea of patterns is practical and its implications in software engineering
are many. A number of authors have used the concept and developed more
sophisticated pattern types. For example, design patterns [Gamma et al. 1995],
architectural patterns [Buschmann et al. 1996], analysis patterns [Fowler 1997],
performance patterns [Smith and Williams 2002], domain-oriented patterns [Harri-
son N. et al. 1999], meta-patterns [Pree 1994, 1995], anti-patterns [Akroyd 1996;
Brown W. et al. 1998], idioms [Coplien 1992; Vlissides et al. 1996], framework-
specific patterns [Johnson 1992; Hakala et al. 2001b, 2001c, 2001d], and process
patterns [Coplien 1995; Ambler 1998] are used to describe the design and im-
plementation problems of the object-oriented software in different circum-
stances and scale. As an example of other possible application areas, organiza-
tional patterns [Coplien 1995; Harrison N. and Coplien 2004] describe the best
practices and general observations of human organizations.

Here the list of different pattern types gives the reader some background and
various perspectives on the pattern concept, but this is not a comprehensive
presentation of everything discussed in the pattern literature. To get more in-
formation about the history and variety of patterns, the reader is referred, for
instance, to the article “Patterns and Software: Essential Concepts and Termi-
nology” [Appleton 1997] and to visit the pattern WWW sites [Hillside 2004;
Portland 2004].

Design patterns [Gamma et al. 1995] are descriptions of communicating objects
and classes that are customized to solve a general object-oriented design prob-
lem within a particular context. A design pattern has four essential elements:
the pattern name that unambiguously identifies the pattern, the problem de-
scribing when to apply the pattern, the solution explaining the elements and
relationships that make up the design, and the consequences describing the
results and trade-offs of applying the pattern. This form suits best for com-
municating generic design alternatives. As an example of a design pattern, see
the Abstract Factory pattern discussed in Subsection 2.1.4.

Architectural patterns [Buschmann et al. 1996] are very high-level structural
patterns. They are used to describe the general structure of software architec-
tures, like how to organize components, handle distributed computation,
keep the functional core independent of the user interface, and design adapt-
able systems. An architectural pattern may utilize several lower-level design
patterns. A well-known example of architectural patterns is the Model-View-
Controller pattern [Krasner and Pope 1988], which separates application logic
(model) from its manipulation (controller) and user interface (view) issues.
Architectural patterns are similar to architectural styles [Perry and Wolf 1992;
Shaw and Garlan 1996], which describe composition and design rules to con-

 19

struct applications. Buschmann et al. have noticed that architectural styles can
be expressed with architectural patterns, too.

Analysis patterns [Fowler 1997] are purposed for domain analysis, like model-
ing different business domains (trading, measurement, accounting, and so
on). Thus, analysis patterns are focused on the requirements analysis and the
acceptance and usability of the final system. They provide reusable analysis
models with examples and they facilitate the transformation of the analysis
model into a design model by suggesting design patterns and other reliable
solutions.

Performance patterns [Smith and Williams 2002] address performance prob-
lems. They describe best practices for producing responsive and scalable
software, in which the responsiveness is the ability of a system to meet its ob-
jectives for response time or throughput. Scalability, in turn, is the ability of a
system to continue to meet its response time or throughput objectives as the
demand for the software functions increases. Performance patterns are at a
higher level of abstraction than design patterns; a design pattern may provide
an implementation of a performance pattern.

Domain-oriented patterns [Harrison N. et al. 1999] cover the patterns that are
used to address the problems of a specific domain, like patterns for creating
database-reporting applications. They may use design patterns to guide the
implementation and they may refine architectural patterns with domain-
specific details and requirements. Thus, domain-oriented patterns are higher-
level than design patterns, but they are not as domain independent as the ar-
chitectural patterns.

Meta-patterns [Pree 1994, 1995] are patterns describing other patterns. Pree
suggests that there is a limited set of meta-patterns that describe the basic
ways to compose object structures. These meta-patterns can then be used to
analyse design patterns; in fact, they can be seen as general building blocks of
the design patterns. Each meta-pattern reflects a typical and essential combi-
nation of inheritance, aggregation and abstract operations.

Anti-patterns [Akroyd 1996; Brown W. et al. 1998] are used to describe recur-
ring bad design and mistakes to common design problems. For example,
Brown W. et al. present the Spaghetti Code anti-pattern using a design pat-
tern like representation. Thus, the use of anti-patterns produces negative con-
sequences, but they can be used to avoid and identify mistakes. They also
support refactoring to fix the recognized problems.

Idioms [Coplien 1992; Vlissides et al. 1996] are low-level programming lan-
guage dependent patterns that describe coding styles and implementation

 20

practices. For example, an idiom can be used to describe how to remove du-
plicates from a collection or how to iterate a list structure.

Framework-specific patterns [Johnson 1992; Hakala et al. 2001b, 2001c, 2001d]
describe recurring actions and program structures in framework specializa-
tion or middleware solutions. For example, when specializing a particular
framework, the process is repeated and can be documented with a set of pat-
terns. Often the range of such a framework-specific pattern is very narrow; it
describes a solution in the context of the used framework. Thus, a framework-
specific pattern is more implementation-oriented and less general than a de-
sign pattern; it stores practical instructions and describes how to specialize a
specific framework.

Process patterns [Coplien 1995; Ambler 1998] describe a collection of general
techniques and actions for developing object-oriented software. They describe
approved techniques for managing the complexities of large-scale, object-
oriented software development projects. For example, a process pattern can
describe how to review and validate the deliverables to ensure that they meet
the needs of the users and the quality standards of the organization. Process
patterns are closely related to organizational patterns that describe common
management techniques and organizational structures.

Organizational patterns [Coplien 1995; Harrison N. and Coplien 2004] describe
the structure and practices of human organizations. They can be used as in-
spiration to improve the organization and it’s functioning. Because people are
less predictable than code, the results of applying organizational patterns are
less predictable than applying patterns in object-oriented software. Organiza-
tional patterns are used by groups of people.

The pattern types discussed in this subsection are normative but not absolute.
In the pattern community the meaning and usefulness of a pattern may be ar-
gued, as well as if the pattern has or has not the characteristics of a particular
pattern type or types. Table 1 illustrates the use of different pattern types in
different phases of the software development process. Because of their special
nature, anti-patterns and meta-patterns are not shown in the table. Also, proc-
ess patterns and organizational patterns can be seen as patterns that are used
by the organization throughout the software development process.

Since the release of the design pattern book [Gamma et al. 1995], numbers of
pattern catalogs have become available (e.g., [Rising 2000]). Patterns have also
been discussed in a number of conferences, especially in an annual conference
Pattern Languages of Program Design (PLoP) [Coplien and Schmidt 1995;
Vlissides et al. 1996; Martin et al. 1998; Harrison N. et al. 1999]. The latest
PLoP proceedings and information about other pattern conferences can be

 21

found from the Hillside pattern WWW site [Hillside 2004]. All these patterns
are based on informal documentation and examples; they are written for hu-
mans, not for machines.

Analysis patterns

Architectural patterns

Performance patterns

Domain-oriented patterns

Design patterns

Framework-specific patterns

Idioms

 Requirements Design Implementation

Table 1. A rough division of the pattern types.

At some point the number of patterns becomes a problem; finding the most
suitable pattern may be difficult. The rough division of pattern types is not
enough. To avoid the problem, various categorizations have been discussed.
For example, Gamma et al. [1995] sort design patterns according to their pur-
pose (creational, behavioral, and structural patterns) and scope (patterns
based on static inheritance, and dynamic patterns based on collaborating ob-
jects). However, this categorization is not very intuitive for novice users.
Other possibilities could be problem-based classification or grouping typical
pattern combinations together. Perhaps the most ideal answer is still the one
presented by Alexander et al. [1977]; to structure related patterns as a pattern
language for a particular domain.

2.1.3 Elements of a Pattern

Though pattern documentation is informal, a pattern description is not a
chunk of unstructured text. On the contrary, it often has a well-known form
that promotes the different aspects of the pattern, like the problem, the con-
text, and the solution. There are a number of formats with slight differences.
Coplien [1996] summarizes some of the documentation styles that have been
used for describing patterns. The format used in Alexander’s work is called
the Alexandrian form. The format used by Gamma et al. [1995] for design pat-
terns is called the GoF form (see the example in the next subsection). Coplien
also mentions Portland form and Coplien form. Appleton [1997] discusses the
canonical form, which means the simplest, most basic or primordial form to
document patterns. There are no strict rules for the form used; one rarely de-
scribes every possible detail for every pattern.

Common to all of the pattern forms is that they are informal text that is struc-
tured in some specific manner. Despite the differing pattern forms, both
Coplien [1996] and Appleton [1997] discuss the essential elements that should

 22

be clearly recognizable upon reading a pattern. Appleton enumerates the fol-
lowing elements (the list of Coplien is almost identical, with some minor dif-
ferences):

• Name. A pattern must have a meaningful name.

• Problem. The problem statement describes the goals and objectives for
the pattern within the given context and forces; this can be seen as the
intent of the pattern.

• Context. The context statement describes the applicability of the pat-
tern; it describes preconditions under which the problem and its solu-
tion recur.

• Forces. The forces statement describes the forces and constraints that
conflicts or interacts with the goals of the pattern. Forces reveal the
complexity of a problem and define the trade-offs.

• Solution. The solution statement describes how to realize the desired
outcome. The description may contain pictures, diagrams, and docu-
mentation that identify the structure, participants, and collaborations
of the pattern. Both the static structure (the form and organization) and
the dynamic behaviour of the pattern should be described.

• Examples. Examples can be used to illustrate the use and applicability
of the pattern.

• Resulting context. The resulting context statement describes the state or
configuration of the system after the pattern has been instantiated. This
includes the consequences and side-effects of the pattern.

• Rationale. The rationale statement describes why the pattern resolves its
forces in a particular way.

• Related patterns. This statement describes the relationships between this
pattern and other patterns.

• Known uses. The known uses statement describes known occurrences of
the pattern. These can be also used as examples of the use of the pat-
tern.

 23

2.1.4 Example: Abstract Factory Pattern

As an example, the well-known Abstract Factory pattern presented by
Gamma et al. [1995, p. 87-95] is shown in Table 2. The example is given in the
GoF form used in the book. The example is used later in Chapter 4, as a small
case study to demonstrate the idea of a general pattern-based tool support.

Abstract Factory
Intent: Provide an interface for creating families of related or dependent objects without specifying their concrete
classes.
Also Known As: Kit
Motivation: Motivation to use the Abstact Factory pattern. See Gamma et al. [1995, p. 87-95]
Applicability:

• A system should be independent of how its products are created, composed, and represented.
• A system should be configured with one of multiple families of products.
• A family of related product objects is designed to be used together, and you need to enforce this constraint.
• You want to provide a class library of products, and you want to reveal just their interfaces, not their imple-

mentations.
Structure:

AbstractFactory

CreateProductA()
CreateProductB()

ConcreteFactory1

CreateProductA()
CreateProductB()

ConcreteFactory2

CreateProductA()
CreateProductB()

AbstractProductA

AbstractProductB

ProductA2 ProductA1

ProductB2 ProductB1

Client

Participants:

• AbstractFactory. Declares an interface for operations that create abstract product objects.
• ConcreteFactory. Implements the operations to create concrete product objects.
• AbstractProduct. Declares an interface for a type of product object.
• ConcreteProduct. Defines a product object to be created by the corresponding concrete factory. Implements

the AbstractProduct interface.
• Client. Uses only interfaces declared by AbstractFactory and AbstractProduct classes.

Collaborations:
• Normally a single instance of a ConcreteFactory class is created at run-time. This concrete factory creates

product objects having a particular implementation. To create different product objects, clients should use a
different concrete factory.

• AbstractFactory defers creation of product objects to its ConcreteFactory subclass.
Consequences: The benefits and liabilities of the Abstract Factory pattern. See Gamma et al. [1995, p. 87-95]
Implementation: Useful techniques for implementing the Abstract Factory pattern. See Gamma et al. [1995, p. 87-95]
Sample Code: Code examples. See Gamma et al. [1995, p. 87-95]
Known Uses: The known uses of the Abstract Factory pattern. See Gamma et al. [1995, p. 87-95]
Related Patterns: AbstractFactory classes are often implemented with factory methods (Factory Method), but they can
also be implemented using Prototype. A concrete factory is often a singleton (Singleton).

Table 2. The Abstract Factory pattern [Gamma et al. 1995, p. 87-95].

 24

2.1.5 About Writing Patterns

Patterns are found rather than invented. A pattern documents an approved
way to solve a problem, but it is more extensive than a simple recipe-like in-
struction. A pattern abstracts the problem and its solution, it makes explicit
the trade-offs of the required steps to reach the solution, and describes the
context in which the problem usually occurs. This makes the use of a pattern
flexible; instead of exactly one fixed solution, a pattern can be applied to con-
struct variety of solutions and to explain why they are constructed as they are.

On the other hand, flexibility is often achieved with ambiguous and indefinite
instructions. The person who writes the pattern cannot write down its every
possible occurrence, as the number of such occurrences can be infinite. As a
consequence, a typical pattern does not precisely describe every detail of the
application-specific solution. Instead, the usefulness of the pattern depends
on how well the reader understands the pattern documentation and applies it
in her application. The validity of patterns and pattern languages is testified
by their use; the pattern must be revisited or rejected if it fails to explain the
intended solution and how this solution should be achieved.

Thus, writing a good pattern is difficult and demands substantial amount of
skills and experience. Patterns should not only capture the experience they
are trying to convey but also explain how the design could be reused in dif-
ferent circumstances [Appleton 1997]. A pattern is never accurate enough
unless the design has been carefully examined. Iteration is often necessary as
trying to instantiate a pattern in practice motivates changes to that pattern;
the ultimate test for a pattern is to carry out the design with it. Also, there is
no single right way to write a pattern; like writing a novel or a poem it is a
creative human activity for human audience.

Despite of the creative nature of the pattern writing process, some guidelines
and criteria can be given. Meszaros and Doble [1998] present a pattern lan-
guage to capture some of the best practices of pattern writing. In their meta-
level pattern language they introduce patterns to define the concept of a pat-
tern and a pattern language, patterns to set the desired content and structure
of individual patterns, patterns to describe techniques for naming the patterns
and for including references to other patterns, patterns to make the patterns
easier to read, and patterns to define the desired content and structure of the
pattern languages. They also enumerate the following forces of the pattern
writing process:

• Keeping the solution hidden does not require any effort.

• Sharing the solution verbally helps only a few others.

 25

• Writing down the understanding of the solution is difficult and re-
quires much reflection on how to solve the problem.

• Transforming the solution into a more widely applicable form (pattern)
is difficult.

• People are unlikely to use the solution if they do not know why it
should be used.

• Writing down the solution may reduce the competitive advantage.

Buschmann et al. [1996], in turn, summarizes the following criteria that the
pattern writing process should meet:

• Focus on practicability. Patterns should describe proven solutions to re-
curring problems.

• Aggressive disregard of originality. Pattern writers do not need to be the
original inventor or discoverer of the solutions that they document.

• Non-anonymous review. Persons trying to use the patterns should con-
tact the pattern authors and discuss with them how the patterns might
be clarified or improved upon.

• Writer's workshops instead of presentation. Patterns should be discussed
inside the development group and attending peoples to seek what is
good about the patterns as well as the areas which they are lacking.

• Careful editing. The pattern authors have the opportunity to incorporate
all the comments and insights during the user feedback and writer's
workshop before presenting the patterns in their finished form.

Sometimes patterns – particularly the framework-specific ones (Subsection
2.1.2) – are not very general but try to describe a practical solution for a spe-
cific programming problem. Such patterns constitute a pattern language that
documents the typical use of the framework. In that case, the participants of
the writer’s workshop would be framework experts and application develop-
ers who are using the framework. The discussion about the framework-
specific patterns and the feedback would be very practical and implementa-
tion oriented. In addition, if a set of patterns is going to represent the speciali-
zation interface of a framework, they should be thoroughly tested and evalu-
ated by specializing the framework with them.

 26

2.2 From Patterns to Implementation and Back

A pattern is generative in the sense that its use creates solutions. Together the
participating elements of the solution and their relationships constitute a con-
crete manifestation of the pattern. This pattern instance is organized as de-
scribed in the pattern documentation. For legacy software systems, it may be
beneficial to analyze if the system contains such pattern instances. Using pat-
terns to create new pattern instances and the process to find the applied pat-
terns from existing software systems are discussed in the following subsec-
tions:

• Pattern instantiation. A concrete manifestation of a pattern is called a
pattern instance. A pattern is instantiated by creating and modifying
the participating elements of the solution as described in the pattern
documentation. Subsection 2.2.1.

• Patterns after instantiation. Connections between the patterns and the
pattern instances are often lost. However, this is valuable information
that should be documented. Subsection 2.2.2.

• Pattern mining. It may be useful to analyze a software system to find
out if it applies well-known patterns. Subsection 2.2.3.

2.2.1 Pattern Instantiation

Alexander et al. [1975] say that the process to instantiate patterns is based on
piecemeal growth. This piecemeal growth is evolutionary, dynamic, and con-
tinuous; it guides planning and construction and allows the whole to emerge
gradually from local acts. Alexander [2004] mentions also the principle of or-
ganic order in which the order is achieved when there is a perfect balance be-
tween the needs of the parts (classes, operations, etc.) and the needs of the
whole (a software system). Thus, instead of each act of design or construction
being an isolated event that creates a perfect element, like a complete class or
operation, every system is changing and growing all the time, in order to keep
its use in balance. As said by Alexander et al. [1987, p. 32]:

“Wholeness is too complicated to be built up in large lumps. The grain of development
must be small enough, so that there is room, and time, for wholeness to develop.”

Harrison N. and Coplien [2004] explain why the piecemeal-growth works.
Firstly, the user does not do random things at random times. Instead, patterns
encode experience and the instantiation follows steps that have repeatedly
worked in the past. Secondly, patterns build structures which themselves of-
fer a degree of resiliency under change. The structure is not rebuilt or reor-

 27

ganized after every change or increment. According to Harrison and Coplien,
a pattern language is a graph, and there are many useful paths through it. The
individual patterns tell about what patterns should come next in the path. Or
there may be documented paths that have been successfully used in different
circumstances.

Hence, from the software developer's standpoint, a pattern language with a
meaningful set of patterns helps to implement complex design piece by piece.
When a problem occurs, the software developer selects a suitable pattern and
instantiates it, either by creating new elements or by modifying existing ones,
as described in the solution statement of the pattern documentation. The path
used through the pattern language - the sequence of applied patterns - results
in a software system incrementally and gradually.

Florijn et al. [1997] discuss the pattern instantiation process. Firstly, a problem
must be recognized to identify which pattern to use. Secondly, the selected
pattern must be instantiated by mapping and integrating the design elements
from the pattern description to the design elements in the software system;
the software developer must decide which classes, operations, etc., in a pro-
gram will play the roles defined in the pattern description. This can lead to
situations where the elements in a program play multiple roles in different
pattern instances. Florijn et al. enumerates three different ways of instantiat-
ing patterns:

• Top-down. The software developer creates an initial set of classes and
their internals that follow the pattern.

• Bottom-up. The software developer selects a suitable set of existing code
elements that follow the pattern. No new elements are created; instead,
the bottom-up approach uses existing elements.

• Mixed. The software developer selects a suitable set of existing code
elements that follow the pattern. However, the pattern instance is not
completed and some new elements must be created to fulfill the pat-
tern.

To summarize, the software developer must provide the individual building
blocks that bring the pattern instance into existence. Rather than implement-
ing the plan at once as an isolated action, this can be seen as a gradually pro-
ceeding work, where the software developer creates and modifies code ele-
ments. The acts to instantiate a pattern can be seen as a sequence of tasks or
steps to select, create, and modify the required elements. The support of the
piecemeal growth and the different ways to create pattern instances (top-
down, bottom-up, and mixed) must be considered as important features of
the general pattern-based tool support discussed in Chapter 4.

 28

2.2.2 Patterns after Instantiation

Patterns act as a bridge between the design and its implementation. Many of
the authors who work to promote the pattern concept stress that if the pattern
instances cannot be traced back to the original patterns they become invisible
in the final product. For example, Soukup [1995] has noticed that program-
mers tend to lose sight of the original patterns, as the pattern instances are not
visible in the final source code. There may be some documentation and com-
ments scattered throughout the code, but this is not enough as it is hard to see
the overall design when working on the code-level. Soukup claims that this is
a major source of maintenance problems; the documentation describing the
patterns will eventually get lost or become obsolete. Also, documenting the
applied patterns only at the code-level becomes difficult when the number of
pattern instances increases. Due to the scattering and tangling problems dis-
cussed in Subsection 1.2.1, pattern instances may be partially overlapping and
a single code element may be playing different roles in more than one pattern
instance.

Soukup [1995] continues that when applying several patterns to the same set
of classes, pattern behaviour is embedded in operations associated with those
classes. Each pattern may require that such an operation calls the operations
of several other classes making the entire design a big knot of interdependent
classes and operations. For the software developer, code with these kinds of
complex and embedded relations is difficult to understand, debug and test.
Clearly, knowing the underlying patterns would help to understand the
fragmented design solutions and the crosscuttings of the software architecture
and framework specialization.

Florijn et al. [1997] discuss the difficulty to maintain pattern instances when
code is changing. Modifying source code, like changing the interface of a class
that is involved in some pattern instance, can cause situations where the pat-
tern instance violates the structural or semantic constraints of the pattern.
Such violations may be hard to find and they are easy to forget, as the code
itself remains syntactically correct. To deal with such situations, they suggest
that the software development environment should be able to check whether
the pattern instance meets the requirements of the pattern. Obviously, the
ability to check and locate pattern instances is crucial if patterns are going to
be used as a development resource during the software development process.

As pointed out by Mikkonen and Pruuden [2001], evolving software gets
more complex in each increment. Here the pattern instances can be seen as a
valuable resource that helps the software developer to understand the re-
quired changes, their consequences, and how these changes could be imple-
mented. However, without any tool support, this resource is hard to maintain

 29

and it is easy to forget and waste. Discovering the undocumented pattern in-
stances manually from the source code is expensive and time-consuming.
Even if the original state of the pattern instances was documented, future
changes in the implementation level will make this documentation outdated.

2.2.3 Pattern Mining

It can be beneficial to analyze an existing software system to find out if it ap-
plies any well-known patterns. This is called pattern mining [Martin 1995]. Par-
ticularly, in the case of legacy software systems, finding the used patterns
may help to understand, document, and reorganize the system. In addition, as
mentioned by Lange and Nakamura [1995], a running object-oriented system
produces huge amount of static and dynamic information. Patterns can be
used to analyze and visualize this information. Hence, pattern mining sup-
ports reverse engineering. Chikofsky and Cross [1990] define reverse engi-
neering as follows:

”Reverse engineering is the process of analyzing a subject system to (a) identify the
system’s components and their interrelationships and (b) create representations of a
system in another form at a higher level of abstraction.”

There are two reasons why unrecognised pattern instances may exist in code.
Firstly, as discussed in the previous subsection, if the use of patterns is not
continuously and carefully documented, pattern instances will not stand out
from the source code and they will be forgotten. Secondly, a software system
may have structures and behavior that resembles some well-known patterns,
even if the original software developers were not conscious of the patterns. A
typical pattern represents existing, approved experience; the software devel-
oper may have this knowledge without being aware of the patterns.

Keller et al. [1999] discuss more about pattern-based reverse engineering.
They argue that the patterns used are at the root of the main elements of soft-
ware systems. As these patterns capture the rationale and trade-offs of design
solutions, one can comprehend a software system by recovering the patterns
used. An important observation is that effective pattern-based reverse engi-
neering cannot be fully automatized; the human analyzer must direct the pat-
tern analysis tool to separate the essential information from inessential. Same
applies to reverse engineering in general.

As mentioned by Niere et al. [2002], one of the problems in pattern mining is
that patterns and their instances typically have a number of variants. This is
the main reason why pattern-based design recovery techniques have had only
limited success. Another reason is that patterns may be structurally identical,
though they have different behaviour or purpose. This makes the pattern

 30

mining even more complicated, as it is not enough to analyze only the struc-
ture of a software system, but also its behaviour.

Analysis and pattern mining tools are discussed in Subsection 4.5.3, Subsec-
tion 5.2.5, and Section 9.1. In any case, using a tool for pattern mining requires
that informal patterns can be expressed in a form that is suitable for the tool.

2.3 Formal vs. Informal Pattern Descriptions

The evident problem of any tool support is that informal pattern documenta-
tion is too ambiguous for a tool. Patterns are written for humans and the
documentation relies on the reader’s ability to apply a pattern in the current
situation. At the moment computers do not have this kind of intelligence or
intuition. Instead, efficient tool support requires that patterns take a coherent
and precise form. In this dissertation, as discussed in Chapter 1, such a tool-
supported form of a pattern is called a pattern specification. It captures the
core of the pattern documentation with some formalism or specification lan-
guage so that a tool can be used to help the application developer to apply the
pattern.

However, for humans the well-structured informal documentation with con-
crete examples is easier to read and comprehend. Thus, both informal and
formal pattern documentation has their usages and advantages. The purpose
of the precise pattern specifications should be to help the software developer
by enabling tool support, not to displace or underestimate the more informal
and readable documentation. In literature, pattern documentation has many
slightly different forms. For example, the Alexandrian form, the GoF form, the
Coplien form, and the Portland form that were discussed in Subsection 2.1.3.
All these forms are informal descriptions about the pattern and its use. As
said by Coplien [1996]:

“Patterns guide humans, not machines. They will not generate code; they do not live
inside CASE tools. They are literature that aids human decision-making processes. Pat-
terns should not, cannot, and will not replace the human programmer.”

On the other hand, also informal pattern documentation has its limitations. To
use patterns the software developer must recognize the problem and select a
suitable pattern that solves the problem. Then, to implement the solution, she
must read the selected pattern documentation and apply the pattern to the
context of her application. This can be problematic, as the pattern documenta-
tion cannot describe the desired application-specific solution precisely. In-
stead, the documentation uses abstract terms and fixed set of examples. As
each software developer and programmer may use and understand this
documentation differently, it can make the use of patterns slow, errorprone,

 31

and unsystematic. In addition, as discussed in Subsection 2.2.2, the connec-
tions between the pattern and its instances are difficult to maintain. Unlike
sophisticated pattern tools using some pattern specifications, the informal and
static pattern documentation does not provide any direct support to trace the
existing pattern instances, to check their validity, or to document the partici-
pating code elements. In the source code, patterns tend to be used as a dis-
posable resource without continuous maintenance.

Also Eden [2002b] criticizes informal pattern documentation, like verbal de-
scriptions, class diagrams, and concrete examples. According to Eden, the in-
formal and ultimately fuzzy descriptions puzzle the pattern users and cause
confusion. Typically, it is debated what is the true meaning of a pattern, or if a
particular implementation conforms to a certain pattern, or if one pattern is a
special case of another. Moreover, as the number of patterns increases, they
become an unstructured mass that lacks effective means of indexing.

Still, it must be admitted that there are some problems with more precise pat-
tern specifications. Firstly, formalisms are often too heavy to be used in ordi-
nary software projects [Lamsweerde 2000]. Secondly, typical application de-
velopers are not familiar with formalisms and exotic pattern specification lan-
guages; they are interested in applying a particular pattern to solve a specific
and practical problem. With a formalism, the essential aspects of the original
pattern documentation may become cluttered with many details making the
pattern hard to understand. Thirdly, one can suppose that the informal pat-
tern documentation uses richer and more ambiguous design vocabulary than
the one offered by any formalism. A formal notation is rarely expressive
enough to specify every not so clear detail of the original pattern documenta-
tion. Also, it seems that formalisms mainly concentrate on the solution part of
the pattern documentation. However, as discussed in Subsection 2.1.3, pattern
documentation describes also other statements, like context and consequences
of the pattern. These are often difficult to formalize, though some approaches
have been presented, for example, to specify the context of the pattern (see,
e.g., [Mikkonen 1998; Kellomäki and Mikkonen 2000]).

A tool support itself has some trade-offs, too. Particularly, a complete and
very fine-grained tool support may be computationally too expensive to be
used in practice. On the other hand, if the tool support is too limited, it en-
trusts the user to look after laborious details, like tracing the pattern instances,
which could be managed automatically. After all, the tool support is to be
used by people; ordinary software developer or programmer must experience
that the tool is easy to learn, easy to use, and it proves to be advantageous. To
be successful, the adoption of a new technology should not hinder approved
development methodologies, techniques, and project management.

 32

To solve these problems, we suggest that the complexity of the used formal-
ism is hidden from ordinary application developers. For instance, an experi-
enced software architect could use some kind of pattern editor to create pat-
tern specifications, while an application developer could utilize an easy-to-use
deployment tool to instantiate them. In addition, we suggest a light-weight
approach, in which the purpose of pattern specifications is to provide practi-
cal support for a portion of application development, not to express or proof
the whole application and its requirements with patterns. The formalism
could concentrate on describing only the essential participants and interac-
tions needed in the solution. Altogether, this means that such a pattern speci-
fication may represent only a refined subset of the solution space described by
the original pattern. These principles are applied in Chapter 4, when outlinig
the general tool platform for patterns.

 33

CHAPTER 3

FRAMEWORKS IN SOFTWARE
ENGINEERING

Like any industry, also software industry has been motivated by the quest to
improve its processes and reduce production costs. Time scale, quality, and
the overall cost of the software development process should be optimized and
the whole process should be more predictable. This goal has moved the soft-
ware industry to embrace object-oriented programming because of its poten-
tial to significantly increase quality and productivity. Concepts like abstract
data types, encapsulation, inheritance, polymorphism and dynamic binding [Sebesta
1999] make the object-oriented paradigm suitable to implement large software
systems by reusing existing design and code. Object-oriented frameworks, in-
troduced in Subsection 1.1.4, are one approach to use this technology in a
most efficient way. Patterns, in turn, are a way to document the design and
the use of a framework.

A framework is used by extending and refining its classes and operations and
by using its components. In that way, the code and design of the framework
becomes reused to create a new application or a significant portion of it. The
programming is done faster and the code is more reliable. Altogether, this
improves the quality of the created software product and reduces production
costs. However, though frameworks have many advantages, their use is often
problematic (Section 1.2). Using a framework to create an application requires
expertise and knowledge that cannot be obtained directly from the frame-
work’s interfaces or class hierarchy. Instead, a framework requires good
documentation and tool support to be used and understood. In Chapter 4 it
will be shown that a pattern-based tool support can help and systematize the

 34

use of frameworks. This is also demonstrated with case studies in Chapter 7
and in Chapter 8.

As a background, a more detailed introduction to frameworks is given in Sec-
tion 3.1. Designing and maintaining frameworks are discussed in Section 3.2.
Framework specialization and how a pattern-based tool support could help
are discussed in Section 3.3.

3.1 Introduction to Frameworks

A brief introduction to object-oriented frameworks is given in the following
subsections:

• Characteristics of a framework. An object-oriented framework is a reus-
able software system that provides a skeleton to implement solutions
for a particular application domain. Subsection 3.1.1.

• Advantages of frameworks. Frameworks have many benefits that make
them attractive when creating applications. Subsection 3.1.2.

• Problems with frameworks. Frameworks have some drawbacks and
trade-offs. Subsection 3.1.3.

• Framework categories. Frameworks can be classified by their specializa-
tion technique and scope. Subsection 3.1.4.

3.1.1 Characteristics of a Framework

There are a number of definitions for a framework. For example, Roberts and
Johnson [1996] define frameworks as reusable designs of all or part of a soft-
ware system described by a set of abstract classes and the way instances of
those classes collaborate (Subsection 1.1.4). From the user’s standpoint, Tali-
gent [1994] defines a framework as a set of prefabricated software building
blocks that programmers can use, extend, or customize for specific computing
solutions. In any case, a framework captures the programming expertise nec-
essary to solve problems in a particular problem domain; it hides the parts of
the design that are common to all applications in that domain, and makes ex-
plicit the pieces that need to be customized. A typical framework usually pro-
vides the design for only a part of a system, such as its user interface, though
application specific frameworks may describe an entire application.

An important characteristic of an object-oriented framework is that the opera-
tions defined by the application developer can be called from within the
framework itself, rather than from the user’s application code [Johnson and

 35

Foote 1988]. This mechanism is often called ”the Hollywood principle” or
”Don’t call us, we’ll call you”. Places where the framework should be ex-
tended by implementing these operations are often called hot spots [Pree
1995]. Hot spots are kinds of slots or extension points in the framework; it is
the user’s task to fill these slots with application-specific code. In practice, hot
spots are typically indicated with abstract classes and unimplemented opera-
tions of the framework.

Hot spots and the Hollywood principle make frameworks flexible. A frame-
work calls a code provided by an application-specific subclass, customizing
the behavior of the framework. For instance, a GUI framework may have ab-
stract classes and interfaces used by the GUI components. By implementing
the required subclasses and operations, the application developer can create
application-specific models to be viewed and managed by these GUI compo-
nents.

Fayad et al. [1999] have summarized the four central properties of object-
oriented frameworks:

• Modularity. Frameworks enhance modularity by encapsulating imple-
mentation details behind stable interfaces. This helps to improve soft-
ware quality by localizing the impact of design and implementation
changes.

• Reusability. With stable interfaces, frameworks provide generic build-
ing blocks to create new applications. Reuse of these framework com-
ponents can enhance the quality, performance, reliability, and interop-
erability of software. In addition, using existing code and design solu-
tions improves programmer’s productivity.

• Extensibility. A framework provides explicit hook methods (hot spots
[Pree 1995]) that allow applications to extend its stable interfaces.

• Inversion of control. Unlike normal class libraries, frameworks may call
the operations of the derived application (the Hollywood principle).
The role of a framework is to provide the general flow of control, while
the application’s code waits for a call from the framework

Taligent [1994] has noticed that to be successful, a framework should be:

• Complete. Frameworks must support features needed by users and they
must provide default implementations and built-in functionality when
possible. This makes it easier for the users to understand a framework
and to allow them to focus on the areas that they need to customize.

 36

• Flexible. Abstractions of a framework can be used in different contexts.

• Extensible. Users can easily add and modify functionality. The frame-
work developers must provide hook methods so that clients can cus-
tomize the behaviour of the framework by deriving new classes.

• Understandable. The framework should be well-documented. The
framework developers should follow standard design and coding
guidelines and provide sample applications that demonstrate the use
the framework.

3.1.2 Advantages of Frameworks

Frameworks have significant benefits:

• Reuse of code and design. With frameworks, applications are built by re-
using approved design and code. A framework is not just a collection
of classes but it also defines a generic design and helps the user to ap-
ply the underlying product line architecture. Because of the bi-
directional flow of control a framework can contain much more func-
tionality than a traditional class library.

• Stored experience. Frameworks store experience; problems are solved
once and the business rules and design are used consistently. By pro-
viding reusable design and code, the framework decreases the amount
of architectural decisions and implementation efforts that the software
developer has to make.

• Coordination. Frameworks can be used to coordinate distribution of
work. For instance, a project can be divided into those improving, ex-
tending, or developing frameworks and those using them for a particu-
lar application [Johnson and Russo 1991].

• Improved software development cycle. Frameworks decrease the amount of
code that the application developers have to program, test, and debug.
By using frameworks the developers can focus their attention on more
advanced design and implementation problems. This enables also
rapid prototyping [Campbell et al. 1992].

• Maintainability. When implemented with a framework, the created ap-
plications share the same product line architecture with common struc-
tures and features. In the case of mature frameworks this makes the
applications easier to maintain and understand. However, as discussed
in the next subsection, the maintainability can also be a problem if the
framework is not stabile enough.

 37

3.1.3 Problems with Frameworks

Frameworks have many advantages making them attractive. However, they
have some significant drawbacks and trade-offs, too. Fayad et al. [1999] have
summarized the following often mentioned challenges dealing with frame-
works:

• Development effort. It is hard to create a reusable framework for complex
application domains. Unless the framework can be used in many pro-
jects, this investment may not be cost-effective.

• Learning curve. Frameworks are often complex and difficult to use.

• Integratability. Using multiple frameworks simultaneously can be diffi-
cult if the frameworks cannot cooperate.

• Maintainability. The requirements of applications and frameworks
change frequently. As frameworks evolve, the applications that use
them must evolve with them.

• Validation and defect removal. Validating and debugging applications
built using frameworks can be difficult.

• Efficiency. Generality and flexibility of frameworks requires more proc-
essing time and memory resources.

• Lack of standards. There are no standards for designing, implementing,
documenting, and using frameworks.

We argue that the framework-specific patterns (Subsection 2.1.2) and the pat-
tern-based tool support proposed in this thesis could be used to reduce some
of the problems. Particularly, learning and validating the use of frameworks
could be supported by this kind of tool.

3.1.4 Framework Categories

Frameworks can be classified by their usage technique and scope. For exam-
ple, depending on how a framework is specialized, it is said that it is a white-
box framework, a gray-box framework, or a black-box framework [Fayad et al. 1999].
The use of a white-box framework is based on inheritance and dynamic bind-
ing. The user customizes a white-box framework by deriving new subclasses
from the abstract base classes of the framework and by overriding and im-
plementing required operations. The use of a black-box framework, in turn, is
based on object composition; the user configures and composes objects (com-
ponents) that implement the application or a part of it. Usually a framework

 38

is not purely white-box or black-box framework. Instead, the framework spe-
cialization may utilize both white-box and black-box techniques, where a part
of the specialization is done by composing components and the missing func-
tionality is implemented by deriving new subclasses. The use of a gray-box
framework is a mix of white-box and black-box usage.

Johnson and Foote [1988] have noticed that there is no strict line between a
white-box framework and a simple class hierarchy; every class hierarchy of-
fers the possibility of becoming a white-box framework. In its simplest form, a
white-box framework is a program skeleton, and the user-derived subclasses
are additions to that skeleton. White-box frameworks may evolve into black-
box ones. However, this process is not obvious; many frameworks will not
complete the journey from white-box skeleton to black-box framework during
their lifetime.

As an example of scope-based categorization, Fayad et al. [1999] suggest that
the scope of frameworks may range from system infrastructure frameworks and
middleware integration frameworks to enterprise application frameworks. System
infrastructure frameworks simplify the development of portable and efficient
system infrastructure. They are primarily used internally within a software
organization and are not sold to customers directly. Middleware integration
frameworks are used to integrate distributed applications and components.
Enterprise application frameworks address broad application domains. They
support the development of end-user applications and products directly,
while system infrastructure and middleware integration frameworks focus on
internal software development.

Another scope-based categorization is discussed by Taligent [1994], where the
scope ranges from support frameworks to domain frameworks and further to ap-
plication frameworks. Support frameworks provide system-level services, such
as file access or device drivers. Domain frameworks encapsulate expertise in a
particular problem domain, like multimedia or data access. Application
frameworks, in turn, encapsulate expertise applicable to a wide variety of pro-
grams; for example, application frameworks to create graphical user inter-
faces.

The application domain can also be divided into different layers. Frameworks
with different scope can then be used to implement these layers. Such a sys-
tem consists of layered frameworks, where more specific frameworks are built
on the more abstract ones [Fayad et al. 1999].

 39

3.2 Designing and Maintaining Frameworks

Fayad et al. [1999] divides the framework-centered software development
into the following phases: framework development phase (to create the frame-
work), framework usage phase (to derive applications), and evolution and mainte-
nance phase (to maintain the framework and the derived applications), where
each phase is affected by other ones making the process iterative. People have
different viewpoints to the framework depending on the phase they are in-
volved in and if they are actually developing the framework or using it to de-
rive applications. The usage phase is discussed in Section 3.3. Issues to design,
maintain, and document frameworks are discussed in the following subsec-
tions:

• Development phase. Developing a framework is often difficult; it is an it-
erative process which needs both domain and design experience. Sub-
section 3.2.1.

• Evolution with iteration. Defects and shortcomings are discovered when
the framework is used and the understanding of the problem domain
increases. Subsection 3.2.2.

• Documentation with patterns. Patterns can be used to document the
framework. Subsection 3.2.3.

3.2.1 Development Phase

Though there are numerous design techniques for object-oriented program-
ming, developing object-oriented frameworks is significantly more difficult
than developing individual applications. Developers have noticed that
framework designing is an iterative process which requires both domain and
design expertise [Johnson and Foote 1988; Johnson and Russo 1991; Johnson
1997; Taligent 1994; Fayad et al. 1999]. Firstly, a framework must be simple
enough to be learned, or at least it must have good documentation and tool
support. Booch [1994] says that a framework will never be reused unless the
cost of understanding it and then using its abstractions is lower than the pro-
grammer's perceived cost of writing the application from scratch. Secondly, a
framework must embody a theory of its application domain; it must provide
good abstractions and enough functionality to be useful.

The framework development usually starts with domain analysis trying to
find the reusable design and the extension points (hot spots), making the
framework flexible. Identifying the key abstractions and extension points may
be difficult if the framework developers are not familiar with the problem
domain. Therefore, the framework developers should examine applications

 40

written by others and consider writing application in the domain. These ex-
amples are then generalized to find out similarities.

Johnson and Russo [1991] say that the framework’s range of applicability de-
pends heavily on the examples on which it is based. Each example that is con-
sidered makes the framework or abstract class more general and reusable.
Abstract classes are small, so it is easy to generate lots of examples on paper
and reduce the chance of iteration. Frameworks are large, so it is too expen-
sive to look at many examples, and paper designs are not sufficiently detailed
to evaluate the framework.

Johnson [1993] has found that a typical way to develop a framework is the fol-
lowing. At first, an application in a particular problem domain is developed
in an object-oriented language. Then the application is divided into reusable
and nonreusable parts. Then a second application is develop reusing as much
software of the first application as possible. It will be noticed that the frame-
work obtained from the first application is not very reusable, so it must be
fixed. Then a third application is developed reusing as much software as pos-
sible. Again it is usually noticed that the framework is still not completely re-
usable. The framework is improved and the iteration continues.

The first version of the framework is usually a white-box framework meaning
that it is mainly specialized by deriving new subclasses and overriding opera-
tions. Derived applications point out faults in the framework and experience
leads to improvements, making the development process iterative. Usually
the improvements make the framework more black-box meaning that it can
be customized by using different combinations of classes in the framework's
component library [Roberts and Johnson 1996; Aksit et al. 1999]. This is due to
the fact that the design of a particular framework system gradually becomes
better understood, which leads to components with higher functionality.

Many authors have noticed that there are hardly any formal techniques for
the design of frameworks. Many experts even believe that frameworks cannot
be the result of systematic design, but that they rather evolve in a bottom-up
fashion, where new features are added to the framework as the framework is
used and the developer’s experience increases. However, some systematic
approaches have been proposed to support the framework development
process.

For example, Koskimies and Mössenböck [1995] suggest that the design of a
framework shall proceed in two phases. The first phase is called problem gen-
eralization. It starts from a single example problem, which is then generalized
in a sequence of steps into the most general (sensible) form. The second phase
is called framework design. During this phase the generalization levels of the

 41

original example are considered in reverse order; a framework is created for
each generalization level so that the created framework can be used to im-
plement the corresponding generalization. In other words, a framework for
the most generalized level of the original example is implemented first. Then
the most general framework can be used to derive a framework for the more
concrete generalization level and so on. The result is a hierarchy of more and
more refined frameworks. The second phase makes use of general design ex-
perience and domain knowledge to find the hot spots in each framework.

Roberts and Johnson [1996] suggest a pattern language which can be used
during the framework’s development process. The language contains patterns
related to each other. In their pattern language, they suggest that the devel-
opment starts by creating three example applications. After that, the shared
functionality and common features of the applications are separated as a
white-box framework. The development continues towards a black-box
framework: new components are added to the framework’s component li-
brary and the library evolves to provide more and more functionality. Finally,
applications can be built entirely by object composition.

3.2.2 Evolution with Iteration

Because of its importance to applications and software projects developing
them, a framework requires routine maintenance to fix errors, assist users,
and respond to their problems and requests. Typically, defects and shortcom-
ings are discovered when the framework is used and the understanding of the
problem domain increases. The framework is then changed to address the
identified problems and trying to use this new version points out new prob-
lems and improvement requirements. Even if the framework itself is robust
and accurate, the requirements of the application domain may change affect-
ing the product line architecture and the rules of the framework.

A major drawback is that these modifications may cause serious problems for
the existing applications based on the framework. Thus, after releasing the
framework it should be as stable as possible. Taligent [1994] suggests that
framework developers should fix simple bugs immediately, add new features
occasionally, and change public interfaces as infrequently as possible. On the
other hand, it is hard to know if the framework is stable enough without use
cases that verifies it.

One reason for iteration is that framework designers are not skilled enough;
they don’t have enough experience in the problem domain or software devel-
opment. However, lack of experience is not the only reason for iteration.
Johnson and Russo [1991] say that the main reason that framework design it-
erates is because frameworks are supposed to be reusable; all software re-

 42

quires iteration before it becomes reusable. This follows from the general ob-
servation that software never has a desirable property unless it has been care-
fully examined and tested in terms of the property. The ultimate test for
whether a framework is complete is to specialize it. This is also known as a
problem of verifying abstract behavior [Fayad et al. 1999], in which the
framework cannot be tested before the framework user provides the applica-
tion-specific implementations. Without application-specific parts a framework
is too abstract to be completely tested.

Johnson and Russo [1991] continue that since frameworks require iteration
and deep understanding of the application domain, it is hard to create them
on schedule. A common mistake is to start using a framework for important
projects while its design is still iterating. It is better to first use the framework
for some small pilot projects to make sure that it is sufficiently flexible and
general. If not, these projects will be good test cases for the framework devel-
opers. A framework should not be used widely until it has proven itself; the
more widely a framework is used, the more expensive it is to change it later.
Thus, framework design should never be on the critical path of an important
project. On the other hand, framework design must be closely associated with
the application developers; building applications with a framework shows
which parts of the framework need to be improved.

3.2.3 Documentation with Patterns

Documenting frameworks is difficult because they are more abstract than
most software. Johnson [1992] suggests that patterns could be used to de-
scribe frameworks and their usage. According to Johnson, framework docu-
mentation must meet several requirements; it must describe the purpose of
the framework, how to use the framework (framework-specific patterns, Sub-
section 2.1.2), and the detailed design of the framework. He continues that
these requirements can all be met by structuring the documentation as a pat-
tern language:

• The purpose of the framework. The first pattern of the pattern language
should describe the framework’s application domain. It is usually hard
to specify the problem domain precisely, but a pattern with small set of
examples can make the purpose clear. These examples are not intended
to show how to use the framework to build applications, nor to explain
the design of the framework, but rather to show what the framework is
good for. In addition, the first pattern introduces the rest of the pat-
terns in the pattern language, and it tells which patterns should be
studied next. Thus, it acts both as a catalog entry for the framework
and as a road map to the patterns.

 43

• Using the framework. The framework documentation should show how
the framework is used to build applications. The framework users are
not usually interested to know exactly how the framework works, but
how it could be used to solve a particular problem. This means that
they want a kind of cookbook that gives detailed instructions to spe-
cialize the framework. This cookbook can be done by structuring the
documentation as a pattern language, in which each pattern describes a
specific specialization problem of the framework.

• The detailed design of the framework. The framework’s technical docu-
mentation includes the different classes in the framework and the way
that instances of these classes collaborate. The detailed design informa-
tion should be hidden from ordinary framework users, because they
are not interested in seeing it. This information is most important to the
framework developers maintaining the framework.

Since Johnson, patterns have been used for describing the rationale behind
design decisions for a framework [Beck and Johnson 1994] and to provide
higher-level descriptions of frameworks [Hüni et al. 1995; Schmidt 1997].
Many authors (e.g., [Florijn et al. 1997; Riehle 2000]) have also recognized the
close relationship between patterns and the framework's hot spots. More
about patterns and how they can be used to provide tool support for frame-
work speacialization is discussed in the next section.

3.3 Using Frameworks

The framework specialization and tool support are discussed in the following
subsections:

• Framework specialization. The framework specialization is the process to
implement an application or a part of it with the framework. Subsec-
tion 3.3.1.

• Pattern-based tool support for frameworks. Framework-specific patterns
can be used to support framework specialization. Subsection 3.3.2.

3.3.1 Framework Specialization

Using a framework requires substantial amount of knowledge. The frame-
work user must know which framework to use and how it should be special-
ized. In addition, application development is seldom based on a single
framework. Instead, the use of frameworks is increasingly based on the inte-
gration with other frameworks, together with class libraries, legacy systems,

 44

and existing components [Fayad et al. 1999]. This integration process is not
always straightforward because the architectural styles [Perry and Wolf 1992;
Buschmann et al. 1996; Shaw and Garlan 1996] of two or more frameworks
can be too different. These integration problems arise at several levels of ab-
straction, ranging from documentation issues [Hamu and Fayad 1998] to the
event dispatching model and other framework-specific decisions. This is
sometimes referred to as architectural mismatch [Garlan et al. 1995].

In the case of a single framework, the framework user specializes the frame-
work by extending its functionality (white-box reuse) and by composing its
components (black-box reuse). Figure 2 illustrates how the framework is used
to derive an application. After selecting a suitable framework, the framework
user writes glue code to configure and compose the framework components
to form the application. If there are no suitable components available, she de-
rives new subclasses to implement the desired functionality.

Framework user

Application Select
framework

Select
components

Select
base classes

Write
subclasses

Write
glue code

Figure 2. Specializing a framework.

White-box frameworks, based on inheritance, require the framework user to
create many new subclasses with a substantial amount of code. While most of
these new subclasses may be simple, their number and interactions can make
the task difficult for an inexperienced programmer [Johnson and Foote 1988].
Black-box frameworks based on object composition require less coding, but
still the rules behind the component composition may be hard to understand.
Ideally, the framework user should be able to create the application just by
assembling existing components. However, in practice the set of available
components is seldom rich enough. Reuse by inheritance is often necessary to
build the missing components and functionality that cannot be expressed
with the current set of components.

3.3.2 Pattern-Based Tool Support for Frameworks

One of the reasons why learning and using a framework is hard, is that com-
prehending an object-oriented design as such is difficult. For instance, De-
meyer et al. [1997] has noticed that the inheritance hierarchy of a software sys-
tem tells only little about its architecture; inheritance describes relationships
between classes, not objects. Although the features of the implementation

 45

language can be used to state some aspects of the software architecture in the
interface-level (e.g., abstract and final methods in Java) they can express only
a fraction of the rules associated with the architecture. Clearly, as discussed in
Section 1.2, conventional object-oriented language structures consisting of
class declarations and operation signatures is not enough to explicitly de-
scribe the flow of control and rules between the framework and its specializa-
tions.

To make its use easier, the framework may have tools to help its specializa-
tion. Traditionally, black-box frameworks have been considered to be better at
serving as the foundation of a supporting tool. Such a black-box supporting
tool can let the user to choose framework components and connect them to-
gether. Finally, based on the selected components, the tool can generate the
specialization.

However, as discussed in Subsection 3.3.1, the framework’s component li-
brary is usually insufficient. The white-box reuse is often needed in order to
implement more advanced features and design solutions with the framework.
Thus, a supporting tool should also guide how to write new subclasses. In
addition, it should check that the application-specific implementation obeys
the – often invisible – specialization rules of the framework.

As discussed in Subsection 2.1.2, framework-specific patterns can describe
how a framework should be used. This is illustrated in Figure 3; for a particu-
lar specialization problem, a pattern could describe which component or base
class should be selected and how it should be used.

Framework-specific patterns

Framework user

Application Select
framework

Select
components

Select
base classes

Write
subclasses

Write
glue code

Figure 3. Specializing a framework with framework-specific patterns.

If an advanced pattern tool could use these framework-specific patterns as
input, it could help the application developer to specialize both black-box and
white-box frameworks. Such a pattern-based tool support could partially
automatize the pattern instantiation process and maintain the bindings be-
tween the pattern specifications and the pattern instances. The tool could help
the user to write the required specialization code and to check that the spe-

 46

cialization obeys the rules of the framework. In addition, the use of patterns
could be systematically documented. Particularly, as will be shown in this
dissertation, the pattern-based tool support could help the framework user in
the following tasks:

• A tool could guide the user to specialize the framework.

• A tool could trace the involved code elements and verify the correct-
ness of the specialization against the rules of the underlying patterns.

• A tool could help the user to learn and understand the framework.

 47

CHAPTER 4

OUTLINING A TOOL PLATFORM
FOR PATTERNS

Patterns are a universal and practical approach to document approved solu-
tions and how to apply those solutions in different circumstances. The prob-
lem is that patterns are informal documentation, suitable for human readers,
but too ambiguous and indefinite for efficient tool support. As reading and
applying patterns and documenting pattern instances is not systematically
supported, this hinders the large-scale industrial use of the pattern concept.
Thus, a general and integrable tool support to create and exploit patterns
sounds promising. For example, framework developers and middleware pro-
viders could annotate their software with patterns describing how the prod-
ucts should be used. Then, the client who is working with a common software
development environment could apply this reusable software by instantiating
the associated patterns. Further, the use of the patterns could be tracked by
the system, making it possible to check violations and to generate pattern-
based documentation and tutorials for learning and maintenance purposes.
Such pattern-based environment could speed up the software development
process and improve the quality of the software product.

This chapter outlines a tool platform to apply patterns during software devel-
opment. The platform can be integrated into existing software development
environments and it can be used to instantiate patterns and to maintain and
document their instantiations. The described tool platform assumes that the
key to provide a successful and practical pattern-based tool support is to ac-
cept the fact that software development and programming is creative and
gradually proceeding work carried out by humans with different skills and

 48

understanding. The use of patterns should be transparent, respect human
cognition, and utilize the idea of piecemeal growth discussed by Alexander
(Subsection 2.2.1). The pattern-based tool support should smoothly and al-
most inconspicuously guide ordinary programmers and software developers
to reuse approved design solutions and conventions, even if the users are not
conversant with the theory behind the pattern concept itself.

The outlined pattern tool platform has some characteristics that make it uni-
versal, practical, and easy to use; these are discussed in Section 4.1. An over-
view of the platform is given in Section 4.2. Tool supported pattern specifica-
tions are discussed in Section 4.3. The hierarchical system of these pattern
specifications is discussed in Section 4.4. Different tools to utilize pattern
specifications are discussed in Section 4.5. The possibility to integrate the tool
platform into a real software development environment is discussed in Sec-
tion 4.6.

4.1 Requirements

The main advantage of the pattern tool platform is that it provides common
services and functionality for a family of pattern tools. The platform can, for
example, trace the pattern instances automatically. The following list summa-
rizes the general requirements for such a pattern tool platform. These re-
quirements emerge from the nature of the pattern concept and from the prac-
tical experiences gained with JavaFrames [JavaFrames 2004]. The JavaFrames
system itself is compared to these requirements in Section 10.1:

• Integrable. To be used, the platform must be integrable into other de-
velopment environments. For instance, the system should receive noti-
fications and parse information from the software development envi-
ronment to check the pattern instances.

• Extensible. As patterns are widely applicable in different programming
languages, tools, and development environments the platform must be
extensible. The platform cannot provide a predetermined and fixed set
of different pattern types and tools; instead it must allow the user to
extend the system with new kinds of tools and pattern specifications.

• Cohesive. Patterns are a bridge between the design and its implementa-
tion. The platform must support this unity. The platform is cohesive
because it manages the unity of patterns and their instances. It must be
able to trace individual program elements to the corresponding pattern
specifications and to check that those program elements are not violat-
ing the patterns they are involved in. The architectural rules that must
be followed during and after the pattern instantiation process can be

 49

seen like a higher level typing system. In the same sense as the code
must conform to the typing rules of the implementation language, it
must conform to the architectural rules encapsulated by the used pat-
tern specifications.

• Scalable. The range of patterns varies from architectural patterns and
design patterns to idioms and coding conventions. The scale of soft-
ware products varies from components to full-scale applications and
large software systems. The platform must be scalable to allow the pat-
tern modeler to create both architectural pattern specifications and id-
iom-level pattern specifications for different domains.

• Precise and explicit. With pattern specifications, it must be able to de-
scribe the precise structure of the intended solution. The platform must
provide the required building blocks (because the platform is extensi-
ble, new building blocks can be created if necessary) that cover the
problem domain as completely as possible and allow the user to create
detailed pattern specifications. Clients must be able to apply these pat-
tern specifications in full-scale software projects.

• Incremental. As discussed in Subsection 2.2.1, it seems that for humans
the best way to instantiate patterns is to instantiate them gradually,
step by step, where each step may have effects to the steps to come.
Thus, it sounds natural that the platform is incremental and supports
the pattern instantiation as a gradually proceeding work. To do this,
the platform should provide a dynamically adjusted list of fine-grained
instantiation tasks. The user should be able to execute these tasks in
small portions, see their effects in practice, and go back to undo tasks
or to change the involved elements. This kind of working is inherent to
software engineering, and the platform should support it. In this way,
the user has better control and understanding of the pattern instantia-
tion and of the constructed software product.

• Generative. Patterns are used to create new elements and to modify ex-
isting ones; they are generative. Also the platform must support this
generativity to create and adjust the elements to conform patterns.
During the pattern instantiation the platform can gather application-
specific information, which can then be used to generate the required
elements and documentation, so that the result is perfectly customized
to the current application. The incremental nature of the platform
makes it natural to propose these new elements with appropriate ex-
planations immediately to the pattern user. The platform can then gen-
erate most of the regularly repetitive parts of the solution. Using the
pattern instantiation tasks to generate source code makes the platform
an incremental code generator.

 50

• Open-ended. There is no strict end point for the use of patterns. The
platform must allow the user to add new pattern specifications and to
modify existing ones. Clients must be able to start instantiating new
patterns and to revisit old instantiations, even for an already completed
software product. The platform must be able to save and restore the as-
sociations between the pattern specifications and the concrete software
elements. This makes the use of the platform open-ended.

4.2 Overview

With a proper tool support the use of the pattern concept discussed in Chap-
ter 2 could be made more effective and standardized. The concept could then
be used, for instance, to specialize frameworks as discussed in Chapter 3. A
general insight of the outlined pattern tool platform is given in the following
subsections:

• Problems with patterns. Patterns are informal documentation. Due to
their informal nature and the large number of available patterns, the
use of patterns has some drawbacks. Subsection 4.2.1.

• Use and users of the tool platform. With the platform, the pattern-based
tool support resembles a human tutor, which, rather than giving a lec-
ture beforehand with abstract terms, guides the user with practical ad-
vices during everyday programming activities. Subsection 4.2.2.

• Pattern specifications and the core of the tool platform. The core of the tool
platform extracts instantiation tasks from the pattern specifications and
verifies the pattern instances. Subsection 4.2.3.

• Pattern tools and integration into other environments. Pattern specifications
are managed and used with various pattern tools. To be generally ap-
plicable, the platform and the tools must be integrated into a real soft-
ware development environment. Subsection 4.2.4.

4.2.1 Problems with Patterns

Clearly, patterns have many benefits. However, patterns cannot resolve all
problems and they certainly do not guarantee that the software development
process will be a success. As such, patterns have some drawbacks that hinder
their use. A tool support could solve some of the following problems and im-
prove the use of patterns:

 51

• How to write a pattern? Like with any documentation, it demands time
and skills to write a good pattern. This is creative human activity that
cannot be fully automatized.

• How to find a suitable pattern that solves a specific problem? There exists a
large number of patterns, like the design patterns presented by Gamma
et al. [1995], and each pattern may have a number of variations. Select-
ing the right pattern requires experience. It is not always obvious what
is the correct pattern, or even if there exists a suitable pattern that is
applicable for the current problem. Thus, for inexperienced software
developer it can be difficult to find a set of pattern candidates and to
select the optimum one, or to note that any of the patterns cannot be
used to solve the problem. If the patterns are formally specified, a tool
could be used to compare and find them with some criteria. However,
selecting patterns automatically is a difficult problem. The final re-
sponsibility of the used patterns belongs to the software developer.

• How to ensure that a pattern becomes correctly and efficiently instantiated in
the current context? Patterns are abstract and informal descriptions; fol-
lowing ambiguous instructions and small set of examples may be diffi-
cult and time-consuming. If the original patterns are formally specified,
a tool could help in their instantiaton; the tool could provide instantia-
tion hints and verify the implementation against the given pattern
specifications.

• How to document the use of a pattern after it has been instantiated? A pat-
tern describes the problem-solution pair in an abstract and common
way that can be used multiple times in different contexts. Its instantia-
tion, in turn, consists of certain software elements in a very specific
context. The original pattern documentation is too abstract, missing the
bindings to the concrete instantiation and the problem specific reason-
ing why the pattern was selected and used. If the original patterns are
formally specified, a tool could trace their instances. As the bindings
between the software elements and the used pattern specifications are
known, a tool could generate documentation about the instantiated
patterns.

• How to trace the instantiated solution back to its pattern(s)? Typically, a
pattern is forgotten once it has been instantiated. Related to the docu-
mentation problem, it is hard to see directly from the source code or
design models what roles a software element plays in different pattern
instances. This makes it difficult to maintain and validate the solution
later on. If the original patterns are formally specified, a tool could
trace the software elements that are involved in the pattern instance.

 52

• How to find existing pattern instances from a software system? Identifying
patterns from existing software systems may help to document and
maintain those systems, making their internals more structured, flexi-
ble, and easier to understand. Again, it is cumbersome to trace patterns
manually, based on abstract and informal descriptions. If a tool knows
the general structure of the searched patterns, it could help to find their
instances.

• How to remove or replace obsolete or counterproductive patterns from a soft-
ware system? Patterns can be misunderstood and misused. When the
software system evolves, it may be necessary to remove or replace old
patterns. If the original patterns are formally specified, a tool could
automatically trace their instances and help to remove or replace these
instances.

4.2.2 Use and Users of the Tool Platform

A general pattern-based tool support has four kinds of users shown in the
UML use case diagram in Figure 4. The pattern modeler creates precise pattern
specifications. Note that the pattern modeler should not be confused with the
pattern writer discussed in Subsection 2.1.5. Instead, the pattern modeler may
use informal pattern descriptions as blueprints, when creating more precise
specifications. The pattern user applies and instantiates the created pattern
specifications. She can also use the pattern-based documentation to learn and
compare the applied design solutions. The documentation producer creates
documentation, reports, and tutorials by utilizing the pattern specifications.
Finally, the platform developer is an expert who can create advanced pattern
tools (Section 4.5) and new pattern semantics (Section 4.3). For instance, a
typical pattern semantics could cover the elements and structures of some
programming language, like Java or C++. The pattern modeler could then
utilize this pre-made semantics to create, for example, Java-specific pattern
specifications to describe the intended specialization of a Java framework.

To illustrate the use and advantages of the platform, consider typical instruc-
tions for framework specialization. The problem with traditional documenta-
tion and examples is that they have to be written before the specialization
takes place. Therefore, the documentation has to be given by using the ab-
stract concepts of the framework, not with the concrete concepts of the spe-
cialization. This static and informal documentation cannot generate any of the
required software elements or verify that the specialization really obeys the
rules of the framework. Meanwhile, a sophisticated pattern-based tool could
be used to guide the pattern user to specialize the framework with illustrative
and practical programming tasks. The underlying tool platform then gathers
information about the current stage of the specialization and customizes the
pattern-based documentation and default implementations with more specific

 53

terms, reflecting the choices and source code the pattern user has already
made. At the same time, the user sees step by step how the framework spe-
cialization proceeds making it easier to understand the architectural implica-
tions of the framework.

Tool platform for patterns

Browse pattern-based
documentation and

tutorials

Create pattern
specifications

Instantiate patterns

Provide pattern tools
and semantics

Documentation producer

Create pattern-based
documentation and

tutorials

Platform developer

Pattern user

Pattern modeler

Figure 4. Use and users of the pattern-based tool support.

We argue that the incremental task-driven pattern instantiation process sup-
ports learning-by-doing. For instance, in a software company, new employees
could start by going through the generated documentation and by instantiat-
ing some example patterns. As the use of patterns is supported by generating
guidance to provide the missing elements and to fix errors, the user could ex-
periment with different aspects of the solution. This kind of activity speeds up
the learning process and could make novice software developers productive
more quickly. Hence, besides making the use of patterns more efficient with
advanced code generation facilities, the platform could be used as a training
aid in a company, complementing more traditional documentation.

Besides novice users, also the experts could be served. They could utilize the
platform by letting it automatically generate a lot of essential and strictly
regulated, but uninteresting code. Unlike with ordinary wizards and software
development environments, the code is not generated as a large and static
block. Instead, with a proper tool support, the code generation can proceed
step by step, so that the pattern user is not overwhelmed by the generated
code but can become convinced of its rationale.

In addition, to ensure quality and robustness of the software product, it is of-
ten important that programmers obey some company related rules and con-

 54

ventions. By defining these rules as a set of pattern specifications, the pattern-
based tools could be used to restrict and remind programmers. Though this
may sound limiting, it assures that the programmers will perceive the vital
aspects of the used software architecture and framework.

4.2.3 Pattern Specifications and the Core of the Tool Platform

As discussed in Section 2.3, informal pattern descriptions are too ambiguous
to enable efficient tool support. Instead, more precise pattern specifications
are required. The pattern tool platform provides a common mechanism to
construct these pattern specifications (Section 4.3). In addition, the platform
provides a general mechanism to instantiate patterns, where the instantiation
process can be seen as a sequence of tasks that are carried out by the pattern
user. The process hides the complex details of the underlying pattern specifi-
cations. Instead, the pattern user sees the instantiation as a sequence of simple
programming tasks that can be performed during normal programming ac-
tivities.

The core of the tool platform is the pattern engine discussed in Subsection 4.3.5.
It extracts tasks from pattern specifications and verifies pattern instances. Ad-
vanced pattern tools can then utilize the services of the pattern engine to
show the required tasks. For the pattern engine this is not a trivial problem, as
tasks cannot be given as a fixed predetermined list. Patterns describe a family
of solutions and each solution may require a slightly different set of tasks. The
challenge is to provide meaningful and simple programming tasks dynami-
cally during the pattern instantiation so that they are focused on the current
application-specific problem. This task automaton is discussed in Subsection
4.3.6.

To illustrate the task mechanism, consider a pattern specification that de-
scribes the solution in terms of roles. Typically, a role represents some code
element required in the solution. In a simplified manner, if the pattern specifi-
cation contains a role that represents a class, the pattern engine can ask the
pattern user to provide the required class. Further, if the role has more infor-
mation about the class, this information can be utilized to generate, for exam-
ple, a default implementation for the class.

4.2.4 Pattern Tools and Integration into other Environments

The pattern tool platform constitutes a foundation that provides a common
mechanism to create and use pattern specifications and advanced pattern
tools. Various pattern tools are discussed in Section 4.5. For instance, the pat-
tern modeler can use pattern development tools to create new pattern specifi-
cations. For the pattern modeler it is not necessary to know how the pattern

 55

engine or the platform actually works; she can rely on that the platform will
eventually calculate and present the required instantiation tasks to the pattern
user. The pattern user, in turn, can use deployment tools to instantiate pattern
specifications. For the pattern user it is not necessary to know the details of
the underlying pattern specifications or the used formalism. Instead, she can
proceed by performing simple and meaningful programming tasks. Other
possible tools are, for intance, tools to generate pattern-based documentation
and tools for pattern mining and analysis.

To be practical and truly useful, the platform must be integrated into a real
software development environment. This is discussed in Section 4.6. Such an
environment could then utilize the services of the pattern tool platform and
offer a useful set of pattern tools to the software developer.

4.3 Concepts of a Pattern Structure

In this dissertation the exact syntax of pattern specifications is omitted. In-
stead, to discuss about the pattern tool platform, it is enough to explain the
abstract concepts of such a pattern specification. Here the author has selected
the concepts that were used and evolved during the implementation of Java-
Frames [Hakala et al. 2001b, 2001c, 2001d; Hautamäki 2002; Viljamaa A. 2001,
2004; Viljamaa J. 2002, 2003, 2004; JavaFrames 2004]. The basic concepts are
explained in the following subsections:

• Roles, dependencies, multiplicities, and bindings. A pattern specification
consists of roles. Typically, a role represents a concrete element or set
of elements in the solution. When a pattern specification is instantiated,
its roles are bound to those elements. Subsection 4.3.1.

• Role properties and pattern semantics. To enable different role types and
to make the roles flexible, each role may have a different set of proper-
ties that can be evaluated when the pattern is instantiated. Subsection
4.3.2.

• Constraints. Each role may have a set of constraints. Subsection 4.3.3.

• Example: specification for the Abstract Factory pattern. The Abstract Fac-
tory pattern is used to demonstrate pattern specifications. Subsection
4.3.4.

• Tasks and the pattern engine. A task is a small logical step that guides the
pattern user to instantiate the pattern specification. A typical task asks
the pattern user to create a particular code element. The pattern engine
extracts tasks from the given pattern specifications. Subsection 4.3.5.

 56

• Task automaton. The list of tasks is not fixed and static; instead it is con-
tinuously checked and re-evaluated. Subsection 4.3.6.

4.3.1 Roles, Dependencies, Multiplicities, and Bindings

In literature, the basic building blocks of a pattern are often called roles. There-
fore, it is natural to think that also a formal pattern specification consists of
roles. A role describes a concrete implementation elements or some other as-
pect of the solution. Roles are organized hierarchically so that each role may
have a number of child roles. The structure of roles corresponds to the struc-
ture of elements in the solution. Instantiating a pattern specification means
that the pattern user creates, modifies, or locates elements so that the roles be-
come fulfilled.

For example, in the case of a Java program, roles are typically used to repre-
sent code elements like classes, methods, fields, and constructors. Corre-
spondingly, one can talk about class roles, method roles, field roles, construc-
tor roles, and so on. A class role may have a constructor role and some
method roles and field roles. These roles, in turn, may have more fine-grained
roles to represent the internals of the actual code elements.

Intuitively, there is a dependency between two roles if the first one cannot be
fulfilled before the second one. Thus, there is a dependency from role R2 to
role R1 if the definition of R2 refers to R1. For example, as mentioned before,
roles are organized hierarchically so that each role may have a number of
child roles. A class role may have some method roles; such a method role de-
pends on the class role because the required method cannot be implemented
before the enclosing class has been defined. Besides containment relations, the
described solution may require a number of other relations and interactions
between the involved elements. For example, a method may require a particu-
lar return type or it must override another method. All these requirements
have implications for the corresponding roles in the pattern specification. The
dependencies between roles set up the order in which they can be fulfilled.

A role represents an element or a set of elements in the intended solution.
Thus, a role may be fulfilled more than once during the instantiation. The
multiplicity defines the minimum and maximum number of fulfilments for the
role in respect to its dependencies. Typically, the multiplicity is the number of
elements that should play the role in respect to other elements in the solution.
For example, role R1 may represent a base class while role R2 represents its
subclasses. It is natural to think that the multiplicity of R1 is 1 (exactly one)
while the second role has multiplicity [1..*] (one or more) indicating that there
can be multiple subclasses. However, if R1, in turn, depends on role R3 which

 57

has multiplicity [1..*], R1 must be fulfilled once for each fulfilment of R3 (for
example, to create new product families with different base classes).

A common problem when using patterns is that the pattern instances are lost
after instantiation (Subsection 2.2.2). Afterwards it is difficult to find and ver-
ify the participating elements of the solution. To solve this traceability prob-
lem, the pattern tool platform maintains the associations between the roles
and the elements. Correspondingly, the commitment of an element, like a
class or an operation, to play a particular role is called a binding. When an
element plays a role, the role is bound to that element and vice versa. If the
element does not exist, it can be created as instructed by the role. In addition,
roles can be used to check the validity of the bound elements.

To summarize, in the pattern specification each role is like a small abstraction
of a thing or a relationship that is required in a solution. The more extensive
and fine-grained the set of available role types is the more expressive and
powerful the pattern specifications can be.

4.3.2 Role Properties and Pattern Semantics

A pattern specification consists of roles describing the elements in the solu-
tion. This hierarchical structure of roles is like the syntax of the pattern speci-
fication. Roles must be flexible and adjust themselves to the current situation
of the pattern user. When fulfilled, a role is applied like a template that can be
used to produce a family of elements. To do this, each role may have a differ-
ent set of properties that are evaluated at run time during the instantiation. The
way these properties and the role bindings are evaluated and used defines the
semantics, i.e., the behavior of the role.

Hence, the role semantics defines how the properties are evaluated and used
and what is required to fulfil the role. By using properties to denote the ge-
neric parts of the represented element the role can be used to produce varia-
tions of that element. A role-specific property can refer to information (like
another role and its bindings) that is solved at run time by the pattern tool
platform. Because the previously bound roles and elements are known by the
platform, it is possible to use this knowledge when the properties are evalu-
ated. In that way, the changes in the source code and in the role bindings af-
fect the property values, which can be utilized when creating and checking
the pattern instance. That makes it possible to create context-sensitive docu-
mentation and source code that adapts seamlessly to the terms and structures
of the created software product.

For the platform developer it should be possible to add new role semantics,
i.e., role types to model different kinds of elements and constraints. A collec-

 58

tion of related role types is called pattern semantics. For example, different role
types are needed to represent Java classes, methods, fields, and so on. The
platform developer has implemented these role types (Java pattern semantics)
to model Java elements. The pattern modeler can then use the available role
types when constructing her pattern specifications. Finally, the pattern speci-
fications are instantiated by the pattern user, for instance, when specializing a
Java framework.

4.3.3 Constraints

Each role may have a set of constraints. These constraints can be used to force
naming conventions, exceptions, method parameters, method calls, and so on.
For instance, in the case of object-oriented languages, concepts like inheri-
tance, overriding, and return type can be seen as constraints set to the element
in the solution. When a role is fulfilled by creating an element, these con-
straints can then be checked to ensure that the element has the required rela-
tionships and features.

Technically, constraints can be seen as special kinds of roles. The main reason
why constraints should be implemented as separate role types is that it sim-
plifies their use and makes the system flexible. Instead of implementing the
logic of every possible constraint inside every possible role type, the platform
developer creates a set of constraint types which can then be attached to a role
only if necessary. For instance, the pattern modeler may create a Java method
role with a number of constraints as child roles. Each of these constraints is
fulfilled separately, after the method itself has been created.

Of course, it is up to the platform developer how different role types and con-
straints are actually implemented. The platform provides a common basis to
implement different kinds of pattern semantics. This will be demonstrated in
Chapter 7.

4.3.4 Example: Specification for the Abstract Factory Pattern

To illustrate the discussed pattern specification, a more precise specification
for the Abstract Factory pattern (Subsection 2.1.4) is shown in Figure 5. De-
tails of the specification are given in Appendix A. In the figure, roles are indi-
cated as UML stereotypes (e.g., <<classRole>>), where the stereotype indi-
cates the type of the role. Dependencies between roles are shown as dashed
arrows and by nesting roles. The role’s multiplicity is shown after the role
name; by default the multiplicity is 1. To avoid confusing role’s multiplicity
with the multiplicity concept used in UML, special multiplicity symbols are
used: “?” for [0..1], “*” for [0..*], and “+” for [1..*].

 59

As shown in Figure 5, the specification of the Abstract Factory pattern has
implementation details that were not precisely specified in the original pat-
tern shown in Table 2. For instance, besides the roles to represent the required
classes and operations, there is a specific role to add code fragments inside the
createProduct method. In addition, there are some inheritance and overriding
constraints that were only superficially or indirectly discussed in the original
pattern documentation. For a tool, these kinds of constraints must be defined
precisely. ProductFamily role, in turn, is a special role to start creating a new
product family. Instantiation of the Abstract Factory pattern specification is
demonstrated in Subsection 4.3.6.

<<classRole>>
AbstractFactory

<<classRole>>
ConcreteFactory

<<classRole>>
AbstractProduct

<<classRole>>
ConcreteProduct

<<methodRole>>
CreateProduct

<<methodRole>>
CreateProduct

<<overridingConstraint>>
OverrideCP

<<inheritanceConstraint>>
InheritAF

<<constructorRole>>
Constructor

<<codeFragmentRole>>
UseConstructor

<<inheritanceConstraint>>
InheritAP

<<returnTypeConstraint>>
ReturnAP

<<issueRole>>
ProductFamily

*

*

*

?

Figure 5. Roles and dependencies of the Abstract Factory pattern specification.

4.3.5 Tasks and the Pattern Engine

The pattern tool platform provides a pattern engine, which is like an inter-
preter that takes a pattern specification as input and generates tasks as output.
A task is always based on a specific role and it utilizes the semantics and
properties of that role. The meaning of the tasks is to help the pattern user to
instantiate the pattern by creating and modifying the required elements and
to bind the elements to the corresponding roles. A typical task is a simple pro-
gramming task that can be performed with the default tools of the software
development environment, like the source code editor, but it could also be

 60

performed with more advanced role-specific tools. Depending on the under-
lying role, a task may have one of the following purposes:

• Binding task. A binding task is used to bind an element to a particular
role. To perform a binding task, the pattern user must create or select
an element as specified by the underlying role. For example, when do-
ing a binding task, a dialog may show the available elements or, if a
suitable element does not exist, the system may generate a default im-
plementation for it. Typical binding tasks could be: “Provide class C1”,
“Provide method M1 in class C1”, and “Provide a call of method M2 in-
side method M1”. The performed binding tasks can also be seen as a
link between the role and the element.

• Notification task. A notification task is used to advise or remind the pat-
tern user. Unlike with a binding task, performing a notification task
does not create or modify any concrete elements. A notification task
could be: “Read the licensing agreement”.

• Grouping task. A grouping task is used to organize other tasks, and in
that way the pattern instantiation. In the case of the Abstract Factory
pattern, a typical grouping task could be: “Provide a new product fam-
ily”. This would start the process to create that product family.

• Repair task. A repair task is used to repair an element that violates a
constraint. If the pattern user violates the rules implied by the underly-
ing constraint, a repair task is generated to fix the situation. Examples
of repair tasks could be: “The class C1 must inherit the class C0” and
“The method M1 must override the method M0”.

In addition, depending on the current stage of the instantiation process, a task
can be in one of the following states:

• Done. A task is done if it has been performed. Performing a binding
task means that the pattern user binds an element to its role. Perform-
ing a notification task means that the pattern user acknowledges the
task. Performing a grouping task means that the pattern user wants to
start performing the subtasks. Performing a repair task means that the
pattern user repairs the violation that created the task.

• Pending. A task is pending if it is not done but cannot yet be performed.
As discussed in Subsection 4.3.1, a role cannot be fulfilled if it depends
on another role, which hasn’t yet been fulfilled. Tasks extracted from
such a dependent role cannot be performed until the tasks to fulfil the
other role have been performed.

 61

• Mandatory. A task is mandatory if it can be performed and it is required
in order to fully instantiate the pattern specification.

• Optional. A task is optional if it can be performed but it is not required
in order to fully instantiate the pattern specification.

The fact whether a task is mandatory or optional can be determined from the
role’s multiplicity settings, dependencies, and the number of the current bind-
ings of the role. Performing a mandatory or an optional task may cause new
tasks, as some pending ones may become available.

4.3.6 Task Automaton

As discussed in Subsection 2.2.1, patterns should be instantiated gradually,
step by step. To imitate this piecemeal growth, the pattern engine extracts
tasks to instantiate pattern specifications; concrete implementations of this
task automaton has been explained by Hakala et al. [2001d] and Viljamaa A.
[2004]. Roughly speaking, the pattern engine generates a task for any role that
can be fulfilled at that point of the instantiation process or if the role is bound
to an element and the element violates some of the constraints. For example,
in the case of Java pattern semantics, the overriding constraint analyzes
method signatures and determines if the overriding relation between two
methods is true. If an error is detected, the constraint causes a mandatory re-
pair task to fix the method signature. Similarly, based on the role’s multiplic-
ity settings, a binding task can be generated to point out or create a suitable
element, either compulsorily or optionally.

Task automaton is possible because the pattern engine knows the existing
roles, code elements, and bindings between them. If the system is properly
integrated into the software development environment, it also gets notifica-
tions if the elements are modified. The mechanism ensures that when starting
the instantiation process, the first mandatory or optional tasks are based on
the roles that are not depending on any other role. After performing these
first tasks, other tasks to fulfil the depending roles become available. By using
the dependency information and multiplicity settings, the pattern engine can
determine the order in which the tasks can be performed and if the task is op-
tional or mandatory.

A sophisticated pattern deployment tool (Subsection 4.5.2) can utilize the ser-
vices of the pattern engine and represent the generated tasks to the pattern
user as a dynamically updated task list. Violated constraints and missing ele-
ments will cause new tasks until the whole pattern specification is correctly
instantiated. In addition to the explicit user interactions, different role seman-
tics may include rules and heuristics to determine if a task can be performed

 62

automatically. However, often the instantiation process cannot rely on such
heuristics alone. By asking explicit commitment from the pattern user, the
pattern engine utilizes human’s intuition and wider knowledge about the
problem.

Undoing a performed task means that the pattern engine reverses to the pre-
vious possible state before the task was performed. In the case of a binding
task, the binding between the role and the element is cancelled. However, it
may be problematic to change the elements and to destroy the ones created
with the tasks. The same element may be bound to multiple roles in different
pattern specifications. In addition, the element may have responsibilities out-
side the pattern specifications that cannot be determined by the pattern en-
gine.

Figures 6 - 9 illustrate the instantiation of the Abstract Factory pattern specifi-
cation, discussed in Subsection 4.3.4. As mentioned before, a task is always
based on a role. In a sense, roles can be seen as meta-classes that are used to
create task objects. For this reason, the UML object diagram is used to repre-
sent the task automaton.

In Figure 6, the relationship between a task and a role is indicated with the
stereotype <<basedOn>>. In the figure, a task object has also some attributes.
Prompt is the title of the task; the pattern engine generates this string value by
using the corresponding property of the underlying role. State represents
various task states discussed in Subsection 4.3.5. Role is the underlying role
this task is based on. The same role can have multiple tasks; id is used to iden-
tify different tasks of the same role. In the initial state, the pattern engine has
generated three tasks; one to create the abstract factory class, one to provide a
new product type, and one to create a new product family. These tasks are
based on roles that are not depending on any other roles and therefore they
can be fulfilled first. Of course, when creating the pattern specification, the
pattern modeler could define the order of these roles differently, by adding
new dependencies between them.

In Figure 7, the pattern user has performed the task to provide a new abstract
factory class. She has also performed another task to provide a new product
interface. The created code elements (WidgetFactory and ScrollBar) have been
associated with the tasks, and in that way, they have been bound to the un-
derlying roles. This is indicated with the <<boundTo>> stereotype. To make
the figure more illustrative, the performed tasks are shown as gray rectangles.
Also the states of the performed tasks have been changed. In the figure, the
dependencies between the task objects are corresponding to the dependencies
between the underlying roles. For instance, the CreateProduct role is depend-
ing on AbstractFactory and AbstractProduct roles that have just been fulfilled.

 63

At this time, the pattern engine can present the corresponding mandatory
task to provide a method to create ScrollBar objects. Also, a new optional task
to provide another product type is shown. The multiplicity of the Abstract-
Product role indicates that there can be more than one product types. After
the pattern user has provided the first one, the pattern engine generates a new
optional task to provide the next product type, and so on.

Abstract Factory Pattern Specification

<<classRole>>
AbstractFactory

<<classRole>>
ConcreteFactory

<<classRole>>
AbstractProduct

<<classRole>>
ConcreteProduct

<<methodRole>>
CreateProduct

<<methodRole>>
CreateProduct

<<issueRole>>
ProductFamily

*

*

*

<<basedOn>>

<<basedOn>>

<<basedOn>>

:Task

prompt = “Provide a new
product type”
state = mandatory
role = AbstractProduct
id = 1

:Task

prompt = “Provide the
abstract factory class to
create products”
state = mandatory
role = AbstractFactory
id = 1

:Task

prompt = “Create a new
product family”
state = mandatory
role = ProductFamily
id = 1

Figure 6. Roles and tasks of the initial state.

 64

Application

WidgetFactory

ScrollBar

:Task

prompt = “Provide a new
product type”
state = done
role = AbstractProduct
id = 1

:Task

prompt = “Provide the
abstract factory class to
create products”
state = done
role = AbstractFactory
id = 1

:Task

prompt = “Create a new
product family”
state = mandatory
role = ProductFamily
id = 1

:Task

prompt = “Provide a
method to create new
ScrollBar objects”
state = mandatory
role = CreateProduct
id = 1

:Task

prompt = “Provide a new
product type (2)”
state = optional
role = AbstractProduct
id = 2

<<boundTo>>

<<boundTo>>

Figure 7. Tasks after creating the WidgetFactory class and the ScrollBar interface.

In Figure 8, the pattern user has provided the abstract method to create
ScrollBar objects. In addition, she has created a new product type called Win-
dow. Again, the pattern engine checks the dependencies and multiplicity set-
tings and generates more tasks to continue the pattern instantiation.

Figure 9, in turn, shows the situation after the pattern user has performed the
task to create a new product family. This means that she has to create concrete
factory implementations to create the defined product types. In that way, the
pattern instantiation continues until the Abstract Factory pattern has been
applied to the current application-specific context.

 65

Application

WidgetFactory
createScrollBar()

ScrollBar

<<boundTo>>

<<boundTo>>

:Task

prompt = “Provide a new
product type”
state = done
role = AbstractProduct
id = 1

:Task

prompt = “Provide the
abstract factory class to
create products”
state = done
role = AbstractFactory
id = 1

:Task

prompt = “Create a new
product family”
state = mandatory
role = ProductFamily
id = 1

:Task

prompt = “Provide a
method to create new
ScrollBar objects”
state = done
role = CreateProduct
id = 1

:Task

prompt = “Provide a new
product type (2)”
state = done
role = AbstractProduct
id = 2

Window

:Task

prompt = “Provide a new
product type (3)”
state = optional
role = AbstractProduct
id = 3

:Task

prompt = “Provide a
method to create new
Window objects”
state = mandatory
role = CreateProduct
id = 2

<<boundTo>>

<<boundTo>>

Figure 8. Tasks after providing the createScrollBar method and the Window interface.

 66

Application

WidgetFactory
createScrollBar()
createWindow()

ScrollBar

<<boundTo>>

<<boundTo>>

:Task

prompt = “Provide a new
product type”
state = done
role = AbstractProduct
id = 1

:Task

prompt = “Provide the
abstract factory class to
create products”
state = done
role = AbstractFactory
id = 1

:Task

prompt = “Create a new
product family”
state = done
role = ProductFamily
id = 1

:Task

prompt = “Provide a
method to create new
ScrollBar objects”
state = done
role = CreateProduct
id = 1

:Task

prompt = “Provide a new
product type (2)”
state = done
role = AbstractProduct
id = 2

Window

:Task

prompt = “Provide a new
product type (3)”
state = optional
role = AbstractProduct
id = 3

:Task

prompt = “Provide a
method to create new
Window objects”
state = done
role = CreateProduct
id = 2

<<boundTo>>

:Task

prompt = “Provide a new Window
product for the Motif family”
state = mandatory
role = ConcreteProduct
id = 2

:Task

prompt = “Provide a new ScrollBar
product for the Motif family”
state = mandatory
role = ConcreteProduct
id = 1

:Task

prompt = “Provide the factory class
to create Motif objects”
state = mandatory
role = ConcreteFactory
id = 1

:Task

prompt = “Create a new
product family (2)”
state = optional
role = ProductFamily
id = 2

<<boundTo>>

Motif product family

<<boundTo>>

<<boundTo>>

Figure 9. Tasks to create concrete products after establishing the Motif product family.

 67

4.4 System of Pattern Specifications

Each software project has its own system of pattern specifications and their
instances maintained by the pattern tool platform. Some of the specifications
may represent general design solutions, like the design patterns and architec-
tural patterns discussed in Subsection 2.1.2. Other specifications, in turn, are
representing more specific implementation details, like how to specialize a
particular framework. A collection of pattern specifications and their in-
stances constitute a hierarchical structure, where more detailed pattern speci-
fications can be derived from the more general ones. This is discussed in the
following subsections:

• Pattern instances. The concrete result of the pattern instantiation process
is the pattern instance. Subsection 4.4.1.

• Pattern interface. A pattern interface is a collection of pattern specifica-
tions that describe how to use a particular design, for example, how to
specialize a framework. Subsection 4.4.2.

• Pattern layers as a chain of refinements. Together pattern specifications
constitute a hierarchical structure where one specification refines an-
other. Subsection 4.4.3.

• Pattern composition. Pattern specifications can be composed of existing
pattern specifications to get synergetic advantage. Subsection 4.4.4.

4.4.1 Pattern Instances

Instantiating an informal pattern description manually is illustrated in Figure
10. The pattern user reads the pattern documentation and applies it in the cur-
rent problem (Subsection 2.2.1). The result is a pattern instance with a set of
interacting elements that have no direct connection to the original pattern.
This traceability problem makes it difficult to maintain the pattern instance
(Subsection 2.2.2).

 Application

Instantiation Pattern
instance

Informal pattern
description

Figure 10. Pattern and its instance.

Precise pattern specifications, in turn, are instantiated with a tool by perform-
ing the generated tasks (Subsection 4.3.6). Performing tasks fulfils the corre-
sponding roles and creates bindings between the roles and the elements in the

 68

solution. These bindings are stored and utilized by the task automaton to
produce more tasks and to check the validity of the pattern instance. This is
illustrated in Figure 11.

 Application

Instantiation

Pattern
instance

Bindings
Tool support

 Pattern
specification

Figure 11. Pattern specification and its instance.

Particularly, the instantiation process of a pattern specification can be in one
of the following phases:

• Uninstantiated. Any of the mandatory instantiation tasks have not been
performed. Usually, this kind of pattern specification represents ab-
stract design solution, like a design pattern or an architectural pattern.

• Partially instantiated. Some of the mandatory instantiation tasks have
been performed. Typically, this kind of pattern specification represents
a framework-specific pattern, in which the pattern modeler has ful-
filled specific roles and left the other roles to be fulfilled by the pattern
user.

• Fully instantiated. All the required tasks have been performed so that
the roles of the pattern specification are fulfilled.

4.4.2 Pattern Interface

By creating a set of pattern specifications the pattern modeler creates a pattern
interface [Hakala et al. 2003] that describes how to use a particular design or a
framework. The principle is illustrated in Figure 12. In the figure, framework
F provides patterns F1, F2, and F3. The pattern user specializes the framework
by instantiating these pattern specifications with some pattern instantiation
tool.

Constructing a pattern interface requires the creation and grouping of pattern
specifications and determining the order in which they should be instantiated.
This imitates the concept of a pattern language; the outcome is a tool sup-
ported pattern language with tightly interrelated pattern specifications. To
create a pattern interface, the pattern modeler must understand the underly-
ing principles and subsystems of the framework. It may also be helpful to de-
fine different pattern interface alternatives for different users. For example,

 69

novice framework users may want to learn the basics of the framework, while
advanced users just want to boost their coding. A goal-oriented approach to
create pattern interfaces is proposed in Chapter 6.

 Application X

Framework F

F2 F1 F3

Pattern interface
Pattern specification

Pattern instance

Instantiation

Figure 12. Specializing a framework with a pattern interface.

4.4.3 Pattern Layers as a Chain of Refinements

In a pattern language, more abstract and general patterns may refer to other
patterns to produce the final solution. These patterns can be organized hierar-
chically so that the most abstract layer defines the general outline of the solu-
tion, while other layers refine this solution. With tool-supported pattern speci-
fications this can be done by creating a new pattern specification P2 that refines
the original pattern specification P1. This new pattern specification can be
seen as a refined copy of P1. The roles of P2 can be modified to contain more
specific constraints and documentation. The pattern specification can also be
augmented with new roles and constraints to describe elements that were not
represented in the more general solution. Thus, the pattern modeler can create
a new pattern interface that is based on the more general pattern interface.

The principle is illustrated in Figure 13. The pattern catalog contains design
pattern specifications that can be used to instantiate design patterns. The pat-
tern modeler refines these pattern specifications in order to create framework-
specific patterns that obey some design pattern conventions. She may bound
some of the roles to the framework’s base classes, add new framework-
specific constraints, and so on. Such a system could also support the use of
layered frameworks discussed in Subsection 3.1.4. The pattern interface of the
more abstract layer could be used to implement other layers and their pattern
interfaces.

The refinements can be further refined by other pattern specifications. In
Figure 13, the pattern F5 refines D3 and it is itself refined by even more spe-
cific pattern specifications F3 and F4. This leads to a chain of pattern specifica-

 70

tions, from the most abstract one to the more specific ones and finally to the
pattern instances. Refinements are made by the pattern modeler who creates
the pattern interface. For the pattern user, the refined pattern interface offers
more specific guidance to specialize the framework than using the higher
level pattern specifications directly.

Application X

D3 D1 D2

Design patterns

Framework F

F2 F1 F3

F5

Framework-specific patterns

Pattern catalogs

Pattern instances

Refinement
F4

Figure 13. Pattern layers as a chain of refinements.

4.4.4 Pattern Composition

A solution of a specific problem may utilize a number of patterns; it may be
beneficial to compose a new pattern that describes the whole solution rather
than using the original patterns separately. For instance, Zimmer [1995] has
noticed the following relationships between design patterns: “X uses Y in its
solution”, “X is similar to Y”, and “X can be combined with Y”. According to
Zimmer, the latter one creates larger building blocks in design and raises the
abstraction level. Riehle [1997], in turn, suggests that a pattern is a composite
pattern, if it can be best explained as the composition of further atomic or
composite patterns. Here an atomic pattern is a pattern that cannot be de-
scribed as the composition of further patterns. Riehle continues that a com-
posite pattern’s synergy emerges from the interaction of different elements
from different patterns.

Figure 14 illustrates the above described static pattern composition from the
viewpoint of the pattern tool platform. In the figure, pattern F4 is refined from
the design patterns D2 and D3 so that the overlapping roles of D2 and D3 are
unified. Pattern F1, in turn, is refined from D1 and D2.

 71

Hammouda [2005] discusses the possibility to merge tool-supported patterns
on the fly in a single pattern. He also outlines a mechanism for dynamic pattern
composition and shows how the composition can be applied using the role-
based pattern concept of the tool. Thus, instead of being known in advance,
the references to other patterns define a generic pattern type. As said by
Hakala [2002], to enable this kind of dynamic pattern composition, one ap-
proach is that the pattern modeler leaves some parts of the composing pattern
specification open by introducing a placeholder role so that the pattern user
herself can select different pattern specifications to augment it at a later time.
For example, in Figure 14, pattern F2 may have been defined so that at some
point during the pattern instantiation, the pattern user can select one of the
available design pattern specifications, supposing that they can be plugged
into the dynamic placeholder role.

D3 D1 D2

Design patterns

Framework F

F 2F 1 F 3

F4

Figure 14. Pattern composition with overlapping refinements.

4.5 Pattern Tools

A tool platform with different pattern tools systematizes the use of the pattern
concept. For the person who creates the pattern specifications, the writing and
testing process resembles programming, making the pattern development
more like the software development process itself. For the pattern user who
applies patterns, the complexity of the underlying formalism and instantia-
tion algorithms is hidden so that a pattern specification can be easily used and
instantiated. At least the following tools are possible:

• Development tools. Development tools are used to create pattern specifi-
cations. Subsection 4.5.1.

• Deployment tools. Deployment tools are used to instantiate pattern
specifications. Subsection 4.5.2.

• Analysis tools. Analysis tools are used to pattern mining and to analyze
pattern specifications and their use. Subsection 4.5.3.

 72

• Documentation tools. Documentation tools are used to generate docu-
mentation and pattern-based tutorials. Subsection 4.5.4.

4.5.1 Development Tools

Development tools are needed to construct and edit pattern specifications.
They are like programming tools or editors to create and edit pattern specifi-
cations in terms of the used formalism or specification language. In addition,
a sophisticated development tool could assist the pattern modeler by verify-
ing the syntax and semantics of the created pattern specification. This resem-
bles type checking or debugging in more traditional programming environ-
ments.

For example, pre-defined role components (Subsection 4.3.1) make it possible
to create a visual builder [Roberts and Johnson 1996; Fayad et al. 1999] to com-
pose new pattern specifications. In such a builder, the values of the role-
specific properties could be edited and the dependencies could be drawn be-
tween the roles. In the case of framework-specific patterns, the initial bindings
could also be made between the roles and the framework elements, for exam-
ple, if a role represents a particular abstract base class.

With pre-defined role types the development tool can let the pattern modeler
to think the pattern writing process in terms of simple role components and
their interactions, instead of showing the underlying formalism. Only the
platform developer must know the internals of the pattern specifications, in
order to create new pattern semantics (Subsection 4.3.2). A concrete example
of a semi-graphical pattern development tool is discussed in Subsection 5.2.3.

4.5.2 Deployment Tools

Pattern deployment tools are used to instantiate pattern specifications. De-
ployment tools are like small semi-automatic programming systems to man-
age the instantiation process. Based on the selected pattern specification, a
deployment tool utilizes the general services of the pattern tool platform and
shows the task list (Subsection 4.3.6) to ask the required input (e.g., the par-
ticipating code elements) from the pattern user.

According to Florijn et al. [1997], a deployment tool can assist the software
developer to apply patterns in the following ways:

• The tool generates program elements, like classes, to be part of a pat-
tern instance (the top-down approach).

 73

• The tool binds existing program elements to be part of a pattern in-
stance (the bottom-up approach).

• The tool checks if pattern instances obey the original pattern defini-
tions and tries to repair the program in case problems arise.

Deployment tools can be categorized as shown in Figure 15. The pattern in-
stantiation category describes how well the deployment tool supports the pat-
tern instantiation process. The pattern verification category describes the capa-
bility of the deployment tool to check pattern instances during the software
development process. The pattern selection category describes how the pattern
user selects suitable patterns. Thus, the ultimate deployment tool could select
and instantiate right patterns automatically, without human interactions. In
addition, it would check the pattern instances automatically and repair viola-
tions when the software system evolves.

Pattern instantiation

Pattern verification

Pattern selection

Automatic

Manual Automatic

Automatic

Manual Manual

Figure 15. Categorization of pattern deployment tools.

For instance, the current deployment tool used in JavaFrames Eclipse Integra-
tion (this will be discussed in Subsection 5.2.2) supports automatic pattern in-
stantiation and verification. However, the tool is not fully automatic. Patterns
are selected manually and the pattern user still has to make some decisions
during the pattern instantiation. Also the verification of the pattern instances
works within the limits of the used pattern semantics. Despite of these limita-
tions, even if not providing full automation in code generation and pattern
instantiation, such a task-driven deployment tool can be useful when instanti-
ating patterns in domains where full automation is impossible or inefficient,
such as in specialization of a white-box framework.

 74

Many of the deployment tools discussed in literature (Section 9.1) act as sim-
ple code generators and just generate a skeletal implementation to instantiate
the selected pattern. With such a tool, the pattern selection is manual, the de-
ployment tool provides a block of source code to implement the pattern in-
stantiation, and the pattern instance is not verified after instantiation. Cornils
[2001] has noticed that the focus of the pattern deployment tools is usually on
code reuse and rule checking. Tools that support pattern-based code reuse
contain pattern implementations which are then glued into the application’s
source code. Then, if the deployment tool has some rule checking capabilities,
it can help the pattern user to instantiate the patterns correctly by checking
these rules, making pattern verification more automatic.

4.5.3 Analysis Tools

Analysis tools are used to pattern mining (Subsection 2.2.3) and to measure
different pattern specifications and their use. Such an analysis tool could ex-
plore large amounts of code in short time to visualize the applied patterns
and to improve the system by suggesting desirable patterns. Also, it could be
interesting to analyze different pattern specifications and their instances to
compare their usability and quality factors, or to estimate the required instan-
tiation and maintenance efforts.

For instance, Viljamaa J. [1997] suggests a pattern-based reverse engineering
tool that could be used to gather statistics about the use of patterns and to es-
timate the required amount of work to instantiate patterns. In addition, such a
tool could analyze the quality of object-oriented systems based on loose cou-
pling, shallow inheritance hierarchies, high use of composition, and other
similar positive measures of object-oriented software. However, Atkinson and
Griswold [1996] warn that for an analysis tool both the running time and the
required memory space may be too expensive, particularly in an interactive
(and real time) context.

Examples of analysis and pattern mining tools are given in Subsection 5.2.5.
and in Section 9.1.

4.5.4 Documentation Tools

Pattern specifications and their instances constitute a structure that can be
utilized to automatically generate different pattern-based documentation.
Such documentation can describe the crosscutting design fragments of the
software system and help the reader to understand the system. For instance, a
pattern-based documentation tool could generate hypertext [Conklin 1987]
that emphasizes various aspects of the instantiated pattern specifications and
the software architecture. With hypertext the reader could follow links to re-

 75

lated patterns, read examples of pattern usage without technical implementa-
tion details, and study the most interesting parts of the pattern instances. A
pattern specification itself could also be presented more informally, for exam-
ple, by generating a hypertext document that describes the roles and proper-
ties of the pattern. Such documentation resembles more like the traditional
pattern documentation discussed in Chapter 2.

Also Odenthal and Quibeldey-Cirkel [1997] have noticed that if patterns have
been used during the software development process, their descriptive nature
helps to document the implemented system as the pattern instances lay the
foundation for documenting the design. Particularly the pattern based docu-
mentation explains the rationale of design decisions: why, in which context,
and how a pattern has been instantiated. They stress that documents are liv-
ing products that should be allowed to evolve together with the iterative and
incremental design cycle of a software product. If patterns are used during
the design, it becomes documented while it is still evolving and the design
knowledge is at its highest. However, as discussed in Subsection 2.2.2, this
kind of documentation is difficult without a sophisticated documentation
tool.

Besides technical documentation, also concrete examples and tutorials are
important. The problem is that creating and maintaining a compact and com-
prehensive set of useful examples is time-consuming and difficult. An inter-
esting possibility is to create examples semi-automatically by recording pat-
tern instantiations [Hakala et al. 2003]. That is, if a pattern specification de-
scribes an example solution for a particular problem, the pattern could be in-
stantiated and the instantiation process could be recorded. Such recordings
are interactive and easy to follow tutorials about how to solve the addressed
problem. Different pattern instantiations can be documented as use cases or
mini-tutorials for learning purposes. Pattern users could then browse through
these recordings, step by step, like an interactive tutorial to learn the solution.
The recording tool has been implemented in the JavaFrames environment and
it is discussed in Subsection 5.2.4.

The learning of a software system is a persistent process where humans pro-
ceed iteratively and with intuition to find answers to their questions about the
system. Ruhe [2000] has enumerated typical training problems and noticed
that because the learning needs of the software developers are changing con-
tinuously it is important that one can add new topics (pattern-based docu-
mentation and tutorials) to the used learning environment. Ruhe says that the
learning environment should also help the software developers to know the
people within the company who are working on similar problems and they
should be able to communicate about the training material with each other.
For the users of the learning environment, it should be able to easily add new
insights and experience.

 76

The general tool platform for patterns and the integrated documentation tools
could be one approach to create an efficient and easy-to-use learning envi-
ronment. For instance, Hammouda et al. [2004b] argue that learning complex
software libraries can be supported with a pattern-driven learning environ-
ment. In the environment, pattern specifications could be used to describe
various learning concerns and the order in which those concerns should be
introduced. The environment could then support the learning process gradu-
ally by generating meaningful learning tasks.

4.6 Integration

According to Harrison W. et al. [2000] programming support environments (soft-
ware development environments) are collections of tools that support coding
activities. They are powerful environments used by majority of software de-
velopers today. However, their major limitation is that they support only
rather low-level programming and compiling issues, but ignore other major
activities, like requirements engineering, specification, design, testing, and
analysis. The identification of the need for integrated support for these other
activities has motivated innovations toward software engineering environments
(architecture-oriented software development environments). These environ-
ments support software engineering across the software lifecycle and trace-
ability across the artifacts of the software product and design. Integrating the
general pattern-based tool support into a real software development envi-
ronment can be seen as one step towards such software engineering environ-
ments.

The integration and its requirements are further discussed in the following
subsections:

• Requirements for the environment. To integrate the pattern-based tool
support into a software development environment has some require-
ments. Subsection 4.6.1.

• Outlining the integration. There must be a clear separation between the
third party development environment and the pattern tool platform.
Subsection 4.6.2.

• Real time vs. turn-based pattern support. Ideally, the consistency of the
pattern specifications and their instances should be verified simultane-
ously with the normal software development and programming activi-
ties. Subsection 4.6.3.

 77

4.6.1 Requirements for the Environment

To integrate the pattern-based tool support, the software development envi-
ronment has to provide the following facilities:

• Integration API. There must be an application programming interface to
create and integrate new tools and to utilize the common services of
the environment.

• Parse information. To create role bindings and to check pattern instances
it is necessary to locate the participating elements. This requires access
to the parse information maintained by the used software development
environment. Further, it may be necessary to have access to the inter-
nals of the element, like the actual source code of a Java method or a
field. For Java programs, the environment obtains parse information
from the source code files of the project and from the compiled files
outside the project. Because the used parser is usually more forgiving
than the compiler, some information may be incomplete or inaccurate.
For instance, when writing a method in the source code editor, its pa-
rameter types or return type may not be fully qualified. Thus, the re-
flected classes need not to be compiled or in a compilable state.

• Code generation. To create and edit software elements during pattern in-
stantiation, the pattern tools may utilize the code generation facilities
of the underlying software development environment. This helps the
pattern user to perform tasks and makes it possible to partially auto-
mate the pattern instantiation. For example, in the case of source code
files that are maintained by the software development environment,
the pattern deployment tool could create new files and insert new code
lines in a specific location.

• Event notifications. To validate pattern specifications and their instances
and to update the task list, the pattern engine must be notified if ele-
ments are created, deleted, or modified. In addition, the platform needs
notifications about opening and closing projects to restore and save the
state of the pattern specifications and their instances.

4.6.2 Outlining the Integration

There must be a clear separation between the third party software develop-
ment environment and the pattern tool platform. This is necessary because
each environment tends to have its own internal parse information (for exam-
ple, the Java syntax tree representation), event mechanism, extension inter-
face, and so on. The separation ensures that the platform can be integrated
into different environments. Figure 16 gives a general idea of how the pattern

 78

tool platform might be integrated and used with a third party software devel-
opment environment.

 Integration Tool platform for patterns Software development
environment

Pattern
development tools

Pattern
deployment tools

Pattern semantics

Pattern engine

Pattern repository

Programming tools

Parse information

Event notifications

Provide role types

Get and save
patterns

Get and save
patterns

Update task list
Perform tasks to
instantiate patterns

Notify
changes

Update

Send events

Ask parse information

Figure 16. Integration of the pattern tool platform.

To make it possible to create and use the pattern specifications, the integration
must provide at least the basic pattern development and deployment tools. As
a pattern development tool, the pattern modeler needs some kind of editor or
programming tool to create new pattern specifications. Basically, the pattern
development tool can be an independent editor that hides the complexity of
the underlying pattern formalism.

The pattern user needs pattern deployment tools to select and instantiate pat-
tern specifications. A deployment tools must be tightly integrated into the de-
velopment environment. It must be aware of the current project(s) and show
the associated pattern specifications and their instances. It also shows the task
list to guide the user to instantiate patterns. Performing a task typically opens
a tool or a wizard to fulfil the underlying role, unless the task can be per-
formed automatically. Such a task-specific tool can be the default source edi-
tor to write the required code, or it can be more advanced tool, like a graphi-
cal editor to draw UML diagrams.

The current state of the pattern specifications and their instances is stored for
each project. The information can then be restored whenever the project is
opened in the development environment. The pattern repository and the
stored project-specific information should be independent from the used de-
velopment environment. Information could be stored, for example, as XML
(eXtensible Markup Language) [XML 2004] files to the pattern repository.

 79

4.6.3 Real Time vs. Turn-Based Pattern Support

Ideally, the software development environment uses incremental parsing
techniques to constantly maintain the syntax tree of the source code. If the
parse information is continuously updated and the pattern engine is instantly
notified for the changes, whenever the software developer edits the source
code, the task automaton can generate tasks simultaneously. However, it may
be necessary to provide also more limited versions of the task automaton. As
discussed by Egyed and Balzer [2004], the problem is that the environment
may lack the ability to interact with external integrations. Also, interactions
may be too expensive, making it impractical to update the task list continu-
ously.

Thus, there are two different approaches to implement the task automaton:

• Real time pattern support. A real time pattern support means that pattern
specifications and their instances are instantly and continuously evalu-
ated and verified. If the software development environment provides
suitable parse information and efficient event notifications the pattern
engine is able to generate tasks simultaneously with other software de-
velopment activities.

• Turn-based pattern support. A turn-based pattern support means that the
pattern user starts the pattern engine only when required to verify the
pattern specifications and their instances. Thus, the pattern engine is
invoked like a compiler that verifies the selected pattern specifications
against the current situation and updates the task list.

JavaFrames Eclipse Integration, a concrete example of a real time pattern sup-
port, is discussed in Chapter 5.

 80

CHAPTER 5

JAVAFRAMES ECLIPSE
INTEGRATION

JavaFrames Eclipse Integration [JavaFrames 2004] is a prototype of a task-
driven architecture-oriented environment that utilizes the pattern concept to
model and implement design solutions. JavaFrames (formerly known as Fred)
provides the core of the system, including the pattern engine and task
automaton discussed in Chapter 4. Currently, Java [Viljamaa A. 2001, 2004;
Viljamaa J. 2002, 2004] and UML [Hammouda et al. 2004c] pattern semantics
have been built on top of the JavaFrames system.

First versions of JavaFrames were released during the FRED project (FRame-
work Editor for Java – Support for Framework Development and Use) 1997-
1999. Since then, the methodology has been further evolved in different pro-
jects [Hakala et al. 2001b, 2001c, 2001d]. One of the constituting ideas of these
projects was to develop a tool that instructs the application developer to spe-
cialize object-oriented frameworks. In JavaFrames, based on the given pattern
specifications, the application developer is guided with small and context-
sensitive programming tasks to gradually specialize the framework. Java-
Frames keeps track of the progress of the tasks, verifying that the require-
ments of the framework specialization are followed as required in the pat-
terns. In that way, JavaFrames advises the framework user to create an appli-
cation that obeys the rules of the framework.

The author has participated in the development of JavaFrames, particularly in
the development of the user interface framework to implement various pat-

 81

tern tools. The author has also been responsible to integrate the JavaFrames
system into the Eclipse environment [Eclipse 2004]. The integration utilizes
the services of JavaFrames and Eclipse, providing the basic pattern tools to
create and instantiate pattern specifications. However, the idea of general and
extensible tool support for patterns is not restricted to any particular pro-
gramming language or environment. Other team members have implemented
the core of the pattern system and the task automaton used in JavaFrames.

An overview of the integration is given in Section 5.1. The implemented pat-
tern tools are discussed in Section 5.2.

5.1 The Integration

A brief introduction to Eclipse, JavaFrames, and their integration is given in
the following subsections:

• Eclipse. Eclipse is designed for building integrated development envi-
ronments. Subsection 5.1.1.

• Integrating JavaFrames. JavaFrames Eclipse Integration is a practical ex-
periment to integrate the pattern tool platform into an existing soft-
ware development environment. Subsection 5.1.2.

5.1.1 Eclipse

Eclipse is a platform to create software development environments. It is an
IDE (Integrated Development Environment) for anything and for nothing in
particular. Eclipse is extended with extensions called plugins, making it easy
to integrate various software development tools. For example, to develop Java
applications, JDT (Java Development Tooling) provides plugins to add the
Java programming capability to the Eclipse platform.

As a Java development environment, Eclipse contains a number of tools, like
tools to manage Java projects, source code editing, and compilation. Figure 17
shows a typical Eclipse Java development user interface. The Package Ex-
plorer shows the hierarchical structure of Java projects, the Outline tool shows
the contents of a Java class, the Problems view shows compilation errors and
warnings, and the Source Editor is a typical text editor for programming. In
addition, the environment has other tools and views that are not shown in the
figure.

In Eclipse, JDT uses in-memory object model to represent the structure of a
Java program. This model is hierarchical meaning that the elements of a pro-

 82

gram can be decomposed into child elements. For example, the Java package
“org.eclipse.jdt.core” defines interfaces like IJavaElement, IMember, IType,
IMethod, and IField. For a plugin developer, these interfaces provide methods
to get the current Java project, appropriate child elements, the parent element,
the associated source code resources, and so on. Also JavaFrames uses these
interfaces to obtain the required parse information.

 Source Editor Package Explorer Outline Problems

Figure 17. Eclipse as a Java development environment.

Besides parse information and event notifications, Eclipse and JDT provide
facilities to create and manipulate Java code elements and the file system. For
example, one of the main plugins provided by Eclipse is the Resource Plugin
that provides services for accessing files, folders, and projects. The following
example code illustrates how to get a project object that can be used to access
the folders and files under the project, as well as to create new files and fold-
ers:

IWorkspaceRoot root = ResourcePlugin.getWorkspace().getRoot();
IProject project = root.getProject(“MyProject”);
if (project.exists() && !project.isOpen()) {
 project.open(null);
}

To summarize, the Eclipse Platform is very flexible and extensible system to
build application development environments. It provides enough support to
integrate JavaFrames as separate plugins and allows the real time pattern
support discussed in Subsection 4.6.3.

 83

5.1.2 Integrating JavaFrames

As explained in Section 4.6, the integration of JavaFrames to any environment
requires that the target environment provides an integration API, enough
parse information, code generation facilities, and suitable event notifications.
In Subsection 5.1.1, it was demonstrated that Eclipse fulfils these require-
ments. Figure 18 illustrates the details of the integration. JavaFrames includes
the pattern engine and a framework to create new pattern semantics. In addi-
tion, it provides interfaces and services to implement pattern tools and utilize
the task automaton. JavaFrames has been registered to Eclipse as a new
Eclipse plugin. This plugin provides also the Eclipse-specific implementations
of the pattern tools discussed in Section 5.2.

Also different pattern semantics are registered as Eclipse plugins. These se-
mantics extend the JavaFrames pattern system and provide role types to cre-
ate different kinds of pattern specifications. The Java pattern semantics and
the UML pattern semantics are the current extensions of the JavaFrames pat-
tern system. The first provides role types to construct pattern specifications to
describe Java structures, like how to specialize a Java framework. The latter
provides role types that are used to represent UML structures. More detailed
description about the JavaFrames extension framework is given in Chapter 7.

<<toolPlatform>>
JavaFrames

generate source code Create files

Get events

Get parse information and

<<concept>>
JDT

<<interface>>
IDocument

<<interface>>
IResourceChangeListener

<<interface>>
IElementChangeListener

<<concept>>
Eclipse runtime

Register

<<concept>>
Resource management

Figure 18. Integrating JavaFrames into Eclipse.

Here the Person Management project is used to illustrate the use of Java-
Frames Eclipse Integration. Person Management is a simple Java application
to store personal data. At some point, the application developer notices that a
framework could be used to provide the user interface of this application. She
imports the pattern interface of the RED framework [Hakala et al. 2001a; Pree
and Koskimies 1999], which is a small Java framework that is used as a tuto-
rial in the JavaFrames documentation. This particular framework is special-

 84

ized by deriving a new Record subclass and a suitable manager class; they
represent and manage the objects that need the user interface facilities. Once
these classes have been created, the framework can provide a dialog to man-
age the data objects. In the case of personal data, the dialog is used to set the
person’s name, age, and portrait. The content of the dialog view is con-
structed and maintained by the framework and depends on the attributes of
the current data object. The imported framework-specific pattern interface
guides the application developer to specialize the framework and to utilize its
services when implementing her application.

A typical user interface of the JavaFrames Eclipse Integration is shown in
Figure 19. In the figure, the application developer has opened the JavaFrames
perspective for the Person Management project. Pattern specifications of the
Person Management project are shown in Architecture View (Subsection
5.2.1). The application developer has imported the pattern interface of the
RED framework and instantiated RED_pattern to create a new person record
type. Pattern View is the deployment tool used to instantiate the selected pat-
tern specifications (Subsection 5.2.2). By performing tasks in the task list, the
application developer instantiates these specifications and specializes the
framework. Simultaneously JavaFrames notices the application developer if
she violates the rules of the underlying pattern specifications. For instance,
the created PersonManager class should inherit one of the abstract base
classes provided by the framework. Because this constraint is violated, a re-
pair task is generated to fix the situation.

 Architecture View Pattern View Source Editor

Patterns

Roles and their bindings

Tasks

Adaptive documentation

Repair violation ”PersonManager must
inherit SimpleRecordManager”

Tasks for
PersonManager

Class PersonManager
is bound to role

Figure 19. The JavaFrames perspective in Eclipse.

 85

Note that the user can customize the Eclipse user interface by opening and
closing tools and dragging them around. Using the integrated pattern tools
together with other Java development tools (see Figure 17) promotes an archi-
tecture-sensitive typing system in which violations against the architectural
rules are instantly notified to the software developer.

5.2 JavaFrames Pattern Tools

The JavaFrames Eclipse Integration includes the essential pattern tools to cre-
ate and manage pattern specifications. As a pattern tool platform, JavaFrames
can also be extended with new pattern tools. The current tools are discussed
in the following subsections:

• Architecture View. The Architecture View is a pattern deployment tool
to import and manage pattern interfaces. Subsection 5.2.1.

• Pattern View: instantiating patterns. The Pattern View is a pattern de-
ployment tool to instantiate single pattern specifications. Subsection
5.2.2.

• Pattern View: developing patterns. The Pattern View is also a pattern de-
velopment tool to create and edit pattern specifications. Subsection
5.2.3.

• Pattern Recorder. The Pattern Recorder is a documentation tool to create
pattern-based tutorials. Subsection 5.2.4.

• Other tools. As examples of other possible tools, JavaFrames includes
various tools for document generation, pattern mining, and UML
modeling. Subsection 5.2.5.

5.2.1 Architecture View

Each project has its own pattern interface (Subsection 4.4.2) containing pattern
specifications and imported pattern interfaces. The Architecture View, shown
in Figure 20, manages this project-specific pattern interface. The upper pane
shows the hierarchical structure of the pattern interface. This tree-like struc-
ture has the project as a root node. If a new project is created or opened a cor-
responding pattern interface is shown in the tree. If a project is closed its pat-
tern interface is stored and removed from the tree. The lower pane shows the
documentation associated with the selected pattern specification. In the Archi-
tecture View, the pattern user can import existing pattern interfaces, refine
patterns, and open the Pattern View (Subsection 5.2.2) to instantiate the se-

 86

lected pattern specification. The pattern modeler uses the Architecture View
to manage the overall structure of her pattern interface.

In Figure 20, the pattern user has imported the pattern interface of the RED
framework. In addition, she has imported the pattern interface that contains
specifications for design patterns (currently, it contains only the Abstract Fac-
tory pattern specification). She has instantiated the RED_pattern by refining
and instantiating it as a new Person Record Type pattern specification. With a
small arrowhead symbol the tool indicates that the Person Record Type pat-
tern has some mandatory tasks and the pattern user should open the Pattern
View tool to perform these tasks. The reason why the original RED_pattern is
not directly instantiated is that now the pattern user can apply it to produce
multiple slightly different instantiations. In JavaFrames this is handled by re-
fining the pattern specification and then instantiating the refinement.

Imported pattern interfaces

The Person Management project

Pattern description

Refined RED_pattern

Figure 20. Architecture View.

5.2.2 Pattern View: Instantiating Patterns

The Pattern View has two different purposes. Firstly, it is used to perform the
role-based tasks to instantiate the selected pattern specification. Secondly, it is
used to create and edit pattern specifications. Figure 21 shows how the Pat-
tern View is used to instantiate patterns. It represents the selected pattern
specification in terms of dynamically updated task list, adaptive role-specific
documentation, and program elements, like Java classes, methods, fields, and
constructors that has been bound to the roles so far. Different visual indicators
are used to illustrate optional and mandatory tasks, as well as to even more

 87

clarify the instantiation process. For instance, a small red (or dark) circle in the
left pane indicates that there are still some tasks to do with the created Per-
sonManager class. In the figure, the pattern user is performing a mandatory
repair task to fix her PersonManager class. Other mandatory tasks in the task
list show that PersonManager must also override some methods to specialize
the RED framework. Note that the pattern user can let JavaFrames to perform
these tasks automatically, if the system has enough information to generate
the required method implementations and corrections.

 Adaptive documentation Tasks Roles and their bindings

Figure 21. Pattern View: Instantiating a pattern specification.

As explained in Subsection 4.3.6, the pattern engine updates the task list re-
peatedly. The Eclipse Java development environment is tightly integrated
with this pattern instantiation process and the consistency of the source code
is verified during programming. Violated constraints and missing code ele-
ments cause new tasks until the whole pattern specification is instantiated to
the application-specific context. Thus, the pattern user instantiates the pattern
by doing these meaningful and relatively small programming tasks.

5.2.3 Pattern View: Developing Patterns

Concepts of a pattern specification were discussed in Section 4.3. Figure 22
shows how the Pattern View is used to develop a new pattern specification.
Roles are shown as a tree-like structure on the left pane; most of the roles are
not bound (light-colored symbols) because the pattern modeler wants that the
pattern user will fulfil them when specializing the framework. Some of the
roles, in turn, are already bound to the base classes of the framework (dark
symbols). The dependencies of the selected role are listed in the upper right
pane and its properties are shown in the lower right pane. A popup menu is
used to create new roles, dependencies between roles, and to change the role's
multiplicity settings. Creating a role under another role implicitly establishes
a containment relationship between elements; for instance, a class role
(MyRecordManager) that contains a method role (createNewRecord) means

 88

that the described Java class should contain the described method. This par-
ticular pattern specification is part of the RED framework’s pattern interface;
it describes how the application developer should specialize the framework to
introduce a new record type. In the figure, the pattern modeler is just finish-
ing the MyRecordManager role. The modeler has decided that the role de-
pends on SimpleRecordManager, MyRecord, and Documentation roles. With
the property fields, she has also created some documentation and default im-
plementation that can be used when the role will be fulfilled.

 Dependencies Properties Roles

Figure 22. Pattern View: Developing a new pattern specification.

Editing a property field sets the property values. For instance, the taskTitle
property is a template that is used to generate a short title for the role-based
binding task. Writing property templates (or scripts) is simple; besides ordi-
nary text, a template can contain macro tags that are expanded at run time
with a suitable interpreter. The expression inside these macro tags may con-
tain references to roles and their functions. For example, the task title tem-
plate “Provide a manager class for ‘<#:/MyRecord.i.shortName>’" evaluates a
title that uses the name of the Java class that is bound to the MyRecord role. In
the cases where there may be multiple elements playing the same role, the
pattern engine determines the relevant one. The available functions are de-
fined by the used pattern semantics. Each role type may have special func-
tions, like “signature” that returns the signature of a Java method. In the ex-
ample, the “i” function just returns the element that plays the MyRecord role.
This element is a Java class and the “shortName” function returns its name.

A macro tag becomes expanded when the expression inside the tag is evalu-
ated. This enables JavaFrames to provide flexible documentation and source
code that adapts to the current task-specific problem of the software devel-
oper. For instance, unlike with static documentation and straightforward
source code generation, roles can be utilized to produce sophisticated imple-
mentation elements during the pattern instantiation process. This can be seen
as an advantage when the framework user is trying to write the required
piece of source code to specialize a complex framework.

 89

5.2.4 Pattern Recorder

It is widely accepted that framework documentation benefits from concrete
specialization examples. In JavaFrames a framework is specialized by instan-
tiating framework-specific pattern specifications. When the pattern user spe-
cializes a framework by performing pattern instantiation tasks she simultane-
ously creates valuable information about the use of the framework. Hence, it
would be beneficial to store the actions made during a typical specialization
process and let the future framework users browse this information after-
wards as part of the framework documentation. Though these pattern re-
cordings could not explicitly teach the framework’s architecture, they could
help to illustrate the specialization process with concrete examples.

The Pattern Recorder [Hakala et al. 2003; Savolainen 2003] is a documentation
tool to record pattern instantiations. It saves the instantiation steps so that this
information can be reused as a concrete specialization example that repeats
the actions made by the pattern user. The gathered information allows the re-
play of the whole specialization process. A special browser tool is then able to
show the execution of programming tasks, one by one. Associated with each
task, the browser can show the generated code, and how the developer modi-
fied it to meet the needs of the particular example. The recorded pattern in-
stantiation steps give the rationale of each action just like they provide in-
structions for the developer when the specialization process was being re-
corded. Person who is trying to learn the framework can use these example
specializations as illustrative tutorials. She can browse through recorded
framework specializations step by step, and see how different problems are
solved in practice.

Figure 23 illustrates the principle of Pattern Recorder. When the pattern user
has performed a suitable set of tasks (this is decided by the person who makes
the recording), those tasks can be recorded as a step, which is a kind of snap-
shot of the system at the current moment. The amount of information that
needs to be recorded is relatively small. It is not necessary to store the com-
plete snapshots of the system after each step; instead, it will suffice to store
only the hand-made changes and the bindings that result from the pattern in-
stantiation. Steps are recorded in order and each recorded step knows the
bindings, associated code elements, and source code modifications made dur-
ing the step. It can also be augmented with documentation that explains the
step.

The use of the Pattern Recorder is not limited to framework-specific pattern
specifications. In Figure 24, the use of the Abstract Factory pattern specifica-
tion (Subsection 4.3.4) has been recorded as a small tutorial and browsed with
a dedicated browser tool. The recorded steps constitute a linear structure. The

 90

name of the current step is shown in the browser’s title bar. There are also
buttons to browse the recording forward and backward. On the left pane
there is the hierarchical structure of involved code elements belonging to the
currently shown step. Small black arrow indicates that the element is new and
it has been provided during the step. On the right pane are the associated
documentation and source code. The source code view highlights the piece of
code that was generated or modified when the current step was recorded.
With each step, the documentation grows incrementally, allowing the reader
to inspect all the previous steps. Similarly, the reader is able to browse all the
source code that has been produced at that point of pattern instantiation.

The roles of a pattern System A (framework) System B (application)

Step 1

Step 2

...

Recording

Bindings

Figure 23. Recording the use of a pattern specification.

Figure 24. Browsing the recorded Abstract Factory pattern instantiation.

 91

5.2.5 Other Tools

JavaFrames lays the foundation for creating a variety of pattern tools, like
tools for pattern mining and tools to generate different pattern-based docu-
mentation, reports, and so on. For example, a simple documentation tool that
converts JavaFrames pattern specifications into more readable form has been
used to generate HTML documentation for the patterns. Tools to visualize
pattern specifications and to draw them graphically could also be possible.

Pattern Extractor [Viljamaa J. 2002, 2003, 2004], in turn, is an example of com-
bined analysis- and pattern development tool. It utilizes a general mathemati-
cal method called formal concept analysis (FCA) [Tonella and Antoniol 1999] to
extract framework-specific patterns from the available source code. FCA can
be used to find different groups of code elements and to analyze the static
properties and relationships of those elements. The pattern modeler gives the
relevant parts of the framework’s source code and example applications as
input and the tool generates skeletons of pattern specifications as output. As a
result, the approach produces a set of pattern specifications that documents
the framework’s specialization interface. The pattern modeler can then com-
plete these initial versions to get a complete pattern interface for the frame-
work.

As a pattern tool platform, JavaFrames can be augmented with advanced pat-
tern semantics and tools to enable design capabilities. For instance, MADE
[Hammouda et al. 2004c] is an experimental platform for pattern-driven UML
modeling. It is based on the JavaFrames pattern tool platform and the Ra-
tional Rose UML development environment. The communication between the
JavaFrames UML pattern semantics and Rational Rose is achieved through a
UML model processing platform, xUMLi [Peltonen and Selonen 2004], pro-
viding a tool independent API for accessing the UML models. With Java-
Frames, MADE promotes Rational Rose as a pattern-based UML modeling
system. MADE has also been used as a tool support for feature-oriented de-
sign and implementation of software systems [Hammouda et al. 2005].

The aspect-oriented programming [Kiczales et al. 1997] resembles the pattern
concept in that both aspects and patterns can be used to manage and docu-
ment crosscutting and fragmented design solutions. Hammouda et al. [2004a]
suggest an aspectual pattern, which captures a generic aspect. They have no-
ticed that both aspects and patterns capture a crosscutting slice of a system
and weaving of an aspect corresponds to the pattern instantiation. The unified
concept of an aspect and a pattern could be used to provide tool support, like
JavaFrames, to weave the aspects interactively and incrementally, which
makes the weaving process open and allows customizable weaving. In addi-
tion, with the pattern tool, the used aspects can be viewed and traced, so that

 92

if the system is later changed, the tool can show possible violations. Ham-
mouda et al. have built a prototype tool environment which supports aspec-
tual patterns in UML modeling, using the JavaFrames pattern tool platform
and MADE as the core of the environment.

 93

CHAPTER 6

A GOAL-ORIENTED APPROACH
TO SPECIALIZE FRAMEWORKS

When solving a problem, working with small tasks to achieve meaningful
goals seems to be the strategy that people adapt spontaneously. For example,
when starting to specialize a framework, the application developer usually
has some objectives in her mind or at least a hint of the desired outcome.
When solving these application-specific problems, the developer struggles
with the framework’s architecture to implement the required configurations
and code elements. This is often difficult, as specializing a framework requires
that the specializer knows also the rules and implementation details that can-
not be determined directly from the framework’s interfaces and class hierar-
chy. Often, the framework’s application programming interface (API), infor-
mal documentation, and the use case examples do not describe the required
steps to achieve a specific goal precisely, but have more general or technical
character.

This chapter presents a goal-oriented approach [Hautamäki 2002; Hakala et
al. 2001c] that can be used to instruct the framework user on how to specialize
a framework. The approach is based on the analysis of the expected behavior
of the framework user. It assumes that the user tries to reuse a framework or
some other reusable design by setting meaningful goals in the context of her
application. The goals are then achieved by doing a sequence of programming
tasks. Thus, to enable pattern-based tool support, the pattern modeler must
find the goals pursued by the framework user. Then she must write a set of
patterns to document how to achieve these identified goals. Finally, the ob-
tained patterns can be transformed into more precise pattern specifications

 94

that constitute a tool supported pattern interface to achieve the goals. As a re-
sult, the framework user can use both the original patterns as informal docu-
mentation and the tool supported specifications to specialize the framework.

The goal-oriented approach is further explained in Section 6.1. To demon-
strate the approach, a small example is given in Section 6.2. The goal-oriented
approach is used in Chapter 7 to define a pattern interface for the JavaFrames
extension framework and in Chapter 8 to obtain a pattern interface for an in-
dustrial case framework.

6.1 Goal-Oriented Approach

In this dissertation, the goal-oriented process is an approach to find, specify,
and use the specialization interface of a framework as a set of framework-
specific patterns. The process is shown as an UML activity diagram in Figure
25.

Find goals

Formalize
patterns

Specialize
framework

Read
patterns

Use pattern
tools

Pattern modeler Framework user

Write
patterns

Pattern
interface

Pattern
language

System of
goals

Framework Application

Figure 25. The goal-oriented process to create and use patterns to specialize a framework.

The process is discussed in the following subsections:

• Find goals. The goal-oriented approach assumes that the framework
user is directed by a structure of goals. Subsection 6.1.1.

 95

• Write patterns. If the pattern modeler can find the goals she can write
patterns to document how to achieve these goals. Subsection 6.1.2.

• Tool-supported pattern interface. Formalizing the obtained goal-oriented
patterns creates a tool supported pattern interface. With a pattern de-
ployment tool, this pattern interface can then be used to specialize the
framework. Subsection 6.1.3.

6.1.1 Find Goals

The application developer has a motivation to use the framework to imple-
ment a part of her application. The feeling of application-specific goals directs
the way in which she derives new subclasses, overrides and implements op-
erations, and deploys and configures components. If the application devel-
oper does not know if the framework supports a goal or how the goal could
be achieved she tries to learn the framework. This slows down the application
development and is the main reason why the framework specialization is so
difficult and tedious.

To study how the framework user recognizes and reaches her objectives re-
sembles the problem solving issues studied in cognitive psychology. As
summarized by Anderson [1990], cognitive psychology attempts to under-
stand the nature of human intelligence and how people think. When talking
about problem solving, the problem space consists of physical states or
knowledge states that are achievable by the problem solver (framework user).
To solve a problem involves finding a sequence of operators to transform the
initial state (of the application) into a goal state, in which the goal is achieved.
Anderson [1990, p. 221] continues: “The basic argument (in cognitive psy-
chology) is that human cognition is always purposeful, directed to achieving
goals and to removing obstacles to those goals.” He also enumerates three es-
sential features of problem solving:

• Goal directedness. The behavior is organized toward a goal.

• Subgoal decomposition. The original goal is decomposed into subgoals.

• Operator selection. Operators are actions that will transform the problem
state into another problem state. The solution of the overall problem is
a sequence of these operators.

In the case of framework specialization, goals constitute a structure where
achieving one goal leads to another; here this is called system of goals. As an
example, Figure 26 presents some goals to specialize a framework that is used
to derive MVC (Model-View-Controller) applications. The MVC paradigm
was first used in Smalltalk environment, and it aims at making a standardized

 96

separation between the graphical user interface and the rest of the application
[Krasner and Pope 1988]. It divides the user interface into three kinds of com-
ponents: models, views, and controllers. A view manages a region of the dis-
play and keeps it consistent with the state of the model. A controller converts
user actions into operations between the view and the associated model. In
the figure, the MVC framework provides a skeleton to create such a system.
The framework user may identify new goals or divide the goals into more
specific subgoals. The order, in which the goals are pursued, is not fixed; for
example, the user may want to first implement some views and after that she
may create controllers and the factory class to launch her application. Opera-
tors to achieve the goals are typical programming activities, like creating a
class and implementing an operation.

New controller

Factory class to create
application instances

Standard MVC-application
in terms of the framework

New view

Software developer

Application

Specialize MVC
framework

Goals

Figure 26. Goals to use the MVC framework.

The system of goals is not necessarily complete; instead, new problems may
arise during the specialization process, forcing the framework user to invent
new ways to use the framework. In addition, it must be emphasized that the
system of goals is subjective; it depends on the skills and experiences of the
framework user. An experienced programmer may concentrate on finding the
most efficient solution while a novice just tries to understand the problem in
the first place. It is a well-known fact that the human information perception
is associative and new information must be included into an existing associa-
tive net of known information [Anderson 1990]. Besides, people have only a
restricted capacity to comprehend information at a time [Miller 1956]. Here
the experienced framework user has, of course, advantage over the novice
one.

To support the framework user, the pattern modeler has to find the goals. She
must think how the application developer will use the framework. For in-
stance, Carroll [1990] says that rather than reading a manual and trying to

 97

understand the whole, people are more interested in trying to work on real
programming tasks to solve meaningful problems. It seems that when learn-
ing and using a framework, users often skip over crucial material if it does not
address their current goal-oriented concern or they try to read several manu-
als, composing their own instructional procedure on the fly.

To find the goals, the pattern modeler must think the best and most typical
ways to specialize the framework and how the framework has been used in
different circumstances. She can use her past experience and available docu-
mentation. She may also study example solutions and interview framework
users. The result is a document that outlines the system of goals; each goal has
a short description and references to the next goals or subgoals. The purpose
of the document is not to describe solutions, but to get the general idea of the
required patterns.

To summarize, a goal is a situation that must be reached in order to solve the
problem. A goal can be divided into subgoals and it arises from the current
needs of the framework user. Together goals constitute a structure that directs
the work of the framework user. Writing patterns to achieve goals is dis-
cussed in the next subsection.

6.1.2 Write Patterns

Writing patterns to describe how to achieve the most typical goals makes the
goals explicit and standardizes the way the framework should be specialized.
However, as discussed in Subsection 2.1.4, writing good patterns is not an
easy task. The pattern modeler must be an expert with the framework and
pattern writing. During the pattern mining process she must decide how the
map of goals could be achieved with patterns and how these patterns consti-
tute a goal-oriented pattern language to specialize the framework.

Goal-oriented patterns can be used to document the framework’s specialization
interface. The purpose of such a pattern is to help the framework user to
achieve her application-specific goals by specializing suitable parts of the
framework. Primarily, a goal-oriented pattern is not a new pattern type; it can
be described with some of the existing documentation styles discussed in
Subsection 2.1.3 and it can be categorized as idiom, design pattern, architec-
tural pattern, and so on. But, as the goals tend to be very practical and appli-
cation-specific, a goal-oriented pattern usually concentrates on practical de-
tails, like how to use a small portion of the framework’s specialization inter-
face.

One method to write the solution part of a goal-oriented pattern is to imple-
ment an example solution that reaches the goal or goals. The example solution

 98

helps the pattern writer to identify the required program elements and their
interactions. This process is similar to the object-oriented analysis on the ar-
chitecture level: central concepts of the example solution are identified and
abstracted as the roles and constraints of the pattern. Essential roles to repre-
sent object-oriented concepts like classes and operations are easy to find.
However, the solution usually includes interactions and other elements, like
required method calls and other constraints, which may not be seen directly
from the example solution.

As discussed in Subsection 3.2.3, using patterns to document frameworks is
not a new idea. However, goal-oriented patterns are not trying to describe
every detail of the framework’s architecture, but how to solve small and prac-
tical application-specific problems with the framework. Audience of goal-
oriented patterns are ordinary framework users rather than pattern experts or
framework developers. For the application developer the goal-oriented pat-
terns are only a practical documentation to achieve her goals; she is not
changing or developing the framework itself.

Ultimately, the obtained goal-oriented patterns can be used as a blueprint
when constructing more precise pattern specifications. This is discussed in the
next subsection.

6.1.3 Tool-Supported Pattern Interface

Though patterns are useful as informal documentation, efficient tool support
requires that they take a coherent and precise form (Section 2.3). The pattern
modeler can use the goal-oriented patterns as a scheme to construct these pre-
cise pattern specifications. If documented with some of the common docu-
mentation styles, the informal pattern documentation already describes the
context, the problem, and the required participants of the solution. By using
this documentation as a start point, it should be possible to create the corre-
sponding pattern specifications with pattern development tools, like the one
discussed in Subsection 5.2.3. After that, various pattern deployment tools can
be used to help the framework user to specialize the framework.

The pattern-based tool support for framework specialization was discussed in
Subsection 3.3.2. By creating a set of tool-supported pattern specifications the
pattern modeler establishes a pattern interface that describes how to use the
framework. With a goal-oriented pattern interface the use of the framework
becomes more systematized. For example, a novice programmer can recog-
nize her goals faster and use the pattern specifications to start productive
working, even if she is not very familiar with the framework. Expert users, in
turn, can use the system to generate the desired outcome faster, as most of the
implementation details are already outlined by the pattern specifications. In

 99

addition, the system can check the current state of the specialization against
the used pattern specifications. This helps the application developer to see
possible violations and missing elements of the specialization.

However, the process of creating good pattern specifications and a working
pattern interface is very demanding. It is an iterative process in which the pat-
tern modeler is continuously noticed that some parts of the goal-oriented pat-
tern interface should be modified. The process to create pattern specifications
resembles programming, in which the programming language is the formal-
ism or specification language used to describe the elements and interactions
of the solution.

As discussed in Section 4.3, the pattern modeler should think the design of the
pattern specification in terms of roles representing the required program ele-
ments. But, as precise specifications and available role types tend to be more
limited than the informal pattern documentation, the mapping between the
original patterns and their formal counterparts is not always straightforward.
The pattern specification is not necessarily as general and flexible as the in-
formal pattern. Instead, the specification is targeted to a specific programming
language or environment and its every implementation detail and constraint
must be precise and unambiguous.

To prove the usability of the goal-oriented pattern specifications they must be
tested by specializing the framework with a pattern deployment tool. The
problem of changing the pattern interface later resembles the problem that
occurs if the specialization interface of a framework is changed so that the ex-
isting specializations become outdated. Therefore, like frameworks, the pat-
tern interface should be adequately tested before it is utilized in large scale.

Finally, it must be emphasized that the purpose of the pattern specifications is
not to replace the more informal documentation. On the contrary, when the
application developer needs to specialize a framework, she can use the origi-
nal patterns as informal documentation or she can apply the pattern interface.
In the latter pattern case, a deployment tool takes the pattern specifications as
input and helps the framework user to specialize the framework by instantiat-
ing the patterns.

6.2 Example: Pattern Interface for a Framework

To concretize the goal-oriented approach to document and specialize frame-
works, it is demonstrated with a simple example framework:

 100

• About the framework. The example framework is a small toy framework
to derive drawing applications. Subsection 6.2.1.

• Find goals. The pattern modeler must find the goals to use the frame-
work. Subsection 6.2.2.

• Write patterns. The process to achieve the goals is documented with
goal-oriented patterns. Subsection 6.2.3.

• Tool-supported pattern interface. The goal-oriented patterns are formal-
ized to construct a tool-supported pattern interface for the framework.
Subsection 6.2.4.

6.2.1 About the Framework

Figure 27 presents a toy framework that is used to derive drawing applica-
tions. The framework is written in Java and it has only three classes: Main-
Frame, Figure, and FigureManager. The MainFrame class implements a win-
dow for drawings; it contains a canvas and two buttons to select available fig-
ure types and to draw them to the canvas. By itself, the framework does not
provide any figure types that could be drawn. Instead, each application must
provide its own drawable figures by subclassing the Figure base class and by
registering these new figure types to the framework.

*
<<draws>>

MainFrame
_manager
_drawBtn
_figuresCmbx
_canvas
MainFrame(FigureManager fm)
draw()

Figure

draw(Graphics g, int x, int y)
getName()
toString()

FigureManager

_figure
FigureManager
addFigure(Figure f)
getFigures()
initFigures()

Figure 27. The example framework.

The example framework is intentionally very simple white-box framework. A
real industrial framework has much more classes and possible extension
points that make it flexible. The purpose of this example is to demonstrate the
goal-oriented approach to construct pattern support for frameworks. More
realistic and complicated use cases are given in Chapter 7 and in Chapter 8.
The goals to use the example framework are discussed in the next subsection.

 101

6.2.2 Find Goals

To find the specialization goals, the pattern modeler has created an example
specialization shown in Figure 28. She has derived new figure classes MyCir-
cle and MyRectangle. These new figure types are registered with the applica-
tion-specific manager class MyManager. The Test class provides the main
method to start the application. A screenshot of the final application is shown
on the upper right corner; the application allows the client to draw circles and
rectangles.

*
<<draws>>

MainFrame
_manage
_drawBt
_figuresCmb
_canvas

MainFrame(FigureManager fm)
draw()

Figure

draw(Graphics g, int x, int y)
getName()
toString()

FigureManager

_figure
FigureManager
addFigure(Figure f)
getFigures()
initFigures()

MyCircle

draw(Graphics g, int x, int y)
getName()

MyRectangle

draw(Graphics g, int x, int y)
getName()

MyManager

initFigures()

Test

main()

<<instantiates>>

Figure 28. Specializing the example framework.

From the application developer’s viewpoint, creating the application-specific
manager class can be seen as one of the main goals. The second goal is to cre-
ate and register new figure types. As a third goal, the framework user most
probably wants to test her application to see the figures. Thus, for this particu-
lar framework, the pattern modeler presumes that the main specialization
goals are the following:

• Create a manager class. For each application, there should be a manager
class for the application-specific figures.

• Create new figure types. New figure types are created by subclassing the
Figure base class. Each new figure type must also be registered with
the application-specific manager class.

• Test the application. A main class is needed to configure the framework
with the new application-specific manager class.

 102

6.2.3 Write Patterns

The pattern writing process of goal-oriented patterns was discussed in Sub-
section 6.1.2. In this example, the pattern modeler starts to write patterns to
document how to achieve the specialization goals enumerated in the previous
subsection. Note that there are different ways to describe the goals with a set
of patterns. Each goal may have a pattern of its own, or a group of goals may
be represented by a single pattern. In this particular case, by using her experi-
ence and the example specialization, the pattern modeler has created two pat-
terns:

• Figure pattern. The Figure pattern describes how the framework user
can create a new figure type and how it should be registered to the
framework. This pattern combines solutions to achieve the goals “cre-
ate a manager class” and “create new figure types”.

• Test pattern. The Test pattern describes how to create a runnable appli-
cation to test figure drawings.

To analyze how the goals can be reached, the pattern modeler analyzes the
example specialization that was shown in Figure 28 and identifies the code
elements that are involved in the solution. This includes both the existing base
classes (Figure and FigureManager) and the program elements that must be
provided by the application developer when specializing the framework. The
application-specific part must be abstracted to support a variety of possible
solutions. For example, in the Figure pattern, the MyCircle and MyRectangle
classes obviously should be represented by a common MyFigure role. The
roles representing Java classes can be further divided into subroles represent-
ing methods and other code structures and constraints that should play a role
in the solution.

After figuring out the roles of the pattern, its skeleton can be outlined like the
one in Figure 29. This diagram represents the roles, constraints, and their de-
pendencies as explained in Subsection 4.3.1. To make it more illustrative, the
roles played by the framework elements are indicated as gray boxes, in con-
trast to the roles played by the application elements. Roles in the diagram are
based on the observations made from the example specialization. If a code
element in the example solution needs another element, a dependency is
drawn between the corresponding roles. Similarly, if the role is representing a
single program element or a set of elements, like MyFigure (the framework
user must provide at least one new figure type), its multiplicity must be set
accordingly. By default the multiplicity is 1. In this way, the abstract structure
of the solution emerges from the given example specialization.

 103

<<classRole>>
MyFigure

<<classRole>>
MyManager

<<classRole>>
Figure

<<classRole>>
FigureManager

<<methodRole>>
initFigures

<<methodRole>>
initFigures

<<methodRole>>
draw

<<methodRole>>
getName

<<methodRole>>
draw

<<methodRole>>
getName

<<overriddingConstr.>>
OverrideInitFigures

<<codeFragmentRole>>
addFigure

<<overridingConstr.>>
OverrideDraw

<<overridingConstr.>>
OverrideGetName

<<inheritaceConstraint>>
InheritFigure

<<inheritaceConstraint>>
InheritFigureManager

+

Figure 29. The Figure pattern.

6.2.4 Tool-Supported Pattern Interface

Finally, after outlining the framework-specific pattern, a corresponding pat-
tern specification is created with the development tool provided by the pat-
tern tool platform. In JavaFrames Eclipse Integration, roles, their properties,
dependencies, and multiplicity settings are constructed as explained in Sub-
section 5.2.3. A detailed description of the constructed Figure pattern specifi-
cation is given in Appendix B.

The created pattern interface describes the most typical use of the example
framework. It emphasizes the goals and guides the framework user to create
new figure types. With the JavaFrames pattern deployment tool discussed in
Subsection 5.2.2, the specialization process is guided with meaningful pro-
gramming tasks and much of the required code can be generated automati-
cally. For instance, a task is generated to indicate that the framework user
should register new figure type. To perform the task, the required registration
code can then be generated automatically inside the initFigures method. Oth-
erwise this small detail could be forgotten and it would cause problems, as a
new figure type is not available in the user interface until it is properly regis-
tered.

 104

The use of the obtained pattern interface is illustrated in Figure 30. The appli-
cation developer has instantiated the Figure pattern twice, to provide circle
and rectangle figure types. The Test pattern has been instantiated to generate
the required main class to run the application. The instantiation process is
based on the pattern engine and task automaton discussed in Subsection 4.3.5
and in Subsection 4.3.6.

 Drawing application

Example framework

Instantiation

Pattern instance

Pattern specification Pattern interface

Figure

RectangleCircle

Test

Test

Figure 30. Using the goal-oriented pattern interface.

 105

CHAPTER 7

SPECIALIZING PATTERN
SEMANTICS

In JavaFrames the mechanism to construct pattern specifications is a special
Java framework. Applications, namely the pattern specifications, are created
by composing the available role types with a semi-graphical pattern devel-
opment tool. Here the framework is called the Pattern Specification Frame-
work (PSF). With PSF, it is possible to precisely represent the pattern struc-
tures and concepts discussed in Section 4.3. Though used as a black-box
framework, PSF itself can be extended with new role types by deriving new
subclasses from the base classes of the framework. For example, different role
types can be created to represent Java classes, Java methods, inheritance con-
straints, UML class nodes, and so on. The pattern modeler can then use these
role types when composing pattern specifications with the pattern develop-
ment tool.

Currently, PSF has role types to represent Java code structures, so it is natural
to think that with a suitable pattern interface JavaFrames could be used to ex-
tend PSF itself. The platform developer could then apply this pattern interface
with pattern deployment tools to create new role types, making PSF to guide
its own extension. Here the goal-oriented approach discussed in Chapter 6 is
applied to create a pattern interface to extend the framework.

Overview of PSF is given in Section 7.1. The goals and patterns to extend the
framework with new role types are discussed in Section 7.2. An example spe-

 106

cialization to create two new role types and their user interface is done in Sec-
tion 7.3. Experiences are discussed in Section 7.4.

7.1 Pattern Specification Framework

The main concepts of PSF are discussed in the following subsections:

• Role types. New role types are derived from PSF’s base classes. The pat-
tern modeler can then use these role types to compose pattern specifi-
cations. Subsection 7.1.1.

• Properties. Each role type may have properties like functions and
scripts. They are evaluated during the pattern instantiation process,
making it possible to provide role-specific documentation, code gen-
eration, and so on. Subsection 7.1.2.

• User interface. In JavaFrames, each role type defines its own user inter-
face. A sophisticated wizard system is used when the pattern modeler
creates a new role and when the pattern user performs a task that is
based on that role. Subsection 7.1.3.

• Eclipse plugin. JavaFrames is integrated into the Eclipse environment.
New extensions must be introduced to the system as Eclipse plugins.
Subsection 7.1.4.

7.1.1 Role Types

PSF and one of its extensions, the role types implementing Java pattern se-
mantics, are shown in Figure 31. Each role is associated with a semantic object
that defines the behavior of the role. These semantic objects are divided into
instance semantics and constraint semantics. A role that uses instance seman-
tic can represent a concrete element while the instance semantic manages the
binding between the role and the element. A role that uses constraint seman-
tic, in turn, can perform various calculations to check that the constraint is not
violated. For example, an inheritance constraint is typically associated be-
tween two class roles and it checks that there is an inheritance relation be-
tween the Java classes that are bound to those roles.

In Figure 31, roles to represent Java classes, constructors, methods, and fields
are quite evident. However, because pattern specifications must be able to ex-
press also complex interactions, implementation details, and constraints pre-
cisely, some more fine-grained roles are needed. For example, the code frag-
ment role is used to express a piece of arbitrary code, typically inside a Java
method or constructor. Constraints (roles with constraint semantics), like the

 107

parameter, exception, and inheritance are needed to express context-sensitive
method parameters, exception types, inheritance relations, and so on.

Figures 32 and 33 give more detailed picture of creating a new role type that
utilize instance semantics or constraint semantics. In the case of instance se-
mantics, the platform developer must implement the parseReference method
to locate the actual element that is bound to the role. For constraint semantics,
the platform developer must implement the checkConstraint method that
validates the constraint. Each semantic class has a special inner class called
Type that acts as a factory to create semantic objects during pattern instantia-
tion. A semantic class has also a Handler class that is used by the pattern en-
gine to generate role-specific tasks. A pattern to create new instance semantics
is presented in Subsection 7.2.2. A pattern to create new constraint semantics
is presented in Subsection 7.2.3.

Semantics

InstanceSemantics ConstraintSemantics

AbstractTextFragmentRole

BaseSemantics

JEntityRole

JClassRole JMemberRole

JFieldRole JOperationRole

JConstructorRole JMethodRole

TextFragmentRole

JCodeFragmentRole

JClassInstantiationConstraint

JExceptionConstraint

JFieldReferenceConstraint

JInheritanceConstraint

JMethodCallConstraint

JModifierConstraint

JOverridingConstraint

JParameterConstraint

JTypeConstraint

JFieldTypeConstraint

JMethodTypeConstraint

Role Parent role
Child role

0..1

*

Figure 31. PSF and Java pattern semantics as its example extension.

 108

 Semantics

BaseSemantics.Type BaseSemantics

SemanticsType BindingHandler

BaseSemantics.Handler

NewSemantics.Type

getName()
createSemantics()

InstanceSemantics
reference : String
referencedObject : Object
createHandler()
initialize()
cleanUp()
isFixed()

InstanceSemantics.Handler

initialize()
cleanUp()

<<creates>>

<<creates>>

NewSemantics

parseReference()
changingReferencedObject()
referencedObjectChanged()

InstanceSemantics.Type

Figure 32. Deriving new instance semantics.

 Semantics

BaseSemantics.Type BaseSemantics

SemanticsType BindingHandler

BaseSemantics.Handler

NewSemantics.Type

getName()
createSemantics()

ConstraintSemantics

initialize()
cleanUp()
isFixed()

ConstraintSemantics.Handler

initialize()
cleanUp()

<<creates>> <<creates>> NewSemantics

createHandler()

ConstraintSemantics.Type

NewSemantics.Handler

checkConstraint()

Figure 33. Deriving new constraint semantics.

7.1.2 Properties

In PSF each role type may have a set of properties. As shown in Figure 34,
these properties are divided into functions and scripts. Scripts are shown to
the pattern modeler as editable fields in the JavaFrames pattern development
tool (Subsection 5.2.3). Depending on the script, it can be used to generate
adaptive documentation, source code suggestions, task titles, and so on. For
example, a specific script is used to generate a title for the role-based task. A
typical function, in turn, is the instance function that returns the element that
is bound to the role. The value of a function is determined by the evaluate

 109

method. For scripts the value is a text that results when the used script inter-
preter evaluates the source string of the script. This source string is an expres-
sion that may contain function calls, references to other roles, and so on.

When extending PSF with new role types, the platform developer may want
to create new functions and script interpreters to be used with these role
types. The problem is that the implementation of the evaluate method and the
interpret method cannot be predicted; the implementation is too domain-
specific for a general pattern specification. In addition, the current Java pat-
tern semantics has only limited support to model the complex implementa-
tion details of method bodies. Therefore the pattern specification to create a
new function or script interpreter is omitted here.

NewRole.Type

Function

evaluate()

Script
source : String

Property

NewFunction

*

* ScriptInterpreter

interpret()

NewInterpreter

1

SemanticsType

Figure 34. Deriving new functions and script interpreters.

7.1.3 User Interface

In the JavaFrames Eclipse Integration, the user interface to perform tasks and
create roles is based on a sophisticated wizard system. Each role type pro-
vides its own wizard pages to be used in the wizard system. For example,
performing a binding task means that an element is created or selected and
then bound to a specific role. When the pattern user selects the task, the Per-
form Task wizard is opened. The first page of this common wizard shows the
selection of more specific alternatives to perform the task; it is the task’s role
type who provides these more specific alternatives. The pattern user then se-
lects one of the available alternatives to continue. Typically, in the case of a
binding task, she may want to point out the desired element or ask the system
to generate a new element for the role. In the case of constraint semantics, the
pattern user may also need a wizard page to repair possible constraint viola-
tions.

 110

The pattern modeler who creates pattern specifications uses another wizard to
create roles. The first page of this New Role wizard shows available role
types. After selecting a suitable role type, like a Java class role, the second
page of the wizard shows alternatives to create a new role of that role type.
The most typical alternatives are to create a new unbound role (to be fulfilled
later by the pattern user) or a role that is bound to a specific element (for ex-
ample, to a particular framework base class) by default. In the case of con-
straint semantics, the pattern modeler needs a wizard page to initialize the
constraint.

Figure 35 illustrates how the user interface is specialized. For each new role
type the platform developer creates a suitable set of wizard pages by deriving
subclasses from the wizard base classes. As mentioned before, in the case of a
role type that uses instance semantics, there should be wizard pages to create
and locate elements that can be bound to the role. In addition, a wizard page
is also needed to create an unbound role. This is needed when the pattern
modeler creates new pattern specifications. A pattern to create role-specific
wizard pages is presented in Subsection 7.2.4.

CreateElementPageCreateElement
<<creates>>

LocateElementPage LocateElement <<creates>>

UnboundRolePage UnboundRole
<<creates>>

SemanticsWizard

getSemanticsTypeName()
isAvailableFor()
getFirstWizardSheet()
isPostponeWizard()
isAutomaticlyExecutable

ApplauseWizardPage

createControl()
performFinish()
performCancel()
canFinish()
validatePage()

Figure 35. Creating wizard pages for a role type.

7.1.4 Eclipse Plugin

Eclipse is structured around the concept of extension points [Eclipse 2004].
Extension points are places in where other tools (called plugins) can contrib-
ute functionality. Eclipse provides the run time engine that starts the platform
base and dynamically discovers plugins. Each plugin is a structured compo-
nent that describes itself to the system using a manifest (plugin.xml) file.
Eclipse maintains a registry of installed plugins.

In fact, JavaFrames itself has been integrated into Eclipse as a set of Eclipse
plugins. Also the platform developer should introduce new role types and
their wizard-based user interface to the system as a new plugin. Figure 36 il-

 111

lustrates the required plugin classes and the configuration file. A pattern to
create new Eclipse plugins is presented in Subsection 7.2.5.

JavaFramesPluginInitializer

NewPluginInitializer

addImages()
addExtensions()

AbstractUIPlugin

NewPlugin
instance : ExamplePlugin
getInstance()

<<xmlFile>>
plugin.xml

Eclipse

<<configures>>

Figure 36. Creating a new Eclipse plugin.

7.2 Pattern Interface to Achieve Goals

The framework-specific specialization goals and the obtained pattern inter-
face to achieve them are discussed in the following subsections:

• Goals to extend the pattern specification framework. The goal-oriented ap-
proach discussed in Chapter 6 was used to create a pattern interface to
extend PSF with new role types. Subsection 7.2.1.

• Instance Semantics pattern. The Instance Semantics pattern is used to
create new role types that are suitable to represent concrete implemen-
tation elements in the solution. Subsection 7.2.2. Appendix C.

• Constraint Semantics pattern. The Constraint Semantics pattern is used
to create new role types to represent constraints, like the inheritance re-
lation between Java classes. Subsection 7.2.3. Appendix D.

• Semantics Wizard pattern. The Semantics Wizard pattern is used to cre-
ate wizard-based user interface for a role type. Subsection 7.2.4. Ap-
pendix E.

• Eclipse Plugin pattern. The Eclipse Plugin pattern is used to create a new
Eclipse plugin. Subsection 7.2.5. Appendix F.

7.2.1 Goals to Extend the Pattern Specification Framework

When starting the case study, the author was familiar with the concepts of
PSF, but not with the implementation details of its extensions. The process to
find the most typical goals was carried out by studing the framework’s source

 112

code, existing role types, and by reading the available documentation. During
this goal mining process, observations were made how to use the framework
in order to create a working PSF extension. In fact, writing Section 7.1 and
drawing the class diagrams of the example extensions were an important part
of the goal mining process. The found goals are the following:

• Derive new instance semantics. Instance semantics represent roles that
can be bound to elements, like Java classes or methods. Figure 32 illus-
trated how to create new instance semantics.

• Derive new constraint semantics. Constraint semantics represent roles
that are used to guard specific requirements and commitments; like
that a class must inherit a particular base class. Figure 33 illustrated
how to create new constraint semantics.

• Create new function. In role types functions are used to retrieve role-
specific values, like the name of the role or the reference to the element
that is bound to the role. Figure 34 illustrated how to create new func-
tions.

• Create new script interpreter. Various script interpreters can be used to
interpret the expressions of the script properties. Figure 34 illustrated
how to create new script interpreters.

• Create wizards. Each role type may introduce its own wizard pages to
the JavaFrames wizard system. Figure 35 illustrated how to create new
wizard-based user interface for a role type.

• Create Eclipse plugin. Extensions, like new role types and wizards, must
be introduced as Eclipse plugins. Figure 36 illustrated how to create a
new Eclipse plugin.

After finding the goals, the author started to outline patterns as described in
Subsection 6.1.2. For each goal, the author studied how the goal was achieved
in existing use cases and then he implemented his own example extensions to
test and study the details of the solution. Pattern specifications were con-
structed with the JavaFrames pattern development tool and tested by repro-
ducing these example extensions. As an estimation of the amount of work,
learning the framework and finding goals was carried out in one week and
the pattern writing, construction of pattern specifications, and testing took
also one week. The obtained patterns are presented in the next subsections.

 113

7.2.2 Instance Semantics Pattern

The Instance Semantics pattern guides the platform developer to extend PSF
in order to create new instance semantics. An overview of the pattern is
shown in Figure 37. The MyInstanceSemantics role represents the Java class
that should inherit the InstanceSemantics base class. The base class will han-
dle the bindings between the role and elements bound to it. The new instance
semantics should have an inner class called Type that is used to create in-
stances of this role type. In addition, MyInstanceSemantics has a number of
method roles to override and implement the abstract methods of the In-
stanceSemantics base class. The platform developer can apply the Instance
Semantics pattern specification to generate most of the required classes and
methods, except the implementation of the parseReference method and possi-
ble domain-specific event listeners. A more detailed specification is given in
Appendix C.

<<classRole>>
MyInstanceSemantics

<<classRole>>
Type

<<methodRole>>
getName

<<methodRole>>
createSemantics

<<fieldRole>>
ID_STRING

<<constructorRole>>
Constructor

<<methodRole>>
isValidChildSemanticsClass

<<methodRole>>
getRoleTargetKind

<<methodRole>>
changingReferencedObject

<<methodRole>>
referencedObjectChanged

<<methodRole>>
getDefaultRoleName

<<methodRole>>
parseReference

<<fieldRole>>
TARGET_KIND_STRING

<<constructorRole>>
Constructor

<<classRole>>
InstanceSemantics

Figure 37. Instance Semantics pattern.

 114

7.2.3 Constraint Semantics Pattern

The Constraint Semantics pattern guides the platform developer to extend
PSF in order to create new constraints. An overview of the pattern is shown in
Figure 38. The MyConstraintSemantics role represents the Java class that
should inherit the ConstraintSemantics base class. The class should have an
inner class called Type that is used to instantiate the constraint objects. An-
other inner class, called Handler, is used to check the constraint itself. The
platform developer can apply the Constraint Semantics pattern specification
to generate most of the required classes and methods, except the implementa-
tion of the checkConstraint method and possible domain-specific event listen-
ers. A more detailed specification is given in Appendix D.

<<class role>>
MyConstraintSemantics

<<classRole>>
Type

<<methodRole>>
getName

<<methodRole>>
createSemantics

<<fieldRole>>
ID_STRING

<<constructorRole>>
Constructor

<<methodRole>>
createHandler

<<methodRole>>
getRoleTargetKind

<<methodRole>>
isValidValue

<<methodRole>>
getDefaultRoleName

<<fieldRole>>
TARGET_KIND_STRING

<<constructorRole>>
Constructor

<<classRole>>
ConstraintSemantics

<<classRole>>
Handler

<<methodRole>>
getOwnerRoleTargetClass

<<methodRole>>
checkConstraint

<<methodRole>>
getAcceptableValueClass

<<methodRole>>
cleanUp

<<methodRole>>
getMyConstraintSemantics

<<methodRole>>
initialize

Figure 38. Constraint Semantics pattern.

 115

7.2.4 Semantics Wizard Pattern

The Semantics Wizard pattern guides the platform developer to create wizard
pages to be used with her role types. An overview of the pattern is shown in
Figure 39. MySemantics represents the semantics class that requires the wiz-
ard user interface. MyWizard represents the wizard class and MyWizardPage
represents the actual user interface of that wizard. Note that there can be mul-
tiple wizards for the same role type. The wizard has some simple methods to
be overridden. The wizard page is more problematic, as the user interface can
be very complicated. The pattern specification provides a default user inter-
face with text fields to set the role name and value expression. In addition, the
performFinish method role contains code fragment alternatives to provide the
most typical implementation; in the figure, only the dependencies of the cre-
ateElement code fragment role are shown. With these default implementa-
tions, the platform developer can create a working user interface to quickly
test her role types. A more detailed specification is given in Appendix E.

<<classRole>>
MyWizardPage

<<methodRole>>
createControl

<<methodRole>>
performFinish

<<constructorRole>>
Constructor

<<classRole>>
MySemantics

<<methodRole>>
canFlipToNextPage

<<methodRole>>
validatePage

<<methodRole>>
canFinish

<<classRole>>
MyWizard

<<methodRole>>
isAvailableFor

<<methodRole>>
isPostponeWizard

<<methodRole>>
getSemanticsTypeName

<<methodRole>>
isAutomaticlyExecutable

<<methodRole>>
getFirstWizardSheet <<classRole>>

ApplauseWizardPage

<<classRole>>
SemanticsWizard

+

<<fieldRole>>
_valueField

<<fieldRole>>
_nameField

<<fieldRole>>
_parent

<<fieldRole>>
_semantics

<<fieldRole>>
_task

<<codeFragmentRole>>
createElement

? <<codeFragmentRole>>
locateElement

?

<<codeFragmentRole>>
newConstraint

? <<codeFragmentRole>>
unboundRole

?

Figure 39. Semantics Wizard pattern.

 116

7.2.5 Eclipse Plugin Pattern

The Eclipse Plugin pattern guides the platform developer to create a new
Eclipse plugin. An overview of the pattern is shown in Figure 40. The plat-
form developer must provide the plugin class and the initializer class that
adds the extensions to the JavaFrames system. In addition, Eclipse requires
that the plugin is deployed under the Eclipse’s plugins folder and that there is
a specific XML file to introduce the plugin. The implementation of the plugin
class is very simple and it can be easily generated. The implementation of the
plugin initializer class is also rather straightforward; the platform developer
must introduce her role types and user interface wizards inside the addExten-
sions method. The pattern specification provides two code fragment roles to
introduce the selected extensions. A more detailed specification is given in
Appendix F.

<<classRole>>
MyPluginInitializer

<<methodRole>>
addImages

<<issueRole>>
PluginXML

<<methodRole>>
addExtensions

<<classRole>>
MyPlugin

<<classRole>>
JavaFramesPluginInitializer

<<classRole>>
AbstractUIPlugin

<<classRole>>
MyRoleTypeExtension

<<codeFragmentRole>>
addRoleTypeExtension

<<classRole>>
MyWizardExtension

<<codeFragmentRole>>
addWizardExtension

<<issueRole>>
PluginDeployment

*

*

Figure 40. Eclipse Plugin pattern.

7.3 Using the Pattern Interface

To demonstrate the use of the pattern interface, it is applied to produce two
new role types, their user interface, and the required Eclipse plugin. The spe-
cialization is discussed in the following subsections:

• Demonstration. To better understand the process, a simple example il-
lustrates the creation and use of the new role types. Subsection 7.3.1.

• Creating two new role types. The demonstration uses role types that are
implemented as extensions of PSF. Subsection 7.3.2.

 117

7.3.1 Demonstration

The process is briefly illustrated in Figure 41. The screenshots are taken from
JavaFrames Eclipse Integration discussed in Chapter 5. Firstly, the pattern
modeler creates pattern specifications to guide how to create PSF extensions.
The platform developer then uses this pattern interface – as a pattern user – to
create a new extension. Another pattern modeler can now use the created role
types to compose new kinds of pattern specifications. Finally, an ordinary
pattern user applies these new pattern specifications in her application.

Platform developer
creates new role types
by instantiating the
pattern specifications

Another pattern modeler
uses the new role types to
create the Alarm pattern
specification

Pattern user instantiates the
Alarm pattern specification

Pattern modeler describes
how to create new role
types

Figure 41. Pattern support to create new role types and using those role types.

Figure 42, in turn, shows more details of the Alarm example pattern specifica-
tion. The specification utilizes the new role types <<classRole>> and

 118

<<watchConstraint>>. By using the JavaFrames pattern development tool, the
pattern modeler has created the Watcher and Watched class roles and the
watch constraint that will observe the Java class bound to the Watched role.
Thus, when this pattern is instantiated, the watcher class is associated with a
task to check changes whenever a change occurs in the watched Java class.
The pattern user instantiates the Alarm pattern by performing the generated
tasks; she selects a Java class to be bound to the Watcher role and a Java class
to be bound to the Watched role.

<<classRole>>
Watched

<<classRole>>
Watcher

<<watchConstraint>>
Alarm

Figure 42. The Alarm pattern specification demonstrating the use of the new role types.

7.3.2 Creating Two New Role Types

The platform developer must implement the new role types before the pattern
modeler can use them to compose her pattern specifications. Here PSF’s pat-
tern interface is used to create two new role types. The first role type uses in-
stance semantics and it represents a Java class; it is a simplified version of the
existing Java class role (see Figure 31) without any code generation facilities
or event listeners. The second role type uses constraint semantics. It repre-
sents a watch constraint that can be set to observe a particular Java class and
warn the pattern user about any changes of that class.

Figure 43 shows how the platform developer uses the pattern interface. To
create the new role types, she instantiates Instance Semantics and Constraint
Semantics pattern specifications. The wizard-based user interface for these
new role types is created by instantiating the Semantics Wizard pattern speci-
fication. In addition, the pattern interface guides the platform developer to
create the Eclipse plugin that introduces these extensions to the JavaFrames
Eclipse Integration.

Figure 44 presents the final application. The platform developer has created
the ClassRole and WatchConstraint classes to implement the new role types.
She has also created wizard classes to provide the user interface for these role
types. The PSFExamplePlugin and PSFExamplePluginInitializer are needed to
establish a new Eclipse plugin. The EclipseJavaUtils class contains some util-
ity methods to work with the Eclipse development environment.

 119

 Extension

PSF

Instantiation

Watch Constraint Wizard

PSF Example Plugin
Class Role

Instance Semantics Constraint Semantics

Class Role Wizard

Watch Constraint

Eclipse Plugin Semantics Wizard

Figure 43. Extending PSF by using its pattern interface.

 InstanceSemantics ConstraintSemantics

ClassRole

EclipseJavaUtils

WatchConstraint

WatchConstraintWizard WatchConstraintWizardPage

LocateClassWizard LocateClassWizardPage

UnboundClassRoleWizard UnboundClassRoleWizardPage

ApplauseWizardPage

AbstractUIPlugin

PSFExamplePlugin

JavaFramesPluginInitializer

PSFExamplePluginInitializer

SemanticsWizard

<<creates>>

<<is suitable for>>

<<creates>>

<<creates>>

<<is suitable for>>

<<is suitable for>>

Figure 44. Class diagram of the final PSF example extension.

7.4 Experiences

Analysis and statistics of the results are given in the following subsections:

• Support for code generation. Subsection 7.4.1.

• Support for fragmented design solutions. Subsection 7.4.2.

 120

7.4.1 Support for Code Generation

Table 3 presents more statistics about the created PSF extension and the use of
the pattern interface. The final application has 11 classes and 400 code lines
(Java source code lines inside the class declaration). The platform developer
had to manually create or edit 85 lines while the pattern interface generated
315 lines, 79% of the code lines. Though the example application is small, the
experiment shows that with a suitable pattern interface much of the required
specialization code can be generated automatically. The amount of the gener-
ated code depends on how detailed the pattern specifications are and how
well they capture the problem domain, in this case the extension of PSF. In
addition, JavaFrames keeps track of the generated pattern instances, which
makes it different from traditional code generators or wizards.

Class Code lines Manually
edited lines

Generated
code ratio

ClassRole 48 8 83%
EclipseJavaUtils 18 18 0%
LocateClassWizard 17 0 100%
LocateClassWizardPage 54 2 96%
PSFExamplePlugin 10 0 100%
PSFExamplePluginInitializer 12 0 100%
UnboundClassRoleWizard 17 1 94%
UnboundClassRoleWizardPage 51 2 96%
WatchConstraint 102 52 49%
WatchConstraintWizard 17 0 100%
WatchConstraintWizardPage 54 2 96%
 400 85 79%
Table 3. The amount of generated code in the PSF example.

To analyse the results, the classes are put into four categories according to the
generated code ratio:

• Weak generated code ratio (0%-25%). The lowest generated code ratio, 0%
for the EclipseJavaUtils class, is because the pattern interface has no
patterns to work with the services and interfaces of the Eclipse Java
development environment; they are not in the scope of the pattern in-
terface. Another reason is that creating pattern support for an arbitrary
utility class is not very cost-effective, unless the form of the class is pre-
dictable and similar utility classes are needed repeatedly.

• Fair generated code ratio (26%-50%). Similarly, the next lowest generated
code ratio, 49% for the WatchConstraint class, is because the general
Constraint Semantics pattern specification cannot predict the domain
of the constraint. The WatchConstraint class must provide Eclipse-
specific listeners and implement the checkConstraint method by utiliz-
ing the Eclipse’s internal Java syntax tree representation. What could
be done is to create patterns for narrower domains. The tradeoff is the

 121

complexity and general applicability of the pattern specifications.
However, the Constraint Semantics pattern speed up the implementa-
tion of the WatchConstraint class by supporting the extension rules of
PSF and letting the platform developer to concentrate on the non-
supported domain-specific implementation details.

• Good generated code ratio (51%-75%). Currently there are no classes in
this category. However, if the ClassRole class is further developed, its
generated code ratio will decrease similarly to the generated code ratio
of the WatchConstraint class. Also, the generated code ratios of the
wizard page classes will decrease if the pattern user is not satisfied
with the default user interface and wants to implement more compli-
cated wizard pages. Nevertheless, the pattern interface can maintain
the overall architecture and specialization rules that affect these classes,
which can be seen as a significant advantage.

• Excellent generated code ratio (76%-100%). The ClassRole, LocateClass-
Wizard, LocateClassWizardPage, PSFExamplePlugin, PSFExample-
PluginInitializer, UnboundClassRoleWizard, UnboundClassRoleWiz-
ardPage, WatchConstraintWizard, and WatchConstraintWizardPage
classes have the highest generated code ratio. Most of them are wizard
classes (with a default user interface) and Eclipse plugin classes; their
structure is very stable and variations are predictable. This makes it
easy for the pattern modeler to create pattern specification that can al-
most automatically create the required code elements.

7.4.2 Support for Fragmented Design Solutions

Table 4 shows which classes are involved in different pattern instances. For
simplicity, the table presents the pattern instances only in the level of classes,
though the instances may also include methods, fields, constructors, and code
fragments. The letter “M” indicates that the class has been modified during
the pattern instantiation. The letter “S” means that the class has been selected
to play a role in the pattern instance, but it has not been modified. The letter
“F” indicates the framework classes that are part of the pattern instances. The
pattern modeler has selected these classes when creating the pattern specifica-
tions. Subscripts are used to identify the pattern instances (see Figure 43). For
example, the Semantics Wizard pattern has been instantiated twice, to pro-
duce user interface for the class role and for the watch constraint.

As demonstrated in Table 4, patterns can be used to group elements in differ-
ent logical entities and combinations. If an element is modified, the system
can check that the element still obeys the pattern-specific rules. If not, a repair
task can be generated. Further, also other elements that play roles in the same
pattern instance(s) can be checked. A change in one element may require

 122

some modifications in other elements. In this particular example, there are no
overlapping class modifications across the pattern instances. Instead, some
classes, like the WatchConstraint class, are created with one pattern (Con-
straint Semantics) and then referenced in other pattern instances (Semantics
Wizard, Eclipse Plugin). For instance, based on the selected class, new code
lines are generated to PSFExamplePluginInitializer. This is necessary to regis-
ter the new extension classes to the Eclipse system.

Class Instance
Semantics

Constraint
Semantics

Semantics
Wizard

Eclipse
Plugin

AbstractUIPlugin F5
ApplauseWizardPage F3,4
ConstraintSemantics F2
InstanceSemantics F1
JavaFramesPluginInitializer F5
SemanticsWizard F3,4
ClassRole M1 S3 S5
EclipseJavaUtils
LocateClassWizard M3 S5
LocateClassWizardPage M3
PSFExamplePlugin M5
PSFExamplePluginInitializer M5
UnboundClassRoleWizard M3 S5
UnboundClassRoleWizardPage M3
WatchConstraint M2 S4 S5
WatchConstraintWizard M4 S5
WatchConstraintWizardPage M4
Table 4. The use of the patterns across classes in the PSF example.

 123

CHAPTER 8

CASE STUDY: INDUSTRIAL
FRAMEWORK

Nokia produces a family of NMS (Network Management System) and EM
(Element Manager) applications that are used to manage the network or net-
work elements. The company has a Java GUI (Graphical User Interface) plat-
form developed to support the implementation of the graphical user interface
parts for the variants of this product family [Bonnet 1999]. The purpose of this
case study is to annotate the GUI framework with a goal-oriented pattern in-
terface so that JavaFrames can be used as a specialization wizard when creat-
ing user interfaces with the Nokia platform. The main work of the case study
consists of becoming familiar with the framework, identifying its goals, writ-
ing patterns as informal documentation, constructing the pattern interface as
a set of formal pattern specifications, testing the installation, and reporting the
work.

The case framework is based on the MVC paradigm [Krasner and Pope 1988]
and it has about 300 classes. The aim of the MVC paradigm is to provide clear
separation between the graphical user interface and the rest of the application.
As explained in the framework's documentation, the fundamental principle of
the case framework is that every view object is managed by exactly one con-
troller object and every controller (except the main controller) is managed by
a parent controller. In addition, the framework provides some useful services
for GUI applications, like the clipboard and internationalization facilities. Af-
ter analyzing the specialization goals of the framework, a collection of pat-
terns was defined to cover a major part of its specialization interface. Due to

 124

the confidential nature of the case framework, detailed descriptions about its
architecture and implementation are omitted.

The goals to specialize the framework and the obtained pattern interface are
discussed in Section 8.1. An example specialization that uses the pattern inter-
face is given in Section 8.2. Experiences are discussed in Section 8.3.

8.1 Pattern Interface to Achieve Goals

The case framework has several extension points in which the framework
user must provide her application-specific implementation. Fulfilling these
extension points can be seen as a set of specialization goals. The framework-
specific specialization goals and the obtained pattern interface to achieve
them are discussed in the following subsections:

• Goals to specialize the framework. The goal-oriented approach discussed
in Chapter 6 was used to create a pattern interface to specialize the
most important parts of the case framework. Subsection 8.1.1.

• Application patterns. The application patterns are used to build up a ba-
sic MVC application with a main view and controller. Subsection 8.1.2.

• MVC patterns. The MVC patterns provide support for adding new
views, like dialogs and internal frames. Subsection 8.1.3.

• Service patterns. The service patterns support topics like the use of the
clipboard and internationalization services. Subsection 8.1.4.

8.1.1 Goals to Specialize the Framework

When starting the case study, the author was not familiar with the Nokia plat-
form. The first task was to learn the case framework and to find its specializa-
tion goals. The framework’s source code or any realistic use cases were not
available. However, the framework was annotated with a good documenta-
tion that carefully explained the different ways of using it; the goals to spe-
cialize the framework were found rather straighforwardly by reading this
cookbook-like documentation. The author learned the essentials of the frame-
work in a couple of weeks and was able to create a draft of the required pat-
terns. During the pattern modeling process, iteration was required as each
pattern specification was created and tested with JavaFrames Eclipse Integra-
tion. The first version of the case study was carried out and reported when
evaluating Fred – the former version of JavaFrames [Hautamäki 2002]. Since
then, during the development of the JavaFrames Eclipse Integration and writ-

 125

ing this dissertation, the case study was iterated and updated once more, and
the obtained framework-specific patterns were slightly modified.

An overview of the main specialization goals is shown in Figure 45. In the
figure, the goals are grouped into three subsets. Firstly, in the Application
goals subset it is supposed that the framework user starts by providing a spe-
cific factory class to launch the application, provides a main controller that
makes the application compatible with the framework system, and imple-
ments the main window. Secondly, in the MVC goals subset it is supposed
that the framework user implements additional view- and controller classes
as described by the used MVC paradigm. Thirdly, in the Service goals subset
the framework user may utilize features like the internationalization service
or the clipboard.

Factory class to create application instances

Main view Standard MVC application
in terms of the framework

Application goals

Corba services, application tramboline,
visual component library,

Online help

Internationalization

Clipboard functionality

Drag and drop

Service goals

New internal frame

New subview New dialog

New panel

MVC goals

Figure 45. Specialization goals to use the case framework.

Correspondingly, the patterns to achieve these specialization goals can be di-
vided into three categories. Application patterns are used to build up a basic
MVC application with a main view and its controller. MVC patterns provide
support for adding new views, like dialogs and internal frames. Service pat-
terns support miscellaneous services and features of the framework.

 126

8.1.2 Application Patterns

The application patterns are used to associate the derived application with the
framework system and to create the main controller and main window for it.
After using these patterns, the framework user has a working skeleton appli-
cation compatible with the Nokia platform. The application can be launched
with a specific factory class and it has the main controller and the correspond-
ing main view. The application patterns are the following:

• Application Factory. The Application Factory pattern defines the con-
structional relationship between an application and the factory class
used to create this application. The Application Factory pattern is out-
lined in Figure 46.

• MVC Application. Each application created with the Application Fac-
tory pattern should be a standard MVC application in terms of the
framework. The MVC Application pattern helps to implement such an
application. This includes the creation of the application's main con-
troller and main view and the interactions between the UI and the
main controller. Before using this pattern, one should create the appli-
cation class with the Application Factory pattern. After creating the
main user interface, the framework user should apply the MVC pat-
terns (Subsection 8.1.3) to create other views, like windows, dialogs, in-
ternal frames, and panels. The MVC Application pattern is outlined in
Figure 47.

<<classRole>>
MyApplicationFactory

<<classRole>>
ManagedApplicationFactory

<<classRole>>
Application

<<classRole>>
MyApplication

<<methodRole>>
getName

? <<constructorRole>>
Constructor

?

<<issueRole>>
PublishCommonClass

?

<<methodRole>>
createApplication

<<codeFragmentRole>>
Create

<<methodRole>>
getApplicationTypes

<<codeFragmentRole>>
AddApplicationType

Figure 46. Application Factory pattern.

 127

<<classRole>>
MyMainController

<<classRole>>
MyMainView

<<classRole>>
MainView

<<classRole>>
Application

<<classRole>>
MyApplication

<<classRole>>
MainController

<<constructorRole>>
Constructor

<<codeFragmentRole>>
InstantiateMainController

<<constructorRole>>
Constructor

<<codeFragmentRole>>
CreateView

<<constructorRole>>
Constructor

<<codeFragmentRole>>
Initialize

<<issueRole>>
BindAction

<<methodRole>>
initializeComponents

<<issueRole>>
InitComponent

<<fieldRole>>
component *

<<methodRole>>
doOnClose ?

<<methodRole>>
newMainController

?

<<methodRole>>
action

<<methodRole>>
controllerCreated ?

<<methodRole>>
controllerDestroyed ?

Figure 47. MVC Application pattern.

8.1.3 MVC Patterns

The fundamental principle of the case framework is that every view object is
managed by exactly one controller object and every controller (except the
main controller) is managed by a parent controller. There are different kinds
of controllers that handle different kinds of views. The view-controller inter-
action includes callbacks from the view to the controller, triggered by user ac-
tions. The controller, in turn, gives orders to its view. To create subviews, dia-
logs, panels, and internal frames the framework user applies the correspond-
ing MVC patterns. As an example, the Subview pattern is shown in Figure 48.
The MyView role represents the view and the MyController role represents
the corresponding controller. MyParentController represents the controller’s
parent controller. The event mechanism between the controller and its parent
is represented with MyControllerEvent and MyControllerListener roles.

Other MVC patterns are almost identical. They establish the required view-
controller pairs, in which each child controller may send event notifications to
its parent controller. The MVC patterns are the following:

• MVC Subview. The MVC Subview pattern is used to create controllers
and views for new frame windows. It describes a parent-child relation
between a parent controller (e.g., the application's main controller) and
a subcontroller handling the frame window.

 128

• MVC Dialog. The MVC Dialog pattern is used to create controllers and
views for dialogs. It describes a parent-child relation between a parent
controller and a dialog controller handling the dialog.

• MVC Internal Frame. The MVC Internal Frame pattern is used to create
controllers and views for internal frames (windows opened in the
desktop area of the parent window). It describes a parent-child relation
between a parent controller (must be the main controller or other frame
controller) and an internal frame controller handling the internal
frame.

• MVC Panel. The MVC Panel pattern is used to create controllers and
views for panel components. It describes a parent-child relation be-
tween a parent controller and a panel controller handling the panel.

<<class role>>
MyController

<<class role>>
MyView

<<class role>>
SubView

<<class role>>
MyParentController

<<class role>>
SubController

<<method role>>
newChildController

<<code fragment role>>
CreateController

<<constructor role>>
Constructor

<<code fragment role>>
CreateView

<<constructor role>>
Constructor

<<code fragment role>>
Initialize

<<issue role>>
BindAction

<<method role>>
initializeComponents

<<issue role>>
InitComponent

<<field role>>
component *

<<method role>>
doOnClose ?

<<method role>>
fireNotification

<<method role>>
action

<<method role>>
controllerCreated ?

<<method role>>
controllerDestroyed ?

<<method role>>
notification

<<class role>>
MyControllerEvent

?

<<method role>>
getChildController

<<constructor role>>
Constructor

<<class role>>
MyControllerListener

<<method role>>
notification +

<<must inherit>>

Figure 48. The MVC Subview pattern specification.

 129

8.1.4 Service Patterns

Besides the MVC paradigm, the case framework provides services and com-
ponents that are useful when building GUI applications, like internationaliza-
tion, clipboard, and various GUI components. Unlike with the MVC system,
their use is typically splattered inside methods of the view- and controller
classes. The service patterns have not been implemented with the latest Java-
Frames version, but some of them have been reported in the earlier case study
[Hautamäki 2002]:

• I18n. The case framework contains classes to be used when creating
global applications. The internationalization handles strings, colors,
fonts, and icons. The data for these is stored in locale specific property
files. The handling of the files is normally done by the framework sys-
tem. The I18n pattern defines how to use the internationalization ser-
vice.

• Clipboard. The Clipboard pattern defines how to transfer data between
components and the clipboard. Each component type should have a
specific adapter that handles the data transfer. However, note that the
standard Java UI components already support the clipboard function-
ality.

• Drag And Drop. The drag and drop metaphor means the graphical op-
eration in which items are dragged from one UI component to another.
To implement this feature, there are several supporting classes in the
case framework that can be used to reduce the amount of code needed
in normal drag and drop cases. However, the framework user must
implement number of classes dealing with the drag source and the
drop target. The Drag And Drop pattern supports the use of this com-
plex mechanism.

8.2 Using the Pattern Interface

To demonstrate the use of the obtained pattern interface, it is applied to re-
produce the Bank example application discussed by Bonnet [1999]. He speci-
fies the Bank application as following. A bank consists of a set of clients who
are characterized by their name and password. An account has exactly one
owner, which is the bank client. There can be withdrawal and deposit transac-
tions; the account maintains a history of all the transactions made by its
owner. The bank has an authentication system where several clients can be
logged in concurrently. The bank also keeps a list of the current connections.

 130

When a client is successfully logged in a session is created and her account is
opened. During a session, a client can perform transactions and view her
transaction history.

The user interface of the Bank application is shown in Figure 49. The main
window shows the list of opened sessions. The client can open a session with
the authentication dialog, which asks the client’s name and password. If the
authentication is successful, a new session window is opened. In the session
window, the client can use different views to perform deposit and withdrawal
transactions. She can also view the history of her transactions.

Login

New session

Authentication dialog

Session window

Main window

Figure 49. User interface of the Bank application.

The final application consists over 500 code lines and 24 classes. Of course, the
application is not a complete banking system; for example, it does not store
account information or check the validity of authentications and transactions.
Implementing these features would increase the number of classes and code
lines, but it is irrelevant from the viewpoint of this example, as the current
pattern interface has no patterns to support their implementation. Instead, the
pattern interface is able to produce the required MVC classes and guide the
framework user through their implementation.

Figure 50 shows how the pattern interface was used to instantiate pattern
specifications to create the user interface of the Bank application. First, the
Application Factory and MVC Application pattern specifications were instan-

 131

tiated to create the required factory class and the main window and controller
of the Bank application. Then, the authentication dialog was implemented by
instantiating MVC Dialog. The session window and its internal frames to per-
form transactions and to view history were implemented similarly. The cre-
ated classes and their statistics are discussed in the next section.

Bank Application

Nokia Framework

Instantiation

Authentication View Bank Application

Bank Main Window

Deposit View History View

Session Window Withdraw View

Application Factory

MVC Application

MVC Panel MVC Dialog

MVC Internal Frame MVC Subview

Figure 50. Using the pattern interface to specialize the case framework.

8.3 Experiences

The experiences gained from the industrial case study were encouraging,
showing that the goal-oriented approach discussed in Chapter 6 and the Java-
Frames Eclipse Integration discussed in Chapter 5 are sufficiently powerful to
instruct the specialization interface of a real framework. Especially, the incre-
mental specialization process with context sensitive specialization instructions
facilitates the understanding of the framework by supporting learning-by-
doing. Analysis and statistics of the results are given in the following subsec-
tions:

• Support for code generation. Subsection 8.3.1.

• Support for fragmented design solutions. Subsection 8.3.2.

8.3.1 Support for Code Generation

In the case of a small example application, the system worked satisfactorily.
For instance, as illustrated in Table 5, when making the Bank application com-
patible with the framework’s MVC system, lot of the required source code
was generated automatically. The final application has 24 classes and 551

 132

code lines (Java source code lines inside the class declaration). The framework
user had to manually create or edit 293 lines while the pattern interface gen-
erated 258 lines, 47% of the code lines. The generated code ratio is lower than
the ratio of the PSF example (79%, Chapter 7), but still the pattern interface
accelerated programming and helped the framework user to implement non-
trivial and crosscutting design fragments.

Class Code lines Manually
edited lines

Generated
code ratio

Account 51 51 0%
AccountEvent 9 9 0%
AccountListener 3 3 0%
AuthenticationController 18 1 94%
AuthenticationControllerListener 3 0 100%
AuthenticationEvent 14 7 50%
AuthenticationView 12 3 75%
BankApplication 14 0 100%
BankApplicationController 39 11 72%
BankApplicationFactory 25 0 100%
BankApplicationView 42 32 24%
DepositController 21 4 81%
DepositControllerEvent 8 0 100%
DepositControllerListener 3 0 100%
DepositView 35 21 40%
HistoryController 12 3 75%
HistoryView 30 16 47%
SessionController 70 42 40%
SessionView 61 51 16%
Transaction 14 14 0%
WithdrawController 21 4 81%
WithdrawControllerEvent 8 0 100%
WithdrawControllerListener 3 0 100%
WithdrawView 35 21 40%
 551 293 47%
Table 5. The amount of generated code in the Bank application.

Like with the PSF example in Subsection 7.4.1, the classes are put into four
categories according to the generated code ratio:

• Weak generated code ratio (0%-25%). The lowest generated code ratio, 0%
for the Account, AccountEvent, AccountListener, and Transaction
classes, is because the pattern interface has no patterns to implement
the application model of the banking system. The BankApplication-
View class (24%) and the SessionView class (16%), in turn, utilize the
pattern interface but they also contain lot of UI components and event
listeners that cannot be predicted in the pattern interface. Using the
goal-oriented pattern interface to support the usage of individual com-
ponents, like buttons and scroll bars, can be tedious. In addition, there
exist RAD (Rapid Application Development) tools that can be used to
compose the user interface with these components. However, if the us-

 133

age of the components is part of a more complex and predictable
framework specialization, a pattern could be used at some point to
teach and guide the framework user.

• Fair generated code ratio (26%-50%). Similarly, the AuthenticationEvent,
DepositView, HistoryView, SessionController, and WithdrawView
classes must provide some implementations that could not be pre-
dicted by the pattern interface. Typically, these are some user interface
components and their event listeners. However, the pattern interface
significantly speeded up the overall implementation and helped to
make these classes compatible with the used MVC paradigm.

• Good generated code ratio (51%-75%). Over half of the source code of the
AuthenticationView, BankApplicationController, and HistoryControl-
ler classes was generated automatically. Again, there were some issues
that could not be predicted by the pattern interface. For example, the
BankApplicationController class has to implement logic to add and
remove bank clients. The HistoryController class need a method to up-
date the history view. The AuthenticationView utilized a special dialog
base class provided by the framework to ask the user name and pass-
word. Clearly, the current version of the pattern interface is more suit-
able to express structural solutions, like how to create a skeleton for a
new MVC application, than small, unpredictable behavioral aspects.
From the standpoint of the pattern interface, the application-specific
logic or the place where this kind of behavioral aspect is created cannot
be specified beforehand, unless the application domain is very limited.

• Excellent generated code ratio (76%-100%). The AuthenticationController,
AuthenticationControllerListener, BankApplication, BankApplication-
Factory, DepositController, DepositControllerEvent, DepositControl-
lerListener, WithdrawController, WithdrawControllerEvent, and
WithdrawControllerListener classes have the highest generated code
ratio. The structure of the controller classes and their event classes is
very stable from application to application. Though there are some
variations between different applications, the implementation of these
classes is rather predictable, which makes it possible to provide a
strong pattern-based tool support for them.

8.3.2 Support for Fragmented Design Solutions

As with the PSF example in Subsection 7.4.2, Table 6 shows how the classes
are involved in different pattern instances. The letter “M” indicates that the
class has been modified during the pattern instantiation while “F” indicates
the framework classes. Subscripts are used to identify pattern instances (see
Figure 50).

 134

In Table 6, some of the classes are involved and modified in multiple pattern
instances. For instance, the SessionController class is a parent controller for
the internal frames used in the Bank application. It is mainly created with the
MVC Subview pattern, but it is also involved as a parent controller when in-
stantiating the MVC Internal Frame pattern to create the transaction and his-
tory windows. In this way the pattern interface helps to control implementa-
tion details that scatter across classes.

Class App.
Factory

MVC
App.

MVC
Dialog

MVC
Subview

MVC
Internal
Frame

Application F1 F2
DialogController F3
DialogView F3
InternalFrameController F5,6,7
InternalFrameView F5,6,7
MainController F2
MainView F2
ManagedApplicationFactory F1
SubController F4
SubView F4
Account
AccountEvent
AccountListener
AuthenticationController M3
AuthenticationControllerListener M3
AuthenticationEvent M3
AuthenticationView M3
BankApplication M1 M2
BankApplicationController M2 M3 M4
BankApplicationFactory M1
BankApplicationView M2
DepositController M5
DepositControllerEvent M5
DepositControllerListener M5
DepositView M5
HistoryController M6
HistoryView M6
SessionController M4 M5,6,7
SessionView M4
Transaction
WithdrawController M7
WithdrawControllerEvent M7
WithdrawControllerListener M7
WithdrawView M7
Table 6. The use of patterns across classes in the Bank example.

One issues that this case study can be criticized is that ordinary software de-
velopers creating real industrial applications have not used the constructed
pattern specifications; such use cases would most probably point out some
weaknesses and missing patterns in the used pattern interface.

 135

As a conclusion, we believe that for a novice user, working with the tool sup-
ported pattern interface is illustrative, making it easier to learn the framework
and to start working with the framework. One of the most important benefits
of the goal-oriented pattern interface could be its applicability to teach pro-
grammers as they are simultaneously creating meaningful applications with
the Nokia platform. An experienced user, in turn, can use the system to
automatically produce a lot of essential and strictly regulated, but uninterest-
ing code.

 136

CHAPTER 9

RELATED WORK

This chapter is a brief survey of tools and techniques dealing with patterns,
frameworks, and product line architectures. Examples of various pattern tools
are discussed in Section 9.1. Concentrated on framework specialization, dif-
ferent approaches and tools are discussed in Section 9.2. From a wider per-
spective, the support for framework specialization is only one step towards
architecture-oriented software development environment; this is discussed in
Section 9.3. Different techniques to create tool supported pattern interfaces are
discussed in Section 9.4.

9.1 Pattern Tools

A number of authors have suggested various formalisms, specification lan-
guages, and tools to use patterns and pattern-like concepts. A thorough sur-
vey of these tools goes beyond this dissertation. Instead, some of the pattern
tools are discussed here to demonstrate the different approaches and ideas to
use patterns in software engineering. A good catalogue of various pattern
tools is given also by Viljamaa J. [1997]. More information about patterns and
supporting tools can be found from the pattern WWW sites [Hillside 2004;
Portland 2004].

In Section 4.5, pattern tools were roughly categorized in development tools,
deployment tools, analysis tools, and documentation tools. In literature, most
of the suggested pattern tools seem to be either deployment tools to instanti-
ate patterns, or analysis tools for pattern mining and visualization. Usually,

 137

the pattern specification is given directly with some formalism or specifica-
tion language without any sophisticated pattern development tool. Pattern-
based documentation tools, like the Pattern Recorder discussed in Subsection
5.2.4, seem to be rare. When compared to different pattern tools, the advan-
tage of JavaFrames is that it is an extensible tool platform for a number of pat-
tern tools and pattern semantics, not just to deploy or analyze, say, a re-
stricted set of design patterns.

The design patterns presented by Gamma et al. [1995] have inspired a number
of pattern deployment and analysis tools. For example, Budinsky et al. [1996]
discuss the COGENT interpreter that uses template-based macro expansion
mechanism to generate instances of design patterns. Wild [1996], in turn, dis-
cuss a tool called SNIP that uses template-based code generation rules and
structural object models for source code generation. Typically, these kinds of
tools are used as code generators, in which the pattern instance is not main-
tained after it has been implemented.

To maintain pattern instances also after instantiation, Kim and Benner [1996]
present a C++ tool called POE for creating, deleting, and verifying pattern in-
stances. POE includes components to represent classes, relations, and opera-
tions. These components have attributes like name, parent link, optionality,
links to other components with cardinalities (multiplicity), and bindings to
the user’s implementation classes. When a pattern is instantiated the tool
makes bindings between the pattern classes and the application classes. The
tool implements also validation algorithms to ensure that different pattern in-
stances and role bindings are used properly. In practice, the algorithms check
components and their attributes for possible conflicts. The idea of validation
algorithm (pattern engine) and bindings between pattern classes and applica-
tion classes resembles the approach used in JavaFrames.

Florijn et al. [1997] discuss a pattern deployment tool (OMT-tool) that can be
used for Smalltalk applications. An important point is that they have aban-
doned the approach in which the software developer only works on the level
of design patterns and a tool generates skeleton code for the application. They
have noticed that this approach is impractical as there cannot be a pattern for
every possible design problem. In addition, generating design patterns as
one-shot atomic actions ignores the iterative nature of the software develop-
ment process. Instead, they have selected an approach in which design pat-
terns, software architecture, and code are represented as different levels of
abstraction within the same development environment. On the design pattern
level the software developer can instantiate design patterns, on the software
architecture level she can split classes into a hierarchy, and on the code level
she can modify the source code. All the time, the software developer can use
suitable patterns, but the lack of patterns does not prevent her work.

 138

Another useful point discussed by Florijn et al. [1997] is that a pattern could
be associated with a set of pattern specific operations to perform tasks that are
particular to that pattern. That is, the creation and modification of the partici-
pating program elements could be managed with tasks. In addition, it should
be possible to add new patterns to the environment and to save, export, and
reload programs without losing the pattern information. Moreover, the tool
should be independent of a particular programming language. All these fea-
tures have been implemented in JavaFrames Eclipse Integration. However,
the OMT-tool itself concentrates on instantiation and analysis of design pat-
terns in Smalltalk applications, while JavaFrames provides extensible and
scalable system to use variety of pattern semantics and pattern tools, for ex-
ample, to specialize Java frameworks. The OMT-tool was mainly developed
to support the identification of design patterns in existing software and to re-
organize these programs.

Cornils [2001] present the DPDOC tool that uses reference attribute grammars
to represent design patterns. A pattern is expressed by a grammar with syn-
tactic and context sensitive rules which specify the roles and rules of the pat-
tern. The tool supports both visibility and rule checking of design patterns
and it also uses reference attributes to connect the design pattern instances
with the program code. The connection between the pattern specification and
the actual program code is made by entering class names, method names, and
so on, in the pattern application code. In JavaFrames, the use of patterns is
more transparent as the pattern instantiation is made by performing simple
programming tasks derived from the pattern specification.

Eden [2001, 2002a] presents LePUS (LanguagE for Patterns Uniform Specifica-
tion), which is a formal specification language for object-oriented design and
architecture. It is a visual formalism that is based on small number of well de-
fined building blocks that can be found from object-oriented design. LePUS
allows also formal specifications of generic formations, like design patterns
and the intended usage of framework’s specialization interface. LePUS formu-
lae are purely symbolic logic statements and the supporting tool is imple-
mented in Prolog. With the tool, LePUS statements are translated into Prolog
predicates and the tool can validate and recognize them in the source code.
The tool can also modify a program so that it satisfies the formula. This
sounds similar approach than the one used in JavaFrames. However, in Java-
Frames Eclipse Integration pattern specifications have no textual formalism.
Instead, they are implemented by composing roles with a semi-graphical de-
velopment tool. Also, new role types can be created to represent other struc-
tures than just the most typical object-oriented concepts.

Besides at the level of source code, patterns can be utilized also at the higher
levels of software architecture and design. Yacoub et al. [2000] present the
POD tool, which is a design environment for visual composition of design

 139

patterns for the purpose of developing pattern-oriented designs. Patterns are
integrated at the architecture level and traced to lower design lewels; the user
can identify the patterns of the participating application classes. The tool has a
repository of design patterns that are available for the user as reusable com-
ponents. However, unlike JavaFrames, the POD tool does not support code
generation or traceability between patterns and the source code. Instead, the
output is a refined class diagram that can be given to some UML tool to fur-
ther develop a detailed design. As a tool platform, also JavaFrames can be
augmented with higher level design tools (the MADE environment, Subsec-
tion 5.2.5).

As an example of a pattern analysis tool, Lange and Nakamura [1995] have
implemented a program visualization tool called Program Explorer. The tool
provides class- and object-centered visualization of design patterns in C++
programs. Lange and Nakamura suggest that the tool can be used to help the
framework user to understand the underlying software architecture and
framework. Another example is Pattern-Lint [Sefika et al. 1996], which is used
to check that implementation corresponds to the expected set of design pat-
terns. Each pattern is associated with a set of rules and the implementation is
verified against these rules. Pattern-Lint represents information as hyper-
linked diagrams and graphs that visualize the analyzed program. However,
the tool does not provide a methodology to create applications using patterns.
Brown K. [1996], in turn, discusses the KT tool that is an automatic reverse
engineering tool for detecting design patterns in Smalltalk applications. When
compared to JavaFrames, the main difference is that JavaFrames is a platform
that provides a solid basis for these kinds of analysis tools. For instance, Java-
Frames has a tool to construct framework-specific pattern specifications by
analyzing the specialization interface of a Java framework (Pattern Extractor,
Subsection 5.2.5).

This dissertation has discussed pattern-based tool support, in which the pat-
tern specifications are given separately from the target programming lan-
guage. A different approach is to integrate the pattern concept directly into
the programming language. For instance, Bosch [1998] suggests that the de-
sign patterns are part of the software engineer’s paradigm and the program-
ming language should represent the concepts in the paradigm as accurately as
possible. Bosch presents LayOM, which is an extended object-oriented lan-
guage for the explicit representation of design patterns. Eventually, LayOM
code is compiled into C++ and the generated code can then be used to con-
struct applications. Bünnig et al. [1999] discuss another design pattern ori-
ented programming model and programming language called PaL. The syn-
tax of PaL is close to Eiffel and the underlying patterns take the form of a class
structure. When compared to JavaFrames, the main difference is that separate
pattern specifications can be used to document existing software systems, like
Java frameworks, without modifying the original source code. Also, it is pos-

 140

sible to create different pattern specifications for different users. For instance,
novice users could have a simple tutorial-like pattern interface while other
users could utilize a more advanced and technical pattern interface to speed
up the framework specialization.

9.2 Tool Support for Framework Specialiation

A framework without any supporting tools or documentation is hard to use.
Therefore it is tempting to create framework-specific tools to help framework-
based application development. Different approaches are discussed in the fol-
lowing subsections:

• Visual builders. Subsection 9.2.1.

• Expert systems. Subsection 9.2.2.

• Feature-based framework specialization. Subsection 9.2.3.

• Tool supported cookbooks. Subsection 9.2.4.

• Using pattern tools in framework specialization. Subsection 9.2.5.

9.2.1 Visual Builders

Johnson and Foote [1988] define a toolkit as a collection of high level tools that
allow the framework user to interact with the framework to configure and
construct new applications. Typically, a black-box framework that is special-
ized by object composition provides a good basis for visual builder [Roberts
and Johnson 1996; Fayad et al. 1999]. With a sophisticated tool, like a visual
builder, the framework user can construct an application almost without pro-
gramming, for instance, by selecting icons representing standard components
and application structures, connecting them graphically and letting the sys-
tem generate an executable program. Typically, visual builders are used to
create the application’s user interface, which consists of well-defined user in-
terface components and their interactions.

When compared to JavaFrames, the shortcoming of visual builders is that
they do not support white-box reuse, in which the specialization is done by
subclassing the abstract base classes of the framework, for example, to create a
new component type. Instead, they expect a rich set of ready-to-use compo-
nents. Particularly, as discussed by Goebl [1999], in the case of visual builders
the graphical programming paradigm helps the creation of the application’s
user interface but it typically fails to ease the implementation of the logic of

 141

the application; it is easier to implement the behavior of an application using
the underlying implementation language.

9.2.2 Expert Systems

Giarratano and Riley [1989] describe an expert system as a computer system
that emulates the decision-making ability of a human expert. It consists of the
user interface that allows the user and the expert system to communicate, ex-
planation facility that explains the reasoning to the user, knowledge base contain-
ing rules, working memory of facts used by the rules, inference engine that man-
ages and executes the rules, agenda that contains a prioritized list of instanti-
ated rules created by the inference engine, and knowledge acquisition facility
that allows the user to add knowledge to the system. In a rule-based system,
the inference engine determines which rules, if any, are satisfied by the facts.
The rules can be driven forward or backward. Forward chaining is reasoning
from facts to the conclusion. Backward chaining is reasoning from the conclu-
sion to be proved, to the facts supporting the conclusion.

Meuter et al. [2001] discuss a rule-based reasoning engine (KAN) to support
framework specialization. They suggest that an expert system whose knowl-
edge base consists of the design and reuse knowledge of a specific frame-
work, can interactively guide the framework user and enhance the quality of
the reuse process. If the framework user asks help, the system takes control
and offers possible specialization recipe alternatives to the user, which then
reacts by taking steps to perform one of the recipes. The system uses forward
chaining; when certain steps are performed, the system gives further instruc-
tions and adapts its advice to the current situation. The system is embedded
to a Smalltalk environment (Squeak) and it has been evaluated by designing
small expert systems. In the case of a black-box reuse, the specialization is
done by answering yes-no questions and multi-valued questions, in which the
question seems to be rather low-level and implementation-oriented, like
“What is the value of store for theCollection? (objects, characters, integers)”.
During white-box reuse the system maintains a task-pool (agenda) containing
tasks the programmer still has to do. Each time the programmer writes a
method or a class the task pool is consulted; performed tasks are removed
and possible new tasks are added to the pool.

In principle, expert systems and JavaFrames have much in common. For in-
stance, in JavaFrames the knowledge base is expressed as pattern specifica-
tions, inference engine equals pattern engine, agenda corresponds the task
list, and the knowledge acquisition facility can be achieved with advanced
pattern development tools. The main difference is that JavaFrames is focused
on implementing the prepared decisions made by the pattern modeler. Expert
systems emulate the decision-making ability of a human expert, while Java-

 142

Frames concentrates on implementing these decisions and tries to minimize
the amount of decisions the pattern user has to make.

9.2.3 Feature-Based Framework Specialization

One approach to represent variability is to express variations in terms of fea-
ture models [Kang et al. 1990; Czarnecki and Eisenecker 2000]. In a feature
model, each of the alternative design decisions is represented by a feature and
selections of these features are reflected in the design and implementation of
the software product. Many authors have suggested that if variability is de-
scribed with feature models, a software product could be created by selecting
and refining customer-specific features for the product [Deursen et al. 2002;
Batory et al. 2003; Lago et al. 2004].

Based on feature models, Lago et al. [2004] suggest a tool that traces the re-
quired product features through architecture and components to the level of
source code. Such a tool must support top-down and bottom-up traceability,
from the feature graph down to implementation files and back. They have
demonstrated the approach by extending the Together ControlCenter envi-
ronment [Together 2004] with a tool that uses three abstract levels. Firstly, the
product family is modeled as a product family feature map, which captures the
design time decisions and includes all the features and variation points in the
application domain. Secondly, a single product is described at the product
level in terms of the subset of features it supports. In this level, the product fea-
ture map captures these product-specific features and they are translated into
the product component map, representing the design decisions (or a framework)
to implement the features. Thirdly, reusable implementation aspects are used
to concretize the features, i.e., to specialize the framework. Traceability is
achieved by managing links between these different maps.

9.2.4 Tool Supported Cookbooks

A document containing instructions that describe typical ways to use a
framework is often called a cookbook [Krasner and Pope 1988]. Correspond-
ingly, individual instructions in a cookbook are called recipes. Hence, a cook-
book contains numerous recipes which describe in an informal way how to
use a framework in order to solve specific problems. The framework’s inter-
nal design and implementation details are usually omitted in these kinds of
instructions.

Another, similar approach is implementation case [Pasetti 2002] that describes
how functionality for an application in the framework domain can be imple-
mented using the constructs offered by the framework. Besides acting as
cookbook recipes, implementation cases can be used as test cases when devel-

 143

oping a framework. They have no any specific formalism; rather, they are a
mixture of informal language, pseudo-code, and illustrative diagrams.

Pree et al. [1995] outlines the general principles of active cookbook, a cookbook-
like tool to provide guidance for framework specialization. The tool includes
a knowledge base, a rule interpreter, and a working memory. The knowledge base
contains the recipes to specialize the framework. The rule interpreter allows
the selection of a particular recipe, presents the recipes as hypertext, main-
tains temporary information accumulated during the interpretation of a rec-
ipe in the working memory, and generates the source code of additional or
modified framework classes.

The SmartBooks [Ortigosa and Campo 1999; Ortigosa et al. 2000; Pace et al.
2003] system is an agent-based task-oriented system that supports framework
instantiation based on the active cookbook concept. With SmartBooks, the
framework user expresses her objective by selecting items from a list of op-
tions. Based on the selected options, a planning agent then derives a sequence
of tasks to specialize the framework in order to implement the selected func-
tionality. The process of selecting functional requirements, generating the spe-
cialization plan and executing the corresponding tasks follows a spiral model,
in which the framework user can refine or change the required functionality.
The planning process itself is based on a predefined format of rules, in which
a rule can be specified graphically using a special UML extension. Finally, a
generator translates the created rule into a Prolog representation. The Smart-
Books method reminds the approach used in JavaFrames; selecting function-
ality from a list of alternatives in SmartBooks can be seen as selecting suitable
pattern specification to be instantiated in JavaFrames. After selecting the al-
ternatives, both approaches use tasks to guide the framework user to create
the resulting framework specialization. In fact, besides Fred/JavaFrames, the
SmartBooks system was among the first that introduced the task model for
framework specialization.

Pace et al. [2003] present the Smartweaver tool based on the SmartBooks
method to assist the software developer to use AOP (aspect-oriented pro-
gramming) frameworks [Constantinides et al. 2000]. In an AOP framework
each aspect is expressed as a class in the framework and the tool can be used
to specialize these frameworks. Smartweaver provides an UML-based envi-
ronment where developers can define classes, aspects, and crosscutting rela-
tionships among them.

9.2.5 Using Pattern Tools in Framework Specialization

Pattern tools were discussed in Section 9.1. Many of the approaches seem to
stress the selection and instantiation of the most suitable design patterns early

 144

in the application’s implementation phase, rather than helping in the frame-
work specialization. From the viewpoint of the framework user, the speciali-
zation problems are typically very application-specific and implementation-
oriented. We argue that solutions to these specialization problems should be
described as framework-specific patterns (Subsection 2.1.2), which are not
general enough to be published in pattern catalogs. Based on these patterns,
the pattern modeler creates the pattern specifications to describe the intended
framework specialization. By using the pattern specifications and advanced
pattern deployment tools, the framework user can utilize the encapsulated
instructions when programming her application.

An example of tool-supported framework specialization with a pattern-like
concept is discussed by Froelich et al. [1997, 1998]. They present hooks, which
are points in the framework to be specialized, for instance, by filling in pa-
rameters or creating subclasses. For more complex problems hooks can be
grouped so that each hook focuses on a smaller subproblem. Hooks are writ-
ten in a specific format, which includes the description of participating com-
ponents and the required steps to use the hook. In practice, the framework
expert defines a hook as a recipe-like algorithm. This algorithm is intended to
be read, interpreted, and carried out by the framework user. Froelich et al.
have noticed that the hook concept enables a general tool that can be adapted
to different frameworks, instead of developing a custom tool for each frame-
work.

Meijler et al. [1997] discusses the FACE tool (Framework Adaptive Composi-
tion Environment), which is used for code generation and pattern instantia-
tion. The tool starts with a primal-schema, containing the abstract classes of a
pattern and their associations, then proceeds to a meta-schema for concrete
classes, operations, and associations. Thus, the tool has two levels; composing
a set of objects and composing a schema that descripes possible structures and
cooperations of run-time objects in the target application. A basic element of a
schema is a class-component. The class-component is basically an object that
has a certain composition interface defining how this particular component
can be connected to other components. All FACE components are black-box
entities, which are used through parametrization and composition by the ap-
plication developer. FACE includes also a typechecking mechanism, which
prevents incorrect component compositions. Thus, FACE can be seen as a pat-
tern-based visual builder.

Riehle [2000] presents an approach for specifying object-oriented frameworks
and their specialization using role models. Riehle’s role models do not try to
replace the class-based object-oriented modeling but rather to refine and im-
prove it. A role model describes object collaborations, in which objects play
roles that are described by role types. A class model composes all relevant
role models to describe how instances of its classes collaborate. According to

 145

Riehle, describing classes as role type compositions and class models as role
model compositions reduce the complexity of class and object collaborations.
A framework can define how it should be specialized with the help of role
types that describe the roles that clients of a framework have to play to make
proper use of the framework. Thus, like framework-specific patterns, role
models can be used to represent variability in the level of the framework.
However, there seem to be no tool support for role models.

9.3 Architecture-Oriented Software Development Envi-
ronments

Harrison W. et al. [2000] outlines that besides supporting coding activities,
software development environments should also support other major activi-
ties, like requirements engineering, specification, design, testing, and analysis.
An architecture-oriented software development environment should support
software engineering across the software lifecycle and traceability across the
artifacts of the software product and design. Various reverse engineering and
forward engineering techniques can be used to analyze and construct the
software and to represent it in an abstract form. Ideally the software devel-
opment environment supports traceability and both reverse engineering and
forward engineering to keep the design models and implementation consis-
tent.

Different approaches to provide an architecture-oriented software develop-
ment environment are discussed in the following subsections:

• UML CASE tools. Subsection 9.3.1.

• High level specifications and tools. Subsection 9.3.2.

9.3.1 UML CASE Tools

UML [Booch et al. 1999; Rumbaugh et al. 1999; UML 2004] is a standard mod-
eling language to design and document object-oriented software systems.
Many of the current CASE tools support the use of UML. For instance, Ra-
tional Rose [Rational 2004] is one of the market-leading CASE tools to create
UML models. It also transforms UML notations into source code in Java and
C++. Rational XDE Developer, in turn, is an Eclipse-based UML modeling
tool from the same vendor. Clearly, using a common modeling language
helps software developer to design, implement, and document software prod-
ucts.

 146

The shortcoming of traditional UML CASE tools is that they offer only limited
support for product line architectures and framework specialization. Though
they can describe the framework’s specialization interface in terms of well-
known object-oriented structures, like abstract classes and method signatures,
it does not capture the variability of the required specialization. Riva et al.
[2004] enumerates the problems of UML CASE tools: they offer no support for
specifying various architectural rules, for checking the conformance of a de-
sign against architectural conventions, for constructing new designs accord-
ing to given architectural rules, for managing variability supported by a
product line architecture, for creating architectural views from design-level
models, and for establishing tracing capabilities between implementation and
architectural models. In addition, traditional CASE tools are not intended to
be incremental, iterative, and interactive programming environments. In-
stead, high-level UML models are transformed into source code as a one-shot
activity.

To make UML CASE tools to support framework specialization, Fontoura et
al. [2000] present UML-F, which is a UML extension to explicitly describe the
framework’s variation points. They use a UML tagged value (a name-value-
pair that can be attached to a modeling element to extend its properties) to
identify and document the extension points of the framework. The UML-F
descriptions can be executed with a wizard-like tool, in which the framework
specialization is considered a straightforward process if only the framework’s
extension points are clearly designed. Pree et al. [2002], in turn, demonstrate
how UML-F can be used as a notation to represent design patterns and prod-
uct lines. The idea of using a wizard tool to specialize frameworks is close to
the approach used in JavaFrames, but in JavaFrames the framework speciali-
zation is considered as more fine-grained, gradually proceeding, evolution-
ary, and interactive process.

To help modeling software architectures in general, Robbins [1999] suggests
cognitive support for the software developer in terms of advanced decision
making features, like checklists, non-modal wizards, and the dynamic "to do"
list. The suggested features are evaluated in the context of the Argo/UML
tool [Robbins et al. 1997], which is a design tool using UML notations. The de-
sign environment uses design critics to give feedback, in which a critic is an
agent that watches for a specic condition in the design under construction and
advises the designer of potential errors or needed improvements. Thus, de-
signers receive feedback while they are considering individual design deci-
sions and modifying the architecture. The idea of dynamic “to do” list and
design critics is close to the approach used in JavaFrames. The main differ-
ence is that JavaFrames Eclipse Integration is used to implement prepared de-
sign solutions rather than to create new software architecture.

 147

9.3.2 High Level Specifications and Tools

In higher abstraction levels, software architecture can be specified by using an
architecture description language (ADL) [Bass et al. 1998; Garlan 2000]. These
languages provide notations to explicitly describe architectural structures and
they support early analysis and feasibility testing of architectural design deci-
sions. Hoek et al. [1999] have noticed that ADLs do not usually support han-
dling of variations within a product family. However, representing the vari-
ability at an architectural level rather than at the program code level would be
desirable. An ADL should provide means to describe both the common archi-
tecture and the variable parts of each product. Examples of such ADLs are
Koala [Ommering 1998], Menage [Hoek 2000], and ADLARS [Brown T. et al.
2004].

Harrison W. et al. [2000], in turn, suggest that XML (eXtensible Markup Lan-
guage) [XML 2004] could be used as a mid-level standard that can enable the
creation of more flexibly-deployed and reusable software tools. The main ad-
vantage of this approach is that XML is a standard language for representing
information having a number of available tools, like viewers, editors, and
translators. For instance, Cleaveland [2001] uses XML to represent program
specifications.

Eden et al. [2003] outlines two-tier programming to keep architecture and its
implementation consistent. They stress that software development is an open-
ended, step-wise process of adaptation to a stream of changes. To solve the
traceability and design erosion problems, they suggest that a program is de-
fined in two levels of abstraction. Statements in the lower level are made in a
traditional programming language (e.g., Java or C++). The second layer con-
sists of design constraints specified in an architectural specification language
(e.g., LePUS [Eden 2001, 2002a]). The system includes also association map-
ping to maintain consistency between the two tiers. The approach resembles
JavaFrames. In JavaFrames pattern specifications can be seen as a higher level
specification language, in which the pattern engine maintains the assosiation
mapping between pattern roles and target elements.

9.4 Approaches to Obtain Pattern Interfaces

So far, our empirical experiences with JavaFrames and large software systems
have produced three different approaches to create tool supported pattern in-
terfaces. The goal-oriented approach was explained in Chapter 6. Other
methodologies are briefly discussed in the following subsections:

• Systematic approach. Formal pattern specifications and pattern interfaces
can be constructed by using different reverse engineering techniques.

 148

Based on this idea, the systematic approach enables systematic and
semi-automatic mapping of the framework’s specialization interface.
Subsection 9.4.1.

• Concern-oriented approach. The software developer has number of con-
cerns when implementing a software system [Parnas 1972; Hürsch and
Lopes 1995; Tarr et al. 1999]. The concern-oriented approach creates a
pattern interface to work with those concerns. Subsection 9.4.2.

9.4.1 Systematic Approach

The systematic approach [Viljamaa A. 2001; Hakala et al. 2001c; Viljamaa J.
2004] assumes that the framework has a layered structure and its basic con-
cepts are implemented on the highest layer as abstract interfaces; this kind of
white-box framework uses inheritance and method overriding as a means to
provide extensibility. For such a framework, the systematic approach enables
systematic mapping of the specialization interface and it also allows auto-
mated support to create pattern specifications, as some heuristics can be used
to identify and specify the usage of these interfaces.

For instance, Viljamaa J. [2004] presents an approach that utilizes formal con-
cept analysis (FCA) [Tonella and Antoniol 1999] to produce role-based pattern
specifications for defining the extension points of a framework. Pattern Ex-
tractor, the tool discussed in Subsection 5.2.5, is a concrete implementation of
the FCA-based analysis tool.

When compared to the goal-oriented approach, it has been noticed that the
systematic approach is more suitable for automatic pattern construction and
framework documentation, upon the condition that the target framework has
well-defined layered structure. The goal-oriented approach, in turn, is appli-
cable also in situations where the specialization interface is not clear or the
pattern modeler is not throughout familiar with the framework. Rather than
semi-automatically mapping the framework’s whole specialization interface
with some reverse engineering technique, the goal-oriented approach pro-
vides solutions to practical specialization problems that address the current
goals of the framework user. Thus, the goal-oriented approach is less system-
atic and more based on intuition and practical experiences.

9.4.2 Concern-Oriented Approach

When planning and programming a software system, the development team
and individual software developers has to deal with number of concerns. For
example, Hürsch and Lopes [1995] enumerate the following concerns: class
organization, synchronization, location control for distributed computation,

 149

real-time constraints, and failure recovery. Some of the concerns are dealing
with the fundamental algorithm and the basic functionality of the software
system, while others can be seen as reasoning to implement more advanced
features. Altogether, concerns are abstract things that affect the implementa-
tion of the software system; software developers should be able to point out
the code and design that deals with each of those concerns.

Hürsch and Lopes [1995] stress that by abstracting concerns out and separat-
ing them, programming individual concerns becomes less complex and code
can be effectively reused. They call this approach separation of concerns (SoC).
SoC follows the well-established principle in software engineering to hide
complexity by abstraction [Parnas 1972]. The concerns are mapped into the
implementation level through programming language constructs. Ideally, at
the implementation level, SoC promotes the blocks of code which address the
different concerns. In short, the goal of SoC is to decompose and organize a
software system so that it becomes easier to create and understand, which, in
turn, improves its reuse and maintainability.

However, because of the problems caused by crosscuttings concerns, the ob-
ject-oriented programming typically suffers from strong coupling between
classes. This makes the software system hard to understand and change, mak-
ing it more difficult to maintain and eventually reducing its reusability and
adaptability. As discussed by Sutton and Rouvellou [2002], most program-
ming and modeling formalisms enforce a dominant decomposition that al-
lows only a few concerns to be separated, whereas software in reality is sub-
ject to multiple simultaneous, overlapping, and crosscutting concerns.

Many SoC approaches have been proposed, particularly to produce less tan-
gled and less scattered source code [Harrison W. and Ossher 1993; Kiczales et
al. 1997; Tarr et al. 1999; Pace and Campo 2001]. Though managing the cross-
cuttings in various decomposition hierarchies tends to have a central position
in these approaches, their ultimate goal is to make the software system more
understandable with better separation of concerns in the level of a program-
ming language.

The concern-oriented approach [Hammouda et al. 2004c] is based on the idea
that with a proper tool support, formal pattern specifications can be used to
make explicit the ways in which the concerns can cooperate or interface with
each other at the levels of design and implementation. The approach tackles
the complexity resulting from scattering and tangling by providing a one-to-
one match between concerns and the corresponding patterns; each identified
requirement is encapsulated by a separate concern and then the patterns treat-
ing the concerns are identified. Because each pattern has roles bound to the

 150

concrete implementation elements they simultaneously indicate the elements
that are implementing a particular concern.

The goal-oriented approach resembles the concern-oriented approach. How-
ever, the concern-oriented approach is intended to describe solutions for
rather high level problems. A goal, instead, can be seen as a more practical
and atomic issue inside a larger concern. Goal-oriented patterns try to answer
very practical specialization problems of the framework user. When using a
goal-oriented pattern, the application developer is typically working with
some specific implementation detail and wants precise instructions and sup-
port to create a particular piece of code.

 151

CHAPTER 10

CONCLUSION

This dissertation has outlined a general tool platform for patterns and concen-
trated on a tool support to specialize object-oriented frameworks. Require-
ments of the pattern tool platform and how they have materialized in Java-
Frames Eclipse Integration are further discussed in Section 10.1. Contributions
of this dissertation are reviewed in Section 10.2. Future work is discussed in
Section 10.3. Concluding remarks are given in Section 10.4.

10.1 JavaFrames as a Pattern Tool Platform

JavaFrames Eclipse Integration is a concrete implementation of the pattern
tool platform discussed in Chapter 4. Instead of creating separate tool support
for each type of pattern and application-domain, such a tool platform pro-
vides an universal mechanism to model and instantiate patterns with a com-
mon software development environment during the software development
process. The platform is integrable and open for extensions; new kinds of pat-
tern semantics and tools can be added to support the more advanced use of
patterns.

The requirements of the platform were discussed in Section 4.1. Based on the
experiences gained from different use cases and examples, the following
compares JavaFrames Eclipse Integration to these requirements:

• Integrable. Section 4.6 explained how the pattern tool platform can be
integrated into an existing software development environment. As dis-

 152

cussed in Section 5.1, JavaFrames is integrable; currently it is integrated
into the Eclipse environment.

• Extensible. JavaFrames Eclipse Integration can be extended with new
pattern tools. Examples of such tools were discussed in Section 5.2.
JavaFrames can also be extended with new pattern semantics; this was
presented as a case study in Chapter 7.

• Cohesive. JavaFrames maintains the connection between the pattern
specifications and their instantiations. However, to maintain bindings
between very fine-grained roles and code fragments requires detailed
parsing of the source code. For example, the current Java pattern se-
mantics does not provide techniques to verify the semantics of a
method body, that is, to check the behaviour of the software system.
Such a support would require a lot of system resources and advanced
parsing techniques. Defining the abstract semantics of a method (e.g.,
by pre- and post-conditions) and checking the implementation against
such specifications is a difficult problem. Also, in the current version of
JavaFrames, the binding between a code fragment role and the corre-
sponding block of code is not maintained. One possible solution is to
augment the Java pattern semantics with a richer set of statically verifi-
able constraints.

• Scalable. The original motivation of Fred/JavaFrames was to support
the framework specialization process in Java. Besides small example
frameworks, it has been successfully evaluated with the JHotDraw
framework [Viljamaa A. 2001; JHotDraw 2004], Enterprise JavaBeans
(EJB) [Hammouda and Koskimies 2002; EJB 2004], and with an indus-
trial use case (see Chapter 8). It has also turned out that the pattern-
driven approach has much wider scope than just Java frameworks. For
instance, pattern specifications can be created and applied even if the
framework is thin if non-existent and the architecture relies on just a
set of architectural conventions, like design patterns.

• Precise and explicit. So far, the experiences gained from various case
studies have been encouraging, showing that the pattern-based ap-
proach is sufficiently powerful to define the specialization interface of
a real framework, and that the JavaFrames Eclipse Integration – though
still a prototype - scales up for industry-sized frameworks. However, it
depends on the used pattern semantics how detailed the pattern speci-
fications can be. For instance, atomic implementation details inside
method bodies are not currently supported in the Java pattern seman-
tics. This makes it difficult to model solutions that are mainly based on
atomic changes in some algorithm or method body.

 153

• Incremental. JavaFrames Eclipse Integration supports the use of the pat-
tern specifications as incremental, iterative, and interactive process. As
illustrated in Subsection 5.2.2, it provides the pattern user a pattern de-
ployment tool that shows a constantly updated list of instantiation
tasks. This task list evolves dynamically during the instantiation and
helps the pattern user to apply the pattern specification. Besides pro-
viding wizard-like code generation facilities and instructions, the task
list shows warnings if JavaFrames detects any violations against the
underlying pattern specification. All the time, the instructions, task ti-
tles, and code suggestions adapt to the terms and structures of the cur-
rent application. This piecemeal approach facilitates the understanding
of the framework by supporting learning-by-doing.

• Generative. JavaFrames Eclipse Integration guides the pattern user to
create and modify program elements. Created artifacts and documen-
tation conform to the pattern specifications making the process adap-
tive. Unlike with other wizards and development environments, the
code is not generated as large and static lump; instead, the code gen-
eration proceeds piecemeal and adapts to the terms and names selected
by the pattern user. Because the code generation proceeds piecemeal,
step by step, the pattern user is not overwhelmed by the generated
code but can reason the rationale of it. For advanced users, allowing
JavaFrames to perform some of the tasks automatically, the system acts
like an advanced code generator. The amount of automatically gener-
ated code depends on the used pattern specifications and the underly-
ing pattern semantics. The code generation capabilities of the current
Java pattern semantics were evaluated in Chapter 7 and Chapter 8.

• Open-ended. JavaFrames Eclipse Integration allows the pattern modeler
to create a project-specific pattern interface. This pattern interface can
be stored and imported to other projects. In JavaFrames, like explained
in Section 4.4, the pattern specifications can be refined and partially in-
stantiated so that the instantiation will continue at later time and across
different software projects.

10.2 Summary of Contributions

Contributions of this dissertation were enumerated in Section 1.4. The main
contributions are the following:

• Participation in the development of the Fred/JavaFrames tool concept.

• A description of a general pattern-based tool support that allows the
use of the pattern concept in different software development environ-
ments, making the environment architecture-oriented.

 154

• Integration of such a tool platform into the Eclipse environment.

• A goal-oriented process to use the pattern-based tool support to spe-
cialize frameworks.

• A specification of the extension interface of the tool platform using the
tool itself.

• An evaluation of the pattern-based approach for framework engineer-
ing using case studies.

The following summarizes how these contributions answer the problems dis-
cussed in Section 1.2:

• How to teach the software developer to understand different frameworks and
design principles in the context of her software product? As demonstrated
with JavaFrames Eclipse Integration, a framework can be annotated
with a goal-oriented pattern interface that describes the intended spe-
cialization. By using this tool supported pattern interface, the software
developer can experiment with the framework. Going through typical
specialization tasks illustrates the use of the framework and supports
learning-by-doing. In addition, to support the learning process, the
platform can be extended with advanced documentation tools, like the
Pattern Recorder discussed in Subsection 5.2.4.

• How to guide the software developer to use frameworks and product line archi-
tectures? A goal-oriented pattern interface can be constructed to help
the software developer to achieve her goals with the framework. Vari-
ous pattern deployment tools can then be used to guide the framework
specialization process and to check that the created application obeys
the framework-specific rules. The pattern instantiation is done with
small and practical programming tasks that are adjusted to the created
application. The approach supports both black-box and white-box
frameworks.

• How to maintain and document implemented design solutions and framework
specializations? The pattern tool platform solves the traceability problem
by using pattern specifications as a bridge between a framework and
its specializations. The occurred pattern instances promote the scat-
tered design solutions inside the application and between the applica-
tion and the framework. For instance, if an element is changed, it can
be checked against the pattern instances it is participating. Further,
other elements in those pattern instances can be verified, to ensure that
the rules of the implemented design solution are not violated. In addi-
tion, because the pattern instances are continuously traced, it is possi-

 155

ble to generate documentation that describes the use of the framework-
specific pattern specifications in different applications.

10.3 Future Work

JavaFrames provides a platform to experiment with the pattern concept. Java-
Frames Eclipse Integration is also a prototype of a task-driven pattern-based
architecture-oriented software development environment. Here are some di-
rections for future work:

• Different pattern semantics. So far pattern semantics have been created
for Java and UML. However, as explained in Chapter 7, the JavaFrames
system can be augmented with new kinds of pattern semantics. One
possible direction for future work could be to create different pattern
semantics and to study how they could be combined and used in dif-
ferent application domains.

• Different pattern tools. As a pattern tool platform, JavaFrames provides a
basis for new kinds of pattern tools. Various tools could be created to
experiment with the pattern concept and to study different ways to de-
velop, deploy, analyze, and document patterns.

• Different integrations. Currently the core of JavaFrames has been im-
plemented in Java and it is integrated into the Eclipse environment.
However, the core of the pattern tool platform could be integrated into
some other development environment, too.

• Different case studies. So far JavaFrames has been mainly used to spe-
cialize Java frameworks. New case studies with new kinds of pattern
semantics and tools are needed to test the applicability of the pattern
tool platform in different application domains and in different phases
of the software development process.

10.4 Concluding Remarks

This thesis reaches its goal if the reader gets the idea of patterns and how their
use could be supported with a practical, extensible, integrable, and easy-to-
use system. The point is that the use of patterns should be as easy as possible,
like using a compiler or an interpreter that supervises architectural rules and
framework specialization. To enable this pattern-based tool support, the pre-
sented system provides the basic infrastructure, like pattern semantics, task
automaton, and different pattern tools. By guiding the use of patterns, the
system helps the software development team and individual application de-
velopers to carry out and speed up the software development process, even if

 156

they are not familiar with the pattern concept itself. The pattern modeler, in
turn, can use the system, for example, to improve the documentation and us-
ability of a framework.

 157

References

[Akroyd 1996] Akroyd M.: AntiPatterns – Vaccinations Against Object Mis-
use. In: Session Notes of Object World West Conference, San Francisco, Au-
gust 1996.

[Aksit et al. 1999] Aksit M., Tekinerdogan B., Marcelloni F.: Deriving Frame-
works from Domain Knowledge. In: Fayad M., Schmidt D., Johnson R.
(eds.): Building Application Frameworks – Object-Oriented Foundations of
Framework Design. Wiley, 1999.

[Alexander 1979] Alexander C.: The Timeless Way of Building. Oxford Univer-
sity Press, New York, 1979.

[Alexander 1981] Alexander C.: The Linz Café. Oxford University Press, New
York, 1981.

[Alexander 2004] Alexander C.: The Search for Beauty. Available at
http://hillside.net/patterns/papersbibliographys.htm. August 2004.

[Alexander et al. 1975] Alexander C., Silverstein M., Angel S., Ishikawa S.,
Abrams D.: The Oregon Experiment. Oxford University Press, 1975.

[Alexander et al. 1977] Alexander C., Ishikawa S., Silverstein M., Jacobson M.,
Fiksdahl-King I., Angel S.: A Pattern Language – Towns, Buildings, Con-
struction. Oxford University Press, New York, 1977.

[Alexander et al. 1985] Alexander C., Davis H., Martinez J., Corner D.: The
Production of Houses. Oxford University Press, New York, 1985.

[Alexander et al. 1987] Alexander C., Neis H., Anninou A., King I.: A New
Theory of Urban Design. Oxford University Press, New York, 1987.

[Ambler 1998] Ambler S.: Process Patterns - Building Large-Scale Systems Using
Object Technology. Cambridge University Press/SIGS Books, 1998.

[Anderson 1990] Anderson J.: Cognitive Psychology and Its Implications: Third
Edition. W. H. Freeman and Company, New York, 1990.

[Appleton 1997] Appleton B.: Patterns and Software – Essential Concepts and
Terminology. Object Magazine Online, Vol. 3, No. 5, 1997. Available at
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html. August 2004.

[Atkinson and Griswold 1996] Atkinson D., Griswold W.: The Design of
Whole-Program Analysis Tools. In: Proc. of the 18th International Confer-
ence on Software Engineering (ICSE 1996), Berlin, Germany, March 1996.
IEEE Computer Society, 1996, 16-27.

 158

http://hillside.net/patterns/papersbibliographys.htm

[Bass et al. 1998] Bass L., Clements P., Kazman R.: Software Architecture in Prac-
tice. Addison-Wesley, 1998.

[Batory et al. 2003] Batory D., Sarvela J., Rauschmayer A.: Scaling Stepwise
Refinement. In: Proc. of the 25th International Conference on Software Engi-
neering (ICSE 2003), Portland, Oregon, USA, May 2003. IEEE Computer
Society, 2003. 187-197.

[Beck and Cunningham 1987] Beck K., Cunningham W.: Using Pattern Lan-
guages for Object-Oriented Programs. Technical report, Tektronix Inc.,
1987. Presented at the OOPSLA-87 Workshop on Specification and De-
sign for ObjectOriented Programming. 1987.

[Beck and Johnson 1994] Beck K., Johnson R.: Patterns Generate Architectures.
In: Proc. of the 8th European Conference on Object-Oriented Programming
(ECOOP 1994), Bologna, Italy, July, 1994. LNCS 821, Springer, 1994. 139-
149.

[Bonnet 1999] Bonnet S.: Java MVC++ Framework for NMS GUI Applications.
Master of Science Thesis, Department of Information Technology, Tam-
pere University of Technology, 1999.

[Booch 1994] Booch G.: Object-Oriented Analysis and Design with Applications
(second edition). Benjamin/Cummings, 1994.

[Booch et al. 1999] Booch G., Rumbaugh J., Jacobson I.: The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

[Bosch 1998] Bosch J.: Design Patterns as Language Construct. Journal of Ob-
ject-Oriented Programming, Vol. 11, No. 2, May 1998. 18-32.

[Bosch 2000] Bosch J.: Design and Use of Software Architectures – Adopting and
Evolving a Product-Line Approach. Addison-Wesley, 2000.

[Bosch 2003] Bosch J.: Software Architecture. Book manuscript, October 2003.

[Brown K. 1996] Brown K.: Design Reverse-Engineering and Automated Design
Pattern Detection in Smalltalk. Master of Science Thesis, North Carolina
State University, 1996

[Brown T. et al. 2004] Brown T., Spence I., Kilpatrick P.: A Relational Architec-
ture Description Language for Software Families. In: Proc. of the 5th Inter-
national Workshop on Software Product-Family Engineering (PFE 2003),
Siena, Italy, November, 2003. LNCS 3014, Springer, 2004. 282-295.

[Brown W. et al. 1998] Brown W., Malveau R., McCormic H., Mowbray T.: An-
tiPatterns – Refactoring Software, Architectures, and Projects in Crisis. Wiley,
1998.

 159

[Budinsky et al. 1996] Budinsky F., Finnie M., Vlissides J., Yu P.: Automatic
Code Generation from Design Patterns. IBM Systems Journal, Vol. 35, No.
2, 1996, 151-171.

[Buschmann et al. 1996] Buschmann F., Meunier R., Rohnert H., Sommerlad
P., Stal M.: A System of Patterns - Pattern-Oriented Software Architecture.
Wiley, 1996.

[Bünnig et al. 1999] Bünnig S., Forbrig P., Lämmel R., Seemann N.: A Pro-
gramming Language for Design Patterns. In: Proc. of the Informatik '99 -
Informatik überwindet Grenzen, 29. Jahrestagung der Gesellschaft für Informa-
tik, Paderborn, Germany, October 1999. Informatik aktuell, Springer,
1999. 400-409.

[Campbell et al. 1992] Campbell R., Islam N., Madany P.: Choices, Frame-
works and Refinement. Computing Systems, vol. 5, no. 3, 1992. 217-257.

[Carroll 1990] Carroll J.: The Nurnberg Funnel - Designing Minimalist Instruction
for Practical Computer Skill. Massachusetts Institute of Technology, 1990.

[Chikofsky and Cross 1990] Chikofsky E., Cross II J.: Reverse Engineering and
Design Recovery: a Taxonomy. IEEE Software, Vol. 7, No. 1, January
1990, 13-17.

[Cleaveland 2001] Cleaveland J.: Program Generators with XML and Java. Pren-
tice-Hall, 2001.

[Clements and Northrop 2001] Clements P., Northrop L.: Software Product
Lines – Practices and Patterns. Addison-Wesley, 2001.

[Conklin 1987] Conklin J.: Hypertext: An Introduction and Survey. IEEE Com-
puter, Vol. 20, No. 9, September 1987, 17-41.

[Constantinides et al. 2000] Constantinides C., Bader A., Elrad T., Fayad M.,
Netinant P.: Designing an Aspect-Oriented Framework in an Object-
Oriented Environment. ACM Computing Surveys, Vol. 32, Issue 1es, Arti-
cle No. 41, March 2000.

[Coplien 1992] Coplien J.: Advanced C++ Programming Styles and Idioms. Addi-
son-Wesley, 1992.

[Coplien 1995] Coplien J.: A Generative Development-Process Pattern Lan-
guage. In: Coplien J., Schmidt D. (eds.): Pattern Languages of Program De-
sign. Addison-Wesley, 1995, 183-237.

[Coplien 1996] Coplien J.: Software Patterns. SIGS, New York, 1996.

 160

[Coplien 2004] Coplien J.: A Pattern Definition. Available at
http://hillside.net/patterns/definition.html. August 2004.

[Coplien and Schmidt 1995] Coplien J., Schmidt D. (eds.): Pattern Languages of
Program Design. Addison-Wesley, 1995.

[CORBA 2004] CORBA WWW site. Available at http://www.corba.org/. August
2004.

[Cornils 2001] Cornils A.: Patterns in Software Development. Ph.D. Thesis, De-
partment of Computer Science, University of Aarhus, Denmark, No-
vember 2001.

[Czarnecki and Eisenecker 2000] Czarnecki K., Eisenecker U.: Generative Pro-
gramming – Methods, Tools, and Applications. Addison-Wesley, 2000.

[Demeyer et al. 1997] Demeyer S., Meijler T., Nierstrasz O., Steyaert P.: Design
Guidelines for Tailorable Frameworks. Communications of the ACM, Vol.
40, No. 10, October 1997, 60-64.

[Deursen et al. 2002] van Deursen A., de Jonge M., Kuipers T.: Feature-Based
Product Line Instantiation Using Source-Level Packages. In: Proc. of the
2nd International Conference on Software Product Lines (SPLC 2000), San
Diego, CA, USA, August 2002. LNCS 2379, Springer, 2002, 217-234.

[Eclipse 2004] Eclipse WWW site. Available at http:/www.eclipse.org. August 2004.

[Eden 2001] Eden A.: Formal Specification of Object-Oriented Design. In: Proc.
of the International Conference on Multidisciplinary Design in Engineering
(CSME-MDE 2001), Montreal, Canada, November 2001.

[Eden 2002a] Eden A.: A Visual Formalism for Object-Oriented Architecture.
In: Proc. of the 6th World Conference on Integrated Design and Process Tech-
nology (IDPT 2002), Pasadena, California, USA, June 2002.

[Eden 2002b] Eden A.: A Theory of Object-Oriented Design. Information Sys-
tems Frontiers, Vol. 4, No. 4, November—December 2002, 379-391.

[Eden et al. 2003] Eden A., Kazman R., Fox C.: Two-Tier Programming. Techni-
cal report CSM-387, Department of Computer Science, University of Es-
sex, July 2003.

[Egyed and Balzer 2004] Egyed A., Balzer B.: Integrating COTS Software into
Systems through Instrumentation and Reasoning. Journal on Automated
Software Engineering (JASE), accepted for publication. Available at
http://sunset.usc.edu/~aegyed/publications.html. August 2004.

[EJB 2004] EJB WWW site. Available at http://java.sun.com/products/ejb/. August 2004.

 161

http://www.corba.org/
http://www.eclipse.org/
http://sunset.usc.edu/~aegyed/publications.html
http://java.sun.com/products/ejb/

[Fayad et al. 1999] Fayad M., Schmidt D., Johnson R., (eds.): Building Applica-
tion Frameworks – Object-Oriented Foundations of Framework Design. Wiley,
1999.

[Florijn et al. 1997] Florijn G., Meijers M., van Winsen P.: Tool Support for Ob-
ject-Oriented Patterns. In: Proc. of the 11th European Conference on Object-
Oriented Programming (ECOOP 1997), Jyväskylä, Finland, June 1997.
LNCS 1241, Springer, 1997, 472-496.

[Fontoura et al. 2000] Fontoura M., Pree W., Rumpe B.: UML-F – A Modeling
Language for Object-Oriented Frameworks. In: Proc. of the 14th European
Conference on Object-Oriented Programming (ECOOP 2000), Sophia Anti-
polis and Cannes, France, June 2000. LNCS 1850, Springer, 2000, 63-83.

[Fowler 1997] Fowler M.: Analysis Patterns - Reusable Object Models. Addison-
Wesley, 1997.

[Froehlich et al. 1997] Froehlich G., Hoover H., Liu L., Sorenson P.: Hooking
into Object-Oriented Application Frameworks. In: Proc. of the of 19th In-
ternational Conference on Software Engineering (ICSE 1997), Boston, Massa-
chusetts, USA, May 1997. IEEE Press, 1997, 491-501.

[Froelich et al. 1998] Froelich G., Hoover H., Liu L., Sorenson P.: Requirements
for a Hooks Tool. Available at http://www.cs.ualberta.ca/~softeng/papers/ssr04.pdf.
August 2004.

[Fuggetta 2000] Fuggetta A.: Software Process: A Roadmap. In: Proc. of the 22nd
International Conference on Software Engineering (ICSE 2000), Future of
Software Engineering Track, Limerick, Ireland, June 2000. ACM Press,
2000, 25-34.

[Gamma et al. 1995] Gamma E., Helm R., Johnson R., Vlissides J.: Design Pat-
terns – Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[Garlan 2000] Garlan D.: Software Architecture: a Roadmap. In: Proc. of the
22nd International Conference on Software Engineering (ICSE 2000), Future of
Software Engineering Track, Limerick, Ireland, June 2000. ACM Press,
2000, 91-101.

[Garlan et al. 1995] Garlan D., Allen R., Ockerbloom J.: Architectural Mis-
match or Why it's Hard to Build Systems out of Existing Parts. In: Proc. of
the 17th International Conference on Software Engineering (ICSE 1995), Seat-
tle WA, April 1995. IEEE Computer Society Press, 1995, 179-185.

[Giarratano and Riley 1989] Giarratano J., Riley G.: Expert Systems - Principles
and Programming. PSW-KENT Publishing Company, 1989.

 162

http://www.cs.ualberta.ca/~softeng/papers/ssr04.pdf

[Goebl 1999] Goebl W.: A Survey and a Categorization Scheme of Automatic
Programming Systems. In: Proc. of the 1st International Conference on Gen-
erative and Component-Based Software Engineering (GCSE 1999). Erfurt,
Germany, September 1999. LNCS 1799, Springer, 1999, 1-15.

[Gurp and Bosch 2002] van Gurp J., Bosch J.: Design Erosion: Problems &
Causes. Journal of Systems and Software, Vol. 61, Issue 2, 2002, 105-119.

[Gurp et al. 2001] van Gurp J., Bosch J., Svahnberg M.: On the Notion of Vari-
ability in Software Product Lines. In: Proc. of the Working IEEE / IFIP Con-
ference on Software Architecture (WICSA 2001), Amsterdam, The Nether-
lands, August 2001. IEEE Computer Society, 2001, 45-55.

[Hakala 2002] Hakala M.: Feature Models, Pattern Languages and Software
Patterns: Towards a Unified Approach. In: Proc. of the 10th Nordic Work-
shop on Software Development Tools and Techniques (NWPER 2002), Copen-
hagen, August 2002. IT University of Copenhagen, 2002, 189-201.

[Hakala et al. 2001a] Hakala M., Hautamäki J., Koskimies K., Paakki J., Vilja-
maa A., Viljamaa J.: Task-Driven Specialization Support for Object-Oriented
Frameworks. Tampere University of Technology, Software Systems Labo-
ratory, Report 22, February 2001. ISBN 952-15-0546X.

[Hakala et al. 2001b] Hakala M., Hautamäki J., Koskimies K., Paakki J., Vilja-
maa A., Viljamaa J.: Architecture-Oriented Programming Using FRED.
In: Proc. of the of 23rd International Conference on Software Engineering (ICSE
2001), Toronto, Canada, May 2001. IEEE Computer Society, 2001, 823-
824 (Formal research demo).

[Hakala et al. 2001c] Hakala M., Hautamäki J., Koskimies K., Paakki J., Vilja-
maa A., Viljamaa J.: Annotating Reusable Software Architectures with
Programming Patterns. In: Proc. of the Working IEEE/IFIP Conference on
Software Architecture (WICSA 2001), The Netherlands, August 2001. IEEE
Computer Society, 2001, 171-180.

[Hakala et al. 2001d] Hakala M., Hautamäki J., Koskimies K., Paakki J., Vilja-
maa A., Viljamaa J.: Generating Application Development Environments
for Java Frameworks. In: Proc of the 3rd International Conference on Genera-
tive and Component-Based Software Engineering (GCSE 2001), Erfurt, Ger-
many, September 2001. LNCS 2186, Springer, 2001, 163-176.

[Hakala et al. 2003] Hakala M., Hautamäki J., Koskimies K., Savolainen P.:
Generating Pattern-Based Web Tutorials for Java Frameworks. In: Proc.
of the Scientific Engineering for Distributed Java Applications (FIDJI 2002),
International Workshop. Luxembourg, November 2002. LNCS 2604,
Springer, 2003, 99-110.

 163

[Hammouda 2005] Hammouda I.: A Tool Infrastructure for Model-Driven
Development Using Aspectual Patterns. In: Beydeda S., Book M., Gruhn
V. (eds.): Model-driven Software Development - Volume II of Research and
Practice in Software Engineering. Springer, 2005.

[Hammouda and Koskimies 2002] Hammouda I., Koskimies K.: Generating a
Pattern-Based Application Development Environment for Enterprise
JavaBeans. In: Proc. of the 26th International Computer Software and Applica-
tions Conference (COMPSAC 2002), Oxford, England, August 2002. IEEE
Computer Society, 2002, 856-866.

[Hammouda et al. 2004a] Hammouda I., Katara M., Koskimies K.: A Tool En-
vironment for Aspectual Patterns in UML. In: Proc. of the Workshop on Di-
rections in Software Engineering Environments (WoDiSEE 2004), Edin-
burgh, Scotland, UK, May 2004. IEE, 2004, 58-65.

[Hammouda et al. 2004b] Hammouda I., Guldogan O., Koskimies K., Systä T.:
Tool-Supported Customization of UML Class Diagrams for Learning
Complex Systems. In: Proc. of the 12th International Workshop on Program
Comprehension (IWPC 2004), Bari, Italy, June 2004. IEEE Computer Soci-
ety, 2004, 24-33.

[Hammouda et al. 2004c] Hammouda I., Koskinen J., Pussinen M., Katara M.,
Mikkonen T.: Adaptable concern-based framework specialization in
UML. In: Proc. of the 19th IEEE International Conference on Automated Soft-
ware Engineering (ASE 2004), Linz, Austria, September 2004. IEEE Com-
puter Society, 2004, 78-87.

[Hammouda et al. 2005] Hammouda I., Hautamäki J., Pussinen M., Koskimies
K.: Managing Variability Using Heterogeneous Feature Variation Pat-
terns. Accepted in: Fundamental Approaches to Software Engineering (FASE
2005), Edinburgh, Scotland, April 2005.

[Hamu and Fayad 1998] Hamu D., Fayad M.: Achieve Bottom-Line Improve-
ments with Enterprise Frameworks. Communications of the ACM, Vol. 41,
No. 8, August 1998.

[Harrison N. and Coplien 2004] Harrison N., Coplien J.: Organizational Pat-
terns of Agile Software Development. Manuscript. Available at
http:/www.easycomp.org/cgi-bin/OrgPatterns?BookOutline. August 2004.

[Harrison N. et al. 1999] Harrison N., Foote B., Rohnert H. (eds.): Pattern Lan-
guages of Program Design 4. Addison-Wesley, 1999.

 164

http://www.easycomp.org/cgi-bin/OrgPatterns?BookOutline

[Harrison W. and Ossher 1993] Harrison W., Ossher H.: Subject-Oriented Pro-
gramming (A Critique of Pure Objects). In: Proc. of The 8th Conference on
Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA 1993), Washington, DC, USA, September 1993. SIGPLAN Notices,
Vol. 28, No. 10, October 1993, 411-428.

[Harrison W. et al. 2000] Harrison W., Ossher H., Tarr P.: Software Engineer-
ing Tools and Environments: A Roadmap. In: Proc. of the 22nd Interna-
tional Conference on Software Engineering (ICSE 2000), Future of Software
Engineering Track, Limerick, Ireland, June 2000. ACM Press, 2000, 261-
277.

[Hautamäki 2002] Hautamäki J.: Task-Driven Framework Specialization – Goal-
Oriented Approach. Licentiate thesis, University of Tampere, Department
of Computer and Information Sciences, 2002. Report A-2002-9.

[Helm 1995] Helm R.: Patterns in practice. In: Proc. of the 10th Conference on Ob-
ject-Oriented Programming Systems, Languages and Applications (OOPSLA
1995). SIGPLAN Notices, Vol. 30, No. 10, October 1995, 337-341.

[Hillside 2004] Hillside Patterns Library WWW site. Available at http://hillside.net/.
August 2004.

[Hoek 2000] van der Hoek A.: Capturing Product Line Architectures. In: Proc.
of the 4th International Software Architecture Workshop (ISAW-4), Limerick,
Ireland, June 2000. ACM Press, 2000, 95-99.

[Hoek et al. 1999] van der Hoek A., Heimbigner D., Wolf A.: Capturing Archi-
tectural Configurability: Variants, Options, and Evolution. University of
California, Irvine, Department of Information and Computer Science,
Technical Report CU-CS-895-99, December 1999.

[Hüni et al. 1995] Hüni H., Johnson R., Engel R.: Framework for Network Pro-
tocol Software. In: Proc. of the 10th Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA 1995). Austin, TX, Oc-
tober 1995. SIGPLAN Notices, Vol. 30, No. 10, October 1995, 358-369.

[Hürsch and Lopes 1995] Hürsch W., Lopes C.: Separation of Concerns. Techni-
cal Report NU-CSS-95-03, College of Computer Science, Northeastern
University, Boston, Massachusetts, February 1995.

[IEEE 2000] Institution of Electrical and Electronics Engineers: IEEE Recom-
mended Practice for Architectural Description of Software Intensive Systems.
New York, NY, USA, 2000. IEEE Standard 1471-2000.

[J2EE 2004] J2EE WWW site. Available at http://java.sun.com/j2ee/. August 2004.

 165

http://hillside.net/
http://java.sun.com/j2ee/

[Jacobson et al. 1997] Jacobson I., Griss M., Jonsson P.: Software Reuse - Archi-
tecture, Process and Organization for Business Success. Addison-Wesley,
1997.

[Jacobson et al. 1999] Jacobson I., Rumbaugh J., Booch G.: The Unified Software
Development Process. Addison-Wesley, 1999.

[JavaFrames 2004] JavaFrames / Fred WWW site. Available at
http://practise.cs.tut.fi/fred/. August 2004.

[Jazayeri et al. 2000] Jazayeri M., Ran A., van der Linden F.: Software Architec-
ture for Product Families – Principles and Practice. Addison-Wesley, 2000.

[JHotDraw 2004] JHotDraw WWW site. Available at
Internet: http:/members.pingnet.ch/gamma/JHD-5.1.zip. August 2004.

[Johnson 1992] Johnson R.: Documenting Frameworks Using Patterns. In: Pro-
c. of the 7th Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA 1992), Vancouver, Canada, October 1992.
SIGPLAN Notices, Vol. 27, No. 10, October 1992, 63-76.

[Johnson 1993] Johnson R.: How to Design Frameworks. In: Tutorial Notes of
the 8th Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 1993), Washington, DC, USA, September 1993.
Available at ftp://st.cs.uiuc.edu/pub/papers/frameworks/OOPSLA93-frmwk-tut.ps. August
2004.

[Johnson 1997] Johnson R.: Frameworks = (Components + Patterns). Commu-
nications of the ACM, Vol. 40, No. 10, 39-42.

[Johnson and Foote 1988] Johnson R., Foote B.: Designing Reusable Classes.
Journal of Object-Oriented Programming, Vol. 1, No. 5, June/July 1988, 22-
35.

[Johnson and Russo 1991] Johnson R., Russo V.: Reusing Object-Oriented De-
sign. Technical Report UIUCDCS 91-1696, University of Illinois, 1991.

[Kang et al. 1990] Kang K., Cohen S., Hess J., Nowak W., Peterson S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report,
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, November 1990.

[Keller et al. 1999] Keller R., Schauer R, Robitaille S., Pag P.: Pattern-based Re-
verse-engineering of Design Components. In: Proc. of the 21st International
Conference on Software Engineering (ICSE 1999), Los Angeles, USA, 1999.
IEEE Computer Society Press, 1999, 226-235.

 166

ftp://st.cs.uiuc.edu/pub/papers/frameworks/OOPSLA93-frmwk-tut.ps

[Kellomäki and Mikkonen 2000] Kellomäki P., Mikkonen T.: Design Tem-
plates for Collective Behavior. In: Proc of the 14th European Conference on
Object-Oriented Programming (ECOOP 2000), Sophia Antipolis and
Cannes, France, June 2000. LNCS 1850, Springer, 2000, 277-295.

[Kiczales et al. 1997] Kiczales G., Lamping J., Menhdhekar A., Maeda C.,
Lopes C., Loingtier J., Irwin J.: Aspect-oriented programming. In: Proc. of
the 11th European Conference on Object-Oriented Programming (ECOOP
1997), Jyväskylä, Finland, June 1997. LNCS 1241, Springer, 1997, 220-242.

[Kim and Benner 1996] Kim J., Benner K.: An Experience Using Design Pat-
terns - Lessons Learned and Tool Support. Theory and Practice of Object
Systems (TAPOS), Vol. 2, No. 1, 1996, 61-74.

[Koskimies and Mössenböck 1995] Koskimies K., Mössenböck H.: Designing a
Framework by Stepwise Generalization. In: Proc. of the 5th European Soft-
ware Engineering Conference (ESEC 1995), Sitges, Spain, September 1995.
LNCS 989, Spinger, 1995. 479-497.

[Krasner and Pope 1988] Krasner G., Pope S.: A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk-80. In:
Journal of Object-Oriented Programming, August/September, 1988, 26-49.

[Lago et al. 2004] Lago P., Niemelä E., van Vliet H.: Tool Support for Trace-
able Product Evolution. In: Proc. of the 8th European Conference on Software
Maintenance and Reengineering (CSMR 2004), Tampere, Finland, March
2004. IEEE Computer Society, 2004, 261-269.

[Lamsweerde 2000] van Lamsweerde A.: Formal Specification: A Roadmap.
In: Proc. of the 22nd International Conference on Software Engineering (ICSE
2000), Future of Software Engineering Track, Limerick, Ireland, June 2000.
ACM Press, 2000, 147-160.

[Lange and Nakamura 1995] Lange D., Nakamura Y.: Interactive Visualiza-
tion of Design Patterns Can Help in Framework Understanding. In: Proc.
of the 10th Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA 1995), Austin, Texas, USA, October 1995. SIG-
PLAN Notices, Vol. 30, No. 10, October 1995, 342-357.

[Lea 1994] Lea D.: Christopher Alexander – An Introduction for Object-
Oriented Designers. ACM SIGSOFT Software Engineering Notes, Vol. 19,
No. 1, 1994, 39-46.

[Martin 1995] Martin R.: Discovering Patterns in Existing Applications. In:
Coplien J., Schmidt D. (eds.): Pattern Languages of Program Design. Addi-
son-Wesley, 1995, 365-393.

 167

[Martin et al. 1998] Martin R., Riehle D., Buschmann F. (eds.): Pattern Lan-
guages of Program Design 3. Addison-Wesley, 1998.

[Meijler et al. 1997] Meijler T., Demeyer S., Engel R.: Making Design Patterns
Explicit in FACE – A Framework Adaptive Composition Environment.
In: Proc. of the 6th European Software Engineering Conference Held Jointly
with the 5th ACM SIGSOFT Symposium on Foundations of Software Engineer-
ing (ESEC/FSE 1997), Zurich, Switzerland, September 1997. LNCS 1301,
Springer, 1997, 94-111.

[Meszaros and Doble 1998] Meszaros G., Doble J.: A Pattern Language for Pat-
tern Writing. In: Martin R., Riehle D., Buschmann F. (eds.): Pattern Lan-
guages of Program Design 3. Addison-Wesley, 1998, 529-574.

[Meuter et al. 2001] Meuter W., D’Hondt M., Goderis S., D’Hondt T.: Reason-
ing with Design Knowledge for Interactively Supporting Framework
Reuse. In: Proc. of the 2nd Workshop on Soft Computing Applied to Software
Engineering (SCASE 2001), Enschede, The Netherlands, February 2001.

[Mikkonen 1998] Mikkonen T.: Formalizing Design Patterns. In: Proc. of the
20th International Conference on Software Engineering (ICSE 1998), Kyoto,
Japan, April 1998. IEEE Computer Society, 1998, 115-124.

[Mikkonen and Pruuden 2001] Mikkonen T., Pruuden P.: Practical Perspec-
tives on Software Architectures, High-level Design, and Evolution. In:
Proc. of the 4th International Workshop on Principles of Software Evolution
(IWPSE 2001), Vienna University of Technology, Austria, September
2001. ACM Press, 2001, 122-125.

[Miller 1956] Miller G.: The Magical Number Seven, Plus or Minus Two: Some
Limits on Our Capacity for Processing Information. Psychology Review,
Vol. 63, 1956, 81-97.

[Niere et al. 2002] Niere J., Schfer W., Wadsack J., Wendehals L., Welsh J.: To-
wards Pattern-Based Design Recovery. In: Proc. of the 24th International
Conference on Software Engineering (ICSE 2002). Orlando, Florida, USA,
May 2002. ACM Press, 2002, 338-348.

[Odenthal and Quibeldey-Cirkel 1997] Odenthal G., Quibeldey-Cirkel K.: Us-
ing patterns for design and documentation. In: Proc. of the 11th European
Conference on Object-Oriented Programming (ECOOP 1997), Jyväskylä,
Finland, June 1997. LNCS 1241, Springer, 1997, 511-529.

 168

[Ommering 1998] van Ommering R.: Koala, a Component Model for Con-
sumer Electronics Product Software. In: Development and Evolution of
Software Architectures for Product Families, Second International ESPRIT
ARES Workshop, Las Palmas de Gran Canaria, Spain, February 1998.
LNCS 1429, Springer, 1998, 76-86.

[Ortigosa and Campo 1999] Ortigosa A., Campo M.: SmartBooks: A Step Be-
yond Active-Cookbooks to Aid in Framework Instantiation. In: Proc. of
Technology of Object-Oriented Languages and Systems (TOOLS EUROPE
1999), Nancy, France, June 1999. IEEE Press, 1999, 131-140.

[Ortigosa et al. 2000] Ortigosa A., Campo M., Salomon R.: Towards Agent-
Oriented Assistance for Framework Instantiation. In: Proc. of the 15th Con-
ference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2000), Minneapolis, Minnesota, October 2000. SIGPLAN
Notices, Vol. 35, No. 10, October 2000, 253-263.

[Pace and Campo 2001] Pace A., Campo M.: An Empirical Study about Sepa-
ration of Concerns Approaches. In: Proc of the 2nd Argentine Symposium on
Software Engineering (ASSE 2001), as part of the 30th Argentine Conference on
Computer Science and Operational Research (JAIIO 2001), Buenos Aires, Ar-
gentina, September 2001.

[Pace et al. 2003] Pace J., Trilnik F., Campo M.: Assisting the Development of
Aspect-Based Multi-Agent Systems Using the Smartweaver Approach.
In: Proc of the 1st International Workshop on Software Engineering for Large-
Scale Multi-Agent Systems (SELMAS 2002), Orlando, Florida, USA, May
2002. LNCS 2603, Springer, 2003, 165-181.

[Parnas 1972] Parnas D.: On the Criteria to be Used in Decomposing Systems
into Modules. Communications of the ACM, Vol. 15, No. 12, December
1972, 1053-1058.

[Pasetti 2002] Pasetti A.: Software Frameworks and Embedded Control Systems.
LNCS 2231, Springer, 2002.

[Peltonen and Selonen 2004] Peltonen J., Selonen P.: An Approach and a Plat-
form for Building UML Processing Tools. In: Proc. of the Workshop on Di-
rections in Software Engineering Environments (WoDiSEE 2004), Edin-
burgh, Scotland, UK, May 2004. IEE, 2004.

[Portland 2004] Portland Pattern Repository WWW site. Available at
http://c2.com/ppr/. August 2004.

[Perry and Wolf 1992] Perry D., Wolf A.: Foundations for the Study of Soft-
ware Architecture. Software Engineering Notes, Vol. 17, No. 4, October
1992, 40-52.

 169

http://c2.com/ppr/

[Pree 1994] Pree W.: Meta Patterns – A Means of Capturing the Essential of
Reusable Object Oriented Design. In: Proc. of the 8th European Conference
on Object-Oriented Programming (ECOOP 1994), Bologna, Italy, July 1994.
LNCS 821, Springer, 1994, 150-162.

[Pree 1995] Pree W.: Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

[Pree and Koskimies 1999] Pree W., Koskimies K.: Framelets - Small is Beauti-
ful. In: Fayad M., Schmidt D., Johnson R. (eds.): Building Application
Frameworks - Object-Oriented Foundations of Framework Design. Wiley,
1999, 411-414.

[Pree et al. 1995] Pree W., Pomberger G., Schappert A., Sommerlad P.: Active
Guidance of Framework Development. Software-Concepts and Tools, Vol.
16, No. 3, 136-145, 1995.

[Pree et al. 2002] Pree W., Fontoura M., Rumpe B.: Product Line Annotations
with UML-F. In: Proc. of the 2nd International Software Product Lines Confer-
ence (SPLC 2002), San Diego, California, USA, August 2002. LNCS 2379,
Springer, 2002, 188-197.

[Rational 2004] Rational Rose WWW site. Available at
http://www-136.ibm.com/developerworks/rational/products/rose. August 2004.

[Riehle 1997] Riehle D.: Composite Design Patterns. In: Proc. of the 1997 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA 1997), Atlanta, Georgia, October 1997. SIG-
PLAN Notices, Vol. 32, No. 10, October 1997, 218-228.

[Riehle 2000] Riehle D.: Framework Design – A Role Modeling Approach. Ph.D.
Thesis, ETH Zürich, Institute of Computer Systems, February 2000.

[Rising 2000] Rising L.: The Pattern Almanac 2000. Addison-Wesley, 2000.

[Riva et al. 2004] Riva C., Selonen P., Systä T., Tuovinen A., Xu J., Yang Y.: Es-
tablishing a Software Architecting Environment. In: Proc. of the 4th Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA 2004), Oslo,
Norway, June 2004. IEEE Computer Society, 2004, 188-200.

[Robbins 1999] Robbins J.: Cognitive Support Features for Software Development
Tools. Ph.D. Thesis, Information and Computer Science, University of
California, Irvine, September 1999. Technical Report UCI-ICS-99-39.

 170

http://www-136.ibm.com/developerworks/rational/products/rose

[Robbins et al. 1997] Robbins J., Hilbert D., Redmiles D.: Extending Design
Environments to Software Architecture Design. In: Proc. of the 11th
Knowledge-Based Software Engineering Conference (KBSE 1996), Syracuse,
New York, USA, September 1996. IEEE Computer Society, 1996, 63-72.

[Roberts and Johnson 1996] Roberts D., Johnson R.: Evolving Frameworks - A
Pattern Language for Developing Object-Oriented Frameworks. In: Proc.
of, the 3rd Conference on Pattern Languages and Programming (PLoP 1996),
Allerton Park, IL, September 1996.

[Ruhe 2000] Ruhe G.: Methodological Contributions to Professional Education
and Training. In: Proc. of the 24th International Computer Software and Ap-
plications Conference (COMPSAC 2000), Taipei, Taiwan, October 2000.
IEEE Computer Society, 2000, 11-16.

[Rumbaugh et al. 1999] Rumbaugh J., Jacobson I., Booch G.: The Unified Model-
ing Language Reference Manual. Addison Wesley, 1999.

[Savolainen 2003] Savolainen P.: Ohjelmistokehysten erikoistamistutoriaalit Fred-
ympäristössä. Diplomityö, Tietotekniikan osasto, Tampereen teknillinen
yliopisto, helmikuu 2003.

[Schmidt 1997] Schmidt D.: Applying Design Patterns and Frameworks to
Develop Object-Oriented Communications Software. In: Peter Salus
(eds.): Handbook of Programming Languages, Vol. I, Macmillan Computer
Publishing, 1997.

[Schmidt and Buschmann 2003] Schmidt D., Buschmann F.: Patterns, Frame-
works, and Middleware: Their Synergistic Relationships. In: Proc. of the
25th International Conference on Software Engineering (ICSE 2003), Portland,
Oregon, USA, May 2003. IEEE Press, 2003, 694-704.

[Sebesta 1999] Sebesta R.: Concepts of Programming Languages. Addison-
Wesley, 1999.

[Sefika et al. 1996] Sefika M., Sane A., Campbell R.: Monitoring Compliance of
a Software System with Its High-Level Design Models. In: Proceedings of
the 18th IEEE International Conference on Software Engineering (ICSE 1996),
Berlin, Germany, March 1996. IEEE Computer Society Press 1996, 387-
396.

[Shaw and Garlan 1996] Shaw M., Garlan D.: Software Architecture - Perspec-
tives on an Emerging Discipline. Upper Saddle River, NJ, Prentice Hall,
1996.

 171

[Smith and Williams 2002] Smith C., Williams L.: Performance Solutions – A
Practical Guide to Creating Responsive, Scalable Software. Addison-Wesley,
2002.

[Soukup 1995] Soukup J.: Implementing Patterns. In: Coplien J., Schmidt D.
(eds.): Pattern Languages of Program Design. Addison-Wesley, 1995, 395-
412.

[Sutton and Rouvellou 2002] Sutton S., Rouvellou I.: Modeling of Software
Concerns in Cosmos. In: Proc. of the 1st International Conference on Aspect-
Oriented Software Development (AOSD 2002). Enschede, The Netherlands,
April 2002. ACM Press, 2002, 127-133.

[Taligent 1994] A Taligent white paper: Building Object-Oriented Frameworks.
Available at http://lhcb-comp.web.cern.ch/lhcb-comp/Components/postscript/buildingoo.pdf.
August 2004.

[Tarr et al. 1999] Tarr P., Ossher H., Harrison W., Sutton J.: N Degrees of Sepa-
ration: Multidimensional Separation of Concerns. In: Proc. of the 21st In-
ternational Conference on Software Engineering (ICSE 1999), Los Angeles,
CA, USA, May 1999. ACM Press, 1999, 107-119.

[Together 2004] Together ControlCenter WWW site. Available at
http://www.borland.com/together/. August 2004.

[Tonella and Antoniol 1999] Tonella P., Antoniol G.: Object-Oriented Design
Pattern Inference. In: Proc. of the International Conference on Software Main-
tenance (ICSM 1999), Oxford, England, August-September 1999. IEEE
Computer Society Press, 1999, 230-239.

[UML 2004] Unified Modeling Language WWW site. Available at
http://www.uml.org/. August 2004.

[Viljamaa A. 2001] Viljamaa A.: Pattern-Based Framework Annotation and Adap-
tation - A Systematic Approach. Licentiate thesis, University of Helsinki,
Department of Computer Science, 2001. Report C-2001-52.

[Viljamaa A. 2004] Viljamaa A.: Specification of Framework Reuse Interfaces for
Task-Oriented Framework Specialization. Ph.D. Thesis, Unpublished manu-
script, Department of Computer Science, University of Helsinki, Sep-
tember 2004.

[Viljamaa J. 1997] Viljamaa J.: Tools Supporting the Use of Design Patterns in
Frameworks. Report C-1997-25, University of Helsinki, Department of
Computer Science, 1997.

 172

http://lhcb-comp.web.cern.ch/lhcb-comp/Components/postscript/buildingoo.pdf
http://www.borland.com/together/
http://www.uml.org/

[Viljamaa J. 2002] Viljamaa J.: Automatic Extraction of Framework Specialization
Patterns. Licentiate thesis, University of Helsinki, Department of Com-
puter Science, 2002. Report C-2002-47.

[Viljamaa J. 2003] Viljamaa J.: Reverse Engineering Framework Reuse Inter-
faces. In: Proc. of the 9th European Software Engineering Conference held
jointly with 11th ACM SIGSOFT International Symposium on the Foundations
of Software Engineering (ESEC/FSE 2003), Helsinki, Finland, September
2003. ACM Press, 2003, 217-226.

[Viljamaa J. 2004] Viljamaa J.: Applying Formal Concept Analysis to Extract
Framework Reuse Interface Specifications from Source Code. Ph.D. Thesis,
Department of Computer Science, University of Helsinki, 2004.

[Vlissides 1997] Vlissides J.: Patterns: The Top Ten Misconceptions. Object
Magazine, Vol. 7, No. 1, March 1997, 30-33.

[Vlissides et al. 1996] Vlissides J., Coplien J., Kerth N. (eds.): Pattern Languages
of Program Design 2. Reading, MA, Addison-Wesley, 1996.

[Wild 1996] Wild F.: Instantiating Code Patterns — Patterns Applied to Soft-
ware Development. Dr. Dobb's Journal, Vol 21., No 6., June 1996, 72-76.

[XML 2004] XML WWW site. Available at http://www.w3.org/XML/. August 2004.

[Yacoub et al. 2000] Yacoub S., Xue H., Ammar H.: POD: A Composition En-
vironment for Pattern-Oriented Design. In: Proc. of the 34th International
Conference on Technology of Object-Oriented Languages and Systems (TOOLS
2000), Santa Barbara, California, July-August 2000. IEEE Computer Soci-
ety Press, 2000. 263-272.

[Zimmer 1995] Zimmer W: Relationships between Design Patterns. In: James
Coplien J., Schmidt D. (eds.): Pattern Languages of Program Design. Addi-
son-Wesley, 1995, 345-364.

 173

http://www.w3.org/XML/

Appendix A:
Abstract Factory Pattern Specification

The Abstract Factory pattern was discussed in Subsection 2.1.4 and in Subsec-
tion 4.3.4. The pattern was outlined in Figure 5. A more detailed specification
is given here. The title of each role and constraint is underlined. The role’s
multiplicity is shown after the role title: “?” for [0..1], “*” for [0..*], and “+” for
[1..*]. By default the multiplicity is 1. Child roles are intended under their par-
ent role. Role’s properties and dependencies (except the implicit parent-child
dependency) are listed under the role name. A complete reference on the used
Java pattern semantics, its role types, and properties can be found from the
JavaFrames documentation [JavaFrames 2004].

AbstractFactory: Java class role
Dependencies:
None
Properties:
defaultTemplate: public abstract class <#:roleName> { }
description: This class declares an interface for operations that create abstract product objects.
taskTitle: Provide the abstract factory class to create products
taskDescription: Provide a Java type for the role <#:roleName> <p><#:description></p>

CreateProduct: Java method role
Dependencies:
/AbstractProduct
Properties:
defaultTemplate: public abstract <#:/AbstractProduct.i.name> cre-
ate<#:/AbstractProduct.i.name>();
description: This method is used to create <#:/AbstractProduct.i.name> objects. Implement
this method in subclasses.
taskTitle: Provide a method to create new <#:/AbstractProduct.i.name> objects
taskDescription: Provide a Java method for the role <#:roleName> <p><#:description></p>

ReturnAP: Return type constraint
Dependencies:
None
Properties:
value: /AbstractProduct.i

AbstractProduct: Java class role *
Dependencies:
None
Properties:
defaultTemplate: public abstract class <#:roleName> { }
description: This class declares an interface for a type of product object.
taskTitle: Provide a new product type
taskDescription: Provide a Java type for the role <#:roleName> <p><#:description></p>

ConcreteProduct: Java class role
Dependencies:
/AbstractProduct
/ProductFamily

 174

Properties:
defaultTemplate: public class <#:roleName> extends <#:/AbstractProduct.i.longName> { }
description: This class inherits <#:/AbstractProduct.i.name> and defines a <#:/ProductFamily.name>
product object to be created by the corresponding concrete factory.
taskTitle: Provide a new <#:/AbstractProduct.i.name> product for the <#:/ProductFamily.name> prod-
uct family
taskDescription: Provide a Java type for the role <#:roleName> <p><#:description></p>

Constructor: Java constructor role ?
Dependencies:
None
Properties:
defaultTemplate: public <#:parent.i.shortName>() { }
description: This is a constructor of the <#:parent.i.name> class.
taskTitle: Provide optional constructor
taskDescription: Provide a Java constructor for the role <#:roleName>
<p><#:description></p>

InheritAP: Inheritance constraint
Dependencies:
None
Properties:
value: /AbstractProduct.i

ConcreteFactory: Java class role *
Dependencies:
/AbstractFactory
/ProductFamily
Properties:
defaultTemplate: public class <#:/ProductFamily.name>Factory extends
<#:/AbstractFactory.i.longName> { }
description: This class inherits <#:/AbstractFactory.i.name> and implements the operations to create
concrete product objects.
taskTitle: Provide the factory class to create <#:/ProductFamily.name> objects
taskDescription: Provide a Java type for the role <#:roleName> <p><#:description></p>

CreateProduct: Java method role
Dependencies:
/AbstractFactory/CreateProduct
Properties:
defaultTemplate: public <#:/AbstractProduct.i.name>
<#:/AbstractFactory/CreateProduct.i.signature> { }
description: This method is used to create <#:/AbstractProduct.i.name> objects. It implements
the <#:/AbstractFactory/CreateProduct.i.signature> method.
taskTitle: Implement the <#:/AbstractFactory/CreateProduct.i.signature> method
taskDescription: Provide a Java method for the role <#:roleName> <p><#:description></p>

OverrideCP: Overriding constraint
Dependencies:
None
Properties:
value: /AbstractFactory/CreateProduct.i

UseConstructor: Code fragment role
Dependencies:
/ConcreteProduct/Constructor

 175

Properties:
defaultTemplate: return new <#:/ConcreteProduct/Constructor.i.signature>;
description: The <#:/ConcreteProduct.i.name> class has defined a constructor. You
should use this constructor to create <#:/ConcreteProduct.i.name> objects.
taskTitle: Use the constructor of <#:/ConcreteProduct.i.name>
taskDescription: Provide a Java code fragment for the role '<#:roleName>'.
<p><#:description></p>

InheritAF: Inheritance constraint
Dependencies:
None
Properties:
value: /AbstractFactory.i

ProductFamily: Issue role *
Dependencies:
None
Properties:
description: This is a new product family. After creating a new product family, the system will guide
you to give a concrete implementation for each abstract product interface. In addition you are guided to
provide a concrete factory class that can create these concrete products.
taskTitle: Create a new product family
taskDescription: <#:description>

 176

Appendix B:
Figure Pattern Specification

The Figure pattern was discussed in Subsection 6.2.3. The pattern was out-
lined in Figure 29. A more detailed specification is given here. The notation
was explained in Appendix A.

FigureManager: Java class role
This role is already bound to the FigureManager class.

initFigures: Java method role
This role is already bound to the initFigures method.

Figure: Java class role
This role is already bound to the Figure class.

draw: Java method role
This role is already bound to the initFigures method.

getName: Java method role
This role is already bound to the initFigures method.

MyManager: Java class role
Dependencies:
/FigureManager
Properties:
defaultTemplate: public class <#:roleName> extends <#:/FigureManager.i.longName> { }
description: This class manages your figure types.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java type for the role '<#:roleName>'. <p><#:description></p>

inheritance: Inheritance constraint
Dependencies:
None
Properties:
value: /FigureManager.i

initFigures: Java method role
Dependencies:
/FigureManager/initFigures
Properties:
defaultTemplate: public void initFigures() { }
description: This method registers the available figure types to the framework.
taskTitle: Implement the <#:/FigureManager/initFigures.i.signature> method
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /FigureManager/initFigures.i

 177

addFigure: Code fragment role
Dependencies:
/MyFigure
Properties:
defaultTemplate: addFigure(new <#:/MyFigure.i.name>());
description: Registers figure <#:/MyFigure.i.name> to the framework.
taskTitle: Add figure <#:/MyFigure.i.name> to the framework
taskDescription: Provide a Java code fragment for the role '<#:roleName>'.
<p><#:description></p>

MyFigure: Java class role +
Dependencies:
/Figure
Properties:
defaultTemplate: public class <#:roleName> extends <#:/Figure.i.longName> { }
description: This is one of your figure classes.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java type for the role '<#:roleName>'. <p><#:description></p>

inheritance: Inheritance constraint
Dependencies:
None
Properties:
value: /Figure.i

draw: Java method role
Dependencies:
/Figure/draw
Properties:
defaultTemplate: public void draw(java.awt.Graphics g, int x, int y) { //TODO draw the figure
}
description: This method is used to draw the figure.
taskTitle: Implement the <#:/Figure/draw.i.signature> method
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /Figure/draw.i

getName: Java method role
Dependencies:
/Figure/getName
Properties:
defaultTemplate: public String getName() { return "<#:parent.i.name>"; }
description: This method returns the name of the figure.
taskTitle: Implement the <#:/Figure/getName.i.signature> method
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /Figure/getName.i

 178

Appendix C:
Instance Semantics Pattern Specification

The Instance Semantics pattern was discussed in Subsection 7.2.2. The pattern
was outlined in Figure 37. A more detailed specification is given here. The no-
tation was explained in Appendix A.

InstanceSemantics: Java class role
This role is already bound to the InstanceSemantics class.

changingReferencedObject: Java method role
This role is already bound to the changingReferencedObject method.

parseReference: Java method role
This role is already bound to the parseReference method.

referencedObjectChanged: Java method role
This role is already bound to the referencedObjectChanged method.

getDefaultRoleName: Java method role
This role is already bound to the getDefaultRoleName method.

getRoleTargetKind: Java method role
This role is already bound to the getRoleTargetKind method.

isValidChildSemanticsClass: Java method role
This role is already bound to the isValidChildSemanticsClass method.

MyInstanceSemantics: Java class role
Dependencies:
/InstanceSemantics
Properties:
defaultTemplate: public class <#:roleName> extends <#:/InstanceSemantics.i.longName> { }
description: This semantics class represents a role that can be bound to a target domain entity.
taskTitle: Provide an instance semantics class
taskDescription: Provide a Java type for the role '<#:roleName>'. <p><#:description></p>

inheritance: Inheritance constraint
Dependencies:
None
Properties:
value: /InstanceSemantics.i

Constructor: Java constructor role
Dependencies:
/MyInstanceSemantics/Type
Properties:
defaultTemplate: protected <#:parent.i.shortName>(<#:/MyInstanceSemantics/Type.i.name>
t) { super(t); }
taskTitle: Provide constructor
taskDescription: Provide a Java constructor for the role '<#:roleName>'.
<p><#:description></p>

 179

getDefaultRoleName: Java method role
Dependencies:
/InstanceSemantics/getDefaultRoleName
Properties:
defaultTemplate: public String getDefaultRoleName(applause.Pattern parentRole) {

//TODO determine a default name for a new role object
return getRoleTargetKind(); }

description: Returns a default name for this semantics object. For example: "MyClass",
"method", "File", etc.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /InstanceSemantics/getDefaultRoleName.i

getRoleTargetKind: Java method role
Dependencies:
/InstanceSemantics/getRoleTargetKind
/MyInstanceSemantics/TARGET_KIND_STRING
Properties:
defaultTemplate: public String getRoleTargetKind() {

return <#:/MyInstanceSemantics/TARGET_KIND_STRING.i.name>; }
description: Returns the string that represents the "class" (or the "type" or the "kind") of the
entities this semantics represents. For example: "Java class", "source file", etc.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /InstanceSemantics/getRoleTargetKind.i

isValidChildSemanticsClass: Java method role
Dependencies:
/InstanceSemantics/isValidChildSemanticsClass
Properties:
defaultTemplate: public boolean isValidChildSemanticsClass(Class c) {

//TODO determine if the given role semantics class can be a child role of this role
if (super.isValidChildSemanticsClass(c)) { return true; } return false; }

description: Determines whether a semantics object of the given class can be declared inside
this semantics object.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /InstanceSemantics/isValidChildSemanticsClass.i

 180

TARGET_KIND_STRING: Java field role
Dependencies:
None
Properties:
defaultTemplate: public static final String TARGET_KIND_STRING; //TODO write the kind
name here, e.g., "Java method"
description: The string that represents the "class" (or the "type" or the "kind") of the entities
this semantics represents. For example: "Java class", "source file", etc.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java field for the role '<#:roleName>'. <p><#:description></p>

parseReference: Java method role
Dependencies:
/InstanceSemantics/parseReference
Properties:
defaultTemplate: protected Object parseReference() {

//TODO parse the reference string here and return the object bind to this role
String refString = getReference();
if (refString == null || getPattern() == null) { return null; } }

description: Resolves the reference string to an object. This is invoked automatically when the
reference string has been changed, the semantics object is initialized or resolveReferencedOb-
ject() is invoked explicitly.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /InstanceSemantics/parseReference.i

changingReferencedObject: Java method role
Dependencies:
/InstanceSemantics/changingReferencedObject
Properties:
defaultTemplate: protected void changingReferencedObject() {

//TODO if the old referenced object has listeners remove them here
Object o = getReferencedObject(); }

description: Invoked when the referenced object is about to change. Remove all listener rela-
tionships to the referenced object here. Note that the invocation to this method is not guaran-
teed to be immediately followed by an invocation to referencedObjectChanged().
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /InstanceSemantics/changingReferencedObject.i

referencedObjectChanged: Java method role
Dependencies:
/InstanceSemantics/referencedObjectChanged
Properties:
defaultTemplate: protected void referencedObjectChanged() {

//TODO if the new referenced object should have listeners add them here
Object o = getReferencedObject(); }

 181

description: Invoked when the referenced object has changed. The referenced object may have
been changed to some non-null object or null. Add appropriate listeners to the refereced object
(and/or the suitable context) here. Note that the invocation to this method is not guaranteed to
be immediately preceded by an invocation to changingReferencedObject().
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /InstanceSemantics/referencedObjectChanged.i

Type: Java class role
Dependencies:
None
Properties:
defaultTemplate: public static class <#:roleName> extends InstanceSemantics.Type { }
description: This inner semantics type class is used to create instances of the enclosing class.
taskTitle: Provide an instance type class
taskDescription: Provide a Java inner class for the role '<#:roleName>'.
<p><#:description></p>

getName: Java method role
Dependencies:
/MyInstanceSemantics/Type/ID_STRING
Properties:
defaultTemplate: public String getName() {

return <#:/MyInstanceSemantics/Type/ID_STRING.i.name>; }
description: Returns the unique name of the type. This is used for distinguishing
types and storing and restoring type information of semantics objects during seriali-
zation.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'.
<p><#:description></p>

createSemantics: Java method role
Dependencies:
/MyInstanceSemantics/Constructor
Properties:
defaultTemplate: public Semantics createSemantics() {

return new <#:/MyInstanceSemantics/Constructor.i.name>(this); }
description: Creates a new semantic object of this type.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'.
<p><#:description></p>

Constructor: Java constructor role
Dependencies:
None
Properties:
defaultTemplate: public <#:parent.i.shortName>(Class semanticsClass) {

super(semanticsClass); }
taskTitle: Provide constructor
taskDescription: Provide a Java constructor for the role '<#:roleName>'.
<p><#:description></p>

 182

ID_STRING: Java field role
Dependencies:
None
Properties:
defaultTemplate: public static final String ID_STRING; //TODO write the role type
name here, e.g., "Java method role"
description: The unique name of the type. This is used for distinguishing types and
storing and restoring type information of semantics objects during serialization.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java field for the role '<#:roleName>'.
<p><#:description></p>

 183

Appendix D:
Constraint Semantics Pattern Specification

The Constraint Semantics pattern was discussed in Subsection 7.2.3. The pat-
tern was outlined in Figure 38. A more detailed specification is given here.
The notation was explained in Appendix A.

ConstraintSemantics: Java class role
This role is already bound to the ConstraintSemantics class.

createHandler: Java method role
This role is already bound to the createHandler method.

isValidValue: Java method role
This role is already bound to the isValidValue method.

getDefaultRoleName: Java method role
This role is already bound to the getDefaultRoleName method.

getRoleTargetKind: Java method role
This role is already bound to the getRoleTargetKind method.

MyConstraintSemantics: Java class role
Dependencies:
/ConstraintSemantics
Properties:
defaultTemplate: public class <#:roleName> extends <#:/ConstraintSemantics.i.longName> { }
description: This semantics class represents a constraint role that establishes a constraint for its parent
role. E.g., a Java class role may have inheritance constraint.
taskTitle: Provide a class for constraint semantics
taskDescription: Provide a Java class for the role <#:roleName> <p><#:description></p>

inheritance: Inheritance constraint
Dependencies:
None
Properties:
value: /ConstraintSemantics.i

Constructor: Java constructor role
Dependencies:
/MyConstraintSemantics/Type
Properties:
defaultTemplate:

protected <#:parent.i.shortName>(<#:/MyConstraintSemantics/Type.i.name> t) {
super(t); }

taskTitle: Provide constructor
taskDescription: Provide a Java constructor for the role '<#:roleName>'.
<p><#:description></p>

 184

getDefaultRoleName: Java method role
Dependencies:
/ConstraintSemantics/getDefaultRoleName
Properties:
defaultTemplate: public String getDefaultRoleName(applause.Pattern parentRole) {

//TODO determine a default name for a new constraint role object
return getRoleTargetKind(); }

description: Returns a default name for this semantics object. For example: "MyClass",
"method", "File", etc.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /ConstraintSemantics/getDefaultRoleName.i

getRoleTargetKind: Java method role
Dependencies:
/MyConstraintSemantics/TARGET_KIND_STRING
/ConstraintSemantics/getRoleTargetKind
Properties:
defaultTemplate: public String getRoleTargetKind() {

return <#:/MyConstraintSemantics/TARGET_KIND_STRING.i.name>; }
description: Returns the string that represents the "class" (or the "type" or the "kind") of the
entities this semantics represents. For example: "Java class", "source file", etc.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /ConstraintSemantics/getRoleTargetKind.i

TARGET_KIND_STRING: Java field role
Dependencies:
None
Properties:
defaultTemplate: public static final String TARGET_KIND_STRING; //TODO write the kind
name here, e.g., "Java inheritance"
description: The string that represents the "class" (or the "type" or the "kind") of the entities
this semantics represents. For example: "Java class", "source file", etc.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java field for the role '<#:roleName>'. <p><#:description></p>

createHandler: Java method role
Dependencies:
/MyConstraintSemantics/Handler
/ConstraintSemantics/createHandler
Properties:
defaultTemplate: public applause.semantics.BindingHandler createHandler() {

return new <#:/MyConstraintSemantics/Handler.i.name>(); }
description: This method creates and returns an instance of
<#:/MyConstraintSemantics/Handler.i.name>.
taskTitle: Provide '<#:roleName>'

 185

taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /ConstraintSemantics/createHandler.i

isValidValue: Java method role
Dependencies:
/ConstraintSemantics/isValidValue
Properties:
defaultTemplate: public boolean isValidValue(String value) {

//TODO check the given value
return true; }

description: Determines whether the given string is valid for the "value" script.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /ConstraintSemantics/isValidValue.i

Type: Java class role
Dependencies:
None
Properties:
defaultTemplate: public static class <#:roleName> extends ConstraintSemantics.Type { }
description: This inner semantics type class is used to create instances of the enclosing class.
taskTitle: Provide a constraint type class
taskDescription: Provide a Java inner class for the role '<#:roleName>'.
<p><#:description></p>

getName: Java method role
Dependencies:
/MyConstraintSemantics/Type/ID_STRING
Properties:
defaultTemplate: public String getName() {

return <#:/MyConstraintSemantics/Type/ID_STRING.i.name>; }
description: Returns the unique name of the type. This is used for distinguishing
types and storing and restoring type information of semantics objects during seriali-
zation.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'.
<p><#:description></p>

createSemantics: Java method role
Dependencies:
/MyConstraintSemantics/Constructor
Properties:
defaultTemplate: public Semantics createSemantics() {

return new <#:/MyConstraintSemantics/Constructor.i.name>(this); }
description: Creates a new semantic object of this type.
taskTitle: Provide '<#:roleName>'

 186

taskDescription: Provide a Java method for the role '<#:roleName>'.
<p><#:description></p>

Constructor: Java constructor role
Dependencies:
None
Properties:
defaultTemplate: public <#:parent.i.shortName>(Class semanticsClass) {

super(semanticsClass); }
taskTitle: Provide constructor
taskDescription: Provide a Java constructor for the role '<#:roleName>'.
<p><#:description></p>

ID_STRING: Java field role
Dependencies:
None
Properties:
defaultTemplate: public static final String ID_STRING; //TODO write the role type
name here, e.g., "Java inheritance constraint"
description: The unique name of the type. This is used for distinguishing types and
storing and restoring type information of semantics objects during serialization.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java field for the role '<#:roleName>'.
<p><#:description></p>

Handler: Java class role
Dependencies:
None
Properties:
defaultTemplate: public static class <#:roleName> extends ConstraintSemantics.Handler { }
description: This handler class is used to check the constraint.
taskTitle: Provide a constraint handler class
taskDescription: Provide a Java inner class for the role '<#:roleName>'.
<p><#:description></p>

checkConstraint: Java method role
Dependencies:
None
Properties:
defaultTemplate:
public int checkConstraint(Object targetEntity, Object evaluatedValueExpression,
boolean fixConstraint, boolean showMsg) {

//TODO create a message that will be shown if the constraint is violated
String violationMsg = "";
constraintViolationMessage(violationMsg);
//TODO check if the constraint is violated, return "INVALID | FIXABLE"
//or "INVALID | UNFIXABLE" if it is
//TODO if fixConstraint is true you can try to fix the violation here
if (fixConstraint) { revalidateConstraint(); }
return VALID | FIXABLE; }

description: This method is called in order to (1) determine whether the constraint is
violated, (2) determine whether the constraint can be automatically fixed, and (3) fix
the constraint automatically.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'.
<p><#:description></p>

 187

getOwnerRoleTargetClass: Java method role
Dependencies:
None
Properties:
defaultTemplate: public Class getOwnerRoleTargetClass() { //TODO return the ele-
ment type that this constraint is associated with }
description: Returns the class of the entity that is bound to the role (i.e. Semantics)
that owns this constraint. The returned class is used when checking the constraint to
make sure that the class of the target entity is acceptable. Note that also subclasses of
the returned class are considered acceptable.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'.
<p><#:description></p>

getAcceptableValueClass: Java method role
Dependencies:
None
Properties:
defaultTemplate: public Class getAcceptableValueClass() { //TODO return the ex-
pected type of the constraint value }
description: Returns the acceptable class of the result object of evaluation of the
"value" script. Note that also the subclasses of the returned class are considered ac-
ceptable.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'.
<p><#:description></p>

cleanUp: Java method role
Dependencies:
None
Properties:
defaultTemplate: protected void cleanUp() { //TODO if you have some constraint-
specific listeners etc., remove them here

super.cleanUp(); }
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'.
<p><#:description></p>

getMyConstraintSemantics: Java method role
Dependencies:
None
Properties:
defaultTemplate: public <#:/MyConstraintSemantics.i.name>
get<#:/MyConstraintSemantics.i.name>() {

return (<#:/MyConstraintSemantics.i.name>)getSemantics(); }
description: Convenience method to return the semantics object.
taskTitle: Provide 'get<#:/MyConstraintSemantics.i.name>'
taskDescription: Provide a Java method for the role '<#:roleName>'.
<p><#:description></p>

initialize: Java method role
Dependencies:
None
Properties:
defaultTemplate: protected void initialize() { //TODO if you have some constraint-
specific listeners etc., add them here

super.initialize(); }

 188

taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'.
<p><#:description></p>

 189

Appendix E:
Semantics Wizard Pattern Specification

The Semantics Wizard pattern was discussed in Subsection 7.2.4. The pattern
was outlined in Figure 39. A more detailed specification is given here. The no-
tation was explained in Appendix A.

SemanticsWizard: Java class role
This role is already bound to the SemanticsWizard class.

getFirstWizardSheet: Java method role
This role is already bound to the getFirstWizardSheet method.

getSemanticsTypeName: Java method role
This role is already bound to the getSemanticsTypeName method.

isAutomaticlyExecutable: Java method role
This role is already bound to the isAutomaticlyExecutable method.

isAvailableFor: Java method role
This role is already bound to the isAvailableFor method.

isPostponeWizard: Java method role
This role is already bound to the isPostponeWizard method.

ApplauseWizardPage: Java class role
This role is already bound to the ApplauseWizardPage class.

performFinish: Java method role
This role is already bound to the performFinish method.

validatePage: Java method role
This role is already bound to the validatePage method.

canFinish: Java method role
This role is already bound to the canFinish method.

canFlipToNextPage: Java method role
This role is already bound to the canFlipToNextPage method.

createControl: Java method role
This role is already bound to the createControl method.

MySemantics: Java class role
Dependencies:
None
Properties:
bindingMethod: Locate Only
defaultTemplate: public class <#:roleName> { }
description: This is the role semantics for which you want to create UI
taskTitle: Locate your semantics class

 190

taskDescription: Provide a Java type for the role '<#:roleName>'. <p><#:description></p>

MyWizard: Java class role +
Dependencies:
/SemanticsWizard
/MySemantics
Properties:
defaultTemplate: public class <#:/MySemantics.i.name>Wizard implements
<#:/SemanticsWizard.i.longName> { }
description: This wizard allows the user to use your <#:/MySemantics.i.name> role type. Typically, in
the case of instance semantics, there is three different wizards: one to create a new unbound role, one to
create an element that is then bound to the role, and one to locate an existing element that is then bound
to the role. For constraint semantics you usually need a wizard to set the constraint value and a wizard
to repair the constraint.
taskTitle: Provide a new wizard for <#:/MySemantics.i.name>
taskDescription: Provide a Java type for the role '<#:roleName>'. <p><#:description></p>

inheritance: Inheritance constraint
Dependencies:
None
Properties:
value: /SemanticsWizard.i

isPostponeWizard: Java method role
Dependencies:
/SemanticsWizard/isPostponeWizard
Properties:
defaultTemplate: public boolean isPostponeWizard() { //TODO return true if this wizard is
used to create an unbound role

return false; }
description: Returns true if this wizard is used to create a pattern role that should be left un-
bound at the moment. I.e., the role in the pattern represents an issue that will be fixed later.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /SemanticsWizard/isPostponeWizard.i

getSemanticsTypeName: Java method role
Dependencies:
/SemanticsWizard/getSemanticsTypeName
Properties:
defaultTemplate: public String getSemanticsTypeName () {

return <#:/MySemantics.i.name>.Type.ID_STRING; }
description: Returns the identifying semantics type name of <#:/MySemantics.i.name>. The
wizard is associated with this kind of role semantics.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:

 191

value: /SemanticsWizard/getSemanticsTypeName.i

isAvailableFor: Java method role
Dependencies:
/SemanticsWizard/isAvailableFor
Properties:
defaultTemplate: public boolean isAvailableFor (applause.Pattern parent, ap-
plause.ChildBinding task) {

//TODO check if this wizard is available for the given parent and task
return true; }

description: Determines if this wizard is available.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /SemanticsWizard/isAvailableFor.i

isAutomaticlyExecutable: Java method role
Dependencies:
/SemanticsWizard/isAutomaticlyExecutable
Properties:
defaultTemplate: public boolean isAutomaticlyExecutable() {

//TODO check if this wizard can be performed without user interactions
return false; }

description: Returns true if this wizard can be executed automatically; there is no need for in-
teraction with the user after he/she has decided to perform this wizard.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /SemanticsWizard/isAutomaticlyExecutable.i

getFirstWizardSheet: Java method role
Dependencies:
/SemanticsWizard/getFirstWizardSheet
/MyWizardPage/Constructor
Properties:
defaultTemplate: public fi.tut.cs.practise.lib.wizard.WizardSheet getFirstWizardSheet (ap-
plause.Pattern parent, applause.ChildBinding task, applause.semantics.Semantics s) {

return new <#:/MyWizardPage/Constructor.i.name>(parent, task,
(<#:/MySemantics.i.name>)s); }
description: Creates and returns an instance of <#:/MyWizardPage.i.name>.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /SemanticsWizard/getFirstWizardSheet.i

 192

MyWizardPage: Java class role
Dependencies:
/ApplauseWizardPage
/MyWizard
Properties:
defaultTemplate: public class <#:/MyWizard.i.name>Page extends
<#:/ApplauseWizardPage.i.longName> { }
description: The UI sheet of <#:/MyWizard.i.name>. Here you shoud provide the user interface for the
wizard.
taskTitle: Provide UI sheet for <#:/MyWizard.i.name>
taskDescription: Provide a Java type for the role '<#:roleName>'. <p><#:description></p>

inheritance: Inheritance constraint
Dependencies:
None
Properties:
value: /ApplauseWizardPage.i

_semantics: Java field role
Dependencies:
None
Properties:
defaultTemplate: private <#:/MySemantics.i.longName> <#:roleName>;
description:
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java field for the role '<#:roleName>'.

_parent: Java field role
Dependencies:
None
Properties:
defaultTemplate: private applause.Pattern <#:roleName>;
description:
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java field for the role '<#:roleName>'.

_task: Java field role
Dependencies:
None
Properties:
defaultTemplate: private applause.ChildBinding <#:roleName>;
description:
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java field for the role '<#:roleName>'.

_valueField: Java field role
Dependencies:
None
Properties:
defaultTemplate: private org.eclipse.swt.widgets.Text <#:roleName>;
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java field for the role '<#:roleName>'.

 193

_nameField: Java field role
Dependencies:
None
Properties:
defaultTemplate: private org.eclipse.swt.widgets.Text <#:roleName>;
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java field for the role '<#:roleName>'.

Constructor: Java constructor role
Dependencies:
/MyWizardPage/_task
/MyWizardPage/_semantics
/MyWizardPage/_parent
Properties:
defaultTemplate: public <#:parent.i.shortName>(applause.Pattern p, applause.ChildBinding t,
<#:/MySemantics.i.longName> s) {

super(<#:/MySemantics.i.name>.Type.ID_STRING);
//TODO set title
setTitle("page title");
//TODO set more specific title, e.g., "Locate element"
setDescription("page description");
//TODO short description for this wizard page
<#:/MyWizardPage/_parent.i.name> = p;
<#:/MyWizardPage/_task.i.name> = t;
<#:/MyWizardPage/_semantics.i.name> = s; }

taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java constructor for the role '<#:roleName>'.
<p><#:description></p>

canFinish: Java method role
Dependencies:
/ApplauseWizardPage/canFinish
Properties:
defaultTemplate: public boolean canFinish() { return isPageComplete(); }
description: Checks if the finishing of the wizard can be done when this page is shown in the
wizard. The Finish button will be disabled if this method returns false.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /ApplauseWizardPage/canFinish.i

validatePage: Java method role
Dependencies:
/ApplauseWizardPage/validatePage
Properties:
defaultTemplate: public void validatePage() { // TODO setPageComplete(true); }
description: Checks if values in this page are sufficient to move to the next page or perform
the finishing. If the page is valid you must invoke setPageComplete(true) otherwise setPage-
Complete(false).
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

 194

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /ApplauseWizardPage/validatePage.i

createControl: Java method role
Dependencies:
/ApplauseWizardPage/createControl
/MyWizardPage/_nameField
/MyWizardPage/_valueField
Properties:
defaultTemplate: public void createControl(org.eclipse.swt.widgets.Composite parent) {

//TODO create more advanced user interface for your wizard page
//This is a default implementation with simple text fields to set name and value
GridLayout layout = new GridLayout();
layout.numColumns = 1;
Composite c = new Composite(parent, SWT.NONE);
c.setLayout(layout);
c.setLayoutData(new GridData(GridData.FILL_BOTH));
Label l1 = new Label(c, SWT.LEFT);
l1.setText("Name");
<#:/MyWizardPage/_nameField.i.name> = new Text(c,

SWT.SINGLE|SWT.BORDER);
<#:/MyWizardPage/_nameField.i.name>.setLayoutData(new GridData(Grid-

Data.FILL_HORIZONTAL));
<#:/MyWizardPage/_nameField.i.name>.setText("");
//TODO give default name
Label l2 = new Label(c, SWT.LEFT);
l2.setText("Value");
<#:/MyWizardPage/_valueField.i.name> = new Text(c,

SWT.SINGLE|SWT.BORDER);
<#:/MyWizardPage/_valueField.i.name>.setLayoutData(new Grid-

Data(GridData.FILL_HORIZONTAL));
<#:/MyWizardPage/_valueField.i.name>.setText("");
//TODO give default value
setControl(c); //Remember to call setControl!
validatePage(); }

description: Creates the top level control for this wizard page under the given parent compos-
ite.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /ApplauseWizardPage/createControl.i

canFlipToNextPage: Java method role
Dependencies:
/ApplauseWizardPage/canFlipToNextPage
Properties:
defaultTemplate: public boolean canFlipToNextPage() {

return false; //Usually this page is enough }
description: Returns whether the next page could be displayed.
taskTitle: Provide '<#:roleName>'

 195

taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /ApplauseWizardPage/canFlipToNextPage.i

performFinish: Java method role
Dependencies:
/ApplauseWizardPage/performFinish
Properties:
defaultTemplate: public boolean performFinish() { //TODO }
description: Performs finishing of the wizard. The wizard invokes this method if the Finish
button is pressed when this page is shown in the wizard. This method return true if the finish-
ing was succesful.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /ApplauseWizardPage/performFinish.i

locateElement: Code fragment role ?
Dependencies:
/MyWizardPage/_nameField
/MyWizardPage/_valueField
/MyWizardPage/_task
/MyWizardPage/_semantics
/MyWizardPage/_parent
Properties:
defaultTemplate: //Default implementation to bind an element to the role

String name = <#:/MyWizardPage/_nameField.i.name>.getText();
String value = <#:/MyWizardPage/_valueField.i.name>.getText();
if (name.equals("")) name = value;
//TODO check name and value and return false if there is no element to bind

to this role
ChildPattern pat =

<#:/MyWizardPage/_parent.i.name>.getAssembly().createChildPattern(<#:/MyWizar
dPage/_parent.i.name>, name, <#:/MyWizardPage/_semantics.i.name>);

<#:/MyWizardPage/_semantics.i.name>.setReference(value);
// If a task is defined, perform that task with the new pattern
if (<#:/MyWizardPage/_task.i.name> != null) {

<#:/MyWizardPage/_parent.i.name>.getAssembly().performTask(<#:/MyWizardPag
e/_task.i.name>, pat); }

return true;
description: This code fragment provides a default implementation to locate an exist-
ing element and to bind it to the role.
taskTitle: Locate an existing element and bind it to the role
taskDescription: <p><#:description></p>

unboundRole: Code fragment role ?
Dependencies:
/MyWizardPage/_nameField
/MyWizardPage/_task

 196

/MyWizardPage/_semantics
/MyWizardPage/_parent
Properties:
defaultTemplate: //Default implementation to create a new unbound role

String name = <#:/MyWizardPage/_nameField.i.name>.getText();
//TODO check that the role name is ok
ChildPattern pat =

<#:/MyWizardPage/_parent.i.name>.getAssembly().createChildPattern(<#:/MyWizar
dPage/_parent.i.name>, name, <#:/MyWizardPage/_semantics.i.name>);

//If task exists, perform that task by providing the newly created pattern to it
if (<#:/MyWizardPage/_task.i.name> != null) {

<#:/MyWizardPage/_parent.i.name>.getAssembly().performTask(<#:/MyWizardPag
e/_task.i.name>, pat); }

return true;
description: This code fragment provides a default implementation to create a new
unbound role.
taskTitle: Create a new unbound role
taskDescription: <p><#:description></p>

newConstraint: Code fragment role ?
Dependencies:
/MyWizardPage/_nameField
/MyWizardPage/_valueField
/MyWizardPage/_semantics
/MyWizardPage/_parent
Properties:
defaultTemplate: //Default implementation to create a new constraint role

String name = <#:/MyWizardPage/_nameField.i.name>.getText();
String value = <#:/MyWizardPage/_valueField.i.name>.getText();
if (name.equals("")) name = value;
//TODO check name and value and return false if the constraint cannot be

created
ChildPattern pat =

<#:/MyWizardPage/_parent.i.name>.getAssembly().createChildPattern(<#:/MyWizar
dPage/_parent.i.name>, name, <#:/MyWizardPage/_semantics.i.name>);

s = new Script(); s.setInterpreter(ScriptingUtils.getInterpreter("SXI"));
//TODO select a suitable interpreter for the value string
s.setSource(value);
<#:/MyWizardPage/_semantics.i.name>.putProperty("value", s);
return true;

description: This code fragment provides a default implementation to create a new
constraint.
taskTitle: Create a new constraint role
taskDescription: <p><#:description></p>

createElement: Code fragment role ?
Dependencies:
/MyWizardPage/_nameField
/MyWizardPage/_valueField
/MyWizardPage/_task
/MyWizardPage/_semantics
/MyWizardPage/_parent
Properties:
defaultTemplate: //Default implementation to create a new element and to bind it to
the role

String name = <#:/MyWizardPage/_nameField.i.name>.getText();
String value = <#:/MyWizardPage/_valueField.i.name>.getText();

 197

//TODO use the name and value strings to create a new element
<#:/MyWizardPage/_semantics.i.name>.setReference(value);

ChildPattern pat =
<#:/MyWizardPage/_parent.i.name>.getAssembly().createChildPattern(<#:/MyWizar
dPage/_parent.i.name>, name, <#:/MyWizardPage/_semantics.i.name>);

//If a task exists, perform that with the new pattern
if (<#:/MyWizardPage/_task.i.name> != null) {

<#:/MyWizardPage/_parent.i.name>.getAssembly().performTask(<#:/MyWizardPag
e/_task.i.name>, pat); }

return true;
description: This code fragment provides a default implementation to create a new
element and to bind it to the role.
taskTitle: Create an element and bind it to the role
taskDescription: <p><#:description></p>

 198

Appendix F:
Eclipse Plugin Pattern Specification

The Eclipse Plugin pattern was discussed in Subsection 7.2.5. The pattern was
outlined in Figure 40. A more detailed specification is given here. The nota-
tion was explained in Appendix A.

AbstractUIPlugin: Java class role
This role is already bound to the AbstractUIPlugin class.

JavaFramesPluginInitializer: Java class role
This role is already bound to the JavaFramesPluginInitializer class.

addExtensions: Java method role
This role is already bound to the addExtensions method.

addImages: Java method role
This role is already bound to the addImages method.

MyPlugin: Java class role
Dependencies:
/AbstractUIPlugin
Properties:
defaultTemplate: public class <#:roleName> extends <#:/AbstractUIPlugin.i.longName> {

private static <#:roleName> _instance = null;
public static <#:roleName> getInstance() { return _instance; }
public <#:roleName>(org.eclipse.core.runtime.IPluginDescriptor descriptor) { su-

per(descriptor); _instance = this; } }
description: This is the Eclipse plugin class.
taskTitle: Provide a plugin class
taskDescription: Provide a Java type for the role '<#:roleName>'. <p><#:description></p>

inheritance: Inheritance constraint
Dependencies:
None
Properties:
value: /AbstractUIPlugin.i

MyPluginInitializer: Java class role
Dependencies:
/MyPlugin
/JavaFramesPluginInitializer
Properties:
defaultTemplate: public class <#:/MyPlugin.i.name>Initializer extends
<#:/JavaFramesPluginInitializer.i.longName> { }
description: This class initializes the plugin.
taskTitle: Provide an initializer class for your plugin
taskDescription: Provide a Java type for the role '<#:roleName>'. <p><#:description></p>

inheritance: Inheritance constraint
Dependencies:
None
Properties:

 199

value: /JavaFramesPluginInitializer.i

addExtensions: Java method role
Dependencies:
/JavaFramesPluginInitializer/addExtensions
Properties:
defaultTemplate: public void addExtensions(fi.tut.cs.practise.root.Root r) { //TODO }
description: Add your extensions in this method.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /JavaFramesPluginInitializer/addExtensions.i

addWizardExtension: Code fragment role
Dependencies:
/MyWizardExtension
Properties:
defaultTemplate: r.addExtension(new <#:/MyWizardExtension.i.name>());
description: Each new wizard must be added to the plugin.
taskTitle: Add the <#:/MyWizardExtension.i.name> extension
taskDescription: Provide a Java code fragment for the role '<#:roleName>'.
<p><#:description></p>

addRoleTypeExtension: Code fragment role
Dependencies:
/MyRoleTypeExtension
Properties:
defaultTemplate: r.addExtension(new
<#:/MyRoleTypeExtension.i.name>.Type(<#:/MyRoleTypeExtension.i.name>.class)
);
description: Each new role type must be added to the plugin.
taskTitle: Add the <#:/MyRoleTypeExtension.i.name> extension
taskDescription: Provide a Java code fragment for the role '<#:roleName>'.

addImages: Java method role
Dependencies:
/JavaFramesPluginInitializer/addImages
Properties:
defaultTemplate: public void addImages(fi.tut.cs.practise.root.eclipse.RootPlugin r) {

//TODO add plugin-specific image resources here
<#:/MyPlugin.i.name> plugin = <#:/MyPlugin.i.name>.getInstance();
//r.addImageDescriptor(YOUR_IMAGE_ID, getImageDescriptor(plugin,

"your_image.gif")); }
description: Add your image resources in this method.
taskTitle: Provide '<#:roleName>'
taskDescription: Provide a Java method for the role '<#:roleName>'. <p><#:description></p>

overriding: Overriding constraint
Dependencies:
None
Properties:
value: /JavaFramesPluginInitializer/addImages.i

 200

MyWizardExtension: Java class role *
Dependencies:
None
Properties:
bindingMethod: Locate Only
defaultTemplate: public class <#:roleName> { }
description: This is your new wizard class.
taskTitle: Locate your new wizard
taskDescription: Provide a Java type for the role '<#:roleName>'. <p><#:description></p>

MyRoleTypeExtension: Java class role *
Dependencies:
None
Properties:
bindingMethod: Locate Only
defaultTemplate: public class <#:roleName> { }
description: This is your new role type (the semantics class that implements the role behavior).
taskTitle: Locate your new role type
taskDescription: Provide a Java type for the role '<#:roleName>'. <p><#:description></p>

PluginXML: Issue role
Dependencies:
/MyPlugin
Properties:
description: Each eclipse plugin must have a specific "plugin.xml" file. See Eclipse documentation to
create "plugin.xml" file for your plugin.
taskTitle: Create plugin.xml file
taskDescription: <p><#:description></p>

PluginDeployment: Issue role
Dependencies:
/PluginXML
Properties:
description: Finally you must deploy your plugin classes and other files under the Eclipse's plugins
folder. You should pack compiled .class files and copy the plugin.xml file and any image resources
under your plugin folder. Here is an example "psf-example.bat" file that deploys the PSF Example:

<pre>
@ECHO OFF
IF "%ECLIPSE_DIR%" == "" GOTO error
set PSFEXAMPLE_PLUGIN_DIR=fi.tut.cs.practise.jh.psfexample_1.0.0
mkdir "%ECLIPSE_DIR%\plugins\%PPSFEXAMPLE_PLUGIN_DIR%\"
jar cf "%ECLIPSE_DIR%\plugins\%PSFEXAMPLE_PLUGIN_DIR%\psfexampleplugin.jar"

-C classes\ fi\tut\cs\practise\jh\psfexample
xcopy plugin.xml "%ECLIPSE_DIR%\plugins\%PSFEXAMPLE_PLUGIN_DIR%\" /Q /Y
xcopy icons*.* "%ECLIPSE_DIR%\plugins\%PSFEXAMPLE_PLUGIN_DIR%\icons\" /Q

/Y
ECHO PSF example plugin built successfully.
GOTO end
:error ECHO Please specify Eclipse directory as an environment variable (ECLIPSE_DIR).
ECHO (PSF example plugin not built.)
:end
</pre>

taskTitle: Deploy your plugin under the Eclipse's plugins directory
taskDescription: <p><#:description></p>

 201

���������	
����

����	�
�����
�
��	���
�����	�������

�������	��������
�	��	������
���
�� �	!�"	���
#$%&�����	�������'	#��
��(

	hautamaki_nimio.pdf
	hautamaki_nimio.pdf
	Juha Hautamäki
	Pattern-Based Tool Support for Frameworks
	Towards Architecture-Oriented Software Development Environme

	hautamaki.pdf
	juha_hautamaki_phd_kansilehti.pdf
	Juha Hautamäki
	Pattern-Based Tool Support for Frameworks
	Towards Architecture-Oriented Software Development Environme

