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Abstract

Communication by speech is intrinsic for humans. Since the breakthrough of
mobile devices and wireless communication, digital transmission of speech has
become ubiquitous. Similarly distribution and storage of audio and video data
has increased rapidly. However, despite being technically capable to record and
process audio signals, only a fraction of digital systems and services are actually
able to work with spoken input, that is, to operate on the lexical content of speech.
One persistent obstacle for practical deployment of automatic speech recognition
systems is inadequate robustness against noise and other interferences, which reg-
ularly corrupt signals recorded in real-world environments.

Speech and diverse noises are both complex signals, which are not trivially
separable. Despite decades of research and a multitude of different approaches,
the problem has not been solved to a sufficient extent. Especially the mathemati-
cally ill-posed problem of separating multiple sources from a single-channel input
requires advanced models and algorithms to be solvable. One promising path is
using a composite model of long-context atoms to represent a mixture of non-
stationary sources based on their spectro-temporal behaviour. Algorithms derived
from the family of non-negative matrix factorisations have been applied to such
problems to separate and recognise individual sources like speech.

This thesis describes a set of tools developed for non-negative modelling of au-
dio spectrograms, especially involving speech and real-world noise sources. An
overview is provided to the complete framework starting from model and feature
definitions, advancing to factorisation algorithms, and finally describing differ-
ent routes for separation, enhancement, and recognition tasks. Current issues and
their potential solutions are discussed both theoretically and from a practical point
of view. The included publications describe factorisation-based recognition sys-
tems, which have been evaluated on publicly available speech corpora in order to
determine the efficiency of various separation and recognition algorithms. Sev-
eral variants and system combinations that have been proposed in literature are
also discussed. The work covers a broad span of factorisation-based system com-
ponents, which together aim at providing a practically viable solution to robust
processing and recognition of speech in everyday situations.
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Chapter 1

Introduction

1.1 Of Speech and Recognition
For humans, communication by speech is natural and so trivial that even a child
can do it. For machines, it is neither natural nor trivial. Nevertheless, in a
world where communication, and more generally all processing of information,
is turning digital, there is high request for automated systems capable of han-
dling speech. Applications of such systems include hands-free operation, speech-
controlled services, automatic transcription, and audio data mining.

Automatic speech recognition (ASR) stands for conversion of captured speech
waveforms into their linguistic content. In other words, an ASR system receives
an analogue or digital representation of sound waves as its input, and attempts to
interpret it as a sequence of lexical units conveyed by the speaker [133]. Typical
ASR problems can be characterised by recognising a sequence of words belong-
ing to a natural language. A word sequence of convenient length for processing
and interpretation is called an utterance. Multiple consecutive utterances without
artificial division between them form continuous speech. Each of these context
lengths appears frequently in speech applications and research.

1.1.1 Attributes of Speech
In addition to its lexical content, the actual waveform produced by a human
speaker incorporates further information and features, including a personal voice
profile, dialect, stress, emotion, pace and clarity, among others. These factors
become instantly apparent by attempting automatic inversion with speech synthe-
sis. If no side information is provided, the synthetic output can be expected to be
unnaturally mechanical, or simply put, inhuman.
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Figuring out the identity of a speaker forms a branch of its own, known as
speaker recognition or identification. Other speaker traits and non-lexical features
of speech are often bundled under umbrella terms prosody and paralinguistics.
Stripping such parameters and only observing the lexical content leaves us with
the problem of pure ASR. While two people reading the same utterance aloud may
produce greatly differing waveforms, ideally the ASR system should still be able
to translate both back into the same sequence of words. Therefore the defining
function of ASR is to discover the fundamental content of speech from real-world
utterances, which vary between speakers and unique instances. Although the other
characteristics of speech may not be directly relevant for this goal, the system
should be able either to take them into account or to mitigate them.

1.1.2 External Factors
Apart from variance introduced by the speaker, the observed waveform is further
altered by factors, which we can roughly split into three categories: competing
sources, the environment, and the transmission channel. The first comprises natu-
ral and artificial sound sources, ranging from wind to traffic, machinery, and com-
peting speakers, whose voice should be suppressed instead of being recognised.
While some of these sources could be considered a part of a certain environment,
here we define it as a physical location, which introduces its characteristic acous-
tic phenomena like echo, reverberation and attenuation. Again, there is potential
overlap with the channel. An acoustic path is always present until sound reaches a
recording device, but in this work the channel is defined to cover electromechan-
ical properties such as the microphone’s response, signal bandwidth, distortion,
compression, quantisation, and numerous types of transmission errors. The final
waveform received by a recognition system will be affected by all of these factors
to a lesser or greater extent.

Figure 1.1 shows an example of a scenario, where a remote ASR system is
used over a phone link in a noisy office environment. When the speech signal fi-
nally reaches the recognition system, it has already been corrupted by room echo,
noise sources, and a compressed, limited-bandwidth telephony channel. An ASR
model trained from clean, close-talking speech is likely to encounter major prob-
lems, resulting in sub-par recognition rates. Another point of view to the same
issues is given in Figure 1.2. A spectrogram of a short utterance is first shown as
a clean recording, then under room reverberation, next in stationary white noise,
and finally in non-stationary household noise containing a slamming sound, foot-
steps, and another human voice. Discovering the target speech features becomes
increasingly difficult along the amount and complexity of interferences.
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Figure 1.1: External factors contributing to real-world speech recognition. The
signal received by a remote ASR system is corrupted by competing sound sources,
room echo, and channel degradation.
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speaker 

channel

recognition
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1.1.3 Current State of Machine Listening
Already from this brief description of speech production, sound transmission, and
machine listening it becomes apparent that the signal received by an ASR system
has no trivial one-to-one correspondence to its originating lexical content. What
may appear a simple problem on a high level is in reality extremely complex
— sometimes even impossible if any of the parameters in the overall scenario
fall too far from their reasonably expectable range. Tackling the vast range of
deviations and interferences is a major challenge, which in spite of decades of
intensive research still tends to produce underwhelming results.

Although fluent machine listeners have been regularly envisioned in science
fiction and future predictions, and actual systems have been developed since the
50s, only recently they have reached somewhat plausible reliability in a limited
range of applications. Examples of ASR systems deployed for a wide audience
can nowadays be found in voice-controlled personal assistants of mobile devices,
automated captions of streamed video, in-car interfaces, instant translation, ser-
vices over telephony, and games. While such systems can already prove helpful
in many scenarios, an end user will regularly encounter recognition errors espe-
cially for casual speech and corrupted signals. 10–30% word error rates are still
observed e.g. in voice search queries, while for the very diverse source material
of online videos the failure rate may be around 50% [67].
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Figure 1.2: Corruption of a speech spectrogram by external factors. Mel-spectral
features of a short utterance are shown a) from the original close-talking recording,
b) in room reverberation, c) in 0 dB SNR white noise, and d) in 0 dB SNR non-
stationary real-world noise.
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In practice, human hearing still constitutes state of the art for general listening
tasks. This is not a complete surprise, considering how human speech produc-
tion, natural languages and hearing have evolved in conjugation for millennia to
facilitate efficient communication in a large variety of real-world environments.
The processing power and adaptivity of brain for solving recognition problems
should not be underestimated either. Human listeners also have broad knowledge
on numerous real-world topics, the actual meanings of words, and non-verbal
cues about the context, which together allow predicting the most likely message
even from partially obscured or casually spoken utterances. Generic ASR systems
lacking the same information start from deeply disadvantaged a position. For an
uninformed ASR system, the often quoted semi-heterographs “recognise speech”
and “wreck a nice beach” may appear deceivingly close, whereas for a human
listener the latter is almost certainly nonsensical and instantly rejected. Especially
in noisy environments the performance gap between human and machine listen-
ers increases rapidly, and there is major interest in bridging this gap, not only in
performance but also concerning the concepts involved in processing [150, 173].
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1.1.4 Robust Processing
Current ASR systems reach acceptable accuracy for clearly articulated speech in
good conditions. However, for widespread adoption of ASR systems for daily use
they should be able to cope with significantly larger a variety of scenarios. On one
hand, this requires better linguistic models for decoding casual utterances where
dialects, slang, informal structures and mispronunciations are commonplace. On
the other hand, higher robustness against external factors, especially competing
sources, is needed. A multitude of robust speech processing methods have been
proposed and discussed in literature. A thorough review of such methods is not
viable for inclusion in this thesis, but there are books [85, 103, 107, 193, 207] and
review articles [3, 50, 99] providing a broad overview to the field of separation,
enhancement, compensation and robust recognition techniques.

An integral problem in robust ASR is the mismatch between models and ob-
served speech. Its reduction is a recurring theme in all research directions. In the
1995 study by Gong [50], three main categories of methods were defined:

1. finding noise resistant features,
2. enhancement of noisy speech, and
3. compensation of speech models to match the noisy input.

All these directions are still prominently present in ASR research. More recently,
Li et al. presented a more detailed taxonomy of robust methods using five different
aspects for their categorisation [99].

To give a few examples of methods in each of Gong’s categories, proposed ro-
bust features include decorrelated critical band energies such as mel-frequency
cepstral coefficients (MFCCs), perceptual linear predictive (PLP) coefficients,
relative spectral (RASTA) processing, Gabor filters, cepstral mean and variance
normalisation (CMN, CVN), and strongly auditory-inspired features like power-
normalised cepstral coefficients (PNCCs) and spectro-temporal receptive fields
(STRFs) [162]. Alternatively, artificial neural networks (ANN) and especially
their deep (DNN) versions can be used for acoustic modelling [67]. Enhancement
methods include spectral subtraction (SS), noise masking, template processing,
and explicit source separation with e.g. factorisation or spatial methods. For
model compensation, parallel model combination (PMC), stereo-based piecewise
linear compensation for environments (SPLICE), vector taylor series (VTS), max-
imum likelihood linear regression (MLLR), and uncertainty processing appear in
literature [50, 99].

Regardless of other algorithm choices, the model mismatch can also be re-
duced simply by supplying matching training data, either real or artificially con-
taminated. However, at high noise levels this will result in models too wide for
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reliable recognition, thus it becomes necessary to apply an enhancing front-end
to all data. Enhancement itself is also widely used in transmission, storage and
further processing of speech, even if ASR is not involved.

The main focus of this thesis is on separation and recognition of speech from
difficult mixtures, where several competing sound sources overlap the target
speech. Unlike in many other robust schemes, few assumptions like stationarity
are made on the noise. Key concepts for achieving this goal include non-negative
matrix factorisation [12], compositional models [194], and exemplar-based meth-
ods [146], which have gained interest and produced strong results in robust speech
processing within the last decade [87, 183]. Beside overall improvement in sep-
aration and recognition accuracy, the work aims at higher adaptivity to variable
conditions and more efficient models for practically viable implementation. Pub-
lished results and independent evaluations suggest that significant progress has
been made in these areas in both standalone and combined systems.

1.1.5 Summary
To summarise this short introduction, the overall problem of real world speech
recognition with its numerous issues and contributing factors is already on a the-
oretical level more difficult than it might first appear. The vast amounts of money
and time spent on the problem with only partially acceptable results have proven
it difficult in practice too. To the fundamental question of whether we are “there
yet”, for certain tasks and conditions the answer could be a hesitant “maybe”,
while for many other scenarios it would be “no”. Nevertheless, there is a rea-
son to believe that algorithmic solutions can eventually match and even surpass
the performance of human ear and brain. This work definitely makes no claims of
such performance nor a complete solution to ASR, but it provides selected insights
to novel methods, which demonstrably improve the robustness and adaptivity of
ASR in conditions reflecting everyday situations.

1.2 Scope of the Thesis
The defining topic of this work is applying a family of spectrogram factorisa-
tion algorithms to speech data. The common goal is finding a composite model,
which represents observed mixture spectrograms as an additive combination of
more primitive speech and noise components. Because input signals are modelled
explicitly with spectro-temporal events from multiple sources, speech content and
other information can be extracted from complex mixtures of sound, which would
be beyond the capabilities of models assuming a simpler interference profile. The
work was motivated and directly follows early experiments on factorisation-based
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ASR, which appeared to produce rapid increments in recognition rates especially
for very noisy inputs [44, 190]. There is also considerable novelty in the approach
as it blurs the line between separation and recognition that have typically been per-
formed as separate steps in robust ASR systems [3]. More generally, it provides
one potential answer to the request for new paradigms in ASR research, where
more conventional routes have seen gradual improvements but no major break-
throughs, which would be welcome for expanding the scope of machine listening.

The speech processing systems of this thesis cover three broad stages:

1. selecting the features and models for sources,
2. factorisation of observed spectral data, typically noisy speech, and
3. using the factorisation output for separation and recognition.

Novel and refined methods are presented for each of these stages. Special atten-
tion is also given to model adaptivity and computational complexity, which in ear-
lier work have turned out as challenges for practical applicability of the approach
[44]. Experiments are conducted using a factorisation and recognition framework
developed at Tampere University of Technology in close collaboration with other
institutions. Results are evaluated using publicly available speech databases with
objective metrics including speech and speaker recognition accuracy, and separa-
tion quality.

1.3 Scientific Contributions
Main scientific contributions of the thesis comprise:

• Refinement and extension of mel-spectral feature spaces for higher separa-
tion and classification capability [P3, P6].

• Advancing from randomly sampled, exemplar-based speech models to
semi-random exemplars [P2], compact template models [P6], and clustered
variable-length modelling for small and medium vocabulary [P7, P8].

• Acquiring noise models from the nearby context of target utterances [P2],
directly from mixtures [P6, P8], adaptively from continuous inputs [P4],
and by learning characteristic patterns from separate training data [P8].

• Using multiple speaker-dependent speech bases for speaker recognition
[P5], closed-set identity estimation [P4], and approximation of new speak-
ers [P8].

• New factorisation algorithm variants in the context of speech recognition,
including convolutive modelling [P1], continuous input processing [P4],
semi-supervised factorisation [P6], group sparsity for multiple speaker
models [P5], and variable-length dictionaries [P7, P8].
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1.4 Recap of Included Publications
Eight publications, listed in the front matter, are included in the thesis and sum-
marised in the following list. Chronological order of publishing is mostly used
with the exception of [P7] and [P8], which are switched for better reflecting the
overall system development.

[P1] Non-negative Matrix Deconvolution in Noise Robust
Speech Recognition
Non-negative matrix deconvolution (NMD) — also known as convolutive non-
negative matrix factorisation (CNMF) — is proposed for modelling continuity
in utterances instead of previously used factorisation of independent, overlapping
windows. Although convolutive NMF had been previously demonstrated for tasks
such as two-speaker separation [158], this is the first known system performing
speech recognition via sparse classification (SC) convolutively.

[P2] Exemplar-based Recognition of Speech in Highly Variable
Noise
The paper describes a factorisation and recognition framework developed espe-
cially for 1st CHiME Challenge data [3]. Noisy speech recognition performance
is evaluated using multiple algorithm variants with the overall system submitted
as a challenge entry in a dedicated workshop. The proposed system introduces
deriving noise models solely from the neighbouring context of utterances, and
modelling speech with partially informed exemplar selection. Previously pub-
lished concepts of convolutive modelling [P1] and learnt activation-state mapping
[106] are employed in the challenge system.

[P3] Modelling Spectro-Temporal Dynamics in Factorisation-
Based Noise-Robust Automatic Speech Recognition
In this paper, mel-spectral feature spaces are studied further within the factorisa-
tion framework. First, the number of spectral bands and different band weighting
methods are compared regarding ASR quality using static spectral features. Sec-
ond, spectro-temporal dynamics are added to feature vectors by using Gabor and
delta filters. Experiments show that separation and recognition quality can be
improved by modelling temporal dynamics in NMF.
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[P4] Detection, Separation and Recognition of Speech From
Continuous Signals Using Spectral Factorisation
Whereas earlier experiments on the main framework assumed perfect knowledge
of active speakers and temporal locations of speech and noise segments, the pre-
sented system makes considerably fewer assumptions. Long inputs are processed
by estimating speech presence with NMF algorithms, and noise models are up-
dated continuously from segments appearing noise-only, that is, devoid of target
speech. Furthermore, it is compared how accurately the identity of an unknown
speaker can be estimated within a closed set, and how much accuracy is lost by
using an estimated speaker model instead of known identity. Overall, the work
aims at more realistic processing of unannotated real-world inputs, where utter-
ances and speakers may appear unpredictably, and noise models must be adapted
on the fly to match the observed noise types.

[P5] Group Sparsity for Speaker Identity Discrimination in
Factorisation-based Speech Recognition
The work extends previously published factorisation-based speech and speaker
recognition methods by introducing a group sparsity criterion for multiple
speaker-dependent models, which are used to estimate the best matching model
for unknown speakers. Even though already the earlier system managed to pro-
duce reasonably accurate identity estimates and speech model approximations,
group sparsity is found to sharpen the distribution of speaker candidates, thus
making the final model more accurate for both speech and speaker recognition in
noisy conditions.

[P6] Modelling non-stationary noise with spectral factorisation
in automatic speech recognition
The article in a “special issue on speech separation and recognition in multisource
environments” wraps up the authors’ best-performing separation and sparse clas-
sification systems on 1st CHiME Challenge data. In addition, new algorithms
are proposed for speech and noise modelling, including informed acquisition of
compact speech template models, and semi-supervised learning of noise mod-
els directly from observed mixtures. The new variants reduce model sizes and
computational complexity significantly, thus making the approach more viable
for practical implementations with limited memory and computational power.
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[P7] Acquiring Variable Length Speech Bases for
Factorisation-Based Noise Robust Speech Recognition
The paper proposes modelling speech with variable-length atoms, capable of ad-
dressing the large variance of phonetic units that appear in real-world speech.
Beside describing the variable-length factorisation model, algorithms are given
for acquiring speech bases by observing recurring units in the spectral domain,
in state transcriptions, and combining both. Speech model sizes are reduced in
comparison to the template bases introduced in [P6], while separation and classi-
fication quality is either retained or improved.

[P8] Compact Long Context Spectral Factorisation Models for
Noise Robust Recognition of Medium Vocabulary Speech
The contribution to the 2nd CHiME Challenge and workshop combines several
new methods, such as multiple speaker models, group sparsity, variable-length
modelling, and semi-supervised noise modelling. Methods are applied to the
noisy medium-vocabulary Track 2 corpus of the 2013 CHiME challenge. Com-
pared to AURORA-2 and 1st CHiME corpora, this task reflects more closely real-
world ASR problems. Proposed methods have been selected accordingly with the
goal of providing practically applicable tools for tackling such problems, includ-
ing model acquisition and computational complexity.

1.5 Organisation of the Thesis
The rest of the thesis is organised followingly. Chapter 2 introduces the funda-
mental concept of spectrogram factorisation, its motivation, and applications. An
overview is given to the model and prior work on it, especially in the context of
speech processing. Chapter 3 presents deriving feature spaces and source mod-
els, which are employed in factorisation. Actual factorisation algorithms and their
variants are discussed in Chapter 4. In Chapter 5 it is shown how the output is used
for speech recognition and related tasks via enhancement, classification, and joint
techniques. Chapter 6 summarises results from evaluations and discusses practi-
cal issues of factorisation-based recognition. Finally, conclusions and discussion
on further research topics are given in Chapter 7.
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Chapter 2

Spectrogram Factorisation

2.1 Concept and Motivation
The spectrogram factorisation algorithms covered by this thesis are based on non-
negative matrix factorisation (NMF), which is essentially an algorithm for finding
a composite model for an observed mixture using a combination of lower-level
components [194]. The main assumption is that individual sound sources have
their characteristic spectro-temporal patterns, which can be modelled with a basis
or a dictionary of features. Due to recurrence of patterns, a source can be modelled
with less overall data than e.g. the whole set of its training spectrograms. Further-
more, assuming and enforcing such structure on source models makes it viable to
separate multiple sources from a mixture with fewer channels than sources, which
would otherwise be an ill-posed problem.

A central concept in the approach is strict additivity, that is, approximating
the observation with a combination of basis components with only non-negative
weights. The motivation is that despite occasional cancellation in the time do-
main, concurrent signals are additive in the spectral domain in the expectation
sense. Especially for spectro-temporally sparse signals, where the energy of each
source is concentrated on a limited amount of spectrogram bins, the assumption of
additivity has been found to hold sufficiently well in practice too [189]. Therefore
a non-negative model yields better estimates of contained sources than allowing
negative weights so that source models could get subtracted from each other in
the spectral magnitude domain.

Another concept frequently appearing in literature of the field and in this thesis
is sparsity. Like already postulated by William of Ockham, “plurality is not to
be posited without necessity”. The principle, better known as Occam’s razor,
suggests that a simple model should be preferred over more complex alternatives.

11



Typical examples of the principle in the behaviour of real-world audio signals
include that

• sound events are localised in the spectro-temporal domain,
• characteristic patterns of a single source belong to a limited set of all possi-

ble spectrograms, and
• the number of concurrent sources in a mixture is limited.

Therefore sparsity constraints are set on the model to favour solutions, where some
or all of these assumptions are met. It will be later seen how sparse models lead
to improvements in separation and classification.

2.2 Applications
Finding a plausible estimate of the presence of underlying sources in the spectro-
temporal domain instantly facilitates constructing single-source spectrogram es-
timates or a time-varying filter picking desired sources from the mixture. An
example is shown in Figure 2.1, where a noisy spectrogram window is modelled
as a weighted sum of four speech and noise atoms, which together produce speech
and noise spectrogram estimates. The process is described in more detail in Chap-
ter 5. By reconstructing phase information not present in the spectral magnitude
domain, source estimates can be brought back into the time domain. These tech-
niques are referred to as source separation, feature enhancement (FE), and signal
enhancement (SE). In music applications, the techniques are used for selecting
or suppressing specific instruments from mixed tracks [62, 81]. In computational
audio scene analysis (CASA), sound events of interest can similarly be separated
from multi-source scenes.

In speech processing, separation stands for e.g. splitting two speakers’ voices
apart from a mixture, whereas enhancement means improving the objective qual-
ity or intelligibility of a selected voice among other sources, which together are
called noise. In practice, however, the problems are tightly related and often
solved with similar algorithms.

Although feature or signal level separation is arguably the most commonly
employed application for NMF algorithms in the context of audio signals, another
notable branch is using sparse decompositions for classification. In a sense, al-
ready the previously described separation methods function as classifiers, because
they select components belonging to single-source sets, which are then separated.
However, further information can be extracted by observing which characteristic
patterns are detected in the input and when. In the example seen in Figure 2.1, the
information for classification is derived from the weight coefficients x by exploit-
ing knowledge of audio events and phonetic patterns present in each atom.
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Figure 2.1: Approximating a noisy spectrogram window as a weighted sum of
speech and noise atoms. Finding the optimal weights x for each basis atom pro-
duces speech and noise spectrogram estimates, while also revealing more primi-
tive audio components most likely present in the observed mixture.
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In music applications, sparse and non-negative algorithms known as sparse
classification or sparse coding (SC) have been used for instrument recognition
[142], genre classification [126], and automatic transcription [6, 90, 159]. Simi-
larly in audio scene analysis sound sources can be identified by SC [15, 49, 61].
In speech processing, SC has been used for ASR [37, 44] and speaker recognition
[74, 143, 177]. These speech applications form a major topic in this thesis.

Finally, we can define a third important application for NMF algorithms,
namely model learning. In many variants of NMF, the system not only classifies
signal components, but also learns some or all of its models with a factorisation
algorithm either beforehand or online. Especially sparsity and assumption of re-
dundancy play a major role in finding compact models for potentially large source
data sets. The topic of NMF-based model learning will come up repeatedly in this
work.
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2.3 Fundamental NMF Model
The core NMF model can be summarised by equation

y ≈
L∑
l=1

alxl (2.1)

or equivalently as a matrix-vector multiplication

y ≈ Ax. (2.2)

Here y is the observation vector being modelled. It is a length B column vector,
where B is the dimensionality of our feature space. For spectrogram processing,
B is the number of spectral bands, hence the symbol choice. The observation
is approximated by a weighted sum of atom vectors al, also belonging to ℜB×1

≥0 .
Atoms are indexed by l ∈ [1, L], where L is the total number of atoms in the basis
or dictionary A (B×L). Vector x ∈ ℜL×1

≥0 contains the activation weights of each
atom. Importantly, all data vectors and weight coefficients are assumed strictly
non-negative. The estimate of observation y is denoted by ψ (or occasionally ỹ).

Only the observation vector y is always assumed externally given and thus a
constant. With no other constraints, equation (2.2) is obviously underdetermined,
because a single basis vector a = y with a trivial weight 1 will give a perfect spec-
tral estimate, and any further basis vectors would be redundant. However, under
additional constraints or in other formulations, the triviality no longer applies.

2.3.1 Matrix Form
First, the same basis is commonly used to model multiple observations. For now,
let us denote the number of observation vectors by I . The vectors are conven-
tionally gathered to an observation matrix Y ∈ ℜB×I

≥0 , and estimated by matrix
Ψ (or Ỹ) of the same size. Similarly, each observation vector will have its own
activation vector in an activation matrix X ∈ ℜL×I

≥0 so that

Y ≈ AX. (2.3)

If L < I , in a general case the problem becomes overdetermined, and solving
it will actually find a compressed approximation of Y with a reduced number of
components, potentially revealing something about its underlying structure. This
formulation is arguably the most common version of NMF and the core of the
seminal work by Lee and Seung [91, 92].
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2.3.2 Levels of Supervision
As a second constraint on the problem, parts of the basis A may be fixed. If the
content of A is wholly adapted during factorisation, the problem is called unsu-
pervised. If some of A’s vectors are fixed, we call the problem semi-supervised. If
A is completely fixed beforehand, the factorisation is called supervised. In the lat-
ter case, we try to find the best non-negative combination of given basis vectors to
approximate the observation. An exact solution exists if and only if y lies within
the cone spanned by the basis vectors with non-negative weights. Furthermore, it
can be shown that up to B atoms suffice for finding the best solution regarding the
residual [191]. Potentially, albeit rarely, (semi-)supervised variants are formulated
by fixing X and learning A. One such example can be found in [70].

2.3.3 Spectral Distance Measures
The primary target in modelling is to minimise a distance function between the
observation vector y and its estimateψ or their matrix counterparts. One common
choice is (squared) Euclidean distance,

dEuc(y,ψ) =
B∑
b=1

(yb − ψb)
2. (2.4)

However, as this measure is often dominated by the largest elements in the vectors,
it has been found more appropriate to use another measure, which emphasises dif-
ferences in small-magnitude bins. In audio spectrogram applications and also this
thesis, a common alternative is generalised Kullback-Leibler (KL) divergence,

dKL(y,ψ) =
B∑
b=1

yb log
yb
ψb

− yb + ψb. (2.5)

While not a distance function in a strict sense due to its lack of symmetry, the
measure is applicable and commonly employed in audio literature [189]. Other
alternatives have been proposed and compared e.g. in [10, 11, 30, 31, 94, 161,
211], and a comprehensive list of distance function can be found in [12].

2.3.4 Sparsity
In classification and separation applications, it is commonplace to employ sparsity
cost functions to control the structure of x or X. In sparse solutions, a majority
of total activation weight is condensed on relatively small a number of atom in-
dices with the rest being zeros or negligibly small. Sparsity is especially integral
for supervised factorisation tasks employing overcomplete bases. A distance cost
function like (2.4) or (2.5) often has infinitely many equivalent solutions, because
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any linearly dependent vectors in them are equally interchangeable to another set
of vectors, and nothing in the distance measure is limiting the complexity of the
activation pattern. Conversely, enforcing sparsity will find a small number of best
matching basis vectors to explain the observation, producing more plausible re-
sults in many separation and classification tasks according to Occam’s principle.
A small mismatch in the spectral estimate is acceptable if the underlying compos-
ite model can be simplified to better reflect the behaviour of real-world sources.

The most straightforward definition of sparsity known as the L0 norm — the
number of nonzero elements in x — could be viable, but it often leads to NP-
hard optimisation problems. Also, for our purposes the difference between strict
zero and near-zero weights is of no particular importance. More commonly the
measure is replaced with L1 norm, that is, the sum of all activation coefficients
in x, which makes the optimisation problem convex again. However, other cost
functions have been proposed for general sparsity [76] or for special purposes like
group sparsity, discussed in Section 4.3 [P5, 165].

2.3.5 Solving NMF
No closed form solution is known for finding the optimum of common NMF
problems, not even for the convex supervised case. Therefore minimisation is
performed with iterative descent algorithms, which can be found in literature for
common cost functions [12, 91, 92]. While implementations of these algorithms
do not belong to the main scope of this thesis, their behaviour must be taken into
account occasionally. From a practical point of view, a persistent issue is compu-
tational complexity, which can grow high for large data sets and iteration counts.
The problem of complexity has been tackled on one hand by developing faster de-
scent algorithms, and on the other by finding more compact models for the data.
A few lines of ongoing research on these topics are given in Chapter 6.

2.3.6 Extensions
The basic NMF model only factors single observation vectors or groups of vec-
tors, treating them as disjoint units. In audio applications, however, a lot of
information lies in temporal continuity of signals over consecutive spectrogram
frames. Thereby it is highly beneficial to extend the model to support multi-
frame spectro-temporal patterns and their correlations, e.g. by using continuity
constraints [189], a larger window size [47, 157, 158], or priors for transitions
between consecutive frames [53, 119]. These extensions are discussed in more
detail in Section 4.1. Gradually, several other priors [51] and structures [12] have
been proposed for NMF, including tensor factorisation [33], source-filter models
[192], orthogonal NMF [23], semi-negative factorisation [22], convex hull NMF
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[174], GMM priors [55] and so on. However, these and other advanced variants
are mostly beyond the scope of this brief introduction and the work covered by the
thesis. A few of these extensions are discussed later as potential future directions.

2.4 Prior Work in Speech Processing

2.4.1 Early NMF: From Music to Speech
Since its introduction, NMF has found its way into signal processing [69, 102],
then more specifically to audio via separation of music [4, 62, 152, 159, 187,
188, 195], and finally to speech applications [153]. Unlike typical music and au-
dio scenes, which are inherently composite mixtures, speech is a single-source
process and employing a factorisation algorithm might first appear unnecessary.
However, when we consider real-world applications, where overlapping speak-
ers and noise sources are the norm, it becomes highly relevant again to construct
single-source models, which are then employed in NMF to separate desired voices
from mixtures. In addition, NMF has the capability to perform sparse approxi-
mation, where a slightly differing instance of a sound is represented as a sparse
combination of nearest training instances. The large variation in casual pronun-
ciation makes it unlikely to find a perfect match to observed speech, thus joint
approximation with multiple candidates is well motivated in speech modelling.

2.4.2 Enhancement and Missing Data Masks
Early speech applications of NMF emerged in 2006, when Schmidt and Olsson
proposed applying basic NMF techniques to two-speaker separation [153]. In their
work, speaker-dependent single-frame models were learnt by factorisation of ei-
ther a set of utterances as a whole, or by segmenting the training corpus into single
phonemes. Then conventional supervised NMF with two speakers’ bases was ap-
plied to a mixture. Already here sparsity was found significant for separation per-
formance. The model was soon extended with convolutive multi-frame modelling
by Smaragdis [158]. A comprehensive study of basis parameters and separation
results was provided for two-speaker and speech-noise mixtures. Thereafter NMF
enhancement has become an established method in robust ASR [73, 118, 135,
161, 185, 203, 206, 208].

Apart from separation and enhancement, spectrogram estimates and atom ac-
tivations have been used for uncertainty mask estimation and imputation [38, 39,
44, 80] in recognition based on missing data techniques (MDT) [13, 85, 136]. In
this approach, factorisation output is used to assign a certainty measure to spectro-
gram bins, depending on how reliably they are expected to represent actual speech.
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Missing and unreliable features are either reconstructed or given reduced weight
in decoding. Several methods for estimating certainty are proposed in literature
[78, 79]. However, they are not employed in this thesis.

2.4.3 Sparse Classification
An alternative route dubbed sparse classification or sparse coding (SC) was pro-
posed for speech recognition in 2008, first for simplified single-digit [37] and
multi-digit recognition tasks [47]. In the first example, fixed-length multi-frame
feature vectors were constructed for digits by interpolation. For the multi-digit
case, a sliding window approach was introduced, modelling variable-length utter-
ances as a set of overlapping multi-frame windows. In sparse classification, each
atom is given identifiers or labels describing its content such as phones, states,
or word membership, whereafter recognition is performed by observing the acti-
vation weights of labelled atoms. Later the main approach has been extended by
frame-level labelling of atoms [190] and more advanced label learning algorithms
[70, 106]. Other applications for SC in speech processing include speaker identifi-
cation [P5, 86, 120, 143], age and gender estimation [2], speech overlap detection
[34, 186], and detection of non-linguistic vocalisations [154].

2.4.4 Exemplar Models
A prominent concept employed in compositional modelling of real-world sounds
is using exemplars as models for speech and noise [146]. Arguably the most com-
monly used approach for spectral model acquisition in NMF literature has been
learning from a training corpus using single-frame or convolutive multi-frame
models [153, 158]. These are expected to capture a compressed model of char-
acteristic patterns of speech in relatively small a number of atoms. In exemplar
modelling, atoms are sampled directly from spectrograms of a training corpus or
the neighbouring context, forming an overcomplete basis of specific instances of
acoustic patterns. The expectation is that an observed pattern can be approxi-
mated as a linear combination of exemplars representing similar events. Natural
labelling follows from the fact that each speech atom is picked from a segment of
speech, whose lexical and phonetic content is typically known.

Outside NMF, the use of exemplars or templates as classifiers goes a long
way back to the early days of ASR [18, 66, 97, 134]. Refined variants have later
been proposed by several groups [17, 21, 60, 145, 164, 166]. Compared to plain
template matching, the novelty of exemplar-based NMF lies in its additive model,
permitting joint approximation with multiple, overlapping models for one or more
sources simultaneously. Exemplar models have later found their way into speaker
recognition [143] and voice conversion [171, 210].
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Chapter 3

Features and Source Models

A fundamental stage in any recognition task is defining the features and mod-
els, which facilitate later detection and classification. This also applies to source
separation, which generally is an ill-posed problem when the number of sources
exceeds the number of input channels. Therefore its success rate heavily depends
on the source models, which form a constrained subset of all possible spectro-
temporal patterns. A well-defined model is expected to match its corresponding
source, rather than any other sounds present in the mixture. Models and observa-
tions are processed within a spectro-temporal feature space, which is defined for
the task taking into account e.g. accuracy, robustness, model size, and computa-
tional costs. This chapter describes feature spaces and model acquisition methods,
which form the basis for later factorisation steps.

3.1 Features Spaces

3.1.1 Spectrogram Representation
Digital audio signals are generally recorded as time-domain pulse-code modula-
tion (PCM) waveforms. However, in analysis of natural sounds it is commonplace
to transform the inputs into a spectral domain, where periodic components from
resonating sources, such as the vocal tract, become concentrated into spectral bins
corresponding to their frequency. A time-frequency representation, where ener-
gies of spectral bands can be observed over time is called a spectrogram. It is
most commonly acquired by Fourier analysis of short-term frames.

Especially in single-channel applications it is common to discard phase infor-
mation, which corresponds to the complex angle of spectral domain coefficients.
Only signal energy is observed, which will be invariant to the exact phase align-
ment of the originating time-domain signal. For NMF algorithms, this has the
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immediate benefit of producing strictly non-negative real values for the spectral
content of observed mixtures and basis components, which is required by stan-
dard NMF models. While most spectrogram processing like factorisation can be
conducted using absolute values of spectral coefficients, reconstructing the phase
information is still required for producing time-domain signals like enhanced
speech. These methods are discussed later in Section 5.1.

Despite gradual introduction and adoption of multi-resolution transforms like
the constant-Q transform or wavelets, a majority of spectral processing still takes
place using spectrograms derived from fixed-length frames. The temporal resolu-
tion of the system can be characterised by two parameters, frame length and frame
shift. The former defines the duration of each frame. It is set to a value where the
input can be assumed mostly stationary, which for speech may stand for 20–64
milliseconds. Frame shift is the amount of input time advanced before extracting
a new frame, and is usually set to 50% or less of frame length. The difference of
these two values is frame overlap. In this work, frame length is uniformly 25 ms
and the frame shift 10 ms, equivalently to common speech recognition back-ends
and baseline models provided for evaluation tasks [3, 183, 213]. In ASR, the 100
Hz frame rate is regularly used for capturing rapid dynamics of speech, which
helps in recognition. Conversely, longer frames are often used in signal enhance-
ment, where slower transitions reduce audible artifacts from estimation errors. A
few frame lengths seen in literature include 32 ms [197], 40 ms [135, 189] and 64
ms [137, 208] with values up to 256 ms compared in [158].

Time-domain frames are conventionally multiplied by a window function such
as Hann or Hamming window, which will reduce edge artifacts caused by cyclic
discontinuity in the following short-time Fourier transform (STFT) step. The
STFT output, after discarding angle, is called the magnitude spectrum and their
sequence over time the magnitude spectrogram. Bin-wise squaring of coefficients
produces the energy spectrum and spectrogram, correspondingly.

3.1.2 Base Spectral Features
In NMF-based audio processing, the preceding steps are typically applied quite
uniformly with differences arising mostly from input sample rate and frame length
parameters. However, from this point on, a few conceptually different paths di-
verge. The foremost choices are

1. using spectral magnitudes or energies and
2. whether to apply a filter bank or not.

The magnitude versus energy choice, in conjugation with the NMF distance mea-
sure, affects how much large energy concentrations dominate the factorisation,
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and how well the assumption of approximate additivity will hold. In this thesis’
publications, magnitude features are used according to earlier work, where spec-
tral magnitudes have been found efficient for audio separation and enhancement
tasks [44, 55, 189, 208].

More variation can be observed in filter bank use. In general purpose and mu-
sic enhancement, the STFT magnitude or energy spectrum is often used by itself,
providing the highest spectral resolution achievable for the chosen frame length.
Conversely, in speech processing it is customary to employ an auditory-motivated
filter bank such as mel, Bark or ERB compression. These nonlinear spectral band
mappings derived from critical bands of human hearing aim at capturing the for-
mants of voice at a sufficient resolution for classification, while removing exact
pitch contours produced by the speaker’s voice and prosody. In clean speech
recognition, mel features, further compressed by mel-cepstral analysis, have been
found viable for constructing speaker-independent systems robust against slight
variations in the voice profile [133].

In NMF separation systems there are arguments both for and against critical
band filter banks. Full spectral resolution will potentially yield maximal separa-
tion accuracy. However, it sets higher requirements on basis acquisition, because
there will be potentially a large mismatch between e.g. instances of phones ut-
tered at slightly different fundamental frequencies. Compressed filter bank fea-
tures cannot separate events overlapping within the same band, but they are more
robust against individual variation in articulation and external sound events. Major
savings are also achieved in memory and computation costs, because the number
of spectral bands to be processed is reduced from hundreds or even thousands to
less than 50 in typical implementations. Assuming that a majority of spectral in-
formation crucial for speech processing can be compressed into a few bands, more
resources can in turn be spent on other system parameters such as basis size.

Whereas conventional recognisers commonly employ cepstral transformation
for deriving their features, in NMF systems it is avoided due to increased viola-
tion of additivity from logarithmic compression, and the introduction of negative
coefficients from a cosine transform. Therefore the feature extraction process is
stopped after deriving the magnitudes or energies in the spectral representation
with optional reduction of spectral resolution by a filter bank.

Objective comparisons listed in Chapter 6 suggest that the proposed frame-
work employing mel-filtered magnitude features is efficient for robust ASR, com-
pared to systems with higher spectral resolution but otherwise smaller models.
Nevertheless, the trade-off between spectral resolution, model acquisition meth-
ods, and output quality should be studied further. In [P3], different flavours of
mel-spectral features were briefly investigated regarding the band count and their
weighting schemes. Other work on optimisation of purely spectral features in the
context of NMF is scarce, making it a potential topic for future research. Alter-
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native filter banks such as gammatones should also be studied. Linear prediction
based features like PLPs [63] often appearing in ASR systems cannot be ruled out
either.

3.1.3 Multi-Frame Windows
As stated in the beginning of this chapter, the success rate of underdetermined
separation depends on the system’s ability to model underlying sources discrim-
inately. Similarity of sources leads to uncertainty on the solution. The problem
arises frequently in sound separation, because there may be significant overlap in
the short-term spectral profiles of different sources.

A partial alleviation is achieved by explicitly modelling the spectro-temporal
behaviour of sources in atoms and observation windows with extended context.
While two sources may appear similar in a single pair of frames, observing their
long-term behaviour is more likely to bring out the characteristic patterns, where
the confusion no longer applies. The principle was already employed in early tem-
plate matching algorithms, and reformulated as TRAPs features in 1998 [65] and
their refined versions in 2003 [8]. Related extensions of the temporal context have
been proposed via trajectory modelling [59, 214, 217] and neural networks [9,
67, 113]. Especially deep neural networks (DNNs) have rapidly gained popularity
in alternative acoustic modelling. In a typical DNN system, the input block may
comprise 7–37 frames from the base features such as mel-filtered or PLP represen-
tation, with or without decorrelating transformation [67]. Even longer windows
have been used in neural network modelling, although it may be recommendable
to reduce the dimensionality with principal component analysis (PCA) or linear
discriminant analysis (LDA) to form the actual input layer [9].

In NMF separation, a larger window size has been proposed for both matrix
deconvolution [157, 188] and sliding window processing [47, 52]. In either algo-
rithm, a basis atom is expanded from a B × 1 vector to a B × T matrix, which
models the spectra of T consecutive frames. Note that in this work the term ‘win-
dow’ generally refers to a multi-frame spectrogram segment, even though in other
audio signal processing it often overlaps with the concept of a ‘frame’, and in
some cases such as ‘window functions’ this convention is still followed.

The amount of physical time being modelled depends on frame parameters
and window size. In this thesis’ publications, the window size ranges from 8 to
50 frames, standing for approximately 80–500 milliseconds of context. In earlier
work, 5–30 frame windows were evaluated using multiple recognition methods
[44]. Typically the best results were achieved with 200–300 ms windows, which
already capture strongly discriminative spectro-temporal patterns [P1, P6, 44].
Other multi-frame window sizes found in literature include 70 ms [185], 80 ms
[198], 176 ms [158], 224 ms [122] and 256 ms [203, 208] with results favouring
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the longer end. Increasing the size even further is obviously possible. However, it
makes the atoms highly specialised, thus requiring a large basis in order to provide
a good match to each observed instance of events. The issue naturally affects large
vocabulary recognition and diverse noise events more than e.g. small vocabulary
recognition tasks. Consequently long windows require plentiful training material,
and they increase the computational costs of factorisation. Selection of frame
and window length parameters is therefore task-dependent, and a compromise
between quality, cost, and source data factors.

In later work, using multiple window lengths in parallel [212] and a mixed-
length basis [P7] have been proposed for solving the trade-off. It is also possible to
circumvent the rigidity of atoms by using histograms [178], interpolation [37], or
HMMs [53, 115, 119]. Different temporal models are discussed concerning their
basis acquisition in this chapter, and from a factorisation viewpoint in Section 4.1.

3.1.4 Dynamic Features
Physiological studies have shown that in addition to absolute energies in spectral
bands, the human auditory system is specially sensitive to spectro-temporal dy-
namics, that is, transients of energies over time and frequency [130, 162]. There
is an emphasised response in the firing rate of nerve cells to the on- and off-
sets of tones. This behaviour is regularly modelled by augmenting static features
with time derivatives or deltas. Because improvements are commonly observed
in recognition accuracy, delta features are implemented and available in common
ASR software packages [213]. Beside first degree temporal deltas, second and
even third derivatives are commonly used to capture temporal dynamics.

However, temporal dynamics only address transients in one spectrographic
direction. Further studies on the auditory cortex have revealed specialised re-
sponses to complex spectro-temporal patterns and modulations [27, 110, 128].
Consequently there have been several attempts of finding more efficient pattern
detectors using e.g. Gabor filter banks [83, 111, 112, 218], fuzzy logic units [84],
cortical models [109], and learnt spectro-temporal filters [98]. Advanced spectro-
temporal modelling can be expected to surpass the performance of more common
static-only or delta-augmented features.

In the NMF approach, dynamic filter banks are less commonly used. One rea-
son is that filtering tends to produce both positive and negative coefficients, which
cannot be employed directly in a conventional non-negative framework. Another
reason is that long multi-frame windows already capture spectro-temporal be-
haviour of events, which is the primary argument for augmenting single-frame
features with temporal or two-dimensional filters in the first place. Moreover,
large filter banks rapidly increase the feature vector length, commonly by an or-
der or two of magnitude, making them impractical for large-scale NMF. Never-
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theless, using simple delta filters will emphasise the on- and offsets also in NMF,
thus incorporating some auditory-like processing in the system.

In [180], deltas were computed to the immediate neighbouring bins in spectral
and temporal directions. Negative values were handled by splitting the filtered
vectors into their positive and negative components. The same fundamental prin-
ciple was used in [P3], where simple Gabor and delta filters were applied to basis
and observation spectrograms. Probably due to the low resolution of mel spectra,
no significant gains were observed from filters functioning in the spectral direc-
tion. However, modelling temporal dynamics was found beneficial. A temporal
delta filter similar to common MFCC back-end processing [213] improved sep-
aration and recognition rates, hence it was also included in the best performing
exemplar system of [P6].

3.1.5 Stereo and Multi-Channel Features
For a long time, ASR research concentrated primarily on optimising the clean
speech recognition rate in monaural recordings such as telephone or single micro-
phone applications. Conversely, in last decades there has been increasing interest
toward multi-source scenarios with spatial dimensions. As multi-microphone de-
vices and recordings are gradually becoming more widespread, spatial audio pro-
cessing has become a major branch in separation and robust algorithm research.

Straightforward spatial features can be added to the basic NMF model by ex-
tracting features for each channel separately, and then concatenating the channel
vectors. This was the approach used in [P2], motivated by the 1st CHiME Chal-
lenge corpus where binaural recordings are available. However, in [P3], the im-
provements in recognition accuracy by channel concatenation were found only
marginal. In [P6] slight gains were again observed, but the difference to monau-
ral features was still minuscule. The foremost reason is that in room recordings
the channel separation in the magnitude domain is not very high to begin with,
thus magnitude-only NMF does not benefit much from observed differences. Fur-
ther issues arise from the low spectral resolution of mel features and the additive
model, which may combine events across channels arbitrarily. All in all, channel
concatenation is not very accurate for modelling stereo data. Even more cru-
cially, it fails to take into account any phase information, which has a major role
in dedicated spatial algorithms. Alternative formulations have been proposed for
magnitude-only NMF [127] and phase-sensitive complex valued NMF [123, 148,
149], also with a software implementation available [125]. As the prevalence of
multi-channel inputs in ASR grows, there is an increasing incentive to combine
these methods with other potential directions in NMF frameworks.
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3.1.6 Advanced Features and Future Directions
Although already the current multi-frame mel spectrogram features have proven
viable in separation and enhancement, there is definitely room for further im-
provement. Regarding the spectral representation itself, higher resolutions and
alternative filter banks such as gammatones or auditory-based features [101, 109,
155, 162] should be considered. Also spectral transforms similar to DCT or other
discriminatory steps might help in classification of spectrally close phones, which
currently limit the performance of sparse classification [P6]. Any feature space
based on fixed band weighting is prone to channel mismatch errors, hence com-
pensation methods have been proposed for adaptive band reweighting [43]. The
aforementioned spatial methods and robustness against reverberation are desirable
for real-world environments. For modelling of dynamics, semi-negative factori-
sation [22] may eventually become necessary in order to handle negative transient
weights properly. Finally, alternatives to explicit spectro-temporal models, e.g.
shorter units with HMMs or delta-driven features, should be studied further to al-
leviate the exponentially increasing complexity of long-context atoms. Ultimately,
feature representations must be developed in conjugation with model acquisition
and factorisation methods, which are discussed in the next sections.

3.2 Speech Models
Separation of speech from mixtures in a spectrogram domain relies on the speech
model, which is also the only model we can generally assume being available
in every scenario. Although there are several delicate factors such as individual
voice, stress and emotion affecting the exact spectro-temporal shape of speech
patterns, they still lie on a low-dimensional manifold defined by the vocal tract
and spoken languages, unlike noise events produced by a plethora of greatly dif-
fering sound sources and phenomena. Therefore we can always derive at least an
approximate model of speech for any task. Nevertheless, the complex and non-
stationary nature of human speech makes the task quite challenging compared to
e.g. modelling musical instruments, whose spectro-temporal trajectories are more
consistent. In this section, an overview is given to various speech model acquisi-
tion methods employed in NMF-based separation and enhancement.

3.2.1 Characteristics of Speech
At any given moment, the spectrum of speech can be approximated as a product of
two components. The first is excitation produced by air flowing from the lungs, ei-
ther voiced by resonating vocal folds, or unvoiced if air is flowing freely. Voiced
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excitation can be modelled as an overtone-rich sequence of harmonics charac-
terised by the fundamental frequency, typically ranging from about 85 to 180 Hz.
Unvoiced excitation has no distinct harmonic structure, thus it can be approxi-
mated as white or coloured noise. The second part is a filter envelope formed with
the vocal tract, producing the characteristic spectral shapes of vowels and conso-
nants. The envelope is relatively smooth a function, often approximated with a
low order all-poles filter. One, two or three spectral peaks known as formants can
usually be distinguished and suffice for recognising different phones.

In the temporal direction, speech is a continuously changing process, only
approximately stationary within single phones, which on average last less than
100 ms including transitions [72]. Typically another phone follows much sooner,
drastically changing the spectral shape of produced speech. The dynamics of
overall speech energy are roughly defined by syllable-length units with most of
the necessary information found within 1–7 Hz modulation frequency range, and
up to 12 Hz still helpful for comprehension [27]. In ASR, 100 Hz sampling rate is
commonly used for computing the spectrum to ensure sufficient stationarity, and
to locate areas of rapid change such as stop consonants.

In natural languages there are recurring units such as syllables, words and
complete phrases spanning hundreds of milliseconds with their frequency of ap-
pearance decreasing over unit length [140]. However, even in lexically identical
units there will be variation due to individual voice profile, intonation, speed,
stress, emotion, coarticulation, and natural fluctuations. For any single speaker
the variation will be smaller, dictated by physical and learnt attributes of speech
production. These individual factors and idiosyncrasies facilitate speaker iden-
tification and separation of a single voice from multi-talker mixtures, assuming
that an appropriate personal voice model can be acquired. The reduced pattern
space also improves ASR results in comparison to speaker-independent recogni-
tion, where e.g. the fundamental frequency, tempo and dialect introduce higher
variation to speech at all levels. Where speaker-dependent models are not viable
or desired, personal traits may be mitigated by using a lower spectral resolution,
vocal tract length normalisation (VTLN), or time warping algorithms.

3.2.2 Statistical Frame Models
A widely used representation for speech is statistical modelling of different
phones on a frame level. For example, in the default settings of HTK software
[213], mel-frequency cepstral coefficients (MFCCs) are extracted by computing
log-compressed energies from 26 mel bands in 25 ms frames with a 10 ms shift.
These are decorrelated with discrete cosine transform (DCT), whereafter the first
12 coefficients are retained, thus modelling the approximate vocal tract envelope
shape while discarding a lot of information concerning e.g. the fundamental fre-

26



quency. Delta and double-delta features are conventionally concatenated to the
static spectra to capture temporal dynamics. Finally, phones or sub-word units are
modelled statistically as Gaussian mixture model (GMM) distributions.

The statistical model is not directly applicable to NMF, where a basis atom
is a single point in the feature space instead of a distribution. Also, the log-
compression and cosine transform steps are generally skipped for retaining ap-
proximate additivity and strict non-negativity. Therefore the fundamental build-
ing block of NMF modelling is the original frame spectrum or coefficients from
a filter bank as described in Section 3.1, and statistical models are replaced by
approximation with summed or nearest spectral vectors.

3.2.3 NMF Learning of Speech
It is possible to learn speech models by applying unsupervised NMF to a corpus
of training speech. Low-rank factorisation is used to capture a compressed model
of speech spectra. Both single-frame [153] and convolutive multi-frame window
[122, 158] algorithms have been proposed for the task. The main benefit of the
approach is finding a representative model for any input data with no prior infor-
mation, annotation or assumptions other than defining the basis dimensions and
cost functions. A notable downside is that the additive NMF model may sepa-
rate units of speech both spectrally and temporally into multiple components. For
example, a phone that is characterised by a particular structure of formants may
become split into several single-formant atoms, which also activate during other
speech or noise events. Consequently the separation and classification capability
of such partial atoms is lower than for atoms which model their corresponding
speech patterns as a whole.

Models may be learnt in an unsupervised manner with the help of sparsity
criteria e.g. for two-speaker separation like was shown in [122], but the resulting
units were described only ‘phone-like’ in their appearance. Therefore a higher
level of supervision in learning is recommendable for sparse classification or
noise robust speech processing to ensure modelling of characteristic large-scale
patterns. Already in [153] some supervision was brought into the algorithm by
segmenting the training corpus into individual phonemes and learning a sepa-
rate basis for each. Phoneme-dependent bases were also used in [135]. In [203,
208], each word in the corpus was modelled separately with convolutive single-
component learning. In this approach, the resulting atoms could be considered
similar to word templates with relatively little actual learning taking place. Be-
cause there are frequently arising issues in wholly unsupervised NMF learning
of long-term patterns, in this work the preferred methods for speech modelling
are using directly sampled exemplars or generalised templates, which contain the
complete spectro-temporal profile of their originating speech pattern.
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3.2.4 Speech Exemplars and Templates
As justified in Section 3.1.3 and repeatedly observed in experiments [P1, 44, 158,
208], increasing the temporal context of speech atoms is highly beneficial for de-
tecting spectro-temporal speech patterns from complex mixtures. For separation
itself, longer context is generally better, and in related work longest matching seg-
ment search has been used for enhancement [16, 82]. In NMF, restricting factors
arise from increased complexity and uniqueness of long units, which consequently
raise computational costs and training data requirements. For small vocabulary
corpora, 200–300 ms units have been found manageable [P1, P6, 44]. In other
tasks and implementations, shorter or longer units may be preferable as a trade-
off between data, cost and quality factors.

In many ASR variants exploiting long context, exemplars or templates are
used to model speech. In this work, exemplars refer to B × T spectrogram seg-
ments sampled directly from external or previously observed data, while templates
are their generalised counterparts that still correspond to specific acoustic patterns
but no longer to single instances. However, in some other studies no such distinc-
tion is made, and the terms are used interchangeably [21, 60]. Not all exemplar
or template systems employ NMF, which is apparent already from the fact that
the general approach has been used in ASR for over 50 years [18, 66, 97, 134].
Instead, nearest or k-nearest neighbours algorithms have been used for template
matching. In many cases, dynamic time warping (DTW) is also incorporated to
the model [17, 21, 60]. In NMF-based methods, the focus is on additivity and
sparse approximation, whereas temporal flexibility is achieved with alternative
means presented in Sections 3.2.7 and 4.1.

The proposed framework originally used speech exemplars sampled randomly
from training data [44]. For the equally distributed spoken digit vocabulary of the
AURORA-2 corpus [68], random selection of exemplars was found equal or even
superior to early attempts of supervised selection. Considerably large a basis,
typically 4000 exemplars [44] or even more [40, 48] was used to model the 11-
word vocabulary.

In [P2], the exemplar acquisition process was changed slightly. In the 1st

CHiME corpus [3] based on GRID speech [14], word frequencies are not uniform
between classes, thus random sampling would allocate disproportionately many
exemplars on certain parts of the 51-word vocabulary. The proposed algorithm
first extracts a dense basis by pseudorandomly stepping through the training data,
and then reduces the basis by equalising exemplar counts between words as much
as possible. In this method, cross-word exemplars spanning over word borders
were allowed and frequent. The framework employing this exemplar model in an
optimised feature space still produced the best NMF-based enhancement results
on 1st CHiME data in 2013 [87].
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A downside of exemplar modelling is that atoms chosen from individual in-
stances of speech do not generalise well to differing pronunciations, thus allocat-
ing multiple exemplars for any given pattern is beneficial or even required [48].
Better genericity can be achieved by incorporating concepts of statistical and tem-
plate modelling to basis acquisition.

In [P6], 1st CHiME speech was alternatively modelled with templates, each
representing one state of the word-based back-end model, including its neighbour-
ing context. All word spectrograms in the training set containing the sub-word
state to be modelled were placed in a B × T window with the target state max-
imally centred, whereafter a bin-wise median was taken to form the final B × T
template. An illustration of the process is shown in [P6]. Instead of explicit mod-
elling of instances with a large amount of exemplars, the templates represent ap-
proximate spectro-temporal profiles of corresponding speech patterns.

Albeit not as accurate as the large 5000-exemplar bases, the newly acquired
bases of 250 templates were 20 times smaller, and only reduced the average recog-
nition accuracy from 86.9% to 85.2% using feature enhancement for a robust
back-end. Considering that the average accuracy for unenhanced speech was
74.7%, the quality loss was relatively small compared to the reduction in basis
size and consequently computational costs. The 20-fold reduction was simulta-
neously applied to the noise model too, hence the loss from template modelling
of speech alone should be even smaller. Larger losses were observed in sparse
classification, though, likely because the template atoms still correspond reason-
ably well to speech in general, but lose some of their classification accuracy due
to spectro-temporal blurring. Therefore they are better suited for enhancement
than direct classification. It should also be noted that in enhancement the statis-
tical back-end model that performs state evaluation still retains its full size and
complexity, whereas in SC the basis size reduction applies to all components of
spectral modelling and classification, hence greater quality losses can be expected
in final recognition results.

3.2.5 Segmentation Algorithms for Large Vocabulary
The previously discussed exemplar and template systems [P6, 44] were evaluated
on small vocabulary AURORA-2 [68] and 1st CHiME [3] corpora for simplicity
in modelling and back-end recognition. Due to their small 11 and 51 word vo-
cabularies, respectively, it is feasible to model each word, their parts, and even all
possible transitions between words using long atoms. Conversely, in real-world
applications we are ultimately interested in large vocabulary continuous speech
recognition (LVCSR), where the same algorithms are not as readily applicable
because of the exponentially increasing number of speech patterns.
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To illustrate the complexity, already in the baseline back-end of the 2nd CHiME
corpus [184] based on medium vocabulary WSJ0 speech, there are:

• 5000 words
• 39 monophones and 2 pauses
• 65561 theoretically possible triphones
• 8784 HMM triphone states after tying
• 4507 tied triphone states found in the training data

Regardless of considerable reduction of triphone models via tying of phonetically
similar forward and backward transitions, the number of different patterns already
in a very short context of one phone and its immediate neighbourhood is high for
NMF algorithms. For robustness against noise, it would be preferable to use at
least syllable-length context or even more. Clearly even rudimentary modelling of
each word with a few variants for different speakers would produce an enormous
speech basis, which would not be viable for practical purposes. For truly large
vocabulary and casual speech the outlook would be even worse.

To find an acceptable compromise between long context and manageable basis
size, in [P7] and [P8] a variable-length segmentation and clustering algorithm
was proposed. Segmentation algorithms in general attempt to find lexically or
phonetically meaningful units such as words [1, 121, 138], sub-word units, or
phones [72, 89, 129, 131, 151] from continuous speech. For robust ASR, the
primary goal of automatic segmentation is to find maximally long units while
keeping the basis size practically manageable.

In the proposed algorithm, recurring units are extracted in a decreasing order
of length, starting from the maximum atom length we want to use in factorisation.
Features are extracted from a training data set, whereafter the algorithm looks for
matching frame sequences of a chosen length. A set of matching sequences forms
a cluster, which is turned into a speech template by averaging the segment spec-
trograms. When no more clusters of defined size can be found, the window size is
decreased by one, and the search is resumed. Consequently a set of variable-length
templates is extracted down to a defined minimum length, or until a sufficient per-
centage of the training data set is covered. The resulting basis will model frequent
patterns with maximally long units, typically whole words, while more variable
segments are split into syllables or other sub-word units. A variable-length fac-
torisation algorithm is then used to find a convolutive combination of atoms that
model the target speech.

To measure the similarity of frames and segments, two data sources are used;
mel-spectral features with normalisation and augmentation with deltas, and state
sequences from utterance transcriptions and forced alignment. A weighted sum
of the two measures is also used. The methods were compared using the small
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Figure 3.1: Speech atoms from different acquisition algorithms: a) exemplar sam-
pling, b) fixed-length template modelling, c) variable-length template modelling.
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1st CHiME vocabulary, all of them achieving reduction in model size compared
to the earlier fixed-length template model, while enhancement and classification
quality remained the same or even improved [P7]. For medium vocabulary, small
speaker-dependent bases were learnt and used in [P8] for speaker approximation
and modelling with a combination of multiple bases. Initial results suggest that
variable-length learning is indeed feasible for LVCSR using NMF, although fur-
ther performance analysis of various novel system components is still needed.

The output of proposed exemplar and template modelling methods is com-
pared in Figure 3.1. Exemplars shown on the first row capture very specific
spectro-temporal instances of speech. Averaged template models on the second
row display smoother features, which generalise better but are less accurate for
classification. On the third row, variable-length templates are shown.

3.2.6 Atom Labelling
For sparse classification, speech atoms are given label matrices, which denote
the state content of atoms and thus facilitate decoding estimated state likelihoods
over target utterances. For large exemplar bases, where the atoms explicitly model
their originating spectrograms, sufficiently accurate labels can be obtained simply
by storing the corresponding state sequences of the source utterances [P6, 44].
For compact template bases and other indirect basis acquisition methods, strict
similarity to originating utterances is lost, hence better labelling has been achieved
by employing learning algorithms [70, 106]. These are discussed in Chapter 5.
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3.2.7 Alternative Speech Models for NMF
While in this thesis’ work exemplar and template spectrogram bases are used to
model speech, other variants have also been proposed for NMF systems. In works
by Van hamme et al., histograms of acoustic co-occurrences (HACs) are used
to compress vector-quantised frame features of variable-length words into single
histogram vectors [25, 178]. In [37], single-word utterances are time-warped with
interpolation to fixed window length. In [212], multiple factorisations are con-
ducted with speech bases of different atom lengths, whereafter an optimal path
across all factorisation results is calculated with dynamic programming. In [7],
a generic speech basis is initialised for convolutive modelling and permitted to
adapt to a new speaker with a penalty term on its divergence from the original
model. Finally, in HMM-based variants, some or all of atoms’ rigid temporal con-
text is replaced with transition probabilities, potentially making the system more
flexible regarding slight variations in the pace of pronunciation [46, 53, 115, 119].

3.3 Noise Models

3.3.1 About Noise and Its Handling
Speech models alone suffice for separation of concurrent speakers, but in every-
day ASR there are practically always noise sources present both in single- and
multi-talker scenarios. In reality, very few general assumptions can be made
about noise. Even restricting the definition to additive noise sources — omit-
ting reverberation, the acoustic environment, and channel errors — still leaves
us with almost an endless range of noise types. They may be strongly localised
spectrally (e.g. static tones) or temporally (impact events), wideband (wind, traf-
fic etc.), or complex patterns all the way to competing speech and babble, which
obviously appear very similar to target speech. Noise levels can also vary greatly
and change rapidly. This enormous variety makes robust ASR a difficult problem
with no straightforward solutions.

Recalling the rough categorisation given in Section 1.1.4, robust algorithms
can be split into three groups. First, we can try to make the system overall more
sensitive to speech and robust against deviations without making assumptions on
the exact noise types. For example, auditory features [101, 109, 162] and normali-
sation methods [181] fall into this category. However, regardless of representation,
high levels of noise will introduce increasing variance and unreliability to the fea-
tures, making the recognition fail due to model mismatch. Therefore in difficult
noise conditions it becomes necessary to model noise explicitly in order to en-
hance the input signal, or to adjust the back-end models accordingly [99, 193]. In
this section, noise modelling is discussed from the viewpoint of NMF algorithms.
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3.3.2 NMF Models for Noise
The NMF framework presented in this work is in particular a viable tool for ex-
plicit noise modelling, thanks to its ability to represent an unlimited amount of
overlapping sound sources and audio event types, including highly non-stationary
noise [99]. Nevertheless, its performance is strongly dependent on the accuracy of
noise models [44].

Many of the methods proposed for modelling speech in Section 3.2 are more or
less directly applicable to noise as well. A few notable differences arise from cer-
tain characteristics of noise and availability of data. First, the greater diversity of
noise events requires either a comprehensive noise dictionary or strong adaptivity
to the current environment. Second, noise sources are regularly overlapping with
each other, unlike target speech which can generally be assumed a single-source
process. Third, the amount of available and matching noise training material may
range from plentiful to inexistent. Whereas for speech at least an approximately
matching model can be taken for granted, in noise modelling there is a pressing
need for an accurate model, yet fewer guarantees of conveniently available and
suitable training data.

3.3.3 Exemplar Sampling
The first versions of the proposed framework were strictly supervised, utilising
exemplar bases sampled form separate training data [42, 44]. In the AURORA-2
corpus employed, noise training material is available for types corresponding to
the test set ‘A’, comprising four environments — subway, car, babble and exhibi-
tion hall. Conversely, the environments in test set ‘B’ — restaurant, street, airport,
train station — are new, that is, not present in training material [68]. Already in
this limited test scenario the significance of model mismatch is clearly visible.
The experiments using noise exemplars sampled randomly from the training cor-
pus strongly favoured test set ‘A’, where the noise types match [P1, 42, 44]. The
increased temporal context that ideally improves separation of matching data may
correspondingly turn detrimental, when the highly specialised atoms no longer
model noise patterns encountered in new conditions.

In practice, only in a limited set of applications it is realistic to assume that a
matching noise model can be obtained and fixed beforehand. Also, trying to cover
maximally many types of noise with a large basis has its drawbacks. Apart from
obvious costs of increased memory use and computational complexity, carrying
too many noise atoms in factorisation increases the risk of occasional confusion
with speech due to partial overlap in spectro-temporal patterns. Ideally, our noise
model should cover the actually observed events but nothing else for maximal
efficiency and a minimal chance of confusion.
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Exemplar sampling can be improved, data permitting, by exploiting the con-
text of target utterances. Typically speech is not throughout continuous, not even
in so-called LVCSR. During moments of speech inactivity it is possible to observe
the background noise instead, and to update the noise model. An early version
of the approach was proposed in [41], utilising the very first and last frames of
AURORA-2 target utterances under an assumption that in those frames speech is
not present at all or its energy is low. In later work conducted on the 1st CHiME
corpus, neighbouring context has been extensively exploited, facilitated by the
data set where target utterances are embedded in long noisy sessions at irregular
intervals. Already in the first challenge system a noise basis was extracted for
each utterance individually by sampling the context forward and backward with a
pseudorandom step size [P2]. In [P6] and [35], the same main algorithm was used
for the best performing systems. However, in [P6] and later [P7], sparser sampling
and less context was used for more compact models, reducing the computational
costs by 20 times. Whereas all these experiments exploited perfect knowledge
of utterance positions and sampled strictly noise-only segments, in [P4] an alter-
native system based on voice activity detection (VAD) was proposed for locating
and sampling background noise, potentially making the overall framework more
viable for online and real-time applications. The method is presented in more
detail in Section 5.5.2.

3.3.4 Unsupervised Basis Learning
Despite its flexibility and accuracy in a favourable case, exemplar sampling is
not without its problems. Especially random sampling of large segments is prone
to capturing redundant, insignificant or low-energy events. Partial alleviations
were proposed in [P4], where energy thresholding was used to skip near-silent
segments in sampling. Continuous basis updating with pruning of least activated
atoms ensured that no unused noise features remained in the basis. Still, one
further problem arises from the fact that multiple noise events may overlap, and an
exemplar sampled from one co-occurrence will not match another combination of
events, nor the single-source components alone. Whereas in speech modelling the
single-source nature of speech was posed as an argument against NMF learning,
in noise modelling the opposite may be justified instead.

Whenever a noise-only segment is located in training data or in the local con-
text, NMF learning can be employed instead of exemplar sampling to find charac-
teristic noise patterns from the segment. As in other unsupervised learning tasks, a
low number of components and optional sparsity constraints act as restricting fac-
tors to prevent overlearning and fragmentation of patterns. In [205, 206], single-
frame NMF with temporal regularisation was used for learning noise bases from
training data. In [185], noise bases were learnt with NMD algorithms from sepa-
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rate training data and the context. In [203], NMD learning was applied to general
training data, while the local context was modelled with exemplars. In [P8], a part
of the noise model was learnt from training data, again using NMD.

Because NMF algorithms become computationally burdensome for large cor-
pora, typically the training data is segmented and sometimes reduced before ap-
plying NMD [P8, 203, 208]. In [202], a two-stage learning process was proposed.
In this variant, manageably sized blocks are factored first, whereafter the learnt
bases are concatenated and factored again to remove redundancy across blocks.
An online learning algorithm has also been proposed in [185, 197] to reduce the
complexity of large learning tasks.

3.3.5 Semi-Supervised Factorisation
As pointed out in this chapter, the general features of speech are reasonably
predictable, thus at least a rudimentary model for it can be assumed to exist.
Meanwhile, the variance in noise patterns is far greater, and there is no univer-
sal guarantee of a matching training corpus or even local context. Even in other-
wise favourable cases, there is always a chance that completely new noise events
are only observed overlapping the target speech. These issues motivate semi-
supervised factorisation, which has been proposed by several authors [115, 165,
202]. The fundamental idea is deriving a fixed speech basis in advance, but adapt-
ing some or all of the noise atoms on the fly.

Using the simple NMF model given in Equation (2.3), let us divide the basis
and activations into speech and noise halves, denoted by s and n superscripts,
respectively. The model becomes

Y ≈
[
As An

] [Xs

Xn

]
, (3.1)

where only As is fixed while An and both activation matrices X are updated during
minimisation of the cost function. The noise basis can be split further into fixed
and adaptive parts to combine known and online-adapted noise models.

Similarly to speech and offline noise basis learning, semi-supervised factori-
sation algorithms have been proposed employing single-frame atoms [118, 200,
202], HMMs with regularisation [115], multiple speech bases with an adaptive
noise model [165], and a convolutive model [P6, 7]. In [P4], a combination of
context-sampled and wholly adaptive noise atoms was used for modelling evolv-
ing noise conditions in continuous inputs. In [P8], noise atoms were learnt using
NMD over an extended span containing both pure noise and mixed-content seg-
ments, and also in combination with a fixed noise basis.

However, online adaptation of noise models from mixtures bears a risk that the
learnt atoms also capture speech features. As an extreme example, given a matrix
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Y containing noisy speech, the model described in Equation (3.1) may lead to a
solution of the form

Y ≈
[
As Ân

] [ 0

X̂n

]
, (3.2)

where Ân contains the features of both As and An, and X̂n changes accordingly.
That is, the adapted noise basis models not only actual noise but also the over-
lapping speech features. Crucially, in a sparse model this solution may have a
lower cost than the correct speech-noise activation pattern that employs the actual
speech atoms. Even if the loss of speech features is not complete, overadapta-
tion will harm enhancement and classification, because the characteristic spectral
profiles of phones become corrupted.

In [P6], semi-supervised factorisation produced uniform improvements in
recognition of 1st CHiME speech using both feature enhancement and sparse
classification based methods. Conversely, in the experiments on 2nd CHiME
Challenge data derived from more complex WSJ speech, greater uncertainty
was observed even in semi-supervised factorisation exploiting the noise context.
Incorporating a separate fixed noise basis was found to improve the results sig-
nificantly [P8]. There is ongoing research trying to address the trade-off between
adaptivity and overmodelling of noise in the semi-supervised approach. Defining
priors on the noise models and tuning of the sparsity parameters are some of the
tools to be considered for reducing overadaptation.

3.3.6 Combinations and Further Alternatives
The NMF approach as a whole is quite flexible concerning the levels of supervi-
sion and their combinations even within a single factorisation task. It is entirely
feasible to use fixed exemplars and learnt atoms from offline acquisition, while
also adapting a part of the basis in a semi-supervised manner. Examples of these
combinations can be found in [P4, P8, 203]. In [41], artificial noise atoms consist-
ing of single-band features in multi-frame windows were used to capture station-
ary noise features. In [77], a traditional stationary noise model was integrated into
an NMF framework. There are also preliminary results on combining additive
noise modelling with compensation of channel mismatch [43].

The whole set of tools comprising exemplars, learnt atoms, synthetic models,
online adaptation, priors, deconvolution, channel compensation, and spatial meth-
ods provides plenty of options and potential paths for addressing the challenges of
real world noise. Arguably the greatest current open issue is finding an efficient
combination of algorithms and parameters, which would be generally applicable
to the great variety of everyday conditions and recognition tasks.
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Chapter 4

Factorisation Algorithms

In the very centre of the systems presented in this thesis is the factorisation pro-
cess. As its inputs it takes the observation spectrogram, complete or partial source
models, and parameters for factorisation. The output comprises primarily activa-
tion weights, which are used for classification, spectrogram estimation, and en-
hancement. Sometimes learnt basis atoms are the main or supplementary output.

The role of factorisation depends on how it is viewed. As a stage in the overall
task it is undoubtedly integral. On the other hand, it could be argued that factori-
sation itself is a trivial computational step, which produces results already defined
by the models and parameters. However, the lack of closed form solutions for typ-
ical NMF problems means that solving large factorisation tasks is far from trivial
regarding practical resources and algorithm choices.

Instead of repeating mathematical or numeric implementations of NMF algo-
rithms, which are better detailed in literature [12] and briefly discussed in Chap-
ter 6, this chapter describes different variants of NMF, especially in the context
of audio spectrograms and multi-source separation tasks. It is shown how the
spectro-temporal behaviour of speech and noise favours certain algorithms and
modelling methods. Later in the chapter, algorithms for handling multiple source
models and their grouping are discussed.

4.1 Temporal Continuity
Whereas many NMF applications concern factorisation of data sets consisting of
multiple independent data points, a defining feature of spectrogram factorisation
is that common sound sources bear strong temporal connectivity, i.e. an audio
event forms a spectro-temporal pattern over a time span, which may range from
fractions of a second upward with no upper limit. In a frame-based spectrogram
representation, an event typically comprises multiple frames with more or less
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evolving behaviour over time. Assuming that a sequence of spectral feature vec-
tors y1,y2, . . . ,yn has already been observed, they set a strong prior for yn+1,
defined by the characteristic trajectories of sources. Similarly the content of a cor-
rupted vector yi in the middle of a sequence can be predicted from its neighbours,
even if the same problem would be unsolvable for isolated vectors.

In multi-source scenarios, spectro-temporal events will regularly overlap each
other, forming a continuous mixture of patterns, each following its own trajec-
tory. We refer to this behaviour as temporal continuity for short. NMF algorithms
favouring general continuity in audio spectrograms were proposed already in 2003
[187, 189] with quality improvements observed in music applications. However,
speech and dynamic noise sources do not remain as stationary over time as instru-
ments, thus another set of algorithms is desirable for robust speech processing.

4.1.1 Single-Frame Separation
The simplest approach to spectral separation is deriving the source models and
observation vectors from single frames, treating them as unordered sets with no
explicit continuity. In other words, a random permutation could be performed on
the columns of observation spectrograms with no other effect than the same per-
mutation taking place in activations. This is also how early speech separation ex-
amples [153] and other studies in audio separation [62, 159, 195] were presented.
Obviously such an algorithm does not address continuity at all, regularly leading
into ill-posed problems when similar-appearing sources must be separated from
individual frames without context. Slight improvements can be achieved with
the previously mentioned continuity criteria [187, 189] treating the difference in
activation weights between consecutive frames as another objective to be min-
imised, by inter-frame regularisation [205], forward-backward smoothing [114],
or by including delta features in the frame vectors as described in Section 3.1.4.
Nevertheless, audio events and temporal correlations in speech span significantly
longer durations than what can be modelled with frame vectors even with aug-
mentation [140]. More generally, the non-stationary nature of speech and many
noise sources eventually favours more explicit modelling of long-term patterns.

4.1.2 Multi-Frame Windows
A common method to incorporate more context into NMF models is to extend
the models and observation periods from single frames to multi-frame windows
as described in Section 3.1.3. In sliding window factorisation, atoms and obser-
vation windows comprise T consecutive frames in the spectral feature space of
B bands. These are reshaped into TB × 1 vectors, whereafter such multi-frame
feature vectors can be treated equivalently to their single-frame counterparts, only
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with a longer context explicitly captured in them [44]. In the factorisation stage,
overlapping windows are extracted from the observation spectrogram, hence the
‘sliding window’ nomenclature. The overlap produces several independent esti-
mates for frames appearing in multiple windows, which are typically averaged
in later processing. The sliding window method was proposed in [47], and used
repeatedly in experiments on AURORA-2 data e.g. in [44, 48] and also for 1st

CHiME Challenge data in [P2, P3, P6].
From a computational point of view, especially the supervised version of the

method is easy to implement as it effectively falls under the basic feature vector
model of NMF. Regarding computational costs, data matrix sizes and factorisation
complexity increase approximately linearly to window length T , assuming that
the sampling interval remains the same, i.e. 1-frame step is used in extracting
the observation windows. Whereas in single-frame factorisation of a length Tutt
utterance the dimensions of matrices in equation Y ≈ AX are B × Tutt, B × L
and L×Tutt, respectively, in sliding window factorisation they become TB×W ,
TB × L and L × W , where W = Tutt − T + 1 is the number of factorisation
windows. Observation vectors can still be factored independently with parallel
or distributed computing. Temporal connectivity modelled by the method takes
place within atoms and windows, but not explicitly for any longer periods in the
observation.

All in all, the sliding window approach is a simple and reliable way to extend
the temporal context of spectrogram factorisation. However, one of its foremost
problems is its strict dependence on temporal alignment of events. Let us illustrate
the matter with an example, where a basis atom perfectly models the events found
in observation frames 1 . . . T . In the next window, covering observation frames
2 . . . T + 1, the features have shifted by one column. The previously used atom
no longer matches accurately, despite that most of the patterns in the observation
window remain the same, only with a 1-frame shift. Around a window where an
atom matches the observation, there are T − 1 partially overlapping windows to
both directions, which would require shifted variants of the same atom. Thereby
up to 1 + 2(T − 1) = 2T − 1 different atoms, each corresponding to a differ-
ent temporal alignment, would be needed for perfect representation. If the basis
falls short of these requirements, estimation will be inaccurate in observation win-
dows where a correctly aligned atom cannot be found. Although averaging over
multiple overlapping window estimates will reduce the severity of the issue, the
temporal model is fundamentally inflexible. The problem carries over to semi-
and unsupervised modelling, where atoms should be learnt online. NMF learning
generally relies on finding a low-rank model, which contradicts with the sliding
window model’s preference for multiple shifted variants of each event. For these
reasons, the method appears best suited for supervised factorisation with an over-
complete basis, while other scenarios may favour the convolutive version.
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4.1.3 Convolutive Modelling
Convolutive non-negative matrix factorisation (CNMF), in this work referred to
as non-negative matrix deconvolution (NMD), is an alternative model for repre-
senting observations consisting of temporally connected events [152, 157, 188].
In fact, it was proposed for speech applications even earlier than the sliding win-
dow method with examples on two-speaker separation and speech denoising [122,
158]. Complete evaluations on noise robust ASR via enhancement and sparse clas-
sification were presented in 2011 [P1, 185, 203], whereafter the method has been
widely used and extended in speech applications [P5, P8, 34, 186, 208, 210].

In many respects, NMD bears high similarity to sliding window processing.
In both approaches the basis consists of length T atoms, which are activated over
time to model the observation spectrogram with extended context. The crucial
difference arises from interpretation of activations concerning the spectrogram
estimation. In sliding window NMF, each window is considered a separate factori-
sation task and processed independently of its neighbours even when the windows
overlap. In NMD, the estimated observation Ψ is calculated convolutively over
all time indices, thus the activations jointly produce a single length Tutt estimate,
which is the sum of all atom spectrograms emitted by timed activations.

Mathematically, the model can be presented in an intuitive manner as

Ψ =
L∑
l=1

W∑
w=1

(xl,w
→(w−1)

Al ), (4.1)

where index l ∈ [1, L] is used for atoms and w for windows from 1 to W ≤ Tutt.
Scalar xl,w is the corresponding activation weight, Al is the B×T spectrogram of
atom l, and operator → shifts it right by w− 1 columns in a B×Tutt zero-padded
matrix. In other words, the overall estimate is a sum of single-atom estimates, each
consisting of a sum of atom spectrograms weighted and time-shifted according to
the activation pattern. This approach is illustrated in the first half of Figure 4.1,
where two 3× 3 atoms and a 2× 3 activation matrix produce a 3× 5 spectrogram.
Three non-zero activations and corresponding shift operations take place.

However, for practical efficiency, the same equation is conventionally given as

Ψ =
T∑
t=1

At

→(t−1)

X , (4.2)

where t indexes atom frames from 1 to T , At is a B × L matrix containing tth

frame vectors of all atoms, and → shifts the L × W activation matrix right by
t− 1 columns in a L× Tutt zero-padded matrix. An illustration for the same data
as in the previous example is seen in the second half of Figure 4.1. Three At

matrices multiplied by shifted X form the partial estimates and finally the same
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Figure 4.1: The convolutive model and its computation. Two 3×3 atoms (colour-
coded for clarity) and a 2 × 3 activation matrix produce a 3 × 5 spectrogram in
the non-truncating convention. In algorithm a), atoms are shifted and weighted
for each non-zero activation. In algorithm b), atom-frame matrices are multiplied
by the shifted activation matrix for each t value. Both produce the same output.
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result as in the first approach. This reformulation is often preferred, because it
reduces the computation to a single loop with only one matrix shift per step, and
T is typically the shortest dimension for actual basis arrays. Most operations are
performed with large matrix multiplications, which are usually well optimised
and suitable for parallelisation. Iterative update rules for solving the basis and
activation matrices are given for different cost terms in literature [12, 158].

There are two popular choices for the maximum temporal index W for activa-
tions. If we set it to Tutt − T + 1, all atom spectrograms produced by activations
will fit entirely in the estimated observation matrix, similarly to the sliding win-
dow convention of only extracting full windows from Y. If it is set to Tutt, the
last T − 1 activations will produce truncated atom spectrograms, but the temporal
dimensions of Y and X will match. For compatibility with earlier sliding window
work and convenient simplifications in computation, this work uses the former
convention, although the latter also appears often in other work [12, 158].

In typical cases, the activation pattern produced by NMD will be considerably
sparser than the corresponding sliding window activation output. The reason is
that a single NMD activation may model a complete length T event in the esti-
mated observation spectrogram, hence the neighbouring activation indices can be
empty. In sliding window NMF, overlapping windows are factored independently,
and they all contain spectral features which must be modelled separately with ac-
tivations, thus producing approximately T times more overall activation weights
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and a smoother activity pattern across consecutive windows. The same behaviour
also makes NMD more time invariant. Fewer temporal alignments of events are
required in the basis, because the algorithm will find a sparse set of best fitting
temporal positions for activations across the whole observation.

Although the fundamental complexity class of solving NMD is equivalent to
sliding window factorisation of the same size, its textbook implementations in-
volve looping over at least one dimension of a 3-D basis array, followed by sum-
ming with matrix shifts, eventually making it slower in practice. However, op-
timised versions for parallel computing are being developed, and the complexity
gap is narrowing down, especially considering the potentially smaller NMD bases.

In robust ASR, results from comparisons of the two temporal models are still
inconclusive. In [180], convolutive modelling was rejected due to its higher com-
putational costs and worse performance in robust pattern learning. In [P1], NMD
was found to perform mostly better than sliding window NMF in small vocab-
ulary SC with identical speech and noise bases, although in mismatching noise
conditions its performance deteriorated more heavily. In [P2], the sliding window
method performed better for the 1st CHiME data using large exemplar bases, thus
it was later used in [P3] and [P6]. However, in [P6] NMD was in turn found better
for separation with small speech and noise bases. In [51], NMD performed better
than single-frame separation with post-smoothing but worse than sliding window
factorisation, measured by computational metrics in speech-music separation.

These results suggest that the sliding window approach may be more robust
especially in mismatching noise conditions due to its averaging over multiple es-
timates, when large enough bases can be used to provide sufficiently many vari-
ants for different temporal alignments. Conversely, the sparse activation pattern
of NMD may produce more misclassifications in mismatched modelling, but its
temporal invariance is more efficient for compact modelling of diverse speech and
noise patterns. Moreover, NMD facilitates advanced techniques such as unsuper-
vised or semi-supervised learning and variable length modelling. For now, both
models should still be studied further, because results of comparisons are not con-
clusive yet. Ultimately the output quality depends on several factors such as the
separation task, basis size, and factorisation parameters.

4.1.4 Variable Unit Length
As pointed out in Sections 3.1.3 and 3.2.5, speech consists of diverse units, whose
duration and rate of occurrence vary considerably. Obviously the same also ap-
plies to noise. There is thus motivation for modelling variable-length acoustic
units, which can also be acquired by segmenting and learning algorithms.

Earlier work aiming at variable-length modelling with NMF or templates in-
cludes interpolation to fixed-length arrays [37], using histograms of quantised data
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points [139, 178], and variable-length templates for latent perceptual mapping
[164]. Longest matching segment search has been used for dereverberation [82]
and robust ASR [16].

Commonly presented NMF and NMD algorithms only operate on fixed-length
units. However, explicit modelling with varying atom length is also possible, al-
beit only recently applied to speech processing. Sliding window processing effec-
tively requires fixed-length units in any single factorisation task. In [212], multiple
factorisation passes are conducted with different atom lengths, and a search algo-
rithm is used to find the best matching lexical sequence across factorisations. The
requirement for fixed window and atom length does not apply to NMD, though,
because its observation estimate Ψ is a single array of atom spectrograms acti-
vated over time, permitting any combination of atom lengths.

In [196], a variable-length NMD model and preliminary speech separation
results were presented. The implementation is relatively straightforward. Starting
from the estimation model of Equations (4.1) and (4.2), we introduce variable
atom length Tl depending on the atom index l. Slight rearrangement results in
formulation

Ψ =
L∑
l=1

Tl∑
t=1

Al,t

→(t−1)

Xl , (4.3)

where Al,t is the tth frame column of atom l, and Xl is the lth row of the activation
matrix. Similarly to fixed-length NMD, activation time indices may be permitted
up to atom-dependent Wl = Tutt − Tl + 1 or Tutt, depending on whether partially
fitting activations are permitted. Atom lengths Tl ideally correspond to the du-
rations of modelled events. In an informed case it may be possible to define the
distribution beforehand. However, real-world audio material is more likely to call
for data-driven methods like incremental search [196] or algorithmic segmenta-
tion of a training corpus [P7, P8].

Variable-length speech models were used for small vocabulary in [P7] and
for medium vocabulary in [P8]. Preliminary results suggest that more efficient
modelling is indeed possible by adjusting the unit length according to the content
of speech patterns. Also, longer units can be included in the basis than would
be viable in fixed-length modelling. The approach as a whole is still in an early
stage. As future research topics, better segmentation algorithms and variable-
length noise atoms should be studied for improved modelling and robustness.

4.1.5 Hidden Markov Models
A persistent problem in long-context atom modelling using exemplars, templates,
or other acquisition methods is that atoms are rigid units of considerable length,
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whereas real speech and noise features often vary slightly in their pace and dura-
tion. Therefore e.g. an exemplar sampled from one speech instance may differ
in its temporal behaviour from another observed instance, even from the same
speaker. In common ASR systems, speech is modelled with short-time feature
vectors controlled by a hidden Markov model (HMM) for representing the likeli-
hoods of advancing from one linguistic state to another. In a conventional HMM,
the time spent in any state is not a constant but an exponentially decaying distribu-
tion of probabilities. Several different transitions may also be permitted, making
the model more flexible regarding phone durations and acoustic trajectories.

The HMM approach is actually viable for NMF frameworks as well, and it
has been demonstrated several times in literature. Initial versions evolved from
factorial scaled HMMs (FS-HMM) [124] to non-negative HMM (N-HMM) and
non-negative factorial HMM (N-FHMM) [119], which was later extended to its
semi-supervised version [118]. Further variants have been studied by Grais and
Erdogan [53], Gemmeke et al. [46], and Mohammadiha et al. [115]. An overview
to dynamic NMF models is given in [160].

Generally speaking, HMM regularisation tends to improve results over unreg-
ularised factorisation by adding temporal connectivity that is missing from the
baseline model. However, HMMs are not without their issues either. Crucially,
the Markovian model assumes that each transition only depends on the state itself,
not its preceding sequence, which is not true e.g. for speech [140]. Expanding the
feature vectors with concatenated frames or deltas will introduce more context to
the model, but it in turn violates the Markovian assumption further [140]. Never-
theless, more flexible transition models have their appeal for reducing the rigidity
and thus large basis sizes of long-context event modelling. HMMs, despite their
shortcomings, are a well studied and understood tool for speech modelling, and
they should be still considered for NMF and hybrid implementations. They are
not in the main focus of the work covered by this thesis, but they have appeared
as an experimental addition to the framework in [46].

4.2 Block-Mode Processing
The last part of long-context modelling discussed here is selecting the size of
segments that form observation matrices in factorisation. While not an issue in
supervised sliding window factorisation, where each window can be extracted
and factored individually, the choice becomes highly relevant in the joint model
of NMD and especially its semi- or unsupervised variants with basis adaptation.

In many artificial evaluation tasks, the observation is a well defined ‘utter-
ance’, which typically spans up to a few seconds, and has been endpointed to con-
tain only speech. In real-world tasks, we cannot assume that speech is segmented
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into such convenient pieces. Although several voice activity detection (VAD) al-
gorithms exist for approximating the on- and offset times of speech [108, 144,
215], there is an unpredictable delay in both speech and noise segment process-
ing until we know where the segment ends. Very long observation spectrograms
also become inconvenient to handle with NMF algorithms, even more so in NMD,
which must reconstruct the whole observation matrix at once.

In [P4], an algorithm is proposed for processing continuous inputs, where ut-
terances appear at unknown intervals over an evolving noise background, thus
calling for constant adaptation. The proposed system uses block-mode process-
ing, extracting fixed-size blocks (7.5 seconds) from the input. Each new block is
factored using multiple speech bases and the most recently updated noise model.
An NMF-based VAD algorithm is used to mark input ranges as speech and noise,
whereafter speech segments are re-factored more accurately for enhancing the
target utterances, while noise segments are used to update the noise model adap-
tively. The framework introduces a novel combination of NMF tools for multiple
purposes including discovery of speech segments, noise adaptation, speaker iden-
tification, and robust ASR from continuous inputs.

Block processing guarantees an upper limit on the processing delay and fac-
torisation task size, which are both desirable characteristics for real-world sys-
tems. The results show that an efficient noise model can be maintained by updat-
ing and pruning the basis from a continuous input, and that enhancement quality
close to oracle segmentation and adaptation is achievable with heuristic updating.

4.3 Multiple Bases and Group Constraints
Because there is notable individual variation in natural speech production, includ-
ing physical attributes of the vocal tract, speaking style, pace, dialect and so on,
it is always desirable to use a maximally well-matching speaker model in ASR.
If no assumptions or estimates can be made on the active speaker’s identity, a
generic, speaker-independent model is often used instead at the cost of slightly
reduced accuracy. However, in separation and robust ASR tasks, a discriminative
noise profile may be crucial for discovering the target speech among other voices
in the spectrogram domain. Individual voice models are also required for speaker
identification tasks, where a matching identity must be selected or verified.

In exemplar-based systems, atoms are acquired from individual speakers with
no statistical modelling. This is not a problem in scenarios where the target
speaker’s identity is known, and a matching model can be trained beforehand as
in [P2, P6]. Unknown, newly introduced, and mixed speakers complicate the mat-
ter, though. To make an exemplar-based system speaker-independent, a large set
of training speakers can be used to form a comprehensive basis covering several
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voice profiles. This was the approach used in early work on AURORA-2 [P1, 44].
Obviously a mixed basis with no further constraints will match many speakers
and their combinations simultaneously, hence it alone cannot e.g. separate two
speakers from each other. The same applies to generic template models acquired
by averaging over speakers.

An alternative approach to speaker identification and approximation problems
is to use a structured set of multiple speaker-dependent speech bases. In the com-
bined basis, each atom’s originating speaker is known. Therefore by comparing
the relative activation weights of atoms across bases it is possible to estimate the
exact or approximate voice profile of the observed speaker. The method was first
used in [P4] for enhancement and recognition of utterances from unknown speak-
ers using the best matching speaker model or their combination, and in [143] for
robust speaker identification. Both experiments were conducted on the closed set
of 34 GRID/CHiME speakers [3, 14].

In [P5], a group sparsity constraint was introduced for favouring solutions,
where a sparse set of speaker-dependent bases is active instead of an unrestricted
combination. Assuming that the overall basis A comprises N source-specific
groups A(1),A(2), . . . ,A(N), and activations are correspondingly denoted by N
vectors x(1),x(2), . . . ,x(N), a penalty function of form

f =
N∑

n=1

∥∥x(n)
∥∥
2

(4.4)

is introduced to overall cost minimisation. The proposed function measures the
L2 norms of activations within single speech bases, and then their sum (L1 norm)
across bases. Consequently, multiple activations from the same speech basis have
a smaller cost than the same weight coefficients distributed over multiple bases,
and modelling is more likely to happen with atoms from a few sources. Improve-
ments were observed in speaker and speech recognition accuracy [P5]. In [P8],
new speakers are approximated using a constrained combination of bases acquired
from a disjoint training set by employing the same group sparsity term.

Other cost functions have been proposed in [165] for similar purposes, namely
performing speech enhancement using a combined basis with a preference for a
narrowed down set of speech models. Group sparsity and clustering methods have
also been used in NMF applications in [93, 105, 172]. As the approach is still
quite novel, there is a lot of room for refining the cost functions and constraints.
From a computational point of view, there is appeal in using a rapidly converging
algorithm for multiple bases, because it permits pruning of inactive models and
hence smaller basis sizes over further iterations like proposed in [P8].
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Chapter 5

Separation and Recognition

The goals of factorisation-based speech processing are varied. In some applica-
tions, signals are separated or enhanced for human listeners or for further com-
putational processing of the target signal. In other tasks, sufficient information
can be extracted from factorisation weights and atoms without returning to the
time domain or spectrogram representation. Sometimes the output is a simple
decision like a yes/no answer in speaker verification or voice activity detection.
On the other hand, deriving the complete lexical content of continuous speech
is a complex task involving comprehensive language models and careful evalua-
tion of numerous hypotheses. This chapter primarily describes the main paths of
factorisation-based speech recognition, but alternative purposes and methods are
also discussed.

5.1 Source Separation
For any well defined set of concurrent audio sources, an innate task is to separate
them into their own feature or signal streams. Examples include multi-speaker
separation and audio scene analysis, although similar algorithms apply regardless
of the types of sources.

In the presented NMF systems, the process generally starts from spectrogram
estimation models such as Equations (2.2) and (4.2). Assuming that the atoms
can be assigned toN source-specific bases A(1) . . .A(N) with their corresponding
activation weight subsets found in submatrices X(1) . . .X(N), applying the esti-
mation formula to each group individually will produce N spectrogram estimates
Ψ(1) . . .Ψ(N), each representing the features belonging to a single source. Al-
though these source-specific estimates are already superficially valid, in practice
they are only approximate, displaying inaccurate behaviour caused by inherent
basis mismatch, bias from sparsity constraints, and other modelling issues.
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The spectro-temporal behaviour of the original mixture is usually better ap-
proximated by using a wiener-like filter so that a modified source estimate Ψ̂(n)

is computed by distributing the original spectrogram content binwise according to
the relative estimate weights,

Ψ̂(n) =
Ψ(n)

Ψ
⊗Y, (5.1)

where matrix division and multiplication with ⊗ are performed binwise. The total
estimate Ψ =

∑N
n=1 Ψ

(n), exactly, because starting from the vector model of
Equation (2.2),

ψ = Ax

=
[
A(1) . . .A(N)

] x(1)

...
x(N)


= A(1)x(1) + . . .+A(N)x(N)

= ψ(1) + . . .+ψ(N). (5.2)

Similar derivation applies to overlapping windows and the convolutive case,
which are simply summed or averaged variants of their vector counterparts, thus
linear operations. Consequently, the sum of weighted estimates

Ψ̂ =
N∑

n=1

Ψ̂(n)

=
N∑

n=1

(
Ψ(n)

Ψ
⊗Y)

=

∑N
n=1Ψ

(n)

Ψ
⊗Y

= Y, (5.3)

so the estimates together equal the original spectrogram, which would generally
not be the case if the ψ = Ax vectors or corresponding matrices were used as the
separation output.

The described separation takes place in a real-valued magnitude or energy
spectrogram space, thus omitting all phase information. For many purposes like
computing spectral features for common ASR back-ends, the magnitude-only
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features already suffice. However, to return the estimates to the time domain,
phase information must be reintroduced to the spectrograms. Although a vari-
ety of phase estimation methods exist [57, 96, 156, 163], in this work the origi-
nal phase of the mixture is used for all components. Assuming that the sources
are mostly sparse and isolated in the spectrogram domain, plausible results are
achieved even with this simple approach, making it a common choice in litera-
ture [158, 189]. Signal synthesis from mel magnitudes also involves mapping the
mel filter weights back into DFT resolution by a matrix transpose or pseudoin-
verse [P6], and overlap-addition corresponding to the original feature extraction
method.

5.2 Speech Enhancement
In a common NMF framework, speech enhancement is essentially a special case
of generic separation. A speech spectrogram estimate Ψs is computed from atoms
As and activations Xs belonging to the target speaker using equations like (2.2)
and (4.2). It is compared to the overall estimate Ψ, producing the bin-wise spec-
trogram filter weight matrix as Ψs/Ψ, which is then used to filter the original
spectrogram.

A schematic diagram of the process with a sample utterance is show in Fig-
ure 5.1. Speech and noise spectrogram estimates are computed with NMF. They
form the previously described filter matrix, which is finally applied to the orig-
inal noisy spectrogram to obtain the enhanced speech spectrogram. Optionally,
post-processing operations such as spectro-temporal smoothing may be applied
for reducing artifacts from the plain filter, thus improving perceived quality or
signal behaviour in further processing. Post-processing has been observed to im-
prove output quality measured by computational metrics in speech-music separa-
tion [54, 56]. However, none was used in the work included in this thesis.

In a consistently designed spectrogram enhancement and ASR system, there is
no need to go all the way back into signal level, because typical back-end features
can be derived from the DFT spectrum or even compressed filter bank coefficients
used in factorisation. Nevertheless, signal level synthesis was used in the included
publications due to employment of several back-end feature extractors not directly
compatible with the internal NMF feature space, and to produce wave files for
computational and subjective quality evaluations.

In robust ASR, the benefits of properly functioning speech enhancement are
obvious. Any noise features in the input will make it less speech-like, thus a worse
match to back-end models representing speech. Not even multi-condition training
can truly compensate the mismatch, especially if the noise is non-stationary and
unpredictable in its behaviour. Whenever the gains from noise removal outweigh
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Figure 5.1: Steps taken by a factorisation and enhancement system to compute
spectrogram estimates, a time-varying filter, enhanced speech features, and sparse
classification output.
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the possible loss of actual speech features, improvements in back-end recognition
accuracy can be expected. The proposed NMF algorithms have yielded uniform
increments in recognition rates even using semi-supervised enhancement without
a trained noise model [P4, P6]. As usual, re-training the back-end with similarly
enhanced speech will reduce the mismatch further [P8]. Apart from ASR, speech
enhancement has applications in recording, transmission and storage for better
intelligibility, more efficient compression via reduction of noise-like information,
and in any speech processing that benefits from a cleaner input signal.

5.3 Sparse Classification
Sparse classification (SC), briefly introduced in Section 2.4.3, is an alternative
approach to ASR exploiting the factorisation output without converting it back
into a spectral or waveform domain. The nomenclature arises from sparse repre-
sentations, where enforcing sparsity on the model has been found beneficial for
discovery of key features from noisy or mixed data [26]. Although sparsity con-
straints regularly appear in separation and enhancement tasks, in SC they can be
considered almost essential [48] unlike in separation, where the bias introduced
by sparsity objectives may be even detrimental for quality metrics [189].

As seen in the diagram of Figure 5.1, sparse classification output is derived
from activation weights of factorisation with no need to construct the spectrogram
estimates. In simple tasks with few discrete output classes such as keyword spot-
ting or speaker recognition it suffices to observe, which atoms were activated in
factorisation. Assuming that activations can be represented as a fixed-length vec-
tor, common classification algorithms are applicable for training and evaluating
the class borders [143]. For longer observations, where the temporal structure of
words or other events is important, it becomes necessary to model the temporal
dimension as well.

Early sparse classifiers used histogram modelling for multi-digit recognition
tasks, assigning state likelihoods uniformly over the duration of atoms and win-
dows [42, 178]. Notable temporal blurring was consequently present in the like-
lihood estimates over utterances. It was soon found out that assigning state tran-
scription on a frame level to multi-frame atoms improved the decoding accuracy
significantly [190]. For more general speech recognition tasks with a large vocab-
ulary, explicit state modelling over time becomes effectively essential.

In this thesis’ work, sparse classification is based on assigning label matrices
to speech atoms. Let us assume that the language model employed in recognition
contains Q states, which may denote e.g. phonetic or sub-word models. Each
speech atom, whose spectral feature content is a B × T matrix, is also given a
Q×T label matrix, reflecting the state membership of each frame. The matrix may
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be binary, i.e. only one state entry per frame is active at weight 1, or fuzzy so that
several state candidates may be active at variable weights. After determining the
speech activations, the same reconstruction formulae that are used for spectrogram
estimation in (2.2) and (4.2) for producing a B × Tutt spectral feature estimate,
are applied to label matrices yielding a Q × Tutt matrix of state weights over
observation frames. The matrix thus conveys similar information as likelihood
estimates from conventional evaluation of GMMs for the frames of an utterance.

Although the distribution and magnitude scaling of SC state weight estimates
will be different from the output of GMM evaluation, they can be decoded us-
ing HMMs trained with a conventional back-end as long as the correct path is
found by the Viterbi algorithm. For AURORA-2 data, 96–97% digit recognition
accuracy was achieved for clean speech already with early versions of the SC
framework [P1, 44]. Keyword accuracy for 1st CHiME clean development data
was approximately 93% [P3]. In both cases the error rate is slightly higher than
for baseline GMM evaluation. A likely reason is that the presented SC systems
operate on plain mel spectra, which are not as accurate as mel-cepstral features
for classifying phonetically close keywords like ‘five’/‘nine’ or ‘b’/‘v’.

In noisy conditions, the SC approach has repeatedly surpassed conventional
GMM recognisers due to its superior robustness via explicit noise modelling [P6,
44]. However, compared to a GMM back-end with NMF feature enhancement
and model re-training, there have been results favouring either FE or SC, depend-
ing on the NMF model and back-end parameters [P6, 44]. Another significant
factor is the method of assigning the label matrices. The first SC systems used bi-
nary matrices acquired simply by assigning the single state determined by forced
alignment as the only active entry of atom-frames. Thereafter more advanced al-
gorithms such as ordinary and partial least squares regression (OLS, PLS) and
NMD learning have been proposed with solid improvements on recognition accu-
racy just by better translation of activations into state estimates [70, 106].

Although the direct SC approach described here is unlikely to provide a com-
plete replacement for GMM evaluation, obviously the information available in
speech activation weights is meaningful, hence it should not be ignored in decod-
ing. Similarly to other exemplar and template systems [17, 21, 145, 146, 164], the
information should be exploited even more efficiently with integration to other
recognition methods. For example, FE and SC streams have been found comple-
mentary in multi-stream recognition [204]. Other combinations of methods, both
previously proposed and emerging, are discussed in the next section.
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5.4 Combined Recognition Methods
In ASR, there are standardised processing chains like GMM-HMM recognition
with cepstral features, which are readily available in software implementations
[213]. Despite their shortcomings in some applications like robust recognition,
they have been fine-tuned over years to cover several algorithmic stages like lan-
guage modelling, feature extraction, statistical modelling and so on. Reinvent-
ing the whole toolset would be a daunting task and usually not even necessary.
Therefore new paradigms are often tested with replacement or combination of new
and established system components. This also applies to NMF-based processing,
which may act in multiple roles ranging from plain front-end enhancement to di-
rect state likelihood estimation or word spotting. This section illustrates a few
approaches proposed for joint recognition with NMF as one of the components
involved in more complex systems.

The terminology of alternative modelling methods can be derived from par-
allels in artificial neural network (ANN) systems, especially multi-layer percep-
trons (MLPs), which started to emerge for ASR in the 80s [100], and then have
repeatedly appeared in literature since the 90s [19, 116, 141], gradually evolving
into deep neural networks (DNNs) [67]. There are two major branches of systems
employing MLPs in ASR. In a hybrid approach, an ANN is trained to produce
direct posterior likelihoods for HMM states, thus replacing the whole statistical
modelling and evaluation [5]. In tandem systems, the ANN outputs are modelled
statistically with GMMs, hence acting as features instead of e.g. mel-cepstra [64]
but not producing direct state likelihoods. Further variants, comparisons and in-
sights to these major routes are provided in later work [19, 176].

The plain sparse classification system described in this thesis is essentially
hybrid-like, because it produces state likelihoods as its output. However, in [170],
the SC output is modelled with GMMs, making the system similar to tandem
recognition. These parallels in ANN- and NMF-based single-stream recognition
are illustrated with simplified flowcharts in Figure 5.2. The first two paths a)
and b) represent conventional GMM evaluation of e.g. MFCC or PLP features,
optionally with an enhancement front-end. The middle paths c) and d) correspond
to hybrid and tandem recognition with ANNs, respectively. The last two paths
represent direct sparse classification and statistical modelling of SC outputs.

Single-stream processing in consecutive algorithm steps is not the only option
for recognition, though. In [167, 168], a dynamic Bayesian network (DBN) is
used to combine SC and MFCC likelihoods. Similarly in [169], estimates from
SC and a three layer MLP are combined either by summing or multiplying the
state probabilities to produce the combined posterior probability for decoding.
In [40], SC and NMF-enhanced MFCC probabilities are combined with a prod-
uct rule. In [203, 208], a bi-directional long short-term memory recurrent neu-
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Figure 5.2: Main components of single-stream recognition paths employing sta-
tistical modelling, spectrogram factorisation, and neural networks, starting from
spectral features and ultimately producing likelihoods for back-end decoding:
a) conventional GMM system with e.g. mel-cepstral features [133]
b) GMM system with NMF feature enhancement [44, 137]
c) hybrid ANN recognition [5]
d) tandem ANN recognition [64]
e) NMF sparse classification [37, 44]
f) statistical modelling of SC output [170]
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Figure 5.3: Recognition paths employing stream combinations:
a) MFCC+SC with DBN combination [167]
b) ANN+SC with sum or product likelihood combination [169]
c) triple-stream MFCC+ANN+SC recognition from enhanced features [35, 204]
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ral network (BLSTM-RNN) is used in conjugation with NMF-enhanced MFCC-
GMMs for probability combination. In [35] and [204], three streams are com-
bined; NMF-enhanced MFCCs, sparse classification, and a BLSTM-RNN. These
latter systems, typically computing the product of stream probabilities with expo-
nent weight factors, can be referred to as multi-stream, hybrid-like recognisers.
Figure 5.3 shows schematic views of three of these systems, namely [167], [169]
and [204]. Other combinations can be illustrated similarly or as subsets of these
examples.

In these multi-stream experiments, all feature streams have been found com-
plementary, that is, combined evaluation surpasses the recognition rates of its sin-
gle components even if the FE and SC outputs are derived from the same NMF
system. Apart from FE and SC streams, NMF output has also been used for esti-
mating masks in uncertainty and missing data decoding [44, 78, 79]. Meanwhile,
deep neural networks have gained a lot of attention in ASR, being employed in
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ASR applications by major companies and producing state-of-the-art results in
recognition of real-world speech [67]. They should be able to provide even more
complementary information to joint systems, again improving the overall recog-
nition rate. Yet another path beyond the scope of this thesis are spatial algorithms,
which are likely to become increasingly important as multi-microphone devices
gain popularity, and demonstrably improve the recognition results further [16,
125, 175].

For actual combination of streams, many more algorithms have been proposed
in literature than the DBN, sum, and product approaches previously employed in
joint systems containing NMF components. Recogniser output voting error re-
duction (ROVER) uses a variety of voting schemes to find an optimal word transi-
tion network from multiple system outputs [32]. Confusion network combination
(CNC) is its later extension [29]. BAYCOM stands for Bayesian combination us-
ing a decision-theoretic approach that is expected to provide optimal combination
weights even for streams with considerably differing error rates [147]. Driven de-
coding algorithm (DDA) performs dynamic search between a primary system and
auxiliary systems or manual transcripts [88]. There is no particular reason prevent-
ing the use of NMF-based components in these fusion methods as well, although
no examples appear to exist in literature yet.

We can conclude that there is a multitude of established and novel recogni-
tion paths, NMF-based or not, which provide partially overlapping yet ultimately
complementary information for joint recognition. This raises interesting questions
on how to incorporate the strengths of different methods in a joint system while
minimising the redundancy and computational complexity. Because the best per-
forming robust systems are currently relatively heavy combinations of multiple
methods [3, 183], these questions can be expected to remain highly relevant in the
quest for human-like or even superhuman ASR performance.

5.5 Other Recognition Tasks

5.5.1 Speaker Recognition
As discussed in Section 4.3, long-context exemplars and templates are able to
model discriminative spectro-temporal characteristics of individual speakers.
Combined with the robustness of additive multi-source models, sparse classifi-
cation via NMF can be used for speaker recognition and verification, the former
standing for determining the correct profile among a set of speakers, and the latter
for confirming whether the observed voice matches a certain profile.

There have been earlier examples of sparse methods for speaker recognition.
Sparse representations without non-negativity constraints nor a noise model were
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proposed for speaker recognition in [86], [120] and [177]. NMF coefficients de-
rived from GMM mean supervectors projected into a non-negative space were
used in [104], and supervised NMF with a pre-trained speech basis in [74]. Non-
negative tensor factorisation of cortical features was proposed in [209]. However,
none of these systems employed explicit noise modelling in factorisation of spec-
trograms. Instead, general robustness was achieved with feature selection and
sparse coefficient extraction.

The NMF approach with long temporal context and a dedicated noise ba-
sis was first demonstrated in [143]. Template bases were constructed for the 34
GRID/CHiME [3] speakers as in [P6]. Activation weights from factorisation with
combined speech and noise bases were then used to estimate the active speaker.
Multiple classification algorithms were used, starting from simply observing the
maximum total activation weight of each speaker’s basis, and then advancing
into inner product scoring, probabilistic linear discriminant analysis (PLDA), and
sparse discriminant analysis (SDA). The latter variants produced under 0.5% er-
ror rate in clean or near-clean conditions, and 5.0% average error rate over noisy
conditions from +9 to -6 dB, uniformly surpassing more conventional HMM and
GMM-UBM (universal background model) algorithms. In [P5], a group sparsity
constraint was introduced to improve the discriminative capability of the system,
reducing the average noisy error rate down to 4.3%. In [P4], speaker identity es-
timates are used for choosing the best front- and back-end models for ASR of
unknown speakers via feature enhancement. In [P8], newly introduced speakers
are approximated with existing training profiles.

The results show that NMF with a long temporal context is highly viable
for speaker recognition and approximation even in very noisy conditions, unlike
short-context algorithms commonly employed for clean speech. One open issue
with the NMF approach is that many speaker recognition applications also require
robustness against channel variations, which is not achieved with the proposed
system. However, preliminary results suggest that channel invariance can be im-
plemented in the NMF framework too, further increasing its applicability [43].

5.5.2 Voice Activity Detection
No natural speech is completely continuous. Unless utterances have been tightly
cropped in preprocessing, there will be segments without voice activity. In noisy
conditions this does not equal silence, though, because other sources may be ac-
tive at amplitudes comparable to target speech. Voice activity detection (VAD) or
speech activity detection (SAD) stands for locating speech segments from a noisy
input. Its applications include selecting speech segments for further processing
and storage, determining silence state likelihoods for back-end models, updating
noise models, and activating speech- or noise-specific system components.
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Due to potentially high energy levels of noise events, just observing the input
signal activity does not suffice for robust VAD. More advanced algorithms em-
ploy e.g. subband analysis, modulation features, spectral subtraction, phoneme
recognition, and statistical models [108, 144, 215]. In [20], statistical modelling
of a sparse (K-SVD) representation of speech was used for VAD, although with-
out a separate noise dictionary. However, similarly to speech recognition, in noisy
conditions it becomes increasingly beneficial to model noise explicitly. The pro-
posed NMF framework does this, and reveals approximate energies of speech and
noise via activation weights of their corresponding bases. In [P1], [44] and [212],
SNR estimates and silence state weights were derived by comparing speech and
noise activations. In [P4], a voice activity estimate was acquired by convolving
speech activations with grammar-dependent weight profiles. In each case, robust
VAD was achieved even in environments containing non-target voices and bab-
ble noise. Obviously NMF-enhanced signals or features can also be fed to an
established VAD algorithm for another detection path.

Especially with an explicit noise model, sparse representations appear viable
for voice activity detection, being able to model concurrent speech and noise
events individually. The reliability of detection generally depends on the same
factors that affect separation quality with model accuracy or possible mismatch
playing a major role. Apart from better speech and noise modelling, NMF-based
VAD would benefit from incorporating better classification schemes to the inter-
pretation of activations, similarly to SC-based speech recognition, where more
accurate label assignment has improved the accuracy significantly without even
changing the factorisation output [70].

5.5.3 Further Applications
Apart from the described common speech processing tasks, sparse representations
generalise to other detection and classification problems as long as appropriate
source models can be acquired. One frequently appearing real-world problem is
detecting overlap in multi-speaker scenarios like meetings. The additive model of
NMF is inherently fitting for this purpose as well, and has been proposed in liter-
ature [34, 186]. In [2], speaker age and gender are estimated from a GMM-based
supervector. In [154], non-linguistic vocalisations are detected among speech.
In [15, 49, 61], sparse representations are used for sound event classification.
Even more applications arise when the scope is extended to e.g. music. In short,
sparse classification with NMF has potential for several speech and audio process-
ing tasks, especially in scenarios involving multiple concurrent target speakers or
noise sources. The model also facilitates extraction of several types of information
simultaneously as demonstrated in [P4], where voice activity, speaker identity, and
speech content were all observed within the same framework.
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Chapter 6

Current Performance and Practical
Considerations

The whole speech processing framework described in this thesis aims at solving
a practical problem, namely extracting the lexical content or other information
from speech signals corrupted by competing sources and other real-world phe-
nomena. Although maximal recognition accuracy is obviously a definite goal,
eventual implementations must also be applicable to everyday tasks and situa-
tions using common devices. This chapter provides a brief overview to results
achieved with proposed factorisation-based methods, and discusses their practical
aspects including modelling, storage, and computational issues.

6.1 Quality Measurements
The integral question concerning any ASR system intended for real-world use is
“Does it actually work?” The ultimate answer could only be determined by de-
ploying the system to a widely used application and measuring the success rate
in its actual purpose. Because the described NMF framework has not reached
this stage yet, and more generally there is little information available concern-
ing the use of NMF-based systems in practical applications, current results are
derived from evaluations using public test databases. While these tasks are typi-
cally simplified and limited in their scope, they provide a standardised benchmark
for assessing the performance of different approaches and implementations. A
summary of the main characteristics of employed databases and a list of included
publications where they appear is given in Table 6.1. Principal results for these
databases are discussed in this section, while more detailed comparisons between
algorithm variants and competing methods can be found in the publications.
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Table 6.1: Main characteristics of noisy speech databases used in experiments.

database vocab. size (type) noise SNRs used in
AURORA-2 11 (digits) 8 types +20 . . .−5 dB [P1]

CHiME/GRID 51 (commands) living
+9 . . .−6 dB

[P2]–[P7]
CHiME/WSJ 5000 (newspaper) room [P8]

6.1.1 AURORA-2 Speech Recognition Rates
The first systems covered by this thesis were evaluated on AURORA-2 data, de-
rived from the TIDigits connected digit recognition task [95]. In this corpus, se-
quences of 1–7 spoken digits are mixed with multiple real-world noise types at
SNRs from +20 to -5 dB [68]. The framework described in [44] and [190] em-
ployed three recognition paths; missing data masks, feature enhancement, and
sparse classification, which were compared to reference results from imputation
and a multi-condition trained baseline recogniser with mean and variance nor-
malisation. This initial version performed reasonably well, but only surpassed
the multi-condition trained GMM recogniser in conditions with heavy, matching
noise [44]. One major reason was the system’s worse initial classification accu-
racy in clean conditions. Another was limited re-training in the paths using an
external recogniser. The accuracy of sparse classification improved in [P1], where
convolutive modelling was introduced. Further optimisations [40, 48] and system
combinations [40, 169, 170] managed to address the bottlenecks to the point that
the latest published results are among the highest reported for AURORA-2 [40].
Current word error rates over 20–0 dB are 3.1% and 4.7% for test sets ‘A’ and ‘B’,
respectively, using a multi-stream SC+FE system.

6.1.2 CHiME Speech Recognition Rates
A majority of the work covered by this thesis has been conducted on the 1st

CHiME Challenge data [3], or the closely related Track 1 of the 2nd CHiME Chal-
lenge [183]. These corpora are derived from GRID speech [14], whose small vo-
cabulary command utterances are mixed with household noise at SNRs from +9 to
-6 dB. Although the speech recognition task is again heavily simplified, the noise
environment in CHiME data is notably varied and highly non-stationary.

In the 1st CHiME Challenge, the submitted system [P2] performing sparse
classification with large exemplar bases ranked approximately 6th of the 13 par-
ticipants. The enhancement-based variant was not as efficient, primarily because
it used the clean-trained baseline back-end [45]. Later refinements, especially in-
troduction of optimised spectral features and temporal deltas [P3], and a multi-
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Figure 6.1: Development of CHiME/GRID keyword recognition accuracy com-
pared to baselines. Black lines correspond to clean- and noisy-trained GMM base-
lines and human performance. Coloured lines show results for the 1st CHiME
workshop SC entry [P2], a refined SC system with temporal dynamics [P6], and
finally the multi-stream entry to the 2nd CHiME workshop [35].
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condition trained back-end boosted the performance of both SC and FE signifi-
cantly [P6]. Finally, the SC and FE streams were combined with a neural network
component in [204]. This triple-stream system ultimately produced the best re-
sults for Track 1 of the 2nd CHiME Challenge [35]. The development is illustrated
in Figure 6.1, where the systems from [P2], [P6] and [35] are compared to GMM
baselines and human performance. Note that the comparison includes results from
the 1st and 2nd GRID-based CHiME tasks, which are almost but not exactly iden-
tical. Nevertheless, the overall development should be apparent. For this small
vocabulary task, the multi-stream system is already approaching the robustness of
human ear.

As a general trend in robust ASR, the highest-ranking systems for any corpus
tend to be combinations of multiple components and streams. This was also the
case for the WSJ-based Track 2 of the 2nd CHiME Challenge, where the proposed
NMF system is notably effective as an enhancer [P8], but does not match the
overall performance of systems employing heavily customised back-ends [183].
However, a combined approach with a neural network already provided major
improvements [35], and an optimised version of the joint framework produced the
highest reported results for the corpus in 2014 [36].

6.1.3 Enhancement and Separation Quality
Whereas the previously described benchmarks were based on keyword scoring in
ASR tasks, there are also alternative measures for separation and related problems.
Plain separation quality can be compared with objective metrics like signal-to-
distortion ratio (SDR) or estimated perceived quality [24, 28, 58, 117, 132, 182],
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or with subjective evaluation [58, 71, 117]. In [87], three 1st CHiME systems were
compared using computational metrics and listening tests. The proposed NMF
system [P6] produced the best results regarding SDR and other objective metrics,
although not uniformly. It also passed a t-test of being significantly (p = 0.05)
better than the alternative methods and unprocessed signals in a listening test.
The average SDRs measured with BSSeval toolkit [182] over complete noisy sets
have been approximately 7.0–8.8 dB for compact modelling schemes and 9.5 dB
for large exemplar modelling, compared to -0.7% for the unenhanced signals [P7].

6.1.4 Speaker Recognition
In speaker recognition, the NMF framework has not been implemented for the
most popular evaluation corpora yet. Furthermore, many evaluations give more
emphasis to robustness against channel errors and mismatch than additive noise.
Nevertheless, in [143] and [P5], the preliminary NMF system clearly surpassed es-
tablished speaker recognition algorithms in noisy conditions using the 1st CHiME
data and its 34 speakers for evaluation, achieving 99.7% accuracy at 9 dB SNR
and 95.0–95.7% average accuracy over +9 . . . -6 dB. Because early results appear
promising, it would be desirable to implement the system for other corpora to
learn more about its capability in speaker recognition and verification tasks.

6.2 Modelling and Efficiency Issues

6.2.1 Model Adaptivity
Early examples of speech processing via NMF demonstrated separation of two
known speakers with pre-trained speech bases [153, 158], or denoising by in-
cluding a trained noise basis [158]. Similarly the exemplar-based framework first
employed sampled speech and noise bases in supervised separation and classifi-
cation [44]. However, in all these experiments two major assumptions were made
in training, namely that

1. sufficient training material is available for all sources, and
2. speech and noise profiles remain approximately fixed.

Neither of these assumptions can be expected to hold universally true in general
purpose robust processing. Therefore one recurring theme in this work is improv-
ing the system’s adaptivity to changing conditions.

Concerning noise models, the nearby context of utterances has been exploited
to an increasing degree [P2, P6, P8, 41, 185]. In addition, [P4] removed the as-
sumptions of annotated utterance locations and bi-directional context. Instead,
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voice activity was estimated with NMF, and the noise model was updated con-
tinuously from non-speech segments. Even in a critical scenario, where neither
training data nor context is available for learning a noise model, semi-supervised
separation has been demonstrated [P6, P8, 7, 199]. In this variant, only a speech
basis is trained beforehand, whereas the noise basis is updated from the noisy ob-
servation. Although there is a considerable risk of overadaptation and thus losing
speech features, with cautious parameter selection uniform improvements have
been observed both in enhancement and in direct classification [P6].

Regarding speech models, as stated in Sections 3.2 and 4.3, the spectro-tem-
poral behaviour of speech is more constrained than the enormous variety of noise
sources. An averaged or mixed speech model can be constructed for speaker-
independent factorisation, if training a matching speaker-dependent model is not
viable. Nevertheless, a closer approximation always benefits separation, espe-
cially in scenarios involving overlapping non-target speakers. One promising di-
rection for adaptive speaker modelling is constructing a multi-speaker basis with
group sparsity constraints, favouring an output where a small set of closest match-
ing models approximates the target speaker [P5, P8, 165]. Alternatively, in [7] a
generic speech basis is permitted to adapt into a new speaker’s profile with con-
straints on its spectral divergence from the original content. With properly defined
cost functions, the method appears viable for adaptive enhancement of speech
from an unknown speaker, albeit it may be less suited for sparse classification as
the spectral content of speech atoms may change during factorisation.

Another partially open issue in speech modelling is representing a large vo-
cabulary with robust long-context units, while keeping the model size manage-
able. Potential approaches include variable-length units and clustering algorithms
[P7, P8], and HMM-driven factorisation discussed in Section 4.1.5. From a wider
perspective, combining NMF with neural network components or their concepts
appears highly promising [35, 169, 170, 204].

The last major factor in overall adaptivity is robustness against channel errors
and mismatched response. For limited bandwidth or other loss of features, miss-
ing data techniques and imputation provide a potential solution [38, 39, 44, 80]. If
the channel’s response is distorted instead, it is possible to estimate a compensa-
tion filter within the factorisation framework [43]. Finally, an auditory-motivated
feature representation should be considered for achieving human-like general ro-
bustness against unpredictable deviations in the signal [101, 109, 162].

6.2.2 Data Requirements and Model Sizes
Results from separation and recognition experiments have repeatedly confirmed
that the factorisation-based framework benefits from long temporal context and
overcomplete modelling with a comprehensive dictionary of diverse speech pat-
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terns, sound events, and their variants [P6, 44]. However, an inherent drawback of
explicit segment models is their rapidly increasing size in comparison to statistical
models. Direct consequences include greater memory consumption and computa-
tional complexity, but also higher requirements for source data in order to acquire
a comprehensive basis of specialised long-context patterns.

Early small vocabulary classifiers for AURORA-2 [P1, 44] and 1st CHiME
[P2, P6] corpora used large exemplar bases with 4000–5000 atoms for both speech
and noise. Further experiments revealed that even larger bases still improve the
results in the proposed exemplar framework [40, 48]. The practicality of such
models could be disputed, though. For example, the best performing system in
[40] employs 14 000 atoms, each a 30-frame segment in a 23-band spectral space.
Together they contain 9.66 million entries and require almost 40 megabytes as
single precision float variables. In [P3] and [P6], even more spectral bands with
delta and stereo features were employed, taking the overall memory allocation to
hundreds of megabytes. Because factorisation involves iterative matrix operations
on the complete arrays, processing a short utterance could take several minutes
of CPU time. These figures appear high for a small vocabulary task exploiting
speaker-dependent models. On the other hand, randomly sampled exemplar bases
contain a lot of redundancy, thus significantly smaller model sizes can be achieved
via better acquisition algorithms. In later work, multiple directions were studied
for making the models more efficient by finding a compact representation of rele-
vant patterns while trimming the redundant and unused parts of models.

In speech modelling, already the system presented for 1st CHiME data in [P2]
contained some optimisation over completely random selection, namely reducing
the overrepresentation of the most frequently appearing words. However, more
drastic reductions were proposed in [P6], where exemplar models were replaced
with speech templates, each modelling a sub-word pattern as an average of train-
ing instances. The size of speech and noise bases was reduced from 5000 to 250
atoms, standing for a 20-fold reduction in data size and computational complex-
ity. For current hardware and NMF algorithms, this kind of difference may define
whether the factorisation can be performed in real time. Despite the heavy com-
pression of source models, only modest reduction was observed in enhancement
quality. The losses in sparse classification were greater, though, mainly because
the slightly blurred mel-spectral templates are not as reliable as classifiers as ex-
act speech exemplars. In [P7] and [P8], the concept was taken even further by
introducing variable-length templates, where characteristic patterns were detected
and modelled in a descending order of length. Improvements were observed com-
pared to fixed-length templates for the 1st CHiME data [P7]. Finally, even larger
savings could be achieved by using HMM-driven frame [53, 115, 119] or segment
[46] models, which provide a flexible way to represent acoustic trajectories and
temporal deviations, thus circumventing the rigidity of exemplars and templates.
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In noise modelling, the diversity of noise events means that a generic basis can
never be simultaneously small and accurate. Therefore the key to efficient noise
models is high adaptivity so that only patterns relevant for the current environ-
ment are retained in the basis at any given time. In [P2] and [P6], noise atoms
were selected exclusively from the context of noisy utterances. The experiments
in [P6] revealed that even a small noise basis can still provide decent separation
quality, especially with the convolutive model. In [P4], a continuously updated
noise basis with aggressive pruning was introduced for processing long inputs
adaptively. The smallest model sizes and training data requirements are achieved
with semi-supervised factorisation, where a small basis is updated during factori-
sation of utterances [P6, P8, 199]. However, thus far its separation quality has
been inferior to variants employing a separate noise basis due to the risk of cap-
turing concurrent target speech patterns [P6, P8]. Thereby maintaining a dedicated
noise model is still recommendable. For improving its performance, NMD learn-
ing [P8, 208], and possibly variable-length methods similar to proposed speech
clustering appear viable. Despite the diversity of noise events, there is also a lot
of local redundancy in noise due to stationary sources and recurring events, hence
the characteristic events can often be compressed into a compact model.

6.2.3 Computational Complexity
A persistent challenge in practical use of NMF algorithms is the lack of closed-
form solutions, meaning that iterative descent algorithms are used for finding an
approximate solution. The multiplicative update rules introduced by Lee and Se-
ung [91, 92] are able to find a passable approximation for e.g. enhancement filters
in only a few [77, 202] or maybe tens of iterations [75, 158], although concern-
ing the cost function the solution still improves gradually. Hundreds of iterations
are commonly used, especially in supervised factorisation [44, 158, 199]. When
a sparsity constraint is introduced, the spectral estimate usually converges faster
than the sparsity of activations, likely because a steep initial descent can be found
in the spectral cost, while the contribution of sparsity to the total cost is con-
siderably smaller. In [48], increasing the iteration count from 200 to 300 was
found beneficial for sparse classification, and in [40] up to 600 iterations still im-
proved the accuracy in both FE and SC. However, the computational complexity
of NMF and NMD increases linearly to iteration count, basis size, feature space
dimensionality, and window length. Especially for large exemplar bases the costs
quickly become nontrivial and unfeasible for real-time systems. Consequently,
several paths have been studied for addressing the computational costs of NMF.

The first logical route is reduction of model sizes, which depend on the sys-
tem’s spectro-temporal resolution and atom count. Reducing the spectral resolu-
tion is possible, although already the current mel-spectral representation is quite
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compact, and from the separation point of view there is actually an incentive to in-
crease it. Lower frame rate is viable for enhancement, but not so much for sparse
classification. Total window length is heavily tied to separation quality, thus re-
ducing it means a major trade-off unless alternative structures like HMMs manage
to replace the window model. These parameters were evaluated in [75] with a goal
of achieving real-time performance in NMF-based enhancement.

Apart from data dimensions, the other major factor in computational complex-
ity are the solving algorithms themselves. Recently there have been examples of
replacing the established gradient descent rules with their quadratic counterparts
[179, 191, 216]. In [191], an active-set approach is also employed, minimising the
number of activation coefficients being updated. For NMD, an online algorithm
based on sufficient statistics has been proposed for piecewise processing of oth-
erwise inconveniently large basis updates [196, 197]. In [161], low-rank NMF is
used for real-time speech denoising.

Finally, NMF solving can be speeded up simply by improving the efficiency
of low-level operations. There are toolkits like OpenBlissART [200, 201] and
FASST [125] implemented in C/C++ with internal optimisation of the solving al-
gorithms. Another significant trend is parallel computing with multi-core CPUs or
many-core general purpose graphics processing units (GPU, GPGPU). The large
matrix multiplications appearing in NMF algorithms are well suited for parallel
computing. A GPU implementation was used in [48], and nowadays it can be
found in OpenBlissART as well [201]. Parallelisation of NMD has thus far ap-
peared more difficult due to its three-dimensional basis structure and stepwise
looping over at least one dimension in standard implementations, but optimised
versions are gradually appearing for convolutive updates too.

6.3 Summary
In short, spectrogram factorisation with long-context atoms appears potent in sep-
arating speech from difficult noisy mixtures, and in classification of phonetic or
speaker-related information under noisy conditions. Still, for maximal perfor-
mance it is beneficial to incorporate further information and system components
from alternative separation and recognition methods [40, 46, 169, 204]. From a
practical point of view, there is obviously a trade-off between quality and compu-
tational costs, hence the system should be optimised regarding both objectives for
better efficiency considering resource allocation. For this kind of optimisations,
the model reduction schemes proposed in [P6, P7, P8] and adaptive continuous
input processing presented in [P4] should be studied in more depth.
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Chapter 7

Conclusions and Future Work

In this thesis, non-negative spectrogram factorisation algorithms were applied to
robust processing of speech. The fundamental concept in the presented work is
modelling a mixture signal as an additive combination of spectrogram components
belonging to constituent sources, thus separating the mixture into single-source
feature streams and further to their characteristic events. As a separating front-
end, the methods are commonly used for enhancement of noisy speech for im-
proved perceptual quality, transmission, and automatic speech recognition (ASR).
In addition, the system acts as a classifier, revealing information on the contained
phonetic patterns, sound events, and speaker identities.

The foremost strength of the approach lies is its ability to model multiple con-
current sound sources explicitly in complex multi-source audio scenes. Speech
features can thus be recovered in difficult conditions, where they are heavily
masked by varied noise events. Similarly the methods are applicable e.g. for
separation and classification of multiple overlapping speakers. Recurring con-
cepts in the employed factorisation algorithms include long temporal context for
modelling the spectro-temporal behaviour of sound events, and sparsity for find-
ing a small set of best matching components to model the mixture. Main scientific
contributions of this work include refinement of spectral feature spaces, new basis
acquisition algorithms, combination of multiple speaker-dependent models, im-
proved adaptivity to varying noise conditions, and moving toward robust large
vocabulary speech recognition with factorisation-based methods.

The described speech processing framework built around factorisation al-
gorithms performs several tasks, including feature extraction, speech and noise
model acquisition, actual separation of underlying sound sources, and finally
their enhancement or classification for extracting the relevant information for the
task. Each stage of the overall process is addressed in the contained publications.
Apart from improving separation and recognition quality, the conducted work
aims at finding more efficient models and algorithms for practically viable imple-
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mentation, and higher adaptivity to the great variety of scenarios and changing
conditions in real-world environments.

The main focus of the work has been on improving the performance of speech
recognition in realistic conditions, where conventional algorithms have struggled
to the extent that widespread adoption of ASR systems has repeatedly been de-
layed. The described algorithms and modelling methods have shown strong per-
formance especially in scenarios involving heavy, non-stationary noise, which can
be represented explicitly using the proposed models. In addition to standalone
recognition, the methods have been combined with alternative recognition paths,
providing complementary information and eventually achieving state-of-the-art
results in public ASR evaluations. The framework has also been successfully used
for robust speaker recognition, voice activity detection, and sound event classifi-
cation.

Regarding future work, there is still room for improvement in each of the pre-
viously described stages of the overall framework. In basis acquisition, higher
flexibility, adaptivity and automation would be desirable for extracting efficient
speech and noise models from diverse inputs. Alternative feature representations
such as auditory-inspired or phase-sensitive multi-channel features are potentially
able to improve the separation quality and robustness of the approach. In factori-
sation, there is a large variety of structures and priors available for incorporating
information that is not exploited by the current methods. The computational im-
plementation of algorithms is also under ongoing research for reducing the costs
of factorisation. Finally, deriving the enhancement, recognition, and classification
results from the factorisation output is a delicate task, where multiple paths and
their combinations are currently used. This raises the question whether currently
used parallel streams can be merged into a unified system combining the strengths
of each component. Especially the renewed interest in neural networks and their
combination with sparse representations in ASR is likely to remain a central topic
in future research.

To recap the current state of robust speech processing, the complex behaviour
of human speech and even greater diversity of environmental sounds form a dif-
ficult problem, where human hearing still outperforms computational methods.
Nevertheless, gradual algorithmic improvements, huge resources, and sharing of
ideas within the research community have reduced the gap to the extent that ASR
applicable to everyday tasks is firmly moving from the realms of fiction to reality.
While sparse representations and spectrogram factorisation alone are unlikely to
solve the complete range of robust speech processing problems, they have repeat-
edly produced strong results, and a lot of their potential is undoubtedly still to be
revealed. The presented work has hopefully offered valuable insights to the topic,
and motivated further work to eventually reach the long-awaited goal of fluently
listening and understanding machines.
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Corrections to Publications

The SDR measurements in [P4] were based on calculating difference signals be-
tween clean, noisy, and estimated utterances as in [45]. However, it was later found
out that different magnitude scalings appear in the corpus depending on the data
set. Either ‘embedded’ or ‘isolated’ utterances were used for experiments, caus-
ing inaccuracy within and across methods. For more representative measurement,
the results have been recalculated here using the BSSeval toolkit [182].

The directly computed results as published in Table 4 of [P4] were as follows.

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg
Unenhanced signals and informed noise modelling

Unenhanced 3.7 2.5 0.3 -1.9 -4.8 -7.0 -1.2
Informed 4.4 4.1 3.8 3.5 3.1 2.7 3.6

Self-adapting noise, all/true/estimated identity
All 8.6 7.8 6.8 5.9 4.7 3.9 6.3

True 6.9 6.4 6.0 5.5 4.9 4.4 5.7
Estimated 6.9 6.4 6.0 5.4 4.6 4.0 5.6

Results for the same experiments, recomputed with BSSeval, are listed below.

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg
Unenhanced signals and informed noise modelling

Unenhanced 4.3 3.0 0.6 -1.5 -4.4 -6.5 -0.8
Informed 13.1 11.3 9.5 7.8 5.9 4.3 8.6

Self-adapting noise, all/true/estimated identity
All 10.7 9.4 7.8 6.3 4.5 3.5 7.0

True 9.9 9.0 8.2 7.2 6.1 5.1 7.6
Estimated 9.9 9.0 8.2 6.9 5.4 4.0 7.2

The observations and conclusions given in Sections 4.5 and 5 of [P4] no longer
reflect these newly calculated values in every respect.
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ABSTRACT

High noise robustness has been achieved in speech recognition by

using sparse exemplar-based methods with spectrogram windows

spanning up to 300 ms. A downside is that a large exemplar dictio-

nary is required to cover sufficiently many spectral patterns and their

temporal alignments within windows. We propose a recognition sys-

tem based on a shift-invariant convolutive model, where exemplar

activations at all the possible temporal positions jointly reconstruct

an utterance. Recognition rates are evaluated using the AURORA-

2 database, containing spoken digits with noise ranging from clean

speech to -5 dB SNR. We obtain results superior to those, where the

activations were found independently for each overlapping window.

Index Terms— Automatic speech recognition, noise robust-

ness, deconvolution, sparsity, exemplar-based

1. INTRODUCTION

Widespread adoption of Automatic Speech Recognition (ASR)

systems is still being hampered by insufficient robustness against

background noise. Hidden Markov Model (HMM) based recognis-

ers, where state likelihoods are estimated using Gaussian Mixture

Models (GMM), have considerable problems when noisy frames no

longer match to clean acoustic models. Various robustness methods

have been suggested, including model compensation, missing data

techniques and feature enhancement [1, 2, 3]. These approaches

can typically achieve acceptable recognition rates in low to medium

noise, but lose quality rapidly, when a large portion of spectral

features is simultaneously corrupted by high noise levels.

In our previous work we have shown, that improved recognition

rates can be achieved near or below 0 dB SNR by using an addi-

tive model of exemplars representing longer (100 – 300 ms) spec-

trogram segments [4]. Using a Non-negative Matrix Factorisation

(NMF) algorithm, it is possible to separate the input signal to speech

and noise. Furthermore, we have shown that speech content can be

decoded directly from the labels of activated exemplars without re-

constructing the separated speech signal [5].

In contrast to earlier exemplar-based methods, where the ob-

servation is compared to the nearest element in the dictionary, our

framework reconstructs observations as a non-negative linear com-

bination of exemplars. The number of simultaneously active exem-

plars is not limited by the design, although sparsity is enforced to

improve the recognition quality. Similar methods have been used

for source separation in image and music applications, among oth-

ers. Common terminology for referring to such techniques includes

Sparse Classification (SC) and Sparse Representation based Classi-

fication (SRC).

Tuomas Virtanen and Antti Hurmalainen have been funded by the
Academy of Finland. The research of Jort Gemmeke was carried out in the
MIDAS project, granted under the Dutch-Flemish STEVIN program.

While the noise robustness of our algorithm improved by us-

ing longer exemplars, we also observed a decrease in clean speech

recognition rates. The primary reason for this negative development

is that the complexity of spectro-temporal features will increase in

longer windows, thus requiring more exemplars to cover the larger

variation in appearing patterns [6]. In addition, factorisation of indi-

vidual analysis windows requires that correctly time-aligned exem-

plars are available in the dictionary, so the number of different tem-

poral alignments to be covered also increases according to window

length. However, simultaneous increasing of both exemplar count

and length is not desirable due to computational constraints.

To improve the recognition accuracy of our system using a lim-

ited dictionary of long exemplars, we introduce a shift-invariant con-

volutive model. By reconstructing the whole observation at once as

a convolution of exemplars and activations, we avoid the problem

of temporal alignment of the exemplars in fixed windows. It is no

longer necessary to include multiple shifted variants of features in

the exemplars to represent the observation accurately. Consequently,

better efficiency can be expected for similar dictionary size.

The content is organised as follows. Section 2 describes the key

concepts of the paper: exemplar-based recognition, matrix decon-

volution and differences to the previous model. In Section 3 we ex-

plain, how to obtain state likelihoods and the final recognition output

from exemplar activations. The noisy spoken digit recognition test

setup is given in Section 4. Results, discussion, and conclusions fol-

low in Sections 5, 6 and 7, respectively.

2. EXEMPLAR-BASED DECONVOLUTION

2.1. Windowed exemplar model

The basis unit of our system, a speech or noise exemplar, is aB×T
spectrogram matrix consisting of spectral magnitudes (square root

of energy). B is the number of frequency bands and T the number
of consecutive frames in each exemplar. Our observation matrixYutt
is a B × Tutt spectrogram in the same domain, where Tutt is the total
number of frames in the whole speech utterance.

The utterance is modelled as a linear weighted combination of

exemplars in overlapping, exemplar-sized windows. The starting

frame indices τ of windows range from 1 to W = Tutt − T + 1,
and a window starting from frame τ covers frames [τ, τ + T − 1].
The linear combination is characterised by an L×W activation ma-
trix X, where each element Xlw represents the weight of exemplar

l (from 1 to the total number L) activation in window w. The acti-
vation pattern can be determined for one window at a time as in our

previous experiments [4, 5], or by generating joint activations for the

whole utterance using a deconvolution algorithm.



2.2. Matrix deconvolution

The estimated model Ψutt for observation Yutt using L exemplars
can be written as

Ψutt =
T

X

t=1

At

→(t−1)

X . (1)

Each At is a B × L matrix representing frame t of the exemplars,
thus the spectrogram of exemplar l can be found in columns l of

A1 . . .AT . Here
←i

(·) and
→i

(·) are shift operators, moving the matrix
entries left or right, respectively, by i units. In this caseΨutt is T −1
columns longer than the activation matrixX, so shifting takes place

in a Tutt wide zero-padded matrix, starting from its leftmost position.
T −1 zero columns are added, no columns are discarded to generate
the shifted matrix.

The exemplars and their activations are restricted to non-

negative values. The exemplars are obtained from training data

and fixed, whereafter the activations are estimated by minimising

the generalised Kullback-Leibler divergence

d(Yutt,Ψutt) =
X

y log(
y

ψ
) − y + ψ ∀(y, ψ) ∈ (Yutt,Ψutt).

(2)

An L1 norm penalty (sum of all elements) is applied to the acti-

vations, which has been found effective for magnitude spectrogram

features [7].

As the approximated observation matrixΨutt will be a temporal

convolution between the basis and the activations, the algorithm is

called Non-negative Matrix Deconvolution (NMD) [8]. In our previ-

ous work we called the method convolutive sparse coding [9]. NMD

has already been used successfully for sound source separation in

music and speech applications [10, 11].

The entries of the activation matrix are initialised to unity values,

and the following update rule (based on [12]) is applied iteratively:

X = X ⊗

P

T

t=1 A
T

t ·

←(t−1)

[Yutt
Ψutt

]

Λ +
P

T

t=1 AT
t ·
←(t−1)

1

, (3)

where ⊗ is elementwise multiplication, and all divisions are also el-

ementwise. Λ is a sparsity matrix defining the penalty factor for

each activation element, thus the total weighted penalty becomes
P

x·λ ∀(x, λ) ∈ (X,Λ). In our system, we set a different penalty
weight for activations corresponding to speech and noise. The model

Ψutt is evaluated before each update using (1).

2.3. Comparison to independent windows

In our previous work we used a sliding window approach, where

all W overlapping B × T windows were factorised independently.
Because the middle frames of the observation will be reconstructed

several times in consecutive windows, averaging was applied in later

steps to compensate for the effect. The implementation was some-

what simpler than in NMD — each window can be represented as a

separate, concatenated observation vector, and the utterance can be

processed as a factorisation between two matrices without shifting

operations. However, it occasionally suffers from the fixed tempo-

ral positioning of its windows. An exemplar must match accurately

to the temporal position of spectral features found in an individual

window to be used there. When the window length is increased,

it becomes less likely, that a matching exemplar is found in a lim-

ited dictionary. Each window must be factorised, and depending on

Figure 1: A stylised comparison of independent window (NMF for

short) and deconvolution (NMD) methods. Utterance spectrogram

Yutt is represented using exemplars a1, a2 and a3 in three windows.

The first and last window match to exemplars 1 and 2, but in NMF

the middle window must be reconstructed using inaccurate activa-

tions (bottom left matrix). In NMD, only enough exemplars to re-

construct the utterance are activated (bottom right matrix), thus the

middle window remains empty.

its match to the dictionary, reconstruction quality may vary between

windows. The effect of mismatches will be reduced during averag-

ing, but not eliminated entirely. On the other hand, for NMD it suf-

fices to find a single temporal position, where an exemplar matches

the observed speech. The difference between the activation patterns

is visualised in Figure 1.

3. DECODING

After determining the activation matrix X, it is used to generate a

state likelihood matrix L. It consists of column vectors lτ for each

frame in the utterance. These vectors, their length representing the

total number of states in the system, describe the estimated likeli-

hoods of states at time τ .
Each speech exemplar is labelled with a state sequence over its

duration, so that in each frame it is assumed to be in exactly one

state. When an exemplar is activated in window w, an update is
made to T columns of L starting from w. A state label q in frame t
of an exemplar will increment the element q of column w+ t− 1 by
its activation weight. A formal description of this procedure is given

in [5].

Even though silence states are also included in the labels, their

activation is somewhat unpredictable. Because the magnitude of

silent frames is zero in all bands, no exemplars are activated dur-

ing true silence. Conversely, these states may appear within speech

activity, when a speech-silence transition exemplar is used as a part

of the sum. For these reasons, silence state likelihoods are reshaped

according to a speech activity estimate derived from the total weight

of active speech exemplars in each frame. The matter is discussed in



Table 1: Digit recognition rates for AURORA-2 test sets A and B at various window lengths and noise levels. The first three rows repeat the

independent window factorisation (’NMF’ for short) results given in [5]. The last three rows show the new deconvolution results (’NMD’).

SNR (dB) clean 20 15 10 5 0 -5

NMF

T=10 96.2 95.3 94.4 92.1 84.7 71.2 39.6

T=20 96.6 95.8 94.8 92.7 88.8 78.1 53.1

T=30 94.7 93.4 93.3 92.2 89.9 79.5 56.7

NMD

T=20 96.7 96.3 95.4 93.9 90.1 78.5 57.5

T=30 97.0 96.4 95.6 94.7 91.4 82.0 61.0

T=40 93.5 94.4 94.2 91.5 88.6 78.3 55.2

(a) Test set A

SNR (dB) clean 20 15 10 5 0 -5

NMF

T=10 96.2 94.7 93.6 87.9 78.4 57.1 27.4

T=20 96.6 95.3 93.7 89.9 82.7 63.1 35.7

T=30 94.7 93.5 93.2 90.1 85.7 67.5 37.6

NMD

T=20 96.7 96.0 95.1 91.7 84.0 62.4 33.5

T=30 97.0 95.6 94.7 92.1 86.4 68.1 36.4

T=40 93.5 93.8 93.4 89.2 83.6 64.1 33.0

(b) Test set B

more detail in [4].

Finally, the summed likelihoods in each frame are normalised

to unity, and the state likelihood matrix is decoded using the Viterbi

algorithm.

4. EXPERIMENTS

The efficiency of deconvolution versus independent overlapping

windows was studied using a test setup similar to the one described

in [4] and [5]. AURORA-2 connected digit recognition test, which

includes multiple noise types and noise levels, was used for evalu-

ation. The same bases of 4000 speech and 4000 noise exemplars,

generated by random selection from the multicondition training set

in the earlier experiments, were used. In these bases, each exem-

plar is a B × T magnitude spectrogram consisting of 23 mel-scale
spectral bands and T frames with 25 ms frame length and 10 ms
frame shift. Window lengths 20 and 30 from the previous work

were included, as this much temporal context has been found rec-

ommendable for sufficient noise robustness. In addition, a T = 40
basis was generated using a similar procedure to study the capability

of deconvolution in even longer windows. State labels of speech

exemplars were acquired via HMM-based forced alignment. All in

all, 179 states were used: 16 for each digit (’zero’, ’oh’, 1–9) and 3

for silence.

We processed the same random subset of 100 utterances (10%

of the complete test set) as in [5] for all four noise types in test set A

and the four in test set B. Clean speech and all six noise levels, SNR

20, 15, 10, 5, 0 and -5 dB were included. Due to the different activa-

tion patterns between independent windows and deconvolution, the

NMD sparsity parameters λ were reoptimised to 2.0 for speech and
1.5 for noise exemplars using the training set. The silence balanc-

ing algorithm was modified slightly to derive its SNR estimate from

waveforms by comparing the mean power of the whole wave (sig-

nal+noise) to the lowest 20% of frame powers (only noise), because

in NMD the exemplar activation levels were found to vary too much

for this purpose. The silence parameters were retrained from the

training set for each window length separately. 200 NMD iterations

were used for the main experiment as before, although the computa-

tion was continued up to 250 iterations for further comparison.

5. RESULTS

The recognition rates of our test are summarised in Table 1. Pre-

vious results from our independent window experiments (’NMF’)

are shown first, sorted by window length [5]. The new convolutive

model (’NMD’) results follow.

In set A, convolutive T = 30 comes out uniformly superior
to the alternative window lengths and also to our previous results.

Convolutive T = 20 surpasses the NMF results and approximately
equals convolutive T = 30 at high SNRs, but falls faster in the noisy
end like it did in NMF. The newly introduced T = 40 (400 ms ex-
emplars) is roughly comparable to the previous T = 20/30 NMF
results. However, a decrease of approximately 3% from convolu-

tive T = 30 is present already in the clean end, and it reflects to
all the noisy rates. Overall, set A turns out to be a success for the

convolutive algorithm.

In set B we observe mostly positive results, but also a few decre-

ments. The improvements in clean speech recognition rates are also

present here all the way until 0 dB, where convolutive T = 20 loses
by a small margin to its NMF counterpart. For T = 30, this happens
at -5 dB alone. T = 40 is again acceptable in comparison to the
NMF results, but several percent below the new T = 30 rates.
The high contrast between set A (noise types matching to the

basis) and set B (nonmatching noise) is still present and even em-

phasised in the convolutive approach. The possible reasons for this

are discussed in Section 6.

Increasing the iteration count to 250 produced mixed results (not

shown). Recognition rate changes between -1.4% and +3.7% (abso-

lute) were observed. The largest and most systematic gains were in

the noisy end of set A, all 0 dB rates increasing by ≥ 1.0% and -5

dB by ≥ 2.2%. Elsewhere no regular trend was found.

In comparison to established methods, the current experimen-

tal setup does not yet achieve the clean speech recognition rates of

carefully trained GMM-based implementations, which often exceed

99%. On the other hand, previous -5 dB rates achieved with noise-

compensated or multi-condition trained GMMs include 17.1% [2],

24.6% [13] and 42.9% [4] for set A. All perform worse on set B,

albeit by a smaller margin, when the methods do not utilise spectro-

temporal features specific for each noise type. Uncompensated sys-

tems trained with clean speech typically fall below 10% at -5 dB.

6. DISCUSSION

Three main observations can be made from the results. First, in this

test setup the convolutive method produces generally higher recog-

nition rates than the independent window algorithm. Second, convo-

lutive T = 30 achieves the highest clean speech recognition rate of
all methods and windows presented here, improving significantly its

earlier independent window performance. Third, test set B still turns

out problematic, even more so than in NMF. Each of these observa-

tions deserves a brief analysis.

The improved overall rates are a positive outcome, and speak for

the potential of NMD in exemplar-based recognition. However, the

new algorithm also required some changes and retraining of param-

eters, which may play a role in the overall results. We still conclude,

that significant gains were achieved by using NMD for the problem.



Because its joint, shift-invariant activation pattern appears inherently

suitable for dictionary reduction and reverberation handling, we con-

sider it the better candidate for further research within related topics,

such as echoing noise and large vocabulary.

The second observation was the superiority of T = 30. Whereas
in the previous independent window experiment it suffered from

lower clean speech recognition rates, here it improves to the extent

that it surpasses both of the T = 20 variants in all SNRs. It was our
earlier assumption, that in such a long window the dictionary size

becomes a limiting factor for independent windows, because sev-

eral temporal alignments of features are required in the exemplars.

We also assumed, that deconvolution might reduce the effect. The

results support both of these theories. As the T = 30 basis was
identical in both variants, and post-processing factors are negligible

in clean speech recognition, we conclude that the nearly halved error

rate in clean speech results from algorithmic differences. The other

high percentages in set A follow the improved performance of clean

speech throughout the noise levels. Window length 40 was found too

large to be handled with this dictionary size, regardless of the use of

convolution.

The primary problem of our current approach is highlighted by

the third observation, namely the increasing quality gap between

sets A and B. The noise types of set A are similar to those used

in training and dictionary construction. Therefore the factorisa-

tion/deconvolution becomes a well defined separation problem, and

generally plausible results can be achieved. The situation is no-

tably different in test set B. Because the noise types do not match,

especially in long windows we cannot expect to find good ap-

proximations for the observed noise in the dictionary. In NMF of

independent windows, a lot of averaging will take place. Up to

30 different noise estimates from consecutive windows are mixed

together. Therefore they are unlikely to form any major distracting

features. In NMD, this kind of forced averaging is not present. The

increased sparsity, which aided separation in set A, may become a

hindrance instead. Sparse activations of nonmatching noise features

are not suitable for representing the true noise in signals, thus the

separation often fails. A telling detail is that in set A the noisy results

improved further by increasing the iterations to 250. In set B this

did not happen. Even a few decrements took place, suggesting that

the algorithm had already reached an unstable peak level regarding

separation quality.

It has been repeatedly seen that long temporal context is effec-

tive, or even required for handling high levels of background noise.

We also found here additional support for the potential of exemplar-

based sparse representation. However, while various speech patterns

can be handled by a reasonably sized exemplar dictionary, the same

cannot be said about all types of noise present in the real world.

To cope with this issue, we have already taken initial steps towards

adaptive and synthetic noise dictionaries [14]. Preliminary results

show that even a simple synthetic dictionary can surpass the separa-

tion quality of a poorly matching sampled dictionary. Deconvolution

should prove useful in such dictionary methods, because new pat-

terns can be included as single entries without temporal repetition.

The algorithm itself will take care of different temporal alignments.

7. CONCLUSIONS

A framework for an exemplar-based, deconvolutive speech recog-

nition system was presented. Comparative results against an ear-

lier setup with independent factorisation windows were shown us-

ing the AURORA-2 connected digit recognition test. Deconvolution

with a window length of 30 frames (300 ms) surpassed the results of

other window lengths and the previous approach almost uniformly.

Recognition rates of >80% were observed at 0 dB SNR, and >60%
at -5 dB. Improvements in clean speech recognition rates using long

windows suggest, that deconvolution can overcome some of the dic-

tionary size problems of independent windows. It turned out that the

match between the dictionary and observed noise is crucial in decon-

volution, even more so than in the independent window approach.
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Abstract

Robustness against varying background noise is a crucial re-
quirement for the use of automatic speech recognition in ev-
eryday situations. In previous work, we proposed an exemplar-
based recognition system for tackling the issue at low SNRs.
In this work, we compare several exemplar-based factorisation
and decoding algorithms in pursuit of higher noise robustness.
The algorithms are evaluated using the PASCAL CHiME chal-
lenge corpus, which contains multiple speakers and authentic
living room noise at six SNRs ranging from 9 to -6 dB. The
results show that the proposed exemplar-based techniques of-
fer a substantial improvement in the noise robustness of speech
recognition.

Index Terms: automatic speech recognition, exemplar-based,
noise robustness, sparse representation

1. Introduction

While Automatic Speech Recognition (ASR) has been under
intensive research for decades, its widespread adoption is still
being delayed by practical issues. One of the primary problems
is varying background noise. Conventional ASR systems, based
on frame level Gaussian Mixture Models (GMMs), suffer sig-
nificant quality degradation when spectral features become cor-
rupted by noise. Joint modelling of the target speech and noise
in the recognizer, [1], feature compensation [2], and missing
data techniques [3] have been suggested to overcome this prob-
lem. Meanwhile, there are alternative routes, which no longer
employ GMMs to discover the underlying speech content.

In previous work [4, 5], we have described an exemplar-
based recognition framework, where noisy speech is repre-
sented as a combination of multi-frame speech and noise spec-
trogram segments, exemplars. The framework can be used for
signal or feature enhancement, but the best results have been
achieved by using exemplar labels, which directly reveal the
phonetic content of an utterance via their activation weights.
In this paper, we explore the effectiveness of the exemplar-
based framework on highly corrupted speech using the PAS-
CAL CHiME challenge data, in which the speech is not only
reverberated, but also contains phonetically close keywords and
highly variable background noise events.

Concerning our framework, the CHiME data provides a few
interesting options, which were not present in the previous ex-
periments carried out on the AURORA-2 database. First, the
data is stereophonic and high quality. Second, the utterances to
be recognised can be observed within their neighbouring noise
context. Finally, the identity of the speaker is known at the
moment of recognition, so speaker-dependent speech exemplars
can be reliably employed.

The rest of the paper is organised as follows. The general
concepts of our exemplar-based approach are described in Sec-
tion 2. The experimental setup, including the CHiME database,
feature extraction and parameter settings of the baseline sys-
tem are presented in Section 3. The baseline exemplar-based
recognition results are shown and discussed in Section 4. Ex-
periments with two variants; the use of matrix deconvolution
(NMD) and the use of regression to learn the mapping between
words and exemplars, are described in Sections 5 and 6, respec-
tively. The overall discussion of our findings is presented in
Section 7, and the summary and conclusions in Section 8.

2. Recognition with speech and noise
exemplars

Sparse representations have received increasing attention in sev-
eral applications, including image and audio signal processing.
The key concept is that many natural signals can be described
as a linear combination of only a few atoms. Enforcing sparsity
prevents overfitting with too many elements. By allowing only
a small number of activations, we can expect to find the few
dictionary atoms, which best explain the mixed signal.

In noise robust speech recognition, it has been proposed
that speech may be described as a sparse linear combination of
exemplars, and that noisy speech can likewise be described as
a combination of noise and speech exemplars [5, 6, 7]. When
a noisy utterance is represented using these components, the
activations of speech exemplars, together with knowledge of the
words they represent, can be used to recognise the underlying
utterance.

2.1. Sparse representation of noisy speech

The base element of our sparse representation is an exemplar, a
B×T spectrogram block of B spectral magnitudes of speech or
noise in T consecutive frames, extracted from training data. The
exemplars are indexed by variable e. To simplify the notation,
the columns of each spectrogram matrix are stacked into vector
ae of length B · T . The E exemplars are gathered into the
columns of matrix A to form a basis or dictionary.

The utterance to be recognised is similarly converted to
spectral features. A length T observation window is concate-
nated into vector y. The observation window is represented as
a linear combination of exemplars,

y ≈

E
X

e=1

aexe, (1)

where xe is the weight or activation of each exemplar.
In the baseline exemplar-based recognition system we em-
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ploy an algorithm referred as ‘NMF’ (Non-negative Matrix Fac-
torisation) to find the non-negative and sparse activations. The
vector x of all activations xe in Equation 1 can be determined si-
multanously for multiple observation vectors stored in columns
of matrix Y, each producing its own column to the total activa-
tion matrix X. The matrix equation to be solved thus becomes
Y ≈ AX.

We obtain the non-negative activation matrix X while min-
imising the Kullback-Leibler divergence and introducing an
sparsity-inducing L1 penalty for non-zero activations by using
the update rule

X← X⊗
AT(Y/(AX))

AT1 + Λ
. (2)

Here ⊗ denotes elementwise multiplication. Matrix divisions
are also elementwise. 1 is an utterance-sized all-ones matrix. Λ
is the sparsity penalty matrix, defined for each activation entry.

For recognition of utterances of arbitrary length Tutt, we
process the utterance in W = Tutt − T + 1 overlapping feature
windows with a step of one frame between windows. Because
the middle frames are estimated several times in consecutive
windows, averaging is applied to the likelihoods of the next step
to compensate for this. For a thorough description of this fac-
torisation method, see [4]. An alternative method for handling
temporal continuity, referred as Non-negative Matrix Deconvo-
lution (NMD), is presented in Section 5.

2.2. Recognition

To decode the signal, we create a Q× Tutt likelihood matrix L,
where each entry Lqτ denotes the probability of speech state q
(1 . . . Q) in frame τ (1 . . . Tutt). This is generated using conver-
sion matrices Bt (Q × E), which describe the linear mapping
of exemplars to states for each frame t of the exemplars. In
our baseline system, we use binary labelling of dictionary ex-
emplars for the conversion. In each exemplar frame only one
state is labelled to be active. The matrices need not to be bi-
nary, though. in Section 6 we will experiment with a technique
to learn the conversion matrices in order to take into account
dependencies between exemplar activations.

After generating the whole matrix L as described in [4],
each of its columns (representing state likelihoods in one frame)
is normalised to unitary sum. The matrix is then decoded using
a Viterbi algorithm and trained transition parameters.

3. Experimental setup

3.1. The CHiME database

The PASCAL ‘CHiME’ Speech Separation and Recognition
Challenge [8] is designed to address some of the problems oc-
curring in real world noisy speech recognition. The challenge
data is based on the GRID corpus [9], where 34 speakers read
simple command sentences. These sentences are of form verb-
colour-preposition-letter-digit-adverb. There are 25 different
‘letter’ class words and 10 different digits. Other classes have
four word options each. In the CHiME recognition task, the fi-
nal score is the percentage of correctly recognised ‘letter’ and
‘digit’ keywords.

CHiME utterances simulate a scenario, where sentences are
spoken in a noisy living room. The original, clean speech utter-
ances are reverberated according to the actual room response,
and then mixed to selected noise sections, which produce the
desired SNR mixture level for each noisy set. The noisy sets
have target SNR levels of 9, 6, 3, 0, -3 and -6 dB.

For modelling/training, there are 500 reverberated utter-
ances per speaker (no noise), and six hours of background noise
data. The development and test sets consist of 600 mixed-
speaker utterances at each SNR level, Additionally, noiseless
(only reverberated) development utterances are available. De-
velopment and test utterances are both given in a strictly end-
pointed format, but also as embedded signals within their noise
context. All data is stereophonic and has a sampling rate of 16
kHz.

3.2. Feature extraction

For the features of our framework, we used spectral magnitudes
of Mel bands. These were calculated from partially overlap-
ping 25 ms frames with a shift of 10 ms between frames. 26
bands were used for the 16 kHz signal (Nyquist frequency 8
kHz), which matches the number of bands used for the default
CHiME MFCC models. Features were extracted separately for
both stereo channels and concatenated, thus effectively dou-
bling the number of feature bands.

3.3. Speech exemplars

We used 5000 speech and 5000 noise exemplars for each win-
dow length T , adding up to E = 10000 total entries. We
created two different types of speech dictionaries: a speaker-
dependent and a speaker-independent one. First, an initial
speech dictionary was created for each speaker, based on a 60%
subset of the noiseless speech training utterances, by extract-
ing exemplars with a random frame shift of 4 to 8 frames. This
produced approximately 10000–17000 partially overlapping ex-
emplars per speaker and window length. For the speaker-
dependent dictionaries, each initial dictionary was reduced to
a fixed size of 5000 exemplars by selecting exemplars such that
there is a maximally flat coverage between words. (In the origi-
nal dictionaries, words from classes with fewer options are over-
represented due to more frequent appearance in the training set.)

A speaker-independent dictionary was created for each win-
dow length, this time by selecting 147–148 (5000/34) exemplars
from each full speaker-dependent dictionary with similar word
probability flattening. These were then combined to a single
5000 exemplar dictionary per window length.

In addition to storing the spectral feature data, state labels
were assigned to the speech exemplars by using transcriptions
acquired by forced alignment. Alternatively, the state informa-
tion was learnt by factorising the remaining 40% of training files
and finding the mapping as described in Section 6.

3.4. Noise exemplars

The selection of noise exemplars has a central role in the sepa-
ration quality of factorisation algorithms. If no matching noise
is found, separation results become unpredictable. Initially, we
created two different types of noise dictionaries. In the first,
5000 noise exemplars were randomly extracted from the pro-
vided background noise data. In the second, 5000 noise exem-
plars were selected by sampling the neighbourhood of embed-
ded utterances to both directions with a shift of 4 to 7 frames,
excluding locations where other test utterances were embedded.

Experiments using the development set (not shown) indi-
cated that using the adaptive noise dictionary yields a 1–4% im-
provement in recognition accuracy compared to the fixed noise
dictionary. In this paper, we will only report results obtained
using adaptive noise.
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Table 1: Results of the baseline exemplar-based recogniser on the test set. The rows refer to different exemplar sizes. CHiME GMM
baseline results are also shown. The best result at each SNR level is highlighted.

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.1 70.8 61.3 52.0 39.8 34.7

T = 10 69.9 66.0 58.7 52.4 42.9 37.8
T = 20 77.3 72.8 68.2 62.7 51.1 44.0
T = 30 76.0 73.5 68.2 61.8 52.7 44.7

(a) Speaker-independent results

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T = 10 91.3 88.3 85.8 80.8 71.4 62.3
T = 20 91.6 89.2 87.6 84.2 74.7 68.0
T = 30 88.8 88.1 86.3 82.9 75.1 68.3

(b) Speaker-dependent results

3.5. Processing test utterances

For factorisation, each utterance was read from the endpointed
(‘isolated’) file, and converted into Mel features. After choos-
ing the appropriate speech and noise basis for the utterance,
they were reweighted together to equal Euclidean norm over
Mel bands and exemplars. Band weights from the combined
dictionary were then applied to the utterance features.

The NMF penalty matrix Λ used in finding a sparse repre-
sentation can be set for each activation entry separately. We
used two different values, one for speech exemplars and an-
other for noise. The values were tuned by factorising a sub-
set of development utterances with partially adaptive, speaker-
dependent bases and exemplar size T = 20. The penalty values
were set as 2.0 and 1.7 for speech and noise exemplars, respec-
tively. Generally speaking, higher values of Λ produce better
recognition rates at high SNRs, while lower ones lead to better
performance at low SNRs. We selected values, which give a
slight emphasis to the noisy end. The same sparsity values were
used throughout all experiments.

For state representation, we used the same model as in the
CHiME baseline recogniser. Each word is modelled with 4–10
successive states, and the whole system uses in total 250 states.
The activations were mapped to state likelihoods as explained in
section 2.2. Utterances were decoded using the HVite binary of
the HTK toolkit, modified to pick its state likelihoods directly
from the generated matrix L instead of evaluating state GMMs.

4. Baseline system results

The results of the baseline exemplar-based recogniser are pre-
sented in Table 1. Three different window lengths, T = 10, 20
and 30 are shown, as well as results for both speaker-dependent
and speaker-independent systems. The GMM-based CHiME
baseline recognition results are also shown. When comparing
the results, note that the baseline system uses mono features
without noise compensation other than cepstral mean normali-
sation.

In general, it is clear that the exemplar-based recognition
system outperforms the baseline GMM system in almost all
conditions, especially when using speaker-dependent speech
dictionaries. The lower performance of speaker-independent
dictionaries ensues because a mixed speech dictionary only has
a very limited number of exemplars to match a certain speaker,
while at the same time it has a larger chance of matching to
speech features in the background noise, produced by people
in the living room or by various entertainment appliances. In-
terestingly, the speaker-independent GMM-based system was
more noise robust at low SNRs, possibly because the trained
Gaussians have a larger variance and thus match corrupted
speech features better.

Like in experiments on AURORA-2 [4, 5], using an exem-

plar size of T = 10 was found suboptimal at low SNRs, be-
cause not enough time context can be exploited. T = 20 gen-
erally turned out equal or superior to T = 10. Exemplar size
T = 30 is the most robust against noise, but performs worse
at high SNRs. As the exemplar size increases, the dimension-
ality of feature vectors grows, and it becomes more difficult to
find a matching linear combination of speech exemplars. Using
a higher number of exemplars may alleviate this effect, at the
cost of increased computational complexity.

5. Non-negative matrix deconvolution

As a first variant of the baseline exemplar-based recognition
system, we use Non-negative Matrix Deconvolution (NMD)
rather than NMF to obtain sparse representations of noisy
speech. NMD is a name given to an alternative method to han-
dle temporal continuity between frames. The algorithm has also
been called convolutive sparse coding [10].

While not a deconvolution algorithm in the traditional
sense, the name reflects the principle that a reconstructed ut-
terance is represented as a convolution between activations and
exemplars. This means that all the activations jointly form the
estimated utterance matrix. A few activations at specific tem-
poral locations are typically enough to represent the utterance
features. There are no independent estimates or averaging like
in the sliding window NMF. For the convolutive update algo-
rithm and comparison of behaviour, see [11].

The results for NMF and NMD algorithms are shown in
Table 2. Both methods employ adaptive noise dictionaries,
speaker-dependent speech dictionaries and 300 iterative up-
dates. In NMF, the speech exemplar activations were nor-
malised to unitary sum in each window. In NMD, no normali-
sation was performed. These choices have been found recom-
mendable in earlier work [4, 11].

In these results, NMF produces slightly yet significantly
better recognition rates in all conditions. This is surprising, be-
cause on AURORA-2 we observed the opposite: NMD outper-
formed NMF. Especially the degradation of NMD at T = 30 is
unexpected, because on AURORA-2 it was the best performing
exemplar size [11].

One possible reason is that factorisation parameters were
optimised using NMF. Because the full optimisation process is
computationally heavy, the same parameters were applied di-
rectly to NMD. Therefore the results may favour NMF. We can
also speculate, that the closely related keywords in CHiME are
prone to occasional misclassifications in sparse activations. As
there is more averaging over independent estimates in NMF, the
chance of errors in the final estimate is smaller than in NMD.
Because a 1–2% drop was already present in the cleanest end
of both keyword classes, we can suspect a problem with word
recognition itself, not the noise robustness of NMD.
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Table 2: Comparison of NMF and NMD factorisation algorithms in speaker-dependent recognition. The rows refer to different exemplar
sizes. The best result at each SNR level is highlighted.

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T = 10 91.3 88.3 85.8 80.8 71.4 62.3
T = 20 91.6 89.2 87.6 84.2 74.7 68.0
T = 30 88.8 88.1 86.3 82.9 75.1 68.3

(a) NMF

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T = 10 88.3 85.9 83.3 78.8 69.1 59.8
T = 20 90.5 88.6 87.0 81.3 72.1 65.9
T = 30 87.2 86.1 84.0 79.9 70.6 63.3

(b) NMD

6. Mapping from activations to likelihoods

In our baseline system, the mapping from activations to word
state likelihoods is based on labels of dictionary items, which
have been obtained by forced alignment. However, in label-
based mapping of word models there is the inherent problem
that phonetically similar features may appear in different con-
texts. A factorisation algorithm (NMF or NMD) selects the
exemplars with best fitting spectral features, while their labels
may occasionally suggest a misleading word identity. Such an
error will easily result in a misclassification.

We tested an alternative approach, where the mapping was
not assigned according to dictionary labels, but learnt using
regression algorithms on factorised training data labelled by
forced alignment. Labels were assigned to a 40% subset of the
training set for this purpose. Then a regression algorithm was
used to discover optimal mapping matrices between activation
vectors and target states.

We used two different regression algorithms, Ordinary
Least Squares (OLS) and Partial Least Squares (PLS) to learn
the mapping from activations to likelihoods. OLS is straight-
forward minimisation of the L2 error term in mapping. PLS
(also known as Projection to Latent Structures) uses an internal,
usually lower dimensioned space. The original coordinates are
rotated in input and output to the internal space, where the true
mapping is optimised. PLS can tolerate a collinearity of input
data, contrary to OLS. For details, see [12].

The outcome of the recognition with different likelihood
generation methods is shown in Table 3. Results are listed for
recognition with binary labels, and OLS/PLS-trained mapping.
Speaker-independent results are included, because they provide
interesting insight to scenarios where flaws of the original sys-
tem can be countered with learning.

In speaker-independent recognition, uniform improvements
of 4.3–14.1% (absolute) can be seen over the use of binary la-
bels. In these dictionaries, very few instances of each word are
present for a specific speaker. This seems to result in numerous
misclassifications due to exemplars from other words being ac-
tivated instead. When the conversion matrices are learnt — in
this case from a large amount of training material — the actual
correspondence of each exemplar can be discovered with con-
vincing results. Possibly for the abundance of training material
coming from all speakers, OLS is mostly superior to PLS.

The speaker-dependent results are more mixed. Here the
dictionaries only cover one speaker at a time, and thus can in-
clude a broad representation of all words and states. In fact, the
reduction algorithm did not remove any of the letter and digit
exemplars gathered from the training material, because they all
fit in the 5000 exemplar dictionaries. It is also worth noting,
that in this scenario the regression matrices were only trained
from the speaker’s own training subset (200 utterances), which

is quite limited regarding keyword appearance. Under this lim-
ited training data, the performance of all methods was mostly
similar, unlike in the speaker-independent case.

7. Discussion

The CHiME challenge database provided some new insight to
the applicability of our exemplar-based methods. Overall, the
results appear very plausible. Using properly selected algo-
rithms and parameters, our framework reduced the recognition
error rates to less than half of the CHiME baseline system at
all SNRs, in many cases even by significantly larger a margin.
We also achieved improvements in noise robustness over our
previous work on AURORA-2. These gains can be partially at-
tributed to the characteristics of CHiME, which allow construc-
tion of accurate dictionaries for both speech and noise.

When the speaker identity is known and thus matching
speech exemplars can be selected, correct phonetic features can
be picked out reliably even in the presence of other voices.
Our speaker-dependent results were significantly better than the
speaker-independent ones. Using GMMs the difference was not
so clear. Regarding noise dictionaries, we found out that adap-
tive noise exemplar selection can yield high separation quality
under varying noise conditions. Previously there were some
concerns over the feasibility of generating a generic noise dic-
tionary using a practically manageable number of exemplars.
Our CHiME experiments confirm, that adaptive selection can
be used instead of a fixed dictionary. Its implementation should
be feasible in practical applications as well.

One surprising and slightly disappointing aspect was the
subpar performance of NMD in comparison to sliding window
based NMF. It is not certain yet, whether this is a real algorith-
mic difference or merely a result of insufficient parameter train-
ing in NMD. Further experiments and optimisations should be
carried out to find out the true capabilities of each factorisation
algorithm.

More favourable results were achieved in learnt likelihood
mapping. The gains over explicitly assigned labels are positive
by themselves. However, in a larger context this means that well
performing likelihood mappings can be learnt even for features,
which are not directly derived from any specific speech sections.
In other words, we can experiment with any kind of dictionary
generation methods and then find out the phonetic labels even
if none were originally present.

While the separation and likelihood generation algorithms
of our framework have already been improved, more attention
should be paid to optimising the features and state models for
maximal linguistic accuracy. The CHiME data illustrates, how
some closely related words can be difficult to tell apart even un-
der favourable conditions. Although noise robustness is a cru-
cial aspect in practical ASR systems and our framework has
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Table 3: Comparison of the recognition with three different likelihood generation methods on the test set. In addition to binary labels,
OLS and PLS regression are evaluated. The best result at each SNR level and for each exemplar size is highlighted.

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.1 70.8 61.3 52.0 39.8 34.7

T = 10
labels 69.9 66.0 58.7 52.4 42.9 37.8
OLS 84.3 77.8 71.4 65.3 56.4 48.6
PLS 82.1 77.1 71.0 64.0 57.0 49.3

T = 20
labels 77.3 72.8 68.2 62.7 51.1 44.0
OLS 85.2 80.5 78.7 71.1 60.2 51.5
PLS 82.9 78.8 74.8 70.1 59.5 50.6

T = 30
labels 76.0 73.5 68.2 61.8 52.7 44.7
OLS 82.8 80.5 76.3 70.7 62.1 54.4
PLS 81.1 77.8 74.3 68.8 61.1 52.4

(a) Speaker-independent recognition

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T = 10
labels 91.3 88.3 85.8 80.8 71.4 62.3
OLS 89.8 86.8 85.0 79.7 70.1 62.7
PLS 90.5 87.8 84.5 80.2 71.3 63.7

T = 20
labels 91.6 89.2 87.6 84.2 74.7 68.0
OLS 91.1 90.0 88.5 85.2 77.6 69.2
PLS 91.9 89.3 88.2 85.0 78.6 69.6

T = 30
labels 88.8 88.1 86.3 82.9 75.1 68.3
OLS 88.8 86.0 86.4 83.3 76.1 69.2
PLS 89.1 85.7 84.8 82.4 77.2 68.8

(b) Speaker-dependent recognition

shown significant advances in achieving it, the ultimate goal of
maximally accurate recognition of speech itself should not be
forgotten or compromised. Proper phonetic state models should
be introduced instead of the current word models to avoid mul-
tiple meanings between similar features, and to make large vo-
cabulary recognition feasible.

8. Conclusions

Exemplar-based methods were presented for recognition of
speech in highly variable real world noise. The main frame-
work and its variants were evaluated using the CHiME chal-
lenge database, which covers actual living room noise at mul-
tiple SNRs. We achieved recognition rates of over 91% at 9
dB, and close to 70% at -6 dB. Long temporal context with 200
ms exemplars, speaker-dependent speech dictionaries and adap-
tive noise dictionary gathering were found the best options for
recognition of noisy speech.

Two separation algorithms, non-negative matrix factorisa-
tion and -deconvolution were used for determining the exem-
plar activations from Mel-scale spectral magnitude features. In
these experiments, factorisation of overlapping windows inde-
pendently from each other performed better than deconvolutive
separation of whole utterances at once.

Learning the mappings from exemplar activations to state
likelihoods using OLS and PLS regression was proposed. These
algorithms were compared to strict binary labels acquired
from forced alignment. Highest gains were seen in speaker-
independent recognition. The original binary labels produced
unreliable results, while mappings learnt from large training
data improved the recognition rates by 4–14% (absolute). In
speaker-dependent recognition the differences were small.

The results surpassed significantly both the CHiME base-
line results and our previous AURORA-2 recognition rates.
While the noise robustness of our system is already relatively
high, parameter optimisation and better speech models would
help in improving the overall recognition quality even further.
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MODELLING SPECTRO-TEMPORAL DYNAMICS IN FACTORISATION-BASED
NOISE-ROBUST AUTOMATIC SPEECH RECOGNITION
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ABSTRACT

Non-negative spectral factorisation has been used successfully for

separation of speech and noise in automatic speech recognition,

both in feature-enhancing front-ends and in direct classification.

In this work, we propose employing spectro-temporal 2D filters to

model dynamic properties of Mel-scale spectrogram patterns in ad-

dition to static magnitude features. The results are evaluated using

an exemplar-based sparse classifier on the CHiME noisy speech

database. After optimisation of static features and modelling of tem-

poral dynamics with derivative features, we achieve 87.4% average

score over SNRs from 9 to -6 dB, reducing the word error rate by

28.1% from our previous static-only features.

Index Terms— Automatic speech recognition, exemplar-based,

spectral factorisation, noise robustness

1. INTRODUCTION

In its current state, automatic speech recognition (ASR) can achieve

high phonetic classification quality in favourable conditions. How-

ever, the same cannot be said about noisy ASR. As the signal to noise

ratio decreases towards zero or below, a majority of spectral features

becomes corrupted, and traditional recognisers cannot match the ob-

servations to speech models reliably. Especially non-stationary noise

is problematic for recogniser back-ends and difficult to counter with

uniform compensation methods. Therefore detecting and removing

non-speech artifacts becomes essential for noise-robust ASR.

To compare different robust ASR methods, PASCAL CHiME

challenge was announced in 2010, and its results were gathered in

a workshop in September 2011 [1]. As the test data includes very

low SNRs, practically all challenge entries contained enhancement

or separation steps for extracting real speech features from the noisy

mixture [2]. Proposed approaches included beamforming, spatial

uncertainty-of-observation, statistical speech-noise models and in-

dependent component analysis. Separation algorithms can thus be

considered highly important for everyday ASR in general. What is

less clear is how to select the algorithms and features for the task.

One significant group of separation methods consists of spectral

factorisation. Due to the novelty of this branch, current work mostly

focuses on modelling static spectrogram features. Nevertheless, we

know that important characteristics of speech and noise can be found

in spectral dynamics, that is, local changes in spectro-temporal pat-

terns. In MFCC-based recognition, it has been found beneficial to

augment the base features with time derivatives, also known as delta

coefficients [3]. Another approach suggested for long temporal con-

text modelling is using TRAP features, where the emphasis is on

long term behaviour of a few spectral bands [4]. In our exemplar-

based framework, spectrogram windows spanning up to 300 ms can

capture a lot of temporal context [5], but some of the dynamic in-

formation is lost in the additive model. It has been suggested, that

dynamics can be emphasised in factorisation-based recognition by

including temporal and spectral derivatives in the feature vectors [6].

In this work, we inspect further the efficiency of derivative fea-

tures on top of optimised Mel magnitudes to improve the robust-

ness of factorisation-based recognition. The work is organised as

follows. First, we introduce in Section 2 our exemplar-based fac-

torisation framework and its recognition method known as sparse

classification (SC). Then we describe the concept of derivative fea-

tures in Section 3. The CHiME challenge data, our basic setup and

feature space experiments are described in Section 4, whereafter we

conclude in Section 5.

2. EXEMPLAR-BASED SPARSE CLASSIFICATION

While many separation methods are based on statistical speech and

noise models, in our approach we make the models more explicit by

representing the observed features as a combination of exemplars—

spectrogram segments sampled directly from the training material or

the local context [5].

Each exemplar in our system is a B × T spectrogram matrix
with B spectral bands and T consecutive frames. They are gathered
to a basis or dictionary, which is used to model observed speech and

noise features. Each observation window is represented as a linear

combination of basis atoms. If we reshape the observation matrix to

a vector y and each exemplar (basis atom) to a column vector ai, the

problem becomes finding the activation weight vector x so that

y ≈
m

X

i=1

aixi (1)

where m is the number of exemplars in the basis. In matrix form
the same equation can be given as y ≈ Ax. Multiple observation
windows can be given as parallel column vectors to solve the total

activation matrixX (m × n) for n windows at once. Finally, by as-
suming that basis and observation features are non-negative spectral

magnitudes, and that activations should be non-negative too, finding

X becomes a non-negative matrix factorisation (NMF) problem for
a fixed basis. Enforcing additional sparsity on the solution ensures,

that a few best fitting matches are favoured over unrealistically com-

plex combination of multiple atoms. The iterative update rules used

to find the x estimates are presented in [5].

To determine the utterance content from activations, each exem-

plar has aQ×T label matrix, describing the likelihood of each state
q ∈ [1, Q] over the exemplar’s frames [1, T ]. Label matrices are
added together according to the corresponding exemplars’ activation

weights in temporal locations, where the activation was observed.

This produces a Q × Tutt likelihood matrix for the whole utterance,
which can be decoded using a standard Viterbi algorithm. The full

procedure is described in earlier work [5, 7].



Figure 1: Spectro-temporal filters. Top row: ‘Medium’ length Ga-

bor filters for temporal, diagonal and spectral direction. Bottom row:

‘Short’ and ‘Long’ Gabor filters, and length 2 HTK delta filter. Mag-

nitudes are shown at a full greyscale range, thus not in scale.
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As the decoding is based on activation weights and exemplar la-

bels, there is no need to reconstruct the clean spectrogram or to syn-

thesise the waveform for an external back-end. Even though spec-

trum or signal enhancement are also possible, in earlier work we

have shown that direct classification performs better than the single-

stream alternatives [5]. Multi-stream methods can improve the re-

sults significantly [8], but in this work we only use SC for simplicity

and to eliminate the contribution of other components.

3. SPECTRO-TEMPORAL DERIVATIVE FEATURES

Current spectral factorisation algorithms are mostly employed in

plain magnitude spaces, which model the activity in spectrogram

bins, but not the dynamics over time and frequency. As in MFCC

time derivatives, the NMF base features can be augmented by dif-

ferential estimates. Because we are working in Mel spectrogram

domain, it is possible to observe changes not only in time, but in

any spectro-temporal direction by using 2-dimensional filters. The

concept is similar to edge detection algorithms in image processing.

First, we construct a filter matrix in the spectro-temporal space.

Then a derivative feature matrix is calculated by common 2-

dimensional convolutive filtering of the static features, revealing

the on- and offsets of spectrogram patterns. However, it should

be noted that the differential estimates can have any sign, unlike

the original non-negative magnitudes. To stay in the non-negative

domain required by standard NMF algorithms, we must modify the

features before factorisation.

The derivative feature matrix is reshaped to a vector, and repre-

sented by two vectors of the same size. The first contains the positive

coefficients, and zeros where the vector was negative. Similarly, the

second vector contains the absolute values of negative coefficients.

If we denote the static features by a row vector f and its derivative
by df , the augmented feature vector becomes

f̂ = [f , df+, df−] = [f , max(df ,0), max(−df ,0)]. (2)

If multiple derivatives are used, they are concatenated further to the

vector as +/- pairs. Similar implementation was used in [6].

To learn the directions helpful for phonetic classification, we ex-

perimented with real-valued Gabor filters for multiple directions and

sizes. Examples of filter matrices are shown in Figure 1, and they

are described in more detail in Section 4.4.

4. EVALUATION

4.1. CHiME challenge data

The experiments were conducted using the PASCAL CHiME chal-

lenge database [1]. Its speech data consists of GRID corpus sen-

tences, which follow a linear grammar of six word classes. The task

is to recognise words belonging to the ‘letter’ and ‘digit’ classes,

which contain 25 and 10 word options, respectively.

CHiME utterances are convolved with room response patterns,

and mixed with household noises at six SNRs ranging from +9 to

-6 dB. For training, there are 500 reverberated utterances for each

of the 34 speakers, and six hours of plain background noise. The

development and test sets consist of 600 utterances each, distributed

between all speakers. Each set is repeated for all SNRs by mixing

the utterances with different background segments containing an ap-

propriate level of noise. All noisy utterances are presented within

a long noise context as ‘embedded’ wave files. The development

utterances are also available as ‘clean’ files with reverberation but

no additive noise. Speaker identity is assumed to be known during

recognition, while the target SNR is not.

4.2. Base setup

Our exemplar-based setup generally follows the one described in [7].

To reduce the number of parameters, we only use exemplar length

of 20 frames (25 ms frame length, 10 ms shift), speaker-dependent

speech bases and adaptively sampled noise bases in this work. The

previous results for this setup and the GMM-based CHiME chal-

lenge baseline recogniser can be found in Table 3.

For each speaker, a speech basis is constructed by sampling 5000

exemplars from the ‘clean’ training speech semi-randomly. 5000

noise exemplars are also extracted for each test utterance by sam-

pling the ‘embedded’ waveform files to both directions from the tar-

get utterance. In clean speech recognition, the noise basis is omitted.

After converting all exemplars to Mel magnitudes and merging the

speech and noise bases, a band weighting function is applied to de-

fine the contribution of each spectral band. Thereafter individual

basis vectors are normalised to a Euclidean norm of 1.

Each test utterance is similarly converted into Mel magnitudes

by extracting overlapping windows with a step of one frame. The

band weights determined for the basis are applied to the observa-

tion as well. The observation windows are factorised to find out the

activation vectors x as described in section 2. We initialise the ac-
tivations to ones, and apply 300 rounds of an iterative update rule.

The algorithm minimises the sum of estimation error (defined by

KL-divergence) and a weighted L1 penalty for non-zero activations.

As in earlier work, we used base sparsity values of 2.0 for speech

and 1.7 for noise activations. However, the final sparsifying effect

depends on the ratio between the penalty values and the 1-norms of

basis vectors. The latter will increase by a factor of
√

R, if the length
of 2-normed feature vectors is multiplied by R and their distribution
remains similar. Therefore the

√
R scaling is applied to the previ-

ously determined sparsity values, whenever the channel count, band

number or derivative features change the feature vector length.

To avoid optimising for the test set, all parameter scans were

performed on the development set. The ‘clean’ set was also used,

although it does not belong to the final test set and is not included

in any average values. The feature extractor was modified to use

512 FFT bins instead of the previous 256, producing small initial

improvements over the earlier extraction. No changes were made

to basis selection, factorisation or decoding algorithms. The learnt

state mappings presented in [7] were not used in this work.



Figure 2: Mel band weighting curves for no adjustment (‘flat’), on-

line normalisation of the combined basis (‘utt-c’), online speech ba-

sis normalisation (‘utt-s’), precalculated normalisation from training

speech (‘pre-s’) and bandpass filtering (‘bandp’).
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4.3. Spectral band parameters

Before moving on to derivative features, we reoptimised the under-

lying static spectral magnitude space. In earlier work, we used 26

spectral bands calculated from 16 kHz signals as in the provided

CHiME recogniser. The features were extracted separately for both

channels, and the channel feature vectors were concatenated. These

choices were re-evaluated as follows.

4.3.1. Band weighting

The Mel-scale distribution of speech and noise features is consider-

ably uneven across bands. We can reweight the bands for two differ-

ent goals; either to flatten the distribution for equal contribution of

each band, or alternatively to emphasise certain bands for maximal

classification quality. While the highpass filter commonly employed

in MFCC extraction can improve clean speech recognition, we have

found it too drastic for robust factorisation algorithms. Instead, five

different weighting methods were tested:

1. No weighting (‘flat’)

2. Normalisation of the combined utterance basis bands (‘utt-c’)

3. Normalisation calculated from the speech basis only (‘utt-s’)

4. Precalculated normalisation of training speech bands (‘pre-s’)

5. Experimental bandpass filtering (‘bandp’)

Method 2 is our previous approach and depends on the adaptive

noise basis of each utterance. Method 3 only depends on the cur-

rent speech basis, that is, speaker identity. Methods 4 and 5 both

produce fixed weighting, which simplifies the later steps. The band-

pass weighting was included as an example of filter types, which

emphasise the speech formant area and mostly discard frequencies

over 4 kHz. All weighting methods are illustrated in Figure 2. For

non-fixed weightings, means over all development data are shown.

The results are summarised in the first part of Table 1. We ob-

serve that ‘do nothing’ and online-computed speech weighting fare

worse at certain SNRs than the other methods, which are approxi-

mately tied. Interestingly, the fixed weightings produce similar av-

erage rates, while bandpass filtering favour the clean end and precal-

culated speech normalisation the noisy one. The latter was chosen

for further experiments due to its robustness, normalising effect and

fixed shape. The differences between diverse weighting methods

were generally small.

Table 1: Development set results for different spectral band parame-

ter combinations. The format of experiment names is [band number]

/ [mono | stereo] / [weighting type].

SNR (dB) clean 9 6 3 0 -3 -6 avg

26/s/flat 92.7 90.6 90.5 88.3 83.5 79.1 71.8 84.0

26/s/utt-c 93.7 91.8 91.8 89.8 83.5 78.5 72.2 84.6

26/s/utt-s 93.7 92.0 91.6 89.3 83.3 77.4 70.4 84.0

26/s/pre-s 93.6 91.4 90.8 89.3 84.7 78.9 72.7 84.6

26/s/bandp 93.7 92.0 91.7 89.8 83.8 78.8 71.8 84.6

26/m/pre-s 93.3 92.1 91.4 89.3 83.9 78.7 71.9 84.5

26/m/bandp 93.7 91.8 91.7 89.6 83.8 79.5 71.6 84.7

40/m/pre-s 93.6 92.3 91.6 89.8 85.0 79.7 72.7 85.2

4.3.2. Channel count

In our original parametrisation, binaural features were kept in sep-

arate entries of the feature vector, retaining some of the spatial in-

formation of the sound sources. To study whether it plays any role

in recognition quality, the development set was also factorised using

mono features by averaging the Mel magnitudes of channels. Apart

from adjusting the sparsity value due to vector length halving, no

other changes were made. Two fixed weighting curves, precalcu-

lated normalisation and bandpass filtering, were tested.

As can be seen from the results in Table 1 (rows 4–7), the ac-

curacy of mono and stereo features is highly similar. Because mono

features reduce the vector length and consequently computing costs

by a half, they were used for further experiments.

4.3.3. Spectral band number

One fundamental question regarding feature selection is the num-

ber of Mel bands. To inspect this briefly, the band count was in-

creased from 26 to 40. The results are shown on the last row of

Table 1. We observe some ∼1% improvements and no decrements,
suggesting that the gains may be worth the increased computational

costs. While the next section was still evaluated using the original

26 bands, the final evaluation was performed on both values.

4.4. Spectro-temporal filters

After determining efficient base features, we tested three combina-

tions of spectro-temporal Gabor filters: only temporal (forward and

backwards), cardinal directions (temporal and spectral), and diago-

nal filters (45◦ angles). The prototype filter matrix was defined by

g(x, y) = exp(−(
x2 + (γy)2

2σ2
) sin(

2πx
λ

), x, y ∈ [−5, 5] (3)

with ellipticity γ set to 3, Gaussian envelope width factor σ to 2, and
wavelength λ to 9, producing approximately one full sinusoid cycle.
The prototype filter and two of its rotations are shown on the first row

of Figure 1. The absolute sum of filter coefficients was set to 0.6 for

each half of the filter. The results of augmenting directional filters

to fixed-norm weighted mono features can be seen in the first part of

Table 2. We notice that temporal direction improves the recognition

rates, while including any of the spectral directions does not.

Settling for primarily temporal filtering, we tested the Gabor fil-

ter with its size increased and decreased by 50%, and in addition

the delta filter employed by HTK using the default window length

of 2 frames to both directions [3]. All were normalised to a 0.6



Table 2: Development set results for 2D filtering. Filter type is either

Gabor [short | medium | long] in [temporal | cardinal | diagonal ]

directions, or HTK delta.

SNR (dB) clean 9 6 3 0 -3 -6 avg

G/med/temp 92.8 92.0 91.7 89.5 83.9 80.3 73.2 85.1

G/med/card 92.9 91.8 90.3 89.3 83.8 78.1 71.7 84.1

G/med/diag 92.8 91.1 90.6 88.3 82.7 76.3 69.5 83.1

G/short/temp 93.3 92.2 92.2 90.3 85.6 81.4 73.5 85.9

G/long/temp 92.3 91.0 89.8 88.3 82.2 77.4 70.5 83.2

HTK delta 93.4 92.4 91.8 90.3 85.1 82.1 74.1 86.0

coefficient sum per side. The filters are shown on row 2 of Figure

1, and the results in the second part of Table 2. The best results

were achieved using the shorter filters with little or no cross-band

bleeding. The clean speech recognition rate does not improve over

unfiltered base features, but the robustness against heavy noise in-

creases. Changing the filter weight (not shown) did not produce any

significant improvements.

4.5. Final test set evaluation

After optimisations, the test set was evaluated using the follow-

ing parameter combination; mono features, precalculated speech-

normalising band weights, and length 2 temporal delta filtering at

weight 0.6. Both 26 and 40 spectral bands were used for determin-

ing their quality-cost tradeoff. The results are listed in Table 3. We

notice significant improvements at each SNR in comparison to our

earlier results. The word error rate is reduced by 13.9–32.8% at

different SNRs, and the total error rate by up to 28.1%. Using 40

bands produces a large boost at -6 dB and modest gains elsewhere.

While the overall rates do not match the state-of-the-art results

achieved in the CHiME workshop, where the best average score

was 91.65% [9], it should be noted that the current highest rank-

ing methods are relatively complex combinations of multiple tech-

niques, whereas the approach presented here is a single stream clas-

sifier. Preliminary experiments suggests, that using sparse classifi-

cation with complementary methods in multi-stream recognition can

indeed achieve over 90% average recognition rate on the CHiME

data already with the earlier, unoptimised features [8].

5. CONCLUSIONS

We studied alternative parametrisations of Mel features and their

derivatives for factorisation-based speech recognition using CHiME

challenge data and an exemplar-based sparse classifier.

First, we found out that the recognition algorithm is not particu-

larly sensitive to band weighting, although some normalisation will

improve the results over do-nothing. Mono features were found as

effective as stereo for this data, allowing a 50% reduction in compu-

tational costs. Increasing the spectral band number from original 26

to 40 improved the results slightly.

Spectro-temporal filters were applied to the basis and observa-

tion features to model dynamic behaviour. Including temporal delta

information produced significant improvements, while edge detec-

tion in spectral directions was found detrimental. The best temporal

filters were relatively short with roughly 20ms temporal context to

both directions, and no cross-band bleeding.

All in all, our feature space optimisation yielded 28.1% reduc-

tion in the total word error rate over all noisy conditions. Clean

speech recognition rate remained at approximately 93–94%, which

Table 3: Test set scores (%) for the CHiME baseline GMM recog-

niser, our previous SC features, and optimised features with their

relative word error rate reductions (%) from the earlier results.

SNR (dB) 9 6 3 0 -3 -6 avg

GMM baseline 82.4 75.0 62.9 49.5 35.4 30.3 55.9

original SC, B=26 91.6 89.2 87.6 84.2 74.7 68.0 82.5

optimised SC, B=26 92.8 91.3 89.8 87.9 82.2 75.8 86.6

WER reduction 13.9 19.9 17.5 23.7 29.6 24.5 23.4

optimised SC, B=40 92.9 91.8 90.1 88.4 82.9 78.5 87.4

WER reduction 15.9 24.6 20.1 26.8 32.6 32.8 28.1

illustrates the difficulty of short word classification when no clues of

word identity can be found from the neighbouring word context.

While the presented work was tested on the exemplar-based

recogniser, it can be generalised to other algorithms based on non-

negative spectral factorisation. The improved separation quality

should prove useful both for feature-enhancing front-ends and for

direct classifiers in standalone or combined recognition.
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ABSTRACT

In real world speech processing, the signals are often con-
tinuous and consist of momentary segments of speech over
non-stationary background noise. It has been demonstrated
that spectral factorisation using multi-frame atoms can be suc-
cessfully employed to separate and recognise speech in ad-
verse conditions. While in previous work full knowledge of
utterance endpointing and speaker identity was used for noise
modelling and speech recognition, this study proposes spec-
tral factorisation and sparse classification techniques to de-
tect, identify, separate and recognise speech from a continu-
ous noisy input. Speech models are trained beforehand, but
noise models are acquired adaptively from the input by us-
ing voice activity detection without prior knowledge of noise-
only locations. The results are evaluated on the CHiME cor-
pus, containing utterances from 34 speakers over highly non-
stationary multi-source noise.

Index Terms— Spectral factorization, speech recogni-
tion, speaker recognition, voice activity detection, speech
separation

1. INTRODUCTION

Applying automatic speech recognition (ASR) in noisy en-
vironments introduces several new challenges not present in
clean conditions. A fundamental problem is corruption of
speech features by additive noise, which may not match to
noise observed during model training. In previous work, high
separation quality has been achieved by applying spectral fac-
torisation that decomposes a noisy input spectrogram into ac-
tivations of multi-frame speech and noise atoms, which can
be acquired from training material or from the local context
[1, 2, 3, 4]. We have shown that a method known as sparse
classification (SC), which determines the phonetic content di-
rectly from the weights of activated speech atoms, can pro-
duce speech recognition results comparable to source separa-
tion followed by conventional back-end recognition [1, 5].
In previous experiments with noise atoms sampled from

the neighbourhood of noisy utterances, we have used anno-
tated speech endpointing to sample from segments known to

The research of Jort F. Gemmeke was supported by IWT-SBO project
ALADIN contract 100049.

consist of only noise. In real world applications, such infor-
mation cannot be assumed to be available, thus speech activ-
ity must be estimated. In other speech recognition methods,
voice activity detection (VAD) has been employed to detect
speech and noise segments and to update the noise model [6].
In this work, we propose the use of SC-based methods for

detecting the target utterances from mixtures containing high
noise levels and occasionally overlapping non-target speech.
The same framework is used for noise model updating and
subsequent source separation. Speech models are acquired
beforehand from training material, whereas noise models are
adapted from the context.
Another topic of interest is the use of speaker-dependent

speech recognition to obtain better results in both clean and
noisy environments. However, the true speaker identity may
not be known during recognition. We propose SC for deter-
mining the speaker identity from continuous noisy mixtures,
whereafter source separation and speech recognition is car-
ried out with speaker-dependent speech models.
The work is organised as follows: Section 2 introduces the

main concepts of factorisation-based speech separation and
recognition. In Section 3 we present the framework for pro-
cessing continuous audio, detecting speech locations, and up-
dating the noise model. In Section 4 we apply the algorithms
to CHiME data, consisting of utterances from 34 speakers
over continuous, highly non-stationary background noise. Fi-
nally, in Section 5 we draw the conclusions.

2. FACTORISATION-BASED SPEECH SEPARATION
AND RECOGNITION

The methods presented here are based on representing an ob-
served sound mixture as a linear sum of speech and noise
atoms, each belonging to a single speaker or to background
noise. The features consist of Mel scale spectral magnitudes,
computed in 25 ms frames with a 10 ms shift. The atoms
are B × T spectrogram segments, where B is the number of
Mel bands and T is the number of consecutive frames in an
atom. Speech and noise atoms form a dictionary (or basis).
By assuming that magnitudes of multiple sources are approx-
imately additive in the Mel-spectral domain, factorisation be-
comes a problem of finding non-negative activation weights
xl for each atom index l ∈ [1, L] in the system, together de-
noted as an activation vector x.

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 2649



2.1. Convolutive spectral factorisation

An observation spectrogramY (B×F ), where the number of
frames F is larger than atom duration T , is factorised using
convolutive temporal modelling and joint spectrogram esti-
mation with overlapping segments [7]. We find the L × W
activation matrix X, consisting of an activation vector for all
W window indices in the observation. We only consider win-
dows fitting completely within the observation spectrogram.
Thereby the activations of the final window index W takes
place at time F − T + 1. X is obtained by optimising the es-
timated observation spectrogram Ψ, modelled convolutively
as

Ψ =

T∑

t=1

At

→(t−1)

X . (1)

Each At (t ∈ [1, T ]) is a B × L matrix, containing frame t
of every B × T atom in the dictionary. Operator→ shifts the
columns of X right within a L × F zero-padded matrix by
t − 1 columns. The cost function to be minimised consists
of Kullback-Leibler divergence between Y and Ψ, and the
sum ofX entries weighted element-wise by a sparsity penalty
matrix. The exact cost functions and iterative update rules
used in our convolutive factorisation are described in [2, 5].

2.2. Source separation and sparse classification

The activation matrix can be used for source separation. Two
spectrogram estimates are derived from Equation 1; a noisy
speech reconstruction Ψ obtained by using both speech and
noise atoms, and a clean speech estimate Ψs obtained by
only using speech atoms and activations. The element-wise
speech-to-total ratio Ψs/Ψ is converted back to discrete
Fourier frequency scale by multiplication from the left by
a pseudoinverse of the Mel filterbank matrix, and acts as a
time-varying filter for the original mixture spectrogram. It
is then used to estimate speech-only features and further to
synthesise separated time-domain signals [5].
To determine the speaker identity and phonetic content

from speech atom activations, each speaker-dependent speech
atom is associated with a Q × T label matrix B. It repre-
sents the presence of each phonetic state q ∈ [1, Q] over the
atom’s frame indices [1, 5]. These atom-state labels are used
to calculate a Q× F likelihood matrix, representing phonetic
state likelihoods over the whole duration of the observation.
The likelihood matrix is calculated by applying Equation 1,
with state label matrices B taking the place of the atom spec-
trograms. The method is known as sparse classification. In
previous work we have used it for speech decoding [1, 2, 5].
Here the state likelihood information is used for voice activity
detection and speaker identification.

3. PROPOSED SYSTEM FOR PROCESSING
CONTINUOUS AUDIO

In the proposed system, continuous input audio is processed
gradually using convolutive spectral factorisation, a fixed

multi-speaker speech basis obtained in the training stage,
and an adaptively updated noise basis. As the factorisation
advances within the signal, speech activation weights and
state mapping matrices are used to construct estimates of the
presence of phonetic states for each speaker individually. The
speaker-dependent state information is used for two purposes,
speech locating and speaker identification.

3.1. Voice activity detection

We perform initial factorisation in 750-frame (7.5 s) spectro-
gram blocks. An extended Hann window function, consist-
ing of 250 frames of fade-in, 250 frames of flat top and 250
frames of fade-out is applied to each block spectrogram. 2/3
overlap is present between blocks, so that each frame of the
input is included in exactly one flat middle section. Blocks
are factorised consecutively using the convolutive model de-
scribed in Section 2.1 with a multi-speaker speech basis (Sec-
tion 4.2) and an adaptive noise basis (Section 3.2).
Speech activations are converted into phonetic state like-

lihoods by using mapping matricesB and overlap-added over
blocks. Using the initial state likelihood estimates and word-
dependent VAD weight functions over time, a total VAD level
estimate is derived for each input frame. Each word is as-
signed a specific weight profile over time, spanning up to 30
frames to both directions from the original frame location for
temporal smoothing and utterance modelling. Based on the
task grammar, the shape of weight functions depends on the
role of each word in a sentence: the functions correspond-
ing to the first and last word classes in a sentence are given
negative weight before and after them, respectively. This em-
phasises the contrast in VAD level between target speech and
its surroundings, helping to isolate test utterances from noise
and non-test speech. An example of weight functions that
were used in the simulations is shown in Figure 1. Word ac-
tivity sums are convolved with their respective weight func-
tions, and then summed together for the total VAD weight.
Speech-noise classification is performed using the total

VAD weight over frames and on/off threshold values deter-
mined from development data. In addition, constraints can be
set on the utterance duration to select candidates matching to
the expected temporal profile of utterances.

3.2. Noise basis acquisition

Areas flagged as noise are sampled directly into noise atoms
with a T/2 overlap between consecutive atoms. A thresh-
old value is used on the spectrogram magnitude sum of seg-
ments to only store atoms with significant noise events. A
noise dictionary is maintained, starting empty and acquiring
new content up to a defined maximum capacity. Each noise
dictionary atom is given a significance weight, increasing ac-
cording to its activation weight in factorisation and decaying
exponentially over time. Whenever newly introduced noise
atoms would exceed the dictionary size, the least significant
existing atoms are discarded. The latest dictionary is always
used for factorisation.
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Fig. 1. VAD weight functions for each CHiME word class.

3.3. Speaker recognition

As we use a multi-speaker basis with knowledge of the
speaker identity of each speech atom, a likelihood matrix
can be generated for each speaker individually. For a span
of frames marked as speech, we find the maximum sum of
speaker-dependent state content to identify the most likely
speaker. The identification result, in turn, is used for another,
local factorisation pass so that only the chosen speaker’s
speech basis is included. By narrowing down the speech ba-
sis, the system becomes more sensitive to the chosen identity
and may be able to pick the correct phonetic content even
from mixtures containing other speakers. In separation-based
speech recognition, the identity estimate is also used for se-
lecting the speaker-dependent GMM model in the back-end.

4. EXPERIMENTS

4.1. CHiME data

The experiments were conducted on CHiME data, consist-
ing of GRID command utterances mixed over highly non-
stationary family household noises with simulated room re-
verberation response matching the noise [8]. The target utter-
ances are from 34 different speakers and follow a linear six-
class verb-colour-preposition-letter-digit-coda grammar (“set
white in H 7 please”). A default language model is pro-
vided for recognition, employing 250 sub-word states for the
51-word vocabulary. For each speaker, there are 500 train-
ing utterances with reverberation but no additive noise. De-
velopment and test sets consist of a total of 600 utterances
from all speakers together, repeated at multiple SNR levels.
The noises contain a large variety of everyday sound events
including appliances, impacts, music and also spontaneous
speech from non-target speakers.
For this work, we use the continuous, ‘embedded’ CHiME

sequences. In the test set, there are 16 sessions ranging from
27 to 87 minutes. The 600 test utterances are spread over the
sessions at SNRs ranging from +18 to -6 dB at 3 dB intervals.
SNRs from +9 to -6 dB belong to the official scoring set. The
locations of speech in sessions are chosen in such a way that
the target SNR is achieved by direct mixing without scaling.
Therefore it is common for one loud segment of background
noise to contain several low-SNR test utterances in succes-
sion. Conversely, there are also long noise-only sequences

between the test utterances.
All 16 kHz CHiME audio was converted into B = 40

band Mel-scale magnitude spectrograms with 25 ms frame
length and 10 ms frame shift, and equalised using a frequency
band weighting curve derived from speech training material.
For spectral processing, the magnitudes of left and right chan-
nels were averaged to form monaural spectrogram features.

4.2. Bases and labelling

A speech basis was created for every speaker by employing
forced alignment data acquired from the CHiME HTK mod-
els. Based on the 250 sub-word phonetic states, each state
in turn was modelled by placing its corresponding word in-
stances from 300 training utterances in a B × T spectro-
gram window with the target state in the middle [5]. A me-
dian was taken over the instances within each time-frequency
point, creating a characteristic template of the state spectrum
and its typical neighbourhood. Atom length T was set to 25
(265 ms), which is enough to capture short words in their en-
tirety, and partial content of longer words, together modelling
slight variations in the pace of pronunciation. All in all, the
250 atoms of 34 speakers formed a 8500-atom speech basis.
The remaining 200 training utterances from all speakers were
combined and factorised using the full speech basis to learn
the activation-state mapping matrices B with ordinary least
squares regression as described in [2, 5].
An adaptive noise basis was maintained as described in

Section 3.2. We used a maximum capacity of 500 atoms for
sampled noise. In addition, 15 atoms were initialised ran-
domly and updated during iteration to model unseen noise
events, e.g. when the adaptive basis was empty [5]. The max-
imum number of atoms used in block factorisation was 9015
(8500 speech, 500 sampled noise, 15 on-line updated noise).

4.3. VAD accuracy

The VAD algorithm described in Section 3.1 was used to find
utterances from CHiME sessions. A VAD weight function
was given for each word class in CHiME grammar to reflect
the expected speech activity profile in its neighbourhood. The
functions are shown in Figure 1. On/off thresholds for total
VAD level were acquired from development data and set to
favour false positives over missed true utterances. To reflect
the duration of CHiME utterances, a minimum length require-
ment of 80 frames was set for speech segments, and after 180
frames from the start of a segment it was ended as soon as
the silence threshold was reached. Between these limits, tem-
porary gaps of up to 60 frames were allowed to model short
pauses in speech. Because the CHiME ground truth anno-
tations occasionally contain excess silence, an utterance was
ruled as being found in a segment for scoring if at least 40%
of its duration was flagged as speech by VAD.
Speech detection results are listed in Table 1. Of the 5400

test utterances (600 for each SNR level), 5331 (98.7%) were
detected successfully. 5090 were also assigned correctly to
single segments, whereas 241 appeared in segments where
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Table 1. Voice activity detection results: 600 utterances at 9
SNR levels, all in all 5400 utterances, exist within the contin-
uous test sessions. 5939 speech segments were detected.

Found speech segments True utterances
726 false positives 65 false negatives (misses)
5090 containing 1 utterance 5331 found in 1 segment
120 containing 2 utterances 4 split between 2 segments
3 containing 3 utterances
Total: 5939 Total: 5400

two or more consecutive utterances got merged. In a few
cases, an utterance was split between two found segments.
726 false positives — segments with no target utterances —
were also found. These mostly consisted of other speech
found in CHiME background noise.
In a completely realistic scenario, the detected speech seg-

ments should be identified and recognised by themselves. In
these experiments we used found segments for VAD qual-
ity evaluation and noise modelling, but annotated endpointing
for speaker identification and speech recognition. The reason
for this choice is that the default CHiME language model as-
sumes tightly cropped, single utterances as its input. Passing
VAD-based segments with possible silence and merged utter-
ances would result in unpredictable back-end behaviour and
problems in comparing the scores with prior ASR methods.

4.4. Speaker identification

The results for speaker identification are listed by SNR in Ta-
ble 2. The identification rates of 12–18 dB utterances were
between 99–100%. We notice that above 0 dB, misclassifica-
tions are rare. From 0 dB downwards, the utterances may —
and often do — contain equally loud speech from non-target
speakers, which may cause the maximum activity classifier to
select an identity matching to the non-target speech instead of
the true speaker. Misclassification of target speech to another
similar sounding speaker may also take place due to corrup-
tion of spectral features. For enhancement and sparse classifi-
cation, the latter kind of errors are still tolerable, whereas the
former are often unrecoverable.

4.5. Speech separation and recognition

Enhanced utterances were cropped from the full session sig-
nals separated during multi-speaker block processing. Real
utterance locations were also re-factorised using a single-
speaker basis of both true and estimated speaker identity in
turn. The latest sampled noise basis and �F/T � on-line up-
dated noise atoms were used in the second, local factorisation
pass. Enhanced test signals, generated as described in Sec-
tion 2.2, were stored for GMM-based speech recognition and
measurement of signal-to-distortion ratio (SDR) of enhanced
utterances in comparison to clean test files.
For enhancement-based recognition, we used the CHiME

Table 2. Speaker identification scores (%) on the CHiME
test set over SNRs. SC-based maximum state sum is used to
determine the most likely identity among 34 speakers.

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg
Correct 99.2 98.7 97.2 91.3 85.0 74.5 91.0

language model and multi-condition (MC) trained speaker-
dependent GMMs as in [3, 5]. Models were not retrained for
enhanced signals. SDR was calculated as

SDRdB = 10 log10

∑
n

s(n)2∑
n

(ŝ(n)− s(n))2
, (2)

where s(n) is the clean reference signal and ŝ(n) is the noisy
or enhanced signal over sample index n [9]. Because CHiME
annotations do not match perfectly to the isolated files, signals
were aligned with maximum cross-correlation before mea-
surement. Both in recognition and SDR measurement, left
and right channels were averaged to form monaural signals.
Results for speech recognition are shown in Table 3. The

first half displays baseline scores for the clean-trained CHiME
reference models, the MC-trained models without any en-
hancement, and our previous results using a 250-atom sam-
pled noise dictionary exploiting full knowledge of noise-only
segments and the same speech bases as in this work [5]. In the
second half, recognition results are shown for the new VAD-
based noise modelling. Four different combinations are used
for the choice of speech dictionaries in factorisation and for
speaker-dependent GMM models used in the back-end.
The scores generally decrease as endpointing and identity

information is lost, but even in the worst case where estimated
identity is used for all parts, the new results surpass unen-
hanced, known-identity recognition by a wide margin. Inter-
estingly, enhancement using all speakers’ bases is on average
better than only using the true identity. One possible explana-
tion is that using all bases simultaneously allows wider pho-
netic variation, even though not all atoms belong to the target
speaker. The degradation from losing identity information in
separation and GMM selection reflects the misclassification
rates over SNRs seen in Table 2. The largest decrements take
place in the noisy end, but overall only 2.6% (absolute) loss
is observed in average accuracy when true identity is wholly
replaced by an estimate.
Results for SDR measurement are shown in Table 4. The

first rows show SDRs for unenhanced utterances and enhance-
ment with the earlier 250-atom informed noise modelling.
Note that the nominal CHiME SNRs do not match the mea-
sured, unenhanced SDRs due to different weighting. In the
second part, results for the new, self-adapting noise model are
shown. Curiously, our new model produces superior separa-
tion quality, which does not translate to better ASR rates. We
can speculate that the proposed noise model with long mem-
ory and adaptive atoms is able to remove more major noise
events than the strictly local, informed model. Meanwhile,
it may also remove crucial speech information, thus reducing

2652



Table 3. Enhancement-based speech recognition scores (%)
on the CHiME test set over different SNRs. First part shows
unenhanced baseline scores for standard CHiME models and
multi-condition (MC) trained models, and the latter with in-
formed 250-atom noise modelling. The second part uses
new, self-adapting noise models. Row labels denote the
speech bases used for enhancement (all/true/estimated), and
the speaker model used for GMM evaluation (true/estimated).

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg
Baseline scores and informed noise modelling

CHiME 82.4 75.0 62.9 49.5 35.4 30.3 55.9
MC, none 91.3 86.8 81.7 72.8 61.1 54.5 74.7
MC, inform. 93.0 91.2 90.0 85.2 79.0 72.9 85.2
Self-adapting noise, enhancement + MC recognition
All/true 92.8 89.8 87.8 84.4 75.5 73.9 84.1
True/true 91.6 88.8 88.2 83.9 76.9 68.9 83.0
Est./true 91.4 88.8 87.8 82.6 73.8 64.4 81.5
Est./est. 91.4 88.6 87.1 81.0 72.3 62.2 80.4

the final ASR rate. Another noteworthy observation is that the
compact single-speaker speech models introduce more distor-
tions in the clean end than using all speakers’ bases, but in the
noisy end they manage to separate target speech better.

5. CONCLUSIONS

Spectral factorisation based methods were presented for solv-
ing three problems; voice activity detection, speaker identifi-
cation, and speech separation/recognition from a continuous
input. Results were evaluated using CHiME data, containing
34 speakers and household noise at SNRs from 9 to -6 dB.
98.7% of target utterances were found by estimating voice

activity from speech atom activations and state labels. False
positives generally consisted of non-target speech present in
CHiME noise. Non-speech segments were used to update the
noise model in continuous factorisation, thereby making the
model completely independent of noise training data.
Activation weights of a multi-speaker basis were used to

determine speaker identity among the 34 candidates. An aver-
age identification rate of 91.0% was achieved over all SNRs.
Thereafter utterances were separated for GMM-based speech
recognition. The new, self-adapting noise model yielded
higher signal-to-distortion ratios than earlier, informed noise
modelling. However, speech recognition rates decreased
slightly when speaker identity was estimated. Approximately
80% average scores were still achieved after bypassing all
information on speaker identity and noise locations.
The results as a whole demonstrate, how spectrogram fac-

torisation and sparse classification can be used for several
subtasks in noise-robust speech separation and recognition.
We eventually hope to extend the presented work into a com-
plete large vocabulary continuous speech recognition frame-
work based on SC techniques.

Table 4. Measured signal-to-distortion ratios (dB) for unen-
hanced and enhanced CHiME test utterances over nominal
mixing SNRs.

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg
Unenhanced signals and informed noise modelling

Unenhanced 3.7 2.5 0.3 -1.9 -4.8 -7.0 -1.2
Informed 4.4 4.1 3.8 3.5 3.1 2.7 3.6
Self-adapting noise, all/true/estimated identity
All 8.6 7.8 6.8 5.9 4.7 3.9 6.3
True 6.9 6.4 6.0 5.5 4.9 4.4 5.7

Estimated 6.9 6.4 6.0 5.4 4.6 4.0 5.6
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Abstract

Spectrogram factorisation using a dictionary of spectro-

temporal atoms has been successfully employed to separate a

mixed audio signal into its source components. When atoms

from multiple sources are included in a combined dictionary,

the relative weights of activated atoms reveal likely sources

as well as the content of each source. Enforcing sparsity on

the activation weights produces solutions, where only a small

number of atoms are active at a time. In this paper we pro-

pose using group sparsity to restrict simultaneous activation of

sources, allowing us to discover the identity of an unknown

speaker from multiple candidates, and further to recognise the

phonetic content more reliably with a narrowed down subset

of atoms belonging to the most likely speakers. An evalua-

tion on the CHiME corpus shows that the use of group sparsity

improves the results of noise robust speaker identification and

speech recognition using speaker-dependent models.

Index Terms: group sparsity, speech recognition, speaker iden-

tification, spectrogram factorization

1. Introduction

In several studies it has been reported, how spectrogram factori-

sation using a dictionary of atoms has produced strong results

in separating multiple non-stationary sources frommixed obser-

vations [1, 2, 3]. However, a common assumption is that only

certain sources are active in the mixture — for example, one

known speaker over background noise, or two known speakers.

Under this assumption, only the relevant dictionaries are cho-

sen for the factorisation task, thus reducing problem complexity

and confusion with sources not present in the mixture. In real-

ity, the set of potential sources may be significantly larger than

the number of sources active in the mixture, and the identities of

active sources may not be known beforehand. There is ongoing

research on multi-talker tasks with non-negative matrix factori-

sation (NMF) given as one option, but thus far the performance

of its basic form has not been found satisfactory [4].

It has been shown that activations of dictionary atoms ac-

quired via NMF can act as evidence for both the speaker identity

and the phonetic content of speech [3, 5, 6]. Enforcing sparsity

on the activations improves the classification results [5]. There-

fore the method is referred to as sparse classification (SC). A

straightforward sparsity constraint is to penalise all non-zero

activation weights by adding a weighted L1 norm of all activa-

tions to the cost function to be minimised. The problem of this

approach is that the acquired solution may contain atoms from

any number of sources as long as the distribution of individual

atoms is sparse. The same spectral features may carry a differ-

ent meaning if taken from another source, thereby harming the

classification outcome. If we expect only a limited number of

sources to be active at a time, it would be beneficial to exploit

this knowledge by enforcing corresponding structure on the ac-

tivations, that is, to prefer solutions where activations appear as

groups matching to a few sources at a time.

Group sparsity allows defining groups of dictionary atoms

and constraining the factorisation to use only a small number

of groups with active atoms. The technique has been previ-

ously employed in some applications, including image classifi-

cation [7], music separation [8], DNA sequences [9], and auto-

matic speech recognition [10]. In this paper we propose using

group sparsity in addition to common L1 sparsity to produce

factorisation solutions, where a narrowed down set of speak-

ers is active at a time. Furthermore, we propose an algorithm

which favours the same speakers over the whole duration of an

utterance. Sparse activations are shown to produce improved

speaker and speech recognition results in a task, where an ut-

terance from an unknown speaker must be recognised among

additive noise.

The paper is organised as follows. Section 2 describes the

core concepts of spectrogram factorisation and sparse classifi-

cation. In Section 3 we derive a model and a corresponding

iterative update rule to induce consistent group sparsity in utter-

ances comprising multiple observation windows. Experimental

set-up on CHiME data is presented in Section 4. Results, dis-

cussion and conclusions follow in Sections 5, 6, and 7.

2. Non-negative spectrogram factorisation

Our separation framework is based on representing a mixed ob-

servation spectrogram as a linear, non-negative combination of

atoms— spectrogram segments acquired from sources such as

single speakers or background noise. Each atom is modelled

with a B × T magnitude spectrogram matrix, where B is the
number of frequency bands and T is window length— the num-
ber of consecutive frames in an atom. We model noisy speech

with J speech and K noise atoms, together forming a dictio-
nary (or basis) of L = J +K atoms. If we reshape the atoms
into length B · T vectors as

j (j ∈ [1, J ]) and a
n
k (k ∈ [1,K])

for speech and noise, respectively, a similarly vectorised obser-

vation y can be estimated as a linear sum

y ≈

J
X

j=1

a
s
jx

s
j +

K
X

k=1

a
n
kx

n
k (1)

where xs
j and x

n
k are the activation weights of speech and noise

atoms. The same equation can be given in a matrix form as

y ≈ A
s
x

s + A
n
x

n
(2)
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where the columns of matricesAs andAn consist of vectorised

speech and noise atoms, and x
s and x

n are activation vectors

for speech and noise, together denoted by vector x of length L.
In previous work, we have experimented with two different

methods to model observation spectrogramsY (B×F ), where
the number of frames F is larger than T [11]. The first uses
W = F−T+1 overlapping windows, each factorised indepen-
dently. The second, convolutive model is similar but produces a

joint spectrogram estimateΨ from all window indices simulta-

neously. Both produce an L×W activation matrixX, each of
its columns containing an activation vector for a window index.

The previously used cost function to be minimised consists of

Kullback-Leibler divergence between the observation spectro-

gramY and its estimateΨ

dKL(Y,Ψ) =
X

(y,ψ)∈(Y,Ψ)

y log
y

ψ
− y + ψ (3)

and the L1 norm of X multiplied elementwise by a sparsity

penalty matrix Λ1,

f1 = ||X⊗Λ1||1. (4)

Iterative updates rules to findX for these costs and for both tem-

poral models can be found in earlier work [3, 11]. In this work,

we extend the convolutive model to support group sparsity in

addition to basic L1 sparsity. The same approach for group

sparsity also applies to independent window factorisation.

3. Group sparsity for activation matrices

3.1. Multi-column matrix group sparsity

A generalised form of group sparsity can be achieved by using

a cost function

fg = ||
√

G2X2||1 (5)

on the activation matrixX. HereG is a S×Lmatrix assigning
the L atom indices to S groups with any weights. Square and
square root operations are elementwise. The function measures

weighted L2 norms within groups for each window index, pro-

duces a S ×W matrix of group 2-norms, and sums them over
all groups and window indices. Because in this work we use

group sparsity for selection of groups, that is, denoting basic

membership without further atom weighting, we simplify the

structure by limiting ourselves to assignment matrices of type

G = λgGB, whereGB is a binary matrix denoting atom mem-

bership in groups, and λg is a common weight factor for all

chosen atoms. The simplified cost for binary matrices is

fg = λg||
p

GBX2||1. (6)

However, the given cost function measures group sparsity in-

dependently for each window. Although the columns of X

each become sparse on a group level, they may all have dif-

ferent groups active. In our speech recognition task, we expect

the same speaker to be active over all window indices within a

short observation. Therefore we modify the function to measure

the group L2 norms for summed activity over window indices,

xΣ = X · 1 (1 being an all-one column vector of length W ).
The cost function becomes

fg = λg||

q

GBx2
Σ||1

. (7)

3.2. Combined group and atom sparsity

The equations given in Section 3.1 introduce sparsity over

groups, but not over single atoms within a group. Because

we have earlier found atom-level sparsity beneficial in SC-

based speech recognition as well, both are combined for a cost

function that induces sparsity over atoms, yet prefers solutions

where the activations come from a sparse set of groups. The

total cost function for KL-divergence, group sparsity and L1

sparsity is

ftot = dKL(Y,Ψ) + λg||

q

GBx2
Σ||1

+ ||X⊗Λ1||1. (8)

3.3. Iterative update algorithm

The total cost function (8) is minimised by initialising all the

entries in the activation matrix X to unity, and then updating it

iteratively with an update rule

X← X⊗

P

T

t=1 A
T

t

←(t−1)

[Y
Ψ

]

P

T

t=1 AT
t

←(t−1)

1 + Λg + Λ1

. (9)

Here each At is a B × L matrix containing frame t of all ba-
sis atoms. Operator← shifts matrix columns left, followed by

truncation toW columns. Estimated utterance spectrogram Ψ

is calculated by

Ψ =
T

X

t=1

At

→(t−1)

X . (10)

with shifting right (→) taking place in a L × F zero-padded
matrix. Matrix Λg defines the group sparsity cost of each atom

and is updated within each iteration based on the activation sum

vector. Its columns are identical and are given as

λg = λgxΣ ⊗ (GT

B(GBx
2
Σ)−1/2). (11)

4. Application to speaker identification and
speech recognition

4.1. CHiME data and feature space

To study the potential of group sparsity in finding a sparse com-

bination of sources, we ran experiments on CHiME data, con-

taining GRID command utterances from 34 speakers over fam-

ily household noises at SNRs ranging from +9 to -6 dB [12].

The utterances follow a linear verb-colour-preposition-letter-

digit-coda grammar. A default language model utilising 250

sub-word states for the 51 word vocabulary is provided. The

data consists of three sets:

• Train: 500 utterances from each speaker without additive

noise (‘clean’)

• Development: a set of 600 utterances from all speakers

combined, repeated over six SNRs

• Test: as development, but with different utterances and

noise content

All audio data, including ‘clean’ sets, has room reverberation.

16 kHz binaural files were used for the experiments. All au-

dio was converted into spectrogram features with B = 40 Mel
scale spectral bands, 25 ms frame length, 10 ms frame shift, and

averaging of the magnitude spectrograms of left and right chan-

nels. The bands were linearly scaled using a fixed scaling based

on speech training data [3]. Atom length T was set to 25 frames
(265 ms).

INTERSPEECH 2012 2139



4.2. Bases and sparsity parameters

We created a 250-atom speech basis for each speaker by mod-

elling the spectrogram context of each state in turn with aB×T
template, based on 300 training utterances per speaker. The

procedure is described in earlier work [3, 6]. The concatenated

8500 (34 · 250) atom speech basis was used to factorise the
remaining 200 training utterances for learning the activation-

state mapping matrices needed for sparse classification, in each

case with factorisation parameters matching the corresponding

test set-up. Mappings were learnt with ordinary least squares

regression. During development and test set recognition, a 250-

atom noise basis was sampled for each utterance from its noise

context and added to the total basis [3].

The binary group sparsity matrix GB (S × L, S = 34,
L = 8500−8750) was simply set to 1 for atoms corresponding
to speaker s, in other words, for entries 1–250 of group (row)
1, entries 251–500 of group 2 and so forth. The noise atoms

at indices 8501–8750, used in all noisy test conditions, did not

belong to any group, i.e., the group sparsity constraint was not

used for noise. L1 sparsity weights in matrix Λ1 were kept

at 0.1 for entries corresponding to speech and 0.85 for noise

as in earlier work. Group sparsity weight λg was set to 0.1

based on development set factorisation. All sparsity weights

were multiplied by the mean of 1-norms of dictionary atoms

to tie the relative weights of KL-divergence and sparsity costs

together.

4.3. Recognition experiments

The 3600 test utterances were factorised using the joint 8750-

atom basis and 300 iterations of the update rule given in Equa-

tion (9). Activation matrices were used for three evaluations:

1. Speaker identification

2. Speech recognition in an external GMM back-end via

feature enhancement

3. Speech recognition by sparse classification, that is, de-

termining the state likelihoods from activation weights

All experiments were run with and without the group sparsity

penalty, all other parameters remaining identical.

Speaker identification was performed using sparse discrim-

inant analysis (SDA) [6, 13]. Considering the fact that there is

only one speaker present in an utterance, we used the summed

activity vector xΣ over an utterance as a feature vector. In order

to make the vector invariant to different utterance lengths, the

vectors were normalised by the number of windows. The fea-

ture vectors from 200 training files per speaker were supplied to

an SDA algorithm to find the sparse directions with maximum

separability between speakers and minimum variability within

speakers. By projecting the 200 vectors from each speaker on

sparse discriminant directions, an average model of a speaker

was made by simply averaging them. The activity vector of

a test segment was also mapped onto SDA directions and dot

scoring was employed as the speaker identification score. The

number of non-zero elements in SDA was set to 500.

For GMM-based speech recognition, we used the CHiME

HTK language model, multi-condition trained GMMs [2], and

feature enhancement as in previous work [3]. True speaker

identity was exploited in GMM selection in the back-end.

Sparse classification was also performed as in earlier work

[3]. Speaker-dependent models were used for Viterbi decoding,

although their contribution is limited to transition probabilities,

which are highly similar for all speakers.

Table 1: Speaker identification rate (%) comparison for no

group sparsity constraint (λg = 0) and with group sparsity
(λg = 0.1) on the CHiME test set.

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg

λg = 0 99.8 99.3 98.7 95.5 94.3 82.5 95.0

λg = 0.1 99.7 99.3 99.2 96.7 93.7 85.7 95.7

5. Results

Results for speaker identification are shown in Table 1. Rates

without using group sparsity are shown on the first line, and

rates with group sparsity enabled on the second. We ob-

serve 0.7% absolute (14% relative) improvement in the average

score. Individual SNR scores vary to both directions with debat-

able significance considering the 600 utterance set size. More

on factorisation-based speaker identification results including

comparison with GMM baseline can be found in [6].

Table 2 shows the results of speech recognition using

factorisation-based enhancement and a GMM back-end. The

first two rows contain unenhanced baseline scores for the clean-

trained CHiME standard models [12] and multi-condition (MC)

trained models [2]. Results for enhancement with different fac-

torisation models are given in the second part of the table. The

8500-atom multi-speaker basis is employed first with L1 spar-

sity only, and then with group sparsity enabled. To evaluate the

‘oracle’ performance obtainable by perfect speaker discrimina-

tion, the results on the last row use the true speaker’s 250-atom

speech basis and the same 250 noise atoms to enhance the sig-

nals. We notice that adding group sparsity to multi-speaker ba-

sis enhancement produces slight improvements, but only in the

noisy end and by a small margin. Neither variant manages to

match oracle single-speaker enhancement.

Sparse classification results can be found in Table 3. The

same factorisation variants as in enhancement are used for eval-

uation. This time group sparsity improves the multi-speaker

factorisation scores significantly, making them comparable to

oracle single-speaker factorisation and classification.

6. Discussion

The results for speaker identification (Table 1) are not entirely

conclusive. However, the -6 dB condition is of special interest,

because many of its utterances contain loud non-target speech

as their background noise. The 18% relative improvement there

suggests, that sharpening the distribution of speaker activity

manages to remove some interference from non-target speak-

ers. Clean end results are near-perfect to begin with, and there is

little confusion between speakers. Consequently no significant

changes take place there. Due to the novelty of the approach,

further test should be conducted for more conclusive results.

In factorisation-based speech enhancement (Table 2), the

speaker identity and state information of atoms is not used in

any way — only the spectral features. Therefore features from

another speaker are equally valid as long as the spectrograms

match, and group sparsity has a limited effect. Improvements

in the noisy end can probably be attributed to the non-target

background speakers, and the restricted dictionaries’ ability to

reject secondary identities matching to them. Due to stronger

discrimination, such speech is more likely to become modelled

with noise atoms as expected. Again, in the clean end differ-

ences are limited to only a few test files.

In sparse classification (Table 3), state likelihoods are ac-

quired solely from activation weights and atom labelling. Be-
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Table 2: Enhancement-based speech recognition scores (%)

over SNRs. Results are shown for clean-trained CHiME base-

line models, multi-condition (MC) trained models without en-

hancement, multi-speaker (MS) enhancement either without or

with group sparsity, and finally enhancement by only using the

true, single speaker’s basis (SS).

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg

GMM baseline scores without enhancement

CHiME 82.4 75.0 62.9 49.5 35.4 30.3 55.9

MC 91.3 86.8 81.7 72.8 61.1 54.5 74.7

GMM recognition with MC models and enhancement

MS, λg = 0 92.6 90.3 88.2 84.5 75.6 69.8 83.5

MS, λg = 0.1 92.4 90.4 88.0 85.3 76.2 70.4 83.8

SS 93.0 91.2 90.0 85.2 79.0 72.9 85.2

cause speaker models are trained independently, activations

of atoms from other speakers introduce unreliable factors to

the final likelihoods. Group sparsity reduces such errors by

favouring small sets of active speakers. It is noteworthy that

our multi-speaker basis with group sparsity produces recog-

nition rates closely matching informed recognition using the

true speaker’s basis alone. Because the HMMs can be trained

speaker-independently, the whole recognition process becomes

speaker-independent over the set of modelled speakers. To-

gether with a robust speaker identification algorithm, the frame-

work provides reliable classification results for both speaker

identity and the phonetic content in a scenario, where one un-

known speaker from multiple candidates is active at a time.

Concerning the overall rates, it should be noted that the pre-

sented framework used small 250-atom speech and noise bases.

In other work, we have presented several alternatives for speech

and noise modelling [3]. Better results could be achieved by

using more accurate speech and noise models, although the ef-

ficiency of improved models in conjunction with group sparsity

needs to be investigated. While in the presented results speech

enhancement was found to perform better than sparse classifi-

cation, for different bases and features the order may become

reversed [3]. Moreover, the two approaches have been found to

complement each other in multi-stream recognition [14].

In this study, group sparsity was used for speaker discrimi-

nation. However, it is equally feasible to select any sets of atoms

for the groups based on their expected co-occurrence. The atom

weights in groups need not to be binary either. Different tem-

poral spans can be selected for groups either by choosing an

appropriate factorisation spectrogram length, or adjusting the

window span used in Equation (7), and then spreading the group

sparsity penalty vector (11) accordingly.

7. Conclusions

We proposed using group sparsity in addition to L1 sparsity in

spectral factorisation based noise robust speech recognition in

order to limit the number of active speakers from multiple can-

didates. An iterative update rule was presented for solving con-

volutive non-negative matrix factorisation with consistent group

sparsity over all time indices in an utterance. We found out

that the new model manages to narrow down the distribution of

speakers, producing marginal but consistent improvements in

speaker and speech recognition results. The presented model is

generic and allows enforcing also other kinds of group struc-

tures in dictionary-based audio spectrogram factorisation.

Table 3: Speech recognition scores (%) with sparse classifica-

tion. Results are shown for the multi-speaker (MS) basis with-

out and with group sparsity, and then for using the true, single

speaker only (SS).

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg

Sparse classification scores

MS, λg = 0 89.3 87.7 81.5 78.0 68.1 57.9 77.1

MS, λg = 0.1 90.4 88.4 85.7 80.8 73.4 64.3 80.5

SS 89.8 89.0 84.3 81.8 73.9 65.8 80.8
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[14] F. Weninger, M. Wöllmer, J. Geiger, B. Schuller, J. F. Gemmeke,
A. Hurmalainen, T. Virtanen, and G. Rigoll, “Non-negative Ma-
trix Factorization for Highly Noise-robust ASR: To Enhance or to
Recognize?,” in Proc. ICASSP, Kyoto, Japan, 2012, pp. 4681–
4684.

INTERSPEECH 2012 2141



Publication P6

A. Hurmalainen, J. F. Gemmeke, and T. Virtanen, “Modelling non-stationary
noise with spectral factorisation in automatic speech recognition”, in Computer
Speech & Language, Volume 27, Issue 3, May 2013, pp. 763–779.

Reprinted from Computer Speech & Language, Copyright c⃝ 2012, with permission from
Elsevier. Accepted author manuscript. Final version is available from Elsevier, DOI:
10.1016/j.csl.2012.07.008

127





Modelling Non-stationary Noise with Spectral Factorisation in Automatic
Speech Recognition

Antti Hurmalainena,∗, Jort F. Gemmekeb, Tuomas Virtanena

aDepartment of Signal Processing, Tampere University of Technology, P.O. Box 553, FI-33101, Tampere, Finland
bKU Leuven, Department ESAT-PSI, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

Abstract

Speech recognition systems intended for everyday use must be able to cope with a large variety of noise types and
levels, including highly non-stationary multi-source mixtures. This study applies spectral factorisation algorithms
and long temporal context for separating speech and noise from mixed signals. To adapt the system to varying en-
vironments, noise models are acquired from the context, or learnt from the mixture itself without prior information.
We also propose methods for reducing the size of the bases used for speech and noise modelling by 20–40 times for
better practical applicability. We evaluate the performance of the methods both as a standalone classifier and as a
signal-enhancing front-end for external recognisers. For the CHiME noisy speech corpus containing non-stationary
multi-source household noises at signal-to-noise ratios ranging from +9 to -6 dB, we report average keyword recog-
nition rates up to 87.8% using a single-stream sparse classification algorithm.

Keywords: automatic speech recognition, noise robustness, non-stationary noise, non-negative spectral
factorization, exemplar-based

1. Introduction

These days we are surrounded by devices and services, which could potentially use speech as their input. Possibly
the largest hindrance to widespread adoption of automatic speech recognition (ASR) systems is their limited perfor-
mance in noisy environments. In everyday situations, the presence of noise can be considered the norm rather than
the exception. Therefore robustness against noise is a fundamental requirement for a recogniser intended for common
use.
While current state-of-the-art speech recognition systems achieve near-perfect recognition rates on carefully pro-

nounced speech recorded in clean conditions, their performance deteriorates quickly with decreasing signal-to-noise
ratio (SNR). Many of the methods proposed for dealing with additive noise focus on increasing the system’s sensi-
tivity to the desired patterns over an undefined, roughly uniform noise floor. When the sound level of noise events
becomes comparable to that of the target signal, it becomes increasingly important to model noise explicitly. This
has been previously accomplished with, for example, model compensation techniques (Acero et al., 2000; Gales and
Young, 1996) which allow modelling the interaction of speech and noise. Such techniques have been successfully
used to recognise speech in mixtures of multiple speakers, given prior information on each speaker (Hershey et al.,
2010).
Since non-negative matrix factorisation (NMF) algorithms were introduced for widespread use (Lee and Seung,

2001), they have been applied to numerous source separation problems. In audio signal processing, NMF has been
successfully employed to separate signals consisting of multiple speakers, music, and environmental sounds by mod-
elling a signal as a linear non-negative combination of spectral basis atoms (Heittola et al., 2011; O’Grady and
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Pearlmutter, 2007; Schmidth and Olsson, 2006; Smaragdis, 2007; Virtanen, 2007). Given a set of basis atoms (also
known as dictionary) representing the expected sound sources — in robust ASR, speech and noise — observations
can be modelled as a sparse linear combination of atoms. This representation can be used to do speech or feature
enhancement, proved useful as a preprocessing step for robust speech recognition (Gemmeke et al., 2011c; Raj et al.,
2010; Weninger et al., 2011). Alternatively, when speech atoms are associated with speech classes such as phones,
the activations of atoms can provide noise robust likelihoods for hybrid decoding in an approach dubbed sparse
classification (Gemmeke et al., 2011b; Hurmalainen et al., 2011b).
In the most straightforward approach of spectrograms factorisation, each frame is processed independently. How-

ever, in real-world situations, the short-term spectral characteristics of noise events can closely resemble actual speech,
making the approach prone to misclassifications. Basic NMF methods have later been extended with prior models
(Wilson et al., 2008b), smoothness constraints (Cichocki et al., 2006), temporal dynamic modelling and regularisa-
tion (Mysore and Smaragdis, 2011; Wilson et al., 2008a) and adding derivative features to the feature vectors (Van
Segbroeck and Van hamme, 2009). Meanwhile, there has been an increasing interest in long context spectro-temporal
templates for speech modelling. Example-based methods and longest matching segment searching have been pro-
posed for large vocabulary speech recognition (Sundaram and Bellegarda, 2012; Wachter et al., 2003, 2007), dere-
verberation (Kinoshita et al., 2011) and denoising (Ming et al., 2011). Multi-frame atoms have also been combined
with additive spectral modelling in NMF-based speech separation and enhancement (Smaragdis, 2007; Vipperla et al.,
2011; Weninger et al., 2011). In our earlier work, we have found further support for the potential of multi-frame spec-
trograms as features for robust ASR (Gemmeke et al., 2011b; Hurmalainen et al., 2011b; Hurmalainen and Virtanen,
2012; Virtanen et al., 2010; Weninger et al., 2012). While the benefits of the model have been demonstrated in robust
speech recognition, the problem of acquiring effective dictionaries — especially for non-stationary noise — has not
been plausibly solved.
In this work, we have three goals. First, we propose a new method for acquiring speech basis atoms from a

training set. Thus far, the best recognition accuracy in NMF-based recognition has been obtained by using a large
number of atoms, which makes the approach computationally expensive. Therefore methods are needed for selecting
smaller sets of atoms that still manage to model speech and noise accurately. The proposed algorithm yields sets of
speech basis atoms that are much smaller than the previously employed exemplar sampling methods, which improves
the practical applicability of the framework through reduced computational costs.
Second, we propose a method to learn noise basis atoms directly from noisy speech, rather than from pure noise

sources. Previous studies show that impressive separation and recognition results can be obtained when accurate
prior information on the noises is available. However, when the pre-generated noise model is inaccurate or mis-
matching, the performance of the methods degrades substantially (Gemmeke et al., 2011b). In our earlier work we
employed a technique that samples noise basis atoms from the immediate context of an utterance, similar to the use of
a voice activity detector (VAD) to estimate the characteristics of noise during speech inactivity as employed in other
noise-robust ASR approaches (Demuynck et al., 2011). Nevertheless, in very noisy conditions a VAD will become
unreliable, and for non-stationary noises the estimate acquired during speech inactivity may not match exactly to the
noise observed during speech. It is also possible that no reliable source for noise-only segments is available in the
first place. In order to overcome these obstacles, we propose to use spectrogram factorisation to learn the noise model
using only the noisy speech observation itself as the source for the model. The factorisation algorithm will construct
its own noise atoms during separation without prior information or assumptions on the noise events.
The final goal of the paper is to present the current state-of-the-art in spectral factorisation based, single-stream

noise robust ASR through the use of spectrogram dynamics and binaural features. Temporal deltas and stereo features
are added to the model for increased separation and recognition accuracy.
The rest of the paper is organised as follows: Section 2 describes the spectrogram factorisation tools that are

used as the basis for the proposed methods. Section 3 proposes methods for speech and noise model acquisition
and adaptation. In Section 4 we present an experimental set-up based on the CHiME noisy speech corpus (Barker
et al., 2012) used for public evaluation in CHiME workshop in 2011 (Barker et al., 2011). In Section 5 we present
our recognition results, obtained with both sparse classification and front-end speech enhancement based recognition.
Discussion and conclusions follow in Sections 6 and 7, respectively.



2. Factorisation-based separation and recognition

2.1. Non-negative spectral modelling

NMF-based separation takes place in a spectro-temporal magnitude domain, where the temporal dimension con-
sists of partially overlapping frames, and the spectral dimension of a number of frequency bands. In this work, the
base unit used for additive modelling is a B × T spectrogram window of B Mel bands and T consecutive frames.
These are the dimensions of each observation window in our system, and also of the atoms, which form the basis for
modelling the observation.
We can represent noisy speech as a sum of two parts; a speech model ŝ consisting of speech atoms as weighted

by activations xs,

ŝ =

J∑

j=1

xsja
s
j, (1)

and a noise model n̂ using atoms an and activation weights xn,

n̂ =

K∑

k=1

xnka
n
k . (2)

The model uses J atoms for speech and K for noise. The total speech-noise model for noisy observation y thus
becomes

y ≈ ŝ + n̂ (3)

and the estimated noisy observation

ŷ =

J∑

j=1

xsja
s
j +

K∑

k=1

xnka
n
k , (4)

using all in all L = J + K atoms and weight coefficients. For now, we treat basis atoms and the observation as generic
feature vectors and ignore their true spectro-temporal ordering, assuming only that they match. All variables are
assumed to be strictly non-negative.
The fundamental task is to find the activation vectors xs (length J) and xn (length K), or together simply x, which

optimise the model under a chosen quality function. We optimise a cost function consisting of a sum of two factors;
first, the generalised Kullback-Leibler (KL) divergence between the observation y and its approximation ŷ

d(y, ŷ) =
∑

(yi,ŷi)∈(y,ŷ)

yi log
yi

ŷi
− yi + ŷi (5)

and second, a penalty term for non-zero activations weighted elementwise by a sparsity vector λ

f (x) = ||λ ⊗ x||1 =
L∑

l=1

λlxl. (6)

The total cost function to be minimised becomes d(y, ŷ) + f (x). The first factor measures spectral representation
accuracy by generalised KL-divergence, which has been found to perform better than e.g. Euclidean distance or
other tested error measures in source separation (Virtanen, 2007). The second factor induces sparsity to the activation
vectors, optionally using a customisable weight for each individual basis atom or group of atoms.



2.2. Sliding window factorisation

In this work we have used two different approaches for processing utterances longer than the window length T .
The first is factorising the utterance in overlapping, independent windows (Gemmeke et al., 2011b). To process an
utterance consisting of Tutt frames, we advance through it with a step of one frame so that the first window covers
frames [1 . . . T ], and the last [Tutt − T + 1 . . . Tutt]. Consequently, we have W = Tutt − T + 1 overlapping observation
windows over the utterance. Each observation window spectrogram is reshaped to a vector yw (w ∈ [1,W]). Similarly,
each basis atom is reshaped to a vector al (l ∈ [1, L]). The vectorised observations are collected in a matrix Y =
[y1 . . . yW ], and the atoms in a basis matrix A = [a1 . . . aL]. Then we solve for the L ×W activation matrix X so that

Y ≈ AX, (7)

while minimising the cost function defined by equations (5) and (6). This can be achieved by applying iteratively the
update rule

X← X ⊗
AT(Y/(AX))
AT1 + Λ

, (8)

where ⊗ is elementiwse multiplication and all divisions are also elementwise. 1 is a Y-sized all-ones matrix. Λ is a
sparsity penalty matrix defined elementwise for each entry ofX, consisting of a λ vector for each observation window.

2.3. Convolutive factorisation

An alternative for handling temporal continuity over multi-window observations is non-negative matrix deconvo-
lution (NMD), also known as convolutive non-negative matrix factorisation (Smaragdis, 2007) or convolutive sparse
coding (Wang et al., 2011; Wang, 2008). Whereas in the sliding window approach (herefrom called simply ‘NMF’)
each observation window and its corresponding activation vector is an independent entity, in NMD the whole utter-
ance spectrogram Yutt is estimated jointly by all activations via convolutive reconstruction. It has been applied earlier
to speech separation (O’Grady and Pearlmutter, 2007; Smaragdis, 2007), and to noise-robust speech recognition
(Hurmalainen et al., 2011a,b; Vipperla et al., 2011; Weninger et al., 2011).
In this work, we use NMD as in (Hurmalainen et al., 2011a,b). In particular, we only use windows completely

within the utterance spectrogram, not ones with their last frames extending beyond Tutt as in some implementations.
Therefore the activation matrix size is L ×W like in sliding window NMF. The update rule used for activations is

X← X ⊗

∑T
t=1 A

T
t

←(t−1)

[Yutt
Ψutt
]

∑T
t=1A

T
t

←(t−1)
1 + Λ

, (9)

where each At is a B× L matrix containing frame t of all basis atoms, and the estimated utterance spectrogram Ψutt is
calculated by

Ψutt =

T∑

t=1

At
→(t−1)
X . (10)

Operators
←i

(·) and
→i

(·) denote a matrix shift, where the entries are moved left or right by i columns, respectively.

2.4. Speech enhancement

Spectrogram factorisation methods can be used to enhance the input signal before it is passed to a conventional
recogniser back-end. Signal enhancement is performed by computing the estimated utterance spectrogram Ψutt as in
Equation (10) using the final X and Amatrices. We also compute an estimated speech spectrogramΨsutt by only using
the basis atoms and activation rows corresponding to speech. In sliding window NMF the model is similar, except
that we average the overlapping window estimates by dividing the frame columns of Ψutt and Ψsutt by the number of
windows contributing to each utterance frame, varying from 1 at the begin and end, to T in the midmost frames.



The clean speech spectrogram estimate is obtained by filtering it in the FFT domain. Because the factorisation
model uses Mel-scale spectral resolution, we map the estimates to FFT resolution by inverting the Mel filterbank
transform. Denoting the original FFT → Mel scale transform matrix by M, we determine its pseudoinverse M+,
and multiply the estimated Mel spectrograms by it from the left. A complex FFT-resolution spectrogram Ỹutt of the
original noisy utterance is computed at the temporal resolution of the system. It is then filtered elementwise by the
estimated speech/total ratio to get complex speech spectrogram estimate Ỹsutt as

Ỹsutt = Ỹutt ⊗
M+Ψsutt

M+Ψutt
. (11)

Finally, an enhanced signal is generated with overlap-add synthesis, which inverts the spectrogram derivation.

2.5. Recognition via sparse classification

Instead of using factorisation for signal enhancement, the activations can also be used directly for classification
(Virtanen et al., 2010). In this approach, dubbed sparse classification (SC), speech basis atoms are associated with
sequences of speech labels such as HMM-states. The activations of speech basis atoms serve directly as evidence
for the associated speech labels, and the combined speech activations yield a state likelihood matrix, which is used
in a hybrid HMM-based recogniser. In previous work it was observed that recognition of noisy speech using sparse
classification leads to more accurate results than enhancement-based recognition (Gemmeke et al., 2011b). We have
also found the performance of SC to improve in some scenarios by replacing the canonical HMM-based labelling of
exemplars with atom-state mapping learnt from training set factorisation (Mahkonen et al., 2011).

3. Speech and noise modelling

3.1. Overview

To separate sound mixtures, we need atoms to model the contained single source components. In noise robust
ASR this means models for pure speech and pure noise. In this section we describe on a general level our methods
for generating speech and noise bases from training data, and propose methods for generating noise bases adaptively
from the context or from the noisy utterance itself.

3.2. Pre-sampled exemplar bases

Both speech and noise bases can be acquired by sampling exemplars, instances of spectrograms extracted from
the training material as demonstrated in our previous work (Gemmeke et al., 2011b; Hurmalainen et al., 2011b).
For speech, this can produce plausible models with high classification capability. For noise, it is not guaranteed
that similar sound events will be encountered in actual use cases. In our work on AURORA-2, we saw error rates
increasing by up to 60% for mismatched noises (Gemmeke et al., 2011b; Hurmalainen et al., 2011a). Because a noise
mismatch degrades the effectiveness of speech-noise separation, and keeping a generic database for all possible noise
types would be infeasible, methods for context-sensitive noise modelling are needed for practical applications.

3.3. Context-based noise sampling

To reduce the mismatch between observed noise events and the noise basis, we can switch from using a generic
noise database to sampling noise exemplars from the nearby context of the utterances to be recognised. It is generally
plausible to assume that in ASR the input is continuous, and that there are moments when the target voice is not
active. Since exemplars sampled from the immediate noise neighbourhood of utterances are likely to contain sources
similar to those in the noisy speech, we exploit these moments without speech activity to update our noise model.
During development of our recognition system, we managed to reduce the error rates by 10–20% by switching

from random to context-based noise sampling. The difference depends on the level of mismatch between training data
and observed noise. Sampling the local noise context allows more compact bases, lower computational costs, and
generally a better match to the noise encountered during speech. The context-based set-up uses annotated ‘oracle’
endpointing to sample its atoms from known noise segments, and exploits both preceding and following temporal
context. Although in this work oracle endpointing was used in this work to reduce the number of factors affecting
the results and to keep correspondence to earlier work, in (Hurmalainen et al., 2012) preliminary experiments are
reported on VAD-based noise segment selection and dynamic basis management for continuous inputs.



3.4. Compact speech bases

Previously we have employed large, semi-randomly sampled speech bases, which typically consist of 4000–5000
exemplars per speaker (Gemmeke et al., 2011b; Hurmalainen et al., 2011b). Experiments have also shown, that
further gains in recognition accuracy can be achieved by increasing the number of exemplars. Conversely, a small
basis sampled in this manner does not model speech sufficiently well for sparse classification (Gemmeke et al., 2011a).
While the large, partially redundant exemplar bases allow accurate modelling of observed speech, they may become
difficult to acquire and manage for ASR tasks employing a larger vocabulary.
It is possible to use factorisation algorithms to learn the speech bases from training material. This has been

previously used for speech separation (Smaragdis, 2007) and speech modelling for denoising (Vipperla et al., 2011;
Weninger et al., 2011). Unsupervised learning from diverse speech data will ideally discover recurrent phonetic
patterns, which can be used for speech modelling. However, NMF-based algorithms may also separate the spectra
of speech patterns into multiple overlapping atoms, or learn short-term events lacking the long temporal context
preferred in sparse classification and robust separation. In our preliminary experiments, too much fragmentation has
typically taken place in large training set learning for its application to speech basis generation.
To address the issue of basis sizes, in this work we propose modelling speech using template atoms with more

controlled acquisition and less redundancy. The method is based on constructing an atom for each HMM state in the
recognition system, including its typical context. According to HMM state labelling acquired via forced alignment,
spectrograms of training data instances corresponding to the chosen state are gathered together, and a characteristic
template of the state and its neighbourhood is constructed by averaging. The exact procedure for the CHiME database
used in this study is described in Section 4.3.
The variant presented in (Weninger et al., 2011) learns a single basis atom from concatenated instances of one

word at a time, making it conceptually similar to the templates used in this work. The main difference lies in our
algorithm’s capability to model words longer than a single window. By using multiple templates centered around one
sub-word state at a time, the system is able to model words of arbitrary length. The partially redundant, state-centered
templates can also model speed variations in long word pronunciation by combining multiple activations of sub-word
atoms over time.

3.5. Learnt noise bases

Whereas speech training data is generally single-source and can be used as-is to model atomic speech events, noise
training data and observations often contain multiple overlapping sources. Therefore learning the noise bases either
from noise-only segments or noisy mixtures by applying factorisation algorithms may help us to discover recurrent
single-source noise components from mixed signals. In the previously mentioned NMD experiments (Vipperla et al.,
2011; Weninger et al., 2011), bases were learnt from segments known to contain only noise. The difference between
sampled and learnt atoms primarily depends on the nature of the data. If the co-occurrence of noise sources is low, we
can expect the bases to become fairly similar. Some fragmentation of noise events may take place in NMD learning
if too many atoms are trained with insufficient sparsity constraints on activation. For strongly multi-source inputs,
learning will become more favourable due to its ability to discover atomic sources from mixtures.
A different kind of scenario arises, if no source of pure background noise is available. In this case, we still have an

option to learn and separate likely noise artefacts from the noisy utterance itself. Given a sufficiently accurate speech
basis, we can factorise a noisy utterance by including self-learning noise atoms in the basis. In this approach, the
speech basis is kept fixed, and only the noise part is updated on the fly.
Applying learning to sliding window NMF has some theoretical pitfalls, primarily due to having to learn multiple

shifted versions of all noise events. A large learnt basis would be required, which in turn increases the risk of
modelling speech with it as well. Preliminary experiments have not produced any promising results on this variant.
The NMD model, on the other hand, is well suited for noise learning. Sparsity and a small number of noise atoms act
as the restricting factors for isolating new noise events.
Basis learning can be included in the procedure given in Section 2.3. After each iteration of the activation update

(9), Ψutt is re-estimated using Equation (10), and the basis is in turn updated by



At ← At ⊗

Yutt
Ψutt

→(t−1)
X

T

1 ·
→(t−1)
X

T
∀t ∈ [1,T ]. (12)

Learning can be performed for all atoms in the basis or only for a subset of it. In the latter, only the entries of basis
and activation matrices corresponding to the atoms to be updated are included in the equation arrays. Afterwards all
modified atoms are reweighted to unitary 2-norm.
Ideally, any parts of the spectrogram which cannot be accurately explained with speech exemplars will be captured

by the online-learnt noise atoms. This requires some careful calibration to ensure that co-occurring speech features are
not captured together with the noise. The primary tool for this is the sparsity weight vector λ described in Section 2.1.
However, we assume that even cautiously applied noise learning can detect and remove the largest instances of noise,
thus filtering out the most harmful artefacts. This is a highly desirable goal for newly encountered noise events, for
which we have no prior information.

4. Experimental set-up

4.1. CHiME corpus

For our experiments, we use the CHiME noisy speech database, published in 2010 to address the challenges posed
by non-stationary multi-source noise environments (Barker et al., 2012). For its speech content, the database uses the
GRID corpus, where 34 different speakers read simple six word command sentences with linear grammar (Cooke
et al., 2006). Each utterance follows the syntax verb-colour-preposition-letter-digit-adverb. The word classes have
cardinality of 4/4/4/25/10/4, respectively. Recognition performance is scored by the percentage of correctly classified
letter and digit keywords. A baseline recogniser employing HTK binaries (Young et al., 2005) with acoustic models
trained on clean speech is provided.
The database consists of following sets:

1. Training speech: 500 clean utterances per speaker
2. Training noise: 6+ hours of pure background noise
3. Development set: in total 600 utterances from all speakers, repeated over six SNRs ranging from +9 to -6 dB
at 3 dB steps.

4. Test set: As development set, but with different utterances

Test and development utterances are provided in a long noise context as ‘embedded’ files with the utterance locations
annotated. Development utterances are also available as clean speech. By ‘clean’ we denote audio without additive
noise. All CHiME data is convolved with a room reverberation response, so none of the utterances are truly clean like
their original GRID counterparts. All audio is binaural and sampled at 16 kHz.
Additive noise consists of actual household sounds, including appliances, family members, impacts and other

sound events. Most of the events are momentary and highly varied, in many cases unique. Different SNRs have been
generated by selecting noise segments which produce the desired dB ratio by themselves without scaling. Therefore
all SNR-versions of the same development/test utterance contain different noise events.

4.2. Feature space

The feature space used in our experiments consists of magnitude spectrogram segments as described in Sec-
tion 2.1. The Mel filterbank covers frequencies from 64 to 8000 Hz, divided evenly on a Mel scale with B bands. For
the temporal resolution of frames, lengths between 8 and 256 ms have been previously studied (Smaragdis, 2007),
and window shift usually varies between 10 and 32 ms. Often a longer frame is used for enhancement than for
classification. However, we fix the frame parameters to 25/10 ms for compatibility with CHiME default models and
sufficient resolution for sparse classification. In separation and enhancement, it appears that the total duration of
atoms, measured in physical time, is more important than temporal resolution within the window (Smaragdis, 2007).
We have previously found repeated evidence for the optimality of window length of 20–30 frames (215–315 ms)

for robust enhancement and recognition (Gemmeke et al., 2011b; Hurmalainen et al., 2011a,b). Durations used in



other work include 70 ms (Vipperla et al., 2011), 80 ms (Wang, 2008), 176 ms (Smaragdis, 2007), 224 ms (O’Grady
and Pearlmutter, 2007) and 256 ms (Weninger et al., 2011, 2012). Based on previous results and a grid search on the
development data over a range of T values, we set the NMF window length to 20 frames (215 ms), but use 25 frames
(265 ms) for NMD, which appears to favour slightly longer context (Hurmalainen et al., 2011a).
We have achieved improvements by increasing the number of Mel bands from 26 (Hurmalainen et al., 2011b)

to 40 (Hurmalainen and Virtanen, 2012). For even larger numbers of frequency bands, the gains were negligible.
Therefore B was set to 40 for these experiments.
The factorisation algorithms support processing signals using stereo features by concatenating the features per-

taining to each individual channel. In previous work we observed that the use of stereo features only has a minor
impact on the separation quality, while it doubles the data size and computational costs (Hurmalainen and Virtanen,
2012). Therefore the results were mostly computed using mono features averaged in the spectral magnitude domain.
However, in the same study we found out that augmenting the static features with temporal derivatives (‘deltas’) simi-
larly as in conventional GMM-based modelling (Young et al., 2005) does improve the recognition rates. Even though
the long temporal context of atoms manages to model spectral behaviour over time to some extent by itself, adding
explicit delta features will emphasise modulations, which contain significant information on speech and noise events.
To generate enhanced signals and recognition results reflecting the current best performance of our framework, stereo
features and temporal dynamics as in (Hurmalainen and Virtanen, 2012) were included in the final experiment of this
work.

4.3. Basis generation

4.3.1. Speech

In this work, all our speech bases are speaker-dependent, and the knowledge of test speaker identity is exploited
by selecting the corresponding speaker’s basis. We use two variants; sampling large bases from the training material
as described in Section 3.2, and using compact template bases introduced in Section 3.4.
The first method is to sample training utterances semi-randomly (Hurmalainen et al., 2011b). For each speaker,

the 500 training utterances are split into 300 for basis generation and 200 for learning the mapping between speech
exemplars and speech labels. The utterances selected for basis generation are sampled by extracting windows with a
random step of 4–8 frames. The resulting, densely sampled sets of more than 10000 exemplars per speaker are reduced
to 5000 while maximising the flatness of included word distribution. This mainly reduces the amount of exemplars
from the originally overrepresented non-keyword classes that contain only four word options each. However, no
attempt is made to control the exact positioning of exemplars within utterances. They may cover word boundaries,
thus modelling specific word transitions.
The second method is based on constructing compact bases of state-centric speech templates. As in the provided

CHiME recogniser models, our framework uses 250 speech states (4–10 states per word) to label speech basis atoms.
For each state in the system, we select all instances of the word, which contains the chosen state. Based on a forced
alignment by the CHiME recogniser, the words are positioned in a length T windowwith the target state in its midmost
frame. We then take the median within each single spectrogram bin over all word instances to generate a prototype of
each state and its immediate context. The process is illustrated in Figure 1, where template construction is shown for
the third state (out of six) of the word ‘green’.
The midmost frames, always representing the nominal state, are most likely to match each other in the spectral

domain. Therefore the spectral model is also most consistent in the middle of a template. As the temporal distance
increases towards template edges, there is higher variation in the spectrogram content due to differences in pronun-
ciation style, speed and coarticulation. Consequently, the edges fade out when a median is taken over instances.
Especially, multiple neighbouring words candidates all have different spectrogram profiles. Consequently the median
template model will generally remove the fragments of other words and continuity over word boundaries. For exam-
ple, in the last training data instance in Figure 1 we can see a high-pitched fricative from a preceding word, whereas
very little spectral activity remains in the first frames of the resulting template.
The compact bases cannot model all possible temporal alignments required by independent NMF windows, but

they are suited for NMD’s temporal model, which can find the best locations for a few temporally sparse activations.
By losing word transition modelling and replacing redundant exemplars with median templates, the basis size is
reduced to 1/20th of the large NMF bases.



Figure 1: Forming an atom template for a speech state and its neighbourhood. Training data spectrograms containing the state are placed in a B×T
window, and bin-wise median is taken over the instances. In this example, the third state of word ‘green’ is modelled with a 40 × 25 template. In
addition to the state itself, a large part of the word is captured as well, thus increasing the temporal context being modelled.

4.3.2. Noise

In this work, we employ three different methods for modelling the additive, non-stationary noise in CHiME data:

1. Context-based sampling of the utterance’s noise neighbourhood as presented in Section 3.3 and our earlier
CHiME experiments (Hurmalainen et al., 2011b). The ‘embedded’ wave files are sampled to both directions
from the target utterance, and exemplars are extracted at random intervals of 4–7 frames from segments con-
taining only noise. As before, we use 5000 noise exemplars for the NMF experiments. With these parameter
settings, approximately 4.5 minutes of noise context got sampled into the basis (from 5–7 minutes of overall
audio context with the skipped neighbouring utterances included). The nearest available noise segments were
used so the amount of forward and backwards context was roughly symmetric, except at the ends of embedded
recording sessions where only one direction is available.

2. The same algorithm, but used to generate a small noise basis of 250 exemplars for NMD. Because less temporal
redundancy is required in the NMD model, the sampling interval is increased to 10–15 frames. Still, the overall
context covered is reduced to approximately a tenth in terms of physical time span (∼ 30 seconds of pure noise
data).

3. Finally, we study noise modelling using neither context nor prior knowledge. Instead of passing a pre-generated
basis to the factorisation algorithm, we randomly initialise ⌈Tutt/T ⌉ noise basis atoms — just enough to cover
every frame of an utterance once — and update them in the NMD iteration loop as described in Section 3.5.
The on-line updated atoms will adapt themselves to spectrogram patterns not matching to the speech basis, thus
learning and modelling noise events found in the mixture.

The generic background training material was not used in any of these experiments. While potentially a sound op-
tion in some scenarios, it is debatable if a universal noise basis can be modelled for real world use. For reasons pointed
out in Section 3.3, we favour context-aware noise modelling to improve the adaptivity to new noise environments.

4.3.3. Basis weighting

Earlier we have been using two-way normalisation of the basis. Each vectorised atom spectrogram was scaled
to unitary Euclidean norm. In addition, the Mel band weights of the full basis were scaled so that the Euclidean
norms over all spectral content within each band were equal. To satisfy both conditions together, ten alternating



normalisation rounds were performed iteratively for an approximate solution. (Gemmeke et al., 2011b). In this work,
we still normalise individual atoms as is preferable for the NMF update rules. However, fixed weights are acquired
for Mel bands by gathering all training speech spectrograms, and computing weights which equalise the Euclidean
norms over their Mel band content. Using a fixed band weighting profile stabilises and simplifies the model, because
the two-way normalisation step can be omitted, and the weighting no longer changes in every noise basis update.
When various band weighting methods were compared, the fixed, speech-normalising profile was found to perform
comparably to two-way normalisation (Hurmalainen and Virtanen, 2012).

4.4. Factorisation

Activation matrices were computed using the update rules described in Section 2. We used CUDAGPU hardware,
MATLAB and the GPUmat toolbox (The GP-You Group, 2010) for computation. Single precision variables and 300
iterative updates were used in all experiments.
In many previously reported implementations, the sparsity parameter λ has been set to a fixed value. However,

its sparsifying effect is related to the 1-norms of the basis atoms, which will vary as a function of the dimensionality
of the feature space. To make the level of sparsity more independent of the window parameters that determine the
dimensionality, the penalty weights were set proportionally to the mean of the 1-norms of basis atoms. By conversion
from the fixed parameters used in earlier experiments (Hurmalainen et al., 2011b; Hurmalainen and Virtanen, 2012),
the sparsity value governing speech basis atoms was set to 0.1 of the mean of norms, and sparsity of noise basis atoms
to 0.085. In basis-learning NMD, noise sparsity was increased after brief development data experiments to 0.1 to
avoid bias toward the freely adapting atoms and consequently modelling speech with them as well.

4.5. Decoding

All our recognition methods are fundamentally based on the CHiME baseline recogniser and its language model.
Variants for enhancement and sparse classification are employed as follows.

4.5.1. Signal enhancement

In signal enhancement, we synthesise the filtered spectrogram as described in Section 2.4. The enhanced wave
files are recognised using HVite and two models with different training. First, we use the default CHiME models
trained on reverberated, ‘clean’ training files to produce results compatible with the baseline system. The second
system is trained on multi-condition data consisting of the 17 000 clean utterances and the same utterances mixed
with random training noise. Mean-only maximum-a-posteriori (MAP) adaptation is used for generating the speaker-
dependent models. These models are exactly the same as used in (Weninger et al., 2011) and later in our multi-stream
recognition experiments (Weninger et al., 2012).
Neither of these models is retrained on speech data processed with our enhancement framework. Such a task

would be laborious, considering that the enhanced output will differ slightly for all factorisation parameters, and that
there is no standard training material with noise context as required by our adaptive algorithms. Therefore we only
employ generic clean- and multi-condition trained models. A benefit of this choice is that earlier results exist for both
models, allowing direct comparison.
In closely integrated recognition systems with matching spectral parameters, it would be possible to use the

enhanced Mel scale spectrogram by itself for deriving the MFCC features. However, our separation framework and
the two external recognisers all use slightly different parametrisation for their spectral features (e.g. Mel band count
and preprocessing filters). Therefore enhanced speech was passed as time domain signals, which are universally
accepted by all external recognisers regardless of their internal spectral representation.

4.5.2. Sparse classification

For direct classification via speech basis atom weights, we use label matrices representing the probabilities of
different speech states over atom duration (Virtanen et al., 2010). In canonical labelling, labels are acquired directly
from a forced alignment, and the matrices are binary so that for each frame of a speech basis atom only the nominal
state is active with weight 1.
However, especially when using speech templates without transition context, some basis atoms may in practise

match several different words in the CHiME state model. While phonetically similar, the words are denoted by



different states in the system. For example, the first phones of “please” and “place” appear essentially the same. In
order to reduce the risk of misclassification due to incorrect or overly strict label associations, we learn the mapping
from activations to states by factorising the 200 training utterances not used for the basis, and calculating the mapping
matrices using ordinary least squares (OLS) regression (Mahkonen et al., 2011). The non-binary conversion matrices
acquired this way are able to model the multiple word associations of some speech atoms, improving the results in
scenarios with more phonetic ambiguity (Hurmalainen et al., 2011b).
Preliminary experiments showed that OLS mapping improved the results of small basis experiments, thus this

technique was used for the final sparse classification results. For large bases with static features, the results were
mixed, with a small overall decrement in average score. With dynamic features included, the results of mapping were
uniformly detrimental. Therefore no learnt mapping was used for large basis NMF experiments. The varying benefits
of OLS are explained by the accuracy of canonical labels, and the amount of training data. For the large bases with full
coarticulation context, the canonical labelling is already reasonably accurate, and no improvements were achieved by
learning the mapping from limited training material (200 speaker-dependent utterances). Conversely, the templates
constructed from multiple instances have indefinite labels to begin with, and better mapping can be learnt via training
factorisation.
The utterances are decoded as described in (Hurmalainen et al., 2011b). In NMF decoding, we normalise the

activation vectors of all windows to unitary sum. In NMD’s temporal model, the activity levels may vary greatly
across windows so no normalisation is applied to the basis activations. The resulting likelihood matrix is passed to
a modified CHiME baseline recogniser, which performs the final recognition using the generated likelihoods and the
default CHiME language model.

5. Evaluation

5.1. Modelling, factorisation and decoding methods

To compare the different methods for modelling speech and noise, the test set was factorised using three models:

1. Sliding window NMF, 5000 speech and 5000 sampled noise exemplars, T = 20 (‘Large basis NMF’)
2. NMD, 250 speech atoms, 250 sampled noise exemplars, T = 25 (‘Small basis NMD, sampling’)
3. NMD, 250 speech atoms, online-learnt noise model, T = 25 (‘Small basis NMD, learning’)

The 5000-atom sampled speech bases (used in model 1) and 250-atom template bases (models 2 and 3) are described
in Section 4.3.1. The three noise models correspond to those described in Section 4.3.2.
Previously, we have got mixed results for applying NMD to large bases (Hurmalainen et al., 2011a,b). For

CHiME data, no improvements were seen, while the computational complexity increases significantly. The large
bases seem to contain sufficient temporal redundancy for NMF, which in turn produces better results via multiple
averaged estimates. Regarding compact bases, the 250+250 atom set-up was tested using both sliding window NMF
and NMD. The scores were uniformly worse for NMF than for NMD (0.4–3.5% absolute, 2–20% relative decrement
in recognition rates), confirming that the sliding window model is not as well suited for small bases with insufficient
temporal alignment variants over the atoms.
All activation matrices acquired from different factorisation types were used for enhancement and recognition

with the two GMM-based recognisers; clean-trained original CHiME models (‘CHiME’) and the multi-condition
trained model (‘MC’), and also recognised using sparse classification (‘SC’). The results are shown in Table 1. The
unenhanced baseline performance of the external recognisers is shown on the first rows. Two alternative implemen-
tations for NMD enhancement, ‘EURECOM’ (Vipperla et al., 2011) and ‘TUM’ (Weninger et al., 2011) are also
included on the last rows for comparison.

5.2. Derivative and stereo features

As an additional evaluation, we recomputed the large basis NMF results while including binaural features and
temporal dynamics as in (Hurmalainen and Virtanen, 2012). In stereo processing, features were extracted for both
channels separately and treated like another set of spectral bands in feature vectors. Temporal dynamics were mod-
elled by applying a delta filter, spanning two frames forward and backwards, to the static magnitude spectrograms.
The newly acquired difference spectrogram was split into two parts, one containing positive delta values and another



Table 1: Test set results for different factorisation configurations: large basis NMF, small basis NMD with sampled noise, and small basis NMD
with online-learnt noise. All are decoded using feature enhancement (FE) with clean-trained (CHiME) and multi-condition trained (MC) models
described in Section 4.5, and sparse classification (SC). Unenhanced baseline scores and two alternative enhancement systems are also shown.

SNR (dB) 9 6 3 0 -3 -6 avg

Baseline scores of FE recognisers (unenhanced)
CHiME 82.4 75.0 62.9 49.5 35.4 30.3 55.9
MC 91.3 86.8 81.7 72.8 61.1 54.5 74.7

Large basis NMF
FE, CHiME 92.2 88.8 85.8 80.5 73.3 61.4 80.3
FE, MC 92.8 92.3 90.7 87.6 82.2 75.7 86.9
SC 92.4 90.4 90.0 88.0 79.8 73.8 85.8

Small basis NMD, sampling
FE, CHiME 91.3 87.0 83.5 76.2 68.2 56.3 77.1
FE, MC 93.0 91.2 90.0 85.2 79.0 72.9 85.2
SC 89.8 89.0 84.3 81.8 73.9 65.8 80.8

Small basis NMD, learning
FE, CHiME 87.7 83.2 77.2 68.8 60.0 55.4 72.0
FE, MC 91.3 89.8 86.2 80.0 74.2 72.0 82.2
SC 87.8 83.5 79.8 75.0 66.4 60.6 75.5

Alternative NMD enhancement results
EURECOMa 84.6 79.3 69.4 61.8 50.4 43.2 64.8
TUMb 90.6 88.3 87.7 84.1 79.2 75.6 84.2

a Vipperla et al. (2011)
b Weninger et al. (2011)

the absolute values of negative entries in order to keep the features non-negative. In other words, the two derivative
spectrograms captured event on- and offsets, respectively. Both were concatenated with the static magnitude features
of atoms and observations for separation. However, after acquiring the activation weights, only static magnitudes
were used for generating the enhanced spectrogram and signals.
The results for multi-condition trained enhancement (‘FE, MC’) and sparse classification (‘SC’) using extended

feature spaces are shown in Table 2. Stereo features and temporal dynamics are first applied each alone and then
together. The scores are compared to static-only mono features, and three alternative systems presented in recent
literature (Delcroix et al., 2011; Maas et al., 2011; Weninger et al., 2012).

6. Discussion

6.1. Findings

From the results in Table 1, showing the evaluation of different speech and noise modelling methods, we can make
the general observation that larger bases and more context information produce better results. This is theoretically
sound — the more information available, the better models for individual sources can be constructed. In sparse
classification, there is approximately a 5% drop (absolute) in average recognition rate from large basis NMF to
small basis NMD, and further to no-prior noise learning. Lower accuracy can already be observed in the cleanest
conditions, suggesting that the small bases cannot classify words as accurately as the large bases. However, even the
last SC variant performs at least 31%, and on average 44% better than the original CHiME recogniser, measured by
relative word error rate reduction.
Interesting results can also be seen in the recognition rate differences between SC and the enhanced signal recog-

nisers. We notice that SC nearly always exceeds the clean-trained CHiME recogniser, while the MC recogniser is



Table 2: Large basis NMF results for static-only mono features, and features with temporal dynamics and stereo channels included. Feature
space extensions are applied individually as well as together. Results are shown for multi-condition trained feature enhancement (FE, MC), sparse
classification (SC), and three external system combinations reflecting state-of-the-art results on CHiME data.

SNR (dB) 9 6 3 0 -3 -6 avg

Mono, static features only
FE, MC 92.8 92.3 90.7 87.6 82.2 75.7 86.9
SC 92.4 90.4 90.0 88.0 79.8 73.8 85.8

Stereo, static features only
FE, MC 93.2 92.2 91.0 87.8 82.4 76.3 87.1
SC 92.4 90.4 90.2 88.4 80.7 73.5 85.9

Mono, static and dynamic features
FE, MC 93.3 92.1 90.0 87.7 83.1 76.6 87.1
SC 93.0 91.5 90.8 89.2 82.2 76.3 87.2

Stereo, static and dynamic features
FE, MC 92.9 92.3 90.7 88.2 83.4 77.3 87.5
SC 92.8 91.7 91.1 89.3 83.4 78.6 87.8

Alternative systems for CHiME data
FAUa 95.1 92.6 92.8 88.3 83.3 79.8 88.7
NTTb 95.8 94.2 93.7 92.3 88.3 85.6 91.7

TUM/TUTc 96.4 95.7 93.9 92.1 88.3 84.8 91.9
a Maas et al. (2011)
b Delcroix et al. (2011)
c Weninger et al. (2012)

mostly better than SC. Especially the small speech basis experiments favour the GMM-based recogniser with robust
training. Only 1.7% reduction can be observed in the average score from the 10 000 atom NMF basis to 500 atom
NMD. Another 3.0% decrement takes place, when all prior information on noise is removed. Still, enhancement
using compact speech modelling and blind noise learning is able to reduce the error rate by up to 38% (relative) in
the noisiest end, and by 30% on average in comparison to the same recogniser with unenhanced signals.
The results are also compared to other NMD-based enhancement systems tested on CHiME data. We observe that

all our denoising algorithms perform better than the EURECOM approach, where noisy speech was modelled using
100 speech atoms, 100–200 noise atoms from the background data, and 20 atoms from the local context (Vipperla
et al., 2011). The results were scored using the standard CHiME recogniser, which therefore should be used as the
point of comparison. It is likely that a part of the difference in recognition rates arises from the temporal context,
which in our experiments is 20–25 frames (215–265 ms) in comparison to EURECOM’s 4 frames (70 ms).
The NMD enhancer used in TUM’s CHiME experiments (Weninger et al., 2011) and in our joint work (Weninger

et al., 2012) employed 51 speech atoms, 51 noise atoms learnt from the general background, and 256 ms window
length. The temporal resolution was 64/16 ms, and the spectral resolution full 1024 FFT bins. The recogniser was the
same as the MC model used in this work. We notice that the large basis NMF enhancer performs better than the TUM
set-up. Small basis NMD with sampled noise works better in all but the lowest SNRs, and NMD without a noise
model only at the highest SNRs. Especially the second case gives some insight to the two systems, which are in many
ways similar but also differ in their parametrisation and modelling, primarily in spectral and temporal resolution. It
should be inspected further, whether the resolution or the basis generation method plays a larger role in enhancement
quality. Differences in the level of sparsity may affect the quality as well.
The final experiment (Table 2) on extended NMF feature spaces reveals more aspects regarding the choice be-

tween sparse classification and signal enhancement. Whereas in both static-only set-ups (mono and stereo) features
enhancement works better, we notice that including dynamic information improves the SC quality more, making it in



turn slightly better. However, the differences are small, so the true order probably depends on implementation details
such as external back-end training and the accuracy of atom-to-state mapping in SC. Nevertheless, both recognition
methods benefit from dynamic features in separation, especially in the noisy end. The contribution of magnitude-
domain stereo information is significantly smaller.
Three alternative recognition systems were also included in Table 2 for comparison. The first one (Maas et al.,

2011) is a binaural signal enhancement front-end for a robust Sphinx-4 recogniser employing triphone HMMs. Its
noise robustness is generally similar to the proposed system, while its initial clean end recognition rate appears better,
probably due to more sophisticated back-end modelling. The NTT approach (Delcroix et al., 2011) combines multiple
enhancement and model compensation steps to simultaneously exploit spectro-temporal and spatial information for
separation. The TUM/TUT system, also combining multiple streams, consists of GMM recognition, a BLSTM
network and a word-spotting version of our sparse classifier (Weninger et al., 2012). This multi-stream system
managed to surpass all of its individual streams, and produced the best known average results on CHiME data at
the time of writing. We can conclude that system, feature and stream combinations are currently producing state-
of-the-art results in noise robust ASR. Factorisation-based methods are well suited for use in such combinations, but
other features such as spatial information should also be considered in an efficient overall solution.

6.2. Computational complexity and costs

Regarding the computational complexity of factorisation-based speech and noise modelling, we can consider three
aspects:

1. Training data requirements
2. Memory allocation
3. Computational costs

We have observed that a large basis of exemplars provides the best accuracy in modelling, and consequently the best
recognition results. However, constructing a 5000+5000 atom basis using the approach taken in our NMF experiments
requires significant amounts of training data, and for a larger vocabulary the requirements for similar coverage would
increase further. Explicit modelling of large word segments and word transitions would require even larger bases,
which would only be feasible with dynamic basis management. Fortunately, we have shown that both speech and
noise bases can be reduced to a fraction of this size with only a modest decrement in recognition rates. On the other
hand, the best results (smallest decrements) were observed using signal enhancement, where some of the training and
modelling complexity is shifted on an external back-end.
The memory requirement for NMF bases is B · T · L scalars, which for 10 000 single-precision 40 × 25 atoms is

40 megabytes. The amount can be reduced significantly by more efficient basis construction, phonetic modelling, and
shifting the classification to a conventional recogniser. For example, our 500-atom bases only require 2 megabytes,
and with learnt noise atoms even less. Therefore the memory requirements of exemplar-based factorisation are not
unbearable for modern devices, including mobile ones.
The computational costs of NMF depend on data sizes, algorithms and naturally the hardware platform. On a dual

core E8400 1333 MHz CPU, MATLAB implementation of the large basis (5000+5000 atoms) factorisation takes
on average 80.8 seconds per utterance (46× audio duration). On a consumer-grade GeForce GTX260 graphics card,
the same computation takes 7.0 seconds per utterance (4.0×). When the basis is reduced to 500 fixed atoms (16×
reduction on data size, taking into account the increased window length), NMF execution times become 5.5 seconds
(3.1× audio duration) and 0.62 seconds (0.35×) for the described CPU and GPU platforms, respectively. In CPU
computing, the speedup factor is close to linear, whereas GPU computing scales better to large arrays due to heavy
parallelisation.
Using NMD for factorisation complicates the comparisons. While fixed basis NMF can be computed trivially

with elementary matrix operations which also parallelise directly, the NMD speed is highly dependent on algorithm
design. The current small basis NMD implementation takes 3–6 seconds per utterance on a GPU, depending on
whether basis learning is included. However, the same algorithm for a large basis takes approximately 10 seconds.
This highly nonlinear correspondence to problem size illustrates, how the increased computing costs of NMD arise
primarily from the overhead of additional algorithm steps. Code optimisation and possibly low-level implementation
instead of interpreted MATLAB code would be beneficial in finding out the true performance of NMF and NMD.
Nevertheless, it appears ultimately feasible to run the proposed set-ups in real time on parallel platforms.



7. Conclusions and future work

We presented several alternative methods for modelling speech and noise in factorisation-based speech recogni-
tion. Local context was used for adaptive noise modelling instead of acquiring a universal noise model from generic
training data. The best results were achieved using a large exemplar-based basis consisting of actual instances of
training and observation data. Meanwhile, we also demonstrated how significantly smaller bases can be employed for
the task with only small losses in quality compared to the reduction factor in model size. Furthermore, we managed
to model non-stationary multi-source noise using online-updated atoms without any prior information or context for
the noise.
We found additional support for the optimality of 200–250 millisecond window length for both of our recognition

methods; signal enhancement for external back-ends and sparse classification based on exemplar labels. When using
large bases and dynamic features in addition to static spectra, we achieved better results by sparse classification
than by enhancement. However, if the speech bases are reduced to generic templates without word transitions or
pronunciation variance, signal enhancement for a multi-condition trained GMM recogniser performed better.
It appears that the current factorisation framework can produce plausible separation results for well-modelled data.

Therefore even more effort should be spent on learning compact yet accurate speech and noise models for diverse use
cases. The different noise acquisition methods (universal, local context, in-place learning) should be combined to
maximise the model accuracy. Preliminary experiments suggest that such combination is indeed feasible, and a
noise basis can be updated adaptively in continuous recognition using voice activity detection to locate noise-only
segments. Recognition rates comparable to informed noise segment sampling have been achieved by using VAD-
based basis adaptation without exploiting any look-forward context (Hurmalainen et al., 2012). For speech, the
variations in pronunciation can be possibly handled via clustering or other techniques, which are able to represent the
spectro-temporal space volumes with a small number of atoms per phonetic pattern. Switching from word-based to
phonetic state models will be eventually needed for large vocabulary recognition.
One important feature type not exploited in this work is the spatial information available in binaural signals. It

alone can act as a powerful separation method. Thereby introducing time-domain phase information to the framework
might give significant improvements in multichannel recognition.
Regarding final recognition accuracy, there is a lot of potential in multi-stream algorithms, which combine en-

hancement, sparse classification, and complementary methods (Weninger et al., 2012). Different system combinations
should be tested for better joint recognition rates. Especially the clean speech recognition rate, which in our stan-
dalone sparse classification is still suboptimal, can be improved by introducing alternative streams to the recogniser.
Finally, it would be beneficial to optimise the practical implementation of NMF/NMD algorithms to best exploit
current hardware, and thus allow actual deployment of separation-based robust ASR to everyday applications.
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ABSTRACT

Studies from multiple disciplines show that spectro-temporal
units of natural languages and human speech perception are
longer than short-time frames commonly employed in auto-
matic speech recognition. Extended temporal context is also
beneficial for separation of concurrent sound sources such as
speech and noise. However, the length of patterns in speech
varies greatly, making it difficult to model with fixed-length
units. We propose methods for acquiring variable length
speech atom bases for accurate yet compact representation
of speech with a large temporal context. Bases are generated
from spectral features, from assigned state labels, and as a
combination of both. Results for factorisation-based speech
recognition in noisy conditions show equal or better sepa-
ration and recognition quality in comparison to fixed length
units, while model sizes are reduced by up to 40%.

Index Terms— Spectral factorization, speech recogni-
tion, noise robustness

1. INTRODUCTION

Speech contains phonetic units of varying lengths, ranging
from single phones to their combinations, syllables, words
and complete phrases. Statistical analysis of speech reveals
correlation in its temporal behaviour spanning hundreds of
milliseconds, decreasing gradually with no strict upper limit
[1]. Meanwhile, physiological studies and listening tests have
shown that temporal modulations at under 12 Hz (period of 83
ms or more) are crucial for speech intelligibility [2].
Conventional automatic speech recognition (ASR) sys-

tems typically use frames of approximately 25 ms as their fea-
tures, and Markovian state transition models which only con-
sider temporal context of one frame. The approach is com-
putationally efficient and sufficient for single phone classifi-
cation, but fails to model the long term temporal behaviour
motivated by natural speech structures and human hearing.
Especially in noisy conditions short-term spectra become un-
reliable as features for classification. Separating and recog-
nising sources from a single frame is often an ill-posed prob-
lem. While partial alleviation can be achieved by including
delta and acceleration features to frame spectra, the context
still remains limited, and extended temporal connectivity ac-
tually violates the Markovian model assumption [1]. Due to

T. Virtanen has been funded by the Academy of Finland, grant #258708.

these limitations and the need for more robust models, there
is increasing interest towards long context spectrogram mod-
elling in ASR [3].
Several approaches have been proposed for increasing the

context of speech models. TRAPs features observe long term
temporal behaviour of a few spectral bands [4]. HAC mod-
els quantise frame level audio events into classes and form
histogram vectors summarising the events in variable length
words [5]. Phonetic segmentation of speech has been dis-
cussed and demonstrated in literature [6], although evaluation
has usually consisted of comparison to manual segmentation
with no application to ASR. Longest segment matching has
been applied to dereverberation [7] and robust ASR [8]. In-
creased context has also been used in deep belief networks
with optimal results gained at contexts of 110–270 ms [9].
Using spectro-temporal atoms spanning 200–300 ms has

been shown to provide high separation quality and noise ro-
bustness with methods based on non-negative matrix factori-
sation (NMF) [10, 11, 12]. However, the exact choice of win-
dow length has proven difficult. Increasing the context will
improve robustness. On the other hand, it increases the com-
plexity of modelled spectro-temporal patterns, thus requiring
more atoms for the same data. Furthermore, fixed atom length
does not correspond to the large variation of acoustic units oc-
curring in real world speech and noise.
While virtually all studies on NMF thus far have concen-

trated on fixed atom length models, more recently variable
length modelling has also been proposed. Yılmaz et al. used
combination of factorisation passes with multiple fixed length
dictionaries [13]. Although a promising step towards variable
length modelling, using multiple large dictionaries may prove
impractical. Meanwhile, Wang and Tejedor have proposed a
model for employing different atom lengths simultaneously in
convolutive NMF (also known as NMD) [14], and presented
an introductory experiment on two-speaker separation.
In this work we extend variable length NMD modelling

to robust ASR, and propose methods for acquiring compact
speech bases with a preference for long context, yet able to
model units of any length. We employ two data sources for
finding units; unannotated spectral features, and state labels
acquired from a language model via forced alignment. The
two sources are also used in conjugation. Models are eval-
uated in a noisy ASR task using the 1st CHiME Challenge
corpus [15]. Factorisation-based representation is used for
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feature enhancement for an external back-end, and for ASR
directly from atom activations. First we introduce the fun-
damentals of spectral factorisation. The proposed acquisition
method is presented in Section 3. In Section 4 we describe
the evaluation set-up and experiments. Results are listed and
discussed in Section 5, whereafter we conclude in Section 6.

2. SPECTROGRAM FACTORISATION

In spectrogram factorisation, the goal is to model a mixed ob-
servation spectrogram Y as a sum of separated source spec-
trogram estimates, which in robust ASR comprise speechΨs

and noiseΨn. The dimensions of each utterance spectrogram
are B × Tutt, where B is the number of spectral bands and
Tutt is the number of frames. The estimates are constructed
by weighted summing of atom spectrograms Al (B × Tl).
Atoms are indexed by l from 1 to basis size L. Whereas in
earlier work the atom length Tl has been a constant [11, 12],
in this work we allow it to vary between atoms.
Each utterance spectrogram estimate Ψ is a convolutive

sum of atom spectrograms, weighted by a LG × W activa-
tion matrixX. LG is the number of atoms belonging to set G
of the source(s) being modelled. W is the number of permit-
ted window indices, equal or less than Tutt. The convolutive
reconstruction formula for a spectrogramΨG is

ΨG =
∑

l∈G

Tl∑

t=1

Al,t

→(t−1)

Xl , (1)

whereAl,t denotes the tth frame column of atom l,Xl is the
lth row vector of X, and operator → shifts it right by t − 1
columns in a length Tutt zero-padded array to make all partial
matrices to be summed B × Tutt. The method is otherwise
similar to commonly used convolutive modelling [16], except
that the atom length Tl can be given separately for each atom.
Assuming a pre-generated supervised basis A, the fac-

torisation task consists of finding the activation matrix X for
a chosen quality function. After solving X, it is used either
for estimating source spectrograms as above, or directly as
a classifier by observing the activated atoms and their sup-
plementary label information. Both methods have been used
for robust ASR. Their details can be found in earlier work
[10, 12], and are also given briefly in the following sections.

3. COMPACT VARIABLE LENGTH BASES

In previous work, fixed length atoms have been acquired by
sampling randomly a large amount of exemplars [10], or by
constructing templates for each word of a small vocabulary
[11, 12]. However, both methods may prove problematic
when real world speech must be modelled. In order to cover
spectro-temporal patterns of speech with a compact set of
atoms, we propose an algorithm which aims at discovering
recurring events of variable length with a preference for long
units. The algorithm is based on searching for clusters of
speech segments which match each other.

First, let us define a similarity measure c between two
frame feature vectors f

(i), f (j). The frames are consid-
ered matching if their c value exceeds a given threshold
θ. Similarly, two sequences of length N , [f (i)1 . . . f

(i)
N ] and

[f
(j)
1 . . . f

(j)
N ] are considered matching if all their mutual vec-

tor pairs f (i)n , f
(j)
n match. Because the atoms in NMD are

rigid with no time warping, it is crucial that sequences match
throughout their duration.
We consider two different data sources for finding matches.

First, we observe the spectral features of frames, denoted by
s. Spectral matching can be defined by any similarity mea-
sure, but in this work we use straightforward dot product

cs(i, j) = s
(i) · s(j) (2)

between L2-normalised spectrum vectors. The largest possi-
ble spectral similarity is thus 1.
The second method is using phonetic state labels acquired

from word transcriptions with forced alignment. Each frame
in training data is given a label denoting its membership in ex-
actly one language model state q of total Q states. We define
the similarity of states in frames i and j as

cl(i, j) =






γfull if q(i) = q(j)

γpart if |q(i) − q(j)| = 1
γnone otherwise

(3)

The midmost ‘partial match’ is true if the states follow each
other in a linear language model, thus allowing minor errors in
alignment. Finally, the similarity measures may be combined
by using a merging function. In this work the function is the
sum of coefficients,

cm(i, j) = cs(i, j) + cl(i, j) (4)

The relative significance of spectral and state similarity can
be defined via γs and the threshold θ.
Clustering is implemented with a greedy longest-first

search. Starting from the largest allowed atom length Tmax,
we find pairwise matching sequences from training data. If
a sequence is found with a sufficient number of matches to
other sequences, these instances form a cluster and further
an atom. The contained frame ranges are flagged as taken.
Then the algorithm continues clustering, reducing the atom
length T when clusters of chosen size can no longer be found.
Halting can be defined e.g. by the number of extracted atoms,
percentage of modelled training data, or a minimum atom
length Tmin. Although the greedy algorithm does not guar-
antee global maximisation of atom lengths, it is practically
viable and produces a basis of recurring spectral patterns in a
descending order of length and frequency of occurrence.

4. EXPERIMENTAL SET-UP

4.1. Data set and features

For the experiments, we used the GRID-based 1st CHiME
Challenge corpus [15]. Its speech consists of six-word com-
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mand utterances following a linear verb-colour-preposition-
letter-digit-adverb grammar. Word classes have cardinalities
4/4/4/25/10/4 respectively, totalling to 51 words. The task
is to recognise ‘letter’ and ‘digit’ keywords. There are 34
speakers, and a 500-utterance training set is provided for each.
Speaker identity is assumed known in recognition. Noisy de-
velopment and test sets both contain 600 utterances mixed
with highly non-stationary room noise at six SNRs ranging
from +9 to -6 dB. All audio data contains room reverberation.
All binaural source audio was converted into 40-band

mel-spectral features using 25 ms frames with 10 ms shift,
and averaged into mono. Spectral bands were equalised with
fixed band weights derived from training data [12]. Default
CHiME language model comprising 250 sub-word states and
its forced alignment were used to assign state labels to frames.

4.2. Frame correlation functions

Three correlation variants were used for clustering speech
frames in basis acquisition:

1. Spectral features only (‘spect’)
2. State labels only (‘label’)
3. Combination of the two (‘comb’)

The spectral space employed mel magnitudes with square
root compression and augmented delta features derived from
a five-frame window [12]. Spectral similarity cs was mea-
sured as the dot product of 2-normalised vectors. The features
were chosen for invariance to absolute loudness, while retain-
ing the temporal dynamics of speech. In purely spectral
acqusition θ was set to 0.89 and state correlation cl was 0.
In solely label-based acquisition, cs was in turn set to

0. Label correlation values were γfull = 2, γpart = 1 and
γnone = 0. Threshold θ was set to 1 with an additional con-
straint that the mean correlation between sequences was over
1.8. In other words, all state pairs must correlate at least par-
tially, and 80% of them must match perfectly. As the algo-
rithm has no access to spectra, we require relatively strict state
sequence similarity with a small allowance for fluctuations.
Combined acquisition used the same spectral correlation

with θ increased to 0.92. However, cl used γfull = 0.06,
γpart = 0.03 and γnone = 0. Parameters were tuned in 0.01
steps using development data.

4.3. Basis acquisition

After defining the frame correlation functions, speech bases
were acquired from training data for each speaker separately
as follows. Starting from Tmax, all pairwise matching se-
quences were searched from training data. Because in GRID
data each word is chosen randomly from its class and no word
transition is more likely than another, we restricted learning to
clusters modelling a single word each. A cluster was selected
if it contained at least 25% of the modelled word’s instances.
At each window length, all such clusters were extracted in a
descending order of relative size, whereafter T was reduced

Fig. 1. Histograms of atom lengths in selected speakers’ bases
for spectrum-based (left) and label-based (right) acquisition.
L is the total number of atoms.
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by one frame. The process was halted either by reaching the
minimum length Tmin, or if at least 75% of non-silent train-
ing frames were already covered. Sequences were allowed to
span over silent frames (defined by spectral energy) to model
e.g. stop consonants, but not to end in one, as such cases
could be modelled with a shorter atom instead.
Each cluster was converted into a speech atom by averag-

ing its mel magnitude spectrograms binwise. In addition, the
preceding and succeeding 2 frames were included in atoms,
because their magnitude content is implied by delta features.
Original Tmax and Tmin were set to 46 and 6, thus final atom
lengths ranged from 50 to 10 frames. A few examples of
atom length histograms within individual speakers’ bases are
shown in Figure 1. For now, we can notice that the whole
range is employed in different variants, and the distribution
depends heavily on the speaker and the method. Further anal-
ysis is given later in Section 5.
A summary of the generated bases is shown in Table 1.

For each generation method; spectrum-based (‘spect’), label-
based (‘label’) and combined (‘comb’), we list the statistics of
atom counts, total frame counts, and average atom lengths of
the 34 speaker-dependent bases. Previously used fixed-length
bases (‘fixed’) with exactly 250 length 25 atoms per speaker
are included for comparison [12].

4.4. Factorisation and recognition

The factorisation and recognition framework mostly fol-
lows small basis experiments described in [12]. A joint
speech+noise basis was formed from a variable number of
speaker-dependent speech atoms (see Table 1), and 250 noise
atoms sampled from the context of test utterances. Activation
matricesX were solved with variable-length NMD described
in Section 2 [14]. 300 iterations were used as before, and
an L1 sparsity penalty was applied for better separation and
classification. Where possible, parameters were set as in the
250+250 fixed length atom experiments in [12]. Especially
the fixed length noise atoms were replicated exactly to study
the contribution of new speech models alone.
For decoding and recognition, we used two methods. The

first is sparse classification (SC) via activation weights and
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Table 1. Statistics of the 34 speaker-dependent speech bases,
listed for all acquisition methods. Number of atoms in a ba-
sis, amount of contained frames, and average atom length are
reported as minimum, mean and maximum values over speak-
ers. The reference method always uses 250 length 25 atoms.

method
atom count frame count avg atom length
min mean max min mean max min mean max

spect 160 190 237 2941 3793 4659 17.0 20.0 23.6
label 135 150 181 3346 4167 5052 21.6 27.9 33.9
comb 157 182 232 3151 4027 4903 18.6 22.2 25.8
fixed 250 6250 25

atom labels [10, 12]. In this method, aQ×Tutt state likelihood
matrix is generated similarly to the spectrogram estimate of
Equation (1) using Q × Tl label matrices assigned to speech
atoms. Labels were learnt by partial training set factorisation
and ordinary least squares regression between activations and
utterance state content [12]. Final likelihood matrices were
decoded directly using the default CHiME HMMs.
The second method is feature enhancement (FE) by using

the ratio Ψ
s/(Ψs + Ψ

n) of speech-only and total spectral
reconstructions from Equation (1) as a time-varying filter for
the original utterance spectrogram [12]. The enhanced signal
was passed to a multi-condition trained robust GMM back-
end, previously used in [11, 12]. Details of both methods can
be found in earlier work [12].

5. RESULTS AND DISCUSSION

Speech recognition and enhancement results for each mod-
elling method are listed in Table 2 as keyword recognition
rates for sparse classification (SC) and feature enhancement
(FE), and signal-to-distortion ratio (SDR) of enhanced utter-
ances measured with the BSS Eval toolkit [17]. Shown values
are averages over noisy conditions and given for development
and test sets separately. The first line contains baseline results
for unenhanced signals. The next three lines correspond to
similarity measures defined in Section 4.2 for variable length
modelling. Results for previous 250+250 atom fixed-length
modelling (‘fixed’), and significantly larger 5000+5000 atom
NMF bases (‘large’) are also included for comparison [12].
First, we can observe from Table 1 that in each mea-

sure of basis sizes, approximately 10–25% deviations take
place between speakers from the mean to minimum and
maximum values, illustrating the model’s adaptivity. Mean
atom count is reduced by 24.0–40.0% and mean frame count
by 33.3–39.3% in comparison to fixed-length bases. Mean
atom lengths vary significantly between speakers and meth-
ods. Spectral models produces more and shorter atoms than
labels. Source combination generally falls inbetween.
Although the statistics ultimately depend on the similarity

functions and clustering parameters, the observed trend can
be justified by properties of the functions. Feature-only mod-

Table 2. Keyword recognition rates (%) and SDRs (dB) for
unenhanced signals, proposed, and reference basis acquisition
methods. Results are averages over noisy conditions from +9
to -6 dB. The best result among small basis methods (spect,
label, comb, fixed) for each set is highlighted.

method
development set test set
SC FE SDR SC FE SDR

unenh - 74.6% -0.72 dB - 74.7% -0.78 dB

spect 79.4% 85.1% 7.87 dB 79.9% 85.4% 8.50 dB
label 78.3% 85.6% 8.80 dB 78.9% 85.6% 8.86 dB

comb 79.7% 85.3% 8.54 dB 80.3% 85.5% 8.58 dB
fixed 78.0% 84.8% 8.57 dB 80.8% 85.2% 8.62 dB

large 85.9% 86.7% 9.49 dB 85.8% 86.8% 9.55 dB

elling will discover recurring spectral units, which are often
shorter than whole words due to coarticulation and natural
variation in pronunciation. State-only models are based on
forced alignment, which always produces a similar sequence
regardless of phonetic variation. It only observes variations
in pacing, which are more consistent for any given speaker.
This can be seen in the atom length histograms of Figure 1.
Speaker 1 is fast and produces short atoms for both methods.
Speaker 6 is slow and clear, hence both bases have longer
atoms. Speaker 21 is relatively slow but very melodic. In this
case, the feature-based atoms are shortest in the whole set,
whereas state-based atoms are among the longest.
Regarding the separation and recognition results of Ta-

ble 2, there is some variation between methods for different
result metrics. While separation measured by SDR is either
above or below the previous ‘fixed’ method, FE-based ASR
results improve uniformly. Gains are small, but it should be
noted that the gap to 20 times larger exemplar models (‘large’)
is only < 2%. The performance of SC is harder to anal-
yse, because the results for development and test set differ
greatly for the fixed-length model, while the proposed meth-
ods are more consistent. One contributing factor is that SC for
CHiME data depends heavily on keyword modelling. In the
previous model, at least four atoms per word were guaranteed,
whereas the proposed method has no such constraints. In in-
dividual SNR level scores (not shown), the proposed methods
had slightly lower clean end classification quality but higher
robustness towards low SNRs. Separation and classification
also have partially conflicting goals with the former preferring
long atoms, but the latter requiring also short atoms which
bear a higher risk of confusion with noise.
The main benefit of the presented method is that it can

adapt to any vocabulary and speaking style, unlike the previ-
ous model which assumed long context implied by sub-word
labels of small vocabulary and required defining the window
length explicitly. Although a small vocabulary task was used
here for simplicity of presentation and easier comparison to
earlier work, we have already employed the methods — both
feature- and state-based— successfully to compact modelling
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of medium vocabulary speech [18]. Regarding complexity,
the basis acquisition time for this task was < 30 minutes per
speaker using MATLAB code and an E8400 dual-core desk-
top PC. For larger corpora, computation of full similarity may
become slow, thus pre-classification and approximate meth-
ods may become recommendable.
While in this work a fixed-length noise model was used to

limit the number of parameter changes, variable-length meth-
ods are equally applicable to noise, where the variation be-
tween unit lengths may be even greater than for speech.

6. CONCLUSIONS

We proposed methods for acquiring variable-length long-
context speech bases for noise robust speech separation and
recognition. Spectral features, state labels, and a combination
of both were used for clustering speech patterns to atoms via
longest-first segment search. Applied to 1st CHiME Chal-
lenge data, the methods produced speaker-adaptive bases with
atom lengths ranging from 10 to 50 frames. We managed to
reduce model sizes by up to 40% from already compact fixed-
length bases, while achieving similar or better separation and
speech recognition results. The presented methods can be
used to model large vocabulary speech and non-stationary
noise for better applicability to real world ASR scenarios.
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and G. Rigoll, “The Munich 2011 CHiME Chal-
lenge Contribution: NMF-BLSTM Speech Enhance-
ment and Recognition for Reverberated Multisource En-
vironments,” in Proceedings of 1st CHiME workshop,
Florence, Italy, 2011, pp. 24–29.

[12] A. Hurmalainen, J.F. Gemmeke, and T. Virtanen, “Mod-
elling non-stationary noise with spectral factorisation in
automatic speech recognition,” Computer Speech and
Language, vol. 27, no. 3, pp. 763–779, 2013.

[13] E. Yılmaz, J.F. Gemmeke, D. Van Compernolle, and
H. Van hamme, “Noise-robust Digit Recognition
with Exemplar-based Sparse Representations of Vari-
able Length,” in IEEE Workshop on Machine Learning
for Signal Processing (MLSP), Santander, Spain, 2012.

[14] D. Wang and J. Tejedor, “Heterogeneous Convolutive
Non-Negative Sparse Coding,” in Proceedings of IN-
TERSPEECH, Portland, Oregon, USA, 2012.

[15] J. Barker, E. Vincent, N. Ma, C. Christensen, and
P. Green, “The PASCALCHiME Speech Separation and
Recognition Challenge,” Computer Speech and Lan-
guage, vol. 27, no. 3, pp. 621–633, 2013.

[16] P. Smaragdis, “Convolutive Speech Bases and their
Application to Supervised Speech Separation,” IEEE
Transactions on Audio, Speech, and Language Process-
ing, vol. 15, no. 1, pp. 1–14, 2007.

[17] E. Vincent, R. Gribonval, and C. Févotte, “Performance
measurement in blind audio source separation,” IEEE
Transactions on Audio, Speech, and Language Process-
ing, vol. 14, no. 4, pp. 1462–1469, 2006.

[18] A. Hurmalainen, J.F. Gemmeke, and T. Virtanen,
“Compact Long Context Spectral Factorisation Models
for Noise Robust Recognition of Medium Vocabulary
Speech,” in Proceedings of 2nd CHiME workshop, Van-
couver, Canada, 2013, pp. 13–18.

5





Publication P8

A. Hurmalainen, J. F. Gemmeke, and T. Virtanen, “Compact Long Context Spec-
tral Factorisation Models for Noise Robust Recognition of Medium Vocabulary
Speech”, in Proceedings of the 2nd International Workshop on Machine Listening
in Multisource Environments (CHiME), Vancouver, Canada, 1. June 2013, pp.
13–18.

Copyright c⃝ 2013 A. Hurmalainen, J. F. Gemmeke, and T. Virtanen.

155





13

COMPACT LONG CONTEXT SPECTRAL FACTORISATION MODELS FOR
NOISE ROBUST RECOGNITION OF MEDIUM VOCABULARY SPEECH

Antti Hurmalainen! Jort F. Gemmeke† Tuomas Virtanen!

! Department of Signal Processing, Tampere University of Technology, Tampere, Finland
† Department ESAT, Katholieke Universiteit Leuven, Belgium

ABSTRACT

In environments containing multiple non-stationary sound sources,
it becomes increasingly difficult to recognise speech from its short-
time spectra alone. Long-context speech and noise models, where
phonetic patterns and noise events may span hundreds of millisec-
onds, have been found beneficial in such separation tasks. Thus far
the majority of work employing non-negative matrix factorisation to
long-context spectrogram separation has been conducted on small
vocabulary tasks by exploiting large speech and noise dictionaries
containing thousands of atoms. In this work we study whether the
previously proposed factorisation methods are applicable to more
natural speech and limited noise context while keeping the model
sizes practically feasible. Results are evaluated on the WSJ0 5k -
based 2nd CHiME Challenge Track 2 corpus, where we achieve ap-
proximately 4% absolute improvement in speech recognition rates
compared to baseline using the proposed enhancement framework.

Index Terms— Spectral factorisation, speech recognition, noise
robustness

1. INTRODUCTION

In conventional automatic speech recognition (ASR) it is common to
employ short-term spectral features as the input for back-end recog-
nition. A typical choice is computing mel-frequency cepstral coef-
ficients (MFCCs) from 25 ms frames with a 10 ms shift. Hidden
Markov models (HMMs), used to model temporal progression of
speech, search for most likely paths by observing transition proba-
bilities between two consecutive frames. Such short-term evaluation
has been found sufficient for clearly spoken speech in optimal con-
ditions. However, real-world speech recognition tasks rarely meet
these expectations.

Apart from the linguistic variation taking place in casual speech,
a major challenge for practical ASR is coping with signals corrupted
by recording hardware, transmission channels, and environmental
noise. The latter can be divided further into competing sources and
acoustic phenomena such as reverberation. Whereas many kinds of
constant channel errors and the effect of acoustic environment can
be addressed with static compensation methods, additive noise from
varying sources forms a greater obstacle. There is almost infinite
variation in the sounds encountered in everyday situations, includ-
ing semi-stationary background noise, sudden impacts, longer noise
events, and competing speech. Especially the last example illus-
trates how the spectro-temporal behaviour of noise sources can be
very close to actual target speech. Furthermore, in conditions falling
below a 0 dB signal-to-noise ratio (SNR), noise sources start to dom-

Tuomas Virtanen has been funded by the Academy of Finland, grant
#258708. The research of Jort F. Gemmeke was funded by IWT-SBO project
ALADIN contract 100049.

inate several spectral regions, making the short-time spectrum unre-
liable as a feature space for classification.

It has been demonstrated that increasing the temporal context of
modelling units and observation windows is beneficial for discover-
ing spectro-temporal regions dominated by speech or noise. Context
of a few hundred milliseconds has been found relevant for speech
modelling and perception in statistical speech analysis [1], intelligi-
bility measurement [2] and direct observation of the auditory cortex
[3]. The significance of temporal context for robust ASR has re-
ceived further support in additive multi-source modelling with spec-
trogram factorisation, where the best results have been achieved by
using observation windows spanning 200–300 ms [4, 5, 6].

However, an inherent downside of context expansion is that the
modelling units become more specialised, and more units are re-
quired to cover the same event space than using a shorter context.
In the previously referred experiments and related work, separation
and classification quality were found to improve by using thousands
of atoms even for small vocabulary tasks like 11-word Aurora-2 [7]
and 51-word GRID/CHiME [6]. While early experiments have been
conducted on large vocabulary, it is not clear whether the approach
is viable for such tasks and eventually real world use.

To address this concern, we propose incorporating refined mod-
elling methods to our non-negative matrix factorisation (NMF)
framework. We apply long-context NMF to WSJ0-based 2nd
CHiME Challenge Track 2 data, where medium vocabulary speech
must be recognised from noisy mixtures ranging from +9 to -6 dB
SNR. The identity of the target speaker is also unknown, which was
not the case in the 1st CHiME Challenge involving difficult noise
conditions [8]. New methods aiming at considerable basis reduction
are compared to baseline results and large basis factorisation. In
Section 2 we give the basics of spectrogram factorisation. Section 3
introduces recent methods which help in model size reduction. The
experimental set-up is described in Section 4, whereafter results are
listed and discussed in Section 5. Finally we present conclusions
and ideas for future work in Section 6.

2. SPECTROGRAM FACTORISATION

By spectrogram factorisation we refer to techniques, where sound
sources are separated in spectral domain by factoring a spectrogram
matrix into its constituent parts. Furthermore, we concentrate on al-
gorithms which take into account the temporal continuity of signals,
that is, observe a context larger than individual frames. In earlier
work, promising results have been achieved by using non-negative
modelling. The motivation is that DFT resolution spectral magni-
tudes and features derived from them are mostly additive, thus non-
negative additive models produce a good estimate of source compo-
nent contribution.
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A common characteristic in previously proposed work is that
spectral modelling units and observation windows consist of T con-
secutive frames. A single spectrogram model, atom, is a B × T ma-
trix, where B is the number of spectral bands in the feature space.
Within a similarly sized observation window, the observed spectro-
gram Y is modelled as a sum

Ψ =
L

X

l=1

xlAl, (1)

where Ψ is the estimate of Y, L is the number of atoms (indexed by
l), As are atom spectrograms, and xs are their activation weights.
All spectral features and activation weights are non-negative. By as-
signing atoms into individual sources, in this case speech and noise,
it is possible to derive single source estimates such as Ψ

s for speech
and Ψ

n for noise by only including the chosen set’s atoms in sum-
ming. These estimates are then employed to separate the original
spectrogram into its components.

As the duration of an utterance, here denoted by Tutt frames, is
generally longer than an atom, we need a model to represent the
whole B × Tutt spectrogram as atom activations over time. Two
alternative models have been used extensively in earlier work:

1. A ‘sliding window’ method, where W = Tutt−T +1 overlap-
ping B × T windows are extracted from Y in 1 frame steps,
and factored individually [4]. The utterance spectrogram es-
timate Ψ is produced by averaging over window estimates,
hence as an average of up to T single-window factorisations
per frame. As atom and observation spectrograms can be vec-
torised and X solved from equation Ψ = AX, where Ψ is
BT ×W , A is BT ×L and X is L×W , we call the method
simply non-negative matrix factorisation (NMF) for short.

2. Non-negative matrix deconvolution (NMD), alternatively
called convolutive NMF (CNMF), where the crucial dif-
ference to previously described NMF is that the utterance
spectrogram estimate Ψ is produced jointly by all X entries
via convolutive reconstruction. No averaging takes place as
the overall spectrogram is a direct sum of timed activations.

Iterative update rules for determining X and A matrices are pre-
sented in detail in literature [9] and earlier work [4, 6]. Previous
experiments suggest that sliding window NMF has inherent robust-
ness against occasional mismatches and incorrect classification due
to its averaging, whereas NMD is better suited for small atom count
factorisation as its temporal model requires fewer shifted variants
of each sound event than NMF. Both models are considered in this
work with the focus being on NMD model reduction.

3. MODEL SIZE REDUCTION METHODS FOR
FACTORISATION OF NOISY SPEECH

The basis generation algorithms in previously cited works have often
relied on pseudo-random sampling of large amounts of exemplars
from training material or from the noise neighbourhood of utterances
to be recognised. The assumption is that given enough examples of
sources, most observed events can be modelled as their linear com-
bination. For abundant training data and model size, random sam-
pling was found as good as initial attempts of refined selection. Later
we have proposed informed speech basis reduction, replacing exem-
plars with state-centric templates, and noise basis reduction by NMD
modelling [6]. Still, constraints such as small vocabulary, simplified
grammar, or plentiful noise context were typically exploited in the
experiments. In this section we present alternative speech and noise

modelling methods, which produce compact bases for medium vo-
cabulary speech separation in difficult conditions.

3.1. Variable length atoms

The first recently introduced model extension allows the length of
atoms to vary within a basis. While in sliding window NMF the
atom duration T is practically forced by design to be a constant in
any single factorisation task, the same restriction does not apply to
NMD. By using variable atom length it is possible to exploit long
context and its benefits in separation whenever suitable, while also
maintaining shorter units which also appear in natural speech and
noise. Early experiments have been conducted on variable length
bases for two-speaker separation [10] and robust ASR for small vo-
cabulary [11], but the work presented here is among the first exam-
ples of variable length NMD modelling in semi-realistic ASR.

The convolutive utterance re-estimation formula for variable
atom length Tl becomes

Ψ =
L

X

l=1

Tl
X

t=1

Al,t

→(t−1)

Xl . (2)

Al,t is the tth frame column vector of atom l, Xl is the lth row
vector of X, and operator→ shifts it right by t− 1 columns.

In this work we use strongly variable-length speech bases by
employing a basis acquisition algorithm similar to the one presented
for CHiME/GRID speech data [11]. The algorithm starts from the
longest permitted atom length T = Tmax, inspects the speech train-
ing data, and attempts to find length T segments matching to each
other. The measure used for match-finding is a combination of spec-
tral data and monophone annotations to take into account both spec-
tral and linguistic similarity. If a sufficiently large group of matching
segments (here called a cluster) is found, a speech atom is formed
by averaging the matching spectrograms. The corresponding areas
of training data are flagged as taken. Thereafter the algorithm con-
tinues searching for clusters, reducing the segment length by one
whenever the minimum cluster size requirement can no longer be
met at current length T . Consequently a basis of template atoms
is generated in a decreasing order of atom length and frequency of
occurrence in the training data.

3.2. Multi-stage factorisation with speaker-dependent bases

In WSJ0-based CHiME Track 2 data, training and test speaker iden-
tities form disjoint sets. In other words, no exactly matching speaker
model can be chosen for test factorisation, and no clues about test
speaker characteristics are initially available. However, it is obvious
that factorisation with a closely matching speaker model has a bet-
ter chance of capturing correct speech features among noises which
may include competing non-target speakers. Earlier it has been il-
lustrated how NMD can act as a speaker identifier, when multiple
speaker-dependent bases are used for factorisation and the relative
activation weights of each speaker’s atoms are observed [12].

Based on these findings, we propose a method which allows ap-
proximate speaker identification and basis selection by using multi-
stage factorisation. In the initial stage, a small number of atoms from
all training speakers are used, and relatively few NMD iterations
are computed. In each subsequent stage, speaker activity weights
are used for selecting the best matching bases, while more atoms
from the chosen speakers are introduced to factorisation. Eventually
the system will converge to a small set of training speakers, whose
speech profiles match best to the target speaker. The details for the
presented set-up are given in Section 4.4. By dynamic management
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Figure 1: Histogram of speech atom lengths from variable length
basis acquisition, ranging from 8 to 50 frames.

10 15 20 25 30 35 40 45 50

of the number and size of bases, it is possible to perform multi-
speaker modelling and semi-matched final factorisation, while the
amount of simultaneously active atoms remains low. For accelerated
basis set reduction, we use a group sparsity constraint, which favours
solutions where activations come from a small number of bases [12].

3.3. Pre- and online-adaptation of noise atoms

For acquisition of noise models, there are three important sources
whose availability and significance depends on the recognition task.
First, we may have fixed training material for pure noise. Second,
there is a varying amount of noise context surrounding target speech.
Finally, noise can be estimated from the utterance itself by capturing
features which do not match to any speech models. In previous work,
all three methods have been exploited [6, 7, 13, 14] with occasional
further extensions such as artificial noise atoms [15].

Previously we have achieved the best results by sampling large
exemplar bases randomly from training data [4] or semi-randomly
from the local context [6] according to availability. However, both
methods are prone to including a lot of redundancy or unneces-
sary, near-silent spectral data. Furthermore, exemplars sampled from
additive multi-source mixtures cannot model accurately the same
events appearing alone or in different combinations. Therefore in
this work we use methods based on NMD learning to acquire smaller
noise models with a higher efficiency.

Regardless of which data is used for noise learning, we apply
iterative NMD atom update rules described in literature [9, 16]. For
CHiME Track 2 data, we use two sources for noise atoms: first,
background training data which is first reduced to its loudest sec-
tions, and second, the ‘embedded’ utterances with 5 seconds of noise
context before and after. It has been found that to prevent overfit-
ting and fragmentation of learnt atoms into unusably small spectro-
temporal units, adaptation should be terminated earlier than the com-
monly employed amount of factorisation iterations for fixed bases.
Computationally the simplest way to implement this is to reduce the
number of iterations to approximately 20–30 (compared to 200–400
of earlier work), which can be achieved in long semi-supervised fac-
torisation by only performing a basis update after a certain interval
of activation update iterations.

4. EXPERIMENTAL SET-UP

A factorisation framework was designed for the 2nd CHiME Chal-
lenge medium vocabulary (Track 2) dataset [17]. Its speech data
consists of WSJ0 5k vocabulary utterances and is divided as follows:

• 7138 training utterances jointly from 83 speakers, both
‘clean’ (without additive noise) and mixed at a random SNR

Table 1: Statistics of speech bases used during multi-stage factori-
sation of the CHiME Track 2 evaluation set. For each stage, the
number of active speaker bases and their combined atom count is
reported as minimum, mean and maximum values.

Stage
Speakers Atoms

min mean max min mean max

1 83 83 83 4150 4150 4150

2 9 24.3 36 900 2427 3600

3 2 8.9 17 612 3023 5754

4 1 3.8 9 304 1305 3246

• 409 development test utterances jointly from other 10 speak-
ers and repeated at 6 SNRs

• 330 evaluation test utterances from other 8 speakers, 6 SNRs

Noisy utterances are mixed with non-stationary multi-source house-
hold noise at SNRs ranging from +9 to -6 dB in 3 dB steps. Noise
data contains natural room reverberation. For speech data, similar
impulse responses are simulated. All utterances are available with
5 seconds of noise context before and after the utterance. Approxi-
mately seven hours of pure noise data is also available for training.
Recognition is measured by HTK toolkit’s ‘Err’ word error rate.

4.1. Feature space

All factorisation experiments were conducted in monaural 40-band
mel-spectral magnitude space. Features were extracted from bin-
aural input signals with a frame length of 25 ms and frame shift
of 10 ms, and averaged in absolute magnitude value domain. Mel
bands were reweighted by a fixed equalisation curve derived from
2-normalisation of noisy 0 dB training utterances.

4.2. Speech bases

A variable-length speech basis was generated for each training
speaker similarly to the algorithm described for 1st CHiME chal-
lenge data [11]. The similarity measure for frame vectors consisted
of dot product between normalised, square root compressed mel
magnitudes augmented with delta features, and monophone labels
acquired from forced alignment using the baseline recogniser. Simi-
larity between frames i and j was computed as

cm(i, j) = cs(i, j) + cl(i, j), (3)

where the merged similarity cm is the sum of spectral vector dot
product cs and correlation of monophone labels cl, the latter rang-
ing from 0 to 0.06 depending on how closely monophones and their
substates matched in annotations. Sequences where all mutual frame
pairs produced at least 0.92 total similarity were considered for clus-
tering. A cluster was selected for atom construction if its source
segments covered at least 0.15% of the speaker’s noiseless train-
ing material. In other words, long segments were allowed to form
atoms with fewer matches than short segments. Atom lengths ranged
from 46 to 4 in clustering, whereafter the 2 preceding and following
frames were added to atoms as their content is implied by delta fea-
tures. Consequently the final length of speech atoms was between 8
and 50 frames (80–500 ms).

Figure 1 illustrates the distribution of speech atom lengths in
combined speech bases. We notice that large variation takes place,
reflecting the multitude of phonetic unit lengths appearing in nat-
ural speech. A large peak can be seen at length 50. Even longer
correlating segments could be found, but their value for factorisation
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Figure 2: Similarity of test speakers (y-axis) to training speakers (x-axis), measured as the amount of speaker-dependent basis activations in
the last stage of 9 dB test set factorisation. For each test identity, the sum of activations is normalised to unity. Similarity increases toward
black with the maximum intensity being 0.4. White-on-black identity names belong to male speakers, black-on-white to females.
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Evaluation set

becomes negligible thus they were truncated to the chosen maximum
value. Mean atom length was 22.2 frames, approximately matching
the previously favoured fixed contexts of 200–300 ms [4, 6, 13].

The number of atoms in the 83 speaker-dependent bases was
from 276 to 397 with a mean value of 344 and combined atom
count of 28579. Speakers with more variable pronunciation gen-
erated larger bases than very consistent ones. Because the cluster
size was defined as a percentage of available data, no notable dif-
ference was present between speakers with fewer or more training
utterances. By comparing the basis sizes to the 5000 word vocab-
ulary, it is clear that the typical unit modelled was shorter than a
complete word.

4.3. Noise bases

Two noise modelling methods were used: a fixed noise basis ac-
quired by NMD learning from background training material, and
online-adapted noise model from the embedded utterances.

For fixed basis acquisition, the seven-hour training material was
first reduced to its loudest 20% frames, measured by spectral magni-
tudes. From the remaining material, segments shorter than 5 frames
were removed, while the rest were padded by 10 frames before and
30 after, approximating the usual temporal decay profile of noise
events. Thereafter the segments were faded in and out with a 10-
frame transition, and concatenated into approximately five minute
blocks of significant noise events. Each block was factored with 25
iterations of NMD basis adaptation to produce atoms with a joint
duration of 10% of block length, that is, approximately 60 atoms of
length 50 frames per block. While no attempt was made to force
noise atoms into shorter or variable duration, in practice this often
happened due to some of the atoms modelling short-duration noise
events. The procedure as a whole generated 1729 fixed noise atoms.

Direct adaptation of noise atoms from embedded utterances fol-
lowed mostly similar principles, yet employed significantly fewer
atoms. The details are described in the next subsection.

4.4. Multi-stage factorisation

Training and test file factorisation was conducted using the ‘embed-
ded’ files with 5 seconds of noise context to both directions. After
feature extraction, the following bases were set up:

• Speech bases: for test files all 83 speaker-dependent bases,
for training files all except self

• A variable amount of randomly initialised adaptive noise
atoms, enough to cover 75% of embedded utterance duration

• Optionally, the fixed 1729-atom noise basis (See section 4.3.)

The motivation for given speech basis choices was to use a set of
bases disjoint from the target identity. For development and evalua-
tion sets this was automatically the case. For training utterances, the
true matching identity was left out to prevent oracle modelling.

The adaptive noise atom count was left slightly below the
amount required to cover all embedded utterance frames in order
to promote discovery of recurrent features. These atoms were re-
adapted from scratch for each utterance from its own context alone.
Training and evaluation were run with and without the fixed noise
basis to study whether the methods are applicable to entirely new
situations where pre-training of noise models is not an option.

For factorisation, variable-length NMD was used with gener-
alised Kullback-Leibler divergence as the spectral distance measure,
and L1 penalty as the sparsity constraint similarly to earlier work.
L1/L2 group sparsity penalty was induced on speech activations
as presented previously [12], with each speaker’s atoms forming a
group. Sparsity weights were defined by brief experimentation on
development utterances and set to 0.07, 0.1, 0.1 and 0.11 for speech,
groups, adaptive noise and fixed noise (respectively) when the latter
was used, and 0.08, 0.1 and 0.1 for the rest when not. All sparsity
values are proportional to the mean value of basis atom 1-norms.

Factorisation had four stages with basis pruning as follows:

1. All speech bases, 50 atoms per speaker, 50 iterations

2. Reduced set of bases, 100 atoms per speaker, 50 iterations

3. Further reduced set of bases, all atoms, 100 iterations

4. Final reduced set of bases, all atoms, 100 iterations

Each partial basis consisted of the first (longest) atoms of com-
plete speaker-dependent bases. Between stages, activation matrix
sums were calculated for each speaker dependent basis. A threshold
value was set 10–20% from the geometric mean toward the largest
value to remove all except the best matching identities. Activation
weights of remaining speech atoms were left as is, whereas newly
introduced atoms were given a small initial weight of 0.001. Noise
atoms or their activation were not changed between stages.
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Table 2: Results for CHiME Track 2 noise robust speech recognition, listed as word error rate (’Err’) over SNRs. Tables on the left and the
right show results for development and evaluation sets, respectively. First, the baseline results using provided ‘noise’ models are given. The
next lines show results for proposed enhancement using adaptive noise atoms only, and then for both adaptive and fixed noise atoms. Finally
reference results for large basis NMF are shown. Results are evaluated using provided and re-trained GMMs.

SNR (dB) 9 6 3 0 -3 -6 avg

Baseline (‘noise’) 44.34 49.05 55.71 59.89 67.43 73.17 58.27

Adapt. noise 44.03 48.91 55.04 58.35 65.97 71.19 57.25
only re-trained 42.93 48.24 53.76 57.53 64.71 70.92 56.35

Adapt. noise 44.19 47.25 53.27 56.53 63.93 69.47 55.77
+fixed re-trained 42.28 45.54 51.45 55.43 62.61 69.26 54.43

Large noise 43.33 46.75 51.66 56.51 64.61 69.28 55.36
NMF re-trained 39.13 44.18 47.65 52.29 60.56 66.23 51.67

(a) Development set

SNR (dB) 9 6 3 0 -3 -6 avg

Baseline (‘noise’) 41.73 45.32 51.06 58.42 63.09 70.43 55.01

Adapt. noise 42.59 45.19 49.71 56.53 61.76 66.75 53.76
only re-trained 40.30 44.44 48.70 54.04 60.34 66.90 52.45

Adapt. noise 41.60 44.16 50.29 54.80 60.34 66.34 52.92
+fixed re-trained 38.76 41.53 47.99 51.73 58.83 66.71 50.93

Large noise 42.35 44.35 48.81 54.01 60.17 65.18 52.48
NMF re-trained 37.40 39.14 43.51 50.94 55.58 61.85 48.07

(b) Evaluation set

Basic statistics of basis and atom counts in each stage are listed
in Table 1 for the test set (with the fixed noise basis enabled). No-
tably, the simultaneous speech atom count never exceeded 5754, and
the last stage employed on average 3.8 bases and 1305 atoms.

Figure 2 illustrates the convergence of different test speakers’ (y-
axis) factorisation toward matching training speaker bases (x-axis).
9 dB SNR experiments were used for the plot to minimise noise in-
terference. We can observe that even though approximately 40 dif-
ferent utterances were factorised per test speaker, the algorithm gen-
erally converged toward a spiky distribution of only a few matching
bases. The bases were also mostly from the same gender as the test
speaker, and the set was unique for each individual speaker. Com-
parison by listening confirmed that approximately similar speaker
profiles were generally found.

Speech and fixed noise activations were only permitted in the
actual utterance area, whereas adaptive noise activations were per-
mitted also in the noisy context to capture the immediate noise en-
vironment. As the adaptive basis size was generally below 30 atoms
and only updated every 10 iterations (of total 300), factorisation ef-
fort was mostly concentrated on the noisy speech, and the overall
complexity of the system remained comparable to previous small
vocabulary experiments.

4.5. Enhancement and recognition

The activation matrices acquired from NMD were used to generate
speech and noise spectrogram estimates as described in Sections 2
and 3.1. Mel spectrograms were mapped back to linear frequency
domain and used as a time-varying filter defined as Ψ

s/(Ψs + Ψ
n)

for the original noisy spectrograms [6].
Because the sparse NMD model with adaptive atoms occasion-

ally produces rapidly changing spectro-temporal behaviour with
heavy filtering in fully masked segments, it was found beneficial
to apply a 0.1 minimum value to the filter weight value normally
ranging from 0 to 1. Enhanced signals were recognised using the
CHiME HTK tools, both with the multi-condition noise trained
baseline models and models re-trained with enhanced training data.

For comparison, we also implemented a sliding window NMF
system employing considerably larger exemplar bases similarly to
earlier work. 10000 speech exemplars and 4000 noise exemplars
were sampled randomly from training material, whereafter approx-
imately 1000 noise exemplars were added from the context. Fea-
ture space, factorisation and enhancement followed generally simi-
lar principles to those presented for Aurora-2 and 1st CHiME data
[4, 6], and for applicable parts they matched the NMD setup.

5. RESULTS AND DISCUSSION

Results for speech recognition experiments are given in Table 2
as word error rates (HTK ‘Err’) per SNR, separately for devel-
opment and evaluation sets. The first row shows results using
baseline ‘noise’ models and unenhanced waves. The next rows list
results for proposed enhancement using adaptive noise only, and
for adaptive+fixed noise. The last rows list results for reference
NMF enhancement using large exemplar bases. Enhanced signals
were evaluated using the baseline ‘noise’ models, and with GMMs
re-trained from matching training set enhancement.

We observe that enhancement with the proposed approach gen-
erally yields improvement over the baseline already on the stan-
dard back-end models. Expectedly including a fixed noise basis ac-
quired from background training material provides further improve-
ment over just using noise adaptation from the embedded utterance.
Without back-end re-training, the proposed system with both noise
models is approximately comparable (2–3 % over baseline) to NMF
with large exemplar bases. In re-training, the gap increases so that
the improvements over unenhanced baseline are approximately 4%
and 7% for proposed and NMF factorisation, respectively.

The proposed framework is our first attempt to develop a
relatively lightweight factorisation and enhancement system for
medium-vocabulary speech recognition in difficult conditions. Com-
pared to the GRID-based 1st CHiME set [8], the new WSJ-based
corpus introduced several new challenges. The 5000 word vocab-
ulary with only limited training data available for each speaker re-
quires a different approach to generating speaker-dependent speech
bases. Furthermore, test identities coming from disjoint speaker sets
prevented selecting a perfectly matching speech model.

We investigated using several small speaker-dependent bases,
which complement each other concerning both vocabulary and
speaker characteristics. A clear benefit of (approximate) identity
matching is the ability to separate a target speaker from competing
speakers, which is more difficult with a speaker-independent basis
modelling all speakers simultaneously. From Figure 2 we see that
at least at high SNRs the algorithm was able to find similar speaker
profiles. An obvious problem of the method is that non-target speak-
ers have a good chance of activating an alternative set of bases, and
at < 0 dB even dominating the selection process. Currently this is
only prevented by vocabulary matching via long context atoms. Fur-
ther methods for correct selection could include spatial estimation
and preliminary decoding during the selection process.

In noise modelling, initial results suggest that a noise model
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adapted from a 5 second context only has a limited separation ca-
pability. Acquiring a comprehensive model beforehand improves
results significantly. However, the obvious problem is applying the
method to new noise environments. In a real-world system, continu-
ous noise model updating during pauses in speech would be prefer-
able in order to maintain a maximally good match. Such a system
for continuous NMD recognition has already been proposed [18].

With respect to model complexity and the goal of achieving fea-
sible basis sizes, we can observe that the proposed framework man-
aged to improve average speech recognition rates by approximately
4% (absolute) compared to the unenhanced baseline with an aver-
age basis size of 1305 final stage speech atoms, 1729 fixed noise
atoms, and generally less than 30 adaptive noise atoms – approxi-
mately 1/5th of the reference NMF basis size. While more atoms
were temporarily used for speaker selection, it must be noted that
in these experiments we always started from all 83 candidates for
each utterance. In practice, there is a lot of redundancy among the
models with some of them barely activating at all, and in real world
it rarely applies that speaker adaptation should be repeatedly started
from scratch. Therefore we expect that the multi-speaker basis sizes
could be easily reduced further. Regarding vocabulary size, already
the current bases modelled sub-word units of a vocabulary 15 times
larger than average atom count and covered a large part of common
linguistic units, hence the requirements for truly large vocabulary
should not be considerably greater.

6. CONCLUSIONS

We presented a spectrogram factorisation framework designed for
medium vocabulary speech recognition using long temporal context
yet compact bases. Several emerging or wholly novel ideas were
proposed, including variable length modelling, multi-stage factori-
sation with basis pruning, and two noise models used in conjugation.

With refined bases, it was found feasible to separate unknown
speaker’s speech from very noisy mixtures with models smaller
than were previously used for small vocabulary tasks with matching
speaker identity. Approximately 4% absolute reduction was ob-
tained in average word error rate in evaluation on the 2nd CHiME
Challenge Track 2 corpus. As several novel aspects were introduced
and combined for a new task with limited parameter tuning, we ex-
pect further improvements when their standalone and interoperation
characteristics becomes better understood. Nevertheless, already the
initial results appear promising regarding robust real-world speech
recognition with practically applicable factorisation model sizes.
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“To a mathematician, real life is a special case.”
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