TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Timo Viitanen
Hardware Accelerators for Animated Ray Tracing

Tampereen teknillinen yliopisto. Julkaisu 1551
Tampere University of Technology. Publication 1551

Timo Viitanen

Hardware Accelerators for Animated Ray Tracing

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 25th of May 2018, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2018

Doctoral candidate:

Supervisor:

Instructor:

Pre-examiners:

Opponent:

Timo Viitanen

Laboratory of Pervasive Computing

Faculty of Computing and Electrical Engineering
Tampere University of Technology

Finland

Jarmo Takala, Prof.

Laboratory of Pervasive Computing

Faculty of Computing and Electrical Engineering
Tampere University of Technology

Finland

Pekka Jaaskelainen, D.Sc. (Tech.)

Laboratory of Pervasive Computing

Faculty of Computing and Electrical Engineering
Tampere University of Technology

Finland

Gwo-Giun Lee, Prof.

Department of Electrical Engineering
National Cheng Kung University
Taiwan

Timo Aila, D.Sc. (Tech.)
NVIDIA
Finland

Samuli Laine, D.Sc. (Tech.)
NVIDIA
Finland

ISBN 978-952-15-4151-3 (printed)
ISBN 978-952-15-4160-5 (PDF)

ISSN 1459-2045

Abstract

Future graphics processors are likely to incorporate hardware accelerators for real-time ray
tracing, in order to render increasingly complex lighting effects in interactive applications.
However, ray tracing poses difficulties when drawing scenes with dynamic content, such
as animated characters and objects. In dynamic scenes, the spatial datastructures used
to accelerate ray tracing are invalidated on each animation frame, and need to be rapidly
updated. Tree update is a complex subtask in its own right, and becomes highly expensive
in complex scenes. Both ray tracing and tree update are highly memory-intensive tasks,
and rendering systems are increasingly bandwidth-limited, so research on accelerator
hardware has focused on architectural techniques to optimize away off-chip memory traffic.
Dynamic scene support is further complicated by the recent introduction of compressed
trees, which use low-precision numbers for storage and computation. Such compression
reduces both the arithmetic and memory bandwidth cost of ray tracing, but adds to the
complexity of tree update.

This thesis proposes methods to cope with dynamic scenes in hardware-accelerated ray
tracing, with focus on reducing traffic to external memory. Firstly, a hardware architecture
is designed for linear bounding volume hierarchy construction, an algorithm which is a basic
building block in most state-of-the-art software tree builders. The algorithm is rearranged
into a streaming form which reduces traffic to one-third of software implementations of
the same algorithm. Secondly, an algorithm is proposed for compressing bounding volume
hierarchies in a streaming manner as they are output from a hardware builder, instead of
performing compression as a postprocessing pass. As a result, with the proposed method,
compression reduces the overall cost of tree update rather than increasing it. The last
main contribution of this thesis is an evaluation of shallow bounding volume hierarchies,
common in software ray tracing, for use in hardware pipelines. These are found to be
more energy-efficient than binary hierarchies. The results in this thesis both confirm that
dynamic scene support may become a bottleneck in real time ray tracing, and add to the
state of the art on tree update in terms of energy-efficiency, as well as the complexity of
scenes that can be handled in real time on resource-constrained platforms.

Preface

The work described in this Thesis took place over 2013-2018 in the Department of
Pervasive Computing, Tampere University of Technology, Finland, and in part during my
research visit to the DSPCAD group, University of Maryland, USA.

I am thankful to Prof. Jarmo Takala for the opportunity to pursue this research, and all
his guidance and support. The guidance of Dr. Pekka Jidskeldinen was also invaluable:
he encouraged me in taking up this intriguing and complex research topic, and seeing
the work through despite a variety of distractions. Moreover, I am grateful for my thesis
pre-examiners Dr. Timo Aila and Prof. Gwo-Giun Lee for their valuable comments. Prof.
Shuvra Bhattacharyya has my special thanks for arranging an opportunity to visit his
research group in Maryland.

It has been a joy to work with the many friends and colleagues in Jarmo’s research group.
I would like to thank, in particular, my closest collaborators in this work, Matias Koskela,
M.Sc., Heikki Kultala, M.Sc. and Kalle Immonen, M.Sc., for their helpful assistance,
insightful comments, and many fruitful discussions. Many others in the group also helped
in this work and contributed to a lively, creative atmosphere. In addition, I would like
to express special thanks to Prof. Bhattacharyya’s research group at Maryland and in
particular Lin Li, B.Sc., and Kyunghun Lee, B.Sc.

I gratefully acknowledge the financial support that allowed me to work on this interesting
topic. In the past four years, I have received support from the TUT Graduate School, the
EU commission via the ARTEMIS joint undertaking ALMARVI, the National Technology
Agency of Finland (TEKES), and the Nokia Foundation.

Finally, I am thankful to my parents Ulla and Oiva, and siblings Tuula and Tapio for
their constant support.

iii

Contents

Abstract

Preface

Acronyms
Nomenclature

List of Publications

1 Introduction

1.1 Scope and Objectives of Research
1.2 Main Contributions
1.3 Author’s Contribution
1.4 Thesis Outline

2 Streaming Linear BVH Construction

2.1 BVH Construction Methods
211 Linear BVH
2.1.2 Refinement Based Construction
2.1.3 Spatial Splits
2.1.4 Other Build Algorithms
2.1.5 Refitting
2.1.6 Summaryo e e e e

2.2 Hardware Accelerated Construction.
2.2.1 Binned SAH Acceleration
2.2.2 Refit Acceleration
2.2.3 k-Dimensional Tree Accelerators
2.2.4 Imagination Technologies Builder

2.3 Sorting Hardware

2.4 Thesis Contribution

3 Rebuilding and Refitting Compressed BVHs

3.1 BVH Compression Methods
3.1.1 Coordinate Compression
3.1.2 Pointer Compression
3.1.3 Primitive Compression
3.1.4 Entropy Coding
3.1.5 Comparison

iii

vi Contents

3.2 Incremental Encoding o oL 30
3.3 Thesis Contribution 32

4 Hardware-Accelerated Shallow BVHs 33
4.1 Traversal Architectures. 34
4.1.1 Programmable Platforms, ... 34

4.1.2 Fixed-Function Accelerators 35

4.1.3 Memory Access Schemes L 35

4.2 Multi-Bounding Volume Hierarchies 37
4.2.1 Construction e 39

4.2.2 Traversalo 39

4.3 Thesis Contribution 40

5 Conclusion 43
5.1 Main Results e 44
5.2 Open Research Issues 45
Bibliography 47

Publications 59

Acronyms

AABB
AAC

AR
ASIC
ATRBVH
AVX
B-KD tree
BIH
BRAM
BSAHA
BSP
BVH
CAD
CBVH
CMBVH
CPU
DE-tree
DRAM
FIFO
FoV
FPGA
FPU
GTU
HMQ

Axis Aligned Bounding Box

Approximate Agglomerative Construction
Augmented Reality

Application Specific Integrated Circuit
Agglomerative Treelet Restructuring Bounding Volume Hierarchy
Advanced Vector Extensions

Bounded k-dimensional tree

Bounding Interval Hierarchy

Block Random Access Memory

Binned SAH Accelerator

Binary Space Partition

Bounding Volume Hierarchy

Computer Aided Design

Compressed Bounding Volume Hierarchy
Compressed Multi Bounding Volume Hierarchy
Central Processing Unit

Dual Extent tree

Dynamic Random Access Memory

First In First Out

Field of View

Field Programmable Gate Array

Floating Point Unit

Geometry and Tree Update unit

Hierarchical Mesh Quantization

vii

viii

Acronyms

I0SP
GPGPU
GPU
HCCMesh
HLBVH
k-d tree
LBVH
LFD
LoD
MBVH
MIC
MIMD
MVH
NURBS
QBVH
RACBVH
RAU
RBVH
RTL
SAH
SBVH
SIMD
SIMT
sk-d tree
SMT
SPBVH
SRAM
SSE
TBU
TRBVH
VR

Implicit Object Space Partition
General-Purpose Graphics Processing Unit
Graphics Processing Unit

Hierarchical Culling oriented Compact Mesh
Hierarchical Linear Bounding Volume Hierarchy
k-dimensional tree

Linear Bounding Volume Hierarchy

Light Field Display

Level of Detail

Multi Bounding Volume Hierarchy

Many Integrated Cores

Multiple Instruction Multiple Data

Minimal Bounding Volume Hierarchy

Non Uniform Rational Basis Spline

Quad Bounding Volume Hierarchy

Random Accessible Compressed Bounding Volume Hierarchy
Ray Accumulation Unit

Rasterized Bounding Volume Hierarchy
Register Transfer Level

Surface Area Heuristic

Split Bounding Volume Hierarchy

Single Instruction Multiple Data

Single Instruction Multiple Thread

Spatial K-Dimensional tree

Simultaneous Multi-Threading

Shared Plane Bounding Volume Hierarchy
Static Random Access Memory

Streaming SIMD Extensions

Tree Build Unit

Treelet Restructuring Bounding Volume Hierarchy

Virtual Reality

Nomenclature

Ray traversal (Chapter 2):

Ray-scene intersection point

Ray origin

Ray direction

Parametric distance to intersection, z = o + dt

Q0 8

Surface Area Heuristic (Section 2.2.1):

C Surface Area Heuristic cost of a BVH tree
Chode Heuristic cost of traversing an inner node
Cleaf Heuristic cost of traversing a leaf

Ciri Heuristic cost of a primitive intersection test
A(N;) Surface area of inner node ¢

A(L;) Surface area of leaf node ¢

A(R) Surface area of tree bounding box

Nnodes Number of nodes in tree

Nieafs Number of leafs in tree

Binned SAH construction (Section 2.2.1):

S Number of candidate splits per axis in binned SAH construction

External mergesort (Section 2.3):

Sort input size

Size of fast local memory

Minimum block size for transfers between local and external memory
Multi-merge width

> Wz =

Heap layout (Section 3.1.2):

i Element index
K Tree branching factor

Triangle strips (Section 3.1.3):

ix

Nomenclature

Vi 1th vertex of a triangle strip
n Number of vertices in a strip.

Incremental encoding (Section 3.2):

b Number of bits used to store an AABB coordinate
Tay Ty, Tz Lower bound offsets relative to parent AABB
Sz, Sy, Sz Upper bound offsets relative to parent AABB

List of Publications

This Thesis consists of an introductory part and four original publications. In the text,
these publications are referred to as [P1] through [P4].

[P1]

[P4]

VITANEN T., KOSKELA M., JAASKELAINEN P., KuLTALA H., TAKALA J.:
MergeTree: a HLBVH constructor for mobile systems. In SIGGRAPH Asia Tech-
nical Briefs (2015), p. 12.

VHOTANEN T., KOSKELA M., JAASKELAINEN P., Kurtarna H., TAkKALA J.:
MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing.
ACM Transactions on Graphics 36, 5 (2017), 169.

VITANEN T., KOSKELA M., JAASKELAINEN P., IMMONEN K., TAKALA J.: Fast
Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies.
Computer Graphics Forum 36, 4 (2017), 167—178.

VHTANEN T., KOSKELA M., JAASKELAINEN P., TAKALA J.: Multi Bounding
Volume Hierarchies for Ray Tracing Pipelines. In SIGGRAPH Asia Technical Briefs
(2016), p. 8.

xi

1 Introduction

Ray tracing is the future and ever
will be.

—- David Kirk

Computer-generated images are ubiquitous in modern society and form a main component
of human-computer interaction. Moreover, computer graphics are applied to entertainment,
e.g., video games and motion pictures, at a grand scale. As a result, great effort has gone to
optimizing rendering performance, allowing increasingly smooth and high-quality visuals
in real-time applications, and offline rendering almost indistinguishable from photographs.
Recently, rendering systems are further challenged by emerging consumer-grade Virtual
Reality (VR) and Augmented Reality (AR), which require images to be drawn at very
high resolutions and frame rates for an immersive experience. Moreover, a large amount of
rendering is done in mobile devices, which have tight energy constraints. The combination
of mobile AR in particular is predicted to open applications of high societal impact in, e.g.,
industry, medicine, entertainment and education |]. Since rendering for mobile AR
combines the tight energy budgets of mobile platforms with the performance requirements
of high-quality VR, it may require novel architectural approaches.

Most real-time and interactive rendering is performed by means of rasterization and
the z-buffer algorithm, accelerated by Graphics Processing Units (GPUs). Given a 3D
scene made up of geometric primitives — usually triangles — and a camera point, the
rasterization approach performs geometric transforms to project each primitive to a screen
coordinate frame, and then shades all pixels of the resulting 2D primitive to decide their
color. The z-buffer algorithm |] is used to handle occlusions between primitives.
In the first GPUs, shading was performed with a fixed-function pipeline with a limited
selection of operating modes, but is now fully programmable. As a result, the GPUs
of today are massively parallel general-purpose computation engines used to accelerate
many applications beyond graphics.

A long-standing goal in computer graphics research is to replace or augment rasterization
in real-time rendering with ray tracing, an alternative approach where it conceptually
easier to model many lighting effects realistically. A basic operation in ray tracing is ray
traversal, i.e., determining the closest hit point between a ray and a 3D scene. At its
simplest, this operation is used to traverse primary rays for each pixel starting from the
camera origin. Various visual effects can then be modeled by traversing secondary rays
that start with the intersection point. For example, reflections are handled by casting
a reflection ray which is a mirror image of the primary ray, or shadows are drawn by
casting shadow rays at light sources to test whether they are occluded.

2 Chapter 1. Introduction

Figure 1.1: Example of a path traced image with shadows, glossy materials and indirect
illumination. Scene by Jay-Artist, CC BY 3.0.

Other effects can be rendered by casting a set of rays drawn from a random distribution:
doing this with, e.g., primary, reflection and shadow rays gives focal blur, glossy reflections
and soft shadows, respectively [CPC84]. Photorealistic images can be generated with path
tracing [<aj86] which emulates the physical behavior of light by integrating over many
secondary rays which act as pseudo-photons, rebounding in the scene at random until
they reach a light source. An image rendered this way is at first noisy, but eventually
converges to a physically correct distribution. Path tracing is the gold standard of
photorealistic rendering and used to render, e.g., the animated motion pictures of Disney
and Pixar [[XFF*15]. Figure 1.1 shows an example of a path traced scene.

A ray tracing system uses ray traversal and two other primitive operations, tree build
and shading, as building blocks for higher-level rendering algorithms. Briefly, tree builds
are used to adapt the acceleration data structure used in ray traversal to changes in
the scene between animation frames, while shader programs model material appearance.
Over the past decade, the performance of all three operations has improved sharply by
taking advantage of the growing capabilities of GPU and multicore Central Processing
Unit (CPU) hardware. Moreover, an extensive literature has developed optimizing ray
tracing at the algorithm level, e.g., by carefully selecting the traversed rays with adaptive
sampling, and filtering away the noise caused by low sample counts [ZJL."15]. As a result,
current ray tracers are capable of rendering some effects in real time.

A classic motivation for ray tracing has been the above conceptual simplicity of generating
visual effects that require complex workarounds in rasterization-based systems. In
addition, some works on ray tracing are motivated by its logarithmic scaling with
regards to the number of primitives: with sufficiently large scenes, it may outperform
rasterization, which has linear complexity [SKKBD12]. However, in practice, the complexity
of rasterization can be kept in check with visibility determination algorithms [COCSDO3].
Rather than displacing rasterization completely, real-time ray tracing is more likely to
be used as part of a hybrid system which combines both techniques [PBMH02]. Several
applications have been proposed for video games [FGD*06, Bik07].

The recent push for commercial VR and AR seems to strengthen the case for ray tracing.
In VR headsets, a rasterization pipeline needs to first draw a planar image and then
resample it to compensate for lens distortion. Moreover, the work done to render virtual

scenes can be sharply reduced by using fewer samples in the peripheral vision, based on
head or gaze tracking. In ray tracing it is convenient to build lens distortion into ray
generation |], and to sample the area of accurate vision more densely |]

There is recent interest in near-eye Light Field Displays (LFDs) for VR which can control
the direction of the emitted light, allowing the construction of lightweight headsets with a
wide Field of View (FoV), and side benefits such as the use of focal depth 3D cues |].
LFD images have to be rendered from many views, which is advantageous for ray tracing.
Finally, in AR, it is interesting to create virtual objects which blend seamlessly into the
surroundings. To this end, the renderer needs estimates of the shape, materials and
illumination of the surrounding scene. Several state-of-the-art methods to produce these
estimates make heavy use of ray tracing [,]

Recently, there has been growing academic and industrial interest in hardware ray
tracers, including a product launch by the major mobile GPU vendor Imagination
Technologies |]. Ray tracing architectures have been proposed ranging from fixed-
function hardware pipelines [, ,], to exotic programmable Multiple
Instruction Multiple Data (MIMD) processors | , |, to hybrid architectures
integrating ray tracing functionality to conventional GPUs |]. These architectures
form a trade-off curve between performance and flexibility. At one end of the curve, fixed-
function accelerators can be said to have the most short-term interest, since they are likely
to reach a greater performance in a given energy and silicon area budget, and thus become
practical sooner than programmable systems. In some cases, fixed-function pipelines
are 2-3 orders of magnitude more efficient than a general-purpose processors | 1,
though the available benefits are more limited in a memory-intensive, floating-point heavy
application such as ray tracing.

Possibly the strongest motivation for hardware ray tracing is that it may render some
complex visual effects at a lower energy cost than multi-pass rasterization based meth-
ods |]. Today’s rendering systems are increasingly limited by the thermal design
power and memory bandwidth of the GPU. Previously, the graphics community might
have relied on transistor scaling to provide steadily improving performance in a given
power budget. However, due to the recent breakdown of Dennardian CMOS scaling, the
energy efficiency gains from scaling have diminished, and attention in circuit design is turn-
ing to hardware specialization to take advantage of increasing transistor counts |]
Mobile devices operate under far more stringent power constraints and, as a result, the
potential efficiency benefits of ray tracing have spurred the development of several mobile
ray tracing acccelerators, which have been proposed as enablers of photorealistic mobile
AR and VR | , ,].

Recent work on ray tracing accelerators has provided promising insights into the rendering
process which may allow order-of-magnitude reductions in its computational cost: namely,
that the cost of hardware ray tracing is dominated by memory accesses, which can
be reduced to a small fraction by rearranging the access pattern [,] and
compressing the acceleration data structure |]. Hardware ray tracers are able to reach
very high simulated ray traversal throughputs, e.g., giving performances close to a desktop
General-Purpose Graphics Processing Unit (GPGPU) in a mobile envelope |], or
orders of magnitude higher performances in a desktop envelope |].

Aside from ray traversal, a main component of the ray tracing problem is tree update, i.e.,
supplying the traversal process with a data structure which indexes the scene geometry
and accelerates ray traversal. In photorealistic offline rendering, or when visualizing static
scenes, the runtime of tree update is of no consequence, and the main consideration is

4 Chapter 1. Introduction

to produce trees with high tree quality which are cheap to traverse. However, when ray
tracing animated scenes in real time, tree update must be done before each animation
frame — e.g. at 90Hz for recent VR headsets — and doing this fast enough while retaining
a reasonable tree quality is a challenging sub-problem. Most applications of interest
have animated geometry, e.g., in computer games it is commonplace to display complex
particle effects or crowds of detailed characters moving based on skeletal animation. Ray
tracing accelerators proposed and demonstrated so far have been mostly limited to static
or mostly static scenes, ruling out these applications.

1.1 Scope and Objectives of Research

The general subject of this Thesis is to explore techniques for hardware-accelerated ray
tracing, and especially the real-time ray tracing of large-scale animated scenes.

A complete ray tracing rendering system combines the low-level tools of tree update,
ray traversal and shading to generate various visual effects. This Thesis is limited
to implementations of tree update and traversal, ruling out shading and system-level
optimizations. It should be noted that shading can rival traversal and construction
in terms of computational cost |], and there is a large literature of high-level
optimizations such as denoising |] to reduce the amount of ray traversal operations
needed to generate a high-quality image.

Previous work on ray tracing accelerators can be divided into programmable and fixed-
function systems. Since fixed-function accelerators are often significantly more efficient
than programmable systems, they are more likely to be of practical interest in the short
term, and this Thesis focuses on them.

The focus on animated scenes places emphasis on the sub-problem of tree update, i.e.,
refitting or reconstructing the acceleration data structure. As the data structure of choice,
we focus on Bounding Volume Hierarchy (BVH) and certain variants. BVH is presently
popular since other structures are impractical to update. Real time BVH update on
desktop CPUs and GPGPUs has been the subject of intensive study, and can be regarded
as a solved problem. Hence, the work in this Thesis focuses on two open cases.

Firstly, fast tree updates consume a large amount of memory bandwidth, which is then
unavailable for rendering and shading. Bandwidth is especially limited in mobile systems,
but savings would also be useful on the desktop. Secondly, compressed trees are efficient
to traverse, but updating them remains an open problem. These points lead to the two
main research questions which Thesis answers:

o Can high-performance GPGPU tree construction algorithms be efficiently adapted
into a bandwidth economical, hardware-accelerated context?

o Is it possible to reach real-time update rates for Compressed Bounding Volume
Hierarchies (CBVHs)?

The objective of this research is to develop effective methods for tree construction and
compressed tree update in bandwidth-limited systems.

1.2. Main Contributions 5

1.2 Main Contributions

This Thesis proposes techniques to support animated scenes in hardware-accelerated
ray tracing, with a focus on energy- and memory-constrained systems such as mobile
phones. In [P1,P2], a hardware architecture is proposed for the Linear Bounding Volume
Hierarchy (LBVH) tree construction algorithm, which forms the basis for the state-of-
the-art high performance GPU tree builders. In order to improve memory bandwidth
economy, LBVH is expressed as streaming processes, and an external sorting algorithm
is used. The architecture is evaluated extensively with Register Transfer Level (RTL)
implementation, power analysis and system-level simulations.

Article [P3] introduces algorithmic techniques for streaming bottom-up compression of
BVHs, aimed for a possible hardware implementation. The benefit is that tree update
processes can directly output compressed trees, in the best case halving memory traffic.
As CBVH nodes are encoded relative to the parent | ,], this requires
estimating the parent context of each node, and backtracking to repair the hierarchy when
the estimated context is wrong. Novel techniques of modulo encoding and treelet-based
compression are proposed to minimize backtracking.

The main drawback of [P3] is that state-of-the-art CBVHs based on plane sharing |]
cannot be compressed. In [P4], we make an initial step toward addressing this shortcoming
by showing that Multi Bounding Volume Hierarchies (MBVHs) could be used to save
memory traffic in the place of plane sharing.

In summary, the main novel contributions in this Thesis are the following:

e a bandwidth-conserving hardware architecture for LBVH tree construction, which
trades off tree quality for major runtime, energy and chip area savings compared to
the state-of-the-art hardware builder,

¢ algorithmic techniques for streaming bottom-up update of CBVHs, which reduce
the memory traffic cost of CBVH update by up to half, and

e an evaluation of hardware ray tracing with MBVHs.

1.3 Author’s Contribution

This Thesis includes four publications [P1-P4]. [P1] proposes a hardware LBVH build
unit. The author invented the key techniques of the architecture of hardware heap based
external sorting and streaming hierarchy emission, designed the architecture, wrote a
cycle-level simulator, and performed the measurements and analysis of results.

[P2] extends [P1] with a complete hardware implementation and system-level modeling
results. The Thesis Author implemented the hardware unit, performed ASIC synthesis and
power analysis, modified the cycle-level simulator designed in [P4] for use in system-level
energy modeling, and performed the additional measurements and analysis.

[P3] proposes algorithms for streaming bottom-up CBVH compression. The Thesis Author
designed the algorithms, extended a software ray tracer with the proposed methods, and
performed measurements and analysis.

[P4] proposes the use of MBVHs in hardware ray tracing. For this work, the Thesis
Author designed a MBVH traversal unit architecture, wrote a software ray tracer and
cycle-level hardware simulator, and performed the measurements and analysis of results.

6 Chapter 1. Introduction

The Thesis Author was the main author and wrote the main body of text for each
publication.

1.4 Thesis Outline

This Thesis consists of five previous publications and an introductory part. Chapter 2
briefly introduces some basic concepts in ray tracing. Chapters 2 — 4 expand on the
relation of the Thesis main contributions to the state of the art. Chapter 2 focuses on the
LBVH accelerator architecture proposed in [P1,P2], Chapter 3 on the streaming CBVH
update algorithm proposed in [P3], and Chapter 4 on the application of MBVH to ray
traversal accelerators proposed in [P4]. Finally, Chapter 5 discusses the main results,
proposes future work and concludes the introductory part. The publications [P1-P4] then
follow.

2 Streaming Linear BVH
Construction

Ray tracing renders images of 3D scenes specified as lists of geometric primitives, most
often triangles. The basic operation in ray tracing, ray traversal, can be defined as follows:
given a 3D scene, a ray origin o, and ray direction d, find the intersection x between the
ray and the scene,

x=o+dt, (2.1)

which has the shortest parametric distance t from the origin. Figure 2.1 shows an example
of ray traversal.

A straightforward way to compute ray traversal is to loop over all geometric primitives,
compute intersection tests between the ray and each primitive, and select the intersection
with lowest ¢. However, brute-force traversal quickly is infeasible for nontrivial scenes.
Fast ray tracing is based on organizing the primitives with an acceleration data structure
optimized for ray traversal. There is a large body of research on such data structures, the
main classes being k-dimensional trees (k-d trees), grids, and BVHs. A good, though now
somewhat dated overview is given by the state of the art survey of Wald et al. |]

Recently, research has converged on the BVH as the data structure of choice, as it both
gives good rendering performance and is easy to construct and update |]. The
focus of this Thesis is on BVHs and certain variants optimized for hardware acceleration.
In a BVH, each node subdivides primitives into two disjoint sets, whose bounding volumes
are stored. If a traced ray does not intersect a bounding volume, all primitives underneath
can be discarded, resulting in logarithmic typical-case complexity for ray traversal. The
bounding volumes are nearly always Axis Aligned Bounding Boxs (AABBs) in ray tracing,
though more complex volumes have been used in collision detection |].

Ray traversal in a BVH is typically done in depth-first, stack-based manner. Traversal
begins by pushing the root node onto a traversal stack. Nodes are then repeatedly popped
from the stack and visited. When visiting an inner node, the ray is tested against the
child AABBs of the node, and intersecting children are pushed to the stack. Visits to leaf
nodes cause ray-triangle tests. Important optimizations in traversal are to push children
so that they are visited in a closest-first order, and to perform depth culling, i.e., skip
traversal of nodes that are farther than the closest intersection found so far. Ray traversal
performed this way typically requires a number of node visits and intersection tests that
is roughly logarithmic with regard to the scene size.

The main alternatives to BVHs, grids and k-d trees, can be characterized as spatial split
data structures: they divide the scene’s 3D space into subvolumes, and each primitive
is referenced from all leaf volumes — k-d tree leafs or gridcells — which overlap that

7

8 Chapter 2. Streaming Linear BVH Construction

Q@

fs——=

Figure 2.1: Example of ray traversal. o: ray origin, d: ray direction, ¢: parametric distance, x:
intersection point. Red: secondary (shadow) ray.

primitive. BVHs, meanwhile, are object split structures where each primitive is referenced
once, and the nodes may refer to overlapping volumes. An in-depth comparison of BVH
and k-d tree ray traversal is given by Vinkler et al. |]. In general, BVHs require
more floating-point computations, while k-d trees are more memory-intensive.

Methods to build or update BVHs have been a subject of extensive study. If a BVH
is built once and used for a large amount of rendering work, the main characteristic of
interest when choosing the update method is tree quality, i.e., how good is the rendering
performance given by the resulting tree. In animated, and especially real time rendering,
build speed becomes a relevant consideration. The last few years have seen significant
advances in GPGPU build algorithms which exhibit both real-time performance and good
quality compared to older gold-standard algorithms. A main contribution of this Thesis
is a streaming, hardware-oriented build algorithm, which is a step toward bringing these
advances to mobile systems.

It should be noted that practical rendering systems often add a higher level of organization
atop the BVH or k-d tree, similar to scene graph libraries in conventional rendering. One
such organization is described by Wald et al. |], where the scene is divided into
objects, which are organized in a top-level acceleration tree. Objects are then handled
depending on their type of animation. Completely static objects can use a pre-built
high-quality tree. Rigid-body motions are handled by translating and rotating incoming
rays before traversing the object tree. Finally, objects with unstructured animation
require full rebuilds on each frame.

This chapter surveys the state of the art related to the contributions of this Thesis on
hardware BVH construction. First, we introduce basic methods used to evaluate the
quality of BVHs, followed by a description of state-of-the-art fast BVH construction
algorithms. Next, previous hardware builders are reviewed. Since the algorithm proposed
in the Thesis work makes heavy use of sorting, we also discuss sorting accelerator
architectures. Finally, the relation of the Thesis work to the state of the art is summarized.

2.1 BVH Construction Methods

Acceleration data structures can be said to have different levels of quality depending
on how they are constructed. With a high-quality tree, ray traversal requires fewer
intersection tests and traversal steps, and consequently, images are rendered faster. A

2.1. BVH Construction Methods 9

(a) Bunny model. (b) SAH sweep build, (¢) Binned SAH sweep (d) LBVH build, C =
C = 36.9. build, C' = 39.0. 44.5.

Figure 2.2: Example of the effect of tree quality on traversal cost, ranging from a slow, high-
quality build method (SAH sweep) to a fast, low-quality build method (LBVH). Cost is measured
with primary ray tracing. Red color component denotes the number of inner node visits per
pixel, blue denotes the number of ray-triangle tests.

standard way to evaluate the quality of a BVH tree is its Surface Area Heuristic (SAH)
cost, introduced by Goldsmith and Salmon |] and adapted to BVHs by Macdonald
and Booth |]. The SAH cost of a data structure is the expected cost to traverse a
random non-terminating ray through the scene. For a BVH, the heuristic cost C' can be
computed as:

Mnodes A(NZ) Nleafs A(LZ)

Nleafs RA(LZ)
A(R) +Cleaf v A(R)

+ Cri 2 W»

C= Cnode

=0

where A(N;) and A(L;) are the surface areas of the given inner nodes and leafs, respectively,
A(R) is the surface area of the scene AABB, P; is the primitive count within a given leaf,
Chrode is the cost of traversing an inner node, Cieqy the cost of traversing a leaf, and Cy;;
the cost of a primitive intersection test |]

In addition to measuring tree quality, SAH is widely used as a basis for tree build
algorithms. The most well-known such algorithm is the SAH sweep |] which builds
BVHs by recursively partitioning the set of primitives top-down. At each step, SAH sweep
attempts to split the remaining primitives into two subsets along all possible axis-aligned
planes. The split plane giving the lowest SAH cost is selected and used to generate an inner
node, the algorithm proceeds recursively into the two children, and recursion terminates
when there is no split available which would improve the SAH. This algorithm is generally
used as a gold standard against which other builders are benchmarked. Builders are often
evaluated based on their resulting SAH cost normalized to a tree constructed with SAH
sweep. A less expensive variant is the binned SAH sweep |], which considers only,
e.g., 8 or 16 candidate split planes per axis, trading off quality for build speed.

Figure 2.2 shows an example with trees of different quality, and the resulting measured
traversal cost in node visits and intersection tests. It is visible that cost is unevenly
distributed over the image, and mostly concentrated on edges of objects, where rays may
pass closely by many triangles without hitting them. In practice, traversal performance is
also highly viewpoint-dependent.

It has been shown [] that SAH is an imperfect quality measure since, in practice,
rays tend to begin and terminate inside the scene. The heuristic can be improved by
introducing a term for AABB overlap. In practice, SAH-based top-down construction

10 Chapter 2. Streaming Linear BVH Construction

00

01

10

> g

hed

11

Figure 2.3: Example of LBVH. Left: locations of primitives in space, overlaid with a Morton
code grid. Right: Morton codes of each bit. Center: generated hierarchy.

tends to also give good overlap, but some more complex build algorithms may further
optimize SAH cost without giving a corresponding traversal performance benefit.

2.1.1 Linear BVH

Most of the recent fast GPGPU BVH builders aimed at real-time operation are based
on the LBVH algorithm by Lauterbach [[.GS*09], which organizes triangles by placing
them on a space-filling curve. LBVH construction has roughly linear complexity in terms
of arithmetic operations and memory accesses with respect to scene primitive count,
compared to O(nlogn) for top-down SAH builds.

LBVH can be divided into four main stages:

o In Morton code computation, a regular 2F x 2% x 2% grid is fitted in the scene AABB.
All primitives are then assigned a Morton code by quantizing their AABB centroids
to the grid and interleaving the bits of the grid coordinates. Typically, k¥ = 10 (for
30-bit codes), or k = 21 (63-bit codes).

o Next, the primitives are sorted into Morton code order with a GPU-accelerated
sorting algorithm such as a parallel prefix radix sort.

e In hierarchy emission, the bits of sorted Morton codes are used to generate the
topology of the final BVH tree, i.e., generate child pointers for each node. In some
implementations, primitives with identical Morton codes are grouped into the same
leaf [LGST09], while in others, an arbitrary hierarchy is generated so that there is
one primitive per leaf [Karl2].

e Finally, AABB computation converts the BVH topology into a final BVH by
computing node AABBs, in a step similar to BVH refitting.

LBVH is illustrated in Figure 2.3. Primitives are assigned Morton codes by binning to
a coarse grid (left). The hierarchy (center) is generated based on bit patterns in sorted
codes (right). For example, here the most significant bit corresponds to a halfway split of
the scene along the vertical axis: primitives with a '0’ bit are in the upper half of the
scene volume, and primitives with '1’ in the lower half. The root node splits primitives
into subsets based on this bit. The subsets are recursively subdivided according to lower
Morton code bits to form the rest of the hierarchy.

2.1. BVH Construction Methods 11

The original LBVH of Lauterbach already gave order-of-magnitude faster builds than
previous algorithms, but has later been extensively optimized. Out of the above stages,
Morton code computation is cheap and trivially parallel, and GPU sorting is a well studied
general problem. Hence, most attention has gone to improving hierarchy emission and
AABB computation.

The main insight enabling parallel hierarchy emission is that each LBVH node corresponds
to a continuous range of primitives with an identical Morton code prefix, i.e., the resulting
topology is a binary prefiz tree. For example, in Figure 2.3, the children of the root node
have prefixes of 0 and 1. Moreover, a node can be considered to have a hierarchy level
[, such that a node with low level has a longer prefix, and a split position, which is the
primitive array index separating its child ranges. By comparing the Morton codes of
successive sorted primitives, it is possible to determine whether that boundary is a node
split, and determine the hierarchy level of that split. Lauterbach’s method generates
a per-primitive split list, and then sorts the splits by their level and their primitive
range upper bound, resulting in a memory layout where it is easy to find parent-child
relationships between nodes.

To understand the GPU implementation of the above algorithm, and later improvements,
we need to examine the concept of parallel prefix sum, or scan |]. Scans are used
in GPGPU computing to perform operations where each parallel thread of execution
produces a dynamic amount of output data, which should be stored continuously. To
parallelize such a problem, it is broken into multiple passes. The initial pass computes the
amount of output for each work item n, o_n. An intermediate pass computes, for each
item, a prefix sum of the output sizes of all earlier items: p n=0_140_2+4+...4+0 _n—1.
A final pass performs the computation, and places the outputs at memory locations
p_n..p_n+o_n—1. A common application is the parallel prefix radix sort, which
parallelizes the binning stages in radix sorting. Parallel prefix sums allow highly parallel
computation of some problems at the cost of extra computation.

Lauterbach’s LBVH first performs scans to generate the split list; then further scans for
each hierarchy level to determine the memory locations of nodes. A drawback of the
method is that scans are performed on intermediate data arrays much larger than n, and
hierarchy emission generates many singletons, or nodes with only one child. Singletons
are later removed with a postprocessing pass, but the leftover nodes are fragmented in
memory, and construction requires a large memory arena. The later Hierarchical Linear

Bounding Volume Hierarchy (HLBVH) of Pantoleoni and Luebke |] addresses these
drawbacks: it only emits full nodes and, furthermore, the number of kernel executions is
reduced by processing p hierarchy levels at a time (p = 3 in the paper |]). Each level

set takes as inputs the leafs of the previous launch, which are further refined into treelets
of up to p? — 1 nodes. For each level set, a single kernel launch first generates an array of
treelet block descriptors, after which a scan is used to emit the corresponding hierarchy.

Garanzha et al. |] also perform hierarchy emission top-down, but do this in a
single kernel call by means of the task queue mechanism in CUDA. Each task in the queue
encodes the primitive range covered by an inner node. For each input range, the algorithm
compares the first and last Morton codes in the range; determines the highest differing
bit; and uses a binary search to find the corresponding split position. The resulting child
ranges on each side of the split are then fed into the task queue. Initially, the kernel is
fed a single task corresponding to the root node, which encompasses all primitives, and
the algorithm then proceeds top-down.

Karras | | performs single-kernel hierarchy emission without task queues by defining

12 Chapter 2. Streaming Linear BVH Construction

@ (é] é) |

O
:9- —©
VANVAWAN JANVAWAWAN

(a) Memory layout of Karras [] (b) Memory layout of Apetrei |]

Q!

Figure 2.4: BVH memory layouts used to accelerate parallel GPGPU LBVH construction. The
method of Karras (a) places each node at the edge of its primitive range closest to the parent
split. The method of Apetrei (b) places nodes at their own split positions.

a special node layout, illustrated in Figure 2.4a, where the children of a node are placed
at indices surrounding the node’s split position. A GPU thread is launched for each inner
node, which can determine whether it is at the left or right end of its primitive range by
examining the surrounding Morton codes. The algorithm then finds the other end of the
range by means of a binary search, and performs a second binary search in the range to
determine the split position, which gives the child indices. AABB computation proceeds
via a bottom-up reduction: each GPU primitive is assigned a GPU thread which traverses
up the hierarchy, joining its AABB to the parent, via parent pointers generated earlier.
Each inner node has an atomic counter which is used to kill the first thread entering the
node, and allow the second thread to pass. This work also notes that the LBVH can be
easily adapted to building point cloud kd-trees and octrees.

Apetrei [] performs joint hierarchy emission and AABB computation with a bottom-
up reduction similar to the one used by Karras for AABB computation. Each GPU thread
starts at a single primitive and works up the hierarchy, joining its primitive range and
AABB to the parent. By using a memory layout where each node is at its split position,
as shown in Figure 2.4b, the parent of any primitive range is found by examining the
Morton codes at the ends of the range, without incurring a binary search. This results in
a very simple implementation, and is currently considered the state of the art.

The above works are limited to scenes small enough to fit in GPU memory. Zeidan et
al. |] consider out-of-core LBVH construction, i.e., the case of very large scenes.
In their framework, blocks of data are paged into GPU memory on demand. Primitive
sorting is performed by means of an external sorting algorithm which first performs
GPU-accelerated block sorts followed by a multi-way merge. The algorithm then builds
a top-level hierarchy top-down, until it encounters nodes with primitive ranges small
enough to fit in GPU memory, which are processed on GPU. An earlier example of
out-of-core LBVH-like build is the method of Kontkanen et al. [] for point-based
global illumination, which uses Morton code sorting to build an octree of points.

2.1.2 Refinement Based Construction

Plain LBVH, as described above, exhibits very fast build speeds but poor tree quality.
Hence, a common approach in recent tree construction research has been to begin with
a LBVH tree and postprocess it to improve quality. Doyle | | calls this approach
refinement based construction.

2.1. BVH Construction Methods 13

The initial LBVH and HLBVH papers already propose refinement based techniques.
Lauterbach et al. |] generate a high-level hierarchy with LBVH, and then refine
the large leaves with binned SAH sweeps. Pantoleoni and Luebke |], in turn, propose
to rebuild the upper levels of the hierarchy with binned SAH: the reasoning is that high
levels of hierarchy have far more impact on tree quality per node and, therefore, the
high-quality rebuild gives a better quality improvement per compute effort. Conceptually,
in this kind of a top-level build, the high bits of the Morton code are used to bin the scene
primitives into the cells of a coarse grid, and a LBVH subtree is built inside each gridcell:
the subtree roots are then used as primitive inputs for a high-quality build.

The method of Garanzha et al. | | performs the initial steps of LBVH, Morton
code computation and sorting, but follows up with an approximate binned SAH sweep
build: the SAHs of candidate splits are evaluated based on primitive counts recorded in a
multi-level grid.

Bittner et al. |] give a generic BVH optimization algorithm based on removing
inefficient subtrees and inserting them to more advantageous positions in the tree. The
method is evaluated on a tree constructed with a SAH sweep, but could also be used to
optimize LBVH trees.

Karras and Aila |] have proposed a local optimization technique which rearranges
small treelets of, e.g., 8 nodes to improve tree quality. Dynamic programming is used
to find a treelet topology which maximizes SAH. The method, later dubbed Treelet
Restructuring Bounding Volume Hierarchy (TRBVH), maps well to GPGPU computing
as treelets are abundant and can be optimized in parallel. The approach is reminiscent of
tree rotations, but considers a larger search space. The resulting trees are often superior
to sweep SAH.

The Agglomerative Treelet Restructuring Bounding Volume Hierarchy (ATRBVH) method
of Domingues and Pedrini | | replaces the exhaustive search in TRBVH with an
agglomerative rebuild, improving on the runtime of TRBVH at the cost of a small
decrease in quality. Agglomerative construction considers all available pairs of nodes,
and iteratively joins nodes with the lowest cost metric, in this case the surface area of
the resulting node, until only the root node remains. Agglomerative construction is not
among the fastest builders when applied to complete trees, having O(n?) complexity with
regard to the number of input primitives, but it is inexpensive for treelets of a few nodes.

Meister and Bittner | | give a parallel locally-ordered clustering method which is a
relative of LBVH — the method includes Morton code sorting and AABB computation,
but hierarchy emission proceeds bottom-up by joining nearest-neighbor nodes, searched
from a neighborhood on the Morton code order.

Hunt et al. |] proposed an approximate SAH sweep build which, instead of sweeping
the complete primitive list to find optimal splits, samples a constant-sized cut of nodes
from an initial low-quality hierarchy. The idea is recently applied on modern CPU-based
BVH construction by Hendrich et al. | |, using LBVH to generate the initial
hierarchy.

2.1.3 Spatial Splits

Several methods have been proposed for splitting large triangles into multiple triangle
references in BVH construction, giving, in effect, a hybrid structure between k-d trees
and BVHs. This has little effect on scenes with evenly tessellated geometry, such as the

14 Chapter 2. Streaming Linear BVH Construction

Stanford Bunny, but often gives a significant jump in ray tracing performance for complex
scenes with unevenly sized primitives. The drawback is that the resulting hierarchy has a
somewhat larger memory footprint due to the duplicate references, and cannot be used
for refitting.

A seminal work in this direction was Split Bounding Volume Hierarchy (SBVH) by Stich
et al. |], which often gives a ca. 25% traversal performance improvement over
a SAH sweep. Their work, largely speaking, modifes a SAH sweep builder to consider
spatial splits in addition to object splits, and selects the most advantageous split in
terms of SAH. Recently, Ganestam and Doggett |] propose a builder with triangle
splits which gives quality similar to SBVH with a runtime closer to binned SAH. Out of
the LBVH-based fast builders described above, TRBVH and Garanzha et al. |]
incorporate spatial splits generated with faster, lower-quality methods.

2.1.4 Other Build Algorithms

Beside Morton code sorting, some recent builders aim for fast, high-quality builds with
other operating principles which deserve mention.

The gold-standard SAH sweep and SBVH algorithms build the tree top-down. An elegant
way to apply similar ideas bottom-up is to start with a leaf list which initially contains
all primitives, and iteratively merge the leaf pair with the lowest distance metric into an
inner node, until only the root node is left. Typically, a SAH-like distance metric is used.
This approach is called agglomerative construction. Naive agglomerative construction
is O(n®) wrt. the number of input primitives and only suitable for trivial scenes, but
is amenable to optimization. Walter et al. |] use a low-quality kd-tree to
accelerate the inner loop of the algorithm. Later work by Gue et al. |] proposes
Approximate Agglomerative Construction (AAC), where Morton code sorting is used
to find an approximate spatial neighborhood for each leaf: the search for the closest
primitive is limited to this neighborhood. A GPU builder by Meister and Bittner |]
works on a similar principle.

The Bonsai builder by Ganestam et al. |] is based on a fast implementation of
SAH sweep which is optimized by means of multithreading, Single Instruction Multiple
Data (SIMD) vectorization and algorithm-level improvements. The full algorithm uses
a cheap top-down spatial median split to divide the scene into subsets, organizes each
subset with SAH sweeps, and connects the resulting trees with a toplevel SAH sweep.
Optionally, the subset trees are pruned to improve toplevel build quality. The resulting
CPU build is only ca. 2x slower than the GPU TRBVH build | |, though with some
generations newer hardware.

Meister and Bittner |] have proposed a builder based on k-means clustering, which
is more often seen in machine learning. The algorithm randomly selects bin prototypes
from the primitive list, places each primitive in the bin of the closest prototype, and
repeats with adjusted prototypes. A surface area based distance metric is used. The
algorithm is based on recursive top-down partitioning like, e.g., binned SAH sweep, but
generates multiple levels of hierarchy per pass, potentially allowing construction with
fewer sweeps and less memory traffic.

2.2. Hardware Accelerated Construction 15

2.1.5 Refitting

Aside from rebuilding the acceleration data structure from scratch on each frame, another
strategy to handle animations is to refit the data structure to the new geometry, using
the structure from the previous frame as a base. BVHs are particularly easy to refit by
keeping the original tree topology and recomputing all AABBs | ,]. This
is equivalent to the AABB computation stage of LBVH, i.e., a small sub-component of a
very fast tree builder.

However, refitting has two drawbacks to offset the high build performance. Firstly, the
quality of a BVH tends to deteriorate with successive refits. Two main strategies to improve
quality are to refresh the tree with an asynchronous high-quality build | , 1,
and to recover quality with postprocessing, similarly to refinement based construction

techniques. Proposed postprocessing techniques include tree rotations [], and
restructuring based on culling detected empty spaces and overlaps |]. Lauterbach
et al. | | give a heuristic criterion for initiating asynchronous rebuilds. Yoon et
al. [] propose criteria to detect and rebuild low-quality subtrees.

The second drawback of refitting is that it is only applicable to mesh deformations. This
is a fairly common class of animation, including, e.g., skeletal animations, but various
procedural animation methods. E.g., physically simulated fluids are often rendered with
marching cubes |] or a similar isosurface method, where the amount and connectivity
of triangles is dynamic. A more common difficult case in practical applications might be
insertion and deletion of geometry.

2.1.6 Summary

In summary, BVH construction and update has been a subject of intensive research. It
is hard to compare the many proposed methods since their results have been obtained
with varying hardware platforms, input datasets and degrees of optimization. However,
LBVH [| with Karras’ |] or Apetrei’s |] algorithm is certainly the
fastest published method to build a BVH from scratch. When aiming for a fairly high
quality in addition to real-time build performance, the state of the art is likely one of the
refinement based construction methods which build on LBVH. If animations are restricted
to mesh deformations, refitting-based methods may give a better runtime-quality tradeoff.

2.2 Hardware Accelerated Construction

A large body of scientific work investigates hardware architectures for ray tracing acceler-
ators, often for mobile systems. In a mobile environment, real time tree construction on
programmable hardware is unlikely to be feasible for nontrivial scenes. In order to enable
dynamic scenes, tree construction hardware is of high interest. Likewise, in a desktop
environment, tree construction for a large scene can take up most of a GPU’s resources,
and an accelerator unit could free up the GPU for rendering.

Furthermore, hardware tree builders may have applications beyond ray tracing — Heinzle
et al. |] have proposed a processing unit for point sets, and identified tree
construction as future work. In a similar vein, Raabe et al. |] have proposed an
accelerator architecture for triangle mesh collision detection, which makes use of BVHs,
and leaves deformable objects as an open problem.

16 Chapter 2. Streaming Linear BVH Construction

2.2.1 Binned SAH Acceleration

The first hardware tree builder for ray tracing was proposed by Doyle et al. | 1,
around the binned SAH sweep algorithm. This builder is denoted here as Binned SAH
Accelerator (BSAHA).

Binned SAH is a recursive top-down build algorithm. At each recursion step, the builder
considers a range of primitives, computes the SAH costs for S candidate splits along the
three coordinate axes — typically S = 8 or S = 16 — and selects the split with the best
cost. The algorithm then partitions the nodes on each side of the split to contiguous
index ranges and proceeds recursively down to each child range. Recursion terminates
when there is no split available that would improve the SAH cost compared to generating
a leaf. Split SAHs are computed by first placing each primitive in one of S+ 1 bins which
each have an AABB and a primitive count — the SAH for a split is then computed by
joining the AABBs and primitive counts of the bins on each side of the split.

BSAHA includes separate pipelines for partitioning, binning and SAH computation. Two
optimizations are used to reduce off-chip memory traffic:

o Sufficiently small primitive ranges are processed on-chip and

o the results of partitioning are immediately reused for the binning steps of each child
node, halving the amount of DRAM reads in high-level sweeps compared to a naive
implementation.

As a result, the architecture generates ca. 2 — 3x less traffic than a software build
with the same algorithm. In followup work, the architecture was prototyped on Field
Programmable Gate Array (FPGA) and applied on volumetric data in addition to triangle
meshes |]

2.2.2 Refit Acceleration

Another approach to hardware-assisted tree update is to accelerate BVH refitting, i.e.,
updating node AABBs to match new geometry while reusing the tree topology from a
previous frame. The HART hardware architecture by Nah et al. |] incorporates
a Geometry and Tree Update unit (GTU) for this task. In addition to updating node
AABBs, the GTU contains hardware pipelines for generating the updated geometry by
interpolation between keyframes, and packaging the updated geometry in TriAccel data
structure [| for cheaper intersection tests. Refitting can be parallelized between
multiple GTUs, in which case each unit is assigned a range in the primitive array, and a
toplevel refit is done once all the parallel low-level refits finish.

In order to control the tree quality degradation due to refitting, the HART system
incorporates asynchronous CPU rebuilds | ,]. The system gives real time
updates for large scenes, but it is noted that it depends on frame-to-frame coherence, and
would have difficulty with, e.g., rapidly changing scenes and object insertion and deletion,
and changes in mesh topology.

Earlier, the DRPU architecture by Woop et al. |] also included a programmable
update processor for recomputing bounds in a Bounded k-dimensional tree (B-KD tree).
A separate update processor program needs to be generated for each dynamic object.
Programs can be designed to keep reused vertex coordinates in special bound registers,
reducing memory traffic. There are no facilities to refresh degrading tree quality over the

2.2. Hardware Accelerated Construction 17

course of animation, and it is emphasized that the system needs coherent motion to work
well.

2.2.3 k-Dimensional Tree Accelerators

Apart from BVHs, accelerators have been proposed for constructing k-d trees, though
these are computationally more complex to construct. The RayCore ray tracing archi-
tecture |] incorporates a Tree Build Unit (TBU) to support dynamic geometry,
with several high-level optimizations to make the problem more tractable:

e Separate trees are used to index dynamic and static geometry, and the static tree is
built using a high-quality offline algorithm. Each ray first traverses the dynamic
tree, followed by the static tree.

o The dynamic tree uses a two-level approach similar to Wald et al. |]: on each
frame, a separate tree is built for each dynamic object, followed by the construction
of a top-level tree organizing the objects.

e Each dynamic object tree is built in two levels: the high-level hierarchy is generated
with a binned SAH build, while subtrees small enough to fit in on-chip working
memory are built with a full, sorting-based SAH sweep. The reasoning is that using
SAH sweep for the high-level hierarchy would give an unfavorable random memory

access pattern. Separate hardware pipelines are allocated for binned and sweep
SAH.

The RayCore TBU enables real-time animations with up to ca. 50K triangles of dynamic
geometry, but the results underline the difficulty of k-d tree update. Even with the
above algorithm-level optimizations, the builder is an order of magnitude slower than
BSAHA |] while using a similar amount of logic — ca. 100 floating-point multipliers
for RayCore TBU and 200 for BSAHA.

The later FastTree builder | | is based purely on Morton code sorting, and
consequently achieves faster builds than the TBU. In this approach, triangle references
are generated for each Morton code gridcell overlapped by a triangle’s AABB. References
are sorted with a radix sort based on hardware parallel prefix sums. When emitting the
hierarchy, spatial split planes are generated based on Morton codes.

A weakness of FastTree is that tree quality is not evaluated — as described, it generates
triangle references for each Morton code gridcell overlapped by the triangle AABB,
potentially leading to a very large number of extra nodes. Intuitively, it appears the
quality penalty of Morton code based building would, then, be larger than with SAH
builds. In a surprising result, a later software implementation of the same algorithm is
reported to give higher traversal performance than a SAH build |] — however, the
result is obtained with a complex methodology which adjusts runtimes measured from
different GPUs, rather than a direct comparison.

2.2.4 Imagination Technologies Builder

Related to the recent Imagination Technologies ray tracing GPU project |], Mec-
Combe et al. | | patented a hardware builder which processes a single stream of
input primitives into, e.g., a BVH or a k-d tree. This is accomplished by binning the
input primitives into voxels picked from several volumetric grids of different granularities.

18 Chapter 2. Streaming Linear BVH Construction

Decoupling

it

High-throughput
comparators

Figure 2.5: 16-way comparator tree used for multi-way merges in FPGA external sorting
accelerators [,].

A vozel cache stores entries corresponding to voxels, which including primitive lists and
compressed bounding volumes. When a voxel entry is evicted from the cache, it is
processed into a part of an acceleration tree, and a reference to the resulting tree is added
to a cached voxel of coarser granularity.

This streaming volumetric builder has several properties of interest: it is, e.g., able to take
advantage of data compression during construction, and can break elongated triangles
into multiple bounding volumes. Sadly, no public evaluation exists on the performance
of this builder, or the quality of the resulting trees. Another interesting aspect is the
proposed use in photon mapping.

2.3 Sorting Hardware

Since sorting is a major component of Morton-code based tree builds, it is interesting
to look at the literature on sorting accelerators. This literature can be divided into
accelerators for internal and external sorting, which are used, respectively, on arrays small
enough to fit on-chip, and on arrays so large that they need to be stored in slow off-chip
memory. The best hardware design for internal sorting also depends on the input size,
e.g., very small arrays can be handled with sorting networks | | at a rate of one
array per cycle, but these quickly explode in complexity. Since only trivial 3D scenes fit
on-chip, tree construction has more use for an external sort. The recent work on external
sorting accelerators focuses on FPGA-based designs built around the multimergesort, or
external mergesort algorithm []

Multimergesort first sorts runs of data which are small enough to fit in local memory,
and then repeatedly merges multiple runs together, until a single run remains. More
formally, the goal is to sort N data elements, taking advantage of M elements of fast local
memory while N >> M, and minimizing traffic to a slow external memory. Moreover,
the external memory should be accessed in block transfers of size B. Each merge, then,
reads M /B runs and writes out a single run. At the time of the algorithm’s invention,
the fast memory was Dynamic Random Access Memory (DRAM) and the slow memory
was, e.g., a rotary magnetic drive, but contemporary work instead minimizes traffic to
the DRAM in favor of on-chip Static Random Access Memorys (SRAMS) blocks.

The initial local sorts in hardware multimergesort could be implemented with any internal

2.4. Thesis Contribution 19

sorting algorithm, for example, bitonic sorts are recently popular. Starting with the
design of Koch and Torrensen |], multi-way merges are largely performed by means
of comparator trees, which consists of comparators that push the lower of the input
values to the output. An exception is the work by Zhang et al. |], where an FPGA
accelerates block sorts, and the multi-way merges are done on CPU. A 16-way comparator
tree is shown in Figure 2.5. A K-way tree requires O(klog k) comparators and First In
First Outs (FIFOs), however, only O(log k) of them are active at a time. One difficulty
with a large tree is to determine backpressure propagation, i.e., which comparators should
consume their inputs and which should stall, in one cycle. This can be resolved by
inserting decoupling FIFOs between some tree levels |]

Later work focuses on improving the throughput of comparator trees, as they are in the
basic design limited to serial operation by the final comparator in the tree. FPGASort by

Casper et al. |] places high-throughput comparators near the top of the tree, which
consume and produce multiple data items per cycle for a throughput of 6. Mashimo
et al. |] give comparators with a throughput of 8. Srivastava et al. |]

propose to replace the top levels of the tree with bitonic networks.

Since memory traffic is determined by the number of merge passes, it is desirable to
build very large trees with, e.g., hundreds or thousands of sources. Large comparator
trees may consume the resources of an entire FPGA, limiting the possible merge width.
Usui et al. | | propose a multi-way merge design with only a single physical
comparator per tree level, in which the logical FIFOs are stored in Block Random Access
Memorys (BRAMs). This gives logarithmic resource utilization in terms of merge width,
except for BRAMs, and allows large merges: merge widths up to 4096 are evaluated.

In order to reach high operating frequencies on FPGA, sorter designs are creatively
pipelined. Koch and Torrensen |] pipeline comparators by comparing the more
significant half of the on the first clock cycle, and the less significant half on the second.
Casper et al. |] also propose a complex pipelining strategy for the high-throughput
comparators near the top of the tree. These techniques are a special feature of FPGA
circuit design: Application Specific Integrated Circuit (ASIC) designs typically do not
need this degree of pipelining to reach the desired operating frequency.

2.4 Thesis Contribution

To summarize the state of the art review above, the hardware tree updaters proposed
to date are the refit-based HART architecture by Nah et al. |], the tree builder
by Doyle et al. |], which we refer to as BSAHA, and k-d tree builders |)

]. In [P1,P2], we propose a new builder architecture based on LBVH, MergeTree.
MergeTree applies the general traffic reduction approaches of streaming computation and
local memory usage — used to good effect in BSAHA and TBU — to the computationally
cheaper LBVH algorithm. Since primitive sorting is a major component of memory traffic,
it is performed with an external sorting algorithm. The main novel contributions in
[P1,P2] are:

¢ a streaming algorithm for HLBVH hierarchy emission and AABB computation in
LBVH and

 an external sorting implementation based on a hardware heap |] rather than a
comparator tree.

20 Chapter 2. Streaming Linear BVH Construction

Binned SAH LBVH

(DFNITE] [P1P2)
Build
FLOPs (M) 295.6 0.0
BW (MB) 71.3 26.8
Render
Ray-box (M) 51.6 64.7
Ray-tri. (M) 44 5.1
FLOPs (M) 1383.7 1719.3
W (MB) 90.8 111.4
Total
FLOPs (M) 1679.4 1719.3
BW (MB) 162.1 138.2
(a) Traversal cost with LBVH (top) and (b) Memory layout; of Apetrei |]
binned SAH (bottom) builds.
Figure 2.6: Detailed example comparison of MergeTree [P1,P2] to BSAHA |] in platform-

independent metrics for one test scene. The Armadillo scene (213K triangles) is drawn with 1spp,
one diffuse bounce, without next event estimation. BW: external memory bandwidth, FLOPs:
floating-point operations. Addition, subtraction and multiplication are counted as a single FLOP,
reciprocal as 3. Tree build BW is exact; rendering BW depends heavily on the cache hierarchy.
Here, the simple cache model from [P3] is used. The Armadillo model is courtesy of the Stanford
Computer Graphics Laboratory.

= FastTree === RayCore BSAHA === HART === MergeTree

Runtime (ms)
w
=]

200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000

Scene size (triangles)

Figure 2.7: Reported runtimes of hardware tree builders.

The combination of external sorting and streaming allows MergeTree to use ca. 3x less
bandwidth than software LBVH, while the heap-based sorter gives a compact silicon area.
A similarly economical sorter architecture was later proposed by Usui et al. |].

The proposed architecture gives distinct advantages compared to the state of the art:
Compared to BSAHA, MergeTree uses an inexpensive algorithm, allowing significant
reductions in build time, energy, silicon area and memory traffic. BSAHA, e.g., comprises

2.4. Thesis Contribution 21

hundreds of Floating Point Units (FPUs) while MergeTree performs no floating-point
arithmetic. As a drawback, the quality of output trees is lower, increasing the cost of ray
tracing. A part of the quality can be recovered via toplevel builds, which are inexpensive
enough to run in real time on a mobile CPU.

The tradeoff between the builders depends heavily on scene complexity and rendering
parameters, and is quantified in [P2] for a variety of scenes and parameters. A worked
example using platform-independent metrics is shown for a single test scene in Figure 2.6.
In this case, the low quality of LBVH significantly increases the arithmetic and bandwidth
cost of traversal, but these costs are compensated by savings in the tree build. Larger
scenes tilt the tradeoff in favor of LBVH, and more complex visual effects, in favor of
BSAHA. It should be noted that both hardware units use ca. 3x less bandwidth than a
corresponding software builder.

Compared to the Morton code based k-d tree units, MergeTree contributes memory traffic
optimizations for sorting. Combined with the simpler hierarchy emission of BVHs, this
gives a much faster build speed than seen in the k-d tree units.

Refitting hardware such as HART is likely cheaper and faster than MergeTree to some
degree, though not as much as software refitting is when compared to tree construction.
A rough comparison is included in [P3]. However, refitting can only handle a limited
class of animations, i.e., mesh deformations such as skeletal animation. Interesting classes
of animation are out of reach, such as fracturing and fluid simulations rendered with
marching cubes. Moreover, a refitting system requires full builds whenever new geometry
is introduced, and at intervals to refresh the degrading tree quality.

A summary of reported build speeds of MergeTree and related work is shown in Figure 2.7.
It is visible that MergeTree gives the fastest build performance out of hardware builders
in the literature.

As with the related software algorithms, the system-level tradeoff between slow, high-
quality BSAHA and fast, low-quality MergeTree depends heavily on the scene, viewpoint
and visual effects in use. In order to obtain at least a rough estimate of the tradeoff, in
[P2] we modeled the energy consumption of a system where a tree builder first organizes
the scene, and a hardware ray tracer uses the resulting tree to render an image. Given
a modest amount of incoherent secondary rays, MergeTree becomes preferable around
200000 animated triangles. It should be noted that in large scenes, a high-quality build
takes up most of a mobile power envelope. In other words, rendering sufficiently complex
lighting effects with many secondary rays would make high-quality builds preferable again
in large scenes, but doing this in real time would run into the thermal dissipation limits
of a mobile device.

3 Rebuilding and Refitting
Compressed BVHs

Ray tracing is a highly memory-intensive process, and especially when using a specialized
accelerator, the memory hierarchy easily becomes a performance bottleneck and major
driver of energy consumption |]. A BVH node has a similar memory footprint as
a primitive, but a typical ray traversal touches 1 — 2 orders of magnitude more nodes
than primitives. Hence, node accesses account for most of the stress on each level of the
memory hierarchy. As a result, a wide variety of BVH variants has been proposed that
attempt to encode the inner nodes of the hierarchy more compactly, in order to reduce
memory traffic and improve cache hit rates.

BVH compression is challenging since ray traversal accesses the data structure in an
unpredictable order, performing only a small amount of computation per access. In
addition to being compact, a CBVH needs to support random accesses with a low
decompression overhead per traversed node. Various general tree compression methods
have been proposed |] which do not support random access, and are thus ruled
out. Moreover, compression schemes often trade off some of the uncompressed BVH’s
performance at pruning intersection tests — as a result, some schemes achieve extreme
compression rates, but the measured memory traffic during traversal actually increases.

The performance effect of compression depends on the behavior of the cache hierarchy.
For example, 2x data compression doubles the effective size of caches, but the resulting
effect on performance and memory traffic depends on the specifics of the application
and the memory hierarchy. A rough heuristic is that doubling cache size reduces the
miss rate by a factor of v/2 |]. If compressed tree nodes are small compared to
cache line size, memory accesses may end up fetching a large amount of data which is
never referenced |]. Several works work around this by introducing cache-optimized
tree layouts where nodes on the same cache line are likely to be accessed by the same
ray-thread [, , .

Aside from performance optimization in conventional ray tracing, BVH compression has
also been motivated by rendering of very large scenes, where the challenge is to fit the
complete scene in main memory, or perform out-of-core rendering where parts of the scene
are paged in to fast memory on demand. This type of system tends to aim for maximum
compression ratio for all data used in traversal, including primitives | , ,

, ,], while compression systems aimed at smaller in-core scenes
focus on node data.

Practically all research on CBVHs so far focuses on traversal performance in static scenes,
and leaves aside questions of tree update. Recently CBVH based on incremental encoding
is emerging as a key optimization in ray tracing accelerators | ,], which are

23

24 Chapter 3. Rebuilding and Refitting Compressed BVHs

proposed for real-time rendering use, and it is, therefore, interesting whether compression
can be made fast enough to support animated scenes. This Thesis aims to address the
real-time update of incremental encoding BVHs. This chapter first gives an overview of
BVH variants with reduced memory footprint, and then a more detailed introduction to
the incremental encoding class of CBVH. The final section lays out how the present work
relates to the state of the art in CBVHs.

3.1 BVH Compression Methods

As discussed above, compression systems aimed at in-core rendering tend to focus on
inner nodes, which account for a large share of memory accesses. The vanilla BVH node
includes an AABB with six 4B floating-point bounds and two child pointers, for a total
size of 32B. Alternately, each inner node can include the AABBs of its children, for a
node size of 64B. Since AABB bounds take up % of each node, they are the focus of
AABB compression methods. Some compression methods reduce the coordinate footprint

enough that it also becomes interesting to compress pointer data.

3.1.1 Coordinate Compression

Some coordinate compression methods are compared via visual example in Figure 3.1.
Most proposed methods are lossy, such that the decompressed bounding volume is larger
than original, leading to false-positives in intersection tests, which cause additional
traversal steps. We refer to this extra volume as volume overhead.

3.1.1.1 Shallow trees

A popular variation on BVH is the MBVH, i.e., a BVH with a high branching factor,
typically 4 or 8 children per node [, ,]. The main motivation for
MBVHs is to take advantage of SIMD instructions in modern CPUs by performing
multiple ray-AABB intersection tests in parallel. However, MBVH also has the effect of
compressing at least the high levels of the hierarchy that are visited most often. E.g., a
single 4-way MBVH node can replace a treelet of 3 binary nodes, while only using as much
memory as two nodes. There is an extensive literature on MBVH, which is discussed in
more detail in Section 4.2.

3.1.1.2 Plane sharing

Another lossless compressed BVH is the Shared Plane Bounding Volume Hierarchy
(SPBVH) proposed by Fabianowski and Dingliana |] as well as Ernst and Woop | 1,
which exploits the property that each coordinate of a BVH node AABB recurs again
in one of its child AABBs. SPBVH adds bits to indicate whether each coordinate is
encoded in the child or reused from the parent, reducing encoded coordinates by 50%. The
drawbacks are that some control-oriented code is needed to decode the full AABBs, and
each traversal stack entry needs to store a parent AABB in addition to a node pointer.

3.1.1.3 Bounding Interval Hierarchies

The BIH | | also reuses parent coordinate bounds like SPBVH, but goes further
by only encoding one bounding plane per AABB. Similarly to MBVH, similar data
structures were independently proposed for ray tracing by several research groups as

3.1. BVH Compression Methods 25

Inner nodes

(a) Tree topology. (b) Full-precision BVH. (c) BIH [WEKO06]

(d) BVH quantized to global (e) Basic incremental encod- (f) Incremental encoding

grid [Mah05]. ing BVH [MWO06, SE10]. BVH with power-of-two
grids [Keeld, VAMSIG,
YKL17).

Figure 3.1: Comparison of basic BVH and some variants with compressed coordinate data.
BIH and global grid BVH incur significant volume overhead (green), the grid especially in the
lower levels of the hierarchy. Incremental encoding gives tighter bounds. Power-of-two grids
simplify traversal at cost of slightly looser bounds. Note that 3-bit coordinates are used for grids
and incremental encoding for clarity, but typical implementations use at least 5 bits.

Dual Extent trees (DE-trees) [ZU06], Spatial K-Dimensional trees (sk-d trees) [HHS00]
and B-KD trees [WMS06]. Possibly the smallest proposed tree variant is the Minimal
Bounding Volume Hierarchy (MVH) by Bauszat et al. [BEM10], which is similar to BIH,
but further restricts the child AABBs to four possible truncations of the parent AABB,
using two coordinate bits per node. A drawback of BIH and variants is high volume
overhead due to empty space in nodes.

3.1.1.4 Grid Quantization

A straightforward way to reduce memory footprint of coordinates is store them as low
precision integers instead of single-precision floating-point numbers, by snapping them to

26 Chapter 3. Rebuilding and Refitting Compressed BVHs

a grid. Visual artifacts are avoided as long as the quantized bounding boxes completely
envelop the original boxes. Since the compressed and decompressed boxes are larger than
original, there is an overhead of additional intersection tests from false positives, similar
to BIH. Also, the method incurs a decompression overhead from mapping the quantized
coordinates back to the global frame. Global grid quantization was first proposed by
Mahovsky |], who handles decompression overhead with custom hardware fixed-
point traversal, and by integrating the decompression code to a packet tracer. They find
that coordinate precision can be reduced to ca. 16 bits for simple models and 20—24 bits
for complex scenes, before there is a major increase in intersection tests. Fixed-point grid
traversal was also later studied by Hanika and Keller |] and Heinly et al. | 1,
who also perform ray-triangle tests in fixed point. Hwang et al. | | propose a mixed
AABB encoding with 17-bit fixed-point lower bounds and 13-bit floating-point widths.
Koskela et al. |] show memory traffic and power savings with half-precision
floating-point numbers.

3.1.1.5 Incremental Encoding

To recap, basic grid quantization can only compress coordinates by ca. 25% ...50%,
depending on the scene, before the rough precision starts to significantly slow down ray
tracing. A higher precision can be obtained by hierarchical or incremental encoding,
where coordinates are encoded relative to the parent AABB. This approach was first
proposed by Mahovsky et al. |], who evaluate 4- and 8-bit encodings. 8-bit encoding
is practically lossless and 4-bit encoding is still significantly less lossy than a 16-bit global
grid. Recently, incremental encoding variants have been proposed that are efficient to
traverse with custom hardware |)], and a variant by Ylitie et al. |]
gives state-of-the-art performance for software ray tracing on GPU. Incremental encoding
is described in more detail in Section 3.2.

3.1.1.6 Two-Level Encoding

Several BVH variants with high decompression or volume overhead opt to use two-level
encoding, where a high-level part of the tree is a basic BVH whose leafs are compressed
hierarchies. E.g., Cline et al. |] use simple grid quantization for the second level of
the hierarchy. The MVH |] and Implicit Object Space Partition (IOSP) |]
methods also evaluate two-level variants. Since high-level nodes are accessed more
frequently, this allows the hybrid method to retain some of the ray tracing performance
of simple BVH while keeping a high compression ratio.

3.1.2 Pointer Compression

Given a high degree of AABB coordinate compression, uncompressed pointers start to
dominate the node size. Hence, coordinate compression is usually accompanied with some
form of compressed pointer encoding.

3.1.2.1 Single-Pointer Layouts

In k-d trees, a popular depth-first layout [] places the left child directly after a
parent node. Liktor and Vaidyanathan |] evaluate this layout for BVHs. Ylitie et
al. [| extend the concept to 8-wide compressed MBVHs by storing the multiple

children of each node continuously in memory. The node, then, stores two full-precision
base pointers for inner nodes and leaf children, respectively, and low-precision memory

3.1. BVH Compression Methods 27

offsets for child. This also allows a compact traversal stack with a single entry per group
of intersected children.

3.1.2.2 Short Pointers

One general approach is to cluster parts of the tree together in memory, and use short
pointers within each cluster. Hierarchical Mesh Quantization (HMQ) | | use this
scheme and handle links between clusters by inserting forward nodes with full-precision
pointers. Liktor et al. |] use a similar layout with cache clusters and glue nodes, and
propose a cache-aware algorithm to divide compressed nodes into clusters.

3.1.2.3 Heap-like Layouts

Cline et al. [] propose a heap-like node layout where the memory locations of
children are implicit from the parent node’s location: given a tree of branching factor K,
the children of a node with index 7 are stored at indices K7 + 1 through K7+ K, and the
parent is at V;J As a result, storage of pointers is avoided entirely. The same approach
is followed by, e.g., Bauszat et al. | | with successively smaller node coordinate
encodings. A drawback is that the tree needs to be at least somewhat balanced to keep a
reasonable memory footprint. Conventional high-quality tree builders do not make any
attempt to balance trees, and a balancing algorithm is likely to sacrifice a significant
amount of quality.

3.1.2.4 TImplicit Hierarchy

The IOSP by Eisemann et al. |] uses a heap layout to make the tree structure
completely implicit in the order of the primitive array: the bounding volumes of a BIH-like
tree are computed on the fly during traversal by examining primitives at specific indices.
This does not appear to be an effective compression scheme for the purposes of reducing
memory traffic, but does completely eliminate the memory footprint of BVH nodes.

3.1.3 Primitive Compression

When applying node compression, primitives quickly start to dominate the complete
memory footprint, and their share of memory accesses may become significant. Hence,
several compression schemes — especially those aiming at out-of-core rendering — address
primitive compression.

In contrast to node compression, primitives are less tolerant to low-precision representation,
as quantization could cause visual artifacts, especially with primary rays. Consequently,
most compression schemes are lossless, and focus on eliminating redundant copies of
coordinates. Interestingly, complete accuracy might not be needed in secondary rays
when computing, e.g., indirect illumination []. Intersection tests for such rays
could use approximate geometry and still give acceptable visual quality.

Some basic design choices can have a major effect on primitive footprint. For instance,
triangles are often stored with precomputed intermediate values to accelerate intersection
tests with, e.g., Wald’s TriAccel method | | or Shevtsov’s [| or Havel’s |]
methods. The resulting primitive is larger than simply storing the original nine coordinate
values consecutively. This, in turn, consumes far more memory than storing each vertex
once, and storing faces as lists of indices to a vertex array.

28 Chapter 3. Rebuilding and Refitting Compressed BVHs

3.1.3.1 Triangle Strips

A popular way to represent triangle meshes compactly is to divide them into triangle
strips, i.e., arrays of vertices v;...v, that encode triangles vy vovs, UVoU3V4.. V0 —2Vn_1Up.
The RayStrips ray tracing system [] uses the open-source Stripe package |]
to divide the scene into strips, and builds a BIH-like tree hierarchy in each strip to reduce
ray-triangle tests. The ReduceM system | | develops on RayStrips by extracting
strips with a SAH-based algorithm optimized for ray tracing performance, and optimizing
the strip tree. Galin et al. | | propose to use triangle fans instead of strips. Fans
allow some optimization of the Moller-Trombore intersection test, but typically limit
the amount of triangles per primitive. In addition to quantization and variable-length
coding, Segovia and Ernst | | encode their primitives as sets of strips. Each primitive
begins with a code which identifies how the following vertices are divided into strips and
singleton triangles.

3.1.3.2 Displacement Maps

The RayCore hardware unit has support for heightmap primitives based on dynamical
displacement mapping. Novék et al. |] propose the Rasterized Bounding Volume Hier-
archy (RBVH) which approximates flat patches of the original geometry with heightmaps.
The heightmap resolution can be adjusted to provide varying Level of Detail (LoD).

3.1.3.3 Subdivision Surface Caching

Smooth surfaces in 3D models are often created by specifying subdivision surfaces, where
a triangulated surface is subdivided according to a mathematical model, for example,
to approximate a Non Uniform Rational Basis Spline (NURBS) surface. Subdivision
surfaces are a standard primitive in Computer Aided Design (CAD) tools |] and
a staple in high-quality rendering for feature films |]. Some rendering systems
are given the spline parameters, and subdivide each surface on demand so as to reach
the desired visual quality, e.g., caching the subdivided geometry for reuse between
rays [,]. This can be loosely regarded as a compression technique,
since it allows rendering of scenes whose full triangulated geometry would be impractical
to fit in memory.

3.1.3.4 Subdivision Surface Trees

BVHs variants are designed specifically to compress fully triangulated subdivision surfaces.

Selgrad et al. |] compress triangulated subdivision surface models by storing flat
patches of geometry in a special quantized representation, which is conceptually somewhat
similar to RBVH. Du et al. | | propose a BVHs with tetrahedron swept sphere

bounding volumes, which give a compact representation and better triangle culling
performance than AABB volumes. Due to the regular structure of subdivision surfaces,
these methods give high compression ratios.

3.1.3.5 Level of Detail

Closely related to lossy geometry compression are mesh simplification and LoD techniques.
In mesh simplification, a 3D model is represented in fewer triangles while preserving
the original appearance. In LoD this is done adaptively, such that faraway objects are
simplified more. There is a rich literature of LoD techniques, a comprehensive review of

3.1. BVH Compression Methods 29

which is given by Luebke et al. |]. Afrd et al. |] propose a k-d tree for large
models with built-in LoD. The tree contains special LoD nodes which store an average
color and normal sampled over the underlying geometry — when viewed from far away,
a LoD node is shown as a voxel of this approximate color, and when zooming in, the
underlying geometry is asynchronously loaded to memory.

3.1.4 Entropy Coding

A basic approach in the field of data compression is entropy coding where recurring
patterns of data are represented with fewer bits than rare patterns, by means of, e.g.,
Huffman coding |]. The Random Accessible Compressed Bounding Volume Hierarchy
(RACBVH) system [] combines several of the above techniques with entropy
coding for out-of-core ray tracing. The basic concept is to split the input tree into large
clusters of, e.g., 512..4K nodes, each of which is compressed as a separate block via
dictionary-based entropy coding. During ray tracing, the compressed hierarchy is stored
in slow external memory, and clusters are paged in and decompressed on demand. Both
coordinate and pointer data is preprocessed by predicting values based on the previously
encoded part of each block, and encoding delta values relative to the prediction, thus
improving the compression ratio. For example, each node is predicted to be evenly split
into two child AABBs along the longest axis. In addition, coordinate data is quantized
to a global grid.

The Hierarchical Culling oriented Compact Mesh (HCCMesh) system |] increases
the compression ratio further by jointly compressing the primitive data with nodes
and leafs. This allows the compressor to, e.g., eliminate coordinate bounds that are
redundantly encoded in both primitives and their bounding boxes. Later work describes
a GPU-accelerated rendering framework [] which decompresses HCCMeshs blocks
when offloading them to the GPU.

3.1.5 Comparison

Given the volume of work and variety of approaches on BVH compression, it is interesting
to compare compression methods quantitatively. Table 3.1 collects the reported compres-
sion ratios and intersection test overheads of several BVH variants compared to a plain
BVH baseline. The comparison criteria are chosen to act as proxies of memory bandwidth
usage: relatively few methods report bandwidth, and these depend on the particular
machine. The rationale is that the compression ratio is a rough indicator of reduced
memory traffic per traversal step, while increased traversal steps in turn increase traffic.
Several interesting methods, e.g., | , ,] did not report sufficient data
to be included in the comparison — these tend to include primitive compression, which
complicates comparison.

Methods based on BIH and pointerless heap layouts | ,] can produce
very small data structures, but tend to have weak triangle-culling performance compared
to plain BVH. This is partly alleviated by a two-level hierarchy with the compressed
method as the lower level, but there is still an order-of-magnitude triangle test overhead.

Snapping AABB coordinates to a global grid is a low-hanging fruit, but triangle-culling
performance starts to degrade sharply at ca. 50% compression. Incremental encoding
reaches higher compression ratios. State-of-the-art software |] and hardware |]
CBVHs ray tracers combine incremental encoding with lossless MBVH and SPBVH,

30 Chapter 3. Rebuilding and Refitting Compressed BVHs

Table 3.1: Comparison of some compact BVH variants. Node wvisits, Triangle tests: amount
of node visits and ray-triangle intersection tests normalized to binary BVH ray tracing. Node
ratio: compression ratio of inner node data in a tree, i.e., excluding triangle data. Note that the
results have been obtained with different test scenes and are only roughly comparable. Given a
choice, results with incoherent secondary rays were selected. MVH results are with single-ray

tracing, but [| also show better results with packet tracing.
Method Description Node visits ~ Triangle tests Node ratio
[] MBVH 28% P 83% 1.2
[FDOY] SPBVH 100% 100% 2.0
[] MVH 16254% 16784% 88.0
Two-level MVH 481% 1460% 38.1
[] 10SP-4 127% 1139% 12.3
IOSP-0 373% 3334% [e'S)
Two-level IOSP 156% 548% 92.2
[] Grid 24-bit 100% 100% 1.2
Grid 20-bit 100% 104% 1.4
Grid 16-bit 108% 171% 1.6
[] Grid 17-bit + 13-bit 104% 115% 1.7
[] Incremental 8-bit 101% 101% 2.7
Incremental 4-bit 118% 118% 4.0
[] Incremental 5-bit 156%° 4.0
[] Incremental 6-bit, SPBVH 117% 127% 8.0
[] Incremental 8-bit, MBVH 39%* 76% 2.3
[] Entropy coding 101%4 9.5

2 MBVH node traversals perform more ray-box tests than BVH nodes.

b The point of comparison is a BVH with one AABB per node.

¢ Reported traversal steps were not differentiated between nodes and triangles.
d Unclear whether reported intersection test ratio is for triangles, boxes or both.

respectively. Entropy coding |] gives an even better ratio-overhead tradeoff,
however, it is only randomly accessible at the granularity of large blocks.

3.2 Incremental Encoding

In the previous Section we found that incremental encoding is a good candidate for
state of the art in BVH compression—it gives a good compression ratio while incurring
relatively low volume overhead. This Section examines the work on incremental encoding
in more detail.

The basic idea in incremental encoding is to set up a local coordinate grid in each inner
node—which is contained inside the node AABB—and encode child AABB bounds in
this grid. For example, Figure 3.2 shows one possible encoding used by Vaidyanathan
et al. |]. Here, the lower-bound and upper-bound coordinates of an AABB are
encoded as offsets 7;, s; in a local grid relative to the parent lower and upper bound,
respectively. The size of a grid cell is set as the smallest power-of-two number where the
parent is less than 2° gridcells wide. Each axis has a separate grid size.

Mahovsky |] implement b-bit encoding simply by fitting 2° grid lines along each
axis in each node AABB. Segovia and Ernst |] use a similar scheme enhanced with
compressed primitives and short-pointer encoding. Newer methods | , ,

] restrict the grid to power-of-two sizes, avoiding expensive floating-point divisions.

Incremental encoding was revisited by Keely [] from the perspective of hardware
acceleration. This work sketches a hybrid GPU architecture adding custom ray traversal

3.2. Incremental Encoding 31

Parent
A
s
: Child
A4

ory

Figure 3.2: Incremental encoding example.

hardware to a conventional GPU, and incorporating incremental encoding, primitive
compression and treelet scheduling to the traversal units. One way in which Keely’s BVH
variant is hardware-friendly is that grids are restricted to power-of-two sizes — this is
advantageous since divisions and multiplications by a power-of-two number can be done
cheaply in hardware by manipulating the floating-point exponent.

The main contribution by Keely [[{ee14] is a method to perform ray-AABB intersection
tests with low-precision arithmetic units, allowing traversal with less silicon area and
power than full-precision. It was shown earlier that global grid encoding permits cheap
hardware traversal [MahO5], but it was nontrivial whether this is the case in incremental
encoding. Keely [[Keel4] does this by means of traversal point update, where the origin of
the ray is moved forward so that it can be quantized to the same local grid as the target
AABB. As a result, the expensive floating-point multiplications of a ray-box test can be
avoided.

Vaidyanathan et al. [VAMS16] give a more mathematically rigorous analysis of hardware-
oriented incremental encoding, and proposes another approach to reduced-precision
traversal, based on incrementally updating intermediate values on the slabs ray-box test
during traversal. This is estimated to give more hardware savings than traversal point
update, and guarantee watertight traversal. In addition, SPBVH encoding is used to
improve the compression ratio. As a drawback, [VAMSI16] requires a very large stack
element compared to [I[<ecl4]. Liktor et al. [LV10] integrate the same approach with
short-pointer encoding and a cache-optimized memory layout, and propose a hardware
architecture for a complete accelerator.

Recently, Ylitie et al. [YIKX1.17] apply incremental encoding to software rendering on GPU,
and achieve state-of-the-art traversal performance. This appears difficult at first sight
due to the heavy per-node decompression overhead of software incremental encoding. In
this work, most of the overhead is avoided by storing in each node the basis and scale of
that node’s local grid. In a binary node this would negate the compression advantage, so

32 Chapter 3. Rebuilding and Refitting Compressed BVHs

a 8-wide MBVH is used to amortize the stored grid data over multiple child AABBs.

So far, the works on incremental encoding BVH have not aimed for real-time tree

construction. The methods of Keely [] and Vaidyanathan [] are evaluated
in static scenes using trees built with the slow and high-quality SBVH algorithm []
The method of Ylitie et al. |] combines SBVH with a novel tree collapsing to

generate a shallow hierarchy, with a runtime measured in minutes.

3.3 Thesis Contribution

A wide variety of techniques has been proposed to compress ray tracing acceleration data
structures, giving a variety of tradeoffs between compactness and overhead. The recently
proposed incremental encoding CBVH appears to be a good contender for the state-of-the-
art acceleration data structure in hardware accelerators. E.g., Keely | | estimates
that a ray tracing GPU with incremental encoding could give orders of magnitude more
ray traversal performance than current software state of the art, which would be sufficient
for real time path tracing.

However, the literature so far has not addressed fast tree updates, so it is not certain
that these benefits can be realized except when viewing completely static scenes. [P3]
contributes the first treatment of real-time incremental encoding BVH construction in
the literature, from the perspective of hardware acceleration.

A main finding in [P3] is that streaming compression is highly beneficial, i.e., a tree
update that directly outputs a compressed tree is much cheaper, in terms of memory
traffic, than an update which produces an uncompressed tree and is followed by a separate
compression step. Streaming compression is straightforward for top-down compression
methods, but nontrivial for bottom-up methods, as the encoding of a node depends on
its parent. The main contribution of article [P3] is a streaming, bottom-up compression
algorithm based on context estimation combined with backtracking to re-encode nodes
whose estimated contexts are found to be invalid. Algorithmic techniques are proposed
to reduce backtracking.

The proposed method is useful for updating incremental encoding BVHs up to Keely’s
method |]. A limitation and potential area of future work is that compressed trees
based on SPBVH | , | cannot yet be compressed. Another interesting related
work is the wide CBVH of Ylitie et al. |], which entirely bypasses difficulties
with bottom-up compression by encoding in each node the context required to decode it.
However, the method gives a limited compression ratio compared to hardware-oriented
methods, and requires a time-consuming tree collapsing step for the best performance. It
seems likely that a hardware ray tracer will opt to infer node contexts during traversal,
in which case the proposed method is relevant.

4 Hardware-Accelerated Shallow
BVHs

The previous Chapters discussed methods of constructing and updating BVH trees, which
are used to accelerate ray traversal. The focus of this Chapter is on the implementation of
ray traversal itself. Ray traversal has been used as a workload in practically all commodity
computing hardware, including abundant CPU and GPU implementations, and more
exotic platforms such as the IBM Cell processor | | and Intel’s Many Integrated
Cores (MIC) platform |].

The ray traversal task can be described as embarrassingly parallel—Even the primary
ray tracing of a picture at 1080p resolution can be split into ca. 2 million threads of
execution which can progress independently. The focus of traversal implementations is
on leveraging the parallel hardware resources in a given hardware architecture. In the
past decade, the amount of available parallelism has increased sharply and, consequently,
traversal performance has followed suit.

Modern CPUs have two main mechanisms for parallelism: multi-core operation with
Simultaneous Multi-Threading (SMT), and SIMD vector operations. It is straightfor-
ward to take advantage of thread-level parallelism in traversal, but SIMD operations
are more challenging. The two basic approaches used in the literature are packet trac-
ing [, | where each SIMD lane is mapped to a separate ray-thread, and
MBVH traversal | , , | where lanes correspond to child bounding
boxes in a tree of high branching factor. Both techniques have limitations. It is hard to
reach a good SIMD utilization in packet tracing when rendering complex visual effects,
while MBVH performs best with 4-wide vectors, and wider vectors tend to give marginal
benefits.

Current GPUs, in turn, are based on the Single Instruction Multiple Thread (SIMT)
execution model, which maps programs written in multi-threaded idiom onto SIMD-like,
wide vector hardware. When execution diverges, the hardware executes the instructions
of both execution paths sequentially, such that threads on each path stall while the other
pah executes. Memory access latencies are hidden by massive multithreading.

The use of commodity GPUs for ray tracing was first investigated in the seminal work
by Purcell | | and rapidly became the state of the art for high-performance ray
tracing, due to the large amount of parallelism available. However, GPUs are still not a
perfect match for traversal due to its high degree of execution divergence. The number of
traversal steps and intersection tests varies significantly between rays, hurting utilization.
GPU renderers incorporate techniques such as replacement of terminated rays |] to
mitigate the issue.

33

34 Chapter 4. Hardware-Accelerated Shallow BVHs

Recently, several academic and commercial hardware architectures have been proposed to
accelerate ray tracing |]. These can be split into programmable and fixed-function
systems. Programmable systems aim to fix the weaknesses of commodity CPUs and
GPUs in ray traversal, typically, through some form of MIMD execution. Fixed-function
systems aim for further efficiency by being hardwired to perform tree traversal steps
and intersection tests. Fixed-function hardware is often 2—-3 orders of magnitude more
efficient than a programmable system |], at the cost of flexibility.

Recent work on ray tracing architectures has a special focus on the memory hierarchy. The
reason for this is that the architectures are aimed for the rendering of increasingly complex
and ambitious lighting effects, which generate secondary rays with highly incoherent
memory access patterns from ray to ray, reducing cache hit rates. As a result, traversal
becomes highly memory-intensive. For example, on GPUs, incoherent secondary rays can
be 2—10x slower to traverse than primary rays | |, owing to cache misses.

This Chapter studies the application of MBVHs to fixed-function ray tracing accelerators.
We first review the literature on accelerator architectures, and MBVH ray traversal.
Finally, the contributions of this Thesis to the literature are summarized.

4.1 Traversal Architectures

This Section reviews previous work on ray tracing accelerators, with focus on fixed-function
systems. The reader is directed to a recent, extensive survey paper |] for more
information.

4.1.1 Programmable Platforms

The main aim in proposed programmable ray tracers is to handle applications with high
thread-level parallelism and execution divergence. One approach is to build a many-core
processor. An early programmable architecture, RPU |], consisted of a multicore
of narrow SIMD processors with a special instruction set. In addition to ray traversal
with packet tracing, the same hardware is used for ray generation, shading and limited
dynamic scene support.

Govindaraju et al. | | proposed a many-core architecture which was evaluated
with configurations of up to 128 cores, based on the earlier Razor software ray tracing
system []. The architecture is divided into 8-core tiles, each with a shared L2
cache and rendering-specific acceleration hardware. The individual cores are SPARC
Niagara processors to allow prototyping of a part of the system on a multicore SPARC
workstation.

A family of MIMD architectures developed at University of Utah | , ,

, |, beginning with the TraX processor | |, consists of many simple
processing cores with separate instruction streams. Cores stall on cache miss, but the cost
of stalls is mitigated by sharing expensive resources such as floating-point units between
multiple cores, such that the individual cores are very lightweight.

The MRTP |] architecture is a SIMT system similar to conventional GPUs, but
can be reconfigured to split into narrower SIMT cores with separate instruction streams
in order to handle divergent workloads. For example, a 12-wide SIMT core may be split
into two 6-wide SIMT cores. A test chip was later fabricated for a similar hardware
architecture |].

4.1. Traversal Architectures 35

Raman et al. proposed a ray tracing architecture based on SIMD stream filtering
processors, StreamRay |]. The ray tracing process is divided into stream filtering
tasks, each of which task is handled by a SIMD processor which maps ray-threads from an
incoming stream onto SIMD lanes on the fly. This approach gives a high SIMD utilization
and avoids divergence issues.

Some programmable architectures have been later modified to use custom pipelines for
traversal, so that the flexibility of the programmable system is used for other tasks

such as ray generation or shading. The D-RPU | | reworks the earlier fully-
programmable RPU to handle inner node traversal and intersection with fixed-function
hardware. Likewise, the STRaTA architecture |], based on TraX | |, has

an option to connect arithmetic units, normally used by programmable processors, into
special-purpose traversal and intersection pipelines.

4.1.2 Fixed-Function Accelerators

The process of ray traversal can be broken into primitive intersection tests and inner
node traversals, and a natural structure for a hardware accelerator is to include separate
pipelines for each task. SaarCOR |] could be considered the prototype for modern
fixed-function ray tracers: it is split into ray tracing cores with Binary Space Partition
(BSP) tree traversal and triangle intersection pipelines, as well as a programmable
processor for ray generation and shading. The main themes in later work include load
balancing, evolution in the used data structures and algorithms, and optimizations to the
memory system.

Load balancing becomes an issue since the ratio of traversal steps to primitive intersection
tests is scene-dependent and varies between individual rays — with triangle-heavy scenes,
the intersection units may become a bottleneck and starve the traversal pipelines, and
vice versa for node-heavy scenes. SaarCOR includes equal numbers of traversal and
intersection units, and attempts to load-balance by controlling the depth of subdivision
in the acceleration tree.

The T&I Engine by Nah et al. |] allocates more traversal units than intersection
units, and designs intersection units with low silicon area and throughput. Moreover,
they split the triangle intersection into two stages, where the first stage is a cheap test
allowing early rejection of obviously non-intersecting rays, and the second stage finishes
the full intersection test. Fewer second-stage than first-stage units are allocated. Later
architectures trend toward increasing simplicity. The SGRT |] architecture still
reserves multiple traversal units per intersection unit but uses a unified intersection
pipeline, possibly since (in the Thesis Author’s experience) BVH traversal results in fewer
early returns from the primitive intersection test, has a unified intersection pipeline, and
reserves multiple traversal units per intersection unit. The RayCore | | has a
unified pipeline which reuses some arithmetic units for both traversal and intersection.

4.1.3 Memory Access Schemes

Recently, attention in ray tracing hardware research has shifted toward optimizing the
memory hierarchy. Two aspects of the memory system are important. Firstly, bandwidth
to off-chip memory is a limited resource, and can become a performance bottleneck.
Traffic to such memory also consumes significant energy consumption, often being the
largest single component of energy consumption |]. A fundamental approach to
reducing the stress on external memory is to place small memories, caches, on-chip, such

36 Chapter 4. Hardware-Accelerated Shallow BVHs

that accesses to a frequently visited working set of addresses are served from the cache.
Simple caching is efficient in primary ray tracing, but with incoherent secondary rays, hit
rates fall, and ray tracing tends to become memory-limited.

Secondly, memory access latencies are large and unpredictable — up to hundreds of clock
cycles in the case of an external memory access. While a thread of execution is waiting on
a data read, the computation hardware needs to be supplied with other work that does
not depend on the same read. A basic computer architecture approach is multithreading
where, when a thread needs to wait for a memory read, computation switches to another
thread.

4.1.3.1 Latency Hiding

All proposed hardware ray tracers make liberal use of multithreading to hide memory
latencies. There are several variations on how to handle cache misses. The T&I Engine by
Nah et al. |] introduces a Ray Accumulation Unit (RAU) that accumulates rays
that have undergone a cache miss. Rays waiting on the same read address are grouped
on the same RAU row, and fed to the compute pipeline together when the corresponding
read data arrives. The reorder buffer by Lee et al. |] improves on the RAU by
omitting storage of read data in the buffer, simplifying the control logic and eliminating
stalls due to full RAU rows.

A simpler approach is to allow threads to continue after a cache miss, discarding the
invalid results of traversal and intersection computations, and schedule the thread to retry
the computations. This is called looping until the next chance by Nah et al. | 1,
and a similar scheme was proposed earlier for general-purpose GPU use as retry buffers
by Kwon et al. |]. In programmable ray tracers, an interesting multithreading
scheme is seen TraX | | and related MIMD processors: each thread has a separate
compute core which stalls on cache misses, but expensive resources like FPUs are shared
between multiple cores, and remain well utilized.

4.1.3.2 Treelet Scheduling

An influential work by Aila and Karras | | proposes a cache-aware technique of treelet
scheduling to reduce traffic. In treelet scheduling, the traversal data structure is split into
treelets small enough to fit in a L1 cache, and traversal operates over many rays which are
stored off-chip. Each traversal core focuses on one treelet at a time, streaming in the rays
queuing for that treelet, and then streaming the rays off-chip to queues of other treelets as
they exit the active treelet. The approach appears inspired by earlier software out-of-core
ray tracing schemes, e.g., Pharr et al. |] subdivide the scene into a voxels with
separate acceleration trees, allocate ray queues for each voxel, and page in the contents of
each voxel from the disk as needed. Kopta et al. | | propose a variant of treelet
scheduling that uses a smaller number of rays which are stored on-chip, eliminating ray
traffic, but reducing the amount of coherency that can be extracted from the active ray
group. Recently, Shurko et al. | | develop another variant called dual streaming,
where traversal is guaranteed to visit each treelet at most once in deterministic order.

4.1.3.3 Tree Compression

Another approach to traffic reduction is to compress the acceleration data structure,
allowing more node data to fit in caches and improving hit rates. Recently, compressed
data structures have been proposed that can be traversed with cheap reduced-precision

4.2. Multi-Bounding Volume Hierarchies 37

arithmetic | ,]. Compression is a broad subject, and is discussed in detail
in Chapter 3.

4.1.3.4 Stack Optimizations

Given a high degree of multithreading, per-thread traversal stacks may take up too
much memory to store on-chip, and stack traffic can account for a large fraction of
the total. Several works propose software methods for stackless [,] or
short-stack |] traversal to eliminate full stacks. So far these methods have given
inferior performance compared to stack-based traversal since they incur extra node visits
and other computational overhead, but are often motivated by potential use in hardware
accelerators. The hardware compressed traversal scheme by Vaidyanathan et al. |]
uses a short-stack to compensate for the large stack elements required by the traversal
algorithm. Aila and Karras | | propose a hardware stack cache which eliminates
most external stack accesses with a small silicon footprint.

4.1.3.5 Streaming Hybrid Ray Tracing

Primary ray tracing with a simple pinhole camera model is equivalent to rasterization.
Since it is doubtful that even hardware primary ray tracing can beat the efficiency of a
conventional GPU in rasterization, there is interest in hybrid ray tracing, where primary
ray tracing is replaced with rasterization, and only secondary rays are actually traversed.
Lee et al. | | propose an synthesis of a conventional mobile GPU and a hardware
ray tracer optimized for hybrid ray tracing. The architecture is built around the mobile
GPU technique of tile-based rendering |]. Tiles in the primary ray buffer which
will have associated secondary rays, are streamed on-chip to the hardware ray tracer,
reducing off-chip communication.

4.2 Multi-Bounding Volume Hierarchies

As mentioned in the previous Section, development of traversal algorithms has been
guided by trends in processing hardware. For example, as commodity CPUs began to
incorporate SIMD vector instruction sets such as Streaming SIMD Extensions (SSE) and
later Advanced Vector Extensions (AVX), a large amount of research went to exploiting
these instructions in ray traversal. The first mainstream technique for SIMD traversal
was packet tracing |], in which the traversal loop operates on ray packets instead
of single rays. Each ray in a packet is mapped to a SIMD lane, and vector instructions
are used to intersection test all rays of the packet against the same node or primitive in
parallel.

Packet tracing works well in workloads like primary rays which exhibit high coherency,
i.e., rays in the same packet are likely to intersect the same nodes and primitives.
However, efficient packet tracing becomes difficult to achieve in incoherent workloads
like path tracing, where rays tend to diverge, dropping SIMD utilization. A wide
variety of workarounds has been developed to extract hidden coherency in the rendering
workload by, e.g., traversing larger ray groups and periodically sorting them to find
coherent packets [], or organizing rays in a separate data structure to search for
coherence |]. Similarly to treelet scheduling, one approach was to divide the scene
into subvolumes, limiting traversal to rays that are located in the same volume |]

38 Chapter 4. Hardware-Accelerated Shallow BVHs

BVH MBVH4

()
0 @O

Figure 4.1: 4-way MBVH tree contrasted with a binary BVH tree, both organizing 7 leaf nodes.
In this case, MBVH saves memory: BVH needs 6 nodes & 64B for a memory consumption of
384B, while MBVH uses 2 nodes 4 128B for a total of 256B.

Given the difficulty of packet tracing secondary rays, several research groups arrived
independently at a new SIMD parallelization scheme ca. 2007, which leverages BVH
tree with a high branching factor, e.g., 4 or 8 children per node. Vector instructions are
then used in traversal to test a single ray against all child AABBs of a node in parallel.
This approach was introduced by Dammertz et al. | | as Quad Bounding Volume
Hierarchy (QBVH), and Wald et al. |] as well as Ernst and Greiner |] as
MBVH, and quickly became a standard technique in CPU ray tracing. The development
of MBVH was probably prompted by the adoption of BVH: most of the literature on
packet tracing was built on kd-trees where a similar scheme is not as straightforward.

Compared to a binary BVH storing two child AABBs per node, a four-way MBVH
requires twice as many intersection tests to traverse a node, but traversing the ray
typically requires ca. 2x less node traversals, as the hierarchy is shallower. In other words,
MBVH traversal takes roughly as much computation as BVH, but grouped in larger units
that are suitable for vector arithmetic. Moreover, MBVH can somewhat reduce memory
consumption and improve cache hit rates |]. As shown in Fig. 4.1, though, e.g., a
4-way MBVH node uses 2x the memory of a binary BVH node, the number of nodes can
be reduced to less than half. MBVH implementations often also build trees with large
leafs in order to SIMD acceleration primitive intersection tests, further reducing memory
footprint |]

MBVHs is the workhorse of state-of-the-art CPU ray tracers |]. Recent research
also shows benefits in GPU ray tracing [], even though vector instructions are
unavailable on GPU — partly due to reduced memory traffic, and partly because MBVH
node traversal is a better fit for out-of-order execution schemes on modern GPUs. 4-way
branching is a sweet spot in terms of efficiency: wider MBVHs start to do significantly
more computation per ray than binary trees, though they can still give performance
benefits by using available wide vector units |]. However, it may be more efficient
to combine 4-wide MBVH with packet tracing | |, or ray stream tracing where
coherence is extracted from larger ray groups |].

4.2. Multi-Bounding Volume Hierarchies 39

4.2.1 Construction

Approaches to building MBVHs can be divided into collapsing a binary BVH into a
MBVH, and native builds which directly output a MBVH. A basic way to collapse BVHs
is to remove alternating tree layers to form a 4-way MBVH | ,], or % of
layers for an 8-way tree |]. ’Afra et al. |] collapse nodes by repeatedly removing
the child with the highest surface, and pulling the corresponding grandchildren into the
node. Wald et al. |] propose a SAH-guided collapsing algorithm which merges
child nodes into the parent according to their SAH heuristic cost, until the parent is full.
This is combined with other optimization steps to avoid being stuck in local optima.

Pinto et al. |] find a sequence of collapsing operations that globally optimizes a
cost heuristic for a MBVH. Ylitie et al. | | propose a slow, high-quality bottom-up
collapsing algorithm which computes, bottom-up, the optimal SAH cost reachable for
each subtree through collapsing operations, and then generates top-down the splits that
realize the optimal cost. The algorithm takes minutes to run on large scenes, but gives
superior tree quality compared to previous fast methods.

Wald et al. |] give a recursive, top-down build algorithm which is reported to
give similar tree quality as collapsing. When processing a node, the algorithm finds
the best axis-aligned split for each child, and applies the split that gives the best SAH
improvement, until the node is full. The algorithm can be regarded as a generalization of
the binned SAH sweep |] for higher branching factors.

4.2.2 Traversal

The main subtasks of BVH inner node traversal are intersection tests against a node’s
child AABBs and stack operations to push the intersecting children onto the traversal
stack. An important optimization is to push the children so that they are traversed in
front-to-back order: the ray then often hits occluding geometry in the closer child, and
avoids visiting the farther child entirely. Intersection tests are trivial to vectorize, but
stack operations and front-to-back ordering are more challenging to express as SIMD
operations.

4.2.2.1 Front-to-Back Sorting

Front-to-back traversal can be performed by computing the parametric distance to each
child AABB being intersection tested, and sorting the hit children based on this distance.
As fast distance sorting is nontrivial, Wald et al. |] opt to store an unordered stack,
and scan the stack for the closest element on each pop. Dammertz et al. | | perform
a SIMD vector sort |]. Guthe et al. |] sort children with a sorting network to
improve instruction-level parallelism in their GPU ray tracer. Afra et al. [| selects
the sorting algorithm adaptively based on the number of hit children: 1 — 2 hits are
handled as special cases, 3 — 4 with a sorting network, and 5 or more with an insertion
sort.

4.2.2.2 Sign Heuristic

In addition to sorting children according to their hit point distance from ray origin (i.e.,
the distance heuristic), similar results can be obtained with the sign heuristic |]:
if a BVH is built based on top-down splits, the split axis is stored. If the ray direction
is positive along the split axis, the children are visited in the order of storage; if it is

40 Chapter 4. Hardware-Accelerated Shallow BVHs

negative, the order is flipped. As an alternative to sorting, Dammertz et al. |]
experiment with building their MBVHs via collapsing and storing the topology and split
axes of the original binary BVH treelet for each node; this stored metadata is then used
for sign heuristic traversal. A similar approach was used by Ernst and Greiner |]
Recently, Fuetterling et al. | | use a similar approach implemented entirely with
vector instructions and for a wide branching factor.

4.2.2.3 Approximate Orders

Some works opt to forego exact sorting. Wald et al. |] omit distance sorting as
overly expensive: they only find the closest hit child and push the other hit children to
the stack unordered. It should be noted that this only differs from a full sort if more
than 2 children are hit, which is a rare case |]. Afra et al. |], likewise, only
guarantee that the closest child is traversed first; subsequent sibling nodes are traversed
in fixed order by following skip pointers between siblings. Ylitie et al. |], inspired
by Garanzha and Loop | |, precompute the octant of each child node relative to the
parent box, and traverse the octants in distance order.

4.2.2.4 Occlusion Rays

When tracing shadow and ambient occlusion |] rays, it is acceptable to find any
intersection instead of the closest one. Guthe et al. |] note that, in this case,
front-to-back sorting can be omitted. Ogaki et al. | | pre-sort MBVH children in a

surface area traversal order which further improves performance.

4.3 Thesis Contribution

To summarize the above review, ray-tracing accelerator architectures have been proposed
that are estimated give ray traversal performances similar to desktop GPUs in a mobile
environment | , |, or significantly higher if given a desktop-level power
budget |]. Most architectures rely on fixed-function hardware for tree traversal.
Shallow BVHs are in mainstream use in CPU ray tracing |], and have recently
been found beneficial on GPUs | ,] but, so far, all proposed ray tracing
accelerators use binary trees.

In this Thesis, MBVHs are applied to hardware-accelerated BVH traversal. Specifically,
in [P4], MBVH is evaluated for a simulated generic fixed-function hardware accelerator
similar to SaarCOR |], SGRT |] or D-RPU |]. The chosen multi-
threading scheme is the looping-until-the-next-chance used in the RayCore |].
The simulation includes timing, silicon area and energy models.

The main finding of [P4] is that MBVHs are a clear low-hanging fruit, largely due to
reduced memory traffic. The result holds both for energy efficiency and performance
per area. Another contribution of [P4] is that MBVH distance sorting — a target of
sophisticated optimizations in software ray tracers [,]| — is straightforward
to implement in hardware while keeping a fully pipelined throughput, by means of, e.g., a
cheap hardware sorting network.

[P4] leaves as an open question whether the benefits from MBVHs are cumulative
with optimizations like tree compression, which is discussed in more detail in Chapter
3, and treelet scheduling. Recently, Ylitie et al. |] were able to significantly

4.3. Thesis Contribution 41

accelerate software GPU ray tracing with Compressed Multi Bounding Volume Hierarchies
(CMBVHs), suggesting that this is the case at least for compression.

5 Conclusion

Real-time ray tracing is a long-standing research goal in computer graphics, motivated
by, e.g., global illumination effects, video games and photorealistic AR. Perhaps the
clearest potential motivation is that ray tracing could render some common effects such as
dynamic shadows and reflections at a lower energy cost than multi-pass rasterization meth-
ods |], but such savings are likely to require specialized hardware architectures.
A wide variety of such architectures has been proposed |].

Recent research on ray tracing GPU architectures has been centered on reducing off-chip
memory traffic, which can account for a large fraction of operating energy, and often
becomes a performance bottleneck. Two promising classes of optimizations have emerged
which promise to reduce memory traffic by an order of magnitude compared to a naive
ray tracer. These are the use of treelet-based memory access schedules | , ,
], and the compression of data structures used in ray tracing [, ,
]. This mirrors the development of mobile GPUs which incorporate a slew of memory
traffic optimizations such as tile-based rendering |].

Coping with animated scenes is a special challenge in ray tracing, where the data structures
used for rendering need to be updated for each animation frame, usually by rebuilding
them from scratch. There is a rich literature on fast build algorithms for this purpose. The
results of this Thesis [P2] underline that the cost of tree build is significant, making it an
interesting target for hardware acceleration. On mobile platforms, custom hardware seems
to be a prerequisite for handling nontrivial animated scenes in real time. Moreover, tree
build is even more memory-intensive than rendering, placing the emphasis of architecture
design on memory traffic optimizations.

The rendering optimizations mentioned above have a drawback of causing additional
complications to tree builds and updates. For instance, treelet scheduling | | re-
quires trees to be divided into suitable treelets, while compressed trees are clearly more
challenging to update than their basic variants. Moreover, these optimizations make the
cost of tree updates more pronounced on the system level by way of Amdahl’s law, by
significantly shrinking the cost of rendering, while the cost of update remains largely
intact.

Energy-efficiency and memory bandwidth are prime considerations in mobile systems,
which are constrained to tiny power budgets and memory bandwidths compared to the
desktop, by virtue of being hand held and battery-powered. It is interesting to note
that, due to trends in CMOS technology |], energy and bandwidth optimizations
are also becoming increasingly relevant on the desktop. Over the past decade, the
arithmetic performance of GPUs has grown much faster than bandwidth, and previously
compute-limited algorithms are becoming memory-limited. As a case in the point, a
recent state-of-the-art software ray tracer [] incorporates tree compression, which

43

44 Chapter 5. Conclusion

was previously advanced mainly as a hardware optimization. Similarly, bandwidth
optimizations for tree construction have the best effect in mobile, hardware construction,
but may also serve to inform the design of future software and desktop builders.

5.1 Main Results

This Thesis explored techniques for hardware acceleration of ray tracing, with focus on
real-time rendering of large-scale animated scenes. This Thesis concentrated on mobile
accelerators operating in a limited power envelope, but the techniques are also applicable
to other environments.

A new hardware tree builder architecture named MergeTree was proposed in publications
[P1,P2]. The builder adapts the fast GPU tree construction algorithm LBVH |]
into a lightweight hardware pipeline. The hardware version of the algorithm is optimized
for memory bandwidth economy, and consumes 3x less bandwidth than a software
implementation on GPU. The main novel components enabling the memory savings
are a memory-frugal primitive sorting subsystem, and a streaming method for hierarchy
emission and AABB computation. LBVH produces low-quality trees, but measurements
in publication [P2] show that it can reduce system energy compared to a state of the art
binned SAH builder [], given a fairly large animated scene and a limited amount
of secondary rays. This is because the energy savings in tree construction in large scenes
are enough to offset the increased cost of traversal.

Publication [P3] investigated efficient updates of BVH trees compressed with incremental
encoding | , , |, a state-of-the-art approach to bandwidth reduction in
ray tracing. The main result is that if the output of a tree builder can be compressed
in a streaming manner before writing it off-chip, significant traffic savings are available.
Given that memory traffic accounts for over 90% of the energy of fast tree updates [P2],
compressed trees are then cheaper to update than uncompressed ones. Streaming com-
pression is straightforward in top-down updates, but the bottom-up output order used in
the fastest hardware updaters | |[P2] poses technical difficulties, as the compressed
encoding of a node depends on its chain of parents. An algorithm is proposed in [P3]
which speculatively encodes each node based on estimates of parameters that would be
derived from the parent nodes. In case the estimates are invalid for some node, the
algorithm later backtracks to repair it.

The fixed-function builders proposed in publications [P1,P2 P3] give the largest benefits
for mobile systems, where software builds are only feasible for trivial scenes. Moreover,
they may be used in desktop ray tracing to free up limited computational resources for
ray traversal and shading. Often, efficiency gains from the use of fixed-function pipelines
are offset by limited flexibility. However, flexibility is enhanced in this case by processing
AABB:s instead of raw primitive data. As with Doyle et al. |], this allows the
proposed pipelines to handle any type of primitive for which an AABB can be computed,
for example, volume data |]

Finally, [P4] applied MBVHs, a workhorse method of CPU ray tracing, to hardware
accelerators. This is found to be a low-hanging fruit that is straightforward to implement
and improves energy and area efficiency. Evaluation is done on an energy, area and timing
model of a generic fixed-function accelerator architecture similar to SaarCOR | 1,
the T&I Engine |] and SGRT |]. The model developed for this work was
later used for system-level evaluation of the aforementioned MergeTree builder [P2].

5.2. Open Research Issues 45

5.2 Open Research Issues

The main results of this Thesis came from representation of well-known algorithms in
terms of streaming processes, which allow memory traffic savings compared to the GPU
idiom of performing tasks in multiple passes that read and write large intermediate data
buffers. It is interesting whether stream representation could stretch further to compute,
e.g., more sophisticated sorting-based build algorithms such as ATRBVH | |, spatial
split insertion, or hierarchy collapsing into an MBVH. Moreover, the fixed-function
realizations of streaming algorithms are inflexible. It is interesting whether the algorithms
could be set up to run on a programmable processor — even an exotic one such as a
dataflow machine — and still reach a reasonable performance.

From a higher-level point of view, despite the volume of work on the subject, so far the
evidence is not very strong that the overall idea of ray tracing as an energy optimization is
feasible — i.e., that it can give improved visual effects in a given energy budget compared
to rasterization-based methods, or in the mobile case, that it can render workloads
approximating practical real-time applications within a mobile power and bandwidth
budget. One difficulty in rigorous comparison is that conventional GPUs are the products
of cumulative decades of work by large industrial design teams, and it would be difficult
to match this level of workmanship in an academic prototype GPU. Moreover, real-time
graphics techniques for conventional GPUs are well understood, while the designers of
nontrivial example applications of real-time ray tracing would be starting partly from
scratch. The level of confidence in the area could be increased by introducing more energy
analysis of hardware designs and adding comparisons to the available power budget,
especially for mobile designs. This Thesis made some efforts in this direction by, e.g.,
performing energy analysis and comparing results to a mobile power envelope in [P2].

A promising avenue for future work is to accelerate computations beside simple rendering
with ray tracing hardware. For example, photorealistic AR, where virtual objects blend
in seamlessly with the real environment, requires estimates of the geometry, lighting
and materials in the scene. Several state-of-the-art methods for producing these esti-
mates [] make heavy use of ray traversal, and are computationally
expensive. Consequently, hardware ray tracers could be used to improve the performance
of AR, which has a wide variety of potential applications []. The tree constructors
proposed in this Thesis [P1,P2,P3], in turn, would be interesting to apply to point set
processing and collision detection. It is straightforward to modify an LBVH builder to

output k-d trees of points |], which are widely used in point set processing. Collision
detection, meanwhile, tends to directly use BVHs. Hardware units have been proposed
for both tasks [, |, identifying hardware-accelerated tree construction

as future work.

Bibliography

[Afr12]
[Afr13]
[AKST]
[AK10]
[AKL13]
[ALOY]
[AMSO08]
[Apeld]

[ASK14]

[AWBW16]
[BAM14]
[BC11]

[BEM10]

[BHH13]

AFRA A. T.: Interactive ray tracing of large models using voxel hierarchies.
In Computer Graphics Forum (2012), vol. 31, pp. 75—88.

AFRA A. T.: Faster Incoherent Ray Traversal Using 8-Wide AVX Instruc-
tions. Tech. rep., Babes-Bolyai University, 2013.

Arvo J., Kirk D.: Fast ray tracing by ray classification. In ACM
SIGGRAPH Computer Graphics (1987), vol. 21, pp. 55—64.

A1LA T., KARRAS T.: Architecture considerations for tracing incoherent
rays. In Proc. High-Performance Graphics (2010), pp. 113—122.

A1LA T., KARrRAS T., LAINE S.: On quality metrics of bounding volume
hierarchies. In Proc. High-Performance Graphics (2013), pp. 101-107.

AtLAa T., LAINE S.: Understanding the efficiency of ray traversal on GPUs.
In Proc. High-Performance Graphics (2009), pp. 145-149.

AKENINE-MOLLER T., STROM J.: Graphics processing units for handhelds.
Proceedings of the IEEE 96, 5 (2008), 779—789.

APETREI C.: Fast and Simple Agglomerative LBVH Construction. In Proc.
Computer Graphics and Visual Computing Conf. (2014).

AFrRa A. T., SzIRMAY-KALOS L.: Stackless multi-BVH traversal for
CPU, MIC and GPU ray tracing. Computer Graphics Forum 33, 1 (2014),
129-140.

AFra A. T., WALD I., BENTHIN C., WooP S.: Embree ray tracing
kernels: overview and new features. In SIGGRAPH Talks (2016), p. 52.

BARRINGER R., AKENINE-MOLLER T.: Dynamic ray stream traversal.
ACM Transactions on Graphics 33, 4 (2014), 151.

BORKAR S., CHIEN A. A.: The future of microprocessors. Communications
of the ACM 54, 5 (2011), 67—77.

BAUszAT P., EISEMANN M., MAGNOR M. A.: The minimal bounding

volume hierarchy. In Proc. Int. Symp. Vision, Modeling and Visualization
(2010), pp. 227-234.

BITTNER J., HAPALA M., HAVRAN V.: Fast insertion-based optimization
of bounding volume hierarchies. Computer Graphics Forum 32, 1 (2013),
85-100.

47

48

Bibliography

[Bik07]

[Bun05]

[BWN*15]

[BWSF06]

[BWW*12]

[Cat74]

[CO14]

[COCSDO3]

[CPC84]

[CSE06]

[DFM13]

[DHKOS]

[DKT98]

[DKY16]

[DNL*17]

BIKKER J.: Real-time ray tracing through the eyes of a game developer. In
Proc. IEEE Symp. Interactive Ray Tracing (2007), pp. 1-10.

BUNNELL M.: Dynamic ambient occlusion and indirect lighting. In GPU
Gems, vol. 2. NVidia, 2005, pp. 223—233.

BENTHIN C., WooP S., NIESSNER M., SELGRAD K., WALD I.: Efficient
ray tracing of subdivision surfaces using tessellation caching. In Proc.
High-Performance Graphics (2015), pp. 5—12.

BENTHIN C., WALD I., SCHERBAUM M., FRIEDRICH H.: Ray tracing on
the Cell processor. In Proc. IEEE Symp. Interactive Ray Tracing (2006),
pp. 15-23.

BENTHIN C., WALD 1., WooP S.; ERNST M., MARK W. R.: Combining
single and packet-ray tracing for arbitrary ray distributions on the intel MIC
architecture. IEEE Transactions on Visualization and Computer Graphics
18,9 (2012), 1438—1448.

Cat™MULL E.: A subdivision algorithm for computer display of curved
surfaces. Tech. rep., Utah University, Salt Lake City, USA, 1974.

CASPER J., OLUKOTUN K.: Hardware acceleration of database operations.
In Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (2014),
pp. 151-160.

COHEN-OR D., CHRYSANTHOU Y. L., Stva C. T., DURAND F.: A
survey of visibility for walkthrough applications. IEEE Transactions on
Visualization and Computer Graphics 9, 3 (2003), 412—-431.

Cook R. L., PORTER T.;, CARPENTER L.: Distributed ray tracing. In
ACM SIGGRAPH Computer Graphics (1984), vol. 18, pp. 137—145.

CLINE D., STEELE K., EGBERT P.: Lightweight bounding volumes for ray
tracing. Journal of Graphics Tools 11, 4 (2006), 61—71.

DoyLE M., FOWLER C., MANZKE M.: A hardware unit for fast SAH-
optimized BVH construction. ACM Transactions on Graphics 32, 4 (2013),
139:1-10. (Proc. SSIGGRAPH 2013).

DamMmERTZ H., HANIKA J., KELLER A.: Shallow bounding volume

hierarchies for fast SIMD ray tracing of incoherent rays. Computer Graphics
Forum 27, 4 (2008), 1225-1233.

DeERosE T., Kass M., TRUONG T.: Subdivision surfaces in character
animation. In Proc. SIGGRAPH (1998), pp. 85—94.

Du P., Kim Y. J., YooN S.-E.: TSS BVHs: Tetrahedron swept sphere
BVHs for ray tracing subdivision surfaces. In Computer Graphics Forum
(2016), vol. 35, pp. 279—-288.

DENG Y., N1Y., L1 Z., MU S., ZHANG W.: Toward real-time ray tracing:
A survey on hardware acceleration and microarchitecture techniques. ACM
Computing Surveys 50, 4 (2017), 58.

Bibliography 49

[DP15] DowmiNGUES L. R., PEDRINI H.: Bounding volume hierarchy optimization
through agglomerative treelet restructuring. In Proc. High-Performance
Graphics (2015), pp. 13—20.

[DTM17] DovyLE M. J., Tuony C., MANZKE M.: Evaluation of a BVH construction
accelerator architecture for high-quality visualization. IEEFE Transactions
on Multi-Scale Computing Systems (2017). Early access.

[EBGM12] E1SEMANN M., BAuszaT P., GUTHE S., MAGNOR M.: Geometry presort-
ing for implicit object space partitioning. Computer Graphics Forum 31, 4
(2012), 1445-1454.

[EGO8] ERNST M., GREINER G.: Multi bounding volume hierarchies. In Proc.
IEEE Symp. Interactive Ray Tracing (2008), pp. 35—40.

[ESVI6] Evans F., SKIENA S., VARSHNEY A.: Optimizing triangle strips for fast
rendering. In Proc. Conf. Visualization (1996), pp. 319—326.

[EW11] ErNsT M., WooP S.: Ray tracing with shared-plane bounding volume
hierarchies. Journal of Graphics, GPU, and Game Tools 15, 3 (2011),
141-151.

[FANO7] FURTAK T., AMARAL J. N., NIEWIADOMSKI R.: Using SIMD registers

and instructions to enable instruction-level parallelism in sorting algorithms.
In Proc. ACM Symp. Parallel Algorithms and Architectures (2007), pp. 348—

357.

[FDO09] FaBiaNowsKl B., DINGLIANA J.: Compact BVH storage for ray tracing
and photon mapping. In Proc. Eurographics Ireland Workshop (2009),
pp. 1-8.

[FGD*06] FrIEDRICH H., GUNTHER J., DIETRICH A., SCHERBAUM M., SEIDEL
H.-P., SLUSALLEK P.: Exploring the use of ray tracing for future games.
In Proc. ACM SIGGRAPH Symp. Videogames (2006), pp. 41—50.

[FLP*17] FUETTERLING V., LoJEwSKI C., PFREUNDT F.-J., HAMANN B., EBERT
A.: Accelerated single ray tracing for wide vector units. In Proc. High-
Performance Graphics (2017), p. 6.

[GAO05) GALIN E.; AKKOUCHE S.: Fast processing of triangle meshes using triangle
fans. In Proc. Int. Conf. Shape Modeling and Applications (2005), pp. 326 —
331.

[GBDAM15] GANESTAM P., BARRINGER R., DOGGETT M., AKENINE-MOLLER T.:
Bonsai: Rapid bounding volume hierarchy generation using mini trees.
Journal of Computer Graphics Techniques 4, 3 (2015).

[GD16] GANESTAM P., DOGGETT M.: SAH guided spatial split partitioning for
fast BVH construction. Computer Graphics Forum 35, 2 (2016), 285—293.

[GDS*08] GOVINDARAJU V., DJEU P., SANKARALINGAM K., VERNON M., MARK

W. R.: Toward a multicore architecture for real-time ray-tracing. In Proc.
IEEE/ACM Int. Symp. Microarchitecture (2008), pp. 176—-187.

50

Bibliography

[GHFB13]

[GL10]

[GPBG11]

[GPM11]

[GS87]

[Gut14]

[HDW*11]

[HGBGOS]

[HH10]

[HHS06]

[HKO7]

[HLS*15]

[HMB17]

[HMF07]

GU Y., HE Y., FATAHALIAN K., BLELLOCH G.: Efficient BVH construc-
tion via approximate agglomerative clustering. In Proc. High-Performance
Graphics (2013), pp. 81-88.

GARANZHA K., Loop C.: Fast ray sorting and breadth-first packet traversal
for GPU ray tracing. In Computer Graphics Forum (2010), vol. 29, pp. 289—
298.

GARANZHA K., PREMOZE S., BELY A., GALAKTIONOV V.: Grid-based
SAH BVH construction on a GPU. The Visual Computer 27, 6-8 (2011),
697-706.

GARANZHA K., PANTALEONI J., MCALLISTER D.: Simpler and faster
HLBVH with work queues. In Proc. High-Performance Graphics (2011),
pp. 59-64.

GOLDSMITH J., SALMON J.: Automatic creation of object hierarchies for
ray tracing. Computer Graphics and Applications 7, 5 (1987), 14—20.

GUTHE M.: Latency considerations of depth-first GPU ray tracing. In
Proc. Eurographics (Short Papers) (2014), pp. 53—56.

HarAaLA M., Davibovi¢ T., WALD I., HAVRAN V., SLUSALLEK P.:
Efficient stack-less BVH traversal for ray tracing. In Proc. Spring Conf.
Computer Graphics (2011), pp. 7—12.

HEINZLE S., GUENNEBAUD G., BoTscH M., GROSS M.: A hardware pro-
cessing unit for point sets. In Proc. ACM SIGGRAPH/EUROGRAPHICS
Symp. Graphics Hardware (2008), pp. 21-31.

HAVEL J., HEROUT A.: Yet faster ray-triangle intersection (using SSE4).
IEEFE Transactions on Visualization and Computer Graphics 16, 3 (2010),
434-438.

HavraN V., HERZOG R., SEIDEL H.-P.: On the fast construction of
spatial hierarchies for ray tracing. In Proc. IEEE Symp. Interactive Ray
Tracing (2006), pp. 71-80.

Hanika J., KELLER A.: Towards hardware ray tracing using fixed point
arithmetic. In Proc. IEEE Symp. Interactive Ray Tracing (2007), pp. 119—
128.

Hwanc S. J., LEE J., SHIN Y., LEE W.-J., RYU S.: A mobile ray tracing
engine with hybrid number representations. In Proc. SIGGRAPH Asia
Symp. Mobile Graphics and Interactive Applications (2015), p. 3.

HENDRICH J., MEISTER D., BITTNER J.: Parallel BVH construction using
progressive hierarchical refinement. Computer Graphics Forum 36, 2 (2017),
487-494.

HunT W., MARK W. R., FUSSELL D.: Fast and lazy build of acceleration
structures from scene hierarchies. In Proc. IEEE Symp. Interactive Ray
Tracing (2007), pp. 47—-54.

Bibliography 51

[HQW*10] HAMEED R., QADEER W., WacHS M., Azizi O., SOLOMATNIKOV A., LEE
B. C., RICHARDSON S., KozYrAKIS C., HOrRowITZ M.: Understanding
sources of inefficiency in general-purpose chips. ACM SIGARCH Computer
Architecture News 38, 3 (2010), 37—47.

[HRB*09] HEINLY J., RECKER S., BENSEMA K., PORCH J., GRIBBLE C.: Integer
ray tracing. Journal of Graphics, GPU, and Game Tools 14, 4 (2009),
31-56.

[HSOO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel prefix sum (scan) with
CUDA. In GPU Gems, vol. 3. NVidia, 2007, pp. 851—876.

[HSPE06] HARTSTEIN A., SRINIVASAN V., Puzak T. R., EMMA P. G.: Cache
miss behavior: is it /2?7 In Proc. Conf. Computing Frontiers (2006),
pp- 313-320.

[Huf52) HurrFMAN D. A.: A method for the construction of minimum-redundancy
codes. Proceedings of the IRE 40,9 (1952), 1098—1101.

[IKOT7] Toannou A., KATEVENIS M. G.: Pipelined heap (priority queue) man-
agement for advanced scheduling in high-speed networks. IEEE/ACM
Transactions on Networking 15, 2 (2007), 450—461.

[IWPO7] Ize T., WALD 1., PARKER S. G.: Asynchronous BVH construction for
ray tracing dynamic scenes on parallel multi-core architectures. In Proc.
FEurographics Conf. Parallel Graphics and Visualization (2007), pp. 101-108.

[KA13] KarraAs T., AiLA T.: Fast parallel construction of high-quality bounding
volume hierarchies. In Proc. High-Performance Graphics (2013), pp. 89—99.

[Kaj86] Kajrya J. T.: The rendering equation. In ACM SIGGRAPH Computer
Graphics (1986), vol. 20, pp. 143—150.

[Kar12] KARrRRAs T.: Maximizing parallelism in the construction of BVHs, octrees,
and k-d trees. In Proc. High-Performance Graphics (2012), pp. 33—37.

[KBK*10] KM T.-J., ByuN Y., Kim Y., MooN B., LEE S., YooN S.-E.: HC-
CMeshes: Hierarchical-culling oriented compact meshes. Computer Graphics
Forum 29, 2 (2010), 299—308.

[Keeld] KEELY S.: Reduced precision hardware for ray tracing. In Proc. High-
Performance Graphics (2014), pp. 29—40.

[KFF*15] KELLER A., FASCIONE L., FAJARDO M., GEORGIEV 1., CHRISTENSEN
P. H., HANIKA J., EISENACHER C., NICHOLS G.: The path tracing
revolution in the movie industry. In SIGGRAPH Courses (2015), pp. 24—1.

[KIS*12] Kopta D.; Iz T., Spjut J., BRUNVAND E.; DAvis A., KENSLER A.:
Fast, effective BVH updates for animated scenes. In Proc. ACM SIGGRAPH
Symp. Interactive 3D Graphics and Games (2012), pp. 197—204.

[KKK12] Kim H.-Y., Kim Y.-J., Kim L.-S.: MRTP: Mobile ray tracing processor
with reconfigurable stream multi-processors for high datapath utilization.
IEEFE Journal of Solid-State Circuits 47, 2 (2012), 518—-535.

52

Bibliography

[KKOK13]

[KKW*13]

[KM90]

[KMKY10]

[Knu99]

[KPR*15]

[KSP*13]

[KSS*13]

[KSS*15]

[KSY14]

[KT11]

[KTO11]

[KVJT16]

KM H.-Y., Kim Y.-J., On J.-H., Kim L.-S.: A reconfigurable SIMT
processor for mobile ray tracing with contention reduction in shared memory.
IEEE Transactions on Circuits and Systems I: Regular Papers 60, 4 (2013),
938-950.

KELLER A., KARrAS T., WALD I., Ama T., LAINE S., BIKKER J.,
GRIBBLE C., LEE W.-J., McCoMBE J.: Ray tracing is the future and
ever will be... In SIGGRAPH Courses (2013), p. 9.

KATAJAINEN J., MAKINEN E.: Tree compression and optimization with

applications. International Journal of Foundations of Computer Science 1,
04 (1990), 425-447.

Km T.-J., Moon B., Kim D., YoonN S.-E.: RACBVHs: Random-
accessible compressed bounding volume hierarchies. IEEFE Transactions on
Visualization and Computer Graphics 16, 2 (2010), 273—286.

KNuTH D. E.: The Art of Computer Programming: Volume 3: Sorting
and Searching, vol. 3. 1999.

KAHLER O., PRISACARIU V. A., REN C. Y., SUN X., TORR P., MURRAY
D.: Very high frame rate volumetric integration of depth images on mobile
devices. IEEFE Transactions on Visualization and Computer Graphics 21,
11 (2015), 1241-1250.

KwonN K., SON S., PARK J., PARK J., W00 S., JUNG S., Ryu S.: Mobile
GPU shader processor based on non-blocking coarse grained reconfigurable
arrays architecture. In Proc. Int. Conf. Field-Programmable Technology
(2013), pp. 198—205.

Kopta D., SHKURKO K., SPJUT J., BRUNVAND E., DAvViS A.: An energy
and bandwidth efficient ray tracing architecture. In Proc. High-Performance
Graphics (2013), pp. 121-128.

KoprTA D., SHKURKO K., SPjUT J., BRUNVAND E., DAvIS A.: Memory

considerations for low energy ray tracing. Computer Graphics Forum 34, 1
(2015), 47-59.

Kim T.-J., SuN X., YOON S.-E.: T-rex: Interactive global illumination of

massive models on heterogeneous computing resources. IFEE Transactions
on Visualization and Computer Graphics 20, 3 (2014), 481—494.

KocH D., TORRESEN J.: FPGASort: A high performance sorting archi-
tecture exploiting run-time reconfiguration on FPGAs for large problem
sorting. In Proc. ACM/SIGDA Int. Symp. Field Programmable Gate Arrays
(2011), pp. 45—54.

KONTKANEN J., TABELLION E., OVERBECK R. S.: Coherent out-of-core
point-based global illumination. Computer Graphics Forum 30, 4 (2011),
1353-1360.

KoOsSkELA M., VIITANEN T., JAASKELAINEN P., TAKALA J.: Half-precision
floating-point ray traversal. In Proc. Joint Conf. Computer Vision, Imaging
and Computer Graphics Theory and Applications (1: GRAPP) (2016),
pp. 171-178.

Bibliography

53

[Lail0]

[LCS7)

[LDG17]

[LDNL15]

[LGS*09]

[LHS*15]

[LKA13]

[LL13]

[LMK17]

[LSH*15]

[LSL*13]

[Lue03]
[LV16]

[LYMO7]

[LYMTO06]

LAINE S.: Restart trail for stackless BVH traversal. In Proc. High-
Performance Graphics (2010), pp. 107-111.

LORENSEN W. E., CLINE H. E.: Marching cubes: A high resolution 3D
surface construction algorithm. In ACM SIGGRAPH Computer Graphics
(1987), vol. 21, pp. 163—-169.

L1 Z., DENG Y., GU M.: Path compression kd-trees with multi-layer
parallel construction a case study on ray tracing. In Proc. ACM SIGGRAPH
Symp. Interactive 3D Graphics and Games (2017), p. 16.

Liv X., DENG Y., N1 Y., LiL Z.: FastTree: A hardware KD-tree construc-
tion acceleration engine for real-time ray tracing. In Proc. Conf. Design,
Automation and Test in Europe (2015), pp. 1595—1598.

LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE D., MANOCHA
D.: Fast BVH construction on GPUs. Computer Graphics Forum 28, 2
(2009), 375—384.

LEEe W.-J., HWANG S. J., SHIN Y., Y00 J.-J., Ryu S.: An efficient hybrid
ray tracing and rasterizer architecture for mobile gpu. In Proc. SIGGRAPH
Asia Symp. Mobile Graphics and Interactive Applications (2015), p. 2.

LAINE S., KARRAS T., A1LA T.: Megakernels considered harmful: Wave-
front path tracing on GPUs. In Proc. High-Performance Graphics (2013),
pp- 137-143.

Lanman D., LUEBKE D.: Near-eye light field displays. ACM Transactions
on Graphics 32, 6 (2013), 220.

Lin M. C., MANOCHA D., Kim Y. J.: Collision and proximity queries. In
Handbook of Discrete and Computational Geometry. CRC Press, 2017. To
appear.

LEE W.-J., SHIN Y., HWANG S. J., KANG S., Y00 J.-J., RYU S.: Reorder
buffer: An energy-efficient multithreading architecture for hardware MIMD
ray traversal. In Proc. High-Performance Graphics (2015), pp. 21-32.

LEE W., SHIN Y., Leg J., Kim J., Nau J.-H., JunG S., LEE S., PARK
H., HAN T.: SGRT: A mobile GPU architecture for real-time ray tracing.
In Proc. High-Performance Graphics (2013), pp. 109—119.

LUEBKE D. P.: Lewvel of detail for 3D graphics. Morgan Kaufmann, 2003.

LiIKTOR G., VAIDYANATHAN K.: Bandwidth-efficient BVH layout for
incremental hardware traversal. In Proc. High-Performance Graphics (2016),
pp. H1-61.

LAUTERBACH C., YOON S.-E., MANOCHA D.: Ray-strips: A compact mesh
representation for interactive ray tracing. In Proc. IEEE Symp. Interactive
Ray Tracing (2007), pp. 19-26.

LAUTERBACH C., YOON S.-E., MANOCHA D., TurT D.: RT-DEFORM:
Interactive ray tracing of dynamic scenes using BVHs. In Proc. IEEE Symp.
Interactive Ray Tracing (2006), pp. 39—46.

54

Bibliography

[LYTMOS]

[Ma05]

[Mah05]

[MB90]

[MB16]

[MB17]

[MDPN16]

[MMAMO7]

[MVCK17]

[MWO6]

[ND12]

[NKK*14]

[NKP*15]

[NPK*10]

[NPP*11]

LAUTERBACH C., YOON S.-E., TANG M., MANOCHA D.: ReduceM:
Interactive and memory efficient ray tracing of large models. Computer
Graphics Forum 27, 4 (2008), 1313—-1321.

Ma W.: Subdivision surfaces for CAD—an overview. Computer-Aided
Design 37, 7 (2005), 693—709.

MAHOVSKY J. A.: Ray tracing with reduced-precision bounding volume
hierarchies. PhD thesis, University of Calgary, 2005.

MacDoNALD J. D., BooTH K. S.: Heuristics for ray tracing using space
subdivision. The Visual Computer 6, 3 (1990), 153—-166.

MEISTER D., BITTNER J.: Parallel BVH construction using k-means
clustering. The Visual Computer 32, 6-8 (2016), 977—-987.

MEISTER D., BITTNER J.: Parallel locally-ordered clustering for bounding
volume hierarchy construction. IEEE Transactions on Visualization and
Computer Graphics (2017). Early access.

McCoMBE J. A., DWYER A., PETERSON L. T., NESSE N.: Systems and

methods for 3-d scene acceleration structure creation and updating, Aug. 30
2016. US Patent 9,430,864.

MANssSON E., MUNKBERG J., AKENINE-MOLLER T.: Deep coherent ray
tracing. In Proc. IEEE Symp. Interactive Ray Tracing (2007), pp. 79—85.

MasuiMO S., VAN CHU T., KistE K.: Cost-effective and high-throughput
merge network: Architecture for the fastest FPGA sorting accelerator. ACM
SIGARCH Computer Architecture News 44, 4 (2017), 8—13.

MAaHOVSKY J., WYVILL B.: Memory-conserving bounding volume hier-
archies with coherent raytracing. In Computer Graphics Forum (2006),
vol. 25, pp. 173—-182.

NovAK J., DAcCHSBACHER C.: Rasterized bounding volume hierarchies.
Computer Graphics Forum 31, 2pt2 (2012), 403—412.

Nau J.-H., Kwon H., Kim D., JEonG C., PARK J., HAN T., MANOCHA
D., PARK W.: RayCore: A ray-tracing hardware architecture for mobile
devices. ACM Transactions on Graphics 33, 5 (2014), 162:1-15.

Nau J.-H., Kim J., PARK J., LEE W., PARK J., JUNG S., PARK W.,
MANOCHA D., HAN T.: HART: A hybrid architecture for ray tracing ani-
mated scenes. IEEE Transactions on Visualization and Computer Graphics
21, 3 (2015), 389—-401.

NaH J.-H., PArRk J.-S., Kim J.-W., PARk C., HAN T.-D.: Ordered
depth-first layouts for ray tracing. In SIGGRAPH Asia Sketches (2010),
p- 55.

Nau J.-H., PARK J.-S., PARK C., Kim J.-W., JuNG Y.-H., PARK W.-C,
Han T.-D.: T&I engine: Traversal and intersection engine for hardware
accelerated ray tracing. ACM Transactions on Graphics 30, 6 (2011), 160.

Bibliography

95

[ODJ16]

[PBMHO02]

[Pin10]

[PJB13]

[PJHI16]

[PKGHY7]

[PL10]

[Pow15]

[RGDOY)]

[RHAZ06]

[RSHO5]

[RTKPS16]

[SCPC15]

[SE10]

[SFD09)

OGAKI S., DEROUET-JOURDAN A.: An N-ary BVH child node sorting

technique for occlusion test. Journal of Computer Graphics Techniques 5, 2
(2016), 22-37.

PurceLL T. J., Buck I., MARK W. R., HANRAHAN P.: Ray tracing on
programmable graphics hardware. ACM Transactions on Graphics 21, 3
(2002), 703—-712.

PinTo A. S.: Adaptive collapsing on bounding volume hierarchies for
ray-tracing. In Proc. Eurographics (Short Papers) (2010), pp. 73—76.

PouL D.; JouNsoN G. S., BOLKART T.: Improved pre-warping for wide
angle, head mounted displays. In Proc. ACM Symp. Virtual Reality Software
and Technology (2013), pp. 259—262.

PHARR M., JAKOB W., HUMPHREYS G.: Physically based rendering: From
theory to implementation. Morgan Kaufmann, 2016.

PHARR M., KoLB C., GERSHBEIN R., HANRAHAN P.: Rendering complex
scenes with memory-coherent ray tracing. In Proc. SIGGRAPH (1997),
pp- 101-108.

PANTALEONI J., LUEBKE D.: HLBVH: Hierarchical LBVH construction
for real-time ray tracing of dynamic geometry. In Proc. High-Performance
Graphics (2010), pp. 87-95.

PowERVR: PowerVR ray tracing, 2015. Accessed Oct 18, 2017. URL:
https://imgtec.com/legacy-cpu-cores/ray-tracing/.

Ramant K., GRIBBLE C. P., DAvIS A.: Streamray: A stream filtering
architecture for coherent ray tracing. In ACM SIGPLAN Notices (2009),
vol. 44, pp. 325-336.

RAABE A., HOCHGURTEL S., ANLAUF J., ZACHMANN G.: Space-efficient
FPGA-accelerated collision detection for virtual prototyping. In Proc.
Conf. Design, Automation and Test in Europe: Designers’ Forum (2006),
pp- 206—211.

RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-level ray tracing algorithm.
ACM Transactions on Graphics 24, 3 (2005), 1176—1185.

RICHTER-TRUMMER T., KALKOFEN D., PARK J., SCHMALSTIEG D.:
Instant mixed reality lighting from casual scanning. In IFEFE Int. Symp.
Mized and Augmented Reality (2016), pp. 27— 36.

SRIVASTAVA A., CHEN R., PrRAsANNA V. K., CHELMIS C.: A hybrid
design for high performance large-scale sorting on FPGA. In Proc. Int.
Conf. Reconfigurable Computing and FPGAs (2015), pp. 1-6.

SEGOVIA B., ERNST M.: Memory efficient ray tracing with hierarchical
mesh quantization. In Proc. Graphics Interface (2010), pp. 153—160.

STicH M., FRIEDRICH H., DIETRICH A.: Spatial splits in bounding volume
hierarchies. In Proc. High-Performance Graphics (2009), pp. 7—13.

https://imgtec.com/legacy-cpu-cores/ray-tracing/

56

Bibliography

[SGK*17]

[SKBD12]

[SKKB09)

[SLM*16]

[SMD*06]

[Smi87]

[SSKN07]

[SWS02]

[Tay12]

[UVCK16]

[VAMS16]

[VHB14]

[VKP10]

[Wal04]

SHKURKO K., GRANT T., KopTAa D., MALLETT 1., YUKSEL C., BRUN-
VAND E.: Dual streaming for hardware-accelerated ray tracing. In Proc.
High-Performance Graphics (2017), p. 12.

SpJjut J., KopTA D., BRUNVAND E., DAVIs A.: A mobile accelerator
architecture for ray tracing. In Proc. Workshop on SoCs, Heterogeneous
Architectures and Workloads (2012).

SpjuT J., KENSLER A., KopPTA D., BRUNVAND E.: TRaX: A multicore
hardware architecture for real-time ray tracing. IEFE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 28, 12 (2009),
1802-1815.

SELGRAD K., LIER A., MARTINEK M., BUCHENAU C., GUTHE M., KRANZ
F., SCHAFER H., STAMMINGER M.: A compressed representation for ray
tracing parametric surfaces. ACM Transactions on Graphics 36, 1 (2016),
5.

StorL G., MArRk W. R., DJEU P., WANG R., ELHASSAN I.: Razor: An
architecture for dynamic multiresolution ray tracing. Tech. rep., University
of Texas at Austin, 2006.

SMITH A. J.: Line (block) size choice for CPU cache memories. IEEFE
Transactions on Computers 100, 9 (1987), 1063—1075.

SHEVTSOV M., SouPIKOV A., KAPUSTIN A., NOVOROD N.: Ray-triangle
intersection algorithm for modern CPU architectures. In Proc. GraphiCon
(2007), vol. 2007, pp. 33—39.

SCHMITTLER J., WALD I., SLUSALLEK P.: SaarCOR: a hardware architec-
ture for ray tracing. In Proc. ACM SIGGRAPH/EUROGRAPHICS Conf.
Graphics Hardware (2002), pp. 27—36.

TAYLOR M. B.: Is dark silicon useful? Harnessing the four horsemen of the
coming dark silicon apocalypse. In Proc. Design Automation Conf. (2012),
pp. 1131-1136.

Usut T., Van CuU T., Kist K.: A cost-effective and scalable merge sorter
tree on FPGAs. In Proc. Int. Symp. Computing and Networking (2016),
pp. 47—56.

VAIDYANATHAN K., AKENINE-MOLLER T., SALVI M.: Watertight ray
traversal with reduced precision. Proc. High-Performance Graphics (2016).

VINKLER M., HAVRAN V., BITTNER J.: Bounding volume hierarchies
versus kd-trees on contemporary many-core architectures. In Proc. Spring
Conf. Computer Graphics (2014), pp. 29—36.

VAN KrREVELEN D. W. F., POELMAN R.: A survey of augmented reality
technologies, applications and limitations. International Journal of Virtual
Reality, 9 (2010), 220.

WALD 1.: Realtime Ray Tracing and Interactive Global Illumination. PhD
thesis, Saarland University, Germany, 2004.

Bibliography 57

[Wal07] WALD I.: On fast construction of SAH-based bounding volume hierarchies.
In Proc. IEEE Int. Symp. Interactive Ray Tracing (2007), pp. 33—40.

[WBBO0g] WaLD 1., BENTHIN C., BouLos S.: Getting rid of packets - efficient SIMD
single-ray traversal using multi-branching BVHs. In Proc. IEEE Int. Symp.
Interactive Ray Tracing (2008), pp. 49—57.

[WBKPO08] WALTER B., BALA K., KULKARNI M., PINGALI K.: Fast agglomerative
clustering for rendering. In Proc. IEEE Symp. Interactive Ray Tracing
(2008), pp. 81—86.

[WBS03] WaALD I., BENTHIN C., SLUSALLEK P.: Distributed interactive ray trac-
ing of dynamic scenes. In Proc. IEEE Symp. Parallel and Large-Data
Visualization and Graphics (2003), IEEE Computer Society, p. 11.

[WBS06] WoopP S., BRUNVAND E., SLUSALLEK P.: Estimating performance of a
ray-tracing ASIC design. In Proc. IEEE Symp. Interactive Ray Tracing
(2006), pp. 7—-14.

[WBS07] WaLD 1., BouLos S., SHIRLEY P.: Ray tracing deformable scenes using
dynamic bounding volume hierarchies. ACM Transactions on Graphics 26,
1 (2007), 6.

[WIPOS] WALD 1., Iz T., PARKER S. G.: Fast, parallel, and asynchronous con-

struction of BVHs for ray tracing animated scenes. Computers & Graphics
32,1 (2008), 3—13.

[WKO6] WACHTER C., KELLER A.: Instant ray tracing: The bounding interval
hierarchy. In Proc. Eurographics Conf. Rendering Techniques (2006), pp. 139—
149.

[WMG*09] WaLp I., MARK W. R., GUNTHER J., BourLos S., Iz T., HuNT W.,
PARKER S. G., SHIRLEY P.: State of the art in ray tracing animated
scenes. Computer Graphics Forum 28, 6 (2009), 1691 -1722.

[WMS06] Woop S., MARMITT G., SLUSALLEK P.: B-kd trees for hardware accel-
erated ray tracing of dynamic scenes. In Proc. ACM SIGGRAPH/EURO-
GRAPHICS Conf. Graphics Hardware (2006), pp. 67—77.

[WRK*16] WEIER M., RoTH T., KRUIJFF E., HINKENJANN A., PERARD-GAYOT A.,
SLUSALLEK P., L1 Y.: Foveated real-time ray tracing for head-mounted
displays. Computer Graphics Forum 35, 7 (2016), 289—298.

[WSBWO01] WaLD 1., SLUSALLEK P., BENTHIN C., WAGNER M.: Interactive rendering
with coherent ray tracing. Computer Graphics Forum 20, 3 (2001), 153—165.

[WSS05) WOOP S., SCHMITTLER J., SLUSALLEK P.: RPU: a programmable ray

processing unit for realtime ray tracing. ACM Transactions on Graphics
24, 3 (2005), 434—444.

[WWB*14] WaLp 1., Woop S., BENTHIN C., JOHNSON G. S., ERNST M.: Embree:
a kernel framework for efficient CPU ray tracing. ACM Transactions on
Graphics 33, 4 (2014), 143.

58

Bibliography

[YCK*09]

[YCMO07]

[YKL17]

[YL14]

[YMO6]

[ZCP16]

[ZJL*15]

[ZNA15]

[ZU06]

Yu I., Cox A., Kim M. H., RiTscHEL T., GROSCH T., DACHSBACHER
C., Kautz J.: Perceptual influence of approximate visibility in indirect
illumination. ACM Transactions on Applied Perception 6, 4 (2009), 24.

YooN S.-E., CURTIS S., MANOCHA D.: Ray tracing dynamic scenes using
selective restructuring. In Proc. Furographics Conf. Rendering Techniques
(2007), pp. 73—84.

YLITIE H., KARRAS T., LAINE S.: Efficient incoherent ray traversal on
GPUs through compressed wide BVHs. In Proc. High-Performance Graphics
(2017), p. 4.

YIN M., L1 S.: Fast BVH construction and refit for ray tracing of dynamic
scenes. Multimedia Tools and Applications 72, 2 (2014), 1823—-1839.

YOON S.-E., MANOCHA D.: Cache-efficient layouts of bounding volume
hierarchies. Computer Graphics Forum 25, 3 (2006), 507—-516.

ZHANG C., CHEN R., PRASANNA V.: High throughput large scale sorting
on a CPU-FPGA heterogeneous platform. In Proc. IEEFE Int. Parallel and
Distributed Processing Symp. Workshops (2016), pp. 148—155.

ZWICKER M., JAROSZ W., LEHTINEN J., MoON B., RAMAMOORTHI R.,
RousseLLE F., SEN P., SOLER C., YOON S.-E.: Recent advances in
adaptive sampling and reconstruction for Monte Carlo rendering. Computer
Graphics Forum 84, 2 (2015), 667—681.

ZEIDAN M., Nazmy T., AReErF M.: GPU-based out-of-core HLBVH
construction. In Proc. Eurographics Symposium on Rendering - FExperimental
Ideas € Implementations (2015).

ZuNicAa M. R., UHLMANN J. K.: Ray queries with wide object isolation
and the de-tree. Journal of Graphics Tools 11, 3 (2006), 27—45.

Publications

[P1] Publication 1

[P1] VIITANEN T., KOSKELA M., JAASKELAINEN P., KuLTALA H., TAKALA J.:

MergeTree: a HLBVH constructor for mobile systems.
In SIGGRAPH Asia Technical Briefs (2015), p. 12.

MergeTree: A HLBVH Constructor for Mobile Systems

Timo Viitanen

Matias Koskela Pekka Jadskeldinen Heikki Kultala Jarmo Takala *
Tampere University of Technology, Finland
Stack 5KB
Binned
SAH unit
| o | Write

128KB

Scratchpad

A

FIFO

Hierarchy
emitter

Figure 1: Proposed hardware architecture. RF: Register File. SAH: Surface Area Heuristic.

Abstract

Powerful hardware accelerators have been recently developed that
put interactive ray-tracing even in the reach of mobile devices.
However, supplying the rendering unit with up-to date accelera-
tion trees remains difficult, so the rendered scenes are mostly static.
The restricted memory bandwidth of a mobile device is a chal-
lenge with applying GPU-based tree construction algorithms. This
paper describes MergeTree, a BVH tree constructor architecture
based on the HLBVH algorithm, whose main features of interest are
a streaming hierarchy emitter, an external sorting algorithm with
provably minimal memory usage, and a hardware priority queue
used to accelerate the external sort. In simulations, the resulting
unit is faster by a factor of three than the state-of-the art hardware
builder based on the binned SAH sweep algorithm.

CR Categories: 1.3.1 [Computer Graphics]: Hardware
Architecture—Graphics Processors 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing;

Keywords: ray-tracing, ray-tracing hardware, bounding volume
hierarchy, BVH, HLBVH

1 Introduction

Ray-tracing is a promising rendering technique for mobile systems.
The runtime of the algorithm scales more with the number of pixels
than the number of drawn primitives, making it ideal for small dis-
plays. Effects such as shadows, reflection and global illumination
are more natural to express than in traditional rasterization based
architectures. In proposed augmented reality applications physi-
cally based ray-tracing would seamlessly overlay virtual objects on
a real environment. In recent years, increasingly powerful mobile

*e-mail:{timo.2.viitanen, matias.koskela,
heikki.kultala, jarmo.takala} @tut.fi

pekka.jaaskelainen,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions @acm.org.

SA'15 Technical Briefs, November 02 — 06, 2015, Kobe, Japan.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3830-8/15/11...$15.00

DOI: http://dx.doi.org/10.1145/2820903.2820916

ray-tracing accelerators have been developed [Lee et al. 2013; Nah
et al. 2014]. However, these units have mostly been reliant on a pre-
built acceleration datastructure, restricting them to static scenes.

Currently the fastest GPU tree builders such as HLBVH [Garanzha
etal. 2011] use a Bounding Volume Hierarchy (BVH) datastructure,
and are based on sorting primitives according to the morton codes
of their centroids, so this approach is interesting for a custom hard-
ware unit. However, a direct adaptation of the GPU algorithms to a
mobile context is hampered by memory bandwidth limitations: re-
cent high-end mobile SoCs have an order-of-magnitude less mem-
ory bandwidth than high-end GPUs. Special techniques are nec-
essary to cope with this environment, for example, mobile GPUs
conserve bandwidth by means of tiling and texture compression.In
this paper, we propose the first custom hardware architecture for
HLBVH, which minimizes bandwidth usage through external sort-
ing and streaming hierarchy emission. The architecture is evaluated
by building a cycle-level simulator.

2 Related work

In the RayCore architecture [Nah et al. 2014], the scene geome-
try is split into two parts with separate acceleration trees: a small
dynamic part is rebuilt on each frame using a hardware unit, and a
larger static part is pre-built. Each ray traverses both trees to find the
nearest intersection. The HART system [Nah et al. 2015] updates
the BVH tree with hardware-accelerated refir operation instead of
running a full rebuild on each frame. Since tree quality degrades
with each refit, asynchronous rebuilds are run on the CPU to refresh
it. Our design would be useful as a component in either system: in
a refit-based renderer the faster asynchronous rebuilds would help
the system adapt to sudden changes in the scene, while in a two-part
system a larger dynamic part could be kept up to date.

Doyle et al. [2013] propose the first BVH construction hardware
unit, which performs a binned Surface Area Heuristic (SAH)
sweep. Our proposed design uses a similar but scaled-down unit
as a subcomponent for the HLBVH top-level build stage.

The FastTree unit [Liu et al. 2015] uses Morton codes for k-d tree
construction, and is the fastest k-d tree constructor hardware so
far. They use a memory-intensive radix sort, but this does not ap-
pear to harm performance, since k-d trees are much more compute-
intensive to construct than BVHs.

3 Algorithm

Table 1: Sorting algorithm comparison in tree construction, 32B
10 words / primitive.

Prim. | Sorting | BVH | total
read ‘ write ‘
Sort Morton codes (8B per element)

Radix-16 counting sort 10 48 24 82
Multimerge, 1 pass 10 4 24 38
Multimerge, 2 pass 10 8 24 42

Sort AABBs (28B per element)

Radix-16 counting sort 10 168 14 192
Multimerge, 1 pass 10 14 14 38
Multimerge, 2 pass 10 28 14 52

The LBVH algorithm [Lauterbach et al. 2009] produces BVH trees
by sorting the input primitives according to their Morton codes.
After this, a BVH hierarchy can be emitted by binning primitives
based on the bits of their Morton codes: e.g., the highest level split
is generated, by placing primitives with MSB 0 and 1 in the left and
right children of the top node, respectively. Lower hierarchy levels
correspond to lower bits. This process is called hierarchy emission.
The HLBVH algorithm [Garanzha et al. 2011] improves tree qual-
ity by generating the top levels of the tree with the slower binned
SAH sweep algorithm.

Sorting accounts for much of the memory traffic in HLBVH, so we
attempt to optimize it by referring to literature on external sorting
data on slow magnetic disc drives. One optimal sorting algorithm
in this environment is the multimergesort [Aggarwal and Vitter
1988]. Given IV data elements that reside in slow external memory,
a fast local memory of size M, and a preferred read length of B,
the multimergesort first performs partial sorts for N/M M-sized
blocks. After this, the algorithm runs multimerge passes which
merge M /B sorted blocks into a larger block. Table 1 compares
the minimum memory accesses of multimerge sorting in the con-
text of tree construction to a typical radix-16 sort which takes eight
passes through the data. If the scene can be processed in one pass,
the multimerge sort uses less memory by a factor of two.

In addition to the choice of algorithm, we must also choose whether
to sort the original primitives (40 bytes per item), their Axis-Aligned
Bounding Boxes (AABBs) (28 bytes), or Morton code-reference
pairs (8 bytes). At first Morton code sorting appears optimal, but
it has the drawback that, when generating the hierarchy, we need
to random access every triangle in the scene to generate AABBs.
Table 1 shows that for a 1-pass multimerge sort, AABB sorting
uses as much memory bandwidth as Morton code sorting, and the
memory accesses are split more evenly between different stages of
the algorithm. Therefore, we focus on AABB sorting in this work.
However, this causes some overhead for large scenes that require
more than one pass.

v) All blocks done
Multi-merge; Top-level
._’I Block read > Blockmerge | o it hierarchy [>] SAH build |—’.

Figure 2: Control state diagram.

4 Architecture

The overall proposed MergeTree architecture is showin in Figure 1,
and it operates according to the state diagram of Figure 2. The unit
first performs (%] partial sorts, which are split into block read and
block merge states. Next, the sorted M-sized buffers are merged
together, and the result is fed into a streaming hierarchy emitter,
which produces BVH nodes. Finally, a high-level hierarchy is built
with a separate binned SAH sweep unit.

4.1 Primitive input

We internally store data elements as AABBs augmented with a
memory reference and a Morton code, for a total of 256 bits. The
Morton codes are computed on the fly when reading in data, and
omitted when writing out to memory.

4.2 Multi-merge hardware

A standard software implementation of the multimergesort algo-
rithm places merge candidate values from each buffer into a heap
datastructure. On each iteration, a minimum value is taken from the
top of the heap, and the next value from the same block is inserted.
A sequential heap implementation takes log n compare-swaps to
insert an element, which is too slow. Fortunately, the process can
be pipelined by inserting separate memory blocks and control hard-
ware for each level of the heap. A similar hardware structure was
proposed by Moon et al. [2000] to implement a hardware priority
queue for networking hardware: we refer to their paper for a full
discussion of the design tradeoffs.

It is difficult to fit any logic on the same clock cycle with the ac-
cess delay of a large scratchpad, so we have the merge hardware
output AABBs once per two cycles: one cycle is reserved for the
memory access, and the other is used to perform the top-level heap
insertion, which produces the next read address. The heap inser-
tion cycle can be used to move data from the read queue into the
scratchpad. This allows high clock frequencies to be reached, and
also fits well with the streaming hierarchy emitter whose straight-
forward implementation processes, on average, one input per two
cycles. The scratchpad is split into at least two banks, to allow con-
current reads of the selected AABB (for hierarchy emission) and
the next AABB (for heap insertion).

We schedule memory reads by means of double buffering: each
block in the main memory is represented by two buffers on the
scratchpad, and when one buffer has been processed, a read is
queued to replace it. If two buffers are processed from the same
block before replacement data arrives, the merge heap stalls. It
would also be interesting to evaluate the other well-known read
scheduling technique of forecasting, where a second heap stores
the final element of each buffer, and predicts which buffer will have
to be replaced first.

4.3 Streaming hierarchy emission

In order to minimize external memory traffic, we stream sorted
AABBs to a hardware state machine which implements a serial
LBVH hierarchy emission algorithm. Figure 3 shows a visual ex-
ample of the algorithm in operation. The generated inner node
topology corresponds to the shown Morton code bits. Each node
is output when sufficient primitives have been read to determine its
child bounding boxes, resulting in a bottom-up order. Stack entries
represent inner nodes whose right child is unknown: they consist of
a left child AABB and a hierarchy level. For example, the final read
leaf in Figure 3 gives sufficient information to generate the last 3 in-
ner nodes on cycles 6, 7 and 8. Nodes with identical Morton codes

0
0
1
B|

Ml =] =

1
1
(]
D

1
0
0
C

> o]o[o

Morton codes

Legend
. Node in memory

Node in memory
and stack

7. 07) pPop B Pop

Node used as input
for this cycle
+~*, Node implied by
*+-+ Morton code bits

Figure 3: Example of streaming hierarchy emission, which processes the given sequence of leaf nodes (A-E) and morton codes (left) to
produce inner nodes (F-1). Hierarchy level of inner nodes is determined by (emphasized) highest differing bit of corresponding Morton codes.

are handled by extracting differing bits from their indices, which
generates a somewhat balanced subtree. Generating n inner nodes
requires 2n stack operations. We assume the hardware can perform
one stack operation per cycle. The full algorithm is as follows:

while True do
input <— nextInput ;
read nextInput from FIFO;
diff < highest diff. bit of input and nextInput ;
while — stack.empty() N stack.top().diff < diff do
BVHNode n(stack.pop().aabb, input) ;
input <— n.aabb ;
output[idx++] <— n ;
end
stack.push(input, diff) ;

end

4.4 Partial sort

The merge sorting hardware described above is straightforward to
reuse for the scratchpad-sized partial sort, by configuring the merge
heap so that each buffer on scratchpad is the final one is in its block,
and no further buffers are fetched. Then the only additional work
needed is to sort every buffer-sized subblock prior to merging. This
is easy to implement concurrently with data reading, by streaming
the read data into a small number of buffer-sized subblock sorters,
which use a state machine to perform an insertion sort at a rate of
one compare-and-swap per second.

4.5 Top-level SAH build

The HLBVH algorithm improves tree quality by constructing the
highest levels of the tree with a binned SAH sweep. This can be per-
formed with the hardware unit proposed by Doyle et al. [2013], but
since the input size is small, a scaled-down version could be used
with fewer computational resources. To evaluate the design, we use
8 bins, one parallel worker, and six pipelines for split AABB gener-
ation from bin AABBs, SAH computation, and split plane compu-
tation. For evaluation, we assume conservatively that the unit takes
32 cycles to do these tasks after processing a range of primitives,
but it is likely that an optimized design can interleave some of this
computation with another processing sweep.

5 Evaluation

Table 2: Memory traffic comparison (MB).

\ | [Doyle etal. 2013] [Proposed |

Cloth (92K) 25 15
Conference (331K) 120 53
Dragon (871K) 380 140

In order to evaluate the architecture, we developed a cycle-level
C++ simulator. The main components are simulated with cycle-
accurate state machines. We model the external memory using the
GDDR3 memory controller model from GPGPUSim, configured
as 1GHz, 32-bit, dual channel, which is close to LPDDR3 in re-
cent SoCs [Lee et al. 2013]. We assume an operating frequency of
1GHz, which we think is realistic at least in a recent process tech-
nology. The parameters of the hardware unit are set at M = 4096,
B = 8, resulting in a unit with a 128KB scratchpad memory, which
handles up to 1M triangles in one pass, and performs a 256-way
merge. We include four block sorters for scalability. For com-
parison, Liu et al. [2015] have a 172KB scratchpad and Doyle et
al. [2013] use 432KB.

The simulator was run on five test scenes, and the resulting trees
were verified in a software ray-tracer. In Tables 3 and 2, the per-
formance and memory traffic are compared to related work. Our
construction speed is ca. 3 times faster than previous BVH hard-
ware, 5 times faster than k-d tree hardware, and catches up with
a GPU implementation of HLBVH except for the largest Dragon
scene, though we are still behind the latest GPU implementation of
LBVH. The speedup can be attributed to our choice of sorting al-
gorithm: as shown in Table 1, a HLBVH based on a conventional
radix sort would use 2x more memory bandwidth and, therefore,
construction time. Figure 4 shows an example run of the simulator,
using the small sibenik scene for clarity. The different execution
states are visible: first the the unit runs block sorts which alternate
between utilizing the subblock sorters and the merge heap. Most
of the execution time is spent on the multimerge phase, which is
clearly memory-limited: the merge heap runs at less than one-third
of maximum capacity. Finally, the top-level SAH build is more
compute-intensive and uses little memory. The unit utilized 82%
of theoretical maximum bandwidth in this scene, and an average
of 87% across all scenes, where the SAH build is less significant.
Much of the idle time was due to switching between reads and
writes.

= Block sort === Merge Hierarchy ~ === SAH builder === DRAM

Resource utilization (%)
a
8

o 250 500 750 1000
Time (us)

Figure 4: Simulation trace for the sibenik scene.

= Block sort === Merge Hierarchy === SAH builder === DRAM

Resource utilization (%)

o 250 500 750 1000
Time (us)

Figure 5: Simulation trace with memory bus doubled to 32GB/s.

Table 3: Performance comparison: build times in milliseconds.

GTX 480 GTX 480 Hardware Hardware Hardware

HLBVH LBVH k-d tree SAH BVH HLBVH

[Garanzha et al. 2011] | [Karras 2012] | [Liu et al. 2015] [Doyle et al. 2013] (proposed)

[Mem. BW (GB/s) | 133.9 [133.9 [16 [36 [16] 32 |
Sibenik (75K) - - 6.6 - 0.92 | 0.60 (-35%)
Cloth (92K) 4.8 - - 3 1.02 | 0.62 (-39%)
Fairy (174K) - 0.99 10.8 - 1.98 | 1.24 (-37%)
Conference (331K) 6.2 1.45 17.2 11 3.79 | 2.54 (-33%)
Dragon (871K) 8.1 3.64 522 30 9.74 | 5.93 (-39%)
We performed chip area estimation using the same methodology Acknowledgements

as [Doyle et al. 2013; Liu et al. 2015]. The results indicate an area
of 5.6mm? at 65nm and 1.4mm? when scaled to 28nm as in Liu et
al. The proposed unit is expected to have low power consumption
even compared to previous custom hardware since it performs fewer
external memory accesses as shown in Table 2. The quality of the
produced trees was estimated by computing their SAH and compar-
ing against a binned SAH sweep with 16 splits. The HLBVH trees
were 7% worse on average. The top-level SAH sweep improved
estimated rendering performance by an average of 11% and took an
average of 2% of the runtime, so it appears to be a good tradeoff
except for very small scenes. We investigated how well the design
scales to near-future mobile memory buses by rerunning the sim-
ulations with a doubled bus clock rate. As shown in Table 3, the
build time decreased on average by 37%. Figure 5 shows the exam-
ple sibenik simulator run repeated with the doubled bandwidth. The
main scaling bottleneck is the block merge state, where the maxi-
mum output of the merge hardware is insufficient to saturate the
bus. A possible optimization is to use double buffering, i.e., read
data to one half of the scratchpad while merging the other half.

6 Limitations

One difficulty in the proposed design is handling scenes of over g—g
primitives (1M with the evaluation setup), as they require more than
one multimerge pass. It is simple to add control logic for multiple
passes, but the AABB-sorting algorithm is then suboptimal. An-
other possibility is to enlarge the scratchpad: doubling the memory
size M quadruples the model size that can be processed in one pass.
In our experience at least a 512KB scratchpad memory can run at
1GHz; this would be sufficient for scenes of 16M triangles. We also
have a built-in assumption that the application software can supply
at least approximate scene bounds for generating efficient Morton
codes: otherwise they need a separate pass through the inputs, in-
creasing memory accesses by ca. 26%.

7 Conclusion and Future Work

We described a HLBVH-based BVH constructor architecture opti-
mized for use in mobile devices. The unit is three times faster than
the state of the art, showing that although HLBVH is associated
with massively parallel GPU implementations, it is also suitable for
a fast serial hardware design. The memory usage of the unit is close
to a theoretical lower bound for a sorting-based tree construction,
and simulations indicate that it runs fast enough to saturate current
mobile memory buses, therefore, the build performance is close to
maximum achievable in current mobile systems for this type of al-
gorithm. The unit was evaluated as a standalone builder, but it could
also be used as part of a refit-based system such as [Nah et al. 2015].
We are in the early stages of building an FPGA prototype, and are
interested in also performing CMOS synthesis and place&route for
more accurate area and power estimates.

This research is supported by the TUT doctoral program, Finnish
Funding Agency for Technology and Innovation (project Parallel
Acceleration 2, funding decision 40081/14), and ARTEMIS JU un-
der grant agreement no 621439 (ALMARVI).

References

AGGARWAL, A., AND VITTER, J. 1988. The input/output com-
plexity of sorting and related problems. Communications of the
ACM 31,9, 1116-1127.

DOYLE, M., FOWLER, C., AND MANZKE, M. 2013. A hardware
unit for fast SAH-optimized BVH construction. ACM Transac-
tions on Graphics 32, 4, 139.

GARANZHA, K., PANTALEONI, J., AND MCALLISTER, D. 2011.
Simpler and faster HLBVH with work queues. In Proceedings of
the ACM SIGGRAPH Symposium on High Performance Graph-
ics, ACM, 59-64.

KARRAS, T. 2012. Maximizing parallelism in the construc-
tion of BVHs, octrees, and k-d trees. In Proceedings of the
Fourth ACM SIGGRAPH/Eurographics Conference on High-
Performance Graphics, Eurographics Association, 33-37.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH construction on GPUs. In
Computer Graphics Forum, vol. 28, Wiley Online Library, 375—
384.

LEE, W., SHIN, Y., LEE, J., KiM, J., NAH, J., JUNG, S., LEE,
S., PARK, H., AND HAN, T. 2013. SGRT: A mobile GPU
architecture for real-time ray tracing. In Proceedings of the 5th
High-Performance Graphics Conference, ACM, 109-119.

Liu, X., DENG, Y., NI, Y., AND LIL, Z. 2015. FastTree: A
hardware KD-tree construction acceleration engine for real-time
ray tracing. In Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, 1595-1598.

MOON, S.-W., REXFORD, J., AND SHIN, K. 2000. Scalable hard-
ware priority queue architectures for high-speed packet switches.
IEEE Transactions on Computers 49, 11, 1215-1227.

NAH, J., KwoN, H., KiM, D., JEONG, C., PARK, J., HAN, T.,
MANOCHA, D., AND PARK, W. 2014. RayCore: a ray-tracing
hardware architecture for mobile devices. ACM Transactions on
Graphics 33,5, 132.

NAH, J., KiM, J., PARK, J., LEE, W., PARK, J., JUNG, S., PARK,
W., MANOCHA, D., AND HAN, T. 2015. HART: A hybrid
architecture for ray tracing animated scenes. IEEE Transactions
on Visualization and Computer Graphics 21, 3, 389-401.

[P2] Publication 2

[P2] VIITANEN T., KOSKELA M., JAASKELAINEN P., KuLTALA H., TAKALA J.:
MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing.
ACM Transactions on Graphics 36, 5 (2017), 169.

MergeTree: A Fast Hardware HLBVH Constructor for Animated

Ray Tracing

TIMO VIITANEN, MATIAS KOSKELA, PEKKA JAASKELAINEN, HEIKKI KULTALA, and JARMO TAKALA

Tampere University of Technology, Finland

Ray tracing is a computationally intensive rendering technique traditionally
used in offline high-quality rendering. Powerful hardware accelerators have
been recently developed that put real-time ray tracing even in the reach of
mobile devices. However, rendering animated scenes remains difficult, as
updating the acceleration trees for each frame is a memory-intensive pro-
cess. This article proposes MergeTree, the first hardware architecture for
Hierarchical Linear Bounding Volume Hierarchy (HLBVH) construction,
designed to minimize memory traffic. For evaluation, the hardware construc-
tor is synthesized on a 28nm process technology. Compared to a state-of-
the-art binned surface area heuristic sweep (SAH) builder, the present work
speeds up construction by a factor of 5, reduces build energy by a factor of
3.2, and memory traffic by a factor of 3. A software HLBVH builder on a
graphics processing unit (GPU) requires 3.3 times more memory traffic. To
take tree quality into account, a rendering accelerator is modeled alongside
the builder. Given the use of a toplevel build to improve tree quality, the
proposed builder reduces system energy per frame by an average 41% with
primary rays and 13% with diffuse rays. In large (>500K triangles) scenes,
the difference is more pronounced, 62% and 35%, respectively.

CCS Concepts: ® Computing methodologies — Ray tracing; Graphics
processors;

Additional Key Words and Phrases: Ray tracing, ray-tracing hardware,
bounding volume hierarchy, BVH, HLBVH

ACM Reference Format:

Timo Viitanen, Matias Koskela, Pekka Jadskeldinen, Heikki Kultala, and
Jarmo Takala. 2017. MergeTree: A Fast Hardware HLBVH Constructor for
Animated Ray Tracing. ACM Trans. Graph. 36, 5, Article 169 (October
2017), 14 pages.

DOI: http://dx.doi.org/10.1145/3132702

1. INTRODUCTION

Ray tracing is a rendering technique where effects such as shadows,
reflection, and global illumination are more natural to express than
in rasterization.

Authors’ addresses: T. Viitanen, M. Koskela, P. Jadskeldinen, H. Kultala,
and J. Takala; emails: {timo.2.viitanen, matias.koskela, pekka.jaaskelainen,
heikki.kultala, jarmo.takala } @tut.fi.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions @acm.org.

2017 Copyright is held by the owner/author(s). Publication rights licensed
to ACM.

0730-0301/2017/10-ART169 $15.00

DOI http://dx.doi.org/10.1145/3132702

Mainstream use of ray tracing has been restricted to offline ren-
dering, but recent years have seen a concerted effort by the academia
and the industry to enable real-time ray tracing of dynamic scenes.
One prong of this effort has been the development of dedicated
ray-tracing hardware architectures, both based on programmable
processors [47, 48, 53], fixed-function hardware pipelines [32,
41], reconfigurable pipelines [28], and building on conventional,
rasterization-based GPUs [25]. Several works focus on mobile sys-
tems, reasoning that the ray-tracing approach scales well to draw-
ing complex scenes on small displays [48], or aiming to create
mobile augmented-reality experiences with physically based light-
ing [32]. Recently, a commercial mobile GPU IP with ray-tracing
acceleration has been announced alongside a programming API
[44].

Recent ray-tracing hardware accelerators are able enable real-
time ray tracing, so far restricted to high-end desktop GPUs, on
mobile devices. However, they have so far been largely restricted
to scenes with little or no animated content. The reason is that fast
rendering algorithms require the scene to be organized in an accel-
eration data structure such as a Bounding Volume Hierarchy (BVH)
tree. When displaying a dynamic scene, the data structure needs to
be updated or rebuilt on each frame as the scene changes, posing an
additional computational challenge. Given enough animated geom-
etry, construction effort overtakes rendering, as ray tracing scales
logarithmically with the number of scene primitives, while con-
struction algorithms have O(n) [30] or O(n logn) [51] complexity.
On the desktop, tree construction has been the subject of intensive
research, and fast GPU tree builders now exist that organize large
scenes at real-time rates. The fastest builders are based on the Linear
Bounding Volume Hierarchy (LBVH) algorithm by Lauterbach et al.
[30], and the improved Hierarchical LBVH (HLBVH) by Pantaleoni
and Luebke [42], and are able to organize scenes with millions of
triangles in real time. These builders leverage the massive amount of
computing resources and memory bandwidth available on desktop
GPUs, and are, therefore, not directly applicable on mobile systems
with limited resources.

A particular restriction of mobile devices is their limited memory
bandwidth: A high-end mobile System-on-Chip (SoC) has an order
of magnitude less memory bandwidth than a high-end desktop GPU.
CMOS logic scaling has allowed increasingly complex on-chip
computation to fit in the tight power budgets of mobile SoCs, but
the energy cost of off-chip communication has scaled down at a
slower pace and is now very expensive compared to computation.
For example, reading the operands of a double-precision multiply-
add from external memory and writing back the result costs ca.
200 times more energy than the arithmetic itself [24]. Hence, the
design of mobile hardware is an exercise of minimizing memory
accesses to work around the memory bottleneck. Mobile GPUs
incorporate a slew of special architectural techniques to this end,
such as tile-based rendering, texture compression [5], and frame
buffer compression [46]. A similar body of memory-conserving
techiques is emerging for ray-tracing accelerators, including treelet
scheduling [3], streaming data models [28], and quantized trees [25].

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:2 . T. Viitanen et al.

Tree construction for ray tracing is even more memory intensive than
rendering, as the fast sorting-based build algorithms iterate over
datasets of hundreds of megabytes and perform little computation
for each element.

This article focuses on mobile hardware acceleration of the
HLBVH algorithm [42]. HLBVH is interesting as a powerful builder
in its own right and as a component in virtually all build algorithms
that aim for a fast build time [12, 18, 23]. HLBVH is also an inter-
esting target for hardware acceleration, since it does not make heavy
use of floating-point arithmetic, hence, a hardware builder could fit
in a small silicon footprint. We investigate whether the high build
performance of HLBVH on GPU can translate into energy-efficient
operation in a mobile context.

The main contributions of this article are as follows. We pro-
pose the first hardware HLBVH builder architecture, named Merge-
Tree. MergeTree incorporates novel architectural techniques to re-
duce memory bandwidth usage: a hardware-accelerated external
sort and a novel streaming algorithm for joint hierarchy emission
and AABB computation, which operates directly on the sort out-
puts. The proposed architecture is evaluated via logic synthesis and
power analysis on a 28nm Fully Depleted Silicon on Insulator (FD-
SOI) process technology and by means of a system-level model
that includes traversal and intersection hardware. In addition, two
toplevel builds are evaluated as inexpensive postprocessing steps to
improve tree quality. Early simulation results for MergeTree were
reported in a conference brief [49].

Compared to previous work that uses the more expensive binned
SAH algorithm [13], MergeTree gives large improvements in build
performance, energy efficiency, memory traffic, and silicon area at
the cost of reduced tree quality. Toplevel builds are able to recover
much of the quality at low cost. System-level modeling shows that
with large animated scenes, the energy cost of tree construction be-
comes comparable to the cost of rendering and takes up a significant
fraction of a mobile power budget. Hence, the build energy savings
from MergeTree translate into significant system energy savings
despite the slightly lower tree quality. We also observe that most of
the energy footprint in hardware-accelerated tree construction is due
to DRAM traffic. A direct translation of GPU HLBVH algorithms
to hardware, without the proposed memory traffic optimizations,
would have energy consumption and runtime similarly to those in
Reference [13].

This article is organized as follows. Section 2 discusses back-
ground on BVH construction algorithms. Section 3 reviews related
work on hardware tree builders and sorting units. Section 4 dis-
cusses the basic algorithmic approach in this work and tradeoffs,
while Section 5 describes the hardware architecture implementing
the chosen algorithm. In Section 6, the architecture is evaluated by
means of ASIC synthesis and system-level simulations, and a de-
tailed power analysis is presented. Section 7 discusses limitations of
the proposed architecture and future work, and Section 8 concludes
the article.

2. PRELIMINARIES

In a BVH, each node subdivides primitives into two disjoint sets,
whose Axis-Aligned Bounding Boxes (AABB) are stored. If a traced
ray does not intersect an AABB, then all primitives underneath can
be discarded, greatly speeding up the rendering process. A standard
way to evaluate the quality of a BVH tree is its Surface Area
Heuristic (SAH) cost, introduced by Goldsmith and Salmon [19].
The SAH cost of a data structure is the expected cost to traverse a
random non-terminating ray through the scene.

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

A gold-standard way to construct BVH trees is the SAH
sweep [36], a greedy top-down partitioning algorithm that at each
step evaluates all possible axis-aligned splits of the primitives, ac-
cording to their AABB centroids, into two subset. The algorithm
then selects the split with the lowest SAH and repeats recursively
for each subset. Since the basic SAH sweep has a long runtime, of-
ten the binned variation [51] is used instead, which evaluates only,
for example, 8 or 16 possible splits per axis.

Starting with Linear BVH (LBVH) by Lauterbach et al. [30], a
family of GPU construction algorithms has been proposed that are
orders of magnitude faster than SAH-based builders. In LBVH, the
scene primitives are first sorted according to the Morton codes of
their AABB centroids, and then in the process of hierarchy emission,
a BVH hierarchy is built that has a binary radix tree topology with
regards to the sorted Morton codes. Finally, the AABBs of each
node are computed in a bottom-up order.

Pantaleoni and Luebke [42] propose Hierarchical Linear BVH
(HLBVH) with improved build performance and a more compact
memory layout compared to LBVH. They further suggest improving
tree quality by rebuilding upper levels of the tree with a binned
SAH sweep, in an approach called HLBVH+SAH. We use this
terminology in the present work, though several works use HLBVH
to denote HLBVH+SAH. Garanzha et al. [17] and Karras [22] have
further optimized the GPU software implementation of HLBVH,
especially the hierarchy emission that is non-trivial to parallelize.
Most recently, Apetrei [6] combined the hierarchy emission and
AABB calculation stages into a single step for a further speedup.

More complex algorithms have been built around HLBVH that
further improve tree quality. Karras and Aila [23] divide a HLBVH
tree into treelets and rearrange nodes within each treelet in par-
allel to achieve higher tree quality, in an approach later dubbed
Treelet Restructuring BVH (TRBVH). In the Agglomerative TR-
BVH (ATRBVH) of Domingues and Pedrini [12], the exhaus-
tive search of treelet permutations in TRBVH is replaced with
an agglomerative build, yielding nearly the same tree quality at
a fraction of the build time. Garanzha et al. [18] sort primi-
tives according to their Morton codes, but instead of the HLBVH
hierarchy emission, they store primitive counts in a multi-level
grid and perform an approximate SAH sweep. Both TRBVH and
Garangzha et al. [18] also break large triangles with spatial splits
to improve tree quality. Recently, Ganestam and Doggett [16]
proposed a fast, high-quality preprocessing step for triangle
splitting.

3. RELATED WORK

In this section, we introduce related work on hardware architectures
for tree construction and sorting.

3.1 Tree Build and Update Hardware

Some hardware builders have been proposed for k-d trees, an alter-
native acceleration data structure to BVH. The RayCore architec-
ture [39] incorporates a hardware k-d tree builder unit that builds
high levels of the hierarchy with a binned SAH sweep, and switches
to a sorting-based build when the dataset is small enough to fit in
on-chip SRAM. The builder is suitable only for small models, for
example, a 64K triangle scene already takes 0.1 seconds to build.
Therefore, they also design their renderer to use two acceleration
trees: the smaller tree contains all animated geometry and is rebuilt
with the hardware unit. The FastTree unit [34] uses Morton codes
for k-d tree construction, and is the fastest k-d tree constructor hard-
ware so far, at ca. 4 times the performance of the RayCore builder.

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing . 169:3
MergeTree i \
! Pre-sorting stage] Multi-merge stage
! i
i i Merge heap
Control _| } |
signals 1 BVH
i AABB storage > Leafs
! 256KB BUH
Read i ™ Nodes
data !
!
)
sBlock sort
Read FIFO 7 AABBs
requests(—

Fig. 1. The proposed hardware architecture, configured for single-pass tree building for scenes of up to 2M triangles. RF, Register File. BVH, Bounding
Volume Hierarchy. AABB, Axis Aligned Bounding Box. FSM, Finite-State Machine. FIFO, First In First Out buffer.

However, tree quality is not evaluated. They use a memory-intensive
radix sort, but this does not appear to harm performance, since k-d
trees are much more compute-intensive to construct than BVHs, so
their memory interface is not stressed.

In the literature, BVH trees are shown to be less expensive to
build and update than k-d trees. Doyle et al. [13] propose the first
hardware architecture for BVH construction, which implements the
recursive binned SAH sweep algorithm. The architecture was re-
cently prototyped on FPGA [14]. The HART rendering system [40]
updates the BVH tree with hardware-accelerated refit operation in-
stead of running a full rebuild on each frame. Since tree quality
degrades with each refit, asynchronous rebuilds are run on the CPU
to refresh the tree.

The present work is the first hardware implementation of the
HLBVH algorithm, which is the basis for most high-performance
GPU builders. In contrast to GPU implementations of HLBVH [6,
17, 22, 42], we adapt the algorithm for a streaming, hardware-
oriented implementation with minimal memory traffic. The pro-
duced trees remain identical to the original work [42]. Our
main point of comparison is the state-of-the-art builder by Doyle
et al. [13], which implements binned SAH, a more computationally
expensive algorithm. Compared to a refit accelerator [40], the pro-
posed builder is able to handle animations that affect mesh topology,
for example, fluids rendered with Marching Cubes, and can handle
animation frames with entirely new geometry.

3.2 Sorting Hardware

The multi-merge sort approach has recently been used to sort large
bodies of data with FPGAs to accelerate database operations. Koch
and Torrensen [27] implement their multi-merge logic with a tree
of comparators, and merge data from up to 102 input buffers. As a
main difficulty in comparator tree design, they identify the problem
of propagating back-pressure through the tree in a single cycle,
and solve the issue by inserting decoupling FIFOs that split the
tree into smaller sub-trees. Moreover, they pipeline the compare
operations to get a higher operating frequency on FPGA. Casper
et al. [9] further increase throughput by augmenting the top of the
tree with comparators that produce multiple sorted values per cycle.
They demonstrate merges from up to 8K input buffers per cycle, but
in this case require over 2MB of buffer memories. The proposed
accelerator implements a novel multi-merge based on a pipelined
hardware heap rather than a comparator tree, giving a compact
silicon area footprint at the cost of reduced throughput.

1| struct AABB {

float lb_x, 1b_y, lb_z;

float ub_x, ub_y, ub_z;

// 0 if child is an inner node.

int leaf_size;

/ Index of inner node or leaf.

7 int child_idx;
b

struct BVHNode {
: AABB aabbs [2];
}s

BVHNode nodes[N];
5| int leafs [M];

Fig. 2. BVH data structure.

4. ALGORITHM DESIGN

In this section we describe how we adapt Pantaleoni and Lue-
bke’s [42] HLBVH algorithm to reduce memory traffic.

4.1 Data Structure Design

There are several variations of BVHs in the literature, and the chosen
variant can have implications on build performance, so we describe
the layout used in this work in detail here. In this layout, the node
data structure stores the axis aligned bounding boxes of its two chil-
dren and pointers to them. Afra et al. [1] describe this arrangement
as MBVH2. A leaf size field determines whether the child is an-
other node or a leaf. Leafs are contiguous sub-arrays in a leaf table,
bounded by the index and leaf size fields. Each entry in the table
is a pointer to primitive data, which is used for ray-primitive tests
and shading. The complete node data structure is 64 bytes long as
shown in Figure 2.

There are many variations on the above details in the literature.
Sometimes a node only has its own AABB and two child point-
ers, but the two-AABB structure is superior in hardware ray trac-
ing [31]. More importantly, many high-performance ray tracers, for
example. Aila and Laine [4], store primitive data in the leaf table,
foregoing the extra indirection per rendering. Often the primitives
are also preprocessed for faster intersection testing with, for exam-
ple, Shevtsov’s [45] method. Since primitives in the same leaf may
not have been contiguous in the input data, this implies rearranging
the primitives.

The present work opts to use a reference table for two main
reasons. First, we try to make our results compatible with the main
prior work by Doyle [13], which to our best understanding has this
structure. Second, by taking primitive AABBs as input, the resulting

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:4 . T. Viitanen et al.

Table I. Sorting Algorithm Comparison for LBVH Construction

Prim. BVH

read Sort write Total
Sort Morton codes
Radix-16 counting sort 32 192 100 324
Multimergesort, 1 pass 32 16 100 148
Multimergesort, 2 passes 32 32 100 164
Sort AABBs

Radix-16 counting sort 32 768 68 868
Multimergesort, 1 pass 32 64 68 164
Multimergesort, 2 passes 32 128 68 228

Note: External memory traffic in bytes.

architecture is generic to any primitive type for which an AABB
can be computed - some examples of useful primitives are the
pyramidal displacement mapped surfaces in Ref. [39] and indexed-
vertex triangle lists in Ref. [25]. A primitive-leaf table could be
produced as a post-processing step.

4.2 Sorting

Sorting accounts for much of the memory traffic in HLBVH, so we
optimized it by referring to literature on external sorting data on
slow magnetic disc drives. One optimal sorting algorithm in this
environment is the multimergesort [2]. Given N data elements that
reside in slow external memory, a fast local memory of size M,
and a preferred read length of B, the multimergesort first performs
partial sorts for N /M blocks of size M. After this, the algorithm
runs multi-merge passes that merge M/ B sorted blocks into a larger
block. Table I compares the minimum memory accesses of multi-
mergesorting in the context of tree construction to a typical radix-16
sort. Assuming one primitive per leaf, a BVH organizing N primi-
tives has N — 1 nodes. Any builder, then, has unavoidable memory
traffic from primitive input (32B per input AABB) and hierarchy
emission (64B per input AABB for nodes and 4B for the leaf table).
In addition, primitive sorting requires memory accesses.

GPU implementations often use, for example, a radix-16 parallel
prefix sort, which performs eight passes through the data, each pass
reordering the data according to four bits of the sort key. In each
pass the entire data array is read twice and written once. Assuming
the sort operates on 8B Morton code - primitive reference pairs, it
then requires 3 x 8 x 8B = 192B traffic per inpt AABB. Finally,
the joint hierarchy emission and AABB computation stage must
fetch the primitive AABBs referenced by the sort results, adding
32B to the unavoidable 68B output traffic. Out of the total traffic
of 324B, more than half is produced by the sort. Replacing the
radix sort with multimergesort and assuming a small enough scene
to sort in a single pass (2M triangles in the proposed design), the
sort traffic drops to a negligible 16 B, with an additional 16B per
pass. Assuming the AABBs from primitive input may be streamed
on-chip to the block sort stage, and the results of the multi-merge
to the hierarchy emission stage, the sorted pairs are only accessed
twice, for 16B traffic. The total traffic of 148B is less than half that
of the radix sort case.

The reads and writes in Table I are otherwise consequent, ex-
cept when the hierarchy emission stage loads the primitive AABBs
referenced by each sort output, it generates inefficient 32B random
accesses. Consequently, it is interesting to directly sort the primitive
AABB:s instead of references. Direct AABB sorting is clearly inef-
ficient with a radix sort due to the quadrupled sorting traffic. With
multimergesort, the extra traffic is smaller (48B), and nearly offset
by the removed hierarchy emission loads (32B). Total traffic still

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

Partial sort mode (read)

Primitive _|
AABBS

Read 4

requests

TT%
e Joee

Partial sort mode (write)

N 11

Lo paD
> > » Block sort
e P aee

Multi-merge mode

1
Block sort_| Leafs
s y — T Nodes
Read VA
requests ¥

Fig. 3. Operating modes of the proposed architecture.

increases by ca. 11%, but all memory accesses can now be arranged
in long consecutive bursts that are more efficient. If two or more
multi-merge passes are needed, then the advantage of AABB sorting
is less clear. It is, then, desirable to use AABBs as sorting elements
and support as wide a merge as practical, so scenes of interest fit in
a single pass. We use the AABB multi-merge approach as the basis
for the present work. It should be mentioned that, in the extreme,
the primitives themselves could be used as sort elements. It is in-
expensive to add hardware to recompute their AABBs and Morton
codes on demand, so the main cost would be increased memory
traffic and on-chip storage. This approach is efficient for generating
a leaf array with primitive data, discussed in the previous section,
but foregoes genericity of the architecture for different primitives.

5. HARDWARE ARCHITECTURE

This section describes a hardware architecture named MergeTree
that implements the designed construction algorithm. A block dia-
gram of the architecture is shown in Figure 1. The architecture can
be divided into the pre-sorting and multi-merge stages that sort an
array of input AABBs according to their Morton codes, and a hier-
archy stage that processes the sorted AABBs to emit a BVH tree.
It has two operating modes where different sub-modules are active,
as shown in Figure 3. The partial sort mode is used to generate %
AABB arrays small enough to fit in the on-chip AABB storage, while
the hierarchy stage is inactive. In the multi-merge mode, the arrays
are merged into a final sorted sequence and fed into the hierarchy
stage. The multi-merge mode forms the backbone of the present ar-
chitecture: It is a serial process that requires a specialized hardware
pipeline for good performance. In contrast, the partial sorts paral-
lelize well, and could be done with the multi-core CPU or mobile
GPU in a SoC. The partial sorts are only integrated into the Merge-
Tree to reuse hardware from the multi-merge mode. The following
subsections first describe the multi-merge mode resources, and then
the partial sorting scheme.

5.1 Primitive Input

The main data format used for input and internal storage is an
AABB with three lower-bound and three upper-bound coordinates,
amemory reference to primitive data, and a Morton code, for a total
of 256 bits.

5.2 Heap Unit

The main component of the proposed algorithm that requires hard-
ware acceleration is the multi-merge from many input sequences

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing . 169:5

into a single, sorted output stream. Hardware acceleration is neces-
sary, since a sequential heap implementation for a heap of capacity
n takes up to logn compare-swaps to insert an element, which is
too slow for our use. Since comparator trees, used by recent sorting
accelerators [9, 27], appear unreasonably large when scaled to wide
inputs, we use an alternate approach of implementing a pipelined
heap data structure in hardware. In software implementations the
heap is stored in a single array in memory, where the children of an
element can be found with simple arithmetic. However, in custom-
designed hardware, each level of the heap can be implemented as a
separate memory module, and heap operations would then operate
in a pipelined manner, such that a new heap operation can be started
while previous operations are still propagating toward deeper levels.
This hardware structure was proposed by Bhagwan and Lin [8] for
the implementation of large priority queues in telecommunications
processors. Ioannou and Katevenis [20] optimize the design for
clock speed by overlapping stages of computation. In this work, we
largely follow the design of the latter work, and we refer the reader
to their article [20] for details. We support the insert and replace
operations, and implement remove as a replace with a large special-
case value co. Replace operations have a maximum throughput
of one value per two clock cycles, since fully pipelined operation
would need an expensive set of global bypass wires between heap
levels.

Detailed comparison to comparator trees is outside the scope of
this article, but it should be noted that trees have O(n logn) com-
parators with regards to the merge width, and the present design
has O(log n). The heap is, consequently, easier to scale to the wide
merges desired in this work. Our throughput is lower than an op-
timized comparator tree, but since we have a much higher clock
frequency available on ASIC than FPGA, and are sorting larger
data elements, this is less of an issue than in the FPGA works. If
more throughput is desired, then it may be interesting to use a hybrid
scheme similar to that in Reference [9], combining a small toplevel
comparator tree with subtrees implemented as heaps.

5.3 Multi-Merge Unit

The pipelined heap is connected to the rest of the system by a
hardware finite-state machine that initializes the heap, requests re-
placement data from the memory and feeds it into the heap, and
emits output data. To limit the size of the heap, the full primitive
AABBs are stored in a SRAM scratchpad memory, and the heap
only contains Morton codes and DRAM addresses of the corre-
sponding primitives. The scratchpad memory is organized into a
set of double-buffered queues for each block being multi-merged:
When one buffer has been processed, a memory read is queued
to replace it, but processing can continue from the other side of
the double buffer. Only if the second half of the double buffer is
also consumed before replacement input arrives for the first half,
does the multi-merge unit need to stall. With double buffering, the
multi-merge unit provides a degree of memory latency hiding, as
the merge process is likely to visit multiple other buffers between
the B elements of a single buffer. This property depends on the heap
accesses being well distributed between the blocks: If, for example,
the input data are already sorted, performance may suffer.

At the outset of partial sort and multi-merge modes, the FSM
makes memory requests to fill the scratchpad and inserts the initial
elements of each buffer into the empty heap. In steady-state op-
eration, on each even cycle, the finite-state machine reads the top
element of the heap, bit manipulates its DRAM address to find the
scratchpad location of the following data element in the same block,
and begins a SRAM read at that location. On the following cycle

Even cycle Oodd cycle

Multi-merge stage Multi-merge stage

Merge heap

@'. AABB;

storage
(256KB)

storage

(256KB)

1
1
1
1
i
AABB | !
1
1
1 {1
1
1

E

8B

morton(X),
AABB(X)
orton(1), | | - [addr(D) orton(X),
addr(1) laddr(1)+1] oa?;;it

Fig. 4. Steady-state behavior of the multi-merge stage. morton(i): Morton
code, addr(i): scratchpad address and AABB(i) AABB of the ith sorted
element. After the heap outputs a sorted element (1), the control FSM first
fetches its successor (X) from the scratchpad and performs a heap replace
operation. Next, it fetches the original element (1) for output. The unit
alternates between the two states shown: on even cycles a scratchpad read is
initialized with an address read from the heap unit, on odd cycles data is fed
from the scratchpad to the heap, and on the next even cycle, to the output
FIFO.

the SRAM data are available and used for a replace heap operation.
On odd cycles, the AABB corresponding to the previously read
heap-top value is read from scratchpad and is written to the output
FIFO on the next even cycle, simultaneously with the next heap-top
read, in a pipelined manner. Like the heap unit, this design is also
half-pipelined, producing one sorted AABB per two cycles in the
absence of stalls.

Figure 4 demonstrates this steady-state behavior. On the example
even cycle, the scratchpad address addr(1) of a sorted element is
read from the heap, incremented, and used to initialize a scratchpad
read of the element’s successor in the same buffer. On the following
odd cycle the successor’s Morton code morton(X) is available from
the scratchpad and is used to replace the top element of the heap.
Simultaneously, a scratchpad read is initialized with the original
(unincremented) address. On the next even cycle, the sorted ele-
ment’s AABB would be read from the scratchpad and written to the
output, as is done for the previous sorted element (0) in Figure 4.

A separate register array tracks that buffers in the scratchpad are
valid: If the finite-state machine attempts to fetch invalid data, exe-
cution instead stalls until the referenced data is available. Locations
are invalidated when consumed, and validated again when replaced
from memory. When the final element from the given block or scene
is read, a remove operation is performed instead of a replace. To
avoid special-case handling for the possible small buffer at the end
of the scene, it is padded to full size with special-case AABBs with
a higher Morton code than is generated for normal scene geome-
try: These are, then, sorted to the end of the scene and ignored by
subsequent processing.

5.4 Hierarchy Emitter

To minimize external memory traffic, we stream sorted AABBs to
a hardware finite-state machine that implements a serial HLBVH
hierarchy emission algorithm. The hardware unit implements
Algorithm 1, such that a single stack operation is performed per
cycle.

Figure 5 shows a visual example of the algorithm in operation.
The algorithm reads in a sorted stream of AABBs, and computes
the highest differing bit between each pair of successive Morton

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:6 . T. Viitanen et al.

00 01 10 11 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
00))
01 Bloic o « ¢ |BIE[ci¢ ¢ | BEMEG. ¢ | BREG. « | BB
T 1100 1101 input, diff: a, 2 b, 1 c 3 A=(b,c), 3 B=(a,A), 3
gk, d
10 = stack: u IEN(E) [E@. Bl &1 1
€ operation: |stack empty, push 1 <2, push 3> 1, pop 3> 2, pop stack empty, push
1010, 101
11 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10
/’\\/ l’\\/ /’\\/ l’\\/
‘@)
[elocldleit |[alblcla e[| [albcld e[F]| [alolcld e [a]b]c]d e
input, diff:| d, same morton de, 2 f, inf C=(de,f), inf D=(B,C), inf
stack: @GN @3 (@ 3).[de])n @31 i
operation: enlarge leaf 2 < 3, push inf > 2, pop inf > 4, pop finish

Fig. 5. Example of streaming hierarchy emission, which processes the given sequence of primitives ((a)—(f)) and their Morton codes (bottom left) to produce
inner nodes ((A)—~(D)) and leaf table entries for each primitive. Primitives, Morton curve and generated hierarchy are shown in the top left. diff is the highest
differing bit in the morton codes of input and the following primitive, and determines the hierarchy level of the corresponding inner node. If current is an inner
node, then it has the diff of the last primitive it contains: For example, inner node B in Cycle 5 contains primitives a, b, and ¢, and has the diff of c, 3.

ALGORITHM 1: Streaming hierarchy emission algorithm

1 while True do

2 input < nextlnput ;

3 read nextInput from FIFO;

4 while input and nextInput have the same Morton codes
do

input < nextInput ;

read nextInput from FIFO;

input <— combine (input, nextInput);

end

diff < highest diff. Morton bit of input and nextInput ;
10 while — stack.empty() A stack.top().diff < diff do

e % 9w

11 BVHNode n(stack.pop().aabb, input) ;
12 input <— n.aabb ;

13 output.push(n) ;

14 end

15 if diff > highlevel_threshold then

16 ‘ highlevel_output.push(input) ;

17 else

18 ‘ stack.push(input, diff) ;

19 end

20 end

codes, which is interpreted as a hierarchy level for an inner node to
be generated. Based on each input’s hierarchy level, the unit either
concatenates the input into a large leaf (lines 4..8), pushes it into
a small hardware stack, or combines it with the top AABB in the
stack to generate a node. The latter process is then repeated with the
AABB of the generated node used as the input node, until a higher-
level element is found in the stack, or the stack is empty. Each node

is output when sufficient primitives have been read to determine its
child bounding boxes, resulting in a bottom-up, depth-first order.
Stack entries represent inner nodes whose right child is unknown:
They consist of a left child AABB and a hierarchy level. Optionally,
a highlevel_threshold parameter can be supported by the hardware
to emit high-level nodes for a separate toplevel build (lines 15..19),
as in the HLBVH+SAH by Pantaleoni and Luebke [42]. The unit
then generates separate trees for each highlevel grid cell, and outputs
their AABBs to a buffer for postprocessing. When the parameter
is greater than the highest Morton code bit, the unit’s reverts to
conventional HLBVH and outputs a single tree.

An example of the algorithm is shown in Figure 5. In Cycles 1 and
2 in Figure 5, stack entries for nodes on hierarchy levels 2 and 1 are
pushed to the stack: The left child of the level-2 node is the primitive
a, and child of the level-1 node, b. The next encountered hierarchy
level of 3 is higher than the stack-top at level 1, so the stack-top
node A can be completed. On Cycle 4, the next node in stack can be
completed. On Cycle 5, a stack entry containing the entire subtree
constructed so far, is pushed to the stack: It will become the root of
the tree. Cycles 6 through 9 finish the right-side subtree in the same
manner, except that primitives d and e have the same Morton code,
and so are combined to the same leaf. Finally on Cycle 10, the top
node is emitted. Cycles 8..10 also show that processing finishes with
a special-case input AABB with higher Morton code value than in
the rest of the geometry: This causes the remaining stack entries
to be popped. The generated inner node topology in this example
corresponds to the Morton code bits shown in Figure 5.

It is visible that generating » inner nodes requires 2n stack opera-
tions, while enlarging a leaf takes 1 cycle. Since a BVH organizing
m leafs has at most m — 1 nodes, the worst-case runtime of the
emitter is 2m — 2 cycles for for m inputs, when there is exactly
one primitive per leaf. The average throughput of the hierarchy
emitter is, then, the same or higher as that of the multi-merge unit,
but data are consumed at an uneven rate depending on inputs, so

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing . 169:7

a FIFO buffer is required between the two units. Hierarchy emis-
sion finishes by assuming the highest differing bit after the final
sorted primitive is oo, which causes all remaining stack entries to
be popped. The maximum required stack depth is the same as the
number of Morton code bits, that is, possible hierarchy levels.

5.5 Partial Sort

The multi-merge stage described above is straightforward to reuse
for the scratchpad-sized partial sort, by configuring the merge heap
so each double-buffer in the AABB storage is the final one in its
block, and no further buffers are fetched. Then the only additional
hardware needed is logic to sort every buffer-sized sub-block prior to
merging. This is easy to implement concurrently with data reading,
by streaming the read data into a small number of buffer-sized pre-
sorters: our implementation consists of a hardware state machine
performing an insertion sort at a rate of one compare-and-swap per
second, plus one cycle of overhead for each inner loop of the sort.
Multiplexers are inserted to bypass the insertion sorters in the multi-
merge mode, and the hierarchy emitter in the partial sort mode.

5.6 Toplevel Build

Trees produced by HLBVH likely require post-processing for ac-
ceptable quality. The earliest idea proposed in this direction is
HLBVH+SAH [42], where top levels of the BVH hierarchy, cor-
responding to high bits of the Morton code, are rearranged with a
higher-quality algorithm. This toplevel build concept is of particular
interest in a memory-constrained system, as the datasets are small
enough to fit on-chip.

To evaluate toplevel builds, we add a configuration option to our
simulated hardware to emit an array of high-level nodes, which
can then be passed to a separate software or hardware builder. Two
toplevel builders are evaluated in this work: a binned SAH build
using the accelerator of Doyle et al. [13], and a software implemen-
tation of ATRBVH [12]. ATRBVH is itself a LBVH postprocessing
step, but the usage in this article is novel in that we apply the algo-
rithm only to the high-level nodes rather than processing the entire
tree: It is then sufficiently lightweight to give real-time performance
on a mobile CPU.

6. EVALUATION

This section describes first models used for comparison against
the state-of-the-art BVH builder [13]. We then evaluate the per-
formance, silicon area, and power characteristics of the proposed
builder architecture in isolation. Finally, the builders are modeled
as components of a larger rendering system.

6.1 Binned SAH Builder Model

The closest point of comparison for the proposed builder is the
binned SAH architecture proposed by Doyle et al. [13]. The SAH
builder is also of interest as a toplevel builder used to improve the
tree quality of HLBVH trees output by the current work. For eval-
uation, it is interesting to examine the builder in more scenes than
reported in Reference [13] and to consider its energy consumption.

First, memory traffic is modeled by instrumenting a software
binned SAH builder to record build statistics. Traffic is caused by
the BVH output and by large sweeps whose datasets are too long
to fit in local primitive buffers. The architecture instance in Ref-
erence [13] has buffer capacity for 8,192 primitive AABBs. How-
ever, during each sweep, the hardware simultaneously produces
input data for two child sweeps: In some cases, both children could

Table II. Memory Traffic Model Validation

Mem. traffic (MB)
Scene Builder [13] Estimated
Toasters 2 1
Fairy 25 25
Conference 120 125
Dragon 380 379

Traffic reported for the binned SAH builder [13] is com-
pared against traffic predicted by the model.

individually fit in the buffers but are together too large. In this case,
we assume only the smaller child to be a large sweep. As shown
in Table II , this model comes close to replicating the memory
traffic results in Reference [13]. A fixed size threshold of 4,096
slightly overestimates traffic, while a threshold of 8,192 underes-
timates it. Floating-point operations are counted based on Wald’s
algorithm [51] and then combined with memory traffic to obtain a
lower-bound memory model.

Finally, the runtime of a simplified binned SAH builder is mod-
eled to give a lower bound for toplevel build performance. The
simplified builder operates serially and has a single partitioning
unit. It alternates between partitioning and binning a sweep at a
rate of one input AABB per cycle, and SAH computation, which
takes 32 cycles at the end of each sweep. The unit simplified in this
way is substantially slower than the original, but as toplevel trees
have only ca. 500-2,000 nodes in our test scenes, toplevel build has
neglible effect on runtime.

6.2 Implementation and Power Analysis

In the graphics hardware community, hardware complexity is often
estimated by counting arithmetic units and memories in the design,
but in this case we are especially interested in the energy of the
proposed architecture, and whether it can reach a high clock fre-
quency. Therefore, we wrote a prototype RTL description of the
proposed architecture and synthesize it on a CMOS technology. All
components in Figure 1 were implemented in SystemVerilog, and
SRAM macros were used for the AABB storage.

The tree builder was synthesized on a 28nm FDSOI technology
with Synopsys Design Compiler. The parameters of the builder
were set at M = 8, 192, B = 16, resulting in a unit with a 256KB
scratchpad memory, which handles up to 2M triangles in one pass,
reads data in 512B increments and performs a 256-way merge. We
include eight partial sorters for scalability. To determine the buffer
size B, we experimented with the DRAMPower model [10] and
found that increasing consecutive access size is clearly beneficial at
least up to 512B (16 AABBs). The target frequency is set at 1GHz,
supply voltage at 1V, and operating temperature at 25°C. Clock
gating and multi-threshold voltage optimizations are enabled.

To evaluate performance, we run RTL simulations of the builder
unit with various input scenes and memory interfaces. The exter-
nal memory is modeled with the DRAM simulator Ramulator [26].
For the memory organization, we select 64-bit, one- and 2two-
channel LPDDR3-1600 (slow, medium) that are the closest devices
to state-of-the-art mobile device memory for which we are able to
perform power analysis. In addition, we simulate a 64-bit, four-
channel LPDDR3-1333 memory (fast) that gives a bandwidth close
to Doyle [13] to facilitate a direct runtime comparison, but this in-
terface is not representative of mobile systems. We subtract from
all memory power figures a static power term computed from an
idle memory transaction trace, corresponding to, for example, re-
fresh power, to isolate the extra dynamic power added by the tree
build. Ramulator is integrated to the RTL testbench through the

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:8 . T. Viitanen et al.

= P-sort == Merge -~ Hier. =—=SAH ~—— DRAM

Utilization

|
200 400 600 800 1000
Simulation time (us)

(a) LPDDR3-1600, 1x 64b channel (12.8 GB/s)

= P-sort = Merge -~ Hier. =——=SAH ~—— DRAM

Utilization

600 800 1000
Simulation time (us)

(b) LPDDR3-1600, 2x 64b channel (25.6 GB/s)

= P-sort = Merge -~ Hier. =——SAH -—— DRAM

Utilization

|
I
200 400 600 800 1000
Simulation time (us)

(c) LPDDR3-1333, 4x 64b channel (42.7 GB/s)

Fig. 6. Cycle-level simulation traces for the sibenik scene with three mem-
ory interface options. Utilizations of the multi-merge and hierarchy emitter
components cap at 50%. Computation consists of partial sorts, a multi-merge
phase, and an optional toplevel SAH build. With the slow bus, performance
is limited by memory bandwidth. With the fast bus, memory latencies and
compute pipeline throughputs become the bottleneck, particularly in the
partial sort stage.

SystemVerilog Direct Programming Interface wrapper, such that
memory requests from the simulated builder map into Ramulator
transactions, and input data is fed into the builder when the corre-
sponding read transaction completes. RTL simulation was run on
14 test scenes, and the resulting trees were verified in a software
ray tracer.

We have also implemented a C++ architectural simulator that
gives results within ca. 5% of the RTL simulation at a 20x faster
runtime and allows easier observation of the build process. Figure 6
shows example simulation traces generated with the C++ simulator.
The different execution states are visible: First, the unit alternates
between partial sort reads that utilize the insertion sorters and writes
that utilize the merge heap. Most of the execution time is spent on
the multi-merge phase, which is clearly memory limited in the
slower memory options. In the fast memory option, the throughput
of the multi-merge hardware starts to limit performance. Finally, a
toplevel SAH build is shown, which is more compute-intensive and
uses little memory.

The build times, memory traffic and tree quality of the proposed
builder are compared to related work. As a desktop benchmark, we
compare against the high-quality ATRBVH builder by Domingues
and Pedrini [12] with default settings, and their freely available
implementation of Karras HLBVH algorithm [22], set to use

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

32-bit Morton codes. The GPU builders are run on a computer
with a GeForce GTX 1080 GPU and a Intel Core i7-3930K CPU,
counting only kernel execution times. In tree builder hardware, we
compare against the state-of-the-art binned SAH builder by Doyle
et al. [13] and the k-d tree builder FastTree [34]. We use the per-
formance figures from their article and generate memory traffic
as described in the previous subsection. Memory traffic for GPU
HLBVH was extracted with nvprof.

Tree quality is evaluated based on the SAH cost of produced
trees [19]. The SAH cost C of a BVH can be computed as:

Mnodes A Ni Meafs A Ll' Neafs I),A Li
cog3TAM) | (RRAL) 8 PAL)
i=0 i=0

£ A(R) A(R) AR)
where A(N;) and A(L;) are the surface areas of the given inner
nodes and leafs, A(R) the surface area of the scene AABB, P; is
the primitive count within a given leaf, C; is the cost of travers-
ing a node, C; the cost of traversing a leaf, and C, the cost of a
primitive intersection test [23]. We use the SAH cost parameters
C; =12,C, =0,C, =1 given for GPUs by Karras and Aila [23]
to be comparable with previous work. SAH costs are normalized to
a full SAH sweep [52]. Quality was not evaluated for FastTree.

Two toplevel builds are evaluated to recover quality, as discussed
in Subsection 4.6. HLBVH+SAH is modeled with a cycle-level
simulator, while for HLBVH+ATRBVH, we run a single-threaded
C++ implementation on a NVidia Jetson TK1 board with a Tegra
K1 SoC. The ATRBVH build runs two iterations over the toplevel
nodes and uses a treelet size of 8.

For power analysis, we extract switching activity information
files from the previous simulations, and perform power analysis
with Synopsys Design Compiler. The constructed trees are loaded
into a software ray tracer to verify correctness and compute tree
quality. External memory power is determined by exporting DRAM
command traces from Ramulator to DRAMPower [10]. We estimate
the power and energy consumption of a 64b DRAM component
by doubling the figures for a 32b component, as these could be
combined into a 64b component.

6.3 Results

In Table III, the resulting build performance and tree quality is
compared to related work. Even with the slow memory option, the
present design is over 2x faster than the state of the art binned
SAH unit, and with the fast memory option, 5x faster (6.3x in-
cluding the Toasters scene, but the Ims runtime reported in that
scene is too imprecise for comparison). Compared to the state-of-
the-art k-d tree builder by Liu et al. [34] with the same 12.8GB/s
bandwidth, MergeTree is 4.7 x faster. With the fast memory option,
the proposed unit is within a factor of two of the desktop GPU
HLBVH builder, which has 7.5x more memory bandwidth, and
an orders of magnitude larger chip area and power envelope. ATR-
BVH gives a higher tree quality, but is, on average, 7.4 x slower than
HLBVH.

6.3.1 Area, Power, and Memory Traffic. The unit was success-
fully synthesized and meets timing constraints at IGHz. The cell
area and power breakdown of the synthesized unit is shown in
Table IV. Table V shows an area comparison to related work. The
proposed unit has ca. 2.5 less area than a binned SAH builder [13].

The results of power analysis are shown in Table VII. The main
result is that over 90% of total power consumption in the design
comes from the DRAM interface. There are some straightforward
optimizations to reduce the on-chip power: For example, a multi-
bank scratchpad could be used in place of the current expensive

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing . 169:9

Table III. Build Performance and Quality Comparison

Toasters (11K) Bunny (70K) Cloth (92K) Fairy (17415)
BW (GB/s) | Time (ms) SAH | Time (ms) SAH | Time(ms) SAH | Time (ms) SAH
GTX 1080 HLBVH [12] 320 0.27 166% 0.45 103% 0.52 123% 0.82 129%
GTX 1080 ATRBVH [12] 320 1.44 76% 2.67 89% 3.35 92% 6.03 87%
HW binned SAH [13] 44 1 103% - 104% 3 103% - 102%
HW k-d tree [34] 12.8 - - 5.1 - - - 10.8 -
HW HLBVH (proposed) 12.8 0.16 160% 1.11 122% 1.50 122% 2.14 118%
—"— 25.6 0.10 " 0.66 " 0.91 " 1.46 "
—"— 42.7 0.08 " 0.49 " 0.66 " 1.08 "
HW Binned SAH topl. 12.8 0.03 112% 0.11 113% 0.05 114% 0.05 104%
TK1 ATRBVH topl. 14.9 4.60 102% 28.92 116% 9.31 113% 6.35 109%
Yl -
Crytek (262K) Conference (283K) Sportscar (301K) Italian (37?12;
Mem.BW | Time (ms) SAH | Time (ms) SAH | Time(ms) SAH | Time (ms) SAH
GTX 1080 HLBVH [12] 320 1.10 151% 1.25 150% 1.22 184% 1.45 214%
GTX 1080 ATRBVH [12] 320 8.11 87% 10.01 96% 9.45 89% 11.69 85%
HW binned SAH [13] 44 - 107% 11 103% - 120% - 105%
HW k-d tree [34] 12.8 - - 17.2 - - - - -
HW HLBVH (proposed) 12.8 3.60 142% 2.83 154% 4.17 142% 4.80 208%
—"— 25.6 2.40 " 2.05 " 2.77 " 3.26 "
—"— 42.7 1.71 " 1.88 " 1.98 " 2.35 "
HW Binned SAH topl. 12.8 0.06 109% 0.02 106% 0.08 0.04 135%
TK1 ATRBVH topl. 14.9 10.05 99% 4.33 8.62 117%
> L h—=) .
Babylonian (500K) Kitchen (761K) Dragon (871K) Buddha (1087K)
Mem. BW | Time (ms) SAH | Time (ms) SAH | Time(ms) SAH | Time(ms) SAH
GTX 1080 HLBVH [12] 320 1.80 208% 2.49 155% 2.99 136% 3.66 133%
GTX 1080 ATRBVH [12] 320 14.69 91% 19.80 91% 23.22 90% 29.55 84%
HW binned SAH [13] 44 - 104% - 101% 30.00 102% - 102%
HW k-d tree [34] 12.8 - - - - 525 - 65.5 -
HW HLBVH (proposed) 12.8 6.52 202% 8.61 149% 13.08 135% 15.60 132%
—"— 25.6 4.43 " 8.55 " 10.32 "
—"— 42.7 3.21 " 6.04 " 7.32 "
HW binned SAH topl. 12.8 0.04 147% 0.08 120% 0.06 120%
TK1 ATRBVH topl. 14.9 7.54 128% 17.60 123% 12.84 122%
Livingroom (1459K) Lion (1604K) Geom. Mean
Mem.BW | Time (ms) SAH | Time (ms) SAH | Norm.time SAH
GTX 1080 HLBVH [12] 320 4.41 160% 5.07 144% 0.68 153%
GTX 1080 ATRBVH [12] 320 39.84 82% 42.37 88% 5.14 89%
HW binned SAH [13] 44 - 101% - 103% 6.40 104%
HW k-d tree [34] 12.8 - - - - 9.39 - -
HW HLBVH (proposed) 12.8 16.76 144% 24.05 139% 2.02 148%
—"— 25.6 11.76 " 15.76 " 1.33 "
—"— 42.7 8.56 " 11.12 " 1.00 "
HW binned SAH topl. 12.8 0.06 116% 0.28 128% 0.03 118%
TK1 ATRBVH topl. 14.9 9.69 109% 45.75 119% 4.94 111%

SAH costs are relative to a full SAH sweep. Average build time is normalized to GTX 1080 HLBVH. BW denotes system memory bandwidth. The
proposed builder (HW HLBVH) is evaluated with three DRAM configurations. Toplevel Builds (HW Binned SAH, TK1 ATRBVH) show build time in
Addition to HW HLBVH.

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:10 . T. Viitanen et al.
Table IV. Area and Power Breakdown of
Synthesized Design Power results from the Lion
scene, fast memory model

Area (mmz) Power (mW)
Insertion sorters 0.24 25.8
Multi-merge unit 1.14 17.2
Hierarchy emitter 0.03 22
FIFOs and muxes 0.99 16.0
\ Total 241 61.2 \

Table V. Hardware Comparison with Quadratic Process Scaling

Area Mem.

Area Node @28nm BW

Architecture (mm?) (nm) (mm?) (GB/s)
Geforce GTX 1080 314 16 962 320
HW binned SAH [13] 31.9 65 59 44
HW k-d tree [34] 1.4 28 1.4 43
MergeTree 24 28 2.4 43

Table VI. Memory Traffic Comparison (MB)

HW GPU
Scene Proposed Binned SAH HLBVH
Toasters 1.7 1.1 (0.7x) 1.7 (1.0x)
Bunny 10.6 18 (1.6x) 27 (2.5x)
Cloth 14.2 25 (1.7x) 36 (2.5x)
Fairy 19.4 70 (3.6x) 74 (3.8x)
Crytek 329 116 (3.5x) 115 (3.5x)
Conference 28.9 125 (4.3x) 125 (4.3x)
Sportscar 38.6 110 (2.9x) 135 (3.5x)
Italian 439 145 (3.3x) 169 (3.9x)
Babylonian 60.2 219 (3.6x) 230 (3.8x)
Kitchen 71.1 436 (5.6x) 352 (4.6x)
Dragon 124.8 379 (3.0x) 413 (3.3x)
Buddha 147.9 493 (3.3x) 520 (3.5x)
Livingroom 150.4 833 (5.5x) 685 (4.6x)
Lion 230.1 800 (3.5x) 766 (3.3x)

Geom. mean - (3.0x) (3.3x)

dual-port SRAM. However, since the power consumed by the hard-
ware unit itself is negligible compared to DRAM, the improvements
from optimization would also be marginal.

Table VI compares our memory traffic to related work. The pro-
posed builder generates 3.0 x less traffic than hardware binned SAH,
and 3.3x less than a GPU build—the radix sort stage of the GPU
build alone generates roughly as much traffic as our complete build.
Our builder also achieves very high bus utilizations of 72%, 54%,
and 44% of the memory bandwidth on the slow, medium and fast
interface options, respectively.

The above results show that the energy consumption and build
speed of MergeTree are largely determined by the amount of mem-
ory traffic generated. A straightforward conversion of HLBVH
to hardware, without the proposed memory traffic optimizations,
would likely have a ca. 3x higher energy consumption and run-
time, almost as high as the binned SAH builder [13].

6.3.2 Tree Quality. MergeTree builds slightly higher-quality
trees than the GPU HLBVH builder, since we generate large leafs
for primitives with identical Morton codes, as in Reference [42],
while the GPU builder organizes these primitive ranges with an

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

Table VII. Power Analysis Results, Average
of 14 Scenes

\ Max. BW (GB/s) 12.8 25.6 2.7]
[Mem. taffic (GB/s) 9.2 139 189 |
Logic power (mW) 58.1 61.8 62.7

DRAM power (mW) 507.2 814.8 1,112.4
Total power (mW) 565.3 876.6 1,175.2

arbitrary subtree and emits one leaf per triangle. Nevertheless, our
plain HLBVH trees have low quality, on average 148%, compared
to 104% for Doyle et al. [13].

The evaluated toplevel builds give significant tree qual-
ity improvements: HLBVH+SAH to an average of 118% and
HLBVH+ATRBVH to 111%, only ca. 5% worse than a binned
SAH build. The hardware binned SAH builder has an insignificant
runtime compared to the LBVH but consumes extra chip area. Our
naive single-threaded software implementation of toplevel ATR-
BVH is already fast enough for real-time construction on a mobile
SoC and could run all scenes at 30FPS except for Lion, which has
demanding geometry.

6.4 System Level Comparison

From the previous results, it is apparent that MergeTree gives a
similar tradeoff as desktop GPU HLBVH: It is very fast and energy
efficient compared to prior work, at the cost of reduced tree qual-
ity, which can be mostly recovered with postprocessing toplevel
builds. We can conjecture that a binned SAH builder is advanta-
geous in small scenes where the build effort is minuscule relative
to rendering, and the proposed builder becomes advantageous in
larger scenes. The exact tradeoff depends on the particular scene
and visual effects being displayed. This subsection further quan-
tifies the system-level effects of builder selection by modeling a
larger system that includes rendering hardware. The model focuses
on system energy consumption per frame, as it is a main figure of
interest in mobile systems and simplifies modeling. We start out
from the premise that the BVH tree for the complete scene is rebuilt
for each frame, and a viewpoint is then rendered at a 1, 280 x 720
resolution. The scenes and viewpoints used are shown in Table IIIL.
Benchmarks are run for primary ray rendering, as well as diffuse
lighting with one sample per pixel, limited to three bounces. The
latter is representative of incoherent secondary rays.

The main components of the present model are a fixed-function
rendering accelerator, combined with MergeTree, binned SAH and
ATRBVH hardware builders. Moreover, toplevel build combina-
tions of HLBVH+SAH and HLBVH+ATRBVH are tested that
combine two hardware builders. For MergeTree, we use accurate
energy figures based on post-synthesis power analysis and DRAM-
Power. For the binned SAH builder, we estimate memory traf-
fic and FPU operation counts as described in Subsection 5.1 and
then obtain a lower-bound energy model by assuming fully uti-
lized FPUs and long, consecutive burst accesses to DRAM. For the
ATRBVH builder, memory accesses and FPU operations are like-
wise counted from program code. No high-performance hardware
architecture has been published for ATRBVH, but given the input
size for toplevel builds, even a serial hardware unit performing one
FPU operation per cycle is sufficient to process all test scenes at
over 100fps. Finally, the rendering accelerator is modeled after the
traversal and intersection unit of SGRT [32] and simulated at cycle
level as described in Reference [50]. Some common assumptions
are used when modeling the hardware units. The units reside on a
mobile SoC that is fabricated with a 28nm process technology and

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing .

equipped with the 25.6GB/s memory interface described earlier. As
with MergeTree, off-chip memory accesses are modeled with Ra-
mulator and DRAMPower. Caches and SRAMs are parametrized
with CACTI 6.5 [38]. Floating-point unit energy is based on the
figures of Galal et al. [15], with linear process scaling, as in the
GPUSimPow simulator [35]. Reciprocal calculation is estimated to
take as much energy as 3 FLOPs, as in Reference [33]. All units
beside MergeTree operate at S00MHz.

6.4.1 Rendering Hardware Model. The modeled accelerator
architecture is shown in Figure 8: It consists of separate fixed-
function pipelines for tree traversal and primitive intersection.
Scenes are rendered with a software ray tracer, from which a traver-
sal trace is extracted and fed to a cycle-level hardware simulator,
which traces utilizations for all components in Figure 8. The power
consumption of each component is determined by multiplying a
dynamic power term with the utilization and adding a static power
term. For the fixed-function pipelines, the energy consumption of
floating-point adds, multiplications and reciprocals is counted. The
architecture and simulation flow is described in more detail in Ref-
erence [50] and is unchanged from that work, except the SRAM
and FPU models are updated to a 28nm process.

In addition to tree construction and traversal, shading is the third
main component in the rendering process. Shading has a very wide
range of complexity: We experimented with adding the energy cost
of minimal shading and pixel output to the model, that is, Phong
shading with a directional light, but this had minimal effect on
the total power. On the other hand, sufficiently complex shading
may dominate the rendering process [29]. Mobile ray tracing would
likely opt for inexpensive shaders at first. As shading cost is inde-
pendent of tree quality, we omit it from the model.

6.4.2 Results. The system-level energy results are shown scene
by scene in Figure 7 and summarized in Table VIIL It is visible
that the energy cost of tree construction scales asympotically faster
with scene size than traversal and, with binned SAH, dominates
the energy profile in large scenes. Though the binned SAH builder
performs significant floating-point computation, most of its energy
consumption is also due to DRAM accesses. MergeTree uses on
average ca. 3.2 less energy. In primary ray tracing, the build energy
savings are sufficient to make HLBVH preferred in all scenes except
Toasters. In large scenes, tree construction dominates the system
energy, and HLBVH gives significant savings.

With incoherent secondary rays, the energy footprint of ray trac-
ing grows significantly and is dominated by memory traffic. As
such, tree quality has a larger effect on system energy. Moreover,
the tracing energy penalty of the proposed builder is larger than
predicted by SAH cost. Toplevel builds reduce system energy but
less than predicted by SAH. Regardless, in large (>500K triangle)
scenes the cost of tree construction is significant enough that the
proposed builder consistently reduces system energy compared to
binned SAH.

For comparison with mobile power budgets and GPUs, the
energy results in Figure 7 are presented as power at a fixed
30FPS frame rate. Diffuse, animated ray tracing in our model with
HLBVH+ATRBVH dissipates between 143..2077mW of power,
and primary ray tracing between 72..791mW. For a point of com-
parison, in the benchmarks of Pathania et al. [43], recent mobile
games on an Odroid-XU+E platform dissipate ca. 2..3W, of which
ca. 0.8..1.8W is used in the mobile GPU. These results suggest
that MergeTree allows the ray tracing of large (>500K triangle)
dynamic scenes in a mobile power envelope. However, in the
most demanding scenes there is only limited margin for complex

169:11

Table VIII. System Energy with Different Builders, Main
Results. Energy normalized to binned SAH [Doyle et al. 2013],
averaged over 14 scenes

Primary rays, all scenes

Binned HLBVH HLBVH
Energy SAH HLBVH +SAH +ATRBVH
Build 100% 32% 33% 33%
Trace 100% 143% 114% 112%
Total 100% 71% 59% 58%
Primary rays, large scenes
Binned HLBVH HLBVH
Energy SAH HLBVH +SAH +ATRBVH
Build 100% 22% 22% 22%
Trace 100% 148% 122% 122%
Total 100% 41% 37% 37%
Diffuse rays, all scenes
Binned HLBVH HLBVH
Energy SAH HLBVH +SAH +ATRBVH
Build 100% 32% 33% 33%
Trace 100% 163% 134% 128%
Total 100% 110% 91% 87%
Diffuse rays, large scenes
Binned HLBVH HLBVH
Energy SAH HLBVH +SAH +ATRBVH
Build 100% 22% 22% 22%
Trace 100% 165% 141% 137%
Total 100% 79% 68% 65%

shading. A binned SAH builder would already use most of the
mobile power budget for these scenes.

7. LIMITATIONS AND FUTURE WORK

One difficulty in the proposed design is handling scenes of over

M2 .. i . . .

35 Pprimitives (2 million triangles with the evaluation setup), as
they require more than one multi-merge pass. It is simple to add
control logic for multiple passes, but the use of AABBs as sorting
elements is then suboptimal. Another possibility is to enlarge the
scratchpad: Doubling the memory size M quadruples the model size
that can be processed in one pass. In our experience, at leasta 512KB
scratchpad memory can run at 1GHz; this would be sufficient for
scenes of 8M triangles. It would also be interesting to evaluate, as
a replacement for double buffering, the other well-known multi-
merge sort read scheduling technique of forecasting, used by, for
example, Barve et al. [7]. Forecasting introduces a second heap
that stores the final elements of each buffer and uses it to fetch
replacement buffers in an optimal order. Forecasting would, again,
double the size of scene that can be sorted in a single pass with a
given scratchpad size.

Recent trends in ray-tracing accelerators are toward techniques
that reduce the cost of ray traversal while complicating tree con-
struction, for example, compressed BVHs [25] and treelet schedul-
ing [3]. In future architectures incorporating these features, the cost
of tree construction will be emphasized even more than in straight-
forward single-precision traversal as evaluated in this article. We
are extending MergeTree to generate compressed trees.

This article focused on mobile ray tracing, but the design also
has interesting applications in, for example, collision detection as
in Reference [11], and with minor modifications, construction of
point set k-d trees [22] and data sorting.

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:12 . T. Viitanen et al.

Il Tracing logic [l Tracing DRAM [0 Build logic [l Build DRAM

2,000

HLBVH (proposed)
SAH [Doyle, 2013]

Power @30FPS (mW)
5
o
3

Toasters Bunny Cloth Fairy Crytek Confer. Sportscar
3,000
g N
é’ 2,000
5
el
® -
3
£ 1,000 II
S
a

0 =i
Toasters Bunny Cloth Fairy Crytek Confer. Sportscar

HLBVH+ATRBVH (proposed)
HLBVH+SAH (proposed)

Italian Babylo. Kitchen Dragon Buddha Livingr. Lion

Italian Babylo. Kitchen Dragon Buddha Livingr. Lion

Fig. 7. System energy with only primary rays (top) and diffuse secondary rays (bottom), expressed as power at 30FPS for comparison to mobile GPUs. Four
alternatives are modeled: HLBVH only, binned SAH only, and HLBVH with binned SAH and ATRBVH toplevel builds. HLBVH build energy is from RTL
simulation, while tracing and binned SAH energy are based on higher-level models. The proposed HLBVH builder reduces build energy at the cost of worse
tree quality, which increases tracing energy. Toplevel builds remove much of the quality penalty. Tracing complexity is weakly related to scene size, while
build energy grows, and becomes dominant in large scenes. Averaged results are shown in Table VIIIL.

To DRAM From ray

controller <] To shader

1]

arbit

arbiter

larbiter

T
I
C IT
T

To shader

Fig. 8. Ray-tracing accelerator simulated for system level energy model-
ing. The accelerator is modeled after the traversal and intersection unit in
SGRT [32], with a two-AABB node layout [31]. All shown components are
simulated at cycle level.

8. CONCLUSION

In this article, we proposed MergeTree, the first hardware accelera-
tor architecture for the HLB VH algorithm, which forms the basis for
the highest-performance GPU tree construction algorithms. Novel
techniques were proposed to adapt HLBVH into a streaming, serial
hardware form, which is suitable for mobile systems with limited
power budgets, due to reduced memory traffic. Our results show
significant improvements over previous state of the art [13] in terms
of build performance, silicon area, memory traffic and energy con-
sumption, at the cost of reduced tree quality, which can be mitigated
with inexpensive toplevel builds.

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

The proposed architecture substantially increases the size of an-
imated scenes that could be rendered by a mobile ray-tracing ac-
celerator in real time, and also has applications outside ray tracing.
System-level modeling showed that the cost of tree construction
begins to rival the cost of real-time rendering in large scenes. Mer-
geTree gives significant system energy savings in these scenes.

ACKNOWLEDGMENTS

This work was financially supported by the TUT graduate school
and the Academy of Finland (decision #297548, PLC). The 3D mod-
els used are courtesy of Ingo Wald (Fairy), Andrew Kensler (Toast-
ers), Yasutoshi Mori (Sportscar), Frank Meinl (Crytek Sponza),
Jonathan G. (Italian, Babylonian), Anat Grynberg and Greg Ward
(Conference), Naga Govindaraju, Ilknur Kabul and Stephane Re-
don (Cloth), the Stanford Computer Graphics Laboratory (Bunny,
Dragon), and the SceneNet library [21] (Livingroom, Kitchen). Cry-
tek Sponza and Dragon have modifications courtesy of Morgan
McGuire [37].

REFERENCES

[1] AttilaT. Afra and Lészl6 Szirmay-Kalos. 2014. Stackless multi-BVH

Traversal for CPU, MIC and GPU ray tracing. Comput. Graph. Forum

33,1(2014), 129-140.

Alok Aggarwal and Jeffrey Scott Vitter. 1988. The input/output com-

plexity of sorting and related problems. Commun. ACM 31, 9 (1988),

1116-1127.

[3] Timo Aila and Tero Karras. 2010. Architecture considerations for trac-
ing incoherent rays. In Proceedings of High Performance Graphics.
113-122.

2

[4]

[5

[6

[7

[8

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing .

Timo Aila and Samuli Laine. 2009. Understanding the efficiency of
ray traversal on GPUs. In Proceedings of High Performance Graphics.
145-149.

Tomas Akenine-Moller and Jacob Strom. 2008. Graphics processing
units for handhelds. Proc. IEEE 96, 5 (2008), 779-789.

Ciprian Apetrei. 2014. Fast and simple agglomerative LBVH construc-
tion. In Proceedings of the Computer Graphics and Visual Computing
Conference (CGVC’14).

Rakesh D. Barve, Edward F. Grove, and Jeffrey Scott Vitter. 1997.
Simple randomized mergesort on parallel disks. Parallel Comput. 23,
4(1997), 601-631.

Ranjita Bhagwan and Bill Lin. 2000. Fast and scalable priority queue
architecture for high-speed network switches. In Proceedings of the
Annual Joint Conference of the IEEE Computer and Communications
Societies, Vol. 2. 538-547.

Jared Casper and Kunle Olukotun. 2014. Hardware acceleration of
database operations. In Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 151-160.

Karthik Chandrasekar, Christian Weis, Yonghui Li, Benny Akesson,
Norbert Wehn, and Kees Goossens. 2012. DRAMPower: Open-source
DRAM power & energy estimation tool. Retrieved February 30, 2017
from http://www.drampower.info.

Erwin Coumans. 2017. Bullet physics library. Retrieved March 6,
2017 from http://www.bulletphysics.org.

Leonardo R. Domingues and Helio Pedrini. 2015. Bounding volume
hierarchy optimization through agglomerative treelet restructuring. In
Proceedings of High Performance Graphics. 13-20.

Michael Doyle, Colin Fowler, and Michael Manzke. 2013. A hardware
unit for fast SAH-optimized BVH construction. ACM Trans. Graph.
32,4(2013), 139:1-10.

Michael Doyle, Ciaran Tuohy, and Michael Manzke. 2017. Evaluation
of a BVH construction accelerator architecture for high-quality visual-
ization. [EEE Trans. Multi-Scale Comput. Syst. Early access. Retrieved
from http://ieeexplore.ieee.org/abstract/document/7903616/.

Sameh Galal and Mark Horowitz. 2011. Energy-efficient floating-
point unit design. IEEE Trans. on Comput. 60, 7 (2011), 913—
922.

Per Ganestam and Michael Doggett. 2016. SAH guided spatial split
partitioning for fast BVH construction. Comput. Graph. Forum 35, 2
(2016), 285-293.

Kirill Garanzha, Jacopo Pantaleoni, and David McAllister. 2011a.
Simpler and faster HLBVH with work queues. In Proceedings of
High Performance Graphics. 59—64.

Kirill Garanzha, Simon Premoze, Alexander Bely, and Vladimir
Galaktionov. 2011b. Grid-based SAH BVH construction on a GPU.
Vis. Comput. 27, 6-8 (2011), 697-706.

Jeffrey Goldsmith and John Salmon. 1987. Automatic creation of
object hierarchies for ray tracing. IEEE Comput. Graph. Appl. 7, 5
(1987), 14-20.

Aggelos loannou and Manolis G. H. Katevenis. 2007. Pipelined
heap (priority queue) management for advanced scheduling in
high-speed networks. /EEE/ACM Trans. Netw. 15, 2 (2007), 450—
461.

Ilan Kadar and Ohad Ben-Shahar. 2013. SceneNet: A perceptual on-
tology database for scene understanding. J. Vis. 13, 9 (2013), 1310—
1310.

Tero Karras. 2012. Maximizing parallelism in the construction of
BVHs, octrees, and k-d trees. In Proceedings of High Performance
Graphics. 33-37.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[39]

[40]

169:13

Tero Karras and Timo Aila. 2013. Fast parallel construction of high-
quality bounding volume hierarchies. In Proceedings of High Perfor-
mance Graphics. 89-99.

Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael
Garland, and David Glasco. 2011. GPUs and the future of parallel
computing. /EEE Micro 31,5 (2011), 7-17.

Sean Keely. 2014. Reduced precision hardware for ray tracing. In
Proceedings of High Performance Graphics. 29-40.

Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A fast
and extensible DRAM simulator. [EEE Comput. Arch. Lett. PP, 99
(2015), 1-1.

Dirk Koch and Jim Torresen. 2011. FPGASort: A high performance
sorting architecture exploiting run-time reconfiguration on FPGAs for
large problem sorting. In Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. 45-54.
Daniel Kopta, Konstantin Shkurko, J. Spjut, Erik Brunvand, and Al
Davis. 2015. Memory considerations for low energy ray tracing. Com-
put. Graph. Forum 34, 1 (2015), 47-59.

Samuli Laine, Tero Karras, and Timo Aila. 2013. Megakernels con-
sidered harmful: Wavefront path tracing on GPUs. In Proceedings of
High Performance Graphics. 137-143.

Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David
Luebke, and Dinesh Manocha. 2009. Fast BVH construction on GPUs.
Comput. Graph. Forum 28, 2 (2009), 375-384.

Jaedon Lee, Won-Jong Lee, Youngsam Shin, Seokjoong Hwang,
Soojung Ryu, and Jeongwook Kim. 2014. Two-AABB traversal for
mobile real-time ray tracing. In Proceedings of the SIGGRAPH Asia
Symposium on Mobile Graphics and Interactive Applications 14.
Won-Jong Lee, Youngsam Shin, Jaedon Lee, Jin-Woo Kim, Jae-Ho
Nah, Seokyoon Jung, Shihwa Lee, Hyun-Sang Park, and Tack-Don
Han. 2013. SGRT: A mobile GPU architecture for real-time ray trac-
ing. In Proceedings of High Performance Graphics. 109-119.

Wei Liu and Alberto Nannarelli. 2012. Power efficient division and
square root unit. /[EEE Trans. Comput. 61, 8 (2012), 1059-1070.
Xingyu Liu, Yangdong Deng, Yufei Ni, and Zonghui Li. 2015. Fast-
Tree: A hardware KD-tree construction acceleration engine for real-
time ray tracing. In Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition. 1595-1598.

Jan Lucas, Sohan Lal, Michael Andersch, Mauricio Alvarez-Mesa,
and Ben Juurlink. 2013. How a single chip causes massive power
bills GPUSimPow: A GPGPU power simulator. In Proceedings of the
IEEE International Symposium on Performance Analysis and System
Software. 97-106.

J. David MacDonald and Kellogg S. Booth. 1990. Heuristics for
ray tracing using space subdivision. Vis. Comput. 6, 3 (1990), 153—
166.

Morgan McGuire. 2011. Computer graphics archive. Retrieved Feb
30, 2017 from http://graphics.cs.williams.edu/data/meshes.xml.
Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.
Jouppi. 2009. CACTI 6.0: A Tool to Model Large Caches. Techni-
cal Report. HP Laboratories. 22-31 pages.

J. Nah, H. Kwon, D. Kim, C. Jeong, J. Park, T. Han, D. Manocha,
and W. Park. 2014. RayCore: A ray-tracing hardware architecture for
mobile devices. ACM Trans. Graph. 33,5 (2014), 162:1-15.

Jae-Ho Nah, Jin-Woo Kim, Junho Park, Won-Jong Lee, Jeong-
Soo Park, Seok-Yoon Jung, Woo-Chan Park, Dinesh Manocha, and
Tack-Don Han. 2015. HART: A hybrid architecture for ray tracing
animated scenes. [EEE Trans. Vis. Comput. Graph. 21, 3 (2015), 389—
401.

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:14 .

[41]

[42]

[43]

[44]

[45]

[46]

[47]

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

T. Viitanen et al.

Jae-Ho Nah, Jeong-Soo Park, Chanmin Park, Jin-Woo Kim, Yun-
Hye Jung, Woo-Chan Park, and Tack-Don Han. 2011. T&I engine:
Traversal and intersection engine for hardware accelerated ray tracing.
ACM Trans. Graph. 30, 6 (2011), 160.

Jacopo Pantaleoni and David Luebke. 2010. HLBVH: Hierarchical
LBVH construction for real-time ray tracing of dynamic geometry. In
Proceedings of High Performance Graphics. 87-95.

Anuj Pathania, Alexandru Eugen Irimiea, Alok Prakash, and Tulika
Mitra. 2015. Power-performance modelling of mobile gaming work-
loads on heterogeneous MPSoCs. In Proceedings of the Design Au-
tomation Conference. 201.

PowerVR. 2015. PowerVR Ray Tracing. Retrieved Feb 30, 2017 from
https://imgtec.com/powervr/ray-tracing/.

Maxim Shevtsov, Alexei Soupikov, Alexander Kapustin, and Nizhniy
Novorod. 2007. Ray-triangle intersection algorithm for modern
CPU architectures. In Proceedings of GraphiCon, Vol. 2007.
33-39.

Hojun Shim, Nachyuck Chang, and Massoud Pedram. 2004. A com-
pressed frame buffer to reduce display power consumption in mobile
systems. In Proceedings of the Asia and South Pacific Design Automa-
tion Conference. 819-824.

Josef Spjut, Andrew Kensler, Daniel Kopta, and Erik Brunvand. 2009.
TRaX: A multicore hardware architecture for real-time ray tracing.

[48]

[49]

(501

[511

[52]

(53]

Trans. Comput.-Aid. Des. Integr. Circ. Syst. 28, 12 (2009), 1802—
1815.

Joseph Spjut, Daniel Kopta, Erik Brunvand, and Al Davis. 2012. A
mobile accelerator architecture for ray tracing. In Proceedings of the
Workshop on SoCs, Heterogeneous Architectures and Workloads.
Timo Viitanen, Matias Koskela, Pekka Jdaskeldinen, Heikki Kultala,
and Jarmo Takala. 2015. MergeTree: A HLBVH constructor for mo-
bile systems. In Proceedings of SIGGRAPH Asia, Technical Briefs.
12.

Timo Viitanen, Matias Koskela, Pekka Jaaskeldinen, and Jarmo
Takala. 2016. Multi bounding volume hierarchies for ray tracing
pipelines. In Proceedings of SIGGRAPH Asia, Technical Briefs. 8.
Ingo Wald. 2007. On fast construction of SAH-based bounding volume
hierarchies. In Proceedings of the IEEE Symposium on Interactive Ray
Tracing. 33—40.

Ingo Wald, Solomon Boulos, and Peter Shirley. 2007. Ray tracing
deformable scenes using dynamic bounding volume hierarchies. ACM
Trans. Graph. 26, 1 (2007), 6.

Sven Woop, Jorg Schmittler, and Philipp Slusallek. 2005. RPU: A
programmable ray processing unit for realtime ray tracing. ACM Trans.
Graph. 24, 3 (2005), 434-444.

Received March 2017; accepted June 2017

[P3] Publication 3

[P3] VIITANEN T., KOSKELA M., JAASKELAINEN P., IMMONEN K., TAKALA J.:
Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies.
Computer Graphics Forum 36, 4 (2017), 167-178.

DOI: 10.1111/cgf.13233

Eurographics Symposium on Rendering 2017
P. Sander and M. Zwicker
(Guest Editors)

Volume 36 (2017), Number 4

Fast Hardware Construction and Refitting of Quantized Bounding

Volume Hierarchies

T. ViitanenT, M. Koskela, P. Jaidskeldinen, K. Immonen and J. Takala

Tampere University of Technology, Finland

Abstract

There is recent interest in GPU architectures designed to accelerate ray tracing, especially on mobile systems with limited mem-
ory bandwidth. A promising recent approach is to store and traverse Bounding Volume Hierarchies (BVHs), used to accelerate
ray tracing, in low arithmetic precision. However, so far there is no research on refitting or construction of such compressed
BVHs, which is necessary for any scenes with dynamic content. We find that in a hardware-accelerated tree update, significant
memory traffic and runtime savings are available from streaming, bottom-up compression. Novel algorithmic techniques of
modulo encoding and treelet-based compression are proposed to reduce backtracking inherent in bottom-up compression. To-
gether, these techniques reduce backtracking to a small fraction. Compared to a separate top-down compression pass, streaming
bottom-up compression with the proposed optimizations saves on average 42% of memory accesses for LBVH construction and
56% for refitting of compressed BVHs, over 16 test scenes. In architectural simulation, the proposed streaming compression
reduces LBVH runtime by 20% compared to a single-precision build, and 41% compared to a single-precision build followed by
top-down compression. Since memory traffic dominates the energy cost of refitting and LBVH construction, energy consumption

is expected to fall by a similar fraction.
CCS Concepts

eComputing methodologies — Ray tracing; Graphics processors;

1. Introduction

In the last decade, ray tracing GPU architectures have been the
subject of intensive research and industrial interest. Ray trac-
ing accelerators have been proposed based on fixed-function
pipelines [LSL*13, NKK*14, WSS05, LV16], programmable
MIMD processors [SKKB09, SKBD12], and augmenting conven-
tional GPUs [Keel4]. There has been a special focus on archi-
tectures targeting mobile systems [LSL*13, NKK*14, SKBD12,
Pow15], where they might, e.g., enable photorealistic augmented
reality applications [LSL*13]. High-performance ray tracing is
based on indexing the scene geometry in an acceleration datastruc-
ture, typically a Bounding Volume Hierarchy (BVH), which speeds
up ray-scene collision queries. Recently, a potential breakthrough
in ray tracing GPU architecture is to store and traverse BVHs at
low arithmetic precision, e.g., 5-6 bits per coordinate. We refer to
these structures as Compressed BVHs (CBVH). Keely [Kee14] esti-
mates that the use of CBVHs — combined with compact leaf storage
and treelet scheduling — reduces the arithmetic energy cost of ray
traversal by 23x, and memory traffic by 6-22x.

T e-mail: timo.2.viitanen @tut.fi

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

However, there is no research yet on updating CBVHs in real
time to match animated scenes. Many rendering applications in-
clude dynamic scene content, and a key advantage of plain BVHs
has been the ability to rapidly construct new BVHs, or to refit an
existing BVH to match deformed geometry [WBBOS]. It is inter-
esting whether this advantage is preserved in CBVH. Fast uncom-
pressed BVH update algorithms have been studied extensively for
GPUs [LGS*09, KIS*12], and hardware accelerators have been
proposed [DFM13, VKJ*15, NKP*15]. The reduced cost of ren-
dering in CBVHs will, through Amdahl’s law, increase the relative
share of tree updates, and make their performance more critical to
the system. Meanwhile, compression introduces new complications
to tree updates.

Tree updates are highly memory-intensive, and especially in
the context of mobile systems and custom hardware pipelines, the
amount of external memory traffic they generate is a major factor
in their performance and energy efficiency [DFM13,VKJ*15]. Fig-
ure 1 shows the basic motivation and goal of this paper. A straight-
forward way to update a CBVH is to first produce a full-precision
BVH tree and then subsequently compress it. We would like to, in-
stead, directly output a CBVH in a streaming manner, saving up to
ca. 50% of memory accesses for construction and 64% for refitting.

168 T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies

. = Memory read

Single-precision BVH

[]1728
Primi. in AABB sort BVHout |
Primi. IDs out
CBVH, postprocessing compression
252 B
Primi. in AABB sort BVH out \ BVH in CBVH out

Primi. IDs out
CBVH, streaming compression (proposed)

|:| = Memory write

Single-precision BVH
172 B
BVH in Primi. in BVH out

Primi. IDs in

CBVH, postprocessing compression
204 B
BVH in CBVH out

Primi. in BVH out

[CBVH in

CBVH, streaming compression (proposed)

124 B 76 B
Primi. in AABB sort Primi. in
CBVH out ICBVH in CBVH out
L | T T T | T T T | L | LU | T T T T u T T T 7T | T T T 7T | T T T 7T | T T T 7T | T
0 50 100 150 200 250 B 1] 50 100 150 200 250 B

(a) LBVH construction

(b) Refitting

Figure 1: External memory traffic of different hardware tree update strategies, bytes per input primitive; assuming LBVH unit similar
to [VKJ* 15] and trees with one primitive per leaf. Updating or refitting to single-precision BVH and postprocessing into CBVH has a large
overhead compared to direct CBVH output. (Up to ca. 2x more traffic for LBVH and 2.6x for refit.)

Streaming compression is straightforward with a top-down algo-
rithm, but the fastest approaches to tree update, refitting [WBS07]
and optimized implementations of Linear BVH (LBVH) [Apel4],
output BVHs in bottom-up order. Bottom-up compression, in turn,
is nontrivial since each CBVH node is encoded relative to its parent.
Consequently, in order to emit a node, we need to make assump-
tions about its parent, and backtrack to repair the hierarchy when
said assumptions are falsified. The memory traffic from backtrack-
ing can eclipse the traffic saved by streaming compression.

In this article, we investigate algorithmic techniques for bottom-
up streaming compression of CBVHs, intended for a possible hard-
ware implementation. The main contributions of this paper are as
follows:

e A streaming, bottom-up CBVH compression algorithm based on
context estimation and backtracking.

e A novel modulo encoding for CBVH coordinates which reduces
the backtracking overhead by ca. %

e A treelet-based bottom-up compression algorithm, which elim-
inates roughly a further % of backtracking per level of treelet
depth used.

Together, these techniques reduce backtracking to a small fraction,
so that streaming compression gives close to ideal traffic savings.

The proposed algorithms could be used to implement a stream-
ing compression hardware unit which would operate on the outputs
of a hardware tree builder or refitter, reducing memory traffic, and
consequently energy and runtime. The significance of the savings
on a complete ray tracing system depend heavily on the scene and
used visual effects. The best case is a scene with simple shading and
complex animated geometry. In our preliminary simulations, the
cost of LBVH construction is roughly equal to the cost of single-
precision primary ray tracing at 1M animated triangles, so in this
optimistic case, halving the build cost could give energy and run-
time savings as high as %‘ Large savings are easier to reach with
CBVHs as they are cheaper to traverse.

This paper is organized as follows. Section 2 discusses related
work. In Section 3, we describe the baseline CBVH encoding. Sec-
tion 4 discusses the proposed approach of bottom-up streaming
compressions, and proposes optimizations to reduce backtracking
memory traffic inherent in the approach. Section 5 gives an evalua-
tion of the proposed techniques, and Section 6 concludes the paper.

2. Related work

BVH compression with quantized coordinates has been investi-
gated in software by Mahovsky [MWO06] and later Segovia [SE10]
for the purpose of out-of-core ray tracing of very large static
scenes. Keely [Keel4] proposed a hardware architecture based
on augmenting a conventional GPU with CBVH traversal hard-
ware. A traversal point update method was proposed to tra-
verse CBVHs with low-precision arithmetic computations, allow-
ing traversal with compact hardware accelerators. Vaidyanathan
et al. [VAMS16] approached CBVHs from a more formal frame-
work and gave an alternate, provably watertight traversal algorithm,
while reusing AABB coordinates from parent nodes as in [FD09] to
further shrink the memory footprint and arithmetic cost of CBVHs.

The quality of BVH trees is typically measured with the Sur-
face Area Heuristic (SAH) [GS87]. The classical build meth-
ods of SAH sweep and binned SAH sweep [Wal07] recursively
partition the scene primitives guided by SAH values of candi-
date splits. Most tree construction methods aiming for fast build
speed are based on the Linear BVH (LBVH) approach of Lauter-
bach et al. [LGS*09], which has been optimized by several au-
thors [PL10, GPM11, Kar12, Apel4]. LBVH is a fast, low-quality
build algorithm, and state-of-the-art builders further process the
resulting tree to improve quality; e.g., the Agglomerative Treelet
Restructuring BVH algorithm (ATRBVH) algorithm [DP15] rear-
ranges an LBVH tree to give better tree quality than SAH sweep at
a fraction of the runtime.

Another broad approach to tree update is to refit an existing

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies 169

tree to new geometry [WBSO07]. This is a faster operation than
full rebuild, but restricted to animations that conserve mesh topol-
ogy. Tree quality tends to deteriorate over many refits, so it is of-
ten periodically refreshed with an asynchronous high-quality re-
build [TWP07], or maintained with tree rotations during the re-
fit [KIS*12].

Hardware accelerators have been proposed to update trees es-
pecially on mobile platforms, where energy and memory band-
width constraints prevent the use of GPGPU algorithms. Nah et
al. [NKP*15] propose a scheme similar to [[WP07] based on re-
fitting and asynchronous rebuilds, however, refitting is accelerated
with hardware Geometry and Tree Update (GTU) units. Doyle
et al. [DFM13] proposed a hardware BVH builder based on the
binned SAH sweep algorithm, which optimizes memory traffic by
performing stages of the algorithm in a pipelined manner. Viitanen
etal. [VKJ*15] have proposed an LBVH builder which gives a sim-
ilar tradeoff as desktop LBVH compared to [DFM13]: the build is
much faster, at the cost of reduced tree quality, which needs to be
recovered with postprocessing.

In this paper, we describe how to augment LBVH and refitting
hardware such as [VKJ*15,NKP*15] to emit CBVHs in a stream-
ing manner. To our best knowledge, this is the first study on CBVH
construction and refitting. The present work is focused on hard-
ware implementation, but may also be applicable to GPGPU tree
updates.

3. Background

We start from a formal description of quantized trees similar to the
one given by Vaidyanathan et al. [VAMSI16]. In a full precision
BVH, each node is represented by an Axis-Aligned Bounding Box
(AABB) consisting of a lower bound p and a upper bound ¢, where
(pg) € R3. We write the components of vectors as, €.g., px, Py, Pz-
In CBVH, the bounds are quantized to a low resolution grid aligned
with the parent AABB, represented as low-precision (e.g. 5-6 bit)
integers, and decompressed during traversal. This results in a lossy
compression where the AABB’s memory footprint is sharply re-
duced, at the cost of some extra node tests due to enlarged bounds.
If the quantized grids are zero-aligned, the local grid coordinates
(ry,s;) for each axis i can be computed as

pi uparent qi upar('m‘
— L . — L
ri= e |5 Si= e | 1 (eY)
2¢; 2¢;

where e is the local grid scale exponent, and u”*“" is the quan-

tized parent lower bound. The per-axis grid scale exponents ¢; of a
node are chosen to be the minimum where the node fits in 2 grid
intervals, so that its r,s can be expressed in N bits, i.e.,

ei:argmin ((V,'fui)/zk S2N>) 2)
k

Note that s; in Equation 1 takes on values between 1 ...2N, which
may overflow if stored in N bits. This can be avoided by storing
Si— 1.

When traversing the tree, the decompressed bounds (u,v) can be

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

SP BVH
build / refit

v v

| DRAM interface |

Top-down
compress

(a) Postprocessing, top-down compression
HW

Context
stack

Output,
detect %iBacktrack

backtrack
I Y

| DRAM interface |

SP BVH
build / refit

estimate
context

compress

(b) Streaming, bottom-up compression HW (proposed)

Figure 2: Hardware organizations for two CBVH compression
strategies.

computed as

arent
&P

+r25% Vi =

arent
PP

ufarem +s28 3)

ui — M%)arem
The original bounds (p,q) are enclosed in the decompressed
bounds, such that u < p < g < v. Note that in order to encode or
traverse a CBVH node with Equations 1 and 3, we need values for
the parent scale and lower bound P2 ;P2 We refer to these
values as a traversal context.

Methods have been proposed to traverse CBVHs at a low arith-
metic precision instead of unpacking each node and using single-
precision collision tests [Keel4, VAMSI16]. In single-precision
traversal, the input ray is tested against each AABB with the slabs
test [KK86], which first computes parametric distances to each
plane,

tei=(pi—o)d "y = (qi—on)di ', 4)

where o,d are the ray origin and direction, and #, ; and t, ; are the
parametric distances to the lower and upper bound planes on axis
i, respectively. The distances are then combined with min and max
operations to form parametric near and far distances (fnear?far) to
the AABB. If tfar < tnear, the ray does not intersect the AABB. The
most recent low-precision approach [VAMS16] instead computes
plane distances incrementally during traversal:
___parent e, __ parent 1P 1

i =1y, ; +r2% dy ty i = tp i —S 2% di . ()
As a result, single-precision multiplications can be replaced with
cheaper 24 x 6 bit multiplications. In order to guarantee watertight
traversal, the quantized offset s’ is computed from the parent up-
per bound rather than the lower bound, and rounding modes are
selected to maximize ¢ 'far and minimize thear.

170 T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies

4. Algorithm

In this section, we describe the basic idea of streaming bottom-up
CBVH update, followed by techniques to reduce the backtracking
memory traffic inherent in the approach.

4.1. Bottom-up construction and backtracking

Top-down compression of a quantized tree is straightforward by
evaluating Equation 1. In bottom-up compression, however, a
traversal context is unavailable, and has to be estimated. A stream
of BVH node pairs in depth-first, bottom-up order can then be com-
pressed into a CBVH as in Algorithm 1. A traversal context is es-
timated for each processed BVH node and placed on a traversal
context stack. When processing an inner node, the contexts of its
children can be found at the top of the stack. By decoding the newly
generated node and comparing the produced child traversal con-
texts to the stored contexts, we may detect whether a child was in-
validated by the new node, i.e., whether the context estimated when
encoding the child was incorrect. The algorithm then recursively
backtracks to repair the invalidated children (function Backtrack
in Algorithm 1). Figure 2b shows a possible hardware organization
implementing Algorithm 1, compared to separate top-down com-
pression in Figure 2a.

Context estimation (function Est imateContext) is straight-
forward for eP*™™ by examining the exponent of g — p. For uP*"*"
it is difficult with the formulation of [VAMS16] where the toplevel
grid is aligned to the uncompressed lower bound of the scene, as
this is unknown until the end of bottom-up traversal. We instead
align all grids to zero, i.e.,

parent parent

w=kK% 5 v=0R% kleZ. (6)

By virtue of this alignment scheme, we can estimate "™ by sim-
ply rounding pP**™ down to the nearest multiple of 2"

Each backtracking iteration decodes the target compressed node
with its original context and recodes the single-precision bounds
with a new context. Child contexts are then checked to determine
whether to continue recursion further.

The approach so far is able to produce correct trees. However,
backtracking may cause enough memory traffic to undo the savings
from streaming compression. It should be noted that backtracking
is more expensive than the original encoding, and makes random
accesses to the memory, while the main streaming compression
algorithm has a more efficient linear access pattern. In our initial
experiments on bottom-up update, backtracking almost completely
eliminates the memory traffic savings from streaming compression.
Hence, it is interesting to minimize backtracking. We next investi-
gate approaches to reduce backtracking.

4.2. Modulo encoding

When applying the above compression scheme to test scenes, we
note that child nodes are often invalidated even though their de-
compressed bounds are unchanged. We examine a typical case in
Fig. 3, in which a node A is combined with a primitive to form a
new node B. When encoding A, a scale s = 1 is used. When encod-
ing B, the bounds of A are snapped to a grid with scale s = 2 and

Algorithm 1: Bottom-up streaming CBVH compression algo-
rithm

Data: nodes

Data: nodeCount

Data: contextStack
1 Function Backtrack (idx, oldContext, newContext) is

2 oldChildContexts[]

3 < Decode (nodes[idx], oldContext) ;

4 nodesl[idx], newChildContexts|[]

5 < Encode (oldChildContexts[0].aabb,

6 oldChildContexts[/].aabb,

7 newContext) ;

8 foreach i € 1,2 do

9 if (oldChildContexts[i].scale #
newChildContexts[i].scale) and (child is not a leaf)
then

10 Backtrack (nodes[idx].ptr[i],

11 oldChildContexts[i], newChildContexts[i]) ;

12 end

13 end

14 end

15 Function BUCompressNode (bvhNode, contextStack) is
16 context <— EstimateContext (bvhNode) ;

17 nodes[nodeCount], childContexts|[]

18 < Encode (bvhNode.aabbs[0],

19 bvhNode.aabbs[/],

20 context) ;

21 nodeCount <— nodeCount + 1 ;

22 foreach child € 2,1 do

23 if child is not a leaf then

24 storedContext <— contextStack.Pop () ;

25 if childContexts[child].scale # storedContext.scale
then

26 Backtrack (bvhNode.ptr[child],

storedContext, childContexts[child]) ;

27 end

28 end

29 end

30 contextStack.Push (context) ;

31 end

32 Function BUCompress (bvhTreeInBUOrder) is
33 contextStack <— empty stack ;

34 foreach node € bvhTreeInBU Order do

35 BUCompressNode (node, contextStack) ;
36 end

37 end

rounded. Though the child coordinates encoded by A still refer to
the same coordinates, they are relative to the node bounding box
derived from B, which has shifted. We find that in real scenes a ma-
jority of backtracking is due to this type of context mismatch. It is,
then, interesting to find an encoding where the low-precision co-
ordinates can represent the same points as the relative coordinates,
but are robust to small changes in parent bounds.

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies 171

Modulo
Relative coordinates
coordinates (proposed)

b o

(a) Inputs of a bottom-up merge

Primitive
AABB

Legend:

s=1 701234()670123456701
s=2 0 1 213 4 5 6 7 0
3 [I O Y Y Y I |
46—

‘T]

6 7— [CHS P

7

00— H -

1— B _—%|

w
|

NouhsWwN
N
I
>

Quant. Node A
prim. AABB grid, e=1

I

(b) Result of merge

Node B
grid, e=2

Figure 3: Example of a bottom-up CBVH merge of a primitive with a 2-primitive node. 3 bit coordinates are used, i.e., a node can be up to 8
internal gridcells wide. After snapping the child node bounds to the new parent’s grid, its relative coordinates are invalidated. The proposed
modulo coordinates are more robust and only invalidated by a parent scale change.

We describe here a novel encoding which has this desired prop-
erty, and follows from the global grids described earlier. Given that

parent parent

Ui = k2% Vi = ¢ k1€, 7

we can replace (r,s) used in Equations 1 and 3 with modulo coor-
dinates (7,$) such that
#=k mod2"; §=1 mod2", @®)

where mod is the integer modulo operation, i.e., a = bla/b| +
(e mod b). To traverse a modulo encoded tree, given the parent’s

lower-bound modulo coordinate in the local grid 77", we can
recover relative coordinates as
r=(F—FPUmy mod 2V,
G gharenty mod 2V if 7 #£ 8, ©)
(§—gPuenty mod 2V 42V if =5
Note that parent lower bound modulo coordinates r’**" are

needed for traversal, i.e., they are added to the traversal context. As
with relative encoding, as long as the parent bounds limit a range
of up to oV gridcells in the local scale, modulo coordinates can en-
code any child range. However, the modulo encoding is robust to
changes in parent bounds as long as the parent scale is unchanged.
Moreover, while relative encoding stores s; — 1 to avoid overflow, §
can be stored as is.

C pseudocode for traversal is shown in Fig. 4. Note that the par-
ent modulo coordinate needs to be scaled to the local grid before
use (line 1). In the code, floating-point coordinates are recovered
(lines 8-9), but we could instead use the relative coordinates di-

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

rectly for ray tracing as in Vaidyanathan’s [VAMS16] work. In this
case, the upper bound coordinate relative to parent upper bound, s,
is recovered as

s’ = (8" —§) mod 2", (10)

and the parent upper bound sparens needs to be added to the traver-
sal context. The grid scale is saturated close to the minimum repre-
sentable floating point number (lines 17).

We next discuss a hardware-friendly way to compress a given
floating point node pair to modulo encoding. C pseudocode for
compression, along one axis, is shown in Fig. 5. First, the input
floating point upper and lower bounds are broken into sign, man-
tissa and exponent (lines 1-5). They are then aligned to local grid
scale, rounding both coordinates down. (lines 7-8). Next the man-
tissas are converted from sign-magnitude representation to two’s
complement (lines 10-12). The upper bound is incremented, en-
suring that the quantized upper bound is not lower than the original
(line 14). The low mantissa bits now correspond to the quantized
modulo coordinates 7,§ and are extracted (lines 16-18). Note that
the input scale must be selected such that at this point ub_m —
1b_m < 2V We now have enough information to store the com-
pressed node in memory. In a bottom-up build, we next need to
decide whether to backtrack, and compute traversal contexts for
backtracking to each child. Backtracking detection is based on the
child scale, which is computed next (lines 20-28). In addition to
the scale and child scale, the context includes 1b_mod, and the de-
compressed child AABB (c1b_out, cub_out) (computed in
lines 30-39). Note that 1b cannot be substituted for c1b_out,

172

T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies

slwhile (gridsize <

parent_lb_mod <<= (parent_scale - scale);
int rel_1lb = (lb_mod - parent_lb_mod) &

((1<<QUANT_BITS)-1);
int rel_ub = (ub_mod - parent_lb_mod) &

((1<<QUANT_BITS)-1);

if (1lb_mod == ub_mod)
rel_ub += (1<<QUANT_BITS);

clb_out = parent_clb + glm::1ldexp (float (
rel_1lb), scale);

cub_out = parent_clb + glm::1ldexp (float (
rel_ub), scale);

int gridsize = rel_ub - rel_lb;
child_scale_out = scale;
(1<<(QUANT_BITS-1))) {
gridsize <<= 1;
child_scale_out-—;
}
if (child_scale_out
child_scale_out =

< -126)
-126;

Figure 4: Modulo-encoded CBVH traversal along one axis.
clb_out, cub_out: Decompressed lower and upper bound
(u;,vi). 1b_mod, ub_mod: Modulo coordinates of lower and up-
per bound (#;,§;). parent_1b_mod: Node lower bound modulo
coordinate, in parent scale (ffmm”). parent_scale, scale,

child _scale_out: scale (e;) of parent, current and child node.

since the AABB decoded as in Figure 4 (lines 8-9) is not then guar-
anteed to contain the uncompressed AABB.

4.2.1. Hardware complexity

The overhead of modulo encoding in traversal consists of low-
precision arithmetic. Lines 3, 4, 10 in Figure 4 represent N-bit
adders, while lines 13-17 can be implemented with a priority en-
coder and a low-precision subtractor. The child axis computation
logic of lines 10-17 is also present in relative coordinate traversal.
In total, the overhead is equal to ca. 2 N-bit adders and 1 shifter per
AABB axis, or 12 adders and 6 shifters for a node pair. Using the
component costs in [VAMS16], the overhead of the adders is 5% in
addition to a traversal point update traversal unit, or 13% against a
shared-plane traversal unit.

A hardware implementation of a single-axis compressor shares
much of its structure with a floating-point adder. Figure 6 con-
trasts a compressor to the significand datapath of an adder. The
main components of an adder are input alignment, significand ad-
dition/subtraction, normalization and rounding. In Fig. 5, we align
two inputs like the adder equivalent, apply rounding, and normalize
back to IEEE-754 single-precision. The cost of conversions to and
from two’s complement representation is similar to that of round-
ing. In summary, a single-axis compressor has roughly 2x the input
alignment, 2x the normalization, and 6x the rounding logic of a
single-precision adder. We can approximate it as the equivalent of

=

%

26

2| child_scale_out =

//inputs -> sign, exponent, mantissa

int 1lb_s, lb_e, 1lb_m;

int ub_s, ub_e, ub_m;

break_float (1b, lb_s, lb_e, lb_m);
break_float (ub, ub_s, ub_e, ub_m);
alignf(lb_e, 1lb_m, 1lb_s, scale, RND_DOWN) ;
alignf (ub_e, ub_m, ub_s, scale, RND_DOWN) ;

//sign-magnitude -> 2’s complement

if(lb_s) 1lb_m = -1lb_m;
2lif (ub_s) ub_m = -ub_m;
ub_m++;

// Output modulo coordinates
1lb_mod_out = lb_m & ((1 << QUANT_BITS)-1);
ub_mod_out = ub_m & ((1 << QUANT_BITS)-1);
// Output child scale
int gridsize = ub_m - lb_m;
scale;
while (gridsize < (1<<(QUANT_BITS-1))) {
gridsize <<= 1;
child_scale_out——;
}
if (child_scale_out < -126)

child_scale_out = -126;
// Decode bounds
lb_s = (lb_m < 0) 2 1 0;
if(lb_s < 0)
1lb.m = -1b_m;
ub_s = (ub_m < 0) 2 1 0;
if (ub_s)
ub_m = -ub_m;
clb_out = pack_float (lb_m, scale, lb_s);
cub_out = pack_float (lb_m, scale, ub_s);
Figure 5: Hardware-oriented algorithm for modulo-encoded

CBVH compression. 1b,ub: Input uncompressed lower and upper
bound (pi,qi). 1b_mod_out, ub_mod_out: Output modulo co-
ordinates (7;,5;).

two adders, as significand addition is more expensive than round-
ing. A BVH node pair compressor has six single-axis compressors
and, in a bottom-up build, scale estimators for each axis, which are
the equivalent of single-precision subtractors, for a total cost of 15
single-precision adders. This appears a reasonable cost considering
that, e.g., the tree builder in [DFM13] has over 500 FPUs.

4.3. Treelet-based compression

We find from experiments with real scenes that backtracking typ-
ically only descends one or two hierarchy levels before terminat-

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies 173

FP adder

CBVH axis compressor

scale Ib ub

» Ib_mod
»ub_mod
round,
postnorm.
a+b
clb cub child_scale

Figure 6: Hardware implementation of a CBVH compressor (as
in Figure 5 based on modulo coordinates, contrasted to a floating-
point adder. LZC: leading zero counter. For clarity, only the signif-
icand datapath of the FP adder, which comprises most of the logic,
is shown. The single-axis compressor has similar computational
resources as two FP adders.

ing. Fig. 7 shows the depth histogram of backtracking iterations in
a test scene: it is visible that the distribution is top-heavy. Since
the working set for possible, e.g., 1- or 2-level backtracks is easily
stored on chip, there are many possible ways to avoid the memory
traffic from these short backtracks. We describe one approach here
which eliminates backtracking down to a fixed depth while always
retaining fully pipelined throughput.

In the proposed approach, we place logic after the compression
and update unit to collect BVH nodes into small treelets with a fixed
maximum depth M. Each treelet is then compressed top-down.
Context estimation is done only at the treelet root node, while only
the nodes at level M are output. This is almost equivalent to pre-
emptively backtracking all treelets, except there is no need to de-
compress nodes, simplifying the hardware. A hardware architecture
with a depth of 3 is shown in Figure 8. An M-level treelet has up
to M? — 1 nodes, so the cost of this approach grows quickly, but
it is evident from Figure 7 that removing backtracks of even 1—
2 levels gives most of the benefits available. Treelet collection is
performed by similar stack-based hardware as backtrack detection:
each stack element has space for a treelet of depth M — 1. Plane
sharing [FD09] may be used to compress the treelets and reduce
chip area, as the compression and decompression is very cheap in
fixed-function hardware.

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

I Relative coordinates [l Modulo coordinates
40000
39672
30000

20000

9199 9077

Backtracking iterations

10000
2868,
2062 511 59444 40 4 2
0
1 2 3 4 5 6
Treelet depth

Figure 7: Depth histogram of backtracking iterations in the Ele-
phant scene with relative and modulo coordinates.

4.4. Minimum scale adjustment

The techniques proposed so far nearly eliminate backtracking in
many practical scenes. However, they have difficulties in the spe-
cial case where the input BVH has large subtrees where all nodes
share a degenerate axis, i.e., they have zero width along an axis. In
practice, this arises when the scene has axis-aligned, planar, finely
tesselated geometry. In this case, the entire subtree is first encoded
bottom-up at the minimum scale, e.g. 27126 _¢lose to the minimum
representable floating point number - in Figure 5. On encountering
non-degenerate geometry with nonzero width along that scale, the
subtree is backtracked, such that the scale gradually approaches the
minimum throughout the subtree. Since each backtracking itera-
tion can only decrease scale by a factor of 2V a large portion of the
subtree needs to be backtracked. Modulo encoding is unhelpful in
this case since the scale difference is large, and the distribution of
backtracking depth is unfavorable for treeletwise compression.

An example from the cloth scene is shown in Fig. 9. This type
of geometry is rare in typical scenes, but may easily occur in, e.g.,
synthetic animated scenes, such as the example. In this work, we
approach this type of scene by selecting a minimum scale that is
coarse enough to avoid the above issue, but fine enough that tree
quality is unaffected. As a drawback, a parameter is added to the
construction and traversal algorithms which may need adjustment
based on scene size. However, we find later in evaluation that there
is a wide margin for the value in practical scenes.

Another approach we experimented with was to snap upper
bound coordinates up to numbers which are higher than the lower
bound and exactly representable in single-precision floating point.
For example, the degenerate geometry in the cloth scene lies on
the plane z = —0.4. The corresponding primitive bounding boxes
would, then, be ulp(—0.4) = 272 wide, where ulp() is the unit
in the last place function. This has similar effects as a manageable
minimum scale. This approach avoids adding a parameter, however,
it does not work with degenerate geometry where the correspond-
ing coordinate is zero.

4.5. Plane sharing

The methods described so far assume that 6 coordinates are stored
per bounding box. It can be beneficial in terms of memory footprint
to further compress the tree by reusing coordinates from the parent

174 T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies

Treelet
stack

=

‘ DRAM interface

Figure 8: Hardware architecture for treelet compression

node, i.e., plane sharing [FD09]. This technique can also be used
in CBVHs to reduce the arithmetic cost of traversal [VAMS16]. In
this scheme, 6 coordinates are stored per a pair of bounding boxes,
and the remaining 6 are reused from the parent AABB. Extra bits
are included in the node datastructure to denote which coordinates
are reused. However, unlike full-precision BVH, in CBVH this is
a lossy process: a coordinate quantized to a coarse scale at a high
hierarchy level often differs from the same coordinate quantized
to a finer scale. This causes only modest quality loss, but greatly
complicates bottom-up construction, as it often invalidates nodes
far down in the hierarchy. So far, we do not have a satisfactory
solution for plane sharing, and it is left as an open problem.

5. Evaluation

In order to evaluate the proposed methods, we implemented the
proposed streaming bottom-up compression algorithms, as well as
baseline top-down compression, in software. The algorithms are
evaluated for LBVH construction and refitting, assuming hardware
units like [VKJ*15,NKP*15]. A set of 16 test scenes is used for
evaluation, as listed in Figure 11. Common assumptions about input
and output data layouts are as follows. Input primitive data is stored
as an array-of-structures of triangles with three vertices (4 36B)
and a primitive ID (4B) per triangle. We assume a CBVH format
with a memory footprint of 16B per node pair, which is the same
density as in [Keel4]. Further space could be saved by optimizing
the child pointer representation as in, e.g., [SE10,LV16], but this
is outside the scope of this work. Each node in a pair has six 6-bit
relative or modulo coordinates and a leaf bit, which leaves space for
a 27-bit child pointer. Leaf pointers in the CBVH index a primitive
ID array as in, e.g., [Wal07], which references the input primitive
data. LBVH needs to output the ID array, while refitting leaves it
unchanged.

5.1. Minimum scale

We first calibrate the minimum scale parameter to be used in later
benchmarks. As discussed in Subsection 4.4, the minimum scale
should be coarse enough to avoid issues with axis-aligned, planar
geometry. However, an overly coarse scale has an adverse effect on
tree quality. The measured tradeoff is illustrated in Figure 10. In
our set of benchmarks, only cloth has a significant amount of thin
geometry, so we examine cloth and the other scenes separately.
With a fine minimum scale, cloth exhibits a large amount of back-
tracking, but this is mostly eliminated at a minimum scale of 2730,
Conversely, up to a minimum scale of 2715, there was no effect on
scene quality. Therefore, there appears to be a wide margin for the

Figure 9: Example scene (cloth) with a large amount of geometry
with a degenerate axis (red).

minimum scale parameter. In the following benchmarks, we use a
value of 273, It should be noted that though axis-aligned geome-
try is often found in indoor and architectural scenes, several such
scenes were included in the benchmark (crytec, conference, ital-
ian, babylonian), but did not cause significant backtracking even
without minimum scale adjustment. Axis-aligned geometry, there-
fore, only seems to become an issue in synthetic worst-case scenes.

5.2. Backtracking and memory traffic

Memory traffic is computed based on the numbers of primi-
tives, nodes and backtracking iterations recorded from the software
builder. For LBVH, we assume the hardware builder [VKJ*15] is
modified to output large leafs when multiple primitives share the
same Morton code. The builder reads input primitives (40B traf-
fic per primitive), sorts their AABBs (2x32B per primitive), and
outputs a CBVH hierarchy (16B per node) and primitive ID array
(4B per primitive). For refitting, we update LBVH trees to match
the original geometry (as the exact geometry has no bearing on
memory traffic). Refitting is assumed to proceed by Wald’s algo-
rithm [WBSO07], i.e., it needs to read the CBVH hierarchy (16B per
node), primitive ID array (4B per primitive) and primitives (40B per
primitive), and output an updated CBVH hierarchy (16B per node).
In the case of one primitive per leaf, this gives the memory traffic
in Fig. 1. Finally, each backtracking iteration with the bottom-up
builds requires a minimum-size DRAM read and write. We assume
a DRAM interface with a 64B access granularity, e.g., a LPDDR4
interface with a 64-bit channel.

Table 1 shows results in aggregate and Table 3 per scene. We see
that modulo encoding gives roughly the same benefits as one level
of treeletwise compression: they reduce backtracking by 4.4x and
6.8x, respectively. The gains from modulo encoding are orthogonal
with treeletwise compression: together, they reduce backtracking
by 15x. With two-level treelet compression or one-level compres-
sion combined with modulo encoding, the amount of backtracking
is so low that the memory traffic results are close to ideal.

The main scene parameter affecting memory traffic savings is
the number of primitives per leaf: the worst-case conference scene
has 8.7 triangles per leaf, while most scenes have 1-2. It should
be noted that some LBVH builders store one primitive per leaf,

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies

175

Table 1: Normalized backtracking and memory traffic results with (baseline) postprocessing top-down compression and streaming bottom-up
compression, with combinations of proposed modulo coordinates and treelet-based compression (with different treelet depths). Backtracking
results are normalized to baseline bottom-up compression (relative encoding without treelets). Memory traffic is normalized to top-down

compression.
Compression dir. Top-down [Bottom-up (proposed)
Coordinates Relative Modulo (proposed)
Treelet depth - - 2 3 4 - 2 3 4
Backtrack Min - 1.00 | 0.06 | 0.01 | 0.00 | 0.10 | 0.02 | 0.00 | 0.00
iterations Max - 1.00 | 0.25 | 0.09 | 0.03 | 044 | 0.15 | 0.06 | 0.03
Avg - 1.00 | 0.15 | 0.04 | 0.01 [022 | 0.06 | 0.02 | 0.01
Memory Min 1.00 0.75 | 0.53 | 0.51 | 0.50 | 0.54 | 051 | 0.50 | 0.50
traffic Max 1.00 095 | 086 | 0.84 | 0.83 | 0.87 | 0.84 | 0.83 | 0.83
(LBVH) Avg 1.00 084 | 0.61 | 059 | 0.58 [0.63 | 0.59 | 0.58 | 0.58
Memory Min 1.00 0.67 | 0.41 | 039 | 038 | 042 | 039 | 0.38 | 0.38
traffic Max 1.00 090 | 0.74 | 0.70 | 0.69 | 0.76 | 0.71 | 0.69 | 0.68
(Refit) Avg 1.00 079 | 049 | 045 | 044 | 052 | 046 | 044 | 044
o0s T Sl T BT(com Sar(omen BT (omer), 20000 Table 2: LBVH runtime results (ms) for single-precision build,
gfg o oo é postprocessing compression, and streaming compression with and
58 g without proposed optimizations.
$8 02 w0 g
£ 2 . o B Output BVH CBVH
38 z Compression dir. - TD BU (proposed)
o — — - - — Y Coordinates Float | Rel Rel. [Mod. ‘ Leaf ‘
Minimum scale exponent Treelet depth - - - [4 size
Figure 10: Effect of minimum scale on tree quality and backtrack- Toasters 072 02 03 01 11
ing: cloth scene and average of other scenes. Tree quality is repre- Bunny 1.1 1.6 1.9 0.8 1.1
sented by SAH cost normalized to minimum value. The number of Elephant 13 1.9 22 1.0 1.1
backtracking steps is normalized to scene size. The planar geom- Cloth 15 2.1 2.4 11 1.0
etry in cloth begins to cause significant backtracking with a mini- Fairy 2.1 2.5 2.6 19 3.8
mum scale of less than 270, An overly coarse minimum scale, ca. Armadillo 3.4 4.8 5.7 2.6 1.2
2*10, harms tree quality. Crytek 3.6 4.8 54 3.0 2.0
Conference 32 35 34 29 8.7
Sportscar 4.3 5.8 6.4 35 1.9
Italian 5.0 6.6 7.7 4.2 2.8
Babylonian 6.7 8.8 10.2 5.6 24
e.g. [Karl2]. For this type of tree, streaming construction would Hand 9.6 133 152 7.6 L5
consistently give best-case savings. Dragon 134 19.0 21.5 103 13
Buddha 16.7 235 26.0 13.0 1.5
In LBVH, plain streaming bottom-up construction saves 16% Lion 23.9 33.6 37.7 18.7 1.3
memory traffic compared to the baseline of BVH output and post- Hairball 409 | 565 | 522 | 322 1.4
processing compression. Modulo coding improves savings to 37%, Average - +36% | +52% | -20% 21

a single level of treelet compression to 39%, and a combination of
both techniques to 41%. At this point backtracking traffic is small,
so adding two more levels of treelet compression improves savings
only to 42%, even as backtracking falls 10x. In refitting the savings
are larger: on average 21% without either backtracking optimiza-
tion, 54% with both optimizations, and 56% with 4-level treelet
compression.

Since modulo encoding adds some overhead to traversal, and
similar memory traffic savings can be recovered by adding a level
of treelet compression which only complicates the update, it may
be advantageous to store the CBVH in relative coordinates and rely
on treelet compression. In this case, modulo encoding is used to
enable inexpensive compression hardware as in Figure 6, though
the resulting nodes are immediately converted to relative represen-
tation.

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

5.3. Runtime

We further examine the runtime effects of the proposed tech-
niques on LBVH construction by means of architectural simula-
tions, based on cycle-level simulation of the LBVH builder. Four al-
ternatives are compared: single-precision BVH build, postprocess-
ing top-down compression, streaming compression, and streaming
compression with the proposed optimizations. In the last alterna-
tive, modulo encoding is used and treelet depth is set at 4. For a
conservative comparison, we use optimistic assumptions for the
postprocessing compression hardware used as baseline, and pes-
simistic assumptions for the backtracking unit required by the pro-
posed method. The backtracking unit performs backtracking steps
sequentially, while the compression unit starts each memory oper-

176 T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies

2
1.6
12 -t |
0.8 [e—
0.4
0
BVH CBVH, CBVH, stream CBVH, stream

postproc. (REL) (TRL3, MOD)

Figure 11: LBVH runtime results, normalized to single-precision
LBVH. Average values and ranges are shown.

ation immediately after its dependencies are available, correspond-
ing to a highly parallel, multi-threaded implementation. The LBVH
builder is configured with a 256KB scratchpad memory and a buffer
size of 8 AABBs, such that it can handle scenes of up to 4M trian-
gles. The operating frequency is set at 1IGHz. We assume a dual-
channel, 32-bit LPDDR3-1600 memory interface with a maximum
bandwidth of 12.8GB/s, which is simulated with the cycle-accurate
Ramulator model [KYM15].

Runtime results are shown in Table 2 and Figure 11. As ex-
pected from the memory traffic results, the proposed method is
consistently faster than single-precision BVH construction, while
postprocessing compression is slower. On average, the proposed
methods are 20% faster than single-precision LBVH, while base-
line post-processing top-down compression is 36% slower.

5.4. Tree quality

In order to verify the quality of the constructed trees, we ray traced
each test scene and counted intersection tests. CBVHs required,
on average, 8% more box tests and 13% more triangle tests than
BVH, in line with previous work [Keel4, VAMS16]. Out of the
proposed techniques, minimum scale adjustment affects quality as
described in Section 5.1. Moreover, context estimation sometimes
gives more loose scales than top-down build, resulting in a nonzero
but negligible quality difference (<0.1% for all scenes). Modulo
encoding and treelet-based compression had no effect on quality.

5.5. Watertightness

In addition to performance and tree quality, it is interesting whether
a ray tracing system is watertight, i.e., whether it is guaranteed to
avoid false misses. Vaidyanathan’s traversal algorithm [VAMS16]
is proven watertight based on the criterion that exact parametric dis-
tances tax, tmin to each AABB are enclosed in the distances com-
puted during traversal. We do not have a formal proof that our trees
satisfy the criterion, but verified that this criterion held over every
box test when path tracing all test scenes. Moreover, decompress-
ing our bounds to single precision always gave AABBs that enclose
the uncompressed AABB.

6. Limitations and Future Work

A main limitation of the present work is that shared-plane CB-
VHs [VAMS16] cannot yet be updated, and are left as an open
problem. It may also be interesting to use shallow hierarchies as
in [VKJT16] instead of shared-plane encoding, as this gives at least
some of the memory footprint advantage of shared-plane encoding
while making bottom-up updates more tractable. Moreover, since
the node size of shared-plane CBVHs is small compared to cache
lines, only a small fraction of the memory footprint advantage
translates into memory bandwidth savings [VAMS16], at least in
a straightforward implementation. From this perspective, it may be
advantageous to use a shallow hierarchy and traverse fewer, larger
nodes.

In this work, full-precision child pointers were used for simplic-
ity, but it seems possible to integrate, e.g., the techniques of Liktor
et al. [LV16] or Segovia et al. [SE10] to compress pointer fields.
Moreover, using compact primitive storage formats such as trian-
gle strips [LYMO7] may be a low-hanging fruit to speed up tree
update. Although this article focused on fixed-function hardware,
the proposed encoding may also be interesting for CBVH builds on
a programmable GPU, where bottom-up algorithms are preferred
in order to take advantage of the GPU’s parallel resources.

7. Conclusion

This article showed that the construction and refitting of com-
pressed BVH trees can be significantly optimized by means of
streaming, bottom-up compression. Two novel techniques were
proposed to enable the rapid hardware-accelerated update of
compressed BVHs in animated scenes: modulo encoding and
treelet-based compression. Together, the proposed techniques al-
low streaming compression in bottom-up order, reducing memory
traffic from LBVH construction by 38% and from refitting by 54%
on average, compared to a postprocessing compression step. Since
both LBVH and refitting are memory-bound algorithms, these sav-
ings translate directly into improvements in performance and en-
ergy efficiency, and are especially significant on mobile devices
with limited power budget and memory bandwidth. Runtime was
evaluated for LBVH builds, and was in line with the memory traf-
fic reductions. Notably, it is faster to update CBVHs than uncom-
pressed BVHs with the proposed method. The described work rep-
resents a step toward real-time, mobile ray tracing of large-scale
animated scenes.

Acknowledgement

The authors would like to thank the anonymous reviewers for
their insightful comments. This work was financially supported by
the TUT graduate school and the Academy of Finland (decision
#297548, PLC). The 3D models used are courtesy of Ingo Wald
(Fairy), Andrew Kensler (Toasters), Yasutoshi Mori (Sportscar),
Frank Meinl (Crytek Sponza), Jonathan Good (Italian, Babylo-
nian), Anat Grynberg and Greg Ward (Conference), Naga Govin-
daraju, Ilknur Kabul and Stephane Redon (Cloth), the Stanford
Computer Graphics Laboratory (Bunny, Buddha, Dragon), and
Samuli Laine (Hairball). Crytek Sponza and Dragon have modi-
fications courtesy of Morgan McGuire [McG11].

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies 177

References

[Apel4] APETREI C.: Fast and Simple Agglomerative LBVH Construc-
tion. In Computer Graphics and Visual Computing (CGVC) (2014). 2

[DFM13] DOYLE M., FOWLER C., MANZKE M.: A hardware unit for
fast SAH-optimized BVH construction. ACM Transactions on Graphics
32,4 (2013), 139:1-10. 1, 3,6

[DP15] DOMINGUES L. R., PEDRINI H.: Bounding volume hierarchy
optimization through agglomerative treelet restructuring. In Proc. High-
Performance Graphics (2015), pp. 13-20. 2

[FD09] FABIANOWSKI B., DINGLIANA J.: Compact bvh storage for ray
tracing and photon mapping. In Proc. Eurographics Ireland Workshop
(2009), pp. 1-8. 2,7, 8

[GPM11] GARANZHA K., PANTALEONI J., MCALLISTER D.: Sim-
pler and faster HLBVH with work queues. In Proc. High-Performance
Graphics (2011), pp. 59-64. 2

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of object hier-
archies for ray tracing. Computer Graphics and Applications 7,5 (1987),
14-20. 2

[IWP0O7] 1zET., WALD L., PARKER S. G.: Asynchronous BVH construc-
tion for ray tracing dynamic scenes on parallel multi-core architectures.
In Proc. Eurographics Conf. Parallel Graphics and Visualization (2007),
pp. 101-108. 3

[Karl2] KARRAS T.: Maximizing parallelism in the construction of
BVHs, octrees, and k-d trees. In Proc. High-Performance Graphics
(2012), pp. 33-37. 2,9

[Keel4] KEELY S.: Reduced precision hardware for ray tracing. In Proc.
High-Performance Graphics (2014), pp. 29-40. 1,2, 3, 8, 10

[KIS*12] KoprTa D., 1zE T., SPJUT J., BRUNVAND E., DAVIS A.,
KENSLER A.: Fast, effective BVH updates for animated scenes. In
Proc. Symp. Interactive 3D Graphics and Games (2012), pp. 197-204.
1,3

[KK86] KAY T. L., KAJIYA J. T.: Ray tracing complex scenes. In ACM
SIGGRAPH Computer Graphics (1986), vol. 20, ACM, pp. 269-278. 3

[KYM15] KiM Y., YANG W., MUTLU O.: Ramulator: A fast and ex-
tensible DRAM simulator. IEEE Computer Architecture Letters PP, 99
(2015), 1-1. 10

[LGS*09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE
D., MANOCHA D.: Fast BVH construction on GPUs. Computer Graph-
ics Forum 28, 2 (2009), 375-384. 1,2

[LSL*13] LEEW.,SHINY.,LEEJ.,KiMJ., NAHJ., JUNG S., LEE S.,
PARK H., HAN T.: SGRT: A mobile GPU architecture for real-time ray
tracing. In Proc. High-Performance Graphics (2013), pp. 109-119. 1

[LV16] LIKTOR G., VAIDYANATHAN K.: Bandwidth-efficient BVH lay-
out for incremental hardware traversal. In Proc. High Performance
Graphics (2016), pp. 51-61. 1,8, 10

[LYMO7] LAUTERBACH C., YOON S.-E., MANOCHA D.: Ray-strips: A
compact mesh representation for interactive ray tracing. In Proc. IEEE
Int. Symp. Interactive Ray Tracing (2007), IEEE, pp. 19-26. 10

[McG11] MCGUIRE M.: Computer graphics archive, 2011. http://
graphics.cs.williams.edu/data/meshes.xml. 10

[MWO06] MAHOVSKY J., WYVILL B.: Memory-conserving bounding
volume hierarchies with coherent raytracing. In Computer Graphics Fo-
rum (2006), vol. 25, pp. 173-182. 2

[NKK*14] NaH J., KwoN H., Kim D., JEONG C., PARK J., HAN T.,
MANOCHA D., PARK W.: RayCore: A ray-tracing hardware architecture
for mobile devices. ACM Transactions on Graphics 33,5 (2014), 162:1-
15. 1

[NKP*15] NAHJ.,KiMJ., PARK J., LEE W., PARK J., JUNG S., PARK
W., MANOCHA D., HAN T.: HART: A hybrid architecture for ray trac-
ing animated scenes. IEEE Transactions on Visualization and Computer
Graphics 21, 3 (2015), 389-401. 1,3, 8

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

[PL10] PANTALEONIJ., LUEBKE D.: HLBVH: Hierarchical LBVH con-
struction for real-time ray tracing of dynamic geometry. In Proc. High-
Performance Graphics (2010), pp. 87-95. 2

[Pow15] POWERVR: PowerVR ray tracing. Accessed Feb 20, 2017,
2015. http://imgtec.com/powervr/ray-tracing/. 1

[SE10] SEGOVIA B., ERNST M.: Memory efficient ray tracing with hier-
archical mesh quantization. In Proc. Graphics Interface (2010), pp. 153—
160. 2, 8, 10

[SKBDI12] SpjuT J., KOPTA D., BRUNVAND E., DAVIS A.: A mobile
accelerator architecture for ray tracing. In Proc. Workshop on SoCs,
Heterogeneous Architectures and Workloads (2012). 1

[SKKB09] SpyuTJ., KENSLER A., KOPTA D., BRUNVAND E.: TRaX:
a multicore hardware architecture for real-time ray tracing. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems

28,12 (2009), 1802-1815. 1

[VAMS16] VAIDYANATHAN K., AKENINE-MOLLER T., SALVI M.:
Watertight ray traversal with reduced precision. Proc. High-Performance
Graph (2016). 2,3,4,5,6, 8, 10

[VKJ*15] VIUTANEN T., KOSKELA M., JAASKELAINEN P., KULTALA
H., TAKALA J.: MergeTree: a HLBVH constructor for mobile systems.
In SIGGRAPH Asia Technical Briefs (2015), p. 12. 1,2,3,8

[VKIT16] VINTANEN T., KOSKELA M., JAASKELAINEN P., TAKALA
J.: Multi bounding volume hierarchies for ray tracing pipelines. In SIG-
GRAPH Asia Technical Briefs (2016), p. 8. 10

[Wal07] WALD I.: On fast construction of SAH-based bounding volume
hierarchies. In Proc. IEEE Int. Symp. Interactive Ray Tracing (2007),
pp. 33-40. 2,8

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid of packets
- efficient SIMD single-ray traversal using multi-branching BVHs. In
Proc. IEEE Int. Symp. Interactive Ray Tracing (2008), IEEE, pp. 49-57.
1

[WBS07] WALD 1., BOULOS S., SHIRLEY P.: Ray tracing deformable
scenes using dynamic bounding volume hierarchies. ACM Transactions
on Graphics 26, 1 (2007), 6. 2,3, 8

[WSS05] WooP S., SCHMITTLER J., SLUSALLEK P.: RPU: a pro-
grammable ray processing unit for realtime ray tracing. ACM Trans-
actions on Graphics 24, 3 (2005), 434-444. 1

178 T. Viitanen et al. / Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies

Table 3: Memory traffic with LBVH and refitting. B: Baseline, separate top-down compression. RO: Relative encoding. R1: Relative encoding,
1 layer of treelet-based compression. MO: Modulo encoding. M1: Modulo encoding, 1 layer of treelet-based compression. Red: Separate
compression, blue: construction/refit, orange: backtracking.

LBVH

2116}

B RO R1 MO M1 B RO R1 MO M1 B RO R1 MO M1 B RO R1 MO M1
Toasters (11K tri.) Bunny (70K tri.) Elephant (85K tri.) Cloth (92K tri.)

26.2] [26.8]
(A6 ——
B RO R1 MO M1 B RO R1 MO M1
Armadillo (213K tri.) e Crytek (262K tri.)
5 22 =0
77.9%7J| 1814,
B RO R1 MO M1 B RO R1 MO M1 B RO R1 MO M1
Conference (283 tri.) Italian (374K tri.) Babylonian (500K tri.)
187.7
B RO R1 MO M1 B RO R1 MO M1 B RO R1 MO M1 B RO R1 MO M1
Dragon (871K tri.) Buddha (1.1M tri.) Lion (1.6M tri.) Hairball (2.9M tri.)
Refitting

- 08 i

B RO R1 MO M1 B RO R1 MO M1 B RO R1 MO M1 B RO R1 MO M1
Toasters (11K tri.) Elephant (85K tri.) s Cloth (92K tri.)

s 22 22

o
adl 12731

B RO R1 MO M1

Fairy (174K tri.)

B RO R1 MO M1

Crytek (262K tri.)

510 | gop P

b e P] e

B RO R1 Mo M1

B RO RL MO ML
Conference (283 tri.) Italian (374K tri.) Babylonian (500K tri.)

[122.9]130.4
B RO R1 MO M1 B RO R1 MO M1 B RO R1 MO M1
Dragon (871K tri.) Buddha (1.1M tri.) Lion (1.6M tri.) Hairball (2.9M tri.)
© 2017 The Author(s)

Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

[P4] Publication 4

[P4] VIITANEN T., KOSKELA M., JAASKELAINEN P., TAKALA J.:
Multi Bounding Volume Hierarchies for Ray Tracing Pipelines.
In SIGGRAPH Asia Technical Briefs (2016), p. 8.

Multi Bounding Volume Hierarchies for Ray Tracing Pipelines

Timo Viitanen * Matias Koskela

Pekka Jidskeldinen Jarmo Takala

Tampere University of Technology, Finland

Abstract

High-performance ray tracing on CPU is now largely based on
Multi Bounding Volume Hierarchy (MBVH) trees. We apply
MBVH to a fixed-function ray tracing accelerator architecture. Ac-
cording to cycle-level simulations and power analysis, MBVH re-
duces energy per frame by an average of 24% and improves per-
formance per area by 19% in scenes with incoherent rays, due to
its compact memory layout which reduces DRAM traffic. With pri-
mary rays, energy efficiency improves by 15% and performance per
area by 20%.

Keywords: ray tracing, ray tracing hardware

Concepts: eComputing methodologies — Ray tracing; Graph-
ics processors; Computer graphics;

1 Introduction

Ray tracing is a fundamental rendering technique which is widely
used in offline rendering to model the physical transport of light.
Rendering interactive scenes with ray tracing is a longstanding
research challenge in computer graphics. In recent years, there
has been an influx of research on specialized ray tracing hard-
ware architectures to enable such interactive rendering. Many hard-
ware architectures have been proposed in academic forums, such
as RPU [Woop et al. 2005], SGRT [Lee et al. 2013] and Ray-
Core [Nah et al. 2014]. In addition, recently a commercial mo-
bile GPU IP with ray tracing support has been launched. Many of
these works are aimed at mobile devices partly since the ray trac-
ing algorithm is well suited for smaller displays, and also because
it is likely commercially easier to incorporate a ray tracing feature
into a mobile SoC than to sell a stand-alone product. The focus
on mobile systems, and recent trends in CMOS process technol-
ogy place restrictions on ray tracing hardware architectures. Hand-
sets and tablets operate under strict power constraints since they are
battery-powered and passively cooled; it is therefore crucial to op-
timize the hardware accelerator for low-energy operation. Due to
logic scaling, the energy cost of computational logic is falling rela-
tive to long-range communication. Especially accesses to off-chip
SDRAM main memory are expensive.

The basic operation in ray tracing is ray traversal, i.e., finding the
closest point of the scene geometry which intersects a given half
line. The basis of a modern high-performance implementation is to
organize the scene geometry into an acceleration datastructure such
as a Bounding Volume Hierarchy (BVH), which reduces this into a

*e-mail:timo.2.viitanen @tut.fi
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. (© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SA ’16 Technical Briefs, December 05 - 08, 2016, , Macao
ISBN: 978-1-4503-4541-5/16/12
DOI: http://dx.doi.org/10.1145/3005358.3005384

MBVH4

([
]

Figure 1: Left side: BVH organizing 7 leafs (grey) with six 64B
nodes (each storing AABBs and pointers of its two children). Right
side: 4-wide MBVH organizing the same number of leafs with two
128B nodes (% memory footprint).

logarithmic-time operation in the typical case. Most of the compu-
tational effort in ray tracing goes to traversing this acceleration tree
and performing intersection tests against the scene geometry in the
leaf nodes. Consequently, ray tracing hardware architectures tend
to include fixed-function hardware pipelines for these two tasks.

In this work, we investigate using Multi-Bounding Volume
Hierarchies (MBVH) [Ernst and Greiner 2008] [Wald et al.
2008] [Dammertz et al. 2008] in a ray tracing accelerator: this is a
variant of BVH with a higher branching factor, typically 4. MBVH
was originally intended to take advantage of SIMD instruction sets
such as SSE in CPUs, but the technique also has general benefits:

e MBVH has a more compact memory layout than BVH, as
noted by Dammertz et al. [Dammertz et al. 2008] and illus-
trated in Figure 1. Consequently, it improves the hit rate of
caches and reduces external memory traffic.

e MBVH ray traversal with a 4-wide MBVH (MBVH4) per-
forms roughly the same amount of computation and memory
requests as a BVH, but organized into larger consecutive units.
5 random accesses of 2m bytes can be served by a simpler
memory hierarchy than n accesses of.m bytes. Likewise, or-
ganizing computation into larger units, with fewer branches,
reduces the overhead of control logic in the architecture.

Recently, Guthe [2014] found MBVHs advantageous in GPU ray
tracing, demonstrating the above advantages. In this paper, we
show with simulations and power analysis that introducing MBVH4
to a ray tracing unit significantly improves area- and energy-
efficiency over a BVH baseline, especially with incoherent rays.

2 Related Work

Few works on ray tracing hardware architecture have variations on
the applied data structures; most of the recent approaches focus
on plain BVHs and k-d trees. There is recent interest in quan-
tized BVHs with, e.g., 5 bits per coordinate, most recently by
Vaidyanathan [2016]. This structure achieves a very high simu-
lated performance. However, it appears nontrivial to keep updated
when rendering dynamic scenes, whereas the present work can use
similar update and construction methods as a conventional BVH,
with minor modifications.

To DRAM From ray

To shader
controller generator

Intersect.
arbiter pipeline

Traversal
pipeline

To shader

Figure 2: Ray tracing accelerator architecture modeled in this
paper, based on [Lee et al. 2014]. This paper makes changes to the
bolded components: the traversal pipeline and the traversal stack.

Lee et al. [Lee et al. 2014] optimize the BVH data layout in
the SGRT system [Lee et al. 2013] for a large performance gain.
Hwang et al. [Hwang et al. 2015], optimize the number represen-
tations in their data structures to mostly fixed-point-arithmetic, but
resort to floating-point numbers in cases where they are more ef-
ficient in terms of hardware cost. Our work introduces a hardware
architecture based on the MBVH datastructure for major further im-
provements in area- and energy-efficiency compared to [Lee et al.
2014]. These gains are orthogonal to the approach of [Hwang et al.
2015] and could be combined with their hybrid representation.

3 System Architecture

As a baseline for evaluation, we consider a model architecture based
largely on [Lee et al. 2014], which in turn builds on [Lee et al.
2013], shown in Figure 2. The main components of this architec-
ture are traversal units (TRV) which handle processing for BVH
inner nodes and intersection units (IST) which perform ray-triangle
intersection tests using Wald’s [2004] method. Ray data records
enter the system from a shader processor, are assigned a free ray
slot by a scheduler hardware, and then pass between TRV and IST
units through FIFOs until traversal completes. Each ray is assigned
a traversal stack from a specific TRV unit, and all its stack opera-
tions are performed by this TRV. This organization is inefficient in
some ray states, e.g., upon finishing processing a leaf node, the ray
has to return from IST to TRV and pass through the TRV pipeline to
perform a stack pop, which may send the ray back to IST. However,
the common case of repeated TRV operations is very fast.

The main focus of this work is on the TRV unit. The baseline TRV
unit shown in Figure 3 is designed to process BVH nodes in a lay-
out that, for each node, stores the AABBs and pointers of its two
children. When a ray enters the TRV, it first attempts to fetch into
memory the target node of the ray. It then performs intersection
tests against the two child AABBs in parallel using the slabs test.
Finally, depending on the results of the tests, the unit performs stack
operations, e.g., pushing the pointers of hit children to the stack, and
determines the new state of the ray. If both children are hit, they are
traversed in a front-to-back order based on the distance values out-
put from the slabs tests.

The rest of the baseline system is configured as follows. 4 TRVs
are allocated per IST. Each TRV has storage for 32 stacks, there-
fore, up to 4 x 32 = 128 rays may be active simultaneously.
There are two 128KB caches: a node cache shared by the TRVs
and a primitive cache serving the IST. In addition, each TRV has
a small 16KB L1 node cache. All caches are set as non-blocking,

Clock cycle: | 1 2|3|4|5|s|7 8|09
Input Mem A s :ﬂ: Stack
arbiter oper Ray-AABB test oper:
L1$ Stack
Clock cycle: 1 2 | 3 | 4 | 5 | 6 | 7189 ([10f1

Ray-AABB test :[[:
Ray-AABB test

|
Stack
oper

|

Input Mem.
arbiter St Ray-AABB test :H:
Ray-AABB test
T 0 ¢
L1$ Sorting network Stack

Figure 3: Top: Baseline TRV unit with two parallel ray-AABB
tests. Bottom: Proposed MBVH TRV unit with four ray-AABB tests
and sorting network. Pipeline stages are numbered on top.

4-way set-associative. The node caches use node-sized lines (64B
for BVH, 128B for MBVH2), while the primitive L1 is a two-bank
interleaved cache [Alvarez et al. 2007] with 64B lines per bank,
to accommodate fully pipelined unaligned accesses to 48B primi-
tives. The sizes of FIFOs are determined empirically so as to pre-
vent deadlocks: they are first sized at 32 elements and simulated,
and underutilized FIFOs are shrunk to the first power-of-two above
the maximum population encountered in simulation. As a latency
hiding mechanism, we use “looping for next chance” from Ray-
Core [Nah et al. 2014]: If a memory access misses, the correspond-
ing ray continues through the pipeline, but its subsequent computa-
tions are invalidated, and the ray is rescheduled for later execution.

We also diverge from [Lee et al. 2013] by storing full stacks on-
chip instead of short stacks. As a 64-entry stack was sufficient to
render all evaluated scenes by a large margin - at worst path tracing
in Hairball used 28 entries - and only accounts for 5..10% of the
area and power of the architecture. It appears that short-stack meth-
ods are more interesting for architectures with many GPU-like slow
threads, or rendering algorithms that require large stack entries such
as [Vaidyanathan et al. 2016].

3.1 Proposed MBVH architecture

MBVHs are structured similarly to the BVH layout in [Lee et al.
2014], except there is space for more than two children per node.
In this study, we redesign the TRV unit to handle 4-wide MBVHs
as shown in Figure 3. It is straightforward to increase the number
of box test units to 4, and double the cache line and read port sizes
in the node cache hierarchy, keeping the cache capacities constant.

> 3 1
— A - 28— 2
L ,

¢ > 1 >

Figure 4: Left side: Magnification of the sorting network shown in
Figure 3 with 5 comparators. Right side: Example sort.

The main new complication introduced with MBVH is that multi-
ple child nodes may be intersected and pushed to the stack per visit:
for a 4-wide MBVH, four children may be hit per TRV processing.
As the cache top is kept in the ready state record, up to 3 entries
may be inserted into the stack memory. This may be implemented
by means of a multi-bank memory, as consecutive entries are guar-
anteed to be on separate banks. Moreover, it is desirable to traverse
BVH nodes in a closest-first order, i.e., the references inserted to the
stack should be sorted according to their distance from the camera.
In BVH, this is accomplished with a simple compare-swap of the
two children, but for high branching factors a sorting operation is
necessary. Small sets of numbers can be easily sorted in hardware
by means of sorting networks, where the array is passed through a
series of comparators as shown in Figure 4. Knuth [Knuth 1999]
gives depth-optimal networks for up to 16 inputs. For the case
of four inputs, an optimal network consists of five comparators,
with a depth of 3, i.e., the data passes through at most 3 sequen-
tial compare-swaps. We pessimistically allocate one pipeline stage
per sorting network layer as shown in Figure 3, resulting in 2 ex-
tra cycles of latency compared to a BVH TRV. For occlusion rays
this step might be bypassed, reducing the TRV latency. A sorting
network structure has been used in software by, e.g., Guthe [Guthe
2014] to avoid branches.

Ernst and Greiner [Ernst and Greiner 2008] recommend storing the
distance value of each intersected node in the stack, so that after
finding a triangle intersection closer than the stored nodes, they can
be rejected without testing their children. In initial testing, this tech-
nique showed significant performance gains of ca. 10% for MBVH,
but only 3% for BVH. The effect is mainly due to triangle intersec-
tions avoided by the distance test. As shown in Figure 2, we equip
the MBVH TRV with a distance stack, in effect doubling the stack
size, while keeping the BVH in the original configuration. MBVH
is typically implemented with a power-of-two branching factor to
take advantage of SIMD instructions. In custom hardware, it is in-
teresting to use other factors such as 3 or 5. The main complication
of odd branching factors is memory hierarchy design: the cache
hierarchy should be able to supply one node per cycle to the TRV
unit, though they are unaligned in memory. Two approaches are ap-
parent. Firsly, the node L1 may be implemented as a two-bank in-
terleaved cache, as we do with the primitive L1. Secondly, the node
cache hierarchy might be addressed with array indices rather than
byte addresses, and use a node-sized data word. We experimented
with MBVH3, MBVHS5 and MBVHS6 using both techniques, but
these were sightly less efficient than MBVH4.

3.2 Evaluation

In order to evaluate the performance impact of MBVH, we imple-
mented a cycle-level simulator for the baseline and proposed ar-
chitectures. Though this paper focuses on the TRV pipeline com-
ponent, the full system including the cache hierarchy and memory
needs to be simulated to determine the performance effects. The
simulator is split into two parts:A software ray tracer draws scenes
and generates, for each ray, logs of node visits and stack operations
in a compact binary format, which are then fed to an architecture
simulator. The simulator models the cycle-level behavior of the
components in Figure 2, including the cache hierarchy, traversal
and intersection units, and the interconnection FIFOs and arbiters.
The assumed clock rate is SO0MHz. The main memory is modeled
with Ramulator [Kim et al. 2016]. We assume a LPDDR3-1600
memory with two 32-bit channels, for a peak theoretical data rate
of 12.8GB/s.

The area of each architecture is coarsely estimated by counting
the number of floating-point units and memory blocks, including
caches, stacks and FIFOs: we assume that e.g. control logic, clock

Figure 5: Test scenes used in simulation: Fairy (179K tri.), Crytek
Sponza (262K tri.), Hairball (2.9M tri.) and Rungholt (6.7M tri).

trees and pipeline registers add a similar margin to both configura-
tions. The simulator keeps track of activity rates for each compo-
nents: when idle, they are assumed to be clock gated and contribute
only static power. Dynamic and static power figures for SRAMs are
obtained from CACTI 6.5 [Muralimanohar et al. 2009], at 45nm.
Note that sequential caches are used, which first access the tag array
before reading data. In the normal configuration, the cache reads all
words in the target set simultaneously with the tag, but due to the
wide read ports in this work, this produces very large caches. For
FPUs we use the energy and area per FLOP figures of Galal and
Horowitz [2011]. The IST division is implemented with 11 FLOPs
as in the algorithm by Markstein [Markstein 2004]. DRAM power
figures are produced with DRAMPower [Chandrasekar et al. 2012].

Four test scenes (Figure 5) were rendered at a 1280x720 resolution
with primary rays, as well as diffuse path tracing limited to four
bounces and one sample per pixel. Secondary rays are fed to the
processor when the preceding ray is complete. BVH trees are con-
structed with a binned SAH sweep, and MBVHs with Wald’s top-
down recursive splitting algorithm [Wald et al. 2008]. The latter is
chosen since it appears straightforward to implement in hardware
by adding extra bookkeeping to the builder unit by Doyle [2013].
Simulation results are shown in Table 2. Since a speedup is ex-
pected due to the added hardware resources in MBVH, we use size-
independent figures of merit: memory traffic, energy per frame, and
performance per area. Area and power breakdown for the Fairy
scene are shown in Table 1. MBVH4 gives significant improve-
ments in energy and area efficiency across different scenes and ray
types. With diffuse rays, the improvement is driven by more effi-
cient use of external memory. DRAM accounts for an average of
70% of energy. In addition to reducing memory traffic, the larger
refill increment in MBVH utilizes DRAM better than the base-
line. With primary rays, DRAM is insignificant. The efficiency
gains from MBVH are smaller and more inconsistent, depending
on the ratio of AABB to triangle tests: MBVH performs well in
Rungholt and poorly in Hairball, extreme examples of box-heavy
and triangle-heavy scenes, respectively.

3.3 Conclusion

This paper proposed to use MBVH in fixed-function ray trac-
ing accelerators and discussed implementation techniques. 4-wide
MBVH improved energy per frame by an average of 24% and per-
formance per area by 19% with incoherent rays: therefore, it ap-
pears to be a significant low-hanging fruit in ray tracing hardware
design. As future work, we are interested in whether the improve-
ments from MBVH are cumulative with other memory-conserving
techniques such as quantized trees and treelet scheduling.

BVH MBVH4
Scene Ray type Perf. Energy Perf. /A DRAM Perf. Energy Perf. /A DRAM
(MRPS) (mJ/frame) (MRPS/mm?) traffic (MB) (MRPS) (mJ/frame) (MRPS/mm?) traffic (MB)
Fairy primary 47 9.3 12.2 8 76 (+61%) 8.4 (-10%) 13.8 (+13%) 6 (-19%)
diffuse 36 84 9.3 644 60 (+67%) 67 (-20%) 11.0 (+17%) 497 (-23%)
Crytek primary 25 18 6.5 5 47 (+87%) 15 (-15%) 8.5 (+31%) 3 (-42%)
diffuse 11 417 2.8 3332 19 (+78%) 307 (-26%) 3.5 (+25%) 2345(-30%)
Hairball primary 14 29 3.7 80 19 (+33%) 24 (-17%) 3.4 (-6%) 36 (-55%)
diffuse 6 490 1.5 4370 10 (+67%) 341 (-31%) 1.8 (+17%)) 2933 (-33%)
Rungholt primary 43 9.1 11.4 3 88 (+100%) 7.5 (-18%) 16.1 (+41%) 3 (-18%)
diffuse 29 92 7.6 703 48 (+66%) 76 (-17%) 8.8 (+16%) 582 (-17%)
Mean primary - - - - +70% -15% +20% -33%
diffuse - - - - +69% -24% +19% -26%

Table 2: Comparison of BVH and MBVH4 accelerators. MBVH4 is consistently more efficient except for primary rays in Hairball, where
IST is a bottleneck. With incoherent rays, DRAM dominates energy consumption.

Unit | TRV | IST | stack | cache | fifo | dram |
BVH
Area (mm?) 025 | 020 | 0.25 1.57 | 125 - 3.51

P. power (mW) 237 74 13 90 23 37 475
D. power (mW) | 157 60 10 130 25 608 990

MBVH4

Area (mm?) 041 | 020 | 0.51 235 | 1.25 - 5.47
P. power (mW) | 413 88 22 101 22 42 639
D. power (mW) | 285 71 18 153 24 767 | 1319

Table 1: Area estimate for baseline (BVH) and proposed (MBVH),
and power breakdown on Fairy, primary and diffuse rays. Caches
have the same capacity in MBVH but take up more area and power
due to the wider read port. The DRAM is a clear bottleneck for
incoherent rays.

Acknowledgement

The authors would like to thank Finnish Funding Agency for Tech-
nology and Innovation (project Parallel Acceleration 3, funding de-
cision 1134/31/2015) and European Commission in the context of
ARTEMIS project ALMARVI (ARTEMIS 2013 GA 621439)”, as
well as the TUT graduate school and the Nokia Foundation. Mod-
els used are courtesy of Ingo Wald (Fairy), Frank Meinl (Crytek
Sponza), Samuli Laine (Hairball) and kescha (Rungholt).

References

ALVAREZ, M., SALAMI, E., RAMIREZ, A., AND VALERO, M.
2007. Performance impact of unaligned memory operations in
SIMD extensions for video codec applications. In [EEE Int.
Symp. Performance Analysis of Systems Software, 62—71.

CHANDRASEKAR, K., WEIS, C., L1, Y., AKESSON, B,
WEHN, N., AND GOOSSENS, K., 2012. DRAM-
Power: Open-source DRAM power & energy estimation tool.
http://www.drampower.info.

DAMMERTZ, H., HANIKA, J., AND KELLER, A. 2008. Shallow
bounding volume hierarchies for fast SIMD ray tracing of inco-
herent rays. Comput. Graph. Forum 27, 4, 1225-1233.

DOYLE, M. J., FOWLER, C., AND MANZKE, M. 2013. A
hardware unit for fast SAH-optimised BVH construction. ACM
Trans. Graph. 32, 4, 139.

ERNST, M., AND GREINER, G. 2008. Multi bounding volume
hierarchies. In IEEE Symp. Interactive Ray Tracing, 35-40.

GALAL, S., AND HOROWITZ, M. 2011. Energy-efficient floating-
point unit design. /EEE Trans. Comp. 60, 7, 913-922.

GUTHE, M. 2014. Latency considerations of depth-first GPU ray
tracing. In Eurographics (Short Papers), 53-56.

HWANG, S.J., LEE, J., SHIN, Y., LEE, W.-J., AND RYU, S. 2015.
A mobile ray tracing engine with hybrid number representations.
In SIGGRAPH Asia Mobile Graph. Interact. Appl., 3.

KiM, Y., YANG, W., AND MUTLU, O. 2016. Ramulator: A fast
and extensible DRAM simulator. IEEE Comp. Arch. Letters 15,
1 (Jan), 45-49.

KNUTH, D. E. 1999. The Art of Computer Programming: Volume
3: Sorting and Searching, vol. 3.

LEE, W., SHIN, Y., LEE, J., KiM, J., NAH, J., JUNG, S., LEE,
S., PARK, H., AND HAN, T. 2013. SGRT: A mobile GPU
architecture for real-time ray tracing. In Proc. High-Performance
Graph., 109-119.

LEE, J., LEE, W.-J., SHIN, Y., HWANG, S., RYU, S., AND KIM,
J. 2014. Two-AABB traversal for mobile real-time ray tracing.
In SIGGRAPH Asia Mobile Graph. Interact. Appl., 14.

MARKSTEIN, P. 2004. Software division and square root using
Goldschmidt’s algorithms. In Proc. Conf. Real Numbers and
Comp., vol. 123, 146-157.

MURALIMANOHAR, N., BALASUBRAMONIAN, R., AND JOUPPI,
N. P. 2009. CACTI 6.0: A tool to model large caches. HP
Laboratories, 22-31.

NAH, J.-H., KWON, H.-J., KiM, D.-S., JEONG, C.-H., PARK, J.,
HAN, T.-D., MANOCHA, D., AND PARK, W.-C. 2014. Ray-
Core: A ray-tracing hardware architecture for mobile devices.
ACM Trans. Graph. 33,5, 162.

VAIDYANATHAN, K., AKENINE-MOLLER, T., AND SALVI, M.
2016. Watertight ray traversal with reduced precision. In Proc.
High-Performance Graph-, Eurographics Association, 33-40.

WALD, I., BENTHIN, C., AND BouULOS, S. 2008. Getting rid
of packets - efficient SIMD single-ray traversal using multi-
branching BVHSs. In IEEE Symp. Interact. Ray Tracing, 49-57.

WALD, 1. 2004. Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Saarland University, Germany.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: a
programmable ray processing unit for realtime ray tracing. ACM
Trans. Graph. 24, 3, 434-444.

	Abstract
	Preface
	Acronyms
	Nomenclature
	List of Publications
	Introduction
	Scope and Objectives of Research
	Main Contributions
	Author's Contribution
	Thesis Outline

	Streaming Linear BVH Construction
	BVH Construction Methods
	Linear BVH
	Refinement Based Construction
	Spatial Splits
	Other Build Algorithms
	Refitting
	Summary

	Hardware Accelerated Construction
	Binned SAH Acceleration
	Refit Acceleration
	k-Dimensional Tree Accelerators
	Imagination Technologies Builder

	Sorting Hardware
	Thesis Contribution

	Rebuilding and Refitting Compressed BVHs
	BVH Compression Methods
	Coordinate Compression
	Pointer Compression
	Primitive Compression
	Entropy Coding
	Comparison

	Incremental Encoding
	Thesis Contribution

	Hardware-Accelerated Shallow BVHs
	Traversal Architectures
	Programmable Platforms
	Fixed-Function Accelerators
	Memory Access Schemes

	Multi-Bounding Volume Hierarchies
	Construction
	Traversal

	Thesis Contribution

	Conclusion
	Main Results
	Open Research Issues

	Bibliography
	Publications

