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Errata for the PhD Thesis: ""Knowledge Agents via Logic Programming and
Fuzzy Reasoning™

Ossi Nykénen 1.4.2007, Tampere

Remark 1 (page 11, just above definition 2):

In the general case, it makes sense to define that if sup(A) =1, then A is normal.

Remark 2 (page 13, Definition 5):

The inequality symbols are ambiguous in the definition of the case of a; = a,. It should
read X < a; and a; < x (instead of x < a; and a; < x).

Remark 3 (page 21, second last paragraph):

The text reads "we essentially get a recursive version of the well-known max-min
composition”. It should read: "we essentially get a recursive version of the well-
known max-min rule composition™. (The term "max-min composition"
unintentionally refers to a different, well-established concept of fuzzy relations.)
Remark 4 (page 23, Proof for the Proposition 4):

The term "describe query" should be replaced with the term "ask query".

On the last paragraph, it reads: "...the smallest firing strength...". It should read:
"...the largest firing strength..."

Remark 5 (page 24, Proof for the Proposition 4):

On the first paragraph, it reads: "...both ®; and @, must also be firing strengths." It
should read: "...either m; or m, must also be a firing strength.”

Remark 6 (page 27, the equation before subsection 2.6):

In the first line of the equation, the operator ® is missing from the first term
("rs))rov"). It should read: "r3))®rov".

Remark 7 (page 40, first paragraph in subjection 3.4.1):
It reads: "...one ore more..." while it should read: "...one or more...".
Acknowledgements
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Abstract

Implementing knowledgeable applications benefits from the ability to model
problems on the knowledge level. In practice, this usually means engagement
with the logical description of problems. However, when (crisp) logic is ap-
plied as a tool in application design, modelling the fundamental vagueness
of the human knowledge may soon become an obstacle.

We claim that the two worlds of logic programming and fuzzy reasoning
should coincide when practical knowledge applications via logic programming
are concerned.

In this thesis, we point out and analyse an approach that provides the
necessary methodological and technical means achieving this goal. In par-
ticular, we consider the various aspects of systems called fuzzy knowledge
agents. By a fuzzy knowledge agent we mean a tool that helps users to
process and manage information via the logical description of the domain,
benefiting from the use of fuzzy models when applicable.

The chief utility of fuzzy knowledge agents lies within their ability to
formulate and encapsulate information through logical and linguistic means,
providing a logic-based end-user interface to the underlying information on
the knowledge level. In this thesis, we establish and analyse a reasoning ar-
chitecture that allows realising the main steps of designing and implementing
fuzzy knowledge agents, including: inception and elaboration of the domain
vocabulary and the associated logical procedures (to be captured with type-1
fuzzy logic programs); appropriate modelling of the domain concepts, based
on heuristic and statistical arguments (to be modelled with fuzzy sets, in-
duced from empirical data when appropriate); and construction of the rea-
soning and query applications.

In addition, we consider the concept of context-aware logic programs
and review the necessary technical components of fuzzy knowledge agents.
Finally, we evaluate the methods and discuss their applicability with several
illustrative use cases.
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In addition, the main text of the thesis provides a synthesis for the work,
including some previously unpublished results, namely proofs and more de-
tailed technical discussion related to the algorithms and the case studies (for
details, please see Subsection 1.4). The actual implementations of the devel-
oped algorithms with Maple, Prolog, Python, and CWM are not reproduced
here; only the architecture and the main results are discussed.

The treatment related to the empirical machine learning methods and
statistical considerations of the approach builds upon a study published sep-
arately as a monograph [71]. Seeking case studies from the educational do-
main has been motivated by authors’ related work in the area (see, e.g.
[74, 73, 72]), and the neutral and easy-to-understand nature of the domain.
In addition to the logic programming paradigm, this thesis has been influ-
enced by the studies and reviews related to Semantic Web and other applied
query and rule systems (for details, please see, e.g. [69, 70, 65]). In particu-
lar, even if detached from the abstract treatment, the development of type-1
fuzzy logic programs has largely been motivated by the conception of fuzzy
Semantic Web technologies and the related distributed logic applications.



Chapter 1

Introduction

Implementing knowledgeable applications benefits from the ability to model
problems on the knowledge level. In practice, this usually means engagement
with the logical description of problems. However, when Classical logic is
applied as a tool in application design, modelling the fundamental vagueness
of the human knowledge may soon become an obstacle. It appears that the
two worlds of logic programming and fuzzy modelling should coincide when
practical applications are concerned.

This study establishes and analyses the framework of systems called fuzzy
knowledge agents!. In short, a fuzzy knowledge agent is a tool that helps users
to process and manage information via the logical description of the appli-
cation domain, benefiting from the use of fuzzy models when applicable?. In
applications, fuzzy knowledge agents appear as components of Representa-
tion and Reasoning Systems which in real-world applications are in general
required to manage imprecise information (see, e.g., [78]).

1.1 Scope and Objective

In this thesis, we investigate the necessary empirical and logical components
required in designing and implementing fuzzy knowledge systems, subject to
fuzzy queries and reasoning. The methods we will be talking about are es-
sentially technical or formal. This has a delimiting effect (see [24]); while we
are dealing with abstractions that enable designing and implementing useful

1'We intentionally use the word agent which may either simply refer to client software,
e.g., as a GUI/DB/.../Web agent, or to an actor accessing information, e.g., as a software
agent. The reader is free to choose the interpretation he or she is more comfortable with.

2 Again, the user may be a human or a computer program, depending on the interpre-
tation.
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applications, we restrict the description language and make simplifying as-
sumptions about the nature of the associated models, following the tradition
of instrumentalism [28].

When practical applications are considered, general-purpose technical
means are obviously not alone sufficient, due to the fact that quality of the
production systems largely depends upon domain-specific modelling. Fur-
ther, since we are dealing with fuzzy systems, domain-specific considerations
fundamentally include both the design decisions related to the appropriate
selection of the logical vocabulary and the associated procedures, and the
design decisions related to the universe of fuzzy models.

In this thesis, we point out and construct a reasoning architecture that
allows realising the main steps of designing and implementing fuzzy reasoning
systems, including:

1. Inception and elaboration of the domain vocabulary and the associated
logical procedures (to be captured with type-1 fuzzy logic programs).

2. Appropriate modelling of the domain concepts, based on heuristic and
statistical arguments (to be modelled with fuzzy sets, induced from
empirical data when appropriate).

3. Construction of the reasoning and query applications (with concrete
use cases).

We in addition evaluate and demonstrate the approach in terms of edu-
cational decision-support applications. Further, we consider the required
technical components and establish a strategy of actually implementing such
systems with accessible technical tools.

We may perceive the developed approach as a specialisation of the more
general knowledge engineering process: decide what to talk about; decide on a
vocabulary of predicates, functions, and constants; encode general knowledge
about the domain; encode a description of the specific problem instance; and
pose queries to the inference procedure and get answers [80]*. The chief
distinction lies within the challenge of fuzzy modelling and fuzzy reasoning.
The increased freedom in modelling implies not only additional freedom in
knowledge engineering, but also requires making additional decisions about
the nature and the interpretation of the models.

The main objective of this thesis is establishing the necessary technical
means for designing fuzzy knowledge agents and demonstrating their role in

3Note that this process might be also considered as a knowledge-intensive specialisation
of the more general design and development processes (see, e.g., [23]).
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Figure 1.1: Fuzzy knowledge agents as logical information interfaces

abstract reasoning and decision-support applications. To accomplish this,
we develop a new method for inducing fuzzy models, derive a novel type-1
fuzzy extension to logic programming, evaluate the approach within an edu-
cational use case, and demonstrate the approach through examples. Despite
the seemingly formal nature of the treatment, the motivation behind the
included studies is largely due rather practical considerations: how to cap-
ture and manage large quantities of imprecise, context-dependent data while
benefiting from the understanding of logical systems in general.

We shall next provide a brief introduction to the problem domain, outline
the related research, and then review the main parts of the thesis.

1.2 Fuzzy Knowledge Agents as Interfaces

Figure 1.1 characterises the basic architecture of (passive) knowledge agents,
highlighting the role of different kinds of interfaces or views in accessing
knowledge. In short, the knowledge agent captures the underlying (informa-
tion) database with a logical description, in a form suitable to the end-user.
In a way, the knowledge agent provides a conceptualisation of the relevant
information. The success of this activity depends upon expert insight and
evaluation.

The fuzzy knowledge agent architecture also hints the importance of logic
as a communication language. Indeed, it has been claimed that mathematics
has two fundamental tasks: the descriptional task and the deductional task
[32]. Fuzzy knowledge agents demonstrate both, trying in practice to man-
age the computational requirements of the deductional task by appropriate
modelling [45, 6].



4 CHAPTER 1. INTRODUCTION

The fact that we conceptualise information in terms of a logic database,
includes a design decision. Alternatively, we might characterise information
in terms of probabilistic models, or simply as input to some computer pro-
grams, according to an appropriate model of computation [96, 101, 78]. As
usual, we consider logic merely as a tool for describing the world. In par-
ticular, we are not making the assumption that the world itself ”is” logical,
set-theoretic, truth-functional, etc. (see [31]). Further, while the correctness
of deductions is usually proved by referring to truth values, it is important
to observe that as a concept, "truth” exists only within the logical models.
In applications, "true clauses” are used to record whatever information the
designer considers useful.

The power and elegance of logic lies within its ability to abstract and
simplify clauses. However, when practical systems are considered, managing
imprecision becomes topical. The human description of the world is imprecise
for various reasons. This imprecision originates both from the allusive nature
and the complexity of the world, from the limitations of the human senses
and cognition, and from the limitations of the human language. Three forms
of imprecision are worth recognising in practice: imprecision due ignorance,
imprecision due randomness, and imprecision due vagueness. In applications,
imprecision due vagueness, i.e. fuzziness, is particular interesting since to
some extent, it can be rigorously captured with logical and linguistic means.
In applications, fuzziness may be intentional (e.g. using a relaxed intuitive
terminology instead of a strict technical one) or forced (e.g., due lack of
information or the high costs of obtaining it).

In an ideal setting, a fuzzy knowledge agent performs the task of an elec-
tronic sister-in law [56]. That is, knowing the user and understanding his
or her contextual needs when accessing information repositories and propor-
tioning the compiled knowledge accordingly. There is simply too much po-
tentially useful information available to be processed without tools. Seeking
efficient methods to access, filter, describe, and use information in an under-
standable way is thus important. Information, that can not be accessed and
reasonably included to one’s contextual picture of the world, simply does not
matter.

1.3 Context and Related Work

An intuitive way to approach the problem domain is to consider fuzzy knowl-
edge agents in terms of personalisation applications. Let us next very briefly
review the main topics of interest according to the main use case: imple-
menting context-aware knowledge agents in the educational domain.
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1.3.1 Towards Knowledge Personalisation

A very attractive high-level objective of personalisation is knowledge per-
sonalisation. In brief, knowledge personalisation is an abstract activity of
managing and composing units of distributed knowledge, based on user pro-
files and behaviour [19, 20]. However, since it is problematic to speak about
knowledge without a decent reference system, we will next provide a brief
outline of two of the potential candidates.

Technically speaking, two elements of personalisation are worth distin-
guishing in practise: adaptation of presentation and adaptation of content.
In a simple application, personalisation might simply mean adaptation over
a set of predefined information units, perhaps based on an explicit delivery
context. In brief, this is the perspective of device independence [26]. In
the advent of mobile devices, content adaptation has become particularly
popular in applications related to, e.g., single-sourcing [49].

More complex applications require considerable modifications of the in-
formation content exploited in the interaction. In the context of customer-
related activities, these applications include, e.g., making recommendations,
searching and filtering contextual information, providing dynamic bargains,
and even tailoring products for the individual customers [2]. Even if the
borderline may appear a bit vague, adaptation of content should intuitively
imply something more than simply, e.g., repaginating content and choosing
appropriate device-depended interface components [82, 15, 21].

In brief, two complementary strategies of content adaptation may be
recognised: adaptation based on semantically annotated structured compo-
nents and adaptation based on logical knowledge models. While the former
treats content as a hierarchy of black boxes, neatly described with appropriate
metadata, the latter and the more interesting approach (at least considering
this thesis) thrives to represent knowledge ”as such”, via a logical corpus.

1.3.2 Logic Programming

A firm basis for representing and using knowledge is established by logic
programming (LP) (see, e.g., [86, 11, 16, 78]). In brief, modern logic pro-
gramming is "usually” based on the notions of unification, resolution, and
Horn clause logic, whose introduction led into the implementation of the first
Prolog (Programmation en Logique) systems in the 1970s.

Horn clause logic (and thus the logic programming paradigm) is com-
plementary to the various systems of description logics (DL) which consider
certain tractable subsets of the more general First Order Logic [6]. A rough
division of labour is that DL introduces the language for constructing con-
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cepts and modelling the knowledge base including assertions with an associ-
ated terminology while Horn clause logic is used for expressing and processing
rules, i.e. the logic program. This complementary role is genuine, i.e. consid-
ering the usual definitions, certain DL knowledge bases can not be expressed
as finite Horn rule systems and vice versa.

Today, Prolog tools are available to most computer environments, includ-
ing systems such as the GNU Prolog and the SWI-Prolog [27, 100]. The
development of practical knowledge base applications, however, reveals a
major weakness of Horn clause logic as a programming language: when en-
visioned as a single unit, the design process of logic programs does not scale
very well to large applications [10].

Contextual logic programming (CxLP) extends logic programming with
mechanisms tailored for modularization [58, 55]. A relatively recent im-
plementation of the GNU Prolog/CX [1] provides a basis for implementing
contextual logic programming using mainstream tools. In short, contextual
logic programs are composed of units accepting unit arguments that appear
as global variables within units. The topic of modular logic programming
has been extensively studied, aiming to successfully integrate the so-called
programming-in-the-large and the programming-in-the-small disciplines [14].

However, while the notion of context in contextual logic programming
might reflect code modularity and object-oriented design, it does not as such
carry the intuitive semantics of contextual interpretation of logic programs
and knowledge. Indeed, the latter notion of context frequently appears in,
e.g., linguistics [91], pervasive computing [49], and in the domains related to
filtering, profiling, and matching applications in general [13, 90]. In addition,
the more intuitive notion of interpretation context notably appears in the
study of fuzzy systems where some progress has been made in formalising
the concept [25].

Since personalisation and adaptation typically include the tasks of ag-
gregation and transforming of (vague) information, crisp knowledge models
are not always applicable. The introduction of fuzzy methods and modelling
aims managing imprecision (or vagueness) in applications [34]. Based on
the notion of fuzzy sets, the concept of vagueness genuinely complements
the concept of randomness in modelling indeterminacy, establishing the two
facets of the phenomenon [61].

1.3.3 Extending Crisp Logic

In short, fuzzy systems fall into two categories. While fuzzy logic or fuzzy
expert systems consider fuzziness in terms of fuzzy implication and a generali-
sation of crisp (two or finitely-valued) logic, fuzzy control systems or fuzzy rea-



1.3. CONTEXT AND RELATED WORK 7

soning systems aim reproducing the behaviour of intuitive control rule groups
by exploiting fuzzy models, i.e., computing with fuzzy sets [93, 38, 17]. The
fact that fuzzy membership functions appear often overly precise in applica-
tions has motivated the development and application of, e.g., interval-valued
and type-2 fuzzy sets [94, 53].

Due to the popularity of the fuzzy systems, native fuzzy prolog systems
have also been implemented (see, e.g., [94]). Similarly, fuzzy version(s) of
description logics have been developed (see, e.g., [87, 4, 77]). However, just
as in the case of the emerging CxLP systems, no single fuzzy Prolog imple-
mentation has yet earned the role of the de facto standard and fuzzy DLs
have not gained much popularity in applications. It is worth noticing, how-
ever, that as such, fuzzy modelling (or context-aware interpretation, for that
matter) does not require adopting a native fuzzy logic shell; fuzzy models
may be well captured with crisp logic programming tools (see, e.g., [39]).

In the context of educational applications, the reported soft computing
experiments include applications of Bayesian and Neuro-Fuzzy methods [37,
104, 85]. These methods have been widely applied, taking many aspects of
educational systems into account.

The reported applications demonstrate analysing and evaluating students
based on individual assessments, students’ views, education quality, grades
of journals, and the performance of entire academic departments [50, 46,
88, 59, 5, 36, 92, 48]. The claimed advantages of fuzzy modelling range
from faithfully evaluating students’ learning and cognitive abilities to moving
towards personalised education [84, 99, 40].

1.3.4 Web as a Platform of (Logical) Computing

It seems reasonable to assume that the interoperable World Wide Web tech-
nologies will have a major impact in applications related to knowledge person-
alisation, computing, and logic programming in general. Indeed, integrated
logic programs have been developed since the introduction of the Web (see,
e.g., [47]).

In brief, the Semantic Web (SW) provides a set of universal standards
and tools for publishing and processing semantic (meta)data in applications
(7, 51]*. The well-known SW applications include search and aggregation
applications, semantic portals, rule frameworks, and integrated application
environments [89, 35, 3, 8, 18]. While much progress has been made, the

4Tt is worth noticing that the idea of machine-understandable semantics and logic under-
lines many ”other” initiatives as well, including Grid Computing, Ubiquitous Computing,
and Web 2.0.
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dream of public large-scale applications has yet to be fulfilled [103, 105]. Tt
is, however, expected that considerable progress might be made, e.g., in the
domain of life sciences [102].

The core of the Semantic Web is defined by a set of World Wide Web
Consortium (W3C) recommendations [98]. These include the Resource De-
scription Framework (RDF), Web Ontology Language (OWL), the related
RDF Schema Specification, and the RDF and OWL Semantics. The speci-
fications most notably provide the abstract RDF data model and a system
for defining RDF vocabularies, and establish a restricted version of the OWL
family, the OWL DL. Since RDF exploits URI names for encoding names, the
framework provides an effective strategy for the development of partially in-
teroperable knowledge bases, without a too strict requirement of centralised
co-ordination.

RDF interfaces are available to many existing Prolog systems, e.g., the
SWI-Prolog (see [100]). Several other kinds of SW rule and query frame-
works exist as well [79], and the plausibility of rule systems has been in-
vestigated as a subtopic in many large-scale projects, such as the On-To-
Knowledge, OntoWeb, Knowledge Web, and the KT Web [75, 76, 41, 43].
General purpose rule (representation) languages, however, still remain rel-
atively non-standardised and rule systems from different vendors are rarely
interoperable [30]. Perhaps the most promising standardised representation
of a rule language is the Semantic Web Rule Language (SWRL). SWRL in-
cludes a high-level abstract syntax for Horn-like rules in both the OWL DL
and OWL Lite sublanguages of OWL [57]. SW rule and query technologies
are currently being developed at the W3C (see [65]). However, there already
exists several non-standard SW rule and query frameworks, including, e.g.,
Jena, Sesame, and CWM.

Nevertheless, despite the well-established nature of fuzzy modelling in
general (see, e.g., [61]), it seems that fuzziness raises sceptic concerns among
SW developers. Even if progress has been made, e.g., by developing fuzzy
DL, fuzzy SWRL, and fuzzy RDF in general [87, 4, 77, 83, 52], fuzziness is not
considered "necessary”, but rather something that ”could be quite useful and
fairly easy to add” (see [29]). It would seem that these kinds of arguments
apply to fuzzy deduction rather than to fuzzy description. Nevertheless, the
standard set-theoretic interpretation theory of RDF (see [31]) does not easily
extend to the more general truth-functional semantics in a standard manner.

1.3.5 Approaches to Fuzzy Modelling

The observation that certain applications require vague modelling and ag-
gregating different sources of information forces the developers to extend the
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syntax of logical statements and redefine the interpretation of logical rules.
Considering the design, there are several options to choose from.

A straightforward way to extend crisp clauses is to associate facts with
fuzzy truth values, modelled as real numbers v € [0,1], e.g., as P(a,b) < v.
This, however, easily leads to overly precise assertions (consider modelling
a fuzzy number associated with a datatype as ”4 hours”) and the notion of
fuzzy aggregation becomes too simple. Considering description logics, this
extension leads modelling concepts (predicates) in terms of type-1 fuzzy sets
(see, e.g., [87]).

Another extension is to use interval-valued truth values, e.g., P(a,b) <
I,I C ¢(]0,1]), where €([0,1]) denotes the family of all closed intervals in
[0,1] (see, e.g., [94]).

An even more general (but also more complex) approach is to model truth
values using type-1 fuzzy sets, e.g., P(a,b) « A where A = {(z, pz(x))|z €
X} itself is a fuzzy set (see, e.g., [563]). This approach clearly subsumes
the point-like and the interval-valued truth values. According to the fuzzy
extension principle, point-like truth values correspond to singleton fuzzy sets,
and interval-valued truth values to step-wise fuzzy sets. Using type-2 (or
higher order) fuzzy sets is also possible. This provides a basis for explicitly
modelling, e.g., the uncertainty related to fuzzy models themselves.

The main benefit of migrating to the more expressive fuzzy models is that
doing so, using overly precise models is not forced by the model architecture.
In particular, using type-1 fuzzy sets enables modelling the vagueness of the
assertions themselves (e.g. ”(around) 4 hours”), and provides an intuitive
basis for the weighted aggregation of overlapping facts. The price is that
fuzziness proceeds in deduction in the spirit of the fuzzy reasoning tradi-
tionally formulated for fuzzy control systems (see, e.g., [38]). As a practical
consequence, updating the knowledge base becomes much more expensive,
compared to logic systems based on monotonic reasoning.

1.4 Organisation and Contribution

The chapters of the main text of the thesis establish a tour through the
main parts of the study, integrating the different areas of work. The aim is
providing an intuitive synthesis of the work, described in the context of the
restricted use cases.

Chapter 1 (this chapter) presents the outline and the background of the
work. It is mainly based on the introductions of the selected publications
(and the related presentations).

Chapters 2 and 3 presents the theory and the application of type-1 fuzzy
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logic programs. The text is mainly based on the publication 2. However,
the chapters include a significantly more elaborated treatment of the topic.
The previously unpublished parts include the more detailed definitions and
the propositions of the theory, the proofs of the propositions, an elaborated
discussion related to the linguistic construction of fuzzy models, and the def-
initions and discussion related to context-aware logic programs and context-
specific interpretations.

Chapter 4 presents the process of inducing fuzzy models and implement-
ing fuzzy knowledge agents with existing rule frameworks. The text is based
on the publications 3, 4, and 5.

Chapter 5 presents a case study in the context of educational systems.
The text is based on the publications 1 and 6. The previously unpublished
parts include examples formulated with type-1 fuzzy logic programs, and
discussion related to the use case of personalised studying.

Chapters 6 and 7 finally provide a concise, previously unpublished sum-
mary of the publications, and conclude the thesis with selected technical and
application-specific notes and discussion, including an outline of the forth-
coming areas of the related research.

In short, we claim that the two worlds of logic programming and fuzzy
reasoning should coincide when practical knowledge applications via logic
programming are concerned. In this thesis, we point out and analyse an
approach that provides the necessary methodological and technical means
achieving this goal.

The main contributions of the thesis may be summarised as follows:

1. Introduction and analysis of a novel type-1 fuzzy logic programming
framework that bridges the two worlds of well-established Prolog pro-
gramming and popular control-oriented fuzzy inference systems.

2. Introduction of context-aware logic programs and an analysis of the
concepts of assertion and interpretation contexts.

3. Design and demonstration of a model-free fuzzy set induction algorithm
based on well-understood decision tree learning.

4. Demonstration of an educational use case of applying the methods,
including proof-of-concept implementations and empirical evaluations
of the algorithms.

The thesis attempts to address the technical design of fuzzy knowledge agents
from various aspects. As a results, the contributions include both analytical,
empirical, and heuristic results.



Chapter 2
Type-1 Fuzzy Logic Programs

We will next establish the basic concepts and structure of fuzzy logic pro-
grams. In brief, we define and elaborate the notion of fuzzy logic databases
and describe the basic properties of fuzzy logic programs. These properties
include the built-in imprecision of implementations, the linearity of proce-
dures, and the reduction of fuzzy logic programs to crisp logic programs in
Prolog. The basic idea is that fuzzy logic databases provide the enabling
technology for implementing (passive) knowledge agents.

The overall architecture and the terminology is inspired by logic program-
ming and Prolog systems, and the model of computation by fuzzy control
systems [16, 86, 38, 11, 78]. Of course, the basic definitions are designed so
that the desired properties indeed hold.

To distinguish our fuzzy logic programming system from the other ap-
proaches, we call the following kinds of logical systems type-1 fuzzy logic
programs.

2.1 Fuzzy Sets

Definition 1 (Fuzzy Set) Assume an appropriate subset of R denoted by
X. Fuzzy set A is a set of ordered pairs A = {(z,pa(z))|x € X)}. The
function pa(x) : X — [0,1] is called the membership function of A.

Assuming the definition is well-established, we may write a fuzzy set A
in a more compact form simply as a function A(z), A(z) = pa(x).

The set {z|A(z) > 0} is called the support of A. If max(A) = 1 we say
that A is normal, otherwise subnormal.

Definition 2 (Typed Fuzzy Set) Let A denote a fuzzy set. Let D de-
note a symbol of a known (data)type, drawn from the list of well-known
(data)types. The pair (A, D) is called a typed fuzzy set.

11
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We consider types simply as semantic labels that identify certain classes
of fuzzy sets. We say that two typed fuzzy sets match if they are associated
with the same datatype symbol. When there is no risk of confusion, we may
omit the type information.

In practice, we will use types for bookkeeping purposes when necessary,
in order to prevent accidentally comparing semantically mismatching fuzzy
sets. In applications, types typically establish a type hierarchy which enables
a richer interpretation of types.

Let f A g denote min(f(z),g(z)) and fV g denote max(f(z), g(x)). In
the case of multiple min or max terms the parentheses may be omitted since
the order of the operations is not significant. If f and g denote fuzzy sets,
the operations f A g and f V g may be called fuzzy intersection and fuzzy
union (or aggregation), respectively.

Definition 3 (Firing Strength) Let (A, D) and (B, D) denote two match-
ing fuzzy sets. Let w = w(A,B) = \/, AN B. The number w is called the
firing strength of the match.

Intuitively, the firing strength denotes the highest membership degree of
the overlapping area of the fuzzy sets.

Definition 4 (Weighted Aggregation of Fuzzy Sets) Assume a set of
n pairs {(A;, hi)} of matching fuzzy sets A; and numbers h; € [0,1]. Let

\/h,Az - hlAl V h2A2 V..V hnAn

We say that \/, h;A; is the weighted aggregation (or union) of the fuzzy sets
{A;}, weighted by {h;}.

Clearly, V/, hiA; is a fuzzy set (of the same type as the matching fuzzy
sets).

2.2 Representing Fuzzy Sets

A concrete implementation of a system involving fuzzy models must encode
the related fuzzy sets efficiently. Further, the representation language must
be closed under the operations of union (AV B) and multiplication by a real
number (hA,h € [0,1]).

As a practical and a useful example, let us next consider a very sim-
ple approach of encoding fuzzy sets, based on membership functions with a
trapezoidial base.
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Definition 5 (Trapezoidial Function) A trapezoidial function T can be
specified by four parameters (a1, b1, as,bs),a1 < as as follows: If ax < as
define

0, r <ag
7(z; a1, b1, as,by) = %(37—01)4—51; a ST < ag
0, ay < .

If a1 = ay we require that by = by and define

0, z<a
T(z;a1,b1,02,00) = ¢ by, o=y
0, ar <z

Intuitively, the points (aq, b1 ), (az, b2) denote the two upper corners of the
related trapezoid. When a; < as, we say that the segment

by — by

{(z,y)ly = (x —a1) +b,a1 <z <ap} (2.1)
Ao — A1

is the hypotenuse of the trapezoid. Trapezoidial functions with a; = a2, b =
by are called singleton (trapezoidial) functions.

Assume two trapezoid functions, 71 = (x; ay1, b11, a12, b12) and 7 = (z; asy,
ba1, @z, ba2). The firing strength of the functions can be computed by check-
ing the co-ordinates where the segments ((a1,0), (a11,b11)), ((a11,b11), (a2,
512)), ((alz,blz), (612,0)), and ((azl,o), (a217b21)), ((a21,b21), (azz, 522)), ((azz,
ba2), (a22,0)) intersect. In brief, this involves a tedious process of testing the
various cases, and in a certain case, solving a system of the two related linear
equations (spanned by the segments (2.1)).

A function with a finite trapezoidial base i.e. a piecewise trapezoidial
function can be specified as an aggregation of trapezoidial functions:

O=\/ni=12 n (2.2)

We say that n denotes the cardinality of the base.

Assume two overlapping trapezoidial functions 71 = (ay, b1, as,bs), 70 =
(¢1,dy, ca,d3). We can alternatively represent 71 V 75 using at most four other
non-overlapping trapezoidial functions 7 V7o = 13V 714 V75V 76. Thus, we can
always harmonise the specification of a piecewise trapezoidial function with
a base cardinality of n with another piecewise trapezoidial function with a
base cardinality of max 4n. However, harmonisation typically increases the
amount of memory required for representing piecewise trapezoidial functions
in implementations.
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It is easy to see that the family of functions with trapezoidial base is
closed under fuzzy union, intersection, and multiplication by a real number.
Further, working with functions with a trapezoidial base is straightforward.
For instance, computing the firing strength of two piecewise trapezoidial
functions ©; and ©, can be reduced to computing the firing strength of
two trapezoidial functions, i.e. going through the bases of ®; and ©,. Many
useful membership functions may be reasonably approximated with piecewise
trapezoidial functions by choosing a sufficiently large base (cardinality).

While the question which important membership functions may be mean-
ingfully captured with functions with a trapezoidial base is out of scope
(because the question is related to modelling heuristics), the question of op-
timising the base cardinality of representations is rather pivotal. Recording a
piecewise trapezoidial function consumes memory, and operations with piece-
wise trapezoidial functions take time, with relationship to the cardinality of
the related function bases (n). In particular, deductions involving many steps
(or deep proof trees) may easily yield complex and thus also slow models.

Assume a canonised piecewise trapezoidial function ©® with a base car-
dinality of n. We wish to optimise © using an other piecewise trapezoidial
function ©' with a base cardinality of n — 1.

The criteria of successfully optimising ©' is now underlined by the domain
of membership functions of fuzzy sets. Intuitively, we would like to preserve
both the support, the shape, and the area (usually the integral) of © as
faithfully as possible.

Two optimisation strategies are now worth elaborating:

1. Perhaps the most simple strategy is discarding the least significant base
function 7, with the smallest area (or with the smallest height, i.e.
a modified a-cut). Of course, this approach does not preserve the
support.

2. Another strategy is examining all of the adjacent trapezoids (assume a
canonised function specification) and replacing two with a new trape-
zoid while trying to minimise the error due to the replacement. This
strategy involves a variety of design decisions. (The main distinction
with the previous strategy is the resulting model may preserve the sup-
port of the fuzzy set.)

In the worst case scenario (all of the base functions have the same area),
the first approach may result the error of %% in the area. In the worst case
scenario (all of the base functions have the same area and none are adjacent),
the latter approach results the same error. However, in more well-behaving
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applications, it is possible to some extent preserve the support and the shape
characteristics of the piecewise trapezoidial function as a fuzzy membership
function.

We may conclude these simple observations as a proposition which char-
acterises the upper limit of intrinsic imprecision of concrete fuzzy systems:

Proposition 1 (Intrinsic Imprecision Lemma) Assume © is a piecewise
trapezoidial membership function with a base cardinality of n > 2. Approxi-
mate © with another piecewise trapezoidial membership function ©', with a
base cardinality of n — 1. The proportional error of area is at most propor-
tional to %

Note that the process of optimisation indeed requires design insight. For
instance, we could always easily (blindly) optimise a base of n trapezoidial
functions with a single trapezoidial function while completely preserving the
area, simply by establishing a rectangle-shaped function with an equal size.

We say that the error denotes the intrinsic of inner imprecision of a con-
crete fuzzy system. We might assume that in well-behaving and well-known
applications, the effective imprecision is typically smaller. Nevertheless, in
application design it makes sense to ensure that the intrinsic imprecision is
less significant than the imprecision due fundamental vagueness of the do-
main and the imprecision related to the modelling strategy.

Proposition 1 and the optimisation strategy 1 may be trivially generalised
to many other types of base functions as well, in particular, functions with
a Gaussian base:

¢ )2

\ 7, vilwseid) =e Ca

Further, we may allow constructing membership functions whose base
consist of a mixture of various kinds of parametric functions. The base type,
however, effects not only to modelling but also the implementation, i.e. the
memory requirements (base cardinality times the number of parameters) and
costs of computing the firing strengths.

2.3 Syntax

We will next define the simplified syntax of type-1 fuzzy logic programs
which provides the basis of modelling, queries, and the related interpreta-
tions. Later, we will relax this syntax, leaving room for more complex pro-
grams, perhaps including (crisp) procedures invisible to the fuzzy semantics.
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2.3.1 Simple Grammar

Intuitively, a fuzzy logic program is a finite database that consists of clauses,
each of which is modelled with a (typed) fuzzy set.

Clauses include facts and rules. Facts associate individual objects with
properties using base predicates and fuzzy evaluations. Rules assert general
statements about objects and may in addition introduce derived predicates,
definition of which is asserted by the design of the rules.

Let us first describe a simple abstract syntax for logic programs in terms
of context-free grammar! and then consider few examples. To improve read-
ability, we agree that each rule of the grammar may accept one or more
whitespace characters before or after it.

Definition 6 (Grammar of Simple Fuzzy Logic Programs)

program (1= rulex

rule ::= head (°:-’ body)? ’.’

head ::= predicate

body ::= predicate (’,’ predicate)x

predicate ::= property ’(’ term (’,’ term)* ’)’ model
term ::= constant | variable

property ::= [a-z_] string # etc. encoding

model ::= 77’ constant

constant ::= [a-z_] string | "’ (string? ’> ?)x* "’
variable ::= [A-Z] string

string ::= [a-zA-Z0-9_-:]+

Further, for pinpointing potential typos in programs, we may in addition
require that if a variable v, appears in the head of a rule, it appears also in
the body of a rule.
The chief distinction with crisp Prolog rules is the introduction of the
models; each (goal) predicate is associated with a model, e.g., 1ikes (john, susan) "a.
We follow the usual abbreviation of facts and write

likes(john, susan)”a.
instead of

likes(john, susan)~a :- .

1The notation for the grammar follows the simple Extended Backus-Naur Form (EBNF)
notation found, e.g., in [12], with the exception that we use the character # for denoting
the beginning of a comment line.
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Note that for simplicity, we do not (at this point) explicitly define the
interpretation of hierarchical structures within predicates which might be
considered useful in logic programs. Effectively, this excludes structures in-
volving functors, for instance:

exhibition("Muse Rodin",address("77 Rue de Varenne",paris)).

Further, for simplicity, the character classes of the names are overly simpli-
fied, and so on.

2.3.2 Structure of Logic Programs

Technically, a logic program is a sequence of rules. As an example, let us
consider the following type-1 fuzzy logic program P;:

likes(john,susan) ~a.

likes(john,theThinker) “b.

classicalScuplture(theThinker) “c.

likes(susan,X)"r0 :- rich(X)~ri1,likes(X,Y)"r2,
classicalScuplture(Y) ~r3.

If we ignore the fuzzy models (a, b, ¢, r0, ril, r2, r3), we get the
crisp reduction of Py, Pj:

likes(john,susan).

likes(john,theThinker).

classicalScuplture(theThinker).

likes(susan,X) :- rich(X),likes(X,Y),classicalScuplture(Y).

A crisp reduction is obtained simply by removing the fuzzy models from
a fuzzy logic program. The main virtue of crisp reductions is that they serve
as crisp logic programs in Prolog.

Intuitively, the program P| says that John likes Susan and also Rodin’s
classical sculpture, The Thinker. However, even if John likes a classical
sculpture, we can not conclude that Susan likes John because John is not
known to be rich. The interpretation of P; is more complex and depends on
the fuzzy models assigned to the predicates.

Technically, rules consist of two parts: head and body. Series of rules
with matching heads (above likes/2) establish procedures. The number
2 in 1likes/2, i.e. the number of the arguments, denotes the arity of the
predicate. Variable-free rules with empty bodies are called facts.

The predicates that appear in the rule body as goals may be perceived
as search objectives. The fuzzy models assigned to the predicates may be
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perceived as match patterns. Goals succeed if appropriate matching facts can
be derived from the database. Further, if all of the goals of the rule body
succeed, the rule itself succeeds (or fires) and the head part of the rule is
taken as a fact, i.e. derived by the rule. Intuitively, the rule body describes
a conjunction of goals that must be succeeded (or satisfied) one by one, for
the head to succeed.

Complex rules may include references to variables that help linking infor-
mation obtainable via different predicates via instantiation.

2.3.3 Queries

Logic programs are applied via executing queries. The introduction of fuzzy
models provides a basis of making two kinds of queries: ask and verify queries.

Ask queries accept a single goal without an associated fuzzy model. The
goal identifies a single predicate with constants or variables as arguments. An
ask query returns all the evaluations of the predicate. For instance, consider
the following query:

?-likes(john,Y).

Intuitively, the describe query provides an answer to a question ”Tell
me what John likes” by returning a result set of the evaluations that match
the query, according to the assigned fuzzy models. Considering the previous
example, we might expect the query to return a result (Y = susan ~ e;,Y =
theThinker ~ e3) where e, es denote fuzzy models (sets).

Verify queries accept a conjuction of goals which identifies a proposition
whose degree of satisfiability is to be evaluated. A verify query returns a set
of evaluations and the associated firing strengths. For instance, consider the
following query:

?7-likes(john,Y)“f,classicalScuplture(Y)“g.

Intuitively, the query provides an answer to a question by returning a
result set of the evaluations that match the query, according to the assigned
fuzzy models. Considering the example, we might expect the query to return
a result (Y = theThinker ~ w;) where w; € [0, 1] denotes a firing strength.
Depending on the fuzzy models f,g, the query might be read like: ”7To
what degree it holds that John likes very much a sculpture (Y) that is not
particularly classical?”

Of course, clauses and logic programs do not necessarily record ”truth”
nor establish semantically correct definitions concerning the object domain.
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More precisely, programs simply encode certain information the (human)
designer of the application for some reason considers useful. The selection
of the fuzzy models may thus considerably vary upon application. (As an
intuitive use case, consider e.g. applications using empirically constructed
linguistic terms.)

2.4 Interpretation
Let us next consider the process of answering queries.

Definition 7 (Goal) A goal is a triple (p,v, M) where p is a predicate sym-
bol, v is a list of arguments, and M 1is a fuzzy set. Arguments may include
names of individuals and variable symbols.

A variable is a local symbol within a rule which is instantiated to matching
objects or other variables during the evaluation of a rule.

We say that M is the model if the goal p(v). A goal is called a ground
(goal) if it includes no variable symbols. To simplify the treatment, we
assume that the type of the fuzzy sets as a model is determined by the name
of the related predicate symbol.

Goals are meaningful only within particular contexts, namely rules and
queries.

Definition 8 (Fuzzy Rule) A fuzzy rule is pair (h,b) where h is a goal
that denotes the head of the rule and the body b = (b;) is a list of goals.

Definition 9 (Fuzzy Fact) A fuzzy fact is a fuzzy rule with an empty body
and a ground goal in the head.

Rules which are not facts are called non-trivial.
Let s,t denote two fuzzy facts with goals (ps, vs, My), (ps, ve, My). If ps =
p¢ and vy = v; we say that the facts s and t overlap.

Definition 10 (Semantically Equivalent Facts) Let S = {s;},i € I and
T = {t;},j € J denote two sets of overlapping fuzzy facts with the associated
models {M;} and {M,}.

If Vier M = VjeJ M;, we say that S and T and semantically equivalent.

When a rule r is evaluated, the body of the rule may get satisfied with a
ground argument configuration v (i.e. a list including only individual sym-
bols) with a firing strength a € [0,1]. We say that the rule r deduces a fact
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((pn, 7y, cwMp),[]) where py, is the predicate symbol and M}, the model that
appears in the head of the rule.

The model of the deduced fact is thus the model of the head of the rule,
multiplied by the weight of the rule and the firing strength of the evaluated
body.

Let us next consider the process of evaluating ask queries.

Definition 11 (Ask Query) An ask query is a goal with an empty model.
When applied to a database of rules, an ask query returns a complete list
of ground argument configurations that match the query, associated with the
related fuzzy models (sets).

An argument configuration is simply a list of applicable arguments. A
ground argument configuration includes only symbols of individuals.

An ask query performs the function of a Prolog interpreter when asked
to retrieve all answers that satisfy the query. Alongside the processing, an
ask query in addition computes matches related to the fuzzy models. Each
successful reduction step returns a fuzzy model which finally evaluates each
ground argument configuration with a fuzzy model.

Due to this close relationship, the implementation of queries with fuzzy
logic programs can be technically based on their crisp reductions in Prolog:
Assume a Prolog interpreter, a logic program P’ (a crisp reduction of some
fuzzy logic program P) and an ask query g. When asked to perform the query
q, the Prolog interpreter executes a search, constructing a series of parameter
configurations, while recursively reducing the query goal to subgoals. When
a solution is found, the interpreter reports a ground argument configuration
v;, the arity of which corresponds to the arity of the predicate of the query.
(Assume that the argument configuration includes also the individuals in ¢,
in their proper positions.)

Associate each result argument configuration v; with its proof tree Y;.
A proof tree consists of nodes and edges that represent the goals reduced
during the computation of ;. In brief, the root a proof tree shows the query
goal with the argument configuration =;, and each branch recursively reports
a successful reduction of the subgoals by telling which rules were applied.

Proof trees may either be constructed by a native fuzzy interpreter or they
can be read from the trace of the related Prolog interpreter which reports of
the resolvents during computation.

Algorithm 1 (Fuzzy Ask Query Machine)

Input: A finite fuzzy logic program P and an ask query gq.
Output: A (potentially empty) list of solutions, i.e. pairs of successful
ground attribute configurations and the related fuzzy evaluations.
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1. Compute a crisp reduction of P, P’. Compute all answers to the query
g from the program P’  using a (standard) Prolog interpreter. This
provides a finite list of solutions encoded as pairs of successful ground
attribute configurations and the proof trees ((v;,I})),i = 1,2,....,n.
Assume the branches of the proof trees are organised according to the
order of the conjucted goals of the related rule bodies.

2. If the list of solutions is empty, halt and return an empty list [|.

3. Associate each attribute configuration 7; with a fuzzy set M; computed
from the related proof tree I'; via the recursive process of evaluation as
follows:

(a) Pick a leaf node ¢ from T';.

(b) If ¢ is a fact r, replace ¢t with a fuzzy evaluation M,, where M, is
the model of (the head of) r.

(c) Repeat the above steps (a) and (b) until all leaf nodes have been
replaced with fuzzy models.

(d) If there is more than one node in the tree, pick a node ¢ (corre-
sponding to a rule r) with only leaf children {t;}, each of which
has already been replaced with a fuzzy model Mj,. Let M, denote
the model of (the head of) r and {A*} the models of the body
goals in 7. Replace the subtree ¢ with a fuzzy model

(N w(Af, M) @ M, (2.3)

and repeat from d.

(e) When there is only one node left in the tree, halt. The requested
fuzzy set M; is the fuzzy model associated with the remaining
node.

4. Return a list of parameter configurations, associated with the fuzzy
evaluations, {(v;, M;))

If we choose ® = A in (2.3), we essentially get a recursive version of
the well-known max-min composition. Alternatively, we may choose ® = -
(multiplication).

As suspected, ask queries establish a basis of verify queries.



22 CHAPTER 2. TYPE-1 FUZZY LOGIC PROGRAMS

Definition 12 (Verify Query) A verify query consists of a body of a fuzzy
rule. When applied to a database of rules, a verify query returns a complete
list of ground argument configurations that match the query, associated with
the related firing strengths.

The answer of a verify query ¢ may be computed basically as in the case
of an ask query. One strategy is adding a new temporal rule r, equipped
with an appropriate head and the query as a body, r = (hy, q), to the rule
database, and computing a describe query for h,. The resulting weights may
be extracted from the corresponding describe query when computing the final
iteration of the weights of the models in Algorithm 1.

Due to the construction of the Algorithm 1, verify queries of type-1 fuzzy
logic programs and crisp queries of Prolog programs are closely related.

Definition 13 (Meaning of a Logic Program) Let P denote a logic pro-
gram. The meaning of P, M(P) is the set of facts that can be deduced from
P.

Proposition 2 (Crisp Reduction Lemma) Let P' denote the crisp re-

duction of a logic program P. If fuzzy evaluations are ignored, M(P') =
M(P).

Proof. The proposition follows directly from the definition of the Algo-
rithm 1: the answers of a fuzzy query include exactly the attribute configu-
rations of the related crisp query. [l.

A rule may deduce a fact that overlaps with the facts already written
in the rule database. In addition, the program may include duplicate rules
which repeat certain solutions in a query. This is acceptable: we may aggre-
gate overlapping facts before application of the rules, or alternatively, break
fuzzy facts into semantically equivalent, overlapping facts without confusion.
In other words, the process of computing deductions is distributive over fuzzy
union.

Definition 14 (Canonised Meaning of a Logic Program) Let P denote
a type-1 fuzzy logic program. We say that the canonised (or harmonised)
meaning of P, M (P), is the set of facts where the sets of overlapping facts
st € S with models M} in P are replaced with a single fact si, model of which,
M}, is the aggregation of the models of the respected overlapping facts:

My =\/ Mj.
k
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In short, the canonised meaning of a logic program does not include
overlapping facts but preserves the semantics of the meaning.

Proposition 3 (Fact Canonisation Lemma) Let P denote a logic pro-
gram. The meaning of the logic program, M (P), and the canonised meaning
of the logic program, M (P), are semantically equivalent.

Proof. The statement follows directly from the definitions (4), (10), and
(14). [O.

Let Py, P, denote two logic programs. We may aggregate the clauses of
P, and P, together and establish a third logic program, P;. To denote this,
we write P; = P; U P5. Note that the two related meanings M (P;) U M (P,)
and M (P; U P,) are usually different.

It is however important that adding semantically equivalent facts does
not alter the canonised meaning of a logic program.

Proposition 4 (Linear Aggregation Lemma) Let P denote a finite type-
1 fuzzy logic program and fi, fa, f3 three overlapping facts with models My,
Mg, Mg, so that M3 = M1 vV MQ.

Let P, = PU fi U fa, P, = P U f3 denote two logic programs. It follows

Proof. Assume M, denotes the evaluation of fi, k = 1,2,3. Let ¢ denote
an ask query. Let I'y and I'y denote the lists of answers of the describe queries
q(Py) and q(P,). Let us next consider the case ® = - (multiplication); the
case ® = A can be analysed in a similar manner.

Two main cases have to be examined. We have to show that M (P,) C
MHE(P)) and M2 (P,) > MHE(P,).

Consider a single answer x3 in I's, proof of which, T3, includes a node fs.

Since f; are equal in terms of configurations, and I'y include all of the
evaluations of all of the configurations, I'; includes (otherwise identical) an-
swers x1 and X2 where f; and f, appear in the place of f3, respectively.

Let E} denote the evaluation of T;. We have to show that F3 = E; V Es.
We sketch a proof by induction, based on the depth d of Y.

Case d = 1: T¢ includes only a single node, f;,. It gets replaced with the
model Mj. Thus, we get M3 = M; V M,, as requested.

Assume the proposition holds for d = n.

Case d = n + 1: T¢ includes f; as a leaf node. Let p; denote the parent
node of f.

If wy, w, = w(Ayg, My) is not the smallest firing strength among its siblings
(i.e. the firing weight), it does not contribute to the model of its parent.
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Assume wj is a firing weight. We know that w3 = max(wy, ws). Thus, both
w; and ws must also be firing weights. We get w,w3M, = w,wi M, V w,ws M,
(see (2.3)) and the proposition holds for the evaluations of the parent nodes
Pk.

Let us then examine the other direction of the proof.

Consider a single answer x; in I'y, proof of which, Ty, includes a node f;.
Again, we may find answers ys in I'; and y3 in I's with identical configura-
tions and proof trees To and Y3, where fy and f; appear in the place of fi,
respectively.

Consider the induction proof:

Case d = 1: Y¢ includes a single node, f;. It gets replaced with the model
M. Thus, we get again M3 = M; V M>, as requested.

Assume the proposition holds for d = n.

Case d = n+ 1: Y¢ includes f, as a leaf node. Again, ws = max(w;, ws).
Assume w; < wy and that wy is the firing weight (the case wy < wy similarly).

If wy is also a firing weight, so must w3 be. Thus, the proposition holds
as before.

If ws is not a firing weight, neither is ws. In this case, some other weight
wi determines the (greater) weights of the parent nodes of f, and f3. These
effectively overrun the effect of f; in the canonised evaluation.

Thus, we get M2 (P) = ME(P,). O.

Intuitively, the linear aggregation lemma states that the canonised mean-
ing of a logic program is not determined by the organisation of its individual,
semantically equivalent facts.

The main result of this section is the following Linear Aggregation Theo-
rem which generalises the above observation to clauses.

Proposition 5 (Linear Aggregation Theorem) Let P denote a finite
type-1 fuzzy logic program. Let Ry, k = 1,2,3 denote three rules that are
identical expect for the models of the rule head M,,:

Ry, : clo(ag) ~ My, :- cli(aq) ~ r1, clh(ag) ~ 7oy ...y (i) ~ 7.

Define logic programs P; and Py as follows: P, = PUR; URy, P, = PU R3
and assume Mz = My vV M. It follows that MH(Py) = MH(Py).

Proof. The proposition follows from the lemma by noticing that the proof
does not change if we allow the evaluations originate from the rules Rj. [J.
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2.5 Type-1 Fuzzy LPs in Prolog

The Fuzzy Ask Query Machine (Algorithm 1) is closely related to Prolog.
As suspected, it is possible to implement a type-1 fuzzy logic program in-
terpreter in Prolog. This also removes the urgent need of implementing a
yet another logic programming framework, and most importantly, proving
its flawlessness.

Even if the proof trees of the answers can be read from the program trace,
it is not necessary. Without going into the details of Prolog programming,
let us next consider a simple approach of explicitly constructing proof trees
from which fuzzy evaluations can be easily computed.

Consider the program Ps:

classicalScuplture(theThinker) "m1.

rich(paul) “m2.

rich(john) "m3.

likes(paul,theThinker) “m4.

likes(john,theThinker) "m5.

likes(susan, theThinker) "m6.

likes(susan,X)"r0 :- rich(X)~ri1,likes(X,Y)"r2,
classicalScuplture(Y)“r3.

We may encode the program P» as a standard (crisp) Prolog program P,
as follows:

c_classicalScuplture(theThinker,ml).
c_rich(paul,m2).
c_rich(john,m3).
c_likes(paul,theThinker,m4).
c_likes(john,theThinker,m5).
c_likes(susan,theThinker,m6) .
c_likes(susan,X,E0) :-

c_rich(X,E1),

c_likes(X,Y,E2),

c_classicalScuplture(Y,E3),

EO = [rO,[[E1,r1],[E2,r2],[E3,r3]]].

We say that P, is a (Prolog) implementation of P,. Other equivalent imple-
mentations exist.

The program P, follows the overall structure of the crisp reduction of Ps
and associates clauses with fuzzy models in terms of constants, variables, and
list structures. In short, the models associated with the goals of the clauses
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have been identified with names ml1, m2, m3, m4, m5, m6 and r0, ri,
r2, r3, and the fuzzy predicate likes/2 has been represented as a crisp
predicate c_likes/3, with respective variables.

In Prolog, the question

?-c_likes(susan,X,E).

now returns (output abbreviated)

X = theThinker E = mb6 ;
X = paul E = [r0,[[m2, r1], [m4, r2], [m1, r3]1] ;
X = john E = [r0,[[m3, r1], [m5, r2], [m1, r3]1] ; No

Each of the pairs (e.g. (X = theThinker, E = mg)) represents a fuzzy
evaluation (e.g. (X = theThinker ~ mg)). The list structures denote the
parse trees for computing the deduced fuzzy models.

For instance, the list [r0, [[m2, ri1]l, [m4, r2], [m1, r3]]1] identi-
fies the formula

(w(ma, r1) A w(mag, r2) Aw(my,r3)) ® 7o. (2.4)

By choosing appropriate models and fixing the operator ® we may thus
evaluate the query in a variety of ways.

Following the above approach, we may implement a generic interpreter of
fuzzy logic programs in Prolog. We may either simply instruct writing pro-
grams as above, or implement a general-purpose interpreter interface which
appropriately encapsulates the implementation, e.g., annotating appropriate
Prolog programs with lists of fuzzy models.

From the algebraic point of view, implementing procedures related to
working with models (e.g., computing the firing strengths of fuzzy sets) is
not necessary. An implementation may simply return evaluations as lists as
above, denoting the parse trees of the formulas of the related fuzzy models.

Finally, it is interesting to consider logic programs with overlapping facts.
Let P5 denote a logic program which is otherwise identical to P, expect that
the fact

rich(paul) “m2.
has been replaced with following two facts:

rich(paul) “m2a.
rich(paul) “m2b.

Encode the respected Prolog program P; as above, and execute the (stan-
dard) query:
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?-c_likes(susan,X,E).

We get

X = theThinker E = m6 ;

X = paul E = [r0, [[m2a, r1]l, [m4, r2], [m1, r3]11] ;

X = paul E = [r0, [[m2b, r1], [m4, r2], [m1, r3]1]1] ;

X = john E = [r0, [[m3, r1], [m5, r2], [m1, r3]]1] ; No

In other words, we get an additional evaluation for the added fact, as
expected. The canonised model m, of the related deduced fuzzy fact

likes(susan,paul) "m2.
1S now:
(w(maq, r1)Aw(my, ro) Aw(my, 73)) 1oV (w(Map, 71) Aw(my, o) Aw(my, 73) ) QT =

((w(maa, 1) V w(map, 11)) A w(ma, m2) A w(my,r3)) @ ro =
(w(maq V map, 1) A w(mg, r2) A w(my,r3)) & 7o.

Thus, when the canonised meaning is considered, the programs P, and P;
are semantically equivalent whenever mo = mo, V M.

2.6 Applications

Type-1 fuzzy logic programs follow the control-theoretic approach of de-
signing knowledge bases and establish a system of programming with fuzzy
clauses of their own right. It is, however, instructional to consider the process
of modelling crisp systems in terms of type-1 fuzzy logic programs.

2.6.1 Basic Crisp Reductions

Anticipating the following discussion, we begin by establishing some useful
definitions.

Definition 15 (Neutral Fuzzy Set) Let A denote a fuzzy set. If A = {(z,
pa(z)lz €10,1], pa :[0,1] — [0,1]} we say that A is a neutral fuzzy set.

In addition, certain trapezoidial neutral fuzzy sets deserve given names:
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Definition 16 (Singleton, False, True, and Empty Models) Let 75 =
1s(z; a,b) = 7(z;a,b,a,b), 7P = 7(2;0,1,0,1), and 77 = 7(x;1,1,1,1). We
say that 75,7p, and Tr are called singleton, false, and true fuzzy models,
respectively. Finally, we say that 19 = 7(x;a,0,b,0) is called an empty fuzzy
model.

Let A denote a fuzzy model. If A = 75(x;a,1) we say that A is precise.
If A= 75(z;a,b),b <1 we say that A is subnormally precise. If A = 1 or
A = 7p, we say that A is crisp.

Let us then consider the following crisp logic program Pj:

classicalScuplture(theThinker) “ml.

rich(paul) “m2.

likes(susan,theThinker) "m3.

likes(paul,theThinker) “m4.

likes(john,theThinker) "m5.

likes(susan,X)"r0 :- rich(X)~ri1,likes(X,Y)"r2,
classicalScuplture(Y)“r3.

The introduction of the fuzzy models adds certain contextual freedom to
modelling. Intuitively, we might use P, to record a fact that Paul is rather
rich, Paul likes Rodin’s work only a a little, and so on.

As an attempt to represent the underlying crisp program P;, let us choose
the following neutral fuzzy models mq, ms, ms3, my, ms and rg, r1, r9, r3 as fol-
lows: m; = r; = 7.

In this case, the fuzzy ask query

?-likes(susan,X).
returns (X = theThinker ~ m3, X = paul ~ e;) where (compare with (2.4))
e1 = (w(ma,r1) Aw(my,re) Aw(my,r3)) @ rg =1Q ro = 77
Then, consider the fuzzy ask query
?7-likes(susan, john).

We get an empty answer R; = [| and the related Prolog implementation
would answer No.

Following the logic programming tradition, we take the stance that an
empty answer means that nothing matches the query i.e. the question is not
provable.
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In particular, an empty answer does not imply s false. Thus, strictly
speaking, the program P, simply does not reveal wheter Susan likes John or
not.

Fuzzy logic programs, however, enable encoding more information than
their crisp counterparts. Consider the above program with a small change:
set my = 7p. Intuitively, this means that John does not like the sculpture
in question. (Notice that the crisp reduction of the logic program remains
unchanged.)

The fuzzy ask query

?-likes(susan,X).

will return Ry = (X = theThinker ~ ms3, X = paul ~ ey) where e; = 7.

In other words, because Paul does not effectively like The Thinker, we
can not conclude that Susan likes Paul.

Notice that we would get the same answer by choosing my = 7y (or in
this case, any model that does not include 77).

Again, the process of drawing conclusions must be proceed with caution.
In particular, a non-existing answer and an evaluation with an empty model
are not the same thing. Further, we define that in applications, 7y does not
in general mean the same as is false. (Certain applications may define the
meaning of 7y otherwise, just as it makes sense to assert the closed world
assumption in some logic programming applications.)

We interpret the above answer so that a fuzzy logic program represents
the partial information that is known about a certain domain. In other words,
a "negative” conclusion may only follow from a proof that reports explicitly
or implicitly asserted "negative” information.

2.6.2 Modelling ’Not” By Adding Rules

The concrete lesson of the above exercise is that if we want to be able to derive
"negative” conclusions, we must add new rules to the database, essentially
desribing new cases of the existing procedures.

Consider adding a rule:

likes(susan,X)~“s0 :- rich(X)~sl.

which is supposed to capture the idea that ”If X is not rich, then Susan does
not like X.”

Now it must be decided how "not” is modelled in the program. One
approach is to think an empty set as the model of "not”. In some applications,
however, this approach would (in error) equate "not having information” with
"being false”.
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A better strategy is modelling "not” with the explicitly false model, by
choosing

so = 7r and s; = Tp. (2.5)

This is in line with the idea of thinking deductions as proofs, and escapes
the problem of multiple interpretations in applications. It again also gen-
uinely adds information to the logic program, by explicitly enabling negative
deductions.

Introduce a yet another fact rich(john) "m6. and consider the resulting
program Ps:

classicalScuplture(theThinker) "ml.

rich(paul) “m2.

rich(john) "m3.

likes(susan,theThinker) “m4.

likes(paul,theThinker) “m5.

likes(john,theThinker) "m6é.

likes(susan,X)"r0 :- rich(X)~ri1,likes(X,Y)"r2,
classicalScuplture(Y)“r3.

likes(susan,X)"s0 :- rich(X)~s1.

Choose models m; = mg = M3 = M5 = g = 7] = 9 = r3 = 77 and
my = Mg = Sg = S1 = Tr. In other words, we have explicitly recorded more
information about John (John is not rich), and stated that Paul does not
really like The Thinker. Further, we have said that Susan does not like the
things explicitly reported non-rich.

The fuzzy ask query ?-likes(susan,X). now provides an answer (X =
theThinker ~ m3, X = paul ~ p1, X = john ~ j1,X = paul ~ ps, X =
john ~ js) where my = 7p,p1 = 79,1 = To,P2 = To, and jo = 7p. Con-
sidering the canonised meaning of the query, we may thus deduce facts
likes(susan,paul) “p. and likes(susan, john)~j. where p =p; Vpy, = 1y
and j = j1 V jo = 7r. Because John is not rich, we can now conclude that
Susan does not like him.

If we want to be able to conclude that Susan does not like Paul either
(he does not like The Thinker), we might add a rule that states that Susan
does not like things that do not like (a) classical sculpture. It is important to
notice that adding individual disjunctive "negative” rules one by one (which
now gives the intended application semantics) is not the same thing as adding
a single combined rule with "negative” goals.
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2.6.3 Systems with Subnormal Models

Using interval-valued fuzzy models enables encoding intervals in which clauses
apply. For instance, choosing r; = 7(x;0.5,1,1,1) in program Ps might intu-
itively be interpreted so that the related rule accepts imprecise classifications
"50% or more rich”. In addition, it is also possible to model point-like fuzzy
models with singleton fuzzy sets.

Further, the design of type-1 fuzzy rule systems enables also applications
with subnormal models. Intuitively, this allows making statements whose
significance, trust, or certainty may vary?. However, engagement with sub-
normal models comes with a price: more rules might be required and the
challenge of adopting meaningful application semantics may become note-
worthy.

Technically, the generalisation is nevertheless subtle. Recall the logic
program FPy:

classicalScuplture(theThinker) "m1.

rich(paul) "m2.

likes(susan,theThinker) “m3.

likes(paul,theThinker) “m4.

likes(john,theThinker) “m5.

likes(susan,X)"r0 :- rich(X)~ri1,likes(X,Y)"r2,
classicalScuplture(Y) ~r3.

For instance, we may set my = my =mg =my =ms =7 and ro = r; =
7(2;0.7,0,0.8,1) V 7(2;0.8,1,1,1), 79 = r3 = 7p.

In practise, subnormal models are most useful when applied with systems
of overlapping rules. For instance, we might wish to add more rules of the
kind likes(susan, X)..., capturing more cases, and consider modelling
mgs, My, and ms with models similar to rg.

If procedures are ezhaustive or dense enough (the models of the overlap-
ping rules overlap appropriately; see, e.g., Figure 3.2), the canonised meaning
of logic program does not necessarily have to include subnormal models.

It is easy to see that we may implement variants of, e.g. Mamdani fuzzy
models [38] with type-1 fuzzy logic programs. In addition to the predefined
operators, the chief distinction is allowing the use of variables for connecting
various procedures (we shall return to this topic shortly).

Finally, note that choosing ms = 7p would probably make an overly
precise statement. For instance, the classification might originate from a
statistical analysis or an expert review. If we choose to model the related

2Note that the introduction of probabilistic interpretations must also be taken into
account in the design of the rules (and the assigned models).
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imprecision, we may simply associate ms with a more complex fuzzy set,
perhaps taking the error or the variance of the classification process explicitly
into account. Further, there is no requirement of using neutral fuzzy models.
In other words, predicates may be associated with different types of fuzzy
sets, taking the particular application semantics more closely into account.



Chapter 3

Linguistic Reasoning and
Context

The rules and the procedures of type-1 fuzzy logic programs enable the def-
inition of many kinds of useful fuzzy systems. However, while the structure
of logic programs is to some extent independent to the particular design of
fuzzy models, choosing appropriate models is of course pivotal in successful
applications.

We will next consider mapping fuzzy models onto intuitive labels which
provides a basis for formalising certain forms of linguistic reasoning and infer-
ence. The following treatment also illustrates the application of type-1 fuzzy
logic programs in the context of stereotypical fuzzy control applications that
often appear in the literature [53, 38, 17].

3.1 Fuzzy If-Then Rules

Many fuzzy reasoning systems represent fuzzy rules in if-then format. Rep-
resenting certain fuzzy system becomes more intuitive when models are rep-
resented using linguistic expressions.

3.1.1 Type-1 Fuzzy LPs and Fuzzy Control Systems

Consider the following procedure R with n rules and 2 conjuncted body goals
(where t denotes temperature and p pressure):

If t is very_cold and p is weak then throttle is positive_large.
If t is rather_cold and p is weak then throttle is positive_small.

If t is normal and p is ok  then throttle is zero.

33
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Figure 3.1: Fuzzy matching and evaluation illustrated

The essential information of the rules can be compiled into a n x m,m = 3
matrix
(a;j),i=1,2,..,n,7=1,2,...,m

that is sometimes called a fuzzy associative memory (FAM):

#t * p -> throttle
very_cold, weak, positive_large
rather_cold, weak, positive_small
normal, ok, Zero

It is easy to see that we may implement R with a type-1 fuzzy logic
program Fg :

throttle(X)"r10 :- t(X)"r11,p(X)"ri2.
throttle(X)"r20 :- t(X)"r21,p(X)"r22.

throttle(X)“rn0 :- t(X)“rnl,p(X) " rn2.

In other words, the procedure of n rules is defined by a matrix of n x 3 fuzzy
models:

(rlj)7l = ]-7 2a "‘7n’j = 0’ 1’ 2.

According to the formulation of type-1 fuzzy logic programs, also the throttle,
the temperature, and the pressure may be modelled with arbitrary type-1
fuzzy sets (including precise models). Of course, defuzzification might be
required in the application.

The relationship between type-1 fuzzy logic programs and control-oriented
fuzzy reasoning systems is apparent. For instance, consider the following rule:

famous(X)~r0 :- rich(X)"ri1.

Let r; denote the model of the body goal, rq the model of the head goal,
Ryx a particular fuzzy evaluation of the resolvent clause (i.e. X being rich),
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and choose ® = A. Let Fx denote the model of the induced fuzzy property
(i.e. X being famous). We get

FX = w(’l“l,Rx) X Tro-

Figure 3.1 illustrates computing the fuzzy evaluation with an example (com-
pare, e.g., with Mamdani fuzzy systems [38]).

3.1.2 Linguistic Variables

The keywords very_cold, weak, ... that appear in the procedure R above,
denote linguistic terms that identify the related fuzzy sets, defined using an
appropriate linguistic variable.

Definition 17 (Linguistic Variable) A linguistic variable is a quintuple
(v, T(v),X,G, M) where v denotes the name of the variable, T(v) is the
term set, X 1s the base set, G s the syntactic rule, and M 1is the semantic
rule.

In brief, the syntactic rule establishes the terms, while the semantic rule
associates linguistic values with their meanings, represented as fuzzy sets.

We may thus define a linguistic variable p that denotes the pressure and
associate it with the terms t; = very_cold, ¢, = rather_cold,..., each of
which denotes a particular fuzzy set A;, i.e a fuzzy model.

3.2 Linguistic Construction of Fuzzy Models

In some cases, definition of the fuzzy models benefits from a more structured
approach. Instead of simply enumerating all the terms, we may establish a
distinguished set of the basic terms from which the fuzzy models are con-
structed with general-purpose operators.

Technically, we may achieve this with either using special kinds of lin-
guistic variables called property constructors, or using hedges.

3.2.1 Property Constructors

Assume using type-1 fuzzy logic programs to generalise crisp reasoning. For
practical reasons, it is useful to establish definitions of general-purpose lin-
guistic terms that can be used as a basis for defining other terms.
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Figure 3.2: Property constructor linguistic variable. (The fuzzy set associ-
ated with the term rather is highlighted.)

Definition 18 (Property Constructor) Let v, denote a linguistic vari-
able associated with the following terms: (t;) = (notAtAll, notVery, moderately,
rather, very) and the following fuzzy sets

(Ai) = (7(z;0,1,0.16,1) V 7(2;0.16,1,0.26, 0),

7(2;0.11,0,0.21,1) V 7(2;0.21,1,0.37, 1) V 7(z; 0.37, 1, 0.47, 0),
(2:0.32,0,0.42,1) V 7(2: 0.42, 1, 0.58,1) \/ 7(x: 0.58, 1, 0.68. 0),
7(z;0.53,0,0.63,1) V 7(2;0.63,1,0.79,1) V 7(2; 0.79, 1, 0.89, 0),
7(2;0.74,0,0.84,1) V 7(2;0.84, 1, 1, 1)).

We say that v, denotes a property constructor.

Intuitively, the terms of v, thus resemble adverbs that denote quantities in
natural clauses (”The temperature is r a t h e r cold.”). Figure 3.2 depicts
the terms and the fuzzy sets defined by the linguistic variable v,. In practise,
the set of predefined terms may change upon application, or may be adapted
according to a particular context.

The variable v, is special because it is neutral and may be associated with
other terms. In particular, it may be used as a concept constructor. When
associated with an appropriate abstract concept, it may be used to construct
a fuzzy model, type of which is established by the related abstract concept.

Definition 19 (Concept Constructor) Let C denote the symbol of an ab-
stract concept. Let o denote the term of a property constructor.

We say that o(C) denotes a concept constructed by applying the property
constructor o to the abstract concept C'.

In some applications, names of the predicates suffice in identifying the ab-
stract concepts. (Concept constructors are not to be confused with hedges
discussed shortly.)

As an example, consider the linguistic term rather_cold. We may think
that the term is composed using the property constructor rather, concate-
nated to the abstract concept cold.
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It is easy to see that we may establish similar concept constructors for
other kinds of syntactic expressions as well, e.g., related to quantities (veryS-
mall, small, neutral, large, veryLarge) and relations between quantities (much-
LessThan, littleLessThan, around, littleOverThan, muchOverThan). Note
that the choice of the constructors depends upon whether the modelling is
based on single bipolar concepts (e.g. red or circular) or, e.g., concept pairs
(e.g. cold-hot or negative-positive).

In brief, the property constructors allow capturing rich fuzzy models with
few basic terms. Further, with certain assumptions, it is possible to system-
atically modify a fuzzy system by re-evaluating the concept constructors.

3.2.2 Hedges

Derived fuzzy models may also be constructed by applying functional oper-
ators to the existing basic models.

Definition 20 (Hedge) Let A denote a fuzzy set and o a function o : Ml —
M where M denotes an appropriate set of fuzzy models. We say that the
(operator) o denotes a hedge.

Given a fuzzy model A, we may thus define new fuzzy models with ap-
propriate hedge operators by writing o;(...0;(A). Note that according to this
definition, we may consider property constructors as hedge constants.

The commonly defined hedges include, e.g., negation, NOT(A) =1 — A,
for not, concentration, CON(A) = A2, for very, and dilatation, DIL(A) =
A% for more or less. Some hedges may pose restrictions to the subset of
fuzzy models they apply to.

Intuitively, we may thus write CON(cold) instead of very_cold. Since it
is possible to define a meaningful set of general-purpose hedges, this again
simplifies the technical language (e.g., CON(hot)).

As with the case of property constructors, we agree upon a notation that
enables encoding modified models without touching the underlying syntax of
logic programs. Let o denote a modifier and A an applicable fuzzy model.
For o(A) we write o_a. Further, we may abbreviate CON(A) as very(A).

Depending whether we use property constructors or hedges as concept
constructors, we may thus write the first rule in the program P; either as:

throttle(X) “positive_large :- t(X)“very_cold,p(X) “weak.
or:

throttle(X) “positive_large :- t(X)“CON(cold),p(X) weak.
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Due to the differences of the property constructors and (functional) hedges,
these two approaches might not yield exactly the same models.

Developing type-1 fuzzy logic programs that exploit the property con-
structors benefits from the definition of the following general purpose hedges:

Definition 21 (At Most and At Least Hedges) Let A denote a fuzzy

set. Let

z1 = min({z|(z,y) € (z, A(z)),y = maz(A(z))})
and

zy = maz({z|(z,y) € (v, A(z)), y = maz(A(z))}).
Define

Alzy), z<m

AM(A) = { Az), x> 1.

v ={ 405 50

We say that AM is the at most hedge and AL the at least hedge.

In applications, the models operated with hedges AM and AL appear as
match patterns that establish the acceptable ranges of goals.

3.3 Capturing Fuzziness via Linguistic De-
scription

Using linguistic variables provides a way to capture (expert) knowledge in
applications.

The linguistic mapping of models associates clauses with intuitive inter-
pretations. Two main use cases may be differentiated: capturing fuzziness
in rules and capturing fuzziness in facts.

For instance, recall the fuzzy logic program P;:

rich(paul) ~a.

likes(paul,theThinker) “b.

classicalScuplture(theThinker) “c.

likes(susan,X)"r0 :- rich(X)~ri1,likes(X,Y)"r2,
classicalScuplture(Y)“r3.
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Assuming the appropriate basic terms are available, we may describe the
related models using intuitive linguistic expressions according to property
constructors.

For instance, select a = very, b = moderately, ¢ = very, ry = very,
ry = AL(rather), ro = AL(moderately), and r3 = very. Intuitively, we may
now thus read the program P; as follows:

e Paul is very rich.
e Paul likes The Thinker moderately.
e The Thinker is a very classical sculpture.

e If someone (presumably a person) is at least rather rich and likes clas-
sical sculpture at least moderately, then Susan likes that person very
much.

This modelling allows deducing a fuzzy fact from the program P; which
can be read as follows:

e Susan likes Paul very much.

Clearly, as a procedure, the rule likes should be completed with rules
that describe the other cases. For instance, such rules might include the
clause according to which Susan does not like persons who are not at least
rather rich.

The second use case is about capturing fuzziness with linguistic facts.
This enables recording intuitive clauses like

rich(john) "notVery.

The main benefit is the ability to record vague but useful classifications
that describe the identified domain objects. When associated with the asser-
tion context (described briefly), this use case provides a method for capturing
potentially very large quantities of practically applicable information.

Finally, it is worth recalling the there exists methods for inducing rule
systems semi-automatically (e.g. ANFIS [38]). In principle, any rule induc-
tion approach suitable for Mamdani fuzzy systems may be adapted to suit
the need of type-1 fuzzy LPs. Semiautomatic processes, however, may lead
into less transparent and less intuitive design.
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3.4 Context-Aware Logic Programs

The paradox of global fuzzy programs is that fuzziness is often due subjective
or context-dependent evaluation. However, it can be useful to include modules
of logic programs with varying degrees or significance, according to their
contextual utility.

In applications, logic programs are typically composed from several physi-
cal units for maintenance and re-use. In addition to locally maintained units,
distributed systems may include references to third-party units, acceptance
of which might vary upon context.

When fuzzy models are considered, it is generally accepted that fuzziness
may manifest itself through context-dependent design choices. For instance, a
given model behind the fuzzy concept classicalSculpture is not necessarily
global. In addition, it may be useful to emphasise the facts asserted by known
authors, or the people who share one’s understanding of things. In particular,
many fuzzy models tend to rely on subjective, local, or contextual design and
choices of modelling.

In other words, it should be possible to include modules of logic pro-
grams with varying degrees, according to their utility in an application. For
instance, consider the case of finding art books from an Internet database,
classified by users using the predicate classical. Intuitively, it makes sense
to favour the classifications made by users whose assertion context matches
the interpretation context of the query. Intuitively, the usage of the term
might be related to one’s interests and level of professionalism in a particular
context.

These considerations raise issues related to the integration and aggre-
gation of various sources of clauses, and evaluating the applicability of the
third-party units within a particular context. We will next extend the ar-
chitecture of type-1 fuzzy logic programs to acknowledge the definition of
context-aware units.

3.4.1 Modular Logic Programs

A large logic program consists of one ore more physical units called modules.
A module is simply a logic program, which may include a module declaration.
In typical logic programming applications, modules are used to hide local
predicates, document the public predicates, and organise logic programs into
meaningful and manageable units. We will next introduce an additional use
case, by considering the weighted interpretation of modules.

Let {P;} denote a set of type-1 fuzzy logic programs. When programs are
perceived as sets of clauses, we may construct new logic programs simply by
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Figure 3.3: Architecture of context-aware logic programs

aggregating the existing logic programs:
p=|Jr.

Let Py denote the (usually local) main module and P;,i = 1,2,...,n the
external modules. Associate each module a weight w; € [0,1]. Let w;P;
denote a type-1 fuzzy logic program which include the rules of P;, models of
which are multiplied by w;.

We may define a weighted modular logic program P as:

P = JuwP. (3.1)

Intuitively, we may perceive this approach as a mechanism of declaring the
evaluated significance (or even trust) of the various sources of information.

Figure 3.3 demonstrates the basic architecture of context-aware logic pro-
grams. In brief, the program consists of modules of rules ({r%)) associated
with an explicitly encoded assertion context (c¢;,i = 1,2,...), meaning of
which is determined upon the interpretation context (co). We may think
that the selection (processing) of the interpretation context identifies (com-
putes) a contextual view which effectively decides the logic program to which
the subsequent queries apply.

Note that it is ultimately the viewer who may decide which clauses to
consider as a part of the (assertion and interpretation) contexts. This means
that while in many applications, the predicates to be included to the assertion
contexts must be designed in advance (so that relevant information will be
faithfully recorded), the interpreter is basically free to ignore any predefined
contexts and choose, e.g., clauses that the information producers consider
"content” to the ”context”.
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Note also that the strategy of assigning each module a weight w; enables
constructing context-aware programs even when the weighted aggregation of
the models can not be defined. A viable strategy might simply be select-
ing the modules assertion context of which is sufficiently close to the inter-
pretation context, thus effectively filtering the context-aware logic program
appropriately.

3.4.2 Weighting by Contextual Distances

In addition to the direct definition of the weights, the weighted modular logic
program may also be defined in terms of contextual distances.

Associate each module P;,i = 0,1, ...,n with a context declaration ¢; € K
where K denotes the set of appropriate contexts (see Figure 3.3). Let §(z, j) :
K x K — [0, 1] denote a distance function (of an appropriate (semi)metric
space) that denotes the distance between two contexts.

Measuring contextual distances is basically an application of (profile)
matching algorithms (see, e.g., [95]). A context declaration serves as an
identifier to a recorded structure (basically a list) of clauses that describes
the context. Agreeing upon a recursive process of measuring the distance
between facts that belong to the assertion and interpretation contexts (e.g.
age(45)"ml. as a part of a particular assertion context and age(18) "m2.
as a part of the interpretation context) provides a method for computing
distances between contexts.

We may now alternatively define (3.1) based on the indirectly defined
contextual distance as:

P =J( = (e, i) Pr (3.2)

Since ¢ denotes a distance function, we get §(co, ¢o) = 0 and may write (3.2)

as:
n

P = U(l — (5(60, Cz))Pz U P().
i=1
As noted above, a simple way of encoding context declarations is mod-

elling contexts in terms of clauses found in the modules. For instance, a
module may assert the context for which the fuzzy models apply:

authorBackground(classicalArts)~T.

classicalSculpture(TheThinker) “m1.
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A contextual distance function may then evaluate the distances between
different contexts (perhaps using a taxonomy of authorBackgrounds) and
weight the modules accordingly. A context may include more than a single
fact, and may be due rule evaluation.

Finally, it is worth observing that the process of weighting by contextual
distances works best when there are large modules to choose from, with
different contexts. Thus, if none of the assertion contexts match with the
interpretation context, the resulting clauses will be associated with highly
subnormal models, providing little basis for sensible rules and queries.

3.5 Fuzzy Models as Query Interfaces

The type-1 fuzzy logic programs we have considered so far might be called
pure in the sense that they include only structures with a direct interpreta-
tion related to fuzzy interpretation. However, perceiving type-1 fuzzy logic
programs in the context of the related (Prolog) implementations enables con-
ceptualising fuzzy programs as fuzzy (query) interfaces, hiding, encapsulat-
ing, or (linguistically) decorating the details of the underlying data model. In
turn, this illustrates Zadeh’s principle of incompatibility [106] by considering
fuzziness as an interface to (intuitively more complex) crisp logic programs.
For instance, consider the following fuzzy rule:

likes(susan,X)"r0 :- rich(X)~ri1,likes(X,Y)"r2,
classicalSculpture(Y)“r3.

Assuming ry = 77, we may write a Prolog implementation of the rule as
follows:

c_likes(susan,X,E) :-
c_rich(X,E1),
likes(X,Y),
c_classicalSculpture(Y,E3),
E = [r0,[[El,r1],[E3,r3]]].

This rule is semantically equivalent to another rule (see Subsection 2.6):

c_likes(susan,X,E) :-
c_rich(X,E1),
c_likes(X,Y,E2),
c_classicalSculpture(Y,E3),
E = [rO0,[[E1l,r1],[E2,r2], [E3,r3]]].
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The reason is that considering the interpretation, it does not make any dif-
ference if we get an empty fuzzy model as an answer or no answer at all.

The implementation of a type-1 fuzzy logic program may thus include
definitions and programmatic structures that are inwvisible to the fuzzy se-
mantics. In other words, we may use non-pure implementations for setting
up useful fuzzy models. This approach enables exploiting the commonly
useful features of Prolog implementations, most notably including structures
(compound terms denoted by structural functors) and lists. With certain
assumptions, we may thus relax the grammar of simple fuzzy logic programs
in applications (see Definition 6).

Assume a module includes the crisp facts:

year (2005) .
annualSalary(paul,100000,euros).
country(paul,finland).
country(susan,uk) .

Clearly, we may use these facts to programmatically assert a fuzzy fact
associating Paul with a fuzzy property rich:

rich(paul) “m2.

where it might be decided that my = very.

We say that the clause has been induced or bootstrapped using the un-
derlying clauses perhaps part of the information database. More general
bootstrapping mechanisms might be established based on machine learning,
data mining or other induction algorithms, or with arbitrary computer pro-
grams.

The benefit of fuzzy linguistic decoration is most evident in cases where
multiple crisp properties can be meaningfully described with a single fuzzy
label. For instance, consider searching for used cars or residences which
are ”at least in rather good condition”. Thus, in some applications we may
consider fuzziness as the property of the end-user (knowledge) interface, used
to decorate the encapsulated data model (consider Figure 1.1).

The assertion rich(paul) "m2. may thus have a procedural origin, com-
puting the model my according to the given contextual clauses. For example,
compering Paul’s annual salary with the salaries of the other people identi-
fied by the logic program, with the average salary in Finland (in 2005), with
the prices in Finland (in 2005), or with the people all over the world (e.g. in
the UK).

Looking from the other way around, this approach also provides the basic
mechanism for working with defaults. Thus, when signalled within a particu-
lar context that Paul is very rich, we might conclude that Paul earns around
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100000 euros per year. When the linguistic models are due property con-
structors, the respected default may be read from the best matching model
(consider Figure 3.2).

3.6 Challenge of Global Interpretation

While the notion of contextual interpretation points out mechanisms for deal-
ing with contextual fuzzy models, it does not escape the problem of global
interpretation. In particularly, one does not only have to identify both the
assertion context of the modules and the interpretation context of the main
module(s), but also the intended interpretation of the logic program.

For instance, considering our example with Susan, Paul, John, and the
sculpture The Thinker, two fundamental issues remain. First, addressing
classical sculptures, does Susan appreciate a classification of her own, or a
classification by some acknowledged author?

Second, considering rich things (presumably people), does Susan like ”rich
people” in a particular country (e.g. in UK), or globally, i.e. the ”rich people”
around the world? Would Susan consider a rich Eskimo (or Inuit!) a rich
person? This problem is actually a reformulation of the first problem. The
main difference is that finding a "standard definition” might be impossible?.

The problem of concept definition is thus very difficult and manifests the
exercise of power in deciding whose concepts we are willing or obliged to
use. Further, it is questionable whether a global, widely accepted definition
of "rich” exists in the first place. This seems to imply that Susan (or the
people in UK) must to some extent write a definition of her own. However,
once a definition of a "rich” is settled, say, based on the belonging and the
annual salary in pounds (and not, say, the number of the close relatives), it
can be applied to all people. Nevertheless, not everyone might agree upon the
fundamentals of the definition which implies that several different predicates
are required for capturing the property ”rich”.

This also raises the discussion of names, i.e. which names should be
assigned to the different predicates capturing the different notions of being
rich®. The related discussion points out the scope of applicable global fuzzy
predicates and the fundamental limits of meaningful interpretation and asser-
tion contexts. In other words, the data published locally may thus be used

!The English word ”Eskimo” is considered offensive by many Inuit.

2In principle, one might find (and accept) a definition of classical sculptures from a
textbook. This clearly is not the case with the concept of being rich.

3This actually implies that a collision-free namespace mechanism is required for the
predicate names.
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simply as evidence (or as a sort of "raw data”) for inducing descriptional
properties suitable for the purposes of others, perhaps without consulting
the original publisher.



Chapter 4

Inductive Models and
Implementations

We shall next consider the process of inducing fuzzy sets and describe an
algorithm for inducing fuzzy membership values based on decision tree learn-
ing. In addition, we outline two approaches for implementing type-1 fuzzy
logic programs with two different kinds of tools, CWM and SWI Prolog,
and briefly consider the architecture of fuzzy knowledge agents based on SW
technologies.

4.1 Inducing Fuzzy Models

A fuzzy model is simply a fuzzy set associated with an appropriate logical
term and an optional type definition. While designing fuzzy models by hand
may be an option, it might not always be possible, it might not provide the
best results, or the manual work might become too expensive to be of any
real use in applications.

4.1.1 Inducing Fuzzy sets

Assume a finite set of objects X = {xx},k = 1,2,...,n described with m
attributes, a;,7 = 1,2, ..., m, each associated with a finite list of alternative
values.

Suppose we wish to divide the objects into two sets, C C X, and C¢ =
X\ C. We say that C denotes a concept. The concept C may be recorded as a
subset of elements in X, or we described using an appropriate characteristic
function 7 that identifies the elements of C:

47
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C={z e X|y(z) =1}.

When the function 7 can not be directly defined, we may try to define
it indirectly, e.g., using examples, with respect to some concept induction
algorithm. In particular, we may identify two sets of examples, the positive
and the negative examples that establish some of the elements in C', and
some of the elements in C°. In short, this is the key problem of Machine
Learning (ML) [54, 71]

In general, the challenge lies in generalising the hypothesis (characteristic
function) beyond the immediate examples, i.e., learning to recognise or pre-
dict the target concept. Further, the data may include errors, and a selection
must be made between different plausible hypothesis. In the worst case, the
intended target concept can not be reasonably induced from the data at all.
This requires selecting a learning algorithm with an appropriate bias, care-
fully testing that learning indeed occurs, and verifying that the learnt aspect
of the data is the intended one.

The process of crisp concept induction may be used as a basis for a process
of fuzzy concept induction. A fuzzy concept is simply a fuzzy set, generalising
the definition of a characteristic function v : X — {0, 1} using a membership
function p: X — [0, 1].

The most simple strategy is to induce fuzzy membership functions based
on a direct distance.

Definition 22 (Direct Distance) Let x denote a domain object and D™
denote the set of positive examples, each represented as a vector of m at-
tributes.

We define the direct distance between x € X and D% as

Az, DY) = min{3;0,, 4,|d € D*}.

In practice, the direct distance is the number of the unequal attribute
values between an object x and the most similar instance in D. As suspected,
the distance may be used for defining a fuzzy membership degrees.

Note that this definition does not take advantage of the negative exam-
ples. Further, the distance strongly depends on the encoding of the attribute
values. The more structured profiling approaches may yield more general
definitions (see, e.g., [95]).

Definition 23 (Fuzzy Membership Degree by a Direct Distance) Let
D™ denote the set of positive examples for capturing the target concept C.
Let m denote number of the attributes, i.e. the dimension of X and D.
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We say that
1
pl () =1- EA(:U,D—F)

denotes the fuzzy membership function of C.

Note that we are assuming an a priori identification of the domain objects
z € X. In some applications (related to recognition problems), this is a very
strong assumption.

4.1.2 Inducing MFs with Decision Trees

Decision Tree (DT) learning algorithms provide a basis for constructing and
representing fuzzy concepts in terms of decision trees of Boolean functions

66].
Algorithm 2 (Redundant Decision Tree Learner (RDTL))

We call a Redundant Decision Tree Learner any entropy-based decision tree
learning algorithm DTL (that induces a decision tree from the training data
of positive and negative examples, outputting 1 for Yes and 0 for No) with
the following modifications:

1. Assume an inductive DT learning algorithm DTL that uses information
gain (entropy) as a measure for choosing attribute tests to the decision
tree.

2. Modify DTL so that instead of choosing a single attribute a with the
best information gain, it chooses a set of attributes {a;}, including all
of the attributes with the best information gain.

3. Modify DTL so that instead of (recursively) adding a single subtree
to the decision tree by the attribute a, it adds one subtree for each
attribute a;.

It is easy to see that the RDTL and DTL are identical in terms of input-
output behaviour. In other words, a redundant decision tree simply records
the alternative branches. The structure of decision tree may depend upon a
particular DTL implementation (e.g. due different ordering of the branches).

Proposition 6 (Unique Redundancy Property) LetT; be a decision tree
mduced by an entropy-based decision tree and Ts a related redundant decision
tree. Let T'(x) denote the classification of x according to the decision tree T.
Trivially, Dom(Ty) = Dom(T3); denote this set by X. Then
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1. For each x € X, T1(z) = Ty(x).

2. As a tree, Ty is uniquely defined by Ty: for each Ty there is exactly one
Ts.

Proof. The proposition follows directly from Algorithm 2. The second
part is true effectively because there are no choices left to the algorithm. .

The rationale behind the Algorithm 2 becomes clear in the context of
inducing fuzzy membership degrees.

Definition 24 (Fuzzy Membership Degree by RDTL) Let T be a re-
dundant decision tree induced by the Algorithm 2 and x an input attribute
vector, t € X = Ay X Ay X ... Xx Apy. Let {T'} = {Txy C T : Tx(z) =0} be a
finite set that denotes all the branches of T that output a negative classifica-
tion. Let p > 0 be the length of the longest branch of {T'y}. If T(xz) = 0, let
s be the length of the shortest branch T' € {T'y} so that I'(z) = 0.

Define the membership function induced by T, ur : X — L, L C [0,1], as
follows: If T(z) = 1, define pr(z) = 1, otherwise define pr(z) = C=1.

p

If the decision tree is unable to output a prediction (due encountering a
previously unseen attribute value), we simply set ur(z) = 0.5. (This is not
the best strategy, however.) The added redundancy of Algorithm 2 ensures
that Definition 24 is well-defined, i.e. the membership degree is unambiguous
(Proposition 6).

It is easy to see that the definition genuinely generalises the crisp concept
in terms of Classical reasoning:

Proposition 7 (Subsumption Property) Let ur(z) be a membership de-
gree induced by a redundant decision tree T. Then pr(z) = 1 if and only if
T(xz) =1. Otherwise 0 < ur(z) < 1.

Proof. Follows straightforwardly from Definition 24. 1.

4.1.3 A Case Study

To demonstrate the generalisation property of RDTL based fuzzy models,
we will next briefly discuss a case study (for details, please see Publication 4
[66]).

As a part of an evaluation project of Web-based learning systems, a stu-
dent survey was compiled at the Tampere University of Technology, Hy-
permedia laboratory. After attending to various university courses including



4.1. INDUCING FUZZY MODELS 51

(a) Correlation with the crisp attribute (b) Correlation with the goal attribute
(with respect to 100%-7% of training drawn from the reference data matrix
1 07
09 == 06 —
08 -~
— A A
07 o A ii 05 —
05 - 1 04 - \_F\
05 — y
04 o 03 —
; = | T ——
02 il
01 01
1] 0
150 112 75 42 10 150 12 75 42 10

Figure 4.1: Correlation graphs demonstrating the generalisation performance
with the validation data set, using the RDTL algorithm (A) and the direct
distance (B)

Web-based modules, 150 students answered to a set of (multiple choice) ques-
tions. In the experiment, the descriptive attributes included 14 values from
11 questionnaire questions and three summation variables, resulting from the
pre-processing of 17 (semantically overlapping) background questions with
Principle Component Analysis (PCA) with manual selection?.

Figure 4.1 depicts four Pearson’s correlation curves that show the gener-
alisation performance in terms of the training data and an a priori known
reference data (compiled heuristically). The X axis shows the training set
size, starting from the whole set of the available training data (N = 150).
The values of the Y axis consist of the arithmetic means of the correlation
coefficients after 10 trials with the validation data set, using random training
data sets consisting of X instances.

The RDTL algorithm seems to outperform the direct distance with the
reference data (curve A in Figure 4.1 (b)). The performance stays maximal
until using only half of the available training data. The reason for this
seems to be the generalisation performance of the underlying DT learner,
which in this case seemingly captures the crisp concept with some 75 training
instances.

In certain applications, a significant benefit from using ML learning meth-
ods originates from the fact that explicit modelling is not always required.
In this case, the DT reasoner compiles a decision tree without expert help,
i.e. as a model-free or a black-box learning algorithm. If statistical accuracy
suffices as a design criteria, this provides more general and cheaper tools
when compared to manual case-specific modelling (see Section 5.2).

!The data was compiled by the so-called EVA group. Principle component analysis
was in detail carried out by E. Kalliomaki.
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4.1.4 Statistics and Fuzziness in Modelling

The relationship between probabilities and vagueness (i.e. fuzziness) has
been much debated in the literature (see Section 1.3). In brief, the general
understanding seems to be that the concept of vagueness genuinely comple-
ments the concept of randomness in modelling indeterminacy, establishing
the two facets of the phenomenon [61].

For purposes of this treatment, we will adopt a very practical design
stance, according to which the design of fuzzy models may be guided by
statistic or probabilistic arguments. This also seems to correspond to the
underlying ideology behind type-2 fuzzy models [53]. A concrete example of
this stance is established by the conception of the fuzzy sets induced with
the RDTL algorithm (Definition 24).

Philosophical argument aside, the adopted strategy becomes concrete
when the computation costs are considered. From a practical point of view,
a probabilistic models need to be updated when new evidence is achieved.
Monotonic reasoning systems, on the other hand, aim for a structure that
preserves the already deduced facts (For all B, If A =« then (AA B) | a.)
This is particularly true in the case of assertional languages which knowingly
escape the problems related to assumption-related contradictions (which en-
able deducing ”anything”) by not introducing a standard negation operator
into the language.

Considering the processing requirements, type-1 fuzzy systems are clearly
more demanding than simple assertional languages. In practice this means at
least re-computing the models when new information is received. In practice,
however, the Fact Canonisation Lemma (Proposition 3) allows to some extent
optimising the way models are in practice computed.

Strictly speaking, some of this discussion is left unanswered. From this
perspective, type-1 fuzzy logic programs are simply technical means to model
and implement various applications, interpretation of which is agreed upon
the domain characteristics.

4.2 Implementations

We shall next outline two implementations of approximate reasoning systems
based on type-1 fuzzy sets. The first implementation is based on experimental
SW technologies, aiming to demonstrate the power of a de facto standardised
data model in applications. The second implementation is based on the well-
established Prolog programming paradigm, yielding more or less production-
quality applications.
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4.2.1 Case CWM

CWM rule system [9] provides a framework for filtering, pretty-printing,
querying, and performing inferences based on RDF data. Providing a well-
known general-purpose data processor for the Semantic Web, CWM estab-
lishes a relatively well-established test bed for studying the potential of ex-
isting and emerging SW rule applications. CWM is distributed under the
W3C Software License (basically freely but without any warranty).

From the research perspective, a significant characteristic of the rule sys-
tem is the possibility to add new software components. Technically, this
enables the implementation of new namespace-specific functions, which in
practice may be used as new primitives of inference. Written in Python,
implementing new components is relatively easy, even if the architecture of
CWM is sometimes criticised for its prototype flavour. Existing additional
CWM modules include, e.g., cryptographic, time, and mathematical func-
tions.

CWM rules extend the N3 syntax for RDF by providing a format for
rules. For instance, consider the following rule (prefix definitions omitted for
brevity):

this log:forAll v:p, v:ic .

{ v:c ex:child0f v:p . v:p rdf:type ex:Man . }
log:implies

{ v:p rdf:type ex:Father . }.

The rule states the definition of a father. In Prolog, this could be ex-
pressed as:

father (P) :- child(P,_),man(P).

The CWM rule framework is essentially crisp. However, as in the case of
many crisp reasoning systems (see, e.g., [39], [22]), it is possible to implement
fuzzy rules on top of the crisp processing via programming. In practice, a
viable approach is to first implement linguistic variables with the CWM rules,
from which the fuzzy rules are then compiled as a separate set of CWM rules
(see Publication 5 [67]).

The main objective of the case study was to experiment using the basic
enabling technologies in order to realise the expert and the end-user inter-
faces of a fuzzy knowledge agent (see Figure 1.1). Figure 4.2 outlines the
component layers of a knowledge agent, founded to a broad range of en-
abling technologies. The overall architecture consists of three abstract layers
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Figure 4.2: Layers of a fuzzy (linguistic) knowledge agent architecture

including the target application, the logical layer, and the layer of the en-
abling technologies (perhaps invisible to the end-user).

When perceived as an interface, fuzzy description provides an intuitive
method for describing the underlying data model using a small, appropriately
selected set of linguistic terms with clear semantics. In short, the expert user
interface provides an access to the bootstrapping mechanism, providing a
programmable method for setting up the linguistic concepts that the end-
user interface perceives through the fuzzy logic programming view, or the
end-user (knowledge) interface to the fuzzy knowledge agent. As suspected,
the chief benefit from using SW technologies originates from the possibility of
retrieving and merging data from radically different but uniformly modelled
systems and data sources with standard query and processor interfaces.

Further, to try out the potential of mixing statistical data with logical
rules, we implemented a Decision Tree (DT) module for the CWM rule system
(see Publication 3 [64]). The DT module defines a set of functions, integrated
with the CWM rule system, for training, serialising, and publishing decision
trees, and using them for making induced classifications and predictions.
This provided the basic functionality for the experiments anticipated in the
early studies (see Publication 6 [68]).

However, while it indeed is possible to implement CWM applications that
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benefit from the induced fuzzy models, the author decided that from the
logical point of view, a clearer separation of the model induction phase, the
reasoning process, and the application layer was in order. Thus, even if the
prototyping nature of the CWM was appreciated and the interoperability
and the vision of the Semantic Web were considered very important, the
emphasis was shifted from technology-specific tools to (more constrained)
general-purpose logic programming tools, focusing the logical aspects of fuzzy
knowledge agents.

From the applications’ perspective, it would seem that the first large-scale
semantic applications might be built on top of semantic extensions of the ex-
isting popular collaborative authoring tools, such as the Semantic Wikipedia
[97]. This provides the option of implementing fuzzy knowledge agents as
auxiliary services, providing an alternative access to the triplestore(s) op-
erated by the Wiki platform(s). Considering Figure 4.2, this simply means
appropriately including the Semantic Wikipedia triplestores to the bootstrap-
ping processes of the knowledge agents.

4.2.2 Case SWI-Prolog

SWI-Prolog [100] offers a comprehensive and a widely used Free Software
Prolog environment, licensed under the Lesser GNU Public License. In addi-
tion to the interpreter software, SWI-Prolog includes analyser and graphics
toolkits, and well-established accessories for working with other programming
environments and applications.

SWI-Prolog includes a reasonable support for the RDF data model and
the related RDF/XML serialisation syntax. For instance, selected RDF
graphs may be uploaded and asserted as RDF triples rdf (X,Y,Z) ., to be
accessed from other procedures. This enables implementing applications
founded to the well-established syntax and semantics of Prolog programs,
taking advantage of the interoperability of the RDF data model (perhaps
after pre-processing).

From the perspective of implementing logic programs with fuzzy models,
the selection is by default suitable, due to the close connection of type-1
fuzzy logic programs and Prolog. In short, type-1 fuzzy logic program simply
annotates a Prolog implementation with the respected fuzzy models.

Mapping type-1 fuzzy logic programs onto Prolog programs is straight-
forward (consider Section 2.5). Let

Clo(ao) ~ 7"02‘C11(C\{1) N~ Ty e, cln(an) ~ Tn.

denote a fuzzy rule where ¢l denotes a clause and «; denotes an argument
configuration.
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We implement it as follows:

C_Clg(ao, Eo) =

C_Cll(Oél, El); ceey C_Cln(an, En); EO = [7"0, [El, 7’1], ceey [En, Tn]]

If the fuzzy rule includes goals without an associated fuzzy model (cl;(«;)
without the ~ r; part), those terms are simply copied to the implementation
unchanged. Note that we assume that the rule system does not include
clauses for other purposes with the prefix c_and that the (local) variables E;
do not previously appear in the clauses (i.e. to be instantiated by accident).

To abbreviate the list syntax, we may introduce a special case for imple-
menting facts. Let

Clo(ao) ~ 7.

denote a fact. We implement it as follows:
c_cly(ag,ro)-

In many cases, logic programs include at least two modules: the general-
purpose program and data from a particular application. In practice, pro-
cedures of the general-purpose program assume a certain encoding for the
data.

According to the definition of type-1 fuzzy logic programs, the answers
to the ask queries change when the clauses of the program are changed, or
when the fuzzy models are modified. In the latter case, re-evaluating queries
simply means re-computing the parse trees of the already evaluated answers.
Thus, when appropriately designed, the Prolog implementation (of certain
kinds of logic programs) need to be run only once, outputting the formulas
for computing certain interesting queries. Effectively, this allows recording
application-specific reasoners in terms of parse trees, evaluated according
to the observed models (for reuse, due computational efficiency and smaller
memory requirements).

However, even if not necessary, parametrised fuzzy models and the re-
lated algebraic operations may also be implemented in Prolog. For instance,
consider the fact

rich(paul) “r.

By introducing a library of parametrised MFs, we may assert that the name
of the model r denotes, e.g., a trapezoidial MF 7(z;0.6,0.7,0.8,0.9) (see
Definition 5):
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trapezoidMF(r, 0.6, 0.7, 0.8, 0.9).

Again, restricting to only trapezoidial functions is not a necessity.

We may implement a general-purpose procedure evalFM(+elist, -value)
which evaluates fuzzy models (outputting fuzzy sets represented, e.g., with
a finite trapezoidial base; see Formula (2.2)) based on the registered names
(the output argument value), when given the parse tree of a formula (the
input argument elist). If the processing related to the computing with
fuzzy models is separated from the processing related to computing answers
to the queries, the reasoning and the evaluating components may again be
separated in applications.
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Chapter 5

Case Studies

In order to review and illustrate the developed methods and techniques,
we will next briefly consider two educational applications as illustrative use
cases. The first use case illustrates implementing decision-support systems
for teachers. The second use case outlines a personalisation application that
helps students to choose appropriate learning material. Of course, the ap-
plications of the developed methods are not restricted to educational use
cases.

5.1 Introduction

Consider organising a large academic course as a teacher and studying it as a
student. Teachers face the problem of knowing their students well enough to
be able to adapt the teaching accordingly, while students face the problem of
self-evaluating their progress, and choosing the appropriate (extra) learning
material for self-study.

However, given a sufficiently large and a settled (basic) course, there read-
ily exists potentially applicable historical data for decision support: points
from the exercises, and the mid-term exams of the past course(s), to the
least. Associated with the actual grades, these establish classified time series
that can be used for predicting the progress of the current students.

An example of this kind of a data structure is presented in Figure 5.1.
In brief, the data structure, organised simply as a matrix, includes the infor-
mation of n students with m recorded achievements, associated with their
final grades, resulting n vectors, each with m + 1 co-ordinates (attributes).
Obviously, the semantic structure of the example matrix originates from the
structure of m exercises and mid-term exams, each exam consisting of two
assignments.

99
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Student Exercises Exam 1 Exercises Exam 2 || Grade
S1 X1 X12 oo Xip | Xap, Xqpa1 | Xape2 oo Xm2 | Xim-1,X1m g1
S X21 X22 ... Xgp1 | X2p, X2p+1 Xop+2 - Xom2 | Xom-1,X2m (¢}
Sn Xn1 Xn2 .. an,1 an, an+1 an+2 <o Xnm2 Xnm-1,Xnm n

Figure 5.1: Matrix of student credits classified with the final grades

With certain assumptions, it should be possible to use these kinds of
archives for teaching, organising, and studying courses with predictive mod-
els, and verifying the accuracy of the predictions based on the past experi-
ences. Further, in addition to the classifications based on the course credits,
the students and the domain objects might of course be associated with other
semantic annotations as well. For instance, the exercises might be associated
with students’ explicit annotations, establishing a basis for the future adap-
tation in personalisation applications.

5.2 Decision-Support for Teaching

We first illustrate a case study focusing on the teachers’ perspective. In
short, we wish to model the course information logically, to provide decision-
support information in terms of simple linguistic queries based on type-1
fuzzy logic programs.

5.2.1 Inducing Models for Student Classification

Let us consider the most difficult case first; trying to classify students by
predicting their exact grades (for details, please see Publication 1 [62]). To
simplify the discussion, we establish an inductive model following a very
straightforward heuristic reasoning process.

The following experiments were conducted using the accumulated data
sets from the basic course Engineering Mathematics I, during two successive
years 2003 and 2004. In brief, the data describes the performance of the indi-
vidual students in terms of 22 attributes, pre-classified with the final grades.
The data includes 358 student instances considering the year 2003, and 311
instances considering the year 2004. Compiled into chronological order of as-
signments and four mid-terms exams, this approach provides a vector of 22
attributes describing the progress of each student (compare with Figure 5.1)
Considering ongoing courses, the attribute vectors of course become available
only gradually, as the courses proceed.
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Figure 5.2: The error statistics of predicting the exact grades based on the
2003 and 2004 student archives

While the data provides a basis for applying machine learning algorithms
to predict the future performance of the students, deploying a model-free
method is not necessary in this particular application. Since the grades are
now basically determined by the attribute values in terms of an explicit grade
formula, a viable strategy is to predict the goal attribute g (grade) simply
by assuming average performance in the future, i.e. calculating the grade
based on the averages of the already seen attribute values. When studies in
mathematics are considered, this is a reasonable assumption. This might,
however, not be the case with less structured disciplines.

Figure 5.2 demonstrates the basic statistics related to an attempt to pre-
dict the exact grades based on the year 2003 (n = 358) and the year 2004
(n = 311) records by assuming average performance. Predictions provide
two series of seemingly converging parameters for modelling: the predicted
grades (not shown in the figure), the average error (the arithmetic mean) of
the predicted grades (for k attributes), and the standard error of the predic-
tions (i.e. the standard deviation of the mean errors for k attributes). (For
discussion about using statistics in fuzzy modelling, see, e.g., [42, 53].)

Around mid-course, the exact grades (0 — 5) can be thus predicted with
the average error around 0.8 (with a standard error around 1.3). This clearly
yields rather imprecise models. However, better models may be constructed
by simplifying the prediction task. Figure 5.3 depicts the average errors when
trying to predict only the failing students (total 90 students in 2003 and
total 101 students in 2004). Around mid-course, the failing students may be
predicted with the average prediction accuracy of 0.8. This information still
suffices for capturing a critical student group at risk, thus helping teachers
to focus their efforts even if the resulting model is less descriptive than the
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Figure 5.3: The accuracy of predicting the failing students based on the 2003
and 2004 student archives

previous one.

Finally, as we have already pointed out (see Chapter 4), under certain
circumstances, better prediction and thus fuzzy modelling results may be
achieved using predictive models based on machine learning algorithms. This
approach, however, was not studied in depth in this experiment since the
simple heuristic modelling was sufficient for purposes of the example.

5.2.2 Logical Formulation of the Application Domain

While improving the prediction system is an interesting domain-specific re-
search question of its own right, let us next consider the architecture of
decision-support systems that could benefit from the induced classifications.
In particular, let us next consider modelling students using a predicate poor:
the poorer the performance, the poorer the student. (Alternatively, we might
equivalently model students using an appropriately defined predicate good.
The predicate poor was largely chosen for historical reasons, emphasising the
attempts to prevent students from dropping out from the basic courses.)

If we equate the predicted grade with the concept of being poor (or not
being poor), we may assign each student a fuzzy predicate poor, model of
which is computed from the predicted grade:

poor(s1)~ml.
poor (s2) "m2.

poor (sN) "mN.

Alternatively, the database might be used for modelling time explicitly, i.e.
adding k facts for each student (e.g. poor(si,1) mitl.).
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Figure 5.4: The classification trajectories of five particular students

In turn, this setting provides a basis for analysing the development of
students in time. Figure 5.4 depicts the classification trajectories describing
six different types of students that took the year 2004 course with the grades
0,1, 2, 3,4, and 5.

The imprecision associated with the fuzzy models may be read from the
Figure 5.2, using the errors of the year 2003. In other words, the classifica-
tions get rather precise around mid-course. Intuitively, the analysis reveals
that the student s3 seems to improve her performance during the course while
the student s; is doing worse and worse as the course proceeds. Of course,
more information is needed for explaining why the behaviour occurs.

It is easy to see that we may straightforwardly implement the models m;
as neutral type-1 fuzzy sets, e.g., as normal interval-based MFs, or trape-
zoidial MF's, based on the predicted final grade and the error of prediction
(see Figure 5.2). For instance, we might assign a student s; a predicate
poor(s1)~mi. where m; = 7(z;0.33,0,0.5,1) V 7(x;0.5,1,0.67,0) when
k = 12. If we choose the models with respect to some appropriate prop-
erty constructors (see Definition 18), we may in addition establish rules and
queries based on rather intuitive semantic labels.

5.2.3 Rules and Queries

Assuming that procedures similar to poor/1 are available, we can implement
logical rules and queries based on the clauses with empirical models.

For instance, consider the following query: ”"Find students that are at
least rather poor and very passive”. This rule can be implemented as a verify

query:

7-poor (X) "AL_rather,passive(X) “very.
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outputting a sequence of answers associated with firing strengths. Now,
choosing min for the argument configuration, rejecting the answers with firing
strengths under a certain threshold, and sorting the answers gives a list of
students matching the query.

However, the chief utility of the approach lies within the potential of as-
serting logical rules. For instance, consider the following rule that intuitively
states that poor and passive students are problematic:

problematic(X) “very :- poor(X) very,passive(X) very.

To establish an intuitive use case, assume students do their weekly as-
signments by posting their answers and the related questions to the course
newsgroup. Further, suppose we can encourage the problematic students by
giving them a larger share of the teachers’ attention!. We may then utilise
the piece of knowledge expressed by problematic/1 by assigning teachers a
higher priority for processing the messages from the problematic students:

highPriority(teacherTom,M) “very :-
recentMessage(S,M) “very,problematic(S) “very.

highPriority(teacherTom,M) "notAtAll :-
recentMessage (S,M) “very,problematic(S) "notAtAll.

Establishing similar procedures for the teaching assistants, we may thus
try to optimise the workload of the teaching staff while trying to pay special
attention to the students at risk. The most simple application is to check
the high priorities of the teaching staff via ask queries:

?-highPriority(S,M).

The results may be used as a basis of visualisations, or as triggers of
action rules, perhaps sending notification messages to the teaching staff. (In
a more general setting, defuzzification might be required to trigger or fire the
consequent action rules or actuators etc.)

5.2.4 Components of Predictive Fuzzy Systems

Figure 5.5 depicts the basic components of a predictive fuzzy system. At the
heart of the system lies the predictive model which assigns the domain objects

'Note that this is a pedagogic decision, validity of which is beyond the scope of this
treatment.
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Figure 5.5: The basic components of a predictive fuzzy system

(e.g. students s;) fuzzy descriptions, based on the available training data
and the observed instance data from the application. The fuzzy descriptions
add to the default knowledge base, providing a basis for interpreting the
fuzzy rules and queries. The linguistic component is defined by identifying
the linguistic concepts to which the descriptions apply (e.g. poor), and by
establishing the fuzzy linguistic constructors (e.g. rather), to be used in
the rules and queries. In brief, applications use the predictive fuzzy system
for performing fuzzy inference and making fuzzy queries based on empirical
evidence.

More complex applications might in addition explicitly control the default
knowledge base and the definitions of the fuzzy linguistic constructors, in
terms of bootstrapping the predictive fuzzy system with application-specific
defaults (perhaps also modifying the fuzzy linguistic constructors upon con-
text).

Finally, considering our modest educational decision-support system, few
general observations are in order:

1. The models m; include fuzziness due to lack of information about stu-
dents’ skills and development in the course?. We would like to minimise
this source of imprecision but we really can not. Following the above
line of modelling, the best we can do is to estimate the imprecision in
terms of statistical arguments considering the past experiences. Alter-
natively, we could assign the models according to subjective evalua-
tions, perhaps based on the assistants’ evaluations.

2Note that to some extent, this is a modelling issue. After all, we could say that the
immediately observable performance of a student, e.g. the outcome of the latest assign-
ment, determines his or her skills and the level of understanding without any reference to
the past records.
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2. According to the probabilistic arguments (see Figure 5.2), the fuzziness
due lack of information decreases during the course. The models thus
get more precise as more information becomes available.

3. The query expressions include fuzziness due to the use of linguistic
expressions (e.g. AL_rather). While we could minimise this source
of imprecision, we don’t really want to. Rather, we appreciate the
intuitive imprecision that is associated to the names of the linguistic
terms. Removing this imprecision would require discarding the fuzzy
query interface, and thus force teachers to directly operate with the
underlying technical domain concepts (e.g. sequences of credits of a
particular week).

4. Even if a restricted set of linguistic expressions is used in the rules and
the queries, the approach does not reduce into a keyword based system.
This is due to the richness and variance of the inductive models.

It is easy to see that these observations apply to most inductive fuzzy
systems with a linguistic interface. Further, this setting highlights the role
of the enabling technologies as the necessary components of successful ap-
plications. The remaining sufficient components largely depends upon the
success of the appropriate fuzzy models, the design of the procedures, and
the planned interaction via queries.

5.3 Towards Personalised Studying

Let us then briefly consider the second educational use case, knowledge per-
sonalisation. Assume a logic program including a large set of contextual facts
about exercises, asserted by the students. Further, assume that the assertion
and the interpretation contexts include three properties, mainSubject, year,
and skillLevel. Intuitively, these encode the main subject of the students,
the year they started their studies, and their estimated skills®.

Consider the following type-1 fuzzy logic program:

% global names

title(el,’The length of a pipe network.’).
title(topicl,’geometric reasoning’).
title(topic2,’definite integral’).

3Note that the important question of which properties should be included in the context
is an empirical research problem which is beyond the scope of this treatment.
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% annotations for the exercise el, asserted by the student s2
level(el, s2)~rather_difficult.
mainLessons(el,topicl,s2)“very_significant.
mainLessons(el,topic2,s2) "notAtAll_significant.

% the identified assertion context

Subject(s2,cs) “very_strong.

Subject(s2,bs) "moderately_strong.

Subject(s2,ss) “notAtAll_strong.

year(s2,2002) .

skillLevel(X) ...# assertion about s2 similar to "poor"

% annotations by other students, with the related contexts

The example includes three annotations of the exercise ey, the estimated
level of difficulty, and the two identified main points to be learnt by the com-
pletion of the exercise. In addition, the program records the assertion context
(of the student sy) using five clauses. (During the interpretation phase, it
needs to be defined which clauses establish the particular interpretation con-
text.) In brief, the student s; argues that the exercise e; is rather difficult
and is more about geometric reasoning than calculus with definite integrals.

The context thus identifies the student behind the assertions via other
clauses. For simplicity, the property mainSubject is modelled using three
predicates Subject/2 instead of a genuine taxonomy property. Intuitively,
these predicates classify the students background with respect to three iden-
tified areas of study: cs (computer science), bs (business studies), and ss
(social science).

Note that the formulation of the skillLevel/1 raises the point of nega-
tion on the level of the syntax of logic programming, similar to not/1 in crisp
Prolog.

Assuming a sufficiently large database of such contextual clauses, we may
now compute and compare the contextual distances between various assertion
and interpretation contexts. In other words, we may implement a student’s
view to the course data in terms of a context-aware logic program, weighting
the annotation modules accordingly. In principle, it should thus be possible,
e.g., to select additional exercises according to students’ particular needs.

However, while the implementation is technically relatively straightfor-
ward, several questions related to application-specific design remain, includ-
ing:
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1. Should the poor students be guided by the vision of the good students
or the vision of the (other) poor students?

2. Assume that, say, the students of computer science and the students of
business studies use the domain glossary in a slightly different fashion.
Should the use of mismatching (but systematic, within one’s field of
expertise) parallel vocabularies be encouraged, or does it make sense
to aim for a global model terminology?

3. How should we interpret the annotations made by very poor or ill-
behaving students? In particular, can we trust the annotations of stu-
dents who do not seem know the topics in the first place?

These questions in turn highlight the three issues related to fuzzy knowl-
edge agents: domain-specific modelling, language considerations, and trust.
Note how the issues are related since all reasoning takes place within the
formal language (syntax and models).

Finally, in this case it would seem to make sense to treat the predicate
skillLevel not only as a context-defining predicate, but also as a source of
credibility information, for explicitly weighting the clauses within the related
context-specific unit, as an indicator of trust. However, this in turn suggests
differentiating the clauses associated with context from the clauses associated
with trust.

This discussion indicates that as a natural concept, context bears internal
structure that needs to be analysed before deploying context-aware logic pro-
grams. In particular, different applications may choose to identify different
contextual structures. As a practical consequence, the acceptable contextual
structures may vary from application to application, thus posing significant
changes to the organisation and the consequences of context-aware fuzzy logic
programs upon context.
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Summary of Publications

The contribution of this thesis comprises the six included publications [68,
67, 66, 64, 63, 62] and the previously unpublished parts of the main text.

In short, the publications include explorative work, case and implementa-
tion studies, and reported generalisations for the applied techniques. Roughly
speaking, the publications 6 and 5 provide the application framework and the
motivation for the work. The publication 4 establishes an algorithm for bridg-
ing fuzzy and statistical classifications, and the publication 3 considers a case
of implementing rule systems with predictive components. The publication
2 generalises the logical approach by proposing a logic programming system
with type-1 fuzzy models with few use cases, and the publication 1 describes a
case study of a decision-support system using the developed predictive type-
1 fuzzy models and methods, demonstrating the basic characteristics of the
approach. Finally, the introduction aims providing a synthesis including the
so far missing details related to the results and some illustrative applications
of type-1 fuzzy logic programs.

The selected publications are presented in the reversed chronological order
(1, 2, 3, 4, 5, and 6), starting from the most latest (and to some extent the
most important) publications. To some extent, the chronological order (6, 5,
4,3, 2, and 1) reflects the historical organisation of the studies.

Main points of the selected publications may be summarised as follows:

I. Publication 1 presents a stereotypic application of fuzzy logic programs
exploiting inductive fuzzy models. The article outlines the basic com-
ponents of a predictive fuzzy system. It demonstrates the approach
with a case study by inducing fuzzy classifications of the students of
a university course, based on student data during two successive years
2003 and 2004.

The basic result is that it is possible to induce predictive fuzzy models
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successfully using a simple naive learner. Further, type-1 fuzzy sets
provide a convenient way to model both the imprecision related to the
statistical error of the predictions, and the imprecision related to the
use of an intuitive linguistic query interface. Finally, besides fuzzy rules
and queries, fuzzy models are applicable in visualising the dynamics of
processes in terms of rudimentary decision support systems.

Publication 2 formalises the approach of implementing fuzzy systems in
terms of logic programming. The article proposes an approach to fuzzy
logic programming via type-1 fuzzy models, effectively generalising the
crisp interpretation of standard Prolog programs.

The study establishes a system for fuzzy logic programming with main-
stream Prolog tools and provides a bridge between logic-oriented (e.g.
interval-based fuzzy expert systems) and control-oriented fuzzy systems
(e.g. Mamdani fuzzy reasoning systems). Further, the applicability of
massively distributed fuzzy systems is evaluated, and the notion of
context-aware fuzzy logic programs is developed. Publication 2 pro-
vides a formal basis for implementing the kinds of fuzzy systems stud-
ied throughout the thesis, including the applications discussed, e.g., in
Publications 1, 4, and 6.

Publication 3 describes a case study and an implementation of applying
Decision Tree (DT) learning algorithms in the context of the CWM
rule system. In short, the CWM rule systems provides a technical
framework for implementing Semantic Web (SW) rule systems. The
publication describes the case of extending the CWM system with a DT
learning module that enables learning and using predictive predicates
based on empirical learning data. This allows CWM programs to adapt
their behaviour based on empirical data.

The study provides a reference for integrating the logical and the sta-
tistical aspects of rule systems, by considering predicates and functions
defined indirectly, in terms of empirical learning data. Further, the
application demonstrates the process of assigning predicates (proba-
bilistic) credibility information according to the observed prediction
accuracy, to be modelled with type-1 fuzzy sets in the later studies.

Publication 4 establishes an algorithm for inducing fuzzy membership
functions upon learning data, by considering a redundant generalisation
of decision trees and the corresponding learning algorithms. In short,
the study provides a way to describe instance data with fuzzy concepts
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based on training data with crisp classifications, intuitively fuzzifying
the classifications.

The empirical case studies show that with certain assumptions, the
approach outperforms the simple direct distance in terms of assigning
instance objects fuzzy membership values. It is assumed that this is due
to the generalisation property of the underlying decision tree learning
algorithm, managing to learn and represent the presented phenomenon
in terms of a decision tree.

V. Publication 5 explores a strategy of implementing fuzzy applications
with the CWM rule system in the domain of Semantic Web applica-
tions. The article demonstrates the structure and the application of
fuzzy action rules, and establishes a mapping between fuzzy rule sys-
tems and the crisp CWM rules.

The study provides the initial framework for experimenting and inte-
grating the existing rule systems and describes the concepts of fuzzy
reasoning systems and their relationship with empirical data. The pos-
sibility of contextual clauses is also discussed in the publication.

VI. Publication 6 describes an approach of integrating statistical decision-
support information with fuzzy action rule systems. The article outlines
and analyses the basic components of fuzzy systems with predictive
models, establishing the basic rationale and much of the motivation for
the thesis.

In brief, the publication outlines the basic characteristics and the do-
main for working with predictive fuzzy models, anticipating the other
publications 5, 4, 3, 2, and 1. Of the two illustrated use cases, cal-
endar agents and educational decision-support applications, the latter
was chosen to provide the application framework for the thesis.

Finally, the introduction and the synthesis of the thesis in addition includes
previously unpublished results (see Section 1.4).
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Chapter 7

Conclusion

Implementing knowledge-intensive applications requires a logical formula-
tion of the problem domain. However, while a suitable logical formulation
provides the necessary technical framework of applications, it alone is not
sufficient; significant application-specific design efforts and decisions are in
addition required. Designing practical applications thus always includes a
heuristic aspect that can not be thoroughly formalised.

However, the practical challenges related to application design in turn
help pointing out the role of the formal methods and the enabling technologies
in the process. In particular, relying upon relatively simple representational
systems may simplify the technical design, but as a consequence, may also
favour making unjust design decisions. In the context of this study, relying
upon crisp representation and reasoning languages easily means neglecting
the vague aspects of the application domain.

Unfortunately, improving the descriptional property of the formal systems
typically means an increase in system complexity [45]. In addition to the ap-
parent changes in the logical consequences and the behaviour, this means
two things. First, analysing the behaviour of systems (consequences of asser-
tions) becomes more difficult or even impossible (consider, e.g., tractability
and decision problems). Second, using the system as a tool becomes more
difficult, since understanding its syntax and behaviour requires more exper-
tise (consider, e.g., understanding logical models expressed in propositional
logic and in predicate logic).

However, the practical usefulness of systems can also increased simply
by transforming some existing well-known logical framework into a new in-
tuitive form, suitable for certain applications. This is essentially the stance
of description logics [6]. Indeed, from this perspective, type-1 fuzzy logic
programs do not essentially add anything to the descriptional power of the
underlying crisp logical language since pure Prolog implementations exist.

73



74 CHAPTER 7. CONCLUSION

When vagueness can be captured in modelling, two complementary tech-
nical aspects of designing applications may be distinguished. The first and
perhaps the more apparent aspect of the work is capturing the logical vo-
cabulary and the formal relationships sufficient deducing and querying a
large number of interesting consequences from a relatively small set of ax-
iomatic clauses. This work involves the introduction of the logical language,
and organisation of the universe of discourse into identifiable objects (essen-
tially: recognising and naming objects). It is important to note that the
introduction of predicates also means naming objects; attributes, roles, and
other relationships as identifiable concepts. The study of (statistical) machine
learning and data mining algorithms suggests that concept construction is
an active process, in which the (human) designers play a central role [71, 81].

The second aspect of the work involves assigning models to clauses that
describe their position in relationship with the reasoning architecture. This
aspect can be easily overlooked when considering only crisp logic programs.
In real-world applications, however, classifications are often vague, or the
interaction via the end-user interface includes the use of imprecise terms.

The process of designing fuzzy models thus opens a "new” area for the
logical formulation of application domains. A significant design challenge lies
in initialising the fuzzy models that yield an appropriate reasoning system.
We believe that introducing large-scale reasoning systems has a lot to learn
from fuzzy reasoning systems. However, since information is not usually
directly available in a (fuzzy) logical form, a suitable bootstrapping process
is required, transforming information into a logical form?.

Having many degrees of freedom in design can make it challenging to
balance between different design choices and objectives. This is where formal
systems should help, providing a language of making descriptions and an
inference system for pinpointing the consequences of a particular design [32].

Analysing the model induction process reveals that the probabilistic and
the fuzzy (or vague) arguments are typically mixed in applications. Indeed, it
is sometimes claimed that vagueness genuinely complements randomness in
modelling indeterminacy [61]. It is fair to say that fuzzy models are often due
statistical arguments, even if this aspect of modelling is sometimes ignored.
(For instance, consider the often cited examples of fuzzy sets: ”the set of old
people” or "the set of tall people”.)

However, the diffusion of the different concepts in modelling is not nec-
essary a bad thing: inducing fuzzy models upon empirical data enables cap-
turing fuzzy logic programs, accuracy of which can be measured. In other

!Note that this process simply makes the information more usable from the viewpoint
of the reasoning system, perhaps adding context-specific heuristics.
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words, the subjectivity of the modelling may be backed up with objective
arguments.

Problems may arise if reasoning processes are interpreted in terms of, e.g.,
probabilistic models instead of truth-functional ones since any probabilistic
reasoning process must follow the axioms of probabilities. Fuzzy systems, on
the other hand, include less built-in semantics which gives more freedom in
application design. The price is that it is easy to associate intuitive seman-
tics to fuzzy systems which in fact do not follow the rules of the intended
interpretation. For instance, consider associating the concept of trust with
fuzzy models. Clearly, this intuitive interpretation is justified only if we agree
(verify) that the property of "trust” proceeds in the reasoning as intended.
(Considering type-1 fuzzy logic programs, this indeed might be the case when
selecting ® = A.)

Considering the subjective aspect of fuzzy modelling, the fact that people
seem to be able to understand each other suggests that, being individual or
not, people think essentially in the same way. In turn, this also suggests
that human communication relies heavily upon the idea of a shared con-
text and tacit communication. Implementing knowledge agents thus requires
encoding tacit information into explicit form, through externalisation [60].
Acknowledging the idea of contexrt in knowledge modelling is thus funda-
mental in large-scale fuzzy applications. Technically speaking, this means
that the notion of context needs to formalised, and that the process of ag-
gregating overlapping clauses must smoothly support the in-between area of
overlapping contexts.

When simplifying the issue, the idea of context-aware logic programs sug-
gests that there is a natural or even universal way to define certain concepts
(predicates). This design stance, however, is problematic at best. In fact,
the design of applications is usually heavily constrained by the particular
design tradition, legacy systems, the costs of application development and
production, and the available means for making measurements. For instance,
consider our educational use case and the idea of organising student groups
based on students’ observed performance during the course. This setting has
very a strong institutional bias which is easily overlooked when analysing
the performance of applications. Thus, trying to overcome the built-in lim-
itations of the information model (in particular, the amount of available
externalised information) might require rethinking the entire application. In
this thesis we shift this (essentially unsolved) issue to the domain of boot-
strapping systems, acknowledging that sharing certain information simply
does not work without sharing and accepting substantial portions of third-
party ontologies or other reasoning frameworks as well. Unfortunately, the
built-in commitment to rigid ontologies also reveals that the design of the
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knowledge agents is vulnerable to the changes on the schema level. This
pitfall is common to most knowledge models and it seems that there is not
an easy way out from the problem.

As suspected, the tacit aspects of modelling and design in turn make
it impossible to externalise everything. In other words, while many of the
application problems can not be adequately solved through the formal means
alone, it would seem that some of the problems can not be solved at all.
Indeed, it is amazing how people manage these issues?.

Increased externalisation and the added inference capabilities come with
a cognitive penalty. The more details we want to capture with the represen-
tation and reasoning system, the more complex it will become. At certain
point, the complexity of a system increases so that our ability to make precise
and yet significant statements about its behaviour diminishes until precision
and significance become almost mutually exclusive characteristics. This the
Zadeh’s famous principle of incompatibility.

Indeed, it has been considered that fuzzy (linguistic) systems as such
might provide a way out from the fundamental complexity related to domain
modelling [38]. However, this only seems to be the case when acknowledging
the two roles of the end user and the expert user when manipulating and
accessing knowledge (see Figure 1.1). In other words, when the complexity
of the underlying information database is mapped onto a suitable (linguistic)
logical form of knowledge, such simplifying transition may take place. How-
ever, expert insight and help is still needed in the transformation process.

As a result, end-users may find it difficult to appreciate the decisions
made by the reasoning system, behaviour of which they do not fully un-
derstand. This raises the very difficult issue of giving understandable expla-
nations, which in turn bridges the work to the bigger picture of acceptable
human-computer interaction [33]. It would seem that while fuzzy linguistic
procedures may provide a viable approach to this problem, some deductions
are counter-intuitive to the least, i.e. without the theoretical understanding
of the reasoning system and a direct access to the expert user interface and
the underlying information database.

This is to say that while fuzzy knowledge agents indeed provide means to
encapsulate the fundamental complexity of various application domains, the
fuzzy knowledge interface does not as such enclose the explanations of the
deductions in a form suitable for the end-user. To some extent, this problem
might be solved with explicit meta-reasoning and question answering proce-

2And perhaps we just can not manage these issue either: since some of the issues can
not be reasonably defined and measured, direct feedback of potential failure(s) is seldom
available.
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dures associated with the typical deductions. However, further explanations
would then again require access to the underlying, more complex system.

Finally, it is worth emphasising that the meaning of words becomes ap-
parent only when paralleled with actions. Strictly speaking, formal clauses
bear little meaning when detached from an appropriate reasoning frame-
work. However, the practical impact of decision-support applications is not
solely determined by their formal consequences. For instance, it is relatively
easy to come up with a concept ”"poor student” but what does it exactly
mean? As such, it does not mean anything more than a predicted model of
an associated predicate within an institutional context. Its formal meaning
is determined through the associated procedures within, say, an educational
decision-support application including procedures using that predicate. This
meaning is then interpreted within a particular informal context (i.e. prag-
matics). However, it is important to observe that other applications of the
predicate (e.g. as simple classifying labels) may in practice add a signifi-
cant informal semantic layer to the formal interpretation, which, as intuitive
decision-support data, may turn out superior to the formal deductions. For
instance, consider the visualisation of the classification trajectories of ”poor
students” in educational decision support (see Figure 5.4).

In this thesis we have pointed out a path of designing and implementing
fuzzy knowledge agents. The work has essentially included the development
of a type-1 fuzzy logic programming framework and an approach of inducing
fuzzy models, with use cases and demonstrations drawn from the field of
educational applications. In short, this work aims establishing a relatively
straightforward foundation of knowledge-intensive modelling in real-world
applications.

Considering the local context of the work, the interesting areas of future
work include:

e Knowledge modelling based on the so-called folksonomies, i.e., logical
description of application domains without a clear, centralised design.

e Modelling and implementing various systems of (linguistic) business
rules.

e Fuzzy reactive systems.

e Context-aware reasoning in the Semantic Web (with massively dis-
tributed logic programs).

Visualisation of knowledge models.



78 CHAPTER 7. CONCLUSION

Indeed, several related research activities have been already launched at the
Institute of Mathematics, Hypermedia laboratory, Tampere University of
Technology.

Formalisation of knowledge and application-specific reasoning is challeng-
ing art that combines many of the fields related to applied computing; mod-
elling and logic programming, information retrieval, statistics, machine learn-
ing, data mining, and domain-specific reasoning, to name a few. As with so
many applied domains, the success of implementing fuzzy knowledge agents
is ultimately determined by the weakest component in the design process. A
common nominator of the above research topics is the eventual engagement
with the details of domain-specific modelling. While a working theory helps
clarifying many of the strategic design decisions involved in the applications,
significant challenges lie in obtaining case-specific data with acceptable costs,
establishing appropriate long-term practices, and keeping the induction and
the reasoning processes transparent to be of any practical use.

And, unless we are very careful, the very language we use deceives us.
With the words of Lao Tzu from some 1500 years ago [44]:

We look at it, and we do not see it, and we name it 'the Equable.’
We listen to it, and we do not hear it, and we name it 'the Inaudi-
ble.” We try to grasp it, and do not get hold of it, and we name
it ’the Subtle.” With these three qualities, it cannot be made the
subject of description; and hence we blend them together and
obtain The One.
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