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Abstract

Protective coatings are used on ferritic stainless steel interconnectors to prevent the transport of
the harmful CrO3(g) and CrO2(OH)2(g) compounds in solid oxide fuel cells. These compounds are
transported on the triple-phase boundary of the cathode, and electrically reduce back to Cr2O3

causing degradation of the cell. The most promising materials to be used as protective coatings
are (Mn,Co)3O4 spinels. However, in order to provide good protectiveness in long-term use (5
years or more), these coatings should have a dense microstructure, good adhesion with the
substrate and good chemical stability at high temperature in an oxidizing atmosphere. Several
deposition techniques have been studied, for example various wet-ceramic processes and thin film
techniques. However, the studies have shown that the coatings produced with these methods are
not dense, and therefore their long-term protectiveness is questionable.

In this study, protective (Mn,Co)3O4 and (Mn,Co,Fe)3O4 spinel coatings were manufactured with
conventional atmospheric plasma spraying (APS) and novel high velocity solution precursor flame
spraying (HVSPFS). The aim was to obtain a dense microstructure. Since the HVSPFS process is
a novel deposition method, the coating build-up mechanism and materials synthesis were studied
more closely. The as-sprayed coatings were oxidized in order to obtain more detailed information
about the Cr barrier and electrical properties during the oxidation cycles.

The spinel coatings with a dense microstructure were sprayed using the APS and the HVSPFS
processes. The deposition methods caused the as-sprayed coatings to sinter during the oxidation
cycles. The sintering was a consequence of the metastable phase structure and the small particle
and crystallite size. Due to the dense microstructure and fully recovered spinel phases, the
coatings provided a good Cr barrier and electrical properties, even in a relatively harsh
environment. It can be stated that Mn1.5Co1.5O4 and MnCo1.9Fe0.1O4 spinel coatings, manufactured
either by conventional thermal spraying using agglomerated cermet powder, or by solution
precursor thermal spraying, are good candidates for use as protective coatings on metallic
interconnectors.
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1 Introduction

According to the International Energy Agency (IEA), energy consumption has doubled since the
1970s, reaching the value of 8 918 Mtoe in 2011. This sets new challenges for energy production
in terms of production and distribution reliability, price, political, health and environmental issues.
The main environmental concern has been greenhouse gases and especially carbon dioxide (CO2)
emissions, impact on the environment and radiation wastes that can be harmful for living species.
CO2 emissions totalled 31 342 Mt in 2011. The largest source, accounting for 79.3% of the CO2

emissions, was non-renewable energy sources, such as coal, peat and oil. Natural gas caused
20.2% of the emissions and 0.5% originated from other sources. [1]

Since environmental issues are becoming more important in energy production, the demand for
renewable and clean energy production has increased. This can be seen in different national
strategies, for example European Commission EU 2020 objectives are to reduce greenhouse gas
emissions by 20%, increase the share of renewable energies to 20% and increase energy
efficiency by 20% [2]. The trend can be seen in investments made for non-fossil fuel research, as
in 2000 it stood at $65 billion and in 2013 $260 billion [3]. An overall distinction of renewable
energies between primary energy harvesting methods can be categorized as biomass, geothermal,
hydro, wind, and solar power.

Hydrogen economy is a term that is often linked to the renewable or green energy concept.
However, hydrogen is not a primary energy source, similar to for example hydro or wind power.
Hydrogen, or hydrogen equivalent gas mixtures, i.e. syngas (H2 and CO), is the high energy
containing products of the primary energy harvesting methods. This means that hydrogen or
hydrogen equivalent products are produced with renewable or conventional energy production
methods. These products can be stored in the form of compressed gas, liquid gas or stored in
chemical storage (metal hybrids), transferred and converted into any basic form of energy that is
required. Some of the clear advantages of hydrogen are high specific heat capacity (14.32 kJ/kg K)
and non-toxic reaction products.

One of the basics in the hydrogen economy is that energy (electricity or heat) is converted from the
primary energy source products near the place of application where it is needed. This can be done
either by chemical reactions (combustion reactions) or electrochemical conversion. Ideally, these
systems would run for an infinite time if the flow of the fuel were sustained. The best known
devices for electrochemical conversion are fuel cells.

1.1.1 Fuel cell

A fuel cell is an electrochemical device or galvanic cell that converts chemical energy into reaction
products and energy through oxidation and reduction, as shown in reaction Equation 1. This
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equation shows that the combustion reaction is exothermic. It produces water as the reaction
product and 286.5 kJ/mol of energy, which is usually in the form of heat.

2H2 + O2 → 2H2O + energy (1)

In general, the fuel cell is a system of electrodes, i.e. an anode where oxidation (de-electronation)
and cathode reduction (electronation) take place. The electrodes are separated by a thin, gas-tight
electrolyte that conducts ions. This system is called a single cell. Interconnectors are used in the
fuel cell to connect single cells into series and provide the fuel and the oxidant gases for the
electrodes.

The history of fuel cells starts from 1839 when Sir William Grove built the first gaseous voltaic cell
[4]. In the 1960s, NASA started to develop and use fuel cells in space missions to provide
electricity during the space flight. Since then, general interest and research and development into
different fuel cell models has increased and the fuel cell has been adopted in different applications
such as [5]:

1. Stationary applications for an emergency power source or implemented in the power grid
to generate electricity for isolated areas

2. Applications related to transport, such as alternatives for the commonly used combustion
engines in vehicles

3. Portable applications in areas where a power grid connection is not provided, such as
camping areas, or where more user- and environment-friendly power sources are
preferred

4. Micro-power applications as chargers for laptops and other telecommunication devices.

A more accurate listing of the available fuel cell models is presented in Table 1. As observed, one
of the most obvious differences between the cell models is the operating temperature and
efficiency. Low temperature fuel cell models can be categorized as operating below 200ºC, and
high temperature models above this. For this reason, low temperature fuel cells are more
favourable in portable and transport-related applications, whereas the high temperature fuel cell
models are more commonly used in stationary applications.
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TABLE 1 Comparison of available fuel cell models [5].

Model
A

no
de

si
de

ga
s Electrolyte

C
at

ho
de

si
de

ga
s Advantages Disadvantages

Temperature

Efficiency*

Proton exchange
membrane fuel
cell (PEMFC)

H
2

Polymer or
composite
membrane
→ 2H+ →

O
2

(a
ir)

+Low operating temperature
+Non-corrosive electrolyte
+Tolerant to CO2
+High voltage, current and power density
+Low operating pressure
+Compact and robust
+Simple design
+Stable building materials

-Sensitive to impurities in hydrogen
-Low tolerance for CO
-Humidification units of reactive gases
-Platinum as catalyst

60-80ºC

40-45 %

Direct methanol
fuel cell (DMFC)

C
H

3O
H

+
H

2O

Polymer
electrolyte
membrane
→ 2H+ →

O
2

+Liquid fuel
+No reforming process
+Similar type of electrolyte as PEM FC

-Low efficiency
-Need for large amount of catalyst for
electro-oxidation of methanol

130ºC
25-30 %

Phosphoric acid
fuel cell (PAFC)

H
2

Liquid phosphoric
acid with silicon
carbide matrix
→ 2H+ →

O
2

(a
ir)

+Tolerate up to 30 vol% CO2
+Excess heat for cogeneration
+Good stability of electrolyte and low volatility

-Low tolerance for CO
-Corrosive electrolyte
-No auto-reform of fuel
-Operating temperature must be reached

150-200ºC
40-45 %
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Alkaline fuel cell
(AFC)

H
2

Potassium
hydroxide
← OH- ←

O
2

+Work in low temperatures
+Fast start time
+High efficiency
+Small amount of catalyst
+Simple operation and design
+Low weight and volume

-Low tolerance for CO2 and CO
-Fuel only pure hydrogen
-Liquid electrolyte
-Relatively short lifetime65-220ºC

50-60 %

Molten
carbonate fuel
cell (MCFC)

H
2

Lithium carbonate
and potassium
← CO3

2- ←

O
2

an
d

C
O

2

+Spontaneous internal fuel reforming
+Heat production
+High-speed reactions
+High efficiency
+No noble catalyst metals

-Corrosion-resistant materials at high
temperature
-Intolerant to sulphur, no more than 1.5
ppm particles in fuel
-Liquid electrolyte
-Preheating before use

650ºC

50-55 %
Solid oxide fuel
cell (SOFC)

H
2/C

O
/C

H
4

Zirconium-
lanhanum/yttrium
← O2- ←

O
2

/a
ir

+Spontaneous internal reforming fuel, can be used
to oxidize any combustible gas
+Heat production
+Fast chemical reactions
+High efficiency
+High current densities
+Solid components
+No metal catalyst

-Corrosion-resistant and stable materials at
high temperature
-Intolerant to sulphur, no more than 50
ppm particles in fuel
-Not a mature technology
-Degradation mechanisms

600-1000ºC

50-55%

*) Lower heating value basis
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cathodes are used together with gadolinium-doped ceria, i.e. Ce1-xGdxO2, as a diffusion barrier
layer in order to prevent undesirable reactions with the YSZ electrolyte at high temperatures [9].

The anode is also a porous layer where the fuel (H2 or CH4) oxidation reaction occurs. The anode
materials are capable of ionic and electron conduction with good transport and catalytic properties.
The most commonly used anode material is a combination of ceramic and metallic material, i.e.
cermet, with a composition of nickel (Ni) and Y2O3-ZrO2. The oxidation reactions occur at the
interphase of the gas phase, the electrolyte and a Ni catalyst. [10], [11]

Figure 2 shows a schematic presentation of the interconnector (IC) used in the SOFC. The ICs
have the same operation principle in every fuel cell model which are: i) to provide gases for the
electrodes, ii) act as a gas barrier to oxidant and fuel gases, i.e. prevent mixing of gases, and iii) to
form an electrical connection between the cells in planar SOFCs. For the SOFCs operating in high
temperatures, at 800ºC and above, the interconnectors are conventionally manufactured using
ceramic materials, e.g. lanthanum chromites (LaCrO3). However, the next generation of SOFC
models operates in a temperature range of 600–800ºC, which means that alternative materials can
be used as interconnectors. The materials which have the greatest potential for this purpose are
ferritic stainless steels [12]–[14]. By using ferritic stainless steels, the manufacturing costs can be
decreased and more complex gas channel profiles can be manufactured.

FIGURE  2  Schematic presentation of a planar SOFC interconnector [6].
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2 Material issues in long-term use

This chapter introduces the background problem in novel SOFCs. The problem is related to the
long-term stability behaviour of the cells when metallic ICs are used, as the ferritic stainless steels
react with the atmosphere and form volatile Cr species. These Cr species have a tendency to
cause chromium poisoning and degradation of cells.

2.1 Chromium poisoning

The use of ferritic stainless steels is based on acceptable corrosion behaviour, and the formation
of chromium oxide scale (Cr2O3) at typical SOFC operating temperatures of the order of 600–
800˚C. This scale forms a protective layer on steels, which should decrease further oxidation in the
cathode side atmosphere. However, Cr scale protects only in moderate temperatures and at 850˚C
there is already a risk of uncontrolled oxidation. In addition, moisture further increases the
oxidation rate [15]. Furthermore, under certain conditions Cr2O3 reacts with water molecules and
forms chromium oxides and oxyhydroxides, i.e., CrO3, CrO2(OH)2 and CrO2(OH) compounds, as
shown in reaction equations 2–4 [16], [17]

2Cr2O3(s) + 3O2(g) ↔ 4CrO3(g) (2)

2Cr2O3(s) + 3O2(g) + 4H2O(g) ↔ 4CrO2(OH)2(g) (3)

Cr2O3(s) + O2(g) + H2O(g) ↔ 2CrO2(OH)(g). (4)

The partial pressures of the CrO3(g) (dominant in dry air) [16], [17] and CrO2(OH)2(g) (dominant in
humid air) [16]–[18] are the highest over Cr2O3(s), meaning that these are the main Cr species in
the SOFC cathode side atmosphere, in proportion of moisture content. These Cr species transport
to a triple- or three-phase boundary (TPB), which is the shared interface of the electrolyte, the
cathode and the gas phase, and through electrochemical reduction they transport back to Cr2O3

[18]. Over time, Cr2O3 blocks the effective TPB sites and causes a decrease in the electrochemical
performance of the cell, i.e. degradation [19]–[21].

In general, it can be stated that Cr2O3 is deposited on the TPB, but the actual deposition site is
associated to the electrolyte and cathode material employed. For a hole-conductive cathode, e.g. a
(La,Sr,Mn)2O3 cathode, the deposition of Cr2O3 is localized on the TPB, also causing delamination
of the cathode. For mixed-conductive cathodes, e.g. (La,Sr,Fe)2O3, (La,Sr,Co,Fe)2O3 and
(La,Sr,Co)2O3 cathodes, the deposition is less localized to the TPB and more on the surface of the
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cathode. [22] In addition, strontium chromate (SrCrO4) nuclei have been observed to form when
(La,Sr,Co,Fe)2O3 cathodes are used [18].

By using a special vacuum melting process, ferritic stainless steel with low amount of silicon (Si)
can be obtained, such as commercial available Crofer 22 APU. Ferritic stainless steel with low Si
obtains more favourable oxidation behaviour including oxidation rate and scale composition in the
SOFC cathode side atmosphere. [23] In addition, Crofer 22 APU forms a scale with a dual layered
structure due to Mn alloying. Figure 3 shows the scale consisting of sublayer of Cr2O3 and reaction
layer of MnCr2O4 due to outward diffused Mn cations which should decrease the degradation and
improve the electrical conductivity as reported in [24]. However, as seen in the Fig. 3, MnCr2O4

layer is not evenly formed and therefore protective arrangements are required to prevent chromium
evaporation in order to achieve extended lifetime of the single cells and the SOFCs.

FIGURE  3 TEM cross-section image of Crofer 22 APU oxidized for 750 hours at 800°C, where
(1) and (3) represent cubic MnCr2O4 spinel reaction layer and subscale pockets, respectively and
(2) Cr2O3 layer [25].

The ferritic stainless steels manufactured with conventional (in normal atmosphere) methods, such
as AISI 430, AISI 441 contain Si and niobium (Nb). Niobium is used to form (Fe,Cr)2(Mo,Si,Nb)
Laves phase [26] as it reacts with Si and decrease formation of silicon oxide (SiO2) layer on
metal/Cr2O3 interface [27]. However, part of Si is diffused to the surface and SiO2 is formed. Silicon
oxide can be categorized as an insulator by its electrical properties and hence, the use of this type
of steels is questionable in the SOFC interconnectors [14].
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2.2 Protective coatings

In order to increase the lifetime of the novel SOFCs and to prevent the degradation phenomena,
ferritic stainless steel ICs must be coated prior to use in the SOFCs. The coating prevents Cr
transport and thereby protects the cathode from degradation. The technical requirements for the
interconnect-coating system are:

· low diffusion coefficient of Cr ions and low transport of Cr compounds [28],
· excellent electrical conductivity, with the objective of 100 % electronic conduction [12],
· chemical, microstructural and phase stability at the stack operating temperature in an

oxidizing environment [12], [28],
· coefficient of thermal expansion (CTE) matches the other stack components such as the

metallic interconnector and the cathode [12],
· suitable thermal conductivity, at least 5 W/mK, in order to transfer heat generated at the

cathode to the anode for endothermic fuel reformation reactions [12],
· the coatings, together with the metallic substrate, should present high temperature strength,

creep and spallation resistance and provide structural support when used as a stationary or
an auxiliary power unit under external stresses and vibrations [12],

· simple and economical manufacturing process in mass production [12].

Several material compositions have been studied as possible candidates for protective coatings.
When degradation was observed to be a consequence of reactions between volatile Cr species
and the TPB, the studies were focused on the use of perovskite-type ceramic coatings, as they
exhibit similar physical behaviour compared to the cathode layer. However, recently the focus has
changed to spinel-type ceramics, as they seem to provide better protection against Cr poisoning as
described in the following chapters.

2.2.1 Perovskite ceramics

Perovskites are ceramic materials with the generic formula of (A,B)2O3, where A and B refer to
metallic cations and O for oxygen. The usage is based on the similar mechanical and chemical
behaviour as the SOFC cathodes and favourable electrical properties. The studies are associated
with doped (La,Mn)2O3 or (La,Co)2O3 perovskites. In many cases, the dopant is either Sr, Cr or Fe.
[29]–[31]

Perovskite provides excellent electrical properties, and conductivity values of 645 up to 855 S/cm
have been measured for Sr- and Sr-Fe-alloyed (La,Co)2O3 peroskites, whereas Sr-alloyed
(La,Mn)2O3 have more moderate values in the order of 50 to 80 S/cm [30]. The use of (La,Mn)2O3

and especially Sr-doped (La,Sr)MnO3 is based on the formation of a Cr2O3/(Mn,Cr)3O4 duplex
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scale during the oxidation cycles, as the coating facilitates the internal diffusion of Mn in the
(Mn,Cr)3O4 spinel layer [29], [31]–[34].

Although (La,Sr)MnO3 perovskites show good electrical properties and formation of a duplex scale,
the problem is a relatively high cation self-diffusion coefficient [34]–[36]. As a result, the Cr cations
diffuse through the coatings during oxidation treatment in high temperatures, as reported e.g. in
[32], [34], [37], which can cause degradation of the cathode in long-term use.

2.2.2 Spinel ceramics

Spinel is a ceramic material with the generic formula of (A,B)3O4, where A and B are metallic
cations. The greatest interest in SOFC use is focused on (Mn,Co)3O4-based spinels. These have
both cubic and tetragonal crystal structures, as shown in Fig. 4. According to Kurokawa et al. [37],
Mn-Co spinels have a low Cr transport rate, providing even better Cr-barrier properties than
perovskites. In addition, migrated Cr forms stable Cr-containing spinel compounds [38], [39],
indicating that coating thickness may provide a buffer function in long-term use. Another advantage
is the compatibility of CTE with ferritic stainless steel and perovskite-type cathodes, as reported in
[40].

FIGURE  4  Phase diagram of Co3O4–Mn3O4 system in air [41].
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(Mn,Co)3O4 spinels have acceptable electrical properties with electrical conductivities varying from
15 to 68 S/cm in a temperature range of 700 to 800 ºC [42], [43]. The conduction is caused by
small polaron hopping, attributed to hopping between Mn3+/Mn4+ on octahedral sites [24], [44]. In
other words, the electron is excited across the band gap from the valence band to the conduction
band and therefore a hole is formed in the valence band (intrinsic semiconductor) [45]. Although
(Mn,Co)3O4 seems to be promising for protective coatings, it should be noted that perovskites do
have significantly better electrical conductivity than (Mn,Co)3O4 spinels.

Iron doping, by obtaining MnCo2-xFexO4, most likely enhances electronic conduction as studied in
[44], [46], [47]. Doping causes the formation of (Co2+,Mn2+,Fe3+)(Co2+,Co3+,Mn3+,Mn4+,Fe2+,Fe3+)2O4

cation distribution in the spinel system [47], as Co cations have a stronger tendency to occupy
tetrahedral sites compared to Mn cations, and Fe cations have a lower tendency to occupy
tetrahedral sites than Co and Mn cations [44]. Due to the presence of mixed valence states at
octahedral sites in the (A,B)3O4 spinel system, the activation energy (Ea) for MnCo1.9Fe0.1O4 is 0.38
eV, i.e. lower than the Ea of MnCo2O4, which is 0.44 eV [47]. As a result, the following electronic
conductivities have been reported: 37.5 S/cm for MnCo1.9Fe0.1O4 at 800˚C in air [46], 72 S/cm for
MnCo1.9Fe0.1O4 at 800˚C in air [47] and 85 S/cm for MnCo1.85Fe0.15O4 at 800˚C in air [44]. The small
variation in electrical properties can be explained by the sintering temperature and remnant
porosity. A further increase of iron decreased the electrical conductivity [44], [46] as the distance
between the neighbouring octahedral sites increased [44].

2.2.3 Deposition methods

The protectiveness of spinel coatings is based on the chemical reactions with migrated Cr cations
as described previously. In addition, Kurokawa et al. [37] have shown that the density of the
(Mn,Co)3O4 spinel coatings, and various perovskites, dominates the suppression of the Cr
migration rate. The density of the coatings becomes more important in harsh environments as the
study of Persson et al. [31] showed. For example, a porous (Mn,Co)3O4 coating may suffer a
breakaway oxidation effect (uncontrolled oxidation) above 900˚C, as the growing oxide scale
causes spallation of the deposited coating.

2.2.3.1 Wet-ceramic processes

In wet-ceramic processes, protective coatings are manufactured by using a paste that is applied on
the substrate by spraying [31], [40], [47]–[49], dip-coating [50], [51] or screen printing [29], [52]–
[54], followed by calcination in order to obtain a “green-state” solid layer. The layer is then heat-
treated, i.e. sintered to obtain dense and well-adhered coatings. The slurry is prepared by
manufacturing the desired spinel powder, using either solid state or liquid state material synthesis,
which is then mixed with dispersants and additives to obtain the optimal slurry properties required
for the deposition process [55].
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The properties of spinel coatings deposited by the wet-ceramic process have been widely studied,
as reviewed in Table 2. The effective Cr barrier and electrical properties of the coatings are linked
to the microstructures of the deposited coatings and achieved if a dense microstructure is obtained.
With metallic substrates, conventional sintering temperatures, i.e. 0.5–0.8Tm, [56] cannot be used
directly, and therefore sintering is a two-phased process. First, the paste is heat-treated for several
hours in a reducing atmosphere at 800–850ºC, which is called reactive sintering. For (Mn,Co)3O4

coatings, this causes phase segregation and the formation of manganese oxide (MnO) and
metallic cobalt (Co) phases [39], [49], [57]–[59]. The reactive sintered coatings have a porous
microstructure, as reported in [49]. After reaction sintering, the coating is re-oxidized by heat
treatment for several hours in an oxidizing environment, and as a result, the spinel structure and
dense microstructure should be formed. However, in many cases, cross-section studies have
shown that sintered coatings have porous microstructures with potential remnant porosity.

TABLE 2 Summary of ASR data of the relevant studies of coatings manufactured by wet-
ceramic processes.

Material Thickness
(µm)

Substrate Contact paste / Cathode Oxidation
time (h)

Temperature
(°C)

ASR value
(mOhm⋅cm2)

Ref.

Mn1.5Co1.5O4 20 Ducrolloy
alloy

Perovskite/(La,Sr,Mn)2O3 10000
(prediction)

900 24 [29]

Mn1.5Co1.5O4 10 Crofer 22
APU

La0.8Sr0.2Co0.5Mn0.5O3/
La0.8Sr0.2FeO3

1000 800 11.4 [52]

Mn1.5Co1.5O4 10 Crofer 22
APU

Platinum/(La,Sr,Co,Fe)2O3 500 800 7.5 [49]

Mn1.5Co1.5O4 20 Crofer 22
APU

1000 18 [50]

MnCo2O4 15-20 430SS 60/120 800/850 2.3 [40]

MnCo2O4 15-20 430SS 50000
(prediction)

850 500 [40]

MnCo2O4 5 232J3 Platinum 1000 850 12 [53]

Cu0.2Mn1.4Co1.4O4 20 Crofer 22
APU

1000 800 14 [50]

Cu0.3Mn1.35Co1.35O4 20 Crofer 22
APU

553 750 16 [51]

Ni0.2Mn1.4Co1.4O4 20 Crofer 22
APU

1000 800 18 [50]

MnCo1.9Fe0.1O4 10 Crofer 22
APU

(La,Sr,Co,Fe)2O3 /
(La,Sr,Fe)2O3

260 800 36 [54]

MnCo1.9Fe0.1O4 10 Crofer 22
APU

(La,Sr,Co,Fe)2O3 /- 1000 800 33 [54]

MnCo1.9Fe0.1O4 Crofer 22
APU

(La,Sr,Fe)2O3/ Ce1-xSmxO2
-YSZ

1000 800 800 [47]

Deposition of protective spinel coatings using a sol-gel process are studied in [60]–[63]. In sol-gel
processes, the coating microstructure and phase structure are formed during calcination from
hydrolysis and condensation reactions [64]. The heat treatment processes are fairly similar to the
wet-ceramic processes described above. However, the coating thicknesses are usually less than
1 µm, and therefore the Cr-barrier properties are dubious in long-term (50 000 hours) use.
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2.2.3.2 Vapour deposition methods

Vapour deposition methods include processes where the protective spinel layer is formed either by
radio-frequency sputtering [49], [65] and magnetron sputtering [38], [66]–[69] or by the atomic layer
deposition process [70]. It is characteristic for these methods that the coating thickness can be
grown from a few nanometres up to several micrometres and that the microstructures are usually
dense, producing good electrical properties, as shown in Table 3. Conversely, the deposition
speed can be relatively slow, especially when thick coatings (several micrometres) are required.

TABLE 3 Studies containing ASR data for (Mn,Co)3O4 spinel coatings manufactured by vapour
deposition methods.

Material Thickness
(µm)

Substrate Contact paste /
Cathode

Oxidation time
(h)

Temperature
(°C)

ASR value
(mOhm⋅cm2)

Ref.

Mn1.5Co1.5O4 1 Crofer 22
APU

Platinum/
(La,Sr,Fe)2O3

275 800 19 [49]

Mn1.5Co1.5O4 2 441HP Platinum 1700 800 5.5 [68]

Mn1.5Co1.5O4 0.3 ZMG232L Platinum 500 800 59 [65]

MnCo2O4 15 Fe-21Cr Platinum/- 1000 750 5 [38]

MnCo2O4 3 Crofer 22
APU

-/La0.7Sr0.3MnO3 1000 800 9 [66]

MnCo2O4 3 Crofer 22
APU

-/La0.7Sr0.3MnO3 5000 800 6 [66]

2.2.3.3 Conventional thermal spraying

The thermal spraying technique is well adapted to different industrial fields (wear, corrosion,
thermal barrier coatings etc.) due to the large deposition temperature range, which then allows the
use of a large variety of spray materials in the form of rod, wire or powder [71]. The basic principle
in thermal spray techniques is that the feedstock material melts due to the heat content of the
thermal flame. The flame temperature varies from 2500 to 3160ºC when using high velocity oxy-
fuel spraying (HVOF) [72], [73] and up to 15 000ºC when employing atmospheric plasma spraying
(APS) [71]. As the spray feedstock enters the thermal flame, heat is transferred from the flame to
the feedstock material. As a consequence, molten or semi-molten droplet/particles are formed,
which are accelerated towards the substrate due to the high velocity gas flow. As a final step, the
droplets spread, impacting the substrate, generating a coating with a lamellar microstructure. [71]
As-sprayed coatings are fairly dense due to the closely packed molten and solidified droplets, as
shown in Fig. 5.
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development of the powder synthesis process called liquid flame spaying (LFS) [83]–[85]. The
liquid solution is a mixture of inorganic salts and/or metallo-organic compounds called precursors
dissolved in organic or inorganic solvents such as alcohols or water [86]. The solution precursor is
fed into the high temperature flame, which can be either plasma, as in APS, or formed by burning
combustible gases, as in HVOF or LFS processes.

In order to form a solid coating, the solution precursor must go through a material synthesis phase.
As the solution precursor is fed into the thermal flame, the shear stress exerted by the flowing gas
atomizes the precursor stream. The heat energy of the thermal flame is then transferred into the
droplets. A small droplet size is preferred for more effective heat transfer in order to i) evaporate
the solvent, ii) obtain effective precipitation and pyrolysis reactions of the metallic salts, and finally
ii) melt the synthesized material, as shown in Fig. 6. [87]–[92]

FIGURE  6 Schematic presentation of the solid evolution in the solution precursor thermal spray
process [89].

Studies related to applications with a similar approach to SPTS processes are based on solution
precursor plasma spraying processes (SPPS), for example, porous yttria-stabilized zirconia (YSZ)
as in thermal barrier coatings [91], [93]–[101], a dense YSZ electrolyte layer [102], [103], a porous
anode with a YSZ-Nickel composition [104]–[106] and an (Sm,Sr,Co)2O3 cathode [107] for SOFC
applications. In addition, functional titanium dioxide (TiO2) [108]–[110] and bio active glass-
ceramics [111] manufactured by SPPS have shown great potential in their own specific research
fields. The SPPS process has been studied for the manufacture of (Mn,Co)3O4 coatings in [112],
[113] obtaining the desired crystallographic structure. However, the microstructures were porous
and therefore cannot be used as protective coatings, as shown in Fig. 7.
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3 Aim, research questions and scientific contribution of the
thesis

The aim of this work was to study the properties of thermally sprayed spinel coatings for ICs used
in SOFCs with a planar structure. Thermal spraying is a widely used deposition technique in
industrial applications as described previously, and therefore has potential for manufacturing thin
and dense ceramic coatings. In addition, a novel thermal spraying technique, i.e. SPTS, was
studied as it shows great potential in the thermal spraying field. Figure 8 shows the structure of the
thesis and how the journal papers [I–VI], containing the relevant research information, are
interlinked.

FIGURE  8  The structure of the thesis and relationship of the published papers [I–VI].
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The work was executed organized in such a way to answer the following research questions:

1. What benefits can be obtained when protective spinel oxide coatings are manufactured
employing the thermal spraying technique?

2. Which material and feedstock characteristic aspects should be taken into account when
manufacturing thin and dense protective coatings by thermal spraying?

3. Is HVSPFS a viable deposition technique for producing thin and dense spinel coatings for
SOFC applications?

4. What are the properties and the benefits of using HVSPFS compared to conventional
thermal spraying methods?

The research is based on studying the coating build-up mechanism and how the microstructures
that are characteristic for the various thermal spraying techniques influence coating behaviour in
long-term oxidation cycles. The oxidation cycles simulated the SOFC cathode side oxidizing
atmosphere in a temperature range of the order of 700 to 850ºC. Journal papers [I and II] are
focused on the study of optimizing the parameters for coating build-up mechanisms when
(Mn,Co)3O4 and Fe doped (Mn,Co,Fe)3O4 spinels are sprayed using the conventional thermal
spraying technique. The aim was to obtain as dense coatings as possible with the lowest possible
influence on the chemical balance. The findings were used when manufacturing coatings for long-
term oxidation, including electrical Cr-barrier studies in journal papers [III and IV], in order to
benchmark spinel materials that show the greatest potential for protective coatings. The usability
and coating formation mechanisms of solution precursor thermally sprayed coatings were studied
in journal papers [V and VI]. The findings according to the material specific behaviour from the
studies published in [III and IV] were used in research paper [VI], where the thermally sprayed
solution precursor coatings were manufactured and tested in a high-temperature oxidizing
environment.

Scientific contribution of the thesis is as follows:

· Material compositions and optimal particle morphology is proposed when employing
conventional thermal spray technique, i.e. APS for producing protective (Mn,Co)3O4 spinel
coatings on ICs steels.

· Novel HVSPFS technique is described, i.e. coating formation mechanism and coating
microstructures are studied and reported for the first time when manufacturing (Mn,Co)3O4-
based spinels. The results are presented in comparison to the conventional thermal spray
technique.
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· The root cause for the thermal decomposition of the (Mn,Co)3O4-based spinel was studied
and the temperature depended recovery process is presented for the first time.

· Cr barrier and electrical properties of the APS and HVSPFS (Mn,Co)3O4-based coatings
are studied and high the temperature sintering process is proposed.
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4 Materials and methods

This chapter introduces the materials and methods employed in this study. The first part of this
chapter briefly explains a commercially available substrate and spray material, followed by a more
detailed description of the material synthesis for spray powders made in collaboration with the
Technical Research Centre of Finland and solution precursors made in-house. The second part
focuses on methods such as spray processes and characterization techniques.

4.1 Materials

Substrate

Crofer 22 APU (ThyssenKrupp VDM GmbH), ferritic stainless steel (Table 5) particularly designed
for SOFC applications was used as a substrate. Crofer 22 APU exhibits similar CTE behaviour as
the other cell components and acceptable corrosion behaviour at the SOFC running temperature
and atmosphere. The surface roughness (Ra) was less than 0.5 µm, representing the surface
quality as received from the factory. Two different substrate thicknesses were employed: 0.20 and
0.50 mm. Prior to the spraying process, the substrates were grit-blasted using 240 grit Al2O3 sand
or cleaned in ethanol to remove surface contamination and to provide a mechanical anchorage for
the coatings. Grit blasting was used prior to atmospheric plasma spraying, whereas only ethanol
cleaning was used prior to high velocity solution precursor flame spraying.

TABLE 5  Chemical composition of Crofer 22 APU in wt% [121].

Cr Fe C Mn Si Cu Al S P Ti La
Min. 20 Bal. 0.3 0.03 0.04
Max. 24 0.03 0.8 0.5 0.5 0.5 0.020 0.050 0.20 0.20

Powder feedstock

In the conventional thermal spraying process, which in this case means the APS process, the
spray material was in the form of a dry powder. The MnCo1.8Fe0.2O4 [Publications I and II],
MnCo1.7Fe0.3O4 [Publication III] and Mn2CoO4+Co [Publication IV] powders were made in
collaboration with the Technical Research Centre of Finland, whereas the MnCo1.9Fe0.1O4

[Publication III] and MnCo2O4 [Publication IV] powders were commercially acquired from H.C.
Starck and the Swiss federal laboratories for materials science and technology (EMPA),
respectively.
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In HVSPFS, which can be stated to be a novel thermal spraying technique, the spray material was
in the form of a liquid solution containing metallic salts. The MnCo2O4 [Publication V], Mn1.5Co1.5O4

[Publication VI] and MnCo1.9Fe0.1O4 [Publication VI] solution precursors were prepared in-house.

The spinel powders with a composition of MnCo2-xFexO4 [Publications I–III] were produced by
solid-state synthesis. The synthesized powders were agglomerated by a spray drying process to
obtain spherical form in order to have good flowability in the powder feeder equipment employed in
thermal spray systems. The powder synthesis process was started by weighing appropriate
amounts of manganese(II) carbonate (MnCO3), cobalt(II) carbonate (CoCO3) and iron oxide
(Fe2O3), so that a stoichiometric factor x in MnCo2-xFexO4 of 0.2 [Publications I and II] or 0.3
[Publication III] was obtained.  The powders were mixed together by milling them for 20 hours in a
drum ball mill. After the milling phase, the mixture of powders was calcined at 1000ºC in air for six
hours. The acquired spinel structure was formed during the calcination process. The calcinated
spinel powder was then dispersed in water using 1 wt% of Dispex A40 dispersant and mixed in a
planetary ball mill for two hours at 300 rpm with ZrO2 balls (Fritsch pulverisette 5, Fritsch GmbH).
The slurry was then mixed with a high shear mixer and 2 wt% of organic bonding agent polyvinyl
acetate (PVA) was added to form a suspension for the spray drying process. The suspension was
fed into a spray dryer (Niro pilot, GEA Niro) equipped with a high-speed rotation nozzle to obtain
fine agglomerate powder. The powder was sintered at 1150ºC to improve powder strength, where
an isothermal step at 500ºC for two hours was used in order to pyrolyse the dispersant and the
organic binder without fracturing the agglomerates. After sintering, the powders were sieved to
collect the desired particle size range for the thermal spray process.

The Mn2CoO4+Co powder [Publication IV] that corresponded to a composition of Mn1.5Co1.5O4 was
manufactured by solid-state synthesis by weighing appropriate amounts of MnCO3, CoCO3 and
metallic cobalt (Co). The carbonate powders were milled for 20 hours in a drum ball mill and
calcined at 800ºC in air for 6 hours to obtain the spinel structure. The spinel powder obtained was
mixed with metallic Co and dispersed in water using 1 wt% of Dispex A40 dispersant using a
planetary ball mill for two hours at 300 rpm with steel balls and vials (Fritsch pulverisette 5, Fritsch
GmbH) to form a suspension. The suspension for the spray drying process was prepared by
adding 2 wt% of PVA in a high shear mixer. The suspension was then spray-dried and the
agglomerated powder was sintered at 1050ºC in an argon + 3 % helium atmosphere in order to
improve the strength of the powder without oxidizing Co. An isothermal step at 500ºC was used for
two hours in order to pyrolyse the dispersant and the organic binder without fracturing the spray-
dried agglomerates.

The solutions were prepared by dissolving the stoichiometric weights of manganese(II) nitrate
tetrahydrate (Mn(NO3)2⋅4H2O), cobalt(II) nitrate hexahydrate (Co(NO3)2⋅6H2O) and iron(III) nitrate

nonahydrate (Fe(NO3)3⋅9H2O) into deionised water to form MnCo2O4 [Publication V], Mn1.5Co1.5O4

[Publication VI] and MnCo1.9Fe0.1O4 [Publication VI] coatings during the HVSPFS process.
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As described in the introduction, the APS coatings contain pores which may interlink and form an
open porosity. Therefore, simultaneous substrate heating was used in the coatings [Publications
II–IV] together with the plasma spraying process, in order to obtain a dense microstructure. An
induction heater (Minac 18/25, EFD Induction) was used for substrate heating. The temperature of
the substrates was increased to the desired level and kept constant during the spraying process. A
K-type thermocouple that was attached to the back of the substrates provided temperature
information for the induction power controller. The controller monitored the influence of the plasma
plume on the substrate temperature and adjusted the heating power appropriately. After spraying,
the samples were cooled back to room temperature freely with the fixture. The recorded cooling
rate was ~50°C/min.

High velocity solution precursor flame spraying

The HVSPFS coatings were manufactured using a modified high velocity oxy-fuel system (HVOF,
TopGun, GTV Verschleiss-Schutz GmbH), as shown in Fig. 10.  The torch consisted of a 22 mm
combustion chamber, a 135 mm expansion nozzle with a 8 mm hole, and a specially designed
liquid injector nozzle system supplied by Fraunhofer IWS. Ethene and oxygen were used as
combustion gases. The normalized molar-based oxygen-ethene ratio was adjusted between 1.00-
1.05. Two non-atomizing solid stream liquid injector nozzles with diameters of 250 μm and 300 μm
were used to inject the liquid precursor into the combustion chamber. A pressurized vessel with a
rotometer was used to control the solution flow rate, and exceed the back pressure of the HVOF
torch while coating.

FIGURE  10  GTV high velocity oxy-fuel torch with liquid injector nozzle.
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Feedstock specific characterization

Particle size distributions prior to the APS processes in [Publications I–IV] were measured by laser
diffraction (Helos laser diffraction sensor, Sympatec GmbH) using wet conditions. Ultrasonic and
mechanical mixing were used to avoid agglomerations during the measurements.

The rheological properties of the MnCo2O4 [Publication V] Mn1.5Co1.5O4 [publication VI] and
MnCo1.9Fe0.1O4 [publication VI] solution precursors were analysed with a rotational rheometer
(Haake RheoStress 150, Thermo Fisher Scientific) at a temperature range of 22–24 ºC.

Microstructural, elemental and phase characterization

Microstructural characterizations for the powders and the as-sprayed coatings in [Publications I, II]
were performed using a scanning electron microscope (SEM, Phillips XL 30, Phillips), equipped
with energy-dispersed spectroscopy (EDS). Field-emission scanning electron microscopy (FESEM,
Carl Zeiss ULTRAplus, ZEISS) combined with energy dispersive X-ray spectroscopy (EDS, INCA
Energy 350, Oxford Instruments) was used for the powder, the as-sprayed and the oxidized
coating studies in [Publications III–VI]. The microscopes were used in the secondary electron (SE)
mode. Before the SEM and FESEM studies, the as-sprayed and oxidized samples were cut and
moulded in epoxy in a chamber under reduced pressure to avoid cracking and to give mechanical
support while polishing the cross-section surfaces.

An optical profilometer (Wyko NT1100, Veeco) was used for a single splat profile analysis, splat
size distribution measurements and the APS coatings build-up studies reported in [Publication II].
The build-up mechanisms and especially the splat adhesion were studied with a micro-hardness
tester (MMT-XL, Matsuzawa) using a relatively low 250 mN test load [publication I]. The HVSPFS
coating build-up studies were characterized by using higher magnification inspections. These were
carried out using an in-lens mode FESEM and transmission electron microscope (TEM, Jeol JEM
2010 analytical, JEOL ltd.) in [Publication VI].

Qualitative phase analyses for the powder, as-sprayed coatings and oxidized coatings were
studied using a X-ray diffractometer (XRD, Siemens D-500, Siemens) in [Publications I and II] and
X-ray diffractometer (XRD, Empyrean, PANalytical B.V.) in [Publications III-VI] with a Cu-Kα

radiation source. The data was background corrected and crystallographic data, such as crystallite
size and d-spacing values were calculated using HighScore Plus software.

The elevated temperature phase analysis was perfomed with an X-ray diffractometer equipped
with a high temperature stage (XRD, PANalytical X’Pert PRO, PANalytical B.V.). The test was
done for the as-sprayed and decomposed APS MnCo1.7Fe0.3O4 coating, in order to study the
recovery process of the spinel. The XRD study was conducted by placing a free-standing coating
sample of (10*20 mm) onto a resistance-heated Pt strip and controlling its temperature through a
thermocouple. Patterns were acquired in isothermal conditions at 25, 400, 600, 800, 1000 and
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1200°C. Heating from one temperature to the next took place in 24 minutes in all cases.
Acquisition conditions included a step size of 0.020 º, a counting time of 2.70 s/step and an
angular range of 28º ≤ 2Θ≤ 47º. [Publication III]

Additional phase analyses were performed using µ-Raman spectroscopy (LabRam, Horiba Jobin-
Yvon), with a 632.81 nm-wavelength He:Ne laser focused through a 100x objective [Publication III].
The second Raman study was done using a spectrograph (Andor Shamrock 303, Oxford
Instruments) and spectroscopic CCD camera (Andor Newton 940P, Oxford Instruments) The
excitation laser (Cobolt Samba) had a 532 nm wavelength with a beam diameter of 0.7 mm
[Publication VI].

The selective elemental evaporation studies on the MnCo1.7Fe0.3O4 powder and the APS coating
were conducted by X-ray fluorescence (XRF, Advant’X spectrometer, ThermoFisher Scientific). In
addition, the evaporation of elements was studied by inductively coupled plasma – atomic
emission spectrometry (ICP – AES, Liberty 200, Varian Inc.). Prior to the ICP – AES analysis, the
coating was removed from the substrate, manually ground in an agate mortar and dissolved in a
hydrochloric acid aqueous solution. [Publication III]

The qualitative compound studies of the nitrate precursors and the HVSPFS as-sprayed coatings
were analyzed by Fourier transform infrared spectroscopy (FT-IR, Spectrum One, PerkinElmer) to
determine the presence of nitrates after the spraying process. The as-sprayed coatings were
removed from the substrates and manually ground in an agate mortar. To obtain reference data,
nitrates were dissolved in deionized water and dried at 50ºC. The powder samples were pressed
into KBr pellets (sample/KBr ratio being 2/200) and the spectra were measured and presented in
the range of 4000–750 cm−1. Thermal decomposition analyses for the nitrate precursors were
carried out by differential thermal analysis combined with differential scanning calorimetry (DTA-
DSC, PerkinElmer 6000, PerkinElmer). Prior to the DTA-DSC tests, nitrates were dissolved in
deionized water and dried at 50ºC to obtain homogenous precursor powder. The heating rate was
10 K/min using oxygen as the atmosphere. [Publication VI]

Quantitative elemental analyses for the oxidized HVSPFS coatings were studied with a radio
frequency glow discharge optical emission spectrometer (RF-GD-OES, GD-Profiler HR, HORIBA
Jobin Yvon GmbH) in [Publication VI]. The oxidized coatings were sputtered with a 5 mm spot size.
The vaporised coating material was analysed in order to obtain a more comprehensive picture of
the elemental diffusion during the oxidation cycles.

Oxidation cycle and in-situ electrical measurements

Area specific resistance (ASR) tests were utilised with a four-point method for the coated samples.
Three different test set-ups were carried out for measuring the electrical properties of the coated
samples. The same samples were used for the post-mortem analysis, including microstructural
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and Cr-barrier studies. The measurements were carried out without a contact paste, and therefore
the results show only substrate-coating/coating-substrate contact data, including the oxide scale
formed between the substrates and the coatings.

The ASR study for the APS-sprayed spinel coatings was carried out at 700oC in air for 1000 hours.
The voltage drop was measured over the corrugated and coated 0.2 mm Crofer 22 APU in contact
with the coated 1.0 mm flat Crofer 22 APU coupons. The top of the corrugation ridges formed the
actual contact area, calculated to be 1.25 cm2 in total. The samples were arranged as a stack and
pressed together by a force of 49 N, whereby the estimated contact pressure was 0.40 MPa. Direct
current (DC), estimated as 640 mA/cm2, was used throughout the test procedure. [Publications III
and IV]

The APS-sprayed MnCo1.7Fe0.3O4--coated Crofer 22 APU was tested together with a
La0.85Sr0.15Mn1.1O3 spacer (IRD Fuel Cells A/S) to simulate the contact resistance with the SOFC
cathode. Two flat (26*26*0.2 mm) and coated Crofer 22 APU coupons were stacked with the
spacer. A load of 20 N was applied, causing a surface pressure of 29.5 kPa. The DC density was
200 mA/cm2. The samples were heated (15˚C/min) up to 850˚C and sintered for 12 hours to
improve the contact between the samples and the spacer, then cooled to 700˚C for the ASR test,
which was carried out for 1000 hours. [Publication III]

The ASR study for the HVSPFS spinel-coated Crofer 22 APU substrates was performed at 850ºC
in air for 500 hours. The coated sample disks with a diameter of 25.4 mm were facing each other
and a force of 9.81 N was applied, causing 4.50 kPa surface pressure. The DC density was 500
mA/cm2. [Publication VI]
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5 Results and discussion

In this chapter, the most important results of the six published journal papers are presented and
discussed. The chapter is divided into three different sections. The first and second sections
describe the coating formation mechanisms of APS and HVSPFS coatings, including the
microstructural, chemical and phase analysis. The third section combines the data of the oxidized
coatings, including the microstructural analysis, Cr-barrier studies and electrical properties.

5.1 Conventional plasma spraying

The conventional APS process is a common deposition method in different industrial applications
and research information is widely available. In this study, the APS process was used to
manufacture coatings using fused and crushed or agglomerated and sintered (Mn,Co,(Fe))3O4 and
(Mn,Co)3O4 spinel-based spray powders.

5.1.1 Powder feedstock

The typical morphology of the spray-dried and sintered MnCo2-xFexO4 powders is presented in Fig.
11. The spray drying process forms spherical agglomerates, which are sintered by a post-heat
treatment process. The round morphology is a more favourable form, which enhances flowability
during plasma spraying in the powder-feeding equipment. The particle size ranges of the iron-
doped spinel powder varied between -36 +13 μm (d90-d10).

FIGURE  11  Morphologies of a) commercially acquired MnCo1.9Fe0.1O4 and b) agglomerated and
sintered MnCo1.8Fe0.2O4 and MnCo1.7Fe0.3O4 powders [Publication III].
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Figure 13b presents spray-dried and sintered Mn2CoO4+Co powder with a particle size range of -
36 +11 µm (d90-d10). The powder contained MnO and Co phases, as shown in Fig 12b. Xianshuang
et al. [59] have obtained the same dual-phase structure when post heat-treating Mn0.9Y0.1Co2O4

spinel powder in an H2 atmosphere. The aim of using this cermet type of powder is to reduce
intersplat cracks and pores as the Co works as a binder during the spraying process because it
melts at a lower temperature. Oxidation of the added Co with Mn2CoO4 forms Mn1.5Co1.5O4, which
should eventually form a dual-phase structure of [Mn1+δCo2-δO4]cubic and [Mn2-δCo1-δO4]tetragonal

phases, and no other undesirable compounds or side products.

5.1.2 As-sprayed coatings

Microstructures

The spinel coatings presented in Fig. 14 have the typical microstructure of an APS coating,
containing pores and cracks when deposited on non-heated substrates. The remnant crack and
pore distribution is a consequence of the spreading mechanism of the molten or semi-molten
material droplets, i.e., splats [71]. The optical profilometer studies presented in Fig. 15 show that
the splats have a flower-like pattern when deposited on substrates without heating. This kind of
splat pattern is a consequence of the irregular cooling and high quench rate of the spreading splat.
Inadequate melting of the particles (either larger particles or low flame temperature) has caused
un-molten cores, which are loosely attached to the substrate.

FIGURE  14  Cross-sectional SE-images (SEM) of plasma sprayed spinel coatings deposited with
different spraying parameters. The as-sprayed coating with 6.9 vol% porosity (right) and the as-
sprayed coating with 3.8 vol% porosity (left) [Publication I].

The microstructure of the as-sprayed coating is a consequence of the spraying parameters used
for the specific powder composition and morphology. McPherson and Shafer [123] have studied
inter-splat bonding and found that contact may be only 25 % of the total splat area, causing inter-
lamellae gaps varying from 0.01 to 0.10 µm. By altering the parameters, the porosity of the as-
sprayed coatings varied between 3.8 vol% to 6.9 vol% and the hardness values from 375 HV0.025

up to 575 HV0.025 [Publication I], specifying how well the deposited splats are adhered to each other.
Cold spray conditions caused the droplets to be inefficiently spread on the substrate and particles
were only partially molten. It is clear that poor inter-splat bonding increases the ohmic resistance of
protective coatings and forms a pathway for volatile Cr compounds. When the gun power was
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increased, the single particles were able to achieve a fully molten state and spread more efficiently,
due to the increased flame temperature and kinetic energy of the molten droplet.

FIGURE  15  Optical profilometer pictures of single splats deposited on cold and hot substrates
[Publication II].

Obtaining good inter-splat adhesion is important due to the average splat height, which varied
between 1.40–1.50 μm for powder with a particle size range of -36 + 15 μm (d90-d10) [Publication I].
In practice, this means that a coating with a thickness of 10–20 μm is achieved by some tens of
overlapping splats. For thin coatings, simultaneous substrate heating was found to be an efficient
way of decreasing the number of cracks, in other words, increasing the inter-splat bonding. Cracks,
especially segmentation cracks, dominate gas leakage in thin coatings as reported in [124].
According to the splat studies, a substrate temperature of 450°C enhanced the spreading of the
molten splat. As a result, optimal splats with the shape of a disc-like structure were deposited, as
shown in Fig. 15. Although the temperature of 350°C was enough to achieve well spreading
droplets, the main problem was the high quenching rate, which caused many internal cracks inside
the splats.

The polished cross-section views of the as-sprayed (Mn,Co,Fe)3O4 coatings are presented in Fig.
16 and those of the (Mn,Co)3O4 coatings in Fig. 17. The coating thicknesses were in the range of
10–20 µm, which can be considered a favourable thickness for protective coatings. However, the
coatings were not smooth in terms of target coating thickness due to the relatively large
agglomerates. As the cross-section images clearly show, the density of the as-sprayed coatings
was enhanced by simultaneous substrate heating. Due to the controlled cooling rate of the
deposited splats, the amount of inter-splat cracks and segmentation cracks was reduced. The
white arrows in Figs. 16 and 17 show favourable inter-splat bonding. In principle, this kind of inter-
splat bonding should provide coatings with a lower ohmic resistance and an effective barrier to
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volatile Cr compounds. The remnant pores that are still visible in the cross-section images were
most likely gas entrapments as the agglomerates enabled plasma gas to be transported inside the
particle.

As stated previously, the microstructure of the as-sprayed coatings is a net result of the spraying
parameters used, together with powder morphology. By using powders with a well-agglomerated
structure, the inter-splat crack network was notably decreased. Porous morphology contributed to
the melting process from inside and outside the agglomerate, whereas fused and crushed powders
with a blocky structure contributed to melting only from the outside of the particle. In other words,
blocky morphology may prevent the heat transfer of the thermal flame into the inner part of the
spray particles, resulting in partially molten particles.

Spray drying allows the use of two-component powders, also known as ceramic-metallic, i.e.
cermet powders. In this work, the Mn2CoO4+Co powder represents powder feedstock with a
cermet structure. During the spraying process, the melted Co particles distributed evenly in the
inter-splat gaps and decreased the amount of cracks. Since only a few clear areas of metallic Co
were observed (Fig. 17e), it can be expected that most of the Co oxidized or mixed with the
Mn2CoO4 spinel. Using a similar principle, Park et al. [76] clearly demonstrated that a two-
component spray powder effectively reduces the amount of cracks in APS coatings, and it is a
favourable method when spraying thin coatings for SOFC applications.
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FIGURE 16 Cross-section images of as-sprayed a-c) MnCo1.9Fe0.1O4 d-f) MnCo1.7Fe0.3O4 spinel
coatings. The black arrows point to typical coating faults such as segmentation cracks (a, d) un-
molten spray particle (c) and lamellar gaps (d-f). The white arrows point to desirable spat-splat
interaction (c). FE-SEM (SE) images [Publication III].
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FIGURE  17  Cross-section images of as-sprayed a-c) MnCo2O4 and d-f) Mn2CoO4+Co coatings.
The black arrows show an un-molten MnCo2O4 particle in (b) and partially molten or un-molten Co
particles in (e). The white arrows show well-adhered splat boundaries in (c, e, f) FESEM (SE)
images [Publication IV].

Chemical and phase analysis

The MnCo2-xFexO4, MnCo2O4 and Mn2CoO4+Co (equivalence with Mn1.5Co1.5O4) spinel structures
decomposed during the deposition process, as shown in Fig. 18, meaning that the crystallographic
structure did not correspond to the initial phase structure. The phase analysis showed that the
deposited coatings had equivalence with a simple cubic metal-oxide phase, where the metallic
element was either Fe or Co. Thomann et al. [81] suggested that one possible phase could be
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Newtonian fluid in a shear rate range from 0 to 400 s-1, with a viscosity of 4.0 mPas, but as a
dilatant fluid above 400 s-1. Low viscosity enhances the feed and the atomization properties of the
precursor. When entering the combustion chamber, the atomized solution precursor droplets follow
the same thermal decomposition steps as obtained in the TG-DSC analysis, presented in Fig. 21,
to form a MnCo1.9Fe0.1O4 and Mn1.5Co1.5O4 spinel structure. The first endothermic peaks from 50ºC
to 110ºC refer to the evaporation of water. The peaks above 160ºC are related to the formation of
NOx, as Nissinen et al. [128] observed when heat treating Mn and Co nitrate powder. The last
exothermic peaks at 285ºC and 330ºC characterize the thermal decomposition of the nitrates and
the formation of MnCo1.9Fe0.1O4 and Mn1.5Co1.5O4 spinels, respectively. Crystallite formation is a
relatively slow process, which causes broadening of the exothermic peaks. The thermal
decomposition and formation of spinels was confirmed by TG analysis, as the mass change
reached a plateau even though the temperature was further increased.

FIGURE  21  TG DSC analysis of the nitrate precursors with nominal composition [Publication VI].

5.2.2 As-sprayed coatings

Microstructure

Figure 22 shows the SE images of an HVSPFS MnCo2O4 coating and Fig. 23 SE images of
HVSPFS MnCo1.9Fe0.1O4 and Mn1.5Co1.5O4 coatings. By optimizing the spraying parameters and
the properties of the precursors, coatings were sprayed with dense or relatively low porosity and a
closed structure. The clear advantage in the HVSPFS process is that the as-sprayed coatings can
be deposited on Crofer 22 APU substrates without using the grit-blasting process. Grit blasting
may be problematic as it induces stresses for the substrates, which most likely cause bending of
the thin IC structure. Although grit blasting was not carried out, there were no signs of spallation,
meaning that the as-sprayed coatings were well adhered to the substrates.
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FIGURE  22  Topography, cross-section and fracture surface SE images of MnCo2O4 coatings
[Publication V].
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FIGURE  23  Cross-section and fracture surface SE images of a) MnCo1.9Fe0.1O4 and b)
Mn1.5Co1.5O4 coatings [Publication VI].

The topography images in Fig. 22, high magnification fracture surface image in Fig. 24 and
particles collected from the surface in Fig. 25 revealed that the HVSPFS coatings were mainly
formed of micron, sub-micron and nano-sized particles with granular morphology. The sub-micron
particles had a size range of 100–500 nm, whereas the nanoparticles were in a size range of 10–
20 nm forming larger agglomerates. The sub-micron particles obtained a perfectly round
morphology, whereas the nanoparticles were blocky. Some conventional splat-shaped particles
were also observed in the fracture surface images with thicknesses of 200–300 nm. Due to the
small particle and splat size, mechanical anchorage was achieved even though the Ra value was
under 0.5 µm. Baccionichini et al. [129] have stated that substrate roughness should be of the
same order of magnitude as the flattened lamellae thickness to provide the required adhesion in
thermal spraying, which explains why the HVSPFS coatings were well adhered.

FIGURE  24  High magnification fracture surface SE images of MnCo2O4 coatings [Publication V].
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FIGURE  26  Cross-section SE images of the coatings sprayed at a fixed solution flow rate and
standoff distance but altering the total gas flow rate where a) represents a relatively low gas flow
rate, b) the optimized gas flow rate and c) a relatively high gas flow rate [Publication V].

The as-sprayed microstructure is related to particle formation mechanisms, i.e. how the droplets
undergo the materials synthesis as described in the introduction section. The optimal particle
formation was achieved by inducing effective droplet break-up by employing the axial injection of
the precursor and a high gas flow rate. The combustion of gases results in the formation of shock
diamonds, which most probably promote droplet breakup. In order to avoid the formation of hollow
particles, precursor droplets should obtain a diameter less than 5 µm, as they are most likely to
form dense spray particles and dense coatings. Droplets of this size range or smaller have a
uniform increase in solid concentration as the solvent evaporates. [114]

The splats and sub-micron particles were formed from the liquid-to-solid phase transformation. As
the precursor droplet is exposed to a thermal flame, the temperature starts to increase stepwise
and eventually the precursor goes through a similar thermal decomposition process, as shown in
Fig. 21. Basu et al. [116] have suggested three different precipitation routes. In the first case, the
uniform concentration of solution increases steadily through the droplet volume and solid particles
are formed. In the second case, the surface part is evaporated and supersaturated. As a result, the
surface is pyrolyzed and the droplet obtains an eggshell structure. Eventually, as pressure inside
the droplet increases, the shell ruptures. In the final step, the synthesized eggshells are partially or
fully molten and deposited onto the substrate. In the third case, an elastic shell is formed, deflated
and as a result solids are formed.

However, the presence of nanoparticles implies the presence of gas-to-solid conversion. The
particles in Fig. 25 have the same morphology and size range as the TiO2 particles produced by
the LFS process reported in [130], [131]. In gas-to-solid conversion, a precursor will form a gas
phase. This gas phase thermally decomposes resulting in a gas phase containing metallic ions. As
a result, crystallized nanoparticles are formed through the nucleation process [84].

Chemical and phase analysis

Since the coatings were formed from thermally decomposed precursors, the as-sprayed
MnCo1.9Fe0.1O4 and Mn1.5Co1.5O4 coatings were analysed by FTIR to reveal whether the as-
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sprayed coatings had any traces of partially pyrolyzed nitrates. The IR spectra of the diluted and
calcined precursor powders and the as-sprayed coatings are presented in Fig. 27. The similarities
in the spectra should reveal if the material synthesis is only partially completed in the HVSPFS
processes.

FIGURE  27  IR spectra of the FTIR analyses obtained from a) MnCo1.9Fe0.1O4 and b) Mn1.5Co1.5O4

precursor powders and as-sprayed coatings [Publication VI].

The absorption bands located at 1633 cm-1 and 3410–3434 cm-1 refer to the bend and stretching
mode of the O-H groups, respectively [128]. The absorption bands of nitrate groups were observed
at 821–828 cm-1, 1313–1412 cm-1, and 2350–2354 cm-1 [132]. Since these absorption bands were
observed in the spectra of as-sprayed coatings, it is most likely that the as-sprayed coatings
contained some small traces of nitrate compound. However, according to the intensity of the
absorption bands, it can be stated that the amount of nitrates was insignificant.

The crystallographic phase studies of the as-sprayed MnCo2O4 coating are presented in Fig. 28
and those of the MnCo1.9Fe0.1O4 and Mn1.5Co1.5O4 coatings in Fig. 29. The as-sprayed coatings
were formed of multi-phase structures consisting of spinels and simple cubic oxides identified as
(Mn,Co,Fe)O. In addition, Chen et al. [120] have reported the presence of amorphous phases.
Decomposition of spinel and formation of simple cubic oxides are the consequence of the fast
cooling rate of the deposited material, as was observed and confirmed in the conventional thermal
spray technique. However, the presence of the spinel phase could be due to the larger heat load
produced by the deposition process. This was a result of the short spray distance to the substrate.
The dual phase structure was observed to form when MnCo2O4-based suspensions [127] and
MnCo2O4 forming solutions [112] were deposited with a modified APS process. Fast cooling and
the size of the deposited particles caused the average crystallite size of the spinel phases to
remain between 4–8 nm. According to the FESEM and TEM studies in Fig. 25 and crystallite sizes
obtained in XRD studies, it can be expected that the sub-micron particles had polycrystalline
characteristics, whereas nanoparticles had a more single crystal structure. In addition, the width of
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the peaks can be explained by fine equiaxed grains. Bertolissi et al. [89] have suggested that the
fast cooling rate of small splats induces a situation where homogeneous nucleation is competitive
or predominant against heterogeneous nucleation.

FIGURE  28  Crystallographic phase studies of the as-sprayed HVSPFS MnCo2O4 coating
[Publication V].

FIGURE  29  Crystallographic phase studies of the as-sprayed and oxidized (at 850ºC in air for 500
hours) HVSPFS a) MnCo1.9Fe0.1O4 coatings and b) Mn1.5Co1.5O4 coatings [Publication VI].

According to the EDS analysis, the quantitative ratios of Mn:Co were 37.5:62.5 in at% for the as-
sprayed MnCo2O4 coatings. The cationic ratio of Mn:Co should be 1:2, but it was close to 1:1.67.
For the Mn1.5Co1.5O4 coatings, the relative Mn:Co proportions were 55.1:44.9. The cationic ratio
should be 1:1 but it was 1:0.81. The results indicate that partial evaporation of Co is plausible;
considering that the measured results are near the limit of accuracy of the EDS system, the
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evaporation was low. The quantitative EDS ratios for Mn:Co:Fe cations were 38.5:57.9:4.6 in at%
for the MnCo1.9Fe0.1O4 coatings. These results have close correlation with the calculated
33.3:63.3:3.3 values. According to the results, (Mn,Co)3O4 spinels are more sensitive to the
selective evaporation of elements than Fe-doped spinels.

5.3 High temperature behaviour of thermally sprayed coatings

This section summarizes the behaviour of both APS and HVSPFS as-sprayed coatings in a long-
term (500 and 1000 hours) oxidation cycle. The oxidizing atmospheres and test temperatures of
the order of 700 to 850˚C represent the cathode side atmosphere in the SOFC system. A
temperature of 850˚C can be considered relatively high in SOFC applications, but was used to
accelerate microstructural and chemical changes since the length of the test cycle was only 500
hours.

5.3.1 Restoration of the spinel phase

The cubic structure formed during the APS and HVSPFS processes is metastable, meaning that
the crystallographic phase structure changes when suitable energy is induced. Relying on the
results published in [80], [81], the decomposed spinel structure can be restored to the original
spinel structure in an oxidizing atmosphere. This was confirmed by the XRD analysis shown in
Figs. 29 and 30 obtained from the coatings after the oxidation cycles.
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The recovery process of the decomposed spinel structure was studied by placing a free-standing
APS MnCo1.7Fe0.3O4 coating (without substrate) on platinum foil and heat-treating it stepwise. It
was analysed simultaneously by XRD, as shown in Fig. 31. The spinel structure started to be
restored at 400˚C. According to the peak intensity levels, the most dynamic recovery process of
the decomposed spinel was between 600˚C and 800˚C (highlighted area). The shifting of the
Bragg angle to a lower 2-theta value was caused by an increase of the d-spacing value due to the
thermal expansion of the spinel lattice. However, at a temperature of 1000˚C, the spinel
transformed back to simple metal oxides. According to the results, the phase was preserved when
cooled down to room temperature, indicating a more stable phase structure compared to that
formed during the spraying process. The results were similar to the study of Kiefer et al. [46], who
obtained multi-phase structures of MnCo2O4, CoO and Co3O4 phases after heat treatment of
MnCo2O4 spinel at 1200˚C.

FIGURE  31  Recovery process of the APS and decomposed MnCo1.7Fe0.3O4 coatings [Publication
III].

5.3.2 Long-term  microstructural and compositional changes

As the as-sprayed APS (Figs. 32 and 33) and HVSPFS (Fig. 34) coatings were placed in a high
temperature oxidizing environment, the microstructure changed and the cracks and inter-splat
porosity disappeared. The oxidized coatings contained unconnected voids. The voids were
exhibited through a thickness gradient. Although the voids can be considered as disadvantageous
structural faults, the coatings seemed to obtain a dense microstructure, without any signs of
significant open porosity.
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FIGURE  32 Cross-section and surface topography images and EDS point and area analyses of
oxidized MnCo1.9Fe0.1O4  (a-c) and MnCo1.7Fe0.3O4 spinel coatings (d-e). The measurement
location of the EDS analyses is marked on the FE-SEM (SE) images. The results obtained from
point analyses (a, d) are presented in Table 7.1 and area analyses (b, e) and (c, f) in Table 8,
respectively [Publication III]. Oxidation cycle was performed at 700ºC in air for 1000 hours.
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FIGURE  33 Cross-sectional SE images and EDS line analysis of oxidized a-b) MnCo2O4 and c-d)
Mn2CoO4+Co coatings. The locations of the EDS point analysis are marked on the FESEM (SE)-
images a) and c) and the results are presented in Table 7.1 The results obtained by the EDS area
analysis from the cross-section images b) and d) are presented in Table 8 [Publication IV].
Oxidation cycle was performed at 700ºC in air for 1000 hours.
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FIGURE  34 Cross-sectional FE-SEM images of oxidized HVSPFS coatings and high
magnification of oxide scale images a-b) MnCo1.9Fe0.1O4 and c-d) Mn1.5Co1.5O4. The numbers in a)
and c) show the EDS point analysis spots which are presented in Table 7.2 and the lines in b) and
d) show the EDS scan traces presented in Fig. 36 [Publication VI]. Oxidation cycle was performed
at 850ºC in air for 500 hours.

The void coarsening originated from sintering. During sintering, the surface area that was bounded
to inter-splat porosity, cracks and segmentation cracks decreased and at the same time the size of
the crystallites and grains increased. In other words, the reduction of the total free energy (ΔGT)
shown in Equation 5, is the driving force for the sintering process.

ΔGT = ΔGv + ΔGb + ΔGs (5),

where, ΔGv, ΔGb and ΔGs determine the total free energy change bounded on the volume, grain
boundaries and particle surfaces, respectively. [55] Therefore sintering of the as-sprayed coatings
generally depends on the same factors as in conventional bulk ceramic processes.

The major force involved in sintering is the energy change associated with the particle surfaces
ΔGs=γsΔAs, where γs is the specific surface energy of material and As is surface area change
during sintering. Equation 6 shows a simplified model for sintering pressure (stress or potential) for
porous solid containing spherical pores,
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σ = 2γs/r (6)

where r represents the pore radius. Equation 6 shows that densification is more rapid for porous
solid containing small pore size i.e., tighter pore curvature due to higher vacancy concentration
near the surface [55], [56], [134]. According to Equation 5 and 6, the total free energy of APS and
HVSPFS coatings is considerable, due to the fact that the majority of the free energy is associated
in the surfaces of the micron, sub-micron and especially nano-sized particles. The free energy is
enhanced by the energy bound to the small crystallite size due to the high number of grain
boundaries (ΔGb). In addition, sintering is enhanced by: i) the residual stresses due to rapid cooling
of the deposited material and ii) the disordered and metastable crystal structure as confirmed by
the XRD studies.

The sintering behaviour of the HVSPFS coatings should be more rapid than that of APS coatings
due to smaller particle size. In general, the sintering temperature for the material systems formed
of micron-sized particles is 0.5–0.8Tm (where Tm is the melting temperature of the material in
degrees Kelvin). However, it is generally accepted that a large quantity of free energy is induced in
material systems formed of nanosized particles and therefore the sintering temperature is most
likely to be in the range of 0.2–0.3Tm [56].

In general, the conventional sintering process can be categorized in three different stages, where
the first stage presents the neck formation of the touching particles. However, according to the
fracture surfaces of the HVSPFS coatings presented in Figs. 22 and 24, the coatings were
relatively dense, formed of the separate and partially densified spray particles, as presented
schematically in Fig. 35. The partially densified particles (molten stage when deposited) formed
larger aggregates, and the separate particles (molten but solidified when deposited) formed the
agglomerates. Since the as-sprayed coatings were mostly formed of the particles close to the
morphology of the aggregates, the as-sprayed state is more close to second stage when
compared to the conventional sintering process. At the second stage, the most of the particles
have formed necks with the touching particles, resulting in the microstructure containing open
tubular pores with the total density of 6% to 95%.



59

FIGURE 35 Schematic presentation of the as-sprayed HVSPFS coatings with spray particle
alignment and pore structures. The particles indicated with R characterize the rigid frame around
the nanoparticles.

Cross-sectional and fracture surface inspections showed that the porosity had a close correlation
for interaggregate and intra-agglomerate pores presented by Mayo [56], in addition to the
segmentation cracks formed as the thermal stresses exceeded the cohesion of the coating. The
porosity that was observed in the cross-sectional studies was in the size range of hundreds of
nanometers up to some micrometers. However, it can be expected the porosity included also intra-
agglomerate nanopores. The nanopores were most likely located between the accumulated
nanoparticles as presented in Fig. 35. The existence of the nanopores is justified, since those were
formed to the suspension plasma sprayed YSZ coatings as reported in [129], [135], that fairly
similar deposition method compared to HVSPFS.

When energy is applied, in other words heat, densification i.e. sintering start to occur and the third
stage of the sintering process is achieved. Since the coating thickness is not changed and the
oxidation temperature is rather low compared to conventional sintering processes, the mass
transport mechanism is most likely dominated only by the surface diffusion [55], [134]. In case of
the cavities/tubular pores formed from the connecting nanopores and segmentation crack, the
pores shrink in radius due to Raylight instabilities described by Mayo [56] or by elastic strain
relaxation described by Bacciochini et al. [129], leading to microstructure with closed spherical
pores as confirmed in Figs. 32 – 34.
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The probable cause for remnant porosity and coarsening of the pores in the oxidized coatings
shown in Figs. 32 – 34 is i) the presence of rigid frame that can be either substrate or large spray
particles around the nanoparticles, ii) pore geometry and iii) pore coordination number. Firstly, the
rigid frame causes the anisotropic shrinkage i.e. constrained sintering. The strain is more
homogenous in the vertical direction (perpendicular to the rigid frame e.g., substrate) than in the
lateral direction. According to [136], [137] the lateral strain on the coating surface is larger than
next to the substrate, which results in an inhomogeneous density distribution and therefore the
remnant porosity is localized near the substrate. The similar behaviour was observed when
nanoparticles were surrounded by the larger spray particles (marked with R in Fig. 35).
Nanoparticles obtain stronger sintering behaviour compared to submicron particles due to the total
free energy as described previously. However, submicron particles operate as a rigid frame and
prevent any changes in length c.f. the substrate. Secondly, the pore geometry may favour the pore
growth as the sides are convex to the pore, that is the most likely situation for the as-sprayed
coatings formed from the particles with the round morphology. Thirdly, the pore coordination
number determinates if the pore shrinks or grows. In three dimension space, the critical
coordination number is 12. The pores with the coordination number less than 12 will decrease in
size, and the pores with the coordination number higher than 12 will increase in size [134].
Particularly for the intra-agglomerate nanopores, the coordination number may easily be higher
than 12.

Iron-doped spinel coatings suffered migration of Fe and Co cations during the high temperature
oxidation cycle, as shown in Table 7. Migration can be considered the most plausible explanation,
since elemental analysis showed that selective evaporation did not occur during the high
temperature deposition process. Both the iron-doped APS and HVSPFS coatings suffered Fe loss
at the surface part of the coatings. For APS coatings, Co migrated towards the surface, whereas
for HVSPFS coatings, Co migrated towards the substrate. Although migration was observed, the
desired phases were still present, as confirmed in the XRD analysis, although with a slight shifting
of the peak patterns.
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TABLE 7.1 EDS spectra and relative amount of Cr in the points indicated in Figs. 32 and 33. The results are presented in at%.
MnCo1.9Fe0.1O4 MnCo2O4

Spectrum O Mn Co Fe Cr Cr/(Co+Mn+Fe) Spectrum O Mn Co Fe Cr Cr/(Co+Mn+Fe)
1. 46.7 16.7 36.6 0.0 0.0 0.0 1. 59.8 17.4 24.3 1.0 0.6 0.0
2. 59.3 13.5 27.2 0.0 0.0 0.0 2. 61.4 13.2 23.3 1.0 1.0 0.0
3. 58.4 14.4 26.2 1.0 0.0 0.0 3.(scale) 28.5 - - 51.4 20.1 0.4
4. 58.8 14.3 25.8 1.4 0.0 0.0 4. - - - 77.6 22.5 0.3
5. 58.4 14.6 25.5 1.5 0.0 0.0 5. - - - 76.2 23.2 0.3
6. 58.2 14.4 25.0 2.5 0.0 0.0
7. 51.5 16.1 27.6 3.9 0.9 0.0

8. (scale) 35.2 0.0 0.0 42.4 22.5 0.5
9. 0.0 0.0 0.0 78.4 21.6 0.3

10. 0.0 0.0 0.0 78.4 21.6 0.3
MnCo1.7Fe0.3O4 Mn2CoO4+Co
Spectrum O Mn Co Fe Cr Cr/(Co+Mn+Fe) Spectrum O Mn Co Fe Cr Cr/(Co+Mn+Fe)

1. 39.2 5.7 53.5 1.7 0.0 0.0 1. 56.9 24.6 18.5 - - 0.0
2. 58.7 12.4 25.9 2.9 0.0 0.0 2. 57.7 23.6 18.7 - - 0.0
3. 59.0 13.4 23.6 4.0 0.0 0.0 3. 57.6 22.7 18.9 0.9 - 0.0
4. 58.2 14.3 22.6 5.0 0.0 0.0 4. 53.3 26.4 20.4 - - 0.0
5. 58.5 14.3 21.4 5.8 0.0 0.0 5. 57.4 23.9 18.0 0.7 - 0.0
6. 58.6 14.4 19.9 6.8 0.4 0.0 6. 48.4 28.1 22.5 1.0 - 0.0
7. 56.7 14.3 19.9 8.5 0.7 0.0 7. 58.0 21.2 19.6 0.9 0.4 0.0

8. (scale) 61.7 2.1 0.8 3.7 31.7 4.8 8. (scale) 53.9 19.1 19.3 1.8 5.9 0.1
9. 0.0 0.0 0.0 78.1 21.9 0.3 9. - - - 76.8 23.2 0.3

10. 0.0 0.0 0.0 77.9 22.1 0.3 10. - - - 76.9 23.1 0.3
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TABLE 7.2 EDS spectra and relative amount of Cr in the points indicated in Fig. 34. The results are presented in at%.
TG1-MnCo1.9Fe0.1O4 TG2-Mn1.5Co1.5O4

Spectrum O Mn Co Fe Cr Cr/(Mn+Co+Fe) Spectrum O Mn Co Fe Cr Cr/(Mn+Co+Fe)
1. 57.3 22.5 20.2 0.0 0.0 0.0 1. 58.6 20.9 20.5 0.0 0.0 0.0
2. 57.5 16.3 24.6 1.6 0.0 0.0 2. 60.4 18.5 20.1 0.0 0.0 0.0
3. 58.6 15.9 23.9 1.7 0.0 0.0 3. 62.0 21.3 16.7 0.0 0.0 0.0
4. 63.4 14.2 21.2 1.4 0.0 0.0 4. 58.1 20.8 21.1 0.0 0.0 0.0
5. 55.1 17.3 26.0 1.6 0.0 0.0 5. 56.6 25.3 18.1 0.0 0.0 0.0
6. 57.5 16.9 24.0 1.6 0.0 0.0 6. 59.3 23.5 17.2 0.0 0.0 0.0
7. 58.6 16.3 23.2 1.9 0.0 0.0 7. 58.6 22.5 18.9 0.0 0.0 0.0
8. 56.3 17.1 24.6 2.0 0.0 0.0 8. 51.2 23.3 24.9 0.0 0.6 0.0
9. 58.4 16.3 23.5 1.8 0.0 0.0 9. 64.5 19.9 15.4 0.0 0.3 0.0

10. 57.9 16.7 23.5 2.0 0.0 0.0 10. 15.8 42.5 41.4 0.0 0.0 0.0
11. 58.3 15.8 23.5 2.2 0.3 0.0 11. 62.0 24.2 13.8 0.0 0.0 0.0
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18. 0.0 0.0 0.0 77.7 22.3 0.3
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5.3.3 Cr barrier properties

The main purpose of the coatings is to prevent Cr migration, which is the main reason for the
degradation, as explained in the Introduction. Migration originates from the high temperature
oxidation as Cr-rich oxide scale forms on the substrates, producing highly volatile Cr compounds.
The ideal situation would be to prevent the formation of the scale fully. However, as the cross-
section images showed, the Cr-rich scale was formed due to the high temperature oxidation cycle.
The most likely reasons were the partial diffusion of oxygen through the spinel coating and the high
specific surface area associated with the surfaces of the nano- and sub-micron particles that
contained enough oxygen for the scale to form. Although scale was formed, no spallation or similar
breakaway oxidation was observed in the APS and HVSPFS coatings compared to the coatings
reported in [31].

According to the EDS analysis data presented in Table 8, the oxide scale formed under the APS
deposited spinel coatings had a dual-layer structure. The composition of the layer next to the
substrate was close to the nominal composition of Cr2O3. This was confirmed by XRD analysis for
the (Mn,Co,Fe)3O4 coating presented in Fig. 37a, and by Raman spectroscopy analysis for the
MnCo2O4 coating presented in Fig. 37b–c. A reaction layer was formed above the Cr2O3 scale,
which was a mixture of the deposited coating and migrated chromium with a composition close to
(Mn,Co,Cr)3O4 or (Co,Cr)3O4. The EDS line and area analysis data obtained from the oxide scale
formed between the HVSPFS coatings and substrates (Fig. 36) showed the presence of Cr2O3 and
a Cr-containing spinel-type reaction layer, which was similar to the layers formed under the APS
sprayed coatings.
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TABLE 8  EDS analysis spectra of the areas presented in Figs. 32 and 33. The results are
presented in at%. Modified from [Publications III and IV].

MnCo1.9Fe0.1O4

Area Cr Mn Fe Co O
A1. 0.8 13.6 3.3 23.4 58.9
A2. 31.2 0.9 2.7 2.0 63.1
A3. 20.7 0.4 77.3 0.5 1.3
MnCo1.7Fe0.3O4

Area Cr Mn Fe Co O
B1. 0.9 13.7 8.0 19.8 57.6
B2. 24.3 2.5 1.5 8.0 63.7
B3. 32.1 1.9 2.8 0.7 62.6
B4. 20.7 0.5 73.6 0.4 4.7
MnCo2O4

Area Cr Mn Fe Co O
A1. 0.5 14.1 0.6 23.6 60.4
A2. 5.9 11.0 0.8 19.8 62.5
A3. 26.9 3.5 2.6 3.8 63.2
A4. 22.0 0.3 75.0 0.5 2.3
Mn2CoO4+Co

Area Cr Mn Fe Co O
B1. 0.7 19.5 1.1 18.3 60.4
B2. 11.1 12.0 2.5 13.9 60.4
B3. 21.6 2.7 16.6 4.6 54.5
B4. 22.6 0.6 74.1 0.5 1.8
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to the material and thickness of the coating, and in order to obtain the required protection, the
minimum coating thickness should therefore be exceeded.

The most promising Cr barrier properties for APS coatings were obtained when Mn2CoO4+Co
(Mn1.5Co1.5O4) powder was used to deposit a Mn1.5Co1.5O4 coating. Not only did metallic Co
enhance the denseness, but the multiphase structure inhibited Cr and oxygen migration and the
Co-rich phases functioned as Cr traps for the migrated Cr. As Persson et al. [31] have calculated,
the thermodynamic driving force, i.e. Gibbs energy change (ΔG) between Cr2O3, Mn3O4 and CoO,
is more negative when the Mn content is lower. This means that a reduction in Mn content
increases the thermodynamic driving force for the reactions between Cr2O3, Mn3O4 and CoO.
Under the circumstances, Co-rich inclusions should be more reactive with migrated Cr cations than
the Mn2CoO4 phase.

The HVSPFS coatings showed good Cr barrier properties. A closer comparison of the EDS results
indicated that the Mn1.5Co1.5O4 coating gave a somewhat better barrier against Cr migration than
the MnCo1.9Fe0.1O4 coating. This assumption was based on the distance that Cr migrated during
the oxidation cycle. The results of the influence of the spinel composition on the Cr barrier
properties were comparable to data obtained from APS spinel coatings. However, the oxidation
cycle was relatively short, only 500 hours, and therefore a long-term (5–10 years) conclusion
cannot be accurately estimated. The small distance of the Cr migration from the oxide scale was
confirmed by RF-GD-OES analysis. The overall migration remained under 10 μm. Relying on the
results obtained from the EDS and the RF-GD-OES studies, HVSPFS spinel coatings have at least
as good Cr barrier properties as APS spinel coatings.

5.3.4 ASR properties

The electrical properties of APS and HVSPFS coatings were analysed by using the four-point
measurements method simultaneously during the oxidation cycles. This test procedure was used
to obtain ASR values, as shown in Fig. 38. The measurements were executed without contact
pastes between the coatings. With this test arrangement, the results present only the coating-
coating contacts and the changes (structural, microstructural and chemical) that occurred due to
the high temperature and oxidizing atmosphere.
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FIGURE  38 ASR data of the a) APS MnCo2-xFexO4 b) APS MnCo1.7Fe0.3O4-LSM and Crofer 22
APU-LSM c) APS (Mn,Co)3O4 and d) HVSPFS MnCo1.9Fe0.1O4 and Mn1.5Co1.5O4 spinel coatings.
The figure is modified from [Publications III, IV and VI].

a)

b)

c)

d)
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Due to the structural, microstructural and chemical changes that occurred due to sintering, the
ASR values dropped significantly for the first few hundred hours. As the external load was applied,
the number of contact points increased in the coating-coating interface due to the creep of the
corrugated substrates. In addition, the surface irregularities deformed and the actual contact area
increased as Dey et al. [140] have explained using a plastic deformation model. Furthermore,
electrical conduction was enhanced by crystallographic changes, as the metastable phase was
restored back to the (Mn,Co)3O4 and (Mn,Co,Fe)3O4 phases.

After the most rapid microstructural and chemical changes that occurred at the beginning of the
oxidation cycle, the ASR values levelled off. The ASR values continued to decrease but at a much
more moderate rate. This was a consequence of grain growth and the ongoing sintering process.
As  is widely accepted, the conduction mechanism in Mn-containing spinels is the small polaron
hopping mechanism [24], [44], meaning that the electron is excited across the band gap from the
valence band to the conduction band and a hole is formed in the valence band (intrinsic
semiconductor) [45]. Due to the small polaron hopping, single crystallites/grains are ideal for
conduction, whereas the grain boundaries cause scattering due to the grain boundary phases. The
grain boundary phases can be considered as an amorphous phase, which most plausibly
increases the resistivity.

At the end of the 1000-hour oxidation cycle, the ASR values for the APS (Mn,Co,Fe)3O4 spinels
levelled off at 9.20 mΩ∙cm2 and 14.10 mΩ∙cm2 for the MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4 coatings,
respectively. These values are comparable to the study of Kiefer et al. [46], as the conductivities
(varying sintering temperature) were in the range of 30–37 S/cm and 22–30 S/cm at 800 ˚C, for
MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4, respectively. For the APS (Mn,Co)3O4 coatings, the ASR
values decreased to 18.50 mΩ∙cm2 and 8.40 mΩ∙cm2 for MnCo2O4 and  Mn2CoO4+Co coatings,
respectively. Yang et al. [42] have studied and reviewed similar performances for Mn1.5Co1.5O4 and
MnCo2O4 bulk samples, obtaining conductivity values of 40–60 S/cm and 15–25 S/cm, respectively,
in relation to temperatures from 700 to 800 ˚C in air. Wang et al. [43] have measured ~68 S/cm
value for Mn1.5Co1.5O4 spinels at 800 ˚C in air. The MnCo1.7Fe0.3O4-LSM and Crofer 22 APU-LSM
spacer behaved similarly to the coating-coating tests as the conductivity improved due to sintering
of the coating, the LSM-spacer and coating-spacer interface. Eventually, the ASR value levelled off
at 50 mΩ∙cm2 at the end of the oxidation cycle.

The HVSPFS coatings achieved relatively high ASR values and were compared to the APS
coatings. The lowest ASR values of 61 mΩ∙cm2 were obtained for the MnCo1.9Fe0.1O4 and 77
mΩ∙cm2 for the Mn1.5Co1.5O4 coating. The differences in the ASR values can be explained by i) the
coating thicknesses and ii) the employed contact pressures. The APS coatings had a thickness of
12–20 µm, whereas the HVSPFS coatings achieved thicknesses of between 37–44 µm. In addition,
the contact pressure of 4.50 kPa was significantly lower compared to the optimal 0.064–0.074 MPa
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[140], which decreased the plastic deformation between the contact irregularities and therefore led
to higher ASR values.

The ASR results of the APS and HVSPFS coatings present the [spinel coating] – [(spinel-based
reaction layer) – (Cr-rich oxide layer)] – [substrate] material systems that were confirmed to be
formed by the cross-sectional and various elemental analysis. Although (Mn,Co,Fe)3O4 spinel
possesses good electrical conductivity, the conductivities were also influenced by the Cr oxide
scale and the reaction layers. For example, the electrical conductivity of Cr2O3 is from 0.006–0.163
S/cm at 700 ˚C in air [141]. If a (Mn,Cr)3O4 reaction layer is formed, the conductivity is 0.001 S/cm
(Mn:Cr=1:2) to 0.031 S/cm (Mn:Cr=1:1), at 700 ˚C in air [40]. Fergus et al. have reported that Cr
substitution in the (Mn,Co)3O4 spinel lattice decreases the electrical conductivity in relation to the
Cr content. The conductivity values of spinel vary from 0.003 S/cm (Mn,Co:Cr=1:2) to 1.30 S/cm
(Mn,Co:Cr=2:1) at 700 ˚C in air [141], which is considerably lower than the conductivity of pure
MnCo2O4 spinels. For this reason, the growth of scale and the extensive diffusion of Cr cations
should be minimized.
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6 Concluding remarks and suggestions for future work

The performance of the protective coatings in SOFC interconnects is strongly linked to the
chemical composition and microstructure of the deposited coatings. Since degradation of the
cathode is a consequence of reactions between the cathode materials and volatile Cr oxide and
oxyhydroxides, i.e., CrO3, CrO2(OH)2 and CrO2(OH), which are transported through the gas phase
on the triple-phase boundary (TPB), these coatings should have a dense microstructure. A dense
microstructure is essential in harsh environments (high humidity and operating temperature) in
order to decrease the growth of Cr-rich oxide scale, which may lead to uncontrolled breakaway
oxidation and/or increase the ohmic resistance of the substrate-coating systems. In addition,
migration should be considered as a possible transport mechanism for Cr to reach the TPB. This
was confirmed by formation of Cr-rich reaction layers, e.g., Cr-containing spinels, showing that at
least 10 µm of coating thickness is needed in order to provide a buffer for harmful Cr, especially in
long-term use.

In this work, protective MnCo2O4, Mn1.5Co1.5O4 and Fe-doped MnCo1.9Fe0.1O4, MnCo1.8Fe0.2O4 and
MnCo1.7Fe0.3O4 coatings were deposited with various thermal spray processes. Atmospheric
plasma spraying (APS) was employed as a conventional thermal spraying process, whereas high
velocity solution precursor flame spraying (HVSPFS) represents a novel deposition technique in
the thermal spraying research field. Both processes show great potential due to their scalability for
industrial-scale production. However, in order to answer the requirements as described previously,
the following claims should be taken into account:

· Agglomerated and sintered spray powder with a cermet structure should be used in
conventional thermal spraying when depositing a protective spinel coating for SOFC
interconnectors.

Although promising results of the thermally sprayed spinel coatings were obtained using
ceramic spinel powder, the basic problem is the inter-splat crack network formed between the
deposited splats. This crack network may be responsible for providing a pathway for volatile Cr
species to be transported to the cathode. In addition, it is clear that the crack network increases
the ohmic resistance of the deposited coating by poor inter-lamellar contact with the
neighbouring splats. The use of powder with agglomerated morphology, with the smallest
possible primary particle size, will enhance the melting of the powder feedstock, resulting in a
dense microstructure. Secondly, simultaneous substrate heating significantly decreases the
inter-splat crack network, as the deposited splat obtains an optimal discoidal form when
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deposited on the substrate. However, it should be noted that simultaneous substrate heating
might not always be a feasible method for producing coatings in terms of production facilities
and due to the dimensions of the ICs.

By selecting a suitable alloying component, such as the metallic Co in this study,
multifunctional properties can be obtained. The alloying component fills the inter-lamellar
spaces between the splats and i) improves gas density, ii) improves the electrical contact in
inter-splat bonding, iii) acts as a reactive element by trapping the migrated Cr cations, iv) is a
dopant to form more electrically conductive spinels.

· Spinel coatings with advantageous properties for SOFC interconnects are obtained by using
the high velocity solution precursor flame spray (HVSPFS) process.

The clear advantage of the solution precursor thermal spray processes is the total length of the
production chain. As the materials synthesis takes place in the spraying process, there is no
need for separate materials synthesis, powder or paste preparation process phases as in the
conventional thermal spraying or the wet-ceramic processes. These phases require time
(labour and storage costs) and energy (electricity), which inevitably leads to an increase in
production costs. In addition, it was shown that the coatings could be produced by using
relatively cheap raw materials, for instance metal nitrates.

It was shown that nano-scale coating structures could be obtained by using solution precursor
thermal spray processes instead of dry powder. The main difference was in the size of the
particles from which the coatings were formed. When using a modified high velocity oxy-fuel
spraying system, i.e. high velocity solution precursor flame spraying (HVSPFS), the coatings
were formed of particles with a size range of 10 nm up to a few micrometres. The small particle
size is the consequence of good atomization and evaporation of the precursor when injected
into the high velocity thermal flame. The TEM and SEM analyses indicated that nanoparticles
with a size range of 10 to 500 nm dominated the coating formation. These particles, as
previously specified, were formed through the liquid-to-solid and gas-to-solid conversion route.

The as-sprayed coatings had a dense microstructure, which is favourable for preventing Cr
transport and enabling good electrical properties. The dense microstructure was a
consequence of the small particle size, but also of the high deposition velocity of the
nanoparticles, which enabled closely packed particle structures. Since it can be expected that
the mass of the sub-micron and nano-scaled particles is negligible, the flight velocity of the
particles was close to the speed of the combustion flame.

· Mn1.5Co1.5O4 and MnCo1.9Fe0.1O4 spinels should be deposited by processes that produce a
metastable phase structure, small particle and crystallite size.
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According to the literature, Mn1.5Co1.5O4 and MnCo1.9Fe0.1O4 spinels have favourable properties.
The APS and HVSPFS processes produce coatings with good Cr barrier properties, in addition
to an acceptable level of ASR values. These processes enable high deposition temperatures,
and as a result, the coatings are formed through fast changes of solid-molten-solid states. As a
consequence, coatings are formed of sub-micron nano-scale particles with nano-scale
crystallite sizes with metastable properties. Together, these factors enhanced the sintering
behaviour of the as-sprayed coatings when used in the SOFC stack.

Further studies should be carried out on HVSPFS spinel coatings and the deposition process.
Although the results are promising, more studies needs to be done to confirm the long term
stability of HVSPFS spinel coatings. The conventional thermal spray process is robust and well
known process and therefore widely used in various applications. However, the HVSPFS
process is a novel deposition technique and various process variables, e.g. hardware, solution
precursor, combustion and gas-ratios needs to be studied more closely in order to obtain the
similar robust production level as in conventional thermal spray methods. Furthermore, the use
of different solution precursors, suspensions and for example two component suspension-
solution-type of precursors should be studied in order to find out the potential of the HVSPFS
technique.
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Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless
steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing
conditions where chromium compounds evaporate and poison the cathode active area, causing the
degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors
need a protective coating to block the chromium evaporation and to maintain an adequate electrical
conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In
the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric
plasma spray process. Coatings with low thickness and low amount of porosity were produced by opti-
mizing deposition conditions. The original spinel structure decomposed because of the fast transfor-
mation of solid-liquid-solid states but was partially restored by using post-annealing treatment.

Keywords interconnect, Mn-Co spinel, plasma spraying,
SOFC

1. Introduction

Interconnectors (ICs) are used in a solid oxide fuel cell
(SOFC) to provide an even fuel and oxidant distribution
through a cell construction, to prevent fuel and oxygen
gases from mixing and to connect the cells electrically in
series. Traditional IC materials used in the electrolyte-
supported cells, where operating temperatures were
above 800 �C, were mainly alloyed lanthanum chromites
(Ref 1, 2). By using the anode-supported cells, it is pos-

sible to use a thinner electrolyte layer and in this way
decrease the SOFC operating temperature under 800 �C.
Lower operating temperatures give the advance of using
new material alternatives. These have been developed in
order to obtain better electrical properties and especially
to lower manufacturing costs when designing co-, cross-
and counterflow gas channel configurations. Potential
materials for this use are chromium-based alloys, for
example, ferritic stainless steels. Chromium alloying gives
good corrosion protection and moderate corrosion resis-
tance at high operating temperatures (600-800 �C) and in
highly oxidizing environments (Ref 2).

The corrosion protection is based on the forming of
Cr2O3 scale on the steel surface. Chromium oxide tends to
have low electrical resistivity at elevated temperatures
(1 9 102 X/cm at 800 �C) and by alloying other elements,
for example, manganese, the formed oxide layer proper-
ties can be modified (Ref 2-4). The risk of using high
chromium alloyed steels is the forming and the evapora-
tion of chromium trioxide CrO3 and chromium hydroxides
CrO2(OH)2, depending on the cathode side inlet atmo-
sphere. These compounds may transfer to a cathode active
area (triple phase boundary, TPB), the area where oxygen
is able to ionize. Compounds reduce back to Cr2O3 and
cause the decreasing of the size of the active area causing a
drop in the efficiency of the cell. This process is called
chromium poisoning or degradation. The types of used
cathode materials have an effect on the degradation
speed. Some previous studies have reported that especially
cathodes with higher amount of Sr alloying (La-Sr-Co-Fe,
La-Sr-Fe, and La-Sr-Mn) suffer the most Cr-poisoning
effect. One possible reason for this is that Sr reacts with Cr
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and forms the SrCrO4 phase. Degradation speed was the
lowest when used cathode materials did not contain any Sr
alloying, for example, La-Ni-Fe (Ref 5-7).

The protective coatings are used in order to minimize
the oxidation of the IC and to prevent the evaporation of
chromium compounds. Ensuring long-term usability, the
coatings must fulfill the following requirements: (i) an
excellent electrical conductivity with the objective of
100% electronic conduction so the effect of ohmic losses
does not negatively affect the power density of the stack;
(ii) a good chemical, microstructural, and phase stability at
the stack operating temperature in an oxidizing environ-
ment; (iii) the coefficient of thermal expansion (CTE) of
the coating should be near the other stack components
such as the metallic IC and the cathode; (iv) a thermal
conductivity at the lowest limit of 5 W/m/K at the point
when generated heat from the cathode is transferred to
the anode for endothermic fuel reformation reactions; and
(v) the coatings together with the metallic substrate should
have high temperature strength and creep resistance
and provide structural support when used as a stationary
and an auxiliary power unit under external stresses and
vibrations (Ref 2).

The coating materials that have been previously studied
as protective coatings are mainly the so-called perovskite
materials with a chemical structure of (AB)2O3, where A
and B are metallic cations. The most used materials have
been lanthanum-manganese oxides (Ref 8-12) and
lanthanum-cobalt/chromium oxides (Ref 3, 9, 12-18) with
selected alloying, mainly in order to modify electrical and
diffusion barrier properties. The use of these coatings is
based on the same kind of composition and crystal struc-
ture as in the cathode materials. The coatings and the
cathode have the same kind of mechanical behavior in
elevated temperatures. The main difference between the
cathode and the protective coating is that whereas the
cathode layer is porous the protective coating needs to
be dense to prevent the evaporation of harmful chromium
compounds and oxidation of the substrate. Thermal
spraying (Ref 8-16, 18) and spin coating (Ref 17) are used
as a fabrication method. The main problem in all studies
still seems to be manufacturing dense and thin coating
structures so that the oxidation of substrate materials can
fully be eliminated in long-time exposure.

An interesting alternative for perovskite are materials
with a spinel structure, (AB)3O4, where A and B are
metallic cations. Some previous studies have been
published where spinel materials with a composition of
manganese-cobalt oxides (Ref 3, 12, 19-21) and manga-
nese-chromium oxides (Ref 20) have been used as the
protective coating layer against the evaporation of harm-
ful chromium compounds, working as an active layer
forming more stable chromium oxide compounds. Larring
et al. (Ref 12) found in their experiments that (Mn,Co)3O4

spinel worked effectively as a chromium barrier, even
when compared with often used perovskite materials.
They also discovered that the mechanical properties of the
coating seem to match the used substrate alloy. When
using iron (Fe) doped manganese-cobalt oxide spinel, it
is possible to improve the electrical and mechanical

properties of the coating. Studies have shown that a
proper amount of Fe in MnCo2-xFexO4 is in the range of
0.1 < x < 0.25 (Ref 22). The spinel coatings are mainly
manufactured by slurry painting/spraying (Ref 12, 19-21),
physical vapor deposition (Ref 23), and DC electrode-
position methods (Ref 24) but there are no studies where
Mn-Co spinel, especially with Fe alloying, are being
manufactured by thermal spaying. In this article, the
suitability of atmospheric plasma spraying (APS) is being
studied as a fast manufacturing method for producing thin,
under 50 lm thick, protective coatings for thin 0.2 mm
ferritic stainless steel substrates.

2. Experimental

2.1 Powder Manufacturing

Fe2O3 doped Mn-Co spinel powder was produced by
solid state synthesis and agglomerated to spherical form by
spray drying. MnCo1.8Fe0.2O4 (MCF) powder was pre-
pared by weighing appropriate amounts of MnCO3,
CoCO3, and Fe2O3 powders together and milling them for
20 h in a drum ball mill. After the milling, the mixture was
calcinated at 1000 �C in air for 6 h to obtain the spinel
structure. The powder was dispersed in water using 1 wt.%
of dispersant (Dispex A40, Ciba, Basel, Switzerland) by a
planetary ball mill, 2 h at 300 rpm with ZrO2 balls (Fritsch
pulverisette 5, Fritsch GmbH, Germany). 2 wt.% of
bonding agent (PVA, Celanese, Dallas) was added to the
slurry by a high shear mixer. The suspension was spray
dried by spray dryer (Niro pilot, GEA Niro, Soeborg,
Denmark). A rotary nozzle with high rotation speed was
used in order to get the fine agglomerate size needed for
thin coating production. The powder was sintered at
1150 �C to improve powder strength, where an isothermal
step at 500 �C for 2 h was used in order to pyrolyze the
PVA without fracturing the agglomerates. After sintering,
the powder was sieved. Particle size of �29 + 13 lm (d90-
d10) was measured by laser diffraction sensor (Helos,
Sympatec GmbH, Clausthal-Zellerfeld, Germany).

2.2 Coating Manufacturing

The coatings were produced by using a plasma gun
(F4-MB, Sulzer Metco, Winterthur, Switzerland). Param-
eters were selected so that the influence of the used gun
power on coating properties could be studied. The lowest
energy parameter at which a stable coating could be
produced was selected to be as parameter P1. More
detailed parameters can be seen in Fig. 1. Constant
spraying distance (120 mm) and surface speed were
assured by using an X-Y manipulator. The desired average
coating thickness was about 15-20 lm.

Samples sprayed with parameters 1, 7, and 9 were
annealed to examine the restoring of the spinel structure.
The samples were annealed at 800 �C for 3 h at normal
atmosphere and the crystal structure was then analyzed.
By choosing samples 1, 7, and 9 the influence of gun power
could be estimated.
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The substrate material was ThyssenKrupp VDM
Crofer 22 APU specially tailored for SOFC use (Cr:
20-24 wt.%). The thickness of the substrate was 0.2 mm
with 70 9 70 mm outer dimensions. The substrates were
grit blasted (240 grit Al2O3) before plasma spraying so
that the needed adhesion could be reached. Grit blasting
was performed to both sides to avoid the bending of the
thin substrate. After being plasma sprayed, the samples
were laser cut to 15 9 20 mm pieces. The pieces were then
molded in cold resin in a chamber under reduced pressure
to prevent cracking and to give the samples an extra
support while grinding and polishing.

2.3 Characterization Methods

The powder and the coatings were analyzed by using a
scanning electron microscope (SEM) (Philips XL 30,
Philips, Amsterdam, Netherlands). Secondary electron
(SE) and back-scattering electron (BSE) modes were used
for morphological inspections and energy dispersed spec-
troscopy (EDS) mode was used for quantitative analysis of

the elements. Porosity values were calculated by using an
image analysis tool. Qualitative phase analysis of the
powder and as-sprayed and annealed coatings was per-
formed by using a x-ray diffractometer using Cu-Ka radi-
ation source (Siemens D-500, Siemens, Berlin, Germany).

Hardness tests were performed by using a micro-
hardness tester (MMT-X7, Matsuzawa, Akita, Japan). The
hardness values were measured using a 250 mN cell load.
Using this extraordinarily low test load, it was ensured
that an indentation mark did not extend outside of the
coatings� cross-section area. Results are the average values
of five separate measurements.

3. Results and Discussion

3.1 Powder Characterization

The powder morphology is presented in Fig. 2. The
particles were spherical because of spray drying and
formed of primary particles of the size of 2-3 lm which
can be seen from a cross-sectional SEM image. Some
particles were attached to each other which affected flow
properties negatively in a powder feeder, but the powder
was still sprayable. When the chemical composition of the
powder was analyzed, the amount of Fe seemed to be
higher than it should be (Table 1). The calculated amount
of Fe was 6.7%, but the analyzed value was 12.4%.

Fig. 1 Plasma spraying parameters

Fig. 2 Secondary electron image (SEM) of MCF-spinel powder (left). Cross-sectional secondary electron image (SEM) of MCF-spinel
powder (right)

Table 1 Amount of elements in atomic percentages
(at.%) (EDS)

Elements Powder P1 P2 P3 P4

Mn (33.3) 31.3 30.5 31.4 32.0 31.0
Fe (6.7) 12.4 11.9 12.2 13.0 12.2
Co (60) 56.3 57.6 56.4 55.4 56.8

P5 P6 P7 P8 P9

Mn 29.3 30.7 31.2 30.0 30.4
Fe 12.5 11.7 12.0 11.7 11.7
Co 58.1 57.6 56.9 58.3 58.0
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The amount was probably altered because Fe-Ka radiation
was at the same value when compared to manganese-Kb

radiation and Fe-Kb radiation was at the same value
compared to cobalt-Ka radiation. Overlapping of radiation
peaks increases the values, even though the mixture ratios
were correct when the powder was manufactured.

3.2 Coating Structural Characterization

The coatings (Fig. 3) had a typical plasma-sprayed
structure. In all the coatings, some pores, cracks and some
large pull-outs were present. Clear boundaries in separate
spraying layers were not present. The desired coating
thickness was achieved with a relatively dense micro-
structure with small variations of porosity (Table 2). The
coatings had a good adhesion to the substrate and no
visible cracking on the interface, but in some coatings
vertical cracks were present, especially in the coatings
where high energy parameters were used. This might be
the result of small differences in CTE values. For
MnCo1.8Fe0.2O4 sintered at 1000 �C the CTE value is
12.3 9 10�6/K (Ref 22) and for Crofer 22 APU depending
on the temperature while spraying it, the CTE values
varies (200-1000 �C) 10.3-12.7 9 10�6/K (Ref 25). These
cracks may offer a pathway for oxygen access and chro-
mium evaporation.

3.3 Coating Chemical and Phase Analysis

The influence of the spraying parameters on selective
compound evaporation is presented in Table 1. Values
have been calculated by analyzing the whole image area.

When comparing EDS measurements with the values of
the powder, significant alteration could not be noticed.
In this case, the coating compositions were not altered,
although high energetic spraying parameters were used. It
is possible that the coatings include smaller areas where
selective evaporation has occurred. The reason for this is
the fluctuation of plasma flame/energy resulting in molten
droplets with altered composition. Due to the same rea-
son, a similar variation of Fe amount can be seen in EDS
analysis as was observed in the powder�s case.

When analyzing the crystal structures of the as-sprayed
coatings (Fig. 4), it can be noticed that the original spinel
structure is decomposed. Peaks in the coatings were ana-
lyzed to be near the FeO (wuestite) kind of structure with
a cubic form. When comparing low energy spraying
parameters with high energy parameters the peaks were
equal, meaning that the variations of spraying parameters
did not affect the formed crystal structure. The reason for
the presented structure lies in the coating preparation
method where material is melted and cooled rapidly.
When droplets hit the substrate and metastable crystal
structures, material decomposition occurs and new com-
positions are being formed.

The XRD results of pre-selected annealed samples
(Fig. 5) reveal that the spinel structure can be restored by
using a separate annealing. When comparing the coatings
with the powder, it can be seen that small intensity peaks
of MnCo1.8Fe0.2O4 spinel are present. In sample P1 there
is also a high intensity peak of Fe, which was the result
of the reflection of the substrate material and can be
neglected. In all the coatings, the peaks of an FeO kind of
structure and Co3O4 spinel were also present. The peaks
of FeO were a result of a situation where the restoring of
the spinel structure was not fully completed and where it
may need more time for a complete reformation reaction.
The presence of Co3O4 spinel peaks was an interesting
result. These peaks might be the result of the selective
evaporation of those components which cannot be seen
in the EDS analysis taken from the whole coating area.

Fig. 3 Cross-sectional secondary electron image (SEM) of
plasma sprayed spinel coatings. Lowest porosity coating (P3) and
highest porosity coating (P5)

Table 2 Amount of porosity in percentages (%)

Parameter Porosity, % Parameter Porosity, %

P1 6.1 P6 6.6
P2 5.3 P7 5.7
P3 3.8 P8 5.3
P4 5.7 P9 6.7
P5 6.9 Fig. 4 XRD-analysis of as-sprayed coatings with all spraying

parameters
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In this case, it may be that manganese was evaporated
during spraying. The result of this was the metastable form
of Mn-Co-Fe spinel, Fe oxide and an excess amount of
cobalt in the form of cobalt oxide spinel. Lim et al. (Ref
11) got the same results of evaporation of manganese
when plasma spraying perovskite structured La0.8Sr0.2M-
nO3 on metallic ICs.

3.4 Coatings� Mechanical Properties

Hardnesses of the protective coatings varied from 320
to 600 HV0.025. When plotting the hardness as a function
of gun power (Fig. 6) and inspecting the interdependency
fitting with linear regression (R value 0.521), it can be seen
that the hardness values are related to the used gun power.
By increasing the used gun power by 80%, the coatings�
hardness values increased by 35% on average.

The reason for the increased hardness values could be
related to single splat behavior in the coating process.
When low gun power was used the particles were not able
to fully melt and, as a result, coatings contained partially

melted particles. These particles have poor adhesion and
degrade the internal strength of the coating. When the
used gun power was increased, the single particles were
able to melt more homogeneously and form a coating
where un-melted particles were not present. The coating
was then formed of splats with good adhesion, which may
influence the crack networks between splats so that they
are smaller compared to the coatings prepared by using
low gun power. In this case, the use of high energy
parameters is an advantage that could provide a coating
which provides better protection against chromium evap-
oration from the substrate.

4. Conclusions

The spinel materials are an interesting option for
protective coatings on ferritic stainless steels instead of
perovskites that are already being used. Earlier studies in
this area were based on manufacturing these coatings by
slurry- or thin film techniques. In this study, APS has been
used to produce Mn-Co-Fe spinel coating on the thin
metallic IC in SOFCs.

The conventional plasma sprayed coating has always
included some pores and cracks because of the nature of
the spraying process. When plasma spraying Mn-Co-Fe
spinel, the original MnCo1.8Fe0.2O4 crystal structure seems
to decompose in the fast changes of transformation (solid-
liquid-solid) which leads to the forming of metastable
compounds. Also some selective evaporation of the com-
ponents, for example, manganese, can happen. The ori-
ginal spinel structure will decompose but it can be
partially restored by using a separate annealing process. In
this process, metastable phases will transform by diffusion
and growth of grain size and form stable compositions, for
example, Co3O4.

The mechanical properties of the coatings were highly
dependent on the used spray parameters. By increasing
the used gun power, a harder coating structure could
be achieved and the amount of un-melted particles
decreased. Negative influences of using high energy
spraying parameters on coating composition in this
research were not noticed.
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Manganese-cobalt spinels are promising materials for protective coatings on metallic interconnector plates
in solid oxide fuel cells. These protective coatings are used to prevent growth and evaporation of chromium
oxide, chromium poisoning and ageing phenomena of the cathode side of the fuel cell. It is well known that
chromium trioxide and chromium hydroxide on interconnector plate may easily evaporate at high
temperatures and transform back to chromium oxide at the cathodes active area and cause degradation of
the solid oxide fuel cell performance.
In the present study, plasma spraying together with a substrate pre- and simultaneous heating was found to
be an appropriate technique to control the formation and densification of the coating. When plasma spraying
Mn-Co spinel powder for cold substrate, high cracking effect inside the splats and in the formed coating was
noticed. When applying the molten drops to the substrate heated up to 450 °C amount of cracks in single
splats and coatings could be mostly eliminated. The splats stayed in the liquid state longer, which effected for
spreading properties and spinel structure could be better preserved by longer crystallize time.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Interconnectors (ICs) are used in Solid Oxide Fuel Cells (SOFCs) to
provide fuel and air (oxygen) distribution through the cell construc-
tion, to prevent fuel and oxygen gases from mixing together and
electrically connect the cells in series. Sintered ceramics, such as
lanthanum chromites, have been used as interconnectors, but these
are expensive to manufacture and suffer lack of designing properties.
In contrast, ferritic stainless steels are ideal materials for the
application due to their thermal expansion behaviour, manufactur-
ability, mechanical properties and durability. These steels have high
chromium contents of the order of 22 wt.%, which give a good
corrosion protection at high operating temperatures (700–800 °C) in
oxidizing environment, by the formation of (Mn,Cr)2O4 layer on the
surface. By alloying with other elements particularly manganese,
the electrical properties of the formed oxide layer can be tailored for
more suitable use for SOFC. High chromium alloying may still cause
problems in certain atmospheres of the cell and formation of easily
volatile chromium trioxide CrO3 and chromium hydroxide CrO2(OH)2
may occur. These compounds generally evaporate more easily
than Cr2O3, transfer to the cathode triple phase boundary (TPB)
and transform back to Cr2O3 by lowering the area of the TPB. This

causes the dropping of cell efficiency and gradual degradation of the
cell [1–4].

In order to minimize oxidation of the interconnector and to
prevent evaporation of the chromium compounds, protective perov-
skite (ABX3) coatings have been studied [4–7]. Less tested but
interesting new coating materials are so called spinels. The structural
formula of spinel material is AB2X4, where A and B are metallic cations
and X is anion, usually an oxygen ion. Some studies have been carried
out by on spinel coatings to prevent Cr-poisoning and the results have
revealed that spinel materials are promising protective coatings for
ICs [4,8–12].

Several methods for producing the protective coatings have been
evaluated. Some studies have shown that perovskite materials are
sprayable by conventional thermal spray techniques such as atmo-
spheric plasma spraying (APS) and high velocity oxy-fuel spraying
(HVOF). The crystal structure and density of the produced coatings
have been found fairly good. In some cases, when too energetic
spraying parameters have been used in plasma spraying, the crystal
structure of perovskite material is decomposed [5,6,13]. Using
modified plasma spraying methods like vacuum plasma spraying,
the desired properties like density can be increased [14,15]. When it
comes to manufacturing spinel coatings used as a protective coating,
slurry or screen printing methods have often been used. When using
e.g. screen printing, an external sintering process is needed to densify
the coating layer [8,10,11].

In the present work, atmospheric plasma spraying process was used
together with pre- and simultaneous substrate heating to produce
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protective spinel coating onto the stainless ferritic steel substrates. The
aim was to improve coating quality by densifying the coating structure.
The studies show thatwhen applying substrate heating during spraying,
coating quality and mechanical properties, e.g. adhesion of the coating
to the substrate, can be improved. The idea of applying heating is to
contribute to single splat behaviour, which in turn has an important
influence on the final coating properties. A common problem in plasma
spaying is that when molten droplets hit the surface of the substrate
material, the optimal disk shaped splats are not formed. Instead of even
splat spreading high splashing effect may occur which increases the
amount of porosity and heterogeneity of the formed coating. Possible
reasons for high splashing effects are uneven spreading, surface
irregularities, rapid and unequal local solidification and too low surface
tension. Applying molten particles onto a substrate, splats remain in
liquid state longer. Therefore more uniform solidification occurs as the
splats have been managed to spread more evenly and fill surface
irregularities [16,17].

2. Experimental

The Fe2O3 doped Mn-Co spinel powder used in the present work
was produced by solid state synthesis. Spray drying was used to
agglomerate the powder to a spherical form. The MnCo1.8Fe0.2O4

powder was prepared by weighing appropriate amounts of MnCO3,
CoCO3 and Fe2O3 powders together,milled and calcinated at 1000 °C in
air for 6 h to get the spinel structure. The powder was dispersed in
water with a dispersant (Dispex A40, 1 wt.%) by a planetary ball mill
(2 h, 300 rpm, ZrO2 balls). PVA (2 wt.%) as a bonding agent was added
to the slurry by a dispergatormixer. The suspensionwas spray dried by
Niro pilot spray dryer. Rotary nozzle with a high rotation speed was
used in order to obtainfine agglomerate size needed for theproduction
of a thin coating. The powder was sintered at 1150 °C to improve
strength, duringwhich an isothermal step 500 °C 2 hwas used in order
to pyrolyse the PVA without agglomerate fracture. After sintering, the
powder (Fig. 1) was sieved and−36+15 μm (d90–d10) particle size
was measured by Sympatec Helos laser diffractometer.

Substrate material was ThyssenKrupp VDM Crofer 22 APU,
specially tailored for SOFC use. Thickness of the substrate was
0.2 mm which is designed to use at stack configuration. The substrate
was finely grit blasted (36 mesh alumina sand) prior to plasma
spraying. For splat studies, polished substrates were used.

Coatings were sprayed by using a Sulzer Metco A3000S plasma
spray system equipped with a 55 kW F4-MB plasma gun. Parameters
were selected so that low, moderate and high energy spraying
conditions were provided. By this way, the influence of used gun
power for splat formation and coating structure could be examined.
Detailed spraying parameters are presented in Table 1. An X- Y-

manipulator was used to control the movement of the spray gun. The
target average coating thickness was approximately 15–20 μm. For
substrate preheating, a Minac 18/25 induction heater was used.
Substrates were first heated to the desired temperature and kept at
constant during the spraying process. The temperature measurement
was done by using K-type thermocouple which was attached to an
induction power controller. The advantage of using the controller was
that it monitored the influence of plasma flame on substrate
temperature and adjusted the proper heating power. Also the
polished splat samples were heated and sprayed at the same time.
After spraying, coated samples were cooled back to room temperature
freely with the fixture. Recorded cooling rate was ~50 °C/min. The
specimens were moulded in epoxy resin and conventional metallo-
graphic preparation methods were used in grinding and polishing
stages.

The powder and coating samples were analysed by using Phillips
XL 30 scanning electronmicroscope (SEM) by secondary electron (SE)
and energy dispersed spectroscopy (EDS) modes. Porosity values
were calculated from cross-sectional images by ImageTool. The crystal
structures were examined by using Siemens D-500 X-ray diffraction
in as-sprayed state and the results were compared to the powder.
Optical profilometer Wyko NT1100 was used for investigating a splat
formation. From each sample ten single splats were analysed and the
average splat height was calculated to get general estimation of splat
spreading capabilities.

3. Results and discussion

Shapes of single splats were found to be uneven when sprayed on
cold (22 °C) substrate. As it can be noticed in Fig. 2, the splashing
effect and irregular cooling were dominating when the splat was
formed. Some material peeling can also be noticed in the figures of
individual splats. Peeling was mainly the outer edge problem but in
some splats material was also missing in the centre of the splat. This
can be the result of partially melted particles. When comparing the
effect of spraying parameters, hardly any differences were noticed
when the shape of the splats were compared. The average height of
the splats was increased together with standard deviation value from
1.40 μm (sdv. 0.80 μm) to 1.50 μm (sdv. 1.07 μm) when used gun
power was increased. The main reason of increased splat thickness is
that larger particles are fully molten and thus form a splat. Increased
standard deviation value proves that particles of wider range of size
distribution are melting at the spraying process. When the substrate
temperature was increased to 350 °C, 450 °C and 550 °C (Fig. 3), splats
were then able to form more evenly and the resulted splat shapes
were more disks like. At 350 °C formations of internal cracks in the
splats have observed. Although the temperature of 350 °C is enough to
achieve well spreading of molten droplets the problem was still a too
high quenching rate, resulting in many internal cracks. These cracks
can also be noticed in the coatings cross-sections. At temperature of
550 °C, the forming oxide layer increased the surface roughness and
thus the splat spreading was not optimal anymore. Oxidation due to

Fig. 1. Scanning electron microscope pictures (SE mode) of spray dried and sieved
MnCo1,8Fe0,2O4 powder.

Table 1
Plasma spraying parameters.

Parameter I (A) P (kW) Ar (slpm) H2 (slpm) Ar/H2 Distance (mm)

P1 (low) 425 24,8 45 5 0,10 120
P1+HT
P2 (moderate) 512 33,5 59 9 0,15
P2+HT
P3 (high) 600 43,6 71 14 0,2
P3+HT

HT=preheated substrates 350, 450, and 550 °C.
Anode diameter: 6 mm.
Powder feed rate: 30 g/min.
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preheatingmay also affect adhesion and splashing of the splats. When
the different spraying parameters were compared, no significant
difference was noticed.

Cross-sectional images (Fig. 4) reveal the influence of substrate
preheating. At low substrate temperatures 22 °C and 350 °C samples
included pores and microcracks. In some cases the interface between
the coating and substrate was poor. This is a negative factor when it
comes to good electrical conductivity and diffusion barrier against
chromium compounds. When the substrate temperature was in-
creased the amount of micropores and cracks were significantly
decreased. Porosity of coatings P1 and P3 sprayed at 350 °C was
compared to the one of coatings sprayed at 550 °C, it decreases for P1
from11.7%±1.7% to 6.0%±0.9% and for sample P3 from 8.6%±1.3% to
3.8%±0.7%. Although the porosity was decreased bymore than 50% in
each sample, at 550 °C some vertical cracks were still present. This
might be caused by the too high cooling rate after the spraying and the
small differences thermal expansion coefficient (CTE) of the coating
and substrate material.

When analysing the crystal structures of the coatings sprayed with
low energetic (P1) spraying parameters (Fig. 5) onto the cold
substrate, it was noticed that the original spinel structure was
decomposed. X-ray diffraction peaks in coatings were analysed to
be near FeO (wuestite) kind of structure with cubic form. Comparing
low gun power (P1) spraying parameters to high gun power (P3)
parameters (Fig. 6), the peaks were the same so changes of spraying
parameters did not affect the formed crystal structure when sprayed
for 22 °C substrate. When sprayed onto heated substrates (450 °C–
550 °C), spinel structure was not fully decomposed. The low intensity
peaks of MnxCo3-x-zFezO4 spinel peaks are presented in Figs. 5 and 6.
Restoring the spinel structure was not fully completed according to
XRD-pattern of the simple cubic structure. MnxCo3-x-zFezO4 spinel
peaksmay be the result that some alloyed iron is first crystallised form
of iron oxide (FeO). When analysing the amount of elements by EDS-
analysis, no selected evaporation of elements were noticed at sprayed
coatings (Table 2) when compared to powder values. Total reforma-
tion reaction of spinel crystal structure needs more time to complete.

Fig. 2. Splat pictures taken with optical profilometer picture of single splats on cold substrate.

Fig. 3. Optical profilometer picture of single splats on hot substrate.

Fig. 4. Scanning electron microscope pictures (SE mode) of the coatings cross-sections.
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The spinel structure was restored by using a separate annealing
process (Results will be published in other paper).

4. Conclusions

Plasma spraying is a relatively new method for producing the
protective spinel coatings onto interconnector plates. Fast production
rate and suitable method for corrugated substrate materials make
thermal spraying an interesting manufacturing alternative for this
use. The characteristic structure of plasma sprayed coatings might still
cause some problems when it comes to producing gas tight, well
electrically conductive ceramic layers. Problems may also occur when
the required coating thickness is low, of the order of 30 μm or lower.

One promising way to manipulate the plasma sprayed coating
structure is to use substrate pre- and simultaneous heating while
spraying. The main focus is to generate conditions in which the
spreading of the molten droplets is optimal and discoidal form can be
achieved and splashing effects fully avoided. When increasing the
substrate temperature, the splats are more fluidal. This leads to better

covering properties at the substrate surface and splat-splat bound-
aries so less gas entrapment occurs. These offer a baseline (mecha-
nism), how cracks and especially microcracks can be eliminated from
the coating. At this study a sufficient temperature to provide optimal
spreading for Mn-Co spinels was found to be around 450 °C. For high
heating rate, keeping the constant substrate temperature while
spraying and controlling the cooling rate the induction heater was
noticed to work well. Amount of microcracks on single splats and
porosity in the coatings were notably lower compared to the material
which was sprayed on a cold substrate, where the amount of cracks
and open porosity was excessively high. These microcracks and
possible open porosity are probably the biggest risk to chromium
barrier failure. The use of a higher substrate temperature may not
offer any extra benefits. On the contrary, using too high substrate
temperatures may influence negatively to the residual stresses
formed on cooling and forming of the too thick and electrically
insulating chromium oxide layer. In this study using over 550 °C
substrate temperatures caused some larger vertical and horizontal
cracks to the coatings due to stresses of small differences between
CTE-values. This can probably be avoided using a lower cooling rate
than 50 °C/min.

An interesting observation in plasma spraying Mn-Co spinel
powder was the decomposition of the spinel structure. Composition
of the formed phase is not clear but it is the similar crystal structure as
wuestite FeO. The reason for the crystal structure probably is the
coating preparation method where material is melted and cooled
rapidly and FeO kind of crystal structure is able to form first. High
quenching rate occurs when droplets hit the substrate material and
metastable crystal structure is then formed. More composition and
phase analysis need to be done to reveal mechanisms which are taken
place during thermal spraying. Applying substrate heating, this
quenching rate can be lowered and MnxCo3-x-zFezO4-spinel phase
preserved. Substrate temperature needs to be above 450 °C for spinel
phase to be noticed by X-ray analysis. Longer holding time together at
high temperature or annealing process may restore the original
crystal structure.
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a b s t r a c t

Interconnects employed in solid oxide fuel cells require electrically conductive protective

coatings such as those based on manganese cobalt oxide spinels in order to prevent

evaporation of volatile Cr(VI)-compounds and to minimize high temperature corrosion.

MnCo2�xFexO4 based (where x ¼ 0.1 and 0.3) oxide spinel protective coatings were manu-

factured by the atmospheric plasma spraying process on Crofer 22 APU substrates. The

coated substrates were oxidized at 700 �C in air for 1000 h and post-mortem analyses were

conducted to study the performance of the thermal sprayed coatings. During the high

temperature oxidation, a four-point on-line measurement technique was used for area

specific resistance studies. The MnCo1.7Fe0.3O4 coating was tested together with the

La0.85Sr0.15Mn1.1O3-spacer.

The atmospheric plasma sprayed MnCo2�xFexO4 showed excellent Cr-barrier properties

and decreased oxidation of the substrate. In addition, resistance as low as 9.20 mU cm2

values was obtained after the 1000 h oxidation cycle. The MnCo1.9Fe0.1O4 coating manu-

factured by the atmospheric plasma spraying process is a promising candidate for SOFC

interconnect applications.

Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.

Introduction

Interconnects (ICs) are used in solid oxide fuel cells (SOFCs) to

connect the cells in series electrically and provide distribution

of the fuel gas and the oxidant gas to the electrodes. Recent

developments in solid oxide fuel cells, i.e. the anode sup-

ported cells, enable lower SOFC operating temperatures of the

order of 600e800 �C. The intermediate temperature (IT)-SOFCs

allow new materials, e.g. high chromium-containing
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(18e24 wt-%) ferritic stainless steels to be employed in ICs.

Ferritic stainless steels are recognised to be thematerials with

the greatest potential for metallic ICs due to: i) low raw ma-

terial and manufacturing costs, ii) high enough electrical and

thermal conductivity, iii) similar thermal expansion behav-

iour with other cell materials and iii) improved design prop-

erties for the complex IC surface profiles [1].

The ferritic stainless steel ICs must be coated prior to the

use in the SOFCs to protect the cathode from degradation.

Degradation occurs on the cathode side due to oxidation of the

ferritic stainless steel and the presence of gaseous H2O in the

atmosphere, which increases the probability of the formation

of volatile Cr6þ species, e.g. CrO3 and CrO2(OH)2 compounds.

These Cr-containing compounds transport through the gas-

phase into the triple phase boundaries (TPBs). As a TPB is

the shared interface of the cathode, the electrolyte and the gas

phases, the oxygen vacancies and electron holes are available

for Cr-containing compounds to concentrate and to electri-

cally reduce back to Cr2O3 (for the manganese containing

cathode) or SrCrO4 and Cr2O3 (for the non-manganese con-

taining cathode). As a result, the active TPB area decreases,

which causes degradation of the cell [2e4].

Spinel materials ((A,B)3O4), more precisely (Mn,Co)3O4,

seem to be the most suitable materials for the protective

coatings on the ferritic stainless steel ICs. The coating-IC

system should incorporate: i) similar coefficients of thermal

expansion (CTE) with other cell materials [5]; ii) suitable

electrical properties, i.e. high enough electrical conductivity at

the SOFCs operating temperatures [5]; iii) low diffusion coef-

ficient of Cr-ions and ability to form stable Cr-containing

spinels [6]; iv) chemical, microstructural, and phase stability,

in addition to the ability to withstand vibrations without

harmful fatigue or cracking of the coating in an oxidizing, high

temperature environment [5,6]; and v) an economic

manufacturing process for mass production [5].

Although the (Mn,Co)3O4 spinels show good results as

protective coatings, Kiefer et al. have studied the properties of

iron doped oxide spinel coatings. They varied the amount of

iron so that the composition matched MnCo2�xFexO4 (where

x ¼ 0, 0.1, 0.25, 0.5 and 1). The most promising composition in

terms of electrical conductivity and CTE, were the Fe-doped

spinels with the stoichiometric factor of iron in the range of

0.1e0.25. Electronic conductivity ranged from 25 up to 37.5 S/

cm at 800 �C in air [7]. Miguel-P�erez et al. [8] obtained con-

ductivity values of 72 S/cm for MnCo1.9Fe0.1O4 at 800 �C in air.

This was close to the results of Liu et al. [9] who measured

conductivity of 85 S/cm for MnCo1.85Fe0.15O4 at 800 �C in air.

Further increase of iron decreased the electrical conductivity

[7,9].

Due to the complex structure of MnCo2�xFexO4 and the

mixed oxidation states of the cations, it is difficult to deter-

mine the exact cation site distribution in the MneCoeFe

spinel system. Miguel-P�erez et al. [8] have reviewed the sys-

tem and proposed the following cation distribution for the

MneCoeFe spinels:

(Co2þ,Mn2þ,Fe3þ)(Co2þ,Co3þ,Mn3þ,Mn4þ,Fe2þ,Fe3þ)2O4. Liu

et al. [9] proposed that Co cations have a stronger tendency to

occupy tetrahedral sites compared to Mn cations, and Fe

cations have a lower tendency to occupy tetrahedral sites than

Co and Mn cations.

Due to the presence of mixed valence states at octahedral

sites in the (A,B)3O4 spinel system, the activation energy (Ea)

for MnCo1.9Fe0.1O4 is 0.38 eV. This is lower than to the Ea for

MnCo2O4, which is 0.44 eV. Iron doping improves movement

of the charge carriers and therefore increases the electronic

conductivity of the spinel [8]. However, the study of Liu et al.

[9] suggested that iron doping would actually decrease the

electron conduction, which occurs via the small polaron

hopping mechanism as the distance between the neighbour-

ing octahedral sites increases.

Few studies are available in the open literature, related to

the properties of the MnCo2�xFexO4 coatings on ferritic stain-

less steel ICs manufactured with different deposition

methods. Thomann et al. have tested the electrical properties

of high velocity oxy-fuel sprayed MnCo1.8Fe0.2O4 coatings on

Crofer 22 APU together with a La0.85Sr0.15Mn1.1O3 spacer.

Relatively thin (15e18 mm) and dense coatings were deposited,

and a resistivity of 20 mU cm2 was obtained after a 1000 h test

cycle [10]. Miguel-P�erez et al. [8] reached ~0.8 U cm2 for

colloidal spray deposited MnCo1.9Fe0.1O4 coatings on Crofer 22

APU together in a complete cell (LSF40/SDC-YSZ) at 800 �C

after a 100 h test cycle. In addition, Montero et al. have studied

the electrical properties of screen-printed MnCo1.9Fe0.1O4

coatings on Crofer 22 APU with LSCF-LSF layers (260 h) and

only the LSCF contact layer (1000 h), obtaining resistivities of

36 mU cm2 and 33 mU cm2, respectively [11].

Thermal spraying can be considered one of the most

promising techniques to produce dense protective coatings on

themetallic ICs, due to scalability formass production. For the

other availablemethods e.g., wet-ceramic processes, a one- or

two-step post-deposition heat treatment process is always

required in addition to the deposition process, in order to

obtain dense coatings. The advantage in the thermal spray

processes is that dense coatings are produced without sin-

tering heat treatments as the coatings are formed ofmolten or

semi-molten droplets [12].

Promising results are obtained for (Mn,Co,Fe)3O4 as pro-

tective coatings on ferritic stainless steel. However, thermal

spraying causes decomposition of the spinel structure as re-

ported in earlier studies [10,13e15]. Although decomposition

has been observed, studies of the decomposition and recovery

of the spinel structure is rather limited. In addition, long-term

oxidation studies of atmospheric plasma sprayed (Mn,Co,-

Fe)3O4 have not been reported.

In this study, atmospheric plasma sprayed MnCo1.9Fe0.1O4

and MnCo1.7Fe0.3O4 coatings were evaluated as protective

coatings on Crofer 22 APU ferritic stainless steel. Chemical

and crystallographic analyses were performed on the as-

sprayed coatings to obtain a detailed description of the

decomposition of the spinel, and to find a suitable recovery

temperature. The Cr-barrier and area specific electrical resis-

tance properties were studied with a four-point resistance

measurement method at the same time as the coatings were

oxidized at 700 �C in air for 1000 h.

Experimental

The substrate material was Cr-alloyed (Cr: 20e24 wt%) ferritic

stainless steel, grade Crofer 22 APU (ThyssenKrupp VDM
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GmbH, Werdohl, Germany) specially designed for SOFCs. Two

different substrate thicknesses were employed in this study:

0.2 and 0.5 mm. In addition, the coatings were sprayed on

25.4 mm diameter aluminium disks, which were used for

quantitative X-ray fluorescence studies. Prior to the spray

process, the substrates were grit blasted using 240 grit Al2O3-

sand to improve the adhesion of the as-sprayed coatings.

Two powders with different chemical compositions were

studied. The first powder was commercially acquired

agglomerated and sinteredMnCo1.9Fe0.1O4 spinel powder (H.C.

Starck, Goslar, Germany) with a particle size range of

�31 þ 15 mm (d90ed10) measured by laser diffraction (Helos,

Sympatec GmbH, Clausthal-Zellerfeld, Germany). The second

powder was an agglomerated and sintered MnCo1.7Fe0.3O4

spinel powder produced in-house. The powder synthesis is

described in greater detail in our previous studies [14,15]. The

particle size range was �29 þ 13 (d90ed10).

The coatings were deposited using a Sulzer Metco A3000S

atmospheric plasma spray systemwith a 55 kW F4-MB (Sulzer

Metco, Winterthur, Switzerland) plasma gun. Optimization of

the spraying parameters [14] and the advantages of simulta-

neous heating (450 �C) of the substrates, including the set-up

of the heating system, are reported in previous studies [15].

Table 1 presents detailed atmospheric plasma spraying

parameters.

The coated specimens were oxidized for 1000 h at 700 �C in

air, and the area specific resistance (ASR) measurements were

done in-situ using a four-point method. The ASR measure-

ments were executed with two different system set-ups pre-

sented in Fig. 1. In both tests, 1.0 mm platinum (Pt) leads were

spot welded on the 1.0 mm steel plates at the bottom and top

of the test stack to provide direct current. The voltage drop

across the deposited coatings was measured by two 0.5 mm

Pt-leads. 1 mm thick flat steel plates were used as separator

disks between the stacked samples. An Agilent data logger

with multi-plexer was used to measure the ASR data

expressed in mU cm2.

In the first ASR test procedure (Fig. 1(a)), the actual mea-

surement was obtained without any contact or cathode layer

between the coated samples. The results represented the pure

coatingecoating contact. Coatedandcorrugated0.2mmCrofer

22 APU was used in contact with the coated 1.0 mm flat Crofer

22 APU coupons. The contact area was formed between the

tops of the corrugation ridges an actual contact area of

1.25 cm2. The samples were held together by a force of 49 N

whentestedat700 �C inair for1000h.Thecontactpressurewas

0.40MPa. Direct current (DC) was estimated to be 640mA/cm2.

In the second ASR test procedure (Fig. 1(b)), two flat

(26*26*0.2 mm) MnCo1.7Fe0.3O4 coated Crofer 22 APU were

tested together with La0.85Sr0.15Mn1.1O3 (LSM) cathode spacer

(IRD Fuel Cells A/S, Denmark) to simulate the contact resis-

tance with the cathode. The contact load was 20 N, so contact

pressure was 29.5 kPa and the direct current density 200 mA/

cm2. The samples were heated (15 �C/min) up to 850 �C and

sintered 12 h to improve the contact between the samples and

the spacer, then cooled to 700 �C for the ASR test which was

carried out for 1000 h.

The cross-section and surface topography inspections

were done by a field-emission scanning electron microscopy

(FESEM, Carl Zeiss ULTRAplus, Oberkochen, Germany) using

secondary electron (SE)-image mode. Quantitative elemental

analyses were conducted by energy dispersive X-ray spec-

troscopy (EDS, INCA Energy 350, Oxford Instruments,

Oxfordshire, UK), X-ray fluorescence (XRF: Advant'X spec-

trometer, ThermoFisher Scientific, Waltham, MA, USA), and

inductively coupled plasma e atomic emission spectrometry

(ICP e AES: Liberty 200, Varian Inc., Palo Alto, CA, USA). The

XRF analysis was performed on the coated aluminium disks,

as described above. For ICP e AES analysis, the coating was

removed from the substrate, manually ground in an agate

mortar and dissolved in an aqueous HCl solution. Before the

cross-sectional studies the as-sprayed and oxidized samples

were cut, then mounted in epoxy in a chamber under reduced

pressure to avoid cracking and to give support while polishing

cross-section surfaces.

Qualitative phase analyses were conducted using an X-ray

diffractometer (XRD, Empyrean, PANalytical B.V., ALMELO,

Netherlands) with Cu-Ka radiation source. The data was

background corrected and crystallographic data, such as

crystallite size and d-spacing values were assessed by High-

Score Plus' software, which employs Scherrer formula. Addi-

tional phase analyses were performed by micro-Raman

spectroscopy (LabRam, Horiba Jobin-Yvon, Villeneuve D'Ascq,
France) on the top surfaces and the polished cross-sections of

the as-deposited samples, using a 632.81 nm-wavelength

He:Ne laser focused through a 100� objective.

Table 1 e Atmospheric plasma spraying (APS)
parameters.

Coating I (A) P (kW) Ar
(slpm)

H2

(slpm)
Distance
(mm)

Spray
layers

MnCo1.9Fe0.1O4 425 25 45 5 120 6

MnCo1.7Fe0.3O4

Anode diameter: 6 mm.

Simultaneous substrate heating temperature: 450 �C.
Fig. 1 e ASR set-ups for a) coatingecoating b) coating-

La0.85Sr0.15Mn1.1O3-coating test.
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The elevated temperature XRD studies were done with a

PANalytical X'Pert PRO diffractometer equipped with a high

temperature stage. A free-standing coating sample of

10 � 20 mm size was placed on a resistance-heated Pt strip

whose temperature was monitored through a thermocouple.

Patterns were acquired under isothermal conditions at 25 �C,

400 �C, 600 �C, 800 �C, 1000 �C and 1200 �C. Heating from one

temperature to the next took place in 24 min in all cases.

Acquisition conditions included a step size of 0.020�, a

counting time of 2.70 s/step and an angular range of

28�� 2q � 47�.

Results and discussion

Powder feedstock

Fig. 2 shows the morphologies of the MnCo1.9Fe0.1O4 and

MnCo1.7Fe0.3O4 powders. The powders were formed of

agglomerated primary particles. The MnCo1.7Fe0.3O4 powder

seemed to have more spherical particles, whereas the

MnCo1.9Fe0.1O4 powder had a blockier morphology. The

agglomerated morphology is a consequence of the spray

drying process, in which the aim is to improve the spray

powder flow properties in the thermal spray feeding system.

According to the EDS analysis, the relative amounts of el-

ements (Mn,Co:Fe) were 96.7:3.30 and 87.5:12.5 in at-% for the

MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4 powders, respectively. The

X-ray diffraction pattern of the MnCo1.9Fe0.1O4 and MnCo1.7-
Fe0.3O4 powders corresponded to the cubic MnCo2O4 phase,

shown in Fig. 3. The patterns were shifted to lower Bragg an-

gles, which was caused by the increase of unit cell volume as

the Co cations were replaced by the Fe cations. The d-spacing

values were calculated from the main peaks located near

35.7�, which belong to crystallographic plane (311) were

0.25 nm and 0.26 nm for MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4,

respectively. The Fe cations have a higher ionic radius

compared to Co cations. The radii for Co3þ and Fe3þ cations

are 0.61Å and 0.645Å, respectively [16]. The average crystallite

size for the MnCo1.9Fe0.1O4 powder was 27 nm and for

MnCo1.7Fe0.3O4 powders 229 nm. The higher Fe content can be

considered a possible cause for the larger crystallite size. The

influence of iron content on the average crystallite size was

confirmed by calcining at 900 �C in air for 20 h. According to

the HighScore Plus analysis software, average crystallite sizes

were 27 nm and 2.60 mm for MnCo1.9Fe0.1O4 and

MnCo1.7Fe0.3O4, respectively. Moreover, Miguel-P�erez et al. [8]

observed that iron doping increases the average primary

particle size.

As-sprayed coatings

Fig. 4 shows the polished cross-section views of the as-

sprayed coatings. Coatings with thicknesses of 20.30 mm

(sdv. 3.60 mm) and 18.90 mm (sdv. 2.80 mm) were obtained by

using the MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4 spray powder,

respectively, with the spray parameters presented in Table 1.

According the cross-section images, the microstructures of

the as-spayed coatings were fairly dense with some pores and

inter-splat porosity. These pores are well known as charac-

teristic features for thermally sprayed coatings [12]. Some un-

or partially molten MnCo1.9Fe0.1O4 particles were observed in

the cross-sectional images, as the blocky morphology pre-

vents the heat transfer of the plasma into the inner part of the

spray particle and therefore delays melting.

Simultaneous substrate heating is an efficient way to

decrease the amount of inter-lamellae gaps and segmentation

cracks in thermally sprayed coatings as shown in Ref. [15].

McPherson et al. [17] have observed that the average inter-

Fig. 2 e Morphology (FE-SEM)-images of the agglomerated a) MnCo1.9Fe0.1O4 and b) MnCo1.7Fe0.3O4 spray powders.

Fig. 3 e Crystallographic phase analysis of agglomerated

MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4 oxide spinel powders.
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lamellae gaps in atmospheric plasma sprayed (without sub-

strate heating) coatings varies from 0.01 to 0.1 mm, and, in

addition the real area of splatesplat contact is only 25% of the

total splat area. Poor inter-splat bonding increases the ohmic

resistance. Moreover, elimination of the segmentation cracks

is very important as those dominate the gas leakage in rela-

tively thin coatings [18]. The lamellae gaps and the segmen-

tation cracks are most likely formed due to the relaxation of

stresses, which are a consequence of fast cooling rate of the

deposited coating material. Some randomly located cracks

were still observed in the cross-sectional studies as shown in

Fig. 4(d) as a consequence of the sample preparation process

of the thin substrates. White arrows Fig. 4(c) show the desired

type of inter-splat bonding which presumably improves the

Cr-barrier properties and the electrical conductivity.

As reported in previous studies [10,13e15,19], the (MnCo(-

Fe))3O4 spinel decomposes during the thermal spray process.

This was confirmedwith the qualitative XRD studies of the as-

sprayed MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4 coatings pre-

sented in Fig. 5. The phase resulting from the decomposition

corresponds to a cubic M-oxide (where M ¼ Fe or Co) phase.

Thomann et al. [10] proposed that one possible phase could be

MnO. The decomposition phenomena can be decreased by

using simultaneous substrate heating, as some low intensity

peak of the spinel were observed in the XRD studies. It is most

likely that Fe doping may favour the formation of the spinel,

as the amount of the spinel phase was higher in the coating

where the stoichiometric factor of iron was 0.3. This hypoth-

esis is also supported by the observation from the calcination

test carried out on the spray powders, where crystallite

growth increased with higher iron content.

The decomposed phase structure was also analysed by m-

Raman spectroscopy, since it is a sensitive analysis method

for materials with poor crystallinity. Fig. 6 shows the m-Raman

spectra of the as-sprayed MnCo1.7Fe0.3O4 coating and the

feedstock powder. Results show the same decomposition of

the spinel structure as observed in the XRD studies. Instead of

the two peaks at 491 and 632 cm�1 found in the spectra of the

feedstock powder, and characteristic of crystalline MnCo1.7-
Fe0.3O4, the as-sprayed coatings had three peaks at 543, 623

and 672 cm�1. The difference between the cross-section and

surface analysis was minimal. Contrary to the XRD studies,

the Raman spectra did not exhibit correlation with peaks for

CoO, or for other compounds such as MnFe2O4 or MnO2 pha-

ses. In the literature [20], the Raman peaks of MnO2 between

500 cm�1 to 700 cm�1 are attributed to the stretching mode of

Fig. 4 e Cross-section images of as-sprayed aec) MnCo1.9Fe0.1O4 d-f) MnCo1.7Fe0.3O4 spinel coatings. Black arrows point the

typical coating faults such as segmental cracks (a, d) um-molten spray particle (c) and lamellar gaps (def). White arrows

point desirable spat-splat interaction (c). FE-SEM (SE) images.
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MnO6 octahedra. However, in this study the peaks of pure

MnO2 shown in Fig. 6 are shifted compared to the crystallized

MnCo1.7Fe0.3O4. This shift relates to the difference between

the stretching modes of MnO2 and MnCo1.7Fe0.3O4. In the case

of the CoO phase, the Raman peaks should be located at 484

and 693 cm�1 and for Co3O4 at 197, 485, 523, 624 and 693 cm�1

[21]. The exact crystallographic structure of the as-sprayed

coatings could therefore not be assessed by the XRD and m-

Raman spectroscopy due to the limitation of the available

databases.

In order to exclude the influence of selective evaporation of

metal ions for decomposition of the spinel, quantitative

chemical analyses were performed for the as-sprayed

MnCo1.7Fe0.3O4 coating and the MnCo1.7Fe0.3O4 spray powder.

The results of the XRF, ICP-AES and EDS studies are presented

in Table 2. The difference between the relative amounts of the

elements in the powder and in the as-sprayed coatings was

insignificant. It can be clearly established that selective

evaporation of the metal ions did not occur during the depo-

sition process, to the extent that it could bemeasuredwith the

analysis methods used in this study. Hence, it can be stated

that decomposition of the spinel was not caused by selective

evaporation and atmospheric plasma spraying can be safely

be used for the deposition of the MnCoFeO4 spinels.

Based on the quantitative (XRF, ICP-AES and EDS) results,

our previous studies [14,15], and results obtained by Thomann

et al. [10], decomposition of the spinel is the result of the rapid

cooling rate of the deposited material which did not allow the

ideal Mn2þ(Co3þ,Fe3þ)2O4
2� spinel structure to form. Due to the

multiple oxidation states of the elements as P�erez et al. [8]

have suggested and to the high process temperature, coat-

ings with mixed phases of cubic and partially amorphous

characters are formed.

The decomposed spinel structure can be restored to the

original spinel structure by a simple heat-treatment process in

air as reported in Refs. [10,13e15,23]. In order to study the

recovery process of the decomposed spinel more closely, the

free-standing MnCo1.7Fe0.3O4 coating (without substrate) was

placed on platinum foil and heat-treated stepwise and ana-

lysed simultaneously by XRD as shown in Fig. 7. As observed,

the spinel structure already starts to be restored at 400 �C.

According to peak intensity levels, the spinel was completely

restored between 600 �C and 800 �C (highlighted area). The

shifting of the Bragg angle to a lower 2-theta value was caused

by the increase of the d-spacing value due to the thermal

expansion of the spinel with temperature.

When the recovery temperature exceeded 1000 �C, the

restored spinel decomposed back to the cubic structure.

Contrary to the metastable structure obtained in the deposi-

tion process, the spinel decomposed irreversibly into simple

metal oxides, which were observed after the cooling cycle at

room temperature (HT). The results were similar to the study

of Kiefer et al. [7] who obtained multi-phase structures of

MnCo2O4, CoO and Co3O4 phases after heat treatment of the

MnCo2O4 spinel at 1200 �C.

Oxidized coatings

Fig. 8 shows the cross-section view of the oxidized spinel

samples. The initial microstructure was changed during the

1000 h oxidation cycle. Instead of the cracks and inter-splat

Fig. 5 e Crystallographic phase studies of the as-sprayed

MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4 oxide spinel coatings.

Fig. 6 e m-Raman spectra of the powder and as-sprayed

MnCo1.7Fe0.3O4 spinel coating. Reference spectra of Mn3O4,

MnO2 and CoO(OH) were plotted based on the spectral data

taken from. [22].

Table 2 e Element concentration in % weight (XRF, ICP-
AES and EDS).

Mn Co Fe

X-ray fluorescence

MnCo1.7Fe0.3O4 spray powder 27.1 61.9 11.0

As-sprayed MnCo1.7Fe0.3O4 coating 27.1 62.0 10.9

Inductively coupled plasma spectrometry

MnCo1.7Fe0.3O4 spray powder 27.9 60.8 11.3

As-sprayed MnCo1.7Fe0.3O4 coating 27.6 60.7 11.4

Energy dispersive X-ray spectroscopy

MnCo1.7Fe0.3O4 spray powder 31.4 56.2 12.4

As-sprayed MnCo1.7Fe0.3O4 coating 31.9 56.3 11.8
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porosity, the oxidized coatings contained un-connected voids.

The void distribution exhibited a through thickness gradient,

in a way that the top part of the coating was mostly dense,

with more pores next to the substrate. Thomann et al. [10]

have observed a similar kind of microstructure in a high ve-

locity oxy-fuel (HVOF) sprayed (Mn,Co,Fe)3O4 coating.

Although the voids can be considered disadvantageous

structural faults, the coatings seemed to be fairly dense

microstructure, without a sign of open porosity.

Residual stresses and the disordered metastable crystal

structure, as observed in the XRD studies, enhance the mass

transport properties, caused partial sintering observed as void

coarsening. During sintering inter-splat porosity, cracks and

segmentation cracks reorganize so that a lower net surface

energy is obtained. The temperature at which sintering occurs

is 0.5e0.8 *Tm (where Tm is the melting temperature of the

material in degrees Kelvin) when the material system is

formed of micron sized particles, and 0.2e0.3 * Tm for nano-

sized particles. In addition to particle size, the sintering tem-

perature depends on the intercrystallite/intra-agglomerate

pore distribution and pore curvature [24]. The pore curvature

in this study means the contact point of two neighbouring

splats (Fig. 4(e)). The melting temperature of the MneCo spi-

nels is from 1300 �C to 1400 �C, according to Eun et al. [25] and

from 1600 �C to 1700 �C according to Aukrust et al. [26]. It can

be expected that the melting temperature lies somewhere

between 1300 �C and 1700 �C depending on the material

composition, and so sintering most likely occurred during the

oxidation cycle at 700 �C.

The authors consider that the void redistribution is a

consequence of many individual factors. Firstly, the top parts

of the coatings were denser i.e. the inter-splat caps were

smaller compared to those layers next to the substrate. This

was caused by the progressively increasing surface tempera-

ture during the spray process due to the lower heat transfer

properties of the coating compared to the substrate. The,

higher surface temperature enhanced the formation of denser

coating layers. Secondly, the selective evaporation, enrich-

ment or loss due to the migration of elements to the surface

changed the sintering behaviour of the spinel material.

Thirdly, the substrate was a rigid element that caused aniso-

tropic shrinkage behaviour of the coating [27].

The EDS analysis listed in Table 3 and pointed out in Fig. 8

revealed relatively high Fe loss and Co enrichment on the

surface of the oxidized coatings. According to the authors'
knowledge, the evaporation of Fe is not reported in the open

literature when similar coatings have been oxidized. Partial

evaporation of the elements can be excluded, as it was not

observed to occur during the high temperature deposition

process. Therefore, it can be presumed that Fe cations

migrated towards or into the Cr-rich oxide scale and Co

diffused towards to surface.

Due to the long term exposure at 700 �C in air, oxide scales

were indeed formed between the substrates and the spinel

coatings, as observed in cross-section images (Fig. 8) and

confirmed by the EDS analysis presented in Table 4. The EDS

area analysis indicated that the oxide scales were mostly

formed of Cr cations and O anions, referring to the formation

of Cr2O3. When the MnCo1.7Fe0.3O4 coating was oxidized the

oxide scale seemed to have a dual layer structure. In addition

to a Cr2O3 layer, the EDS analysis indicated formation of a Cr-

and Co-rich layer with a close correlation for (Co,Cr)3O4.

The oxidized MnCo1.7Fe0.3O4 coating was carefully ground

with 1200 grit paper to reveal the oxide scale beneath the

coating. Fig. 9 shows the X-ray diffraction pattern of the

revealed oxide scale. The peak pattern corresponded to Cr2O3

and (Mn,Co,Fe)3O4 spinel phases in addition to the Crofer 22

APU substrate. The results were comparable to the results

obtained by Fang et al. [28], as they also detected Cr2O3 and

MnCoCrO4. The exact determination of the (Co,Cr)3O4

composition is problematic using the XRD analysis, as the

XRD pattern [29] has the same peak positions as those of

(Mn,Co)3O4 and (Mn,Co,Fe)3O4 phases as shown in Fig. 9.

Fig. 10 shows the X-ray diffraction patterns of the oxidized

coatings. The original spinel phases were observed after the

oxidation cycle in accordance with the in-situ high tempera-

ture XRD analysis as previously described. In addition, the

CoCo2O4 phase was observed when MnCo1.9Fe0.1O4 was used

as the coating material. Both spinels had close correlation

with MnCo2O4. The average crystallite sizes for the oxidized

Fig. 7 e Stepwise heat-treatment process for the as-

sprayed MnCo1.7Fe0.3O4 spinel coatings. Peak position and

relative intensity levels of spinel and decomposed cubic

phases (top) and projected xey plane (lower). Dashed lines

and grey dots present the decomposed structure and solid

lines and black dots the MnCoFe spinel.
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MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4 coatings were 22 nm and

45 nm, respectively. For the MnCo1.7Fe0.3O4 coatings, the

crystallite size was notably smaller than that of the powder

feedstock (280 nm). The small crystallite size is a consequence

of decomposition of spinel and formation of simple cubic

oxides during the thermal spray process, in addition to the

migration of elements, such as the loss of Fe cations.

The Cr-migration was measured by the EDS point and area

analysismethods. The relative EDS intensities of the elements

are presented in Table 3 (point analyses across the coating

thickness) and in Table 5 (area analysis on top surfaces).

Relatively low Cr values were obtained for the coatings. The

coatings effectively decreased the Cr-migration rate, as point

analyses show zero Cr content 10 mm from the substrate. Ac-

cording to the area analysis, MnCo1.9Fe0.1O4 fully prevented

the Cr migration whereas existence of some Cr was indicated

in the MnCo1.7Fe0.3O4. Therefore, MnCoFeO4 spinel coatings

with a thickness of 20 mm should provide adequate Cr-barrier

properties at 700 �C.

The ASR data for the oxidized MnCo1.9Fe0.1O4 and

MnCo1.7Fe0.3O4 are presented in Fig. 11. The significant drop in

the ASR values for the first few hundreds of hours can be

explained by i) increase in the contact area, as the corrugated

Fig. 8 e Cross-section and surface topography images and EDS point and area analyses of oxidized MnCo1.9Fe0.1O4 (aec)

MnCo1.7Fe0.3O4 spinel coatings (d & e). The measurement location of the EDS analyses are marked on the FE-SEM (SE)-

images. The results obtained from point analyses (a, d) are presented in Table 3 and area analyses (b, e) and (c, f) in Tables 4

and 5, respectively.

Table 3 e EDS analysis spectra of the analysis points
presented in Fig. 8. The results are presented in at-%.

Spectrum O Mn Co Fe Cr Cr/(Co þ Mn þ Fe)

MnCo1.9Fe0.1O4

1. 46.7 16.7 36.6 0.0 0.0 0.0

2. 59.3 13.5 27.2 0.0 0.0 0.0

3. 58.4 14.4 26.2 1.0 0.0 0.0

4. 58.8 14.3 25.8 1.4 0.0 0.0

5. 58.4 14.6 25.5 1.5 0.0 0.0

6. 58.2 14.4 25.0 2.5 0.0 0.0

7. 51.5 16.1 27.6 3.9 0.9 0.0

8. 35.2 0.0 0.0 42.4 22.5 0.5

9. 0.0 0.0 0.0 78.4 21.6 0.3

10. 0.0 0.0 0.0 78.4 21.6 0.3

MnCo1.7Fe0.3O4

1. 39.2 5.7 53.5 1.7 0.0 0.0

2. 58.7 12.4 25.9 2.9 0.0 0.0

3. 59.0 13.4 23.6 4.0 0.0 0.0

4. 58.2 14.3 22.6 5.0 0.0 0.0

5. 58.5 14.3 21.4 5.8 0.0 0.0

6. 58.6 14.4 19.9 6.8 0.4 0.0

7. 56.7 14.3 19.9 8.5 0.7 0.0

8. 61.7 2.1 0.8 3.7 31.7 4.8

9. 0.0 0.0 0.0 78.1 21.9 0.3

10. 0.0 0.0 0.0 77.9 22.1 0.3
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substrates deformed (creep) due to external force and high

temperature, ii) sintering and crystallographic changes i.e.

restoration of the spinel structure, crystallite growth and

material transport to inter-splat caps and contact areas,

which eventually improved electrical conduction. The values

levelled off to 9.20 mU cm2 and 14.10 mU cm2 for MnCo1.9-
Fe0.1O4 and MnCo1.7Fe0.3O4, respectively, at the end of the

1000 h test cycle. The relative order of the conductivity of the

iron doped spinels is in line with the study of Kiefer et al. [7].

Fig. 12 shows ASR data and cross-section view of the

MnCo1.7Fe0.3O4-LSM and Crofer 22 APU-LSM spacer. The same

decrease in the ASR values, as in the coatingecoating test was

observed for the first 300 h. This drop in values is linked to the

same behaviour of the coating and the LSM spacer as

described for the coating-coatings test procedure. ASR

reached a value of 50 mU cm2 after the 1000 h test cycle. The

continuous decrease in the ASR values is also strongly linked

to the slow sintering mechanisms of the porous LSM spacer

(Area 4 in Fig. 12(b)). Due to this porous structure, the number

of the contact points in the coating-LSM interface increased

over oxidation time due to mutual reactions and material

transport. The same Cr-rich oxide scale with the thickness a

5 mm was formed (Area 2 in Fig. 12(b)), but due to the dense

spinel coating, furthermigration of Cr was effectively blocked.

Atmospheric plasma sprayed iron doped oxide spinel

coatings, and especially MnCo1.9Fe0.1O4 exhibited low ASR

values due to low coating thickness, densemicrostructure and

Cr-free composition with effective Cr-barrier properties. Since

the ASR test procedures vary among published studies, the

exact benchmarking of the coating properties between depo-

sition methods cannot be done. In general, the ASR values

were on the same level with the studies reviewed in the

introduction.

It is evident that atmospheric plasma spraying can produce

dense spinel coatings for the SOFC interconnects. Dense

microstructure is the most important factor to provide

adequate protection against volatile Cr-compounds and to

obtain lowohmic resistances in long termuse. Since the dense

microstructure is obtained during the spraying process, post-

deposition heat treatment processes are no longer needed.

Althoughatmosphericplasmasprayingcanbeconsideredhigh

temperature deposition process, selective evaporation of ele-

ments does not occur during the deposition process.

Conclusion

Iron doped oxide spinels are promising candidates for pro-

tective coatings on the SOFC interconnects in order to provide

Table 4 e EDS area analysis spectra of the oxide scales
(Fig. 8) formed between the oxidized coatings. The results
are presented in at-%.

Area Cr Mn Fe Co O

MnCo1.9Fe0.1O4

A1. 0.8 13.6 3.3 23.4 58.9

A2. 31.2 0.9 2.7 2.0 63.1

A3. 20.7 0.4 77.3 0.5 1.3

MnCo1.7Fe0.3O4

B1. 0.9 13.7 8.0 19.8 57.6

B2. 24.3 2.5 1.5 8.0 63.7

B3. 32.1 1.9 2.8 0.7 62.6

B4. 20.7 0.5 73.6 0.4 4.7

Fig. 9 e Crystallographic phase analysis of the sub-scale

formed between the oxidized MnCo1.7Fe0.3O4 coating and

Crofer 22 APU substrate.

Fig. 10 e Crystallographic phase studies of the oxidized

MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4 oxide spinel coatings

after 1000 h oxidation at 700 �C.

Table 5 e Cr-content in wt-% from the surface by the EDS
area (50 mm * 35 mm in Fig. 8) analysis.

Sample Cr (wt%) Mn (wt%) Fe (wt%) Co (wt%)

MnCo1.9Fe0.1O4 0.0 29.1 1.6 69.4

MnCo1.7Fe0.3O4 0.7 30.5 7.4 61.5
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good Cr-barrier properties and sufficiently high electrical

conductivity. In this study, MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4

coatings were manufactured using the atmospheric plasma

spraying process with a simultaneous substrate heating

setup. The clear advantage of this process is that dense

coatings were sprayed without post-deposition heat treat-

ments. Although thermal spraying is a high temperature

deposition process, selective evaporation of elements did not

occur.

Although coatings with optimal microstructures were

sprayed, the spinels decomposed during the spraying process.

This was caused by the high cooling rate of the deposited

splats, which prevented the formation of the desired spinel

structure. Tests demonstrated that being metastable, the as-

sprayed structure could be restored to the original spinel by

a simple heat treatment process in air. The spinel re-

crystallization process starts at 400 �C, and is most effective

from 600 �C to 800 �C. The same test showed that the iron

doped spinels have a maximum operating temperature of

1000 �C. Above this, the spinel decomposes and forms simple

metal oxides.

According to the ASR results, iron doping improves the

electrical conductivity of the (Mn,Co)3O4 based spinels. Values

as low as 9.20 mU cm2 and 14.10 mU cm2 for MnCo1.9Fe0.1O4

Fig. 11 e ASR values of oxidized MnCo1.9Fe0.1O4 and MnCo1.7Fe0.3O4 spinel coatings-coating.

Fig. 12 e ASR values of MnCo1.7Fe0.3O4-LSM contact and Crofer 22 APU-LSM contact (a), and cross-sectional SEM micrograph

of the Crofer 22 APU-MnCo1.7Fe0.3O4-LSM contact with EDX linescan of the Cr concentration (b).
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and MnCo1.7Fe0.3O4, respectively, were obtained at the end of

the 1000 h oxidation cycle at 700 �C in air. As the tests were

completed without contact paste, the values represent a dry

coatingecoating contact. The MnCo1.7Fe0.3O4 coating was

tested together with an LSM-based and 50 mU cm2 values

were reached at the end of the 1000 h test cycle.

According to the results obtained in this study, both com-

positions exhibited effective Cr-barrier properties against

volatile Cr(VI) compounds and migration of Cr cations. The

MnCo1.9Fe0.1O4 spinel is the most promising spinel composi-

tion for the SOFC interconnects. The results demonstrated

that, the atmospheric plasma spraying process is a viable

technique for manufacturing protective coatings for the SOFC

interconnectors. Dense microstructures effectively blocked

the Cr-migration, in addition the Cr-free spinel and dense

microstructure contributed to a low electrical resistance.
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a b s t r a c t

Protective coatings based on manganese cobalt oxide spinels are required in solid oxide

fuel cells (SOFCs) to prevent the evaporation of volatile Cr(VI)-compounds from the

metallic interconnectors and to minimize high temperature corrosion. Atmospheric

plasma spraying (APS) was used to manufacture dense manganese cobalt oxide protective

coatings on Crofer 22 APU substrates by employing two different spinel powders. The spray

powders were MnCo2O4 and Mn2CoO4 þ Co (equivalence for Mn1.5Co1.5O4). The

Mn2CoO4 þ Co powder was prepared by agglomerating the oxide powder with fine metallic

cobalt powder. The coated substrates were oxidized at 700 �C in air for 1000 h. During the

high temperature oxidation, a four-point on-line measurement technique with a current

density of 640 mA/cm2 was simultaneously used for area specific resistance (ASR) studies.

The coatings were characterized by X-ray diffraction (XRD), field-emission scanning elec-

tron microscopy (FESEM), an energy dispersive spectrometer (EDS) and Raman

spectroscopy.

The APS coatings had dense microstructure, which decreased the oxidation of the

substrate. The MnCo2O4 coating showed indication of some Cr-migration, whereas

Mn2CoO4 þ Co showed good Cr-barrier properties. The ASR test showed that APS coated

Mn2CoO4 þ Co is a promising candidate material for SOFC interconnect applications.

Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
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Introduction

Chromium-containing ferritic stainless steels show the high-

est potential for solid oxide fuel cell interconnects (ICs) due to

i) high mechanical strength, ii) ideal thermal conductivity, iii)

excellent electronic conductivity, iv) coefficient of thermal

expansion (CTE) match with state-of-the-art solid oxide cells

and v) their reasonably low manufacturing costs, even for

more complex IC profiles [1]. The use of ferritic stainless steels

is based on the acceptable corrosion behaviour, which is

based on the formation of chromium rich oxide scale e.g.

Cr2O3 at the typical SOFCs' operating temperatures the order

of 600e800 �C.

Under appropriate conditions Cr2O3 reacts with water

molecules (cathode side atmosphere) and may form CrO3 and

CrO2(OH)2 compounds [2]. These harmful Cr-compounds tend

to migrate to a triple phase boundary (TPB), which is a shared

active interface between the cathode, electrolyte and oxidant

gas phases. On the TPB, these Cr-compounds reduce to Cr2O3

(manganese containing cathode) or as SrCrO4 and Cr2O3 (non-

manganese containing cathode) causing degradation of the

cell by decreasing the total area of the TPB [3e5].

It is well known that the ferritic stainless steel ICs must be

coated prior to the use in the SOFCs. The coating prevents Cr-

transport and thereby protects the cathode from degradation.

The basic requirements for the [interconnect]-[coating] sys-

tem are:

� low diffusion coefficient of Cr-ions and low transport of Cr-

compounds [6],

� excellent electrical conductivity, with the objective of 100%

electronic conduction [7],

� chemical, microstructural and phase stability [6,7],

� coefficient of thermal expansion (CTE) match with the

other stack components [7],

� the coatings, together with the metallic substrate, should

present high temperature strength, creep and spallation

resistance [7],

� simple and economical manufacturing process in mass

production [7].

Recent studies focus on the use of (Mn,Co)3O4 spinels, due

to their excellent electrical properties [8e12] and the

compatibility of coefficient of thermal expansion (CTE) with

ferritic stainless steels [11]. The (Mn,Co)3O4 spinel coatings

provide sufficiently lowASR values as reviewed in Table 1, low

Cr-transport rate [2] and formation of stable Cr-containing

spinels [13]. Although promising results have been reported,

the study of Persson et al. indicates that the (Mn,Co)3O4

coatings may suffer from the phenomenon known as break-

away oxidation-effect (uncontrolled oxidation) above than

900 �C after 1000 h oxidation, or when the thickness of the

oxide scale exceeds 10e15 mm. The break-away oxidation was

not observed at lower temperatures [14].

The spinels can be deposited either by conventional wet

ceramic processes [8,10,11,14,15,18e23], by electrophoretic

deposition (EPD) [24e26] or by a sputtering process

[10,13,16,27,28]. Post heat-treatment/sintering is typically

required in the previous processes, except in the sputtering T
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processes. The post heat-treatment removes the organic

binders and to sinter the primary particles in order to obtain

well-adhered coatings with a dense microstructure [29]. This

is usually a two-step process for (Mn,Co)3O4 spinel containing

pastes [11,15,19e21,23] or spinel-forming carbonate slurries

[8]. In these cases the deposited paste or slurry is first heat-

treated in a reducing (H2/Ar/H2O) atmosphere, in a process

called reactive sintering, followed by the heat-treatment in an

oxidizing atmosphere (air). Sintering can also be a one-step

heat-treatment process in an oxidizing atmosphere, but at

considerably higher temperatures as Yoo et al. [25] have re-

ported, by sintering an electrophoretically deposited

Mn1.5Co1.5O4 e La0.8Sr0.2MnO3 dual layer coating at 1200 �C in

air for 2 h.

Due to the heat-treatments, Cr-rich scale is generally

formed between the substrate and the coating as for instance,

reported by Uehara et al. [21]. This oxidation is the conse-

quence of the porousmicrostructure that is formed during the

reactive sintering from segregatedMnO and Co phases [11,23].

Before the dense coating is finally obtained in an oxidizing

atmosphere, the porous microstructure enables the oxidation

of the substrates. It is noteworthy that the Cr-rich scale can

form even if the coatings are heat-treated only in a reducing

(97%H2/3%H2O) atmosphere as Zhang et al. [24] have reported

in their study.

Thermal spraying, compared to other available methods,

produces relatively dense microstructures directly without

subsequent sintering processes. The coatings are formed of

mostly molten, and in some circumstances semi-molten

droplets which impact the substrate and form well adhered

solidified lamellas called splats [30]. This as-sprayed structure

is generally sufficiently dense, and therefore time-consuming

heat-treatment processes are not required.

Although, cross-sectional studies [12,31e35] and the Cr-

barrier properties [12,17,33] of the thermally sprayed

(Mn,Co)3O4 spinel coatings have been reported, the long-time

ageing tests, area specific resistance (ASR) properties, post-

modern analysis of the oxide scales formed between the

substrates and the atmospheric plasma sprayed (APS)

MnCo2O4 and Mn1.5Co1.5O4 spinel coatings have not been

studied. The ASR, and Cr-barrier properties of the atmo-

spheric plasma sprayed coatings produced from the powder of

MnCo2O4 and Mn2CoO4 doped with metallic Co coatings on

thin Crofer 22 APU substrates were studied at 700 �C in air for

1000 h and reported in this study.

Experimental

The substrate material was Cr-alloyed (Cr: 20e24 wt%) ferritic

stainless steel grade Crofer 22 APU (ThyssenKrupp VDM

GmbH, Werdohl, Germany) designed for the SOFCs. This

experiment employed two different substrate thicknesses:

0.2 mm and 0.1 mm. The substrate with the thickness of

0.2 mm was corrugated on 34 * 34 mm2 area. This corrugated

area simulated the profiles of the gas channel networks. The

flat substrate with the thickness of 1.0 mm was a counterpart

on area specific resistance (ASR) tests as will be described

later. In addition, the flat 0.2 mm thin Crofer 22 APU was uti-

lized for the cross-sectional studies of the as-sprayed

coatings. Prior to the spray process, the substrates were grit

blasted with 240 grit Al2O3 sand, in order to roughen the sur-

face and thereby improving the adhesion of the as-sprayed

coatings to the substrate. Grit blasting was utilized for both

sides of the substrates in order to even out the stresses,

formed during the blasting process.

Two different spray powders with different chemical

compositions were used in this study. The first powder was

commercially acquired MnCo2O4 spinel powder (The Swiss

Federal Laboratories for Materials Science and Technology,

Switzerland) with the particle size range of �33 þ 6 mm

(d90ed10) measured by laser diffraction (Helos, Sympatec

GmbH, Clausthal-Zellerfeld, Germany). The powder was the

same as Thomann et al. [12] used in the HVOF process.

The second powder was self-made cermet (ceramic-

metallic) Mn2CoO4 þ Co spinel powder. The Mn2CoO4 spinel

was mixed together with finely dispersed metallic Co-

particles. The intention was to reduce porosity (cracks and

pores) of the as-sprayed coating as Co works as a binder

during spraying, similarly to cermet type of tungsten carbide

cobalt coatings [36]. As these type of coatings should exhibit

longer lifespans at high temperatures, oxidation of the added

Co and the subsequent reaction with Mn2CoO4 could ideally

form Mn1.5Co1.5O4 which consists of the [Mn1þdCo2�dO4]cubic
and [Mn2-dCo1�dO4]tetragonal phases and no other undesirable

compounds or side products. Park et al. have studied similar

cermet based powder by spray drying La0.6Sr0.4Co0.2Fe0.8O3

powder together with finely dispersed Ag-powder. The cross-

sectional studies clearly showed that Ag alloying effectively

reduced the amount of cracks, but unlike in this study Ag was

inert with the La0.6Sr0.4Co0.2Fe0.8O3 phase [37].

The Mn2CoO4 þ Co powder was produced by solid-state

synthesis. In the solid-state synthesis, appropriate amounts

of MnCO3 and CoCO3 were weighted and milled for 20 h in a

drum ball mill. After the milling, the mixture of the powders

was calcinated at 800 �C in air for 6 h to obtain the spinel

structure. The obtained spinel powder was mixed with

metallic Co powder. The amount of Co used together with the

spinel Mn2CoO4 had equivalence with the Mn1.5Co1.5O4

composition. Themixture ofMn2CoO4 powder andmetallic Co

was dispersed in water using 1 wt% of dispersant (Dispex A40,

Ciba, Basel, Switzerland) by a planetary ball mill for two hours

at 300 rpm with steel balls and vials (Fritsch pulverisette 5,

Fritsch GmbH, Germany) to form a suspension. As an organic

binder, 2 wt% of polyvinyl acetate (PVA, Celanese, Dallas, USA)

was added to the suspension by a high shear mixer. The

suspension was spray dried by a spray dryer (Niro pilot, GEA

Niro, Soeborg, Denmark). A rotary atomizer with high rotation

speed was used in order to get the fine agglomerated powder.

The agglomerated powder was sintered at 1050 �C in Ar þ 3%

H2 to improve the strength of the powder without oxidizing

Co. Isothermal step at 500 �C was used for two hours in order

to pyrolyse the PVA without fracturing the spray dried ag-

glomerates. The powder batch underwent a sieving process,

selecting particles in the size range of�36þ 11 mm(d90ed10), to

be suitable for the APS process.

The coatings were deposited by using the Sulzer Metco

A3000S atmospheric plasma spray (APS) system with a 55 kW

F4-MB (Sulzer Metco, Winterthur, Switzerland) plasma gun on

the heated substrates. Optimization of the torch specific
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spraying parameters [32] and the advantages of simultaneous

heating, including the set-up of the heating system, is re-

ported in Ref. [31]. Table 2 shows the detailed spraying pa-

rameters employed in the present study.

Area specific resistance (ASR) tests were utilized by using a

four-point method (Fig. 1) for the coated samples at 700 �C in

air for 1000 h. The ASR values were measured by using the

corrugated and coated 0.2 mm Crofer 22 APU in contact with

the flat and coated 1.0 mm Crofer 22 APU coupons. The top of

corrugation ridges formed the actual contact area calculated

as 1.25 cm2. The sampleswere arranged as a stack and pressed

together by a force of 49 N, whereby the estimated contact

pressure was 0.40 MPa. Dey et al. have studied the influence of

contact pressure for the contact resistance on the cathode-

interconnect interface. The contact pressure of 0.064 MPa

generated the lowest contact resistance. Higher contact

pressure than 0.064 MPa had only marginal influence on the

contact resistivity [38]. Therefore the pressure applied in this

study, provided a good electrical contact between the sam-

ples. Direct current (DC), estimated as 640 mA/cm2, was run

through 1.0 mm platinum (Pt) leads point welded in 1.0 mm

steel plates at the bottom and top of the test sample stack. The

voltage difference was measured by two 0.5 mm Pt-leads, one

welded on the flat and coated substrate, and the other on the

corrugated and coated substrate. With this test arrangement,

the voltage difference was measured over two coated and

facing substrates. In order to obtain ASR values for the single

coated sample the values were dived by two. In addition, un-

coated 1.0 mm thick flat steel plates were used as separator

disks between the stacked samples.

The ASR tests were accomplished without any contact

paste, such as platinum or perovskite based pastes. It is well

known that these pastes improve the electrical contact be-

tween the coatings and therefore decrease the ohmic resis-

tance, but by eliminating the contact paste, it was confirmed

that the results described only the deposited coatings.

The coating cross-section and powder morphology in-

spections were done by a field-emission scanning electron

microscopy (FESEM, Carl Zeiss ULTRAplus, Oberkochen, Ger-

many) attached with energy-dispersive X-ray spectroscopy

(EDS, INCA Energy 350, Oxford Instruments, Oxfordshire, UK)

employed for elemental analyses. The qualitative phase ana-

lyses of the coatings were done by using X-ray diffractometer

(XRD, Empyrean, PANalytical B.V., ALMELO, Netherlands) with

Cu-Ka radiation source and with Raman Spectroscopy. Raman

spectra were measured with an Andor Shamrock 303 spec-

trograph and a Newton 940P cooled CCD-camera. The excita-

tion laser was a 532 nm wavelength Cobolt Samba with a

beam diameter of 0.7 mm.

Epoxy resin was used to mould coated samples in a

chamber under reduced pressure to prevent the cracking and

give support while grinding, and polishing the cross-section

surfaces.

Results and discussion

Powders

The commercial fused and crushed MnCo2O4 spinel powder

contained partially agglomerated and sintered particles as

shown in Fig. 2(a). The relative amount ofMn and Cowas 35:65

at-%, obtained by the EDS area analysis, which corresponds to

the stoichiometric composition of MnCo2O4. The material

synthesis was partially completed according to the qualitative

XRD analysis shown in Fig. 3. The powder contained

Mn1.5Co1.5O4 and CoO phases, which should eventually form

the cubic MnCo2O4 spinel structure.

The Mn2CoO4 þ Co powder obtained by the spray-drying

process exhibited an agglomerated morphology as shown in

Fig. 2(b). Due to the spray-drying process, the number of non-

agglomerated primary particles was significantly lower in

comparison to the MnCo2O4 powder. The premise of using the

spray-drying process is to improve the flowability properties

of the powder. The relative amount of Mn and Cowas 58:42 at-

%. The powder contained MnO and Co phases as shown in

Fig. 3. This dual phase structure was expected to form, due to

heat-treating in a reducing atmosphere. Xianshuang et al. [39]

have obtained the same phases when post heat-treating

Mn0.9Y0.1Co2O4 spinel powder in H2 atmosphere. The average

Co particle size was 1.80 mm (standard deviation 0.49 mm)

pointed with the white arrows in Fig. 2(b).

As-sprayed samples

Fig. 4 presents the polished cross-section surfaces of the APS

sprayed coatings. The average coating thicknesses (40

Table 2 e Atmospheric plasma spraying (APS) parameters.

Powder/sample code I (A) P (kW) Ar (slpm) H2 (slpm) Spray distance (mm) No. of spray layers

MnCo2O4 425 25 45 5 120 6

Mn2CoO4 þ Co

Anode diameter: 6 mm

Simultaneous substrate heating temperature: 450 �C

Fig. 1 e ASR measurement arrangement for coated

samples. Light grey presents the Crofer 22 APU substrate

and dark grey presents the as-sprayed coatings.
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measuring points) were 11.50 mm (sdv. 3.02 mm) and 18.70 mm

(sdv. 3.85 mm) mm for the MnCo2O4 and Mn2CoO4 þ Co coat-

ings, respectively. Obtaining a thin coating with uniform

thickness is usually a challenge in the APS process, due to the

fairly thick lamellae/splat thickness caused by large agglom-

erate size. In this study, the powder particle size ranges were

�33 þ 6 mm (d90ed10) and �36 þ 11 mm (d90ed10) for the

MnCo2O4 and Mn2CoO4 þ Co powders, respectively and the

spinel powder, used in our previous study [31], with similar

size range formed splats with the thickness of 1.40e1.50 mm.

Therefore, desired coating thickness is achieved by a few tens

of overlapping spray splats, which increased the possibility of

uneven coating formation.

In general, the thermally sprayed coatings contain inter-

lamellar cracks and pores [30], but by optimized spraying pa-

rameters, it is feasible to produce coatings for SOFC applica-

tions with adequate density as shown in Refs. [12,31,32,35].

The clear advantage is that, dense microstructure can be

produced without the separate post heat-treatment processes

and hence, the Cr-rich oxide layer is not formed as discussed

in the introduction.

In order to achieve adequate density, spraying parameters

should be optimized so that the on-flight particle temperature

exceeds themelting point, but remains significantly under the

boiling point of the materials, in order to avoid selective

evaporation of the species with high vapour pressures. For the

MnCo2O4, the optimal in-flight particle temperature should be

at least 1700 �C, according to melting temperature of

(Mn,Co)3O4 which varies from 1570 �C to 1760 �C (in air), in

relation to the relative content of Mn and Co [40]. According to

the EDS analysis, the elemental compositions of Mn and Co

were 32:67 at-%, which was comparable with the powder

feedstock. For the Mn2CoO4 þ Co powder, melting tempera-

ture of Co is 1495 �C [41] and 1875 �C (in air) for MnO [42].

However, plasma changes the melting behaviour of the ma-

terials. This is probably caused by the selective evaporation of

Mn during the spraying process, as the elemental composition

was 51:49 in at-% for the as-sprayed coating. Lim et al. [43] also

observed the selective evaporation of Mn when spraying

La0.8Sr0.2MnO3 powder.

The density of the as-sprayed coatings is enhanced by the

simultaneous substrate heating. With the simultaneous sub-

strate heating, the amount of inter-splat cracks and segmen-

tation cracks can be reduced due to the controlled cooling rate

of the deposited splats and the coating after the spraying

process [31].

White arrows in Fig. 4 show good splat bonding was ob-

tained by the substrate heating. In principle, this kind of inter-

splat bonding should provide coatings with lower ohmic

resistance. The cross-section analysis shows some randomly

located closed pores and inter-splat cracks. These pores are a

consequence of gas entrapment. Fig. 2(b) shows that the

agglomerated spray particle is formed of partially sintered

primary particles and therefore has a porous microstructure,

as shown in cross-sectional studies reported in Ref. [32]. The

porous structure can cause trapping of gas inside the particle,

leading to formation of pores.

Metallic Co as a binder mixed with the Mn2CoO4 spinel

particles enhanced the density even further. Also, the porous

agglomerated morphology may contribute to the melting

process from inside the agglomerate. This was verified in the

cross-section images (Fig. 4(d and e)), as the amount of the

cracks was decreased compared to the MnCo2O4 coating. It is

most likely that the melted Co particles were evenly distrib-

uted in the gaps and oxidized or mixed with the Mn2CoO4

spinel phase as relatively low amounts of Co precipitations,

Fig. 2 e Morphology inspection of a) commercial MnCo2O4 powder and b) Mn2CoO4 þ Co powder (white arrows indicate the

Co phase). Backscattered electron FESEM-images.

Fig. 3 e Crystallographic phase XRD analysis of the

MnCo2O4 and Mn2CoO4 þ Co powder feedstock.
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pointed with black arrows in Fig. 4(e), which were observed in

the cross-section studies.

As anticipated, the spinel decomposed during the deposi-

tion process and a simple cubic metal-oxide phase was

formed as shown in Fig. 5. Such decomposition has been

observed to occur only in thermally sprayed coatings

[12,31e33], due to the rapid cooling of the spray splats [12,31].

This cubic structure is a metastable phase, but restorable to

the original crystallographic spinel structure by a post heat-

treatment procedure as reported e.g. in Refs. [12,35]. In some

cases, the decomposition can be partially prevented by the

simultaneous substrate heating as observed in our previous

study reported in Ref. [31].

Oxidized (ASR tested) samples

Fig. 6 presents the cross-section images of the oxidized

MnCo2O4 and Mn2CoO4 þ Co coatings. The typical as-sprayed

lamellae structure was not observed after the oxidation. The

coatings contained submicron to micron sized isolated voids

and the overall porosity was increased. The cross sectional

Fig. 4 e Cross-section images of the as-sprayed aec) MnCo2O4 and def) Mn2CoO4 þ Co coatings. Black arrow shows an un-

molten MnCo2O4 particle in (b) and partially molten or un-molten Co particles in (e). White arrows shows well adhered splat

boundaries in (c, e, f) FESEM (SE)-images.

Fig. 5 e Crystallographic phase studies of the as-sprayed

MnCo2O4 and Mn2CoO4 þ Co coatings.
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studies do not show presence of open porosity. A similar kind

ofmicrostructure was observed in the oxidized (Mn,Co(Fe))3O4

coatings produced by the wet ceramic processes [10,19],

magnetron sputtering [13] and HVOF spraying [12].

It is evident that, isolated voids are the consequence of a

sintering process. In sintering, the surface energy of the par-

ticles/agglomerates (splats in thermal spraying) tends to

decrease and the centres of the particles move close together

through the necking, the surface and grain boundary diffu-

sion. As a consequence, the inter-splat cracks form larger

voids observed as void coarsening [29].

Sintering occurs if the temperature satisfies the material-

specific requirements. The temperature depends on the par-

ticle sizes, intercrystallite/intra-agglomerate pore distribu-

tion, in addition to pore curvatures, which are related to the

surface area, thus to the amount of the surface energy. For the

micron-sized particles, the onset temperature for the sinter-

ing is 0.5e0.8 * Tm, where Tm is the melting temperature of

material in the Kelvin scale. If nano-sized particles are

involved, the onset temperature can be as low as 0.2e0.3 * Tm.

In other words, the activation of the mass transport mecha-

nisms for material transport to occur is related to the particle

and crystallite sizes [29,44,45]. The oxidation temperature of

700 �C satisfies the sintering conditions the thermal sprayed

coatings under the circumstances as i) themicron-sized splats

and the nano-sized particles are present on the as-sprayed

coatings [30], ii) the inter-lamellar gaps varies from 0.01 to

0.1 mm [46] and iii) mass transportmechanisms aremost likely

enhanced by the thermal and residual stresses together with

metastable structures formed during the spraying process.

The phase stability was evaluated by using the XRD ana-

lyses and the results are shown in Fig. 7. The oxidized

MnCo2O4 coating (Fig. 7(a)) had a close correlation to the cubic

MnCo2O4 spinel. The XRD pattern was slightly shifted to a

lower Bragg angle due to the migration of Cr cations, and

partial substitution of Mn or Co in the spinel lattice. The

migration of the Cr cations was confirmed by the results ob-

tained with EDS point analysis in Fig. 6 and presented in Table

3. Due to this Cr migration MnCrCoO4 spinel phase is formed

as Fang et al. [13] demonstrated in their study.

Fig. 7 shows both cubic and tetragonal MnCo2O4 and

Mn2CoO4 phases for the oxidized Mn2CoO4 þ Co coating. This

dual phase structure is usually observed when the

Fig. 6 e Cross sectional SE-images and EDS line analysis of the oxidized a & b) MnCo2O4 and c & d) Mn2CoO4 þ Co coatings.

The locations of the EDS point analysis are marked on the FESEM (SE)-images a) and c) and the results are presented in Table

3. The results obtained by the EDS area analysis from the cross-section images b) and d) are presented in Table 4.

Fig. 7 e Crystallographic phase analysis of oxidized a)

MnCo2O4 and Mn2CoO4 þ Co spinel coatings.
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Mn1.5Co1.5O4 spinels are oxidized as Yang et al. [11] confirmed.

Tetragonal-cubic phase transformation occurs at 400 �C [13],

when the stoichiometric factor x is between 0.3 and 0.9 in

Mn1þxCo2�xO4 [47]. Since cubic and tetragonal phases were

observed and metallic Co, or Co-oxides were not, most of the

Co-particles reacted with Mn2CoO4, as was intended.

Although, the high temperature corrosion of the substrates

was not completely prevented, the use of the coating

decreased the growth rate of the oxide scale. As observed, thin

oxide scales with the thicknesses of 2.50 mmand 1.90 mmwere

formed when using the MnCo2O4 and Mn2CoO4 þ Co coatings,

respectively. The EDS analysis indicated that the oxide scale

had a dual layer structure of Cr-rich oxide-layer and

MnCoCrO4 layer as shown in Fig. 6(b and d). Although the

oxide scales were formed, noticeable spallation was not

observed that would indicate coating failure.

The EDS area analysis showed that Cr2O3 layer (A3. in Table

4 and in Fig. 6(b)) and MnCoCrO4 layer (A2. in Table 4 and in

Fig. 6(b)) were formed on the substrate when MnCo2O4 was

used as coating material, which is in line with the studies of

Fang et al. [13] with a difference that the thickness of the oxide

scale formed in this study was one fifth compared to the

magnetron sputtered MnCo2O4 coating. Hence the APS coat-

ings exhibit good tendency for to prevent further oxidation of

the substrate. The sameMnCoCrO4 layer (B2. in Table 4 and in

Fig. 6(d)) was formed when the Mn2CoO4 þ Co coating was

oxidized, but most likely on top of (FeCr)3O4 layer (B3. in Table

4 and in Fig. 6(d)) as EDS analysis suggests.

Since the coatings had dense microstructure according to

the cross-section images, it can be expected that migration

was the main transport phenomena for Cr species to pene-

trate the protective coatings. Therefore, the relative amount of

migrated Cr was determined by using the EDS point analysis

data and the results are presented in Table 3. This gives

relatively good estimations of the Cr-barrier properties. As

expected, the highest Cr ratio was obtained near the oxide

scale. The relative amount of Cr decreased significantly in

terms of coating thickness, but still some migrated Cr was

observed in the surface part of the oxidized MnCo2O4 coating.

Although the MnCo2O4 coating provided a fairly good barrier

against the growth of the oxide scale it is plausible that the

10 mm thick MnCo2O4 coating is insufficient to provide the

required protection against Cr-migration in long term use,

particularly at higher temperatures, as observed by Persson

et al. [14] oxidizing 10 mm thick MnCo2O4 coatings at 900 �C.

By using the Mn2CoO4 þ Co powder and a thicker coating

structure, the Cr transport was significantly inhibited. As

shown in Table 3, Cr-species were not observed on the surface

layer of the Mn2CoO4 þ Co coating. Persson et al. have calcu-

lated the thermodynamic driving force i.e. Gibbs energy

change (DG) between Cr2O3, Mn3O4 and CoO, when the total

number of cations is 1.0, and they suggested that the energy

change is more negative when Mn content is lower. In other

words, reduction of Mn content increases the thermodynamic

driving force for reactions between Cr2O3, Mn3O4 and CoO [14].

Under the circumstances, the Mn2CoO4 phase should be less

reactive with Co rich inclusions and migrated Cr cations, than

for exampleMnCo2O4 phase. If so, the Co rich inclusionswould

work as traps for the migrated Cr cations. This would partially

explain the reason why the Mn2CoO4 þ Co coating provides

better protection against outwardly diffusing Cr cations,

although the total stoichiometric quantity of Mn is higher in

the Mn2CoO4 þ Co coating compared to the MnCo2O4 coating.

In addition to the EDS and XRD studies, the Cr migration

was studied by using Raman spectroscopy (Fig. 8(a)) The sur-

faces of both coatings showed relatively similar spectra with

the main features at 586 and 679 cm�1 for oxidized MnCo2O4

and at 570 and 681 cm�1 for the oxidized Mn2CoO4 þ Co

coatings. The results do not indicate the presence of Cr2O3

compounds when compared to the peak positions reported in

the literature [48]. If the Cr was migrated in the case of

MnCo2O4 coating, as the EDS studies suggested,more stable Cr

containing spinels i.e. MnCoCrO4 were formed.

In order to analyse the composition of the oxide scale, the

oxidized coatings were removed by grinding. The main fea-

tures of the Raman spectra of the oxide scale correspond to

the features of MnCo2O4 spinel [49], as shown in Fig. 8(b). This

was caused by spinel that still remained on the analysis area

despite of grinding. The peaks at 271, 327 and 534 cm�1,

observed between the MnCo2O4 coating and Crofer 22 APU

(Fig. 8(c)), were identified as Cr2O3 [48]. The results confirm the

formation of a Cr2O3 layer, also observed in the EDS analysis.

In contrast to theMnCo2O4 coating, similar Cr2O3 peak pattern

was not observed on the oxide scale formed between the

oxidized Mn2CoO4 þ Co coating and Crofer 22 APU.

Table 3 e EDS spectra and relative amount of Cr in the
points indicated in Fig. 6. The result are in at-%.

Spectrum O Mn Co Fe Cr Cr/(Co þ Mn þ Fe)

MnCo2O4

1 59.8 17.4 24.3 1.0 0.6 0.0

2 61.4 13.2 23.3 1.0 1.0 0.0

3 28.5 e e 51.4 20.1 0.4

4 e e e 77.6 22.5 0.3

5 e e e 76.2 23.2 0.3

Mn2CoO4 þ Co

1 56.9 24.6 18.5 e e 0.0

2 57.7 23.6 18.7 e e 0.0

3 57.6 22.7 18.9 0.9 e 0.0

4 53.3 26.4 20.4 e e 0.0

5 57.4 23.9 18.0 0.7 e 0.0

6 48.4 28.1 22.5 1.0 e 0.0

7 58.0 21.2 19.6 0.9 0.4 0.0

8 53.9 19.1 19.3 1.8 5.9 0.1

9 e e e 76.8 23.2 0.3

10 e e e 76.9 23.1 0.3

Table 4 e EDS spectra and relative amount of elements in
the areas indicated in Fig. 6. The result are in at-%.

Area Cr Mn Fe Co O

MnCo2O4

A1. 0.5 14.1 0.6 23.6 60.4

A2. 5.9 11.0 0.8 19.8 62.5

A3. 26.9 3.5 2.6 3.8 63.2

A4. 22.0 0.3 75.0 0.5 2.3

Mn2CoO4 þ Co

B1. 0.7 19.5 1.1 18.3 60.4

B2. 11.1 12.0 2.5 13.9 60.4

B3. 21.6 2.7 16.6 4.6 54.5

B4. 22.6 0.6 74.1 0.5 1.8
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The analysis (Fig. 8(d)) showed that the oxide scale formed

beneath the Mn2CoO4 þ Co had a broad shoulder peak at

500 cm�1. According to Belo et al. it is most likely caused by a

mixture of the Fe3O4� and FeCr2O4 phases. For Fe3O4� the peak

positions are at 549 and 681 cm�1, but the reaction with Cr

causes the peaks to transition to 500 and 691 cm�1, respec-

tively [50]. The EDS analysis also supports the existence of the

FeCr2O4 layer. The FeCr2O4 has lower vapour pressure than

Cr2O3 which is more favourable in the SOFC operation con-

ditions according to [51].

The ASR results of the oxidized MnCo2O4 and

Mn2CoO4 þ Co coatings on Crofer 22 APU are presented in

Fig. 9. The ASR values decrease notably until 19.10 mU cm2

and 9.50 mU cm2 values were obtained for the MnCo2O4 and

Mn2CoO4 þ Co coatings, respectively. The most reasonable

explanation for the rapid drop was an increase in the actual

contact area due to the creep of the corrugated substrate, in

addition to sintering and restoration of the spinel structure.

After the contact areas were deformed and the micro-

structure and phase compositions reached their equilibrium,

the ASR values decreased linearly as the function of time, until

18.50 mU cm2 and 8.40 mU cm2 for MnCo2O4 and

Mn2CoO4 þ Co coatings, respectively, were reached at the end

of the 1000 h test cycle. This decrease of the ASR values is an

indication that sintering continued and the number of contact

points increased during the test after the initial drop.

TheMn2CoO4þCo coating seemed to performbetter on the

ASR tests compared to the coatings made of MnCo2O4, despite

the twofold-coating thickness. Yang et al. [11] have studied

and reviewed similar performances for Mn1.5Co1.5O4 and

MnCo2O4 bulk samples obtaining the conductivity values of

~40e60 S/cm and ~15e25 S/cm, respectively, in relation to

temperature from 700 to 800 �C in air. Wang et al. [52] have

measured ~68 S/cmvalue for theMn1.5Co1.5O4 spinels at 800 �C

in air.

The electrical properties of the bulk materials do not fully

explain the differences in the ASR values, especially when the

Mn2CoO4 þ Co coating was twice as thick compared to the

MnCo2O4 coating. The following reasonable explanations for

the differences in the ASR values are i) higher Cr substitution

in the MnCo2O4 spinel lattice and ii) the dense microstructure

of the Mn2CoO4 þ Co coating. As stated above, the Cr migra-

tion was observed by the XRD and the EDS analysis. Fergus

et al. have reported that the Cr substitution in (Mn,Co)3O4

Fig. 8 e Raman spectra of the oxidized MnCo2O4 and Mn2CoO4 þ Co coatings as a) surface, b and c) oxide scale analysis and

d) Fe3O4eFeCr2O4 transition as shown in Ref. [50] plotted with oxide scale analysis.

Fig. 9 e Area specific resistance (ASR) for coated samples.
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spinel lattice decreases the electrical conductivity in relation

to Cr content. The conductivity values of the spinel vary from

0.003 S/cm (Mn,Co:Cr ¼ 1:2) to 1.30 S/cm (Mn,Co:Cr ¼ 2:1) at

700 �C in air [53], which is notably lower compared to the

conductivity of the pure MnCo2O4 spinel as reported previ-

ously. In addition, the cross section studies showed that the

Mn2CoO4 þ Co coating obtained superior intersplat bonding,

which enhanced the electronic conduction compared to the

MnCo2O4 coating.

Although the oxide scales were in the same range in

thickness, it should be considered that Cr based spinel com-

pounds tend to have notably lower conductivity than

(Mn,Co)3O4 spinels. Therefore, the good barrier against the

oxidation IC steel should prevent the increase of ohmic re-

sistances. The electrical conductivity of Cr2O3 is from 0.006 to

0.163 S/cm at 700 �C in air [53]. If the (Mn,Cr)3O4 reaction layer

is formed, the conductivity is 0.001 S/cm (Mn:Cr ¼ 1:2) to

0.031 S/cm (Mn:Cr ¼ 1:1), at 700 �C in air [9].

Although the ASR tests were performed without conduc-

tive pastes, the ASR values of the APS coated spinel coatings

were at the same range compared to the other studies avail-

able and reviewed in Table 1. It should be taken into account

that, the ASR test arrangements vary between the reviewed

studies, and therefore comparison can be only indicative. In

general, the dense microstructure decreases the ohmic resis-

tance. This was confirmed with the rather low ASR values

obtained for the coating manufactured with thin film tech-

niques, HVOF process and result obtained in this study. In

addition, dense microstructure decreases the growth rate of

the oxide scales providing lower total ohmic resistance for

[spinel coating] e [(spinel-type reaction layer) e (Cr-rich oxide

layer)] e [substrate] systems as shown in this study.

Conclusions

Atmospheric plasma spraying was used to manufacture pro-

tective MnCo2O4 and Mn2CoO4 þ Co (equivalent to

Mn1.5Co1.5O4) coatings on Crofer 22 APU and to study high

temperature corrosion, Cr-barrier and ASR properties of the

substrate-coating system. The as-sprayed coatings were

tested at 700 �C in air for 1000 h by using the four-point

measurement method.

The Mn1.5Co1.5O4 spinel formula was obtained by spraying

cermet based Mn2CoO4 powder, mixed with finely dispersed

metallic Co particles. The powder was heat-treated in a

reducing atmosphere prior to the spraying process. The

powder formed both [Mn1þdCo2�dO4]cubic and

[Mn2�dCo1�dO4]tetragonal phases during the high temperature

oxidation cycle. The Co alloying has the purpose of decreasing

the porosity of the coatings by filling the pores and the inter-

splat cracks/gaps between the deposited splats. The benefit

of the Co alloying was confirmed, and the density of the as-

sprayed coatings was improved. It should be highlighted

that coatings with dense microstructures were obtained

without post heat-treatments, and so the unwanted Cr-rich

oxide scales were not formed during the manufacturing

phase.

The amount of the porosity increased during the high

temperature oxidation cycle. The cross-sectional analysis

showed that the porosity consistent of un-connected voids. In

addition, the Cr rich oxide scale was formed between the

Crofer 22 APU substrates and the spinel coatings. The coating

material defined the oxide scale composition, which was a

dual layer structure of Cr2O3 or FeCr2O4 and MnCoCrO4 layers.

The EDS point analysis and crystallographic phase analysis

revealed that a small amount of Crmigrated into the MnCo2O4

spinel lattices. Furthermore, the EDS analysis revealed Cr-

migration through the MnCo2O4 coating. The results demon-

strated that the 10 mm thickMnCo2O4 coating can decrease the

oxidation rate of the substrate, but is inadequate to provide

good Cr-barrier properties against Cr-migration. The same

test showed that the Mn2CoO4 þ Co coatings offered superior

Cr-barrier properties and decreased the oxidation rate of the

substrate.

The ASR values decreased for the first few hundred

hours, due to creep of the corrugated substrate, recovery of

the spinel structure and sintering of the microstructure. The

ASR values levelled off to 8.40 mU cm2 and 18.50 mU cm2 for

Mn2CoO4 þ Co and MnCo2O4 coatings, respectively after

1000 h oxidation cycle. The superiority of the Mn2CoO4 þ Co

coating can be explained by i) better electrical conductivity

of Mn1.5Co1.5O4 compared to MnCo2O4 ii) decreased migra-

tion of Cr cations into the spinel lattice and iii) better

oxidation barrier, and therefore decreased oxide scale

growth rate.

According to the results, atmospheric plasma spraying, in

addition to the HVOF spraying, is a promising technique to

produce dense coatings that provide good protection against

volatile Cr-species. The use of cermet-based powders (mixture

of metallic and ceramic phases) shows a clear advantage,

when the aim is to decrease the amount and the size of the

inter-splat cracks. Some well-known disadvantages must be

taken into account when using thermal spraying to produce

protective coatings, which are: i) the substrates must be grit-

blasted prior to the spray process which may cause e.g.

bending of the substrate ii) decomposition of spinel structure,

which is however restorable.

Acknowledgements

The authors would like to acknowledge Tekes e the Finnish

Funding Agency for Technology and Innovation and a group of

industrial partners of the SofcPower project and Graduate

School on Advanced Materials and Processes for financial

support.

r e f e r e n c e s

[1] Wu J, Liu X. Recent development of SOFC metallic
interconnect. J Mater Sci Technol 2010;26:293e305.

[2] Kurokawa H, Jacobson CP, DeJonghe LC, Visco SJ. Chromium
vaporization of bare and of coated ironechromium alloys at
1073 K. Solid State Ionics 2007;178:287e96.

[3] Chen F, Sun E, Yamanis J, Hawkes J, Smeggil J, Warrier S,
et al. Cr poisoning effect for solid oxide fuel cells. 2006 Conf.
Exhib Mater Sci Technol 2006:303e11.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 3 9 ( 2 0 1 4 ) 1 7 2 4 6e1 7 2 5 7 17255

http://refhub.elsevier.com/S0360-3199(14)02274-5/sref1
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref1
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref1
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref2
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref2
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref2
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref2
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref2
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref3
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref3
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref3
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref3
http://dx.doi.org/10.1016/j.ijhydene.2014.08.016
http://dx.doi.org/10.1016/j.ijhydene.2014.08.016


[4] Kim JY, Canfield NL, Chick LA, Menhardt KD, Sprenkle VL.
Chromium poisoning effect on various cathodes. Ceram Eng
Sci Proc 2005:129e38.

[5] Fergus J. Effect of cathode and electrolyte transport
properties on chromium poisoning in solid oxide fuel cells.
Int J Hydrogen Energy 2007;32:3664e71.

[6] Zhu WZ, Deevi SC. Opportunity of metallic interconnects for
solid oxide fuel cells: a status on contact resistance. Mater
Res Bull 2003;38:957e72.

[7] Zhu WZ, Deevi SC. Development of interconnect materials
for solid oxide fuel cells. Mater Sci Eng A 2003;348:227e43.

[8] Yngve L, Truls N. Spinel and perovskite functional layer
between plansee metallic interconnect (Cr-5 wt% Fe-1 wt%
Y2O3) and ceramic (La0.85Sr0.15)0.91MnO3 cathode materials for
solid oxide fuel cells. J Electrochem Soc 2000;147:3251e6.

[9] Chen X, Hou P, Jacobson C, Visco S, Dejonghe L. Protective
coating on stainless steel interconnect for SOFCs: oxidation
kinetics and electrical properties. Solid State Ionics
2005;176:425e33.

[10] Yang Z, Xia G-G, Maupin GD, Stevenson JW. Conductive
protection layers on oxidation resistant alloys for SOFC
interconnect applications. Surf Coat Technol
2006;201:4476e83.

[11] Yang Z, Xia G-G, Li X-H, Stevenson JW. (Mn,Co)3O4 spinel
coatings on ferritic stainless steels for SOFC interconnect
applications. Int J Hydrogen Energy 2007;32:3648e54.

[12] Thomann O, Pihlatie M, Rautanen M, Himanen O,
Lagerbom J, M€akinen M, et al. Development and application
of HVOF sprayed spinel protective coating for SOFC
interconnects. J Therm Spray Technol 2013;22:631e9.

[13] Fang Y, Wu C, Duan X, Wang S, Chen Y. High-temperature
oxidation process analysis of MnCo2O4 coating on Fee21Cr
alloy. Int J Hydrogen Energy 2011;36:2e7.

[14] Persson ÅH, Mikkelsen L, Hendriksen PV, Somers MAJ.
Interaction mechanisms between slurry coatings and solid
oxide fuel cell interconnect alloys during high temperature
oxidation. J Alloys Compd 2012;521:16e29.

[15] Zhenguo Y, Xia G, Stevenson JW. Mn1.5Co1.5O4 spinel layers
on ferritic stainless steels for SOFC interconnect
applications. Electrochem Solid-State Lett 2005;8:1e3.

[16] Gavrilov NV, Ivanov VV, Kamenetskikh AS, Nikonov AV.
Investigations of MneCoeO and MneCoeYeO coatings
deposited by the magnetron sputtering on ferritic stainless
steels. Surf Coat Technol 2011;206:1252e8.

[17] Garcia-Vargas MJ, Zahid M, Tietz F, Aslanides A. Use of SOFC
metallic interconnect coated with spinel protective layers
using the APS technology. ECS Trans 2007;7:2399e405.

[18] Ebrahimifar H, Zandrahimi M. Oxidation and electrical
behavior of AISI 430 coated with cobalt spinels for SOFC
interconnect applications. Surf Coat Technol 2011;206:75e81.

[19] Montero X, Tietz F, Sebold D, Buchkremer H, Ringuede A,
Cassir M, et al. MnCo1.9Fe0.1O4 spinel protection layer on
commercial ferritic steels for interconnect applications in
solid oxide fuel cells. J Power Sources 2008;184:172e9.

[20] Chen L, Magdefrau N, Sun E, Yamanis J, Frame D, Burila C.
Strontium transport and conductivity of Mn1.5Co1.5O4

coated Haynes 230 and Crofer 22 APU under simulated solid
oxide fuel cell condition. Solid State Ionics
2011;204e205:111e9.

[21] Uehara T, Yasuda N, Okamoto M, Baba Y. Effect of MneCo
spinel coating for FeeCr ferritic alloys ZMG232L and 232J3 for
solid oxide fuel cell interconnects on oxidation behavior and
Cr-evaporation. J Power Sources 2010;196:7251e6.

[22] Yang Z, Xia G, Singh P, Stevenson JW. Electrical contacts
between cathodes and metallic interconnects in solid oxide
fuel cells. J Power Sources 2005;155:246e52.

[23] Choi JP, Scott Weil K, Matt Chou Y, Stevenson JW, Gary
Yang Z. Development of MnCoO coating with new

aluminizing process for planar SOFC stacks. Int J Hydrogen
Energy 2010;36:4549e56.

[24] Zhang H, Zhan Z, Liu X. Electrophoretic deposition of
(Mn,Co)3O4 spinel coating for solid oxide fuel cell
interconnects. J Power Sources 2011;196:8041e7.

[25] Yoo J, Woo S-K, Yu JH, Lee S, Park GW. La0.8Sr0.2MnO3 and
(Mn1.5Co1.5)O4 double layer coated by electrophoretic
deposition on Crofer22 APU for SOEC interconnect
applications. Int J Hydrogen Energy 2009;34:1542e7.

[26] Abdoli H, Alizadeh P. Electrophoretic deposition of
(Mn,Co)3O4 spinel nano powder on SOFC metallic
interconnects. Mater Lett 2012;80:53e5.

[27] Hoyt KO, Gannon PE, White P, Tortop R, Ellingwood BJ,
Khoshuei H. Oxidation behavior of (Co,Mn)3O4 coatings on
preoxidized stainless steel for solid oxide fuel cell
interconnects. Int J Hydrogen Energy 2012;37:518e29.

[28] Mardare C, Asteman H, Spiegel M, Savan A, Ludwig A.
Investigation of thermally oxidised MneCo thin films for
application in SOFC metallic interconnects. Appl Surf Sci
2008;255:1850e9.

[29] Barsoum M. Fundamentals of ceramics. McGraw-Hill
Companies, Inc; 1997 [Chapter 10: Sintering and grain
growth].

[30] Pawlowski L. The science and engineering of thermal spray
coatings. 2nd ed. Chichester: John Wiley & Sons; 1995
[Chapter 6: Coating build-up].

[31] Puranen J, Lagerbom J, Hyv€arinen L, M€antyl€a T, Lev€anen E,
Kylm€alahti M, et al. Formation and structure of plasma
sprayed manganese-cobalt spinel coatings on preheated
metallic interconnector plates. Surf Coat Technol
2010;205:1029e33.

[32] Puranen J, Lagerbom J, Hyv€arinen L, Kylm€alahti M,
Himanen O, Pihlatie M, et al. The structure and properties of
plasma sprayed iron oxide doped manganese cobalt oxide
spinel coatings for SOFC metallic interconnectors. J Therm
Spray Technol 2010;20:154e9.

[33] Saoutieff E, Bertrand G, Zahid M, Gautier L. APS deposition of
MncCo2O4 on commercial alloys K41X used as solid oxide
fuel cell interconnect: the importance of post heat-treatment
for densification of the protective layer. ECS Trans
2009;25:1397e402.

[34] Vaßen R, Kaßner H, Stuke a, Hauler F, Hathiramani D,
St€over D. Advanced thermal spray technologies for
applications in energy systems. Surf Coat Technol
2008;202:4432e7.

[35] Puranen J, Laakso J, Kylm€alahti M, Vuoristo P.
characterization of high-velocity solution precursor flame-
sprayed manganese cobalt oxide spinel coatings for metallic
sofc interconnectors. J Therm Spray Technol 2013;22:622e30.

[36] Bunshah R. Handbook of hard coatings. 1st ed. William
Andrew; 2000.

[37] Park SD, Kumar S, Lee SC, Lee C. Effects of silver addition on
mechanical properties of plasma sprayed SOFC interconnect
layer. In: Lugscheider E, editor. Int. Therm. Spray Conf.
Maastricht: DVS; 2008. p. 1035e8.

[38] Dey T, Singdeo D, Bose M, Basu RN, Ghosh PC. Study of
contact resistance at the electrodeeinterconnect interfaces
in planar type Solid Oxide Fuel Cells. J Power Sources
2013;233:290e8.

[39] Xin X, Wang S, Qian J, Lin C, Zhan Z, Wen T. Development of
the spinel powder reduction technique for solid oxide fuel
cell interconnect coating. Int J Hydrogen Energy
2012;37:471e6.

[40] Aukrust E, Muan A. Phase relations in the system cobalt
oxide e manganese oxide in air. J Am Ceram Soc 1963;46:511.

[41] Cengel YA. Heat and mass transfer, a practical approach. 3rd
ed. The McGraw-Hill Companies; 2007.

[42] FactSage 6.4; 20.3.2014. http://www.factsage.com/.

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 3 9 ( 2 0 1 4 ) 1 7 2 4 6e1 7 2 5 717256

http://refhub.elsevier.com/S0360-3199(14)02274-5/sref4
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref4
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref4
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref4
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref5
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref5
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref5
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref5
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref6
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref6
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref6
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref6
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref7
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref7
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref7
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref8
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref9
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref9
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref9
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref9
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref9
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref10
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref10
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref10
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref10
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref10
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref11
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref11
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref11
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref11
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref11
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref11
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref12
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref12
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref12
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref12
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref12
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref12
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref13
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref13
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref13
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref13
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref13
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref13
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref13
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref14
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref14
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref14
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref14
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref14
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref15
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref15
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref15
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref15
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref15
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref15
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref15
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref16
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref16
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref16
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref16
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref16
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref16
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref16
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref16
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref16
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref16
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref17
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref17
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref17
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref17
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref18
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref18
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref18
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref18
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref19
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref19
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref19
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref19
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref19
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref19
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref19
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref19
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref20
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref20
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref20
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref20
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref20
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref20
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref20
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref20
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref20
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref21
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref21
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref21
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref21
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref21
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref21
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref21
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref22
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref22
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref22
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref22
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref23
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref23
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref23
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref23
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref23
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref24
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref24
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref24
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref24
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref24
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref24
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref25
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref26
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref26
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref26
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref26
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref26
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref26
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref27
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref27
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref27
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref27
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref27
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref27
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref27
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref28
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref28
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref28
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref28
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref28
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref28
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref29
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref29
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref29
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref30
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref30
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref30
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref30
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref31
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref32
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref32
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref32
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref32
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref32
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref32
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref32
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref32
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref33
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref33
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref33
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref33
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref33
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref33
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref33
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref33
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref34
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref34
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref34
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref34
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref34
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref34
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref35
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref35
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref35
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref35
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref35
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref35
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref36
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref36
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref37
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref37
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref37
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref37
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref37
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref38
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref38
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref38
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref38
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref38
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref38
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref39
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref39
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref39
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref39
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref39
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref40
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref40
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref40
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref41
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref41
http://www.factsage.com/
http://dx.doi.org/10.1016/j.ijhydene.2014.08.016
http://dx.doi.org/10.1016/j.ijhydene.2014.08.016


[43] Lim DP, Lim DS, Oh JS, Lyo IW. Influence of post-treatments
on the contact resistance of plasma-sprayed LaSrMnO
coating on SOFC metallic interconnector. Surf Coat Technol
2005;200:1248e51.

[44] Lu K. Nanoparticulate materials: synthesis, characterization,
andprocessing. JohnWiley&Sons; 2012 [Chapter 6: Sintering].

[45] Mayo MJ. Processing of nanocrystalline ceramics from
ultrafine particles. Int Mater Rev 1996;41:85e115.

[46] McPherson R, Shafer BV. Interlamellar contact within
plasma-sprayed coatings. Thin Solid Films 1982;97:201e4.

[47] Naka S, Inagaki M, Tanaka T. On the formation of solid
solution in Co3�xMnxO4 system. J Mater Sci 1972;7:441e4.

[48] Hosterman BD. Raman spectroscopic study of solid solution
spinel oxides [Dissertation]; 2011.

[49] Padmanathan N, Selladurai S. Mesoporous MnCo2O4 spinel
oxide nanostructure synthesized by solvothermal technique
for supercapacitor. Ionics 2013;20(4):79e87.

[50] Belo MDAC, Walls M, Hakiki NE, Corset J, Picquenard E,
Sagonb G, et al. composition, structure and properties of
the oxide films formed on the stainless steel 316l in a
primary type PWR environment. Corros Sci
1998;40:447e63.

[51] Yang G, Simner S, Stevenson J, Singh P. SOFC IC Overview
and CTP status. In: SECA CTP IC Meet; 2004. p. 1e57.. In:
http://www.netl.doe.gov/publications/proceedings/04/seca-
sofc/IC%20PNNL%20Singh.pdf [20.3.2014].

[52] Wang K, Liu Y, Fergus JW. Interactions between sofc
interconnect coating materials and chromia. J Am Ceram Soc
2011;94:4490e5.

[53] Fergus JW, Wang K, Liu Y. Transition metal spinel oxide
coatings for reducing chromium poisoning in SOFCs
2011;33:77e84.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 3 9 ( 2 0 1 4 ) 1 7 2 4 6e1 7 2 5 7 17257

http://refhub.elsevier.com/S0360-3199(14)02274-5/sref43
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref43
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref43
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref43
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref43
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref44
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref44
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref44
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref45
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref45
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref45
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref46
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref46
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref46
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref47
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref47
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref47
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref47
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref47
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref47
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref47
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref48
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref48
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref49
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref49
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref49
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref49
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref49
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref49
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref50
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref50
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref50
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref50
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref50
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref50
http://www.netl.doe.gov/publications/proceedings/04/seca-sofc/IC%2520PNNL%2520Singh.pdf
http://www.netl.doe.gov/publications/proceedings/04/seca-sofc/IC%2520PNNL%2520Singh.pdf
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref52
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref52
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref52
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref52
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref53
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref53
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref53
http://refhub.elsevier.com/S0360-3199(14)02274-5/sref53
http://dx.doi.org/10.1016/j.ijhydene.2014.08.016
http://dx.doi.org/10.1016/j.ijhydene.2014.08.016


Publication V

Characterization of High-Velocity Solution Precursor Flame-
Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic

SOFC Interconnectors

by

J. Puranen, J. Laakso, M. Kylmälahti, and P. Vuoristo

Journal of Thermal Spray Technology, 22, 5(2013), pp. 622–630

Reprinted from Journal of Thermal Spray Technology with permission of ASM
International. Copyright (2013) ASM International.



Characterization of High-Velocity Solution
Precursor Flame-Sprayed Manganese Cobalt

Oxide Spinel Coatings for Metallic SOFC
Interconnectors

Jouni Puranen, Jarmo Laakso, Mikko Kylmälahti, and Petri Vuoristo

(Submitted October 15, 2012; in revised form February 13, 2013)

A modified high-velocity oxy-fuel spray (HVOF) thermal spray torch equipped with liquid feeding
hardware was used to spray manganese-cobalt solutions on ferritic stainless steel grade Crofer 22 APU
substrates. The HVOF torch was modified in such a way that the solution could be fed axially into the
combustion chamber through 250- and 300-lm-diameter liquid injector nozzles. The solution used in this
study was prepared by diluting nitrates of manganese and cobalt, i.e., Mn(NO3)2Æ4H2O and
Co(NO3)2Æ6H2O, respectively, in deionized water. The as-sprayed coatings were characterized by X-ray
diffraction and field-emission scanning electron microscopy operating in secondary electron mode.
Chemical analyses were performed on an energy dispersive spectrometer. Coatings with remarkable
density could be prepared by the novel high-velocity solution precursor flame spray (HVSPFS) process.
Due to finely sized droplet formation in the HVSPFS process and the use of as delivered Crofer 22 APU
substrate material having very low substrate roughness (Ra < 0.5 lm), thin and homogeneous coatings,
with thicknesses lower than 10 lm could be prepared. The coatings were found to have a crystalline
structure equivalent to MnCo2O4 spinel with addition of Co-oxide phases. Crystallographic structure was
restored back to single-phase spinel structure by heat treatment.

Keywords HVOF, nanostructured materials, solid oxide fuel
cells (SOFCs), solution

1. Introduction

The interconnectors in solid oxide fuel cells (SOFCs)
are typically manufactured using ferritic stainless steels,
including grades specifically developed for SOFC appli-
cations (Ref 1-3). At high operating temperatures, a
Cr2O3 scale is known to form on the surface of the steel
material in the oxidizing atmosphere of the cathode side.
The Cr2O3 scale may then react with O2 and H2O mole-
cules to form thin layers of CrO3 and Cr2(OH)2 com-
pounds as described in Eq 1-3.

Cr2O3 sð Þ þ 1:5 O2 gð Þ ¼ 2 CrO3 gð Þ ðEq 1Þ

Cr2O3 sð Þ þ 1:5 O2 gð Þ þ 2 H2O gð Þ ¼ 2 Cr2 OHð Þ2 gð Þ
ðEq 2Þ

Cr2O3 sð Þ þO2 gð Þ þH2O gð Þ ¼ 2 CrO2 OHð Þ gð Þ: ðEq 3Þ
The vapor partial pressures of Cr-species increase as the
temperature is increased, wherein Cr2(OH)2(g) shows the
largest vapor pressure at SOFC operating temperatures
(600-800 �C). In addition, the vapor pressure of water
tends to increase the volatility of Cr2(OH)2(g) even fur-
ther (Ref 3-5). These volatile chromium compounds
migrate through the gas phase to the triple phase bound-
ary (TPB) sites in the cathode layer. The TPB is the
shared interface of the cathode, the electrolyte, and oxi-
dant gas. Equations 1-3 are reversible, and on the TPB of
these Cr-species are electrically reduced back to Cr2O3.
Reduced Cr2O3 causes degradation by decreasing the total
size of the effective area of the TPB sites (Ref 5, 6).

It is known that by using protective ceramic coatings on
ferritic stainless steel interconnectors, the harmful degra-
dation by Cr-poisoning can be decreased. Zhu et al. have
listed (Ref 7) and reviewed (Ref 3) the basic criteria for
SOFC interconnects (ICs) which can be treated as
requirements for the protective coatings as being part of
IC construction:

� low diffusion coefficient of Cr-ions and low transport
of Cr-compounds;

� excellent electrical conductivity with the objective of
100 % electronic conduction;

� good chemical, microstructural and phase stabilities at
the stack operating temperature in an oxidizing
environment;
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� coefficient of thermal expansion (CTE) to match with
the other stack components such as the metallic in-
terconnector and the cathode;

� good thermal conductivity, least 5 W/m per K, to
transfer heat, generated at the cathode, to the anode
for endothermic fuel reformation reactions,

� coatings together with the metallic substrate should
have high-temperature strength, creep, and spallation
resistance, and provide structural support when used
as a stationary or an auxiliary power unit under
external stresses and vibrations;

� easy and economic manufacturing process in mass
production.

Yngve et al. have tested the effectiveness of various
spinel- and perovskite-structured materials as protective
coatings. Especially, (Mn,Co)3O4 provided excellent elec-
trical properties (low ASR values) and low Cr cathode
degradation (low Cr transport) in long-term (10 000 h)
aging tests (Ref 8). In addition, (Mn,Co)3O4 spinels exhib-
ited good linearity in CTE with temperature and a good
CTE matching with other cell components such as ferritic
stainless steels interconnects and various cathode materials,
as shown in (Ref 1, 9). Several successful studies have
reported that the required coating structures are obtained
bymeansofconventional thermalspray techniques(Ref 10-12).
Although fairly dense coatings can be obtained by thermal
spraying, the (Mn,Co)3O4 crystal structure is not fully re-
tained, as part of the coating material decomposes into the
CoO phase (Ref 10, 12, 13). However, the original crystal
structure can be restored by performing heat treatment, as
reported elsewhere (Ref 10, 12).

When conventional thermal spray processes are used to
prepare coatings, relatively long material and powder
manufacturing process chains are required to have the
feedstock material ready for spraying. Also, the type of
raw materials determine which synthesis route (solid- or
liquid-state) must be used. If an agglomerated spray
powder is manufactured by solid-state synthesis (SSS),
then the number of process steps is easily up to six
as implemented in our previous study (Ref 11, 12). For
liquid-state synthesis (LSS), the number of the process
steps can be up to nine when spray drying is carried out
after material synthesis as described in our previous study
(Ref 14). However, novel spray processes, such as sus-
pension thermal spray techniques, will decrease the
number of process steps down to five or eight, depending
on which type of raw materials are to be used, since spray
drying is no longer needed (Ref 11, 12, 14). A more
descriptive listing of process steps is presented in Fig. 1.

In addition to conventional and suspension thermal
spray techniques, new process methods such as solution
precursor thermal spray processes have been recently
studied. In solution precursor thermal spray processes, the
coatings are manufactured using atmospheric plasma spray
(APS) or high-velocity oxy-fuel spray (HVOF) systems.
The clear advantage in solution precursor thermal spray
techniques is that the number of processing steps can be
decreased to as low as two, to obtain as-sprayed coatings.

The main difference in this technique compared with
conventional dry powder-spraying processes is that sepa-
rate material synthesis and powder-preparation phases are
no longer needed, as shown in Fig. 1.

Due to shear stress caused by the flowing gas, finely
sized droplets are formed as the solution is injected into
the thermal flame. The heat energy of the thermal flame is
transferred into the droplets. Small droplet size and
transferred heat energy enables (i) the evaporation of
solvent, (ii) precipitation and pyrolysis metallic salts, and
(iii) melting of synthesized material to occur in a short
period of time. If these process steps are fully accom-
plished, then eventually the same material syntheses pro-
cess steps are achieved as in the conventional powder
manufacturing and spraying process. Therefore, fewer
process steps are required in the solution precursor ther-
mal spray process than in the conventional dry powder
method to achieve the as-sprayed coatings (Ref 15, 16).

Studies of solution precursor thermal spraying have
mainly been conducted in connection with solution pre-
cursor plasma-spraying processes (SPPS). For example,
porous yttria-stabilized-zirconia (YSZ) TBC layers (Ref
17-22), dense (Ref 23)/porous (Ref 24) layers for SOFCs,
and coatings with photocatalytic activity (Ref 25) have
been manufactured by the SPPS process. In addition to
the SPPS process, Chen et al. (Ref 26) have studied high-
velocity solution precursor flame spray (HVSPFS) pro-
cesses to manufacture Al2O3-ZrO2 coatings.

In our previous studies (Ref 27, 28), the SPPS technique
was used to prepare thin (Mn,Co)3O4 coatings. The results
from the crystallographic studies were found to be promis-
ing, because the MnCo2O4 spinel phase structure was
observed already in the as-sprayed coatings. The amount of
the MnCo2O4 phase was the highest when water was used as
a solvent. The mixture of deionized water and ethanol was
found to increase the formation of the CoO phase. How-
ever, the cross-sectional SEM studies showed that the
density of the as-sprayed coatings was not at an acceptable
level; the coatings were found to contain a large amount of
connected porosity (Ref 28). Clearly, coatings with con-
nected open porosity would not prevent Cr-transport to the
TPB by chromium-containing gas species (CrO3 and
Cr2(OH)2). Thus, the coatings should be as dense as possi-
ble in addition to the other previously listed properties.

A study by Chen et al. (Ref 26) clearly shows that
dense coatings can be spayed using the HVSPFS tech-
nique with an axial liquid feeding. Therefore, the HVSPFS
(or S-HVOF) technique was chosen for use in this present
study to spray coatings from a MnCo2O4-forming liquid.
In the HVSPFS process, the precursor was axially injected
directly into the combustion chamber of the HVOF gun.
Several spaying parameters were used to study the coating
formation and to define optimal spray parameters.

2. Experimental Techniques

The solution used in this present study was prepared by
dissolving stoichiometric weights of manganese and cobalt
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nitrates, i.e., Mn(NO3)2Æ4H2O (Merck KGaA) and
Co(NO3)2Æ6H2O (BDH ProLabo), respectively, into
deionized water to form MnCo2O4 coatings. Deionized
water was used because of the promising results from our
previous studies (Ref 28). The cationic concentration of
the solution was 3 mol/L. After the nitrates were com-
pletely dissolved forming homogeneous solution, a vis-
cosity of 3 mPa s was measured (Haake RheoStress 150,
Thermo Fisher Scientific, Waltham, USA) at room tem-
perature.

Crofer 22 APU (ThyssenKrupp VDM, Werdohl, Ger-
many) with a thickness of 0.5 mm designed for the SOFC
application was used as the substrate material. The Crofer
22 APU was cut down to 20 9 50 mm coupons. Prior to
the spraying process, surface contaminations, e.g., grease,
were removed from the surface of the substrate using
ethanol. The surface roughness (Ra) of the Crofer 22 APU
was less than 0.5 lm (Mitutoyo SJ-301 DIN1990 GAUSS,
Singapore), measured perpendicular to the rolling direc-
tion of the sheet.

The coatings were manufactured by means of a modi-
fied TopGun HVOF torch (GTV Verschleiss-Schutz
GmbH, Luckenbach, Germany) with a 22 mm combustion
chamber and 130 mm expansion nozzle. The torch was
modified by replacing the dry powder injector with a
specially designed liquid injector nozzle system similar to
that used by Toma et al. (Ref 29). Two nonatomizing solid
stream liquid injector nozzles with diameters of 250 and
300 lm were used. The solution was axially injected into
the combustion chamber of the HVOF gun. A pressurized
vessel with a rotometer (calibrated for H2O) was used for
controlling the flow rate of solution. At least 4 bars had to
be used, because of the back pressure of the HVOF torch.
The movement of the HVOF torch was controlled by a x-y
manipulator using a linear raster pattern with 3 mm line
spacing.

The parameters were varied to study the effect of
variations on the formation of the coatings. The total flow
rate of combustion gases, solution flow rate, spraying
distance, and diameter of the liquid injector nozzles were
altered. The fuel gas, used in all experiments, was ethane
(C2H4) and the oxidizing gas was oxygen (O2). The nor-
malized (based on the number of moles) stoichiometric

oxygen-ethane ratio (k) was adjusted between 1.00-1.05.
More detailed parameters are presented in Table 1.

The substrate coupons were fixed on the surface of a
perforated plate, which effectively released heat (heat
sink) from the substrates during the spraying process.
Cooling of the substrates was further improved by adding
an air-cooling system behind the perforated plate. The
cooling system included airblades for the accurate control
of air flow direction. It was assumed that the optimal flow
direction was parallel to the substrates, since the air would
transfer excess heat away from the perforated plate and
the substrates, without disturbing the spray stream.

As the HVOF torches are designed only for dry powder
spraying, the use of solution caused the slight sedimenta-
tion of spray feedstock on muzzle of the HVOF torch,
which was observed to have a needle-like structure. After
each spray layer, the coating process was paused to allow
the specimen to cool down and to clean the liquid injec-
tion nozzle, the inner wall of expansion nozzle, and the
muzzle. During the cleaning phase, the flow of solution
precursor was changed to a flow of pure deionized water
without shutting down the combustion process.

The cross sections, fracture surfaces, and topographies
of the as-sprayed coatings were characterized using a field-
emission scanning electron microscope (FESEM, UL-
TRAplus, Carl Zeiss AG, Oberkochen, Germany)
equipped with a secondary electron (SE) detector.
Chemical analyses were done using an energy dispersive
spectrometer (EDS, INCA Energy 350, Oxford Instru-
ments, Oxfordshire, UK). Before cross-sectional studies of
the microstructures, the as-sprayed coatings were molded
in cold resin, ground, and polished. Qualitative analyses of
the phases were done by means of an X-ray diffractometer
(XRD, D-500, Siemens, Berlin, Germany) equipped with
Cu-Ka radiation source.

3. Results and Discussion

The influence of the spray parameters, i.e., total gas
flow, spraying distance and liquid feed rate for on coating
formation is presented in Fig. 2. The solid line or solid

Fig. 1 Comparison of the process steps for different thermal spray techniques
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circles indicate the use of the 250 lm liquid injection
nozzle and the dashed and striped circles for the 300 lm
liquid injection nozzle, respectively. Potential coatings for
the ICs, which are free of open porosity and cracks (ver-
ified by FE-SEM cross-sectional studies), are presented as
solid or striped circles. The spheres marked with dashed or
solid lines are for porous coatings, which cannot be used as
protective coatings, either because of a too low deposition
rate, or a highly porous coating microstructure (verified by
FE-SEM cross-sectional studies). The width of the circles
indicates the flow rate (mL/min) of solution.

The area marked off with a black line in Fig. 2 defines the
optimal spray parameter window for the hardware used to
produce dense coatings for the SOFCs. In order to achieve
spray dense coatings at 233 slpm total gas flow rate with
80-100 mm stand-off distances, the flow rate of the solution
had to be limited to 20 mL/min (TG-MCO-1,2). A flow rate
of 60 mL/min caused porous coatings to be deposited (TG-
MCO-4). The use of 284-336 slpm total gas flow rates
enabled the increase of solution feed rates, and dense
coatings were sprayed using over 50 mL/min feed rates. The
larger 300 lm liquid injection nozzle enabled the use of
100 mL/min solution feed rate. This was tested with the
336 slpm total gas flow rate and with 120-mm spray distance
(TG-MCO-19). The cross-sectional evaluations revealed
that no coating was deposited with the parameters used.

The most probable reason the for poor coating formation
as presented in Fig. 3a., where the higher solution feed rates
were used (TG-MCO-2 cf. -4 and TG-MCO-17 cf. -19), was
that the coatings were formed of partially pyrolyzed or
nonpyrolyzed precursor droplets. This occurred most
probably because of insufficient energy and/or too short a
residence time for complete pyrolysis. The partially pyro-
lyzed or nonpyrolyzed precursor droplets were also ob-
served in our previous study (Ref 28), and the study of Chen
et al. (Ref 15) when coatings were deposited by means of the
APS process. The study of Chen et al. (Ref 15) indicated
that partially pyrolyzed or nonpyrolyzed precursor droplets

were formed in the outer part of the plasma plume, because
of lower flame temperature. In addition, the study of Ber-
tolissi et al. (Ref 22) have shown that if the coating is formed
of nonpyrolyzed particles, then the porosity is increased
because of a spongy microstructure.

Several studies are focused on modeling the combus-
tion kinetics and behavior of liquid droplets when injected
into the combustion chamber of HVOF torch. Results
indicate that the temperature of the thermal flame is
decreased as the solution feed rate is increased, since more
energy is consumed to evaporate the solvent (Ref 30-32).
Furthermore, the higher flow rate causes the aggregation
of droplets. As the droplets are aggregated, the heat-
transfer efficiency from the gas phase into the droplets
tends to decrease (Ref 31). It is most probable that inad-
equate flame temperatures with low heat-transfer prop-
erties are the reasons for an incomplete material synthesis
(cf. APS process), and thus partially pyrolyzed or nonpy-
rolyzed precursor droplets are formed. Moreover, as the
droplets traverse speed is increased, the evaporation
point is shifted downstream toward the expansion nozzle
(Ref 31). As a result of the shifted evaporation point, the
droplet�s residence time in thermal flame is decreased.
Due to shorter residence time, it is most plausible that the
droplets remained nonpyrolyzed.

In order to spray dense coatings by means of higher
solution flow rates, the energy deficit had to be compen-
sated. This was done by increasing total gas flow rate as
shown in Fig. 2 (TG-MCO-4 cf. -13) and as observed in
cross-sectional images presented in Fig. 3. As the results in
modeling studies indicate, by increasing total gas flow
rates, the evaporation point of the droplets is shifted to
upstream, toward the combustion chamber. As a conse-
quence of this, the heat-transfer properties across the
droplet and gas phase boundary are improved.

The hot zone of the thermal flame tends to extend to a
longer distance from the gun nozzle as total gas flow rate is
increased (Ref 31). This was verified during the spraying

Table 1 HVSPFS spraying parameters

Sample O2, slpm C2H4, slpm Total gas flow, slpm Solution flow rate, mL/min Nozzle Ø, lm Spray distance, mm

TG-MCO-1 177 56 233 20 250 80
TG-MCO-2 100
TG-MCO-3 120
TG-MCO-4 50 250 100
TG-MCO-5 215 69 284 20 250 100
TG-MCO-6 120
TG-MCO-7 50 250 80
TG-MCO-8 120
TG-MCO-9 228 76 304 20 250 100
TG-MCO-10 120
TG-MCO-11 140
TG-MCO-12 50 250 80
TG-MCO-13 100
TG-MCO-14 60 300 120
TG-MCO-15 253 83 336 20 250 120
TG-MCO-16 140
TG-MCO-17 40 300 120
TG-MCO-18 50 250 100
TG-MCO-19 100 300 120

Number of spray scans deposited: 6
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process with a longer thermal flame when gas flow rates of
284-336 slpm were used instead of 233 slpm. Therefore, the
standoff distance was increased to prevent the overheating
of the substrates. If the standoff distance was kept constant,
then the coatings that are more porous were sprayed, as
shown in Fig. 3c. It is probable that the porous structure was
the consequence of only partially pyrolyzed particles due to
shorter residence time (incomplete synthesis), caused by
faster flame and droplet speed. The maximum standoff
distance was limited to 120 mm. Standoff distances above
this formed coatings with deposition of lower layer thick-
ness (per spray scan) or highly porous microstructure. The
most apparent reason for the porous microstructure is that
the smallest precursor droplets were evaporated (without
deposition) and the remaining particles were cooled down
and re-solidified because of the temperature drop outside of
the hot zone area. The melting temperature for MnCo2O4

lies between 1300 and 1400 �C in relation to relative content
of Mn and Co (Ref 33).

The cross sections of the densest as-sprayed coatings
are presented in Fig. 4. As shown, the coatings were well

bonded with the fairly smooth (Ra < 0.5 lm) substrate.
As Baccionichini et al. (Ref 34) have noted, substrate
roughness should be the same order of magnitude as the
flattened lamellae thickness. The topography and the
fracture surface images revealed that the coatings were
mainly formed of micron (not exceeding the length of the
2 lm bar) and submicron-sized granular shaped particles.
Some random splats were detected, with 200-300 nm
thickness, as the fracture surface indicates (Fig. 5a). The
finely sized droplets favored good bonding with the rela-
tively smooth substrate. Chen et al. have also reported
relatively small splats when spraying YSZ coatings using a
similar type of HVSPFS process using a Sulzer Metco DJ-
2700 hybrid hardware. The diameter of the splats varied
from 2 to 5 lm (Ref 26). As is obvious, due to the small
splat and granule sizes, grit blasting is not required to
improve the mechanical bonding between these coatings
and the substrates.

Although Chen et al. reported as low as 2-5-lm splat
sizes (Ref 26), the average dimensions of the as-sprayed
particles were up to five times higher compared with the

Fig. 2 The spray parameters and the solution feed rate (relative amount is indicated as the width of the circles) plotted in an x-y chart to
obtain the optimal parameters for dense coating formation (black line)

Fig. 3 Cross-sectional images (FE-SEM) of the coatings sprayed with using fixed solution flow rate and standoff distance but by altering
total gas flow rate (a) TG-MCO-4 and (b) TG-MCO-13 and (c) TG-MCO-18
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particles observed in the present study. It is likely that the
formation of smaller splats/particles is related to the
diameter of the liquid injection nozzle used in the HVOF
gun. Because there was no information of the size and
type of the injector that Chen et al. have used in their
studies, it can be assumed that the original powder injector
in a DJ-2700 hybrid HVOF system was then used with
diameter of 1.3 mm. If so, the diameter of the powder
injector was wider compared with the hardware used in
our study. Due to the wider nozzle used in the study by
Chen et al, it is most probable that larger droplets were
formed during the spraying process. (Ref 26).

A comparison between the HVSPFS and the SPPS
(Ref 28) MnCo2O4 coatings shows clear differences in
coating morphologies and coating density. Where the
SPPS coatings showed fairly loosely packed granular
particles (observed from the cross-sectional images), the
HVSPFS coatings are found to be fairly dense. A high
magnification inspection of the fracture surfaces suggest
the existence of small granular and splat structures, due to
the fairly flat fracture surface, as presented in Fig. 4 and 5.
For the most part, the fracture surface passed through the
grain boundaries (Fig. 5b) and the splats (Fig. 5a).

The axial injections of precursor and the shock dia-
monds, formed because of high gas velocity, cause effec-
tive droplet break-up during the spraying process. The
aerodynamic simulations have shown that effective drop-
let break-up is obtained because of the rapid change of
axial velocity across the shock diamonds which cause high
aerodynamic forces on the precursor droplets (Ref 35).
Higher gas flow, compared with the SPPS process, and the
following higher particle velocity are the most probable
reasons for higher packing density of the spray droplets,
granules, and splats. Improved density may also be a result
of partial sintering, due to the relatively high thermal load
from the HVOF flame. This was actually observed in the
SPPS coatings (Ref 28).

Porosity was mostly formed as randomly located
unconnected pores. The cross-sectional and the fracture
surface images (Fig. 3) indicated that the porosity was
formed between the granules and the splats. Porosity may
also form because of hollow spheres, as observed by Chen
et al. (Ref 15, 26) when studying YSZ coatings. A risk of
formation of the hollow particles is related to the solution
concentration and the droplet size formed in the particular
spraying process. Low solution concentration (Ref 15) and
large droplet size (Ref 26, 35) apparently tend to form
more hollow than denser particles. As our previous study
(Ref 28) shows, the use of the cationic concentration of
3 mol/L seemed to help in the formation of dense
MnCo2O4 particles in the SPPS process, and which is also
favorable in the HVSPFS process.

Basu et al. have simulated the behavior of droplets with
different diameters in the high-velocity oxy-fuel jet. Drop-
lets with an initial diameter of 5 lm tend to break-up down
to 0.5-1-lm droplets. Larger droplets, with a diameter of
30 lm will break-up down to 0.5-2-lm-diameter droplets.
The simulations indicate that the droplets smaller than 5 lm
will form dense spray particles, because of uniform increase
in solid concentration as the solvent evaporates. In case of

the larger droplets, a solid shell will form around the liquid
core. The solid shell prevents the evaporation of solvent,
and as a result the inner pressure of the droplet will increase.
The pressure will eventually break the solid shell and the
hollow particle is formed (Ref 35).

The crystallographic phase studies of the as-sprayed
coatings are presented in Fig. 6a. As is shown, a multi-
phase structure consisting of the MnCo2O4, CoO and
CoCo2O4 phases was observed in the densest coatings.
Even though the multiphase structure was detected, a
quantitative EDS analysis gave concentrations of Mn 37
at.% and Co 63 at.% in the TG-MCO-10 coating, and
contents of Mn 38 at.% and of Co 62 at.% in the TG-
MCO-17. The cationic ratio of Co:Mn should be 2:1. For
TG-MCO-10 ratio, it is 1.70:1 and for TG-MCO-17 1.63:1.
Considering the results, some selective evaporation of Co
may occur during the spray process, although this is near
the limit of accuracy of the EDS system. No change of
composition was observed, regardless of the parameters
used in this study. Similar dual-phase structures were
observed in our previous studies, when MnCo2O4-based
suspensions (Ref 14) and MnCo2O4-forming solutions
(Ref 28) were thermally sprayed. The results of MnCo2O4

manufactured by the SPPS process revealed that CoO
formation was related to the type of solvent and plasma
gas composition used in the study. With water-based
solutions and Ar-He plasma, a coating with the majority of
MnCo2O4 phase was deposited. Upon increasing the heat
content and viscosity and improving the heat-transfer
properties of plasma gas by means of Ar-H2 or Ar-He-H2,
the amount of CoO phase increased in the as-sprayed
coatings. The same increase in CoO phase was observed as
the exothermic properties of the solution was increased
by means of water-ethanol mixture as solvent (Ref 28).
The results, mentioned above, indicate that the HVSPFS
process with a normalized oxygen-ethane ratio (k) of 1.00-
1.05 may produce a flame that exceeds the optimal in-
flight droplet temperature to form exact MnCo2O4 struc-
ture after impacting to the substrate.

Different oxygen-ethane ratios or combustion gases
should be tested to achieve a lower flame temperature and
thus possibly to minimize the amount of the CoO phase.
The parameters should be selected without decreasing the
velocity of the flame, which favors the denser packing of
the splats. The use of over-stoichiometric oxygen-ethylene
ratio tends to decrease the flame temperature (Ref 36).
Also, the higher gas flow increases the flame velocity, and
the flame contains an excess amount of oxygen. This
superfluous oxygen may improve the synthesis and
increase the amount of spinel phase. Alternatively, use of
hydrogen instead of ethylene decreases the flame tem-
perature approximately to one in the range of 50-100 �C
depending on the oxygen-fuel ratio (Ref 36).

It is most likely that in addition to a crystalline phase with
small grain size, an amorphous phase is also formed, as
observed because of the relatively wide XRD peaks. It is
known that the width of the XRD peaks usually indicates a
small grain size, but as Chen et al. have reported, mixtures of
amorphous and crystalline phases were observed on
HVSPFS-sprayed samples. The amorphous phase is usually

Journal of Thermal Spray Technology Volume 22(5) June 2013—627

P
e
e
r

R
e
v
ie

w
e
d



formed because of the high cooling rate of the droplets, due
to impacting and spreading on the substrate. Owing to the
fast heat transfer toward substrate, deposited droplets do
not have enough time to form the desired crystal structure
(Ref 26). In addition, the width of the peaks can be
explained with fine equiaxed grains. Bertolissi et al. (Ref 22)
suggest that owing to fast cooling rate, caused by the small
splat size, homogeneous nucleation is competitive or pre-
dominant against heterogeneous nucleation.

Although the dual-phase structure was obtained on the
as-sprayed coatings, reported studies demonstrate that the
original spinel structure can be easily restored by a heat
treatment. Saoutieff et al. (Ref 10) have restored decom-
posed APS coatings. In addition, the coatings have been
also restored in our previous studies as manufactured, by
means of MnCo2O4 suspension (Ref 14) and MnCo2O4-
forming solution (Ref 27). Samples TG-MCO-10 and
-17 were heated for 1000 h at 800 �C air, to recover

Fig. 4 Topography, cross-sectional and fracture surface SE images (FE-SEM) of (a-c) TG-MCO-10 and (d-f) TG-MCO-17

Fig. 5 Fracture surfaces images (FE-SEM) of as sprayed coatings, (a) TG-MCO-10 and (b) TG-MCO-17
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decomposed structure and confirm the long-term stability
of spinel. As can be seen in Fig. 6b, the crystallographic
structure of spinel was fully restored without any trace of
Co-oxides. Due to the longer heat treatment process, the
XRD pattern of spinel was slightly shifted to lower Bragg
angles compared with the pure crystallographic structure
of MnCo2O4. The XRD pattern was equivalent to
Mn(Cr,Co)2O4. This was formed because of Cr migration
from the substrate into MnCo2O4 spinel lattice caused by
a longer duration of heat treatment.

4. Conclusion

High-velocity solution precursor flame spraying is a
state-of-the-art process for the manufacturing of coatings
or layers. Owing to the nature of the process, the coatings
can be manufactured without the need for separate
materials’ synthesis or powder-preparation steps, e.g.,
spray-drying. In addition, new thin and dense coating
structures with small grain sizes can be obtained. Dense
and thin coatings are clearly a consequence of the ultrafine
droplet formation in the HVSPFS process.

In this study, the HVSPFS technique was used to
manufacture thin, less than 10 lm, dense coatings on
ferritic stainless steel Crofer 22 APU substrates with a
thickness of 0.5 mm. The solution was prepared by dilut-
ing manganese and cobalt nitrates in deionized water. A
cationic concentration of 3 mol/L was used to obtain
MnCo2O4 as-sprayed coatings. Several spray parameters
including liquid injector nozzle diameter, gas composition,
total gas flow rate, and solution precursor feed rates were
studied to understand the coating formation mechanisms.

� The liquid injector nozzles should be selected in a way
such that finely sized droplets are produced, forming
dense pyrolyzed particles. In this study, liquid-injector
nozzles with diameters of 250 and 300 lm produced
droplets, which through the syntheses formed dense
granular particles with diameters lower than 2 lm and
in a majority of which are of submicron size.

� The solution precursor feed rate and the total gas feed
rates were linked together. As observed in this study,
the increase of solution feed rate required use of
higher total gas flow rates to form high enough shear
force for droplet break-up, to prevent aggregation,
and to provide heat energy for the evaporation of
solvent and pyrolysis of precursors. The effective
solution feed rate was 20-60 mL/min with 304-
336 slpm total gas flow rates. Oxygen and ethylene
were used as the combustion gases with normalized
oxygen-ethane ratio (k) of 1.0-1.05.

� The standoff distance was related to the used total
gas flow rates. Higher gas flow rates produced faster
particle speed, which decreased particles� residence
time in the thermal flame. With too short standoff
distances, the substrates were overheated, and
coatings were most probably formed of partially
pyrolyzed particles. The densest coatings were
formed at 120-mm as standoff distance and with
304-336 slpm as total gas flow rates. If longer
standoff distance were used, then more porous
coatings with low deposition rate per spray scan
were obtained.

Although coatings with superior density were sprayed,
the spinel structure was partially decomposed into
Co-oxides during the HVSPFS process. Several studies
have proven that the decomposed spinel structure can be
restored by heat treatment. In this study, the crystallo-
graphic structure of spinel was restored by 1000-h heat
treatment at 800 �C air. The long treatment time caused
the XRD pattern to be shifted to the lower Bragg angles
because of Cr migration into MnCo2O4 lattice, and
therefore, Mn(Cr,Co)2O4 was formed.
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Fig. 6 Crystallographic phase (XRD) studies of (a) as-sprayed and (b) heat treated coatings
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a b s t r a c t

High velocity solution precursor flame spray process was used to deposit MnCo1.9Fe0.1O4

and Mn1.5Co1.5O4 coatings on Crofer 22 APU ferritic stainless steel samples. The solution

precursors were manufactured by diluting metal nitrates into deionized water. The as-

sprayed coatings were oxidized at 850 �C for 500 h to evaluate Cr-barrier and electrical

properties.

The post-mortem studies were performed with various qualitative and quantitative

elemental analysis methods and a four-point measurement was used for the area specific

resistance studies. The as-sprayed coatings were formed of single crystallite nanoparticles

(10e20 nm) and polycrystalline sub-micron particles (100e500 nm). The small particle and

crystallite size showed strong sintering behavior during the oxidation cycle. Cr-migration

was fully prevented thought the oxidized coatings. The surface topography and grain

growth dominated the electrical properties during the test cycle.

Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.

Introduction

Interconnectors are employed in solid oxide fuel cells (SOFCs)

to connect the cells electrically in series and provide distri-

bution of the oxidant and the fuel gases for the electrodes. As

high chromium alloyed ferritic stainless steel interconnectors

(ICs) are more commonly used in anode supported SOFCs,

somematerial-specific problemsmust be solved. The problem

is related to the behavior of the ferritic stainless steels in range

of the SOFC operating temperature of order of 600e800 �C. At

this temperature range, ferritic stainless steel oxidizes and

thus forms a Cr2O3 oxide layer. The Cr2O3 oxide layer reacts

with the gaseous H2O to form volatile CrO3 and CrO2(OH)2
compounds [1].
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Since CrO3 and CrO2(OH)2 are volatile in the cathode side

air atmosphere, they transport into the triple phase boundary

(TPB), which is the shared interphase of the cathode, the

electrolyte and the gas phase. According to Fergus [1], the TPB

offers vacancies for CrO3 and CrO2(OH)2 to reduce back to

Cr2O3 or SrCrO3. When reducing back to Cr2O3, the size of the

TPB decreases over time causing the degradation of the cell

[1e3].

It is generally accepted that in order to prevent orminimize

degradation, protective coatings must be used on the ferritic

stainless steel ICs. Ceramics with a spinel structure (A,B)3O4

show the greatest potential to be employed as protective

coatings. The spinels of the greatest interest are (Mn,Co)3O4

[4,5] and (Mn,Co,Fe)3O4 [4,6,7] type materials, as these have i)

similar coefficient of thermal expansion (CTE) behavior with

the other fuel cell materials, ii) high enough electrical con-

ductivity and iii) capability to form more stable Cr-containing

spinels.

Many successful coating methods such as wet-slurry pro-

cesses and sputtering are used to deposit protective coatings

as reviewed for example in Refs. [8,9]. The main demands are

dense microstructure and scalability into the industrial pro-

duction with low production costs. Conventional thermal

spraying with dry powder as material feedstock is one of the

most potential manufacturing method for protective ceramic

coatings, since it is widely used in other industrial areas

where application specific type coatings are required [10]. The

previous studies have shown that thermal spraying can be

used to manufacture dense spinel coating on fairly thin sub-

strates [11e17].

In this study, the protective coatings were manufactured

by using high velocity solution precursor flame spraying

(HVSPFS) process, which is a modified version of the high

velocity oxy-fuel (HVOF) spraying process. The HVSPFS pro-

cess can be considered as a novel process technique among all

thermal spraying processes. In the conventional thermal

spray processes, the material feedstock is in form of dry

powder, which is usually preceded by long material synthesis

chain. However, as our previous study [13] has clearly

demonstrated, the HVSPFS process can significantly shorten

the length of the overall production chain. In addition, the

technique is a promising method to coatings from low cost

raw-materials i.e., nitrates. Furthermore, new microstruc-

tures are obtained e.g., thin and dense microstructures

formed of sub-micron sized particles. Due to small droplet and

particle size the coating can be sprayed on smooth substrates

without grit blasting as a surface preparation process prior to

coating. In addition, as the HVSPFS coatings are dense enough,

similar to atmospheric plasma sprayed coatings reported in

Refs. [16,17], and therefore ready to be used in the SOFC stack

on as-sprayed state without any densification post heat

treatments.

Despite promising results are obtained by manufacturing

(Mn,Co)3O4 coatings by the HVSPFS process [13], high tem-

perature oxidation cycle tests have not yet been reported

anywhere. The aim of a present studywas to evaluate the high

temperature behavior of HVSPFS Mn1.5Co1.5O4 and MnCo1.9-
Fe0.1O4 coatings oxidized at 850 �C in air for 500 h, which

simulate start up phase and short term behavior when used

directly in the SOFC. Post-mortem analyses, including

electron microscopy and various elemental analyses were

performed to study the Cr-barrier properties of the HVSPFS

spinel coatings. In addition an on-line four-point measure-

ment method was used to collect area specific resistance data

of the coated samples.

Experimental

Materials

High chromium alloy (20e24 wt-%) Crofer 22 APU (Thys-

senKrupp VDM GmbH, Werdohl, Germany) ferritic stainless

steel with thickness of 0.5 mm was used as the substrate

material. The surface roughness was less than 0.5 mm (Mitu-

toyo SJ-301 DIN1990 GAUSS, Singapore), representing the

surface quality as received from the factory. The substrates

were cut into 25.4 mm diameter of disks, and prior to the

spraying process the substrates were cleaned in an ethanol

bath to remove surface contaminations.

Two different water based nitrate solutions were used as

precursors in the HVSPFS coating process. The Mn1.5Co1.5O4

and MnCo1.9Fe0.1O4 forming solutions were manufactured by

dissolving stoichiometric amounts of Mn(NO3)2,4H2O (Merck

KGaA), Co(NO3)2,6H2O (BDH ProLab) and Fe(NO3)3,9H2O

(Merck KGaA) in molar ratios of 1:1.16 and 1:2.20:0.16,

respectively into deionized water to form a desired solution

precursors. The cationic concentration was 3 mol/L due to the

promising results obtained in Refs. [13,18].

Deposition method

The coatings were manufactured with a modified high ve-

locity oxy-fuel (HVOF) torch (GTV Verschleiss-Schutz GmbH,

Luckenbach, Germany) with a 22 mm combustion chamber

and a 135 mm expansion nozzle. In order to feed the solution

into the torch, the dry powder feeding hardware was replaced

with a specially designed non-atomizing solid stream liquid

injector. This injector enabled axial feeding of the solution

into the combustion chamber, by using 250 mm and 300 mm

diameter nozzles. A pressurized vessel was used to control the

feed rate of the solution. The detailed spraying parameters are

presented in Table 1.

Themovement of the HVOF torchwas controlled by an xey

manipulator. The spray layers were obtained using a linear

raster pattern with 3 mm line spacing. The substrates were

fixed on a vacuum table that also provided the extra air-

cooling.

Characterization

The properties of the solution precursor feedstock where

analyzed in order to obtain detailed data of the atomization

and thermal decomposition behavior during the spraying

process. Rheological properties of the Mn1.5Co1.5O4 and

MnCo1.9Fe0.1O4 solution precursors were analyzed with a

rotational rheometer (Haake RheoStress 150, Thermo Fisher

Scientific) at room temperature. Decomposition analyseswere

carried out by thermogravimetry combined with differential

scanning calorimetry (DTA-DSC, PerkinElmer 6000). Prior to
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the DTA-DSC tests, nitrates were dissolved into deionized

water and dried at 50 �C to obtain homogenous precursor

powder. The heating rate was 10 K/min using oxygen as the

atmosphere.

The as-sprayed coatings were oxidized at 850 �C in air for

500 h and a four-point measurement method was simulta-

neously employed to obtain area specific resistance (ASR)

data. The test emphasizes the behavior of the coatings in start

up and the short period of time on the operation phase. It

should be noted that these coatings are not meant to be heat

treated in reducing or/and oxidizing atmosphere before the

actual use in a stack. The direct current density was 500 mA/

cm2. The coatings were pressed against each other with a

force of 9.81 N, which caused 4.50 kPa contact pressure. The

measurement was performed without a contact paste, and

therefore the results show only substrate-coating/coating-

substrate contact data. Platinum wires were point welded to

the specimen and the voltage drop was continuously

measured with a multi-plexer equipment.

Microstructural cross section and fracture surface coating

characterization were performed with a field-emission scan-

ning electron microscope (FESEM, Carl Zeiss ULTRAplus),

employed with energy dispersive X-ray spectroscopy (EDS,

INCA Energy 350, Oxford Instruments). The coating thick-

nesses were measured from the cross section images by using

40 measuring points. In-flight and deposited particle charac-

terizations were done with analytical transmission electron

microscope (TEM, Jeol JEM 2010), combined with Energy

Dispersive X-ray spectrometer (EDS, Noran Vatage, Termo

scientific).

In order to obtain cross section for the FESEM character-

ization, the samples were moulded into epoxy resin in a

chamber under reduced pressure. The cross section surfaces

were ground and polished with SiC papers and diamond

suspensions. For the TEM characterization, the deposited

coating was carefully removed with the help of ethanol and

collected on a copper grid with carbon film.

The nitrate precursors and the as-sprayed coatings were

analyzed by Fourier Transform Infrared spectroscopy (FT-IR,

Perkin Elmer Spectrum One) to determine the presence of

nitrates in the as-sprayed coatings. The as-sprayed coatings

were removed from the substrates andmanually ground in an

agate mortar. To obtain reference data, nitrates were dis-

solved into deionized water and dried at 50 �C. The powder

samples were pressed into KBr pellets (sample/KBr ratio being

1/100) and the spectra were measured and presented in the

range of 4000e750 cm�1.

Quantitative elemental analyses for the oxidized coatings

were obtained with a radio frequency glow discharge optical

emission spectrometer (RF-GD-OES, HoribaJobin Yvon). The

oxidized coating material was sputtered 5 mm spot size. The

vaporized coating material was analyzed in order to obtain

more comprehensive picture of the elemental diffusion dur-

ing the oxidation cycle.

Qualitative phase analyses were obtained by X-ray

diffraction (XRD, Empyrean, PANalytical B.V., Almelo,

Netherlands) using Cu-Ka radiation source and analyzed with

HighScore plus software. The program employs The Interna-

tional Centre for Diffraction Data (ICDD) for phase analysis

and Scherrer equation for grain size measurements. The

phase and grain size analyses were done for the as-sprayed

and the oxidized coatings.

Results and discussion

Precursor feedstock

The rheological properties of the nitrate solutions used in the

HVSPFS process are presented in Fig. 1. The Mn1.5Co1.5O4 so-

lution can be considered a Newtonian fluid since the shear

stress increased linearly in terms of the shear rate, and

therefore the viscosity remained constant, approximately

3.50 mPas. For the MnCo1.9Fe0.1O4 nitrate solution, the rheo-

logical behavior was Newtonian in the shear rate range from

0 to 400 s�1, with the viscosity value of 4.0 mPas. At a shear

rate of 450 s�1, the rheological behavior changed from New-

tonian to dilatant, i.e., shear thickening. This means that the

viscosity of the fluid increased in proportion to the shear rate.

The most plausible explanation for the behavioral change

fromNewtonian to dilatant is the presence of Fe cations in the

solution. The oxidation state for iron cations from the nitrates

was þ3, whereas for Mn and Co cations the oxidation state

was þ2.

Table 1 e Detailed HVSPFS parameters.

Coating Nozzle (mm) Spray distance (mm) Oxygen (slpm) Ethene (slpm) Flow rate (ml/min) Spray layers

TG1-MnCo1.9Fe0.1O4 250 80 215 70 34 6

TG1-Mn1.5Co1.5O4 250 80 215 70 34 6

TG2-MnCo1.9Fe0.1O4 300 120 253 83 27 6

Fig. 1 e Rheological measurements of the nitrate precursor

solutions.
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Decomposition of nitrates and formation of MnCo1.9Fe0.1O4

andMn1.5Co1.5O4 spinels were studied by TG-DSC analysis and

the results are presented in Fig. 2. The graph shows the

decomposition behavior of diluted and dried nitrate precursor

powders. The endothermic peaks from 50 to 110 �C refer to

evaporation of water. The peaks above 160 �C are related to

formation of NOx, as Nissinen et al. [19] have observed by heat

treating MneCo nitrate powder. The exothermic peaks start-

ing to form from at 285 �C and 330 �C relate to the final thermal

decomposition of nitrates and the formation ofMnCo1.9Fe0.1O4

and Mn1.5Co1.5O4 spinels, respectively. The decomposition

was also confirmed by the TG-analysis, as in the mass ob-

tained the minimum value. The crystallite formation is a

relative slow process with causes broadening of the

exothermic peaks. According to the result, iron doping may

enhance formation of the spinel structure.

As-sprayed HVSPFS spinel coatings

The microstructural and elemental studies of the as-sprayed

coatings were done with FESEM and EDS. Fig. 3 shows the

polished cross-section SE-images of the as-sprayed coatings.

According to the cross-section images, the TG1-MnCo1.9Fe0.1O4

and TG1-Mn1.5Co1.5O4, and TG2-MnCo1.9Fe0.1O4 had a thick-

ness of 37.0 mm (sdv. 2.0 mm), 44.0 mm (sdv. 4.0 mm) and 12.5 mm

(sdv. 0.5 mm), respectively. The coatings were well adhered on

the Crofer 22 APU substrate. The as-sprayed coatings were

found to contain pores, which were localized between the

spray layers. Although the coatings contained porosity, the

cross-sectional images do not show the presence of open

porosity.

As was found in our previous study focused on micro-

structural characterization of the HVSPFS MnCo2O4 coatings

[13], the spray parameters can have a direct influence on the

coating microstructure. It can be confirmed that the lamellar

microstructure was a consequence of the relatively short

spraying distance and the high feed rates of the precursor. The

short spraying distance and high feed rate resulted in a denser

spray pattern, which enhanced formation of the layered

structure. In addition, it should be noted that shorter spraying

distance increases the heat load to the substrate.

As observed from the cross-section images, the surface

profiles of the samples TG1-MnCo1.9Fe0.1O4 and TG1-

Mn1.5Co1.5O4 were relatively uneven compared to TG1-

MnCo1.9Fe0.1O4, confirmed also with the standard deviation

values. This was a consequence of residuals formed during

the spaying process. The term residual in this case refers to

relatively large droplets formed during the deposition process.

The residuals were formed as the precursor adhered and

accumulated/aggregated inside the expansion nozzle of the

HVOF torch. The gas flow detached agglomerated precursor/

material from the wall and formed larger molten droplets.

Similar precursor accumulation was observed in our previous

study as a needle-like formation [13]. The HVOF torch used in

this study is designed for dry powder spraying and the feed

rate of the precursor would need to be optimized for the

combustion chamber - expansion nozzle design.

The quantitative EDS ratios for Mn/Co/Fe cations were

38.5/57.9/4.6 and 38.2/57.3/4.5 at-% for TG1-MnCo1.9Fe0.1O4

and TG2-MnCo1.9Fe0.1O4, respectively. The desired ratio is

33.3/63.3/3.3 in at-%. For TG1-Mn1.5Co1.5O4 the relative Mn/Co

proportion was 55.1/44.9. The desired ratio for Mn1.5Co1.5O4 is

50.0/50.0 in at-%. The results indicate that partial evaporation

of Co is possible, and the same selective evaporation of Cowas

observed in our previous study [13].

Fig. 4 shows the FESEM- and TEM-images of the particles

collected from the surface of the as-sprayed TG1-

MnCo1.9Fe0.1O4 coating. As stated in the Introduction, the

HVSPFS coatings are formed from sub-micron and nano-

meter sized particles. This was confirmed when particle

sizes and morphologies were compared to the coating topog-

raphy of images shown in Ref. [13].

The sub-micron particles had a size range of 100e500 nm

and nanoparticles were in the range of 10e20 nm. The sub-

micron particles exhibited a perfectly round morphology,

whereas the nanoparticles had a blockier morphology. The

nanoparticles had a strong tendency to agglomerate and

aggregate as shown in Fig. 4.

Due to the shear force of the turbulent combustion gases

and low viscosity of the solution as shown in Fig. 1, the

injected precursor stream effectively fragmented into smaller

droplets [20]. The atomized droplet size defines the size class

and the morphology of the pyrolyzed particles. The sub-

Fig. 2 e TG-DSC analysis of the dried nitrate precursor powders with nominal compositions.
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micron particles are formed from the fragmented precursor

droplets. As the precursor droplet is exposed to the thermal

flame the temperature is increased at the surface. As a result,

the solvent is evaporated and the precursor will go through a

thermal decomposition process similar that shown in Fig. 2,

forming a solid.

However, the exact size classification of the atomized

precursor droplets cannot be done, since the precursor is fed

in to the combustion chamber, fragmented and traveled

through the expansion nozzle when exiting the torch. The

total length of this distance is 157 mm, where the part of the

traverse under influence on the thermal flame. Hereafter, the

droplets are exposed to the shear force of the shock diamonds

as reported in Ref. [20].

Basu et al. have suggested three different precipitation

routes when the particles are formed through the liquid-to-

solid conversion during the spraying process. In the first

case the uniform concentration of solution increases steadily

though the droplet volume and solid particles are formed,

which may subsequently sinter or melt. In the second case,

the surface part is evaporated and supersaturated, leading to

pyrolyzed material and an eggshell structure. Eventually as

pressure inside the droplet is increased, the shell may be

ruptured. In the final step, the synthesized eggshells are

partially or fully melted and deposited on the substrate. In the

third case, an elastic shell is formed and deflates, leading to

formation of dense or porous deposits [21]. Dense particle

formation is typical for solutions with high concentrations

and small droplet size, whereas eggshell morphology is a

typical formation route for precursors with low concentration

or large precursor droplet size [22,23].

Based on the round morphology and size range, the sub-

micron particles (Fig. 4) are most likely formed from the

liquid-to-solid route. As the precursors were prepared near

the maximum solubility level and the droplets were effec-

tively atomized due to the shear force of the flowing com-

bustion gases, it favored the formation of dense particles. It

appears that the primary synthesis route for the nanoparticles

was a gas-to-solid conversion route, as the particle size and

morphology (Fig. 4c) are similar to the TiO2 particles produced

by the liquid flame spray (LFS) process reported in Refs. [24,25].

The gas-to-solid conversion, as described by Tikkanen, is

the generally accepted synthesis route when producing the

nanoparticles by the (LFS) process. As the droplet is exposed to

the thermal flame it is fully evaporated into the gas phase. As

the temperature is increased, the gas will decompose. In this

case, the decomposed gas contains the metallic ions, which

form crystallized nanoparticles through nucleation from the

gas phase [26].

Fig. 5 shows the IR spectra of the FTIR analyses obtained

from the dried precursor powder and the as-sprayed coatings.

The comparison was done to evaluate nitrates residues after

the spraying process. The absorption bands at the 1633 cm�1

and 3410e3434 cm�1 refer to the bend and stretching mode of

OeH groups, respectively [19]. There are two reasonable ex-

planations for the presence of water molecules: i) water was

absorbed to the surface of the as-sprayed coatings or KBr

pellets during the sample preparation process when exposed

to air atmosphere, or ii) the as-sprayed coating contained

residues since the nitrates are known to be hydrous

compounds.

Absorption bands of nitrate groups were observed at

821e828 cm�1, 1313e1412 cm�1, and 2350e2354 cm�1 [27].

Since absorption bands were also observed in the spectra of

the as-sprayed coating, it is most likely that the coatings

contained some unpyrolyzed nitrate compounds, as the

presence of the OeH group was confirmed. However, accord-

ing to the intensity of the absorption bands it can be stated

that the amount of nitrates was insignificant.

Fig. 6 shows the crystallographic phase analysis data of the

as-sprayed and oxidized spinel coatings. According to the XRD

studies, the as-sprayed coatings consisted of simple cubic

Fig. 3 e Cross-section FE-SEM images of the as-sprayed

HVSPFS a) TG1-MnCo1.9Fe0.1O4 b) TG1-Mn1.5Co1.5O4 and c)

TG2-MnCo1.9Fe0.1O4 coatings.
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oxides identified as the (Mn,Co,Fe)O and MnCo2O4 (ICDD: 00-

023-1237) phases. Decomposition of the spinel and formation

of metastable simple cubic oxides are a consequence of the

fast cooling rate of the deposited material, which can be

restored to the desired spinel with a simple heat treatment

process [12,14]. Due to the fast cooling rate the average crys-

tallite size for the spinel phases stayed between 4 and 8 nm.

According the FESEM and TEM images in Fig. 4, and crystallite

sizes obtained fromXRD studies, the sub-micron particles had

polycrystalline characteristics, whereas the nanoparticles

appeared to be single crystals.

Oxidized HVSPFS spinel coatings

Fig. 7 shows the cross-section and the fracture surface images

of the oxidized coatings, with high magnification cross-

section inspections of the oxide scale. Coarsening of the

voids present in the as-sprayed coating during the oxidation

cycle was caused by sintering of the spinel coating. Although

the coatings contained voids, there was no indication of sig-

nificant open porosity through the thickness gradient.

Sintering can be considered as the densification of the as-

sprayed coating and increase in crystallite/grain size

through the decrease of the net of total free energy of the as-

sprayed coatings. The coating sintering process depends on

the same factors as conventional bulk ceramic processes,

which are i) interacting particle morphologies and size dis-

tribution, ii) pore curvature and size distribution, which de-

termines the energy change associated with the change in

particle surface area (DGs), the energy change related to the

area of crystallite and grain boundaries (DGb), and the energy

change associatedwith any changes in volume (DGv) as shown

in Equation (1) [28].

DGt ¼ DGs þ DGb þ DGv (1)

It can be stated that the total free energy of the as-sprayed

structure is considerable as the majority of the free energy is

associated with the surfaces of the sub-micron and nanosized

particles shown in Fig. 4. This free energy is of course

enhanced by the energy of the crystallite and grain boundaries

(Gb). Due to large surface and interfacial free energy of the

nanosized particles, the sintering temperature can be in the

range of 0.2e0.3*Tm, where Tm is melting temperature in the

Kelvin scale [29]. In addition, the sintering is further enhanced

by the i) residual stresses and, ii) disordered and metastable

crystal structure formed during the spraying process, as

observed in the XRD studies and presented in Fig. 6.

Fig. 4 e FESEM (InLens) image (a) and TEM-images (b and c) of the particles collected from the surface of the TG1-

MnCo1.9Fe0.1O4 as-sprayed coating.

Fig. 5 e IR spectra of the FTIR analyses of the a)

MnCo1.9Fe0.1O4 and b) Mn1.5Co1.5O4 precursor nitrate

powders and as-sprayed coatings.
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The remnant porosity in the oxidized coatings, which in

some cases is localized near the substrate as observed in

Fig. 7b and seen in conventional HVOF sprayed coatings [14], is

most likely related to anisotropic shrinkage behavior. The

strain is more homogenous in the vertical direction

(perpendicular to the substrate) than in the lateral direction

due to the presence of the rigid substrate. According to Jamin

et al. [30] the lateral strain at the coating surface is larger than

next to the substrate, which results in an inhomogeneous

density distribution and porosity localized near substrate.

The oxidized HVSPFS MnCo1.9Fe0.1O4 coatings showed the

presence of a cubic phase as shown in Fig. 6. This spinel

structure is close to the MnCo2O4 phase (ICDD: 00-023-1237)

with a shifted diffraction pattern. The shifting is a conse-

quence of the increased lattice spacing since Fe3þ (0.645 Å)

partially replaces Co3þ (0.610 Å) [31] in the spinel lattice. The

average crystallite sizes were 740 nm and 690 nm for the

oxidized TG1-MnCo1.9Fe0.1O4 and TG2-MnCo1.9Fe0.1O4 coat-

ings, respectively. The spraying parameters had onlymarginal

influence on the crystallite size before and after the oxidation

cycle.

The Mn1.5Co1.5O4 coating had a multi-phase structure

closely related to cubic MnCo2O4 (ICDD: 00-023-1237) and

tetragonal Mn2CoO4 phase (ICDD: 04-007-9472) and the simple

cubic oxide. This cubic-tetragonal phase structure is known to

form when the stoichiometric factor x is between 0.3 and 0.9

in Mn1�xCo2�xO4 [32]. The average crystallite sizes were 25 nm

and 12 nm for MnCo2O4 and Mn2CoO4, respectively. The sim-

ple metal oxides are most likely i) residues from the as-

sprayed phase structure or ii) re-decomposed spinel due to

the high oxidation temperature.

Due to the high temperature oxidation cycle, an oxide scale

was formed at the coating/substrate interface. The most

plausible reasons for the formation of the oxide scale were: i)

diffusion of oxygen through the coatings and ii) the high

specific surface area of the as-sprayed coatings associated

with the surfaces of the nano- and sub-micron particles. Au-

thors consider that the growth of the oxide scale is less

influenced by the direct contact with the gas phase since the

as-sprayed and remnant porosity did not exceed through the

thickness gradient. The oxide scales were rather similar in the

thicknesses varying between 2 and 3 mm. Formation of the

oxide scales did not cause spallation or breakaway oxidation

as reported in Refs. [33], although a relatively high oxidation

temperature was used.

Fig. 8 shows the EDS line analysis data measured from the

oxide scale perpendicular to the interface (Fig. 7) to provide

the elemental profile. According to the data, the oxide scale

contained mainly Cr and a small amount of Mn. In order to

more accurately determine the composition, an area analysis

was performed in the middle of the scale. The results had a

close correspondence to Cr2O3. The amount of other elements,

such as Al, Si, Ca, Mn, Fe, Co and Nb were under 1 at-%.

Another explanation for the presence of Mn in the line anal-

ysis data is the overlap of peaks in the EDS spectra. The CrKa2
peak is near the MnKa1 peak position, which creates uncer-

tainty in the line scan results indicating the presence of Mn.

Table 2 shows the relative amount of elements obtained

from point analyses measured along a line with 3 mm spacing,

as presented in Fig. 7. The tables show the migration distance

of the Cr cations and therefore give a good estimation of the

Cr-barrier properties of the spinel coatings. According to the

results, the MnCo1.9Fe0.1O4 coatings suffered Co and Fe cation

loss at the surface. The values should be 27.1 and 1.4 in at-%

for Co and Fe, respectively. Therefore the results indicate that

Fig. 6 e Crystallographic phase studies of the as-sprayed

and oxidized a) TG1-MnCo1.9Fe0.1O4 b) TG1-Mn1.5Co1.5O4

and c) TG2-MnCo1.9Fe0.1O4 coatings.

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 0 ( 2 0 1 5 ) 6 2 1 6e6 2 2 76222

http://dx.doi.org/10.1016/j.ijhydene.2015.02.129
http://dx.doi.org/10.1016/j.ijhydene.2015.02.129


Co and Fe cations migrated towards the substrate. Similar

diffusion of Co cations was not observed when the

Mn1.5Co1.5O4 coating was oxidized.

The Mn1.9Fe0.1O4 and Mn1.5Co1.5O4 coatings exhibited good

Cr-barrier features. According to the results, Mn1.5Co1.5O4

coating showed superior barrier properties against Cr-

migration. Cr was not observed 6 mm from the scale,

although the coating was more porous next to the oxide scale.

The MnCo1.9Fe0.1O4 coatings did not provide as good barrier

against Cr migration as the Mn1.5Co1.5O4 coating. A Cr free

region was observed 12 mm from the oxide scale. However,

further migration of the Cr cations was efficiently blocked.

In addition to the EDS point analyses, the RF-GD-OES was

used to evaluate elemental distribution and Cr-barrier prop-

erties of the oxidized spinel coatings. Fig. 9 shows the

elemental depth profile analyses of the oxidized spinel

Fig. 7 e Cross-section FE-SEM images of the oxidized HVSPFS coatings and highmagnification oxide scale images aeb) TG1-

MnCo1.9Fe0.1O4 ced) TG1-Mn1.5Co1.5O4 and eef) TG2-MnCo1.9Fe0.1O4. Numbers (a, c and e) show the EDS point analysis spots

which are presented in Table 2 and lines (b, d and f) shows the EDS scan traces presented in Fig. 8.

Fig. 8 e EDS line analysis of the oxide scale measured from oxidized a) TG1-MnCo1.9Fe0.1O4 b) TG1-Mn1.5Co1.5O4 and c) TG2-

MnCo1.9Fe0.1O4 coatings as presented in Fig. 7 (b, d and f).
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coatings. In contrast to the EDS point and area analyses, the

results here present elemental composition from a larger area

(see experimental), and therefore the values are more repre-

sentative of the average composition. It should be noted that

as sputtering evaporates the material, even a small sample

misalignment and pores might cause some variation in the

results. This is due to fact that the sputtering planemay not be

exactly parallel with the interfaces between layers. The re-

sults do not indicate the loss of Co or Fe on the surface, as it

was observed in the EDS analysis. Either the migration was

relatively small or the migration was more localized than the

overall phenomena.

Cr was not observed at the surface which shows that Cr-

migration was effectively blocked by the spinel coatings. The

Cr-intensity started to increase near the oxide scales, which

was in line with the EDS studies. This indicates that Cr

migrated into the spinel coating forming Cr-containing spinel,

either (Mn,Co,Fe,Cr)3O4 or (Mn,Co,Cr)3O4, depending on which

coating material was used.

Table 2 e EDS analysis spectra of the analysis points
presented in Fig. 7. The results are presented in at-%.

Spectrum O Mn Co Fe Cr

TG1-MnCo1.9Fe0.1O4

1 57.3 22.5 20.2 0.0 0.0

2 57.5 16.3 24.6 1.6 0.0

3 58.6 15.9 23.9 1.7 0.0

4 63.4 14.2 21.2 1.4 0.0

5 55.1 17.3 26.0 1.6 0.0

6 57.5 16.9 24.0 1.6 0.0

7 58.6 16.3 23.2 1.9 0.0

8 56.3 17.1 24.6 2.0 0.0

9 58.4 16.3 23.5 1.8 0.0

10 57.9 16.7 23.5 2.0 0.0

11 58.3 15.8 23.5 2.2 0.3

12 59.3 15.6 22.5 2.3 0.3

13 58.7 15.6 23.2 2.0 0.6

14 (scale) 65.6 0.0 0.0 0.0 34.4

15 32.0 0.0 0.0 42.2 25.7

16 0.0 0.0 0.0 77.5 22.5

17 0.0 0.0 0.0 77.5 22.5

TG2-Mn1.5Co1.5O4

1 58.6 20.9 20.5 0.0 0.0

2 60.4 18.5 20.1 0.0 0.0

3 62.0 21.3 16.7 0.0 0.0

4 58.1 20.8 21.1 0.0 0.0

5 56.6 25.3 18.1 0.0 0.0

6 59.3 23.5 17.2 0.0 0.0

7 58.6 22.5 18.9 0.0 0.0

8 51.2 23.3 24.9 0.0 0.6

9 64.5 19.9 15.4 0.0 0.3

10 15.8 42.5 41.4 0.0 0.0

11 62.0 24.2 13.8 0.0 0.0

12 58.4 20.3 21.4 0.0 0.0

13 62.0 18.3 19.7 0.0 0.0

14 57.9 21.3 20.1 0.0 0.7

15 (scale) 60.6 1.6 1.8 0.0 36.0

16 34.8 1.6 0.0 32.9 30.8

17 0.0 0.0 0.0 77.0 23.0

18 0.0 0.0 0.0 77.7 22.3

TG2-MnCo1.9Fe0.1O4

1 72.5 12.5 15.0 0.0 0.0

2 59.4 16.6 22.2 1.9 0.0

3 61.1 15.8 21.0 1.9 0.3

4 60.3 16.1 21.3 1.7 0.6

5 61.2 10.7 16.4 1.5 10.3

6 (scale) 64.5 0.0 0.0 0.0 35.6

7 0.0 0.0 0.0 76.8 23.2

8 0.0 0.0 0.0 83.6 16.4

Fig. 9 e RF-GD-OES elemental analysis data from the

oxidized a) TG1-MnCo1.9Fe0.1O4 b) TG1-Mn1.5Co1.5O4 and c)

TG2-MnCo1.9Fe0.1O4 coatings.
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Area specific resistance behavior of the oxidized HVSPFS
spinel coatings

Fig. 10 shows the area specific resistance behavior of the

coatings during the 500 h oxidation cycle. The results present

pure [substrate]Crofer 22 APU-[oxide scale]Cr2O3-[coating]MneCo-

(Fe) spinel contact, without contact paste. This means that

contact points were formed between the same surface irreg-

ularities as observed in the cross-section analysis. The ASR

slope with a huge angular value at the beginning of the test

can be explained by the decrease of the contact resistance

with the samples due to plastic deformation described by Dey

et al. [34].

In later stages, the ASR values continued to decrease. Since

it can be expected that the formation of the contact points

dominated the ASR behavior at the beginning of the test, the

authors consider that microstructural changes i.e., sintering

and grain growth dominated the ASR behavior in the later

phase. During sintering, material is transported by diffusion

causing densification providing better contact between the

deposited sub-micron- and nanoparticles and eventually

crystallites grow to form larger grains [35], as confirmed by the

XRD analyses.

The conduction mechanism in Mn containing spinels is

widely agreed to be small polaron hopping [7,36] meaning that

the electron is exited across the band gap from the valence

band to the conduction band and therefore a hole is formed in

the valence band (intrinsic semiconductor) [35]. Therefore, the

single crystallites/grains are ideal for conduction, whereas the

grain boundaries cause scattering due to the grain boundary

phase. This grain boundary phase can be considered as an

amorphous phase which most plausibly increases the re-

sistivity of the coating material.

At the end of the 500 h test cycle the ASR values were still

relatively high. The lowest ASR values of 46 mOhm cm2 and

61 mOhm cm2 were obtained with TG2-MnCo1.9Fe0.1O4 and

TG1-MnCo1.9Fe0.1O4, respectively. The coating thickness had a

direct influence on the ASR values, as seen with the differ-

ences between the iron doped coatings. The highest ASR value

was obtained with the TG1-Mn1.5Co1.5O4 coating, as at the end

of the test cycle the ASR reached 77mOhm cm2. As previously

explained the surface roughness mainly affects the quality of

the electrical contact. The contact pressure increases the

plastic deformation of the contact irregularities, and in that

regard the 4.50 kPa used in this study, is significantly less than

the 0.064e0.074 MPa reported as optimum in Ref. [34].

Conclusions

High velocity solution precursor flame spray (HVSPFS) is a

modification of the conventional dry powder high velocity

oxy-fuel (HVOF) spraying processes, where the material

feedstock is in the form of a liquid precursor. The MnCo1.9-
Fe0.1O4 and Mn1.5Co1.5O4 coatings were sprayed using nitrate-

water based solution precursors. The as-sprayed coatings

were oxidized at 850 �C for 500 h to simulate behavior in the

SOFC stack.

The coatings were formed from nano- and sub-micron

sized particles. The sub-micron sized particles, with a size

range of 100e500 nm, were formed through the liquid-to-solid

route from the atomized precursor droplets. Nanoparticles,

with a size range of 10e20 nm were formed through the gas-

to-solid route from vaporized precursors. The as-sprayed

particles had single- or polycrystalline characteristics, with

the average crystallite size from 4 to 8 nm.

The as-sprayed coatings had a strong tendency to sinter

during the oxidation cycle, which was confirmed by micro-

structural changes and grain growth. Sintering was caused by

the free energy associated with the surfaces of the excep-

tionally small particles and crystallite boundaries. The free

energy was enhanced by the metastable phase structure and

residual stresses formed during to the spray process.

Cr2O3 oxide scales were formed between the Crofer 22 APU

substrates and the as-sprayed coatings. It can be expected

that as-sprayed coatings contained oxygen on the particles’

surfaces and/or oxygen diffused through the coating and

eventually formed the Cr2O3 layer. However, the coatings

effectively blocked migration of the Cr cations. Several

quantitative analyses confirmed that Cr migrated a few mi-

crons into the spinel coatings, but did notmigrate through the

coatings. According to the results, Mn1.5Co1.5O4 prevented

migration of the Cr cations more effectively than

MnCo1.9Fe0.1O4.

The deformation of the contact surfaces and sintering of

the microstructure, including grain growth, influenced the

electrical properties of the spinel coatings. The area specific

resistance values decreased notably at the beginning of the

oxide cycle. This was caused by the deformation of the contact

surfaces which increased the number of contact points, since

direct coatingecoating contact (without contact paste) was

employed. During the later stages of the test, sintering

improved the contact between deposited particles and grain

growth decreased the number of less conductive grain

boundaries. The decrease in the ASR values did not saturate

during the 500 h oxidation cycle. However, acceptable values

under 80 mOhm,cm2 were obtained after the 500 h oxidation

time.

According to the results, HVSPFS Mn1.5Co1.5O4 coatings are

suitable protective coatings for use on the ferritic stainless

steels ICs employed in SOFCs. The Mn1.5Co1.5O4 offered an

Fig. 10 e ASR values of the oxidized HVSPFS oxide spinel

coatings.
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excellent barrier against Cr migration, which can be consid-

ered the most important result for long term use.
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