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Abstract

The work presented in this thesis is based on the Feynmarnirgatiral formalism

for quantum statistics. This brings forth a novel approackdive quantum many-
body systems giving complementary knowledge to more cdivead approaches. In
practice, the multidimensional path integrals are evalliatith Monte Carlo meth-
ods, and hence, the approach is called path integral Morte (AMC).

The PIMC method has not gained the deserved popularityeyet) though this
finite temperature approach yields exact quantum statisfic practice, the PIMC
method faces challenges deriving from its computatiortadla and the proper treat-
ment of antisymmetric density matrix in case of identicairf®ns, that is, the fermi
statistics. Also, the singularity of the Coulomb potensiats challenges for the most
direct application of the path integrals.

In this thesis we concentrate on the finite temperature guanhemistry of some
small molecules using the path integral Monte Carlo meth€dst, we give a brief
introduction to the basics of the path integral formalisrd &g application using the
Metropolis Monte Carlo algorithm. Second, we show how toroeme the prob-
lems related to the Coulomb singularity. Third, a brief gyron path integrals for
fermions is carried out. Finally, we present the resultsnftbe four papers, which
are included in this thesis and have been published in tlegeed journals of the
American Institute of Physics and the American Physicali€&gc

In Paper |, a three-body quantum system, hydrogen moleouledj , is revis-
ited, once again. There we aim at tracing the electron—naolgling effects in the
three-body all-quantum, i.e. nonadiabatic, molecule. Agiothers we have evalu-
ated spectroscopic constants and molecular deformatsmecansidering the isotope
effects. Distinct features of coupling are found for thelauc

In Paper Il, we have found and explained the surprising theimstability of
the dipositronium molecule, Rs A proper nonadiabatic treatment is necessary for
the dipositronium, thus making it challenging for conventil methods of quantum
chemistry. In addition, with the PIMC method the presenbrggr correlations are
described properly.



In Paper IlI, the quantum statistics of the five-particle etolle, H ion, is exam-
ined. There we show how contributions from quantum and thédynamics to the
particle distributions and correlation functions can beesbout, and furthermore,
how the quantum to classical dynamics transition can be toi@a. At low temper-
atures the necessity of the fully quantum mechanical appréa all five particles is
established.

In Paper 1V, the nonadiabatic simulations of Paper Il aterded to higher tem-
peratures, also, where the molecular dissociation—reg@tibn equilibrium is stud-
ied. The temperature dependent mixed state descriptidre(bi;‘t ion, the density de-
pendent equilibrium dissociation—recombination balaarue the energetics has been
evaluated for the first time. At abod600 K the fragments of the molecule sHH™T,
H3 +H and2H-+H*, start contributing. Paper IV gives major additions to tadier
published studies in the literature, where the dissocdiatiecombination reaction of
H3 has been neglected.



Preface

This thesis consists of four papers published in refereechgds and an introductory
part. The introductory part, along with the appendices, aiproviding the relevant
details for proper application of the path integral Montel€anethod for the quan-
tum chemistry of small molecules. The result from the piigis papers demonstrate
that the Feynman formulation of statistical mechanics iswgsful tool for solving
guantum many-body systems.

The introductory part, especially the Matrix squaring &ectn Chapter 3, has a
lot of mathematical details in it. They are meant to speechepunderstanding and,
in particular, the implementation process of the next gatier. Thus, at first those
parts may seem less readable, but bear with me.

The main message of this work is to highlight the importarigeath integrals in
the description of subtle quantum effects. There are $#ifity of interesting research
subjects that can be addressed instantly with the pathraitdtpnte Carlo method.
In addition, the development of this approach to propeswatithe fermion statistics
is of great interest at the present time — although extrerle®ylenging.

The research work was carried out in the Department of Peigdidampere Uni-
versity of Technology during the yea2807 — 2011. For financial support the author
is greatful for the Department of Physics, Jenny and AntthWii Foundation and
Finnish Foundation for Technology Promotion.

First and foremost, the author is exceedingly grateful soshipervisor, professor
Tapio T. Rantala, for the support and guidance during thesesyneeded to finish
this thesis. | would also like to thank the people of the Emut Structure Theory
group and the Department of Physics, in particular, Dr. Markeino, Dr. Johannes
Vuorinen, Mr. Jussi Ojanen and Mr. Mikael Kuisma. This tkesas reviewed and
criticized by two distinguished experts, professors DavidCeperley and Cyrus
J. Umrigar, to whom the author expresses his gratitude, alast, but not least, the
author is especially thankful for his family, relatives driénds.
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Chapter 1

Introduction to path integrals

Path integral formalism is an exact and straightforward t@ajescribe a system with
interacting quantum particles. In practice, the exactwésbe method, however, is
usually based on an infinite number of parameters that foencdintinuous path, and
thus, we must settle for a finite approximation of the forsrali

In this chapter, we move gradually towards path integrailst,Rhe basis depen-
dence of representations in quantum mechanics is intraduSecond, the density
matrix and its properties are looked into. Then, finally, wastruct the path.

1.1 Basis dependence of representation

Time evolution of a quantum system is described by the tinpeddent Schrodinger
equation

A1) = ih o 0(0), @)

whereH is the Hamiltonian operator corresponding to the total gynef the system.
The equation above in its present form is an operator equafian abstract space of
vectors|y(t)). The Hamiltonian in this space is independent of its basis. Desired
basis is obtained by operating from the left hand side witbravector (-|. For
example, a wave function (R, t) of theHilbert spaceis

(R, 1) = (R[(1)). (1.2)
For the operators of the abstract space the basis is giveladymFor example, the
position and momentum operators in coordinate basis are

(RIR[4(t)) = R(R|¥(t)) = RY(R,t) and (1.3a)
(RIp|Y(t)) = —ihV(R[y(t)) = —ihiVi(R, ). (1.3b)



1.2. Density matrix and Bloch equation

Thus, we may define the following transformations [Klein2@a04]

(R|p = —ihV(R| and (1.4a)
(RIH = (R|H(p, R,t)

= H(—ihV, R, t)(R)|

= H(R)|. (1.4b)

The Schrodinger equation of the abstract presentatiorespay now be trans-
formed into the more conventional Schrédinger equatiomeHilbert space

(RIS (1)) = (RIihS (1)
= (RIH(p, RO6() = ih o (Rle()
= H(=ihY, B O(RIND) = i (RI()
— Hz/z(R,t):ih%w(R,t). (1.5)

In this thesis, the notatio® represents a set of cartesian coordinate®/ giar-
ticles in three dimensions, i.&k = {ri,7r9,...,ry} — unless it is momentarily
defined in some other way.

1.2 Density matrix and Bloch equation

The quantum statistical analogue to Schrédinger equasidneiBloch equatiorfor
the density matrix, which may be derived by many means [Feynm972, 1998,
Leino, 2007]. Here, we present a way that gives a convenialbgue for the density
matrix and the Green’s function, and is not often seen initaeature.

For a Hamiltonian/f = H (p, R) that does not explicitly depend on time the
Schrddinger equation is separable and is easily solvech ffeetime propagation of
the wave function from initial statg to ¢ is

() = efi(tftO)H/hW(to» =U(t —to)|¥(to)), (1.6)

whereU (t — t,) is called thetime-evolution operator More on thetime-evolution
operatoris found, for example, in Kleinert [2004].

In the framework of nonrelativistic quantum mechanics gmbpagators <R](7(t—
to)|R'), evolving forward in time are relevant [Kleinert, 2004]. () we may set
to = 0 and define theetarded propagatari.e. theGreen'’s functionas

G(R,R';t) = (R|O®)U(t,0)|R) = (R|G(t)|R'), 1.7)



1.2. Density matrix and Bloch equation

where G(t) is a basis independet@reen’s functionand O(t) is a Heaviside step
function having®(¢) = 1if ¢ > 0, and is otherwise zero. It is easily verified that
the propagatorin Eq. (1.7) satisfies the well known equation féreen’s functions
[Mattuck, 1992, Schulman, 2005]

[H - m%] G(R,R';t) = —iho(t)d(R — R)). (1.8)

Imaginary timef — to = —ih and— Zhgt = ag' analogue for théime-evolution
operatoris

Us(B) = U(—ihB) = e 1. (1.9)

If we define a retarded imaginary time-evolution operator as

p(8) = 0(8)Us(5) (1.10)
then the retarded imaginary time propagator is
p(R, R'; 8) = (R|p(B)|R') = ©(B)(R|Us(8)|R). (1.11)

The object in Eq. (1.11) is a solution to tBéoch equation

[H + %} o(R,R'; 8) = 6(8)8(R — R'), (1.12)

since thes-derivative is

R = 2RI R -
- (B o im) + o0 aaﬂmwg( S
=[SO RITS ()R + ©)(R| ~ HOOIR)]
=[SO RITH(B)|R) ~ OB HRITB)IR)|

= 0(0)(R|R') — ©(0)H(R|R)
5(0)6(R — R') — H3(R — R)).

A solution of the Bloch equation is callatensity matrix In quantum statisticg is
identified with the inverse temperatur@:= 1/kg7T. Therefore,s > 0 for all T"and
the unnormalizediensity operatomay be written as

p(B) = exp(—pH). (1.13)



1.2. Density matrix and Bloch equation

Other approaches to thigdoch equatioranddensity matricegre more statistical
in nature, but here the point is to introduce the trivial — get often thought of —
analogue between quantum mechanics and quantum statigtics

p(R. R’ f) = G(R,R';~ihp). (1.14)

1.2.1 Properties of density matrices

As was shown in the last section, there is a clear analoguredeitsity matrices and
Green’s functions. Thus, they share the same propertiesleasitin the mathemati-
cal point of view.

For the quantum statistical density operator, Eq. (1.18)have

p(B1 + B2) = G(—ili(B1 + Ba))
= G(—ihB)G(—ihBs)
= p(B1)p(B2), (1.15)

and thus, we may write

p(R, R'; B1 + (2) = (R|p(B1 + B2)|R')
= (R|p(01)p(B2)|R)

— (RIp(B) / dR" |R")(R"| p(62)| R)
/ dR" (RIp(61)| R")(R"|5(5:)| R
- / dR" p(R. R": B)p(R", R': ), (1.16)

where we used the coordinate spabentity operator
- /dR IR)(R). (1.17)

Egs. (1.15) and (1.16) simply state that the product of twtsitge matrices (oper-
ators) is a density matrix (operator). These propertiesharéoundations for the path
integral formalism, which becomes crystal clear why in teetion Path integral. In
practice, however, presumably the most important properiyat the density matrix
in the coordinate representation is nonnegative. Thus, aeinterpret the densities
as probability distributions [Ceperley, 1995].

4



1.2. Density matrix and Bloch equation

1.2.2 Wave function presentation of density matrix

Let |n) be a complete orthonormal set of functions in Hilbert spadech satisfy the
stationary Schrodinger equation

H|n) = E,|n), (1.18)

wheren = 0,1,... and E,, corresponds to the energy of the eigenfunction For
a complete basis we may employ the well knoeampleteness relatiofKleinert,
2004]

1= |n)(n|+ /dc le)(c. (1.19)

Now, we may write the density matrix as an expansion of wawetfans¢,,(R) =
(Rln).

p(R, R 8) = on(R); (R e PEn + / de ¢e(R)ps(R e 7Pe. (1.20)

In order to save some space we will consider only the disgateof thecomplete-
ness relationin showing how one arrives at Eq. (1.20).

(R, R';8) = (RIp(B)|R)
= (Rle ™" R')
=S (Rle " |n)(n| R')

=Y (Rln)(n|R)e "
= ¢u(R);(R e PPr. (1.21)

For the spectral integral part of tllempleteness relatiotihe procedure is identical
— instead of a sum we have an integral. In addition, sometiomes may come
across with notations where the summation in Eq. (1.21)a#lgtaontains also the
continuumcontributions.

1.2.3 Partition function

For a system in thermal equilibrium at constant temperatioeepartition function
and the density matrix may be calculated by an analytic naation of the Green'’s
function to the imaginary time, see section Density matrig 8loch equation. For

5



1.2. Density matrix and Bloch equation

such a system the partition function contains all the thelynamical information
of the system [Kleinert, 2004]. The local thermodynamicalperties, however, are
included in the density matrix from which all the propert@she quantum system
may be derived [Pollock and Ceperley, 1987].

The partition function is defined as the trace of the dengigrator, i.e.

Z = Tr p(B). (1.22)

In the coordinate basis this transforms into an integrat tve diagonal elements of
the density matrix,

7= / dR p(R, R; B). (1.23)

Inserting the wave function expansion of the density matiy. (1.21), into the in-
tegrand of Eq. (1.23), we obtain the traditional expressiorihe partition function,
i.e. the summation ovaBoltzmann factas,

Z= [dr Y oo (me

=Yoo [l (B
=> e fh (1.24)

where we have assumed that the wave functions have been lir&ung unity,
i.e. [dR |¢,(R)[* = 1 for all n. Furthermore, the summation over Boltzmann
factors can be thought of consisting also the continuumritiutions, i.e. integrals
over continuum eigenenergies.

As was mentioned in section Properties of density matrites density matrix
may be interpreted as a probability distribution. The iraégf thedensity function
diagonal of the density matrix, over all states or configaret thus gives one the total
probability of one [Parr and Yang, 1989]. Therefore, we maiteathe normalized
density matrixasZ ~!p(R, R'; 3), since

_ o JdR p(R, R; 8) B JdR p(R, R; 8)

—1.  (1.25)

1.2.4 Observables

Any quantity that can be measured is an observable. The &tjwecvalue of an
observable is the weighted average of the measurementtopeser all states or

6



1.2. Density matrix and Bloch equation

configurations. In terms of the density operator of the alosgpace the expectation
value of a measurement operatiis

(0) = Log(ﬁ ). (1.26)
In the coordinate representation this is given as

J dR (R|Op(B)|R)
Z

e / dR (RIOH()|R)

(0) =

— 27! [ dRdR' (RIO|R)(RI5(9)| )
=z! / dRdR’ p(R, R'; B)(R|O|R), (1.27)

where the last modification is valid because of the symmetith® density matrix
[Ceperley, 1995]. Usually, the measurement operatorsbieeiwables are diagonal.
Therefore(R|O|R') = O(R)(R|R'), and

0y = 771 / dR p(R, B: $)O(R). (1.28)

1.2.5 Free particle density matrix

Density matrix of a free particle has substantial imporéincthe conventional path
integral formalism. Thus, here we shall concentrate on that

For a free particle the Hamiltonian consists of the kinefierator, only, i.ed =
T. Therefore, the Bloch equation, Eq. (1.12), for- 0 is

0 K /.
55 8) = 1)K (' 9)
0 /
= : 1.2
= g B) = AV ), (1.29)
whereT(r) = —AV2 and\ = h?/2m. Eq. (1.29) is a diffusion-like equation
[Feynman, 1972, 1998] with diffusion coefficieht which leads to a solution
N2
P (r.v:8) = (4mA3) ™ exp [—%} , (1.30)

whered is the dimensionality of the space and the coefficient intfofithe exponen-
tial comes from the normalization

/dfr oK' B) = 1. (1.31)



1.2. Density matrix and Bloch equation

The normalization simply indicates that the total prolkigbflor a particle to diffuse
from ' to r is unity if the particle goes through all the paths betweendld and the
new position. ForV free particles with the same mass the density matrix is simpl

PR, R 3) = (4rr3) "N/ 2 exp {—w] . (1.32)
4A\G
Another way to end up to the same result [Feynman, 1972, 198&erley, 1995,
Leino, 2007] is maybe more practical with respect to the &tons. In that scheme,
one considers a free particle in a periodically repeated Btve wave functions for
this type of a situation are plane waves such as

Un(R) = L™2emn (1.33)

whereL is the length of the box side arkd, = 27n /L, the eigenvalues beinf,, =
Ak2. Now, the density matrix may be written in terms of the exgamén Eq. (1.21),
ie.

“(R,R';3) = Z% e P

=L dNZexp (R—R') - BIE2]. (1.34)

Eq. (1.34) may also be expressed in terms of a Jacobi thettidards(z, t), [Ceper-
ley, 1995, Schulman, 2005, Leino, 2007]

MR, R;B) =L~ W Zexp (R—R') — BAK2]

— I sz{ —BA(2m/L)? ] n? o—2imm(R—R/)/L

2 ) ,
B hY H Z [ —BA(2m/L)? ] o~ 2imng(R—R')),/L

k=1 ng
dN

=L "] bs(z, ), (1.35)
k=1

wherez, = m(R — R');/L, t = exp [—BA(27/L)?] and the propertys(z,t) =
03(—z,t) of the theta function was also used.

Egs. (1.34) and (1.35) are always valid for periodic boupdanditions. How-
ever, if the thermal wave lengtk/2)3, is significantly smaller than the size of the

8



1.3. Path integral

box, i.e.2)\3 < L?, the summation in Eq. (1.34) may be replaced by an integil an
the resulting density matrix may also be used in periodiaifations.

PK(R.R;B) = L™ "exp [—iky - (R— R') — Ak}

AN
~ L_dN/ otk exp [~ik - (R~ R) — BAK7], 208 < IF

= (27r)_dN /dk: exp [—ik (R — R’) - ﬂ)\kﬂ

dN
= (2m) "] / dk; exp [—ik;(R — R'); — BAK]]
j=1

dN _ N2
= (27r)’dN Hexp % /dzj exp [fﬁ)\zﬂ
j=1
dN —1/2 (R . R/)2
o TT () e |
= (2m) jll(/\ﬁ> exp NG J
= (4rA3) "2 exp [—%} : (1.36)

where we made a change of variables suchihat z; —i(R— R');/2A\3 in order to
obtain a gaussian integral. The result, Eq. (1.36), is theesae found earlier forv
free particles in infinitely large space, i.e. Eq. (1.32)réjét should be emphasized
that if the conditio2\3 < L? is violated one should use Eq. (1.34), Eq. (1.35) or
add periodic "images” to Eq. (1.36), see Ceperley [1995].

1.3 Path integral

Path integrals offer an intuitive description of quantunchemical phenomena such
as quantum fluctuations, for example. The possibility teriptet quantum phenom-
ena via path integrals stem from the fact that quantum méchanstatistics is traced
back in the formalism from a classical model. Thus, in sorheatibns one may find
classical reasoning to be enough also for definite quantéentefiCeperley, 1995].
Here, we shall introduce the path integral formalism fortao§éV distinguishable
interacting particles. In order to shorten the equatioh¢hal particles are assumed
to have the same mass, i.e. the same h2/2m. The system may be thought of as
consisting of N interacting electrons in the absence of a magnetic field.

9



1.3. Path integral

1.3.1 Discrete path

The product property of the density matrix, Eq. (1.16), is fbundation of path
integrals. If we apply the product property to the densityrimdor A times and
definel/kgT = B = M7, we may write aiscrete pattfor the density matrix as

p(R, R’ 3)

= /deng ~-dRp1 p(R, R1;7)p(Ry, Ro;7) - - p(Rpy—1, R5 7)
M—1 M

=/ I1 dr: [[o(Ri-v. Ris7), (1.37)
i=1 i=1

whereRy = RandR,; = R'.
For N interacting particles the Hamiltonian i = 7'+ V', whereT is the kinetic

energy operator antl the potential energy operator. Thus, we may represent the
high temperature density matrix term in Eq. (1.37) as

p(Ri—1,Ri;T) = <Ri—1!€_T(T+V)|Ri>
N ~ 7_2 A A
_ <Ri—1 ’e—TTe—TVe—T[TJ/] |Rz>

~ (Ri_1le”™Te ™V |Ry). (1.38)

The kinetic and potential operators do not commute, aneétbes, ther>-dependence
is usually neglected. Eq. (1.38), or in operator notatioA(”+") e—TTe—TV, is
known as theprimitive approximationwhich becomes exact in the limit/ — oo,
since according to Trotter [1959]

- N oM
e PTHY) — Jim {e_TTe_TV] . (2.39)

M—oo

The above is known as thEotter expansionwhich unfortunately is valid only for

potentials bounded from below [Suzuki, 1976] — this will bisatlissed in more

detall later in this thesis. There are also higher order@pprations to separate the
noncommutative operators, see for example DeRaedt anddoe¢R#®83] and Li and

Broughton [1987]. For more information on the details ofséa@xpansions consult
Leino [2007].

Within the primitive approximation the high temperaturasiéy matrix, Eq. (1.38),

10



1.3. Path integral

may be written as
p(Ri—1,Ri;7) ~ /dR <Ri—1|€_7T|R><R|6_TV|Ri>
_ / dR (Ri_1le TRy ™V B (R|R,)
B /dR <Ri—1|€7TTA|R>67TV(R)5(R7 Ri)
= (Ri1]e™ ™ |R;)e™TV (R

= p(Rizy, Rizr)e ™V (), (1.40)

Thus, combining Egs. (1.32), (1.37) and (1.40) we have ferdiscrete path of the
density matrix

p(R, R B) ~ / H dR; He—S (Ri-1,R;7) (1.41)

whereRy = R andR); = R/, as above, and thection S(R;_1, R;; 7) is

(Ri_1 — R;)?
ANt
More about theactionis discussed in the section Action.

S(Ri—1,Ri;7) = g In(4w A7) + + 1V (R;). (1.42)

1.3.2 Continuous path

In the case otontinuous paththe Trotter expansion, i.e. Eq. (1.39), is used instead
of the primitive approximation, Eqg. (1.38). Thus, our dénsnatrix is

p(R, R B) = lim /HdR Bi-1.Riim)

— lim [ dRydRy---dRys_y e~ iz S(Ri1Rim), (1.43)

M —o0
where Ry = R, R); = R’ and the actionS(R;_1, R;;7) is as in Eq. (1.42). In
addition, if we write the integrand as

M
exXp {— ZS(Ri—laRi§T>}
=1

= (dmhr)"INM/2 exp{ 3 [ i1 = Ri)” + 7V (R; )] }

1=

M _ Ry)?
= (4mr7) " M/2 oxp { TZ [ . 41)\7_2 + V(Ri)] } ) (1.44)

~.
—_

11



1.3. Path integral

and define the integral measure to be

DR(r) = (4m A7)~ M2 Ry dRy - - dRpy—1, (1.45)

lim
M—o0
we may change the summation in Eq. (1.44) into a Riemannraitéythe limit of
small7. Thus, we obtain thEeynman-Kadormula

p(R,R'; 3) = /DR(T) exp {—/Oﬁ dr (% [dﬁf)r + V[R(T)]>}

_ / DR(r) eSO (1.46)

which may also be written as

p(R, R 8) = p(R, R'; 9) (e~ o o VIRO) (L.47)

BRW ’

where the BRW indicates that the average is taken over Baowrandom walk,
i.e. the free particle density matrix.

12



Chapter 2

Path integral Monte Carlo

Evaluation of the multidimensional path integrals is omadjing, and usually, the
conventional quadrature rules cannot be applied, in griaciThus, the use of Monte
Carlo integration becomes essential, and for canonicatmebkes especially, the
Metropolis Monte Carlo algorithm [Metropolis et al., 1958]most suitable.

2.1 Metropolis Monte Carlo

In this section a brief introduction to a generalized Metigpalgorithm is given.
For more detailed discussion an interested reader shoulsuttoespecially Kalos
and Whitlock [1986, 2008], and also, Ceperley [1995], ER2606], Leino [2007].

In chapter 2 it was shown that the density function or the abdity for finding a
system in a state represented by the configurafias

27 p(R, R; B). (2.1)

According to the principle ofletailed balanceclose to equilibrium the total rate of
transitions from staté to R’ equals that of the reverse rate, i.e.
R, R; B) p(R, ' B)

PR — r)EL 2 = PR - RS 2.2)

Considering the transition probabilit#(R — R’) as a product of am priori
sampling probabilityl’'(R — R’) and an acceptance probabili{ R — R’) we get

T(R — R)A(R — R)p(R, R; §) = T(R — R)A(R — R)p(R,R’; ). (2.3)

The above can be written as

AR = R) _ T(R = R(RR3B) _
AR =R~ TRE= R g (=0 @D

13



2.1. Metropolis Monte Carlo

of which the probability for accepting or rejecting a moveeasily deduced. How-
ever, usually this is written in the form

AR — R') =min [1,q(R'|R)] . (2.5)

Thus, the generalized Metropolis Monte Carlo algorithm lbarpresented in the
following way: at first the state of the systemAis = R

e sample a possible new configurati® using7' (R — R)
e calculateg(R'|R)

e if A(R— R') > ¢, where¢ € [0, 1] is a uniformly distributed random number,
setR,+1 = R/, i.e. the move is accepted

e otherwise, seRk,,,1 = R, = R, that is, the move is rejected.

The system generated using the Metropolis algorithengsdic[Kalos and Whitlock,
1986, 2008], and thus, together with the principle of dethbalance the equilibrium
distribution is sampled in the long time limit. Ergodicitpsures that any state’
can be reached from any other staen a finite number of Monte Carlo moves.
Here, it should be emphasized that the most effective andrrelated sampling
is given by sampling probability satisfying
T(R — R) _ p(R R;p)
= , (2.6)
T(R—R) p(R, R;f)
that is,q = 1 [Kalos and Whitlock, 1986, 2008]. Thus, a proper choice for t
sampling probability is important, in practice.

2.1.1 Multilevel Metropolis algorithm

The Metropolis algorithm described above can be genedhliagnclude multiple
stages, or levels, in a Monte Carlo move. In path integral fd@@arlo the path is
divided into M pieces with time step = /M, as described earlier. At each stage,
s, some subset of the path is moved and accepted or rejectediangrto

(i) ),

(R, [Re ) @7)

A(Rs — R.) = min [1,
For the first stage(R,_,|Rs—1) = q(R{|Ro) = 1, and thus, we havel(R; —
R}) = min [1,¢(R}|Ry)].
If the move of some subset is accepted we continue to the tesge.slf, however,
the move of a subset is rejected at any stage the entire mmjedsed and we proceed

14



2.2. Action

to make a new move. As before, if the entire move is accepedi s, ; = R/,
otherwise seR,, .1 = R, = R, wheren refers to the number of Monte Carlo moves,
not stages.

Apart from the last stage it is not required to have exact @bist approximation
for ¢, since

: Q(Rlz‘R2)} [q(Réle)] [ 9(Ry|RN) ] i
e s lamm] - aw, () @0
st stage overal

2"d stage 3d stage last stage

that is, the intermediate stages cancel out. However, aropep approximation for
g in intermediate stages might lead to problems with ergtdiet a move of some
subset might be rejected eventhough the overall move waubitbepted.

2.2 Action

As was shown in Eq. (1.37), in the path integral formalismitttegrand consists of
products of high temperature density matrices. These ai@lyexpressed formally
in terms of an object calledction, which is defined as the natural logarithm of the
density matrix

S(Ri—1,Ri;7) = —Inp(Ri—1, Ry; 7). (2.9)

In addition, the action is conventionally separated inteekic and interaction contri-
butions

S(Ri—1,Ri;7) = K(Ri—1,Ri;7) + U(Ri—1, Ri; ), (2.10)
where the kinetic terni is taken to be that of free patrticles, i.e.

(Ri—1 — R;)?

AT ’
whered is the dimensionality of the space. Everything else is ethe interaction
term, which is usually unknown, since it also contains kinetntributions of higher
order inT [Ceperley, 1995]. However, in the limit — 0 the interaction term con-
sists solely of the potential energy terms of the system a&ssivawn in the previous
sections.

Good approximations for the interaction term enable themgations of larger
and larger systems. One needs to find a way to include as mactium information
in that term as possible for the integral to be feasible tauate — giving accurate
expectation values in a reasonable time.

dN
K(Ri_l, Ri;T) = > 1n(47r/\7') + (2.12)
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2.2. Action

2.2.1 Pair approximation

The idea behind pair approximation stems from the stagiséicalysis: If two random
variablesX andY are uncorrelated, thefXY) — (X)) (Y') = 0, i.e. the covariance
is zero. This is, naturally, valid also for a set of uncortetarandom variable§X; }.
Thus, we may write

<H XZ-> =[x - (2.12)

i

The short-time, or high temperature, density matrix may bgem as

PR, R'37) = o (R, Ry7) (e I Vol ROL) (2.13)

where BRW represents the average over all Brownian Randofksyvand pK

the kinetic part of the density matrix, see Eq. (1.32). If th&l potential energy
can be expressed in terms of pair interactions, &g(R) = >_,_; V(r;;), where
rij = |ri;| gives the distance between particleand j, then the average over all
BRWs is

i<j

— J3 dt Vi R(1)] _ — [ dt V(rs (1) _ 214
I ) 219
BRWr;;

Now, if we assume that the random variahiep [— [ dt V(ry;(t))] in Eq. (2.14)
are uncorrelated, then we can write the average as

— [ dt V(ri;(t)) _ =[5 dt V(ri;(t))
<H e o ) > -11 < 6 ; >BRWW : (2.15)
<7 BRWr;;  <J

However, in practice we know that there are three and higbdy lzorrelations in-
volved in the averaging. Therefore, we must write

< — [ dtVi(R >BRW ~ H< = Jg dt Vs t))>Bme : (2.16)

In the limit = — 0, i.e. high temperature limit, equality is ensured in Eq162.by
the Trotter expansion.
Identifying Eq. (2.16) with the equation

VIRRST) o T e miamsi™), (2.17)
i<j
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2.2. Action

we may write the approximate interaction part of the actibas a sum over all pairs
ie.

UR,R;7) = Zu(mj,r;jm). (2.18)
1<J

Eq. (2.16) is called as thgair approximation which is exact for a pair of particles.
The errors for this approach stem from three and higher bodglations [Ceperley,
1995].

2.2.2 Primitive approximation

Further approximating Eqg. (2.16), i.e.
— [T dtVier(R ~ — Jo dt V(ri;(t))
< ’ >BRW H < ’ J >BRW1‘¢J' ’

we eventually end up to the primitive approximation, whishalso the form given
by the Trotter expansion. First, taking the average up teeitponent we have the
so-calledcumulant approximatian.e.

— [T dt V(ri; (1)) ~ —Jo dt (V(ri;())) erwr, ;
E <e 0 i >BRW1-” ge i (2.19)

Second, taking the average over a classical trajectory, ginks us thesemi-classical
approximation that is,

- s V (r O 4 D
H fo dt ( i ( >BRW1-7J ~ H fo d V +(r )s )7 (220)

1<j 1<J

wherer(o) andrg) are the end points of the classical trajectory.

Th|rd the primitive approximationis reached when we approximate the integral
in the semi-classical approach by an averaged potentialilea¢d at the end points,
ie.

©) (1) _ (0 Ty (©® (1)
HefT fds V("'i]’ +(ry) ) )s) ~ HefQ [V(rij )+V (7 )] (2.21)

)

1<j 1<j

which is equivalent to the Trotter expansion, mentionedlexaA thorough analysis
of the pros and cons for the introduced approximations iergim Ceperley [1995].
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2.3. Sampling the configuration space

2.3 Sampling the configuration space

How to effectively sample the full configuration space is oh¢he most important
guestions in Metropolis Monte Carlo simulations. The &iwihoice of Metropolis
et al. [1953] thatl'(R — R’) is a uniform distribution, i.el'(R" — R)/T(R —
R’) = 1, isinefficient in practice, and thus, should be avoided.et-iee will concen-
trate on the so-calletlisection movewhich together with the multilevel algorithm
provide much more powerful sampling [Ceperley, 1995, E€606]. In addition,
the so-calleddisplacement mo&€hakravarty et al., 1998] is briefly discussed.

2.3.1 Bisection move

Let us first define two new concepts: the bead and the time. slibe bead refers
to a position of a particle and the time slice determines theegoof the bead in the
discrete path representing that particle — the discreti igabften referred to as a
polymer [Ceperley, 1995].

In the bisection move the new position of a bead is determinddrms of the
adjacent beads and a random number from a gaussian distnibihis will sample
the free particle density matrix exactly, as is shown below.

Let us consider three consecutive time slices of a singlacpar »; 1, r»; and
r;11. The positionsr;_; andr;,; are fixed, and for the sampling probability we
choose the normal distribution with mean= %(ri_l + r;11) and o2 variance.
Thus, we have

1 (rl —7)?
T(r;— 7)) = Noro exp 572 (2.22)
and
1 [ (ri —7)?]
/ N\ _ 7
T(r; —mr;) = Noro OXp | =5 (2.23)

Now, ¢(r|r;) in the acceptance probability, Eq. (2.5), can be written as

oy _ L —74)
alrilr:) = T(r; — 7’;)6_5(7‘2‘71,ri;r)—S(m,mH;T)
_T(ri—mi) _ak -av
T(r; —rh) ’



2.3. Sampling the configuration space

where

AK = K(ri_1,7v5;7) + K(rl,rig;7) — K(rie1,mis7) — K(7i, 70413 7)

1
= D [(rics =72+ () —7i1)” = (rica — 1) = (ri = 7ig1)?]
1
= Do 2[(r)? = 2ri# — r7 + 2r;7]
-
1 _ _
= oy [ =) = (ri = 7)) (2.24)

If we chooses? = A1, we have

T(T;HTI‘) —AK __ / AU
T oo -1 = almir) = (2.25)

Therefore, choosing? = A7 the kinetic part of the action is sampled exactly and
need not be calculated at every Monte Carlo step — this isftnusuch cases where
the gaussian form is proper for the kinetic part, i.e. fogéaenough simulation box.

2.3.2 Bisection move and multilevel algorithm

Bisection move together with the multilevel algorithm isadficient sampling scheme.
The basic idea is to choose a segment of the path of le2fgth 1, whereL is the
number of levels, or stages. The end beads of this segmefixedeand the beads in
between will be moved.

The first bisection move is made for the middle bead. Thustithe step is now
2L=17 and for the variance of the sampling probability we shotidases? =
2L=1)r. If the move is accepted then we have two segments of leigth + 1
formed by the previous end beads and the bead just moved.

Next we will move the middle beads of these two segments aitpibs described
above. The time step is now 27, and the variance for the sampling probability is
o2 = 2L=2)\r. This will be continued until all the beads in the initial segnt are
moved or some of the moves is rejected.

The new bead position for a bisection move in the multilelgbathm can be
written as

r; =1 (7"7"_2l71 + 7“1-_,_2171) +nVv 2171)\7', (2.26)

-2

wheren is a normally distributed random vector with zero mean anitl variance,
and! is the number of levels left, e.g. at first stabe= L, which is the number
of levels, at the second stage= L — 1, at the third stagé = L — 2, ..., and
at the last stagé = 1. With the above expression one should keep in mind that
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2.4. Periodic boundary conditions

i+ 271 = mod(i + 2!~1 — 1, M) + 1, where M is the Trotter number. Also, one
should notice that, excluding the initial segment, the fomss of the end beads on
the right-hand side have been updated in the previous levels

For L. = 3 the multilevel bisection move is

(780r) (WAl (Al — A (227)
N—— S——
15t stage 2nd stage 3 stage overall

which shows how one should check the acceptance at each devathge, and that
the overall weight is~2Y~, as it should.

As was mentioned earlier, only at the last stage or level thieraneeds to be
accurate. A fast solution computationally is to use corigpatential, i.e AU = 0,
for all but the last stage. In this case, effective samplingchieved with acceptance
probability of about0%. On the other hand, the better the stage action the faster the
convergence.

2.3.3 Displacement move

In the displacement move the whole imaginary time path isedder one or several
particles by a random three-vector, i.e. the center-ofsemsf the randomly selected
polymer rings are moved. This kind of move is relevant egilgcin describing
dissociation recombination reactions of a loosely boundemde or a molecule at
high enough temperature and low density.

2.4 Periodic boundary conditions

Due to the finite temperature present in path integral MomtédgSsimulations a sim-
ulation box is required, in principle, in order to properiynsilate theN VT statistics
of the system. Incorporation of a simulation box is usuattganpanied with peri-
odic boundary conditions. In many situations th@imum image conventipmlso
called as thenearest image conventipis good enough. The minimum image con-
vention states that all coordinates are considered to lem tadodulo the box lengths,
that is, a particle leaving the right side of the simulatiax immediately reenters
from the left, etc.

The use of periodic boundary conditions may introduce @it technical chal-
lenges if we are dealing with long-range interaction passitsuch as the Coulomb
potential, for example. Then the calculation of the intdoms of each particle is
taken over all the periodic images of the particles, in aoidito the others particles
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2.5. Calculation of properties

in the simulation box. Special methods are needed for progarergence [Ceperley,
1983, Esler, 2006]

However, it is fair to assume that the properties of a sintglenaor a molecule are
also well described by using large enough simulation boxthedminimum image
convention — without the sum over images.

2.4.1 Finite size effects

Inclusion of the simulation box may also lead to so-callimite size effects For
example, simulations of a given density with different n@mbf particles in simu-
lation boxes may give unequal expectation values of an vabkr. The estimation
of the finite size errors, however, is difficult to assess bsedhe needed PIMC sim-
ulations are computationally much more demanding — comeergsults for paths
corresponding to large systems can be challenging [Miliézel Ceperley, 2001].

Also, another effect arising from the finite size is relatethie thermal de Broglie
wave length,/2)3. One should take care that the thermal wave length is smalt co
pared to the simulation box. A good example of the latter émpesitron scattering
from the H, molecule, i.e. low H density, at about room temperatufie,= 293 K.
Simulations with one positron and one kholecule in a cubic boxi( = L?) require
relatively large simulation box since the positron in thsteyn can almost be re-
garded as a free particle. The thermal wave length for thigrpogs Ay, =~ 32.83ay,
and thus L > M\, is required, which is evident from simulation results: fastance,
for the annihilation parameter, defined by [Gribakin et20]0]

Ne _
Zett = ay° Z/dR W&(ri —Tet), (2.28)
i=1

wherei refers to thei" electron, we geFes = 9.98(26) for a box of volumeV =
(30a0)® and Zeg = 15.3(8) for V. = (130a0)3. The experimental values to be
compared with aré4.61(14), 14.8(2) and16.02(8) from references Laricchia et al.
[1987], McNutt et al. [1979] and Wright et al. [1983], respeely.

2.5 Calculation of properties

Next, we shall briefly concentrate on the evaluation of quanimechanical expec-
tation values from path integral Monte Carlo simulationsrsti- we discuss about
the diagonal properties, and second, we look into the mastroanly used energy
estimators, i.e. thermal and virial energy estimators.dfoextensive analysis on the
subject see Ceperley [1995].
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2.5. Calculation of properties

2.5.1 Diagonal properties

According to Eq. (1.28) the expectation value of a diagoteeovable is calculated
as

() =27 [ dRo p(Ro. Ros HO(Ro). (2.29)

Expressing the density function as a path integral we get

M-1
/HdRHp j—1, 13 B)O(Ro), (2.30)

where M is the Trotter number an®®;; = Ry. Due to the symmetry in imaginary
time all the time steps are equivalent [Ceperley, 1995], thod, we may average
over all time steps

M-1

M—-1
/HdRHp i1 3,6%20
k=0

1 M—
MZ /HdR Hp i1 Ry B)O(Ry)
k=0
1 M—-1
= = > (O(R)). (2.31)
k=0

Therefore, using the equation above calculation of scalaraiors, such as density,
potential energy and pair correlation function, is stréagivard. For example, the
potential energy is simply

M—-1

_1 (2.32)

k=0

2.5.2 Thermal energy estimator

The thermal energy estimator is straightforwardly derifredh the well known ther-
modynamical expression for the energy, that is,

107

(Er) = 703 (2.33)
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2.5. Calculation of properties

where the subscript T refers to Thermal. In path integrahdism the above can be
written as

I] dr; a% T[St

0 i=1
M Ly M
dR] 8Zk:1 S(;_k—l)Rk’T) Hefs(Ri—hRi;T)

j=0 =1

(2.34)

Thus, the thermal energy estimator is the average ofrtderivatives of the link
actionsS(Ry_1, Ry; 7) defined in Egs. (2.9), (2.10) and (2.11). Taking the derreati
yields

27 ANT? or

M
. Z<dN (Rp_1 — Ry)? 8U(Rk—1aRk%T)>, (2.35)

For the primitive approximationthe 7-derivative of the potential action equals
the average [V (R;_1) + V(Ry)], and hence, the thermal energy estimator for the
primitive approximation is

M 27 ANT2

M
(Fr)=—3) <d—N (o = Be? V(Rk)> . (2.36)
k=1

2.5.3 Virial energy estimator

The novel idea behind the virial energy estimator is to fiems the kinetic term in
Eqg. (2.35) into something that might fluctuate less. A gdnexpression is derived
in Ceperley [1995], Appendix A. Here, however, we shall gotigh the derivation
for the primitive approximation as in Herman et al. [1983jlyo
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We begin with
M—-1
< > RkaS>
k=0
M—-1 M-1
= Z_l/ H de (Z Rkvk5> e
=0 k=0
M—1 M—1
=z1y / 1 dR; Rk (—Vie™®)
k=0 =0

M—1 M—1
S Z / H dR]/de Rkvkefs
k=0 7 j=0

i#k
M—-1 .M-1

=-z) / 11 oz { substitution part— Nd/de es} . (2.37)
k=0 "  j=0
Gk

whereN is the number of particle] is the dimensionality and the substitution part is
N d R£
. . - -S
substitution part= ") "} / dRk . [Rk,n,me ]RZ’ (2.38)

n=1m=1

where d?;, ,,, , is ad — 1 dimensional differential measure for th& particle in the
time slicek. For example, for a particle in three dimensions one suwibistit term
would be [ dzdy[z exp(—S)]z/, and another would b¢ dzdz[y exp(—S)]y! . Thus,
we may write

M-—1
< > Rkvks> = MNd-T, (2.39)
k=0

whereY refers to the surface term. For some cases, e.g. particfenedrin a vol-
ume with reflected boundaries, the surface term gives ris@ tabservable pressure
[Leino, 2007]. This will be shown shortly for the case of Gamb interactions. For
now, let's assume the substitution part is zero [Herman.e1882], i.e.

M-—1
< > Rkvks> — MNd. (2.40)
k=0

On the other hand, the expectation value can also be wristen a

M—1 M—1 M—1
<Z RkaS> = <Z RkaK> + <Z RkaU> . (2.41)
k=0 k=0

k=0
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The kinetic action may be expressediés= constant+ K, where

M
constant= In(47AT)
and
M—-1
K= (Fi — R”l (2.42)
=0

For the primitive approximatiot’ = 7 "M 1 V(R;), and thusV,U = 7V, V(Ry,).
Since [Herman et al., 1982]

M—-1

M-1
Z Tig —zip1)? =2 Z — 2i41)%, (2.43)
i=1

’L

we may writeR, VK = R,V K = 2K. Inserting Eq. (2.40) to Eq. (2.41) with the
shown modifications we have

M—-1
MNd = (2K) + <r Z RkaV(Rk)> . (2.44)
k=0

This can be further modified to give

B ) (53

where on the right we have the thermal kinetic energy estimahus, the virial total
energy estimator for the primitive approximation can bettemn as

M—-1

> <%Rkka(Rk) + V(Rk:)> : (2.46)

k=0

1

(Bv) = 77

where V stands for Virial.

Observable pressure: Coulomb interaction

A fully nonadiabatic simulation for a system where particége interacting via the
Coulomb interactions only, Eq. (2.46) simplifies ¢&y) = (V)/2, i.e. only the
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potential energy needs to be calculated, which speeds upations and lowers the
variance. However, according to Feynman [1972, 1998]

3pV = 2(T) + (V), (2.47)

which would indicate zero pressure whéfi,) = (V')/2. Using Eq. (2.39) we may
relate the surface terffi to pressure. First, including the surface term to Eq. (2.45)
we may write

T
(Ty) — (Tr) = ~35 (2.48)
Adding the termB8((T7) — (Ty/)), that equal$Y /2.3, to both sides gives
T
2Tr) — 2(Ty) = 5 (2.49)
Since, now—-2(Ty) = (V'), we have
2(Tr) +(V) = % (2.50)
and thus,
T
3pV = 7 (2.51)

Therefore, the virial energy estimator of Eq. (2.46) is naygtropriate in describing
molecular properties of, for example, a molecule in a largmugh simulation box.

2.6 Ensemble average and error estimate

In a path integral Monte Carlo simulation one estimates #peetation value of an
observable) according to equations given above at every Monte Carlo-steqr
with some frequency, e.g. at evelf0 MC steps. The longer the simulation the more
statistical accuracy is obtained.

For the total simulation witlv: MC steps the expectation value or ensemble aver-
age is simply thesample mean

N
(0) = % > o, (2.52)
=1
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2.6. Ensemble average and error estimate

whereO; is the expectation value of th& MC step. If the simulation dat@; are
uncorrelated the standard error of the mean (SEM) is given by

S

SEM= ik (2.53)
wheres is the square root of theample variance
2= i(oi — (O, (2.54)
N -1

=1

Most often, however, the Monte Carlo simulation data is@ated, as implied in
section 2.1. The correlation can be taken into account bye#icient called correla-
tion timex. Now, the SEM is expressed as

I K
EM= — 2.
S s N (2.55)

where the correlation time is given in terms of the autodatien timeC'(At) as

K=1+2 i C(Ab). (2.56)
At=1

For a discrete data set the autocorrelation time can be a&stihusing

C(k) = ﬁ b [(00=0)) (0 —10))]. @57)
t=1

In practice, the infinite summation in Eq. (2.56) can be apipnated by taking the
sum from1 to IV, only. Also, if the autocorrelation time is negative for so =
m < N the summation is taken up to — 1.
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Chapter 3

Coulombic systems

The direct application of the path integrals, i.e. the ptivei approximation, suffer
from problems due to the Coulomb singularity — the attract@oulomb potential is
not bounded from below as is required by the Trotter formblere, we address this
issue and show how this is solved by the pair approximatitodiiced in Chapter 2.

3.1 Pair density

For a pair of particlesR = {r1, r2}) one may write the density matrix in terms of
its center of mass (c.m.) coordinates and those for thavelatotion as

p(R,R';7) = pem(Tems Tem:; T)prel(r, 7’5 7), (3.1)

wherercm, = (miry + mars)/(m1 + mo) andr = ry — ro. In addition, for any
central potential the density matrix (7, 7’; 7) may be expanded in partial waves as
[Storer, 1968]

o0

prel(r,7’;T) = 47r1rr’ Z(Ql + 1) py(r,r"; 7)Py(cos(0)), (3.2)
=0

whereP,(z) is thelth Legendre polynomial is the angle between vectorsandr’,
andp;, is the pair density matrix, which is a solution to the Blocluaiipn

Opu(rrsm) _ [\ 0 A(L+1) .
- or - _)\W + U(?") + r2 PZ(T,T aT)v (33)

with appropriate boundary conditiong;(r,r’; 7) = 6(7)d(r — ') andp;(0,7"; 7) =
0 [Ceperley, 1995].
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3.1. Pair density

The pair density matrix may be expressed, for example, usiagadial eigen-
functions, i.e.

prst'i7) = 3 ) e P / dk U(r) e B (), (3.4)

where summation index = {n, [} andk = {k,[}. In practice this computation may
become an unmanageable task. Another way — a bit more pogpieoach — to
compute the pair density matrix is callethtrix squaring which is introduced later.

3.1.1 Free particle

Now, for future reference, it is useful to introduce the mensity matrix of a free
particle [Ceperley, 1995]

Amrr’ r2 42 rr’

K / .

- X - 35
prrrsT) (4T AT)3/2 P < 4T ) K <2)\7’> ' (3:3)

wherei; (z) is theith modified spherical Bessel function of the first kind.
For the free particle the summation over partial waves, EQ) (nay be performed
exactly [Ceperley, 1995]

P8 757) = s S (@1 ) (') Peos(9))
=0

a2
= (471')\7')_3/2 exp <— |r4)\: | > . (3.6)

Generally, however, the summation has to be approximated.

3.1.2 Coulombic

In case of the Coulomb interaction, it has been shown [Hostid Pratt, 1963, Storer,
1968] that the relative motion density matrix can be obtaifiem equations

1 0

prei(r i 7) = == po(z + 5,2 — 5i7) (3.72)
1 9?

prel(r, 7 7) = —8—WP0(Z+37Z—5§7')’5:07 (3.7b)

wherez = (x +y)/2, s = (x —y)/2,x = (r+7 4+ |r —7'|)/2andy = (r + ' —
|r —7'|)/2. The off-diagonal term, Eq. (3.7a), may also be written as

0 0

Prel(T,T/;T) = _m<a_x - 8_y)p0(x ysT ) (3.8)
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3.2. Pair potential

The importance of this presentation lies in the fact thay ahé first ( = 0) pair
density matrix is needed to obtain the desired density matfiie above equation is
derived in Appendix A, also.

Numerical evaluations of the Coulomb density matrix usihig approach are
found, for example, in Storer [1968] and Pollock [1988]. r8td1968] shows how
to obtain the Coulombic density matrix with the matrix sqogrtechnique. Pollock
[1988] instead, does the evaluation using partial waves.

3.2 Pair potential

In the previous sections, the means to construct the demsityix for relative mo-
tion of a two particle system was introduced. The effectiadr potential for the
Coulomb interaction, required by the pair approximatiomymow be derived from
the equation

prei(r, s 7) = plei(r, s T praa(r, 75 7) = plga(ry s 7) exp [—u(r 'y 7)) L (3.9)

Thus, the effective potential is

1.
uw(r,7’;7) = —1In [?(:’7’:/’2] = Srel(r,7';7) — Krel(r, 7’5 7). (3.10)
rel\" > % >

3.2.1 Properties of the Coulomb pair potential

Next we will consider some analytically obtainable infotioa about the effective
potential introduced in Eq. (3.10) for the Coulomb intei@tt First, the value at
the origin, as well as the behaviour near the origin, is shas/iin Pollock [1988].
Second, the diagonal terms are looked into.

Behaviour at the origin

Pollock [1988] showed for the repulsive Coulomb interattibat the density matrix
at the origin is

17513 [ ke K
Pre|(07037) = | ! 2| /
0

2m\3 em/k — 1

( >'<y+2> ”2“],

1212:> )1/2
= 1—(my)"* + E
3 3/2
T A3(4my)3/2 =
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3.2. Pair potential

wherey = 7(Z1 Z3)?/)\ and( is the Riemann zeta function. Comparing the expres-
sion above to a cumulant expansion, i.e.

prel(0> 0; 7’)

__|12zP if2
= N3 (an)i2 ZP7

2k /2 2 32
—W 1—P1")"] —+ 5P1_P2 Y — 3'P1 +P3—P1P2 +,

we may write the effective potential for the repulsive Canlointeraction at the
origin as

u(0,0;7) ZPWQ (3.11)

the coefficients bein@ = /7, P> = 37—((2) = ir— 12, Py = 1r%/2 - La5/2 4
%\/E ¢(3), etc. See Table 3.1 for numerlcal values up te 8. These values clearly
demonstrate the rapid convergence of the cumulant expansio

More generally the effective potential at the origin is eegzed as
u(0,0;7) = > (1) Py, (3.12)
7=1

where—+ is for the repulsive and- for the attractive case. This indicates that choosing
the free particle action as the kinetic action we end up witretfiective Coulomb
potential which is non-singular at the origin.

Behaviour near the origin

Examination of the most divergent terms in the Bloch equatiear the origin results
in the cuspcondition [Pollock, 1988]

7.7
1A2(7~ ). (3.13)

lim u(r,r’;7) = u(0,0;7) —
r—
r'—0

The second term on the right-hand side is simply therbital contribution to the
density matrix.
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3.3. Matrix squaring

Table 3.1: Coefficient®; for Eq. (3.11)

P, 1.772453851
P, -0.074137740
P;  0.005834805
P, -0.000382686
P 0.000008738
Ps  0.000002138
P; -0.000000356
P;  0.000000021

Diagonal of the effective potential

For the diagonal terms it is now possible to lay out three @@t of which the last
one is exact in the limit — 0, only,

u(0,0;7) = > (£1)/ P72 (3.14a)
7j=1
; 7
7‘3'“(3:77) =A% (3.14b)

2129

u(r,r;T) =T

,forr > r., (3.14¢)

wherer,. is some cut-off radius.

3.3 Matrix squaring

In this section, a brief introduction to the basic theoryr@f matrix squaring is given,
first. Second, the matrix squaring is looked into in a diffén@ay in order to obtain
as much accuracy as possible.

3.3.1 Basic principle

Theory

The basic idea of the matrix squaring is to obtain a low termpee pair density
matrix using that of a high temperature. Let us assume we khewpair density
matrix at the inverse temperature= 3/M and we want to have it at. Using the
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3.3. Matrix squaring

product property once, we have
plrr'i20) = [ a7, (3.15)
0

which is the density matrix at a lower temperatufe 7'/2). Applying the same
property forn times recursively we obtain the desired density maiyix, r’; M) =
pi(r,r’; B), whereM = 2™. For more details, see for example Storer [1968] and
Klemm and Storer [1973].

Practice

The simple theory of the matrix squaring has a great deahufitig factors in prac-
tice. For example, we do not (usually) know the high tempegpair density matrix,
and the integral in Eg. (3.15) cannot be integrated all thg twanfinity. At a high
enough temperature, however, the primitive and semi-ickasapproximations may
be considered accurate. Thus, the first practical problesolg&d.

The matrix squaring procedure is basically a two step psces

1. Compute the initial pair density matrix using a high-temgture approxima-
tion (e.g. the semi-classical approximation)

pu(r, ') ~ pf(r, ' T) exp (— ,T / V(a:)d:r) ,
r T

wherepl (r,7’; 7) is the free-particle pair density matrix, see Eq. (3.5).
e Remember the boundary valpgO0,r’; 7) = 0, see Eq. (3.3).

2. Do the required amount of squaring procedures
Te [e'e}
pu(r,r’;27) = / ar” py(r " ) p (77 v’ ) +/ dr’" F(r,r' r";7),
0 Te

where the second term on the right is some analytically btdvapproxima-
tion, for instance [Storer, 1968].

Numerically the previous using a uniform grid and Riemanmsation is

1. Make anV by N matrix p using the semi-classical approximation at the inverse
temperature-.
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3.3. Matrix squaring

2. Compute iteratively as many times as it is required theiraatatrix product
p(7)p(7) multiplied by the grid spacind\z,

p(27) = p(7)p(T)Az,
p(41) = p(27)p(27)Ax,

p(MT) = p(%7)p(H7)Ax,

and at each step compute to every matrix element the appatedhvalue of
the integral fromr.. to infinity.

3.3.2 Advanced

The basic matrix squaring method where the partial waveityemsitrix is integrated
in a two dimensional uniform grid loses a lot of accuracycsithe density matrix is
very sharply peaked along the diagonal. Thus, the grid shioave extremely small
spacing in order to store the matrix accurately, which isdestirable.

One way to overcome this loss of accuracy is introduced inTthesis by Esler
[2006], which is shown here also, but with slightly diffeterotation.

"Squaring the potential”

Instead of squaring the partial density matrix, it is betib'square” only the potential
term, which is much more well behaved — no sharp peaks. Theedtoe starts with
the same product property as before.

pi(ryr';27) / dr” py(ry 7" Y pr (" 1 T

"o\ "o,
& o (T T‘ 27_) —uy (r,r’;27) / dT” K 7” T//;T)p%((r//,T/;T)eful(r,r i) —ug (r” ')

= e~ (r’;27) :/ dr 1Pl (T r' 7—)pl (7“ r's i7T) e~ (rr'sm) = (r” r'i7)
Pl ;(r,r'327)

"o,
& u(r,r’;27) = —In [/ dr ”pl T T)pl @’ ’T)euz(r,r”;T)uz(r”,r’;r)}

oK (r,r':27)
< w(r,r;27) = —In [/ dr”" I(r, ' 7" m)e ™ (T’T";T)_”l(r”’wﬁ)} , (3.16)
0
where
K . Ko,
I(T 7“/ 7“//'7') _ pl (7’,7" 7T)pl (T , T 77) (3 17)

oK (r,7'527)
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3.3. Matrix squaring

Trivially the free particle part of the integrardr, ’,»”; 7) integrates ta:

/ d?“”] 7“ ! 7“ 7_ / dr //pl r, 1’ T)pl (Tﬂarl;T)

P (r,r';27)
e ol (ry " ) (s )
- pr(r, ' 27)
(' 27)
- pR(r, 1’5 27)
— 1 (3.18)

Since the free particle density matrix is known analyticate I (r,+’, ”; 7) term
in the integrand is easily evaluated. Thus, only the paténgeds to be tabulated —
and during the integration it also should be interpolated.

Modified integrand

In order to be computationally relatively effective the ltiaal part of the integrand
should be modified. Let’s first write down the free particletigd density matrix in a
computationally favourable form.

Ko g A r? 4 2
Pl (ﬁ%ﬂ—mexp T
_ A o _7“2 + 1’2 rr’! . B rr’
© (4mAr)3/2 P ANT oxr ) P\ T anr
4 / _ 2 / /
_Amrr exp C(r=1") Zz rr exp [ — rr
(4mAT)3/2 ANT 20T 20T
d7ry! r— )2 rr!
- (4wAT)3/2 P (_( 4/\7') ) g <2)\T> ’ (3.19)
wherem;(z) = i;(z)e™ %, z > 0.
In terms of Eq. (3.19) the free particle part of the integrand

I(r,r" r";7)

BN GUSEIA G
K0 7]

_Amrr” (r—r"")? rr’” Amr''y! _(r"=r")? P!yt
(47r)\7—) 572 €XP ( 4NT mi\ axr (4mAT)3/2 exp AT my\ sxr

dmrr! (r—r")2 T
(Smaryp72 P ( AT ) m (£7)
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3.3. Matrix squaring

r—pr!"h2 )2 rr!’ !
B 47 (87TAT)3/2 //zexp (_( 4)\7) ) exXp <_( 4>\T) > m (2)\7) my <2)\T)

Y (= o (50)
_ oo G o () m (55 m ()
' o (-5 mEE
(3.20)
which for convenience may be written As= F R, where
g (T e () a2y

exp (—5°)

and

R= \/g Oy 322 (i) - () . (3.22)
The exponential pak may be written in a more practical expression:
exp (=3 ) exp (- )
oxp (~Co

2 1" "2 12 1.0 72
re=2rr" 40" 4" 20" 4
exp (_ 4 T )

exp (~ 5 )

2 /2 12 " 1.1
ré4r e 42r"¢ 2y 20"y
oxp (a2

exp (5

T‘2+T/2+27”//2—27"//(7’+7‘/)
exp (_ ANT

exp (~ 5 )

,’,,2_,'_7"/2_,’_2 |:7”//2—7'”(T+7")+i(T‘+7‘/)2] —%(7‘-‘1—7’/)2
exp | —

E =

ANT
exp <— (rg_;TlP )

2
7’2—&-7"2—%(7’—&-7"')2—&-2 [7"”— h;r']
exp | —

AT
exXp <— (Tg)ip )
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3.3. Matrix squaring

e )
exp | — ANT
- (r—r’)2
€xp (_ SAr )

Pl — et ’
—% . (3.23)

= exp

Change of variable
Definingz = (r +r')/2 ands = r” — &, we have
I(r,r s;7)
r(ZT+s) (Z+s)r’
my p my p 2
202 (34 5)2 () m (55) exp ( i > . (3.24)
T my (4)\7')

This corresponds to a change of variabfle— s + z. Thus, the differential changes
as d” — ds and the new integration limits are fromz to co:

w(r,r’;27) = —In [ ds I(r, ", s;T)e_“l(T’”_”J’S;T)_“Z(MS’TI;T)] . (3.25)

—T
Thus, now the "squaring” procedure incorporates the ré@ingse of the equation
above.

In practice, the potential; is tabulated on a finite range, up teng and rg
The free particle parf(r,r’, s; 7) is a gaussian-like function, and thus, falls to zero
rapidly. Therefore, integration to infinity is not requirfm high accuracy. However,
the process still involves integration outside the talmdatalues. This can be dealt
with by approximating the potential outside the grid, foampler’ > r,, as

’LLlapp( 2 (T‘, Tendv ) (326)

/.
nr T) ulapp(T? Tend’ ) ’
where app refers to some approximate potential actiontlegrimitive approxima-
tion.

In the next section, we shall consider the squaring procasthé 5-derivative.
There one also tabulates the values, and for the integratitside the grid a proper

choice is given by thg-derivative of Eq. (3.26), i.e.

v) Oufrr'ir) | urri) Ou(r i)

w(r,r'sT) ~

ouy(ryr'; 1) - wy(r, 7.

end’
or lpp(r, Thong T) or u?pp(r, Tong T) or
wy(r, ! uPP(r, r!
_ u?pp(r, 7,/;7_)[ a;é » Tendy T 7) 1 ( » Tendr 7 ) (3.27)

(s g 7)) or
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3.3. Matrix squaring

3.3.3 Evaluation of energy

The accurate use of the thermal energy estimator requiat$hds-derivative of the
(potential) action is also evaluated. An expression fog tt@in be obtained by the
squaring procedure as well — this will be established sfortl

The -derivative of the density matrix of relative motion is

: 1 & Opu(r,r';
rrif) = Z(2z+1)%a(msw>). (3.28)

9 el
B Prel —

Therefore, we need to solve thiederivative of the partial density matrices. Fur-
thermore, since the free particle part is analytically knaive 5-derivative of the
potential is required, only.

Squaring the g-derivative

Again we begin with the product property

o0
pi(r,r'; B) = / dr” py(r, 7" ) o (" 7).
0

Note that here we have = 27. Now we are interested in th&derivative.

0
%pl(ra T,; ﬁ)

_ 9 .

= Mﬂl(rﬂ” 727')
_19
- 287"Ol

1 6 > 1 1 no
=297 J, drpi(r, s ) pu (17, 75 7)

1 [ . "o,
_ 5/ dr” [apl(g: 7T)pl(7””,7"/;7') +Pl(7”, 7“//§T)8pl(ra;_r 77) (3.29)
0

(r,r';27)

The r-derivative of the partial density matrix

pi(ryr'sT) = pf(r, ;) exp(—uy(r,7’; 7)) (3.30)
is
op(r,r'sT et O Kir,r!s T ouy(r,r's
pl(aT ) —e l(: ; ) pl (87- ) —pl(T‘,T‘/;T) l(aT )’ (331)
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3.3. Matrix squaring

from which we can solve the-derivative of the potential to be

ouy(ryr’sT)
or
_ 1 e~ (ryr's7) apf (’l“, ’l“/; T) i apl(rv T/; 7-)
pi(ryr’sT) | or or

__ulrain) [ 1 opu(r,r'sT) o—un(rar's7) 1 op (1, 'y 7)
_pf (ryr!;T) or p;( (ryr!T) or

= _eulnrin) | ! / Opulrrs7) =TT Oy, r';T)}
Loy (ry 775 7) or

= —eu(rr'im g, (r,r's 7). (3.32)

There we defined two new terms
1 9pf(rr'i7)

C 1) = 3.33
l(T,T 7T) p;((/r7 7”; 7_) 87’ ( )
and
1 8pl(r, T/; T) —uy(ryr’sT
ay(r,r’;T) = Krri7) 57 — eSO (s ), (3.34)
which are helpful for more readable results due to shorttatiom.
Now, the-derivative can be written as
9 /
%pl(ra s ﬁ)
1 o0 " "o
_ 5 /0 dr//p;( (’I”, ’I””; T)p;( (T”, T/; T)e—ul(r,r i) —ug (" e’
. /! /.
[C’l(r, )+ G ) — 8ul(g: ) _ aw(ra;r ’T)] - (3.39)

Thus, thea term is
ay(r,r'; B)
1 o0 " " .0
_ 5 / d?“”[(’f’, 7’/, 7“”; T)e—ul(r,r i) —ug (r" ')
0

", "o,
[CI(T, )+ G ' ) = 20 (r, 1 B) — Oulrr’i7)  Oulrr ’T)} ;

or or
(3.36)
and thes-derivative of the potential is
/.
e (g[:—, = et ey, ), (3.37)
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3.4. The Coulomb pair potential

Thus, with some high temperature initial values for the ptigé action and its3-
derivative one can solve the derivatives at lower tempegatrtecursively.

The new termC;(r,r’; 7) is easily evaluated analytically. First, according to
Eqg. (3.19) we have

K(’r P = drr! ox _(T—T’)2 - rr!
PERRTS  (dmwAT)3/2 P ANT oar )

Therefore, for the-derivative we get

8pf(7“,7“’;7) _ Aarr! ox _(7“—7“’)2
or  (4mAT)3/2 P ANT

1([r2++2 3 rr! rr’ _, [ rr!
- _2 ST i 3.38
T { [ ANT 2} i (2)\7) onr (2)\7> }’ ( )

wherem;(z) = 6—2%. Combining the previous two equations we are left with

1 0pf(rrs7)

C ') =
(rr57) pf(r, ' T) or
1|r2472 3 my (%)
. oo AR (3.39)
T ANT 2 2 Ty (2’")’\"7)

For clarification, here is the algorithm for the calculatmfrthe 3-derivative:

1. use some high temperature approximation for the calculaifadhe potential
w(r,r'; 7) and itsT-derivative

2. calculatea(r,r’; 3) = a(r,r’; 27) using Eq. (3.36)
3. calculateu(r, r'; 8) = w(r,r'; 27) using Eq. (3.25)
4. calculate thes-derivative of the potential using Eq. (3.37)

5. using the obtained potentiad;(r,r’; 3) and its 5-derivative go through the
steps fronR.-5. iteratively until the desired temperature is reached

3.4 The Coulomb pair potential

For a pair of particles interacting via the Coulomb potdrltia density matrix can be
expressed in terms of thie= 0 partial density matrix, that is,

_ 1 (é _ é) (2,4:7)

in(z —y)\azx oy POV T

prel(""y 7°/§ 7') = -
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3.4. The Coulomb pair potential

Thus, for the computation of the effective pair potentia thatrix squaring needs to
be performed fof = 0, i.e. the s-orbital contributions, only.
Using a shorter notation the above density matrix may beaemis

_ _#(ﬁ _ ﬁ)

Prel = in(z —y)\dz By Po
B 1 0 I\ K —up
 dn(xz —vy) (3:5 3y>p0€

=gl (G el e (5~ gy

= e + gl s

=e " (pra+ 06 f) (3.40)
where
K 1 ﬂ _ Q K _ —3/2 —(z—y)2/4AT
to=—1mi 5 (55— 9, )78 = ()% (3.41)
and
1 0 0
U Adm(x —y) <(9_:c a 8_y>u0’ (3.42)

Therefore, the pair potential, see Eq. (3.10), is
/.
u(r,r’;7) = —1In [7P§I(T’TI7T)]
prel('r7 r ;T)
o e 0@y LK (2, y;7) + pff (2,55 7) f (2,43 7) )
oo,y 7)

K .
=wug(z,y;7) —In {1 + Mf(%yﬁ)}
Prei(T, Y5 T)

=u(z,y; 7).

Furthermore, since

4y _ (:L"fy)2 xy
pg(.%',y, T) _ (4#)\7)3/2 exXp ( 4ANT ) mo (2/\7') _ 47Txym0(ﬂ)
Pz, y;7) (4w A7) =3/2 exp <— (x4_>\?i)2 AT
the pair potential may be written as
u(e,yi7) = uo(a,yim) = In |1+ draymo(S ) f(e,yim)]| . (3.43)
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3.4. The Coulomb pair potential

3.4.1 [-derivative

Since the free particle part of the action is known analiliicae only need to cal-
culate thes-derivative of the potential (pair) action, i.e. Eq. (3.48)ith elementary
mathematics we get

du Oug mo(2) 55 — 51 [i(2) — mo(2)]
98-8 T itamaymea)f (349
where the new terms are defined as
2= ;Ayﬁ (3.45)
g (z) = exp(—z) digiz), (3.46)
of 1 (0 0\
9B Am(z —y) <3x 09) 0B (347)

Another approach for the g-derivative

Here thes-derivative of the pair potential is derived in a differerdyw This approach
yields equivalent result. Let’s begin with thiederivative of the density matrix.

apl’el . 8prel . 8“
Ou o 1 a:Orel - L 8Prel

op pﬁﬂ op prel O3 ( )
Then let us define the first term on the right-hand side ta'fg that is
1 dpe(r, 75 )
r, v’ 3 . (3.49)
Cralr. ) = p(rir’sB) 98
By Eqg. (3.6) the free particle density matrix is
B r— 1“/ 2
(i) = () S exp (7L
and thes-derivative is, thus, given as
2K, (r,7"; B) 1[|jr—7> 3
This leads to
o 1 lr=7r2 3
Crel( ' 8) = B [ 3 - 5] (3.51)
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3.4. The Coulomb pair potential

Now, the second term on the right-hand side of Eq. (3.48) @iaba analytically
solved but it can be further simplified. Let's define that teonbe

1 aprel(rﬂ",§6)
Prel(rﬂ'/55) aﬁ ’

e“(’r‘,r’;ﬁ) CreI(Ta T/; ﬁ) — (352)

which leads to

1 8Prel("“ur,§ﬁ)
prei(r, 75 B) op
For the Coulomb potential the density matrix of relative imoican be expressed
as

Crel(r, "5 8) = — (3.53)

) o 0
Prel("‘ﬂ“ ;ﬁ) = —m<% - 8—y>l)0(1’7y§5)
= e (pla+ 20 1) (3.54)

see Egs. (3.40) and (3.42) for more details. Bhaerivative of the expression above
is

8prel(r>"“,§ﬁ)
op
0 —ug K K
= % [e (prel“‘pofﬂ
B Oug | 4y opK, 8p0 K@ f
Thus, we get
1 Oprel
Crel =
re I},<e| 8,6
g ph N\ Ouo 1 dpfy 1 9ps . pb Of
=¢ 1+_K 392 K A3 K Aapd 7 K a3
prel 8/8 Prel aﬁ Prel (9ﬁ Prel 8/8
_ Jug Po af}
i > duo _ _Po 97 (3.56)
[< reI 8/8 reI pﬁel ’ reI 85
where
K
po (2,5 7) Ty
—— —Arzym
P,y 7) vmo(gy )
Finally, Eq. (3.48) may be written as
ou(z,y; o
% Crel(ma%ﬁ) +e ( ’yﬂ)crel(xa% 5) (3.57)
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3.4. The Coulomb pair potential

u/t

Figure 3.1: Pair potential for the electron—proton intéoacdivided by the time step
7. (LEFT) Surface forr = 1.0E,71. (RIGHT) Diagonal for different time steps. The
—1/r potential is given as a reference.

3.4.2 Pair potential and thes-derivative

Here is the set of equations needed for the computation opdireaction of the
Coulomb potential. First, one must generateitke0 potential and itg3-derivative,

for example, by using the matrix squaring technique desdrémarlier. After that the
pair potential is given by

u(z,y; B) = uo(z,y; ) — In[1 +drzymo(2) f(x,y; B)], (3.58)

and theg-derivative by

Ou  Oug mo(Z)g—f; -3/ [mg(2) — mo(2)]
o6 op Y L+ dnzymo()f ’ (3:59)
where
r=(r+r" +|r—1)/2, (3.60)
y=(r+r —|r—r)/2, (3.61)
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3.4. The Coulomb pair potential

1=0.01
1=0.1
1=0.5
1=1.0
1=5.0
— — =1

Figure 3.2: -derivative of the electron—proton pair potential. (LEF)rface for

T = 1.0E;1. (RIGHT) Diagonal for different time steps. Thel/r potential is
given as a reference. With= 0.01]5,:1 the existing difference can be seen close to
origin.

_ ay

2= ot (3.62)

mo(z) = expl(~2)in(2). (369

fih(2) = exp(—) T2 (364

Fai8) = = (5 — 5 ) e ) (3.65)

3f(x,y,6) o 1 0 N 2 8u0(x7y;ﬁ)
e ) e @

In Figs. 3.1 and 3.2 the effective Coulomb pair potential @&ad3-derivative are
shown for the electron—proton interaction.

3.4.3 Periodic pair potential

In order to shorten the notation here we omit the text "reférag to the density
matrix of relative motion. An expression for a periodic padtential may be derived
by a sum over periodic images [Ceperley, 1983] as
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3.4. The Coulomb pair potential

ppec(r,7';8) = > _ p(r + nL, v + mL;3)

n,m

K —u . K —Unp,
< ppece C= E Prnme "

n,m
K —Un,m
Zn,m Pr.mb e
— upgc = — In K
PpBC

o [Enm e
>k P/E

Thus, the periodic pair potential is given as a free partisdéghted average of the
infinite one according to the equation above. As in chapterivis the set of three
primitive vectors of the Bravais lattice of the periodic t®ya andn is an integer vec-
tor. For large simulation boxes-gc approaches, and thus, the weighting process
can be neglected. For smallthe expression above simplifies to a similar form as is
given in Ceperley [1983], i.e.

(3.67)

Zn,m pfz,mun,m
>k P

upgC = (3.68)
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Chapter 4

Fermion and boson statistics

4.1 Fermion and boson density matrices

For indistinguishable particles the state of the systerithigeantisymmetric (fermions,
F) or symmetric (bosons, B), for which the density matrix nb@ywritten as a sum
over particle permutationg?, as [Feynman and Hibbs, 1965, Feynman, 1972, 1998,
Lyubartsev and Vorontsov-Velyaminov, 1993, Ceperley,6l9deinert, 2004]

o, 3 9) = < S (F 1) p(PR, R ), @.1)
P

whereP is the permutation of particle labels, ardand + are for fermions and
bosons, respectively. The above is simply a projection @fiistinguishable particle,
i.e. boltzmannon, density matrjxinto either antisymmetric{) or symmetric ¢)
states, only.

For fermions Eq. (4.1) results in the well-knovigrmion sign problemin prac-
tice, due to the alternating sign, which leads to canceltatif positive and negative
permutations. The direct use of Eq. (4.1), while exact, beoexceedingly ineffi-
cient as the inverse temperatytend the number of particle¥ increase [Ceperley,
1996].

There are ways to go around the sign problem, such as restnpzth integral
[Ceperley, 1996] and multilevel blocking [Mak et al., 1988)ger et al., 2000] meth-
ods, for example. Unfortunately, however, none of the prefiaite temperature
solutions is feasible for accurate fermionic calculatiahk®w temperatures, yet.

Next, we shall only briefly consider the restricted path gni¢ approach, for
which Ceperley [1996] proved that it is sufficient to samptdydhe positive or the
negative contributions of the density matrix. Thus, theced#lation of the negative
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4.1. Fermion and boson density matrices

and positive permutations is removed and the fermion sigidpm is solved, in
principle.

4.1.1 Restricted path integral and fermion nodes

The basic idea behind the restricted path integrals [Cepell996] is exactly the
same as that of the fixed-node approach [Anderson, 1976héogtound state sim-
ulations, i.e. sampling only the positive or the negativatgbutions of the density
matrix — or a wave function in case of the ground state. Tleegfin the restricted
path integrals a trial density matrix is needed to define thstipe and negative re-
gions.

Starting from Eq. (4.1) we can write the many body fermiongityrmatrix as

pr(R R B) = 5 Z p(PR,R'; 3)

N'Z 73 K PR R/7ﬁ) 'PRR/ﬁ)
N'Z 1)P kP e=Up

—U —Uo)
ON' Z 0

= P00 we,, (4.2)

——

boltzmannons
where the termwey indicates how the Boltzmann statistics should be weighiedse
of fermions. In the restricted path integral scheme onhg&br whichwey > 0, for
example, are accepted.

For the ground state the so-calleimion nodesre located at the space coordi-

nates where the wave function vanishes, that is, wii¢/@) = 0. For the density
matrix [Ceperley, 1991, 1996] the nodes are defined for drmomis pathR; as

pr(Ry, Ry t) =0, forall 0<t<p, (4.3)

whereR, is called thereference pointwhich is held fixed. In terms of the exchange
termwey the nodes are given as

wex(Ry, Ry;t) =0, forall 0<t<p. (4.4)

For more details on the restricted path integrals and tmider nodes see Ceper-
ley [1991, 1996].
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4.1. Fermion and boson density matrices

Free particle nodes

In case of the primitive approximation or a constant po&raction the difference
Up — Uy = 01in Eq. (4.2), and thus, we end up with

PR(PR.EH) o

v = W Z VK = (49
which determines the so-calldeke particle nodegFP) according to Egs. (4.3) and
(4.4). This can be calculated exactly for any number of plagisince the free particle
density matrix is known analytically.

In a more computationally tractable form Eq. (4.5) may betemiin terms of a

determinant [Ceperley, 1991, 1996], which férindistinguishable particles, i.& =
{ri,ro,...,rx}, is

e 1 det(X)

vE = N KRR (4.6)
where
P 8) pN(ra.rys B) P, 11 8)
v pK(rla.rlz;ﬂ) PK(r%.r’z;ﬁ) p (le,rz,ﬁ) Cw
pK(fl,'rQV;ﬁ) /)K(fz,lﬂv;ﬁ) pK(rN,IFEV;ﬁ)

Above one should notice that the elements of the makriare free particle density
matrices of a single particle. For bolzmannon particlesdfialiagonal elements
vanish, and as known, the many-body density matrix of fregrdjuishable particles
is just a product of the single particle density matrices.

As an example, let us consider a more general system cags@tiVv, electrons
spin up(T), N, electrons spin dowii|), N3 nuclei spin up(T) and N4 nuclei spin
down(}), i.e.

R:{rg),rg),.. rg\,f r§l),rg), rg\l,g
RIVRY,...,RV, RV, RM, .. RPT. (4.8)

Now, the free particle nodes can be determined from

EP 1 1 1 1 det(X1)det(X2)det(Xg)det(X4)
N . 9
Nl!Ng!N3!N4! ,OK(R, R/;ﬂ)

where matrixX; is constructed from particled’; in a similar fashion as is shown in
Eq. (4.7).
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4.1. Fermion and boson density matrices

4.1.2 Fermion path

For fermions the path can be expressed in two ways [Cepetf#6, Lyubartsev,
2005]. We can expand the distinguishable particle densitiririn Eq. (4.1) as

(R R p)
= Z p(PR, R'; 3)

= ﬁ Z(—l)P/dedRQ - -dRys p('PR7 Rl;T)P(R1,R2;T) . 'p(RM,R/;T)
/dedR2 ~dRy le p(PR,Ry;7)p(R1, Ry;7) -+ p(Ras, R'5 7)

= /dedRz - dRys pr(R, Ry;7)p(Ry, Ro; 1) -+ - p(Rar, R 7). (4.10)

On the other hand, the fermion density matrix may also bdewis an expansion of
the fermion density matrices leading to

pF(Rv Rlv ﬁ)

= /deng - dRys pr(R, R1;7)pr(Ry, Ro;7) - pe(Rar, R 7). (4.11)

Both expression above are exact, but for most systems Higl#fiorward application
of either one is inefficient. An accurate approximation fle thigh temperature,
i.e. smallr, fermion density matrix present in the above equations @dnd that
given by the primitive approximation, i.e.

pe(R, R';7) ~ pf (R, R';)e” VIR
= (R, R e VU TWER(R, R )
:p(RvRIQ )wex(R R 7). (4.12)

Next we shall consider path integral simulations using E44.1) and (4.12), where
the path is restricted from first-principles.

Restricting the path

For efficient Monte Carlo simulations for fermions it seerssamntial that the path is
somehow restricted, for instance, to the positive regioty. df the density matrix,

or a decent approximation, is already known one can useah&ddating the nodes
[Ceperley, 1996]. On the other hand, one can also try logdtia nodes from first-
principles during the simulation using Egs. (4.11) andZ%. Next, we test the latter

50



4.1. Fermion and boson density matrices

case through a simple procedure, which here is based on thiermal algorithm
with the bisection moves — results are shown below, also.

As long asr is small enough Eq. (4.12) is accurate, and with the bisectioves
the kinetic part of the action is sampled exactly. Thus, ingiple, we only need to
deal with the term

wEP(R, R’ 1) VUILRST), (4.13)

Now, if the levelL is 3 for the multilevel algorithm we have

( Q eAUM) < £ oAUz, % 6AU4T> < ﬂ o—AU- gzi eAUQT)
Jir 9ir gir! g 9oy 7
15t stage 2"d stage 39 stage
(4.14)

where the coefficientg: equal the product of the free particle weights of that stage,
e.g.

Gy = W (R, Riyy 43 AT )W (R 4 45 Ry 83 47), (4.15)

for the " Monte Carlo iteration. The restriction to the positive meyis determined
by the coefficientg’! as

o 1S!stage: ifgf;rl < 0 reject, otherwise go through the Metropolis scheme for
that stage according to Eq. (4.14)

— if accepted continue to the second stage

o 2" stage: ifgi™! < 0 reject, otherwise go through the Metropolis scheme for
that stage according to Eq. (4.14)

— if accepted continue to the third stage

e 3 stage: ifgit! < 0 reject, otherwise go through the Metropolis scheme for
that stage according to Eq. (4.14)

— if accepted then save the new configuration, otherwise hold ¢the old
one

This approach is close to exact as long asrthef the largest level is small enough.
Unfortunately, as can be seen from the total energy resuitslé triplet, Li and

Be, see Table 4.1, the approach is dependent on the samptiogdore. Increasing

the level L will also increase the energy expectation value, and at qoong the
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4.1. Fermion and boson density matrices

Table 4.1: Total energies for small test systems calculas@t the procedure intro-
duced in the Restricting the path section: He triplet, Li &&with 7 = 0.03E}j1

andM = 216 i.e.T ~ 160 K. Energies are given in units of hartrelejs the largest
level in the multilevel algorithm and,. refers to the total acceptance probability.

L 5 6 7 8
He  Pacc 0.66 0.50 0.37 0.29
(S=1) E —2224(2) —21579(8)® —2.131(6) —2.12(2)
L 4 5 6 7
Li Pace 0.64 0.45 0.31 0.23
E  —7.586(5) —7.472(3)% —7.437(5) —7.44(2)
L 5 6
Be  Pac 0.29 0.16
E —14.767(14)  —14.70(3) ©

@ exact value for Hef = 1) is —2.1752 [Burgers et al., 1995]
b exact value for Liis—7.4781 [McKenzie and Drake, 1991]
¢ exact value for Be is-14.6674 [Stanke et al., 2007]

restriction becomes poor due to the approximation in Eq.2(4. However, Table
4.1 and related data indicate that good fermion nodes liwd®mt some levels. The
match could be made better by varying the size of the time &®pever, this is not
desirable.

In Table 4.2 we compare the total energies with differenticd® of nodes for
the same atoms: He triplet, Li and Be. Here the nodes of theoapp discussed
above are called "Level nodes”. The comparisons are madestdts from PIMC
simulations with the free particle (FP) nodes and the Hertfeck (HF) nodes. In
addition, accurate upper bound values from literature aeng For these atoms the
HF nodes are located jat;| = |r2|, wherer; andr, are coordinates for the electrons
with the same spin. As expected, the HF nodes give accuratgies.

In Fig. 4.1 there are also snapshots of LiH arid.iemolecules, which are simu-
lated using the free particle nodes at abti K with time stepr = O.O3E;1. The
LiH molecule is simulated fully nonadiabatically, wheréashe €"Li simulation the
Li nucleus has infinite mass. In the caption also the enegetie given and com-
pared to accurate values. The free particle nodes give aecexpectation values for
the e"Li molecule — the same is not true for a single Li atom or the bildlecule.
The unexpected accuracy is due to the strong delocalizeafitive positron affecting
the electronic structure of the Li atom, see the right figarEig. 4.1.

52



4.1. Fermion and boson density matrices

Table 4.2: Total energies for He triplet, Li and Be calcullatssing the free particle
(FP) and the Hartree—Fock (HF) nodes with= O.OSE;1 andM =216 ie.T ~
160 K. Also, the best matches from Table 4.1 and accurate referenergies with
needed decimals are given. Energies are given in units tElear

FP nodes "Level nodes” HF nodes exact
He(S=1)  —2.116(2) —2.1579(8)  —2.1757(9)  —2.1752¢
Li —7.400(6) —7.472(3)  —7.4715(30) —7.4781°

Be —14.596(12) —14.70(3) —14.6845(50) —14.6674 ¢

¢ Blrgers et al. [1995]
b McKenzie and Drake [1991]
¢ Stanke et al. [2007]

Figure 4.1: Simulation snapshots. Black, blue, red andrgrefer to electrons, and
magenta is for the positron. Li nuclei cannot be seen in thadigy (LEFT) Fully
nonadiabatic LiH molecule simulation giving total enerdy-€8.0094(32) E,. This

is not in good agreement with-8.0661557638 ), by Scheu et al. [2001]. How-
ever, the binding energy of abo0tl £}, is relatively close to the accurate value of
about0.088E),. (RIGHT) e"Li molecule with fixed Li nucleus giving total energy
of —7.5324(26) E},. This coincides exactly with-7.5323955E}, calculated using the
explicitly correlated gaussians [Mitroy, 2004].
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Chapter 5

Few electron systems at finite
temperature

This chapter is a brief summary to the simulations and residlthe articles included
in this thesis. Moreover, there will be some interestingitimithl parts, e.g. results
that did not fit the contents of the papers — along with somerthe

5.1 Electron—nuclei coupling in Hy

In Paper | we evaluate the density matrix of the full threejbquantum dynamics,
i.e. two protons and an electron, in a stationary state aiité femperature. This is
what we call "all-quantum" (AQ) simulation. Secondly, tHeatronic part only is
evaluated as a function of internuclear distance in thatsgiBorn—Oppenheimer
(BO) approximation, and thirdly, the adiabatic nuclear ayiics (QN) is evaluated
in the BO potential curve. These allow us to demonstrate tmadiabatic electron—
nuclei coupling by a projection of the AQ dynamics onto th@hkdtic approxima-
tions.

For the hydrogen molecule ion the potential energy is

‘/Y(I’l,I’Q,R):*i*iJrl (51)

wherer; = |r — R;|, R = |R; — Ry, r being the coordinates of the electron aRd
the internuclear distance. At the time we made the simulatfor Paper | we were
not that familiar with the pair approximation, yet. Thus,Raper | we replace the
attractive Coulomb interaction by a pseudo potential offtinan [Corso et al., 1996]
erf(a.r)

T

Vep(r) = — + (a+br2)e . (5.2)

54



5.1. Electron—-nuclei coupling inH

The parametres,. = 3.8638, o = 7.8857, a = 1.6617 andb = —18.2913
were fitted using direct numerical solution to give the exgraund state energy of
hydrogen atom and the wave function accurately outside -@f€cutdius of about
0.6 ag. Also, a number of lowest energy orbitals of the hydrogemadoe obtained
accurately outside the same cut-off radius [Kylanpaa, R@écause the bond length
of H5 is about ay, it is expected that bonding of the hydrogen molecule iombress
properly described.

5.1.1 Spectroscopic constants

Within the BO approximation of diatomic molecules the coti@ns to electronic en-
ergies due to the rovibrational motion of the nuclei can @wated from a Dunham
polynomial [Alexander and Coldwell, 2005]

1 1
EvJ = — De + we(v + 5) — (./Je.'l?e(v + 5)2

+BeJ(J+1)—aeJ(J—Fl)(U—F%)—F..., (5.3)

wherev and.J are vibrational and rotational quantum numbers, respagtiandBe,
we, WeTe @aNda are the spectroscopic constants.

The spectroscopic constants of land Dj are obtained as introduced in Alexan-
der and Coldwell [2005]. In atomic units

1 1
1d?EN1/2
1 dBE/dR?*\2  _d'E/dR?
and
682 [RdE/dR?
— el 1. 7
ce=— %3 /AR } ®.7)

Instead of determining these constants at the equilibriistaice only, as in Alexan-
der and Coldwell [2005], we evaluate expectation valuemftbe distribution of
nuclei, e.g. for the rotational constant,

1 1
Bo= - [ o) an (5.8)

where the pair correlation functign( R) is normalized to unity and includes tti?
weight. The other constants, Egs. (5.5)—(5.7), are evadusimilarly.
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Figure 5.1:(LEFT) Nuclear pair correlation functions: JHAQ (solid), Hf QN (dashed)
and Oj QN (dash-dotted). The difference in the average nuclear aépabetween QN and
AQ HJ is0.056(3) ap. (RIGHT) HJ electron—nucleus pair correlation functions: AQ (solid,
second lowest curve), AQ projection b= 2.0 a¢ (solid) and BO atR = 2.0 a¢ (dashed).
The latter two almost coincide. Dashed vertical line intBsahe size of the pseudo potential
core,r = 0.6 ag. For comparison corresponding pair correlation functionsydrogen atom
(dotted line) and i (dotted) obtained by using the analytical ground state viianetion of
hydrogen atom are also shown.

5.1.2 Nuclear dynamics and isotope effect

Quantum dynamics of the system is well described and didéatures of coupling
are observed for the nuclei: shift 056 aq in the equilibrium bond length, increase
of 0.040 a in the width of the pair correlation function of the nucledamonadiabatic
correction of abou®.00097 Ey to dissociation energy. Electronic distribution is less
influenced by the coupling than the nuclear one upon the siaruof nonadiabatic
effects.

For the quantum dynamics of the nuclei only we consider bofhard Dj to
find the isotope effect. The average nuclear separatidh0ab(1) a, for H and
2.007(2) ao for the isotope § is found with Trotter numben/ > 25. The full
width at half maximum (FWHM) of the pair correlation funati® are0.539(1) ag
and0.454(1) ag for these isotopes, respectively.

Projection of the nonadiabatic three-body system with thkp lof Morse wave
functions onto two-body nuclei-only subsystem indicatest Morse potential is not
capable of describing nonadiabatic effects correctly.
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5.2. Thermal dissociation of dipositronium

5.2 Thermal dissociation of dipositronium

Dipositronium or positronium molecule, £ss a four-body system consisting of
two electrons and two positrons. The dynamical stabilitgipbsitronium was estab-
lished in 1947 by Hylleraas and Ore [1947]. However, the muakewas not observed
experimentally until recently by Cassidy and Mills Jr. [Z00even though a lot of
knowledge had been provided by a number of theoretical etydiee Kinghorn and
Poshusta [1993], Poshusta and Kinghorn [1996], Bressaiai. [1997], Usukura
et al. [1998], Usukura and Suzuki [1998], Schrader [2004j)é8 and Frolov [2005]
and references therein. In addition to the fundamentaégssi physics, Rsis of in-
terest also in astrophysical applications and solid stiaysips [Bubin and Adamow-
icz, 2006, Emami-Razavi, 2008].

In laboratory conditions, Bformation has recently been observed resulting from
implantation of intense pulses of positrons into porousaifilms by Cassidy and
Mills Jr. [2007, 2008].

For the dipositronium molecule the concept of interatomstashce needs to be
defined for evaluation. We should note that at the "equilibrdistance" the centers-
of-mass of all four particles are superimposed on the samceit;m, as evaluated
from their one particle distributions (or wavefunctionsjowever, the particles do
have well-defined (correlated) average distances. Thasdéfinition is not trivial.
The correlated definition is given as the expectation vafdlkeseparation of the two
e~ e dipoles,Ryq.

Our simulations lead to "thermal dissociation" at ab@ia K, which can be ex-
plained by the strong temperature dependence of ther®s energy. With rising
temperature the free energy of the two atoms decreases beddwf the molecule,
leading to transition from the molecular dominance to tr@mmét one. From our
simulations we find the following surprising features: (i¢low temperature, where
the transition takes place, (ii) sharpness of the tramsitiod (iii) almost negligible
density dependence at the experimentally relevant degsiti

5.2.1 van der Waals interaction

At larger atomic distances it is the van der Waals interactiothe so-called disper-
sion forces, that are expected to contribute to the poleriize. These arise from
the "dynamic dipole—dipole correlations”, as usually gdotNow, within our PIMC

approach we have a transparent way to consider these itwasacthe dipoles and
their relative orientations. Thus, we monitor the dipoigete orientation correlation
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Figure 5.2:(LEFT) Apparent temperature dependent dissociation gnerdipositronium
in units of mHartree: zero Kelvin reference (red square) famite temperature simulation
results at the low density limit (blue dots). Data from higlifs density simulations are
also shown (green)).50 (0), 14 (7) and100 x 10** m~3 (A). (RIGHT) Dipole—dipole
interaction energy. The upper (dash-dotted, red) and I¢sedid, blue) curves correspond to
1000 K and800 K, respectively.

function
<p1 : pJ> (5.9)
pIpJ
as a function of interatomic distand® wherep; andp; are the twa="e™ dipoles.
This function assumes values fronal to 0, corresponding orientations from perfectly
opposite to fully random.

In an equilibrium simulation of the dipositronium we are abte to choose or fix
the interatomic distancB. Therefore, evaluation d dependent quantities presumes
that sampling in the chosen temperature includes the miévavith good enough
statistics. This kind of data hunting turns out to be comiantally challenging.

To overcome this, we have used a "close-to-equilibriumhiégue by starting
from 800 K distribution and raising the temperature @00 K, and then, applying
the reverse change in temperature to obtain another estirmathe former case we
are able to follow the increase R from the molecular region to "dissociation", while
the latter follows “"recombination”.

Using a "close-to-equilibrium" technique we also caloedbthe dipole—dipole in-
teraction energy, for which a simple fit reveals that thedadgstance limit Ryq >

12ay) for the van der Waals interaction energy shows the asympit® behavior
(a roughly 6) as expected, see Paper Il.
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5.2.2 Positron—electron annihilation

One interesting phenomenon, which we did not include in Pidys the annihilation

of the positron—electron pairs of the Psiolecule. This is related to the contact

density, that is, the probability of finding a positron and eédectron at the same

position. From the simulation data of Paper Il we can cateulae2~ annihilation

rate, I'y,, which gives the dominant contribution of the total anmitidn [Frolov

et al., 1995]. Th@~ annihilation rate is directly proportional to the contaendity.
For dipositroniuml’y, can be written as [Frolov et al., 1995, Mitroy, 2005]

Ty, = N, N+ mricag®(5(re — ret)) (5.10a)
= N N matcag ' (3(re —rot)), (5.10b)

whereN, is the number of electrongy, + is the number of positrons,is the speed
of light, « is the fine structure constant angl= a?qy is the classical radius of the
electron:

o = 1/137.0359895 = 0.729735308 x 1072,
¢ =0.299792458 x 10°m s~ 1,
ap = 0.529177249 x 1019,

Thus, here we hav®d, = 2, N+ =2 and
'y, = 201.87886 x 10° (5(r, —r.+)) s ' (5.11)

For the contact density we estim&@t®220(3), where the error estimate relates to
the extrapolation to origin. This yields,, = 4.44(7) x 10° s~!, which coincides
nicely with the valueg.411(30) x 10° s~ and4.465106 x 10° s~! given in Frolov
et al. [1995] and Bubin and Adamowicz [2006], respectively.

5.3 Exchange and correlation hole

Here the concept of exchange and correlation (XC) hole &fligrintroduced. This
is another interesting subject, which is out of the reacthefihcluded Papers of this
thesis, however, suits well below the title "Few electrosteymns”.

In order to define the XC hole the concepts such as density emslty matrix are
rewritten in a more conventional way. The following defioits follow Buijse and
Baerends [1995], Baerends and Gritsenko [1997] and BuijdeBaerends [2002].
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5.3. Exchange and correlation hole

For the study of electron correlation the two-particle @bl density matrix is
used

r®a’1;2',2) = N(N — 1)/\1/*(1’, 2'.3,...,N)¥(1,2,3,...,N)d3d4---dN,

which is normalized taV(N — 1) electron pairs for practical purposes. The used
coordinatel denotes the space-spin coordinate r;s;. The diagonal two-density,

r®(1,2) =1r®(1,1;2,2),

can be interpreted as the probability that two electronsianaltaneously at positions
r1 andr, with spinss; ands,, respectively.
The one-particle density matrix is given as

1
'1)=—— [ T@a 1:.2.2 d2
1) = g [ TPz, e

which is normalized taV electrons. The diagonal one-density (or simply density) is
defined as

p(1) =~(1,1),

and is interpreted as the probability that an electron i®aition ; with spins;.
Now, the two-density can be expressed in terms of an unedeckdensity depen-
dent part and an XC part

T®(1,2) = p(1)p(2) + TCL(1,2). (5.12)

The XC two-densityl“g?)c(l, 2), describes the correlation of the electrons due to the
antisymmetry of the wave function (exchange) and the Coblorteraction. For the
study of electron correlation we only need to analyse the W&density.

In the derivation of the total hole density (or XC hole deyisit is customary to
first define the concept of conditional density,

re(,2)
p(1)
The conditional density may be interpreted as the densith@fremaininghv — 1

electrons if one electron is known to be at the space-spirdauate1. The XC hole
density is defined similarly

PO (1,2) = p(1)p%2) = P2 = (5.13)

rén(1,2)
p(1)

2)

r2(1,2) = p(1)ph%e2[1) = plo(21) = (5.14)
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5.3. Exchange and correlation hole

Thus, the conditional density may now be expressed in thra for
pPM(2I1) = p(2) + pR2ID), (5.15)

in which the XC hole clearly describes how the conditionaisiy deviates from the
uncorrelated density(2).
From the above definitions it is not difficult to deduce thédeing properties

/pcond(zu) d2=N-1, (5.16a)
and
/pgg'e(zm d2 = —1. (5.16b)

5.3.1 Fermi and Coulomb holes

At this point it is proper to separate the XC hole in two terins, the Fermi and
the Coulomb holes. The Fermi hole is defined to describe thelation due to the
exchange interaction and the Coulomb hole describes priedoity the correlation
between electrons of unlike spin [Buijse and Baerends, L1994us, formally this is

rn(1,2) =T (1,2) + T (1,2), (5.17a)
or
PRE(2I1) = piPe(2]1) + pl%(2]1). (5.17b)

In practice, the study of Fermi and Coulomb holes is methqueddent. For exam-
ple, the Hartree—Fock and the density functional theoryriréoles are not equal,
usually. Also, the exchange part is conventionally defireethtlude the so-called
self-interaction correction, which is why the exchangeehokegrates te-1. This
determines that the Coulomb hole must integrat@ to

5.3.2 Two electron systems: Kland He

In case of two electrons with different spins the total hgléhie same as the corre-
lation hole. However, conventionally, e.g. in Hartree-Edbe so-called exchange
hole, px(2|1), appears even in this case. This is due to the self-interactrrection,
which in this case is given as

Po(2[1) =~ p(2). (5.18)
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5.3. Exchange and correlation hole
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Figure 5.3:Coulomb hole according to Eg. (5.19) in the kiolecule along the internuclear
axis for three different reference electron positions¢ses). Large dots represent the nuclei
at—0.7ag andO.?aO.

Note that the above expression does not depend on the positibe reference elec-
tron, i.e.p1°¢(2|1) = ph°'¢(2). Thus, conventionally for two distinguishable particles

1
pret(211) = pO(201) + pL74(21) = —5p(2) + PL7(21). (5.19)

Since the conditional and one-particle densities areivelsiteasily obtained using
the PIMC method, the exchange and correlation holes foartdi He are straightfor-
ward to compute using Egs. (5.15) and (5.19). Here, it shbelfuirther emphasized
that for two electrons with unlike spin the exchange holesdua really exist — the
total hole equals the correlation hole.

For two electrons systems;tholecule and He atom, we have determined the XC
hole, Fermi hole and the Coulomb hole using the PIMC methodthe molecule we
use the Born—Oppenheimer approximation and the equilibiiiernuclear distance
1.4ag, as is done in Buijse and Baerends [1995], Baerends ande@Gkiid1997] and
Buijse and Baerends [2002].

The PIMC simulation energies arel.174(1)E, ! and—2.307(7)E, * hartree for
H, and He, respectively. The simulations were carried out atiet60 K using time
stepr = 0.03E;1. lllustrations of the Coulomb holes are given in Figs. 5.8 an
5.4, where the relatively large grid spacifidag is evident from the figures. The
distributions can be interpreted in the following way: thleey electron is most likely
found in that part of the space where the Coulomb hole hasthedt values.

As expected, using the PIMC method the exchange and caéoreladle results
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Figure 5.4:Coulomb hole according to Eq. (5.19) in the He atom for fofedént reference
electron positions (crosses). Large dot represent theenst the origin.

match perfectly with the configuration interaction resufsBuijse and Baerends
[1995], Baerends and Gritsenko [1997] and Buijse and Basr§&002].

5.4 H; molecular ion

The triatomic molecular ion H is a five-body system consisting of three protons
and two electrons. Being the simplest polyatomic molecules been the subject
of a number of theoretical and experimental studies oveyéaes [Oka, 1992, Got-
tfried et al., 2003, Kutzelnigg and Jaquet, 2006, Kreckellt2008, Pavanello and
Adamowicz, 2009]. Experimentally, thejHon was first detected in 1911 by Thom-
son [1911], however, definite spectroscopic studies war&dsout not until 1980 by
Oka [1980]. Since then, this five-body system has proven telegant, also in astro-
physical studies concerning the interstellar media anétim®sphere of gas planets.
Therefore, low-density high-temperaturgL kbn containing atmospheres have been
studied experimentally [Lystrup et al., 2008] as well as patationally [Koskinen

et al., 2009].

5.4.1 Quantum description of the nuclei

In Paper 11l we evaluate the full quantum statistics of theibin in a stationary state
at temperatures below the thermal dissociation at atf@iit K. We monitor the fully
nonadiabatic (AQ) correlated quantum distributions otipkes and related energies
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Figure 5.5: Total energy of the}lmolecular ion as a function of temperature. Fully
nonadiabatic quantum statistical simulations, AQ (blueles), classical nuclei simu-
lations, CN (red squares), and the equilibrium geometrynBOppenheimer simula-
tion, BO (black triangles). Zero Kelvin data [Kutzelniggdaiaquet, 2006, Pavanello
and Adamowicz, 2009, Rohse et al., 1994] is given for congpari BO ground state
energy at equilibrium internuclear geometry (black dastiedl line), energy includ-
ing the nuclear zero-point motion (green dashed line) aredggnat the barrier to
linearity (grey solid line) 2SEM statistical error estimate is shown by the error bars
from simulations at the K ion density(300a) 2 or ~ 1.255 x 1076 gem =3,

as a function of temperature. Furthermore, we model theenasl classical mass
points, in thermal motion (CN) and fixed as conventionallygiurantum chemistry
(BO), and find the difference between these and the quantloualized nuclei.

At our lowest simulation temperatur&, ~ 160 K, the electronic system is es-
sentially in its ground state. For the total energy we find3438(2) E},, see the BO
black triangles in Fig. 5.5. The thermal energy:d” = 0.000507 £}, and therefore,
the contribution from the rotational and vibrational egditstates is also small and
for the total energy we find-1.3406(29) E},, see the CN red square in the same Fig.
The full quantum simulation includes vibrational zerosatontribution and yields
—1.3233(12)E},, about0.0205(14)E), above the BO energy in a good agreement
with about0.0202E}, in Rohse et al. [1994] and Kutzelnigg and Jaquet [2006].

From our AQ simulation we still find the equilateral trianglenfiguration of the
nuclei with the internuclear distances increasedRp = 1.723(4)ag, which indi-
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Figure 5.6: (LEFT) Nuclear pair correlation functions (dolength distributions)
at different temperatures from the quantum statisticaufations (solid lines), and
from the classical nuclei simulations (dashed lines). Té® Kelvin equilibrium
internuclear distance is given as a vertical black dasteddine. The distributions
include ther? weight and normalization to unity. (RIGHT) Expectationwes of the
internuclear distance at different temperatures fronridigions on the left figure.
Quantum statistical simulations (blue circles) and ctadsnuclei simulations (red
squares). The FWHM limits are shown by triangles (all thedirare for guiding
the eye). The zero Kelvin equilibrium internuclear distimshown as a horizontal
black dash-dotted line.

cates an increase of abaut73(4)ag, as compared with the zero Kelvin BO equi-
librium distance bond lengths. The thermal motion (CN)naldncreases the bond
length to(R) = 1.658(4)ay, only, see the data in Fig. 5.6. This clearly points out the
difference between quantum and thermal delocalizatioruofen at lowT".

As expected, the increase in the total energy due to theicdhssvibrational de-
grees of freedom i8 x %kBT, defining the slope of the CN line. The most prominent
guantum feature in AQ curve is, of course, the zero-pointatibn energy. At higher
temperatures, however, by comparing the AQ and CN curvegwéhat the quantum
nature of nuclear dynamics becomes less important.

The nuclear pair correlation function or bond length dusttions, Fig. 5.6, follow
the energetics discussed, above. There, the zero-poiratigib in AQ case is seen
even better. At the zero Kelvin limit both the expectatiotueaand the distribution,
in particular, are significantly different from those of @&\ case. The temperature
dependence in the other pair correlation functions is weddkiously, this is the case,
because electrons do not present a quantum-to-classioaitton in the temperature
range considered, now.
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5.4. H; molecular ion

5.4.2 First-principles dissociation—recombination equibrium

Because of the rapid formation onghrough the exothermic reactiodhf ~ —1.7
evV)
Hy +Hy — Hf +H (5.20)

the molecular ion is expected in any active environmentaioimg molecular hydro-
gen [Neale and Tennyson, 1995], and thus, it is encountergdin hydrogen plasma
and in the atmosphere of giant planets [Lystrup et al., 28@8kinen et al., 2009].
This smallest polyatomic molecule dissociates to seveaghfients in a temperature
and density dependent manner. Thus, at finite temperatuee=quilibrium

Hf < Hy+p"
— Hy +H
— 2H+p"
PN H+2p++e_
— 3pT +2e” (5.21)

needs to be considered, where the balance depends strangbtiothe temperature
and the density of K ions.

In Paper IV the simulations of the Paper Il are extended ¢inéii temperatures
where the molecular dissociation—-recombination equulioris studied. There we
also present a computationally tractable analytical fionctor the molecular parti-
tion function at low temperatures. In addition, we discussua other relevant ther-
modynamic functions, such as heat capacity and Helmhad& énergy. Here, the
main focus is given to the dissociation—recombination tieac

To start with we first define the molecular partition functi@md other molecular
quantities) as the one of the system of particles that dotestihe molecule. Thus,
the low temperature limit gives us the conventional textkawlecular partition
function, in practice. However, this generalization akous to extend the concept
of molecular partition function (and the other moleculaaniities) seamlessly to
higher temperatures, where the molecule may dissociateeamnbine in density
and temperature dependent balance.

Similar definition of the molecule as a five-particle systdloves us to carry out
simulations of the full quantum statistics of thg kibn, now described by Eq. (5.21),
at low densities and temperatures ranging frofd K up to about15000 K. The
considered low densities given as mass densities~are255 x 107¢ gem =3, ~
3.388 x 107° gem ™3 and~ 2.710 x 10~* gem ™3, which are relevant to H ion
containing atmospheres [Harris et al., 2004]. These qooras to blue circles, red
squares and gray triangles in Fig. 5.7, respectively.
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Figure 5.7: NVT total energy of the Kl molecular ion as a function of temperature
at three different densities. blue circles (1.255 x 1076 gem™3), red squares~
3.388 x 10~ gem™3) and gray triangles~ 2.710 x 10~* gem™3). The blue dashed
line is the energy from the analytical fit of this work. ThedMXalots give the energy
computed using the partition function fit given in Neale amshiyson [1995]. The
horizontal dash-dotted lines are the nonadiabatic zerwiKehergies for the ion, its
fragments and the barrier to linearity. The high tempeeasalid lines are mainly for
guiding the eye, but used for numerical evaluation of théitgar function, later.

Molecular energetics

Within the considered molecular densiti€&s~ 4000 K can be regarded as appar-
ent dissociation temperature. The energetics belodd K is so close to density
independent that the differences between the three cunkgig.i5.7 can not be seen.

Above 4000 K the density dependence is clearly seen as varying conposit
fragments. In the range frodD00 to 10000 K the changing dissociation—recombi-
nation balance leads to distinctly different energeticg] above that, at our highest
simulation temperatures the thermal ionization of hydrogems starts contributing
to the energy. However, it is worth pointing out that the tenagpure limits of these
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Figure 5.8: Histogram of total energy sampling pinned indsogf width0.001 F},
from (2 x 10*) x 10°, or more, Monte Carlo samples averaged over blockE)df
samples. The energy expectation values are also given BiMerror estimates.
The temperature and Trotter number are5139.6 K and 2048, respectively. The
histograms are normalized to unity for all three densiti@ther notations are taken
from Fig. 5.7.

three ranges, i.e. abo0t— 4000 K, about4000 — 10000 K and abovel0000 K, are
subject to changes with larger variation of densities.

Above 10000 K in our lowest density case the thermal ionization of H atasns
evident, see Fig. 5.7, but for our higher density cases 9601 K is needed to bring
up first signs of ionization. Similar trend for the ionizatiis stated in Koskinen et al.
[2010], although there the density is notably less than ouekt one.

Let us now consider the dissociation—recombination reaathain, Eq. (5.21),
and the contributing fragments to the quantum statisfiC®IT’ equilibrium trying to
give an intuitive classical-like picture of the compositicAt zero Kelving would be
infinite, however, at finitd” we have finite3, that brings classical nature to the system
the more, the higher the temperature. In other words, th&apdecoherence in our
five particle quantum system increases with increasing ¢eatpre, that enables us
to distinguish the fragments as separate molecules andsatotmermal equilibrium.
Based on this interpretation, we show the total energyidigtons in Fig. 5.8 from
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Figure 5.9: Simulation total energy distributions. (LEFT}x 4498.2 K, (RIGHT)
T ~ 6070.3 K. Notations are taken from Fig. 5.8.

sampling the imaginary time paths at abd@0 K with M = 2048 for all considered
densities.

For example, for our highest density (gray in Fig. 5.8) we tbeee main peaks,
and by inspection of that energy distribution the first arel $bcond can clearly be
assigned to the rovibrationally excited;Hand H-+H™, respectively. As there are
no rovibrational excitations available faH+H™, the average position of the third
main peak is very close te-1E;,. The fourth fragment, §1+H, can be identified
as the small high-energy side shoulder oftHH* peak. With the interpretation of
the area under the peak as the abundance of the fragmentequiigbrium we find
this contribution to be much smaller than that of the othdrsFig. 5.9 the same
is illustrated for two different temperatures, abd@00 K (left) and 6070 K (right),
also. There at the higher temperature the amountjofsHound increased according
to the same interpretation as above.

It is important to note, however, that the above illustratis dependent on the
block averaging procedure, see the caption of Fig. 5.8. iRintihe energy data of
each and every sample, i.e. choosing block of size one sampldd broaden the
peaks in Fig. 5.8. At the opposite limit, all samples in oneck] would give the
single mean energy or the ensemble average corresponding goiantum statistical
expectation value. From the highest density to the lowestetkpectation values
are—1.169(29) Ey, —1.020(33) E;, and—0.9995(4), respectively, Figs. 5.7 and 5.8,
where the statistical uncertainty decreases with inangasimulation length.
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Conclusions

Path integral Monte Carlo (PIMC) method is shown to be a pawaol for the study
of quantum many-body effects. The method is basis set asdaave function free
approach and includes the Coulomb interactions exactlys,Tle are able to extend
the traditionalab initio quantum chemistry with full account of correlations to fnit
temperatures without approximations, also including theadiabatic contributions,
if desired. Here, the method was applied to studies of thatguachemistry of some
small molecules.

It is fair to admit, however, that the PIMC method is compiotzlly heavy for
good statistical accuracy and approximations are needeegxample, to solve the
"Fermion sign problem™ in cases where exchange interatimomes essential. For
the articles included in this thesis the exchange intevads either absent or can be
considered negligible.

In Paper |, a three-body quantum system, hydrogen moleculéij , was revis-
ited, once again. There we concentrated on the electrotetreaupling effects in
the three-body all-quantum, i.e. nonadiabatic, molecitaong others we evaluated
spectroscopic constants and molecular deformation, alssidering the isotope ef-
fects. Quantum dynamics of the system is well described @stthct features of
coupling are observed for the nuclei: shift in the equiliomibond length, increase in
the width of the pair correlation function of the nuclei, emdonadiabatic correction
to dissociation energy. Electronic distribution is lesui@nced by the coupling than
the nuclear one upon the inclusion of nonadiabatic effects.

In Paper Il, we have found and explained the surprising theinstability of
the dipositronium molecule, PsDue to the strong temperature dependence of the
free energy of the considered four particle system the mitdedorm is less stable
than two positronium atoms above ab®0b K, though the molecular dissociation
energy is~ 0.4 eV. The transition in equilibrium from molecules to atomsi&rp
in temperature and only weakly density dependent. This eaartderstood by the
large entropy factor originating from strong delocalieatiof all of the molecular
constituents. Our prediction remains to be experimentalyfied.
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In Paper Ill, the quantum statistics of the five-particle ecolle, H ion, was ex-
amined. There we show how contributions from quantum andrthledynamics to
particle distributions and correlation functions can beesbout, and furthermore,
how quantum to classical dynamics transition can be matoAt our lowest tem-
perature the zero Kelvin data from conventional quantummisiey is reproduced
accurately, as well as the vibrational zero-point energg fiM the increase in the
bond length due to the nonadiabatic zero-point vibratidmetabout nine times larger
than that given by the classical thermal motion of the nud@éiow temperatures the
necessity of the fully quantum mechanical approach foradl fiarticles was estab-
lished.

In Paper 1V, the nonadiabatic simulations of Paper Il aterded to higher tem-
peratures, also, where the molecular dissociation—rew@tibn equilibrium is found
and analyzed. The temperature dependent mixed statept@stif the Hf ion, the
density dependent equilibrium dissociation—recombamabalance and the energet-
ics was evaluated for the first time. At abed0 K the fragments of the molecule,
Ho+H*, Hy +H and2H-+H™, start contributing. Therefore, Hion becomes less
dominant, and eventually negligible in high enoughIn addition, using the partial
decoherence in the mixed state we interpret the fragmenpaesition of the equilib-
rium reaction. Also, an accurate analytical functionahidor the internal energy is
given below dissociation temperature. This study givesomagiditions to the ear-
lier published studies found in the literature, where tresaciation—-recombination
reaction has been neglected.
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Appendix A

s-wave "miracle” (derivation)

In this section we concentrate on deriving the relative arotdensity matrix in case
of the Coulomb interaction, that is,

1 0 0
e iT). A.l
471'(1'—3/) (81’ 8y)p0(mayv7_) ( )
The expression above was given in Eq. (3.8), already.

The derivation follows closely the paper by Hostler and Hfe863]. However,
here we start from the Bloch equation for the density matrbelative motion

Prel(ry'r/ﬂ') = -

0 VAYZ:
5 AV + ?] prei(r1,72; ) =0 (A.2)
with appropriate initial conditionge|(71, 72;0) = 5®) (r1 —ra).

First, we define a function

F(ri,ra,|re — r1]; 8) = —4w|ra — 71| prei(r1, 72; ) (A.3)

F(Tl,?"g, ”PQ - ’l"1|,/8)
—47T’1°2—1‘1| '

= prel(T1,72; 8) = (A.4)

Second, let’s construct an equation for Then, we must calculate the Laplacian

F(ri,ra, [re —m1; 8)
2 ’ =7 A.5
VQ( —471"’)"2 —’I"1| ( )
Since
O (Flrirolreo—m[B)) 1 [ z—m I 1 oF (A.6)
81‘2 —47T|T2 — 1"1| 47 |7’2 — 7‘1| |’f‘2 — ’I"1| 8:52 ’ .
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we have
8_2<F(7"1,7“2,\7“2—T1|;5)> :_i[<3($2—$1)2_ 1 )F
Ox2 —4mlry — r1| 4 lrg —r1[° |re —rq]?
9 — T1 oF
~ Tre—riPors
1 9*F
o 8—3:%} . (A.7)
Thus,

F 1 Ty — T
Vi (f——mM | =——— |V2-2—= . V,| F. A.8
2 <—47T‘T2 — 7“1) 4’/’(”’)“2 — ’1“1’ |: 2 ‘1“2 — T1‘2 2:| ( )

So, the Bloch equation may be written as

0 VAL F B
[% mAVa Y o ] —47|ry — 71| =0
1 o Ty — 7T 212
— = -A(Vi-2—= .V F =
—dmlry — 7 [aﬂ ( 2 Tlry = ? 2>+ T2 }
6 To — 7T > ZlZ2:|
S|l - [Vie2—= .V, |+ 22 F=0. A.9
[86 < 2 \7“2—’?1!2 2 2 ( )

At the end the equation was multiplied bylr|r, — 71| on both sides.

Next we will considerF' = F' (o, p,r1; 3), whereo = r1 + ro andp = |rq — rq],
and find out a new equation fdf with these variables. Let's derive the derivatives.
The first derivative is

OF(0.p.r1;8) _ OF 9o OF dp
Oxo Jo Oxy  Op Oxo
_OFm [ OF wy—m (A.10)
80' T9 3[) |’I‘2—’I"1|

and the second derivative is
0?F (o, p,r1; 3) 0 [8_F@ OF x9 — 11 ]

Ox3 - Ors
_ (82_F<‘9_0+ &F @) z2  OF 8 (@)

0o2 Oxg  00dpOxy) 19  O0 Do \ T9
(32F Oo 32F8p)x2—x1 OF 0 <$2—I‘1>

80' 9 8—p|r2—r1]

D00p0zs " 09 Dwz) Tra—mi]  0p O
B 82Fa;_§ N O?F (z9 — 21)? 5 O?F xo(x9 — 21)
902713 0p? |rg— 1 dadp ro|re — 7|

LOF(L B\ OF( 1 (-
do \ro 713 op \|ra—r1|  |ra—m13 )

(A.11)

T2 — 1]
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APPENDIX A. s-wave "miracle” (derivation)

Thus,

V%F(U7parl; ﬂ)

_O’F | 9°F O?F rg-(rg—m71) OF2 OF 2

2 i A.12
502 V37 T 2500p mafra—m| G0 dpra—m] 2
and
To — T
—2—— -V ;
|’l°2 —T1|2 2 (Ua Pﬂ"l,ﬁ)
‘1“2 - T1|2 80' T9 ”l"g — 7‘1|2 8[) |’I‘2 — 7T
__9F [2’°2 (ra—r1) ’“21)] _or [72 ] (A.13)
80’ T2‘7‘2—’I”1| ap |’I"2—’I“1|
Now, the derivative part of the Bloch equation fércan be written as
2_o T27T1 F
(VQ [Py —7r1f? V2
_ ’F  O*F  2ry-(ro—11) O°F 2 2ry- (ro—m) 8_F
0o 0p? rolre — 71| dodp r9 ro|re — 1|2 0o’
(A.14)

Next, let's modify ther-dependent terms into the variablesp andr; defined
earlier. First the cross-derivative term

21"2 . (Tg —Tl) . 2’[‘2 T2 —27"2-1"1

rolro —r1]  ralre — 7

_7“%4—7"%—27'2-7‘1—r%—r%—27"17“2—1—27'2-7“24—27“17"2

ra|re — 71|
Cre =i = (1 2)? + 2(r1 1)
B 7“2!7'2 - 7“1|
_pP—o0*+20(0c—11)
B (0 —r1)p
_pitot =20 (A.15)
(c—r)p ' '
and then the other term
3 _ 2')“2 . (1"2 — 7’1) B 2’7’2 — 7‘1|2 — 21"2 . (7“2 — ’I"l)
) 7‘2|7'2 - T1\2 a 7“2|7“2 - 7“1|2
20— (p* + 0% —2011)
a (0 —r1)p?
_p2—02+20r1 (A.16)
CEZ '
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APPENDIX A. s-wave "miracle” (derivation)

So, the Bloch equation now becomes

[8 )\<62 02 p*+o%—20r 0? p? — o2+ 2071) 0)

o8 "\ do? * 0p? + (c—r1)p 0Ocdp (c —m)p? Oo
VAVA

+=2 ] F(o,p.r1; ) = 0. (A.17)
g —T1

Defining F' = %D, the equation above can be written as

0 0 0? 0? p2+02—207“1 0? YAYA
195 (o 3+ Ty o) * o | Pl <o
(A.18)
since
o [ 0? 0? 2+o0?2 -2 0?
p e P D(o, p,r1; B)
dp \0c2 ~ Op (c—r1)p 0Ocdp
P OD P OD et -dem 00D
da? 0p  Op? Op (c—r1)p 0Oddp dp
2p _p2+02—20r1( ) ia_D
(c—r)p  (0—11)%p? do dp
0? 0? 0>+ 0% —20r 07 p? — 0?4201 0
_WF—F@ bt (c—r)p 0Oodp + (o —r1)p? %F' (A-19)

Then we again define new variables:= (¢ + p)/2 andy = (o — p)/2. And
once more we have to derive the respective derivative®foar, y; 3).

0 0D 0z 0Dy oD 0D
o P = 508, Ty ap (a— - a—y> - (A2
0* 10 (0D 0D
3—p2D($,y,ﬂ) 20 <% - 8—y>
_ 1 (#Dos  ®Doy D ox 0Dy
T2\ 022 0p  Oxdydp Oxdydp  Oy? dp
1 /0°D 09°D 0°’D
T4 (8:62 + Dy? 283683/) ' (A.21)
oDox 0Doy 1 [/0D 0D
90 DY) = 55 T By e 5(%*57)‘ (A-22)
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0? o (0D 0D
5Dt = 55 (G0 + 50 )

0
<02D or 0°D 9y  O0*°D ox 9*D 8y>

0x? do axay% + dxdy do + oy? do
(92D 82 0°D )

8:132 7 T2 Oxdy

1
2
1
2
1
— A.23
o (A23)

9%D Ox n 0’D %7 0%’D 8_x7 82D%
022 9o ' Oxdy o Oxdydo  Oy? do

1 /02D %D
‘Z(W‘a—ﬁ (.24

Now let's modify the derivative part of differential equarti

9 P pPtod—20m P
Z D ‘
<802 i dp? " (c—ri)p 308,0) (@9:8)
1 P2 N 2011 0?2 p2 12 - 207 92
- P+t 2 ———— Diz.u
4 ([ " (c—r1)p Ox? + (c—r1)p dy? (z,y;8)

(A.25)

We see that we do not have the cross-derivative anymore. ilMeestd to work out
the coefficients in terms of andy. The first coefficient on the right-hand side of
Eg. (A.25) is

pP+o?—20r1 200 —r)p+p*+o*—20m
R (0 —r1)p
0% 4+ p? 4+ 20p — 2pr — 201
(0 —r1)p
_ (0+p)* =2ri(0 +p)
a (0 —ri)p
o (23)2 — 211 (22)
S (@ty—r)(z-y)
x? — ar

=4 A.26
2?2 —ar — (y?2 —yry)’ ( )

2+
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and the second coefficient is

9 _ p> 4+ 0% — 201, _ 2(0 —r1)p—p* — 0% + 2071
e—m)p @ —m)p
—(0? + p? — 20p) — 2pry + 207,
(0 —r1)p
—(0—p)* +2r1(0 — p)
(0 —r1)p
(2y)* — 2r1(2y)
(z+y—ri)(z—y)

2
Yy —yri
— 4 . A.27
2?2 —ar — (y? — yr) ( )

Therefore, the differential part may be written as

0? 0% p*+o®—20r 0°
<80'2+8p + (0'—7“1),0 ao_ap) D(Z,y,ﬂ)
x? — xr H? y? —yr, 9?
B <:1:2 —ary — (Y2 —yr) 022 22 —ar; — (Y2 —yr1) 8—y2> D(@,y; )

(A.28)

Now we may write

+ o+

2 2 2 2 2
2[8 )\<8 8 P +o 20'7“1 8 > Z1Z2:|D(O',p77‘1;ﬂ):0

a6 "\ oo " p2 (c —m)p Qodp o—r
[0 ( aten  # e &
o3 22 —ar — (y2 —yr) 022 22 —ary — (y? —yry) Oy?

M] D(z,y;3) =0

o —1T1

1
8 ( 2—ar — (y —yrl)

[(952—337”1 (y —yn))aaﬂ
(6 =) - - o)
+ Diaa )| ) Dlaif) =0
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( 2 - 1(1/ 2 —yr)

8
[(372—377‘1 (y _yrl))%

0? 0?
(33 —5U7“1)32 y —ym@

+leg(x—7“1) leg — 71 :|) {L‘ y,

(o
op \ 22 —axry — (y? —yr1)

0 0?1z
@ —am) {3 - gy + 222

0 0?2  I1Z
= {5 g 5] P o

S99 1
2\0x Oy) \x?—ar; — (y*> —yr)

0 0? I Z
2 v \Y 142
[(m xry) {85 A@xQ +— }

2
2= { a2 Dy —0. a29)

The functionF' defined usingD(z, y; ) is given as
0
F = —D(z,y;
o5 (,y; 8)

1/0 0
and thus, the density matrix is

F(x,y;3)
—4r(z —y)
| o 0
S () L G

Now let’s consider the solutio® (z, y; 3) for the derived differential equation,
Eq. (A.29). Trivially D(z,y; 8) = po(x,y; 3) is one solution, since

Prel(rl7r2§/8) =

0 % I 7
(T 22 =0 e
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and

0 0%  Z1Zy

— A==+ — ;8) =0. A.33
Therefore, alsaD(z,y; 3) = apo(z,y;3), wherea is an arbitrary constant, is a
solution. So, we can write

0 0
o raif) =~ (L L i) (A30)

The constantv can be derived using the known result for the free partide, f
which the s-wave "miracle” is also valid — just set the tetiyZ; equal to zero. For
the free particle we have

0 0
prei(r1,m2; 8) = *m (@ - 8_y> pb (,y; B)

= 5wy [‘ i @%3/2 o <‘ @4_; )>]

_ a (z —y)?
- mexp <— D > . (A.35)

The coefficient for the free particle is known, and thus,

é87rv A (A1)32 = (4xAr)3? = a=2. (A.36)
Substitution ofo = 2 to Eq. (A.31) gives us the familiar expression
1 0 0
. 3) — - _ = - 3). A.37
,Orel(T'laT%B) 47T(.’L'—y) <8x 8y> pO(x7yaﬁ) ( 3 )

At least in practice the constant= 2 is universal, if not otherwise. Since

Q@ 0 0
Prel = _m(ﬁ_x - 8_y>p0
_ _L(ﬁ _ 2) Koo

8r(x —y)\dz Oy
. « —u 3 a K K —u (9 a
T 8n(z—y) [6 O(G_x_@_y)po—poe O(O_x_a_y)uo}
_ g —ug K 1 K —u 3 . 2
-2 [e "rel F 47r(a?—y)p06 O((?x 8y)u0]
= 2 (e )
= S (ol + Pl 1) (A.38)
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the potential is
o «Q —ug K K K
u= —In [56 (prel + Po f) /prel]

K
_ @ Po
——ln(§)+uo—ln<1+—K > (A.39)

Prel

If the constanty would have a value different frogit could be neglected, in practice
at least, since it does not modify the shape of the potential.
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Appendix B

Matrix squaring: computational
details

B.1 Integration

Below we give brief introductions to the integration methoeded in the matrix squar-
ing, i.e. Gauss—Hermite and Gauss—Kronrod integratiorirelely accurate values
for the abscissar{) and for the corresponding weighty) are given in Esler [2006].

B.1.1 Gauss—Hermite

The integral derived earlier, Eq. (3.25) is of the form

o0 52
et = / dsf(s)e™ 2xr. (B.1)
Whenz is large enough, we can write
oo 52
e !~ / dsf(s)e” 2x7, (B.2)

in which the approximately symbol could as well be changeebjiaality, in practical
applications. With the change of variahté = % we have d = v2A7 dx and

e =V2\T /00 dz f(x 2)\7')6_9”2
~ VTS FlzivV2AT)e (B.3)
i=1
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B.2. Modified spherical Bessel function of the first kind

B.1.2 Gauss—Kronrod

Near the origin the Gauss—Hermite integration is not adegaead thus, we use the
adaptive Gauss—Kronrod (GK) integration instead. Basiahie method is given
briefly here.

b 1 n
/ f(y)dy =/ g(z)de ~ Y wig(x;), (B.4)
a -1 i=1
in which
b—a b—a a+b
gla) = S e+ 20, ®5)

Considering for example GK 7-15 an error estimate can bengagethe absolute
difference of the two methods
e=|G7— K15|. (B.6)
However, commonly the following is used
€ = (200 |G7 — K15))15. (B.7)

In the adaptive scheme, if the wanted error is not achieved the divide the
interval into two segments of equal size and apply the abotegiation on both
segments. The error criteria is also divided. If the newretriteria is met for one
region, that specific region need not be further dividedsTill be continued for all
regions until the wanted error is achieved — or until someimim segment size
comes across.

B.2 Modified spherical Bessel function of the first kind

Modified spherical Bessel functions are defined in termsetifherical Bessel func-
tions. See Abramowitz and Stegun pages 443-444. For théifictve have

i(z) = \/%IHIM(Z)? (B.8)

wherel;; »(z) is the modified Bessel function of the first kind. Thus,

in(z) = 2, (8.9)
in(z2) = _sin;(z) n cos}Zl(z)7 (8.10)
in(2) = <§3 + %) sinh(z) — %COS]Z(Z), (B.11)
etc. (B.12)
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Recurrence relations

i1(2) —irga(2) = 2L+ 1)z b (2) (B.13)
lip_1(2) + (1 + 1)iper (2) = (20 + 1)dlé(zz) (B.14)
- éiz(z) + —dié(;) = ir41(2). (B.15)
Ascending series
| : L gy
W= ims ey |V T Tty T
(B.16)

B.2.1 Computation of thel = 0 terms

During the squaring procedure we need to compute an expaligisctaled modified
spherical bessel function of the first kind

m(z) = ir(2)e ™, (B.17)

wherez > 0. In addition, we need to calculate the derivative
di;(z)

my(z) = e ——~. B.18
my(z) =e P ( )
Them, function may be expressed as
, _, sinh(z) _, €e*—e* _,
mo(z) = ig(2)e * = z( )e =—, €
1
=—[1-e %] (B.19)
z
—z 22 24

For small values of you can use the first few terms of the ascending series, E2Q)B.
Otherwise use Eg. (B.19), which for largge.g. z > 50) may be approximated by

1/2z.
The functionm(, may be given as
~ _ dio(z)
/ _ z
m0(2’> =e€ dz
-1 —2z 1
_ >+2; (z+1) (B.21)
z 23
=e |+ —=+...|. B.22
‘ [3 Tyt ] (8.22)



B.3. Cubic Splines

For small values of you may use the first few terms of the ascending series, E2R)B.
Otherwise use Eq. (B.21), which for largge.g. z > 50) may be approximated by
1/2z2 —1/222.

During the squaring procedure for tlvederivative you also need to evaluate the
expression

(z—1)+e 2% (24+1)

Zmi](z) = 27— 222
mo(z) o [1 — e=27]
—1+e*(z+1
_L=D+eE4D (B.23)
1—e 22
For large values of this may be approximated by
~/
JlE) o s, (B.24)
mo(z)

The error of this approximation goes approximatelya¥’.

B.3 Cubic Splines

This summary of the needed cubic splines follows that of thesis by Esler [2006].

B.3.1 Cubic Splines (1d)

In one dimension the basic idea of the cubic splines is tocqimiate a functiory (x)
by piecewise cubic polynomials. For a discrete set of paiptee cubic polynomials
need to satisfy the following three requirements:

f(xi) = vi, (B.25)
flay) = f(x)), (B.26)
f(@7) = (). (B.27)

That is, we require the polynomials as well as their first aawbad derivatives to be
continous at the connection points

One convenient expression for the interpolating cubic pofyial in an interval
x € (x;,x,41] is given as

S(x) = yip1(t) + yisap2(t) + hi [yiar (1) + vi12(0)] | (B.28)
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B.3. Cubic Splines

whereh; = x; 1 — z;,t = - and

pi(t) = (1+2t)(t — 1), (B.29)
pa(t) = t2 (3 —2t), (B.30)
@) =tt—1)>2 (B.31)
a@(t) = t2(t — 1), (B.32)

are the so called Hermite basis functions. This approaclsdscalled as cubic Her-
mite spline. It can be easily verified thatz) satisfies the first two requirement
for the polynomials, Egs. (B.25) and (B.26) — assuming weaay know the first
derivativesy; andy;, ;. The still unknown values for the first derivatives can be
solved from the third requirement, ie. Eq. (B.27),

Sz ) = 9" (x}). (B.33)
Since
" &*pa () dpa(t) Fat)  , Pe)
g2 . 2 ! d? ! 2
_ y_;d pi(t) .%451 d“pa(?) b y_;d ai(t) yz-gl d“g2(?) . (B.34)
R2d2  n2 de R2d2 R de?
we get
§(a) = Yz dpi(t) | oy Ppalt) b yia Pq(t) |y Pet)
TRz de? h: | de2 R e hZ | di?
=2 [Gyl 1— 6y +hi—1(2yi_, + 4yl)] (B.35)
i—1
and

S"(an'fr

7

):ﬂd%l(fr) Yit1 dgpz(fr)_i_h‘ Y Pa(tt) | yig Pt
h?  dt? h?  di2 h?  dt? h?  dt?

1
hg [—6y; + 6yit1 + hi(—4y; — 2y5,1)] (B.36)
Now, using the third requirement and rearranging termgla lite have
S" () = S"(x})

[6yi—1 — 6y; + hi—1(2y;_, + 4y;)] = —6y; + 6yi+1 + hi(—4y; — 2y541)]

1 1
o T 2 L
& 2hiyi_q + 4(hi + hic1)y; + 2hi—1yi o = di, (B.37)
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where

hi  hia h; hi—1
d; =6 — i — 60— ;_ 6——vy; B.38
<hi_1 I ) Y By Vi1 + B, Ui (B.38)

The expression above is valid for dll< ¢ < N and gives us a tridiagonal set of
eguations.

Yy da

2hsg 4(h2 + hl) 2hq 0 0 , d

0 2hy  A(hs+hs) 2hy O I I
B _ _. o Yn_1 dn-—1

The equations for thé= 1 andi = /N depend on the boundary conditions. Thus, in
order to use Eq. (B.28) for interpolation we must first defireltoundary conditions,
after which we can solve the matrix equation for the denvestiand interpolate.

B.3.2 Complete boundary conditions

For the complete boundary conditions one needs to spedafyiitst derivatives for
i =1andi = N, i.e.y; = d; andy), = dy, whered; anddy are somehow known
or approximated. Then the matrix equation is

/
d
1 0 0 0 0 0 Y1 o
hy A(ha +h1) 2 0 0 0 Y2 Iy
0 2hy  A(hg+hy) 2hy 0O 0 I I B
. . . . , dn
0 0 0 0 0 ... 1 UN-1 N
YN dn

B.3.3 Natural boundary conditions

If we do not know a proper approximation for the first derivas we may construct
the so-called natural splines, which assume that the sedenhtives of the bound-
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ary splines are zero. Then the matrix equation is

1 ! 0 0 0 0 0 v Zl
ohy A(ha +h1) 2 0 0 ...00 Y2 2
0 9hs  Alhs+hs) 2hy 0 ... 0 0 A d?
0 0 0 0 0 1 Y1 N1
YN dn
with
3y2 — 1
h = §y hly
and
dN:§yN*ny1.

2 hy

(B.39)

B.3.4 Bicubic Splines

Extension of the above described cubic splines to two difasss relatively straight-
forward. Now, the function to be interpolatedfigr, y), and thus, the value§x;, y;) =
fi; and its derivatives need to be stored in two dimensionabgtitstead of only one
derivative, as in one dimension, we now have derivativeh v@spect to botlx and
y, and also the cross-derivative that are needed. Thus,ddnitibic splines we need
at each grid point the values for

fij = f(zi,y5) (B.40)
(9 iy Yg
i = % (B.41)
b= gy (B.42)
0*f (w1, y))
W= ol B.43
The interpolated value is then obtained from
T
p1(u) fig  figer 0 i p1(v)
S(z,y) = p2(u) fivrg firvger flay fivn p2(v)
’ hau(u) R P RSN it SR i 01 lq1(v)
hga(u) foay Fga fHy fitia lg2(v)
(B.44)
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where

l=yjt1—yj
Tr — Iy

YT
Yy—1Y;

forz; <z < Tit1 andyj <y < Yj+1-

The derivatives required here are easily obtained usingahmee matrix equations
as for the one dimensional case. Iﬁ"@rsolve the matrix equation for each column
of f;;, for i do the same for each row ¢f; and for the cross-derivative go through

each row off%, for example.

B.4 Squaring grid

Using a special kind of grid for the squaring can easily spgethe process and also
give more accuracy. The algorithm for the grid we have beamgus given here:

1
i =11+ (1 — 7@]2‘ T 1) A’I", (845)

whereAr is the maximum spacing anf] is evenly spaced betweeru anda using
the number of grid pointsX) as a divider, i.ef;+1 — fi = 2a/N.

Commonly we use, = 10 %ag, Ar = 0.2a¢9 anda = 10. Thus, with60 x 60
grid points the largest distance with the above parameseabaoutay. 100 x 100
grid is found very accurate, for which the largest tabulatestance is aboutOay.
For accurate matrix squaring values outside the grid ace rs@eded — depending
on the final time step. With the above parameters the grid shown here is good for
relatively small time steps; < IOE,ZI. For larger time steps larger distances are
needed and the parameters of the grid should be adjusted.
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The path-integral Monte Carlo approach is used to study the coupled quantum dynamics of the electron and

nuclei in hydrogen molecule ion. The coupling effects are demonstrated by comparing differences in adiabatic

Born-Oppenheimer and nonadiabatic simulations, and inspecting projections of the full three-body dynamics

onto the adiabatic Born-Oppenheimer approximation. Coupling of the electron and nuclear quantum dynamics

is clearly seen. The nuclear pair correlation function is found to broaden by 0.040qa,, and the average bond

length is larger by 0.056a,. Also, a nonadiabatic correction to the binding energy is found. The electronic

distribution is affected less than the nuclear one upon inclusion of nonadiabatic effects.

DOI: 10.1103/PhysRevA.76.052508

L. INTRODUCTION

There are a number of phenomena in molecular and
chemical physics which are influenced by the quantum be-
havior of both nuclei and electrons, rovibrational dynamics
being a good example; see Refs. [1-3] and references
therein. In case of light-mass nuclei, protons in particular,
treatment of the quantum nature of the nuclei is essential
[4-6]. This has proven to be important in a description of the
hydrogen bond, for example [7].

The hydrogen molecule ion (H3), being the simplest mol-
ecule, has been studied extensively [8], and it has often been
used as an example or a test case for an improved method or
accuracy [9-14]. In addition to the free molecule, H influ-
enced by an electric or magnetic field is a well studied sub-
ject [15-21]. Furthermore, there is interest in descriptions
that are not restricted to Born-Oppenheimer (BO) or other
adiabatic approximations [22-28]. Such extensions can be
easily realized by using quantum Monte Carlo (QMC) meth-
ods [29,30], for example.

Among the QMC methods the path-integral MC (PIMC)
formalism offers a finite-temperature approach together with
a transparent tool to trace the correlations between the par-
ticles involved. Though computationally extremely demand-
ing, with some approximations it is capable of treating low-
dimensional systems, such as small molecules or clusters
accurately enough. Some examples found in the literature are
H [31], HD", and H} [32] and H, clusters [33-37] with spe-
cial attention laid on *He [38-42]. The approximations in
these approaches relate to ad hoc—type potentials describing
the interactions between particles.

In this work we evaluate the density matrix of the full
three-body quantum dynamics in a stationary state and finite
temperature. This is what we call “all-quantum” (AQ) simu-
lations. Second, the electronic part only is evaluated as a
function of internuclear distance in the spirit of the BO ap-
proximation, and third, the adiabatic nuclear dynamics is
evaluated in the BO potential curve. These allow us to dem-
onstrate the nonadiabatic electron-nuclei coupling by a pro-
jection of the AQ dynamics onto the adiabatic approxima-
tions.

We need to approximate the —1/r Coulomb potential of
electron-nucleus interactions at short range to make the

1050-2947/2007/76(5)/052508(7)
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calculations feasible. We realize this with a carefully tested
pseudopotential (PP). Also, the absent (ortho) or negligible
(para) exchange interaction of nuclei is not taken into ac-
count. Finally, we want to emphasize that our purpose is to
simulate a finite-temperature mixed state including correla-
tions exactly, which is a challenging task for other methods.
However, if high-accuracy zero-kelvin computations are pre-
ferred, one should turn to other methods such as the varia-
tional Monte Carlo (VMC) method, for example. For conve-
nience, we have chosen 300 K, which essentially, but not
exactly, restricts the system to its electronic ground state.

We begin with a brief introduction to the theory and meth-
ods in the next section. This includes a description of the PP
and tools and concepts for the analysis in the following sec-
tion. Then we carry on to the results. Throughout the paper
atomic units are used: hartrees (Ey) for energies and Bohr
radius (a) for distances.

II. THEORY AND METHODS

For a quantum many-body system in thermal equilibrium
the partition function contains all the information of the sys-
tem [43]. The local thermodynamical properties, however,
are included in the density matrix from which all the prop-
erties of the quantum system may be derived [44]. The nona-
diabatic effects are directly taken into account in the PIMC
approach. In addition, finite-temperature and correlation ef-
fects are exactly included.

A. Path-integral Monte Carlo approach
According to the Feynman formulation of statistical quan-
tum mechanics [45] the partition function for interacting dis-
tinguishable particles is given by the trace of the density
matrix,
M-1
Z="Trp(B) = lim f dRydR dRy- -+ dRy_ [T e SFiRiwiin),
M—ee i=0

(1)

where p(B8)=e~PH, S is the action, B=1/kgT, 7=B/M, and
Ry=Ry. M is called the Trotter number, and it characterizes
the accuracy of the discretized path. In the limit M — % we

©2007 The American Physical Society
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FIG. 1. (Color online) Hydrogen atom total energies with dif-
ferent Trotter numbers: infinite nuclear mass (triangles) and AQ
(circles). Extrapolated ground-state energies are —0.4947(1)Ey and
—0.4938(3)Ey; for infinite nuclear mass and AQ simulations,
respectively.

are ensured to get the correct partition function Z, but in
practice sufficient convergence at some finite M is found,

depending on the steepness of the Hamiltonian .
In the primitive approximation scheme of the PIMC for-
malism the action is written as [46]
(Ri - Ri+l)2
T

N +U(R; R4 7),

2

3N
S(RiRiy137) = By In(4m\7) +

where U(R;,R;,;7)=3[V(R)+V(R;,,)] and N=£%/2m.

Sampling of the configuration space is carried out using
the Metropolis procedure [47] with the bisection moves [48].
This way the kinetic part of the action is sampled exactly and
only the interaction part is needed in the Metropolis algo-
rithm. The level of the bisection sampling ranges from 3 to 6
in our simulations, respectively with the increase in the Trot-
ter number. The bisection sampling turns out to be essential
with large Trotter numbers to achieve feasible convergence,
for nuclei in particular. Total energy is calculated using the
virial estimator [49].

B. Extrapolation of expectation values

The Trotter scaling procedure [32] for expectation values
is used to obtain estimates for energetics in the limit
M — . To use this procedure one needs expectation values
with several different Trotter numbers. For the Trotter num-
ber M the scaling scheme is

N
D=+ 2 35 3

where coefficients c,; are constants for a given temperature
and N represents the order of extrapolation. In this paper
N=2 has been used for the energies of HY, and N=3 for
hydrogen atom energies; see Figs. 1 and 2.

C. Pseudopotential of the electron

For the hydrogen molecule ion the potential energy is

PHYSICAL REVIEW A 76, 052508 (2007)
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FIG. 2. (Color online) H;’ potential curves with different Trotter
numbers M=2'" (squares), M=2'? (triangles), M=2"3 (circles), ex-
trapolated values (dots), and finite-difference calculations with the
pseudopotential (dashed line) and with exact e™-p* potential (solid
line).

1 1 1
V(l‘l,l‘z,R)=—7—7+E, 4)
1 2

where r;=|r-R,| and R=|R,-R,|, r being the coordinates of
the electron and R the internuclear distance. Equation (4) sets
challenges for the PIMC approach arising from the singular-
ity of the attractive Coulomb interaction [50,51], which in
this work is replaced by a PP of the form [52]

erflar) (a+br)e (5)

Vppl(r) =~

The parametres «.=3.8638, @=7.8857, a=1.6617, and
b=-18.2913 were fitted using direct numerical solution to
give the exact ground-state energy of hydrogen atoms and
the wave function accurately outside a cutoff radius of about
0.6a,. Also, a number of lowest-energy orbitals of the hydro-
gen atom are obtained accurately outside the same cutoff
radius [53]. Because the bond length of Hj is about 2ay, it is
expected that bonding of the hydrogen molecule ion be-
comes properly described.

Hydrogen atom reference energies for different Trotter
numbers are shown in Fig. 1, where triangles are obtained
from infinite nuclear mass and circles are from AQ simula-
tions. Extrapolated ground-state values are —0.4947(1)Ey
and —0.4938(3)Ey; for infinite nuclear mass and AQ simula-
tions, respectively, statistical standard error of mean (SEM)
given as the uncertainty in parentheses. We can note that
within the 2SEM limits the proportion of these energies
0.9982 reproduces that of the Rydberg constants, Ry/R..
=0.9995.

D. Spectroscopic constants

Within the BO approximation of diatomic molecules the
corrections to electronic energies due to rovibrational motion
of the nuclei can be evaluated from a Dunham polynomial
[54]

052508-2
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1 1\?
E,,J=—De+we(v+5> —wexe<v+£>

+BJ(J + 1)—aeJ(J+1)(v+%>+ e (6)

where v and J are vibrational and rotational quantum num-
bers, respectively, and B., w., w.x., and «, are the spectro-
scopic constants.

The spectroscopic constants of Hy and D} are obtained as
introduced in Ref. [54]. In atomic units,

pelo L -
721" 2uRY
1 dZE 172
We = (772> B (8)
undR
1 [5<d3E/dR3 )2 3d4E/dR4] o)
WX = —_ s
¢ 48| T\ PEIR? d*EldR*
6B2| Rd’EIdR®
Qe =— Py + . (10)
w, | 3 d*EldR

Instead of determining these constants at the equilibrium
distance only, as in Ref. [54], we evaluate expectation values
from the distribution of nuclei, e.g., for the rotational
constant

1 1
B,=— | g(R)=dR, 11
. 2#fg( )Rz (1)

where the pair correlation function g(R) is normalized to
unity. The other constants, Egs. (8)—(10), are evaluated simi-
larly.

E. Centrifugal distortion

The effects caused by the centrifugal distortion, arising
from rotational motion of the nuclei, on the equilibrium dis-
tance can be assessed by inspecting the extremum values of
the energy of the harmonic oscillator in rotational motion:
EJ(r):%k(r—re)2+J(J+ 1)/2ur*. We find an approximate
equation

AR= 4§EZJ(J+1), (12)
MR,
where R, is the equilibrium distance. Equation (12), how-
ever, does not include the anharmonic effects shown in Eq.
(6), which evidently increase the bond length.
At finite temperature the rotational energy states should
be weighted by the Boltzmann factor, which leads to

> J(J + Dexp[- BBJ(J +1)]
J

BS
AR= 252
MR,

13
> exp[- BBJ(J +1)] )

J

where /=0,1,2,... . Using the spectroscopic constants from
Ref. [54] (see Table I) and temperature of 300 K we obtain
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TABLE 1. Expectation values of spectroscopic constants, Eqs.
(7)—(11). A Morse potential [55] fitted to the FDpp potential curve is
used in the evaluation of the energy derivatives. Corresponding pair
correlation functions are shown in Fig. 3. The first two columns are
adiabatic nuclear dynamics results, and AQ results are in the last
column.

H;
D}  H; (AQ
(hartree) (cm™  (em™)  (em™)
B, 0.0001366 30.35 15.24 29.26  This work
0.0001344  29.85705 Ref. [54]
, 0.0104816 232896 1668.25 2229.77 This work
0.0104201 23153 (2232)*  Ref. [54]
wx,  0.0003552 78.92 35.33 90.73  This work
0.0003029 67.3 Ref. [54]
@, 6445X1070 1432 0.45 1.636  This work
7.201X107°%  1.600 Ref. [54]

“MCDFT, nonadiabatic [28].

AR=0.0043a,. This approximation will be compared to our
direct evaluation, below.

III. RESULTS

We consider three different cases separately in order to
demonstrate the nonadiabatic effects. First, the electronic
part only is evaluated as a function of internuclear distance
in the spirit of the BO approximation. Second, the adiabatic
nuclear dynamics is evaluated in the BO potential curve.
Finally, Hj is treated fully nonadiabatically with the AQ
simulation. These allow us to demonstrate the nonadiabatic
electron-nuclei coupling by a projection of the AQ dynamics
onto the adiabatic approximations. In addition, spectroscopic
constants and isotope effects are looked into.

A. Adiabatic electron dynamics

Though the PP, Eq. (5), reproduces the hydrogen atom
energy exactly, an error of —0.00342Ey from the exact value
—0.10263E}; results in the binding of another proton to the
form Hj. This is demonstrated in Fig. 2, where potential
curves of Hj from finite-difference calculations with Vpp
from Eq. (5) and exact V(r)=—r"" are shown.

Our PIMC energies with increasing Trotter number M and
the extrapolation to M=o using Eq. (3) are shown in the
same figure. These indicate clearly that the Trotter number
has to be at least 2> in order to find the minimum of the
potential curve at the nuclear separation R=2.0a,. The ex-
trapolated values are in good agreement with the potential
curve FDpp, and there is almost a perfect match at R=2.0a,
where the value of the extrapolated dissociation energy is
0.1061(2)Ey.

For larger nuclear separations than 3.54,, however, we are
not able to reproduce the potential curve with these Trotter
numbers: we get a too weakly binding molecule. This is
assumed to be a consequence of the electronic wave function
becoming more delocalized as the internuclear distance in-
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2.0

FIG. 3. (Color online) Nuclear pair correlation functions: H;’
AQ (solid line), H; QN (dashed line), and D5 QN (dash-dotted
line). The difference in the average nuclear separation between QN
and AQ Hj is 0.056(3)aj.

creases, and thus the “polymer ring” representing the elec-
tron is not capable of sufficient sampling of configuration
space. This error should diminish with increasing M.

The electron-nucleus pair correlation function is shown in
Fig. 4 and will be discussed below.

B. Adiabatic nuclear dynamics

For the quantum dynamics of the nuclei only (QN) we
consider both H} and Dj to see the isotope effect, too. The
FDpp potential curve in Fig. 2 is used, for which convergence
with respect to Trotter number is found at M =2° for both
isotopes. The resulting pair correlation functions are shown
in Fig. 3.

An average nuclear separation of 2.019(1)q, for H} and
2.007(2)ay for the isotope D} is found with M =2°. The full
widths at half maximum (FWHM) of the pair correlation
functions are 0.539(1)a, and 0.454(1)a, for these isotopes,
respectively.

The difference in the bond length of H} between the adia-
batic electron and adiabatic nuclei simulations—i.e., total
distortion—is 0.019a,. The centrifugal contribution to this,
the difference between one- and three-dimensional (1D and
3D) simulations of the nuclei, is 0.009(1)a,, which unexpect-
edly is about twice as much as the value 0.0043a evaluated
from the approximate equation (13). The anharmonic
contribution—i.e., difference between total and centrifugal
distortions—is 0.010(1)a,. In Ref. [56] it was shown that
anharmonic effects in H, molecules contribute about the
same amount to total distortion as centrifugal force, which
turns out to be the case here, too.

The difference between the total energies of the previous
simulations (3D vs 1D) is 0.0009383(2)Ey;, which is close to
kgT=0.00095Ey as expected due to the presence of the two
rotational degrees of freedom in 3D. The difference between
the dissociation energies of adiabatic electron and nuclear

PHYSICAL REVIEW A 76, 052508 (2007)

TABLE II. H;' energetics (atomic units). The first three rows are
BO and the next three are nonadiabatic values. For high-accuracy
energetics see, for example, Ref. [14].

Method E D, Dy R
HF* —0.6026 0.1026 2.000
vMC® ~0.6026 0.1026 2.000
PIMC® —0.6061(2)  0.1061(2)  0.0997(1) 2.0
VMC® -0.5971 0.0971 2.064
MCDFT? -0.581 0.081 2.08
PIMC® ~0.59872(3) 0.09872(3)  2.075(2)

“Hartree-Fock [58].

"VMC, Born-Oppenheimer [54].
“VMC, nonadiabatic [30].
IMCDFT, nonadiabatic (SAO) [28].
°This work.

simulations—i.e.,
0.0064(2)Ey.

A Morse potential [55] fitted to the FDpp potential curve is
used in the evaluation of the spectroscopic constants; see
Table I. This is justified because the nuclear simulations and
analytical Morse wave function [57] calculations coincide.
The spectroscopic constants of Hj are close to those given in
Ref. [54], which have been determined at the equilibrium
distance of the nuclei, only. The same procedure is used for
the spectroscopic constants of the other isotope. In Table I
the same constants evaluated using the AQ instead of BO
nuclear pair correlation function are also shown.

the zero-point vibrational energy—is

C. Nonadiabatic ‘““all-quantum” dynamics

For Hj the total energy of the AQ simulation with the
Trotter number M=2"3 is —0.60159(3)Ey;. The extrapolation
procedure yields total energy —0.59872(3)Ey, which is only
0.0016Ey more binding than the value —-0.5971Ey from
VMC simulations [30]. The zero-point energy obtained from
simulations is De—D8=0.0074EH; see Table II. It should be
pointed out that the error due to the pseudopotential in the
AQ total energy is only about half of that found for the BO
total energies.

The difference in dissociation energies of AQ and the 3D
QN Hj simulations is 0.00097Ey, which is about kpT, re-
vealing additional electronic energy degrees of freedom in
the first. AQ simulation for Hj gives for the average nuclear
separation R=2.075(2)a,, which is 0.056a, larger than that
in the QN simulation. The AQ FWHM of the nuclear pair
correlation function is 0.5785(2)a,, which shows a spreading
of 0.040a, compared to the QN results; see Fig. 3. With the
Trotter number M=2'3 we find the AQ nuclear pair correla-
tion function sufficiently converged.

In Fig. 4, BO and AQ electron-nucleus pair correlation
functions are compared. AQ projection onto the BO bond
length, R=2.0a,, and BO results coincide, which indicates
that the adiabatic BO approach for the electron dynamics is
sufficient. Thus, it seems that the electron-nuclei coupling
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FIG. 4. (Color online) H;’ electron-nucleus pair correlation func-
tions: AQ (solid line, second lowest curve), AQ projection to R
~2.0a, (solid line), and BO at R=2.0a, (dashed line). The latter
two almost coincide. The dashed vertical line indicates the size of
the pseudopotential core, r=0.6ay. For comparison corresponding
pair correlation functions for the hydrogen atom (dotted solid line)
and H} (dotted line) obtained by using the analytical ground-state
wave function of the hydrogen atom are also shown.

effects are more clearly seen in the dynamics of the nuclei;
see Fig. 3. As one might expect, there is a noticeable differ-
ence between the AQ and BO electron-nucleus pair correla-
tion functions due to varying bond length; see Fig. 4.

The AQ average nuclear separation is close to the value
2.064a, obtained by a nonadiabatic VMC simulation [30].
The AQ pair correlation function of the nuclei (see Fig. 3)
coincides with the scaled atomic orbital (SAO) one in Ref.
[28] computed within the multicomponent density functional
theory (MCDFT) scheme, not shown here.

All the spectroscopic constants in Table I are defined us-
ing the derivatives from a fitted Morse potential—i.e., BO
potential energy surface. Thus, the “AQ spectroscopic con-
stants” should be interpreted mainly as the direction of
change in the values, except for B,. The expectation values
of the spectroscopic constants are obtained by weighting the
equations by the nuclear pair correlation function from the
corresponding simulation.

A projection of the AQ simulation to a potential curve of
the nuclei is constructed with the help of the known solutions
to the Morse potential. The distribution from the Morse wave
function is fitted to the pair correlation function of the AQ
simulation. The three-body system is then presented by an
effective two-body potential. The projected potential curve
shows clear differences in the dynamics of the nuclei be-
tween BO and AQ simulations; see Fig. 5. The minima of the
potentials are set to zero: the difference in the dissociation
energies between BO approach and AQ projection is about
0.036Ey; and the shift in the equilibrium distance is 0.036a,,.
The spectroscopic constants with the projected potential
curve are B,=29.26 cm™', ©,=2047.94 cm™!, w.x,
=78.12 cm™!, and @,=2.110 cm™'. All this indicates that an
effective Morse potential is not capable of describing nona-
diabatic effects correctly.
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FIG. 5. (Color online) Hj potential curves: Morse potential fit-
ted to FDpp (dashed line) and the effective Morse potential obtained
from the projection of the AQ simulation (solid line); see the text
for details. Corresponding nuclear pair correlation functions are
shown in Fig. 3. The shift in the bond length is 0.036a,.

Finally, it may be of interest to see a visualization of the
“polymer rings” representing the quantum particles in the
PIMC simulation. So Fig. 6 presents the xy-plane
(z-projection) snapshot from AQ simulation with Trotter
number 2'3 for all three particles. The “polymer ring” de-
scribing the electron is in the background and those of the
nuclei are placed on top.

IV. CONCLUSIONS

The three-body quantum system, the hydrogen molecule
ion (H3), is reexamined, once again. The path-integral Monte
Carlo method is used for evaluation of the stationary-state
quantum dynamics. The PIMC method offers a finite-
temperature approach together with a transparent tool to de-
scribe the correlations between the particles involved. We
aim at tracing the electron-nuclei coupling effects in the
three-body all-quantum—i.e., nonadiabatic—molecule. This
is carried out by comparing the differences in adiabatic
Born-Oppenheimer and AQ simulations and inspecting the
projections from the AQ simulation onto the BO description

-10.0

y (units of ao)

-6.0 -4.0 -2.0 0.0 2.0
X (units of ao)

FIG. 6. (Color online) xy-plane (z-projection) snapshot from AQ
simulation with Trotter number 2'3 for all particles. The “polymer
ring” describing the electron is in the background and those of the
nuclei are placed on top.
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of the electron-only and nuclear-only subsystems.

The approach turns out to be computationally demanding,
but with the chosen pseudopotential for the attractive Cou-
lomb potential and extrapolation to infinite Trotter number
the task becomes feasible. By choosing low enough tempera-
ture, 300 K, we are able to compare our data to those from
zero-kelvin quantum methods available in literature. Among
others we have evaluated spectroscopic constants and mo-
lecular deformation, also considering the isotope effects.

With our fully basis set free, trial wave function free, and
model free approach we are not able to compete in accuracy
with the zero-kelvin benchmark values. However, due to the
mixed-state density matrix formalism of the PIMC method,
we are able to present the most transparent description of the
particle-particle correlations.

Total energies from our simulations are more binding in
nature compared to the benchmark values; see Table II. This
is an expected effect of the pseudopotential in use; see Fig. 2
and FDpp therein. The quantum dynamics of the system is
well described, and distinct features of the coupling are ob-

PHYSICAL REVIEW A 76, 052508 (2007)

served for the nuclei: a shift of 0.056a in the equilibrium
bond length, increase of 0.040q, in the width of the pair
correlation function of the nuclei, and nonadiabatic correc-
tion of about 0.00097Ey to the dissociation energy. The elec-
tronic distribution is less influenced by the coupling than the
nuclear one upon the inclusion of nonadiabatic effects; see
Figs. 3 and 4.

The projection of the nonadiabatic three-body system
with the help of Morse wave functions onto the two-body
nuclei-only subsystem indicates that the Morse potential is
not capable of describing nonadiabatic effects correctly; see
Fig. 5.
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Path-integral Monte Carlo simulation of the dipositronium “molecule” Ps, reveals its surprising thermal
instability. Although, the binding energy is ~0.4 eV, due to the strong temperature dependence of its free-
energy Ps, dissociates, or does not form, above ~1000 K, except for high densities where a small fraction of
molecules are in equilibrium with Ps atoms. This prediction is consistent with the recently reported first
observation of stable Ps, molecules by Cassidy and Mills, Jr., [Nature (London) 449, 195 (2007); Phys. Rev.
Lett. 100, 013401 (2008)] at temperatures below 1000 K. The relatively sharp transition from molecular to
atomic equilibrium, which we find, remains to be experimentally verified. To shed light on the origin of the
large entropy factor in free-energy, we analyze the nature of interatomic interactions of these strongly corre-
lated quantum particles. The conventional diatomic potential curve is given by the van der Waals interaction at
large distances; but due to the correlations and high delocalization of constituent particles, the concept of

potential curve becomes ambiguous at short atomic distances.

DOI: 10.1103/PhysRevA.80.024504

Dipositronium or positronium molecule Ps, is a four-body
system consisting of two electrons and two positrons. The
dynamical stability of dipositronium was established in 1947
by Hylleraas and Ore [1]. However, the molecule was not
observed experimentally until recently [2], even though a lot
of knowledge had been provided by a number of theoretical
studies (see Refs. [3-9] and references therein). In addition
to the fundamental issues of physics, Ps, is of interest also in
astrophysical applications and in solid-state physics [10,11].

In laboratory conditions, Ps, formation has recently been
observed resulting from implantation of intense pulses of
positrons into porous silica films [2,12].

The positronium molecule, with all the four particles of
the same mass, sets challenges to modeling since quantum
calculations are to be performed fully nonadiabatically [13].
This, however, can be realized with quantum Monte Carlo
(QMC) methods [14-16]. It should be pointed out that also
for other systems, approaches that are not restricted by the
Born-Oppenheimer or other adiabatic approximations are
gaining more attention [16-23].

Among the QMC methods, the path-integral Monte Carlo
(PIMC) offers a finite-temperature approach together with a
transparent tool to trace the correlations between the particles
involved. Though computationally challenging, with the
carefully chosen approximations PIMC is capable of treating
low-dimensional systems, such as small molecules or clus-
ters, accurately enough for good quantum statistics for a
finite-temperature mixed state [24-29].

In this study, using PIMC, we evaluate the density matrix
of the full four-body quantum statistics in temperature-
dependent stationary states. Thus, the temperature-dependent
distributions of structures and energetics of Ps, are estab-
lished. The main focus here is to find the preferred configu-
ration of the four-body system at each temperature—Ps,
molecule or two Ps atoms.

According to the Feynman formulation of the statistical
quantum mechanics [30], the partition function for interact-
ing distinguishable particles is given by the trace of the den-

sity matrix p(B)=ePH,

1050-2947/2009/80(2)/024504(4)
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where S is the action, 8=1/kpT, 7=/M, and M is called the
Trotter number (R,,=R,). In present simulations, we use the
pair approximation of the action and matrix squaring for the
evaluation of the Coulomb interactions [25,31]. Sampling of
the paths in the configuration space is carried out using the
Metropolis algorithm [32] with the bisection moves [33].
The Coulomb potential energy is obtained as an expectation
value from sampling and the kinetic energy is calculated us-
ing the virial estimator [34].

The error estimate for the PIMC scheme is commonly
given in powers of the imaginary time step 7[25]. Therefore,
in order to determine comparable thermal effects on the sys-
tem, we have carried out the simulations with similar sized
time steps regardless of the temperature. This way the
temperature-dependent properties can be compared avoiding
temperature-dependent systematic errors. The standard error
of the mean with two-sigma limits is used to indicate the
statistical uncertainty, where relevant. The average of the
chosen time step is (7)=0.0146F ! where Ey denotes the
atomic unit of energy, hartree (=27.2 eV). The other atomic
unit we use here is Bohr radius for the length aq
(=0.529 A).

The total energy of positronium “atom” Ps is —0.25 at 0 K
and the binding energy of the molecule Ps, is 0.0160
(=0.435 eV) [8]. We find these values as zero Kelvin ex-
trapolates from our simulations at low temperatures. We
point out that with PIMC we evaluate energetics as statistical
expectation values from sampling with less accuracy than
that from conventional solutions of wave functions and the
zero Kelvin data we obtain as extrapolates only.

In Fig. 1 we present the “apparent dissociation energy” of
Ps, at several different temperatures. In each temperature,
this is the negative total energy of the molecule with respect
to two atoms as Dy=—[(EF2),—2(EF),]. At T=900 K, we
find for shown D

the average over temperatures Dy

©2009 The American Physical Society
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FIG. 1. (Color online) Apparent temperature-dependent disso-
ciation energy of dipositronium in units of mhartree: zero Kelvin
reference (square without error bars, red) and finite-temperature
simulation results at the low-density limit (blue dots). Data from
higher Ps density simulations are also shown (green): 0.50 (OJ), 14
(V), and 100X 10** m™! (A).

=0.0154(5), which is very close to the dissociation energy at
0 K, D,. However, at higher temperatures the apparent dis-
sociation energy vanishes because (EF:2); and 2(EF:); be-
come the same. This is because of molecular dissociation, or
to be more exact, the two atoms do not bind in our equilib-
rium state simulation at 7=900 K and the predominant con-
figuration is that of two separate positronium atoms.

Simulations in a well-defined Ps density are time consum-
ing and, therefore, studies of this kind have been carried out
at the transition region around 1000 K only. Using the peri-
odic boundary conditions and the cubic supercells of sizes
from (300a,)? to (50a,)* with two Ps atoms, we have simu-
lated three densities from 0.5 to 100X 10** m™, respec-
tively. We see that with increasing density, the equilibrium
shifts to the molecular direction making the transition
smoother and raising it to higher temperatures compared to
the more sharp low-density limit.

For completeness, we should point out that in equilibrium
at any finite temperature the zero density limit consists of Ps
atoms only. Correspondingly, increasing density will eventu-
ally smoothen the transition away.

In the recent experiment cited above [2,12], the formation
of Ps, molecules was observed below 900 K in about two
orders of magnitude lower densities than our lowest, above
(Fig. 1). Formation was not observed at higher temperatures,
however, because the Ps atoms desorbed from the confining
porous silica surface with the activation energy kgl
~0.074 eV (~850 K). Thus, our prediction of thermal dis-
sociation of Ps, above 900 K in the experimentally achiev-
able densities remains to be verified in forthcoming experi-
ments in higher temperatures.

Next, we compare our finite-temperature Ps, data to the
published zero Kelvin results, discuss the details of Ps-Ps
interaction and, finally, conclude with the explanation of the
higher-temperature instability.

The conventional zero Kelvin like Ps, state of the system
is confirmed below 900 K from the distributions in Fig. 2
and related data in Table I. The pair-correlation functions for
like and opposite charged particles are essentially identical
with those reported elsewhere [6], and the expectation values
of various powers of these distributions match with other
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FIG. 2. (Color online) Temperature averaged pair-correlation
functions for different particle pairs (7=900 K): ¢~ ¢~ and e* ¢*
(dash dotted) and e~ e* (dashed). The ground-state (7=300 K) ra-
dial distribution of the free positronium atom is given as a reference
(solid line). The pair-correlation functions are averaged over tem-
peratures below 900 K. The distributions include the r2 weight and
normalization to one to allow direct comparison to other published
data (see Table I).

published reference data. At higher temperatures, where Dy
~( K, the corresponding distributions and data become that
of the free Ps atoms.

At 900 K, the thermal energy kzT=0.0030E;~0.08 eV
only. Therefore, the obvious question arises: why the Ps,
molecule with binding energy 0.44 eV is unstable above 900
K? Is there a temperature dependence hidden in the interac-
tions? What does the potential energy curve of this diatomic
molecule look like?

It is the van der Waals interaction or so called dispersion
forces that are expected to contribute to the potential curve at
larger atomic distances. These arise from the “dynamic
dipole-dipole correlations,” as usually quoted. Now, within
our approach we have a transparent way to consider these
interactions: the dipoles and their relative orientations. Thus,
we monitor the dipole-dipole orientation correlation func-

tion,
<Pl . PJ> ) 1)
PPy

as a function of interatomic distance R, where p; and p; are
the two e”e™ dipoles. This function assumes values from —1

TABLE I. Simulated and reference data [3,6,9,10,15] in atomic
units. Our data are given as averages from temperatures 7T
=900 K. Apart from the energy, the values are calculated using the
averaged pair-correlation functions shown in Fig. 2. Electrons are
labeled 1 and 2; positrons are 3 and 4. Because of symmetry (r,)
=(r3g) and (ri3)=(ry3)=(ri)=(ras).

(Eip) (rip) (ri3) ('Tzl (rT3l> <r%z> <r%3>

Refs. -0.5160  6.033 4.487 0.221 0.368 46.375 29.113
PIMC -0.5154(5) 6.02 448 0.22 0.37 4567 2878
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FIG. 3. (Color online) Dipole-dipole correlation functions [Eq.
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(1)]. The upper (dash dotted, red) and lower (solid, blue) curves

correspond to 1000 K and 800 K, respectively. See the two definitions of the interatomic distances Ryq and R, ,, in text.

to 0, corresponding orientations from perfectly opposite to
fully random.

The concept of interatomic distance needs to be defined
for evaluation. We should note that at the “equilibrium dis-
tance” the centers-of-mass (c.m.) of all four particles are su-
perimposed on the same location, as evaluated from their
one-particle distributions (or wave functions). However, the
particles do have well-defined (correlated) average distances
(see Table I). Thus, the definition is not trivial.

We can define the center-of-mass interatomic distance
R. . using the expectation value of the c.m. of one e”e™ pair
and that of the other pair. An alternative (correlated) defini-
tion is the expectation value of the separation of the two e"e*
dipoles Ryy. At large distances, these two coincide; but at the
opposite limit, in Ps, molecule, the former becomes zero
whereas the latter remains at about 4 ay,.

Another problem is that in an equilibrium simulation we
are not able to choose or fix the interatomic distance R (R,
or Ryy). Therefore, evaluation of R-dependent quantities pre-
sumes that sampling in the chosen temperature includes the
relevant R with good enough statistics. This kind of data
hunting turns out to be computationally challenging.

To overcome this, we have used a “close-to-equilibrium”
technique by starting from 800 K distribution and rising the
temperature to 1000 K, and then, applying the reverse
change in temperature to obtain another estimate. In the
former case, we are able to follow the increase in R from the
molecular region to “dissociation,” while the latter follows
“recombination.”

In Fig. 3 we show the estimates from these two tempera-
tures to the correlation function with respect to the inter-
atomic distances Ry and R, ,,. We emphasize that these are
estimates, only, because at different temperatures the equilib-
rium sampling regions of R are very different. However, we
see that the difference between these two estimates is very
small and the equilibrium simulation correlation function be-
tween these two is easily conceived. Thus, we conclude that
the dipole-dipole correlation is not temperature dependent.

Using the same close-to-equilibrium technique, we evalu-
ate the van der Waals interaction energy next. This is shown
in Fig. 4. There too, the true equilibrium curve can be esti-
mated as the average of the two shown ones. Simple fit re-
veals that the large distance limit (Ryq>>12a,) shows the
asymptotic R~ behavior (« roughly 6) as expected.

Sampling all the energy contributions with the same
close-to-equilibrium technique allows us to evaluate the total

energy or the diatomic potential energy curve as a function
of interatomic distance EE)?(R), where R=Rgq or R.,,. It
shows the same temperature-independent behavior, though
the statistics is not good enough to allow showing the curve
here. As expected, we find that the true dissociation energy is
not temperature dependent, as is the apparent dissociation
energy Dy shown in Fig. 1.

Now, the “thermal dissociation” can be explained by the
strong temperature dependence of the Ps, free-energy. With
the rising temperature, the free-energy of the two atoms de-
creases below that of the molecule, leading to transition from
the molecular dominance to the atomic one. This is not a
surprise, but the usual behavior of the conventional mol-
ecules. From our simulations, we find, however, the follow-
ing surprising features: (i) the low temperature, where the
transition takes place, (ii) sharpness of the transition, and (iii)
almost negligible density dependence at the experimentally
relevant densities.

The transition temperature is usually estimated by match-
ing the thermal energy kT with the dissociation energy. This
is where the entropic contribution in free-energy —7S be-
comes comparable with the dissociation energy. In the
present case, this gives about 5000 K. Conventionally, the
transition is smooth following from the equilibrium between
molecular dissociation and formation, where the former de-
pends on the temperature and, the latter, on the density, the
density being the main factor in the entropy.

The Ps, molecule lacking in the heavy nuclei is peculiar.
All of its constituents are strongly delocalized, barely fitting
into the binding regime of the molecular potential curve.
This is what they do below 900 K in experimentally relevant
densities, but not above 1000 K. This is a consequence from
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FIG. 4. (Color online) Dipole-dipole interaction energy with the
same notations as in Fig. 3. The upper (dash dotted, red) and lower
(solid, blue) curves correspond to 1000 K and 800 K, respectively.

024504-3



BRIEF REPORTS

the exceptionally large entropy factor originating from the
strong quantum delocalization more than the density.

In summary, with path-integral Monte Carlo simulations
of the dipositronium molecule Ps,, we have found and ex-
plained its surprising thermal instability. Due to the strong
temperature dependence of the free-energy of the considered
four particle system, the molecular form is less stable than
two positronium atoms above about 900 K, though the mo-
lecular dissociation energy is ~0.4 eV. The transition in
equilibrium from molecules to atoms is sharp in temperature

PHYSICAL REVIEW A 80, 024504 (2009)

and only weakly density dependent. This can be understood
by the large entropy factor originating from strong delocal-
ization of all of the molecular constituents. Our prediction
remains to be experimentally verified.

We thank David Ceperley for his attention and interest in
our work. For financial support, we thank the Academy of
Finland, and for computational resources the facilities of
Finnish IT Center for Science (CSC) and Material Sciences
National Grid Infrastructure (M-grid, akaatti).
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Full quantum statistical NVT simulation of the five-particle system H7 has been carried out using the
path integral Monte Carlo method. Structure and energetics are evaluated as a function of
temperature up to the thermal dissociation limit. The weakly density dependent dissociation
temperature is found to be around 4000 K. Contributions from the quantum dynamics and thermal
motion are sorted out by comparing differences between simulations with quantum and classical
nuclei. The essential role of the quantum description of the protons is established. © 2010 American

Institute of Physics. [doi:10.1063/1.3464758]

I. INTRODUCTION

The triatomic molecular ion H} is a five-body system
consisting of three protons and two electrons. Being the sim-
plest polyatomic molecule, it has been the subject of a num-
ber of theoretical and experimental studies over the years.l’5
Experimentally, the H} ion was first detected in 1911 by
Thompson;6 however, definite spectroscopic studies were
carried out not until 1980 by Oka.’ Since then, this five-body
system has proven to be relevant, also in astrophysical stud-
ies concerning the interstellar media and the atmosphere of
gas planets. Therefore, low-density high-temperature H} ion
containing atmospheres have been studied experimentally8 as
well as computationally.g

Until now, the computational approaches have consis-
tently aimed at finding ever more accurate potential energy
surfaces (PESs) for H} at 0 K and consequent calculations of
the rovibrational states.'®!" These calculations include Born—
Oppenheimer (BO) electronic energies in various geometries
often supplemented with adiabatic and relativistic
corrections.'>"® For the study of rovibrational transitions, it
is desirable to have an analytical expression for the PES,
which is usually generated using Morse polynomial fits.!
Inclusion of the nonadiabatic effects, however, has turned out
to be a cumbersome task, and so far they have not been
rigorously taken into account.*

In this work, we evaluate the full five-body quantum
statistics of the H} ion in a stationary state at temperatures
below the thermal dissociation at about 4000 K. We use the
path integral Monte Carlo (PIMC) approach, which allows us
to include the Coulomb correlations between the particles
exactly in a transparent way. Thus, we are able to monitor
the fully nonadiabatic correlated quantum distributions of
particles and related energies as a function of temperature.
Furthermore, we are able to model the nuclei as classical
mass points, in thermal motion or fixed as conventionally in
quantum chemistry, and find the difference between these
and the quantum delocalized nuclei.

The PIMC method is computationally expensive, but

YElectronic mail: ilkka.kylanpaa @tut.fi.
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within the chosen models and numerical approximations, it
has been proven to be useful with exact correlations and
finite temperature."* "' For 0 K data with benchmark accura-
cies, however, the conventional quantum chemistry or other
Monte Carlo methods, such as the diffusion Monte Carlo,22
are more appropriate. Thus, it should be emphasized that we
do not aim at competing in precision or number of decimals
with the other approaches. Instead, we will concentrate on
physical phenomena behind the finite-temperature quantum
statistics.

Next, we will briefly describe the basics of the PIMC
method and the model we use for the ion. In Sec. IV, we first
compare our 160 K PIMC “ground state” to the 0 K ground
state and then consider the higher temperature effects.

Il. METHOD

According to the Feynman formulation of the quantum
statistical mechanics,” the partition function for interacting
distinguishable particles is given by the trace of the density
matrix

M-1

Z=Trp(p) = f dRodR, - -+ dRyy_; [T e S®eRieii,
i=0

where p(B)=e™PH, S is the action, B=1/kgT, 7=B/M, Ry,
=Ry, and M is called the Trotter number. In this paper, we
use the pair approximation in the action'>?* for the Coulomb
interaction of charges. Sampling in the configuration space is
carried out using the Metropolis procedure25 with bisection
moves.”® The total energy is calculated using the virial
estimator.”’

The error estimate in the PIMC scheme is commonly
given in powers of the imaginary time time-step 7. There-
fore, in order to systematically determine thermal effects on
the system, we have carried out all the simulations with 7
=0.03E;[l, where Ey denotes the unit of hartree. Thus, the
temperatures and Trotter number M become fixed by the
relation T=(kgM7)~".

In the following, we mainly use the atomic units, where
the lengths, energies, and masses are given in units of the

© 2010 American Institute of Physics
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bohr radius (ag), hartree (Ey), and free electron mass (m,),
respectively. The statistical standard error of the mean
(SEM) with 2SEM limits is used as an error estimate for the
observables, unless otherwise mentioned.

lll. MODELS

Two of the five particles composing the Hj ion are elec-
trons. For these, we do not need to sample the exact Fermion
statistics, but it is sufficient to assign spin-up to one electron
and spin-down to the other one. This is accurate enough, as
long as the thermal energy is well below that of the lowest
electronic triplet excitation.

We apply the same particle statistics for the three pro-
tons, too. This is even safer because the overlap of well
localized nuclear wave functions is negligible and related
effects become very hard to evaluate, anyway. On the other
hand, however, the nuclear exchange due to the molecular
rotation results in the so called zero-point rotations. These
too contribute to energetics less than the statistical accuracy
of our simulations. Therefore, we ignore the difference be-
tween ortho-H3 (/=3/2) and para-Hj (/=1/2). Thus, the
protons are modeled as “boltzmannons” with the mass m,
=1.836 152 672 48 X 10%m,. The higher the temperature, the
better is the Boltzmann statistics in describing the ensemble
composed of ortho-H} and para-HJ.

For the NVT simulations, we place one H;’ ion into a
cubic box with the volume of (300a)* and apply periodic
boundary conditions and minimum image principle. This
corresponds to the mass density of ~1.255X107° gem™,
This has no essential effect at low 7, but at high 7 the finite
density gives rise to the molecular recombination balancing
the possible dissociation. Within the considered temperature
range, the contributions from the dissociated states are neg-
ligible.

The electrons are always simulated with the full quan-
tum dynamics. For the nuclei, however, we use three models
to trace the quantum and thermal fluctuations separately. The
case of full quantum dynamics of all particles we denote by
AQ (all-quantum), the mass point model of protons by CN
(classical nuclei), and the adiabatic case of fixed nuclei by
BO (Born-Oppenheimer potential energy surface).

IV. RESULTS AND DISCUSSION
A. Ground state: 0 K reference data

The equilibrium geometry of the Hj ion in its ground
state is an equilateral triangle D5, for which the internuclear
equilibrium distance is R= 1.65(10.4 The best upper bound for
the electronic ground state BO energy to date is
—1.343 835 625 OZEH.4 The vibrational normal modes of H}
are the symmetric-stretch mode v; and the doubly degenerate
bending mode v,. The latter one breaks the full symmetry of
the molecule, and therefore it is infrared active.’

The vibrational zero-point energy is 0.019 87Fy and the
so called rotational zero-point energies are 0.000 29Ey; and
0.000 40Ey for para-H? and ortho-H?, respectively.”'! These
yield about 0.020 215Ey for the average zero-point energy.
Note, however, that the nuclear spins and zero point rotation
are not included in our model of Hj.
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FIG. 1. Total energy of the Hj molecular ion as a function of temperature.
Fully nonadiabatic quantum statistical simulations [AQ (blue circles)], clas-
sical nuclei simulations [CN (red squares)], and the equilibrium geometry
Born-Oppenheimer simulation [BO (black triangles)]. 0 K data (Refs. 3, 4,
and 11) are given for comparison: BO ground state energy at equilibrium
internuclear geometry (black dashed-dotted line), energy including the
nuclear zero-point motion (green dashed line), and energy at the barrier to
linearity (gray solid line). 2SEM statistical error estimate is shown by the
error bars from simulations at the H} ion density (300a,)™ or ~1.255
X107° g em™.

The lowest electronic excitation from the BO ground
state is a direct Franck—Condon one (0.710Ey) (Refs. 4 and
5) to dissociative potential curve: Hj —H,+H* or H} —Hj
+H.*® The dissociation energies (D,) are 0.169Ey and
0.241Ey, respectively.

The linear geometry with equal bond lengths 1.539 124,
(D..;) is a saddle point on the BO PES at —1.278 681 90Ey
(Ref. 11) or 0.065 15Ey above the BO energy at the equilib-
rium geometry. This energy is usually called as the barrier to
linearity.2 The 0 K energetics is shown in Fig. 1 by the three
horizontal lines.

B. PIMC ground state: 160 K

At our lowest simulation temperature 7=~ 160 K, the
electronic system is essentially in its ground state. For the
total energy we find —1.3438(2)Ey, see the BO black tri-
angles in Fig. 1. The thermal energy is kg7=0.000 507Ey,
and therefore, the contribution from the rotational and vibra-
tional excited states is also small and we find
—1.3406(29)Ey;, see the CN red square in the same figure.
The full quantum simulation includes vibrational zero-point
contribution and yields —1.3233(12)Ey, about 0.0205(14)Ey
above the BO energy in a good agreement with about
0.0202Ey in Refs. 3 and 11.

From our AQ simulation we still find the equilateral tri-
angle configuration of the nuclei with the internuclear dis-
tances increased to (R)=1.723(4)a,, which indicates an in-
crease of about 0.073(4)ay, as compared with the 0 K BO
equilibrium distance bond lengths. Interestingly, within the
error limits, this is the same as the bond length increase of
the hydrogen molecule ion H3. The zero-point energy of H}
is about 2.7 times as large as that of the Hj ion,”! as expected
from the increase of vibrational modes from one to three—
the zero-point energy of our model does not contain the ro-
tational zero-point energy, as mentioned earlier.

The thermal motion (CN) alone increases the bond
length to (R)=1.658(4)a, only (see the data in Figs. 2 and 3).
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FIG. 2. Nuclear pair correlation functions (bond length distributions) at
different temperatures from the quantum statistical simulations (solid lines)
and from the classical nuclei simulations (dashed lines). The 0 K equilib-
rium internuclear distance is given as a vertical black dashed-dotted line.
The distributions include the 7> weight and normalization to unity. (Note that
the 72 weight is usually not included in description of extended or periodic
systems.)

This clearly points out the difference between quantum and
thermal delocalization of the nuclei at low T.

For the proton-electron and electron-electron interac-
tions, the differences between our two approaches are
smaller than in the proton-proton case but still distinctive.
Comparison of the fixed nuclei simulation to the CN one
shows that the two schemes give almost identical distribu-
tions. The AQ distributions, however, cannot be labeled iden-
tical with those from the CN or fixed nuclei simulations. The
distributions are given in Figs. 4 and 5, where the notations
are the same as in Fig. 2.

The calculations of the relativistic corrections involve,
among other things, evaluation of the contact densities
(8(r;;)) for the electron-nuclei and the electron-electron
pajrs.12 For the electron-nuclei contact density at the BO
equilibrium configuration, we get 0.1814(20) and for the AQ
case, 0.1765(20). For the electron-electron pair we get
0.0182(3) and 0.0166(3) for BO and AQ approaches, respec-
tively. The estimated uncertainties due to extrapolation to the
contact are given in parentheses. The 0 K reference values'?
for the BO case are 0.181242 (electron-nuclei) and
0.018 386 63 (electron-electron). Thus, the quantum dynam-
ics of the nuclei turns out to be a significant factor in lower-

22

2.1

<R>
3

0 161 1365 2570 3856
T (K)

FIG. 3. Expectation values of the internuclear distance at different tempera-
tures from distributions in Fig. 2. Quantum statistical simulations (blue
circles) and classical nuclei simulations (red squares). The FWHM limits are
shown by triangles (all the lines are for guiding the eye). The 0 K equilib-
rium internuclear distance is shown as a horizontal black dashed-dotted line.
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FIG. 4. Proton-electron pair correlation functions at the four temperatures
from the full quantum statistical simulations [AQ (solid lines)] and from
simulations with the classical nuclei [CN (dashed lines)]. That from the BO
scheme is given at the lowest (electronic) temperature only (dashed-dotted
line). Notations are the same as in Fig. 2.

ing the contact densities, too. See the snapshot of the AQ
simulation in Fig. 6 for some intuition of the low-
temperature quantum distributions in imaginary time.

C. High temperature phenomena

With the increasing temperature, the increasing contribu-
tion from rovibrational excitations is clearly seen in the total
energies shown in Fig. 1. Contributions from the electronic
excitations do not appear because the lowest excitation en-
ergy 0.710Ey is much too high as compared to the thermal
energy kgT. Consequently, the equilibrium geometry BO en-
ergy depends on the temperature almost negligibly. For con-
venience, the essential energetics related data have been col-
lected into Table I also.

As expected, the increase in the total energy due to the
classical rovibrational degrees of freedom is 9 X %kBT, defin-
ing the slope of the CN line. The most prominent quantum
feature in AQ curve is, of course, the zero-point vibration
energy. At higher temperatures, however, by comparing the
AQ and CN curves we see that the quantum nature of nuclear
dynamics becomes less important, except for dissociation.

At the dissociation limit we find the molecule with quan-
tum nuclei somewhat more stable than the one with classical
nuclei. With the relatively low density (300a)~3, the mol-
ecule is mainly kept in one piece above 4000 K in the former
case, whereas more dissociated in the latter. The total energy
becomes higher for the CN than the AQ case slightly below

0.6
/ N

04 7
_ )
g j

0.2

0.0

0 1 2 5 6

r (units of ao)

FIG. 5. Electron-electron pair correlation functions from the same simula-
tions as those in Fig. 4. Notations are the same as in Figs. 2 and 4.
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FIG. 6. xy-plane (z-projection) snapshot of the H} ion from quantum statis-
tical simulation with Trotter number 2, i.e., temperature of about 160 K,
for all particles. "Polymer rings” describing the electrons are in the back-
ground (green and blue) and those of the nuclei are placed on top (yellow).

4000 K (see Table I). The total energies at this crossing point
are above the “barrier to linearity,”z’” already.

At higher temperatures 7=4100 K, other configura-
tions, such as H,+H*, Hj+H, and 2H+H?", start playing
more significant roles in the equilibrium dissociation-
recombination processes. These will be considered in our
next study.

The nuclear pair correlation function or bond length dis-
tributions (Figs. 2 and 3) follow the energetics discussed
above. There, the zero-point vibration in AQ case is seen
even better. At the O K limit both the expectation value and
the distribution, in particular, are significantly different from
those of the CN case.

The temperature dependence in the other pair correlation
functions is weak (see Figs. 4 and 5). Obviously, this is the
case, because electrons do not present a quantum-to-classical
transition in the temperature range considered, now. Thus,
the evolution in distributions in Figs. 4 and 5 following the
rising temperature arises from the changes in the nuclear
dynamics, and mostly, from the change in the conformation
or the bond lengths, presented in Fig. 3.

V. CONCLUSIONS

In this study, the path integral Monte Carlo method was
shown to be a successful approach for examination of quan-
tum statistics of the five-particle molecule, H;’ ion. The
method is based on the finite temperature mixed state de-

TABLE 1. Energetics of the Hj molecular ion. The energies are given in
units of hartree (atomic units). Simulation data are given with 2SEM error
estimates. BO refers to Born-Oppenheimer calculation at equilibrium geom-
etry. The reference data are rounded to convenient accuracy. The barrier to
linearity is 0.065 15Ey=1.8 eV above the Epg at 0 K.

T (K) Ego Ecx Exo
Reference 4 0 —1.343 836 —1.323 568"
PIMC ~161  —13438(2) —13406(29) —13233(12)
PIMC ~1365 —1.3236(8) —1.3142(4)
PIMC ~2570 —1.3033(7) —1.2977(6)
PIMC ~3856  —13438(2)  —128108)  —12770(2)
PIMC ~3999 —1.1469(9) —1.2750(4)
PIMC ~4050 —1.2734(9)

“For ortho-H} estimated by using Refs. 3 and 4.
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scription, and thus, it gives information, which is comple-
mentary to the high-accuracy 0 K description of conven-
tional quantum chemistry. It was also shown how
contributions from quantum and thermal dynamics to particle
distributions and correlation functions can be sorted out, and
furthermore, quantum-to-classical dynamics transition can be
monitored.

Our approach is fully basis set and trial wave function
free. It is based on the Coulomb interactions only and allows
the most transparent interpretation of consequent particle-
particle correlations.

Simulation at 160 K essentially reproduces the 0 K data
from conventional quantum chemistry. Of course, a proper
extrapolation to 0 K can be done for more accuracy. BO
potential energy surface and the equilibrium geometry can be
found by using classical nuclei with fixed coordinates. De-
scription of the zero-point motion within our nonadiabatic
five-body quantum simulation gives the vibrational zero-
point energy accurately. We find an increase of 0.073(4)a, in
the bond length due to the nonadiabatic zero-point vibration.
The classical thermal contribution at 160 K is 0.008(4)a,
only.

With the raising temperature the rovibrational excitations
contribute to the energetics, as expected, whereas the elec-
tronic part remains in its ground state in the spirit of BO
approximation. At about 4000 K the HY ion dissociates,
weakly depending on the ion density. We find that the full
quantum molecule dissociates at slightly higher temperature
compared to the one where the nuclei are modeled by clas-
sical particles with thermal dynamics only. Thus, we con-
clude the necessity of the quantum character of the protons
in the correct description of dissociation.

We find that the nuclear quantum dynamics has a distinc-
tive effect on the pair correlation functions, too. This is least
for the electron-electron pair correlation function, stronger
for the electron-proton one and largely increased in the
proton-proton correlations. These are seen in the contact den-
sities and, consequently, in the relativistic corrections where
relevant.

ACKNOWLEDGMENTS

For financial support we thank the Academy of Finland
and for computational resources the facilities of Finnish IT
Center for Science (CSC) and Material Sciences National
Grid Infrastructure (M-grid, Akaatti). We also thank Kenneth
Esler and Bryan Clark for their advice concerning the pair
approximation.

'T. Oka, Rev. Mod. Phys. 64, 1141 (1992).

25 L. Gottfried, B. J. McCall, and T. Oka, J. Chem. Phys. 118, 10890
(2003).

*W. Kutzelnigg and R. Jaquet, Philos. Trans. R. Soc. London, Ser. A 364,
2855 (2006).

4M. Pavanello and L. Adamowicz, J. Chem. Phys. 130, 034104 (2009).

SH. Kreckel, D. Bing, S. Reinhardt, A. Petrignani, M. Berg, and A. Wolf,
J. Chem. Phys. 129, 164312 (2008).

©J. J. Thomson, Philos. Mag. 21, 225 (1911).

"T. Oka, Phys. Rev. Lett. 45, 531 (1980).

SM. B. Lystrup, S. Miller, N. D. Russo, J. R. J. Vervack, and T. Stallard,
Astrophys. I. 677, 790 (2008).

°T. T. Koskinen, A. D. Aylward, and S. Miller, Astrophys. J. 693, 868



044312-5  Quantum statistics of H; ion

(2009).

'"W. Meyer, P. Botschwina, and P. Burton, J. Chem. Phys. 84, 891 (1986).
''R. Rohse, W. Kutzelnigg, R. Jaquet, and W. Klopper, J. Chem. Phys.

101, 2231 (1994).

"2W. Cencek, J. Rychlewski, R. Jaquet, and W. Kutzelnigg, J. Chem. Phys.

108, 2831 (1998).

BR.A. Bachorz, W. Cencek, R. Jaquet, and J. Komasa, J. Chem. Phys.

131, 024105 (2009).

"X_-P. Li and J. Q. Broughton, J. Chem. Phys. 86, 5094 (1987).
D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).

M. Pierce and E. Manousakis, Phys. Rev. B 59, 3802 (1999).
17Y. Kwon and K. B. Whaley, Phys. Rev. Lett. 83, 4108 (1999).
1. Knoll and D. Marx, Eur. Phys. J. D 10, 353 (2000).

'], E. Cuervo and P-N. Roy, J. Chem. Phys. 125, 124314 (2006).

J. Chem. Phys. 133, 044312 (2010)

21, Kylinpii and T. T. Rantala, Phys. Rev. A 80, 024504 (2009).

"I, Kylinpid, M. Leino, and T. T. Rantala, Phys. Rev. A 76, 052508
(2007).

1. Anderson, J. Chem. Phys. 96, 3702 (1992).

ZR. P. Feynman, Statistical Mechanics (Perseus, Reading, MA, 1998).

**R. G. Storer, J. Math. Phys. 9, 964 (1968).

»N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.
Teller, J. Chem. Phys. 21, 1087 (1953).

e Chakravarty, M. C. Gordillo, and D. M. Ceperley, J. Chem. Phys.
109, 2123 (1998).

M. F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. Phys. 76, 5150
(1982).

AL P Viegas, A. Alijah, and A. J. C. Varandas, J. Chem. Phys. 126,
074309 (2007).



Paper IV

I. Kylanp&é and T. T. Rantala
First-principles simulation of molecular dissociatiomeombination equilibrium

Reprinted with permission from:
Journal of Chemical Physics 135, 104310 (2011)

Copyright 2011, American Institute of Physics



THE JOURNAL OF CHEMICAL PHYSICS 135, 104310 (2011)

First-principles simulation of molecular dissociation—-recombination

equilibrium
likka Kylanp&a?® and Tapio T. Rantala®

Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
(Received 25 May 2011; accepted 17 August 2011; published online 9 September 2011)

For the first time, the equilibrium composition of chemical dissociation—recombination reaction
is simulated from first-principles, only. Furthermore, beyond the conventional ab initio Born—
Oppenheimer quantum chemistry the effects from the thermal and quantum equilibrium dynamics
of nuclei are consistently included, as well as, the nonadiabatic coupling between the electrons and
the nuclei. This has been accomplished by the path integral Monte Carlo simulations for full NVT
quantum statistics of the H; ion. The molecular total energy, partition function, free energy, en-
tropy, and heat capacity are evaluated in a large temperature range: from below room temperature to
temperatures relevant for planetary atmospheric physics. Temperature and density dependent reac-
tion balance of the molecular ion and its fragments above 4000 K is presented, and also the density
dependence of thermal ionization above 10000 K is demonstrated. © 2011 American Institute of

Physics. [doi:10.1063/1.3633516]

I. INTRODUCTION

The H}' molecular ion has been the subject of a number
of theoretical and experimental studies since its first experi-
mental detection.! Because of its rapid formation through the
exothermic reaction (AE ~ —1.7 eV),

H, +Hf — Hj +H, (1)

the Hy ion is expected in any active environment containing
molecular hydrogen,2 and thus, it is encountered, e.g., in hy-
drogen plasma and in the atmosphere of giant planets.>* This
smallest polyatomic molecule dissociates to several fragments
in a temperature and density dependent manner. It is a five-
particle system, and therefore, small enough to allow related
simulations based on first-principles, only.

In planetary atmospheric physics, importance of the Hy
ion lies in its capability to act as a cooling agent via infrared
radiation.>” The atmospheric models taking into account this
cooling are commonly based on the high temperature molecu-
lar partition function of the HY ion.> Conventional evaluation
of the partition function faces, however, a few challenges of
which the first one is finding a good approximation to the in-
finite summation over all rovibrational quantum states with
accurate enough energies.” This has usually been worked out
with the calculations of a finite number of states from, e.g., a
semi-empirical potential energy surface.®

The next challenge comes with the changing geome-
try of the Hj ion at finite temperature. The rovibrational
model needs to be extended for calculations of correct ener-
getics for the emerging linear geometry of the weakly bound
molecule.’

Finally, as pointed out above, at finite temperatures the
molecule may also dissociate to its fragments, and in fact, the

®Electronic mail: ilkka.kylanpaa@tut.fi.
b)Electronic mail: tapio.rantala@tut.fi.
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equilibrium reaction
Hf < H, +p"
< Hf +H
< 2H+p"
< H+2p" +e”
< 3pt 4+ 2e, ?2)

needs to be considered, the balance depending strongly on
both the temperature and the density of H ions.

This brings forth two questions, at the least. First, how
relevant it is to consider the molecular energetics and related
partition function at temperatures where the molecule has dis-
sociated and appears in form of fragments of the equilibrium
reaction, Eq. (2), only. Second, the balance of the equilib-
rium reaction may be strongly affected, not only by the den-
sity, but also by the environment including the neutralizing
negative counterparts of the positive Hi. Thus, the thermal
dissociation-recombination balance above dissociation tem-
perature gives rise to problems, which have yet not been taken
into account in this context.

To start with we first define the molecular partition func-
tion (and other molecular quantities) as the one of the system
of particles that constitute the molecule. Thus, the low tem-
perature limit gives us, in practice, the conventional textbook
molecular partition function. However, this generalization al-
lows us to extend the concept of molecular partition function
(and the other molecular quantities) seamlessly to higher tem-
peratures, where the molecule may dissociate and recombine
in density and temperature dependent balance.

Similar definition of the molecule as a five-particle sys-
tem allows us to carry out simulations of the full quan-
tum statistics of the H3+ ion, now described by Eq. (2), at
low densities and temperatures ranging from 160 K up to
about 15000 K using the path integral quantum Monte Carlo

© 2011 American Institute of Physics
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(PIMC) method. PIMC is the method to meet the above chal-
lenges: we need not make any approximations or restrictions
in the summing over states, geometries, or quantum effects
in equilibrium dynamics. The finite temperature is inherent in
the PIMC approach and the Coulomb many-body treatment of
the particle—particle interactions is exact. The PIMC method
is computationally expensive, but feasible for small enough
systems.>14

The conventional quantum chemical ab initio description
of the H;r ion emerges as the zero Kelvin extrapolate from the
PIMC simulations as we have shown earlier.'> There, we eval-
uated the differences between three models for the description
of the nuclear dynamics: the Born—-Oppenheimer approxima-
tion, nuclei in thermal motion and nuclei in both thermal and
quantum dynamics. At low temperatures the necessity of the
fully quantum mechanical approach for all five particles was
established.

In Sec. II, we present the essential details of the Feynman
path integral quantum statistical approach, numerical simula-
tion method, and the model of the H;r ion. In Sec. III, we
present and analyze the energetics, partition function, and
other thermodynamic functions of the system fitting to analyt-
ical forms where pertinent. In the last section the conclusions
are given.

Il. METHOD AND MODELS

According to the Feynman path integral formulation of
the quantum statistical mechanics'® the partition function
of interacting distinguishable particles is given by the trace
of the density matrix p(8) = e~* H a5

M-1

Z =Trp(B) = /dRode ) ..dRM_IHe—S(R,-RHm’

i=0
3
where the action S(R;, R;41;7) is taken over the path R;
— R;4 in imaginary time t = 8/M, where B = 1/kgT and
M is called the Trotter number. The trace implies a closed
path (RM = R())

For simulation, we use the pair approximation in the
action®!” for the Coulomb interaction of charges. This is ex-
act in the limit M — oo, but chemical accuracy is reached
with sufficiently large M, i.e., small enough t. Sampling in
the configuration space {R;} in NV T ensemble is carried out
using the Metropolis algorithm'® with bisection and displace-
ment moves.'® The total energy is calculated using the virial
estimator,”® which is proper for molecular energetics.

The error estimate in the PIMC scheme is commonly
given in powers of the imaginary time-step t.° Therefore,
in order to systematically determine the thermal effects on
the system we have carried out all the simulations with
T =0.03Ey 1, where Ey denotes the unit of Hartree. Thus,
the temperatures and the Trotter number M are related by
T = (kgM7)~!, where kg is the Boltzmann constant.

In the following we mainly use the atomic units, where
the lengths, energies, and masses are given in the units
of Bohr radius (ag), Hartree (Ey), and free electron mass
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(m¢), respectively. Thus, for the mass of the electrons we
take m. =1 and for the protons m, = 1.83615267248
x 103m,. Conversion of the units of energy is given by
Ey =219474.6313705 cm™! ~ 27.2 eV, and correspond-
ingly, kg = 3.1668152 x 10 0 Ey K.

The statistical standard error of the mean (SEM) with
2 SEM limits is used as an error estimate for the evaluated
observables.

For the NVT simulations, we place one H;r ion, i.e.,
three protons and two electrons, into a cubic box and apply
periodic boundary conditions and the minimum image prin-
ciple. The simulations are performed in three different super
cell (box) volumes: (300ap)*, (100ao)*, and (50ap)*. These
correspond to the mass densities of ~1.255 x 10~ ®gem =3,
~3.388 x 107gecm ™3, and ~2.710 x 10~*gcm™3, respec-
tively, which are relevant to Hf ion containing atmospheres.®
The density has no essential effect at low T, where dissocia-
tion rarely takes place. At higher 7', however, the finite density
gives rise to the molecular recombination balancing the more
frequent dissociation.

It should be pointed out that application of the minimum
image principle with only one molecular ion in the periodic
super cell may give both rise to the finite-size effects and also
disregard high density distribution effects, i.e., fragments of
several ions in the simulation box. Thus, the lower the density
the better we are able to minimize the finite-size effects,
which in this work are negligible, if not absent. In principle,
the zero density limit cannot be reached due to the finite 7'.
To avoid all these high density distribution ambiguities we
have defined our targets as molecular energetics, molecular
partition function, and other related molecular quantities, at
all temperatures and considered low densities. Therefore,
in the following, we also exclude the trivial contribution from
the center-of-mass thermal dynamics and energy 3/2kgT to
the molecular quantities.

We do not simulate the real-time quantum dynamics
with our approach, but evaluate the quantum statistics of
the thermal equilibrium from the imaginary time paths of
particles. However, the energetics and other expectation val-
ues evaluated from the correct quantum statistics inherently
include all contributions from the equilibrium thermal motion
and quantum dynamics in translationally, vibrationally, and
rotationally excited states.'® With rising temperature, the
thermal contribution takes over leading to the classical limit,
whereas decrease towards zero Kelvin takes to the quantum
limit, where only the zero point motion remains. '

The contribution to energetics from nuclear quantum dy-
namics, which was shown to be essential at low 7, turns out
to be negligible at higher temperatures. It is included, how-
ever, to be consistent with the low temperature results and our
earlier study. Also, the distinguishable particle (boltzmannon)
simulation was shown to be accurate for the nuclei due to
the negligible overlap of nuclear wavefunctions and the two
electrons in singlet state. Now, at higher temperatures both
assumptions are still valid as the direct Franck—Condon tran-
sition energies of H;" and H; to the lowest triplet state are still
more than an order of magnitude larger than the thermal en-
ergy of these molecules in our simulations.?'~>* For the free
fragments, the overlap of electronic wavefunctions is again
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FIG. 1. NVT total energy of the H;r molecular ion as a func-
tion of temperature at three different densities: blue circles (~1.255 x
10~°gem—3), red squares (~3.388 x 105gcm™3), and gray triangles
(~2.710 x 10~*gcm™3). The blue dashed line is the energy fitted to Eq. (7).
The black dots give the energy computed using the partition function fit given
in Ref. 2. The horizontal dashed-dotted lines are the nonadiabatic zero Kelvin
energies for the ion, its fragments and the barrier to linearity. The high tem-
perature solid lines are mainly for guiding the eye, but used later for numeri-
cal evaluation of the partition function.

negligible and contributions from the weak overlapping con-
figurations turns out to be vanishing.

For more details about the model and a discussion about
the here neglected contribution from the exchange interaction,
see Ref. 15.

Ill. RESULTS AND DISCUSSION
A. Overview of molecular energetics

In Fig. 1, the NVT total energy (canonical ensemble in-
ternal energy) of the HY ion and its fragments is shown as a
function of temperature. The molecular energy does not in-
clude the center-of-mass translational kinetic energy 3/2kgT .
The data from simulations are given as circles, squares, and
triangles corresponding to the three densities. The PIMC data
is also given in Tables I and II.

The solid lines at 7 < 4000 K are fitted to analytical
model forms but at higher temperatures lines are only for
guiding the eye. Our low temperature fit and analytical model,
Eq. (8), is given as a blue dashed line and it is discussed in
Secs. III B and III C in more detail. For comparison, the en-
ergies from the fitted partition function of Ref. 2 is shown as
black dots. These two do not manifest dissociation, and there-
fore, are not relevant at “higher 7'.”

The horizontal dashed-dotted lines show the zero Kelvin
energies for the ion and its fragments in Eq. (2). One of these
lines presents the energy for the “barrier to linearity,” i.e., the
minimum energy needed for the transformation to the linear
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TABLEI. NVT energetics of the H;r molecular ion at low temperatures—
here the same data applies for all three densities. The energies are given in
the units of Hartree (atomic units) and with 2 SEM error estimates. The
energies from our low 7 fit (LTFIT) from Eq. (7) and those from the fit of
Ref. 2 (NT) are also given as comparison. At 0 K, the best upper bound is
given, see the footnote c.

T(K) PIMC* LTFIT* NT fit®
0 —1.3231 (—1.32367)°
~160.61 —1.3227(7) —1.3227 —1.3232
~321.22 —1.3221(6) —1.3220 —1.3225
~642.45 —1.3198(6) —1.3202 —1.3209
~1052.6 —1.3173(7) —1.3171 —1.3179
~1365.2 —1.3143(5) —1.3141 —1.3148
~2000.3 —1.3064(7) —1.3065 —1.3070
~2569.8 —1.2983(8) —1.2984 —1.2989
~3049.2 —1.2905(12) —1.2909 —1.2917
~3499.3 —1.2840(12) —1.2835 —1.2847
~3855.6 —1.2774(7) —1.2774 —1.2792
“This work.

bCalculated from the fit given in Ref. 2.
“Para-Hy, see Refs. 23 and 25.

molecular geometry on the zero Kelvin Born—Oppenheimer
surface.

‘Within the considered molecular densities, 7" ~ 4000 K
can be considered as apparent dissociation temperature. The
energetics below 4000 K is so close to density independent
that the differences between the three curves in Fig. 1 cannot
be seen.

Above 4000 K, the density dependence is clearly seen as
varying composition of fragments. In the range from 4000 to
10000 K, the changing dissociation—recombination balance
leads to distinctly different energetics, and above that, at our
highest simulation temperatures the thermal ionization of hy-
drogen atoms starts contributing to the energy. However, it is
worth pointing out that the temperature limits of these three
ranges, i.e., about 0 — 4000 K, about 4000 — 10000 K, and
above 10000 K, are subject to changes with larger variation
of densities.

TABLE II. PIMC NVT energetics of the H;’ molecular ion at high tem-
peratures for the three densities (expressed as the number of molecular ions
per volume), see Fig. 1. Notations are the same as in Table I.

T(K) (300a9)~3 (100a9)~3 (50a9)~3
~3999.2 —1.152(16)

~4050.0 —1.19(6)

~4100.4 —0.9995(4)

~4498.2 —0.9993(4) —1.219(34) —1.244(15)
~4819.5 —0.9993(4) —1.215(37)
~5139.6 —0.9995(4) —1.020(33) —1.169(29)
~5634.8 —1.156(66)
~6070.3 —0.9991(4) —1.018(18) —1.062(35)
~7017.2 —0.9995(4) —1.008(9) —1.024(12)
~10279 —0.997(3) —0.9995(8) —1.003(3)
~12016 —0.9993(6)

~13997 —0.86(10)

~14951 —0.805(23) —0.988(8) —0.9957(8)
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FIG. 2. Histogram of total energy sampling pinned in boxes of width
0.001 Ey from at least (2 x 10%) x 10° Monte Carlo samples averaged over
blocks of 10° samples. The energy expectation values are also given with
2 SEM error estimates. The temperature and the Trotter number are ~5139.6
K and 2048, respectively. The histograms are normalized to unity for all three
densities. Other notations are taken from Fig. 1.

Above 10000 K, in our lowest density case the ther-
mal ionization of H atoms is evident, see Fig. 1, but for our
higher density cases some 15000 K is needed to bring up first
signs of ionization. Similar trend for the ionization is stated in
Ref. 24, although the density is notably less than our lowest
one.

Let us now consider the dissociation-recombination re-
action chain, Eq. (2), and the contributing fragments to the
quantum statistical NV T equilibrium trying to give an intu-
itive classical-like picture of the composition. With finite 7,
instead of zero, we have finite 8, instead of infinite, that brings
classical nature to the system the more, the higher the tem-
perature. In other words, the partial decoherence in our five-
particle quantum system increases with increasing tempera-
ture, that enables us to distinguish the fragments as separate
molecules and atoms in thermal equilibrium. Based on this
interpretation, we show the total energy distribution in Fig. 2
from sampling the imaginary time paths at about 5000 K with
M = 2048 for all considered densities.

For our highest density (gray in Fig. 2), for example, we
see three main peaks and by inspection of the energy dis-
tribution the first and the second can clearly be assigned to
the rovibrationally excited H3+ and H, + H™, respectively. As
there are no rovibrational excitations available for 2H + H¥,
the third main peak average position is very close to —1Ey.
The fourth fragment, H2+ + H, can be identified as the small
high-energy side shoulder of H, + H* peak. With the inter-
pretation of the area under the peak as the abundance of the
fragment in the equilibrium we find this contribution to be
much smaller than that of the others, for which we can suggest
following explanations. Probably due to loose binding of H;r
the distribution of its energetics is broad, and therefore, partly
covered by the neighboring narrow peaks. Also, the larger en-
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tropy factor —7'S in free energy of the three particle system
2H+HT increases its contribution. Lower densities make this
effect even stronger as is distinctly seen in the Fig. 2.

It is important to note, however, that the above illustration
is dependent on the block averaging procedure, see the cap-
tion of Fig. 2. Pinning the energy data of each and every sam-
ple, i.e., choosing block of size one sample, would broaden
the peaks in Fig. 2. At the opposite limit, all samples in one
block, would give the single mean energy or the ensemble
average corresponding to the quantum statistical expectation
value. From the highest density to the lowest, the expectation
values are —1.169(29)E),, —1.020(33)E),, and —0.9995(4),
respectively, Figs. 1 and 2, where the statistical uncertainty
decreases with increasing simulation length.

B. Molecular partition function

To compare with the other published approaches for the
molecular partition function based on single molecule quan-
tum chemistry we start from the lowest temperature range
from 0 to ~4000 K, where the molecule does not essentially
dissociate, yet.

We present a low temperature H? molecular partition
function as a first approximation for the modeling of low
density H3+ ion containing atmospheres. Our aim is to find
a simple analytical form, which can be accurately fitted to the
NVT energies from our simulations.

The partition function in terms of the Helmholtz free en-
ergy F is written as

Z=ePF, )

where B = (kgT)~!, and the energy expectation value is
straightforwardly derived from the partition function as

19Z
(E) =———. (&)
Z B
After solving the free energy from Eq. (4) as
F(T)= —kgT In Z(T), (6)

we write F(T)= —kgTf(T) and the energy expectation
value may be written as

(E) = kpT* . )

We find that a well-behaving function fitting perfectly into our
simulation data,

(E) = kgT*ae ™ + )+ de /T, ®
allows analytical integration of Eq. (7) for f(T) or In Z(T),
d
MZ(T) = 2T o7 + L e=/T 4 p. ©)
b kBO[

Using the boundary condition for the molecular partition
function with a nondegenerate ground state, Z(0) =1 or
In Z(0) = 0, we get D = a/b in our model. Another choice,
inclusion of the contributions from the ground state spin
degeneracy factor and the zero-point rotations would give
Z(0)=£& > 1and D =a/b+ Iné&, and thus, shift the func-
tion In Z by a constant, only. We have chosen the first and
more conventional boundary value, Z(0) = 1.
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The weighted least squares fit of the above energy func-
tion, Eq. (8), to our data for temperatures up to about 3900 K,
see Table I, gives the parameters,

a = 0.00157426,
b = 0.000132273,
c=—6.15622 x 1075,
d = 0.00157430,

o = 269.410, and

D =a/b =~ 11.9016.

In the fit, in addition to the (2SEM)~2 weights, we force the
first derivative of the energy with respect to the temperature to
be monotonically increasing up to 3900 K. The fit extrapolates
the 0 K energy to about 0.000 549 Eyy above that of the para-
H3+, i.e., it gives an excellent match within the statistical error
estimate.

In Fig. 3, the function In Z(7') from Eq. (9) is shown in
the range 0 < 7' < 4000 K — the behavior of the model at
higher T is illustrated by the dashed line. Above 4000 K, the
three curves for different densities are obtained from those
shown in Fig. 1 by numerical integration of Eq. (7) as

E
k<BT)2 dr, (10)

T
InZ(T) =InZ(T)) + /
T

where T} = 500 K.

In Ref. 2, Neale and Tennyson (NT) have presented the
partition function In Z(7') based on a semi-empirical poten-
tial energy surface, see Fig. 3. The NT partition function has
conventionally been used in atmospheric models. The overall
shape is similar to the one of ours. However, the energy (E)
evaluated from their fit tends to be systematically lower than
ours, although roughly within our 2SEM error limits. Thus,
the deviations are not visible in Fig. 1. The energy zero of the
NT fit, black dots in Figs. 1 and 3, is the same as ours in this
work, and thus, allows direct comparison in Fig. 1.

Also in Fig. 3, the difference due to the choice of the
J = 0 state as the zero reference is illustrated by the NT par-
tition function values, black pluses — the shape is notably af-

20+
15}
§ .+.~+»,-¢-~+"*++++
Z 10 +.*,.-+-' ==
MMM -
5 F
-3
0 . . . . .
0 2000 4000 6000 8000 10000
T (K)

FIG. 3. The molecular NV T ensemble In Z(T") from the energetics in Fig. 1
with the same notations. The blue solid line below 4000 K and its extrapo-
lation (dashed line) are from Eq. (9), whereas the curves for three densities
are from Eq. (10). The In Z(T') data (black pluses) and the fit (black dots)
of Ref. 2 are also shown. The black dots have the same zero energy as the
partition function of this work (see text).
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FIG. 4. Helmholtz free energy from Eq. (5) in the units of Hartree. Notations
are the same as in Fig. 3.

fected at low T, only. As mentioned above, already, the zero
reference of In Z can be chosen differently.

Our low temperature partition function, Eq. (9), is close
to complete. With the PIMC approach, we implicitly include
all of the quantum states in the system with correct weight
without any approximations. This partition function is the best
one for the modeling of the low density H;r ion containing at-
mospheres, at the moment. However, it is valid up to the disso-
ciation temperature, only. As soon as the density dependence
starts playing larger role, more complex models are needed.
Such models can be fitted to our PIMC data given in Tables I
and II.

C. Other thermodynamic functions

In Fig. 4, we show the Helmholtz free energy from com-
bined Egs. (6)and (9). As expected, lower density or larger
volume per molecule lowers the free energy due to the in-
creasing entropic factor. Dissociation and the consequent
fragments help in filling both the space and phase space more
uniformly or in less localized manner.

This kind of decreasing order is seen more clearly in the
increasing entropy, shown in Fig. 5. The entropy has been
evaluated from

an

30
25
20
15

Entropy (units of kB)

0
0 2000 4000 6000 8000
T (K)

10000

FIG. 5. Entropy from Eq. (11) in the units of kg. Notations are the same as
in Fig. 3.
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FIG. 6. Molecular heat capacity as a function of temperature calculated using
the analytical model of this work. The values on the y-axis are given in units
of the Boltzmann constant kg.

where the internal energy is U = (E) — (E)r—o. As expected,
both the total energy (internal energy) and entropy reveal the
dissociation taking place, similarly.

Finally, in Fig. 6, we present the molecular constant vol-
ume heat capacity

9(E)

Cv === (12)
where (E) is taken from Eq. (8), which is valid below disso-
ciation temperatures, only.

Considering the goodness of our functional form for (E),
it is very convincing to see the plateau at about 3/2kp corre-
sponding to “saturation” of the contribution from the three ro-
tational degrees of freedom. Thus, above 200 K the rotational
degrees of freedom obey the classical equipartition principle
of energy. It is the last term in the functional form of Eq. (8),
that gives the flexibility for such detailed description of the
energetics.

It should be emphasized that the plateau is not artificially
constructed to appear at 3/2kg, except for a restriction given
for the first derivative of the total energy to be increasing.
Thus, the analytical model we present, Eq. (8), is found to
be exceptionally successful at low temperatures, i.e., below
dissociation temperature.

IV. CONCLUSIONS

We have evaluated the temperature dependent quantum
statistics of the five-particle molecular ion H;r at low densi-
ties far beyond its apparent dissociation temperature at about
4000 K. This is done with the PIMC method, which is ba-
sis set and trial wavefunction free approach and includes the
Coulomb interactions exactly. Thus, we are able to extend
the traditional ab initio quantum chemistry with full account
of correlations to finite temperatures without approximations,
also including the contributions from nuclear thermal and
equilibrium quantum dynamics.

At higher temperatures, the temperature dependent
mixed state description of the HJ ion, the density dependent
equilibrium dissociation—recombination balance, and the en-
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ergetics have been evaluated for the first time. With the rising
temperature the rovibrational excitations contribute to the en-
ergetics, as expected, whereas the electronic part remains in
its ground state in the spirit of the Born—Oppenheimer ap-
proximation. At about 4000 K the fragments of the molecule,
H, + H*, HJ + H, and 2H + H¥, start contributing. There-
fore, presence of the H;r ion becomes less dominant and even-
tually negligible in high enough T'.

We have also shown how the partial decoherence in the
mixed state can be used for interpretation of the fragment
composition of the equilibrium reaction. Furthermore, we
have evaluated explicitly the related molecular partition func-
tion, free energy, entropy, and heat capacity, all as functions
of temperature. An accurate analytical functional form for the
internal energy is given below dissociation temperature. We
consider all these as major additions to the earlier published
studies of H;r, where the dissociation—-recombination reaction
has been neglected.

It is fair to admit, however, that PIMC is computationally
heavy for good statistical accuracy and approximations are
needed to solve the “Fermion sign problem” in cases where
exchange interaction becomes essential. With HY, however,
we do not face the Fermion sign problem, as the proton wave-
functions do not overlap noteworthy and the two electrons
can be assumed to form a singlet state, due to large singlet
to triplet excitation energy.
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