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Abstract

High-throughput measurement techniques have revolutionized the field of
molecular biology by gearing biological research towards approaches that
involve extensive collection of experimental data and integrated analysis
of biological systems on a genome-wide scale. Integration of experimental
and computational approaches to understand complex biological systems—
computational systems biology—has the potential to play a profound role
in making life science discoveries in the future. Analysis of massive amounts
of measurement data and modeling of high-dimensional biological systems
inevitably require advanced computational methods in order to draw valid
biological conclusions.

This thesis introduces novel computational methods for the problems
encountered in the field of systems biology. The content of the thesis is
three-fold.

The first part introduces methods for high-throughput measurement
preprocessing. Two general methods for correcting systematic distortions
originating from sample heterogeneity and sample asynchrony are devel-
oped. The former distortion is typically present in experiments conducted
on non-homogeneous cell populations and the latter is encountered in prac-
tically all biological time series experiments.

The second topic focuses on robust time series analysis. General meth-
ods for both robust spectrum estimation and robust periodicity detection
are introduced. Robust computational methods are preferred because the
exact statistical characteristics of high-throughput data are generally un-
known and the measurements are also prone to contain other non-idealities,
such as outliers and distortion from the original wave form.

The third part is devoted to integrated analysis of genetic regulatory
networks, or biological networks as they are also called, on a global scale.
The effect of certain Post function classes on general properties of genetic

i



regulatory networks, such as robustness and ordered and chaotic behav-
ior, is studied in the Boolean network framework. In order to facilitate
the analysis of generic properties of biological networks, efficient spectral
methods for testing membership in the studied Post function classes and
the class of forcing functions (as well as its variants) are introduced. Fast
optimized search algorithms are developed for the inference of regulatory
functions from experimental data. Relationships between two commonly
used stochastic networks models, probabilistic Boolean networks (PBN)
and dynamic Bayesian networks (DBN), are also established. This connec-
tion provides a way of applying the standard tools of DBNs to PBNs and
the other way around.
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Chapter 1

Introduction

Technological developments have commonly preceded important discover-
ies in life sciences. For example, X-ray crystallography methods, among
others, played an essential role in the discovery of the double-helical struc-
ture of DNA (Watson and Crick, 1953). Initiated with the first rapid DNA
sequencing methods (Maxam and Gilbert, 1977; Sanger et al., 1977), one
of the latest milestones, completion of the Human Genome Project, was re-
cently achieved (The Genome International Sequencing Consortium, 2001;
Venter et al., 2001) thanks to modern computing facilities and interdis-
ciplinary efforts in developing more efficient DNA sequencing methods.
These discoveries have had a profound effect in changing the face of the
life sciences. Uncovering the structure of DNA provided researchers with
the explanation of the heredity by means of passing the genetic information
from one generation to another through DNA, hence filling in the missing
piece of the well-known Darwinian view of the progression of life (Darwin,
1859). Understanding of the structure of DNA also equipped researchers
with a basic understanding of its function. Furthermore, the whole genome
sequences of different species already available enable a more refined un-
derstanding of the operation of complex biological machineries.

Although a cell’s operational instructions are stored in its genome (see,
e.g., Hood and Galas, 2003), the operation of the biological system in a
living cell is only partly performed using DNA. The actual functional part
is carried out to a great extent by proteins. The proteins, in turn, are
products of DNA. More specifically, DNA is transcribed into messenger
RNAs which are further translated into proteins with the help of ribosomes.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of cell’s operation at genomic level. Image is
taken from Access Excellence at The National Health Museum.

Proteins, such as transcription factors, or complexes they form with other
molecules, can in turn bind back to DNA (see, e.g., Alberts et al., 2002,
and Figure 1.1 for illustration). Hence a loop in a biological system is
obtained. The above description of a cell’s operation at a genomic level is
only illustrative since there are a number of other factors, both intra- and
extracellular, affecting the overall biological processes. However, it should
be evident that in order to have a more comprehensive view of a cell’s
operation, the whole-genome sequence information is not yet enough but
some knowledge of the operational components themselves should also be
available. This is the context where the latest technological innovations,
such as microarrays and other developing measurement techniques, enter
the scene.

Microarray technology, introduced about 10 years ago (Schena et al.,
1995), has established its role as a standard tool for probing cell popu-
lations. Being highly parallel, a single microarray chip can currently be
used, e.g., to measure the transcription levels of all the genes in the human
genome. Although the transcription levels do not directly correspond to the
abundance of proteins, transcription levels are at the closest proximity to
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the protein levels that can be measured in high-throughput, genome-wide
fashion at the moment. It is the genome-wide nature of the microarray
technique that makes it particularly attractive. The possibility of collect-
ing whole-genome measurements sets a turning-point in biological research.
Contrary to the old-fashioned, reductionistic research approaches where a
single or few components are studied at a time, these new methodologies
are especially well-suited to study complex, integrated behavior of biologi-
cal systems.

It is nowadays widely recognized that biological systems operate in highly
parallel and integrated fashion (see, e.g., Davidson et al., 2002). In other
words, each component in a biological system rarely functions in isolation
but usually co-operates with a larger group or module of interacting compo-
nents. Biological systems also constantly process their complex machinery,
e.g., by carrying out their basic functions, such as the fundamental cell
cycle. Consequently, from a systems theoretical point of view, biological
systems can be considered as highly parallel dynamical systems where the
molecules form the components of the system and their reactions define
the system dynamics. The next major landmarks in life sciences include
uncovering a detailed understanding of the regulatory operation of a living
cell. In other words, an important goal is to gain a system-level under-
standing of the manner in which genes and their products collectively form
a biological system.

System-level description and modeling of biological systems inevitably re-
quires formal modeling methods. Consequently, a significant role is played
by the development and analysis of mathematical, statistical and computa-
tional methods to construct formal models of biological systems. In order
to be able to address the questions and needs of the current systems biol-
ogy research, the aforementioned high-throughput measurement techniques
will play an essential role in future research. Although the high-throughput
measurement techniques will most probably change over the years, the need
for analyzing the massive amounts of data they produce will remain. Novel,
high-throughput measurement techniques do not, however, come without
their own puzzles. From a computational point of view, much needs to
be done in developing proper and efficient ways of analyzing the complex
measurement systems as well. That further emphasizes the necessity of the
computational approaches.

Being an immense challenge, system-level understanding of biological sys-
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tems cannot be developed overnight. Interdisciplinary efforts and achieve-
ments made world-wide will gradually lead to a better understanding and,
hopefully, will finally provide a satisfactory solution. In the hope of provid-
ing useful information and advancing the field, this thesis introduces some
results to the above-listed problems.

The results presented here are introduced in a linear fashion starting
from the preprocessing of high-throughput measurements and ending up
with their dynamical analysis. Each chapter is also expanded with neces-
sary background and reviews of previously proposed methods. Chapter 2
focuses on preprocessing of high-throughput measurements. Two general
methods for correcting systematic distortions stemming from heterogeneity
and asynchrony of biological sample are introduced in Sections 2.2 and 2.3,
respectively. Chapter 3 continues the analysis of gene expression time series
already started in the previous chapter. A central theme of this chapter
revolves around robust time series analysis. Methods for robust spectrum
estimation and robust periodicity detection are introduced in Sections 3.2.2
and 3.3.2, respectively. It is also worth noting that although the computa-
tional methods are introduced in the context of microarray measurements
in Chapters 2 and 3, the proposed methods are general and can be applied
to other types of measurements as well. Chapter 4 is devoted to a more
integrated and more comprehensive analysis of genetic regulatory networks,
or biological networks, as they are commonly called. The first part of this
chapter concentrates solely on generic principles of biological networks, such
as robustness and ordered and chaotic behavior. The role of certain type
of regulatory rules, namely Post functions, is studied in Section 4.1.2. In
order to facilitate the study of generic properties of biological networks, ef-
ficient spectral membership testing methods for the studied Post function
classes as well as the class of forcing functions are introduced in Section 4.2.
Towards the end of this chapter, the emphasis is moved to more realistic
approaches and more realistic network models. Two particular results are
considered: an efficient inference of regulatory functions in Section 4.3, and
relationships between different probabilistic network models in Section 4.4.
Concluding remarks are given in Chapter 5 and the original publications
are attached at the end of the thesis.



Chapter 2

Preprocessing of

High-Throughput

Measurements

The current high-throughput measurement techniques for probing biologi-
cal samples are considerably complex. For example, in the case of microar-
rays the measurement process consists of several separate steps, such as ex-
traction of the biological sample, isolation of the RNA, reverse transcription
and labelling of the RNA, selection of specific probes (nucleotide sequences),
printing or synthesis of the probes, hybridization of the fluorescent-labelled
(and possibly amplified) biological sample, laser scanning, use of image
processing methods, and storing the detected signals for further computer-
based analysis (see, e.g., Schena et al., 1995; Baldi and Hatfield, 2002, and
Figure 2.1 for illustration). Many of the steps in the overall measurement
process are likely to introduce noise or a systematic bias. Therefore, in order
to be able to draw valid biological conclusions, microarray measurements
require careful preprocessing and experiment design (see, e.g., Quacken-
bush, 2002; Speed, 2003) as well as quality control (see, e.g., Zhang et al.,
2004).

Microarray technology, either two-color cDNA arrays on glass slides or
one-color oligonucleotide arrays on silicon chips, is the most commonly
used high-throughput measurement technique. Therefore, this chapter fo-
cuses on the preprocessing of high-throughput measurements with a special
emphasis on microarray data. However, the developed methods (to be in-

5
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Figure 2.1: An illustration of the (cDNA) microarray experiment. Image
is taken from (Duggan et al., 1999).

troduced shortly in Sections 2.2 and 2.3) can be applied, with no or minor
modifications, to other types of high-throughput data as well. Before in-
troducing the developed methods we first give an overview of the standard
preprocessing steps typically applied to all microarray data prior to further
computational or statistical analysis.

2.1 Standard Preprocessing Steps for Microarray

Data

The underlying assumption concerning the microarray data is that the mea-
sured intensities represent the relative transcription levels of all the genes
present in the slide. There are, however, a number of disturbing effects that
can make the measurements less quantitative and hinder comparison and
analysis of the measured intensities. For example, unequal quantities of the
labelled RNA hybridized on different slides are likely to result in different
average expression values. Similarly, differences in labelling, emission and
detection efficiencies of different fluorescent dyes over- and underemphasize
the signals in different channels. Hence, they produce a systematic bias for
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the measured expression levels. The main purpose of data preprocessing,
or normalization, is to facilitate more accurate comparison and analysis
of transcription levels both within slide and between different slides by
removing the disturbing biases from the measurements.

For the purposes of this and the following sections, it is not necessary
to go into the details concerning the data extraction from the scanned
microarray images. In the following we assume the recorded raw signal in-
tensities to represent the relative, although non-normalized, transcription
levels of different genes. However, it is worth mentioning that the microar-
ray quality control is usually implemented right after the image analysis
part and utilizes some image statistics, such as spot intensity, background
intensity, pixel-wise variation in spot and background intensities, spot size,
roundness of spot, alignment error, and bleeding (Hautaniemi et al., 2003;
Speed, 2003; Zhang et al., 2004). Alternatively, if replicate spots or ar-
rays are available, then statistical tests (Ideker et al., 2000a) or measures
such as coefficient of variation (Tseng et al., 2001) can be used to filter
out low quality expression values. Since low quality spots typically result
in erroneous intensity values, quality control is important at least for two
reasons. Obviously, erroneous (outlying) transcription values can lead to
incorrect biological conclusions but, in addition, they can also interfere with
the computational preprocessing methods. Further issues in quality control
are discussed, e.g., in Zhang et al. (2004).

Although several potential noise and bias sources in the microarray tech-
nology can be pinpointed, currently no preprocessing method can handle
all of them on an individual basis. Such a detailed analysis is prevented by
insufficient knowledge of the underlying error mechanisms and their statis-
tical characteristics, and by the limited amounts of data (typically too few
replicates). Therefore, the current normalization methods handle the error
sources in a quite general manner. Some details of the normalization meth-
ods are also platform dependent, i.e., whether cDNA or oligonucleotide
chips are used. Yet another difference in preprocessing methods is depen-
dent on whether or not replicates are available, and whether the replicates
are within a single array or on different arrays. Replicates within a single
array are commonly not considered as real (independent) replicates. Av-
eraging of replicates within an array is appropriate though and results in
more accurate expression values. Replicates on different slides are typically
utilized, e.g., when the differentially expressed genes are sought. Although
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a variety of different types of replicated measurements can be considered
(see, e.g., Speed, 2003), we do not discuss this issue further. A brief sum-
mary of the standard normalization methods follows.

2.1.1 Within Slide Normalization

The within slide normalization is particularly important for the measure-
ments obtained using the two-color cDNA microarray technology. The most
commonly used fluorescent dyes, Cy3 and Cy5, have different incorporation
efficiencies during the labeling and are also detected by the scanner with dif-
ferent efficiencies. This obscuring systematic variation, so-called label bias,
can be satisfactorily accounted for using a robust local regression in the
scatterplots of the two channels, also called as loess normalization (Cleve-
land, 1979; Yang et al., 2002). It is worth noting that the loess provides a
nonlinear correction.

In order to correct the label bias, a sufficiently large set of non-differen-
tially expressed genes should be identified to provide a necessary calibration
for the loess curve construction. For that purpose, either house keeping
genes, control spots, or all genes can be considered (see, e.g., Speed, 2003).
In the case of house keeping genes, a predetermined set of genes assumed
to be non-differentially expressed is used. The use of house keeping genes
suffers at least from two problems. First, the expression levels of genes
exhibit natural biological variation. Secondly, the construction of the nor-
malization curve is prone to errors if the cardinality of the predetermined
set of genes is small or if the expression values of the house keeping genes
do not cover the whole dynamic range. The use of control spots may have
the same problems, although a proper microarray design can alleviate that
issue. Due to the above listed shortcomings, the most commonly used
strategy is to use all the genes in the construction of the loess normaliza-
tion curve. This approach is based on the assumption that most genes are
non-differentially expressed or that the number of up- and down-regulated
genes is roughly the same. This assumption is usually considered to be true
in large-scale studies (Speed, 2003). Moreover, small deviations from the
above conditions do not result in a failure since the robust local regression
performed in the loess is error tolerant. The set of all genes can also be re-
duced by removing the most differentially expressed genes with the help of
rank-invariant gene selection schemes (see, e.g., Speed, 2003, and references
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therein).
Spatial variation within a slide can also be remarkable, e.g., if the mi-

croarrays are generated with a robotic printing machine utilizing several
print-tips. A standard solution to that problem is to perform the loess
normalization for each pin separately. Alternatively, a composite method
that combines both the print-tip dependent and independent methods can
be applied (Yang et al., 2002).

2.1.2 Between Slides Normalization

After correcting the label bias within each slide, the two-color cDNA data
(log-ratios) are already mean-centered but the data are typically further ad-
justed between slides. The aim is to prevent any single array from having
dominating expression values by performing between array scale normal-
ization. Assuming the nonlinear loess normalization is already applied, a
sufficient scale normalization can typically be obtained with multiplicative
scaling. To that end, simple adjustments, such as the ones based on the
sample variance, the median absolute deviation from the median or certain
quantiles of individual arrays, have been used successfully (see, e.g., Huang
and Pan, 2002; Smyth et al., 2003). More refined adjustments that take
the data from all the arrays into account have also been proposed, e.g., the
sample variance for a particular array divided by the geometric mean of the
sample variances for all the arrays (Yang et al., 2002; Quackenbush, 2002).
Similar between array scale corrections have also been developed for data
coming from one-color oligonucleotide arrays. One of the first studies to
derive scaling factors assumed a particular parametric (Gaussian) model
(Hartemink et al., 2001). Indeed, optimal scaling factors for the model
Hartemink et al. considered were found to conform with certain weighted
geometric means. Further discussion and comparison between different be-
tween slides normalization methods (for oligonucleotide arrays) is reported
in (Hartemink, 2001).

The label bias does not play the same role in one-color oligonucleotide
arrays as it plays in two-color cDNA arrays. However, nonlinear relations
between one-color oligonucleotide arrays are common (Bolstad et al., 2003).
Since the standard scale corrections cannot cope with nonlinearities more
advanced normalization methods are required. A recent comparison of
normalization methods for oligonucleotide arrays is presented in (Bolstad
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et al., 2003). So called cyclic loess method makes use of the standard loess
normalization. Instead of applying the loess to data from two different
channels, it is applied to expression values from two distinct arrays. If
more than two arrays are present, then the loess is applied to all pairwise
combinations of arrays in an iterative fashion. Quantile method, in turn,
forces the distribution of the expression values for each array to be the same.
Although this distributional adjustment sounds somewhat forceful and can
potentially result in problems especially in the tails of the distribution, both
the quantile method and the cyclic loess were found to perform favorably
(Bolstad et al., 2003).

Other approaches have also been proposed. The use of analysis of vari-
ance (ANOVA) shows a departure from the above listed methods. The
ANOVA-based approach can potentially provide an individual treatment of
some specific sources of variation, such as the effect of array, dye, sample,
gene, and their combinations (Kerr et al., 2000). The methods proposed in
this framework so far, however, can only account for linear distortions.

2.1.3 Variance Stabilization, Missing Values and Model-Based

Analysis

A common observation is that the homoscedasticity (i.e., equality of vari-
ance) does not always hold for microarray data but, instead, the noise
variance is proportional to the underlying signal intensity (Chen et al.,
1997). Such heteroscedasticity, if not properly taken into account, may
hinder further statistical analysis. Consequently, several variance stabiliz-
ing transforms have been proposed for both the one-color oligonucleotide
and the two-color cDNA microarrays (see, e.g., Huber et al., 2002; Rocke
and Durbin, 2003; Durbin and Rocke, 2004). These data transforms are
typically applied before other preprocessing steps, such as loess and be-
tween slides normalization.

Microarray data are also prone to contain missing values. Two different
strategies can be considered. Missing values can be ignored during the
preprocessing if the downstream analysis methods are flexible enough to
handle the missing values. This usually results in a considerable increase
in the computational burden and hence the missing values are typically
imputed (Troyanskaya et al., 2001; Bar-Joseph et al., 2002; Zhou et al.,
2003a).
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The final note on standard microarray data preprocessing concerns model-
based analysis in which a specific model for the measurements is postulated.
Model-based analysis is used especially in the case of identifying differen-
tially expressed genes. A number of different models have been proposed for
both the one-color oligonucleotide and the two-color cDNA array data, see,
e.g., (Ideker et al., 2000a; Rocke and Durbin, 2001; Dror et al., 2003; Got-
tardo et al., 2003; Cho and Lee, 2004). From a preprocessing point of view,
an important aspect is that several factors related to data normalization,
such as label effects and scale differences, can also be taken into account in
the parametric models. A problem in the model-based microarray analysis
is that no commonly agreed standard parametric model has been found so
far. This issue is further complicated by the non-standard nature of the
two-color cDNA microarray technology, i.e., different laboratories may have
slightly different procedures in each step of the microarray experiment. The
resulting microarray data is therefore likely to have more or less different
statistical characteristics. Having that in mind, a noteworthy exception in
the model-based analysis is a general data-driven approach taken in (Dror
et al., 2003).

The above discussion gives an overview of the most common non-biological
sources of variation and the corresponding normalization methods. Since
the microarray measurements are taken from biological samples they con-
tain other general sources of variation as well. Two such noise sources,
namely, sample heterogeneity and cell population asynchrony, have biolog-
ical origin but they have an unwanted, confounding effect on the measure-
ments. Those two noise sources together with their inversion methods are
considered in detail in Sections 2.2 and 2.3.

2.2 Sample Heterogeneity

Although a number of different preprocessing methods have been proposed,
very few computational approaches have been reported to resolve the vari-
ability in microarray measurements stemming from sample heterogeneity.
For example, tissue samples used in cancer studies are usually contaminated
with the surrounding or infiltrating cell types. This results in an obscuring
mixing effect that hinders further statistical analysis, significantly so if dif-
ferent samples contain different proportions of these additional cell types.
We studied this problem in Publication-VII and developed computational
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methods for reconstructing the expression values of the pure cell types from
the expression values of the heterogeneous mixtures.

In traditional approaches (see, e.g., Fuller et al., 1999), pathologists care-
fully evaluate the samples and only select those with more than a certain
percentage of cells of interest (e.g., > 90%). This prescreening step can
result in the exclusion of many samples and thus decreases the sample size.
Also note that the samples are still heterogeneous after the prescreening.
Alternatively, laser capture microdissection (LCM) technology can be used
to purify the target cells from mixed populations (Emmert-Buck et al.,
1996). This approach has seen limited success because it is challenging
to maintain RNA stability during the microdissection process. LCM pro-
cedures are also time-consuming and yield insufficient quantities of RNA,
thus requiring multiple amplification steps that may confound quantitative
inferences from gene expression data. Thus, computational preprocessing
methods are needed.

Computational methods for removing the mixing effect from heteroge-
neous samples have been previously proposed in (Lu et al., 2003; Stuart
et al., 2004; Venet et al., 2001). Lu et al. focused on estimating the fraction
of cells in different phases of the cell cycle whereas Stuart et al. considered
the problem of estimating the cell type specific expression patterns over all
samples. In Publication-VII we focus on estimating both the sample and
the cell type specific expression values. We also consider estimating the
mixing percentages of different cell types in each heterogeneous mixture.
Venet et al. introduced some preliminary methods for tackling the same
problem as we consider here. Furthermore, we also provide non-parametric
confidence intervals to facilitate downstream analysis and consider the prob-
lem of selecting the correct number of cell types using a general purpose
model selection framework.

The developed methods were tested on carefully controlled microarray
data consisting of five different heterogeneous mixtures of colon cancer and
lymph node samples. For more details of the microarray data, preliminary
preprocessing steps, and the computational methods, see Publication-VII.

2.2.1 Modeling and Inversion of Sample Heterogeneity

Since the two samples, colon cancer cells and normal lymphocytes, are
mixed at the extracted RNA level in Publication-VII, it is natural to assume
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the mixing model to be linear. Let xc
i and xl

i denote the expression level of
the ith gene in the colon cancer and in the lymph node samples, respectively.
Let us first assume that only two different cell types are mixed. The sample
heterogeneity is modeled by a simple linear model

yk
i = αkx

c
i + (1− αk)xl

i, (2.1)

where yk
i denotes the expression value of the ith gene in the kth hetero-

geneous sample, and 0 ≤ αk ≤ 1 denotes the fraction of the colon cancer
cells in the kth mixture. Note that in Equation (2.1) it is assumed that the
expression level in colon cancer (xc

i ) and lymph node (xl
i) is “fixed” and

does not change between heterogeneous measurements. The same model
can be extended to more than two cell types (see Section 2.2.4 below).

The first objective is to invert the mixing effect shown in Equation (2.1).
By making some distributional assumptions, one could use standard model-
based estimation methods. However, in order to avoid making additional
modeling assumptions, we prefer to use the general purpose least squares
method. Let the number of genes be n and assume that one has mea-
sured the expression values for K different heterogeneous mixtures. Let us
also assume for now that the mixing percentages are known or have been
measured. For the ith gene the sample heterogeneity can be expressed as1




Y 1
i

...

Y K
i




=




α1 1− α1

...
...

αK 1− αK







xc
i

xl
i


 +




ε1i
...

εK
i




(2.2)

⇔ (2.3)

Yi = Axi + εi, (2.4)

where εi is a generic additive noise term. For the purposes of further anal-

1Throughout this thesis, vector- and matrix-valued quantities are in boldface. Upper-
case letters, such as X and X, are typically used to denote random variables and the lower-
case letters, such as x and x, denote the value of the corresponding random variables.
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ysis, it is useful to rewrite the above model for all n genes as,




Y1

Y2

...

Yn




=




A 0 · · · 0

0 A · · · 0
...

...
. . .

...

0 0 · · · A







x1

x2

...

xn




+




ε1

ε2
...

εn




⇔
Y = Ãx + ε (2.5)

where 0 denotes the K-by-2 zero matrix. Assuming the column rank of A
is full, then so is Ã, and the well-known least squares solution is given by
(see, e.g., Johnson and Wichern, 1998)

x̂ = (ÃT Ã)−1ÃTy, (2.6)

where y is the observed value of Y.
As noted above, a common observation is that the homoscedasticity does

not always hold for microarray data, but instead, the noise variance depends
on the underlying signal intensity (Chen et al., 1997; Huber et al., 2002;
Durbin and Rocke, 2004). Such heteroscedasticity may decrease the effi-
ciency of the inversion method shown in Equation (2.6). Fortunately, using
the properties of block matrix multiplication and inversion, it is easy to see
that the structure of the matrix Ã ensures that the least squares solution
can also be obtained gene-wise as x̂i = (ATA)−1ATyi. Consequently, all
we need to assume is that the noise variance is approximately constant for
each gene separately.

2.2.2 Optimization of Mixing Fractions

Because the mixing percentages must be measured by some means, they
are also likely to contain some error. So, in addition to estimating the
expression values of the pure cell types, one would like to estimate the
most likely value of the mixing percentages. As above, no assumptions on
the noise distributions are being made and we use the least squares method.
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This results in the following optimization problem

minÃ,x ‖Ãx− y‖
subject to 0 ≤ αk ≤ 1 for all 1 ≤ k ≤ K.

(2.7)

It is worth noting that the Kn-by-2n regression matrix Ã in Equation (2.7)
contains only K free parameters.

Any general purpose iterative optimization method can be used to get
a solution. Since iterative methods usually become inefficient/unstable as
the number of parameters to be optimized increases we use a two-step
approach in the optimization. In the first step, given a proper initial value
for Ã, the least squares solution for x is found using Equation (2.6).2 In
the second step, the mixing percentages are optimized in the least squares
sense (subject to the constraints 0 ≤ αk ≤ 1 for all 1 ≤ k ≤ K) using the
previously found value for x.3 These two steps are then repeated. Details of
the optimization algorithm are shown in Figure 2.2 where x̂(j) (resp. Â(j))
denotes the value of x (resp. Ã) after the jth iteration. Clearly, at each
iteration of steps 2 and 3, the value of the objective function is decreased.
Because the objective function is bounded below a minimum will be found.

It is important to note that Equation (2.7) no longer implements an
independent inversion of the mixing effect for each gene. Consequently,
the possible heteroscedasticity does not cancel out in the same way as it
does in Equation (2.6). The possible effects of heteroscedasticity could be
circumvented by estimating the mixing percentages for each gene separately
but sample size of the current data set does not permit such an analysis.

2.2.3 Confidence Intervals

In order to facilitate the further statistical analysis, it is useful to assess
the confidence intervals of the obtained expression estimates. Let us first

2Measured values of the mixing percentages were used as the initial values for Ã.
3Given a value for x, least squares solution for the mixing parameters can be ob-

tained easily, e.g., from Equation (2.11). Denote q =
(
x̂c

1 − x̂l
1, . . . , x̂

c
n − x̂l

n

)
and

pk =
(
yk
1 − x̂l

1, . . . , y
k
n − x̂l

n

)T
, k = 1, . . . , K, where x̂ denotes the estimated expression

value from the previous step (step 2 in Figure 2.2). Assuming optimal solution satisfies
the constraint 0 ≤ αk ≤ 1, then the closed-form solution for αk is α̂k = 1

qT q
qT pk. If

the constraint is violated, then optimal solution can be obtained, e.g., using a general
purpose optimization algorithm.
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1. Initialize Â(1) and set j = 1.

2. Minimize ‖Â(j)x̂(j) − y‖ for x̂(j):

x̂(j+1) := (Â(j)T Â(j))−1Â(j)Ty.

3. Minimize ‖Â(j)x̂(j+1)−y‖ for Â(j) (subject to constraints
0 ≤ αk ≤ 1 for all 1 ≤ k ≤ K). Increase the iteration
index j := j + 1.

4. Repeat steps 2 and 3.

Figure 2.2: Details of the two-step algorithm used for the optimization
problem shown in Equation (2.7).

assume that the expression estimates are obtained by applying Equation
(2.6). Should the noise εk

i be i.i.d. with a variance σ2, then the variance
of the estimated expression values would be V(x̂) = σ2(ÃT Ã)−1. As ex-
plained above, the inversion (Gauss-Markov theorem) can also be applied
gene-wise, which greatly alleviates the issue of heteroscedasticity. In such
a scenario, the variance of the estimated expression values for the ith gene
can be expressed as

V(x̂i) = σ2
i (A

TA)−1, (2.8)

where σ2
i is the noise variance for the ith gene. A straightforward way

of obtaining an estimate of the variance is to compute the sample noise
variance σ̂2

i for each gene and then apply Equation (2.8) to get V̂(x̂i). Given
our particular data set, that would result in somewhat sensitive variance
estimates since there are only K = 5 error residuals associated with each
gene. A better alternative is to pool genes which have approximately the
same average expression value 1/K

∑K
k=1 yk

i and then compute the sample
noise variance from the error residuals of the pooled genes.

Although we do not assume a Gaussian noise distribution, we can resort
to the Gaussian approximation when computing the confidence intervals.
For example, using the Gaussian approximation, the 1 − 2α confidence
interval for the estimated expression value of the ith gene in the colon
cancer cells is

[
x̂c

i − Φ−1(1− α)
√

(V̂(x̂i))11 , x̂c
i + Φ−1(1− α)

√
(V̂(x̂i))11

]
, (2.9)
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where Φ−1(·) is the inverse of the standard normal cumulative distribution
function and (V̂(x̂i))11 denotes the (1, 1) element of the estimated variance
matrix V̂(x̂i) (similarly for the lymph node sample). Alternatively, the
confidence intervals can be obtained using the non-parametric bootstrap
framework (Efron and Tibshirani, 1993). Here we consider the method
in which one re-samples the error residuals with replacement (within the
set of pooled genes) and computes the confidence intervals directly from
the α and 1− α percentiles of the bootstrap distribution of the expression
estimates.

Let us then focus on confidence intervals of the expression estimates ob-
tained using Equation (2.7). We propose to use the methodology described
above in this case as well. However, as noted above, possible heteroscedas-
ticity does not completely cancel out in Equation (2.7). Consequently,
the expression estimates as well as the corresponding confidence intervals
for individual genes are not completely independent regarding the possible
heteroscedasticity. Therefore, the confidence intervals in this case are not
completely in concordance with the model and the above discussion, but
must be viewed as estimates that are constructed afterwards. The effect
of this issue on the confidence intervals appears to be rather small though.
This is seen, e.g., in Figure 2.3 that show the estimated 90% confidence
intervals from a set of genes. The width of the confidence intervals varies
for different genes and clearly correlates with the underlying expression val-
ues, e.g., about 10 units for a low-expressed gene TP53 and about 120 units
for a high-expressed gene having an accession number NM 002765. Similar
observations apply to other genes shown in Figures 2.3 and 2.4, too.

2.2.4 Selecting the Number of Cell Types

Although it is known that only two cell types are mixed in experiments in
Publication-VII there may be other experimental settings where the number
of cell types may be unknown. Then it is useful to assess the validity of
the model as well. The linear mixing model can be extended to incorporate
more than just two cell types using a straightforward extension:

yk
i =

∑

j

αj
kx

j
i , (2.10)
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where xj
i denotes the expression value of the ith gene in the jth cell type,

and 0 ≤ αj
k ≤ 1 denotes the fraction of the jth cell type in the kth mix-

ture. Naturally, the mixing percentages must also satisfy
∑

j αj
k = 1 for

all k. Since the standard regression-based significance tests apply only to
Gaussian noise we recommend using a general purpose cross-validation for
model selection (see, e.g., Stone, 1974; Hastie et al., 2001). Here we con-
sider the leave-one-out cross-validation (LOOCV), i.e., each heterogeneous
sample is left out from the training data at a time, the regression coeffi-
cients xj

i are estimated based on the remaining four samples, and the model
is then tested on the sample which was left out from the training data set.
The relatively small sample size (K = 5) does not allow the estimation
of the mixing fractions αj

k within the cross-validation loop. Hence fixed
(optimized, see Equation (2.7)) mixing fractions are used.

2.2.5 Examples and Discussion

We briefly illustrate the operation of the above described in silico microdis-
section methods on a carefully controlled heterogeneous microarray data set
from Publication-VII. The results shown in Figure 2.3 are obtained by ap-
plying the above methods for inversion, optimization of mixing fractions,
and confidence interval computation to some example genes. As the exam-
ples indicate, the expression values of the pure cell types can be estimated
from the heterogeneous mixtures. A more comprehensive performance as-
sessment of the methods is presented in Publication-VII, including also
model selection using LOOCV.

Despite constant quality improvements, microarray data are quite noisy
and impulses are not that uncommon. As was pointed out in Publication-
VII, the effects of non-idealities, such as impulses, can be reduced by robust
analysis. Although the general results remained largely unchanged after
applying robust methods, improved results for some individual genes whose
expression values contained an impulse were obtained. The well-known
least squares method finds the optimum solution by minimizing

arg min
xc

i ,xl
i

n∑

i=1

K∑

k=1

(
yk

i − αkx
c
i − (1− αk)xl

i

)2
. (2.11)

A number of robust estimation methods have been proposed (see, e.g.,
Hampel et al., 1985; Rousseeuw and Leroy, 1987). In general, there might
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Figure 2.3: Examples of the inversion of the sample heterogeneity and
the corresponding 90% confidence intervals for some example genes. The
x-axis (resp. y-axis) corresponds to the fraction of lymph node cells (resp.
the normalized expression value). Shown are the measured expression
values (blue circles), the estimated expression values of the pure cell types
(red stars), confidence intervals based on Gaussian approximation (red
points), and bootstrap-based confidence intervals (red x-marks).

be impulses in both regressors (position, αks) and outputs (error residuals,
εk
i s). Due to physical constraints, however, there cannot be impulses in

regressors in this application since the mixing fractions are known to be
between zero and one. Outliers in error residuals can be taken into ac-
count by several standard robust regression methods. Let us use, e.g., the
standard Huber’s M -estimator whose influence function of the residuals is
bounded (see, e.g., Hampel et al., 1985). Briefly, instead of minimizing
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Equation (2.11), a modified objective function is optimized

arg min
xc

i ,xl
i

n∑

i=1

K∑

k=1

ρc

((
yk

i − αkx
c
i − (1− αk)xl

i

)
/σi

)
, (2.12)

where σis are scaling factors and the quadratic function is replaced by the
Huber estimator ρc(·)

ρc(r) =





r2/2, if |x| ≤ c

c(|r| − c
2), if |x| > c

. (2.13)

Adjustable parameters are set to c = 1 and σis are chosen such that the
resulting estimator is approximately 95% as efficient as the least squares
estimator when applied to a normally distributed data with no outliers.4

The robust objective function shown in Equation (2.12) is minimized using
the iteratively reweighted least squares algorithm. Results for some genes
contaminated with impulsive noise that serve as examples are shown in
Figures 2.4 (a)–(d). As can be seen from the estimated expression values
and the corresponding confidence intervals, robustness is clearly increased.
For comparison purposes, Figures 2.4 (e)–(f) show the standard non-robust
inversion results for the same genes as shown in Figures 2.4 (c)–(d).

As was discussed above, similar computational methods have been intro-
duced in (Venet et al., 2001; Lu et al., 2003; Stuart et al., 2004). In particu-
lar, the least squares inversion method we proposed resembles other meth-
ods introduced previously. Venet et al. also considered a similar method for
optimizing the mixing percentages, but with slightly different constraints.
Their analysis also focused on “deterministic” signals and they did not
demonstrate performance of their methods on real heterogeneous measure-
ments. Other aspects of our computational inversion methods, namely,
the particular type of confidence interval computation, model selection and
robust analysis are novel in this context.

4In particular, σi = 1.345 · ŝ√1− hi is used for each i, where ŝ = 1.4826 · mad{ri}
is the scaled median absolute deviation of the residuals from their median and hi =
(A(AT A)−1AT )ii, i.e, the ith diagonal element of the “hat” matrix. For further details,
see (Huber, 1981) and implementation details of robustfit function in (The MathWorks,
Inc., 2005).
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Figure 2.4: Examples of the robust inversion (a)–(d) of the sample hetero-
geneity and the corresponding 90% confidence intervals for some example
genes. Subgraphs (e) and (f) show the standard (non-robust) inversion
results for the same genes as shown in subgraphs (c) and (d), respectively.
See Figure 2.3 for explanation of the symbols.
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2.3 Cell Population Asynchrony

Although most microarray experiments have been conducted for the pur-
poses of static gene expression profiling, there is growing interest in mon-
itoring the expression values over time as well. Time series experiments
can provide temporal information about the development and dynamical
operation of time-varying processes, such as the fundamental cell cycle.
From a computational point of view, time series experiments provide a way
of obtaining necessary dynamical data for studying regulatory effects in
biological systems.

A single cell does not contain a sufficient amount of extractable mRNA
to be measured using microarrays. Instead, the measurement procedure
requires a sample that contains a very large number of cells. Since time
series experiments are typically designed for studying a time-varying bi-
ological process, all the cells in the sample should operate exactly in the
same phase of the process to be studied. Consequently, the cell population
is usually forced to a synchrony prior to taking the measurements using an
external synchronization method. For example, different synchronization
methods have been used to synchronize the cell population relative to the
cell cycle (Spellman et al., 1998; Cho et al., 1998; Whitfield et al., 2002;
Rustici et al., 2004).

However, no matter what synchronization method has been used initially,
the cell population gradually loses its synchrony. For example, in the case
of cell cycle study, the cell population is distributed continuously into differ-
ent cell cycle phases. It is useful to consider the loss of synchrony in terms
of the distribution of the cell population over time. Perfect synchrony cor-
responds to the Dirac delta function whereas less synchronized cell popula-
tions correspond to wider distributions. Since the measurements are taken
from the whole cell population, this results in time-varying (low-pass) fil-
tering of the underlying gene expression time series. In Publication-I, we
developed computational methods for inverting this smoothing effect from
the gene expression time series. In addition, we also proposed methods for
estimating the cell population distributions.

2.3.1 Modeling Cell Population Asynchrony

Although the measurements are taken from a finite cell population, it is
convenient to describe the general model using continuous variables. Let
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x(t) denote the continuous expression value of a gene and pt denote the
continuous distribution of the cell population at time t. Assuming that each
cell has, on average, an equal contribution to the resulting measurement
Y (t), the effect of the cell population asynchrony can be represented as

Y (t) =
∫ ∞

τ=−∞
pt(τ)x(t + τ)dτ + ε(t), (2.14)

where ε(t) is a continuous, generic noise term. Distributions are centered
around the origin so that pt(−τ) (resp. pt(τ)) denotes the fraction of cells
having a negative (resp. positive) shift of size τ at time t. Note that the
integral in Equation (2.14) corresponds to the standard continuous inner
product.

So, if the cells were in perfect synchrony, pt would correspond to the
Dirac delta function and Equation (2.14) would reduce to Y (t) = x(t) +
ε(t). In reality, however, the cell population gradually loses its synchrony,
which results in wider distributions. That is, whenever pt is not the Dirac
delta function, measurements are “smoothed” by the distribution of the
cell population pt as shown in Equation (2.14).

Let us assume that gene expression time series data consists of m mea-
surement time points ti, i = 1, . . . , m. In the following, we use the short-
hand Y (i) (resp. pi) to denote Y (ti) (resp. pti). Because only discrete
measurements are available, we find it convenient to form a discrete ap-
proximation of the integral shown in Equation (2.14). Assume for now
that we know the cell population distribution pi at different time instants
i = 1, . . . , m and let hi denote their discrete approximations. Then, Equa-
tion (2.14) can be approximated as

Y (i) ≈
∑

j

hi(j)x(i + j) + ε(i), (2.15)

where the sum is computed over those j that satisfy hi(j) 6= 0. A natural
way of computing the coefficients hi is as follows. The jth element of hi is
found by integrating pi over an interval I(j)

hi(j) =
∫

τ∈I(j)
pi(τ)dτ, (2.16)



24 CHAPTER 2. PREPROCESSING OF MEASUREMENTS

where a proper interval is

I(j) =
[
tj − (tj − tj−1)

2
, tj +

(tj+1 − tj)
2

]
. (2.17)

Basically, any discretization method could be used for the same purpose.
The above procedure guarantees, however, that

∑
j hi(j) = 1 for all i,

assuming that each pi is really a distribution.
Assuming that only expression measurements Y (i) are available, then

the smoothing cannot be inverted accurately since there are far too many
adjustable parameters, even though there is redundancy in that the time-
varying filter kernels pi (i = 1, . . . ,m) are the same for all the genes. For-
tunately, the cell population distributions pi can be estimated separately
from additional measurements collected during the time series experiment.

If, for some reason, the cell population distributions cannot be estimated,
then one can still consider so called spreading of the cell population dis-
tribution (see Publication-I for more details). The idea is based on the
assumption that there is a convolution kernel h that maps the cell popu-
lation distribution from any time t to the corresponding time t + L at the
next cycle, where L is the period length. That is, pt+L = h ∗ pt, where ∗
stands for the convolution. Knowing a set of periodically behaving genes,
the mean-squared optimal coefficients for the filter h can be obtained, e.g.,
by using methods of adaptive filtering (Haykin, 1996). A set of periodically
behaving genes, in turn, can be obtained from prior biological knowledge,
using the standard discrete time Fourier transform, or with the help of more
advanced periodicity detection methods (see Chapter 3). Then, instead of
inverting the whole smoothing model (Equation (2.14)), it is possible to
invert the part of the smoothing effect that corresponds to the filter h.

2.3.2 Estimation of Cell Population Distribution

Accurate estimation of the cell population distribution is central to the
inversion of the time-varying smoothing effect. That estimation step can
utilize several different additional measurements gathered during the time
course experiment. In Publication-I, we proposed several estimation meth-
ods for that purpose. Probably the most natural method is what we call
the direct conversion of the distribution of a cell cycle regulated parameter.

Flow cytometry is an experimental technique for measuring certain physi-



2.3. CELL POPULATION ASYNCHRONY 25

cal and chemical characteristics of a cell population, such as the distribution
of the amount of DNA. Since the amount of DNA grows from one unit up
to two units during the cell cycle (see, e.g., Lodish et al., 1999), the amount
of DNA in a single cell defines its place in the cell cycle, assuming we know
exactly the growth of the amount of DNA during the cell cycle.

Let us assume the cell cycle to start at 0 and end at L. Let fi(τ) denote
the measured distribution of the amount of DNA at time i, where τ ∈ [0, L]
denotes the phase shift at the cell cycle. The amount of DNA in an ideal cell
at phase τ of the cell cycle is denoted by g(τ). For simplicity, the function g

is assumed to be strictly increasing, i.e., (0 ≤ τ < τ ′ ≤ L) ⇒ (g(τ) < g(τ ′)).
The assumption of a strictly monotone g is made mostly for mathemati-
cal convenience but that has some biological justification as well.5 Under
these assumptions the measured distributions can be converted into the cell
population distributions simply by means of a combined mapping as

pi(τ) = fi(g(τ)) (2.18)

for all τ ∈ [0, L]. Depending on the amount and type of noise present in fi,
Equation (2.18) produces a noisy estimate of the underlying distribution.
Hence some post-processing can be applied to the obtained distribution pi.

The growth rate of a periodic parameter, such as the amount of the
DNA, may be unknown. The best way of obtaining g is, of course, a
measured distribution from a completely unsynchronized cell population
(Niemistö et al., 2004). Since the measured distributions are inherently
discrete, Niemistö et al. also give a detailed discrete implementation of
a method similar to that in Equation (2.18). The above ideas have been
developed further. For example, advanced image processing algorithms
have been proposed for the estimation of the bud size distributions from
yeast microscope images (Niemistö et al., 2003).

5Since DNA replication proceeds (bi)directionally (Lodish et al., 1999) and most of
the cells seem to obey the once-and-only-once principle of DNA replication (Boye et al.,
2000), it is natural to assume that the amount of DNA during the cell cycle, g(τ), can
be modelled as a strictly increasing function. It is worth mentioning, however, that the
DNA replication occurs during the synthesis (S) phase of the cell cycle that covers only
a part of the whole cell cycle. In other words, g(τ) grows from one unit up to two units
within a relatively short time interval. Consequently, under the assumption of strictly
increasing g(τ), the amount of DNA remains approximately constant during the other cell
cycle phases (G1, G2, and M) and that complicates the estimation of the cell population
distribution.
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In Publication-I, we also introduced other methods for estimating the
distribution of the cell population, such as methods based on a rapidly
changing parameter, fraction of cells having a bud of certain size (budding
index), and blind channel estimation techniques. Other related estimation
methods have been recently introduced in (Bar-Joseph et al., 2004). Instead
of using FACS or budding index data directly in a non-parametric fashion,
Bar-Joseph et al. developed a method where parametric (Gaussian) dis-
tributions are fit to the data. Although constraining the cell population
distributions to a certain parametric family can exclude the true under-
lying distributions, that can also provide a way of obtaining smooth and
more accurate estimates if the parametric constraint is properly chosen.

2.3.3 Inversion of Cell Population Asynchrony

Assuming the cell population distributions, or their estimates, are known,
then the final step of the analysis consists of the inversion of the time-
varying smoothing effect. Two methods for that purpose were introduced
in Publication-I, namely, a time-varying inverse filtering, and a regression-
based method.

The inverse filtering becomes available by observing that Equation (2.15)
corresponds to a discrete convolution with a time-reversed (and time-vary-
ing) filter kernel. Hence, a time-varying version of the inverse filter Wiener
filter) can be applied (see Publication-I for more details). Even though the
inverse filter can be shown to be optimal in the mean-square error sense
(see, e.g., Dougherty, 1999), its application can be difficult because gene
expression time series are short and the spectral density function of the
true signal and the noise are unknown.

A better inversion method can be developed by expressing the smoothing
as a type of regression problem. In particular, the possible periodicity in
gene expression can be taken into account more easily. Let us first formalize
the smoothing shown in Equation (2.15) in matrix form by expanding the
inner products for all 1 ≤ i ≤ m

Y = Hx + ε, (2.19)
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where Y = ( Y (1) · · · Y (m) )T ,

H =




· · · h1(−1) h1(0) h1(1) · · ·
. . . . . . . . . . . .

· · · hm(−1) hm(0) hm(1) · · ·




, (2.20)

x = ( · · · x(0) x(1) · · · x(m) x(m + 1) · · · )T and ε = ( ε(1) · · · ε(m) )T .
Let us first concentrate on the cell cycle regulated genes and assume that

measurements from consecutive cell cycles are taken from the same phases
of the cell cycle.6 For the periodic genes we have that x(i) = x(i + L) for
all i = 1, . . . ,m−L. Combining that with Equations (2.19) and (2.20) one
gets




Y (1)
...

Y (m)




=




h1(0) h1(1) · · · h1(−1)

h2(−1) h2(0) · · · h2(−2)
...

...
. . .

...

hL(1) hL(2) · · · hL(0)
...

...
. . .

...

hm(k) hm(k + 1) · · · hm(k − 1)







x(1)
...

x(L)




+ ε

(2.21)
where k is selected properly. Equation (2.21) essentially sets up the stan-
dard regression problem. Assuming one has measurements from more than
one cell cycle, m > L, then the rank of the kernel matrix H in Equa-
tion (2.21) is most probably full. Minimization of the least squares error
criterion results again in the well-known estimate of x

x̂ = (HTH)−1HTy, (2.22)

where y is the observed value of Y.
If the measurements from the consecutive cell cycles cannot be controlled

to be taken from the same positions, then the solution becomes a bit more
complicated and less accurate. However, the problem can still be formalized

6Note that this requirement can be controlled in practise.
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much in the same way as shown above, with the exception that the kernel
matrix H belongs now to [0, 1]m×M instead of [0, 1]m×L, where M > L (see
Publication-I for more details).

The above methods cannot be applied to genes that are not periodic.
Equation (2.19) shows, however, that the filtered, but noise-free, expression
profile Hx must lie in the space spanned by the columns of H, i.e., R(H).
The standard Gauss-Markov Theorem (see, e.g., Johnson and Wichern,
1998) can be applied to Equation (2.19) in order to get the best linear
unbiased estimate of Hx. This is achieved by projecting the measured
vector y orthogonally into the space R(H). In this case, estimates of x
constitute a space Sx = {x |x = x̂+x0, x0 ∈ N (H))} ⊂ Rm, where x̂ is an
optimal solution and N (H) is the null space of H. Some extra constraints,
e.g., on the smoothness, can be used to reduce the size of Sx.

2.3.4 Examples and Discussion

The performance of the proposed method for correcting the cell population
asynchrony is illustrated below. Let us concentrate on periodic time series
in this simulation. Truncated Gaussian distributions with increasing vari-
ance are used for the cell population distributions, see Figure 2.5 (a). The
measurements are generated according to Equation (2.14) both without
and with the additive (white) noise. Furthermore, the measurements from
different periods are assumed to be taken such that the inversion method
shown in Equation (2.22) applies. The discrete kernels hi are computed
from the true distributions using Equations (2.16) and (2.17).

The optimal solution for the noise-free case is shown in Figure 2.5 (b). A
cubic spline interpolation is used to obtain a continuous version of the dis-
crete signals. The observed measurements clearly illustrate the smoothing
effect that is caused by the cell population asynchrony. The regression-
based method reconstructs the underlying signal almost exactly. Note that
even though the measurements are noise-free the coarse-scale approxima-
tion of the true measurement process causes a loss of accuracy.

The same results are shown for the case of additive noise with signal-to-
noise ratio (SNR) about 20 and 10 in Figures 2.6 (a) and 2.7 (a), respec-
tively. The general behavior of the estimation method is assessed using
Monte Carlo simulation. Figures 2.6 (b) and 2.7 (b) shows the Box-plot vi-
sualization of the estimates obtained from 100 independent runs, together
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Figure 2.5: (a) The cell population distributions used in the simulation.
Horizontal axis denotes time. Note that y-axis has been cut for visual-
ization purposes. (b) Representative results for the inversion of the cell
population asynchrony: the noise-free case. Symbols: continuous true
gene expression time series (solid blue curve), the observed measurements
(dotted green line with stars), and the corrected measurements (dashed
red line with circles).

with the underlying continuous time series (solid line). The Box-plot is
shown only for the first period of the signal since the estimates for the re-
maining cycles are the same. Overall, variability of the estimates increases
relative to the variance of noise ε. For SNR about 10 (and smaller), the
estimates are already likely to contain some artifacts, such the kind of over-
shoot seen in Figure 2.7 (a). It is worth noting that performance of the
estimation method also depends on characteristics of the underlying signal
(see the blue solid curve in Figures 2.5 (b), 2.6 (a) and 2.7 (a)) as well as
on cell population distributions (see Figure 2.5 (a)).

The computational methods presented in Publication-I were, to our knowl-
edge, the first ones that have been proposed for the inversion of the cell
population asynchrony. Possible future research directions include, e.g., in-
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Figure 2.6: Representative results for the inversion of the cell population
asynchrony. (a) additive white noise with signal-to-noise SNR ≈ 20, (b)
the Box-plot visualization of the obtained estimates. See Figure 2.5 for
encoding of the symbols.

corporating more specific noise models and developing methods that do not
rely only on discrete-time modeling. For example, an approach based on
a properly developed frequency domain analysis could be useful. Recently,
computational inversion methods for the cell population asynchrony were
further extended in (Bar-Joseph et al., 2004). Indeed, Bar-Joseph et al. rep-
resent gene expression time series using spline interpolation and invert the
smoothing effect without resorting to discrete approximations. Such an ap-
proach is more general in that fewer assumptions for measurement time in-
stants are needed. In particular, measurements from consecutive cell cycles
do not need to be taken from the same phases of the cell cycle. Bar-Joseph
et al. also combine their analysis with a clustering method, hence providing
a way of regularizing the actual inversion problem. Clustering-based regu-
larization can be advantageous especially in the case of low signal-to-noise
ratios, but the possible advantage also depends on the performance of a
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Figure 2.7: Representative results for the inversion of the cell population
asynchrony. (a) additive white noise with signal-to-noise SNR ≈ 10, (b)
the Box-plot visualization of the obtained estimates. See Figure 2.5 for
encoding of the symbols.

particular clustering method that is used. Since real biological time series
are prone to contain different kinds of non-idealities, such as outliers, it is
also worth noting that robust estimation methods can potentially be useful
in this case as well.
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Chapter 3

Robust Time Series Analysis

Although most of the first microarray experiments focused solely on static
experiments, there is an increasing interest in measuring changes in ex-
pression values over time. Recently, analysis of periodic expression profiles
has attracted much attention. Numerous studies are motivated by the fact
that periodic phenomena are widespread in biology, including, among oth-
ers, membrane potential oscillations, smooth muscle contraction, cardiac
rhythms, calcium oscillations, glycolytic oscillations, cAMP oscillations,
oscillations in neuronal signals, cell cycle, circadian rhythms, ovarian cycle,
and others (see, e.g., Tyson, 2002). Consequently, there are numerous bio-
logical applications where periodicities must be detected from experimental
biological data.

Detecting periodicity in gene expression is of particular importance be-
cause it can indicate cell-cycle regulation (Breeden, 2003), for example, as
well as the effect of circadian rhythms (Correa et al., 2003). The significance
of the detection of cell-cycle regulated processes is further emphasized by
the linkage between cell-cycle and cancer (see, e.g., Sherr, 1996; Whitfield
et al., 2002). To this end, microarrays have been used to study the circa-
dian gene expression in Neurospora crassa (Correa et al., 2003) as well as
cell-cycle regulated genes in budding yeast (Spellman et al., 1998), in fission
yeast (Rustici et al., 2004), and in human cells (Whitfield et al., 2002).

A number of methods for detecting periodic transcripts have recently
been proposed (Zhao et al., 2001; Johansson et al., 2003; Liu et al., 2004;
Lu et al., 2004; Luan and Li, 2004; Wichert et al., 2004). The proposed
methods vary from applications of partial least squares regression to com-

33
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plex, combined procedures of estimating the cell population distributions
and statistical testing. A major difference between the method proposed
by Wichert et al. and other methods is that Wichert’s method is capa-
ble of detecting unknown frequencies whereas other methods are designed
for detecting fixed frequencies. From a computational point of view, the
problem of finding unknown frequencies is even more demanding since no
prior knowledge of the frequency to be detected is available. In many bio-
logical applications it is more important to search for periodicities having
an unknown frequency. However, in some applications, such as large-scale
cell cycle studies, the period length is usually known and thus provides
additional information for testing.

In many applications, including those arising from bioinformatics, the
exact noise characteristics are usually unknown and can be remarkably
non-Gaussian. Furthermore, the observed gene expression time series can
exhibit other non-idealities, such as outliers, missing values, short length
and distortion from the original wave form. Therefore, the computational
methods should preferably be robust against such anomalies in the data.
The recently introduced methods for detecting periodic transcripts are not
particularly robust, e.g., in the case of outlier contaminated data. In what
follows, we introduce general, robust methods for spectrum estimation
(Publication-IV) and periodicity detection of both fixed and unknown fre-
quencies (Publication-IX). For clarity of terminology, notation and further
analysis, we first give some background about spectral analysis of stochas-
tic processes. For more details, see, e.g., (Priestley, 1981; Brockwell and
Davis, 1991).

3.1 Spectral Theory of Stochastic Signals

In this and the following sections we are mainly interested in discrete time
series. Since real world time series exhibit some inherent randomness, we
first give the definition of a discrete stochastic process. A discrete stochastic
process is a set of random variables {Yt, t ∈ T} defined in a probability
space (Ω,F , P ), where T is a discrete set, Ω is a sample space, F is a
sigma-algebra of subsets of Ω, and P is a probability measure on F . Given
a fixed element of Ω, {yt, t ∈ T} is a realization of the stochastic process
{Yt, t ∈ T}. Intuitively speaking, time series {yt, t ∈ T} is a realization of
the family of random variables {Yt, t ∈ T}. In the following we will assume
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the set of time indices to be T = Z = {0,±1,±2, . . .} and later in the case
of real data T = {1, . . . , N}.

Much of the following analysis is built on the following definitions. The
autocovariance function of a stochastic process {Yt, t ∈ T} is defined as
γ(k, l) = E[(Yk−µYk

)(Yl−µYl
)], where E[·] denotes the expectation operator

and µYk
= E[Yk]. The autocorrelation function of a stochastic process

{Yt, t ∈ T} is defined as r(k, l) = E[YkYl]. A useful class of processes, on
which most of the classical theory of spectral analysis has focused, is the
one whose statistical properties do not change over time. More precisely, a
stochastic process {Yt, t ∈ T} is stationary1 if (i) E[Yt] = µ for all t ∈ T , (ii)
E[Y 2

t ] < ∞ for all t ∈ T , and (iii) γ(k, l) = γ(k + t, l + t) for all k, l, t ∈ T .
Note that for stationary processes the autocovariance function as well as
the autocorrelation function depend on time only through the difference
k− l. Therefore, it is convenient to redefine the autocovariance function as
γ(k) = E[(Yt − µ)(Yt+k − µ)] and similarly for the autocorrelation function
r(k) = E[YtYt+k].

In the following we will be assuming the autocovariance function γ(k)
to be absolutely summable, i.e.,

∑
k |γ(k)| < ∞. Let us then state a fun-

damental and important result (see, e.g., Priestley, 1981; Brockwell and
Davis, 1991). Let γ(k) and F (ω) be the autocovariance function and the
spectral distribution function, respectively, of a zero-mean stationary pro-
cess {Yt, t ∈ T}, then

γ(k) =
∫

(−π,π]
eiωkdF (ω), for all k ∈ T. (3.1)

If the process {Yt, t ∈ T} is such that F (ω) is differentiable everywhere,
then Equation (3.1) can be rewritten as

γ(k) =
∫

(−π,π]
eiωkf(ω)dω, for all k ∈ T, (3.2)

where f(ω) is the spectral density function of the process {Yt, t ∈ T}.

1This definition of stationarity is also known as weakly stationarity or second-order
stationarity.
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Moreover, Equation (3.2) can be inverted, i.e.,

f(ω) =
1
2π

∞∑

k=−∞
γ(k)e−iωk, for all ω ∈ [−π, π]. (3.3)

Note that for zero-mean stationary processes the autocovariance function
equals γ(k) = E[(Yt − µ)(Yt+k − µ)] = E[YtYt+k] = r(k), i.e., the autocor-
relation function. Hence, under the assumption of zero-mean stationarity,
the spectral density can equally well be represented in terms of the auto-
correlation function as

f(ω) =
1
2π

∞∑

k=−∞
r(k)e−iωk, for all ω ∈ [−π, π]. (3.4)

The above equation provides a useful formula for finding the spectral den-
sity function from r(k). Consequently, many spectral estimators of the
form of Equation (3.4) have been proposed in the literature.

In the following we are interested in both spectrum estimation and pe-
riodicity detection. Loosely speaking, those two goals correspond to the
estimation of f(ω) from observed data and finding statistically significant
peaks in the estimated spectrum, respectively. As noted above, character-
istics of the data measured from biological systems are typically unknown.
Hence our aim is to achieve the two goals using robust methods. We start
with the spectrum estimation and then move towards the periodicity de-
tection.

3.2 Spectrum Estimation

A number of different methods have been proposed for spectrum estima-
tion (see, e.g., Priestley, 1981; Brockwell and Davis, 1991; Stoica and Moses,
1997). One categorization divides different approaches into parametric and
nonparametric methods, depending on whether a parametric model for the
signal is assumed. Although we define a generic model for periodic signals
later in Section 3.3, we are primarily interested in nonparametric spectrum
estimation. The choice of nonparametric approach has at least two moti-
vations in the context of bioinformatics. First, as already stated above, the
characteristics of the data are typically unknown, thus precluding postu-
lation of specific noise models. Second, the same argument applies to the
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actual periodic signal models as well, since they do not necessarily follow
any predetermined wave form. In the following, we use a shorthand {Yt}
(resp. {yt}) to denote {Yt, t ∈ T} (resp. {yt, t ∈ T}) if the discrete index
set is known.

3.2.1 Nonparametric Spectrum Estimation

A fundamental, nonparametric tool for spectrum estimation is the peri-
odogram defined as

I(ω) =
1
N

∣∣∣∣∣
N∑

t=1

yte
−iωt

∣∣∣∣∣

2

, ω ∈ [0, π]. (3.5)

Although the periodogram is a basic spectrum estimation tool widely ap-
plied in different applications, under rather general assumptions the peri-
odogram is not a consistent estimator of the spectral density. On the other
hand, consistent estimators can be constructed from the periodogram, e.g.,
by applying linear smoothing filters to the periodogram. More importantly,
however, the exact distributional characteristics of the periodogram are
known and useful. Although these exact characterizations mostly apply
to Gaussian sequences, an assumption widely invoked in spectral estima-
tion, they form the basis of traditional statistical inference methods for the
spectrum (see Section 3.3).

Let us turn back to the spectrum estimation problem. It is well-known
that the periodogram I(ω) is equivalent to the correlogram spectral esti-
mator (see, e.g., Brockwell and Davis, 1991)

S(ω) =
N−1∑

k=−N+1

r̂(k)e−iωk, (3.6)

where r̂(k) is the biased estimator of the autocorrelation function

r̂(k) =
1
N

N−m∑

t=1

ytyt+k. (3.7)

Note that the required values for r̂(k) for k < 0 are obtained by invoking the
inherent symmetry of the autocorrelation function, i.e., r(−k) = r(k). The
use of the correlogram (and thereby the periodogram) is directly motivated
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by the theoretical result shown in Equation (3.4). As our goal is to obtain
robust time series analysis methods, a natural choice is to try to obtain
robustness by replacing r̂(k) with a robust alternative.

3.2.2 Robust Spectrum Estimation

Relatively few methods have been introduced for robust spectrum estima-
tion. Most of the proposed methods are based on complex procedures of
robust precleaning of the data and weighting of the residuals using autore-
gressive models (Kleiner et al., 1979; Martin and Thomson, 1982); see also
(Spangl and Dutter, 2005). Robust versions of the Fourier transform have
also been proposed (Tatum and Hurvich, 1993). Our robust method is
built on the standard principles introduced above, but modified to obtain
robustness. Our approach is particularly motivated by and designed for
robust periodicity detection (to be discussed shortly in Section 3.3.2).

Before reviewing the robust method, it is important to note that, espe-
cially in the case of gene expression time series, the data is often contam-
inated with missing values. Let Ik be the set of time indices t for which
both yt and yt+k are available and Kk = |Ik|. As long as Kk > 0, a missing
data-adapted version of the unbiased estimate of the autocorrelation can
be obtained as

r̃(k) =
1

Kk

∑

t∈Ik

ytyt+k. (3.8)

Only versions adapted to missing data are considered in the following since
they are equal to the standard estimators in case of complete data sets.

Next we review the proposed robust, rank-based autocorrelation estima-
tor for the problem of spectrum estimation (Publication-IV; Publication-
IX). This estimator is a moving-window extension of the Spearman rank
correlation coefficient, quantifying the association between the sequences
{Yt} and {Yt+k}. The resulting quantity is actually an alternative estima-
tor of the standard correlation coefficient ρ(k, l) between these sequences
(see, e.g., Priestley, 1981)

ρ(k, l) =
E[(Yk − µYk

)(Yl − µYl
)]√

E[(Yk − µYk
)2]

√
E[(Yl − µYl

)2]
. (3.9)

Recall that the sample correlation coefficient between two N length se-
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quences {xi} and {yi} is defined as

ρxy =
1
N

∑N
i=1(xi − x)(yi − y)√

1
N

∑N
i=1(xi − x)2

√
1
N

∑N
i=1(yi − y)2

. (3.10)

where x denotes the sample mean of {xi}.
Under the assumption of stationarity, the correlation coefficient depends

on time only through the difference k−l and can hence be redefined as ρ(k).
Further, it immediately follows from Equation (3.9) that the correlation
coefficient ρ(k) is related to the autocorrelation function r(k) by r(k) =
µ2

Y + σ2
Y ρ(k), where σ2

Y = E[(Yt − µY )2] is the variance of the sequence.
Since it is important to remove the mean of the sequence prior to spectrum
estimation to avoid low frequency artifacts and since σ2

Y is simply a scale
factor, the problem of detecting periodic components in a data sequence
may equally well be based on ρ(k) as r(k). Consequently, we consider
spectral estimators of the form

S̃(ω) =
L∑

k=−L

ρ̃(k)e−iωk, (3.11)

where ρ̃(k) estimates the correlation coefficient between {Yt} and {Yt+k}
and L is the maximum lag for which the correlation coefficient is computed.
More specifically, we consider the correlation coefficient between the data
ranks Ry(t) and R′

y(t), defined by

ρ̃(k) =
1
C
· 12
K2

k − 1

∑

t∈Ik

(
Ry(t)− Kk + 1

2

)(
R′

y(t)−
Kk + 1

2

)
,(3.12)

where C is a normalisation factor, Ry(t) denotes the rank of yt in the set
S = {yt : t ∈ Ik} and R′

y(t) denotes the rank of yt+k in the set S′ = {yt+k :
t ∈ Ik}. By selecting either C = Kk or C = N , Equation (3.12) yields the
unbiased or the biased estimate of the correlation coefficient between the
rank sequences, respectively. See Publication-IX for some properties of the
proposed robust estimator.

Recall that the periodogram I(ω) is equivalent to the correlogram S(ω)
when the correlogram is implemented with the biased estimator of the stan-
dard autocorrelation function (Equation (3.7)). For that reason, we use the
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biased estimator for the robust correlation coefficient, i.e., C = N , in the
following. Moreover, the use of the biased estimate in spectrum estimation
(Equations (3.6) and (3.7)) can be interpreted as triangular weighting of
the autocorrelation function estimate. Windowing is usually applied to re-
duce the variance of the autocorrelation function estimate and to reduce
the scalloping loss effect (Priestley, 1981; Stoica and Moses, 1997). Win-
dowing is discussed in a bit more detail in Section 3.3.2. Contrary to the
standard periodogram, the robust spectral estimator is not guaranteed to
be non-negative. Hence the absolute value of S̃(ω) is used in the following.

Figures 3.1 and 3.2 show some example time series and the correspond-
ing scaled spectral estimates obtained by the standard periodogram and the
robust method. The noise-free reference signal consists of a single sinusoid
at normalized frequency 0.1 (see Equation (3.13)) and the two noisy time
series in Figures 3.1 and 3.2 are both contaminated with additive Gaus-
sian noise, plus about 10% impulses and cubic distortion, respectively. In
these examples the robust method clearly outperforms the standard peri-
odogram. A more extensive Monte Carlo simulation of the performance of
the robust spectrum estimator is conducted in Publication-IV. Although
the raw periodogram is known to be unconsistent and not the best possi-
ble spectrum estimator, we use it for comparison purposes. Motivation for
doing so is three-fold. First, both spectrum estimators, the periodogram
and the proposed robust estimator, are extensively discussed and used as
basic building blocks of periodicity detection methods in the next section.
Secondly, the consistency property may be of little use in small sample
settings typically encountered in high-throughput systems biology experi-
ments. The last, but not the least important point is that the proposed
robust spectrum estimator can be viewed as a similar elementary method
as the periodogram whose performance can be improved. In particular, the
simple tricks that provide consistency for the periodogram, such as linear
filtering of the periodogram or windowing of the correlogram, can alike be
applied to the robust spectrum estimator.

Overall, the proposed method is found to provide remarkably robust
spectrum estimates. A main ingredient of the obtained robustness is the
use of a rank-based approach. Moreover, because the proposed method
is build on a moving-window extension of the Spearman rank correlation
coefficient, it provides a straightforward robust analog for the traditional
autocorrelation estimator. That further emphasizes the use of the robust
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Figure 3.1: (a) A noise-free sinusoid (blue) and its noisy version con-
taminated with additive Gaussian noise and about 10% outliers (green).
(b) Scaled spectrum estimates of the above noisy sinusoid obtained by the
standard periodogram (blue) and the robust method (green).

estimator as a basic building block of spectral estimators via the well-known
connection between the spectral density and the autocorrelation function
(see Equation (3.4)). Because missing data points are commonly present
in high-throughput biological measurements, the method is also adapted
to handle such cases. The proposed method is also efficient from computa-
tional point of view because it does not require the use of computationally
intensive estimation or optimization procedures. Interesting future research
directions, especially from periodicity detection point of view, are discussed
in Section 3.3.2.

3.3 Detection of Periodic Time Series

Let us now turn to our primary problem of detecting periodic time series.
To our knowledge, no particularly robust periodicity detection method has
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Figure 3.2: (a) A noise-free sinusoid (blue) and its noisy version con-
taminated with additive Gaussian noise and the cubic distortion (green).
(b) Scaled spectrum estimates of the above noisy sinusoid obtained by the
standard periodogram (blue) and the robust method (green).

been proposed in the literature so far. Since periodicity detection can be
viewed as a decision problem based on the spectral content of the signal,
it has a natural connection to spectrum estimation. In Publication-IX, we
proposed a robust periodicity detection method which is build on the robust
spectrum estimator described above. Also note that periodicity detection
problems can be divided into two categories depending on whether unknown
or known (fixed) frequencies are to be detected. We proposed a solution to
both of the problems in Publication-IX.

3.3.1 Standard Periodicity Detection Methods

For the purposes of introduction and comparison, we first give a brief review
of the well-known, exact tests for periodicity detection under the Gaussian
noise assumption, namely, Fisher’s test for detection of unknown frequen-
cies and standard regression (i.e., ANOVA-based) methods for the detection
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of fixed frequencies. Also note that Fisher’s test has recently been applied
to the detection of periodic gene expression time series in Wichert et al.
(2004).

In the following we consider a generic model for the periodic time series

Yt = β cos(ωt + φ) + εt, (3.13)

where β ≥ 0, ω ∈ (0, π), t = 1, . . . , N , φ ∈ (−π, π], and εt is an i.i.d. noise
sequence.2 To test for periodicity, define the null hypothesis as H0 : β = 0,
i.e., time series consists of the noise sequence alone. The corresponding
alternative hypothesis is H1 : β > 0.

Despite the inconsistency of the periodogram as a spectrum estimator,
the periodogram is a useful tool for developing statistical inference methods
for the spectrum since its statistical properties are known. Consequently,
many of the traditional statistical tests for the detection of periodic time
series can be expressed in terms of the periodogram. Moreover, improve-
ments over the standard periodogram, developed originally for spectrum
estimation purposes, can also be incorporated into periodicity detection
(see Section 3.3.2 for further discussion).

Consider the periodogram I(ω) shown in Equation (3.5) evaluated at the
harmonic frequencies

ωl =
2πl

N
, l = 0, 1, . . . , a, (3.14)

where a = [(N − 1)/2] and [x] denotes the integer part of x. Fisher’s test
utilizes the so-called g-statistic

g =
max1≤l≤a I(ωl)∑a

l=1 I(ωl)
. (3.15)

Since the g-statistic divides the maximum periodogram ordinate by the sum
of all periodogram ordinates large values of g indicate a strong periodic
component and can lead to the rejection of the null hypothesis. More
precisely, the exact null distribution of the g-statistic, under the Gaussian

2The above model assumes that the periodic time series consists of only a single
frequency. For possible extensions to multiple frequencies, see discussion in Publication-
IX and references therein.
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noise assumption, is shown to be (Fisher, 1929)

P (g > x) = a(1− x)a−1 − a(a− 1)
2

(1− 2x)a−1

+ . . . + (−1)b a!
b!(a− b)!

(1− bx)a−1, (3.16)

where b is the largest integer less than 1/x and x is the observed value of the
g-statistic (see also, e.g, Brockwell and Davis, 1991; Wichert et al., 2004).
To summarize, Equations (3.5),3 (3.14), (3.15) and (3.16) form Fisher’s
test.

If the harmonic frequency ωl, l = 1, . . . , a, to be detected is known a
priori, then even a simpler approach suffices (see, e.g., Brockwell and
Davis, 1991).4 Note that Equation (3.13) can be rewritten as

Yt = β′ cos(ωlt) + β′′ sin(ωlt) + εt, (3.17)

for all t = 1, . . . , N . The null and the alternative hypotheses can now be
defined as H0 : β′ = β′′ = 0 and H1 : β′ 6= 0 or β′′ 6= 0, respectively. Equa-
tion (3.17) can be further formulated using the standard linear regression
model Y = Xβ̃ + ε, where Y (resp. ε) is the column vector of Yts (resp.
εts), β̃ = ( β′ β′′ )T , and the tth row of X is ( cos(ωlt) sin(ωlt) ). Assum-
ing again Gaussian noise, then the standard method of analysis of variance
(ANOVA) can be used to construct an F -distributed test statistic with 2
and N − 2 degrees of freedom, i.e.,

β̂(XTX)−1β̂

2σ̂2
∼ F (2, n− 2), (3.18)

where β̂ = (XTX)−1XTY and σ̂2 = ||Y −Xβ̂||2/(n − 2). Although the
above methods provide exact tests, because they are based on a Gaussian
assumption and a type of least squares estimation, they are not robust and
can fail if the original noise assumptions do not hold.

3Due to the equivalence between the periodogram and the correlogram, Equation (3.5)
can be replaced with Equations (3.6) and (3.7).

4A modification for a nonharmonic frequency can also be constructed.
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3.3.2 Robust Periodicity Detection Methods

The robust periodicity detection methods introduced in Publication-IX are
motivated by Fisher’s test and the robust spectrum estimator introduced
in Publication-IV (see Section 3.2.2). Let us first focus on the detection
of unknown frequencies. In the same way as in Fisher’s test, periodicity
detection is based on the g-statistic

g =
max1≤l≤a |S̃(ωl)|∑a

l=1 |S̃(ωl)|
. (3.19)

Instead of using the fixed harmonic frequencies shown in Equation (3.14),
we can also adjust the number of frequencies at which the spectrum esti-
mator is evaluated, i.e.,

ωl =
2πl

K
, l = 0, 1, . . . , [(K − 1)/2], (3.20)

The frequencies ωl in Equation (3.19) are changed accordingly. In partic-
ular, the parameter a is set to [(K − 1)/2]. Although the performance is
not very sensitive to the selection of K, the value K = 2N was found to
provide generally good results.

The null distribution shown in Equation (3.16) is no longer valid for
Equation (3.19). Since the exact null distribution is hard to obtain for
the robust method, two commonly used methods for the significance value
computation were considered in Publication-IX, namely Monte Carlo sim-
ulations and permutations.

Before continuing, it is important to note a highly useful property of
the robust periodicity detection method: it is distribution free. A statistic
T is said to be distribution-free over a collection of distributions D if the
distribution of T is the same for every joint distribution in D. Under the
null hypothesis H0 : β = 0 the signal model Yt in Equation (3.13) can be
considered as a set of i.i.d. random variables. Because robust periodicity
detection depends on {Yt, t ∈ T} only through its rank sequence, it follows
that the g-statistic, when evaluated using S̃(ω), is distribution-free over
the class of all joint distributions of N i.i.d. continuous univariate random
variables (see, e.g., Randles and Wolfe, 1979). In other words, for each N ,
regardless of the type of the noise, the g-statistic has exactly the same null
distribution as long as the noise term is continuous and i.i.d.
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In the Monte Carlo approach, the null distribution is simulated by gener-
ating a large number of time series from the null distribution and computing
the g-statistic. The distribution can be estimated, e.g., using kernel density
estimation methods (see, e.g., Silverman, 1986). The significance values can
then be obtained by integrating relative to the estimated distribution.

Alternatively, permutation tests can be used for significance value com-
putation (see, e.g., Good, 2000). The idea of the standard permutation
procedure is illustrated below:

1. Evaluate the test statistic on the original data to get g.

2. Randomly permute the original time series P times and evaluate the
test statistic on every permutation πi, i = 1, . . . , P , to get g(i).

3. Estimate the significance by computing the fraction of times the
permutation-based g values are larger than the one obtained from
the original time series, i.e.,

p =
∑P

i=1 I(g(i) ≥ g)
P

. (3.21)

A sufficient condition for validity of the permutation tests is exchangeabil-
ity. A sequence of random variables {Yt}, t = 1, 2, . . . , N is said to be
exchangeable, if the joint distribution of Yπ1 , Yπ2 , . . . , YπN is the same as
that of the original sequence Y1, Y2, . . . , YN for all permutations π. Under
the null hypothesis H0, the elements of the stochastic process in Equation
(3.13) are i.i.d. and hence exchangeable. From a less formal point of view,
since the application of a random permutation destroys any periodic struc-
ture that is present in the original sequence, permutation tests can be used
to assess how highly structured the given time series is in the light of the
chosen test statistic versus other permutations of the sequence.

A final point should be made regarding the detection of known periodic
components. If ω′ is the known frequency to be tested, then a modified
g-statistic, g′, can be used

g′ =
|S̃(ω′)|∑a
l=1 |S̃(ωl)|

. (3.22)

The distribution free property holds for the modified g-statistic as well
and the significance value computation can be carried out the same way as
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explained above.
In practice, periodicity detection is typically applied to a very large num-

ber of time series (e.g. genes). Therefore, the issue of multiple testing must
be appreciated in the overall testing procedure. In Publication-IX, a gen-
eral purpose method from (Benjamini and Hochberg, 1995) for controlling
the false discovery rate was considered. Since the issue of multiple test-
ing is inevitable in most genomics studies, correction methods for multiple
testing are under active research (see, e.g., Dudoit et al., 2003).

Some generalizations and improvements over traditional periodicity de-
tection methods have been proposed. A recent review of different methods
can be found in (Artis et al., 2004). Two particular methods are generally
found to have a good performance. The first modification by Priestley and
Bhansali (see, e.g., Priestley, 1981; Artis et al., 2004) uses a certain type
of windowing of the correlogram in order to reduce the variance, i.e.,

S′(ω) =
N−1∑

k=−N+1

w(k)r̂(k)e−iωk, (3.23)

where w(k) is a proper window function, such as Bartlett, Daniel, Parzen,
etc. The second modification by Chiu (Chiu, 1989) modifies the g-statistic
by replacing the average spectrum in the denominator with a proper trimmed
mean of the ranked periodogram ordinates I1 ≤ I2 ≤ . . . ≤ Ia, i.e.,

gγ =
Ia∑[γa]
l=1 Il

, (3.24)

where γ ∈ (0, 1] is a trimming parameter. The use of the above modifi-
cations in the proposed robust framework is as straightforward as in the
case of standard periodogram/correlogram. Those issues are discussed in
Publication-IX and will be further investigated in our future studies.

In order to illustrate performance, Figure 3.3 shows the power of the
proposed robust test for the detection of unknown frequencies. The power
of Fisher’s test is shown for comparison purposes. The power of the test
is estimated using the signal model shown in Equation (3.13) with three
different noise scenarios: Figures 3.3 (a) and (b) Gaussian noise, Figures 3.3
(c) and (d) Gaussian noise and about 10% impulses, and Figures 3.3 (e) and
(f) Gaussian noise and cubic distortion. The graphs are computed using
10000 Monte Carlo runs with the significance level α = 0.05. In the left
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Figure 3.3: The power of the robust periodicity detection method (green)
for different test scenarios. The power of the Fisher’s (blue) test is shown
for comparison. See text for more details.

(resp. right) column of Figure 3.3, the time series length (resp. the noise
parameter) is varied while keeping the noise parameters (resp. the time
series length (N = 50)) fixed. Results shown in Figure 3.3 demonstrate
remarkable robustness of the proposed method under a variety of noise
conditions.
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More extensive performance evaluations are shown in Publication-IX.
Periodicity detection results on real gene expression time series as well as
the type of bench marking suggested in de Lichtenberg et al. (2005) are also
provided in Publication-IX. Both extensive simulations and applications to
real data demonstrate the good performance and, in particular, remarkably
good robustness properties of the proposed methods.

The robust periodicity detection method introduced in this section was
build on the robust spectrum estimator described in Section 3.2.2. Sepa-
rate methods for detecting unknown and fixed frequencies were developed.
Both simulation and permutation-based approaches were considered for
computing significance values. The distribution-free property of the robust
method can be highly useful in practice since the distribution of the test
statistic remains the same under the general assumption of continuous i.i.d.
noise. Extensive simulations on both synthetic and real time series data
show the good properties of the proposed method. In particular, the pro-
posed testing procedure is insensitive to a heavy contamination of outliers,
missing-values, short time series, nonlinear distortions, and is completely
insensitive to any monotone nonlinear distortions.



50 CHAPTER 3. ROBUST TIME SERIES ANALYSIS



Chapter 4

Modeling and Analysis of

Genetic Regulatory

Networks

During recent years, it has become evident that biological systems are ex-
ecuted in a highly parallel and integrated fashion. It has also been noticed
that computational modeling approaches can provide powerful methodolo-
gies for gaining deeper insight into the operation of biological systems. In
particular, with the help of recent developments in high-throughput mea-
surement techniques, computational methods can have enormous potential
in the context of model inference from real measurement data.

Construction of large scale biological models of transcriptional regulation
originates back to the work of Stuart Kauffman who envisioned the use of
random Boolean networks as coarse-scale models of genetic regulatory net-
works (Kauffman, 1969). Since then research around regulatory network
modeling has attracted ever increasing interest. A central question concerns
the level of approximation in network modeling: discrete vs. continuous, de-
terministic vs. stochastic, and genome-scale analysis vs. subnetworks (for
a recent review, see, e.g., de Jong, 2002). Often used coarse-scale model
classes are Boolean networks (NK)1, probabilistic Boolean networks (PBN)
and Bayesian networks (BN), whereas more refined models include, among
others, differential equations and their stochastic extensions. Coarse-scale

1This abbreviation of Boolean networks has a somewhat historical flavor but it is used
to make a clear distinction between Boolean and Bayesian networks.

51
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and detailed modeling frameworks are geared towards different modeling
goals: the former emphasizes fundamental, generic principles between in-
teracting components, whereas the latter can be used for a refined repre-
sentation of biochemical reactions.

It is known that real expression levels are (at least approximately) con-
tinuous and stochastic (McAdams and Arkin, 1997, 1999) and follow some
type of differential equations. Despite the known stochasticity, mainly de-
terministic differential equations have been studied in this context so far.
Moreover, the use of those detailed models is still limited, especially from
a model inference point of view, which is generally considered to be the
most important problem in computational systems biology. Although com-
putational improvements have also been reported for the use of differen-
tial equations as models of gene regulatory networks (Chen et al., 1999;
Sakamoto and Iba, 2001; de Hoon et al., 2003; Tabus et al., 2004), coarse-
scale approaches have received the most emphasis in the literature.

Coarse-scale, and especially Boolean, network analysis is further moti-
vated by the logical nature of gene regulation (see, e.g., Yuh et al., 1998;
Davidson et al., 2002). The dynamical behavior of such networks can be
used to model many biological phenomena, e.g., cellular state dynamics
with switch-like behavior, stability, and hysteresis (Huang, 1999). Although
coarse-scale models cannot represent molecular details, they can capture
the fundamental, generic properties of regulation in large biological net-
works, without modeling the actual quantitative details.

In this chapter, we focus solely on coarse-scale network models. The
content of the chapter is two-fold. The first part (Sections 4.1 and 4.2) deals
with fundamental properties of discrete large-scale network models, whereas
the second part (Sections 4.3 and 4.4) focuses on inference of regulatory
rules from data and other computational and application issues, such as
relationships between two commonly used probabilistic network models.

4.1 Generic Properties of Genetic Networks

Regardless of the chosen network model class, comprehensive modeling at
whole genome-scale is still prohibitive. Hence, it is instructive to study the
general properties of biological network models and possibly compare them
with those of real cell populations. Of particular interest are the sources
of order and robustness observed in genetic regulatory networks. In other
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words, the ensemble approach, to use a term from Kauffman (2004), focuses
on large network ensembles, tries to identify their generic properties, and
matches them to the corresponding features of real cells.

4.1.1 Analysis of Boolean Networks

The study of the properties of random Boolean networks has proven to pro-
vide insight into the general properties of biological network models (Kauff-
man, 1969, 1993). Despite the inherent simplicity of the NK model, NKs are
capable of representing a wide variety of complex behavior and have much
in common with other dynamical systems. One of the most well-studied
properties of NK models is perhaps the phase transition between ordered
and chaotic behavior (for a recent review, see, e.g., Aldana-Gonzalez et al.,
2002). This is also interesting from the evolutionary point of view since it
has generally been argued that the boundary between ordered and chaotic
regimes, called the critical phase, can provide the necessary robustness and
stability for real genetic regulatory networks (Kauffman, 1993). Boolean
networks also provide a simplified modeling framework within which the
properties and plausibility of different network parameters, such as regula-
tory mechanisms or network topologies, can be studied.

Let us briefly review the NK and random NK models and then dis-
cuss their generic properties. The NK model G(V, F ) is defined by a
set of n binary-valued nodes V = {x1, x2 . . . , xn} and a list of Boolean
functions F = (f1, f2, . . . , fn). The value of each node xi at time t + 1
is determined by a Boolean function fi which depends on the value of
some controlling elements xj1(i), xj2(i), . . . , xjki

(i) at time t, i.e., xi(t + 1) =
fi(xj1(i)(t), xj2(i)(t), . . . , xjki

(i)(t)). The value of the nodes are updated syn-
chronously in accordance with the updating functions in F .2 In the random
NK model the list of functions as well as their controlling elements (specific
input variables) are selected randomly. The state vector of a NK (at time
t) is thus an n-dimensional binary vector x(t) = (x1(t), x2(t), . . . , xn(t))T .
The functions in a NK can also be defined using a vector-valued mapping
f = (f1, f2, . . . , fn) from Bn to Bn, where B = {0, 1}.

Since NK models are inherently deterministic and have finite state space
they cannot be chaotic in a strict sense. However, various parameters

2Alternative updating schemes have also been considered. Here we focus only on the
original synchronous model.
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specifying local or global properties of the networks can be adjusted such
that the network is operating in one of two different regimes. In the ordered
regime, the system behaves in a simple way, with most of its nodes being
constant. In the chaotic regime, the system behaves in the opposite way,
with a perturbation of one node propagating to many other nodes. Thus,
networks in the chaotic regime are very sensitive to initial conditions and
perturbations. The boundary between the ordered and chaotic regimes is
the critical phase (or the complex regime).

There are two different ways of analyzing NKs: the so called quenched
model and the annealed approximation. In the quenched model, the same
realization of the (random) functions is kept through all time whereas in
the annealed model a new realization of all the functions is selected after
each time step. Many of the theoretical results have been obtained for the
annealed model on which we also focus here.

The phase transition between ordered and chaotic regimes of NKs is
usually analyzed using so called Derrida plots (Derrida and Pomeau, 1986;
Derrida and Stauffer, 1986). To use the notation from (Kesseli et al., 2005),
let us define Pρ,n = {y ∈ Bn : |y| = ρn}, where ρ = 0, 1/n, . . . , n/n and | · |
denotes the Hamming weight. Then the Derrida plot of a NK is defined as

df (ρ) =
1

2n
(

n
ρn

)
∑

x∈Bn

∑

y∈Pρ,n

1
n
|f(x)⊕ f(x⊕ y)| , (4.1)

where ⊕ denotes addition modulo two and f is the vector-valued network
function. Note that Equation (4.1) corresponds to the quenched model.
The Derrida plot of the annealed model can be obtained by taking the
expectation of df (ρ) relative to the random functions. The actual Derrida
plot is obtained by plotting E[df (ρ)] versus ρ (see Figure 4.2 for examples).
Instead of using the definition directly, Derrida plots are usually approxi-
mated by averaging over different random networks, random initial points
(x) and random perturbations (y) in Monte Carlo fashion. More advanced
spectral-based methods have recently been introduced (Kesseli et al., 2005).

In the annealed approximation framework, the propagation of the per-
turbation over time is obtained by iterating the mapping defined by the
Derrida plot. Two cases are of interest. If the Derrida plot is above the
main diagonal, then (at least some) perturbations tend to diverge and the
random NKs are called chaotic. Alternatively, if the Derrida plot is com-
pletely below the main diagonal, then perturbations tend to vanish and the
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random NKs are considered to be ordered. If, in addition to the Derrida
plot not being above the main diagonal, the derivative of the Derrida plot
at the origin is equal to one, then the random NKs are in the critical phase.

Other related ways of analyzing the network dynamics include percola-
tion analysis where nodes of the network are place on a grid. For each
node in the network, the neighboring nodes in the grid are used as the in-
put variables. For more details, see Publication-III and, e.g., (Derrida and
Stauffer, 1986; Aldana-Gonzalez et al., 2002). Sensitivity of the functions
in random NKs have also been studied and a connection to the Derrida
plot has been established (Shmulevich and Kauffman, 2004; Kesseli et al.,
2005).

Apparently, there are two parameters in the NK model that determine its
operation mode: the random functions and the topology of the controlling
elements (wiring of the input variables). In its original formulation (Kauff-
man, 1969), the random NK model was defined to have a constant number
k of controlling elements for each node (selected uniformly randomly) and
each function was an instantiation of a random p-biased function, i.e., for
each input variable configuration (xj1(i), xj2(i), . . . , xjk(i)) ∈ Bk the proba-
bility of the function being equal to one is p. In terms of the Derrida plot
analysis, the critical connectivity and bias for the phase transition, when
n →∞, were shown to be related as 1/k = 2p(1−p) (Derrida and Pomeau,
1986). Natural relaxations of the NK model allow the updating functions
to have a more meaningful structure, or the number of controlling elements
to vary.

It is well-known that forcing functions (also called as canalizing func-
tions) provide one of the few mechanisms for preventing chaotic behavior
in NKs (Stauffer, 1987). (For a precise definition of the forcing functions,
see Section 4.1.2). There is also an abundance of evidence that functions
from this class are commonly utilized in higher vertebrate gene regulatory
mechanisms. Recently, Harris et al. studied more than 150 known tran-
scriptional regulatory functions with varying numbers of regulating com-
ponents and found that these controlling rules are strongly biased toward
forcing functions (Harris et al., 2002).

Recent results also show that if the number of controlling elements (input
variables) follows a power law distribution, P (k) = 1

ζ(γ)k
−γ (k ≥ 1, γ > 1,

ζ(γ) is the Riemann Zeta function), the dynamics of the networks exhibit
phase transition for γ ∈ (2.0, 2.5), the specific value being determined by
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the bias p, with ordered and chaotic regimes being obtained for larger and
smaller values of γ, respectively (Aldana and Cluzel, 2003; Aldana, 2003).
In particular, when γ ≥ 2.5 the system is always in the ordered regime,
regardless of the bias p. Real genetic networks have also been suggested
to exhibit scale-free topology (Fox and Hill, 2001; Oosawa and Savageau,
2002).

4.1.2 The Role of Certain Post Classes in Boolean Networks

In Publication-III we studied the general properties of certain Post func-
tion classes and, especially, the role that they play in the emergence of
order in NKs. All classes of Boolean functions that are closed under com-
position were characterized by Post (1921, 1941) and have thereafter been
called Post function classes. Several well-known function classes, such as
monotone, linear, self-dual, and the class of all functions, belong to this
family of function classes. In Publication-III, we were only interested in
certain special classes of Post functions, namely, so called Aµ, aµ, A∞, and
a∞ function classes. For convenience, let us first review the definition of
the above function classes as well as the definition of the class of forcing
functions.

A k-variable Boolean function is said to be forcing if there exist an index
i ∈ {1, . . . , k} and u, v ∈ B such that for all (x1, . . . , xk) ∈ Bk, if xi = u

then f(x1, . . . , xk) = v. The input variable xi is called the forcing variable,
u the forcing value, and v the forced value.

The set of true and false vectors of a Boolean function f are T (f) = {x :
f(x) = 1} and F (f) = {x : f(x) = 0}, respectively. A Boolean function
f belongs to class Aµ, µ ≥ 2, if any µ true vectors share a common com-
ponent equal to 1 (note that some of these µ vectors may be repeated).
Analogously, a Boolean function f belongs to class aµ, µ ≥ 2, if any µ false
vectors share a common component equal to 0. Moreover, a Boolean func-
tion f belongs to class A∞ if all true vectors share a common component
equal to 1. The class a∞ is again obtained by duality.

The motivation of Publication-III was to characterize and analyze a class
of functions with some desirable properties. The main results of that study
are summarized below. The considered Boolean function class (Aµ) has the
following characteristics:

1. It is much larger than the class of forcing functions;
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2. Functions from this class are characterized by internal homogeneity;

3. An abundance of functions from this class prevent chaotic behavior
in NKs;

4. Functions from this class ensure robustness against noise and uncer-
tainty; and

5. Functions from this class are closed under composition.

Let us briefly elaborate on these five findings. More discussion can be found
in Publication-III.

A proper class of regulatory functions should be large enough to be plau-
sible from an evolutionary point of view. The average connectivity (the
number of controlling elements in regulatory functions) in real genetic reg-
ulatory networks is considered to be considerable higher than two (Arnone
and Davidson, 1997). However, the fraction of functions that are forcing,
one of the few known mechanisms preventing chaotic behavior in NKs, gets
very small as the connectivity increases. Assuming forcing functions in-
deed were selected randomly by evolution, then it must have been quite a
difficult task to find so few regulatory rules from such a large set of all reg-
ulatory rules. The cardinalities of the proposed functions classes (Aµ and
aµ with µ = 2) are much larger than the cardinality of the class of forcing
functions. Moreover, the difference in cardinalities gets more significant for
higher connectivity (see Publication-III for further details and discussion).
It is also worth noting that the exact number of forcing functions has been
derived recently (Just et al., 2004).

Forcing functions are similar to random p-biased functions in that they
exhibit a preference towards biased functions (many ones or zeros in the
truth table). The Aµ and aµ Post function classes were found to have the
same kind of preference. Figure 4.1 shows the histograms of the number of
functions versus the number of ones in their truth table for 4 and 5-variable
forcing and A2 ∪ a2 functions.

One of the most important findings is that networks constructed from
functions belonging to the considered Post classes provide a mechanism to
prevent chaotic behavior. In Publication-III, we analyzed the dynamics
using both Derrida plots (see Equation (4.1)) and percolation on square
lattices. Both approaches showed that the considered Post classes exhibit
a tendency for ordered network dynamics. Figure 4.2 shows some example
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Figure 4.1: The histograms of the number of functions versus the number
of ones in their truth table for (a) 4 and (b) 5-variable forcing (green) and
Aµ ∪ aµ (µ = 2) (blue) function classes. y-axis shows (a) hundreds (b)
hundreds of thousands of functions.
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Figure 4.2: Derrida plots for BNs constructed from (a) 3, (b) 4, and (c)
5-variable random p-biased functions (red), forcing functions (green) and
A2 and a2 Post (blue) functions.

Derrida plots for 100-node networks constructed from 3, 4 and 5-variable
random p-biased functions (p = 1/2), forcing functions, and A2 and a2 Post
functions. The class of forcing functions as well as the class of A2 and a2

functions clearly provide much more ordered dynamics than the class of all
Boolean functions.

The robustness properties of the Aµ and aµ Post function classes have
been known for quite some time (see, e.g., Muchnik and Gindikin, 1962).
In particular, Boolean circuits synthesized using the considered Post func-
tion classes are strongly fault tolerant, i.e., the correct output of a device
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is guaranteed even when some of the components are erroneous. The ro-
bustness properties rely on the concept of closure, which leads to the final
note.

By construction, all the Post function classes are closed. This has inter-
esting implications for NKs. For example, any node at any number of time
steps in the future is guaranteed to be controlled by a function from the
same closed function class. Consider random p-biased functions. They have
a similar closure property only in the annealed approximation framework
since it is easy to see that any node at any number of time steps in the future
is controlled by a p-biased function. However, only Post (closed) function
classes can have the closure property in the quenched framework. Another
interesting implication is related to time in the discrete-time model and
time in the real, continuous-time systems. Obviously, discrete-time models
are idealizations of continuous-time systems, and time in the model may
not correspond to time of the real system. This discrepancy, however, is
greatly alleviated by the Post function classes. If the genes are regulated
by rules belonging to a closed function classes, then, no matter how many
discrete time steps correspond to the time interval of the actual physical
regulation, the overall rule regulating the gene still belongs to the same
closed function class.

To this end, we would like to mention that other function classes, such
as nested canalizing (or nested forcing) functions (Kauffman et al., 2003)
and chain functions (Gat-Viks and Shamir, 2003), have also been proposed
in the context of gene regulatory network modeling recently.

4.2 Testing Membership in Certain Boolean Func-

tion Classes

In order to facilitate the analysis of Boolean networks, it is useful to have
efficient tools for testing the membership of a given function in different
function classes. In Publication-V we developed methods for testing mem-
bership in the classes of forcing functions, the Aµ and aµ functions, and the
A∞ and a∞ functions. The novel method for testing membership in the
class of forcing functions can easily be extended to cover some subclasses,
such as the classes of nested canalizing functions and chain functions, too. A
mathematically elegant solution to testing membership in all Post classes
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has been introduced in (Levchenkov, 2000). Our goal in Publication-V
was to develop efficient spectral methods for membership testing. Spec-
tral methods for membership testing are preferred over their direct analogs
since they are usually more efficient from a time complexity point of view
(Agaian et al., 1995). Spectral methods for testing several other (Post)
function classes, such as monotone, self-dual and linear, are described in
(Agaian et al., 1995). In the following we give an overview of the proposed
methods. Proofs of the theorems can be found in Publication-V.

4.2.1 Testing Membership in the Class of Forcing Functions

Let Rn(0, 1) be the Rademacher (0, 1) matrix of order n, whose rows cor-
respond to all n-element binary vectors in lexicographical order. As an
example,

R3(0, 1) =




0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1




T

, (4.2)

where T denotes matrix transpose. Let the truth table of an n-variable
Boolean function f be denoted as the 2n-element binary column vector f .
Define the forcing transform as

c(1,1) = RT
n (0, 1) · f . (4.3)

Note that · stands for the regular matrix-vector (or scalar-vector) multipli-
cation. For convenience, define three other related quantities as

c(0,1) = |f | · 1− c(1,1) (4.4)

c(0,0) =
(
2n−1 − |f |) · 1 + c(1,1) (4.5)

c(1,0) = 2n−1 · 1− c(1,1), (4.6)

where 1 is a column vector containing all 1s.
Membership testing in the class of forcing functions can now be stated

as follows. The function f is a forcing function if and only if there exist
u, v ∈ B and i ∈ {1, . . . , n}, such that c(u,v)

i = 2n−1. In that case, xi

is the forcing variable, u is the forcing value and v is the forced value.
Furthermore, information about all forcing variables, forcing values, and
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forced values is contained in the vectors c(u,v).

4.2.2 Testing Membership in the Class of Aµ and aµ Func-

tions

Let us focus on the Aµ property because aµ is similar by duality. Let S be an
n-element set of natural numbers {1, 2, . . . , n}. For each family Ω of subsets
of S, let f be the corresponding indicator function, i.e., f(x1, . . . , xn) = 1
if and only if Ω contains a set T ⊆ S such that

xi =





1, if the ith element of S is in T

0, otherwise.
(4.7)

Thus, there is one-to-one correspondence between Ω and f . It is easy to
see that the function f is in Aµ iff any µ members of Ω have a non-empty
intersection. Such sets are called µ-inseparable. Let the rows of matrix Bn,µ

contain all indicator functions of µ-element sets that are not µ-inseparable,
with the exception of sets containing the empty set. In other words, the
first column of Bn,µ contains zeros. For example, for n = 3 and µ = 2,

B3,2 =




0 1 1 0 0 0 0 0

0 1 0 0 1 0 0 0

0 1 0 0 0 0 1 0

0 0 1 0 1 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0




. (4.8)

Define the Aµ transform as

cn,µ = Bn,µ · f . (4.9)

The problem of membership testing in the class Aµ can now be stated as
follows. Let µ ≥ 2 be given. Let f be an n-variable Boolean function that
is equal to 0 on the all-zero vector and has at least 2 true vectors, i.e.,
|T (f)| ≥ 2. Let k = min(µ, |T (f)|, n). Then, f is in Aµ if and only if cn,k
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does not contain an element equal to k. If f has a single true vector, then
f is in Aµ if and only if f is equal to 0 on the all-zero vector. The constant
zero function f(x) ≡ 0 is in Aµ by definition.

4.2.3 Testing Membership in the Class of A∞ and a∞ Func-

tions

There are at least two ways of testing the A∞ and a∞ properties. Remem-
ber that a Boolean function f belongs to class A∞ if all true vectors share
a common component equal to 1. Thus, if we express f in its (canonical)
disjunctive normal form, then there must exist a variable that is contained
in all the conjunctions and f can be expressed as

f(x1, . . . , xi, . . . , xn) = xi · g(x1, . . . , xi−1, xi+1, . . . , xn), (4.10)

where g is another Boolean function not depending on variable xi. Setting
the variable xi to 0 forces the function to take on value 0. Therefore, if
a function is A∞, then it is also a forcing function with u = v = 0. The
same reasoning applies to the a∞ with u = v = 1. This allows us to use
the methods developed for testing the forcing property.

Alternatively, the following theorem from (Yablonsky et al., 1966) allows
an alternative approach: if an n-variable Boolean function f is Aµ, then
for µ ≥ n it is also A∞. Thus, for the A∞ property one only needs to test
the membership in the class of An functions.

4.2.4 Testing Membership in Some Related Function Classes

Recall that the definition of the nested forcing functions (Kauffman et al.,
2003) is the following. Given an n-variable nested forcing function f , there
exists a forcing variable xi with a forcing value ui. Fixing the first forc-
ing variable xi to its non-forcing value ui defines another (n − 1)-variable
Boolean function. This reduced function is also forcing with another forcing
variable and forcing value, and so on and so forth. It immediately follows
that the above methods for testing the general forcing property can be
used to test the nested forcing property with minor modifications. More-
over, since the chain functions (Gat-Viks and Shamir, 2003) are known to
be a special case of the nested forcing functions (Kauffman et al., 2003) the
same argument applies to the class of chain functions as well.
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The proposed methods can also be extended to so-called generalized forc-
ing functions, where the forcing property is defined in terms of several forc-
ing variables which all need to take a specific value in order to force the
output value of the function.

4.3 Inference of Regulatory Functions from Data

As already pointed out in the Introduction Chapter, in contrast to re-
ductionistic approaches in biology, it is apparent that the behavior of genes
needs to be studied in a global rather than in an individual manner. Conse-
quently, most of the recent work on biological network modeling has focused
of learning multivariate regulatory models from experimental data. Such
approaches inevitably require advanced computational methods to process
massive amounts of data and to make useful predictions about system be-
havior in the presence of known conditions.

There have been a number of attempts to model gene regulatory net-
works, including Boolean networks (Kauffman, 1969), Bayesian networks
(Murphy and Mian, 1999; Friedman et al., 2000), linear models (van Someren
et al., 2000), nonlinear models (Kim et al., 2000), neural networks (Weaver
et al., 1999), differential equation models (Chen et al., 1999), and mod-
els including stochastic components on the molecular level (McAdams and
Arkin, 1997). Due to reasons outlined in the beginning of this chapter, the
use of detailed models is quite limited and, therefore, coarse-scale model
classes, such as Boolean networks (NK), probabilistic Boolean networks
(PBN), and static and dynamic Bayesian networks (BN/DBN) have re-
ceived a considerable amount of attention. The use of coarse-scale models
is also motivated by the encouraging studies of the capacity of discrete
DBNs for revealing gene regulatory networks (Smith et al., 2002; van Berlo
et al., 2003; Husmeier, 2003). For example, Husmeier generated short time
series from a realistic differential equation model and analyzed the capabil-
ities of DBN inference methods for revealing the underlying network struc-
ture. Discussion on discrete DBNs and related model classes is continued
in Section 4.4.

The above mentioned coarse-scale models are both discrete-time and
discrete-state.3 A special case is the Boolean framework where the state of a

3Bayesian networks can be both continuous-time and continuous-valued, but discrete
versions are considered here.
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gene is represented by a Boolean variable (ON or OFF) and the interactions
between the genes are represented by Boolean functions, which determine
the state of a gene, either deterministically or stochastically, on the basis
of the state of some other genes. Let us focus on deterministic predictive
models for a while. A number of studies have focused on identifying the
structure of Boolean networks from binarized expression data (Liang et al.,
1998; Akutsu et al., 1999; Karp et al., 1999; Akutsu et al., 2000; Ideker
et al., 2000b; Akutsu et al., 2003). Although we do not recommend using
standard Boolean networks as models of gene regulatory networks per se,
it is useful to look at the problem of inferring binary predictors.

Most of the previous approaches have focused on the so-called Consis-
tency Problem, i.e., the problem of determining whether there exists a net-
work that is consistent with the examples. Such an approach may not be
applicable in a realistic setting in which noisy observations or other errors
are contained, as is the case with microarray data. A learning paradigm
that can incorporate such inconsistencies is called the Best-Fit Extension
Problem (Boros et al., 1998). Shmulevich et al. showed that if the Best-Fit
Extension Problem is solvable in polynomial time for one Boolean func-
tion from a class C, then the Best-Fit Extension problem is polynomial
time also for the whole network in which all functions belong to class C
(Shmulevich et al., 2002). In Publication-II we developed fast optimized
search algorithms under the Best-Fit Extension paradigm for the inference
of binary predictors for the NK models (see Section 4.3.2). Applications of
the inference methods to real gene expression data are also illustrated in
Publication-II.

4.3.1 Best-Fit Extension Problem

Let us briefly review the Best-Fit Extension problem for Boolean functions
(Boros et al., 1998). A partially defined Boolean function pdBf is defined
by a pair of sets (T, F ) such that T, F ⊆ Bn, where T is the set of true
vectors and F is the set of false vectors. A function f is called an extension
of pdBf(T, F ) if T ⊆ T (f) and F ⊆ F (f). Suppose that we are also
given positive weights w(x) for all vectors x ∈ T ∪ F and define w(S) =∑

x∈S w(x) for a subset S ⊆ T ∪ F . Then, the error size of function f is
defined as

ε(f) = w(T ∩ F (f)) + w(F ∩ T (f)). (4.11)
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The goal is then to find sets T ∗ and F ∗ such that T ∗ ∩ F ∗ = ∅ and T ∗ ∪
F ∗ = T ∪ F for which the pdBf(T ∗, F ∗) has an extension in some class of
functions C (chosen a priori) and so that w(T ∗∩F )+w(F ∗∩T ) is minimum.
Consequently, any extension f ∈ C of pdBf(T ∗, F ∗) has minimum error
size. Note that the Consistency Problem is a special case of the Best-Fit
Extension Problem when ε(f) = 0.

The generalization of the above definition to networks is obtained by
simply repeating it to all the nodes. Consider a single node. In the Best-
Fit Extension framework, T and F consists of observed values of the pre-
dictor variables (e.g., vectors x = (xj1(i), xj2(i), . . . , xjki

(i))T in the NK-
framework). Each observation vector x is in T (resp. F ) if the correspond-
ing value of the target gene (node to be predicted) is ON (resp. OFF). Note
that the weight vector w is an additional parameter to the prediction prob-
lem. Let us assume that the different observations are weighted equally,
although that does not need to be the case in general. If the weights are
unspecified, then a reasonable definition for the weight of an observation x
is the absolute difference in the number of times x is true or false. Alterna-
tively, since we consider the class of all Boolean functions in the following,
we can equivalently define a separate weight for the same vector in T and
F . For example, the weight of x ∈ T , wT (x), (resp. x ∈ F , wF (x)) is the
sum of all weights of observation x belonging to T (resp. F ). Naturally,
weights can also incorporate, e.g., information about the quality of different
measurements (see Publication-II for further discussion).

4.3.2 Optimized Search Algorithms

Application of the Best-Fit Extension paradigm for networks relies on a
type of brute-force search where the same inference method is applied to
each of the nodes and to all possible predictor variable combinations. Let
us assume that the network consists of n nodes and that one is interested in
inferring k-variable (k ≤ n) predictor functions. Consider a single node and
a single predictor variable combination. Let c(0), c(1) ∈ R2k

, and c(0) and
c(1) are indexed from 1 to 2k and initially zero vectors. Let s be a bijective
mapping s : {0, 1}k → {1, . . . , 2k} that encodes all binary vectors of length
k to positive integers. Then, during one pass over the given examples in T
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and F , c(0) and c(1) can be updated to

c(0)
i = w(x), if x ∈ F ∧ s(x) = i

c(1)
i = w(x), if x ∈ T ∧ s(x) = i.

(4.12)

Note that Equation (4.12) can also be redefined for two weights vector wF

and wT . Elements of c(0)
i and c(1)

i that are not set in Equation (4.12) remain
zero-valued due to initialization. Let f denote the complement of f . Then,
the error size of function f can be written as

ε(f) =
2k∑

i=1

c(fi)
i . (4.13)

It is easy to see that error size is minimized when c(fi)
i is minimum or,

conversely, c(fi)
i is maximum for all i. Thus, the truth table of the optimal

Boolean function is fopt
i = arg maxj c(j)

i .
The generalization for the entire network is as straightforward as ex-

plained above. That is, the above method must be applied to all
(
n
k

)

variable combinations and all n nodes. When the time spent on mem-
ory initialization is ignored, the optimal solution of the Best-Fit Extension
Problem for the entire network can be found in time

O
(
nk ·m · n · poly (k)

)
. (4.14)

The time complexity notation deserves a special remark due to the extra
constraint k ≤ n (see Publication-II for more details).

Due to the noise and limited amounts of data, a single Best-Fit function
may not stand out sufficiently uniquely, i.e., there may be other functions
with a comparable error size. Selecting only a single predictor function may
lead to incorrect results. That can be circumvented by finding all functions
having the error size below some threshold εmax.

Consider again only a single node and a single variable combination. Let
us assume we know vectors c(0) and c(1), the error-size of the Best-Fit
function ε(fopt) = εopt, and the optimal binary function fopt itself through
its truth table fopt. Define c as ci = |c(0)

i − c(1)
i |, i = 1, . . . , 2k, and let

f ′ denote the truth table of a non-optimal function f ′. The truth table
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of f ′ can now be written as f ′ = fopt ⊕ d, where d ∈ {0, 1}2k
defines the

distortion from the optimal function. From Equation (4.13) is follows that

ε(f ′) =
2k∑

i=1

c(f ′i)
i =

2k∑

i=1

c(fopt
i )

i +
∑

i : di=1

ci = εopt + cTd. (4.15)

The above equation allows to rewrite the set of functions to be found {f :
ε(f) ≤ εmax} in terms of truth tables as

{fopt ⊕ d : cTd ≤ εmax − εopt}. (4.16)

In Publication-II we introduced a simple recursive algorithm for finding
the set of functions {f : ε(f) ≤ εmax}. Conceptually, the algorithm builds
a tree where the root corresponds to the optimal function fopt and the
nodes below the root correspond to acceptable (permuted) vectors d. See
Publication-II for more details.

Yet another important matter that deserves to be mentioned is a con-
nection between the Best-Fit Extension and standard pattern recognition
methods (Publication-VI). In a pattern recognition framework, the input-
output patterns are usually modelled as random variables X and Y and
are assumed to have a joint distribution π. It is common to search for a
predictor (classifier) which has the smallest probability of misprediction,
i.e., f = arg minf∈C P (f(X) 6= Y ). When the joint distribution π is un-
known a classification rule is applied to the sample data to construct a
predictor. In the discrete setting, the most often used rule is the so-called
histogram rule. The plug-in estimate of π is π̂(x, y) = n(x, y)/m, where
n(x, y) is the number of times x and y are observed jointly in the data
and m denotes the number of samples. The histogram rule finds a pre-
dictor which minimizes the resubstitution error on the given data set, i.e.,
f̂ = arg minf∈C P̂ (f(X) 6= Y ), where the probability is computed relative
to the plug-in estimate π̂.

The connection between the Best-Fit Extension and the histogram rule
is the following. Given the plug-in estimate π̂, define the corresponding
Best-Fit weights for the observed inputs x as w(x) = |π̂(x, 0) − π̂(x, 1)|,
and set x ∈ T if π̂(x, 1) ≥ π̂(x, 0), otherwise x ∈ F . It is easy to see that
the error size of a function f satisfies ε(f) = w(T ∩F (f))+w(F ∩T (f)) =
P̂ (f(X) 6= Y ) − P̂ (f̂(X) 6= Y ), where f̂ is the optimal (unconstrained)
Boolean predictor. Thus, minimizing the error size will also minimize the



68 CHAPTER 4. MODELING OF REGULATORY NETWORKS

resubstitution error. Using different weights for T and F , wT and wF , al-
lows a direct computation of the resubstitution error estimate as well. This
connection gives a sound basis for the use of different error estimation and
model selection strategies, such as cross-validation (Stone, 1974), bootstrap
(see, e.g., Efron and Tibshirani, 1993), bolstered error estimation (Braga-
Neto and Dougherty, 2004), and several different distribution-free error
bounds (see, e.g., Devroye et al., 1996). This also shows a close connection
to information theoretic methods, such as the minimum description length
principle in gene regulatory network inference (Tabus and Astola, 2001)
and the normalized maximum likelihood based binary regression (Tabus
et al., 2002).

The above methods provide efficient and optimized search algorithms
under the Best-Fit Extension paradigm for the inference of logical reg-
ulatory rules from experimental data. The Best-Fit Extension Problem
has been extensively studied for several Boolean function classes in (Boros
et al., 1998) and for Boolean networks in (Shmulevich et al., 2002). For
the class of all Boolean functions, the proposed methods provide more ef-
ficient search algorithms for the inference of both Boolean functions and
Boolean networks. The algorithm for finding all functions having a limited
error size provides an efficient way of finding a set of top ranked predictors.
That can be particularly useful in the cases of small samples and noisy en-
vironments where the best predictor do not stand out sufficiently uniquely.
Moreover, the connection between the Best-Fit Extension Problem and
the discrete classification rule enables applying standard model validation
tools under the Best-Fit Extension paradigm. Possible future research di-
rections, such as adding measurement quality information into the Best-Fit
Extension Problem via the weights w, are discussed in Publication-II and
Publication-VI.

4.4 Probabilistic Models for Regulatory Networks

Regulatory network modeling is typically confounded by a considerable
amount of uncertainty. This uncertainty arises from several sources, the
major ones being the stochastic nature of biological regulation and the
noise present in the measurements. A common approach to tackling the
issue of uncertainty is the use of probabilistic models. Two widely used
stochastic modeling frameworks are considered here, namely, probabilis-
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tic Boolean networks (PBN) (Shmulevich et al., 2002a), and static and
dynamic Bayesian networks (BN/DBN) (Pearl, 1988; Cowell et al., 1999;
Murphy, 2002).

In Publication-VIII we showed that PBNs and a certain subclass of DBNs
can represent the same joint probability distributions. In other words, the
two models are statistically equivalent. This relationship is useful because
it opens up the possibility of applying the advanced tools of these network
models to both of them. In other words, this extends the collection of anal-
ysis tools of both model classes. Let us briefly review the two model classes
and then summarize the main results and implications of Publication-VIII.

4.4.1 Probabilistic Boolean Networks

PBN is a model class that has been recently introduced in the context
of gene regulatory network modeling (Shmulevich et al., 2002a). PBN is
a stochastic extension of the standard Boolean network that incorporates
rule-based dependencies between variables but is also stochastic in nature.
PBNs and closely related probabilistic gene regulatory network models have
been further studied and developed in numerous papers (Kim et al., 2002;
Shmulevich et al., 2002b,c; Datta et al., 2003; Dougherty and Shmulevich,
2003; Hashimoto et al., 2003; Zhou et al., 2003b; Datta et al., 2004; Zhou
et al., 2004); see also (Dougherty et al., 2005).

A PBN G(V, F ) is defined by a set of binary-valued nodes V = {X1, . . . ,

Xn} and a list of function sets F = (F1, . . . , Fn), where each function set
Fi consists of l(i) Boolean functions, i.e., Fi = {f (i)

1 , . . . , f
(i)
l(i)}. At each

time step, the value of each node Xi is updated by a Boolean function
taken from the corresponding set Fi. In the case of independent PBNs, the
predictor functions are selected independently for each node Xi according
to the corresponding selection probabilities P (F (i) = f

(i)
j ), 1 ≤ j ≤ l(i),

where F (i) denotes a random variable taking values in Fi = {f (i)
1 , . . . , f

(i)
l(i)}.

A realization of the PBN is defined by a vector of Boolean functions f =
(f (1)

i1
, f

(2)
i2

, . . . , f
(n)
in

). In the case of dependent PBNs, the predictor functions
are selected for each time step from a joint distribution P (F = f), where F
denotes a multivariate random variable taking values in F1 × · · · × Fn.
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4.4.2 Dynamic Bayesian Networks

DBN is a general model class that is capable of representing complex tem-
poral stochastic processes (see, e.g., Murphy, 2002). DBNs are also known
to be able to capture several other modeling frameworks, such as hidden
Markov models (and its variants) and Kalman filter models, as its special
cases. DBNs and their non-temporal versions have been successfully used
in a variety of problems, such as in speech recognition, target tracking and
identification, genetics, and medical diagnostic systems (see, e.g., Cowell
et al., 1999, and the references therein). BNs and DBNs have also been
intensively studied in the context of modeling genetic regulation (Friedman
et al., 1998; Murphy and Mian, 1999; Friedman et al., 2000; Hartemink
et al., 2001; Pe’er et al., 2001; Hartemink et al., 2002; Smith et al., 2002;
Yoo et al., 2002; Yu et al., 2002; Husmeier, 2003; Imoto et al., 2003; Perrin
et al., 2003; Friedman, 2004; Imoto et al., 2004; Pournara and Wernisch,
2004; Rangel et al., 2004; Yu et al., 2004; Beal et al., 2005; Bernard and
Hartemink, 2005).

For BNs and DBNs we use the notation from (Friedman et al., 1998). Let
X = {X1, . . . , Xn} denote the discrete random variables in the network. A
BN for X is a pair B = (G,Θ) that encodes a joint probability distribution
over X. The first component, G, is a directed acyclic graph whose vertices
correspond to the variables in X. The network structure induces conditional
independencies between the variables in X. The second component, Θ,
defines a set of local conditional probability distributions for G. Let Pa(Xi)
denote the parents of the variable Xi in the graph G. Then, a BN B defines
a unique joint probability distribution over X given by the well-known
formula

P (x1, . . . , xn) =
n∏

i=1

P (xi|pa(Xi)). (4.17)

A DBN that represents the first-order Markov processes of variables in X
is a pair (B0, B1), where B0 = (G0, Θ0) is an initial BN defining the joint
distribution of the variables in X(0), and B1 = (G1,Θ1) is a transition BN
specifying the transition probabilities P (X(t)|X(t − 1)) for all t > 0. The
following constraints are assumed: Pa(Xi(0)) ⊆ {X1(0), . . . , Xn(0)} for all
i, and Pa(Xi(t)) ⊆ {X1(t− 1), . . . , Xn(t− 1)} for all i and t > 0.
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4.4.3 Relationships between PBNs and DBNs

To show the relationships between the two model classes, we introduced
a way of conceptually expressing a PBN as a DBN and vice versa. For a
given independent PBN, it is relatively easy to show that the probability
of a finite time series can be expressed as

P (x(0),x(1), . . . ,x(T )) = P (x(0))
T∏

t=1

n∏

i=1

A(x(t− 1), (x(t))i), (4.18)

where A(x(t − 1), (x(t))i) denotes the probability that the ith element of
X(t) will be (x(t))i after one step of the network, given that the current
state is x(t − 1). Similarly, using the definition of DBNs it immediately
follows that the probability of the same finite time series in a given DBN
is (Friedman et al., 1998)

P (x(0),x(1), . . . ,x(T )) =
n∏

i=1

P (xi(0)|pa(Xi(0)))
T∏

t=1

n∏

j=1

P (xj(t)|pa(Xj(t))).

(4.19)
Equations (4.18) and (4.19) already resemble each other. The final step of
the analysis consists of showing that the Boolean functions and the cor-
responding selection probabilities (resp. initial and transition BNs) can be
defined such that any given DBN (resp. PBN) can be expressed as a PBN
(resp. DBN). The technical details are given in Publication-VIII. This can
be summarized as the following theorem. Independent PBNs G(V, F ) and
binary-valued DBNs (B0, B1) whose initial and transition BNs B0 and B1

are assumed to have only within and between consecutive slice connections,
respectively, can represent the same joint distribution over their common
variables. Thus, the two models are statistically equivalent.

Interestingly, a similar statistical equivalence can also be established be-
tween dependent PBNs and discrete-valued DBNs. Without going into
the details, the essential result can be stated as follows. Dependent PBNs
G(V, F ) and discrete-valued DBNs (B0, B1) whose initial and transition
BNs B0 and B1 are assumed to have only within and between consecutive
slice connections, respectively, can represent the same joint distribution
over their corresponding variables.

In Publication-VIII, we also showed the above types of relationships be-
tween more general DBNs and some extensions of PBNs, such as PBNs
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including so called random node perturbations (Shmulevich et al., 2002b),
and PBNs including additional random network changes (Zhou et al., 2004).
Because there are many PBNs that can represent the statistical behavior
of a DBN, we also discussed the issue of constructing optimal PBNs. Note
that although the relationships are presented in the binary setting, exten-
sions to finer models (more discretisation levels) are also possible.

4.4.4 The Use of Relationships

Having shown the fundamental connection between PBNs and DBNs, the
tools originally developed for PBNs become available in the context of
DBNs, e.g., by using the detailed conversion of a DBN to a PBN. The
same argument also applies the other way around. The main new tools
now available for DBNs and PBNs are briefly reviewed below. Further
discussion can be found from Publication-VIII.

From the DBN point of view, the tools for controlling the stationary
behavior of PBNs, by means of interventions (Shmulevich et al., 2002b),
structural modifications of the network (Shmulevich et al., 2002c), and op-
timal external control (Datta et al., 2003, 2004), become available for DBNs.
To our knowledge, no such methods have been introduced in the context
of DBNs so far. The same applies to efficient learning schemes, strength of
connection based subnetwork inference methods (Hashimoto et al., 2004),
as well as mappings between different networks (Dougherty and Shmule-
vich, 2003), in particular, projections onto subnetworks, which at the same
time preserve consistency with the original probabilistic structure.

From the PBN point of view, both exact and approximate inference tools
developed for BNs (see, e.g., Pearl, 1988; Cowell et al., 1999) give a natural
way of handling the missing values in PBNs which are often present in gene
expression measurements. Well-developed learning methods of BNs can
also be applied to PBNs (see, e.g., Heckerman, 1996; Friedman et al., 1998;
Pearl, 2003). Active learning methods can also be potentially very useful
(Tong and Koller, 2000; Murphy, 2001; Tong and Koller, 2001; Pournara
and Wernisch, 2004). However, it is probably even more important to be
able to combine several different information sources. In Bayesian frame-
work, a natural way of incorporating additional information into the model
inference is via the prior distributions. For example, the use of so called
location data and other sources of information for the construction of pri-
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ors have been considered in (Hartemink et al., 2002; Imoto et al., 2004;
Bernard and Hartemink, 2005). It is also tempting to speculate that bi-
ological knowledge of plausible regulatory rules (see the beginning of this
chapter) could be incorporated into the prior distributions of the parame-
ters Θ.

The main result introduced in Publication-VIII is the connection between
the two model classes. The main benefit of such a connection is that tools
developed in different modeling frameworks can be applied to both model
classes.
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Chapter 5

Conclusions

This chapter summarizes the computational methods introduced in the
previous chapters. In the following concluding remarks we discuss some
advantages as well as limitations of the proposed methods and point out
some possible extensions for future work.

Sample Heterogeneity

Publication-VII serves as a proof-of-principle study by showing that sample
and cell type specific expression values can be recovered from expression
values of heterogeneous mixtures. The proposed methods have a potential
to be highly useful, especially in experiments where the surrounding or
infiltrating additional cell types cannot be successfully separated from the
cells of interest, either manually or using LCM methods. Cancer studies
serve as a typical example.

An inevitable limitation is that the proposed methods require several
measurements from the same heterogeneous sample, with different mixing
proportions of the underlying cell types. However, this inherent limitation
is problem related, not a limitation of the proposed methods, since the
expression values of all the underlying pure cell types simply cannot be
estimated from a single expression profile. Moreover, if the mixing per-
centages of the underlying cell types are not known, then the combined
estimation of both the expression values and the mixing fractions of the
pure cell types further increases the sample size requirement. The same
argument naturally applies to the case of in which the number of cell types
is unknown (model selection).

75
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In more challenging heterogeneous experiments involving complex tis-
sues rather than cell lines, it would be worth studying more than just the
linear mixing model shown in Equation (2.1). Other possible extensions
include incorporating more assumptions, such as specific noise models, into
the computation. It is also worth emphasizing robust estimation methods
since real high-throughput data are prone to contain outliers or other non-
idealities. The importance of robust computational procedures in discussed
throughout the whole thesis, especially in Chapter 3.

Sample Asynchrony

A similar smoothing effect as in the case of heterogeneous mixtures is also
present in many biological time series experiments. Computational meth-
ods for correcting the smoothing effect caused by sample asynchrony were
described in Section 2.3. Examples shown in Section 2.3 and in Publication-
I demonstrate the potential of the inversion methods. Description of the
computational methods can also be thought of as guidelines for the design
of time series experiments, such that the proposed preprocessing methods
can be applied most easily and most efficiently.

Discrete approximation of a continuous process (see Equations (2.14)
and (2.15)) results in an approximation error. Consequently, possible ex-
tensions include developing inversion methods that operate entirely in the
continuous domain (see Bar-Joseph et al., 2004, for an extension to that
direction). Advanced, automated methods for estimating the underlying
cell population distributions also deserve more research efforts.

Robust Time Series Analysis

The proposed robust spectrum estimation and robust periodicity detection
methods were introduced in Chapter 3. The examples in Chapter 3 and
more extensive performance evaluations in Publication-IV and Publication-
IX clearly show the excellent robustness properties of the proposed meth-
ods. In addition, periodicity detection is also based on a test statistic that
is distribution free. This is a highly useful property, e.g., for the simulation
(Monte Carlo) based significance value computation.

Some possible straightforward extensions, such as windowing of the auto-
correlation function and Chiu’s modification of the g-statistic, were already
discussed in Section 3.3.2. In general, the fields of robust spectrum esti-
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mation and robust periodicity detection have attracted little attention and
hence there is room for several new ideas and methods.

Analysis of Boolean Networks as Models of Regulatory Networks

The general properties of certain Post function classes were studied in Sec-
tion 4.1.2. The findings were interesting since, e.g., the studied Post func-
tion classes are one of the few known methodologies for preventing chaotic
behavior in NK models. However, discrete network models are quite theo-
retical and their relations to real biological systems are not straightforward.
One of the next major research steps to be undertaken is the ensemble
approach described in (Kauffman, 2004). In other words, the goal is to
compare the general properties of large network ensembles with the ones of
real biological systems. That requires, e.g., more theoretical results for the
discrete network models, and careful design of experiments so that the rel-
evant general properties of real biological systems, such as the propagation
of perturbations, can be revealed.

Efficient spectral methods for testing membership in the studied Post
classes and in the class of forcing functions (and its variants) were also
introduced. These methods are valuable for analysis of the properties of
the NK models.

Inference of Predictive Models

Inference of predictive models was studied under the Best-Fit Extension
paradigm in Section 4.3. Potentially useful extensions include development
of efficient Best-Fit Extension methods for the studied Post function classes
and the class of forcing functions. Note that the Best-Fit Extension Prob-
lem has been extensively studied for several other function classes in (Boros
et al., 1998).

Relationships between PBNs and DBNs

The last topic focused on two widely used stochastic modeling approaches,
PBNs and DBNs. We believe that the established connections between the
two modeling frameworks will increase researchers’ awareness of the new
analysis tools, both in the context of PBN and DBN, that now become
available. PBNs and DBNs themselves provide several interesting future
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research problems. Of particular interest is the problem of model infer-
ence from experimental data. That includes, e.g., development of efficient
methods for incorporating several different data sources into the inference
process.
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