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Abstract

In biomedical research, it is often necessary to study cell population characteristics, and
quantify changes in cell phenotypes on a cell-by-cell basis. Traditionally, this work has
been performed by interactive manual use of a microscope. In disciplines like systems
biology, studying topologies and dynamics of complex functional networks of cells,
massive systematical screens for phenotypic changes in cell populations are required.
Also in drug discovery, effects of pharmacological agents on the populations must be
tested automatically in a high throughput fashion.

The development of robotic arrayers and automated microscopes, together with in-
creasing computing power and storage space have enabled the automated screening of
cell populations, resulting in a revolution of microscopy imaging. Currently, imaging
of hundreds of populations in parallel is common practice in a single experiment. Dur-
ing the screen, images of each of the cell populations are stored for subsequent analysis.
The amount of image data renders manual visual analysis impossible, requiring auto-
mated image analysis systems, and software.

Current procedures of automated analysis in high throughput microscopy, however,
have several drawbacks. Standard practices exist for a number of analysis approaches,
but especially three dimensional studies are generally performed manually, or semi-
automatically. Furthermore, greater care must be taken on practical issues, such as
low computational cost and easy implementation to advance routine high throughput
screening studies by bioscientist. This thesis considers fully automated methods rang-
ing from cell enumeration, to subcellular analysis in two and three dimensions, con-
centrating on the applicability of the algorithms for high throughput microscopy.
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Chapter 1

Introduction

The more complex the studied system, the more throughput is required from measure-
ment techniques. This is also true in the field of systems biology, where the cell is
studied as a system consisting of simple components forming an extensive network,
working together resulting in complex behavior. Only by understanding the structure,
dynamics, and methods for control and design, can we completely describe the system
[48], enabling, for example, predictive and preventative medicine [40].

In modern cell biology, measurements such as screen expression studies [88], have
been automated transforming manual instruments into high throughput systems, where
hundreds or thousands of experiments are performed in parallel. In microscopy, similar
transformation is converting manual microscopes into high throughput automated plat-
forms. Especially in drug screening [35, 105] and in studies of gene knock-downs [68],
robotic microscopes are routinely imaging hundreds of cell populations without user
intervention. After the imaging, changes in the populations must be quantitatively mea-
sured. In such high throughput microscopy systems, automated image analysis plays
a critical role, overcoming the main disadvantages of manual methods: firstly, manual
analysis of cell images is subjective and error prone, inducing variance in results be-
tween researchers and between analysis instances [122, 16]. Secondly, the analysis of
image data from high throughput experiments is overly laborious especially in cell-by-
cell based studies, and thirdly, manual analysis generally does not yield quantitative
data. Moreover, although the automated image analysis does not guarantee perfect
results, the analysis is repeatable and the errors are therefore largely systematic.

The enormous diversity of cellular organisms, however, sets considerable chal-
lenges for the automated image analysis systems [132, 76], resulting in studies where
manual image analysis is also applied in high throughput measurements [19]. There is
great need for further algorithm development in digital image analysis, not only to en-
able wider range of cell image quantification applications to be automatized, but also to
aim at standardized methods, enabling more practical and straightforward implemen-
tations. For example, the quantification of subcellular structures in three dimensions
has not been widely applied in high throughput fashion, because of expensive equip-
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2 CHAPTER 1. INTRODUCTION

ment, but also because of the challenges in image analysis. Our hypothesis is that the
traditional visual measurements of cells and cell population properties can be replaced
by automated image processing algorithms with suitable design, precision matching
the manual procedures. In addition to cell counting, this also applies to a variety of
different cellular measurements including colocalization, quantification of subcellular
structures, and three dimensional feature description. The automated approach will not
only remove the need for tedious manual analysis work, but also enable biologists to
measure cellular features not feasible by the standard manual techniques.

This study presents fully automated digital image analysis procedures for two and
three dimensional image analysis, solving a number of challenges risen in the afore-
mentioned areas of visual analysis of cell populations. Wherever applicable, we com-
bined well known, previously introduced methods into pipelines, also adopting algo-
rithms not previously utilized in microscopy of cells, into the domain of high through-
put microscopy. The focus being on automated image analysis, we have left certain
aspects of high throughput microscopy, such as the control of the imaging device and
the microscope stage, outside of this thesis. To enable result validation, the features ex-
tracted from the cells were selected to resemble the attributes a manual analyst would
aim at detecting, or if the main objective has been to present a high throughput tech-
nique, a proof of principle type of approach has been given to assure the reader of the
validity and applicability of the algorithm.

Publication III for this thesis was written in collaboration with the Shmulevich
Laboratory, lead by Prof. Ilya Shmulevich at the Institute for Systems Biology (ISB),
Seattle, USA. Publication V was composed while at the ISB as a visiting researcher.
All other Publications were written while working in the Computational Systems Biol-
ogy research group led by Prof. Olli Yli-Harja at the Department of Signal Processing,
Tampere University of Technology. The aim has been in writing the thesis for the
interdisciplinary audience of computer scientists and cell biologists, omitting jargon
and including clarifications, with remarks on practical aspects of high throughput mi-
Croscopy.

In Chapter 2, we briefly introduce the biological background and discuss different
imaging modalities for two and three dimensional microscopy. Next in Chapter 3, we
present automated image analysis procedures for microscopy of cells, concentrating
on the methods utilized in the Publications. Chapter 4 discusses the main challenges
and future possibilities in the field of high throughput microscopy. Finally, Chapter 5
summarizes the results presented in the Publications.



Chapter 2

Light Microscopy in Cell Biology

In biomedical research, there is a continuing trend towards more automated methods,
enabling high throughput studies. The objectives in systems biology [48], as described
in Chapter 1, and in cytomics [109], where molecular disease networks are recog-
nized through cell phenotype studies, can only be reached by large scale exhaustive
approaches integrating different data sources. Cytometry, the study of features and
morphologies of cells, is one such source.

Traditionally, cytometry has been divided into two categories, namely flow and im-
age cytometry. In flow cytometry [72, 95], a beam of light is focused into a stream of
cells, and the properties of the cells are derived from scattering characteristics of the
light. In image cytometry, on the other hand, the cell populations are imaged, and the
phenotype data is acquired through manual or automated image analysis. The focus of
this work is on image cytometry: starting from standard microscopes, different techni-
cal improvements have enabled measurements of cell properties and cellular dynamics
in subcellular level, in three dimensions, and over time. Also in imaging, the measure-
ments are constantly evolving in the direction of high throughput microscopy and high
throughput screening [77], where thousands of cell populations can be imaged auto-
matically in a sequential fashion. Naturally, the increased amount of image data has
required automated image analysis techniques [132], combining biomedical research
with digital signal and image processing.

In addition to light microscopy, other imaging modalities such as electron mi-
croscopy [25] and atomic force microscopy [38], have been successfully applied in cell
biology, especially in structural determination of specimens and molecules respectively.
These techniques are not currently feasible in high throughput studies, and therefore,
are outside the scope of this thesis.

2.1 Biological Samples

In the context of cell and tissue biology, samples imaged with light microscopes can
range anything from tissue, to populations of cells, to single cells, reaching subcellu-
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4 CHAPTER 2. LIGHT MICROSCOPY IN CELL BIOLOGY

lar structures and molecular interactions. The diversity of sample types utilized in the
Publications I-VI prevents giving extensive review on each, but we briefly introduce
the different sample types. While the samples differ greatly from publication to publi-
cation, the analysis methodology stays relatively constant in the context of this thesis:
regardless of the exact biological aim of the study, a number of images are taken using
a microscope system, requiring automated interpretation and analysis. In Chapter 3
we further show that from the image processing point of view, the algorithms used in
automated analysis of different sample types share several similarities.

Starting from simpler organisms, studies of bacterial cells represent an application
where the growth of different cell populations has to be monitored, studying the pro-
portions of specific bacteria types in numerous applications utilizing different staining
methods (Section 2.2.1) [47, 29]. Yeast Saccharomyces cerevisiae cells, on the other
hand, being easy to incubate and study, are common model organisms for more com-
plex cell types, the importance further emphasized after completing the whole genome
sequence [8]. The DNA sequence of yeast combined with high throughput measure-
ment techniques have enabled systematic analysis of, for example, gene interaction
networks and functional pathways in the field of systems biology [40, 41], aiming
at generalizing the results for more complex organisms. Proceeding into mammalian
cells, neuroblastoma cells represent an example of human eucaryotes, where cancer-
ous cells that are again easy to grow and study, can be used to model normal, healthy
cell populations through differentiation. The neuroblastoma cells have been shown to
share properties with normal neuronal cells after the differentiation [24, 87], forming
network like structures and showing signaling activity. Continuing from cell popula-
tions into tissue biology, thick tissue samples utilized by us serve as an example of
routine pathology, where tissue samples are screened for malignant tissue by medical
doctors. The complexity of tissue, with interactions not only between cells of the same
population, but also with the surrounding environment can mask details of intracellular
activity, but on the other hand more closely resemble the cells’ behavior in a larger
context.

2.2 Imaging

In a standard microscope, a lens system produces a magnified view of an illuminated
specimen, the schematics and principle presented, for example, in [69]. In bright field
microscopy [18], however, cells and cell populations appear relatively transparent and
colorless, with low contrast. Thus, special microscopy configurations must often be
applied in the imaging procedure, or the contrast between the areas of interest (fore-
ground) and the background must be increased by labeling with dyes or fluorescent
proteins as described in the next Section.

Without labeling, the most common contrast enhancement methods are phase con-
trast microscopy and differential interference contrast (DIC) microscopy [101], where
differences of the refractive index of the target and the surrounding medium cause a
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phase shift in the illumination light relative to the thickness and properties of the target
[82]. This shift can then be seen as intensity differences through the microscope eye-
piece. More advanced contrast enhancement techniques have received rather low inter-
est in practical applications, mainly because of the need of expensive special equipment
[101].

In the next Sections, the most important labeling approaches are highlighted, fol-
lowed by an introduction to three dimensional microscopy and to high throughput sys-
tems.

2.2.1 Labeling

As noted in the previous Section, the contrast of rather transparent cell samples can
be enhanced using labeling, a technique in which structures or molecules of interest
are highlighted with a dye. Examples including DNA staining with 4’,6-diamidino-2-
phenylindole (DAPI), fluorescent in situ hybridization where the stain is hybridized into
a specific DNA strand, immunostaining with a specific antibody tagged fluorochrome,
and fluorescent proteins [18]. While visible light microscopy combined with staining
with permanent dyes is standard practice in tissue processing, in the context of this
thesis, techniques of fluorescent labeling [28] and fluorescence microscopy are of more
interest.

In fluorescence, a molecule embodying the fluorescent property absorbs a pho-
ton of short wavelength, transferring the system into an exited state, and subsequently
releases this state, emitting a photon of longer wavelength. This difference in wave-
lengths, stokes shift, enables the target to be illuminated with high energy excitation
light and visualized with emission light of lower energy. Suitable optical filters allow
only the emission light to pass through to the eyepiece. Although, in practice, the non-
stained areas also express some fluorescence in the form of autofluorescence [18], this
technique greatly increases the contrast between fluorescence labeled and non-labeled
structures or molecules, as areas without the labeling appear essentially black.

In addition to contrast enhancement, the specificity of different dyes and labeling
techniques enables the fluorescent molecules very specifically to tag and highlight only
at the structures of interest [28]. At first, it was possible to attach small organic dyes
by immunostaining to specific proteins inside fixed cells, marking certain subcellular
structures impossible to be distinguished without appropriate labeling. Later, fluo-
rophores were designed to directly localize molecules and organelles of interest inside
living cells. Today, the green fluorescent protein (GFP) originally extracted from jel-
lyfish Aequorea victoria, along with it’s derivatives [128], have dramatically increased
the applications of fluorescence microscopy. The DNA sequence encoding GFP can be
inserted into the target cells genome, resulting in fluorescence after the specific gene
tagged with the GFP has been transcribed and translated into a protein. Due to the
relatively small size of the GFP protein, it is generally not hindering the normal be-
havior of the tagged protein [14]. Some applications of the GFP include indication



6 CHAPTER 2. LIGHT MICROSCOPY IN CELL BIOLOGY

of gene expression and protein dynamics inside living cells [28, 14]. Especially fluo-
rescence recovery after photobleaching 98], fluorescence resonance energy transfer,
and fluorescence lifetime imaging [121] have enabled studies of protein dynamics and
interactions [3], utilizing GFP and other labeling methods in a nanometer scale.

The main challenges in fluorescent microscopy originate from the toxicity of the ex-
citation light (phototoxisity), and the bleaching of fluorophores during exitation, form-
ing free radicals damaging the cells (photobleaching) [101]. Fortunately, the develop-
ment of nontoxic labeling methods such as the GFP, the increasing sensitivity of detec-
tors, and locally adjusted lighting methods are rapidly advancing live cell fluorescence
imaging [39]. Furthermore, advanced labeling dyes, such as semiconductor quantum
dots [65, 101] increase staining efficiency, resulting in shorter excitation periods, longer
lifetime, larger variety of spectral properties, and extensive brightness.

2.2.2 3-D Microscopy

Three dimensional (3-D) techniques, such as magnetic resonance imaging and positron
emission tomography, are common practise in medical imaging. In cell biology, 3-
D microscope systems have resulted in resolution increase, and enabled more de-
tailed structural studies of cells. In standard two dimensional (2-D) microscopy, all
the changes in illumination by the whole specimen are displayed on the microscope
eyepiece. 3-D microscopy, in contrast, aims at suppressing the light emerging from z-
planes out of focus. That is, with a very shallow depth of field, only the specific z-plane
in focus is made visible.

According to [110] the image m recorded by a fluorescent microscope can be mod-
eled as:

m(z,y,2) = N (h(z,y,2) © f (x,y,2) +b(2,y,2)) (2.1)

where h (x,y, z) is the point spread function (PSF) of the microscope causing blur,
f (z,y,2) is the ideal image signal, b (z,y, z) the background, ® is the convolution
operator, and N (-) is a function defining the noise characteristics, for example location
invariant additive noise. In this Section we concentrate of the PSF, and its effects on
3-D imaging, analysis of the noise and background can be found in Chapter 3.

As the term implies, the PSF defines the shape of spread a single illuminated point
renders when passing through an imaging system, such as the microscope. Assuming
we only have a minuscule fluorescent ball, or a bead we are imaging, the shape of the
point spread function is what is actually seen through the microscope eyepiece. There-
fore, by reducing the size and power of the PSF in z-dimension, the out of focus blur
from other z-planes is suppressed. This is referred as optical sectioning because infor-
mation is acquired from separate z-planes without physical sectioning of the specimen.

The confocal microscope [75] is an imaging setup inherently suppressing out of fo-
cus light in accordance with the smaller PSF compared to 2-D systems [15]. In a stan-
dard confocal microscope, this is achieved by a two pinhole setting [75], only illumi-
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nating (and measuring) the fluorescence of one small volume (cube) inside the sample,
blocking most of the light emerging from outside this volume. Scanning through the
whole sample results in m (x, y, z) of Equation 2.1, that is, the intensity values through-
out the target object. Lateral resolution increases accordingly, due to the smaller PSF.
In practice, when taking the images, the microscope user interface includes zooming
functions increasing the magnification, but the PSF increases simultaneously, resulting
in no increase in the real resolution, but just a magnified view of the target.

Diminishing the PSF further has resulted in multiphoton and 4Pi microscopy [21].
In multiphoton microscopy, the fluorophores are excited in a localized fashion using a
high intensity pulsed laser with such a long wavelength (low energy) that is not able
to excite the target molecule into a higher energy level, unless two low energy photons
hit the fluorochrome exactly simultaneously, causing the combined energy of the two
photons to be absorbed exciting the fluorescent molecule. The ability to use lower en-
ergy excitation enables deeper penetration into samples, and removes effects of toxic
photobleaching outside the focal plane. The 4Pi technique [37] relies on special illu-
mination and imaging setup of two objectives simultaneously. By setting the phases of
excitation lights in a suitable fashion, and combining the emission into one detector, the
fluorescence emission can be localized into an area much smaller than possible in con-
ventional confocal equipment through interference [34]. Though these more advanced
techniques have proven increase in resolution, the cost and rarity of equipment delays
implementation.

Without special optical hardware, the blurring effect of the PSF can be diminished
with deconvolution [86]. First, in non-blind deconvolution, the PSF is acquired from
measurements or derived mathematically [61, 27]. Second, the convolution operation
h(z,y,2z) ® f (z,y,z) in Equation 2.1 can be reversed to some extent with filtering
[113]. Successful deconvolution in practice, however, is a result of numerous pro-
cessing steps. Different imaging errors such as nonuniform illumination of the target
specimen lead to artifacts, and although these errors can be diminished with prepro-
cessing, a variety of defects may arise during the process [64]. Furthermore, the PSF
is often assumed spatially invariant because of computational complexity, resulting in
nonoptimal deconvolution. Finally, the result is greatly dependent on the choice of
the filtering algorithm [113, 64], characteristics of the image affecting the performance
of different approaches. Despite the disadvantages, deconvolution has been shown to
result in improved measurement accuracy both with simulated and real data [86].

2.2.3 High Throughput Microscopy

As introduced in Chapter 1, the more complex the studied system, the more throughput
is in general needed from the measurement instruments. Starting from complementary
DNA (cDNA) microarrays [88], cell biological measurement systems have evolved to-
wards massive parallelism. In microscopy, although the first automated cell analysis
systems with motorized microscopy date back to the 70’s [81], only during the past
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years there has been a swift move from manual studies into five dimensional [4] high
throughput screening [11, 105], that is, three dimensional microscopy combined with
time lapse imaging of different wavelengths (colors). This process has been enabled by
digital imaging sensors, by advances in automation (robotic microscope systems), and
by the increase in computing power and storage space.

There are numerous example applications for high throughput microscopy, utiliz-
ing the basic microscopy schemes presented in the previous Sections. In well plate
experiments, populations of cells are incubated in a regular grid of tiny wells. Each
of the populations can be studied in a different fashion, for example mammalian cells
having different genes "shut down" with ribonucleic acid interference (RNAi) [45] in
the individual wells. In cell arrays [124, 134], a monolayer of cells is grown on a glass
slide with printed target molecules, such as the aforementioned RNAI, also resulting in
an array of cell population spots. This transition into high throughput imaging can also
be seen in tissue processing, started by the introduction of the tissue array [50], where
one single experiment is composed of hundreds of small tissue samples with different
staining.

After incubation, the populations are imaged for changes in cell phenotype. Au-
tomated microscopes or robotic arrayers can be used in performing the whole chain
from imaging to data storage without user intervention. The images of spot like cell
populations are stored in a database system, and analyzed with the methods of digital
image processing, enabling different features to be extracted from the populations, as
presented in Chapter 3. The requirements for the processing chain are naturally very
different from the established methods of manual microscopy. Therefore, to fully uti-
lize the potential of these high throughput screens, the whole pipeline from incubation
to data and setting storage, and result interpretation must be rigorously standardized
[104], as discussed further in Chapter 4.



Chapter 3

Digital Image Analysis in
Microscopy of Cells

Digital image analysis aims at automating procedures traditionally requiring manual
image interpretation, enabling high throughput and perfect repeatability. In the con-
text of light microscopy of cells, methods of signal and image processing are applied
to extract information from biological cells and populations (digital image cytometry
[119]). Despite the long history of digital image cytometry, the number and diversity
of different microscopy measurement techniques challenges the robustness of any au-
tomated image analysis method [115]; no single algorithm is capable of adjusting to
the vast variety of microscopy images [133], and automated image analysis has been
described as "one of the greatest remaining challenges in screening" [13]. Simultane-
ously, from the viewpoint of biomedical research, high throughput cell measurement
techniques are becoming commonplace, increasing the need, and continuously setting
new requirements for automated analysis.

The image analysis procedure can be partitioned in numerous different ways. Here,
we adopt the following, also representing the organization of this Chapter (from [31],
modified by the author):

1. Image acquisition and restoration

2. Segmentation

3. Visualization

4. Feature extraction and measurements

This Chapter introduces the specific algorithms implemented in the Publications
with descriptive examples, but the results, comparisons to manual analysis, and more
extensive case studies can be found in the Publications. As discussed in Chapter 1,
we mainly concentrate in quantification of subcellular structures with methods of rel-
atively low computational cost, to enable practical implementation in high throughput
microscopy applications. Although the solutions provided in the Publications are here

9



10 CHAPTER 3. DIGITAL IMAGE ANALYSIS IN MICROSCOPY

presented as application specific, they will most likely be applicable in a wider spec-
trum of image analysis problems.

3.1 Preprocessing

Images taken with microscopes always contain defects of various types [120], caused
for example by a low quality imaging device or by theoretical limitations from optics
and quantum effects. Because of the long history of manual microscopy, the origin
of some imperfections are also due to the different requirements for image quality in
manual analysis compared to the requirements in automated image processing. As an
example, traditionally, when taking an image for manual analysis, the aim in general
is to produce results that are as easy to interpret and as visually appealing as possi-
ble, while consistent imaging with fixed settings from image to image is critical in
automated analysis to enable quantitative and repeatable results. The adaptation of our
visual system [117] can also lead to images of varying quality if the result images are
observed from automated image analysis point of view.

As presented in the Equation 2.1, the noise and imperfections in the recorded im-
age can be modeled with convolution and addition operations to the underlying optimal
signal. Since we were able to validate the segmentation schemes in all the Publica-
tions without deconvolution, the effect of h (x,y, z) is assumed negligible, reducing
the Equation 2.1 into

m(x,y,z) = N (f (z,y,2) +b(z,9,2)) (3.1)

To obtain the original signal from the distorted output, some noise reduction
scheme must be applied to diminish the effect of N(-), and second, the background
component b (z, y, z) must be estimated and removed.

Due to the error sources described above, and largely non standard high through-
put microscopy setups, each batch of images is unique, differing between laboratories,
equipment, and individuals performing the imaging. In all the Publications, indepen-
dently designed preprocessing steps were required in order to obtain adequate estima-
tions of f (z,y, z) for segmentation, by methods described in the rest of this Section.
In short, we introduce a quality control scheme for discarding images of unacceptable
quality, implement a mathematical morphology based noise suppression algorithm, and
reduce the effect of nonuniform background by polynomial fitting.

3.1.1 Noise Suppression

In Publication V we found that in practical applications, manual imaging may result in
images with a non-acceptable signal to noise ratio due to human error in exposure con-
trol, see Figure 3.1(c) for an example. Automated imaging can also introduce similar
images corrupted by noise because a batch imaging device adjusts exposure and gain
settings maximizing contrast and subjective image quality. If no objects can be found
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Figure 3.1: Image quality control by thresholding, see Publication V for details of the input data.
(a) High contrast fluorescent microscopy image with two clearly visible subcellular objects.
(b) Result of automated thresholding. (c) Noisy low contrast image (scaled between [0, 1]

for illustration purposes). (d) Thresholding of (c) displays erroneously increased number of
foreground pixels, and therefore results in discarding the image.

11
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from the field of view of the device, no signal can be detected even with high gain,
yielding empty images with high level of noise. We implemented a quality control
scheme for detection of these erroneous images.

The procedure is illustrated in Figure 3.1. First we threshold (see Section 3.2 for an
extended definition of thresholding) the input images using a histogram based Otsu’s
thresholding method [74] dividing the pixel intensities into two classes, namely fore-
ground and background. Variation between the two classes can be given as:

P PG E0);
PO mnwm

(3.2)

t t
where pip is the mean intensity of the image, and w (t) = > p; and u (t) = > ip;
i= i=1
are the zeroth- and the first-order cumulative moments of the image histogram up to
the ¢*" intensity level, and p; is the probability of intensity i in the image. By maximiz-
ing the between-class variance o%(t) of the two classes (and minimizing within-class
variance), the optimal threshold level ¢* can be obtained:

t* = argmax o5(t), (3.3)
te(1,L)

where L is the maximum intensity level of the image. As the result of thresholding,
pixels of the image with intensity higher than ¢* are labeled as foreground objects, and
the rest as background.

Figure 3.1(a) presents an image consisting of objects of interest on a darker back-
ground. Here, the Otsu’s algorithm correctly separates the foreground from the back-
ground, as can be seen in Figure 3.1(b). On the other hand, applying the algorithm to
an image with excessive noise (Figure 3.1(c)) leads to a clearly erroneous result (Figure
3.1(d)). This is due to the different pixel intensity distributions in the two examples.
In the first case, the histogram of the image is bimodal with one large peak around the
background intensities, and a small peak consisting of the foreground. In the noisy
image, with a more uniform intensity distribution, the optimal threshold is closer to the
mean of the intensities, resulting in virtually equal number of pixels to be assigned as
background and foreground. Since, in the context of Publication V, we know a priori
that the foreground objects comprise only 10 — 15% of the total number of pixels, this
information can be used in discarding images with excessive number of pixels consid-
ered foreground.

Images not discarded by the previous procedure, are impaired with noise from sev-
eral sources, most relevant component in fluorescence microscopy being Poissonian
[111]. To enable robust and reliable detection objects of interest, the effect of this noise
must be suppressed, simultaneously preserving the object details. A standard approach
for this "speckle" type noise suppression are nonlinear filters, especially the median
filter [5], excessively applied also in fluorescent microscopy [36, 126, 110]. In two
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Figure 3.2: Rank order morphological filter applied to fluorescent microscopy of subcellular
structures, see Publication IV for details of the data. (a) Original image with two nuclei (red).
(b) Result of automated thresholding of the red channel (Otsu method [74]). (c) Postprocess-
ing of (b) using morphological closing, with the aim of improving the segmentation result. (d)
Manual thresholding of the red channel resulting in a noisy outcome, especially in areas where
the green spots can be seen in (a), suggesting bleed of information between the red and green
color channels. (e) The original image after filtering with the standard median filter. (f) Thresh-
olding of (e) resulting in clear underestimation of the nuclei areas. (g) Morphological opening
of the red channel also underestimating the nuclei areas. (h) Red channel after filtering with
the rank ordered filter. p = 5, structuring element b of size 15 x 15. (i) Thresholding of (h)
displaying two clearly visible nuclei ready for postprocessing.

dimensional median filtering, the original value of each pixel m(z,y) is replaced by
the median value of the pixel and it’s neighborhood W:

m* (z,y) = median {m (x — s,y — t) | (s,t) € W} (3.4)

The median filter is robust in suppressing outliers, and has excellent edge preser-
vation properties (step response of a median filter is a step), a necessity for the forth-
coming segmentation phase. Furthermore, the procedure is completely parameter free,
and has a very low computational cost. We found the standard median filter to result in
adequate noise suppression in all the confocal studies (Publications III and V).
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In Publication IV, double staining with partly overlapping emission spectra and
JPEG compression caused crosstalk between color channels, as visualized in 3.2(d).
Although the automated analysis should always be applied to raw unprocessed data,
lossy compression such as the JPEG is still occasionally used in practical microscopy
applications due to storage space restrictions. The crossatalk artifacts rendered the
median filter unfeasible. As a solution, we implemented a rank filter based modification
of a gray scale morphological filter [97] (3 ;:

[Cb,j(m)](l‘,y) = Pj{m(fv -5y - t)|(5>t) € Db}v (3.5)

where Dy, is the domain of the structuring element b, and operator F; returns ik
intensity percentile of the image inside structuring element. The images were filtered
with the following combination:

0bp (M) = Cp,100—p[Co,p (M) (3.6)

The effectiveness of the rank ordered morphological filters stems from the possibil-
ity to adjust the "softness" of the filtering operation, enabling tuning of standard mor-
phological operations such as opening and closing, making them more robust against
outliers, still preserving shapes of the objects of interest [96]. With p = 0 the filter in
Equation 3.6 is equivalent to the grayscale morphological opening. Increasing p will
gradually filter the image with increasing smoothness, by discarding a selected per-
centile (rank) of the intensities inside the structuring element. We found p = 5, with
structuring element b of size 15 x 15 to yield adequate results. One example of the
properties of this filter, and comparisons to other filtering approaches like the median
filter are given in Figure 3.2. The Figures 3.2(a), (b), (¢), (d), (e), (f), and (g) present
the original image, and results of different preprocessing techniques. After filtering
with the rank ordered morphological filter (Figure 3.2(h)), the details of the object bor-
ders are preserved while greatly suppressing noise. Furthermore, the two objects of
different intensities are filtered correctly: the one error can be corrected in a straight-
forward manner with a subsequent removal of undersized objects, for example. With
this design, it is possible to avoid the property of the standard morphological opening
(3.2(g)) to excessively emphasize the shape of structuring element, and the morpholog-
ical closing (3.2(c)) to join erroneous pixels of noise by the object border to the object
itself. Finally, the differences between results after the standard median filter and the
proposed approach are evident by comparing the Figure 3.2(f) with Figure 3.2(i).

3.1.2 Background Correction

A varying bias field (shading, uneven background, flat field, vignetting) is often present
in microscopy images. This phenomenon can be caused, for example, by thickness vari-
ation of the sample, using off-axis lighting techniques, background autofluorescence,
or uneven sensitivity of the imaging detector [106]. The smoothly varying intensities
of the shading do not hinder manual analysis, but automated image analysis is often
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Figure 3.3: Correction of background shading. (a) Bacteria image from a water hydraulic
system, see Publication I for details. (b) Two dimensional second degree polynomial fitted
to (a). (c) Result after background subtraction. (d) Simulated image of DAPI stained nuclei
with strong background shading, obtained using SIMCEP cell image simulator [51]. (e) Fitted
surface. (f) Result after subtraction.

based on the absolute intensity values, global thresholding being one example, making
the correction of the background component compulsory step.

In the literature, two main approaches have been presented for the bias, namely
additive (see Equation 2.1) and multiplicative models, or a combination of the two
[84, 57, 106]. Several methods have also been proposed to reduce the effect: in
[108] the authors used morphological closing operator to estimate the background, [55]
presents a method where background is estimated with entropy minimization and in
[54] the background was estimated using gaussian low pass filtering; see [106] for an
extensive review on the subject. Traditionally, to minimize computational complexity,
the correction has also been applied by first imaging an empty calibration field without
any objects, and subsequently subtracting this calibration image from all the images
under study. This procedure adds and extra step to the imaging, and requires the cal-
ibration image to be distributed with the unprocessed data. Aiming at a more general
correction scheme, the background bias should be estimated and removed given only
the unprocessed images.

In Publications I and III we found that in order to enable reliable segmentation,
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the background correction was a necessary preprocessing step, and that the additive
model in accordance with Equation 3.1 was sufficient in modeling the bias. For two
dimensional images, the light distribution in the bias field can be assumed quadratic
[84, 49]:

b(x,y) = ag + a1 + agy + asxy + asx® + asy’, (3.7

where a,, are the coefficients of the polynomial describing a two dimensional surface.
In Publication I, the shading correction was performed by fitting this surface to the
original image in least squares sense, resulting in estimates for the coefficients a,, of
Equation 3.7. Thereafter, the estimated polynomial surface was subtracted from the
image as illustrated in Figure 3.3. Figures 3.3(a), 3.3(b), and 3.3(c) show an example
of DAPI stained bacteria (see Chapter 2) taken from a bioreactor for enumeration, the
fitted surface, and the resulting image after subtraction for segmentation, respectively.
Another example for visual evaluation of the subtraction method is given in Figures
3.3(d), 3.3(e), and 3.3(f), where the same procedure is applied to a simulated image
created with the SIMCEP microscopy image simulator [53, 52, 51].

In the approach described above, because the polynomial surface is fitted to all
the image pixels, the pixels not belonging to the background also affect the estimated
coefficients. These effects can be avoided, for example, by selecting beforehand the
pixels that will be used for the fit [84], or by performing the fit in a more robust manner
discarding the outlier (foreground) pixels automatically [57]. In Publication III, we ap-
plied an M-estimator based background estimation. In short, the M-estimator approach
is similar to the aforementioned polynomial fit, except that the standard sum of squares
cost function in the least squares approach is replaced by a more general form, such
as the Tukey cost function. This robust approach enhances the performance of the fit
by suppressing the effect of outliers as demonstrated in [69], where implementation
details, result examples, and discussion can also be found.

3.2 Segmentation

In segmentation, the pixels of the image are partitioned into different groups or classes.
Typically, the objects of interest are separated from the background as already illus-
trated in Figure 3.1, aiming at a result where specific labels are assigned for specific
types of objects [66], enabling automated interpretation of the image. The segmen-
tation is often considered as the most difficult part of automated image analysis [31],
and great emphasis must be put on the segmentation accuracy and robustness, not least
because all the measurements of the detected objects are based on the segmentation
result. Previously, numerous different segmentation schemes have been presented for
microscopy images of cells (see, for example, [13] and [125]), but no single method is
applicable to all the diverse image types [132].

One approach to segmentation is to consider the process as a pattern recognition
problem [43, 20], where features calculated for pixels of the image are grouped ac-
cording to some similarity measure. Formally, following the notations from [42],
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Figure 3.4: Feature based image segmentation. Each circle represents a measurement result
(feature vector) for a pixel in an image, blue color for background and green for foreground.
The data is for illustration purposes only, drawn from two normal distributions. (a) Intensities of
the pixels. An adequate threshold separating background and foreground would lie somewhere
around 110 — 130 in the intensity scale. (b) The feature vectors after a second measurement,
resulting in improved class separation, and therefore, depending on the segmentation algorithm,
enabling improved segmentation.

we have feature vectors x = (x1,...x4) of d measurements, forming a pattern set
H = {x1,...x,}, where n is the number of feature vectors, in image analysis often
the number of pixels. We want to find a method, that would assign a class label [; for
each of the feature vectors x;, where [; € {1,...,k} and k is the number of different
groups or clusters. That is, we measure some properties of the image pixels, such as
the intensities, concatenate the different measurements into vectors x; and implement
an algorithm labeling the vectors into predetermined number of groups. Furthermore,
since we assume there is one feature vector for each pixel, the procedure results in as-
signing each pixel a specific label ;. These pixel labels can refer to the background
and foreground (cells) in the image, for example.

Figure 3.4 presents measurements for a small image consisting of foreground and
background pixels, visualized for clarity in blue and green, respectively. The data is for
illustration only, drawn from two different normal distributions. First, in Figure 3.4(a),
we have measured one feature for the pixels, the intensity. In Figure 3.4(b), a second
measurement has been added into the feature vectors, here the local intensity variation
around the pixel. The dashed lines in both of the Figures represent the segmentation
outcome, separating the groups based on the measured features, and assigning the pix-
els with background and foreground labels.

Preprocessing in the previous Section compensated for the distortion modeled
by b(z,y,z) and N(-) in Equation 3.1, yielding an estimate of the original image
f (z,y, z) given the input image m (x,y, z). While this estimate may be far from per-
fect, it can be assumed to be normalized to fulfill the requirements set by a specific
segmentation technique. Therefore, also the segmentation procedures introduced next
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were designed independently for most of the Publications. Since staining is assumed,
however, the objects of interest can be located by searching for areas of different in-
tensity compared to the background. Two main approaches include the detection of
objects with different pixel intensities inside the object than outside, and the detection
of borders (rapid changes in intensities).

3.2.1 Detection of Foreground Objects

Generalizing the definition of thresholding given in Section 3.1.1, in thresholding [92],
feature vectors x; of one feature, are labeled in two classes by the magnitude of the
vector. This is commonly applied with the pixel intensity as the only feature, resulting
in labeling the darker areas of lower intensity values as background, and the brighter
areas as foreground, as in the example with Otsu’s thresholding method (Equations 3.2
and 3.3, Figures 3.2(b) and 3.4(a)). In Publications I, III, IV and V, after successful
preprocessing, we found the Otsu’s thresholding method with pixel intensities as fea-
tures, to be the only operation needed for separating the background from the objects
of interest in the images with staining.

In Publication VI, the imaging was performed by focusing through a semitrans-
parent tissue section block of immunostained neurons, with the aim of locating and
visualizing the 3-D structure of stained cells in the block. The focusing produced a
series of images (referred as z-slices) of different z-planes, where the objects of interest
appear both in and out of focus, and the segmentation procedure was required to label
the in focus pixels of each 2-D z-slice as foreground. There are several focus level esti-
mation algorithms presented in the literature, most of them implemented for autofocus
applications selecting the best focus image from an image stack [102], for estimating
3-D shapes from focus levels [67], or for generating all-in-focus images through mul-
tiple image fusion [73, 129]. Our approach, resembling the proven Tenengrad focus
estimation method [9], proceeds as follows:

1. Convolve the images with the standard Sobel mask [1].
2. Select the Sobel gradient magnitude as the only feature for each pixel.

3. Apply thresholding to label the feature vectors either as in focus candidate pixels,
or out of focus.

4. Post process the candidate pixels using morphological operations.

Since the in focus pixels differentiate by rapid intensity changes from the more
uniform background, and since the gradient magnitude is a measure of local changes
in intensities, the pixels considered to form the in focus objects can be detected by
thresholding the gradient magnitudes, separating the strongest local intensity transi-
tions from the rest of the image. Finally, with the post filtering step, local irregularities
are removed as described in more detail in the Publication VI. Figures 3.5(a) and (c)
present two examples of input z-slices with two different focus levels. Results of the
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Figure 3.5: Detection of structures in focus. The images are from thick tissue sections of
immunostained neurons, see Publication VI for details. (a) and (c) Images of a semitransparent
tissue block with two different focus levels. (b) and (d) Result of focus detection by the Sobel-
based method. The arrow highlights a structure with a change in focus from (a) to (c).

in focus detection algorithms are given in 3.5(b) and (d). By processing through all the
z-slices, the method yields the 3-D structure of the object.

In the images for Publication II, a rather nonspecific fluorescent staining resulted
in detection of bright spots, or puncta, over a heavily autofluorescent background. The
rapidly altering level of background rendered background correction and thresholding
methods, introduced in the previous Sections, inadequate, but while the absolute in-
tensity values of the puncta differ, the intensities are higher than their surroundings
(Figures 3.6(a) and 3.6(d)). Therefore, the pixel intensity and local intensity varia-
tion were selected as features for segmentation, the principle schemed in Figure 3.4(b).
One class of algorithms for grouping two or higher dimensional feature vectors is un-
supervised classification, clustering [42], grouping the feature vectors x; of pattern set
¢ around cluster centers by minimizing a certain error measure. Previously, fuzzy
clustering (FCM) [42] has been proven effective in segmentation in biomedical image
processing [78, 131].

We applied the FCM method as follows:
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1. Create a random membership matrix U of size n x k, where u;; € [0, 1] repre-
senting fuzzy membership values for each of the n feature vectors in each of the

k clusters.
n k 9
2. Calculate a fuzzy criterion function €2 (27, U) = 21 ) ug; ||xi — cjl|”, where
1=177=
.i Ui
c; = = is the j'" fuzzy cluster center. Reassign the feature vectors into
> u?j

1=1
clusters decreasing the value of the criterion function. Recompute U.
3. Repeat the Step 2 until the elements of U change by less than a given threshold,
or a specified number of iterations has been reached.

4. Assign each feature vector to the cluster with the highest membership value in
the matrix U.

The FCM procedure labels each pixel of the original image to one of the k clusters.
By utilizing the a priori knowledge of small fluorescent puncta on darker and larger
background areas, the correct pixels are obtained by combining the clusters with the
smallest number of pixels, until the next operation would force the total number of
objects over a pre-estimated limit. Because of the random initialization of the matrix
U, the clustering may not always converge to exactly the same minimum (the same
pixels may not always be assigned the same cluster labels). To minimize this variation,
the clustering is repeated nine times, and the final results is selected to be the one with
the median number of detected objects. Example results are presented in Figure 3.6,
with comparisons to the Otsu thresholding method.

Despite the large number of processing phases, the clustering approach has several
advantages. First, only a very limited number of parameters need to be set prior to
the processing. Second, as opposed to supervised classification algorithms, clustering
does not require training samples. Third, the segmentation procedure is shown to be
robust to background noise such as autofluorescence. Finally, the FCM has previously
been shown to encompass better convergence properties overcoming local minima in
comparison to the popular k-means algorithm (Section 3.4), making the initialization
of the matrix U less critical [42].

In Publication III, the segmentation of bright field yeast cells was also performed
with a method utilizing two features, the local mean and variance, but the approach
was not designed by the author of this thesis, and has already been described in detail
in [69] and [71].

3.2.2 Separation of Overlapping Objects

After assigning the pixels into foreground and background, aggregated or overlapping
objects must be separated to obtain object by object level data. There exists several dif-
ferent algorithms in the literature for the separation of overlapping objects in biomed-
ical microscopy [91, 33, 127, 2, 58], but again, no single approach has been shown
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Figure 3.6: Detection of fluorescent puncta in neuroblastoma cells, details of the images given
in Publication II. (a) and (d) Input images expressing heavy autofluorescence. (b) and (e) The
result of the fuzzy clustering approach, displaying the detected puncta. (c) and (f) Results of
Otsu thresholding for comparison, clearly underestimating the number of vesicles. If a lower
threshold was set manually, the segmentation would detect the regions with strongest autofluo-
rescence, not puncta.
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to be superior in all the studies. One of the most general methods is the watershed
segmentation [114, 97], with numerous different applications.

In the watershed segmentation, intensity changes of an image are considered as a
topographic surface, see Figure 3.7 for an example. In this surface, the different objects
are visible as pits, separated by a dividing ridge as displayed in Figure 3.7(e). The
watershed transform begins to flood the surface from each regional minimum (pits or
catchment basins), placing watershed lines where water from different pits meet (on the
ridges), separating the overlapping objects. In practice, however, small irregularities
in the object shapes or intensities result in several regional minima to be found for
each of the objects, resulting in oversegmentation, where a single object is divided into
multiple segments. A standard method of correcting the oversegmentation is h-minima
imposition [97], where minima not deeper than a predefined threshold are suppressed.
An extensive description of the watershed algorithm can be found in [114].

For the CellC software [90] introduced in Publication I, we implemented two dif-
ferent variations of the watershed algorithm. In the first version, the watershed lines
are calculated directly from the intensity values of the input image. This procedure
effectively separates overlap if the borders of the objects are of different intensity than
the centers [60]. In the second version, the image is first segmented for a binary re-
sult (Figure 3.7(b) and (c)), followed by the Euclidean distance transform [7] (Figure
3.7(d)) and finally by the watershed algorithm separating the objects (Figure 3.7(f)).
The distance transform in the second approach introduces information of the object
shapes, resulting in successful separation of convex bodies. The second approach was
also utilized in Publications III and IV. In the Publication V we applied a 3-D extension
of the algorithm, separating three dimensional ball-like objects as described in Section
3.3.

3.3 3-D Reconstruction

In Publications V and VI, two different microscope configurations were used to obtain
3-D data, namely a standard 2-D light microscope (bright field) and a confocal setup.
As described in the previous Chapter, segmentation of the bright field data was enabled
through detection of in focus objects. In the confocal configuration of Publication V,
most of the out of focus light is inherently suppressed, simplifying the segmentation
step into thresholding. From a stack of z-slices from the microscope, the segmentation
results in a three dimensional binary matrix, each layer presenting a section of the
target object from the current focal plane. See Figure 3.8(a) for an example of sections
of a spherical object. Similarly as the 2-D images consist of squares (pixels) with
different intensities (0’s and 1’s in this binary case), this three dimensional data set can
be perceived as 3-D space consisting of cubes (voxels) of different intensities. With
reconstruction, this data can be visualized through rendering.

In confocal microscopy, the z resolution does not equal the resolution in x and y
dimensions. For the data in Publication V, we used standard nearest neighbor interpo-
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Figure 3.7: Overlapping objects as topographic surface. (a) Original image of fluorescent nu-
clei, created with the SIMCEP cell image simulator [53]. (b) Thresholding result of (a). (c) One
of the cell clusters enlarged. (d) Distance transform of (c). The lower the intensity, the further
the specific pixel is from background. (e) The objects in (d) visualized as a topographic surface,
ready for separation of overlapping objects. (f) The result after locating the ridges separating
the three circular objects with the watershed method.
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lation to cancel this anisotropy by introducing additional z-slices to the original data
set. For visualization, two main approaches are commonly applied to 3-D data [23],
namely (direct) volume rendering [10] and surface rendering [123], with numerous ex-
tensions [22]. Briefly, in volume rendering, each foreground voxel is represented as
a semi-transparent cube in a 3-D space (Figure 3.8(d)). In surface rendering, the sur-
face of the object is located and modeled with polygonal meshes as presented in Figure
3.8(b). Next, shading [80] is applied to take into account the objects orientation and
surface characteristics with respect to the scene lighting, yielding a brightness value for
different elements of the surface. Finally, the result is projected on a 2-D plane perpen-
dicular to the observer for display. Depending on the application, several other steps
can be included, such as texture mapping or alpha mapping for transparency effects,
and furthermore, the rendering itself can be performed with numerous different algo-
rithms outside the scope of this thesis. Figure 3.8 illustrates the reconstruction from a
stack of binary images to the rendering of a spherical object.

The direct volume rendering was applied to display the located neurons for man-
ual validation in Publication VI, and the both rendering approaches were compared in
Publication V. The surface rendering provides a better overview of the scene in ques-
tion, being computationally less expensive, and providing a more visually appealing
result. On the other hand, since only the object surfaces are located and displayed,
this approach is often unsuitable for detailed analysis of objects’ internal structures.
In contrast, the volume rendering represents the actual locations and intensities of the
detected voxels, enabling a more detailed study, but the overall geometry of the shapes
is difficult to visualize. This is illustrated in the Figures 3.8(c) and 3.8(d) with surface
and volume rendered spherical object with inner structure, respectively.

2-D imaging, being a projection of a 3-D scene in the z dimension, can introduce
heavy overlap to objects only slightly in contact in the z direction. The less overlap,
the more robust the separation, implying the separation should take place in 3-D. In
Publication V, we applied a 3-D extension of the watershed method, previously imple-
mented for nuclei separation in [56, 118]. An example of the procedure is given in
Figure 3.9. The Figure 3.9(a) presents an object most likely consisting of two separate
structures overlapping by a few voxels. Minima of the distance transform of this object
are displayed in Figure 3.9(b), defining the catchment basins for watershed algorithm
as explained in Section 3.2.2. Since there are two basins, the original object will be
divided in half, resulting in the two separate objects of Figure 3.9(c). For clarity, the
Figures 3.9(d) and 3.9(e) display the same procedure with surface rendering. If the se-
lection of the catchment basins can be performed in a robust way, the object separation
will increase analysis reliability, especially object enumeration.

3.4 Measurements

The methods presented in this Chapter aim at extracting information from biological
cells; transforming the input data (images) into quantitative results, such as the number
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Figure 3.8: 3-D reconstruction. (a) Schema of a stack of images forming a sphere-shaped
object. (b) A wire frame presentation of surface polygons of the sphere. Resolution is increased
compared to the schema in (a) for illustration purposes. (c) Surface rendering of the sphere in
(b). (d) Direct volume rendering, inner structure displayed to highlight differences with surface
rendering. Here, a small semitransparent cube is representing each voxel of the object.
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Figure 3.9: Watershed transform in 3-D applied for confocal data of subcellular structures,
see Publication V for details. (a) Two partly overlapping objects. (b) Minima of the distance
transform of (a). (c) Result after the watershed algorithm, initialized from the minima in (b).
(d) Surface rendering of the overlapping objects. (e) Surface rendering of the result.



3.4. MEASUREMENTS 27

of objects.

In the literature, hundreds or even thousands of features quantitatively describing
cell phenotype have been presented [83]. Since the segmentation extracted the detected
objects from the background [66], different properties can often be measured in a very
straightforward manner after applying a specific label for all the objects. For example,
the number of objects results directly from the number of different labels, the object
size is a sum of pixels with specific labeling, and the length of the object border can be
measured by calculating the number of border pixels and assigning different weights
for different border patterns [112]. Obviously, the importance of the segmentation
phase is greatly emphasized during the feature extraction since all the procedures are
fundamentally bound to the results of the segmentation [133]. In Publications I, II
and II1, all the required measurements consisted of particle enumeration, with area and
intensity features that can be derived straightforwardly from the labeled segmentation
result.

To analyze subcellular components on a cell-by-cell level, it is also required to label
the objects according to the cell each object belongs to. This can be achieved by an
additional whole cell fluorescent staining, or by whole cell segmentation from images
without staining (Publication III, [71]), encompassing the subcellular structures. In
Publication IV, such data was not available, but the segmentation result consisted of two
channels: red channel pixels labeled as background or cell nuclei, and green channel
pixels labeled as background or golgi apparatus (GA), a certain subcellular component.
Figures 3.2(a) and 3.10(a) present examples of the input data before segmentation, and
Figures 3.2(i) and 3.10(c) the segmentation results for the nuclei and golgi channels,
respectively. To label the GA pixels for different nuclei, we construct feature vectors
or patterns x from the x and y coordinates of the GA pixels, and by k-means clustering
algorithm [42], cluster the vectors into k groups, where k is the number of cells (nuclei).

Similarly as the fuzzy c means clustering, the k-means clustering finds the clus-
tering L of pattern set .72’ by minimizing the error function e, here the standard mean
squared error defined as:

k ny

(A, L)=>

j=1 i=1

X9 ch2 (3.8)

where xgj ) are the it pattern of ;%" cluster, n; is the number of patterns in the ik
cluster, and c; are the cluster centers.

The clustering procedure is the following: First, the cluster centers c; are initial-
ized as the coordinates of the centers of mass (Figure 3.10(b)) of each of the k nuclei
(Figure 3.10(a)). Second, the feature vectors x for each of the golgi pixels (3.10(c))
are assigned to the closest cluster center. Third, the centroids of the feature vectors
assigned for the specific clusters are set as the new cluster centers c;. The two latter
steps are repeated until the error e changes less than a given threshold, or a predefined
number of iterations is reached. Since the center of mass of each nuclei was selected as
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the initial cluster center, the k-means clustering procedure results in the labeling, where
each of the golgi pixels are assigned to one of the nuclei. This result is illustrated in the
Figure 3.10(d).

Next, the dispersion of each GA cluster (see Figure 3.10(d)) can be approximated
by the median distance d; of GA pixel coordinates to the corresponding GA center of
mass:

d; = median(”xgj) — ch2) 3.9

where i € {1,...,n;}. In Publication IV we calculated the distances d; for mul-
tiple image sets, resulting in measures of the golgi apparatus dispersion after several
different treatments for cell populations.

In Publication V, shape descripition of subcellular components (peroxisomes) was
studied for future detection of peroxisomal changes between different biological treat-
ments. There exists numerous approaches for shape description in the literature, rang-
ing from simpler and more intuitive parameters such as compactness [84] to computa-
tionally complex ones, such as spherical harmonic descriptors [94]. The selection of
descriptors depends on the application, but also on the resolution and the physical sizes
of the objects to be described. Even with confocal microscopy, subcellular objects of-
ten consist of only 5 to 10 voxels in diameter, hindered by imaging defects modeled by
the Equation 2.1. Higher magnification would result in more pixels per millimeter, but
no more real resolution after the diffraction limit [100]. With such a low number of pix-
els, the errors in segmentation become dominant, only enabling differentiation of basic
features such as object elongation. In the Publication V, we mainly limited to features
such as the lengths and widths of objects, resembling shape description applicable in
manual analysis for validation.

The measurements were performed after normalizing the orientations of the seg-
mented and reconstructed peroxisomes as visualized in Figure 3.11. In the normal-
ization procedure, the principal component analysis (PCA) [44] is first applied to the
covariance matrix C' of the voxel coordinates v; of the detected object:

1 n
C=-= vE 3.10
n;vvz (3.10)

where T is the transpose operator, and n is the number of voxels in an object.

The principal components can be found as the eigenvectors w; corresponding to the
eigenvalues \; of

In short, this procedure can be described as finding the direction (eigenvector) of
the largest variance in the input data set, followed by the direction of the second largest
variance orthogonal to the previous one, and so forth, as illustrated in Figure 3.11(a).
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(@

Figure 3.10: Distributing subcellular structures (GA) among several nuclei. Details of input
data given in Publication I'V. (a) Original two channel data of stained nuclei and GA. (b) Centers
of mass of segmented nuclei. (c) Segmentation result of the GA channel. (d) Result of k-means
clustering of the pixels in (c), the nuclei centers in (b) as initial cluster centers. Different colors
illustrate different clusters.
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(a) (b)

Figure 3.11: Orientation normalization with principal component analysis. The data is from
confocal microscopy, details given in Publication V. (a) Object with eigenvectors corresponding
to the three largest eigenvalues displayed in blue, green, and red. (b) Object after normalization,
the eigenvectors aligned with the main x, y, and z axes. The length, width, and thickness of the
object can now be measured along these axes.

Thereafter, the detected peroxisomes were rotated with a base change operation, align-
ing the eigenvectors corresponding to the three largest eigenvalues with the main z, y,
and ,z axes shown in Figure 3.11(b). This alignment has been shown to provide an ade-
quate rotation invariance [44, 116], and allows us to calculate the object length, width,
and thickness by measuring the objects dimensions along the main axes.
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Discussion

Despite the recent advances, some of which presented in this work, challenges remain
slowing down the change from tedious manual microscopy to fully automated high
throughput processes. Here we briefly discuss some of the obstacles that have become
apparent during the research performed for this thesis, and describe future aims on the
area of high throughput microscopy.

4.1 Result Validation

Manual visual analysis procedures are the gold standard or ground truth against which
virtually all automated image analysis methods are compared in cellular imaging. Com-
monly, however, direct comparisons to manually obtained results are not feasible. This
is especially true in high throughput microscopy, where validation of automated im-
age analysis results for large image data sets is laborious, increasing the possibility
for human error in the manual analysis [122, 16]. In cell counting, to give an exam-
ple, the results acquired by an automated enumeration algorithm can be validated by
performing manual counts for a few descriptive images representing the whole batch.
Unfortunately it is impossible to be sure the images chosen for the manual analysis
actually represent the whole stack, and therefore, we have no way to quantitatively
measure the reliability of different algorithms.

This validation problem has been addressed in other fields utilizing image process-
ing by standard image sets, where manual analysis representing the ground truth has
been done with great care [99, 62, 79]. Currently, there are few attempts in collect-
ing similar standard image databases in the field of cell image analysis [26]. In the
databases, although the manual analysis has been performed carefully, features such
as intensities of cells are virtually impossible to quantify by visual analysis. A human
observer is capable of sorting the cell populations according to intensity with a rough
classification, but is unable to provide a quantitative intensities for each cell. Further-
more, the previously introduced weaknesses of manual analysis affect the results.
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In computed tomography (CT), for example, the validation is performed by simu-
lation [93]. In a simulated image, the ground truth is known a priori, enabling straight-
forward validation of different CT image segmentation methods. The SIMCEP sim-
ulator [51, 52] is a start for similar research in cellular imaging, enabling simulation
of biomedical microscopy, and the construction of benchmark databases for validation
consisting of the simulated images [85]. In these artificial images the exact shapes,
locations, and other properties of the cells in the image are precisely known, enabling
systematic validation of analysis methods. It is an interesting question, however, how
should the simulator itself be validated.

4.2 Data Management

Data management and metadata handling are integral parts of high throughput imaging
systems. Currently, the tools for data storage, processing, analysis, and integration in
these systems are rather immature [133], hindering straightforward utilization of high
throughput microscopy. For example in image analysis, manual work is still be needed
also in high throughput applications [19]. As another example, it is intuitive to store
a 2-D view of the DIC channel (described in Chapter 2.2) if locations of cells are to
be detected. Recently, however, automated analysis of 3-D focus through stacks of the
DIC channel has been shown to result in improved accuracy for the two dimensional
detection [70], implying the requirement always to store all the data available for future
research. This lack of well specified and standard approaches lead to ineffective result
reproduction and algorithm reusage.

Projects such as the Cell Centered Database [63], the Open Microscopy Environ-
ment [30, 89], and WebMicroscope [59] aim at standardizing the data storage and meta-
data handling, combined with a web-based dissemination of images and results. Cell-
Profiler [13], on the other hand, is one of the first attempts to design an open source
platform, on which different image analysis procedures for cell biology can be imple-
mented in a well specified manner, with a common interface [12]. For three dimen-
sional image analysis, implementations include daime [17] and BioimageXD [46].

Commercial high throughput microscopy platforms are available from a number
of providers, but the cost and often closed, black box type of image analysis and data
handling of the platforms hinder the usage from the viewpoint of basic research. Vari-
ous laboratory specific complete high throughput screening analysis systems have also
been constructed [130, 32], but despite the great motivation [103], standardized gen-
eral frameworks under which the whole processing chain from imaging to data analysis
could be implemented are still rare, the Bisque system [107] being an exception. Only
by such a freely available integrative framework, and with a well defined handling of
data and metadata, the repeatability, re-usage, and integration between different data
sources can be assured.



Chapter 5

Summary of Publications

This study presents digital image analysis algorithms for two and three dimensional
whole cell and subcellular quantification, replacing manual visual analysis of cells and
cell populations. We have introduced and validated automated measurements not pre-
viously presented in the literature, and applied algorithms that have not been used in
the context of high throughput microscopy. Practically applicable solutions are intro-
duced for all the case studies of the Publications, but no single method has been proven
superior in all of them, leaving room for future research. Since there undoubtedly is
an increasing need for automated methods enabling high throughput microscopy, new
challenges will constantly arise in the algorithm development. The biological rationale
and benefits of the measurement systems are best understood by biologists, and the
technical improvements for these systems are facilitated by engineers, implying there
should be even more emphasis on interdisciplinary research with real collaboration be-
tween computer scientists and biologists.

Main results of the Publications are the following:

I “Software for quantification of labeled bacteria from digital microscope im-
ages by automated image analysis” We created a platform for cell enumeration.
At the time of the publication, no software with similar capabilities existed [6],
enabling microbiologists to enumerate objects in images with different charac-
teristics in a straightforward manner. The software was shown to be in excellent
accordance with manually acquired results, is freely distributed and completely
modifiable, and has since been used in several publications in microbiology, by
us and others [90].

II  “Quantification of vesicles in differentiating human SH-SY5Y neuroblas-
toma cells by automated image analysis” We designed a fuzzy-clustering
based segmentation algorithm for quantification of small fluorescent puncta in
neuroblastoma cells. The algorithm is shown to be robust against extensive back-
ground nonuniformities and autofluorescence, and to correlate well with manual
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analysis.

“Extraction of the number of peroxisomes in yeast cells by automated im-
age analysis” We implemented algorithms for segmentation, and quantification
of subcellular structures inside yeast cells. The fully automated method incorpo-
rates bright field microscopy data with fluorescence microscopy, and enumerates
the structures on a cell-by-cell basis, separating any overlapping cells. Validation
shows the algorithms to yield comparable results to manual analysis in both cell
and organelle enumeration.

“Automated analysis of Golgi Apparatus dispersion in neuronal cell images”
We designed a rank filtering based segmentation method for noisy fluorescent
microscopy images of nuclei. Furthermore, we applied k-means clustering algo-
rithm to distribute located subcellular structures for each of the detected nuclei.
This allowed us to quantify the dispersion of the subcellular structures, a result
not previously presented in the literature by automated methods. We compared
the dispersion after different cell treatments, and concluded that the results are
consistent with manual results from previous studies.

“A case study on 3-D reconstruction and shape description of peroxisomes
in yeast” In this study, we applied noise detection, segmentation, visualization,
and quantification of subcellular structures in 3-D. Even with algorithms of low
computational cost, we show that the 3-D approach can increase enumeration
accuracy, motivating high throughput screening studies to move into three di-
mensional techniques, instead of current 2-D methods.

“Three-dimensional digital image analysis of immunostained neurons in
thick tissue sections” We implemented an algorithm detecting in-focus areas
of standard bright field microscopy images taken with different focal planes of
a neuronal tissue section. We then reconstructed the data to form a 3-D view of
the target. The paper shows that in contrast to commonly utilized fluorescence
microscopy and expensive confocal techniques, standard bright field microscopy
enables 3-D studies applicable in routine pathology, for example.
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