
��������	
������
����������	
��

��������		�
�

��������	��
����
���
���������������
�������
�

�
���
����
��
�
����������
�����������������

���
��������

Tampereen teknillinen yliopisto. Julkaisu 689
Tampere University of Technology. Publication 689

Jari Heikkinen

Program Compression in Long Instruction Word
Application-Specific Instruction-Set Processors

Thesis for the degree of Doctor of Technology to be presented with due permission for
public examination and criticism in Tietotalo Building, Auditorium TB109, at Tampere
University of Technology, on the 7th of December 2007, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2007

ISBN 978-952-15-1869-0 (printed)
ISBN 978-952-15-1917-8 (PDF)
ISSN 1459-2045

ABSTRACT

Modern day embedded systems set high requirements for the processing hardware to

minimize the area, and more importantly, the power consumption. Moreover, the ever

increasing complexity of embedded applications requires more and more processing

power. Application-specific architectures, where the hardware resources can be tai-

lored for a given application, have been introduced to meet these requirements.

Parallel processor architectures have also become favorable as they provide more

processing power by utilizing the instruction level parallelism. However, parallel

processor architectures result in large program codes, which require large memories

that increase not only the area, but also the power consumption of the system due

to increased memory I/O bandwidth. Program compression methods have been pro-

posed to tackle this problem and reduce the size of the program code and, therefore,

also the area and power consumption.

The focus of this Thesis is on program compression in parallel processor architec-

tures. State-of-the-art program compression methods are surveyed and compared

against the derived comparison metrics. Based on the survey, three compression

methods are chosen to be evaluated on transport triggered architecture, a parallel

processor architecture template used to design application-specific instruction-set

processors. The methods are adapted to exploit the characteristics of the architecture.

In addition to code density evaluations in terms of compression ratio, an evaluation

methodology based on hardware implementations is proposed. It allows to evaluate

the effects of compression on the actual area and power consumption of the system.

Program compression may also result in poor instruction-set orthogonality, which

makes the programming after compression more difficult and worsens the perfor-

mance. The orthogonality may turn out to be so poor that the program code cannot

be modified anymore. A novel methodology with a small overhead in area and power

consumption is proposed to allow to modify the program code also after compression.

PREFACE

The work presented in this Thesis has been carried out in the Institute of Digital and

Computer Systems at Tampere University of Technology during the years 2001-2007.

I would like to express my gratitude to my supervisor Prof. Jarmo Takala for his pro-

fessional guidance and encouragement towards doctoral degree. I am also thankful

to Prof. Henk Corporaal for his invaluable support to my research work. Acknowl-

edgements go also to my Thesis reviewers Prof. Johan Lilius and Jan Hoogerbrugge,

Ph.D., for their constructive and valuable comments on the manuscript.

Many thanks to all my colleagues in the FlexDSP research group for their coop-

eration. Especially, Andrea Cilio, Ph.D., Tommi Rantanen, M.Sc., Jaakko Sertamo,

M.Sc., Teemu Pitkänen, M.Sc., and Pekka Jääskeläinen, M.Sc., deserve special thanks

for helping me in several matters related to my research work. I would also like

to thank Mauri Kuorilehto, M.Sc., Panu Hämäläinen, Dr.Tech., Mikko Kohvakka,

M.Sc., Tero Kangas, Dr.Tech., and Erno Salminen, M.Sc., for sharing ideas, knowl-

edge, and opinions, both on and off the topic.

This Thesis was financially supported by Graduate School in Telecommunication

System-on-Chip Integration (TELESOC), National Technology Agency (TEKES),

Nokia Foundation, Ulla Tuominen Foundation, Foundation of Advancement of Tech-

nology, Heikki and Hilma Honkanen Foundation, Jenny and Antti Wihuri Founda-

tion, and HPY Research Foundation, which are gratefully acknowledged.

I wish to express my sincere gratitude to my parents, Hannu and Irma Heikkinen, and

my brother Jarkko for their unconditional support and encouragement throughout my

academic career and, for that matter, throughout my life. Finally, I thank you Terhi

for your love, patience, and understanding.

Tampere, November 2007

Jari Heikkinen

TABLE OF CONTENTS

Abstract . i

Preface . iii

Table of Contents . v

List of Publications . ix

List of Figures . xi

List of Tables . xv

List of Abbreviations . xvii

List of Symbols . xxi

1. Introduction . 1

1.1 Objective and Scope of Research 3

1.2 Main Contributions . 4

1.2.1 Author’s Contribution . 4

1.3 Thesis Outline . 5

2. Program Compression . 7

2.1 Program Compression on Single-Issue Processor Architectures . . . 10

2.2 Program Compression on Parallel Processor Architectures 12

2.2.1 Comparison Metrics . 13

2.2.2 Comparison of Methods 18

2.2.3 Comparison Summary . 36

vi Table of Contents

3. Processor Hardware Customization . 39

3.1 Customizable Processor Architectures 41

3.1.1 Instruction-Set Extensions 42

3.1.2 Fully Customizable Processor Architectures 45

3.2 Transport Triggered Architecture 48

3.2.1 Principles . 48

3.2.2 Software Characteristics 50

3.2.3 Hardware Characteristics 51

3.2.4 Pipelining . 53

3.2.5 Instruction Format . 53

3.3 TTA-Based ASIP Design Methodologies 55

3.3.1 Move Framework . 56

3.3.2 TTA Codesign Environment 59

4. Program Compression on TTA . 63

4.1 Utilized Compression Methods . 64

4.1.1 Huffman Coding . 65

4.1.2 Instruction Template-Based Compression 68

4.1.3 Dictionary-Based Compression 73

4.2 Hardware Implementations . 75

4.2.1 Implementation Principles 76

4.2.2 Implementing Dictionary-Based Compression 78

4.2.3 Implementing Instruction Template-Based Compression . . 80

4.3 Summary of the Program Compression Evaluations 83

5. Maintaining Programmability after Compression 85

5.1 Programmability on TTA . 89

Table of Contents vii

5.1.1 Requirements for Programmability 90

5.1.2 Programmability Support Methodology 92

6. Results . 101

6.1 Evaluation Methodology . 101

6.1.1 Benchmarks . 102

6.1.2 Processor Design . 104

6.2 Code Density . 110

6.2.1 Dictionary-Based Compression 110

6.2.2 Huffman Coding . 113

6.2.3 Instruction Template-Based Compression 118

6.3 Area and Power Consumption . 121

6.3.1 Dictionary-Based Compression 122

6.3.2 Instruction Template-Based Compression 131

6.4 Programmability Evaluation . 133

6.4.1 Design of the Extended Dictionary 133

6.4.2 Area and Power Consumption 136

6.4.3 Performance . 138

6.5 Summary of Results . 140

7. Conclusions . 143

Bibliography . 145

viii Table of Contents

LIST OF PUBLICATIONS

This Thesis is a monograph, which contains some unpublished material, but is mainly

based on the following publications. In the text, these publications are referred to as

[P1], [P2], . . ., [P6].

[P1] J. Heikkinen, J. Takala, and J. Sertamo, “Code Compression on Transport

Triggered Architectures,” in System-on-Chip for Real-Time Applications, W.

Badawy and G.A. Jullien Eds., pp. 203–213. Kluwer Academic Publishers,

Boston, MA, USA, 2003.

[P2] J. Heikkinen, T. Rantanen, A. Cilio, J. Takala, and H. Corporaal, “Evaluating

Template-Based Instruction Compression on Transport Triggered Architec-

tures,” in Proceedings of the International Workshop on System-on-Chip for

Real-Time Applications, Calgary, Canada, June 30 – July 2 2003, pp. 129–

195.

[P3] J. Heikkinen, A. Cilio, J. Takala, and H. Corporaal, “Dictionary-Based Pro-

gram Compression on Transport Triggered Architectures,” in Proceedings of

the IEEE International Symposium on Circuits and Systems, Kobe, Japan,

May. 23–26 2005, pp. 1122–1125.

[P4] J. Heikkinen, J. Takala, and H. Corporaal, “Dictionary-Based Program Com-

pression on TTAs: Effects on Area and Power Consumption,”in Proceedings

of IEEE Workshop on Signal Processing Systems, Athens, Greece, Nov. 2–4

2005, pp. 479–484.

[P5] J. Heikkinen and J. Takala, “Programmability in Dictionary-Based Compres-

sion,” in Proceedings of International Symposium on System-on-Chip, Tam-

pere, Finland, Nov. 13–16 2006.

x List of Publications

[P6] J. Heikkinen and J. Takala, “Effects of Program Compression,” in Journal of

Systems Architecture, vol. 53, no. 10, pp. 679–688, Oct. 2007.

LIST OF FIGURES

1 Principle of compressing and decompressing data. 8

2 Alternative locations for the decompressor. 10

3 An example of VLIW instruction word. FU-(x): functional unit field.

Opcode: Operation code field. RD: Destination register field. RS(y):

Source register field. 14

4 Classification of processing architectures based on their characteristics. 42

5 TTA processor organization FU: functional unit. RF: register file.

LSU: load-store unit. CNTRL: control unit. Dots represent connec-

tions between buses and sockets. 52

6 Organization of the three-stage TTA transport pipeline. 54

7 Organization of the transport pipeline logic in the control unit of the

processor. instr reg: instruction register. cntrl sign regs: control sig-

nal registers. 55

8 Structure of the TTA instruction word. G: Guard field. S: Source ID

field. D: Destination ID field. LI: Long immediate field. (x): x-bit field. 56

9 Principal design flow in the MOVE framework. 57

10 Principal design flow of processor and program image generation

phase in the TCE design flow. 62

11 a) Original symbols with their probabilities and the assigned Huff-

man codewords. b) Huffman tree. c) Huffman decoding table. . . . 66

12 Different granularity levels for selecting the symbols for Huffman

coding. 68

xii List of Figures

13 Compression alternatives for the move slot and ID field granularity

levels. 69

14 a) Profile of the used move slot and long immediate field combina-

tions with their usage frequencies. b) The chosen templates and their

widths. 72

15 a) The original uncompressed program code. b) The generated dic-

tionary and the compressed program code. 74

16 Transport pipeline organization for the alternative decompressor im-

plementations. 79

17 a) An example of transport pipeline execution when an uncompressed

instruction is xexecuted among compressed instructions. b) An ex-

ample of transport pipeline execution in region compression. 89

18 a) An example TTA processor configuration. b) All the possible data

transports that can be executed on the example TTA processor. . . . 91

19 An example of dictionary extension. a) an example set of data trans-

ports to be added. The extended dictionaries for compression at b)

instruction, c) move slot, and d) ID field levels. The three dots (...)

represent the entries that correspond to bit patterns already stored into

the dictionary during compression. 95

20 The optimized set of the required data transports with the utilization

of the GCR in the example TTA processor configuration illustrated

in Fig. 18(a). 97

21 Example of a compressed program code including immediate values. 99

22 The chosen processor configurations for the 32-point DCT applica-

tion on the pareto curve. 105

23 The results of applying dictionary-based compression at instruction

level. 111

24 The results of applying dictionary-based compression at move slot

level. 112

25 The results of applying dictionary-based compression at ID field level. 114

List of Figures xiii

26 The results of applying Huffman coding at instruction level. 115

27 The results of applying Huffman coding at move slot level. 116

28 The results of applying Huffman coding at ID field level. 118

29 The results of applying instruction template-based compression. . . 120

30 The relative code sizes of the benchmark applications when instruc-

tion template-based compression is utilized. 121

31 Area and power consumption results on configuration A. 123

32 Area and power consumption results on configuration B. 124

33 Area and power consumption of the control logic on configuration A

with different transport pipeline organizations. 128

34 Area and power consumption of the control logic on configuration B

with different transport pipeline organizations. 129

35 Area and power consumption of the program memory and the control

logic when the instruction template-based compression is applied. . 132

36 The effects of the dictionary extension and immediate support on area

and power consumption of the control logic. 137

37 Summary of the code density evaluations in terms of average com-

presion ratio. 141

38 Summary of the area and power consumption evaluations based on

the average area and power consumption reductions. 142

xiv List of Figures

LIST OF TABLES

1 Comparison of the target architecture and instruction encoding of the

program compression methods on parallel processor architectures.

NA: Not available. 19

2 Comparison of the compression granularity and decompressor imple-

mentation of the program compression methods on parallel processor

architectures. PMEM: Program Memory. CPU: Central Processing

Unit. 20

3 Comparison of the random access support and effectiveness of the

program compression methods on parallel processor architectures. . 21

4 Summary of the program compression methodology evaluations on

TTA. 83

5 Hardware resources of the chosen processor configurations. LSU:

Load-stored unit. MUL: Multiplier. ARITH: Arithmetic unit. SHIFT:

Shifter. LOGIC: Logic unit. CMP: Compare unit. Regs.: Registers.

Iwidth: Instruction width. 106

6 Performance and code size statistics of the benchmark applications,

each compiled on the three different TTA processor configurations. . 107

7 Hardware resources of the two TTA processor configurations. 108

8 Benchmark statistics on the two TTA processor configurations and

on the TMS320C62x. 109

9 Area and power consumption of the reference designs. PMEM: Pro-

gram memory. DMEM: Data memory. 109

10 Summary of the area and power consumption evaluations with a sep-

arate pipeline stage for the decompressor. 126

xvi List of Tables

11 Increase in cycle count due to increased branch latency. 127

12 Summary of the area and power consumption evaluations with the

integrated decompressor implementation. 130

13 Statistics of the number of data transports required to maintain the

programmability on the two TTA processor configurations. Src: source.

Dst: destination. 134

14 Statistics of the original and extended dictionaries for the four bench-

marks. 136

15 The effects on the performance of programming basic blocks (BB)

using the extended entries. 139

LIST OF ABBREVIATIONS

ADF Architecture Definition File

ALU Arithmetic-Logic Unit

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-Set Processor

BB Branch Block

CISC Complex Instruction-Set Computer

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

DC DeCode

DCMPR DeCoMPRess

DCT Discrete Cosine Transform

DMEM Data MEMory

DSP Digital Signal Processing or Digital Signal Processor

EPIC Explicitly Parallel Instruction Computer

EOP End of a Packet

EX EXecute

FFT Fast Fourier Transform

FIFO First In First Out

xviii List of Abbreviations

FIW Functional Instruction Word

FPGA Field Programmable Gate Array

FU Functional Unit

GCR Global Connection Register

GCU Global Control Unit

GPP General-Purpose Processor

HBL Hardware Block Library

HDB Hardware DataBase

HDL Hardware Description Language

HLL High-Level Language

ID IDentifier

IDF Implementation Definition File

IEEE the Institute of Electrical and Electronics Engineers

IF Instruction Fetch

ILP Instruction-Level Parallelism

IMM IMMediate unit

JPEG Joint Photographic Experts Group

LAT Line Address Table

LIM Local Instruction Memory

LISA Language for Instruction Set Architectures

LSU Load-Store Unit

LZW Lempel-Ziv-Welch

MAC Multiply-ACcumulate

xix

MBL MetaCore Behavioral Language

MPEG Moving Picture Expert Group

MSL MetaCore Structural Language

MV MoVe

NOP No-Operation

NRE Non-Recurring Engineering

OSAL Operation-Set Abstraction Layer

OTA Operation Triggered Architecture

PC Program Counter

PDA Personal Digital Assistant

PICO Program In, Chip Out

PIG Program Image Generator

PMEM Program MEMory

RAM Random Access Memory

ROM Read-Only Memory

RISC Reduced Instruction-Set Computer

RF Register File

RTL Register Transfer Level

SFU Special Functional Unit

SIMD Single Instruction, Multiple Data

SoC System-on-Chip

SRAM Static Random Access Memory

TCE TTA Codesign Environment

xx List of Abbreviations

TTA Transport Triggered Architecture

TPEF TTA Program Exhange Format

TVLIW Tagged Very Long Instruction Word

VHDL Very High Speed Integrated Circuit Hardware Description Lan-

guage

VLES Variable-Length Execution Set

VLIW Very Long Instruction Word

XML EXtensible Markup Language

LIST OF SYMBOLS

CR compression ratio

Sc compressed code size

St decoding table size

Su uncompressed code size

k budget of templates

τ set of templates

W program code size

Tl template l in τ

n number of minimal templates

Ci unique move slot and long immediate field combination i

fi usage frequency of Ci

N(τ,Ci) narrowest template Tl in τ to encode Ci

w(Tl) width of template Tl

TCj candidate template j

v(Ci) lower bound of the width of TCj

bCj benefit of TCj

K number of bit patterns in program code

N number of unique bit patterns in program code

xxii List of Symbols

C connectivity of a register file

w width of bit pattern

Is set of buses to which an input socket i is connected to

Os set of buses to which an output socket i is connected to

1. INTRODUCTION

The recent advances in the semiconductor technologies, fabrication processes, and

design methodologies have allowed to implement more and more functionality on

a single chip, even entire systems that are composed of programmable processors

cores, memories, customized hardware accelerators, and radio frequency and ana-

logue parts. Such a system is often referred to as System-on-Chip (SoC). The higher

integration rate has allowed to reduce the size and, therefore, the cost of digital sys-

tems and has enabled the introduction of many new digital products. The growth

has been explosive especially in the embedded systems market. Embedded system

usually refers to a computing system that has been specifically designed to control

some device, i.e., the system is not used for general purpose computing. Embedded

systems are also often embedded into the device they control. Nowadays, the mar-

ket share of embedded systems far surpasses that of the general purpose computing

systems, such as personal computers.

Embedded systems can nowadays be found in almost every aspect of our everyday

life; automobiles, home automation, banking, multimedia, and telecommunications

to name a few. The most recent advances have concentrated on the market of portable

handheld embedded systems. These systems, like cellular phones, personal digital as-

sistants (PDA), game consoles, and media players, are often limited by constraints on

size, weight, battery life, and cost. Hence, the area and, nowadays more importantly,

the power consumption have turned out to be the most important design constraints

in the embedded system development.

Apart from the area and power consumption requirements, embedded systems re-

quire nowadays more and more processing power from the computing hardware due

to the increased complexity of embedded applications. The requirements for small

area and low power consumption but high performance have lead to the utilization

of application-specific structures where the hardware resources can be tailored ac-

2 1. Introduction

cording to the requirement of the application. This allows to meet the performance

requirements. The area and power consumption are also reduced as the system con-

tains only the hardware resources that are required to execute the given applications.

Recently, very long instruction word (VLIW) architectures have gained considerable

popularity in embedded systems, especially in digital signal processing (DSP) tasks,

due to their modularity and scalability [100]. VLIW architectures can provide more

processing power through utilizing the instruction-level parallelism (ILP) available

in the application by executing operations in parallel in concurrently operating func-

tional units (FU). The FUs are controlled by a long instruction word that contains

dedicated fields for each FU. This kind of an instruction encoding leads to poor code

density, i.e., large size of the program code, as the full processing power of the archi-

tecture cannot always be fully utilized [29].

The size of the program code is increasing also due to increased complexity of the

applications that are developed for the embedded systems. Furthermore, high-level

languages (HLLs), like C and C++, are gradually replacing assembly language in

writing embedded applications due to lower application development and mainte-

nance costs. This incurs a penalty in the code size as the compiler cannot achieve the

quality of the hand-written and hand-optimized assembly code when the HLL code

is translated into machine code. Moreover, compilers traditionally favor performance

at the cost of code size.

Large program codes require large memories, which may lead to systems where the

memories consume more area than the actual processor core [14]. Large memories

may also increase the power consumption of the system due to higher memory I/O

bandwidth. This reduces the battery life. Therefore, methods to reduce the size of the

program code need to be developed in order to preserve area, and more importantly,

reduce the power consumption of the program memory and the entire system.

Program compression methods have been proposed to reduce the size of the program

code to allow to use smaller memories and hence save the area and power consump-

tion. The program is compressed during compile-time and stored in compressed form

into the program memory. During execution, the compressed instructions are fetched

from the program memory and decompressed back to their original form using a

dedicated decompressor hardware before they are decoded into control signals that

control the hardware resources of the processor.

1.1. Objective and Scope of Research 3

1.1 Objective and Scope of Research

The objective of this Thesis is to develop an effective program compression method-

ology for a new type of customizable parallel processor architecture, the transport

triggered architecture (TTA). Transport triggered architecture suffers from poor code

density due to the programming model of the architecture and the minimal instruction

encoding that has been utilized to simplify instruction decoding.

The first objective is to perform a survey over the proposed program compression

approaches on parallel processor architectures. The survey is performed by defining

the main metrics related to program compression, which are then used to perform a

comparison over the methods included in the survey.

The second objective is to adapt and utilize the most effective methodologies found

in the survey on TTA. In addition to code density evaluations, the processor systems

executing both compressed and uncompressed instructions are implemented in hard-

ware. This allows to evaluate the compression methods in terms of area, and more

importantly, power consumption, which provide more accurate estimates on the ef-

fectiveness of the compression methods. Such measures have been rarely reported

for program compression approaches.

The third objective is to design a methodology that allows to maintain the program-

mability, i.e., allow to make modifications to the program code also after the com-

pression has been applied. In case the hardware decompressor is implemented using

nonprogrammable structures, such as standard cell logic, the programmability may

be lost as the decompression hardware is tailored for a particular application or a set

of applications and cannot be modified after the processor has been implemented in

hardware. The objective of the methodology is to provide full programmability with

a small overhead in area, power consumption, and performance.

The fourth objective is to integrate the TTA program compression methodology to the

TTA codesign environment toolset. This allows to include the program compression

in the TTA processor design and code generation flow. The binary image generator

of the TTA codesign environment is designed to provide a methodology that allows

easy integration and modification of the compression methodology. The compres-

sor module generates not only the compressed binary code, but also the hardware

description of the decompressor hardware.

4 1. Introduction

1.2 Main Contributions

In this Thesis, a design methodology for compressing the program code to reduce

the area and power consumption is developed for transport triggered architecture. To

summarize, the main contributions are the following:

• Study and comparison of state-of-the-art program compression methods on

parallel processor architectures by comparing the methods against the defined

comparison metrics

• Utilization of dictionary-based, Huffman encoding, and instruction template-

based compression methods on transport triggered architecture by employing

the characteristics of the architecture to achieve better compression

• Evaluation methodology based on hardware implementations of the processor

designs to measure the effects of program compression on area and power con-

sumption, which allows to include the decompression overhead in the results

• Novel methodology to maintain the programmability and increase the orthogo-

nality of the instruction set that is affected when program compression methods

are utilized

• Integration of the program compression methodology to the transport trig-

gered architecture codesign environment, allowing to utilize plug-in compres-

sor modules to compress the program code and generate the decompressor and

integrate it to the hardware description of the processor

1.2.1 Author’s Contribution

The author was responsible for making the survey of state-of-the-art program com-

pression methodologies and to define the comparison metrics that were used to com-

pare the proposed compression methodologies.

The author was responsible for adapting Huffman coding, dictionary-based compres-

sion, and instruction template-based compression methods on transport triggered ar-

chitecture. The profiling tools for the Huffman coding and dictionary-based com-

pression were implemented by the author. The program code profiling and template

1.3. Thesis Outline 5

selection tool for the instruction template-based compression was implemented by

M.Sc. Tommi Rantanen. The code density estimations of the utilized compression

method on TTA were carried out by the author. The results of these studies have been

presented in [P1, P2, P3].

The author also derived the hardware implementations for the dictionary-based and

instruction template-based compression approaches and evaluated the hardware im-

plementations in terms of area and power consumption. The results of these experi-

ments have been reported in [P4, P6].

The author was also responsible for developing the dictionary extension methodology

to maintain the programmability after the compression has been utilized. The author

proposed and designed also the methodology to minimize the overhead of the dic-

tionary extension on area and power consumption of the decompression logic. The

author was responsible for performing the evaluations of the proposed methodology

in terms of area, power consumption, and performance. The methodology and the

results of the evaluations have been published in [P5].

The integration of the compression methodology in the TTA Codesign Environment

has been designed together with Pekka Jääskeläinen, M.Sc., and Lasse Laasonen,

M.Sc.. Lasse Laasonen was responsible for the implementation of the program image

generator and the processor generator of the codesign environment with support for

program compression.

The work reported in this Thesis has been published earlier in six publications [P1–

P6]. Therefore, some Chapters contain verbatim extracts from these publications.

These extracts are under copyright of respective copyright holders. None of the pub-

lications has been used in another person’s academic Thesis.

1.3 Thesis Outline

Chapter 2 presents the related work on program compression. A detailed survey of

the program compression methods proposed for parallel processor architectures is

presented. The methods are compared in terms of the defined comparison metrics.

Processor hardware customization is discussed in Chapter 3. An overview of the

related work on customizable processor architectures is given. The main objective of

6 1. Introduction

the Chapter is to present the details of the TTA, which is the customizable parallel

processor architecture utilized in this Thesis. The Chapter presents also the MOVE

framework and TTA Codesign Environment (TCE), which are semi-automatic design

methodologies for designing TTA processors. Tools of the MOVE framework were

used in this Thesis for designing the TTA processors and compiling the benchmark

applications that were used in the evaluation of the compression methodologies on

TTA. The designed program compression methodology developed in this Thesis was

integrated to the tools of the TCE.

Chapter 4 describes the principles of Huffman coding, dictionary-based compression,

and instruction template-based compression and how the methods were utilized on

TTA. In addition, the details of the hardware implementations of the dictionary-based

and instruction template-based compression methods to evaluate the effects of the

compression methods on area and power consumption are presented. Implementation

details of the hardware decompressor are also explained.

In Chapter 5, a description of a dictionary extension method to maintain the pro-

grammability after compression is given. The results of utilizing the three compres-

sion methods to compress program code compiled on TTA processors are presented

in Chapter 6. The effectiveness of all the three compression methods is measured

in terms of compression ratio. In addition, the results of the hardware implementa-

tion of the dictionary-based and instruction template-based compression methods are

given. The effects of the proposed dictionary extension method to maintain the pro-

grammability on the area, power consumption, and performance are also presented.

Chapter 7 concludes the Thesis.

2. PROGRAM COMPRESSION

In computer science, compression traditionally refers to data compression, which

can be understood as a process of encoding data to save data storage space or reduce

transmission bandwidth. Although the data has already been encoded in digital form,

i.e., represented in bits, it can often be encoded more effectively using less bits. Data

contains usually redundancy that can be removed by using specific encoding algo-

rithms. This reduces the number of bits required to represent the data and, therefore,

allows to reduce the cost of the data storage space or communication network as less

bits need to be stored or transmitted.

In principle, compression is performed by first forming a model of the data to be

compressed and then using this model in the encoder to transform the input data into

compressed form. Encoding is done by utilizing the model to transform data units,

denoted as symbols, into codewords that represent the original symbols with fewer

bits. Symbols can be arbitrary units of data, e.g., a byte, a word, or a cache line. The

model typically characterizes statistical properties of the symbols in the input data.

For example, a model may represent the probabilities of the symbols in the input data,

i.e., how frequently each symbol exists. This information is then utilized to perform

the compression, e.g., by assigning variable-width codewords to symbols based on

their probabilities of occurrence.

Compressed data cannot be interpreted directly by the receiver of the data as the en-

coding has changed. Hence, prior to using the compressed data, either fetched from

the code storage or transmitted over the communication channel, it has to be decoded

back to the format in which the data was originally encoded in. This process is de-

noted as decompression. An identical model to the one used in the encoding process

is required to decode the codewords back to the original symbols that represent the

original input data. The compression and decompression phases and the data flow in

between these two phases is exemplified in Fig. 1.

8 2. Program Compression

encoder

input data
(symbols)

model

compressed data
(codewords) decoder

model

decompressed data
= original input data

compression decompression

Fig. 1. Principle of compressing and decompressing data.

Compression algorithms may be either lossy or lossless. Lossy algorithms trade some

loss of data for more effective compression while lossless compression algorithms

do not allow any loss of data, i.e., the original data can be perfectly reconstructed

when decompression is performed. Lossy algorithms have traditionally been applied

for images, audio, and video, where some loss of quality can be tolerated without

losing the essential data so that the data can still be perceived. Text compression, on

the other hand, requires lossless compression so that the data corresponding to the

characters of the text can be perfectly recovered during decompression.

The increased complexity of applications, especially in embedded systems, has lead

to an increase in the size of the program code. This has set higher requirements for

the code storage space. It has been estimated that the cost of the memory that stores

the program code may nowadays be up to 50% of the total cost of the embedded

system [39]. Hence, interest has been raised to compress also the program code.

Program compression can be considered as a special case of data compression.

Program compression differs from the data compression in the sense that the data to

be compressed is not general data. It has a hierarchical structure, which may allow

to achieve better compression. Program code consists of instructions that all have a

specific structure. Specific information inside the instruction word is in most cases

in the same locations among all the instruction words, depending of course on the

instruction format. This allows to inspect the data in smaller fragments and find

more redundancy that can be removed by applying the compression methods. Fur-

thermore, program code typically uses only a small part of the possible instructions

in the instruction set. This property can also be utilized and the instructions can be

encoded so that only the actual instructions used in the program code are covered in

the compressed program code. This allows to encode the instructions with fewer bits.

9

Program compression requires also that the compression is lossless. The original rep-

resentation of the program has to be perfectly reconstructable so that the program can

be executed correctly. Another requirement is to guarantee random access decom-

pression, i.e., to allow the decompression to start from any location in the program

code or at some block boundaries [78]. As the execution flow may be discontinuous

due to branch and jump operations, the decompression has to be capable of starting

directly at the branch targets. This requirement is usually guaranteed by compressing

the program in blocks inside which the execution flow is continuous, i.e., there are no

branch or jump targets within the blocks. The blocks are chosen so that the branch

and jump targets are directly at the beginnings of these blocks. Compression blocks

need to be aligned to addressable memory locations so that the target instructions can

be interpreted directly after the branch or jump has been taken.

Program compression is typically performed during compile-time. Therefore, the

compression speed is of little importance. Decompression, on the other hand, is

performed during run-time, so it adds an overhead to the execution time. Decom-

pression is typically performed by a dedicated decompression hardware that is added

to the system. Hence, it affects also the hardware cost of the system. The overhead

in the execution time due to decompression depends not only on the complexity of

the compression algorithm and the implementation of the decompression hardware,

but also on the location of the decompressor in the system. The decompressor can

be placed in different locations in the system. Usually, the decompressor is placed

in between the program memory and the processor core. If the system contains a

cache in between the processor core and the program memory, the decompressor can

be placed either pre- or post-cache. The decompressor can also be placed inside the

processor core. In such a case, decompression is usually performed in between the

instruction fetch and decode stages of the instruction pipeline. Figure 2 illustrates the

different alternatives for placing the decompressor.

Initially, program compression methods were proposed for single issue processor ar-

chitectures, such as reduced instruction-set computers (RISC), complex instruction-

set computers (CISC), and single-issue digital signal processors (DSP). Later, when

parallel processor architectures, such as VLIW, started to gain popularity, program

compression methods started to emerge for those architectures as well. Program

compression approaches on single-issue and parallel processor architectures are in-

troduced in this Chapter. As this Thesis concentrates on parallel processor archi-

10 2. Program Compression

program
memory

CPU core

cache

decompressor

pre-cache

post-cache

CPU control logic

decompressor

decompressor

Fig. 2. Alternative locations for the decompressor.

tectures, the compression methods on single-issue processor architectures have been

discussed only briefly. The compression methods proposed for parallel processor

architectures are discussed in more detail. A comparative analysis of the program

compression methods on parallel processor architectures based on the defined com-

pression metrics is also given.

2.1 Program Compression on Single-Issue Processor Architectures

The first compression methods on single-issue processor architectures were mostly

adaptations of the traditional data compression methods. In one of the earliest ap-

proaches [123], Wolfe and Chanin used Huffman coding [50] to compress the in-

structions of a 32-bit RISC processor architecture. Huffman coding assigns variable-

width codewords to the symbols being coded based on their usage frequencies. The

most frequent symbols are assigned the shortest codewords and vice versa. The work

was extended in [63] by experimenting the Huffman coding on five different 32-bit

RISC architectures. Huffman coding on RISC architectures has further been experi-

mented in [36,56,57,75,77,89,119]. Huffman coding has also been applied on DSP

architectures in [95].

Another statistical compression method, arithmetic coding [103], has been studied

extensively by Lekatsas et. al. on RISC architectures in [76–82]. Arithmetic coding

2.1. Program Compression on Single-Issue Processor Architectures 11

is similar to Huffman coding as it assigns codewords to symbols based on their usage

frequencies. However, arithmetic coding is not limited to integral number of bits as

Huffman encoding and can therefore perform better. The drawback of arithmetic cod-

ing is its more complex decompression procedure as it requires complex arithmetic

operations. Lekatsas et. al. have applied reduced-precision arithmetic coding [49]

in their work to replace the complex arithmetic operations with table look-ups to

make decompression less compute-intensive and, therefore, better suitable for pro-

gram compression.

Dictionary-based program compression is another extensively studied program com-

pression method. Dictionary-based compression identifies the unique instructions in

the program code and stores them into a dictionary and replaces the occurrences of

these instructions in the program code with indices to the dictionary. Dictionary-

based compression methodologies have been proposed for RISC architectures in [14,

17–20, 58, 72, 73, 75, 80, 132, 133]. Dictionary-based compression has also been ap-

plied on DSP architectures in [26, 84, 85, 112].

Dictionary-based compression can be applied at different symbols granularity levels.

In addition to assigning codewords to single instructions, instruction sequences can

be considered as symbols to be stored into a dictionary and be replaced with a single

dictionary index, as proposed in [27, 53, 71]. Instructions can also be divided to

smaller fields inside which unique bit patterns are searched for to be stored into the

dictionary [28,74,89,93,98,131]. The division can be made according to the existing

fields in the instruction word, i.e., the opcode, operand, and immediate fields, or by

dividing instructions arbitrarily to smaller fields, e.g., by dividing a 32-bit instruction

to two 16-bit halves.

An adaptive dictionary-based compression scheme, proposed by Ziv and Lempel

in [135, 136], has also gained success in program compression. The dictionary is

generated adaptively when symbols are encountered. The incoming symbols are re-

placed with pointers that point to locations where the symbols occurred previously.

The methodology proposed by Lempel and Ziv has been adapted and applied on

RISC architectures in [15, 62, 73, 75].

The program code size can also be reduced by re-encoding the instructions in the

instruction set to be represented with fewer bits. For example, ARM Thumb [16],

SH3 [44], and MIPS16 [61] are architectures where the original 32-bit RISC instruc-

12 2. Program Compression

tions are re-encoded to 16-bit instructions. This is accomplished by, e.g., restricting

the amount of registers the instructions can use as operands. A methodology is usu-

ally provided to execute also the original 32-bit wide instructions. Micro RISC [40],

Heads and Tails [94], and EISC [70] are further examples of tightly encoded 16-bit

RISC architectures. Simonen et. al. have experimented instruction set re-encoding

on DSP architectures in mixed 32/16-bit execution mode in [110].

Aside from compressing the already compiled program code, attention can be given

to reduce the code size already during the compilation phase. One example of such

an alternative is to factor out frequently executed instruction patterns into subroutines

and replacing these instructions with calls to the subroutine [32,60,107,113]. Similar

methods have also been proposed for DSP architectures in [83, 86].

2.2 Program Compression on Parallel Processor Architectures

Program compression methods have also been proposed for parallel processor archi-

tectures, where the poor code density is even a bigger problem than on single issue

processor architectures. Parallel processor architectures typically require a long in-

struction word to control explicitly each of the concurrently operating hardware re-

sources. This kind of an encoding usually leads to increased size of the program code

and, therefore, to poor code density.

As the main topic of this Thesis is program compression on parallel processor archi-

tectures, a detailed survey of the proposed compression methods on parallel processor

architecture is presented. The objective of the survey is to describe the methods pro-

posed in the literature and provide a comparison between them. Direct comparison

of the methods is fairly difficult as the methods have been proposed for different tar-

get architectures and the specific features of the architectures are often utilized in the

compression methods. Furthermore, in many cases, the required details for direct

comparison are not reported, or are reported using different metrics. For example,

quantitative comparison between different methods is difficult as there are several

ways in which the effectiveness of the method has been presented. Therefore, the

comparison of the methods is more feasible when the different aspects are character-

ized and compared separately.

2.2. Program Compression on Parallel Processor Architectures 13

2.2.1 Comparison Metrics

In order to compare the compression methods, some metrics are defined. They try to

capture the essential characteristics of the compression methods. The defined met-

rics to ease the comparison of the program compression methodologies on parallel

processor architectures include target architecture, instruction encoding, compression

granularity, decompression properties, branch handling, and effectiveness. These

metrics are described in more detail in the following.

Target Architecture

Target architecture defines the details of the processor architecture on which the com-

pression method has been applied on. All of the processor architectures included in

the survey belong to the class of very long instruction word architectures that provide

more processing power by executing several operations in parallel in concurrently op-

erating function units. Special classes of VLIW architectures included in the survey

are the explicitly parallel instruction computing architecture (EPIC), and TTA. TTA

is the processor architecture for which program compression methods are developed

in this Thesis.

The target architectures can be compared in terms of the degree of available paral-

lelism, i.e., how many operations they can issue in parallel. This has an effect on the

size of the program code and also on the effectiveness of the compression method.

Parallel processor architectures are typically programmed using a wide instruction

word that has dedicated fields for each of the concurrently operating functional re-

sources. Hence, the more parallel resources there are, the wider the instruction word.

Figure 3 shows an example of a VLIW instruction word that has three dedicated fields

to specify operations for three functional resources. Each field is comprised of the

opcode and operand fields that are required to specify a single RISC-type operation.

Most programs contain parallelism that can be exploited by the parallel resources of

the architecture. However, programs contain also parts where the data dependencies

limit the available parallelism. This results in sequences of instructions where only

few of the parallel resources can be utilized. Null values, i.e., no-operations (NOPs)

need to be explicitly defined for the unutilized functional resources. The greater the

degree of parallelism, the more NOPs need to be defined. This increases the size

14 2. Program Compression

opcode RD RS1 RS2 opcode RD RS1 RS2 opcode RD RS1 RS2

FU-1 field FU-2 field FU-3 field

Fig. 3. An example of VLIW instruction word. FU-(x): functional unit field. Opcode: Oper-

ation code field. RD: Destination register field. RS(y): Source register field.

of the program code. Consequently, this also makes the compression more effective

as there are more NOPs that can be exploited in the compression to achieve more

compact code.

The degree of parallelism on VLIW and EPIC architectures can be expressed in terms

of operation issue-rate, i.e., the number of operations that can be issued in parallel.

As TTA has a different programming paradigm, operation issue-rate cannot be used

to measure the degree of parallelism. TTA processors are programmed by explic-

itly specifying the data transports that transport data between functional resources.

The number of data transports required to complete a single operation depends on

the operation type. A typical three-operand RISC-like operation requires three data

transports. On the other hand, jump instruction requires only one data transports.

TTA allows also operand bypassing, which means that two operations can share a

data transports. Therefore, it is difficult to estimate the operation issue-rate on TTA.

A better measure is to express the degree of parallelism in terms of data transport

issue-rate, i.e., how many data transports can be issued in parallel.

Instruction encoding

Instruction encoding in the context of this Thesis defines how the original instructions

are encoded into compressed codewords. More accurately, it defines whether the

original bit patterns in the program code, e.g., instructions or operations slots, are

encoded to fixed- or variable-width codewords. Fixed-width codewords are simple

from the instruction fetch and decompression point of view as all the codewords are

of same width. Variable-width codewords complicate both the instruction fetch and

decompression logic as the width of the codeword is not known during instruction

fetch or at the beginning of decompression.

Fixed-width codewords are easy to fetch from the program memory. The codewords

can be aligned evenly to the program memory. Usually the instruction fetch packet

2.2. Program Compression on Parallel Processor Architectures 15

can be adjusted to be as wide as a single codeword. This allows to fetch one codeword

at a time from the program memory. Decompression is also fairly straightforward as

there is no need to first detect the width of the codeword and extract it from the bit

stream fetched from the program memory before it can be decompressed. Fixed-

width codewords usually result from dictionary-based compression methods. Code-

words represent indices that point to unique bit patterns stored into the dictionary.

Decompression is simple as the index can be used directly to access the dictionary to

obtain the corresponding bit pattern.

Variable-width instructions are more problematic from the instruction fetch and de-

compression point of view as the codewords are of different width and the width of

the codeword is known only during the decompression phase. The instruction fetch

packet is usually configured to be as wide as the widest possible compressed instruc-

tion word to guarantee that during each clock cycle enough bits are fetched from

the program memory to cover an entire compressed instruction word. This guaran-

tees that one instruction word per clock cycle can be decompressed and stalling of

the instruction pipeline can thus be avoided. The decompressor becomes also more

complicated as the width of the compressed instruction has to be determined before

the decompression can be performed. Buffers and shift registers are also needed in

order to handle the incoming bit stream and to avoid overflow in case the compressed

instruction consumes less bits than have been fetched from the program memory.

Variable-width codewords results from the compression methods that utilize the non-

uniform probability distribution to encode symbols with variable-width codewords,

such as Huffman coding and arithmetic coding.

Compression granularity

Compression granularity defines the granularity of the bit patterns that are considered

as symbols for compression. The granularity level affects directly the possibility to

find redundancy, i.e., find repeated bit patterns from the program code. This affects

the size of the generated coding tables. The more fine-grained the granularity level,

i.e., the smaller the bit patterns that are considered as symbols for compression, the

greater the probability to find redundancy from the program code. On the other hand,

fine-grained granularity level means that the entire compressed instruction words will

be represented with several codewords. This increases the width of the compressed

16 2. Program Compression

instruction word and, therefore, also the size of the compressed program code. Higher

granularity level leads to less possibilities to find repeated bit patterns from the pro-

gram code, but on the other hand, to smaller size of the compressed program code

as it consists of only a single or a few codewords that correspond to the original bit

patterns stored into a coding table.

Compression methods included in this survey consider several different granularity

levels. The highest granularity level corresponds to entire VLIW-type instruction

words. The other more fine-grained levels utilized in the methods include the gran-

ularity levels of operation slots, operation slot sequences, opcode fields, and fields

of arbitrary size, e.g., bytes that do not correspond to any structural fields of the

instruction words.

Decompressor Implementation

Decompressor implementation defines the location of the decompression hardware in

the processor system. The decompressor is in most cases placed outside the processor

core, in between the core and the program memory. With the existence of a cache, the

decompressor can be placed either pre- or post-cache. The decompressor can also be

placed inside the control path of the processor core. Figure 2 already presented the

alternative locations of the decompressor. The location of the decompressor affects

both the effectiveness of the compression and the performance.

In case the decompressor is placed pre-cache, only the program memory is in com-

pressed form. Instructions are fetched from the program memory during cache miss

and decompressed back to the original format before they are placed in the cache.

This alternative hides the decompression latency behind the cache miss. Decompres-

sion latency is paid only when a cache miss occurs. In post-cache implementation,

also the cache is in compressed form. This means that the total size of the code

storage in the system is smaller as the size of the cache can be decreases. Decom-

pression is performed when instructions are fetched from the cache and consumed in

the processor core. Decompression latency is paid whenever instructions are fetched

from the cache. This tends to increase the execution time. However, as the cache

contains compressed instructions, more instructions fit in the cache if its size is main-

tained unchanged. This improves the cache hit ratio and reduces the number of cache

misses, i.e., shortens the execution time. The net effect depends on the compression

2.2. Program Compression on Parallel Processor Architectures 17

parameters and the code to be compressed. Hence, there is a tradeoff in between

minimizing the size of the code storage space and the performance.

When the decompressor is placed in the control path of the processor core, the com-

plexity of the decompressor may require it to be implemented in a separate pipeline

stage in between the instruction fetch and decode stages. The additional pipeline

stage increases the depth of the instruction pipeline and, therefore, the branch delay.

The increased branch delay is paid only when a branch is taken. In some of the com-

pression approaches the decompression procedure is fairly simple, e.g., only a simple

look-up table access in the dictionary-based compression. This allows to integrate the

decompressor to the logic of the instruction fetch or decode stage without affecting

the clock period too much. In such a case, the performance is maintained as the depth

of the instruction pipeline is unchanged.

Random Access Support

Random access support defines how the change of the execution flow due to branches

and jumps can be supported after the program code has been compressed. Random

access is maintained if the decompressor can start the decompression process directly

from the target instruction after a branch or a jump is executed. Program compres-

sion complicates the random access support because the program representation in

the program memory is typically changed due to encoding the original instructions

with compressed instructions. Change in the program representation means that the

addresses of the target instructions have changed. Moreover, the target instructions

may end up to be placed in unaddressable locations in the program memory if no

instruction alignment is made.

Random access can be typically guaranteed by compressing the program code in

blocks inside which the program flow is continuous. The beginnings of the com-

pressed blocks, representing branch and jump targets, have to be aligned to address-

able locations in the program memory to guarantee that after a branch or a jump the

execution continues immediately from the correct target instruction. This alignment

may require some padding bits to be inserted in the program memory before the target

instructions. In addition, as the addresses of the instructions in the program memory

have changed, some sort of translation between the compressed and uncompressed

address spaces is required. One alternative is to modify the branch and jump target

18 2. Program Compression

addresses in the instructions to correspond to the target addresses in the compressed

address space [71]. Another alternative is to use a Line Address Table (LAT) that

provides a mapping between the original and the compressed addresses spaces [122].

Effectiveness

Effectiveness defines how effectively the size of the program code can be reduced.

Effectiveness of a compression method is typically measures in terms of compression

ratio, which defines the ratio of the compressed and uncompressed code sizes. Com-

pression ratio has to include also the overhead of the decoding tables that are used

in the decompression phase. The decoding tables usually define the model that can

be used to decompress the compressed instructions back to the original form. Hence,

compression ratio CR can be defined as

CR =
Sc + St

Su

where, Sc is the size of the compressed code, St the size of the decoding tables, and

Su the size of the uncompressed code.

2.2.2 Comparison of Methods

Tables 1- 3 list the proposed compression approaches for parallel processor archi-

tectures and present their classification according to the comparison metrics. Table 1

shows the details of the compression method, the target architecture, and the type of

instruction encoding used for the methods. Table 2 describes the compression gran-

ularity and the decompressor implementation, i.e., the location of the decompressor

in the processor system. Table 3 considers the random access support mechanisms

and presents statistics on the effectiveness of the compression methods in terms of

compression ratio. The table illustrates also whether the presented compression ratio

takes into account the decompression overhead, i.e., the size of the decoding table.

The columns in the tables correspond to the comparison metrics that were presented

in the previous Section. Each row in the table corresponds to a compression method.

Each method is named based on the first author of the publication in which the

method is described. Reference to this publication is also given. On few occasions,

2.2. Program Compression on Parallel Processor Architectures 19

Table 1. Comparison of the target architecture and instruction encoding of the program com-

pression methods on parallel processor architectures. NA: Not available.

Method Target Architecture Instr. enc.

Author Ref. Architecture Max. issue rate Fi
xe

d-
w

id
th

V
ar

ia
bl

e-
w

id
th

NOP removal
Colwell [29] Trace VLIW 28 ops. x
Conte [30] Tinker VLIW NA x
Weiss [118] DSP16 VLIW NA x
Richter [102] M3-DSP VLIW 16 ops. x
Starcore [1] SC 140 VLIW 6 ops x
Texas Instruments [3–5] TMS320C6x VLIW 8 ops. x
Suzuki [114] VLIW 2 ops. x
Aditya [10] VLIW 4-12 ops. x
Haga [42] IA-64 EPIC 6 ops. x
Heikkinen This work Move TTA 3-13 trans. x
Dictionary-based
Nam [92] Sparc-based VLIW 4-12 ops. x
Hoogerbugge [48] TM 1000 VLIW 5 ops. x
Ros [104] TMS320C6x VLIW 8 ops. x
Ros [105] TMS320C6x VLIW 8 ops. x
Lin [88] TMS320C6x VLIW 8 ops. x
Piccinelli [97] ST200 VLIW 4 ops. x
Ibrahim [51] VLIW NA x
Heikkinen This work Move TTA 3-13 trans. x
Entropy encoding
Larin [68] TEPIC VLIW 6 ops. x
Xie [125, 126] TMS320C6x VLIW 8 ops. x
Xie [127] TMS320C6x VLIW, IA-64 EPIC 8 ops., 6 ops. x
Heikkinen This work Move TTA 3-13 trans. x
Instruction set re-enc.
Larin [68] TEPIC VLIW 6 ops. x
Biswas [21] TMS320C6x VLIW 8 ops. x
Liu [90] VLIW 4 ops. x

two or more methods have been combined into a single row due to their tight corre-

spondence between each other. The compression methods in the table are organized

into four compression categories based on the general compression principle. Com-

pression approaches inside each category have been arranged based on the year they

were published. The compression categories include NOP removal, dictionary-based

compression, Entropy encoding, and instruction set re-encoding. The compression

methods included in the survey are presented in the following Subsections based on

the above mentioned compression category classifications.

20 2. Program Compression

Table 2. Comparison of the compression granularity and decompressor implementation of

the program compression methods on parallel processor architectures. PMEM: Pro-

gram Memory. CPU: Central Processing Unit.

Method Granularity Decompressor impl.

Author Ref. In
st

ru
ct

io
n

w
or

d

O
pe

ra
tio

n
sl

ot

O
pe

ra
tio

n
sl

ot
se

qu
en

ce

O
pc

od
eo

pc
od

e
fie

ld

A
rb

itr
ar

y
bi

ts
eq

ue
nc

e

Pr
e-

ca
ch

e

Po
st

-c
ac

he

B
et

w
ee

n
PM

E
M

an
d

C
PU

C
PU

co
nt

ro
lp

at
h

NOP removal
Colwell [29] x x
Conte [30] x x x
Weiss [118] x x
Richter [102] x x
Starcore [1] x x
Texas Instruments [3–5] x x
Suzuki [114] x x
Aditya [10] x x
Haga [42] x
Heikkinen This x x
Dictionary-based
Nam [92] x x
Hoogerbugge [48] x x
Ros [104] x x x
Ros [105] x x
Lin [88] x x
Piccinelli [97] x x
Ibrahim [51] x x
Heikkinen This x x x x
Entropy encoding
Larin [68] x x x x
Xie [125, 126] x x x
Xie [127] x x
Heikkinen This x x x x
Instruction set re-enc.
Larin [68] x x
Biswas [21] x x
Liu [90] x x

NOP Removal

VLIW architectures are typically tailored for the highly parallel sections of the pro-

gram code to fully utilize the parallelism available in the application. In the less

parallel sections of the program this results in large number of NOPs to be specified

2.2. Program Compression on Parallel Processor Architectures 21

Table 3. Comparison of the random access support and effectiveness of the program com-

pression methods on parallel processor architectures.

Method Random access Effectiveness

Author Ref. A
dd

re
ss

lo
ok

up
ta

bl
e

A
dd

re
ss

pa
tc

hi
ng

A
lig

nm
en

t

C
om

pr
.

ra
tio

D
ec

od
in

g
ta

bl
e

in
cl

ud
ed

NOP removal
Colwell [29] x x NA NA
Conte [30] NA NA NA
Weiss [118] NA NA NA
Richter [102] NA NA NA
Starcore [1] x x NA NA
Texas Instruments [3–5] x x NA NA
Suzuki [114] x x 0.56-0.65 No
Aditya [10] x x 0.12-0.37 No
Haga [42] x x NA NA
Heikkinen This x x 0.36-0.56 No
Dictionary-based
Nam [92] - 0.63-0.71 Yes
Hoogerbugge [48] NA 0.20 No
Ros [104] x x 0.81-0.89 Yes
Ros [105] x 0.73-0.82 Yes
Lin [88] x 0.75 NA
Piccinelli [97] x 0.68 Yes
Ibrahim [51] NA NA NA
Heikkinen This - 0.53-0.76 Yes
Entropy encoding
Larin [68] x x 0.30-0.75 No
Xie [125, 126] x x 0.67-0.80 / 0.84-0.89 No
Xie [127] x 0.70 - 0.83 / 0-56-0.73 No
Heikkinen This x x 0.41-0.82 Yes
Instruction set re-enc.
Larin [68] x x 0.64 No
Biswas [21] - 0.75 No
Liu [90] NA 0.33-0.39 NA

for the FUs that do not perform an operation. This worsens the code density. Several

approaches have been proposed to address this issue.

Colwell et. al. were the first ones to propose a program compression method on

VLIW architecture [29]. They utilized their method on a 28-issue Trace VLIW ar-

chitecture. They proposed to use a “mask” identifier to precede each instruction word

and specify which operation slots are present in the instruction word. This method

22 2. Program Compression

allows to remove the NOPs from the instruction words and hence improve the code

density. The decompression phase to reconstruct the compressed instructions back to

their original form was performed in the cache.

Conte et. al. proposed a flexible instruction encoding for VLIW architectures that

was experimented in the TINKER VLIW test suite [30]. In the TINKER encoding,

individual operations are combined into a MultiOp, which is a parallel unit of issue.

The MultiOp is defined by a header, which is followed by the operations that are to be

issued in parallel. Each operation can issue an operation in one of four types of FUs;

integer, memory, floating-point, and branch. Each operation has a header and a tail

bit to define the beginnings and ends of MultiOps. The first operation of a MultiOp

has its header set and the last operation its tail bit set. This encoding allows to define

only the actual operations in the program code, i.e., the specification of NOPs can

be avoided. An expander is used to decompress TINKER encoding and route the

operations in the MultiOp to correct locations. The expander can be placed either

pre- or post-cache.

In [118], Weiss and Fettweis proposed a VLIW encoding denoted as Tagged VLIW

(TVLIW). It composes VLIW instruction words from a limited set of TVLIW in-

structions that each contain two operation slots, defined as functional unit instruction

words (FIW). Each FIW is preceded by a tag field that defines the FU the following

FIW is to control. A class field is placed at the beginning of the TVLIW instruction

word to indicate how many TVLIWs the actual VLIW instruction is to be assem-

bled from. The TVLIW instruction decoder is used to assemble the entire VLIW

instruction word. The FIWs are distributed to the assigned FUs and NOPs are sup-

plemented for the remaining units. In case the full VLIW functionality is required,

several TVLIWs are required. Assembling such an instruction word takes several

clock cycles. As these kind of instructions often reside in loops, Weiss and Fettweis

introduced a loop cache to hold the assembled VLIW instructions of the loop. This

way the instruction assembly overhead has to be paid only once for the instructions

inside the loop.

Richter et. al. have improved the above mentioned TVLIW approach by imple-

menting a VLIW buffer to avoid the penalty cycles in assembling the actual VLIW

instruction word [102]. The buffer is software-controlled and allows the coherence

characteristics of subsequent instructions to be exploited by reusing the previously

fetched instruction.

2.2. Program Compression on Parallel Processor Architectures 23

Modern VLIW architectures have addressed the code size bloat problem with ar-

chitectural features that allow to omit the NOPs from the instruction words. In the

Starcore SC 140 VLIW architecture, a variable-length execution set (VLES) is used

to provide high code density [1]. SC 140 can fetch eight 16-bit instructions at a time

and is capable of executing up to six instructions concurrently. Instructions belonging

to a single execution set are identified using either serial or prefix grouping. Serial

grouping reserves two bits in the operation slots to define whether the current opera-

tion is the last to belong to an execution set. Prefix grouping adds one- or two-word

prefix field to an execution set to define how many instructions belong to it.

Similarly to SC 140, Texas Instruments TMS320C6xx VLIW architecture supports

variable-length execution set to preserve code space [3–5]. TMS320C6xx fetch

packet contains eight 32-bit operations. The processor can issue up to eight opera-

tions in parallel, i.e., the entire fetch packet. Operations issued in parallel are defined

similarly to the SC 140 serial grouping. The last bit in the 32-bit operation encod-

ing is reserved to define whether the following operation slot belongs to the same

execution set. Instruction decoder checks these control bits and identifies which op-

erations are to be issued in parallel. Operation encoding has to explicitly specify the

FU on which the operation is to be executed, as the unit cannot be determined from

the location of the operation slot in the execution set.

Suzuki et. al. proposed in [114] a somewhat different methodology to omit all the

NOPs from the instructions of a 2-way VLIW processor. Only the actual operations

are included in the instructions and they are placed in the operation slots. The in-

struction decoder can detect whether the operations are in the correct order and if

not, it corrects the order and supplements the necessary NOPs. In addition, special

NOP instructions are proposed to define instructions that contain only NOPs. The

instruction format remains unaffected.

A compression method similar to the one proposed by Colwell et. al. was proposed

by Schlansker and Rau in [108], and experiments of the proposed method on VLIW

architecture were reported by Aditya et. al. in [10]. The proposed method is based on

multiple instruction formats denoted as instruction templates, which provide opera-

tion slots for only a subset of the FUs. The rest of the FUs not having an operation slot

in the instruction word obtain NOPs implicitly. The used template is identified using

a template selection field at the beginning of the template. This field is inspected dur-

ing the decompression to determine the fields present in the template, their widths,

24 2. Program Compression

and their bits positions. With this information the operation slots in the template can

be directed to correct FUs and NOPs can be assigned to the other units. A dedicated

multi-NOP field is also proposed to specify several NOPs.

In [42], Haga and Barua proposed a new instruction scheduling algorithm for an

EPIC architecture to improve the code density. The proposed algorithm tries to find

an optimal instruction schedule that reduces the number of NOPs scheduled in the

program code. Instruction scheduling on EPIC is somewhat different than on VLIW.

The scheduling is based on using templates that identify the operations that have

no dependencies and thus can be executed in parallel [111]. The templates specify

the allowed operation sequences that can be used while performing the instruction

scheduling. Similarly to TMS320C6x and SC 140 architectures, stop bits are used in

the templates to express the set of operations that can be executed in parallel.

The NOP removal approach applied on TTA in this Thesis follows the principle of the

instruction template-based scheme proposed by Schlansker and Rau [108]. Opposed

to VLIW instruction words that specify the operations for the concurrently operating

FUs, TTA instruction words specify the data transports that are to be performed on

the available transport buses. Operations occur as side-effect of the data transports.

The instruction template-based compression method can be adapted to the TTA pro-

gramming model by considering the fields that specify the data transports, denoted

as move slots, as the elements of the templates. As a result, the instruction templates

specify data transports for a subset of all the possible transport buses. Null data trans-

ports are allocated implicitly on the buses for which a data transport is not present in

the instruction template.

In general, the proposed NOP removal compression approaches result in variable-

width instructions. Only the approach proposed by Suzuki et. al. result in fixed-width

instructions as it is applied on a dual-issue VLIW architecture that allows this. Fur-

thermore, most of the methods operate at the operation slot granularity level. VLIW

instructions are partitioned to fields based on the operation slots and only the ones

that contain valid operations are included in the compressed instruction words. The

Tagged VLIW approaches [102,118] partition instructions to operations slot pairs and

compose the compressed instruction words from a variable number of these pairs.

In most of the presented approaches the compressed instructions are translated back

to the original format inside the control logic of the processor core. In the commercial

2.2. Program Compression on Parallel Processor Architectures 25

VLIW processors, SC 140 and TMS320cC6x [1,3–5], there is no need for a separate

decompression phase. The instruction decoder identifies the operations that are to

be executed in parallel. In [10, 102, 114, 118] and in this Thesis, a separate decom-

pression step is required before the decoder to expand the compressed instruction

representation back to the original form. In [29, 30], a separate decompressor is also

required, but it is placed outside the processor core. In [29], reconstruction of the

original VLIW instruction word is performed during the cache re-fill, i.e., pre-cache.

In [30], a more flexible organization is allowed as the instruction expander can be

placed either pre- or post-cache.

Random access support requires that the execution flow can continue from the branch

and jump target instructions also after the compression has been made. All of the

proposed NOP removal methods require aligning the branch and jump targets to ad-

dressable memory locations. Furthermore, branch and jump target addresses need to

be patched to correspond to the compressed address space.

The effectiveness of the compression method has been addressed only in [10], [114],

and in this Thesis by reporting the compression ratio. None of the given compres-

sion ratios include the decompressor overhead, which is fairly difficult to measure, as

there is no coding table whose size could be measured. The best compression ratios

have been reported for [10], where an average compression ratio of as high as 0.12 is

reported. This is obtained for a 12-issue VLIW architecture using as many instruc-

tion templates as required by the program code. The complexity of the decompressor

is directly related to the number of templates utilized to compress the program code.

As the decompressor overhead is not included in the compression ratio, it does not

express the absolute truth of the effectiveness of the compression method. The best

average compression ratio for the instruction template-based compression approach

utilized in this Thesis is 0.47, which is achieved for a 13-issue TTA architecture, i.e.,

an architecture that can issue up to 13 data transports in parallel. The best compres-

sion ratio for [114] is 0.56, which is fairly high for a dual-issue VLIW architecture.

It must be noted that the achievable compression ratios depend heavily on the utilized

processor architecture and on the effectiveness of the compiler to schedule the appli-

cation on to the available hardware resources. Reliable comparison of the methods

would require utilizing the methods on a single processor architecture with the same

set of benchmark applications.

26 2. Program Compression

Dictionary-Based Compression

Dictionary-based program compression methods are based on the traditional dictio-

nary compression method that has been used widely, e.g., for text compression. Dic-

tionary compression finds all the unique substrings, e.g., words in a text, stores them

into a dictionary, and replaces them with codewords that identify that substring in

the dictionary [121]. The dictionary contains a list of the substrings and their cor-

responding codewords. During decompression the codeword to be decompressed is

searched from the dictionary and the corresponding substring is given as an output.

Dictionary-based compression is applied on program code by interpreting the instruc-

tions, or other bit patterns as substrings inside which unique bit patterns are searched

for and stored into a dictionary. The original instructions are replaced with indices

pointing to the dictionary. The dictionary can be implemented as a look-up table that

is addressed using the dictionary indices to obtain the original instructions. More

detailed description of dictionary-based compression is presented in Chapter 4.

In [92], Nam et. al. proposed a dictionary-based compression method for VLIW.

They separated the opcode and operand patterns from the VLIW instructions and

compressed each pattern separately. Their method was based on the fact that VLIW

instructions typically perform the same set of operations for a slightly different set of

operands, or vice versa. Therefore, by separating the VLIW instructions into opcode

and operand streams, more repeated bit patterns could be found. This improves the

effectiveness of the compression method. The method results in two dictionaries to

be generated, one for the opcode patterns and one for the operand patterns. These

two dictionaries are accessed with their own codewords.

Hoogerbrugge et. al. proposed to apply dictionary-based compression at a higher

granularity level [48] on TriMedia TM1000 VLIW architecture. They searched for

frequently occurring operation slot sequences from the program code and compressed

them into superinstructions that were executed on a virtual machine using a software

interpreter. The superinstructions were chosen by first forming an expression tree

of the program code. All the unique subtrees were then evaluated and their static

occurrence probabilities determined. The subtrees were then prioritized based on

the probability of occurrence and the width of the subtree. The priority reflects the

effect of the subtree on the code size. The subtrees with the highest priority were

chosen to be compressed as superinstructions. The decompression was performed

2.2. Program Compression on Parallel Processor Architectures 27

using a software interpreter. In addition to superinstructions, Hoogerbrugge et. al.

included a dictionary for large constants and utilized relative jumps to improve the

effectiveness of their method.

In [104], Ros and Sutton experimented dictionary construction for both single oper-

ation slots and operation slot sequences of VLIW instructions. They applied their

method on TMS320C6xx architecture, which already has a compact encoding that

avoids the explicit specification of NOPs. This affects the effectiveness of the com-

pression method as NOPs that waste the code space have already been removed. The

single operation slot compression was applied by storing the most frequent opera-

tions into a dictionary and replacing them with dictionary indices. The operation slot

sequence compression was applied similarly, considering two to eight operation slots

as bit patterns to be compressed. The most frequent sequences were stored to the dic-

tionary and replaced with dictionary indices. As the sequences may be of different

sizes, they may overlap. This required to recalculate the usage frequency statistics

after each iteration of the selection process.

Ros and Sutton improved their dictionary-based compression method in [105] by

optimizing the size of the dictionary. They utilized the property of Hamming dis-

tance [43] in the construction of the dictionary. Hamming distance defines among

two strings of equal length the number of positions for which the corresponding sym-

bols are different. In this context, the strings correspond to bit sequences and symbols

to individual bits. The bit sequences stored into the dictionary were chosen so that all

the bit sequences in the program code differ only by a determined Hamming distance

from any dictionary entry. The original bit pattern can be restored by toggling the bits

that differ. The compressed instruction word defines an index to a dictionary entry,

the number of bits that need to be toggled, and the positions of the bits to toggle.

The proposed dictionary size optimization method was applied on TMS320C6xx and

Intel Itanium [52] architectures by experimenting different Hamming distances and

different dictionary selection principles.

In [88], Lin et. al. proposed a Lempel-Ziv-Welch-based (LZW) dictionary encoding

method for VLIW instructions. LZW coding, proposed by Welch in [120], is a mod-

ification to the original Ziv-Lempel coding [135, 136]. The coding is based on using

the previously seen data to encode the incoming one by maintaining a dictionary of

the previously seen data. The incoming symbol strings are looked up from the dic-

tionary and encoded with references to the dictionary. Any new input string is stored

28 2. Program Compression

into the dictionary. The method results in variable-width sequences to be encoded

with fixed-width dictionary indices.

Piccinelli et. al. proposed a compression method that can be considered as a hybrid

between the dictionary-based and arithmetic encoding methods [97]. The 32-bit op-

erations are divided to 16-bit half-operations, out of which the most frequent ones are

stored into a dictionary. The dictionary indices are further grouped into vectors. Each

vector is then assigned a codeword based on their Laplacian statistical distribution,

following the vector quantization method presented in [38].

Ibrahim et. al. experimented dictionary-based compression to reduce the power con-

sumption on a multi-clustered VLIW in [51]. They utilized a small local instruction

memory (LIM) into which they stored the most frequently executed instructions. The

instructions in the local instruction memory were then accessed in the program code

simply with indices to the LIM. The size of the LIM was limited to 32 instructions.

Ibrahim et. al proposed an additional power saving method by utilizing the single

instruction multiple data (SIMD) presence in the application. An original instruction

operating on multiple data could be implemented as a compressed instruction. The

number of such instructions was limited to 8 to avoid increasing the cycle time due

to more complex decompression.

The dictionary-based compression approach utilized in this Thesis follows the basic

principle of dictionary-based compression. The compression is applied on TTA pro-

gram codes at different granularity levels to investigate how it affects the effectiveness

of the compression method. At the highest granularity level, entire instruction words

are considered as substrings inside which unique bit patterns are searched for to be

stored into the dictionary. As the TTA instruction words are fairly long, the possibil-

ity to find repeated bit patterns is fairly small. This results in most of the instruction

words being stored into the dictionary, resulting in large size and poor improvement

in the code density.

The effectiveness of the dictionary-based compression can be improved by applying

the compression to more fine-grained bit patterns. This can be achieved on TTA by

dividing the instruction words to smaller fields based on the move slot boundaries.

This allows to find more repeated bit patterns and results in smaller dictionary. The

drawback of this is the increased size of the compressed code as compressed instruc-

tion words are composed of several dictionary indices.

2.2. Program Compression on Parallel Processor Architectures 29

The probability to find repeated bit patterns can be improved even further by dividing

the move slots to more fine-grained fields, based on the internal source and desti-

nation identifier (ID) field boundaries. This results in even smaller dictionary but,

consequently, increases the size of the compressed code even further.

In general, dictionary-based program compression methods encode instructions to

fixed-width codewords that correspond to indices to the dictionary that contains the

original bit patterns. Except for [105] and [97], all of the presented dictionary-based

program compression methods follow this principle. Also in [105] and [97], where

the final compressed instructions are variable-width, the dictionary-based compres-

sion phase, performed first, results in fixed-width instructions. The phases that fol-

low, i.e., vector quantization in [97] and dictionary size optimization in [105] make

the final compressed instructions variable-width.

The dictionary-based compression approaches included in the survey cover several

different granularity levels at which compression is applied to, operand slot granular-

ity level being the most often used. Apart from this Thesis, which applied dictionary-

based compression at three different granularity levels, only in [104] more than one

granularity level is considered.

The decompressor, i.e., the dictionary, is in most of the methods placed outside the

processor core, i.e., in between the processor core and the program memory. This

means that the decompression overhead is paid always when instructions are fetched

from the program memory. Cache is included in the system only in [88]. In that

approach, the decompressor is placed post-cache. In [51] and in this Thesis, the

decompressor is placed in the control path of the processor core. In [51], the decom-

pressor is implemented in a separate pipeline stage in between the instruction fetch

and decode stages. In this Thesis, in addition to implementing the decompressor

in a separate pipeline stage, an integrated decompressor alternative is also evaluated

where the decompressor is integrated with the decoder into a single pipeline stage.

Ideally, the dictionary-based compression does not break the program representation

as the compressed instruction words are typically fixed-width. This allows to main-

tain the random access support without any modifications, as is the case in [92] and

in this Thesis. In these approaches, the program memory is adjusted to be as wide as

the compressed instruction word. The program memory is word addressable, which

means that the original addresses apply also for the compressed instruction words.

30 2. Program Compression

In [104], branch targets need to be aligned to addressable memory locations. The

original branch addresses do not apply anymore. Therefore, address patching is re-

quired. Branch target alignment is required also in [105] and in [97] as they result

in variable-width instructions. Mapping between the compressed and uncompressed

address spaces in provided through an LAT.

Except for [51], which targets to reduce the energy consumption of the program

memory, all of the presented methods evaluate the effectiveness of the compression

method in terms of compression ratio. The best compression ratios, on average 0.20,

are reported in [48]. However, the decompression overhead, i.e., the size of the dictio-

nary is not included in the reported compression ratio. Furthermore, the compression

ratio is given only for the compressed region, i.e., the code region left uncompressed

is not included in the results. Out of the methods that include the decompression over-

head in the compression results, best compression ratio is achieved in this Thesis, on

average 0.53-0.76, depending on the utilized granularity level. The best compression

ratio is obtained at move slot granularity level.

In [51], where the target was to minimize the energy consumption of the program

memory, energy savings of 17% to 38% are reported. Out of the compression ap-

proaches included in this survey, except for this Thesis, this is the only approach to

consider the effects of the program compression on the energy consumption. The area

and power consumption results obtained in this Thesis are presented in Chapter 6.

Entropy encoding

Entropy encoding methods utilize the entropy, i.e., the property that some symbols

are used more frequently than others. This results in non-uniform probability distrib-

ution. Entropy encoding methods utilize this property by assigning the most frequent

symbols with shorter codewords. The least frequent symbols need to be assigned

with longer codewords to describe all the symbols with unique codewords. Even

though the least frequent symbols are assigned with codewords that are longer than

the original bit patterns, compression is achieved as these codewords occur only few

times compared to the shorter codewords that occur frequently and, therefore, save

more code space.

The most commonly used entropy encoding methods are Huffman coding and arith-

metic coding. Huffman coding assigns variable-width codewords of integral number

2.2. Program Compression on Parallel Processor Architectures 31

of bits to the symbols based on their probability distribution. The codewords are

prefix-free, i.e., no codewords is a prefix of another one. Huffman coding is dis-

cussed in more detail in Chapter 4 when the utilization of Huffman coding on TTA is

discussed.

Larin and Conte applied Huffman coding on TEPIC VLIW in [68]. They applied

Huffman coding at three different symbol granularity levels; at byte level, at stream

level, and at whole operation level. At byte level, the program code is partitioned

into symbols based on byte boundaries. A probability distribution is formed for all

the bytes used in the program code. The probability model is then used to encode

the bytes with variable-width codewords following the Huffman coding principle. At

stream level, operations are partitioned into parallel streams based on the field bound-

aries that exist in the operations, e.g., the opcode, operand, and immediate fields.

Each parallel stream is encoded separately. At whole operation level, entire opera-

tions are considered as symbols to be Huffman encoded. Larin and Conte observed

that compression at higher granularity levels results in better code size reduction, but

also to more complex decompressor that implies a large hardware overhead.

Huffman coding approach utilized in this Thesis follows the basic principles of Huff-

man coding. The program code is divided into symbols based on which a probability

distribution is calculated. The most frequent symbols are assigned to short codewords

and vice versa, following the Huffman coding principle. Huffman coding is applied

at the same three granularity levels as in the dictionary-based compression, i.e., at

full instruction, move slot, and ID field levels.

Arithmetic coding is similar to Huffman coding but performs better as it can assign

codewords to a fraction of a bit. Arithmetic coding encodes symbols as real num-

bers in the interval of [0,1). The interval is divided to sub-intervals based on the

probability distribution of the symbols. Arithmetic coding proceeds by finding a

sub-interval corresponding to the symbol and then dividing the sub-interval to new

sub-intervals based on the updated probability distribution. This process is repeated

until the last symbol of the string is reached. A real number inside the final interval

is then assigned to the string. The number is expressed in bits using fractional bit

representation. This represents the compressed codeword.

In [125], Xie et. al. proposed a compression method based on arithmetic coding for

the TMS320C6x VLIW architecture. Even though arithmetic coding methods have

32 2. Program Compression

been reported to result in high compression ratios, they have not been widely used

for program compression due to complex and time consuming decompression pro-

cedure that makes it difficult to fit the decompressor into the processor hardware. In

their arithmetic compression approach, Xie et. al. utilized reduced-precision arith-

metic coding proposed by Howard and Vitter in [49] to approximate the complex

floating-point calculations with lookup-table accesses to reduce the complexity of the

decompression and hence make the method more practical for program compression.

Xie et. al. utilized dynamic Markov modeling [33] in their arithmetic compression

approach to provide a statistical probability distribution that is utilized in the arith-

metic coding process to encode symbols into variable-width codewords. Coding is

performed separately for each VLIW fetch packet. Each packet is further divided

into smaller sub-blocks at the operation slot boundaries to allow parallel decompres-

sion. Markov model is built either for all the sub-blocks in the program code, or the

fetch packets are divided into parallel streams based on sub-block boundaries and a

Markov model is built separately for each stream.

Markov modeling results in fairly large decompressor that introduces an overhead in

the hardware of the processor and hence affects the effectiveness of the compression

method. In [126], Xie et. al. studied different modeling approaches for arithmetic

coding to reduce the decompression hardware overhead. They noted that the over-

head could be reduced when simpler models were used for compression.

The simplest model calculates the probabilities of ones and zeroes across the entire

program code and assigns fixed probabilities for them regardless of their positions

in the instruction words. Positional information may improve the effectiveness of

the compression. For example, opcode and operand fields are typically in the same

locations within the instruction words. This information can be utilized by calculating

the bit probabilities for the model within certain boundaries, e.g. inside operation

slots, and forming a model for each bit position. This improves the compression

ratio, but results in more complex hardware decompressor.

In [127], Xie et. al. studied a somewhat different entropy encoding scheme on VLIW

architecture. This scheme compresses variable-width bit sequences to fixed-width

codewords. The method is based on Tunstall coding, which was proposed by Tunstall

in [116]. Tunstall coding utilizes the probabilities of ones and zeroes to find variable-

width bit sequences that are to be assigned with fixed-width codewords.

2.2. Program Compression on Parallel Processor Architectures 33

In general, entropy encoding methods result in variable-width codewords. This is the

case for most of the presented entropy encoding methods. Only in [127] fixed-width

codewords are assigned to variable-width bit sequences. In terms of compression

granularity, all the different granularity alternatives are covered in the methods. Most

of the methods cover more than one granularity level. Huffman coding approach

utilized in this Thesis covers three different granularity levels.

Decompressor is placed outside the processor core in all of the approaches except

for the Huffman coding approach presented in this Thesis. In [68] the decompressor

is placed pre-cache, and in [125–127] post-cache. In this Thesis, the decompressor

is considered to be implemented inside the control path of the processor core even

though the actual hardware implementation of the decompressor is not made.

As the entropy encoding methods in most cases result in variable-width instructions,

the branch targets need to be aligned in all of the presented methods to addressable

boundaries so that the branch target instructions can be accessed directly in the pro-

gram memory. Due to variable-width instructions and the branch target alignment,

address mapping between the compressed and uncompressed address spaces is also

required. This is accomplished either with an LAT as in [68, 125, 126], or by patch-

ing the branch target addresses to correspond to the compressed address space, as

in [127] and in this Thesis.

Compression ratios are reported for all of the presented entropy encoding methods.

Only in this Thesis the decompression overhead, i.e., the decoding table, is taken into

account in the compression ratio. The Huffman coding approach presented in [68]

results in best compression ratio, at best 0.30 when the compression is performed

at operation slot level. However, this would lead to a very large decoder and would

make the approach less effective. Therefore, the compression ratios obtained in this

Thesis, which are at best 0.41, are very competitive.

Instruction Re-Encoding

Instruction re-encoding methods provide means for code size reduction by modifying

the instruction encoding so that operations are encoded with fewer bits. Instruction

re-encoding is motivated by the fact that program codes typically use only a subset of

the entire instruction set and some operations are used more frequently than others.

Furthermore, there are also operations in the instruction set that do not utilize all the

34 2. Program Compression

bits that are reserved for an operation, e.g., one operand operations. This suggests

that the code size can be reduced by encoding these instructions with fewer bits. As

the compact encoding needs to support only a subset of the entire operation set, the

width of the opcode field, identifying the operation to be performed, can be reduced.

The widths of the operand fields, specifying the operands for the operation, can also

be reduced as all of the possible registers in the register file (RF) are not used as

operands. Also the width of the immediate field can typically be shortened to make

the instructions fit to the re-encoded size.

As the opcode and operand fields are shortened, the number of possible operations

and the number of registers that can be used as operands for an operation become

limited. Furthermore, due to the limited width of the immediate field, the range of

possible immediate values becomes smaller and complicates, e.g., branching. There-

fore, processor architectures with re-encoded instruction set typically also support the

original instruction set. The re-encoded instruction set is utilized to save code space

where applicable, and the original instruction set is used elsewhere in the program

code. A distinction has to be made between these two instruction encoding alterna-

tives. A dedicated bit can be used to define the used encoding, or alternatively, a

special instruction can be introduced to toggle between the two encodings.

The execution of the re-encoded instructions is typically supported by implementing

a dedicated hardware in the processor core that expands the re-encoded instructions

to the original format before decoding. This way the original instruction decoder can

be used for both the original and re-encoded instructions. This avoids the need to

implement a separate parallel decoder for the re-encoded instructions.

In [68], Larin and Conte proposed an instruction set re-encoding method for the

TEPIC VLIW architecture where the re-encoded instruction set was formed based on

the profile of the instructions used in the given application. The opcode and operand

fields were encoded with only as many bits as were required. The number of different

operations used in the program was profiled and the width of the opcode field was ad-

justed based on that number. Similarly, the widths of the operand fields were adjusted

based on the number of registers alive simultaneously. A dedicated instruction de-

coder had to be implemented in the processor control path to decode the re-encoded

instructions back to the original format so that they could then be decoded using the

original decoder.

2.2. Program Compression on Parallel Processor Architectures 35

In [21], Biswas and Dutt proposed a method that achieves code size reduction on

TMS320C6x VLIW architecture by supplementing the instruction set with new com-

plex operations that combine two base operations that share and operand, i.e., have a

read-after-write dependency. A heuristic-based algorithm is used to generate these

operations in the compilation step. The proposed algorithm converts two three-

operand operations into one four-operand operations, i.e., operations x = a op1 b

and y = x op2 c are combined into operation y = (a op1 b) op2 c. Execution of

the combined operations is simple. The four-operand operation is split back to two

consecutive three-operand operations in the decode phase of the dispatch stage of the

instruction pipeline, after which the operations can be executed using the original

datapath of the processor.

Liu et. al. proposed a mix of NOP removal and instruction re-encoding approach for

a quad-issue VLIW architecture in [90]. The encoding is performed hierarchically

in three steps. At first, single operations are re-encoded as variable-width operations

based on the operation types and the required operands. The re-encoded operation

consists of a fixed-width “head” and a variable-width “tail”. The head contains fields

for the opcode, control signals, and the possible operands. The proposed encoding

follows the HAT (heads-and-tails) principle, proposed by Pan and Asanović for RISC

architecture in [94]. To support the parallel issue of several operations, the variable-

width operations belonging to an execution set are packed into an instruction packet.

An identifier preceding the packet is used to identify for which functional units the

packet contains operations. It also provides information on the instruction execu-

tion type. The variable-width instruction packets are further packed into fixed-width

bundles to simplify memory accesses.

Out of the presented instruction set re-encoding methods, [68] and [90] result in

variable-width and [21] in fixed-width instructions. In [68], the compression is per-

formed at opcode and operand field level. In [90], the instruction set re-encoding is

performed at operation slot level. In [21], bundles of two operations are re-encoded

into single operations.

The decompressor, i.e., the logic that translates the re-encoded operation represen-

tations back to their original form is performed in the control logic of the processor

core in all of the evaluated re-encoding approaches. In [21], there are no requirements

to modify the addressing or instruction alignment to support random accesses to the

compressed program code. In [68], the re-encoded instructions need to be aligned to

36 2. Program Compression

addressable locations and the branch addresses have to be patched. In [90], random

access support methods have not been discussed.

Out of the presented approaches, best compression ratios, at best 0.33, are presented

in [90]. Information whether the decompressor overhead is included is not avail-

able. All the other instruction re-encoding methods, which have significantly worse

compression ratios, include the decompression overhead in the compression ratio.

2.2.3 Comparison Summary

The compared program compression approaches were classified into four categories.

NOP removal methods [1,3–5,10,29,30,42,102,114,118] concentrate on avoiding the

explicit specification of NOPs. Dictionary-based compression methods [48, 51, 88,

92,97,104,105] search the program code for unique bit patterns that are stored into a

dictionary and replaced with indices pointing to the entries in the dictionary. Entropy

encoding methods [68, 124, 126, 127] utilize the entropy, i.e., the fact that some bit

patterns occur more frequently than others, and encode the most frequent bit patterns

with shorter codewords and vice versa. Instruction set re-encoding methods [21, 68,

90] modify the instruction encoding to encode the operations with less bits. The

program compression methods developed for and evaluated on TTA belong to the

first three categories.

Generally, dictionary-based compression methods encode instructions with fixed-

width codewords, which are easier to decompress than variable-width codewords.

Methods in the other categories usually result in variable-width codewords that make

the instruction fetch and decompress logic more complex. Variable-width codewords

typically require that branch targets are aligned to addressable memory locations.

Address mapping or address patching is also required to correct the branch target ad-

dresses point to the correct compressed instructions. Fixed-width codewords usually

do not need branch target alignment nor address patching as the width of the program

memory can be adjusted according to the width of the compressed instruction.

Most of the methods perform compression at operation slot or operation slot sequence

level. This is a fairly natural choice as operation slots are the basic elements of VLIW

instruction words. Several approaches consider also smaller granularity levels, i.e.,

opcode and operands fields, or arbitrary bit sequences, e.g., bytes. Smaller gran-

ularity level increases the probability to find redundancy from the program code.

2.2. Program Compression on Parallel Processor Architectures 37

However, it increases the size of the compressed program code due to compressed

instruction words being composed of several codewords. The trade-offs of the com-

pression granularity on the effectiveness of the compression methods are evaluated

only in the entropy encoding approach in [68] and in the dictionary-based compres-

sion and entropy encoding approaches in this Thesis. However, only in this Thesis

the sizes of the decoding tables are taken into account, which makes the evaluation

more accurate.

Most of the compression methods included in the comparison present the effective-

ness of the compression method in terms of compression ratio. However, as some

methods include the decompression overhead in the reported compression ratio while

others do not, comparison of the effectiveness of the methods is difficult. In addition,

compression ratio does not entirely represent the effectiveness of the compression

method. Aside from reducing the size of the program code, which allows to use

smaller memories, also the power consumption is affected. Fetching fewer bits from

the program memory consumes less power. Out of the compression approaches in-

cluded in this survey, only [51] in addition to this Thesis considers this issue and

presents estimates on the energy saving achievable in the program memory.

In order to fully characterize all the aspects of a compression method, evaluation

of the effectiveness of a compression method should be performed by implement-

ing in hardware both the original system and the system that executes compressed

program code. This would allow the decompression overhead to be taken into ac-

count and the effectiveness of the compression method could be measured in terms

of silicon area rather than compression ratio. Hardware implementations would also

allow to estimate the effects of the compression on the power consumption. In this

Thesis, the instruction template-based and dictionary-based compression approaches

on TTA have been implemented in hardware, allowing closer analysis of all the as-

pects of the compression methods. Such measures are rarely reported for the program

compression methods.

38 2. Program Compression

3. PROCESSOR HARDWARE CUSTOMIZATION

Modern day embedded systems require more and more performance from the under-

lying processing hardware due to the increased complexity and the tight real-time

requirements, e.g., in video processing. At the same time, there are requirements for

fast time to market, lower cost and, especially, lower power consumption. General-

purpose processors (GPP), such as RISC and CISC, developed generality and sim-

plicity in mind, often cannot meet these requirements. The processor may not provide

sufficient performance as the hardware has not been optimized for any particular ap-

plication or application domain. Furthermore, as the processors need to be capable

of executing all kinds of applications, the chip area is usually large and consumes

significant amount of power.

The above mentioned requirements can be met by customizing the processor hard-

ware for the given application. Such systems are often denoted as application-specific

systems. Customization allows to tailor the hardware resources of the system to pro-

vide enough performance. Moreover, as the system is tailored for a particular appli-

cation or application domain, the system does not have to contain hardware resources

to support execution of all kinds of applications. This may allow to reduce the chip

area and, therefore, also the power consumption.

The highest level of application-specific customization is offered by chips that con-

tain only hard-wired logic, i.e., they do not execute any software. Within the context

of this Thesis, such systems are referred to as application-specific integrated circuits

(ASIC). Such systems usually provide high performance and are also area and power

efficient. However, the time to market is usually long as the system has to be designed

manually. The development costs are also high due to high non-recurring engineer-

ing (NRE) and mask set-up costs for chip fabrication. Mask set-up costs are currently

measured in millions of dollars. As ASICs are implemented purely in hardware, they

lack in flexibility. Hence, if the application changes, a new version of the ASIC has

40 3. Processor Hardware Customization

to be developed. This increases the costs even further, especially due to the need to

develop a new photomask for fabrication. Therefore, ASICs are practical only for

high-volume products.

Field-programmable gate arrays (FPGA) can be used to avoid the high mask set-up

costs. FPGAs contain reconfigurable hardware that can implement the user-defined

functionality. FPGAs do not achieve the performance or area and power consumption

of ASICs, but they provide flexibility as the hardware can be reconfigured to corre-

spond to any changes in the functionality. Hence, FPGAs have been widely used

for prototyping and also for low-volume products. Recently, FPGAs with embedded

processor cores have emerged. This allows to shorten the design time and provide

faster time to market as some parts of the application can be implemented in soft-

ware. Embedded processor cores may be implemented as hard macros aside the con-

figurable logic, such as the PowerPC 405 processor core [129] that can be included

in the Xilinx Virtex-II Pro FPGA board [9]. Alternatively, the processor may be de-

scribed in structural hardware description language (HDL), e.g., very high-speed in-

tegrated circuit hardware description language (VHDL) or Verilog, and implemented

using the reconfigurable resources of the FPGA. Nios II processor core [13] from

Altera, or the MicroBlaze processor core [128] from Xilinx exemplify such systems.

Despite their flexibility, FPGAs are usually impractical in high-volume embedded

systems mostly due to their large area and power consumption and high cost.

Application-specific instruction set processors (ASIP) are considered as processors

that contain customized hardware and instructions for a specific application or set of

applications to improve the performance. Generally, there are two alternatives for an

ASIP. It can either be a GPP that is extended with additional hardware resources, e.g.,

a DSP that has additional resources for digital signal processing applications, or the

entire processor can be designed for a particular application. The latter allows to op-

timize also the area and power consumption as the ASIP in that case can be optimized

to contain only the hardware resources that are needed. Compared to ASICs, ASIPs

are also more flexible as they are programmable. When the application changes, the

software can be modified without the need to modify the hardware resources and

fabricate a new chip, as in ASICs. ASIPs offer also a faster time to market as the

application is developed in software. Compared to GPPs, the time to market is still

longer as the customized hardware resources need to be designed and implemented

in hardware.

3.1. Customizable Processor Architectures 41

As the characteristics of GPPs, ASICs, and ASIPs discussed above indicate, there is

a tradeoff between cost, performance, time to market, and flexibility between differ-

ent architecture alternatives. GPPs provide fast time to market with fairly low cost.

However, they may not provide enough performance. ASICs in their turn usually

provide high performance with small area and low power consumption, but the de-

sign times are long and the development costs are high. ASIPs can be considered as

a compromise between GPPs and ASICs in terms of their characteristics. Figure 4

classifies different processing architectures based on their characteristics.

ASIP architectures have raised a lot of interested in the recent years. ASIP design

is often difficult as the design space of possible architecture configurations is large.

Finding an optimal processor configuration requires several different alternatives to

be designed and implemented to find the most suitable ones. Efficient evaluation

requires a set of software tools, such as HLL compiler, assembler, linker, and instruc-

tion set simulator to be developed for each different configuration. If these tools are

developed manually, NRE costs and time to market are increasing.

Several different ASIP design methodologies and architectures have been proposed to

ease the ASIP design. This chapter begins with on overview of the design methodolo-

gies and architectures presented in the literature for designing ASIPs. The overview is

followed by a detailed description of TTA, which is a customizable architecture tem-

plate that is used in this Thesis for designing ASIPs on which the proposed program

compression methods are utilized. The ASIP development methodologies utilizing

the TTA paradigm, the Move framework and its successor, TTA Codesign Environ-

ment, are also introduced.

3.1 Customizable Processor Architectures

Processor hardware customization can be divided into two subclasses: instruction-set

extensions and fully customizable processor architectures. Instruction-set extension

methodologies extend the instruction-set with special operations and add correspond-

ing hardware to the processor core to speed up execution. Customizable processor

architectures allow to design the processor hardware resources according to the re-

quirements of the application. Architectures and methodologies belonging to these

two classes are introduced in the following Subsections.

42 3. Processor Hardware Customization

cost, time-to-market, 1/flexibility

pe
rf

or
m

an
ce

GPP

DSP

ASIP

ASIC

FPGA

Fig. 4. Classification of processing architectures based on their characteristics.

3.1.1 Instruction-Set Extensions

Application-specific instruction set processors have traditionally been created by ex-

tending a pre-designed processor core with features that are customized for the tar-

get application. This involves extending the instruction set with new used-defined

instructions and adding hardware to the processor core to support these instruc-

tions. This approach provides improved performance for the particular application

for which the customization is made. The drawback of this approach is that the area

and power consumption are high as the processor architecture still contains all the

original hardware resources that might not be needed in the application for which the

customization is performed.

In [64], Kucukcakar et. al. proposed a method for designing ASIPs by adding

application-specific instructions to the instruction set of the Motorola MC68HC11

processor. The method uses a profiler to identify the performance bottlenecks from a

software implementation of the target application. Application-specific instructions

are then developed based on this information. New instructions are introduced either

for the frequently used subroutines or for the commonly used instruction sequences.

Support for the new instructions is implemented to the control and datapath of the

processor using reconfigurable logic. This allows to utilize the new instructions di-

rectly in the assembly representation of the program code. The compiler of the tool

framework can also be modified to support HLL code to utilize the new instructions.

3.1. Customizable Processor Architectures 43

In [130], Yang et. al. proposed a MetaCore design environment to design ASIPs with

DSP specific functionality. Customization in the environment is based on a prede-

fined microarchitecture and the basic operation set that provides the basic operations

and the functionality required in DSP applications. The instruction set can be cus-

tomized by selecting instructions from the predefined instruction set and by adding

new application-specific instructions. For the new application-specific instructions,

the corresponding FU has to be added to the processor design. The processor hard-

ware resources, such as buses, latches, multiplexers, FUs and interconnections, are

declared using MetaCore Structural Language (MSL) description. A MetaCore Be-

havioral Language (MBL) description is used to describe the hardware parameters

of the target architecture and the low-level bit operations and timing information.

The first phase of the MetaCore design environment is the design space exploration.

The target design is evaluated with the help of the provided software tools, such

as compiler, assembler, instruction set simulator, and performance analyzer. The

designer can modify the target design based on speed, area, and power estimations

provided by the performance analyzer. After the final target design is found, SMART,

the HDL generator of the MetaCore environment, can be used to translate the target

design into HDL description.

A customizable RISC processor core for DSP was proposed by Kang et. al. in [59].

The architecture can be tailored for a specific DSP application by adding several DSP

specific features to the architecture. These features include single-cycle multiply-

accumulate (MAC) operation, direct memory addressing, hardware looping, and ad-

dress generation units. The compiler of the RISC processor can be modified to sup-

port the DSP-specific features. The tool flow contains a code-converter that analyzes

the data flow graphs of the application codes programmed in SPARC assembly and

transforms the control flow graphs to exploit the DSP-specific architectural features

that were added to the RISC core.

Lx architecture [37], developed jointly by Hewlett-Packard and ST Microelectron-

ics, provides a scalable and customizable VLIW architecture platform to be used

in embedded processing systems. A processor configuration is constructed from a

set of clusters. Each cluster is a 4-issue VLIW core that contains four arithmetic-

logic units (ALU), two 16× 32 multipliers, one load/store unit, one branch unit, 64

general-purpose registers, and eight 1-bit branch registers. The number of clusters

can be varied to scale the architecture according to the performance requirements.

44 3. Processor Hardware Customization

The Lx architecture is customized by adding application-specific instructions. The

Lx architecture is said to be more favorable to be customized for an application do-

main rather than for a specific application. The architecture is accompanied with a

commercial software tool chain where the changes due to scaling or customization

are not exposed to the programmer. The heart of the tool flow is an instruction-level

parallel compiler, based on the Multiflow compiler [91].

The Xtensa processor core [41] from Tensilica provides another customizable ar-

chitecture template. Similarly to MetaCore, Xtensa provides a basic instruction set

architecture with a set of base operations and a basic architecture to execute these

operations. The base ISA contains approximately 80 instructions, a superset of the

traditional RISC operation sets. The architecture is configurable and the designer has

several options to modify the architecture, e.g., determine the number of registers,

the size of the instruction and data caches, and the set of FUs included in the im-

plementation. The architecture supports adding user-defined custom instructions and

corresponding FUs to implement the used-defined operation functionality.

The main tool of the Xtensa design flow is the EXPRES processor extension com-

piler that can create a tailored configuration based on C/C++ language code of the

algorithm. The EXPRES compiler can explore the design space to find a suitable

configuration for the application. The processor generator of the design flow can

then be used to create the HDL description of the target processor.

The ARCtangent microprocessor architecture from ARC provides a configurable, ex-

tendable, and synthesizable 32-bit RISC core that can be customized to meet the

performance, area, and cost requirements [6]. The architecture provides a mixed

16/32-bit instruction set to optimize the code size. The instruction set, register file

configuration, caches, buses, and other architectural features can be customized. A

library with some of the common DSP filters and algorithms is also provided. Proces-

sors are customized using ARChitect Processor-Configuration Tool that can automat-

ically generate the register transfer-level (RTL) description of the processor. The tool

set also includes compiler, assembler, linker, profiler, and instruction set simulator to

compile and evaluate the application on the designed processor configuration.

Adelante Technologies, acquired by ARM Ltd. in 2003, provides a Saturn 16-bit

VLIW DSP core that can be configured. The core uses a mixed 16/32-bit instruction

set like ARCtangent to minimize the code size. The base architecture consists of two

3.1. Customizable Processor Architectures 45

multipliers, four ALUs, and of several other parallel resources. The architecture is

customized by adding used-defined operations to the instruction set and providing

execution units that support the user-defined operations. Customization is also sup-

ported at a higher level with a capability to include application-specific co-processors.

The tool set contains the basic software development and simulation tools.

The Jazz DSP processor core of Improv Systems is another customizable VLIW

processor architecture [8, 87]. Jazz allows the user to add custom instructions and/or

custom execution units using the Jazz PSA Composer Tool Suite. The tool suite is

used to build the processor configuration and to compile and simulate the target ap-

plication on the customized processor configuration. Processors designed with the

Jazz tool suite can range from a single configured Jazz processor to systems with

many Jazz processor implementations. The compiler of the tool suite can optimize

the application for parallel execution and supports also task-level parallelism using

multiple-processor cores. The Jazz PSA tool suite contains a processor generator that

can create the HDL description of the target processor.

3.1.2 Fully Customizable Processor Architectures

Apart from customizing an existing processor core according to the requirements of

a particular application, the processor architecture can also be designed from scratch.

This allows more effective hardware customization as the entire processor will be

customized particularly for the given application or a set of applications. This allows

the architecture to contain only the necessary hardware resources to execute the target

application, therefore saving both area and power consumption.

APE2 [23] from Cambridge Consultants is a customizable DSP architecture that is

aimed to be used as a co-processor for a microcontroller core. The architecture is

based on VLIW architecture. It allows to configure the hardware according to the

requirements of the application. The processor consists of parallel modules that can

be selected from a library of predefined processing blocks. In addition, user-defined

modules can be included. The combination of the used modules is entirely free.

Data is transferred in between the modules through a dedicated routing bus. A com-

plete software development and HDL generation toolkit is provided for fast processor

design. The hardware modules and connections in between them are defined in soft-

ware. The application is described in assembly language. The assembler provides

46 3. Processor Hardware Customization

statistics on the hardware performance, which aids the designer to modify the con-

figuration to meet the requirements of the application. The HDL description of the

processor is created automatically in Verilog. The tool set contains a code compres-

sion tool that compresses the program code and creates a HDL description of the

decompression logic that will be included in the control path of the processor.

CHESS/CHECKERS from Target Compiler Technologies is a retargetable tool set for

designing embedded processors that are customized for a particular application [2].

Customization is done by modifying the programmer’s view of the processor, i.e.,

the instruction set, FUs, registers, and buses. The processor architecture is modeled

using a proprietary modeling language, nML, which serves as an input to all the

tools of the design environment. The instruction set and the structural information

about the data path are described in the nML specification. The nML specification

of the processor configuration is given to the retargetable compiler, CHESS, which

translates the source program, written in C, to optimized machine code. CHECKERS

is an instruction set simulator that can simulate the execution of the compiled code on

the target processor. The synthesizable hardware description of the target processor

is generated using a HDL generator, GO. The drawback of the tool set is the lack of

the tool-assisted design space exploration. This makes the design process tedious as

the designer has to manually modify the architecture description and evaluate each

configuration to find the most suitable one.

The CoWare Processor Designer [7] provides an automated ASIP design environment

for embedded processor design. The design flow [46] is based on a Language for

Instruction Set Architectures (LISA) [96,137], that was created at Aachen University

of Technology. A LISA processor description describes the instruction-set, pipelines,

register files, pins, memories, and caches of the target processor. The description

is used to generate a complete set of software tools for compiling and simulating

applications on the target processor. The instruction set simulator provides profiling

data that can be used to tailor the processor architecture and instruction set to meet

the performance and cost requirements. Once the requirements are met, RTL level

HDL description of the processor can be created with an automated HDL generator.

The architectural synthesis subsystem of the PICO (Program In, Chip Out) design

tool from Hewlett-Packard [11] provides a fully automated design process for design-

ing ASIPs. The architectural synthesis subsystem can be used to design VLIW and

EPIC processors. The main tool of the system is a Spacewalker tool that searches the

3.1. Customizable Processor Architectures 47

design space of architectural choices for an optimal configuration for a given target

application, which is described in C-language. The Spacewalker evaluates several ar-

chitecture configurations by varying the architectural resources of the VLIW or EPIC

processor, such as FUs, RFs, read/write ports on each RF, and by evaluating vari-

ous interconnection topologies, cache and memory hierarchies, instruction formats

and instruction fetch and decode hardware alternatives. The Spacewalker provides

statistics of the processor configuration in terms of area and performance.

The hardware synthesis subsystem creates the architecture of the processor and a

machine-description database that is used to retarget the compiler for the designed

processor configuration. The architecture subsystem outputs RTL HDL description

of the processor and provides statistics of the chip area for the Spacewalker. The

retargetable compiler, Elcor, compiles the application on the designed processor con-

figuration. Elcor estimates also the performance and hardware resources usage and

provides this statistics to the Spacewalker to guide its search of the design space.

The design framework also considers the code bloat problem of parallel processor

architectures and provides means to improve the code density.

MOVE framework [35], developed at Delft University of Technology, The Nether-

lands, provides a semi-automatic design process for designing ASIPs that utilize the

transport triggered architecture paradigm [34]. The modularity, flexibility, and scal-

ability of the TTA are utilized in the MOVE framework to provide a semi-automatic

design process for designing processors that are tailored for a particular application

or a set of applications. The toolset provides a design space explorer to search for

optimal processor configurations for the target application. A retargetable compiler is

provided to generate the ILP code for the target processor, whose synthesizable HDL

description can be generated automatically with a hardware generator. A successor

of the MOVE framework, TTA Codesign Environment (TCE) [55], following the de-

sign principles of the MOVE framework, has been developed at Tampere University

of Technology, Finland. It contains several new features and tools, such as processor

designer and instruction set simulator and debugger.

As the TTA architecture and the TTA-based ASIP design methodologies are tightly

involved in the work presented in this Thesis, they are discussed in more detail in

the following two Sections. Section 3.2 introduces the details of TTA. Section 3.3

presents in more details the TTA-based ASIP design methodologies, the MOVE

framework and the TTA Codesign Environment.

48 3. Processor Hardware Customization

3.2 Transport Triggered Architecture

Transport triggered architecture is a class of statically programmed ILP architectures

that reminds VLIW architectures. TTA forms a superclass of VLIW architectures by

exploiting in addition to operation level parallelism also the parallelism available at

the data transport level. A VLIW instruction defines the operations that are executed

in parallel whereas TTA instruction defines the data transports that are to be executed

concurrently between the hardware resources of the architecture.

3.2.1 Principles

Transport triggered architecture was proposed to overcome the limitations of VLIW

architectures that have been widely used in modern day embedded systems due to

their modularity and scalability [100]. As VLIW architecture is modular, perfor-

mance can be scaled up by adding more FUs. Some architectures even support the in-

clusion of user-defined FUs that are designed specifically for a particular task. How-

ever, though modular and scalable, VLIW architectures have been criticized for the

increased complexity of the RF and the bypass network, especially when the number

of FUs becomes large [29]. This is due to VLIW architectures being designed for the

worst case, which requires that each FU needs to have three ports to the RF and each

FU output needs to be connected to all the inputs of all the other FUs.

Few approaches have been proposed to avoid the increased complexity of the register

file. Capitanio et. al. proposed a clustered architecture to ease the complexity of the

register file [25]. In this approach, the VLIW processor is partitioned into smaller

clusters inside which the worst case requirements for the register file ports are met.

However, special move instructions need to be used to transfer data in between the

clusters, implying a penalty in the performance. Zalamea et. al. proposed another

alternative to ease the register file pressure by using a two-level hierarchical register

file [134]. This approach provides a large number of register ports with low access

time. The first level has a small capacity but several ports. The second level has

higher capacity but smaller number of ports. The second level interacts with the first

level and the data memory. The drawback of this approach is the increased latency

in between the memory and the functional units as there is one more register level in

between them.

3.2. Transport Triggered Architecture 49

Corporaal proposed in [34] an alternative approach to overcome the register file and

bypass network complexity. He stated that there are situations when not all of the

register file ports and the bypass network connections are required. This was based

on the following findings:

• All operations do not require two operands, e.g., register-to-register copies,

immediate operations, jumps and calls.

• All operations do not produce a result, e.g., jumps and calls.

• Values can be bypassed between FUs, so they do not need to be stored into, or

read from the RF. If all the usages of a value can be bypassed, there is not need

to store the value into the RF.

• An operand may be used multiple times by consecutive operations. This means

that the value needs to be read from the RF only once.

• RF ports may be shared by multiple reads from the RF. This happens when a

register is used in multiple operations that are executed concurrently.

The above cases indicate that the register file can be implement in the architecture

as a functional unit that has significantly less read and write ports than a normal

register file in VLIW architectures. The utilization of the register file is determined

at compile-time by the compiler. This allows to ease the register file pressure [34].

In addition to reducing the complexity of the register file, Corporaal noted that the

complexity of the bypass network could also be reduced. Bypasses can be made

visible at the architectural level by assigning them to the inputs and outputs of the

FUs. This way spilling of the bypass values to RF is made under the program control.

The bypass complexity can also be reduced by reducing the number of read and

write connections, and therefore, the number of bypass buses. This implies that,

besides the operations, also the operand transfers (transports) need to be assigned

at compile-time. This way the bypass transports become visible at the architectures

level, allowing to hide the operands. This mirrored programming model defines the

concept of transport triggering. [34]

50 3. Processor Hardware Customization

3.2.2 Software Characteristics

The programming model is the main difference between TTA and the traditional op-

eration triggered architectures (OTA), such as VLIW. In OTA, the program specifies

the operations the processor is to perform, e.g., addition, subtraction, multiplication,

and shifting, and identifies the associated operands, i.e., registers and immediate val-

ues. In TTA, the program specifies explicitly the data transports, also denoted as

moves, to be performed by the interconnection network. Operations occur as side

effects. Therefore, TTA has also a flavor of dataflow architectures.

The execution of an operation on TTA involves transporting the operands of the op-

eration to the inputs ports of an FU that is able to perform the desired operation, and

transporting the results from the output port of the FU to the desired location when

the result is available. The above mentioned data transports are classified into three

classes: operand, trigger, and result moves.

Operand move is responsible for transporting an operand of an operation to the

operand port of an FU. Trigger move transports another operand to the trigger port

of the FU. Data transport to the trigger port of the FU fires the execution of the op-

eration. If the FU can perform more than one operation, an opcode is transported

in the trigger move to specify the operation to be performed. Once the operation is

performed, the result of the operation is transported from the result port of the FU

to some other hardware resource in the architecture with a result move. TTA ar-

chitecture does not limit the number of operand ports nor result ports. This allows

to design special functional units (SFU) that can perform operations with multiple

operands and produce multiple results.

There are some limitations in the order in which the data moves are to be executed.

The operand moves need to precede or be executed in the same clock cycle as the

trigger move in order to include all the operands in the operation. The trigger move

must precede the result moves to transport the correct output data from the FU to

another resource.

Data transports with regards to RFs are somewhat different. Data transports in and

out of the RFs are denoted as input and output moves. They both include an opcode

to specify the register that is to be written in case of an input move, or to be read in

case of an output move.

3.2. Transport Triggered Architecture 51

A typical RISC-type operation corresponds to three data transports. For example, a

RISC-type add operation that adds together the values of two registers,

add R1, R2, R3

corresponds to three move operations:

R1 -> FU o.add;

R2 -> FU t.add;

FU r.add -> R3;

The first move (operand), transports the data from register R1 to the operand port

of the FU. The second move (trigger) transports the data from the register R2 to

the trigger port of the FU and fires the operation execution. The last move (result)

transports the result data from the output of the FU to register R1.

TTA concept utilizes ILP by executing data transports in parallel. The number of the

data transports executed during a single clock cycle is upper bounded by the number

of data transport buses. Each data transport bus can execute a single data transport

during one clock cycle. Limitations in the order of the data transports and the avail-

ability of the move buses and FUs with correct functionality need to be taken into

account when the data transports are scheduled on the available buses. Programming

data transports manually, i.e., assigning the operations to the FUs and allocating the

data transports on the various buses would become too complex. Therefore, a retar-

getable compiler that can compile HLL code on a TTA processor architecture has

been developed. The retargetable compiler is described in more detail in Subsec-

tion 3.3.1.

3.2.3 Hardware Characteristics

TTA processors are constructed out of a set of basic building blocks. These include:

• Functional units that execute operations

• Register files that contain registers to store data locally

• Buses that transfer data between functional hardware resources

• Sockets that establish connections between the functional hardware resources

and the buses

52 3. Processor Hardware Customization

FU

FU

CNTRLRF RF

PROGR
MEM

FU LSUFU DATA
MEM

Fig. 5. TTA processor organization FU: functional unit. RF: register file. LSU: load-store

unit. CNTRL: control unit. Dots represent connections between buses and sockets.

Figure 5 depicts an example of a TTA processor configuration. The architecture con-

sists of a set of functional resources, i.e., FUs and RFs, a control unit, and program

and data memories. An interconnection network consisting of buses and input and

output sockets performs the data transports in between the architectural resources.

Buses are used to transport data in between the functional resources. Input and out-

put sockets are used to connect the functional resources to the buses. An input socket

contains a multiplexer that chooses one of the buses from which the data is written

to the input port of the attached functional resource. An output socket contains a

de-multiplexer that chooses the bus to which the output data of the attached func-

tional resource through the output port is to be written to. Sockets do not need to be

connected to all the available buses.

The design of FUs and RFs is separated from the design of the interconnection net-

work; both can be designed independently. FUs can implement any functionality and

they can be added to a processor configuration without a need to modify the intercon-

nection network. In addition to the FUs and RFs, TTA processor contains a control

unit that is responsible for controlling the execution of the processor. The control

unit is responsible for fetching instructions from the program memory and decod-

ing them into control signals that control the sockets in the interconnection network

to transfer data on the buses. One or more FUs are configured as load-store units

(LSU) that provide an interface to the data memory. As the FUs can implement any

functionality, in addition to FUs executing operations from the basic operation set of

the architecture, SFUs can be designed and included in the processor architecture to

implement user-defined functionality. The modularity of the architecture allows the

SFUs to have as many input and output ports as seen necessary.

3.2. Transport Triggered Architecture 53

3.2.4 Pipelining

TTA supports two levels of pipelining. In addition to transport pipelining, which

means that the execution of the data transports is pipelined, also the FUs can be

pipelined. Decisions for these two pipelining schemes can be made independently.

TTA supports two different transport pipelining schemes, three- and two-stage, out

of which the three-stage pipeline is typically used. The three-stage pipeline consists

of three stages: instruction fetch (IF), decode (DC), and move (MV). The three-stage

transport pipeline is depicted in Fig. 6. [34]

In the IF stage, the instruction fetch logic fetches the next instruction from the pro-

gram memory or the cache based on the value of the program counter (PC) and stores

it to the instruction register. In the DC stage, the instruction is decoded and the

control signals controlling the sockets of the interconnection network and possible

opcodes are generated and registered. In the MV stage, the actual data transports

take place. FUs and RFs place data on the buses through output sockets and receive

data from the buses through input sockets. Figure 7 illustrates the organization of the

transport pipeline logic in the control unit of the processor. The figure illustrates the

logic related to the transport pipeline stages and the corresponding pipeline registers.

Pipelining in FUs is made to split the execution of complex operations into smaller

parts so that the cycle time can be reduced. FU pipeline stages contain combinatorial

logic and a pipeline register. Each pipeline stage increases the latency of the FU, i.e.,

the number of clock cycles it takes for the result value to be available on the output

of the unit after the operation has been triggered.

3.2.5 Instruction Format

TTA instruction words are in principle similar to VLIW instruction words. However,

instead of specifying operations in operation slots, TTA instructions words contain

dedicated fields to define data transports to be performed on the buses. These fields

are denoted as move slots [34]. A TTA instruction word contains as many move slots

as there are move buses in the architecture. Each of the move slots is further divided

into three fields; guard, source ID, and destinations ID field, as depicted in Fig. 8.

The guard field is used to specify a guard value that is used in the decode stage to

control whether the data transport on that specific bus is to be executed or squashed.

54 3. Processor Hardware Customization

IF

IF

DC

IF

MV

DC MV

DC

possible FU operation

possible FU operation

MV

1

2

3

instruction
Cycle
1 2 3 4 5

Fig. 6. Organization of the three-stage TTA transport pipeline.

The guard value usually refers to a Boolean register or its inverse. If the guard value

is true, a squash signal is asserted, resulting in squashing of the data transport. This

provides means for conditional execution. The source ID field is used to define the

address of the socket that is to write data on the bus. The destination ID field is used

to define the address of the socket that reads data from the bus. During the decode

stage, the values in the source and destination ID fields are compared against the

hardwired socket IDs. When the IDs match, the matching sockets are activated to

transform data between the source and the destination. The source and destination

ID fields may also contain an optional opcode that is sent to the resource the socket is

connected to. The opcode specifies the operation an FU is to perform, or the register

in an RF that is to be written or read.

TTA instruction encoding provides two means to specify immediate values that are

used, e.g., for constants and jump addresses. When the immediate value is small,

consuming only few bits, it can be specified in the source ID field. The immediate

value is extracted from the source ID field in the decode stage and placed on the bus in

the move stage. A dedicated immediate flag bit is used to control whether the source

ID field contains an immediate value or a socket address. Apart from using source

ID fields to define the immediate bits, larger immediate values can be specified in a

dedicated long immediate field that is included in the end of the instruction word, as

shown in Fig. 8. This field cannot be used for any other purpose. Hence, if a long

immediate value is not needed, the bits in the long immediate field are wasted.

The width of the TTA instruction word depends on the processor configuration. The

instruction word contains as many move slots as there are buses. The width of each

move slot depends on the number of functional resources and the number of connec-

tions through the sockets to the corresponding bus. The width of the guard field is

determined by the number of possible guard terms used for conditional execution.

In a typical configuration, guard field is three to four bits wide. The width of the

3.3. TTA-Based ASIP Design Methodologies 55

program
memory

in
st

r
re

g

IF logic DC logic

cn
tr

l s
ig

n
re

gs

control
signals

control unit

Fig. 7. Organization of the transport pipeline logic in the control unit of the processor. instr

reg: instruction register. cntrl sign regs: control signal registers.

destination ID field is determined by the number of destination connections on the

bus and the widths of the opcodes. The width of the source ID field is determined by

the number of source connections on the bus and the widths of the opcodes, or on the

width of the short immediate, which typically determines the width of the source ID

field. The destination ID fields are typically five to seven bits. The source ID field is

typically 9 bits wide as the short immediate is normally configured to be eight bits.

The width of the long immediate field can be configured freely, although in MOVE

framework, described in Section 3.3.1, the width is restricted to 32 bits.

3.3 TTA-Based ASIP Design Methodologies

As discussed above, two design methodologies have been developed for design-

ing TTA-based ASIPs; MOVE framework in Delft University of Technology, The

Netherland, and its successor, TTA Codesign Environment in Tampere University of

Technology, Finland. The tools of the MOVE framework were used in this Thesis to

design TTA processor configurations for a set of DSP and multimedia applications to

evaluate the developed program compression methodologies on TTA. The developed

program compression methodology was then integrated to the tools of the TTA Code-

sign Environment to provide a complete design methodology that can address the

code size bloat problem. The integrated compression module can be used to generate

the compressed binary code and to generate the structural hardware description of

the hardware decompressor and integrate it automatically to the structural hardware

description of the processor core. The MOVE framework and the TTA Codesign

Environment are discussed in more detail in the following two Subsection.

56 3. Processor Hardware Customization

S(9)G(3) D(5) S(9)G(3) D(7) LI(32)

move slot 1 move slot 2

S(9)G(3) D(6)

move slot 0 immediate

Fig. 8. Structure of the TTA instruction word. G: Guard field. S: Source ID field. D: Desti-

nation ID field. LI: Long immediate field. (x): x-bit field.

3.3.1 Move Framework

MOVE framework is a set of software tools that can automate the design of ASIPs

that utilize the TTA paradigm [35]. MOVE framework provides a semi-automatic

design methodology that allows to shorten the design-time. The flexibility and scala-

bility of TTA allow to customize the hardware resources of the processor to meet the

performance requirements of the target application. Hardware resource optimization

allows also to minimize the cost, area, and power consumption of the processor.

MOVE framework consists of three main components, as depicted in Fig. 9. Design

space explorer searches the design space for a processor configuration that yields the

best cost/performance ratio for a given application. Software subsystem generates

the instruction-level parallel code for the designed processor configuration. Hardware

subsystem is responsible for generating the hardware implementation of the processor

and estimating the costs of a processor configurations in terms of area and power

consumption. These main components are described in the following Subsections.

Design Space Explorer

ASIP design requires several iterative steps to be taken to develop and evaluate dif-

ferent processor configurations to find the most optimal configuration that meets the

cost and performance requirements of the target application. Performing these steps

manually would become too tedious, time consuming and costly, especially if the

design space is large. MOVE framework provides a design space explorer tool that

can automatically modify the architectural parameters of a processor configuration

and evaluate each configuration in terms of cost and performance [47]. This allows

the designer to land into the most interesting part of the design space rapidly.

The design space exploration process consists of two phases: resource optimization

and connectivity optimization. Resource optimization, executed first, varies the num-

3.3. TTA-Based ASIP Design Methodologies 57

Architecture
Description

statisticsstatistics Hardware
Subsystem

Software
Subsystem

Parallel
Object Code

Processor
Implementation

Application
in HLL

Design
Space Exporer

Technology
Description &
Cell Library

Fig. 9. Principal design flow in the MOVE framework.

ber of different hardware resources, such as buses, FUs, and RFs. These hardware

resources are described in an architecture description file. Each processor configura-

tion the design space explorer tries out is evaluated in terms of performance, area, and

power consumption. Statistics are obtained from the software and hardware subsys-

tems that are invoked within the design space explorer. The simulator of the software

subsystem provides statistics on performance and the hardware resources utilization.

The cost estimator of the hardware subsystem evaluates the area and power consump-

tion of the given processor configuration. The most promising candidate configura-

tions are chosen for the connectivity optimization where unnecessary connections of

the sockets to the data transport buses are removed to reduce the area and shorten the

critical path.

Software Subsystem

Software subsystem of the MOVE framework is responsible for compiling the given

application into an object code that is executable on the developed processor config-

uration. The software subsystem includes a simulator that can provide statistics, e.g.,

on code execution and hardware resource utilization. This information is used in the

design space exploration to evaluate processor configurations.

58 3. Processor Hardware Customization

The code generation flow starts from a HLL description of the target application.

MOVE framework supports C/C++ languages. The compiler front-end is based on

GNU gcc, which is a compiler collection that transforms the HLL code into sequen-

tial TTA assembly code. In sequential TTA code, all the RISC type operations of

the assembly code generated by the front-end compiler have been translated to cor-

responding data transports, as was exemplified in Subsection 3.2.2. The compiler

back-end, also denoted as the scheduler, is responsible for generating the parallel

TTA code from the sequential code. It maps the sequential TTA code onto the avail-

able hardware resources of the target architecture that are described in the archi-

tecture description file. The generated parallel TTA code can be simulated with a

parallel simulator that provides statistics of code execution, code size, hardware re-

source utilization, and immediate value usage. It can also verify the correctness of

the generated code by comparing the results of the simulation against the results of

the sequential simulation.

Hardware Subsystem

The hardware subsystem of the MOVE framework is responsible for implementing

the designed TTA processor in hardware. The hardware subsystem contains a proces-

sor generator that can automatically generate a synthesizable hardware description of

the processor configuration. In addition, the hardware subsystem contains a cost esti-

mator to evaluate a processor configuration in terms of area, power consumption, and

timing, which are given to the design space explorer.

The processor generator produces a synthesizable RTL VHDL description based on

the architecture description file. The basic building blocks, such as FUs, RFs, input

and output sockets, and bus drivers are pre-described in VHDL and placed in a hard-

ware database, from where they can be obtained to be instantiated in the processor

implementation. The top-level architecture, port mapping, interconnection network,

and the control logic are then created automatically. A testbench that can be used to

simulate the functionality of the designed processor is also created. Once verified,

commercial tools can be used to synthesize the processor into standard cell logic.

The processor generator of the MOVE framework was redesigned at Tampere Uni-

versity of Technology, providing more automated VHDL generation of the processor

configuration based on the architecture description [109].

3.3. TTA-Based ASIP Design Methodologies 59

The cost estimator of the MOVE framework was also redesigned at Tampere Univer-

sity of Technology [99,101]. Compared to the original estimator, it provided statistics

also on power consumption based on a priori information on area, power consump-

tion, and timing of the basic building blocks. Each hardware resource is characterized

in terms of the above mentioned criteria and this information is stored in a cost data-

base that is created for the used target technology. The area and critical path delay can

be calculated by summing up the values in the database. Power consumption cannot

be obtained directly from the database but must be linearly approximated according

to the utilization statistics for each of the functional resources.

3.3.2 TTA Codesign Environment

TTA Codesign Environment, follows the design flow introduced in the MOVE frame-

work, but it includes several new tools and features, such as a new processor designer,

compiler, instruction set simulator with debugging features [54], and processor hard-

ware and binary image generator [66]. In TCE, the architecture description, operation

set extension features, and hardware databases have also been redesigned. The pro-

gram compression methodology proposed in this Thesis has also been incorporated

in the tools of the TCE. The TCE tool set is currently still under development.

The TCE design flow consists of four main phases [55]. Initialization phase provides

the sequential TTA program code and the initial architecture description. Processor

design and exploration phase offers a semi-automatic design process for tailoring the

hardware resources according to the requirements of the target application. Code

generation and analysis phase schedules the program to the available hardware re-

sources and analyzes the program execution. In the processor and program image

generation phase, the structural hardware description and the final program images

are generated. These main design phases are described in the following Subsections.

Initialization

In the initialization step, a front-end compiler, provided by a third party is used to

compile the target applications, described in C/C++ language into sequential TTA

code, which is stored into a TTA Program Exchange Format (TPEF) binary file. The

initial processor configuration can be designed with a Processor Designer that pro-

60 3. Processor Hardware Customization

vides a graphical user interface for building the processor configuration from the set

of basic building blocks. The hardware resources, such as FUs, RFs, sockets, and

buses are added to the processor description and their parameters are defined. The

configuration is stored in extensible markup language (XML) format.

Design Space Exploration

The generated sequential TTA code and the initial architecture description from the

initialization phase are given as input to the design space exploration phase. The prin-

ciple of the design space exploration is the same as in MOVE framework. However,

in addition to varying the number of functional resources, different implementation

alternatives can also be evaluated. E.g., an adder may be implemented either by a

ripple-carry or carry-look-ahead added. To support this, all the different implemen-

tation alternatives of the resources need to be characterized based on the evaluation

criteria, i.e., area, power consumption, and timing. A hardware database (HDB) is

used to organize this information.

The used hardware resources are described in an architecture definition file (ADF). It

describes the functional characteristics of the architecture, e.g., the number of buses,

FUs, and RFs and their connectivity. This information is sufficient for the code gen-

eration. However, as the architecture resources can have different implementations,

ADF is not sufficient for generating the HDL of the processor configuration. Hence,

an implementation definition file (IDF) has been introduces to specify the implemen-

tation details of the functional units to allow HDL generation.

Code Generation and Analysis

Code generation and analysis phase is responsible for generating the parallel TTA

code from the sequential one. An instruction scheduler is used to map the data trans-

ports of the sequential TTA onto the hardware resources of the target processor and

generate the parallel TTA code. The instruction scheduler in TCE has been generated

modularity in mind, which allows to implement and experiment new scheduling and

optimization ideas with simple plug-ins.

Code generation and analysis phase provides also statistics on the program execu-

tion. An instruction set simulator is used to simulate the parallel TTA code and

3.3. TTA-Based ASIP Design Methodologies 61

provide statistics about the execution, such as cycle count and hardware resource uti-

lization. In addition, the simulator provides debugging capabilities with a graphical

user-interface. The simulator allows, e.g., to set breakpoints and inspect the state of

the processor at any clock cycle. The contents of the registers in the RFs, input and

output registers of FUs, and the contents on the memory can also be inspected. [54]

The management of the operation set is also improved in TCE. The operation defin-

itions are stored into a database, denoted as operation set abstraction layer (OSAL).

OSAL specifies for each operation their static properties, such as the number of

operands and results and their simulation behavior, which is linked dynamically to

the simulator during run-time. An operation set editor is also provided to manage the

OSAL and to allow to design user-defined custom operations.

Processor and Program Image Generation

The final phase of the TCE design flow involves generating the structural hardware

description of the processor configuration and the final program image. The design

flow of this phase is depicted in Fig. 10.

A processor generator is used to generate the structural HDL description of the tar-

get processor. The ADF and IDF describe the details of the hardware resources of

the target processor configuration. This information is used by the processor gen-

erator to obtain the HDL descriptions of the hardware resources, such as FUs, RFs,

sockets, and bus drivers from a hardware block library (HBL). These blocks are in-

stantiated at the top-level of the processor design. Top-level architecture, intercon-

nection network, and control logic are then created automatically by the processor

generator. [66]

For the program image generation a binary encoding map, defining how to encode

the TTA instructions, has to be generated. The map defines for each move slot the

addresses of the source and destination sockets and the opcodes for the functional

units and register files. In addition, it defines the possible guard and immediate value

encodings. The binary encoding, together with the scheduled parallel TTA code are

used by the program image generator (PIG) to create the final binary executable. [66]

The program compression methodology developed in this Thesis is integrated to the

processor and program image generation tools. PIG includes a dedicated program

62 3. Processor Hardware Customization

Program Image
Generator

chosen.adf
Binary Encoding
Map Generator

Processor Generator

chosen.idf

Processor
VHDL descr.

HW Block
Library

Binary Enc. Map

scheduled.tpf

Decomp.
VHDL

 Bit
Image

Compressor
(optional)

Fig. 10. Principal design flow of processor and program image generation phase in the TCE

design flow.

compression step in the binary generation flow to compress the program code. The

compressor is included as a plug-in module in the PIG. This allows to use differ-

ent compression methodologies for the program compression. In order to execute

the compressed program code, a hardware decompressor has to be included in the

hardware of the processor. The compressor plug-in can be used to generate the HDL

description of the decompression hardware, which can be included automatically in

the final HDL description of the target processor. The presence of the hardware de-

compressor in the HDL description of the processor is defined in the IDF.

4. PROGRAM COMPRESSION ON TTA

Parallel processor architectures, like TTA, suffer from poor code density. These ar-

chitectures are typically programmed using a long instruction word than controls all

the concurrently operating functional resources. The long instruction word increases

the size of the program code and requires larger memories, hence increasing the cost

of the chip. In addition, long instruction words increase the power consumption of the

chip due to increased program memory bandwidth and increased width of the control

flow datapath, i.e., the width of the instruction pipeline inside the control logic.

TTA has even worse code density compared to other parallel architectures, e.g.,

VLIW, due to its minimal instruction encoding and the TTA programming paradigm.

Initial studies on code size reported three times as large code sizes on TTA proces-

sors compared to VLIW processors [45]. TTA instructions are minimally encoded in

order to reduce the complexity of the instruction decoding procedure. Higher encod-

ing would increase significantly the complexity of the decode logic and would also

lengthen the critical path. In the TTA instruction encoding, a typical two-operand

RISC operation corresponds to three data transports that all need to be explicitly

specified. TTA encoding requires that the functional resources involved in the data

transports, either as a source or a destination, need to be explicitly specified as they

cannot be determined implicitly as in VLIW encoding, where the location of the field

in the instruction word can be used to identify the functional unit. In TTA encoding,

only the data bus on which the transport is to be performed is obtained implicitly

from the location of the field in the instruction word.

In this Thesis, program compression methodologies presented in the literature were

adapted and utilized on TTA processors. The utilized compression methods were

chosen based on the findings of the state-of-the-art program compression methodol-

ogy survey, presented in Chapter 2. The chosen methods included Huffman coding,

instruction template-based compression, and dictionary-based compression. These

64 4. Program Compression on TTA

three compression methodologies were chosen as they, in general, showed the best

compression ratios. They also allow to estimate the effect of fixed- and variable-

width codewords on the decompressor complexity as Huffman coding and instruction

template-based compression methodologies result in variable-width and dictionary-

based compression in fixed-width codewords.

The adapted compression methods were applied on benchmark applications that were

compiled for TTA processors in order to evaluate the effects of program compression

on the code density. The results of the code density evaluations are presented in

Chapter 6. Code density is measured in terms of compression ratio, which defines the

ratio of the compressed and uncompressed program codes. Compression ratio should

include also the size of the decoding table, as it is required to perform decompression,

but only few compression methods take this overhead into account.

There are also some methodologies, e.g., instruction template-based compression,

where there is no decoding table whose size could be included in the compression ra-

tio. Therefore, to fully characterize all the aspects of the compression method, hard-

ware implementations of the processor with and without the support for compression

are required. This allows to compare directly the area, and nowadays even more im-

portantly, the power consumption of the uncompressed and compressed implemen-

tations. In this Thesis, hardware implementations and area and power consumption

estimations were performed for the dictionary-based and instruction template-based

compression methods. The results of the area and power consumption evaluations

are also presented in Chapter 6.

Section 4.1 describes the principles of the three compression methods and explains

how they were adapted to be utilized on TTA. Section 4.2 presents the details of

the hardware implementations of the dictionary-based and instruction template-based

compression methods, concentrating mostly on the dictionary-based compression.

4.1 Utilized Compression Methods

The following Subsections describe the principles of the three compression methods

and how they how were adapted on TTA. Subsection 4.1.1 introduces Huffman cod-

ing. Subsection 4.1.2 gives introduction to instruction template-based compression,

and Subsection 4.1.3 presents the details the dictionary-based compression.

4.1. Utilized Compression Methods 65

4.1.1 Huffman Coding

Huffman coding assigns codewords to symbols based on their probabilities of oc-

currence. Symbols with high probability are assigned short codewords and the less

frequent symbols with longer codewords. The generated symbols are prefix-free, i.e.,

no codeword is a prefix of a codeword of another symbol. Huffman codes for the

symbols are assigned by constructing a coding tree based on the symbol probabil-

ities. The tree is constructed by generating first a leaf node for each symbol. The

probability of the symbol is assigned to the node. The tree construction process is

then initialized by constructing a parent node for the two nodes that have the smallest

probability. The sum of the probabilities of the two leaf nodes is assigned for the

parent mode. The process of combining two nodes with the smallest probability is

repeated until only one parent node remains. That node becomes the root node.

The branches of the non-leaf nodes are labeled as 0 and 1. The codewords for the

symbols are obtained by traversing from the root node to each leaf node and by pick-

ing up the labels from the branches along the route. An example of a Huffman coding

is presented in Fig. 11. Figure 11(a) presents the symbols with their probabilities and

the assigned Huffman codewords. Figure 11(b) presents the Huffman tree.

Huffman codewords, their widths, and the original symbols are stored into a decoding

table that is used for decoding purposed. An example of a decoding table is illustrated

in Fig. 11(c). The widths of the codewords need to be aligned to be the same, i.e.,

as wide as the widest codewords. Therefore, padding bits need to be added for the

shorter codewords. The padding bits are highlighted in grey in Fig. 11(c). Decoding

is performed by extracting one bit at a time from the compressed bit stream to a

candidate codeword that is matched against the codeword in the decoding table. The

codeword length is used to identify the significant bits in the decoding table entries.

The padding bits are ignored. The bits from the compressed bit stream are extracted

to the to the candidate codeword until a match is found in the decoding table. The

symbol corresponding to the codewords is then given as output.

When Huffman coding is applied on program codes, bit patterns in the instruction

stream are considered as symbols for coding. Symbols can represent entire instruc-

tion words or smaller bit patterns inside the instruction words. In the case of parallel

processor architectures, such as VLIW and TTA, instruction words are long and are

composed of several fields. In case entire instruction words are considered as sym-

66 4. Program Compression on TTA

Symbol Probablity Codeword

a

b

c

d

e

0.5 0

0.2

0.1

0.1

0.05

10

1100

1101

1110

f 0.05 1111

(a)

0.5 0.2 0.1 0.1 0.05 0.05

0.10.2

0.2

0.4

0.2

0 0 0

0 0

1

1

1

1 1

a b c d e f

(b)

SymbolCodeword

a

b

c

d

e

0000

1000

1100

1101

1110

f1111

Length

1

2

4

4

4

4

(c)

Fig. 11. a) Original symbols with their probabilities and the assigned Huffman codewords.

b) Huffman tree. c) Huffman decoding table.

bols, the number of symbols becomes large as there are only few instructions that ex-

ist more than once. This leads to almost uniform probability distribution and results

in compressed codewords being of the same width. This implies poor compressibil-

ity. Hence, a more effective alternative is to divide instruction words into smaller bit

patterns that are considered as symbols for the Huffman coding. By having smaller

bit patterns as symbols, there are better possibilities to find symbols that are used

more frequently that others, i.e., find a non-uniform probability distribution. This

approach provides more effective compression.

The long instruction words are typically composed of several fields that control the

concurrently operation architectural resources, e.g., functional units in the VLIW ar-

chitecture. Typically, each field in the instruction word has its own encoding, which

is independent of the encoding of other fields. Therefore, as Huffman encoding is

based on the probability distribution of the symbols, symbols should be chosen ac-

4.1. Utilized Compression Methods 67

cording to the boundaries of the instruction word fields as the bits in the adjacent

fields do not usually have any correspondence with each other.

Instructions words are typically encoded hierarchically. For example, VLIW instruc-

tion words are composed of operation slots that specify the operations for the concur-

rently operating functional units. Each operation slot is further composed of smaller

fields, such as the opcode and operand fields that define the operation and the registers

involved in the execution of the operation. Hence, this kind of instruction encoding

allows Huffman encoding to be applied at different granularity levels. The more fine

grained the granularity, the better the possibilities to find symbols that are used more

frequently than others. Furthermore, at smaller granularity levels the number of pos-

sible symbols is smaller. This eases both the coding and decoding. As the coding is

done during compile-time, the complexity and the time to perform the coding is of

little importance. What matters is the complexity and execution time of the decoding

as it is performed during run-time.

As discussed in Section 3.2, TTA instructions are composed move slots, specifying

the data transports on the buses, and long immediate fields specifying long imme-

diate values, such as jump addresses and large constants. Each move slot is further

composed of guard and source and destination ID fields. This allows to experiment

alternative symbol granularities for the Huffman coding. Three symbol granularity

levels were experimented in this Thesis.

At the first granularity level, entire instruction words were considered as symbols

for Huffman coding. At the second granularity level, move slots were considered

as symbols. The long immediate field was considered as a separate symbol stream

and was coded independently. At the third granularity level, symbols were chosen

according to the source and destination ID field boundaries. The source and destina-

tion ID fields were considered as separate symbol streams as they do not have any

correspondence between each other. Similarly to the second granularity level, long

immediate field was considered as a separate stream and was coded independently.

Furthermore, as the guard fields are fairly small, all the guard fields of an instruction

word were combined into a single bit pattern. These combined guard field bit patterns

of the instruction words were then considered as a single stream that was compressed

independently from the source and destination ID fields. Figure 12 illustrates the

three symbol granularity levels that were used for the Huffman coding on TTA.

68 4. Program Compression on TTA

instruction word

symbol

(a) Instruction words as symbols

limmmove slot 1 move slot 2 move slot 3 move slot 4move slot 0

symbol symbol symbol symbol symbol symbol

(b) Move slots as symbols

limmS0G0 D0 S1G1 D1 S2G2 D2 S3G3 D3 S4G4 D4

combined guard
symbol

SS

S = symbol

SSSSSSSSS

(c) Source and destination ID fields as symbols

Fig. 12. Different granularity levels for selecting the symbols for Huffman coding.

For the move slot and ID field granularity levels, coding can be done either vertically

or horizontally, as illustrated in Figure 13. In the vertical coding, the fields of the

instruction words are considered as parallel streams, as shown in Fig. 13(a). Each

parallel stream is encoded independently. This results in as many decoding tables as

there are parallel streams. In the horizontal coding, depicted in Fig. 13(b), all the

fields are considered as a single stream and a single decoding table is generated. At

move slot level, vertical compression considers all the move slots as separate streams

whereas horizontal compression combines all the move slots into a single stream. The

long immediate field is considered as a separate stream in both cases. Similarly, at

ID field level, vertical compression considers all the source and destination ID fields

as separate streams. Horizontal compression combines all the source ID fields into a

single stream as well as all the destination ID fields. The combined guard field and

the long immediate field are considered as separate streams in both cases.

4.1.2 Instruction Template-Based Compression

The instruction template-based compression approach is based on utilizing different

instruction formats, denoted as templates, to encode instruction words. These in-

4.1. Utilized Compression Methods 69

...

stream 1 stream 2 stream 3 stream 4

Fields of instructions

(a) Vertical compression

...

single
stream

Fields of instructions

(b) Horizontal compression

Fig. 13. Compression alternatives for the move slot and ID field granularity levels.

struction formats contain fields for only a subset of all the fields of the instruction

word. The fields not present in the instruction word obtain null encoding, i.e., a NOP,

implicitly. This method requires a template selection field at the beginning of each

compressed instruction word to define the used template. [108]

The method can be applied on TTA program codes by considering the move slots and

the long immediate fields as fields of the templates. For the move slots not present

in a template, a null data transport is obtained implicitly. If a long immediate field is

not present in a template, an immediate value of zero is obtained implicitly.

The templates are chosen based on the profile of the program code. The profile iden-

tifies all the used move slot and long immediate field combinations in the program

code, i.e., the combinations of the move slots that carry an actual data transport and

the long immediate fields that specify an immediate value that is used in one of the

data transports. The best reduction in code size could be obtained by having a tem-

plate for all of the possible move slot and long immediate combinations used in the

program code. However, this would not be very cost-effective as such a large number

of templates would increase the complexity of the instruction fetch and decode logic.

Therefore, the number of templates has to be limited.

If there are n fields in the instruction word, there are 2n possible field combinations.

Typically, only a small fraction of the possible field combinations are used in the

program code. The used combinations can be found by profiling the program code.

In addition to finding all the used field combinations, the probabilities of their oc-

currence are profiled. Based of the profiling information, a limited set of the field

combinations can be chosen as templates. The templates need to be chosen so that

all the used field combinations in the program code can be covered with them. For

the field combinations of the program code that do not have an exact match in the

70 4. Program Compression on TTA

template set, a superset template needs to be chosen, i.e., a template that has at least

all the required fields present. On the unused fields, null data transport for the move

slots, or zero immediates for the long immediate fields need to be explicitly specified.

In [12], a greedy heuristic algorithm was proposed for the selection of a limited set

of templates in VLIW and EPIC architectures. A slightly modified version of the

proposed algorithm is used in this Thesis to choose the most beneficial templates. The

selection process can be defined as follows. With the target of a set of k templates, a

template set τ needs to be found that minimizes the program code size W , given by

W =
m

∑
i=1

fi ×w(N(τ,Ci))

where τ is {Tl|l = 1, . . . ,n}∪ {Tl|l = n + 1, . . . ,k}, n being the number of minimal

templates that are always present, Ci is a unique move slot and long immediate field

combination used in the program code, fi is the usage frequency of Ci, N(τ,Ci) is the

narrowest template Tl in τ to encode Ci, and w(Tl) is the width of the template Tl. m

is the number of instructions that are encoded with the templates.

Before the template selection takes place, the minimal template set needs to be de-

fined. The minimal template set is a set of templates that are needed in order to

encode all the field combinations that exist in the program code. In the case of TTA,

the minimal set contains only one template, namely a template that has all the possi-

ble move slot and long immediate fields present.

With the budget of k templates, the template selection process turns into a process of

selecting k−n custom templates. The selection of the custom templates is performed

in a loop that, during each iteration, estimates which of the field combinations is the

best combination to be included in the template set, i.e., reduces the code size the

most. After all the field combinations are evaluated, the most beneficial template is

added to the template set. Hence, as k− n custom templates need to be chosen, the

loop is iterated k− n times. In the case of TTA there is only one minimal template,

i.e., n = 1, meaning that the loop is iterated k − 1 times. The field combinations

are evaluated by adding each field combination in its turn to the template set τ as

a candidate template TCj and calculating the benefit of that field combination. The

benefit defines the number of bits saved by including TCj in the template set compared

to the original template set that consists of the original τ that contains the minimal

4.1. Utilized Compression Methods 71

templates and the custom template already chosen on the previous iteration rounds.

TCj is removed from τ before the next field combination is defined as TCj and added

to τ to calculate its benefit.

The benefit for TCj is obtained as follows. τ is re-defined as the current set of tem-

plates at any given time in the selection process, containing the minimal templates

and the custom templates that have been chosen on the previous rounds. v(Ci) is de-

fined as a lower bound on the width of a template candidate TCj , corresponding to a

field combination Ci, and is obtained by adding together the widths of the fields that

are present in Ci. When a candidate template TCj is added to the template set τ, its

benefit can be calculated by comparing the size of the program code encoded with

only the current template set τ, and with the TCj included in τ, i.e., τ∪TCj . Hence, the

benefit bCj can be defined as

bCj =
m

∑
i=i

fi × [v(N(τ,Ci))− v(N(τ∪TCj ,Ci))]

After calculating the benefits for all the template candidates corresponding to the

move slot and long immediate field combinations found from the program code, the

combination Ci with the largest benefit is chosen and added to the template set τ. As

the chosen template may be used as a superset template for some other field combi-

nations as well, the benefits for the remaining field combinations need to be reset and

recalculated again during the next iteration of the selection loop.

Example. The template selection process is exemplified on a TTA processor with

three move buses and support for one long immediate value. The instruction word

consists of three move slots and one dedicated long immediate field. Figure 14(a)

depicts the profile of the program code. It illustrates the used move slot and long

immediate combinations with their usage frequencies, i.e., how many times each

field combination is used in the program code. The combinations are arranged for

clarity according to descending usage frequencies. An unused field is marked with

a “-”. The instructions are 86 bits wide. The widths of the move slots and the long

immediate field are also shown. In the example code, 12 field combinations out of

the 24 = 16 possible were used in the program code.

The template selection process begins by initializing the template set τ with the min-

imal template set, i.e., in the case of TTA with a template that has all the three move

72 4. Program Compression on TTA

move1 - move3

 - - - -

 -

move1 move2 move3
move1 move2 move3 limm

 -

move1 - -

move1 move2 - -

 -

move1 move2 -

 - - move3 -

limm

move1 - -
 - move2 move3 -

limm

move1 - move3
 - move2 - -

limm

15

13

42
75

15

14

7

12

5
6

1
3

Combinations Frequency

3

6

2
1

4

5

8
7

10
9

12
11

321818 18
Field widths

(a)

move1 move2 move3 limm

Chosen templates Width (bits)

00

01

10

11

move1 move2 move3

move1

move1 move3
20

56

88

38

321818 18

(b)

Fig. 14. a) Profile of the used move slot and long immediate field combinations with their

usage frequencies. b) The chosen templates and their widths.

slots and the one long immediate field present. The selection of the custom templates

is then performed in the selection loop. In this example, a budget of four templates

(k = 4) was used, i.e., three custom templates could be chosen. During the first iter-

ation, the field combination that has all the fields except for the long immediate field

present turns out have the highest benefit, so it is chosen as the first custom template.

In addition to using the chosen template for the first field combination, it can be used

also for the combinations 2, 3, 4, 5, 6, 8, 10, and 12. The minimal template has to be

used for the remaining field combinations. The chosen template saves 32 bits times

the frequency of the field combinations the template can be used for.

During the second iteration of the loop, the most beneficial field combination is the

field combination with only the first move slot present. It can be used for the combi-

4.1. Utilized Compression Methods 73

nations 3 and 5. On these combinations it saves 36 bits times their frequency as it has

two move slot fields less compared to next narrowest template in τ, i.e., the template

that was chosen on the previous iteration. During the last iteration of the loop, the

field combination that has the first and third move slots present becomes the most

beneficial combination and is added to the template set. It can be used for the combi-

nations 6 and 8, and it saves 18 bits times the usage frequency of these combinations

as it now has one move slot less that the next narrowest template.

Once the templates are chosen, the template selection fields need to be assigned for

the templates to identify each template. As four templates were used in the example,

2-bit wide selection field is needed. Figure 14(b) illustrates the chosen templates and

their widths. The three custom templates chosen in this example reduce the code size

already by 31%.

4.1.3 Dictionary-Based Compression

Dictionary-based program compression is based on the fact there are bit patterns,

e.g., instructions, in a program code that occur more than once. In addition, often

only a small part of all the possible bit patterns is used. These properties can be uti-

lized by storing all the unique bit patterns of a program code into a dictionary and

replacing the bit patterns in the program code with indices that point to the dictio-

nary. Given a program with N unique bit patterns, the length of the dictionary index

becomes �log2|N|� bits. The dictionary introduces an overhead that has to be taken

into account when the effectiveness of the method is of concern. In case there are

only few repeated instructions, the method may turn out not to reduce the code size

as the dictionary becomes large, containing most of the bit patterns of the original

program code. Compression is effective when the following equation is fulfilled:

(K −N)w−K�log2|N|� > 0

K is the number of bit patterns in the program code, N is the number of unique bit

patterns in the program code that are stored into the dictionary, and w is the width of

the original bit pattern. The left-hand side of the equation defines the number of bits

saved when the dictionary-based compression is applied, and it needs to be greater

that zero to make the method effective.

74 4. Program Compression on TTA

addi, r1, r4, #16
mul, r4, r2, r1
shr, r2, r3, #5
sub, r5, r2, r1
mul r4, r2, r1
add, r1, r4, #16
bneqz r1, #10c
add, r1, r4, #16

Program code

0
1
2
3
4
5
6
7

031

(a)

addi, r1, r4, #16
mul, r4, r2, r1
shr, r2, r3, #5
sub, r5, r2, r1
bneqz r1, #10c

Dictionary

0
1
2
3
4

Program code

0
1
2
3
4
5

index 0
index 1
index 2
index 3
index 1
index 0

6
7

index 4
index 0

031 2 0

(b)

Fig. 15. a) The original uncompressed program code. b) The generated dictionary and the

compressed program code.

Figure 15 illustrates an example of dictionary-based compression. Figure 15(a) illus-

trates the original program code, consisting of RISC type 32-bit wide instructions.

The unique instructions of the program code are stored into a dictionary and replaced

with indices that point to the dictionary. As there are five unique instructions, 3-bit

indices are requires to access the dictionary. The dictionary and the compressed pro-

gram code are depicted in Fig. 15(b). The decompression procedure is fairly straight-

forward. The dictionary index, fetched from the program memory, is used to access

the dictionary, from where the original bit pattern is obtained and can be sent forward

in the instruction pipeline.

Dictionary-based compression has been typically applied to entire instruction words

on single issue processors, such as CISC or RISC. Compressing entire instruction

words does not result in effective compression on parallel processor architecture as

the instruction words are typically long and are composed of several fields. There are

only feq unique instructions, which results in most of the instructions to be stored into

the dictionary. Even if two instructions differ in only one bit, they are both unique

4.2. Hardware Implementations 75

and need to be stored. Better compression can be achieved when the instructions are

divided into smaller bit patterns to which compression is applied to.

TTA instructions can be divided into smaller bit patterns at different granularity lev-

els. The same granularity levels as in the case of Huffman coding are utilized. That

is, unique bit patterns to be stored into the dictionary and to be replaced with dictio-

nary indices are searched at the level of full instruction words, at the level of move

slots, and at the level of ID fields. At move slot and ID field levels, the vertical and

horizontal compression approaches can be applied. Vertical compression divides in-

structions into parallel streams according to the field boundaries and searches unique

bit patterns inside these streams. A unique dictionary is created separately for each

stream. Horizontal compression searches for unique bit patterns across all the fields

in the instruction words and only a single dictionary is generated. At both move slot

and ID field levels the long immediate field is considered as a separate stream. At

ID field level the source ID and destination ID fields are considered separately in

horizontal compression and two dictionaries are generated, one for the unique source

IDs and one for the unique destination IDs. Further on, all the guard fields of an

instruction word are combined into a single bit pattern. Unique bit patterns are then

searched among these guard field combinations in the program code.

4.2 Hardware Implementations

In order to take the implementation details of the decompression hardware and the

program memory into account for better evaluation of the compression methods and

to obtain statistics in terms of area and power consumption, the TTA processors used

in the evaluations were implemented in hardware. The area and power consump-

tion were evaluated on both the uncompressed and compressed implementations.

The processor generator of the MOVE framework was used to create the VHDL

descriptions of the TTA processors. For the compressed designs, the decompres-

sion circuitry was designed manually and implemented in the control path of the

processor core. Program memories, both uncompressed and compressed, and data

memories were implemented using random access memories (RAM). The memories

were included in the design as pre-synthesized macro cells provided by the technol-

ogy vendor. The processor designs were synthesized on a low-power 130 nm CMOS

standard-cell technology with 5 metal layers using the Synopsys Design Compiler

76 4. Program Compression on TTA

version 2003.06. Area statistics were obtained from the synthesis results. The power

consumption values were obtained from the Design Compiler using the switching

activity information obtained from gate-level simulations that were performed using

Mentor Graphics Modelsim version 5.31.00.

In order to implement the compressed systems in hardware, the program memory

has to be adjusted for the compressed codewords and the control path of the proces-

sor must be modified to handle fetching compressed instructions and decompressing

them back to the original format before they are decoded. The design principles of

the decompressor for the compression methods are presented in Subsection 4.2.1.

The hardware implementations and area and power consumption estimations were

done for the dictionary-based and instruction template-based compression approaches.

Huffman coding method was not implemented in hardware as conclusions for its ef-

fectiveness could be drawn based on the results of the instruction template-based

compression as both methods result in variable-width instructions and therefore need

to address the same issues, such as buffering the incoming instruction fetch packets

and aligning branch and jump targets to addressable memory locations. The details of

the hardware implementations of the dictionary-based and instruction template-based

compression are discussed in more detail in subsections 4.2.2 and 4.2.3.

4.2.1 Implementation Principles

For the execution of the compressed program codes, the most important hardware

module is the decompressor that is responsible for decompressing the compressed in-

structions back to their original form. The complexity of the decompression circuitry

depends highly on the compression method. The decompressor of the dictionary-

based compression methods is extremely simple as it consists of only the dictionary

that contains the original bit patterns. The index that is used to access the dictio-

nary is fixed-width, so there is no need for any additional logic to obtain the code-

word from the incoming bit stream. Huffman coding and instruction template-based

compression result in more complex decompression procedure due to variable-width

codewords. Before the decompression takes place, the codewords need to be iden-

tified from the incoming bit stream. This requires either an identifier before each

codeword to specify the length of the codeword, or the bits of the input stream need

to be investigated one by one until the entire codeword is identified.

4.2. Hardware Implementations 77

In addition to more complex decompressor, also the instruction fetch logic becomes

more complex when compressed instructions are variable-width. The IF stage has to

forward enough bits each clock cycle to the decompressor so that an entire instruction

word per clock cycle can be obtained from the decompressor for decoding. If this is

not the case, the pipeline of the processor needs to be stalled. The width of the

instruction fetch packet needs to be adjusted to cover the worst case situation, i.e.,

that all the codewords belonging to an instruction word are the widest possible. In

case the codewords are smaller, the fetch packet contains bits of the next instruction

word. These bits need to be buffered and concatenated with the bits of the next

instruction fetch packet at the beginning of next clock cycle to construct the next

instruction word. The buffer holding the excessive bits fetched from the program

memory may eventually fill up. To avoid overflow in the buffer, instruction fetching

has to be stalled for awhile until the buffer can accept new fetch packets.

One of the main design decisions is the location of the decompressor. As discussed in

previous Chapters, there are several alternatives for this, each having their advantages

and drawbacks. In the evaluations performed in this Thesis, the decompressor is

placed inside the control path of the processor core. In such as case, the decompressor

is typically implemented in an additional pipeline stage. This increases the depth of

the pipeline and affects the jump delay as it takes one clock cycle longer for the

pipeline to fill up again after a branch or jump has been taken. If the decompression

procedure is simple enough, the decompressor can be integrated with either the IF or

the DC stage into a single pipeline stage and avoid the increase in pipeline depth.

Compression may also influence branching as the instruction addresses may change

due to compression. This is especially the case when compressed instructions become

variable-width. As the variable-width instructions are placed one after another in the

program memory to preserve code space, they are typically not aligned to addressable

locations. However, to fulfill random access requirements, branch target instructions

need to be aligned to addressable locations so that they can accessed immediately

after a branch is taken. In addition, target addresses in the branch instructions need

to be corrected. One possibility is to patch the branch target addresses to point to the

compressed address space. Another alternative is to provide a mapping between the

compressed and uncompressed address spaces with a dedicated LAT. All these issues

affect the effectiveness of the compression method.

78 4. Program Compression on TTA

4.2.2 Implementing Dictionary-Based Compression

The decompression procedure for the dictionary-based compression is extremely

simple. It involves accessing a look-up table of unique bit patterns with an index

that is fetched from the program memory. TTA processors allow to implement the

decompressor inside the control path of the processor core as the processors are de-

scribed in VHDL.

One alternative is to add a dedicated pipeline stage for the decompression (DCMPR).

The additional pipeline stage needs to be placed in between the IF and the DC stages

of the three-stage TTA transport pipeline, which was introduced in Subsection 3.2.4.

The organization of the transport pipeline with the additional DCMPR stage is il-

lustrated in Fig. 16(a). The figure illustrates the combinatorial logic related to the

pipeline stages and the corresponding pipeline registers. The addition of a dedicated

DCMPR stage increases the depth of the transport pipeline by one. This implies an

increased jump latency as one additional clock cycle is required for the branch target

instruction to reach the execution stage. The penalty of the increased jump delay is

paid whenever a branch is taken.

As the dictionary access is a fairly simple operation, the decompressor can also be

integrated to one of the existing pipeline stages. This allows to maintain the depth of

the pipeline and the jump delay unchanged. Instruction fetching involves modifying

the contents of the program counter and accessing the memory, whereas decoding

simply compares the source and destination IDs of the instructions word to the hard-

wired socket IDs and generates the control signals for the transport network. The

timing of the IF stage is more critical as the delay of the program memory is along

the critical path. Therefore, the timing of the processor is affected less when the

decompressor is integrated to the DC stage. Furthermore, as there is a register in be-

tween the IF and DC stages, it is more favorable to perform decompression in the DC

stage as it allows to maintain the register as wide as the compressed instruction word.

Figure 16(b) illustrates the organization of the transport pipeline with the integrated

DCMPR-DC stage.

The decompressor consists of only the dictionary that contains the original bit pat-

terns. The dictionary is accessed with the compressed codewords that are fetched

from the program memory. The dictionary can be implemented using RAM, which

allows to modify the contents of the dictionary, e.g., to adapt to changes in the pro-

4.2. Hardware Implementations 79

program
memory

co
m

pr
 in

st
r

re
g

IF
logic

cn
tr

l s
ig

n
re

gs
s

control
signals

control unit

DCMPR
logic

DC
logic

in
st

r
re

g

(a) Separate DCMPR stage

program
memory

co
m

pr
 in

st
r

re
g

IF logic
DCMPR-DC
 logic

cn
tr

l s
ig

n
re

gs

control
signals

control unit

(b) Integrated DCMPR-DC stage

Fig. 16. Transport pipeline organization for the alternative decompressor implementations.

gram code. Hence, full programmability can be maintained with this approach. How-

ever, using RAM requires that the decompressor is implemented in a separate pipeline

stage as it takes at least one clock cycle to obtain data from RAM. An alternative to

RAM is to use read only memory (ROM). It requires less transistors to implement,

i.e., it provides smaller area and consumes less power than RAM. However, the con-

tents of ROM cannot be modified, which limits the allowed instructions the processor

can execute.

Another alternative to RAM or ROM implementation is to describe the dictionary as

a matrix as standard logic vectors and let the synthesis tool optimize the dictionary

into logic cells. This approach can exploit the fact that dictionary-based compression

cannot fully utilize all the redundancy that exists in the program code. For example,

the bit patterns stored into the dictionary may differ only in few bit positions. The

synthesis tool can detect this redundancy and optimize the logic of the dictionary to

achieve even smaller area than would be achieved with ROM. This approach makes

the dictionary compression effective also at full instruction level as the dictionary

entries, i.e., entire instruction words, contain a lot of redundancy that can be utilized.

80 4. Program Compression on TTA

In the evaluation of the dictionary-based program compression method on TTA, the

dictionary was implemented both using RAM and standard cells. When RAM was

used to implement the dictionary, a separate pipeline stage had to be added for the de-

compression. Standard cell implementation of the dictionary allowed to experiment

both the separated and integrated decompressor alternatives.

4.2.3 Implementing Instruction Template-Based Compression

The implementation of the instruction template-based compression is more complex

compared to the implementation of the dictionary-based compression. The main rea-

son is that the compressed instructions become variable-width. In addition to includ-

ing the decompressor in the control path of the processor, the instruction fetch logic

needs to be modified.

The decompressor for the instruction template-based compression is responsible for

detecting from the input bit stream the templates that have been used the encode the

instructions of the program code. The templates specify move slot and long immedi-

ate fields for a subset of all the possible fields. The guard and source and destination

ID fields of the move slots that are present in the template need to be dispatched to

the correct field decoders. For the remaining decoders, IDs corresponding to a null

data transport need to dispatched implicitly. The long immediate values need to be

dispatched to the immediate registers in the immediate unit. In case a long immediate

field is not included in the template, a value 0 is transported to the immediate reg-

ister. As the width of the compressed instruction word is not known, each template

precedes a template-selection field that defines the used template and its width.

The decompressor has to be capable of decompressing a single instruction word per

clock cycle. As the width of the compressed instruction word is not known during

instruction fetch, the instruction fetch packet needs to be configured as wide as the

widest compressed instruction words, i.e., as wide as the widest template, to guaran-

tee that enough bits to decompress a single instruction are obtained from the program

memory each clock cycle. The width of the program memory is adjusted according

to the width of the fetch packet.

During decompression, the template-selection field is first investigated to determine

the width of the current template and the fields present in the template. This infor-

mation is used to extract the bits of the move slots from the instruction fetch packet

4.2. Hardware Implementations 81

and dispatch them to the corresponding source and destination ID field decoders.

For the remaining move slots, null data transport IDs are dispatched implicitly. The

bits of the long immediates need also the be extracted from the templates and stored

into the immediate registers inside the immediate unit. In case the template does not

consume all the bits of the instruction fetch packet, the remaining bits belong to the

following template or templates. The decompressor contains a shift register to store

the remaining bits, which are consumed in the following clock cycle. The remaining

bits of the fetch packets are stored left-aligned in the shift register. Left-aligning is

made to always obtain the template-selection field from the leftmost bits of the shift

register. For the decompression of the next template, the bits of the shift register are

consumed before the bits of the next instruction fetch packet.

Whenever the template is narrower than the instruction fetch packet, the remaining

bits accumulate the number of bits in the shift register. After awhile, it may turn out

that all the bits of a template are found from the shift register. As the size of the shift

register needs to be limited, in the implementation used in this Thesis to two times

the width of the instruction fetch packet, an overflow may occur in the shift register.

To avoid the overflow, a pre-fetch buffer is implemented in the instruction fetch logic.

The bits fetched from the program memory are forwarded to the decompressor from

the pre-fetch buffer only when the shift register can accommodate an entire instruc-

tion fetch packet. In case there is no space, the bits fetched from the program memory

are stored into the pre-fetch buffer, implemented as a first-in-first-out (FIFO) with a

depth of three instruction fetch packets.

It may also turn out that if the basic block is large and several instructions in the basic

block can be encoded with a template that is significantly smaller that the widest

template, the FIFO may also fill up. In order to avoid overflow in the FIFO, the

instruction fetch needs to be stalled. This is done by disabling the memory enable

signal, which also disables the increment of the program counter. Hence, when the

instruction fetch is re-enabled, fetching continues from the correct memory address.

Due to the latency of the program memory, one more instruction fetch packet is

received from the program memory after the memory is disabled. Therefore, the IF

stage has to be stalled when the FIFO still has capability to store one instruction fetch

packet. The transport pipeline can still proceed normally.

The instruction fetch is re-enabled when all the instruction fetch packets stored into

the FIFO are consumed. The management of the FIFO is made so that the require-

82 4. Program Compression on TTA

ment for decompressing one instruction word per clock is satisfied. This requires the

memory enable to be activated before the FIFO is totally empty, i.e., it still contains

one instruction fetch packet, as there is a latency of one clock cycle before new data

can be obtained from the program memory after the memory has been enabled.

The complexity of the decompressor hardware is further increased due to the shifting

network for the shift register and the alignment network for dispatching the guard,

the source and destination ID fields to the corresponding field decoders and the long

immediates to the immediate registers. Each bit of the shift register can come from

all the possible bit locations of the shift register or from all the bit location of the

input of the decompressor. This implies a large multiplexer for each bit location of

the shift register. Similar situation happens for aligning the fields of the instruction

words to the field decoders. They can come from several different locations, which

results in need for a large multiplexer. The complexity of the shifting and alignment

network can be reduced by limiting the instruction words to a multiple of a fixed

number of bits, referred in [12] as quantum. This reduces the number of inputs for

the multiplexers of the shifting and alignment network and reduces the complexity

of the decompressor. For the TTA implementations, a quantum of 16 bit was chosen.

The templates need to be aligned to the next multiple of a quantum. This may require

padding bits to be inserted to the compressed program code.

Instruction template-based compression complicates also branching. As the variable

width templates are aligned to the program memory one after another, branch targets

may not be aligned to addressable memory locations by default. Hence, modifications

to the instruction alignment in the program memory has to be made. Branch target

alignment may require additional padding bits to be placed at the end of the memory

lines preceding the branch targets. On the other hand, this introduces another problem

when the branch is not taken. In such as case, the padding bits will be interpreted as

bits of a template. This will result in incorrect execution. To avoid such a situation, an

end of a packet (EOP) bit, similarly as in [10], is added to each instruction template

to identify whether the bits of the next template will follow right after, or are aligned

at the beginning of the next addressable memory location. When a branch has not

been taken, the EOP identifies whether there are padding bits that need to be flushed

from the shift register.

For the evaluation of the instruction template-based compression on TTA, the cases of

using four and 16 instruction templates to encode the instructions of the program code

4.3. Summary of the Program Compression Evaluations 83

were implemented. The decompressor was integrated in both cases to the DC stage

of the instruction pipeline to avoid additional pipeline stage. The decompression

procedure, even though more complex than in dictionary-based compression, is still

simple enough that it can be integrated with the decoder into a single pipeline stage

without affecting the cycle time too much.

4.3 Summary of the Program Compression Evaluations

The code density evaluations, based on the compression ratio that measures the ra-

tio of the compressed and uncompressed code size, were performed for all of the

three program compression methodologies. For the Huffman and dictionary-based

compression methods, the code densities were evaluated at three different granularity

levels; at full instruction, at move slot, and at ID field levels. The area and power

consumption evaluations were performed only for the instruction template-based and

dictionary-based compression methodologies. Huffman coding method was not eval-

uated as conclusions for its effectiveness could be drawn based on the results of the

instruction template-based compression methodology. Table 4 summarizes the code

density and area and power consumption evaluations that were performed for the

three program compression methods that were adapted on TTA.

As the dictionary-based compression is the main focus in this Thesis, it was evaluated

in more detail. For the area and power consumption evaluations, two alternative

implementations of the dictionary were evaluated. In the first case, the dictionary was

implemented using RAM. In the second case, the dictionary was implemented using

standard cell logic to allow the synthesis tool to optimize the logic of the dictionary.

Table 4. Summary of the program compression methodology evaluations on TTA.
Granularity Code Area and power consumption

Methodology level density Separated DCMPR-stage Integrated DCMPR-DC-
RAM dict Std cell dict. stage (Std cell)

Huffman Instruction x - - -
coding Move slot x - - -

ID field x - - -
Instruction template-

based compression

x - - x

Dictionary-based Instruction x x x x
compression Move slot x x x x

ID field x x x x

84 4. Program Compression on TTA

In addition to evaluating two alternative implementation methods of the dictionary,

two alternative locations of the decompressor in the transport pipeline of the control

logic of the processor were evaluated. First, the decompressor was implemented in

a separate pipeline stage in between the IF and DC stages. Then, the decompressor

logic was integrated to the logic of the DC stage to avoid an additional stage in the

transport pipeline. The area and power consumption evaluations for the instruction

template-based compression methods were made by selecting four and 16 instruction

templates to encode the instruction of the program code.

5. MAINTAINING PROGRAMMABILITY AFTER COMPRESSION

In general, programmability can be defined as a capability of a processor to respond

to changes in software, i.e., to be able to execute the modified program with new

instructions. This requires that the instruction set contains such instructions that can

be used to execute all the operations in the source program. Instructions in the in-

struction set have to support at least all the fundamental operations, with which the

other, possibly more complex operations, can be executed. Hence, the instruction set

does not necessarily have to contain instructions for all the possible operations. For

example, support for a multiplication operation can be covered with an add operation.

Moreover, the instructions do not necessarily need to be capable to operate on data

from all the possible locations. For example, an add operation may be allowed to

operate directly on the data that is in a register file, but not on data that is in the

data memory. In the latter case, the data has to be loaded from the data memory to

the register file before the add operation can be executed. In both of these cases,

the performance of the processor is negatively affected due to incompleteness and

inconsistency of the instruction set.

The extent to which the instruction set is consistent and complete is often referred

to as orthogonality [67]. It characterizes the range of the supported operations in the

instruction set and the degree of the supported operands and addressing modes for

these operations. An instruction set is said to be fully orthogonal if any instruction can

use any type of data as operands through any addressing mode. In general, processors

with more orthogonal instruction set provide better performance as the processor is

easier to program.

Even though highly orthogonal instruction set provides better performance, high or-

thogonality has its drawbacks as it tends to increase the size of the program code.

More bits are required to encode the instructions as the instruction set has to cover

a large set of different operations that all support all the possible operands and ad-

86 5. Maintaining Programmability after Compression

dressing modes. Furthermore, not all applications can take the advantage of the full

orthogonality. Therefore, instruction sets are usually designed to provide better code

density, i.e., some orthogonality is sacrificed for more compact instruction encoding.

The orthogonality is usually reduced when program compression is applied. Program

compression usually utilizes the redundancy that exists in a given program code and

the instructions are encoded in such a way that only the ones that are used in the given

program code are supported after the compression has been applied. This results in

poor orthogonality and may result in limited programmability, i.e., into a situation

where the processor cannot anymore execute the entire set of new instructions that

were added to the program code when the program was modified.

Orthogonality and programmability are also affected by the compression granularity.

At high granularity levels, large bit patterns, such as entire instruction words are con-

sidered as symbols for compression. These bit patterns are usually composed of sev-

eral smaller independently encode fields, such as opcode and operand fields. When

the large bit patterns are compressed, only the combinations of the smaller fields

used in the original program code are supported. This results in poor orthogonality

and highly limited programmability. Compression at more fine-grained granularity

level provides means for better orthogonality and programmability. Bit patterns con-

sidered as symbols for compression are smaller and usually correspond to the smaller

fields inside the instruction words, e.g., opcodes and operands. This allows to sup-

port a larger set of operation with different operands and addressing modes as the

instructions can be composed of the smaller fields that are all uniquely compressed.

The implementation of the decompressor, i.e., the decoding table, may also affect

the programmability. As program compression is usually tailored for a particular

application, the decoding tables will contain only the bit patterns that were obtained

from the original application. This results in limited programmability. However, if

the decoding tables are implemented using RAM, they can be reloaded with all the

new bit patterns when the program code has been modified. This allows to maintain

full programmability. All that is needed is to compress the modified program code

and reload the RAM with the new decoding table.

The size of the RAM has to be designed carefully. If it is too small, all the bit patterns

of the modified program code may not fit into it. On the other hand, if the RAM

is too large, there is unused space, which reduces the compression effectiveness.

87

In case area and power consumption are of great concern, decoding tables can be

implemented using ROM or standard cells. As ROM is denser than RAM, it has

smaller area and power consumption. Standard cell implementation of the decoding

table allows optimization of the decoding table logic during synthesis. This provides

even smaller area and power consumption. The drawback of both of these approaches

is that the decoding tables cannot be modified after they have been implemented in

hardware. This results in limited programmability.

Traditionally, full programmability has been supported by allowing the program code

to contain both compressed and uncompressed instructions. Instructions that have a

match in the decoding table can be compressed; the others are stored into the pro-

gram code in uncompressed format. During execution, uncompressed instructions

pass the decompressor and are forwarded directly to the decoder whereas compressed

instructions pass through the decompressor before they can be decoded. Therefore,

additional information has to be added to the program code to make a distinction be-

tween the two instruction formats. This additional information increases the size of

the program code, and therefore, reduces the effectiveness of the compression.

One alternative to make a distinction between compressed and uncompressed instruc-

tions is to reserve one of the compressed instructions as a “mark” that precedes each

uncompressed instruction [19]. Instructions can also be divided into compressed and

uncompressed regions that are identified with two different marks [18, 73]. Fetch

packets may also be configured to precede a flag bit that is used to identify whether

the bits of the packet describe a compressed or uncompressed instruction.

Support for both compressed and uncompressed instructions may also affect the per-

formance. In case the program memory width is adjusted according to the com-

pressed instructions, fetching uncompressed instructions from the program memory

requires several clock cycles during which the transport pipeline has to be stalled.

This degrades the performance. On the other hand, if the program memory width

is adjusted according to uncompressed instructions, several compressed instructions

can be fetched in a single fetch packet. Instruction fetching has to be stalled until

all of them have been executed. A pre-fetch buffer is also required to avoid overflow

in the instruction register. In case a compressed instruction is encountered, the fetch

packet has more bits to store than are extracted from the instruction register. More-

over, uncompressed instructions typically need to be aligned to addressable memory

locations. This increases the code size as padding bits are needed.

88 5. Maintaining Programmability after Compression

In case the decompressor is implemented in its own pipeline stage, bubbles may

emerge in the transport pipeline degrading the performance. As there is a separate

decompress stage, uncompressed instructions require one clock cycle less to reach

the execute stage as they bypass the decompressor. Hence, when a compressed in-

struction is to traverse through the transport pipeline after the uncompressed one, it

takes one clock cycle longer for it to reach the execute stage as it has to pass through

the decompress stage. Therefore, one bubble is created in the pipeline.

Instruction execution in such a case illustrated in Fig. 17(a). Compressed instructions

are denoted as C(i), uncompressed instructions as U(j), and the mask informing that

an uncompressed instruction will follow as CM. The example in Fig. 17(a) assumes

an ideal usage of a pre-fetch buffer so that enough bits are always available to repre-

sent a compressed or an uncompressed instruction. In the example, the compressed

instruction C3 is to be executed after the uncompressed instruction U1. As C3 has

to pass through the decompress stage, which U1 bypasses, a bubble is created in the

decode stage, and it proceeds to the execution stage in the next clock cycle. There is

one idle cycle seen in the decompress stage as U1 bypasses the decompress stage.

Region compression [18, 73] can avoid the insertion of a bubble after each uncom-

pressed instruction by dividing the program code into compressed and uncompressed

regions. Two marks are required to identify these regions. A mark, CM, that is

as wide as a compressed instruction is used to indicate the beginning of an uncom-

pressed region. The mark is examined in the decompress stage. Another mark, UM,

which is as wide as an uncompressed instruction identifies the end of an uncom-

pressed region and the beginning of a compressed region. This mark is examined in

the decode stage. In region compression, stall cycles are paid only when a transition

from an uncompressed region to a compressed region takes place. As the example of

the transport pipeline execution for region compression shows in Fig. 17(b), two bub-

bles are created in the execute stage when transferring from an uncompressed region

back to a compressed region.

In the example in Fig. 17(b), a compressed mark CM, decompressed after the com-

pressed instruction C1, marks the beginning of an uncompressed region, which con-

sists of two uncompressed instructions, U1 and U2. The uncompressed region is

defined to end with an uncompressed mark UM, that is identified in the decode stage.

Due to the presence of UM, the next instruction to be executed, C2, is fetched two

clock cycles after the last uncompressed instruction U2. As it has to go through the

5.1. Programmability on TTA 89

IF DCMPR DC EX

C1
C2
M
U1
C3
C4
C5
C6
C7

 -
 C1
 C2
 M
 -
 C3
 C4
 C5
 C7

 -
 -
 C1
 C2
 U1
Bubble
 C3
 C4
 C5

 -
 -
 -
 C1
 C2
 U1
Bubble
 C3
 C4

Cycle

1
2
3
4
5
6
7
8
9

(a)

IF DCMPR DC EX

C1
CM
U1
U2
UM
C2
C3
C4
C5

 -
 C1
 CM
 -
 -
 -
 C2
 C3
 C4

 -
 -
 C1
 U1
 U2
 UM
Bubble
 C2
 C3

 -
 -
 -
 C1
 U1
 U2
Bubble
Bubble
 C2

Cycle

1
2
3
4
5
6
7
8
9

(b)

Fig. 17. a) An example of transport pipeline execution when an uncompressed instruction

is xexecuted among compressed instructions. b) An example of transport pipeline

execution in region compression.

decompress phase, a bubble is created in the decode stage and it propagates to the

executed stage. Furthermore, as the UM did not proceed any further from the decode

stage, there are two bubbles seen in the execute stage. There are three idle cycles seen

in the decompress stage as the uncompressed instructions bypass the decompressor.

As described above, maintaining programmability by supporting the execution of

both compressed and uncompressed instructions has some drawbacks. These draw-

backs are more severe on parallel processor architectures as the compressed instruc-

tions may be significantly smaller than the uncompressed ones. Performance is often

affected, especially when the program memory is adjusted according to compressed

instructions. Furthermore, instruction fetching and pipeline organization may be-

come more complex.

5.1 Programmability on TTA

Out of the three compression methods that have been evaluated on TTA, program-

mability and instruction set orthogonality are affected when Huffman coding and

dictionary-based compression methods are applied. The instruction template-based

compression method maintains the full programmability and the original orthogo-

nality of the instruction set as the minimal template, containing all the fields of the

instruction words is always included in the template set. The minimal template cor-

responds to the original instruction word and, therefore, supports the same set of

operations and operand and addressing combinations as the original instructions.

90 5. Maintaining Programmability after Compression

As discussed in the previous Section, programmability can be maintained by support-

ing the execution of both compressed and uncompressed instructions. The drawback

of this method is that it degrades the performance and adds complexity to the con-

trol logic, especially on parallel processor architectures, such as TTA. However, the

programming model of TTA allows to maintain the programmability also without the

support for uncompressed instructions. In this Thesis, such a methodology has been

proposed for the dictionary-based compression, but the method could also be ex-

tended quite easily for the Huffman coding compression method. The methodology

was originally introduced by the author of this Thesis in [P5].

The requirements for maintaining full programmability on TTA are presented in Sub-

section 5.1.1. The proposed methodology for maintaining the programmability for

the dictionary-based compression is introduced in Subsection 5.1.2. Evaluations of

the proposed methodology in terms of performance, area, and power consumption

are presented in Chapter 6.

5.1.1 Requirements for Programmability

Due to the mirrored programming paradigm of TTA, there is only one type of opera-

tion that can be programmed; a data transport from a source to a destination. There-

fore, the programmability can be maintained on TTA if the data transports from all

the possible sources to all the possible destinations can be executed. As the source

and destination ID fields may contain opcodes, all possible opcodes need to be sup-

ported in the required data transports. In case of an FU, the opcode specifies the

operation the unit is to perform. These opcodes can be supported by considering the

trigger input as many destinations as there as opcodes. In case of an RF, the opcode

specifies the register to be written or read. Similarly to FUs, the RF inputs have to

be considered as many destinations as there are opcodes, and the RF outputs as many

sources as there are opcodes.

Figure 18 shows an example TTA processor configuration and the required data trans-

ports to maintain the programmability. Figure. 18(a) depicts the architecture of the

processor. The processor contains one FU that can perform two operations, add and

subtract, one RF with two 32-bit registers, an immediate unit (IMM) placing large

immediates on the buses, and a global control unit (GCU). The architecture has three

5.1. Programmability on TTA 91

FU

add, sub

RF

2x32

IMM GCU

jump

0

1

2

O T TR R RIn Out1 Out2

(a)

FU_R -> FU_O
FU_R -> FU_T(add)
FU_R -> FU_T(sub)
FU_R -> RF_In(0)
FU_R -> RF_In(1)
FU_R -> GCU_T(jump)

RF_Out2(0) -> FU_O
RF_Out1(0) -> FU_T(add)
RF_Out1(0) -> FU_T(sub)
RF_Out1(0) -> RF_In(0)
RF_Out1(0) -> RF_In(1)
RF_Out2(0) -> GCU_T(jump)

RF_Out2(1) -> FU_O
RF_Out1(1) -> FU_T(add)
RF_Out1(1) -> FU_T(sub)
RF_Out1(1) -> RF_In(0)
RF_Out1(1) -> RF_In(1)
RF_Out2(1) -> GCU_T(jump)

IMM_R -> FU_O
IMM_R -> FU_T(add)
IMM_R -> FU_T(sub)
IMM_R -> RF_In(0)
IMM_R -> RF_In(1)
IMM_R -> GCU_T(jump)

GCU_R -> FU_O
GCU_R -> FU_T(add)
GCU_R -> FU_T(sub)
GCU_R -> RF_In(0)
GCU_R -> RF_In(1)
GCU_R -> GCU_T(jump)

(b)

Fig. 18. a) An example TTA processor configuration. b) All the possible data transports that

can be executed on the example TTA processor.

move buses to transport data in between the resources. Connections between the

buses and the functional resources are established through input and output sockets.

The FU inputs and outputs are denoted as T (trigger), O (operand), and R (result).

The RF inputs and outputs are denoted as In and Out.

As the FU has two inputs ports and one output port and there are two possible opcodes

for the trigger input, the FU has in total three destinations and one source. The RF has

two 32-bit registers, which correspond to two distinct destinations and sources. The

number of input our output ports on the RF does not affect the number of sources or

destinations as all the registers are accessible through all the input and output ports,

so any of then can used for the transports. The IMM unit has one source and the GCU

to one destination and one source.

92 5. Maintaining Programmability after Compression

When all the possible sources and destinations have been identified, all the required

data transports for full programmability can be defined. The number of the required

data transports depends on the number of sources and destinations. In case there are

n sources and m destinations, there are n×m possible data transports that need to be

supported. In the example processor configuration, depicted in Fig. 18(a), there are

five sources and six destinations meaning that in total 30 data transports are required

for full programmability. These data transports are illustrated in Fig. 18(b).

To perform each of the data transports, a bus needs to be assigned for each data

transport to which both the source and the destination are connected to through the

output and input sockets. E.g., the data transport from the FU result output to the

trigger input of the GCU with an opcode for jump, FU R –> GCU T(jump), has to

be executed on bus two as the input socket of the GCU trigger input is not connected

to any other bus. In case there is no bus on which the required data transport can

be executed, i.e., the input and output sockets involved in the data transport are not

connected to the same bus, a connection to either of these two sockets needs to be

added so that the data transport can be made.

In addition to being capable of transporting data in between all the sources and desti-

nations, all possible immediate values used to specify, e.g., large constants and jump

addresses, should also be supported. In TTA, immediates may be up to 32 bits, which

implies a huge number of possible immediate values that would need to be supported.

5.1.2 Programmability Support Methodology

Dictionary Extension

Dictionary-based program compression stores unique bit patterns into a dictionary

and replaces them in the program code with indices to the dictionary. As the com-

pression is usually tailored for a particular application, the bit patterns stored into the

dictionary represent only a small subset of all the possible bit patterns. This leads to

poor orthogonality, which usually means that full programmability cannot be guar-

anteed. This makes it difficult or even impossible to modify the program code so that

it could still be executed.

As discussed in the previous Subsection, full programmability can be guaranteed

on TTA if data can be transported from all the sources to all the destinations in the

5.1. Programmability on TTA 93

architecture. For the dictionary-based compression, this requirement can be fulfilled

by extending the dictionary with such bit patterns that the required data transports can

be executed. The drawback of the dictionary extension is that it adds an overhead to

the size of the dictionary and increases also the power consumption due to increased

amount of logic. The overhead depends on how many of the required data transports

are already supported in the dictionary, and also on the compression granularity.

When the compression is performed at instruction level, the dictionary contains entire

instruction words. This means that the additional entries supporting the execution of

the required data transports need to be added as entire instruction words. As each

of the required data transports need to be independently executable, they cannot be

combined into the entries. Hence, each of the required data transports requires its own

entry, i.e., an instruction word, where only a single data transport is specified on one

of the move slots. Null data transports need to be specified on the other move slots.

This implies a large overhead in the size of the dictionary. The overhead depends

also on the number of buses in the architecture; the more buses in the architecture,

the wider the instruction word and the larger the overhead.

The overhead of extending the dictionary to maintain the programmability can be

decreased significantly if the compression is applied at smaller granularity levels,

i.e., at move slot or ID field levels. At move slot level, the bit patterns corresponding

to the required data transports can be added to the move slot dictionaries. This avoids

the need to specify the null data transports in the dictionary entries, as is the case

at instruction level. Furthermore, the move slot dictionaries may already contain

plenty of the bit patterns that are required for full programmability. This reduces

the amount of bit patterns that need to be added. Therefore, the overhead of the

dictionary extension is significantly smaller than at instruction level.

The overhead is even smaller when the compression is applied at ID field level, where

the bit patterns stored into the dictionaries correspond to source and destination IDs.

Support for the required data transports can be provided by adding the source and

destination IDs of the required data transports to the corresponding source and des-

tination ID dictionaries. The same IDs may be used in several data transports. In

case these transports are performed on the same buses, the IDs need to be added to

the dictionaries only once. In addition, the source and destination ID field dictionar-

ies may already contain quite a large set of the required source and destination IDs,

which reduces the number of entries that need to be added.

94 5. Maintaining Programmability after Compression

Dictionary extension at the three different granularity levels is exemplified in Fig. 19.

Figure 19(a) shows the set of data transports that are to be added to the dictionaries to

maintain the programmability on the example TTA processor, depicted in Fig. 18(a).

For each data transport, the assigned bus is also shown. Figures 19(b)- 19(d) il-

lustrate how the dictionary extension is performed at the three different granularity

levels. The new dictionary entries are added after the original entries that are stored

into the dictionaries during compression. For clarity, dictionary extension for the

move slot and ID field granularity levels is shown only for the vertical compression

approach. Dictionary extension for the horizontal compression proceeds similarly

with the exception that only a single dictionary is used for all the move slots at move

slot granularity level. At ID field level, one dictionary is created separately for the

source and destination IDs. Long immediate fields and the combined guard fields at

ID field level are ignored in the example.

The orthogonality after dictionary extension is still significantly worse compared

to the orthogonality of the original uncompressed instruction set, even though the

method allows to maintain the programmability. The orthogonality, and hence also

the performance are highly affected by the compression granularity. At instruction

level, the extended entries allow to specify only a single data transport per instruction.

This results in poor performance when these entries are utilized to cover instruction

that were not included in the original dictionary. The orthogonality and performance

are better at smaller granularity levels where it is possible to execute several data

transports in parallel, provided that the extended entries are distributed somewhat

evenly to the dictionaries so that they can be executed in parallel.

When the application has been modified after the compression has been applied and

the dictionaries have been implemented, the extended dictionaries are given to the

compiler as a constraint so that a correct program code can be created. The compiler

first tries to create instructions that match the original entries that were created during

the compression. This is possible in case the modifications to the program code are

local and most of the instructions remain unchanged. In case a matching instructions

cannot be found among the original dictionary entries, the desired functionality has

to be described using the extended dictionary entries.

At instruction level, the extended entries will provide fairly poor performance as only

one data transport per instruction can be performed. This means that the modifica-

tions to the program code need to be small, e.g., bug fixes. In case there is a need

5.1. Programmability on TTA 95

 Data transport
FU_R -> FU_T(add)
FU_R -> RF_In(0)
RF_Out1(0) -> FU_T(add)
RF_Out2(1) -> FU_O
IMM_R -> FU_T(sub)
IMM_R -> RF_In(1)
GCU_R -> FU_O
GCU_R -> RF_In(0)

Bus
 0
 1
 0
 1
 0
 2
 1
 0

(a)

 ...
FU_R -> FU_T(add)
 null
RF_Out1(0) -> FU_T(add)
 null
IMM_R -> FU_T(sub)
 null
 null
GCU_R -> RF_In(0)

 null
FU_R -> RF_In(0)
 null
RF_Out2(1) -> FU_O
 null
 null
GCU_R -> FU_O
 null

 null
 null
 null
 null
 null
IMM_R -> RF_In(1)
 null
 null

Instruction word

(b)

 ...
FU_R -> FU_T(add)
RF_Out1(0) -> FU_T(add)
IMM_R -> FU_T(sub)
GCU_R -> RF_In(0)

 ...
FU_R -> RF_In(0)
RF_Out2(1) -> FU_O
GCU_R -> FU_O

 ...
IMM_R -> RF_In(1)

move slot 0 move slot 1 move slot 2

(c)

 ...
 FU_R
RF_Out1(0)
 IMM_R
 GCU_R

 ...
 FU_R
RF_Out2(1)
 GCU_R

 ...
IMM_R

 ...
FU_T(add)
FU_T(sub)
RF_In(0)

 ...
RF_In(0)
FU_O

 ...
RF_In(1)

 src ID 0 src ID 1 src ID 2 dst ID 1 dst ID 0 dst ID 2

(d)

Fig. 19. An example of dictionary extension. a) an example set of data transports to be added.

The extended dictionaries for compression at b) instruction, c) move slot, and d) ID

field levels. The three dots (...) represent the entries that correspond to bit patterns

already stored into the dictionary during compression.

to prepare for larger changes in the code and to maintain a feasible performance,

some reduction in area and power consumption through compression has to be sacri-

ficed by applying compression at smaller granularity levels, e.g., at move slot level.

96 5. Maintaining Programmability after Compression

In this Thesis, further study of the dictionary extension methodology was limited to

compression at instruction level as it provided the best reduction in area and power

consumption, which were the main objectives.

Minimizing the Dictionary Extension Overhead

The overhead of dictionary extension can be reduced by minimizing the number of

entries that need to be added. This is crucial especially for the compression at in-

struction level where each additional data transport requires a separate entry in the

dictionary. The overhead becomes large especially on large processor configurations

as the number of possible destinations and sources is large. This increases the number

of the required data transports. Moreover, instruction words on such large processor

configurations are long, which increases the dictionary overhead even further as each

dictionary entry requires more bits.

The number of the required data transports can be reduced by introducing a dedi-

cated register, denoted as global connection register (GCR) through which all the

data transports for maintaining the programmability are to be executed. Utilization

of the GCR allows to split the source-to-destination data transports into two distinct

data transports; a data transport from a source to the GCR and from the GCR to a

destination. This reduces the number of the required data transports. In case there

are n sources and m destinations, with the utilization of the GCR the number of the

required entries can be reduced from n×m to n + m. The larger the n and m, the

greater the reduction. Fig. 20 illustrates the required data transports in the example

TTA processor, shown in Fig. 18(a), when the GCR is utilized. The number of the

required data transports is reduced in the example from 30 to 11.

To introduce the GCR in the architecture, a dedicated RF to hold the GCR can be

added or, alternatively, a register in one of the existing RFs can be chosen as GCR.

As the GCR is used to transport data in between the sources and the destinations,

the input and output sockets of the RF that hosts the GCR should be connected to as

many buses possible. If a dedicated RF for the GCR is added, the sockets of the RF

can be adjusted to be connected to as many buses as required. If one of the existing

RFs is used to host the GCR, an RF that has the best connectivity is chosen. The

connectivity C of an RF can be defined as

5.1. Programmability on TTA 97

FU_R -> GCR
RF_Out1(0) -> GCR
RF_Out1(1) -> GCR
IMM_R -> GCR
GCU_R -> GCR

GCR -> -> FU_O
GCR -> FU_T(add)
GCR -> FU_T(sub)
GCR -> RF_In(0)
GCR -> RF_In(1)
GCR -> GCU_T(jump)

Fig. 20. The optimized set of the required data transports with the utilization of the GCR in

the example TTA processor configuration illustrated in Fig. 18(a).

C = 2×min{|
n�

i=1

Isi|, |
m�

j=1

Osj|}

where Isi is the set of buses an input socket i of the RF is connected to, Osj is the

set of buses an output socket j of the RF is connected to, and n the number of input

sockets and m the number of output sockets in the RF.

Hence, the connectivity takes into account in addition to the number of connections to

the buses also the balance between the number of buses the input and output sockets

are connected to. This guarantees that there are better possibilities to move data

from all the sources to the GCR and from the GCR to all the destinations without

a need to add a large number of connections to the input and output sockets of the

chosen RF. The RF with the best connectivity is chosen to host the GCR. In case the

connectivities are equal, the RF with the larger number of pure connections to the

move buses is chosen to host the GCR. Any register inside the chosen register can

be chosen as GCR. In practice, the register with index 0 is chosen as the GCR. That

register cannot be used anymore to hold data as the register is used to execute all the

source-to-destination data transports.

The utilization of the GCR to minimize the number of additional entries in the dic-

tionaries reduces the orthogonality even further, and therefore, also the performance.

The extended dictionary entries cannot transport data directly from the source to the

desired destination in a single clock cycle. Instead, the data is transported during one

clock cycle from the source to the GCR, and then in the next clock cycle from the

GCR to the destination. Hence, two clock cycles are required to complete a single

source-to-destination data transport.

98 5. Maintaining Programmability after Compression

Immediate Support

As was mentioned in Subsection 5.1.1, in addition to transporting data from all the

possible sources to all the possible destinations, all the possible immediate values

need to be supported as well in order to maintain full programmability. After com-

pression, only the immediate values in the original program code are supported. They

represent only a small subset of all the possible immediates.

All the possible immediate values can be supported by specifying them along the

compressed instructions in the program memory and extracting them during the de-

code phase in the transport pipeline. In order to do this, the immediate values need

to be distinguished from the compressed instructions. This can be accomplished by

reserving one of the compressed codewords as an immediate specifier that is placed

before the immediate bits in the program memory.

TTA supports up to 32-bit wide immediates. However, all the 32 bits are rarely

used. Using only 32-bit immediates in the program would be impractical and would

lead to unnecessary increase in the code size. Furthermore, the performance would

decrease as the processor would always have to be stalled until all the 32 bits of the

immediate would have been fetched from the program memory. The increase in the

code size and the decrease in performance can be minimized by introducing a set

of immediate formats that are of different width. A unique immediate specifier is

required for each immediate format. The widths of the distinct immediate formats

are chosen to be multiples of the width of the program memory, which is typically

adjusted to the width of the compressed instruction. This type of immediate format

organization allows the immediate bits to be aligned evenly to the program memory.

Immediate formats at least up to 32-bit need to be supported. For example, in case the

compressed instructions are 9 bits wide, four different immediate formats are needed;

9, 18, 27, and 36 bits.

Figure 21 shows an example of placing immediate values along the compressed in-

structions. Compressed instructions are defined as Ci, where i is the index of the

instruction. Immediate specifiers preceding the immediate bits are denoted as Isk,

where k is the index of the specifier, specifying also out of how many instruction

fetch packets the immediate value is to be assembled from. Immediate packets are

denoted as Ilp, where l is the index of the immediate value and p the index of the

packet. Whenever an immediate specifier is encountered, the processor is stalled and

5.1. Programmability on TTA 99

0

1

2

3

4

5

6

7

8

9

10

11

12

13

C1

Is

I1

C2

C3

Is

I2

I2

C4

Is

I3

I3

I3

I3

1

1

2

1

2

4

1

2

3

4

Fig. 21. Example of a compressed program code including immediate values.

the bits on the following k memory lines are fetched one line at a time and assembled

together into a single immediate value that is placed in the 32-bit wide immediate

register in the immediate unit. The immediate value can then be transported from the

immediate unit during the following clock cycle to the desired destination. In case

the GCR is utilized, a data transport from the immediate register of the immediate

unit to the GCR is implicitly obtained and executed once all the immediate bits have

been fetched. This avoids the need to explicitly specify the data transport to the GCR.

In the example shown in Fig. 21, compressed instruction C1 is followed by an im-

mediate specifier Is1, which identifies that the following immediate consists of a

single fetch packet, I11, which follows the immediate specifier. The second immedi-

ate value, following the compressed instructions C3, is identified with an immediate

specifier Is2, and defined in fetch packets I21 and I22. The last immediate, follow-

ing instruction C4, is composed out of four fetch packets, I31, I32, I33 and I34 and

identified with an immediate specifier Is4.

Conditional Execution

The guard fields in the move slots of TTA instruction words provide means for condi-

tional execution. The guard value that is specified in the guard field defines whether

the data transport specified in the move slot is to be executed on the bus or to be

squashed. In case the data transport is to be executed unconditionally, a true value

is specified in the guard field. In case conditional execution is required, the guard

100 5. Maintaining Programmability after Compression

field is assigned a value that specifies a Boolean register whose value, or its inverse,

is used to guard the data transport. The number of guard values that can be assigned

for a data transport depends on the number of Boolean registers. The more Boolean

registers in the processor configuration, the larger the number of possible guard val-

ues. Supporting all of these different guard values for all the required data transports

would increase the size of the dictionary as entries with all the possible guard values

would need to be added for all the possible data transports.

However, conditional execution can be supported with a single guard value that can

be used to guard all of the required data transports. This provides that only a single

entry per data transport has to be added to the dictionary. The chosen guard value

is chosen to correspond to one of the Boolean registers, typically the register with

index “0”. For unconditional execution, the Boolean register chosen to be used as

the guard value has to be set true so that the data transport will be executed. In case

conditional execution is required, the Boolean register has to be updated just before

the required data transport takes place so that the Boolean valued stored into the

chosen Boolean register can be used to guard that particular data transport. Before

the next unconditional instruction is executed, a true value has to be stored in the

chosen Boolean register.

This methodology worsens the orthogonality as the range of the supported Boolean

registers is limited to one. Performance is also affected as for each conditional data

transports the Boolean register has to be set to contain the guard value before the data

transport is executed, and then cleared before the next uncoditional data transport is

to be executed.

6. RESULTS

The three program compression methods were evaluated on TTA by using the MOVE

framework to design TTA processors for a set of benchmarks from the digital signal

processing and multimedia application domains. The three program compression

methods that were adapted on TTA were then applied to the program codes of the

benchmark applications that were compiled on the designed TTA processors. The

compression methods were utilized as discussed in Chapter 4.

Besides evaluating the code density in terms of compression ratio, which is based on

the bit sizes of the program memory and the decoding tables, the processor designs

were implemented in hardware to obtain more accurate statistics of the effectiveness

of the compression methods in terms of area and power consumption. Alternative

possibilities on how to implement the dictionary and how to place the decompressor

in the control logic were also evaluated, as discussed in Chapter 4.

Section 6.1 presents the evaluation methodology, i.e., describes the used benchmarks

and explains the taken design methodology to design TTA processors for the bench-

mark applications. Section 6.2 presents the results of the code density evaluations.

The results of the hardware implementations are presented in Section 6.3. Results for

the code density evaluations were originally published in [P1, P2, P3], and the results

for the hardware implementations in [P4, P6].

The methodology to improve the orthogonality of the instructions set was also evalu-

ated. The effects of the proposed methodology on the performance, area, and power

consumption were measured. Section 6.4 presents the results of these evaluations.

6.1 Evaluation Methodology

A set of benchmark applications were chosen and implemented to be used in the eval-

uations. The benchmarks were chosen mostly from the digital signal processing do-

102 6. Results

main as it is the domain where the advantages of TTA, i.e., hardware customization

and low area and low power consumption can be utilized effectively. Few bench-

marks were also taken from the multimedia application domain. The benchmarks

used in the evaluations are discussed in more detail in Subsection 6.1.1.

The TTA processors for the evaluations were designed using the MOVE framework.

The design space explorer was used to evaluate the design space of the possible

processor configurations for the benchmark applications and provide statistics on

their performance, area, and power consumption. Processor configurations for the

benchmarks were chosen based on the exploration statistics. The benchmark appli-

cations were then compiled on the chosen processor configurations using the retar-

getable compiler of the MOVE framework tool set. For the area and power con-

sumption evaluations, HDL descriptions of the chosen processor configurations were

generated using the processor generator of the MOVE framework. The HDL descrip-

tions were then synthesized to standard cells logic on a 130 nm low-power technology

to evaluate the processors in terms of area and power consumption. The processor

design for benchmarking is presented in details in Subsection 6.1.2.

6.1.1 Benchmarks

For the code density evaluations, six benchmarks from the digital signal processing

and multimedia application domains were used. The first four benchmarks are appli-

cations from the DSP application domain. The first two benchmarks realize discrete

cosine transform (DCT), a kernel widely used in video, image, and audio coding.

Here the constant geometry two-dimensional (2-D) DCT algorithm proposed in [65]

and one-dimensional (1-D) DCT proposed in [115] have been considered. Constant

geometry algorithms are regular and modular. Thus, they allow efficient exploitation

of parallelism. The 2-D 8×8 DCT is realized with row-column approach, i.e., the en-

tire 2-D transform is realized with the aid of 1-D transforms. The 1-D 32-point DCT

contains five functions, each corresponding to one processing stage of the transform.

Each processing stage is written totally unrolled, i.e., without loops. In general, this

type of code results in large program code size but provides large enough basic blocks

for the compiler to utilize the parallelism available in the application.

The third DSP benchmark is Viterbi decoding [117], which is a widely used al-

gorithm in many decoding and estimation applications in the communications and

6.1. Evaluation Methodology 103

signal processing domain. The algorithm decodes 256-state 1/2-rate convolutional

codes and, contains path metric computation and survivor path search. The last DSP

benchmark performs edge detection that is used to process digital images and mark

the points where the luminous intensity changes sharply [24].

The last two benchmarks are applications from the multimedia application domain.

They realize MPEG2 decoding and JPEG compression applications that have been

taken from the MediaBench benchmark set [69]. The MPEG2 decoding application

has been written in a way to emphasize the correct implementation of the moving

picture expect group (MPEG) standard. The JPEG compression application performs

JPEG compression from a variety of graphic file formats using the joint picture expert

group (JPEG) standard.

These six benchmarks represent applications from DSP and multimedia domains.

All of them are written in C-language using integer data types. This allows to omit

floating-point arithmetics, which is not perfectly supported in the current MOVE

framework tool set. Furthermore, the DCT applications are realized using fixed-point

representation with normalized number ranges, which is typical for DSP realizations.

The DCT applications, Viterbi decoding, and edge detection algorithms have been

optimized for DSP. The MPEG2 decoding and JPEG compression applications have

been written as precise specifications of the MPEG and JPEG standards and, are not

optimized for DSP. The applications also vary widely in program code size. The

applications optimized for DSP are small whereas MPEG2 decoding and JPEG com-

pression are fairly large.

All of the six applications that were used to evaluate to code density could not be

used for the area and power consumption evaluations. In order to simulate the correct

functionality of the processor, and more importantly, to obtain statistics on the switch-

ing activity for power consumption estimation, applications that utilize the services

of the operating system, such as memory allocation, through system calls, or utilize

files to send data to or receive data from the processor could not be used. There-

fore, the multimedia applications MPEG2 decoding and JPEG compression and the

edge detection applications had to be omitted, leaving three DSP benchmarks in the

benchmark set. A 1024-point Radix-4 fast Fourier transform (FFT) [31] was added

for this reason to the benchmark set, as it could be used in the actual hardware sim-

ulations. FFT algorithms have gained an important role in many DSP systems, e.g.,

communication systems. They are used e.g., in speech and image processing.

104 6. Results

6.1.2 Processor Design

The TTA processor configurations for the benchmark applications were designed us-

ing the design space explorer of the MOVE framework that searches the design space

by evaluating several alternative processor configurations in terms of area, power

consumption, and performance by varying the number of functional resources, such

as FUs, RFs, and buses. The local optimal configurations, denoted also as pareto

points [22], together with the evaluation statistics are given to the designer. On the

basis of the evaluation data, the designer can choose the most suitable processor con-

figuration for the second step of the exploration, the connectivity optimization, where

the unnecessary connections from the interconnection network are removed.

For the code density evaluations, the design space explorer was used to obtain proces-

sor configurations for the six benchmark applications. Each of the benchmark appli-

cations was explored separately. On the basis of the exploration data, three processor

configurations were chosen for each application; a large, a medium, and a small con-

figuration. As the names suggest, these three configurations vary in the number of

functional resources, i.e., FUs, RFs, and buses.

The large configuration was chosen to represent a configuration with large number

of buses, FUs, and RFs and good performance. The drawback of this configuration

is that is consumes a significant amount of area and power. Also, the instruction

word becomes fairly long. As the full parallelism provided by the architecture cannot

always be fully utilize, the resulting program code becomes large.

The small configuration was chosen from the other end of the design space. It con-

tains only the minimal resources that are required to perform the application. The

advantage of this configuration is its small area and power consumption, but the per-

formance is poor. The size of the program code is fairly small as most of the parallel

functional resources can be effectively utilized, resulting in only few null data trans-

ports to be specified on the move slots.

The medium configuration was chosen as a compromise between cost and perfor-

mance. The chosen configuration has a decent performance but with modest area

and power consumption. The configuration was chosen from the point in the design

space where the effect of including more functional resources in the architecture on

the performance starts to diminish. Figure 22 shows an example pareto curve for the

32-point DCT application and the locations of the chosen processor configurations

6.1. Evaluation Methodology 105

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

10000 20000 30000 40000 50000 60000 70000 80000 90000

E
xe

cu
tio

n
T

im
e

(n
s)

Area (gate)

small

large
medium

Fig. 22. The chosen processor configurations for the 32-point DCT application on the pareto

curve.

on the curve. The hardware resources of the chosen processor configurations for the

six benchmark applications, identified with letters A-R, are tabulated in Table 5.

After the processor configurations were chosen for the benchmark applications, the

compiler of the MOVE framework was used to compile the benchmarks on the tar-

get processors to obtain statistics on performance and code size. The highest opti-

mization level of the compiler (-O2) was utilized. The statistics of the benchmark

applications compiled on the target TTA processor configurations A-R are presented

in Table 6. The statistics clearly show that larger processor configurations provide

better performance but result also in significantly larger program code.

Table 6 depicts also the number of actual data transports in the program code. There

are more data transports on the bigger processor configurations, but the difference is

not as big as the difference in the program code sizes. This indicates that the increase

in the code size on the larger processor configurations is mostly due to the increased

number of null data transports. This is due to larger processor configurations having

more move slots, which results in larger number of null data transports to be specified

in the less parallel sections of the program code.

106 6. Results

Table 5. Hardware resources of the chosen processor configurations. LSU: Load-stored unit.

MUL: Multiplier. ARITH: Arithmetic unit. SHIFT: Shifter. LOGIC: Logic unit.

CMP: Compare unit. Regs.: Registers. Iwidth: Instruction width.

Application Conf. Buses FUs Regs. Iwidth
LSU MUL ARITH SHIFT LOGIC CMP [bits]

2-D 8×8 A 13 4 1 2 2 - 1 60 248
DCT B 8 3 1 1 2 - 1 60 171

C 3 2 1 1 1 - 1 16 83
32-point D 10 2 1 3 1 - - 34 196
DCT E 8 2 1 2 1 - - 30 160

F 4 1 1 2 1 - - 30 99
Viterbi G 9 2 - 2 2 2 1 48 200
dec. H 6 2 - 2 1 1 1 46 146

I 3 2 - 1 1 1 1 34 89
Edge J 9 4 1 4 1 - 3 60 198
detect. K 5 1 1 1 1 - 1 60 126

L 3 1 1 1 1 - 1 31 89
MPEG2 M 8 3 1 3 3 3 1 40 184
decompr. N 6 4 1 2 1 3 1 40 148

O 5 1 1 1 1 1 1 40 127
JPEG P 13 1 1 2 1 1 1 60 272
compr. Q 6 1 1 1 1 1 1 60 146

R 3 1 1 1 2 1 1 46 91

For the hardware implementations, the benchmark set had to be restricted to 32-

point DCT, 8× 8 DCT, Viterbi decoding, and 1024-point FFT applications. These

applications do not use system calls or access files, so they could be simulated at

gate-level using the hardware simulator to obtain switching activities for the power

consumption estimations.

Designing the same set of three processor configurations for each of the benchmark

applications for the hardware evaluations would have resulted in a large number of

processor configuration to be described in VHDL and synthesized into logic. To

reduce the number of processors to be implemented hardware, the design space ex-

plorer was used to design such processor configurations that could execute all the four

benchmark applications. All the benchmark applications were given simultaneously

for the design space explorer, which then searched the design space for processor

configurations that would be capable of executing all the four applications effectively.

This meant that each processor configuration had to be evaluated separately for each

of the applications and then use the average over all the benchmarks to make a deci-

sion how to proceed in the exploration, i.e., what resource to add or remove next. As

6.1. Evaluation Methodology 107

Table 6. Performance and code size statistics of the benchmark applications, each compiled

on the three different TTA processor configurations.

Application Conf. Clock Data Instr. Code size
cycles transports count [bytes]

2-D 8×8 A 18827 434 127 3937
DCT B 19420 450 138 2950

C 33229 469 208 2158
32-point D 456 2644 477 11687
DCT E 481 2686 502 10040

F 822 2856 843 10432
Viterbi G 1441938 906 253 6325
dec. H 1512212 888 262 4782

I 2468580 883 385 4283
Edge J 348054 16091 565 13984
detect. K 349663 15764 605 9529

L 361483 15755 644 7165
MPEG2 M 2825344 986 7652 175996
decompr. N 2827945 950 8018 148333

O 2830314 953 8550 135731
JPEG P 9044490 29214 12198 414732
compr. Q 9089799 25778 12308 224621

R 9783150 23910 12909 146840

the applications were of different sizes, weighting factors were used to balance the

effects of the applications.

From the results of the design space exploration, two processor configurations were

chosen for the hardware evaluations; a small (A) and a medium (B) processor con-

figuration. The small configuration contains the minimal set of resources to execute

all the four applications. It provides small area and low power consumption, but with

poor performance. The medium configuration was chosen to provide a good perfor-

mance for all the applications with a modest number of hardware resources. This

configuration was chosen close to the point in the design space where the perfor-

mance increase with additional resources starts to diminish. The functional resources

of the two processor configurations are tabulated in Table 7.

In order to place the code sizes into the context of parallel processor architectures, the

four benchmarks were compiled in addition to the two TTA processor configurations

also on the Texas Instruments TMS320C62x VLIW processor [3]. Statistics on the

code size and performance of the benchmark applications compiled on the two TTA

processor configurations and the TMS320C62x are tabulated in Table 8. The pro-

gram codes on TMS32062x were compiled using two different compiler optimiza-

108 6. Results

Table 7. Hardware resources of the two TTA processor configurations.
Conf. Buses Functional units Registers Instr. width [bits]

A 5 1 multiplier, 1 load-store, 1 ALU, 1 compare, 1

shifter, 1 logic, 1 sign extend

19 127

B 8 1 multiplier, 2 load-stores, 2 ALUs, 1 compare, 3

shifters, 1 logic, 2 sign extend

52 192

tions; one optimizing the code for speed and the other for size. The results indicate

that the TTA processors provide significantly better performance than TMS32C62x.

In terms of the number of clock cycles, TTA processor configuration A has six times

better performance than TMS320C62x and configuration B more than eight times

better performance. This indicates the TTA paradigm allows to tailor the hardware

resources is such a way that the parallelism available in the applications can be uti-

lized effectively to achieve high performance.

From the code size perspective the two TTA processors result in larger code sizes

than the TMS320C62x. TTA code sizes are on average 75% larger compared to the

speed optimized code on TMS320C6x. The effect of the size optimization in the

TMS320C62x is negligible. The differences in the code sizes between the two TTA

processor configurations depend on the application. 32-point DCT application has

larger code size on configuration B whereas in the 1024-point FFT the situation is

the opposite. The codes sizes in the two other applications are more or less the same.

Larger processor configurations should, in general, result in larger program codes

as the instruction words are longer. However, in 1024-point FFT the compiler can

effectively utilize the available parallelism. The number of instructions is reduced

significantly, from 315 to 149, which reduces the size of the program code even

though the instruction words are wider.

The chosen processor configurations were described in VHDL using the processor

generator of the MOVE framework. It generates automatically the VHDL descrip-

tion for the control logic and the interconnection network, fetches VHDL descriptions

of the basic building blocks, i.e., FUs, RFs, and sockets, from a database and maps

them to the architecture by creating a top-level VHDL description. Data and pro-

gram memories were included in the processor implementations as pre-synthesized

static RAM (SRAM) macro blocks from the technology vendor libraries. They were

configured in such a way that the same memories could be used for all the four bench-

marks. A single-ported, 32kB data memory was chosen for the configuration A and

6.1. Evaluation Methodology 109

Table 8. Benchmark statistics on the two TTA processor configurations and on the

TMS320C62x.

Application Target Clock cycles Instr. count Code size [bytes]
TTA (A) 466 484 7684

32-point TTA (B) 423 441 10584
DCT C62x (speed) 2382 229 7332

C62x (size) 2415 225 7200
TTA (A) 22959 163 2588

2-D 8×8 TTA (B) 19455 137 3288
DCT C62x (speed) 258992 65 2072

C62x (size) 275649 63 2008
TTA (A) 282547 315 5001

1024-point TTA (B) 123667 149 3576
FFT C62x (speed) 745876 62 1972

C62x (size) 755277 61 1948
TTA (A) 2710738 367 5827

Viterbi TTA (B) 1568227 253 6072
dec. C62x (speed) 13481571 89 2836

C62x (size) 13500053 88 2824

a 32kB dual-ported data memory for the configuration B. For the uncompressed pro-

gram memories, a 512 word, 128-bit memory (8kB) was used for the configuration

A, and a 512 word, 192-bit memory (12kB) for the configuration B. The program

memories were connected directly to the processor core, i.e., cache was not used.

The processors were synthesized on a 130 nm CMOS standard cell low-power 1.5V

technology using the Synopsys Design Compiler version 2003.06. A timing con-

straint of 200 MHz was used, although higher clock frequencies could have been

achieved. Area statistics were obtained from the Design Compiler synthesis. The

switching activities for the power analysis were obtained from the gate-level sim-

ulations run on ModelSim. Power consumption estimates were obtained from the

Design Compiler by utilizing the gate-level switching activity information. Table 9

shows the average area and power consumption for the two processor configurations.

Table 9. Area and power consumption of the reference designs. PMEM: Program memory.

DMEM: Data memory.

Area [kgates] Power consumption [mW]
Conf. PMEM DMEM Core Total PMEM DMEM Core Total

A 32 (512×128bit) 104 (8192×32bit) 31 167 6 17 16 41
B 48 (512×192bit) 410 (8192×32bit) 80 538 13 26 30 71

110 6. Results

6.2 Code Density

The code density estimations were carried out by utilizing the three compression

methods on the program codes of the six benchmark applications that were each

compiled on the three TTA processor configurations that were designed separately

for each benchmark. The results of the code density evaluation were presented in

terms of compression ratio. Subsection 6.2.1 presents the results for the dictionary-

based compression. The results for the Huffman coding approach are given in Sub-

section 6.2.2, and for the instruction template-based compression in Subsection 6.2.3.

6.2.1 Dictionary-Based Compression

The code density estimations for the dictionary-based compression method were

performed at the three different granularity levels that were introduced in Subsec-

tion 4.1.3, i.e., at full instruction level, at move slot level, and at ID field level. The

code densities were reported in terms of compression ratio. The results for the three

granularity levels are reported in the following three Subsections.

Instruction Level

At first, the dictionary-based compression was applied at the level of full instructions.

The compiled programs were searched for unique instructions to be stored into a dic-

tionary and replaced with indices that point to the dictionary. Figure 23 illustrates the

obtained compression ratios as proportions of the compressed program code and the

dictionary to where all the unique instructions were stored into. The results are given

for the six benchmark applications, each compiled on the three processor configura-

tions designed separately for each application. The compression ratios are expressed

in percentage values.

An average compression ratio of 76.3% is achieved across all the benchmark appli-

cations compiled on the different processor configurations. The processor configura-

tion does not affect the achievable compression ratio much. The size of the program

code has been reduced significantly, but the size of the dictionary becomes large.

This indicates that most of the instructions in the program code are stored into the

dictionary, i.e., there are only few repeated instructions found in the program code.

6.2. Code Density 111

0
10
20
30
40
50
60
70
80
90

100

A B C D E F G H I J K L M N O P Q R

program code dictionary
co

m
pr

es
si

on
 r

at
io

 [
%

]

2-D 8x8 DCT 32-point DCT Viterbi dec. edge detect. MPEG2 dec. JPEG compr.

Fig. 23. The results of applying dictionary-based compression at instruction level.

This is quite expected, as TTA instructions are fairly long and are composed of sev-

eral independently encoded fields, i.e., move slots that are further composed of the

guard, source ID, and destination ID fields. This results in low probability to find

identical instructions from the program code from which the dictionary-based com-

pression could benefit. The identical instructions that are found in the program code

are mostly instructions that specify nothing but null data transports, i.e., are totally

empty, or specify data transports in only few of the possible buses.

For the edge detection, MPEG2 decoding, and JPEG compression, the compression

ratios are somewhat better. This results from the fact that the compiler could not ef-

fectively compile these applications, which resulted in large number of totally empty

instructions that could be compressed effectively.

Move Slot Level

In the second phase the dictionary compression was evaluated at move slot granular-

ity level where the instructions were divided into fields according to the move slot

boundaries. Both the vertical and horizontal compression approaches were evalu-

ated. Vertical compression considers all the move slots as parallel streams that are

compressed separately whereas in horizontal compression all the move slots across

all the instructions words are considered as a single stream. Long immediate fields in

both cases are considered as a separate stream that is compressed separately.

Compression ratios for the compression at move slot granularity level are depicted if

Fig. 24. Figure 24(a) shows the results for the vertical compression, and Fig. 24(b)

for the horizontal compression. The vertical compression approach results in average

112 6. Results

0
10
20
30
40
50
60
70
80
90

100

A B C D E F G H I J K L M N O P Q R

program code dictionary
co

m
pr

es
si

on
 r

at
io

 [
%

]

2-D 8x8 DCT 32-point DCT Viterbi dec. edge detect. MPEG2 dec. JPEG compr.

(a) Vertical compression

0
10
20
30
40
50
60
70
80
90

100

A B C D E F G H I J K L M N O P Q R

program code dictionary

co
m

pr
es

si
on

 r
at

io
 [

%
]

2-D 8x8 DCT 32-point DCT Viterbi dec. edge detect. MPEG2 dec. JPEG compr.

(b) Horizontal compression

Fig. 24. The results of applying dictionary-based compression at move slot level.

compression ratio of 52.5%, whereas the horizontal compression approach achieves

an average compression ratio of 62.5%. The results show that the size of the dictio-

nary has been reduced significantly. The reduced size of the dictionary implies that

the division to smaller field inside which unique bit patterns are searched for allows to

find more repeated bit patterns. This improves the effectiveness of the compression.

On the other hand, as the instructions are divided into several smaller fields, the

compressed instruction word becomes wider than at full instruction granularity level.

Compressed instruction words consists of several dictionary index fields that access

either the parallel dictionaries in the vertical approach or the single dictionary in the

horizontal approach. Similarly to compression at instruction level, the edge detection,

MPEG2 decoding, and JPEG compression benchmarks result in smaller dictionaries

as the original instructions contain a large number of null data transports, i.e., signif-

icant amount of redundancy that can be reduced through compression.

Vertical compression approach results in better compression ratio compared to the

horizontal approach. The dictionaries are somewhat the same size, but the com-

6.2. Code Density 113

pressed program codes are bigger in horizontal compression. This is due to storing

all the unique instructions into a single dictionary, which becomes large and results

in wider dictionary index. The wide dictionary index increases the width of the com-

pressed instruction word. In vertical compression, each parallel move slot stream has

its own dictionary. This makes the dictionaries smaller as they need to cover unique

move slots only for a single move slot stream but not across the entire program code.

Smaller dictionaries results in smaller dictionary indices, which make the compressed

instruction word narrower.

ID Field level

Compression at ID field granularity level divides instruction words to even smaller

fields based on the guard, source ID, and destination ID field boundaries inside the

move slots. Unique bit patterns to be stored into the dictionaries are searched inside

these fields. Both the vertical and horizontal compression alternatives were utilized.

Vertical compression considers all the source and destination ID fields as separate

streams that are compressed independently. In the horizontal compression, all source

ID fields as well as all destination ID fields are considered as a single stream. In both

approaches, all the guard fields are combined into a single stream that is compressed

independently, as also the long immediate field.

Figure 25 illustrates the results for the compression at ID field level. Figure 25(a)

shows the results for the vertical and Fig. 25(b) for the horizontal compression ap-

proach. Average compression ratios of 62.8% and 68.9% are achieved, respectively.

The dictionaries are even smaller than at move slot level. This is because more re-

peated bit patterns are found, implying that less entries need to be stored into the

dictionaries. However, the size of the compressed program code is increased due to

wide instructions as they are composed of several dictionary index fields.

6.2.2 Huffman Coding

The effectiveness of the Huffman coding approach in terms of code density was eval-

uated at the same three granularity levels as in the dictionary-based compression.

Code densities, measured in terms of compression ratio, are reported for these three

granularity levels in the following three Subsections.

114 6. Results

0
10
20
30
40
50
60
70
80
90

100

A B C D E F G H I J K L M N O P Q R

co
m

pr
es

si
on

 r
at

io
 [

%
] program code dictionary

2-D 8x8 DCT 32-point DCT Viterbi dec. edge detect. MPEG2 dec. JPEG compr.

(a) Vertical compression

0
10
20
30
40
50
60
70
80
90

100

A B C D E F G H I J K L M N O P Q R

co
m

pr
es

si
on

 r
at

io
 [

%
] program code dictionary

2-D 8x8 DCT 32-point DCT Viterbi dec. edge detect. MPEG2 dec. JPEG compr.

(b) Horizontal compression

Fig. 25. The results of applying dictionary-based compression at ID field level.

Instruction Level

The Huffman coding was first evaluated at instruction level, i.e., entire instruction

words were considered as symbols to be encoded to variable-width codewords. The

obtained compression ratios are presented in Fig. 26. The compression ratios are

presented as proportions of the compressed program code and the decoding table

used for decompression. The decoding table contains the original symbols, i.e., the

instruction words, the corresponding codewords, and their lengths. This information

is required for the decompression of the Huffman coded codewords to obtain the

original instruction words.

The achieved compression ratios are fairly poor, on average 81.9%. The compression

ratios are especially poor for the first three DSP benchmark applications, 2-D 8× 8

DCT, 32-point DCT, and Viterbi decoding applications, where the Huffman coding

may actually result in larger code size compared to the uncompressed code size. Only

the last three benchmarks, edge detection, MPEG2 decompression, and JPEG com-

pression achieve feasible reduction in code size. The poor compression ratios for the

6.2. Code Density 115

co
m

pr
es

si
on

 r
at

io
 [

%
] program code decoding table

2-D 8x8 DCT 32-point DCT Viterbi dec. edge detect. MPEG2 dec. JPEG compr.

0
10
20
30
40
50
60
70
80
90

100
110

A B C D E F G H I J K L M N O P Q R

Fig. 26. The results of applying Huffman coding at instruction level.

first three benchmarks are due to the large size of the decoding table. The decoding

table becomes large as there are only few repeated instruction words in the program

code, which results in storing most of the instruction words with their assigned code-

words and their lengths to the decoding table. For the last three benchmarks there is

a lot of redundancy in the original program code due to the inability of the compiler

to utilize the parallel resources. This redundancy can be utilized during Huffman

coding, resulting in smaller decoding table and more effective compression.

The achieved compression ratios are worse compared to the results of dictionary-

based compression at the same granularity level. This indicates that the probability

distribution is nearly uniform meaning that there is no profit in assigning variable-

length codewords to the instruction words based on their frequency of occurrence.

Assigning fixed-width codewords that can be used directly to access the dictionary

that contains the unique instruction words is therefore more profitable.

Move Slot Level

In the second granularity level, the instruction words were divided to smaller bit

patterns based on the move slot boundaries to increase the probability of finding

repeatedly existing bit patterns. This reduces the size of the decoding table. Both the

vertical and horizontal compression approaches were experimented, similarly as in

the dictionary-based compression.

The results for the Huffman coding at move slot level are presented in Fig. 27. Fig-

ure 27(a) depicts the results of the vertical compression and Fig. 27(b) the results of

the horizontal compression. An average compression ratio of 43.1% is obtained for

116 6. Results

co
m

pr
es

si
on

 r
at

io
 [

%
] program code decoding table

2-D 8x8 DCT 32-point DCT Viterbi dec. edge detect. MPEG2 dec. JPEG compr.

0
10
20
30
40
50
60
70
80
90

100

A B C D E F G H I J K L M N O P Q R

(a) Vertical compression

program code decoding table

co
m

pr
es

si
on

 r
at

io
 [

%
]

2-D 8x8 DCT 32-point DCT Viterbi dec. edge detect. MPEG2 dec. JPEG compr.

0
10
20
30
40
50
60
70
80
90

100

A B C D E F G H I J K L M N O P Q R

(b) Horizontal compression

Fig. 27. The results of applying Huffman coding at move slot level.

the vertical compression and 53.7% for the horizontal compression approach. The

results are significantly better compared to compression at instruction level. The re-

sults indicate that even though the size of the compressed program code is larger due

to compressed instructions being wider as they are composed of several Huffman

codewords, the size of the decoding table has been reduced significantly. This is due

to considering smaller bit patterns as symbols for compression. This allows to find

more repeated bit patterns and results in non-uniform usage probability, which makes

the compression more effective.

Vertical compression results in better compression ratio compared to horizontal com-

pression, similarly as in dictionary-based compression. The reason is the smaller size

of the compressed program code in the vertical approach. The sizes of the decoding

tables are more or less the same. The larger size of the compressed program code

in the horizontal compression is due to performing Huffman coding for all the move

slots across the program code. As there are more symbols for which codewords are to

be assigned to, the codewords become on average wider as the depth of the Huffman

6.2. Code Density 117

tree is larger. In the vertical approach, each move slot stream is encoded separately,

which results in smaller average width of the codewords. As the entire instructions

are composed of as many codewords as there are move slots, instructions in the hori-

zontal compression become wider and imply a larger code size.

Compared to dictionary-based compression, the obtained results for the Huffman

coding are notably better. Hence, the non-uniform probability distribution can be uti-

lized effectively in Huffman coding to reduce the size of the program code even fur-

ther compared to dictionary-based compression. The decoding tables become larger

in Huffman coding than the dictionaries in the dictionary-based compression, but the

reduction in the size of the program code is far greater, making the Huffman coding

approach more effective at move slot level.

ID Field Level

At the third granularity level, instruction words were divided to even smaller fields

according to the guard, source ID, and destination ID field boundaries. This increases

even further the probability of finding repeated bit patterns and allows to reduce the

size of the decoding tables. Similarly to move slot level, both the vertical and hori-

zontal compression approaches were utilized.

The obtained results are illustrated in Fig 28. Figure 28(a) shows the results for the

vertical, and Fig. 28(b) for the horizontal compression. The compression ratios are on

average 40.9% for the vertical and 49.4% for the horizontal compression approach.

Compared to compression at move slot level, the achieved compression ratios are

few percents better. The decoding tables are significantly smaller as more repeated

bit patterns can be found inside the source and destination ID fields. This reduced

the number of symbols that are stored into the decoding tables. The drawback of

dividing instruction to even smaller fields is the increased size of the compressed

program code as the compressed instructions become on average wider as they are

composed of several codewords. However, the reduction in the dictionary size is

greater than the increase in the program code size, which makes the compression at

ID field level more effective.

Similarly to move slot level, vertical approach results in better compression ratios

as there are more symbols to be assigned variable-width codewords in the horizon-

tal approach. This increases the average width of the compressed codewords and

118 6. Results

co
m

pr
es

si
on

 r
at

io
 [

%
] program code decoding table

2-D 8x8 DCT 32-point DCT Viterbi dec. edge detect. MPEG2 dec. JPEG compr.

0
10
20
30
40
50
60
70
80
90

100

A B C D E F G H I J K L M N O P Q R

(a) Vertical compression

co
m

pr
es

si
on

 r
at

io
 [

%
] program code decoding table

2-D 8x8 DCT 32-point DCT Viterbi dec. edge detect. MPEG2 dec. JPEG compr.

0
10
20
30
40
50
60
70
80
90

100

A B C D E F G H I J K L M N O P Q R

(b) Horizontal compression

Fig. 28. The results of applying Huffman coding at ID field level.

implies larger program code size. Even though the overall size of the decoding ta-

bles is smaller in horizontal compression, the program codes are significantly larger,

resulting in worse compression ratio compared to the vertical compression approach.

At ID field level, Huffman coding improves the compression ratio even greater than

at move slot level compared to the compression ratios achieved using the dictionary-

based compression. As the bit patterns for the Huffman coding are smaller, the prob-

ability of finding repeatedly occurring bit patterns increases and hence improves the

effectiveness of the Huffman coding. The overhead due to the larger decoding tables

is small compared to the reduction in the size of the compressed program code.

6.2.3 Instruction Template-Based Compression

The effects of the instruction template-based compression on the code density were

measured by varying the number of templates used to encode the instructions of the

program code. The number of templates was varied according to powers of two from

6.2. Code Density 119

two to 32. In addition, the case of selecting as many templates as there are move slot

and long immediate field combinations used in the program code was evaluated.

The achieved compression ratios are illustrated in Fig. 29. Compression ratios are

presented for each of the benchmark applications, each compiled on the three TTA

processor configurations designed specifically for the application. The results indi-

cate that the code density can be significantly improved when the instruction tem-

plates are utilized. The program codes contain large number of null data transports

that need to be explicitly specified, resulting in waste of code space. Instruction tem-

plates can be effectively utilized to avoid the null data transport specifications. The

results show that the compression ratios are better with larger number of templates.

This is due to the fact that the more templates are used, the more of the move slot

and long immediate field combinations occurring in the program code can be cov-

ered with the templates. This allows to reduce the number of the explicit null data

transport specifications. With the maximum number of templates, each move slot and

long immediate field combination used in the program code has its own template, i.e.,

null data transport specifications can be avoided entirely. This results in an average

compression ratio of 46.5%.

The results also show that the compression ratios are better on the larger processor

configurations. This is quite obvious as these configurations have more buses. As

the full parallelism cannot always be fully utilized, null data transports need to be

specified on the buses. The more buses there are, the larger is the number of null data

transports that need to be explicitly specified.

Figure 30 depicts the obtained relative program code sizes of the six benchmark ap-

plications on the different processor configurations. The presented program code

sizes are presented separately for each application in relation to the largest uncom-

pressed code size (Ref), i.e., the uncompressed code size of the application on the

largest processor configuration. In addition to presenting the results for the different

number of templates, the lower bound on the achievable program code size, the ef-

fective code size (eff. code) is illustrated. This is the theoretical lower bound on the

program code size when all the null data transports have been removed without any

overhead, i.e., the template selection information.

As was shown by the compression ratios, the more templates are used, the better is

the compression ratio, i.e., the smaller the size of the compressed program code, ap-

120 6. Results

2 templ. 4 templ. 8 templ.
16 templ. 32 templ. max. nr. templ.

2-D 8x8 DCT 32-point DCT Viterbi dec.

edge detect. MPEG2 dec. JPEG compr.

co
m

pr
es

si
on

 r
at

io
 [

%
]

co
m

pr
es

si
on

 r
at

io
 [

%
]

0
10
20
30
40
50
60
70
80
90

100

A B C D E F G H I

0
10
20
30
40
50
60
70
80
90

100

J K L M N O P Q R

Fig. 29. The results of applying instruction template-based compression.

proaching the effective program code size that is the lower bound on the achievable

code size. Obviously, this cannot be reached as the template-selection field assigned

to each template introduces an overhead in the program code size. The relative pro-

gram code sizes also illustrate that the more templates are used, the closer are the

code sizes on the different processor configurations. With the maximum number of

instruction templates, the resulting program code sizes are more or less the same on

the different processor configurations. This means that by utilizing the instruction

template-based compression, the effect of the processor configuration on the code

size becomes negligible. This eases the selection of the processor configuration to

be used for a given application. Large processor configurations become favorable as

they turn out to have the same code size as the smaller processor configurations but

can provide better performance.

The effectiveness of the instruction template-based compression depends also on the

effectiveness of the scheduler to utilize the functional resources and the buses of the

processor. The relative code sizes, presented in Fig. 30 shows worse results for the

32-point DCT application compared to the other applications. This was due to the

scheduler being capable of effectively utilizing all the buses of the architecture and

6.3. Area and Power Consumption 121

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

A B C D E F G H I

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

J K L M N O P Q R

Ref 2 templ. 4 templ. 8 templ.
16 templ. 32 templ. max. nr. templ. eff. code

2-D 8x8 DCT 32-point DCT Viterbi dec.

edge detect. MPEG2 dec. JPEG compr.

re
la

t.
pr

og
r.

 c
od

e
si

ze
re

la
t.

pr
og

r.
 c

od
e

si
ze

Fig. 30. The relative code sizes of the benchmark applications when instruction template-

based compression is utilized.

result in small number of null data transports in the program code. This was due

to writing the application totally unrolled, i.e., no loops were used. This resulted

in larger basic blocks and better possibilities for the scheduler to utilize the paral-

lelism. The opposite examples are the edge detection, MPEG2 decoding, and JPEG

compression applications, which the scheduler could not schedule effectively. This

resulted in large amount of instructions containing nothing but null data transports.

On account of this, the code size reductions were better for these three applications.

6.3 Area and Power Consumption

The hardware implementations were made for the dictionary-based and instruction

template-based compression methods to obtain more accurate statistics in terms of

area and power consumption to evaluate more accurately all the aspects of the com-

pression when applied on TTA processors. The Huffman coding approach was not

implemented as it resembles the instruction template-based compression in the sense

that it also results in variable-width instructions that turned out to increase the com-

122 6. Results

plexity of the instruction fetch and decompression logic significantly. This results in

poor area and power consumption, as demonstrated later in this Section. The hard-

ware implementations were made for the two processor configurations that were de-

signed for the four DSP benchmark applications. The results for the dictionary-based

compression are presented in Subsection 6.3.1, and for the instruction template-based

compression in Subsection 6.3.2.

6.3.1 Dictionary-Based Compression

As discussed in Chapter 4, the decompressor for the dictionary-based compression

can be implemented in several ways. The decompressor can be implemented in a

separate pipeline stage, or alternatively, integrated together with the decoder into a

single pipeline stage. Furthermore, the dictionary in the decompressor can be im-

plemented using either RAM to maintain the programmability, or using standard cell

logic to achieve higher reduction in area and power consumption. The results of these

implementation alternatives are presented in the following.

Decompression in an additional pipeline stage

Implementing the decompressor in an additional pipeline stage allows to use either

standard cell logic or RAM to implement the dictionary as an entire clock cycle

is devoted for decompression. The results of these two dictionary implementation

alternatives are illustrated in Fig. 31 for the configuration A and in Fig. 32 for the

configuration B. Figures 31(a) and 32(a) illustrate the area and Figs. 31(b) and 32(b)

the power consumption.

The results are given for the uncompressed reference implementation (ref), and for

the compressed implementation alternatives with the dictionary implemented using

either standard cells (Std) or RAM (RAM). Results for the compressed implementa-

tions are given for the compression at full instruction level (FI), at move slot level

(MS), and at ID field level (ID). The area and power consumption are presented for

the program memory and the control logic of the processor core, as these are the only

parts affected by the compression. The results are given for all the four benchmark

applications. In addition, an average over all the benchmarks is given.

6.3. Area and Power Consumption 123

Program memory Control logicgates

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

0
5000

10000
15000
20000
25000
30000
35000
40000

Ref
FI S

td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM

(a) Area

Program memory Control logicmW

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

0
5

10
15
20
25
30
35

Ref
FI S

td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM

(b) Power consumption

Fig. 31. Area and power consumption results on configuration A.

The results indicate that the area and power consumption of the program memory and

the control logic can be decreased significantly at all granularity levels when standard

cells are used to implement the dictionary. The best reduction in both area and power

consumption is obtained when the compression is made at instruction level. The area

is reduced on average 74% on configuration A and 75% on configuration B. The

power consumption is reduced on average 66% on both configurations.

The reason for obtaining the best area reduction at instruction level is due to the small

size of the program memory and the control logic. Replacing instructions with dic-

tionary indices reduces the width, and therefore, the size of the program memory

significantly. Even though the dictionary contains most of the instruction as only few

repeated instructions are found, which was demonstrated by the code density evalua-

tions in Section 6.2, the synthesis tool can find the redundancy from the bit patterns

in the dictionary and utilize Boolean logic optimization to minimize the logic and

result in small area. Furthermore, the area of the instruction fetch stage in the control

logic is reduced significantly due to the reduced width of the program memory, as

the width of the instruction fetch datapath is reduced. Overall, the area of the con-

trol logic is not affected that significantly even though the decompressor is added to

124 6. Results

Program memory Control logicgates

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

0
10000
20000
30000
40000
50000
60000
70000

Ref
FI S

td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM

(a) Area

Program memory Control logicmW

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

0

10

20

30

40

50

60

Ref
FI S

td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM
Ref

FI S
td

FI R
AM

M
S Std

M
S R

AM

ID
 Std

ID
 R

AM

(b) Power consumption

Fig. 32. Area and power consumption results on configuration B.

the control logic. Power consumption follows the same trend. The power consump-

tion of the control logic remains mostly unchanged but the power consumption of

the program memory decreases significantly. This is due to the reduced width of the

program memory and the fact that the power consumption of the program memory is

mostly dependent on its width rather than its length [106].

The drawback of applying the dictionary-based program compression at instruction

level and implementing the dictionary using standard cells is the highly limited pro-

grammability of the architecture. The program can be modified only if all the in-

structions of the modified code can be found from the original dictionaries. As TTA

instructions are long and they are composed of several smaller fields, the number of

possible bit pattern combinations in the instruction words becomes huge. Therefore,

the probability that all the instructions of the modified code could be found from the

original dictionaries is extremely small. As the programmability is lost anyway, one

could claim that better reduction in area could be obtained by simple implementing

the original program memory using standard cells.

Programmability can be maintained better at smaller granularity levels. As the bit pat-

terns considered for compression are smaller, the probability of finding the modified

6.3. Area and Power Consumption 125

bit patterns from the original dictionaries is better. The more fine-grained the granu-

larity level, the better the programmability. Thus, from the experimented granularity

levels, the programmability is maintained best at ID field level where the instructions

are broken up to fields according to ID field boundaries.

However, applying dictionary-based compression at smaller granularity levels results

in worse area and power consumption reduction. The worse results are due to the

increased area of the program memory. The original instruction words are divided

to smaller fields that are compressed separately, meaning that the compressed in-

struction word consists of several dictionary index fields. This increases the width

of the compressed instruction word. The area of the control logic remains mostly

unchanged in between different granularity levels. At move slot level, the area is

reduced on average 58% on configuration A and 57% on configuration B. The power

consumption is reduced on average 47% and 49%, respectively. At ID field, the re-

sults are slightly worse. The area is reduced on average 47% and 45%, respectively,

and power consumption 36% on both configurations.

Programmability can be fully maintained when the dictionary is implemented using

RAM as the contents of the dictionary can be reprogrammed when the program code

changes. However, using RAM to implement the dictionary results in fairly poor

area and power consumption reduction, as is illustrated in Fig. 31 and Fig. 32. At

instruction level, the area is reduced on average 25% on configuration A and 33%

on configuration B. The power consumption is reduced 9% and 7%, respectively. At

move slot level the area can be reduced somewhat better, 30% on configuration A

and 31% on configuration B. However, at move slot level the power consumption

turns out to increase rather than decrease. The power consumption of the program

memory and the control logic increases on average 15% on configuration A and 12%

on configuration B.

The increase in the power consumption results from using several independently ac-

cessed RAM dictionaries inside the processor core. At move slot granularity level

there is a RAM dictionary for each of the move slots and an additional one for the

long immediate field. As each RAM dictionary is accessed separately, i.e., each

RAM has its own address lines, there are several address lines that control the loads

from the RAM dictionaries. This increases the power consumption. The increase in

the power consumption turns out to be even worse when the compression is applied

at ID field level, as there are even more independently accessed RAM dictionaries

126 6. Results

inside the processor core. The obtained area and power consumption results in the

program memory and the control logic at the three distinct granularity levels for the

separated decompressor implementation approach are summarized in Table 10. Re-

duction in area and power consumption is identified with a negative value, increase

with a positive value.

Devoting an entire transport pipeline stage for the decompression has also a conse-

quence on the performance. Due to the additional decompression stage, the depth of

the transport pipeline is increased by one. This implies an increase in the branch de-

lay as it takes one more clock cycle before the instruction of the branch target reaches

the move stage. The increase in cycle count due to increased branch delay depends on

the number of taken branches. The increased branch delay penalty is paid only when

the program execution does not continue at the next instruction, i.e., the execution of

the program jumps to an address that is loaded to the program counter.

Table 11 shows the increase in the cycle count of the four benchmark applications

on the two processor configurations when the branch delay is increased due to im-

plementing the decompressor in a separate pipeline stage. For the 32-point DCT

application the increase in the cycle count on both configurations is less than 1%.

An opposite example is the Viterbi decoding application, where the cycle count is in-

creased 15.3% on configuration A and 7.6% on configuration B due to several taken

branches. The 32-point DCT application was written totally unrolled, i.e., the loops

in the application were opened and each iteration was programmed separately. This

decreased the number of branches, and therefore, resulted in only small increase in

the cycle count. Hence, the impact of the increased branch delay on the performance

of the other applications could be reduced through loop unrolling. On the other hand,

loop unrolling would increase the size of the original uncompressed code, but this

overhead could again be decreased through program compression.

Table 10. Summary of the area and power consumption evaluations with a separate pipeline

stage for the decompressor.

Compression RAM solution Standard cell solution
granularity Area Power cons. Area Power cons.
Instruction level -25 / -33% -9 / -6% -74 / -75% -66 / -66%
Move slot level -30 / -31% +15 / +12% -58 / -57% -47 / - 49%
ID field level -17 / -16% +35 / +33/% -47 / -45% -36 / -36%

6.3. Area and Power Consumption 127

Table 11. Increase in cycle count due to increased branch latency.
Benchmark Increase on conf. A Increase on conf. B
32-point DCT 0.8% 0.5%
2-D 8×8 DCT 5.8% 1.4%
1024-point FFT 7.4% 6.3%
Viterbi decoding 15.3% 7.6%
Average 7.3% 4.0%

Integrated decompressor

The decompressor can also be integrated to the decode stage to avoid increasing

the depth of the pipeline that would lead to increased branch delay and decreased

performance. The integration of the decompressor requires that the dictionary is

implemented using standard cells as the contents of RAM cannot be obtained during

the same clock cycle when the address is given.

The integration of the decompressor affects also the area and power consumption

of the control logic. The program memory is not affected. Figures 33 and 34 il-

lustrate the area and power consumption of the control logic of the two processor

configurations, A and B, for the uncompressed reference implementation (ref), for

the implementation with separate decompress stage (stage), and for the integrated

decompressor (integr). The results are presented for the three evaluated granular-

ity levels. Figures 33(a) and 34(a) illustrate the area, and Figures 33(b) and 34(b)

the power consumption. The area and power consumption for the control logic are

presented in terms of their components, i.e., the logic that corresponds to the stages

of the TTA transport pipeline. In the uncompressed reference implementation there

are two pipeline stages in the control logic; instruction fetch (IF) and decode (DC)

stages. In the separated decompressor implementation an additional pipeline stage

is added for the decompression (DCMPR) in between the IF and DC stages. In the

integrated decompressor implementation, the DCMPR and DC stages are integrated

into a single decompress-decode (DCMPR-DC) stage.

The results show that the integrated decompressor results in smaller area of the con-

trol logic at all granularity levels. The more fine-grained the granularity, the greater

the difference between the two decompressor implementation alternatives. At full

instruction level the area of the control logic of the integrated decompressor is on

average equal to the area of the implementation with an additional decompress stage,

but 14% smaller on configuration B. At move slot level, the area of the integrated de-

128 6. Results

IFETCH DCMPR DC DCMPR-DC

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

0
1000
2000
3000
4000
5000
6000
7000
8000

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

gates

(a) Area

IFETCH DCMPR DC DCMPR-DC

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

0
1
2
3
4
5
6
7
8
9

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

mW

(b) Power consumption

Fig. 33. Area and power consumption of the control logic on configuration A with different

transport pipeline organizations.

compressor is on average 17% smaller on configuration A, and 22% on configuration

B. At ID field level, the area is on average 27% and 31% smaller, respectively.

The area of the instruction fetch logic is equal in both decompressor implementation

alternatives as the decompressor does not influence the implementation of the instruc-

tion fetch logic. However, implementing the decompressor in an additional pipeline

stage implies a need for an instruction-wide register in between the decompressor

and the decoder to store the decompressed instruction before the decode stage. Inte-

grating the decompressor and decoder into a single pipeline stage avoids the need for

such a register. In addition, the integrated decompressor provides better possibilities

for the synthesis tools to minimize the logic as the module to be synthesized into

logic is larger, allowing better possibilities for Boolean logic optimization.

The power consumption of the integrated decompressor implementation is signifi-

cantly smaller at all granularity levels compared to the implementation with a sepa-

rate DCMPR stage. At instruction level the power consumption of the control logic of

the integrated decompressor is on average 23% smaller on configuration A, and 24%

on configuration B. At move slot level it is on average 26% smaller on configuration

6.3. Area and Power Consumption 129

IFETCH DCMPR DC DCMPR-DC

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

0
2000
4000
6000
8000

10000
12000
14000
16000

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

gates

(a) Area

IFETCH DCMPR DC DCMPR-DC

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

0
2
4
6
8

10
12
14

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

re
f

FI_s
tag

e

FI_i
nte

gr

M
S_s

tag
e

M
S_i

nte
gr

ID
_s

tag
e

ID
_i

nte
gr

mW

(b) Power consumption

Fig. 34. Area and power consumption of the control logic on configuration B with different

transport pipeline organizations.

A, and 21% smaller on configuration B, and at D field level on average 31% and 27%

smaller, respectively. For both decompressor implementation alternatives, the input

and output functions are exactly the same, i.e., the same bit vectors (dictionary in-

dices) are sent to the decompress and decode logic and the same bit vectors (control

signals) are obtained as output. Therefore, the difference in power consumption is

due to the smaller logic of the integrated decompressor implementation.

The results also indicate that with the integrated decompressor the overhead of the de-

compression logic in the area and power consumption can be effectively minimized.

With the integrated decompressor, the power consumption of the control logic be-

comes actually smaller than that of the uncompressed implementation at all granu-

larity levels. Also the area of the control logic becomes smaller when the granularity

level is small enough; on configuration A this happens only at ID field level, but on

configuration B already at full instruction level. Smaller area and power consump-

tion are due to the reduced width of the program memory datapath and the instruction

register in the instruction fetch logic. The decompressor introduces an overhead to

the area of the control logic but this overhead is smaller than the area reduction in the

130 6. Results

IF stage. Integration of the decompressor and decoder into a single module allows

also more efficient logic optimization, reducing the area even further.

The overall area and power consumption reductions, including the program mem-

ory and the control logic, at the three distinct granularity levels for the integrated

decompressor implementation are summarized in Table 12. Compared to the results

of the separated decompressor implementation, presented in Table 10, the integrated

decompressor results on average 4% better reduction in area and power consumption.

The timing of the processor is not affected when the decompressor is implemented

in a separate pipeline stage because an entire clock cycle is devoted for the decom-

pression. However, the timing is affected when the decompressor is integrated to

the decode stage as both the decompression and decoding have to be performed dur-

ing a single clock cycle. This lengthens the critical path and, therefore, limits the

achievable clock frequency. The effect of the decompressor implementation on the

timing of the processor was evaluated by trying out different clock period times in the

synthesis of the three alternative processor implementations, i.e., the uncompressed

implementation and the separated and integrated decompressor implementations, and

to find the smallest clock period time with which the timing can still be met.

In the processor configuration A, the uncompressed and separated decompressor im-

plementations achieved a maximum clock frequency of 267MHz. The critical path

went through the interconnection network and the squashing and decoding logic in

the control unit to the control signal registers. Integrating the decompressors to the

decode stage limited the achievable clock frequency to 250MHz. The critical path

went from the instruction register through the decompression and decode logic to

the control signal registers, as expected. In the processor configuration B, which has

more functional resources, a maximum clock frequency of 222MHz was obtained

for the uncompressed implementation. Clock frequencies in between 200MHz and

Table 12. Summary of the area and power consumption evaluations with the integrated de-

compressor implementation.

Compression Standard cell implementation
granularity Area Power cons.
Instruction level -73 / -77% -72 / -73%
Move slot level -62 / -62% -56 / -56%
ID field level -52 / -51% -46 / -45%

6.3. Area and Power Consumption 131

222MHz, depending on the benchmark application, were obtained for the two com-

pressed implementations. The critical path in all the implementation alternatives went

through the interconnection network and the squashing logic and decoding logic in

the control unit to the control signal register. Hence, in processor configuration B,

the integration of the decompressor to the decode stage did not affect the achievable

clock frequency. The effect of the integrated decompressor on the achievable clock

frequency on processor configuration A was also fairly small.

6.3.2 Instruction Template-Based Compression

The effects of the instruction template-based compression on area and power con-

sumption were evaluated by using four and 16 instruction templates. Figure 35 illus-

trates the results of applying the instruction template-based compression on the two

processor configurations, A and B. Figure 35(a) illustrates the area, and Fig. 35(b) the

power consumption of the program memory and the control logic on the two evalu-

ated processor configurations. The results are given for the uncompressed reference

implementation (ref), and for the instruction template-based compression implemen-

tation using either four (T4), or 16 (T16) templates to encode the original instructions.

The obtained results indicate a significant increase in both the area and power con-

sumption when the instruction template-based compression is applied. The results

also show that the more templates are used, the larger is the increase in both the area

and power consumption. The total area of the program memory and the control logic

increases on average 4% on configuration A and 25% on configuration B, when four

templates are used. With 16 templates, the area increases 13% and 48%, respectively.

The impact on the power consumption is even more dramatic. With four templates

the total power consumption of the program memory and the control logic increases

53% and 97%, and with 16 templates 80% and 152%, respectively.

The results in area, depicted in Fig. 35(a), demonstrate that the area of the program

memory can be reduced by applying the instruction template-based compression, but

the decompression logic introduces such a large overhead that the total area turns out

to be larger than in the uncompressed reference implementation. The decompressor

has to handle variable-width instructions, which result in need for a shift register and

a pre-fetch buffer in the control logic. Large shifting and alignment networks are

also needed in order to construct the original uncompressed instruction words from

132 6. Results

Program memory Control logic

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

0

20000

40000

60000

80000

100000

120000

A_r
ef
A_T

4

A_T
16

B_r
ef
B_T

4

B_T
16

A_r
ef
A_T

4

A_T
16

B_r
ef
B_T

4

B_T
16

A_r
ef
A_T

4

A_T
16

B_r
ef
B_T

4

B_T
16

A_r
ef
A_T

4

A_T
16

B_r
ef
B_T

4

B_T
16

A_r
ef
A_T

4

A_T
16

B_r
ef
B_T

4

B_T
16

Gates

(a) Area

Program memory Control logic

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

0
10
20
30
40
50
60
70
80
90

100

A_r
ef
A_T

4

A_T
16

B_r
ef
B_T

4

B_T
16

A_r
ef
A_T

4

A_T
16

B_r
ef
B_T

4

B_T
16

A_r
ef
A_T

4

A_T
16

B_r
ef
B_T

4

B_T
16

A_r
ef
A_T

4

A_T
16

B_r
ef
B_T

4

B_T
16

A_r
ef
A_T

4

A_T
16

B_r
ef
B_T

4

B_T
16

mW

(b) Power consumption

Fig. 35. Area and power consumption of the program memory and the control logic when the

instruction template-based compression is applied.

the move slots that may be in several different locations inside the templates. Large

multiplexers are also required to place the remaining bits from the instruction fetch

packet to the shift register from where the bits are interpreted in the decompressor

during the next clock cycle. Furthermore, as the program memory is adjusted to the

width of the widest compressed instruction words that are wider than the original

instruction words, the width of the instruction datapath has to be increased in the

instruction fetch logic. All this additional logic implies a large increase in the area of

the control logic. The more templates are used, the larger the increase in area.

The power consumption results in Fig 35(b) demonstrate that the power consumption

of the program memory and the control logic turns out to increase when instruction

templates are applied. This is due to the increased width of the program memory as

it has to be adjusted to the width of the widest compressed instruction word. Wider

program memories consume more power as the power consumption of a memory is

more dependent on its width rather than its length [106]. Hence, even though the size

of the program memory is reduced, the power consumption of the program mem-

ory is at the same level than that of the program memory used for the uncompressed

6.4. Programmability Evaluation 133

reference implementation. As the power consumption of the control logic also be-

comes significantly greater than in the uncompressed implementation, the total power

consumption turns out to be greater than in the reference implementation.

Hence, the results demonstrate that the instruction template-based compression ap-

proach turns out to be impractical even though it resulted in high compression ratios.

The compression ratio does not consider the decompression circuitry nor the imple-

mentation details of the program memory. Therefore, this proves that the compres-

sion ratio is not accurate enough to fully characterize the compression methods and

evaluate their effectiveness.

6.4 Programmability Evaluation

The proposed dictionary extension method to maintain the programmability was eval-

uated by utilizing it for the dictionary-based compression approach that was applied

on two TTA processor configurations that were designed for the hardware implemen-

tations. The proposed method was applied for the compression at instruction level

as that level turned out to be the most effective granularity level to decrease the area

and power consumption, but on the other hand, resulted in the most limited program-

mability. The extension method was evaluated by measuring its effect on area and

power consumption. The effects on the performance were also estimated.

Subsection 6.4.1 describes the details of designing the extended dictionaries for the

two processor configurations based on the methodology proposed in Chapter 5. The

results for the performed area and power consumption estimations are presented Sub-

section 6.4.2. Finally, the estimates of the proposed extension method on the perfor-

mance are discussed in Subsection 6.4.3.

6.4.1 Design of the Extended Dictionary

The dictionary extension requires to identify all the possible sources and destina-

tions in the processor architecture. The required data transports to maintain the pro-

grammability can be identified based on this information. Table 13 tabulates for the

two processor configurations the number of sources and destinations, the number

of data transports required to maintain the programmability, and the number of the

134 6. Results

Table 13. Statistics of the number of data transports required to maintain the programmabil-

ity on the two TTA processor configurations. Src: source. Dst: destination.

Conf. Nr. src Nr. dst Number of required data transports
Src − > Dst Src − > GCR and GCR − > Dst

Required Supported Required Supported
A 29 58 1682 1579 87 87
B 66 113 7458 7337 179 179

required data transports that can be executed in the interconnection network of the

given processor configuration, i.e., the data transports that have the required connec-

tions to the buses. The table illustrates also the number of the required and supported

data transports in case the GCR is utilized to minimize the number of the required

data transports by splitting the required data transports into two parts; from all the

sources to the GCR and from the GCR to all the destinations.

The numbers in Table 13 illustrate that even though the configuration A is a fairly

small, containing only the minimal set of resources to execute all the four applica-

tions, the number of sources and destinations in the architecture is fairly large. This

implies a large number of data transports that are required to maintain the program-

mability. For the configuration B, which has more hardware resources than config-

uration A, i.e., also more sources and destinations, the number of the required data

transports in even larger. Extending the dictionaries with all these data transports

would results in large overhead in the area of the control logic. The table also il-

lustrates that the interconnection network does not support all of the required data

transports, i.e., there are not enough connections in the input and output sockets to

the move buses to execute all of the required data transports. The missing connec-

tions need to be added to the corresponding sockets to support the execution of all of

the required data transports. This increases the area even further.

Therefore, it is better to utilize the GCR to minimize the number of the required

data transports. As the table shows, utilization of the GCR reduces significantly the

number of the required data transports that need to be supported. In addition, all of

the required data transports are already supported in the example processor config-

urations. This avoids the need for any additional connections in the interconnection

network. In the evaluations of the proposed programmability method, the GCR was

implemented in one of the existing register files, following the selection procedure

based on measuring the connectivity of the register files, as discussed in Chapter 5.

6.4. Programmability Evaluation 135

To utilize the GCR to minimize the number of the additional dictionary entries, the

data transports from all the sources to the GCR and from the GCR to all the desti-

nations need to be identified and assigned a bus on which the data transport is to be

executed. As the dictionary-based compression at instruction level limits the perfor-

mance of the additional entries to one transport per instruction, the data transports can

be allocated freely on the buses as long as both the input and output sockets involved

in the transport have a connection on the same bus.

Next, the data transports need to be added to the dictionary. As the dictionary-based

compression has been performed at instruction level, the dictionary extension in-

volves adding an entire instruction word for each data transport. The data transport

is allocated on the move slot that corresponds to the bus on which the transport is to

be executed. Null data transports are allocated on all the other buses in that specific

dictionary entry. Table 14 tabulates the sizes of the original and extended dictionaries

for the four benchmark applications on the two evaluated processor configurations in

terms of bytes. The dictionary sizes illustrate that the extension may imply a large

overhead. The overhead is at most 58.8% on configuration A, but up to 161.3% on

configuration B. Hence, the larger the processor configuration, the greater the over-

head in the dictionary size. This is quite obvious as there are more sources and

destination on the larger processor configuration, i.e., also more additional entries to

be added. The overhead depends also quite heavily on the used application, or the

size of the original dictionary as the number of entries added to the dictionary is the

same for each application. The 2-D 8× 8 DCT application has the smallest original

dictionary, i.e., also the largest overhead.

In addition to extending the dictionaries, the full programmability requires that all

possible immediate values can be used in the program code. This can be accom-

plished by specifying the immediate bits along the compressed instructions. Immedi-

ate specifiers are used to identify the presence of the immediate values in the program

code. A set of immediate formats are designed to avoid always specifying 32 bit wide

immediates. Each format has its own immediate specifier that identifies how many

of the following memory lines contain the immediate bits.

For the two processor configurations used in the evaluation, the width of the com-

pressed instruction words was 9 bits on configuration A, and 10 bits on configuration

B. This resulted in four different immediate formats; 9, 18, 27, and 36 bit formats on

configuration A and 10, 20, 30, and 40 bit formats on configuration B. Each format

136 6. Results

Table 14. Statistics of the original and extended dictionaries for the four benchmarks.
Benchmark Conf. Original Dict. Extended Dict. Overhead

[bytes] [bytes] [%]
32-point A 6620 8001 20.9
DCT B 9168 13464 46.6
2-D 8×8 A 2350 3731 58.8
DCT B 2664 6960 161.3
1024-point A 4159 5540 32.3
FFT B 2928 7224 146.7
Viterbi A 4985 6366 27.7
decoding B 4944 9240 86.9

was assigned a unique immediate specifier, 9 bits wide on configuration A and 10 bits

wide on configuration B. The instruction fetch logic inspects each fetched packet for

the existence of an immediate specifier. Once an identifier is found, the instruction

pipeline is stalled until all the immediate bits have been fetched from the program

memory. The immediate value is then assembled and stored into the immediate reg-

ister, from where the value is implicitly transported to the GCR.

6.4.2 Area and Power Consumption

Maintaining programmability with the proposed methodology affects the area and

power consumption of the control logic as the dictionary becomes larger and addi-

tional logic is added to the instruction fetch stage. The effects on area and power

consumption of the control logic are depicted in Fig. 36 for the two evaluated proces-

sor configurations. For the control logic, the integrated decompressor implementation

was utilized, i.e., the decompressor and decoder were integrated together into a single

pipeline stage. Figure 36(a) illustrates the area and Fig. 36(b) the power consumption.

The results are shown for the original implementation (orig) where the compression

is performed at instruction level, and for the implementation where the dictionary

extension is used to maintain the programmability after compression (extd). For ref-

erence, the results are also illustrated for the uncompressed implementation (ref).

The results are given for the two stages of the control logic: the instruction fetch (IF)

and the integrated decompress-decode (DCMPR-DC) stages. In the uncompressed

implementation, the results for the DCMPR-DC stage include only the decoder.

The results in Fig. 36 demonstrate that the dictionary extension and the immediate

support logic result in fairly small overhead in the area and power consumption of

6.4. Programmability Evaluation 137

IFETCH DCMPR-DC

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

gates

0
2000
4000
6000
8000

10000
12000
14000
16000

A_r
ef

A_o
rig

A_x
td
B_r

ef

B_o
rig

B_x
td

A_r
ef

A_o
rig

A_x
td
B_r

ef

B_o
rig

B_x
td

A_r
ef

A_o
rig

A_x
td
B_r

ef

B_o
rig

B_x
td

A_r
ef

A_o
rig

A_x
td
B_r

ef

B_o
rig

B_x
td

A_r
ef

A_o
rig

A_x
td
B_r

ef

B_o
rig

B_x
td

(a) Area

IFETCH DCMPR-DC

32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

mW

0

2

4

6

8

10

12

A_r
ef

A_o
rig

A_x
td
B_r

ef

B_o
rig

B_x
td

A_r
ef

A_o
rig

A_x
td
B_r

ef

B_o
rig

B_x
td

A_r
ef

A_o
rig

A_x
td
B_r

ef

B_o
rig

B_x
td

A_r
ef

A_o
rig

A_x
td
B_r

ef

B_o
rig

B_x
td

A_r
ef

A_o
rig

A_x
td
B_r

ef

B_o
rig

B_x
td

(b) Power consumption

Fig. 36. The effects of the dictionary extension and immediate support on area and power

consumption of the control logic.

the control logic. The area of the control logic increases on average 18.9% on config-

uration A and 19.3% on configuration B compared to the original compressed case.

The increase in the area of the control logic is mostly due to extending the dictionary

with additional instructions. The effect of adding the immediate support logic on the

area of the instruction fetch stage is negligible. Compared to the overhead of the dic-

tionary extension, measured in bytes and illustrated in Table 14, the obtained results

show that the synthesis tool can effectively minimize the logic of the dictionary and

reduce the overhead of the additional dictionary entries.

The power consumption of the control logic is also increased due to the additional

logic. The power consumption increases on average 8.1% on configuration A, and

9.8% on configuration B, compared to the original compressed implementation. This

increase is also fairly small. Compared to the results of the uncompressed implemen-

tation, the power consumption of the control logic still remains smaller even though

the dictionary has been extended.

The results presented in Fig. 36 are shown only for the control logic, which is the

only part that is affected by the extension method. In case the program memory is

138 6. Results

included, the overhead of the dictionary extension on the total area and power con-

sumption is only few percents. Even though the dictionary has been extended, the

total area, including the control logic and the program memory, can still be reduced

on average 71% on configuration A and 74% on configuration B. The power con-

sumption can be reduced 70% and 71%, respectively.

6.4.3 Performance

The utilization of the extended dictionary entries affects also the performance. In case

the GCR is utilized, a single entry can execute only a half of the data transport from

a source to a destination. Therefore, it takes two clock cycles to complete a single

source-to-destination data transport. The original TTA instructions can perform as

many data transports in parallel as there are move slots. Hence, the effect on the per-

formance depends on the number, the usage frequencies, and the level of the utilized

parallelism in the instructions that need to be programmed with the extended entries.

The performance is also affected by the number and width of the immediates used in

the modified instructions as the datapath has to be stalled until all the immediate bits

assigned for a data transport have been fetched from the program memory.

The effects of the dictionary extension on the performance were estimated by pro-

gramming the instructions in the original program code with the extended entries

and using the immediate support method to define the immediate values used in the

instructions. To ease the estimation, the original instructions were modified to be

programmed with the extended dictionary entries one basic block at a time. Table 15

presents for each benchmark application the number of basic blocks, the average

number of instructions per basic block, the average number of data transports exe-

cuted per clock cycle, which defines the utilized ILP, and the relative execution time

when the basic blocks are programmed using the extended entries. The effect of

modifying a single basic block on the performance is presented as an average and a

maximum effect. The table illustrates also the worst case execution time when all the

basic blocks are modified to be programmed using the extended entries.

The relative code sizes show that by modifying only a single basic block to be pro-

grammed using the extended entries, the execution time may be affected dramatically.

On average, the execution time increases 61% on configuration A and 91% on con-

figuration B when a single basic block is programmed entirely using the extended

6.4. Programmability Evaluation 139

Table 15. The effects on the performance of programming basic blocks (BB) using the ex-

tended entries.
Application Conf. #BBs #instr. / moves/ BB eff. on ex. time Worst case

BB cycle avg. max. ex. time
32-point A 7 69.1 2.94 2.18 2.48 8.24
DCT B 7 63.0 3.21 2.46 2.84 10.23
2-D 8×8 A 18 9.1 2.92 1.57 5.84 10.21
DCT B 17 8.1 3.40 1.72 6.87 12.25
1024-point A 13 24.2 2.03 1.50 5.31 6.51
FFT B 12 12.4 2.91 1.85 7.85 10.21
Viterbi A 39 9.4 2.59 1.18 2.34 7.14
decoding B 36 7.0 3.73 1.26 3.17 9.23
Average A 19.25 28.0 2.63 1.61 4.00 8.03

B 18 22.6 3.04 1.91 5.39 10.48

entries. The penalty in performance depends on the utilized ILP, i.e., how many data

transports are executed in parallel in the instructions that need to be programmed us-

ing the extended entries. In general, the higher the utilization of the ILP, the larger the

increase in the execution time when the extended entries are used to program instruc-

tions. Large processor configurations have more functional resources, which provides

means to utilize the ILP better and execute several data transports per instruction. The

penalty in performance on such processor configurations is larger when the extended

entries are used, as can be seen from the obtained results.

In addition to the utilized ILP, the performance is also affected by the size and the

usage frequency of the basic block that has been modified. Large and frequently exe-

cuted basic blocks may lead to a large increase in the execution time, as shown by the

maximum effects on the execution time in Table 15. The execution time may become

on average quadruple on configuration A and more than fivefold on configuration B

when a single basic block is programmed using the extended dictionary entries.

The results in Table 15 show that depending on the application, the effect on the per-

formance may vary significantly. The 32-point DCT application has only few but

large basic blocks that are each executed only once. This leads to almost the same

average and maximum effect on the performance. On the other hand, the 2-D 8× 8

DCT and 1024-point FFT applications have a modest average effect on the perfor-

mance, but as a maximum effect, a single basic block may result in dramatic increase

in the execution time. This is due to both applications having a kernel basic block

that is executed several thousand times, leading to large impact on the performance.

In Viterbi decoding, the number of basic blocks is large but the basic blocks are

140 6. Results

fairly small and have small execution frequencies. Therefore, the average effect of

programming a basic block with the extended entries on the execution time is fairly

small for the Viterbi decoding.

The obtained results demonstrate that the proposed method is practical in case only

a small part of the instructions in the program code are programmed with the ex-

tended dictionary entries. Hence, the method is best suitable for the case where the

modifications required to the original program code are small, e.g., bug fixes. Better

performance could be obtained if the compression would be applied at smaller gran-

ularity level. However, the reduction in area and power consumption would be worse

compared to compression at full instruction level.

6.5 Summary of Results

Figure 37 summarizes the obtained average compression ratios for the dictionary-

based, Huffman coding, and instruction template-based compression methods. For

the dictionary-based compression and Huffman coding, the compression ratios are

reported at the three different granularity levels, i.e., at full instruction (FI), move

slot (MS), and ID field (ID) levels. At move slot and ID field granularity levels, the

results are reported for both the vertical and horizontal compression approaches. For

the instruction template-based compression, the results are reported for four, 16, and

the maximum number of templates used to encode the original instructions.

The obtained results show that the best compression ratio, 40.9%, can be achieved by

utilizing Huffman coding vertically at ID field granularity level. Instruction template-

based compression with maximum number of templates reaches a compression ra-

tio of 46.5%. Dictionary-based compression reaches at best a compression ratio of

52.5% when it is applied at move slot level. The compression ratios for the Huffman

coding and dictionary-based compression include the overhead of the decompression,

i.e., the size of the decoding table. For the instruction template-based compression

the overhead of the decompression cannot be evaluated in terms of bits, so the com-

pression ratios for it are too optimistic.

Figure 38 illustrates the average area and power consumption reductions for the

dictionary-based and instruction template-based compression on the two TTA proces-

sor configurations. The results are shown for the dictionary-based compression at the

6.5. Summary of Results 141

C
om

pr
es

si
on

 r
at

io
 [

%
]

Huffman codingDictionary-based
compression

Instruction template-
based compression

0
10
20
30
40
50
60
70
80
90

100

FI

M
S ve

rt.

M
S ho

r.

ID
 ve

rt.

ID
 ho

r.
FI

M
S ve

rt.

M
S ho

r.

ID
 ve

rt.

ID
 ho

r.

4 t
em

pl.

16
 te

mpl.

max
 te

mpl
.

Fig. 37. Summary of the code density evaluations in terms of average compresion ratio.

three different granularity levels. The results at these three granularity levels are

summarized for the three decompressor implementation alternatives, i.e., separated

decompression stage (sep.) with the decompressor implemented using RAM (RAM)

or standard cells (Std) and integrated decompressor (int.) with the decompressor

implemented using standard cells. For the instruction template-based compression,

results are shown for four and 16 templates using an integrated decompressor.

The area and power consumption results clearly show that the dictionary-based com-

pression is significantly more effective than the instruction template-based compres-

sion, which actually turned out to increase both the area and power consumption

when it was implemented in hardware. Dictionary-based compressed performed the

best at full instruction level with the integrated decompressor with the dictionary im-

plemented using standard cells. This allowed to reduced the area at best 77% and

power consumption at best 73%. Such a good results were obtained as the synthesis

tool could be utilized effectively to optimize the logic of the dictionary. Integrating

the decompressor to the decode stage allowed to reduce the area and power con-

sumption even more effectively. This allowed also to maintain the performance as

the length of the transport pipeline, and thus the jump delay, could be maintained

unchanged.

As the obtained results from the code density and area and power consumption eval-

uations demonstrate, the traditional approach of evaluating the effectiveness of pro-

gram compression methods based on compression ratios cannot fully characterize

all the aspects related to compression. The overhead of the decompressor, i.e., the

decoding tables are often not included in the compression ratio and for some com-

pression methods, such as the instruction template-based compression, the overhead

142 6. Results

A
re

a
re

du
ct

io
n

[%
]

-60

-40

-20

0

20

40

60

80

100

FI S
td

 se
p.

FI S
td

 in
t.

FI R
AM

 se
p.

M
S S

td
se

p.

M
S S

td
int

.

M
S R

AM
 se

p.

ID
 S

Td s
ep

.

ID
 S

td
int

.

ID
 R

AM
 se

p.

4 t
em

pla
tes

 in
t.

16
 te

mpla
tes

 in
t.

FI S
td

 se
p.

FI S
td

 in
t.

FI R
AM

 se
p.

M
S S

td
se

p.

M
S S

td
int

.

M
S R

AM
 se

p.

ID
 S

Td s
ep

.

ID
 S

td
int

.

ID
 R

AM
 se

p.

4 t
em

pla
tes

 in
t.

16
 te

mpla
tes

 in
t.

Configuration A Configuration B

(a) Area

Configuration A Configuration B

-160
-140
-120
-100
-80
-60
-40
-20

0
20
40
60
80

100

FI S
td

 se
p.

FI S
td

 in
t.

FI R
AM

 se
p.

M
S S

td
se

p.

M
S S

td
int

.

M
S R

AM
 se

p.

ID
 S

Td s
ep

.

ID
 S

td
int

.

ID
 R

AM
 se

p.

4 t
em

pla
tes

 in
t.

16
 te

mpla
tes

 in
t.

FI S
td

 se
p.

FI S
td

 in
t.

FI R
AM

 se
p.

M
S S

td
se

p.

M
S S

td
int

.

M
S R

AM
 se

p.

ID
 S

Td s
ep

.

ID
 S

td
int

.

ID
 R

AM
 se

p.

4 t
em

pla
tes

 in
t.

16
 te

mpla
tes

 in
t.

Po
w

er
 c

on
s.

 r
ed

uc
tio

n
[%

]

(b) Power consumption

Fig. 38. Summary of the area and power consumption evaluations based on the average area

and power consumption reductions.

of the decompressor cannot even be measured in bits. Even more severe deficiency

in code density based estimations is that the details of the decompressor hardware

implementation cannot be taken into account. For some methods the decoding tables

may be small but the actual hardware cost of the decompressor may turn out to be

large, especially if the compressed instructions become variable-width. Therefore,

evaluations based on the actual area and power consumption are needed to provide

more accurate estimates on the effectiveness of a compression method.

7. CONCLUSIONS

In this Thesis, program compression methods for improving the code density and

minimizing the area and power consumption on a customizable processor architec-

ture with parallel hardware resources have been studied. Minimizing the area and

power consumption is crucial especially in handheld embedded systems, which are

constrained by size, weight, battery life, and cost. Based on the review of previous

work, three alternative compression methods were chosen to be adapted, utilized, and

evaluated on transport triggered architecture, which is a customizable parallel proces-

sor architecture. The compression methods included dictionary-based compression,

Huffman coding, and instruction template-based compression.

In order to evaluate the chosen compression methods on the customizable processor

architecture, a case study of designing a set of customized processors for applications

from the DSP and multimedia application domains was made. In addition to evalu-

ating the code density, based on compression ratio, the customized processor designs

were implemented in hardware and synthesized into standard cell logic using 130

nm low-power CMOS technology to evaluate the effects of program compression on

area and power consumption, which allowed to obtain more accurate estimates on the

effectiveness of the compression methods.

The evaluations demonstrated that measuring the code density in terms of compres-

sion ratio, which is the approach taken in most of the approaches published in the

literature, is not enough to estimate the effectiveness of a compression approach.

Compression ratio is based on the bit sizes of the program memory and the possible

decoding table. The actual implementation details of the program memory and the

decompression logic are not taken into account. Therefore, hardware implementa-

tions and measures in terms of area and power consumption are needed.

It was shown in the evaluations that the dictionary-based program compression is

the most suitable compression method for the transport triggered architecture, the

144 7. Conclusions

parallel processor architecture studied in this Thesis. Dictionary-based compression

results in fixed-width compressed instructions that are easier to decompress. The

other evaluated compression approaches, Huffman coding and instruction template-

based compression, result in variable-width compressed instructions that make the

instruction fetch and decompression logic significantly more complex, which results

in large overhead in both area and power consumption.

The conducted experiments on alternative implementation strategies of the decom-

pression logic showed that the decompressor, i.e., the dictionary, in the dictionary-

based compression approach is best to be implemented in standard cell logic and

integrated with the decoder into a single pipeline stage. Up to 77% reduction in area

and 73% reduction in power consumption of the program memory and the associated

control logic were achieved. The drawback of implementing the dictionary using

standard cells is low orthogonality of the instruction set, and in the worst case, highly

limited programmability, which may make the modifications to the program code

impossible. Implementing the dictionary using RAM allowed to modify the contents

of the dictionary and, therefore, maintain the programmability and full orthogonal-

ity. However, the achieved area and power consumption results of this approach were

poor. Therefore, a method was proposed to extend the dictionaries holding the unique

bit patterns with such bit pattern entries that the processor can be reprogrammed even

after the decompressor has been implemented in hardware. The orthogonality of the

instruction set remains poor, implying poor performance. Hence, the modifications

to the program code are limited to be fairly small.

Based on the studies in this Thesis, it can be concluded that the area and power con-

sumption can be efficiently minimized through program compression, especially on

a customizable processor architecture where the decompression logic can be imple-

mented in the control path of the processor core. The proposed compression system,

based on the dictionary-based compression, can reduce the area and power consump-

tion of the program memory effectively with a negligible overhead due to decom-

pression logic compared to the reviewed state-of-the-art compression approaches.

The proposed method to maintain the programmability improves the usability of the

dictionary-based compression as the program code can be modified also after the

program compression has been applied and the processor has been implemented in

hardware.

BIBLIOGRAPHY

[1] “Excerpts from inside the StarCore SC140,” Berkley Design Technology Inc.,

Tech. Rep., 2000.

[2] “CHESS/CHECKERS: A retargetable tool-suite for embedded processors,”

Target Compiler Technologies n.v., Leuven, Belgium, Technical White Paper,

June 2003.

[3] TMS320C62x DSP CPU and Instruction set Reference Guide. Houston, TX,

USA: Texas Instruments Inc., July 2006.

[4] TMS320C64x/C64x+ DSP CPU and Instruction set Reference Guide. Hous-

ton, TX, USA: Texas Instruments Inc., Aug. 2006.

[5] TMS320C67x/C67x+ DSP CPU and Instruction set Reference Guide. Hous-

ton, TX, USA: Texas Instruments Inc., Nov. 2006.

[6] “ARC International homepage,” http://www.arc.com, June 2007.

[7] “CoWare processor designer homepage,”

http://www.coware.com/products/processordesigner.php, June 2007.

[8] “The homepage of Improv Systems,” http://www.improvsys.com, June 2007.

[9] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet. San

Jose, CA, USA: Xilinx Inc., Mar. 5 2007.

[10] S. Aditya, S. A. Mahlke, and B. R. Rau, “Code size minimization and re-

targetable assembly for custom EPIC and VLIW instruction formats,” ACM

Trans. Design Automation of Electron. Syst., vol. 5, no. 4, pp. 752–773, Oct.

2000.

146 Bibliography

[11] S. Aditya and B. R. Rau, “Automatic architecture synthesis and compiler retar-

geting for VLIW and EPIC processors,” Hewlett-Packard Laboratories, Tech.

Rep. HPL-1999-93, Jan. 2000.

[12] S. Aditya, B. R. Rau, and R. C. Johnson, “Automatic design of VLIW and

EPIC instruction formats,” Hewlett-Packard Laboratories, Tech. Rep. HPL-

1999-94, Apr. 2000.

[13] Altera, Nios II Processor Reference Handbook, http://www.altera.com, 2003.

[14] G. Araújo, P. Centoducatte, R. Azevedo, and R. Pannain, “Expression-tree

based algorithms for code compression on embedded RISC architectures,”

IEEE Trans. Very Large Scale Integration VLSI Systems, vol. 8, no. 5, pp.

530–533, Oct. 2000.

[15] G. Araújo, P. Centoducatte, M. Côrtes, and R. Pannain, “Code compression

based on operand factorization,” in Proc. 11th Great Lakes Symp. VLSI, West

Lafayette, IN, USA, Mar. 22 – 23 2001, pp. 89–92.

[16] ARM, An Introduction to Thumb. Advanced RISC Machines Ltd., Mar. 1995.

[17] L. Benini, A. Macii, and E. Macii, “Static footprint control in code compres-

sion for low-energy embedded systems,” in Proc. Int. Workshop Power and

Timing Modeling, Optimization and Simulation, Yverdon-les-Baines, Switzer-

land, Sept. 26–28 2001, pp. 206–211.

[18] L. Benini, A. Macii, E. Macii, and M. Poncino, “Region compression: a new

scheme for memory energy minimization in embedded systems,” in Proc. 25th

EUROMICRO Conf., Milan, Italy, Sept. 8–10 1999, pp. 311–317.

[19] ——, “Selective instruction compression for memory energy reduction in

embedded system,” in Proc. Int. Symp. Low-Power Electronics Design, San

Diego, CA, USA, Aug. 16–17 1999, pp. 206–211.

[20] L. Benini, A. Macii, and A. Nannarelli, “Cached-code compression for energy

minimization in embedded processors,” in Proc. of 2001 Int. Symp. Low Power

Electronics and Design, Huntington Beach, CA, USA, Aug. 6–7 2001, pp.

322–327.

Bibliography 147

[21] P. Biswas and N. Dutt, “Reducing code size for heterogenous-connectivity-

based WLIW DSP through synthesis of instruction set extensions,” in Proc.

Int. Conf. Compilers, Architectures and Synthesis for Embedded Systems, San

Jose, CA, USA, Oct. 30 – Nov. 1 2003, pp. 104–112.

[22] R. K. Brayton and R. Spence, Sensitivity and Optimization. Amsterdam, The

Netherlands: Elsevier, 1980.

[23] Cambridge Consultants, APE2 Digital Signal Processor,

http://www.cambridgeconsultants.com, June 2007.

[24] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 8, pp. 679–714, Jan. 1986.

[25] A. Capitanio, N. Dutt, and A. Nicolau, “Partitioned register files for VLIWs:

A preliminary analysis of tradeoffs,” in Proc. IEEE Symp. Microarchitecture,

Portland, OR, USA, Dec. 1–4 1992, pp. 292–300.

[26] P. Centoducatte, R. Pannain, and G. Araújo, “Compressed code execution on

DSP architectures,” in Proc. ACM/IEEE Int. Symp. System Synthesis, San Jose,

CA, USA, Nov. 10–12 1999, pp. 55–61.

[27] I. Chen, P. Bird, and T. Mudge, “The impact of instruction compression on I-

cache performance,” University of Michigan, Technical Report CSE-TR-330-

97, 1996.

[28] M. Collon and M. Brorsson, “The design and performance of a variable length

instruction set for low-power instruction fetch,” Royal Institute of Technology,

Stockholm, Sweden, Tech. Rep., 2002.

[29] R. P. Colwell, R. P. Nix, J. J. O’Connel, D. B. Papworth, and P. K. Rodman,

“A VLIW architecture for a trace scheduling compiler,” IEEE Trans. Comput.,

vol. 37, no. 8, pp. 967–679, Aug. 1988.

[30] T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes, and S. W. Sathaye,

“Instruction fetch mechanisms for VLIW architectures with compressed en-

codings,” in Proc. 29th Ann. IEEE/ACM Int. Symp. Microarchitecture, Paris,

France, Dec. 2–4 1996, pp. 201–211.

148 Bibliography

[31] J. Cooley and J. Tukey, “An algorithm for the machine calculation of the com-

plex Fourier series,” Mathematics of Computation, vol. 19, pp. 297–301, Apr.

1965.

[32] K. D. Cooper and N. McIntosh, “Enhanced code compression for embedded

RISC processors,” in Proc. Conf. Programming Languages Design and Imple-

mentation, Atlanta, GA, USA, May 1–4 1999, pp. 139–149.

[33] G. Cormack and R. Horspool, “Data compression using dynamic Markov

modeling,” The Computer Journal, vol. 30, no. 6, pp. 541–550, Dec. 1987.

[34] H. Corporaal, Microprocessor Architectures: From VLIW to TTA. Chichester,

UK: John Wiley & Sons, 1997.

[35] H. Corporaal and M. Arnold, “Using transport triggered architectures for em-

bedded processor design,” Integrated Computer-Aided Eng., vol. 5, no. 1, pp.

19–38, 1998.

[36] S. Debray and W. Evans, “Profile-guided code compression,” in Proc. Conf.

Programming Languages Design and Implementation, Berlin, Germany, June

17–19 2002, pp. 95–105.

[37] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. M. O. Homewood,

“Lx: A technology platform for customizable VLIW embedded processing,”

in Proc. 27th Int. Symp. Computer Architecture, New York, NY, USA, June

10–14 2000, pp. 203–213.

[38] T. Fischer, “A pyramid vector quantizer,” IEEE Trans. Information Theory,

vol. 32, pp. 568–583, July 4 1986.

[39] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW Ap-

proach to Architectures, Compilers and Tools. Morgan Kaufmann Publishers,

1998.

[40] D. R. Gonzales, “Micro-RISC architecture for the wireless market,” IEEE Mi-

cro, vol. 19, no. 4, 1999.

[41] R. E. Gonzalez, “Xtensa — A configurable and extensible processor,” IEEE

Micro, vol. 20, no. 2, pp. 60–70, 2000.

Bibliography 149

[42] S. Haga and R. Barua, “EPIC instruction scheduling based on optimal ap-

proaches,” in Proc. 1st Ann. Workshop Explicitly Parallel Instruction Comput-

ing Architectures and Compiler Technology, Austin, TX, USA, Dec. 2 2001.

[43] R. W. Hamming, “Error-detecting and error-correcting codes,” Bell System

Technical Journal, vol. 29, pp. 147–160, Apr. 1950.

[44] A. Hasegawa, I. Kawasaki, K. Yamada, S. Yoshioka, S. Kawasaki, and

P. Biswas, “SH3: High code density, low power,” IEEE Micro, vol. 15, no. 6,

pp. 11–19, Dec. 1995.

[45] J. Heikkinen, J. Takala, A. Cilio, and H. Corporaal, “On efficiency of transport

triggered architectures in DSP applications,” in Advances in Systems Engineer-

ing, Signal Processing and Communications, N. Mastorakis, Ed. New York,

NY, USA: WSEAS Press, 2002, pp. 25–29.

[46] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen,

A. Wieferink, and H. Meyr, “A novel methodology for the design of

application-specific instruction-set processors (ASIPs) using a machine de-

scription language,” IEEE Trans. Computer-Aided Design of Integrated Cir-

cuits and Systems, vol. 20, no. 11, pp. 1338–1354, 2001.

[47] J. Hoogerbrugge, “Code generation for transport triggered architectures,”

Ph.D. Thesis, Delft University of Technology, The Netherlands, Feb. 1996.

[48] J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. van de Wiel, “A code com-

pression system based on pipelined interpreters,” Software - Practice and Ex-

perience, vol. 29, no. 11, pp. 1005–1023, 1999.

[49] P. G. Howard and J. S. Witter, Practical Implementations of Arithmetic Cod-

ing. Norwell, MA, USA: Kluwer Academic Publishers, 1992.

[50] D. A. Huffman, “A method for the construction of minimum redundancy

codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sept. 1952.

[51] A. Ibrahim, A. Davis, and M. Parker, “ACT: a low power VLIW cluster co-

processor for DSP applications,” in Proc. Workshop Optimizations for DSP

and Embedded Systems, New York, NY, USA, Mar. 26 2006.

150 Bibliography

[52] Intel, Intel Itanium Architecture Software Developer’s Manual, Volume 1: Ap-

plication Architecture, Revision 2.2, Jan. 2006.

[53] T. Ishihara and H. Yasuura, “A power reduction technique with object code

merging for application specific embedded processors,” in Proc. Design, Au-

tomation and Test in Europe Conf., Paris, France, March. 27–30 2000, pp.

617–623.

[54] P. Jääskeläinen, “Instruction set simulator for transport triggered architec-

tures,” Master’s thesis, Tampere University of Technology, Finland, Aug.

2005.

[55] P. Jääskeläinen, V. Guzma, A. Cilio, and J. Takala, “Codesign toolset for

application-specific instruction-set processors,” in Multimedia on Mobile De-

vices, ser. Proceedings of SPIE, R. Creutzburg, J. Takala, and J. Cai, Eds., San

Jose, CA, USA, Jan. 28 – Feb. 1 2007, vol. 6507.

[56] Y. Jin and R. Chen, “Instruction cache compression for embedded systems,”

Berkley Wireless Research Center,” Technical Report, 2000.

[57] M. B. Jr. and R. Smith, “Enhanced compression techniques to simplify pro-

gram decompression and execution,” in Proc. Int. Conf. Computer Design,

Austin, TX, USA, Oct. 12–15 1997, pp. 170–176.

[58] I. Kadayif and M. T. Kandemir, “Instruction compression and encoding for

low-power systems,” in Proc. 15th Ann. IEEE Int. ASIC/SOC Conf., Rochester,

NY, USA, Sept. 25–28 2002, pp. 301–305.

[59] J. Kang, J. Lee, and W. Sung, “A compiler-friendly RISC-based digital sig-

nal processor synthesis and performance evaluation,” Journal of VLSI Signal

Processing, no. 27, pp. 297–312, 2001.

[60] D.-H. Kim and H. J. Lee, “Iterative procedural abstraction for code size reduc-

tion,” in Proc. Int. Conf. Compilers, Architecture, and Synthesis for Embedded

Systems, Grenoble, France, Oct. 8–11 2002, pp. 277–279.

[61] K. Kissell, MIPS16: High-density MIPS for the Embedded Market. Silicon

Graphics MIPS Group, 1997.

Bibliography 151

[62] M. Kjelsø, M. Gooch, and S. Jones, “Design and performance of a main mem-

ory hardware data compressor,” in Proc. EUROMICRO Conf., Prague, Czech

Republic, Sep. 2–5 1996, pp. 423–430.

[63] M. Kozuch and A. Wolfe, “Compression of embedded system programs,” in

Proc. Int. Conf. Computer Design, Cambridge, MA, USA, Oct. 10–12 1994,

pp. 270–277.

[64] K. Kucukcakar, “An ASIP design methodology for embedded systems,” in

Proc. IEEE Symp. Microarchitecture, Rome, Italy, Dec. 10–13 1999, pp. 17–

21.

[65] J. Kwak and J. You, “One- and two-dimensional constant geometry fast co-

sine transform algorithms and architectures,” IEEE Trans. Signal Processing,

vol. 47, no. 7, pp. 2023–2034, July 1999.

[66] L. Laasonen, “Program image and processor generator for transport triggered

architectures,” Master’s thesis, Tampere University of Technology, Finland,

May 2007.

[67] P. Lapsley, J. Bier, A. Shinham, and E. A. Lee, DSP Processor Fundamentals:

Architectures and Features. Wiley-IEE Press, 1996.

[68] S. Y. Larin and T. M. Conte, “Compiler-driven cached code compression

schemes for embedded ILP processors,” in Proc. 32nd Ann. Int. Symp. Mi-

croarchitecture, Gold Coast, Australia, Jan. 29–21 1999, pp. 82–92.

[69] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool for

evaluating and synthesizing multimedia communications systems,” in Proc.

30th Ann. IEEE/ACM Int. Symp. Microarchitecture, Research Triangle Park,

NC, USA, Dec. 1–3 1997, pp. 330–335.

[70] H. Lee, P. Beckett, and B. Appelbe, “High-performance extendable instruc-

tion set computing,” in Proc. 6th Australasian Computer Systems Architecture

Conf., Haifa, Israel, Nov. 16–18 2001, pp. 89–94.

[71] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, “Improving code density us-

ing compression techniques,” in Proc. 30th Ann. Int. Symp. Microarchitecture,

Research Triangle Park, NC, USA, Dec 1–3 1997, pp. 194–203.

152 Bibliography

[72] C. Lefurgy and T. Mudge, “Code compression for DSP,” University of Michi-

gan, Technical Report CSE-TR-380-98, Nov. 1998.

[73] ——, “Fast software-managed code decompression,” in Proc. Int. Workshop

Compiler and Architecture Support for Embedded Systems, Washington, DC,

USA, Oct. 1–3 1999, pp. 139–143.

[74] C. Lefurgy, E. Piccininni, and T. Mudge, “Evaluation of a high performance

code compression method,” in Proc. 32nd Ann. Int. Symp. Microarchitecture,

Haifa, Israel, Nov. 16–18 1999, pp. 93–102.

[75] ——, “Reducing code size with run-time decompression,” in Proc. 6th Int.

Symp. High-Performance Computer Architecture, Toulouse, France, Jan. 8–12

2000, pp. 218–228.

[76] H. Lekatsas, J. Henkel, and W. Wolf, “Arithmetic coding for low power embed-

ded system design,” in Proc. Data Compression Conf., Snowbird, UT, USA,

Mar. 28–30 2000, pp. 430–439.

[77] ——, “Code compression as a variable in hardware/software co-design,” in

Proc. 8th Int. Workshop Hardware/Software Co-Design, San Diego, CA, USA,

May 3–5 2000, pp. 120–124.

[78] ——, “Code compression for low power embedded system design,” in Proc.

37th Conf. Design Automation., Los Angeles, CA, USA, June 5–9 2000, pp.

294–299.

[79] ——, “Design and simulation of a pipelined decompression architecture for

embedded systems,” in Proc. ACM/IEEE Int. Symp. System Synthesis, Mon-

treal, Quebec, Canada, Sept. 30 – Oct. 3 2001, pp. 63–68.

[80] H. Lekatsas and W. Wolf, “Code compression for embedded systems,” in Proc.

35th Conf. Design Automation, San Francisco, CA, USA, June 15–19 1998,

pp. 516–521.

[81] ——, “Random access decompression using binary arithmetic coding,” in

Proc. Data Compression Conf., Snowbird, UT, USA, Mar. 29–31 1999, pp.

306–315.

Bibliography 153

[82] ——, “SAMC: A code compression algorithm for embedded processors,”

IEEE Trans. Computer Aided Design of Integrated Circuits and Systems,

vol. 18, no. 12, pp. 1689–1701, Dec. 1999.

[83] S. Liao, “Code generation and optimization for embedded digital signal

processors,” Ph.D. dissertation, Massachusetts Institute of Technology, MA,

USA, June 1996.

[84] S. Liao, S. Devadas, and K. Keutzer, “Code density optimization for embedded

DSP processors using data compression techniques,” IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, vol. 17, no. 7, pp. 601–608,

July 1998.

[85] ——, “A text compression-based method for code size minimization in em-

bedded systems,” ACM Trans. Design Automation of Electronic Systems,

vol. 4, no. 1, pp. 12–38, Jan. 1999.

[86] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang, “Storage assignment

to decrease code size,” SIGPLAN Notices, vol. 30, no. 6, pp. 138–143, June

1995.

[87] C. Liem, F. Breant, S. Jadhav, R. O’Farrell, R. Ryan, and O. Levia, “Em-

bedded tools for a customizable DSP architecture,” IEEE Design and Test of

Computers, vol. 19, no. 6, pp. 27–35, Nov.-Dec. 2002.

[88] C. H. Lin, Y. Xie, and W. Wolf, “LZW-based code compression for VLIW

embedded systems,” in Proc. Design, Automation and Test in Europe Conf.

and Exhib., vol. 3, Paris, France, Feb. 16–20 2004, pp. 76–81.

[89] K. Lin, J.-J. Shann, and C.-P. Chung, “Code compression by register operand

dependency,” in Proc. 6th Ann. Workshop Interaction between Compilers and

Computer Architectures, Cambridge, MA, USA, Feb. 3 2002, pp. 91–101.

[90] C.-H. Liu, T.-J. Lin, C.-M. Chao, P.-C. Hsiao, L.-C. Lin, S.-K. Chen, C.-

W. Huang, C.-W. Liu, and C.-W. Jen, “Hierarchical instruction encoding for

VLIW digital signal processors,” in Proc. IEEE Int. Symp. Circuits and Sys-

tems, Kobe, Japan, May. 23–26 2005, pp. 3503–3506.

[91] P. G. Lowney, “The Multiflow trace scheduling compiler,” The Journal of Su-

percomputing, vol. 7, no. 1–2, pp. 51–143, May 1993.

154 Bibliography

[92] S. J. Nam, I. C. Park, and C. M. Kyung, “Improving dictionary-based code

compression in VLIW architectures,” IEICE Trans. Fundamentals of Electron-

ics, Commun. and Comput. Sciences, vol. E82-A, no. 11, pp. 2318–2124, Nov.

1999.

[93] T. Okuma, H. Tomiyama, A. Inoue, E. Fajar, and H. Yasuura, “Instruction

encoding techniques for area minimization of instruction ROM,” in Proc. 11th

Int. Symp. System Synthesis, Hsinchu, Taiwan, Dec. 2–4 1998, pp. 125–130.

[94] H. Pan and K. Asanovic, “Heads and tails: a variable-length instruction format

supporting parallel fetch and decode,” in Proc. Int. Conf. Compilers, Architec-

ture, and Synthesis for Embedded Systems, Atlanta, GA, USA, Nov. 16–17

2001, pp. 168–175.

[95] R. Pannain, G. Araújo, and P. Centoducatte, “Using operand factorization to

compress DSP programs,” in Proc. 11th Symp. Computer Architecture and

High Performance Computing, Natal, Brazil, Sept. 29 – Oct. 2 1999, pp. 223–

229.

[96] S. Pees, A. Hoffman, V. Zivojnovic, and H. Meyer, “LISA – machine descrip-

tion language for cycle-accurate models of programmable DSP architectures,”

in Proc. Design Automation Conf., New Orleans, LA, USA, June 21–25. 1999,

pp. 933–938.

[97] E. Piccinelli and R. Sannino, “Code compression for VLIW embedded proces-

sors,” ST Journal of Research, vol. 1, no. 2, pp. 32–46, 2004.

[98] C. Piquet, P. Volet, and J.-M. Masgonty, “Code memory compression with on-

line decompression,” in Proc. 27th European Solid-State Circuits Conf., Vil-

lach, Austria, Sept. 18–20 2001, pp. 150–152.

[99] T. Pitkänen, T. Rantanen, A. Cilio, and J. Takala, “Hardware cost estimation

for application-specific processor design,” in Embedded Comput. Syst.: Archi-

tectures, Modeling, and Simulation, Proc. 5th Int. Workshop SAMOS V, ser.

Lecture Notes in Computer Science, T. Hämäläinen, A. Pimentel, J. Takala,

and S. Vassiliadis, Eds. Berlin, Germany: Springer-Verlag, 2005, vol. LNCS

3553, pp. 212–221.

Bibliography 155

[100] J. M. Rabaey, W. Gass, R. Brodersen, T. Nishitani, and T. Chen, “VLSI de-

sign and implementation fuels the signal-processing revolution,” IEEE Signal

Processing Mag., vol. 15, no. 1, pp. 22–37, Jan. 1998.

[101] T. Rantanen, “Cost estimation for transport triggered architectures,” Master’s

thesis, Tampere University of Technology, Finland, May. 2004.

[102] T. Richter, W. Drescher, E. Engel, S. Kobayashi, V. Nikolajevic, M. Weiss,

and G. Fettweis, “A platform-based highly parallel digital signal processor,” in

Proc. Custom Integrated Circuits Conf., San Diego, CA, USA, May 6–9 2001,

pp. 305–305.

[103] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM Jour-

nal of Research and Development, vol. 20, no. 3, pp. 198–203, 1976.

[104] M. Ros and P. Sutton, “Compiler optimization and ordering effects on VLIW

code compression,” in Proc. Int. Conf. Compilers, Architectures and Synthesis

for Embedded Systems, San Jose, CA, USA, Oct. 30 – Nov. 1 2003, pp. 95–

103.

[105] ——, “A Hamming distance based WLIW/EPIC code compression tech-

nique,” in Proc. Int. Conf. Compilers, Architectures and Synthesis for Embed-

ded Systems, Washington, DC, USA, Sept. 22–25 2004, pp. 132–139.

[106] C. Rowen and S. Leibson, Engineering the Complex SOC: Fast Flexible design

with Configurable Processors. Upper Sadle River, NJ, USA: Prentice Hall

Professional Technical Reference, June 2004.

[107] J. Runeson, “Code compression through procedural abstraction before register

allocation,” Master’s thesis, University of Uppsala, Sweden, Mar. 2000.

[108] M. S. Schlansker and B. R. Rau, “EPIC: an architecture for instruction-level

parallel processors,” Hewlett-Packard Laboratories, Tech. Rep. HPL-1999-

111, Feb. 2000.

[109] J. Sertamo, “Processor generator for transport triggered architectures,” Mas-

ter’s thesis, Tampere University of Technology, Finland, Sept. 2003.

[110] P. Simonen, I. Saastamoinen, M. Kuulusa, and J. Nurmi, “Advanced instruc-

tion set architectures for reducing program memory usage in a DSP processor,”

156 Bibliography

in Proc. 1st Int. Workshop Electronic Design, Test, and Applications, Chris-

tenchurch, New Zealand, Jan. 29–31 2002, pp. 477–479.

[111] P. Song, “Demystifying EPIC and IA-64,” Microprocessor Report, vol. 12,

no. 1, pp. 24–30, Jan. 28 1998.

[112] C. G. Subash, M. Mahesh, and R. Gpvomdarajan, “Area and power reduction

of embedded DSP systems using instruction compression and re-configurable

encoding,” in Proc. Int. Conf. Comput. Aided Design, San Jose, CA, USA,

Nov. 4–8 2001, pp. 631–634.

[113] B. D. Sutter, K. D. Bosschere, B. D. Bus, B. Demoen, and P. Keyngnaert,

“Whole-program optimization of binary executables,” in Proc. Computer and

E-business Conf., Rome, Italy, July 31 – Aug. 6 2000.

[114] H. Suzuki, H. Makino, and Y. Matsuda, “Novel VLIW code compaction

method for 3D geometry processors,” in Proc. IEEE Custom Integrated Cir-

cuits Conf., Orlando, FL, USA, May 21–24 2000, pp. 555–558.

[115] J. Takala, D. Akopian, J. Astola, and J. Saarinen, “Constant geometry algo-

rithm for discrete cosine transform,” IEEE Trans. Signal Processing, vol. 48,

no. 6, pp. 1840–1843, June 2000.

[116] B. Tunstall, “Synthesis of noiseless compression codes,” Ph.D. dissertation,

Georgia Institute of Technology, Atlanta, GA, USA, 1967.

[117] A. J. Viterbi, “Error bounds for convolutional coding and an asymptotically

optimum decoding algorithm,” IEEE Trans. Information Theory, vol. 13, pp.

260–269, Apr. 1967.

[118] M. H. Weiss and G. P. Fettweis, “Dynamic codewidth reduction for VLIW in-

struction set architectures in digital signal processing,” in Proc. 3rd Int. Work-

shop Image and Signal Processing on the Theme of Advances in Computa-

tional Intelligence, Manchester, UK, Nov. 4–7 1996, pp. 517–520.

[119] S. Weiss and S. Beren, “HW/SW partitioning of an embedded instruction

memory decompressor,” in Proc. 9th Int. Symp. Hardware/Software Codesign,

Copenhagen, Denmark, Apr. 25–27 2001, pp. 36–41.

Bibliography 157

[120] T. A. Welch, “A technique for high-performance data compression,” Com-

puter, vol. 17, no. 6, pp. 8–19, June 1984.

[121] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing

and Indexing Documents and Images. San Francisco, CA, USA: Morgan

Kaufmann Publishers, 1999.

[122] A. Wolfe and A. Chanin, “Executing compressed programs on an embedded

RISC architecture,” in Proc. 25th Ann. Int. Symp. Microarchitecture, Portland,

OR, USA, Dec. 1–4 1992, pp. 81–91.

[123] A. Wolfe and C. Chanin, “Executing compressed programs on an embedded

RISC processor,” in Proc. 25th Annual Symp. Microarchitecture, Portland,

OR, USA, Dec. 1–4 1992, pp. 81–91.

[124] Y. Xie, H. Lekatsas, and W. Wolf, “Code compression for VLIW processors,”

in Proc. Data Compression Conf., Snowbird, UT, USA, Mar. 27–29 2001, p.

525.

[125] ——, “A code decompression architecture for VLIW processors,” in Proc.

34th ACM/IEEE Int. Symp. Microarchitecture, Austin, TX, USA, Dec. 1–5

2001, pp. 66–75.

[126] ——, “Compression ratio and decompression overhead tradeoffs in code com-

pression for VLIW architectures,” in Proc. 4th Int. Conf. ASIC, Shanghai,

China, Oct. 23–25 2001, pp. 337–340.

[127] Y. Xie, W. Wolf, and H. Lekatsas, “Code compression for VLIW processors

using variable-to-fixed coding,” in Proc. ACM/IEEE Int. Symp. System Synthe-

sis, Kyoto, Japan, Oct. 2–4 2002, pp. 138–143.

[128] Xilinx, MicroBlaze Processor Reference Guide, http://www.xilinx.com, Oct.

2005.

[129] ——, PowerPC Processor Reference Guide, http://www.xilinx.com, Jan.

2007.

[130] J.-H. Yang, B.-W. Kim, S.-J. Nam, Y.-S. Kwon, D.-H. Lee, J.-Y. Lee, C.-S.

Hwang, Y.-H. Lee, S.-H. Hwang, I.-C. Park, and C.-M. Kyung, “MetaCore:

158 Bibliography

an application-specific programmable DSP development system,” IEEE Trans.

VLSI Systems, vol. 8, no. 2, pp. 173–183, 2000.

[131] C. Yeh and C.-S. Wang, “A program compression technique supporting IP-

centric SOC design,” in Proc. 13th Ann. IEEE Int. ASIC/SOC Conf., Arlington,

VA, USA, Sept. 13–16 2000, pp. 226–230.

[132] Y. Yoshida, B.-Y. Song, H. Okuhata, T. Onoye, and I. Shirakawa, “Low-power

consumption architecture for embedded processor,” in Proc. 2nd Int. Conf.

ASIC, Sanghai, China, Oct. 21–24 1996, pp. 77–80.

[133] ——, “An object code compression approach to embedded processors,” in

Proc. Int. Symp. Low-Power Electronics and Design, Monterey, CA, USA,

Aug. 18–20 1997, pp. 265–268.

[134] J. Zalamea, J. Llosa, E. Ayquade, and M. Valero, “Two-level hierarchical reg-

ister file organization for VLIW processors,” in Proc. IEEE Symp. Microarchi-

tecture, Monterey, CA, USA, Dec. 10–13 2000, pp. 137–146.

[135] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”

IEEE Trans. Information Theory, vol. 23, no. 3, pp. 337–343, May 1977.

[136] ——, “Compression of individual sequences via variable rate coding,” IEEE

Trans. Information Theory, vol. 24, no. 5, pp. 530–536, Sept. 1978.

[137] V. Zivojnovic, S. Pees, and H. Meyer, “LISA – machine description language

and generic machine model for HW/SW co-design,” in Proc. IEEE Workshop

VLSI Signal Processing, San Francisco, CA, USA, Oct. 30 – Nov. 1 1996, pp.

127–136.

���������	
����

����	�
�����
�
��	���
�����	�������

�������	��������
�	��	������
���
�� �	!�"	���
#$%&�����	�������'	#��
��(

	heikkinen_etu.pdf
	heikkinen_nimio.pdf
	Jari Heikkinen
	Program Compression in Long Instruction Word Application-Specific Instruction-Set Processors

	heikkinen.pdf
	takakansi.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

