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Abstract

Complex systems theory is a mathematical framework for studying interconnected dynamical
objects. Usually these objects themselves are by construction simple, and their temporal be-
haviour in isolation is easily predictable, but the way they are interconnected into a network
allows emergence of complex, non-obvious phenomena. The emergent phenomena and their
stability are dependent on both the intrinsic dynamics of the objects, the types of interactions
between the objects, and the connectivity patterns between the objects. This work focuses on
the third aspect, i.e., the structure of the network, although the other two aspects are inher-
ently present in the study as well. Tools from graph theory are applied to generate and analyze
the network structure, and the effect of the structure on the network dynamics is analyzed by
various methods. The objects of interest are biological and physical systems, and special at-
tention is given to spiking neuronal networks, i.e., networks of nerve cells that communicate by
transmitting and receiving action potentials.

In this thesis, methods for modelling spiking neuronal networks are introduced. Different point
neuron models, including the integrate-and-fire model, are presented and applied to study the
collective behaviour of the neurons. Special focus is placed on the emergence of network bursts,
i.e., short periods of network-wide high-frequency firing. The occurrence of this behaviour is
stable in certain regimes of connection strengths. This work shows that the network bursting
is found to be more frequent in locally connected networks than in non-local networks, such as
randomly connected networks. To gain a deeper insight, the aspects of structure that promote
the bursting behaviour are analyzed by graph-theoretic means. The clustering coefficient and
the maximal eigenvalue of the connectivity matrix are found the most important measures of
structure in this matter, both expressing their relevance under different structural conditions.
A range of different network structures are applied to confirm this result. A special class of
connectivity is studied in more detail, namely, the connectivity patterns produced by simulations
of growing and interconnecting neurons placed on a 2-dimensional array. Two simulators of
growth are applied for this purpose.

In addition, a more abstract class of dynamical systems, the Boolean networks, are considered.
These systems were originally introduced as a model for genetic regulatory networks, but have
thereafter been extensively used for more general studies of complex systems. In this work,
measures of information diversity and complexity are applied to several types of systems that
obey Boolean dynamics. The random Boolean networks are shown to possess high temporal
complexity prior to reaching an attractor. Similarly, high values of complexity are found at a
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ii ABSTRACT

transition stage of another dynamical system, the lattice gas automaton, which can be formulated
using the Boolean network framework as well. The temporal maximization of the complexity
near the transitions between different dynamical regimes could therefore be a more general
phenomenon in complex networks. The applicability of the information-theoretic framework is
also confirmed in a study of bursting neuronal networks, where different types of networks are
shown to be separable by the intrinsic information distance distributions they produce.

The connectivities of the networks studied in this thesis are analyzed using graph-theoretic
tools. The graph theory provides a mathematical framework for studying the structure of
complex systems and how it affects the system dynamics. In the studies of the nervous system,
detailed maps on the connections between neurons have been collected, although such data
are yet scarce and laborious to obtain experimentally. This work shows which aspects of the
structure are relevant for the dynamics of spontaneously bursting neuronal networks. Such
information could be useful in directing the experiments to measure only the relevant aspects
of the structure instead of assessing the whole connectome. In addition, the framework of
generating the network structure by animating the growth of the neurons, as presented in this
thesis, could serve in simulations of the nervous system as a reliable alternative to importing
the experimentally obtained connectome.
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to train me in computational neuroscience. I also thank Matti Nykter for including me in
his projects and for his professional collaboration, and Juha Kesseli for his insightful help in
systems theory. I am also thankful to Riikka Havela, Heidi Teppola, and all the other people
in the computational neuroscience research group for their contribution to my work and for the
good atmosphere we had in the group. I thank Olli Yli-Harja and Stuart Kauffman for their
general advice in science, and all my colleagues at the computational systems biology group
for the stimulating discussions and the activities shared together. In addition, I would like
to express my gratitude to Alejandro Schinder and Lidia Szczupak for taking me as a visiting
scientist in their research groups, and to Lucas Mongiat, Antonia Maŕın-Burgin, Emilio Kropff,
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Linne. Modeling growth in neuronal cell cultures: Network properties in different phases
of growth studied using two growth simulators. In Proceedings of the 7th International
Workshop on Computational Systems Biology (WCSB 2010), pp. 75-78, 2010. (* equal
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Chapter 1

Introduction

The brain is likely to be the most complex organ in a vertebrate body. This complexity rises
both from its structure and function as well as the interplay between them. The human brain
is comprised of approximately 1011 neurons, i.e. nerve cells, and 1015 synapses between them,
and in addition, glial cells that outnumber the neurons by a factor between 1 and 10 [Azevedo
et al., 2009, Allen and Barres, 2009, Sporns, 2011]. The brain functions include (yet are not
restricted to) receiving, transferring and processing sensory information, cognitive processes,
and conscious and autonomous motor control. Many of these tasks have been found to be
concentrated on different brain regions and the capabilities to perform them have been shown
to emerge at certain developmental stages. The detailed picture of these processes is, however,
poorly understood due to the great number of neurons and other cells as well as the complexity
of the cellular and synaptic processes involved.

Both the structural and dynamical aspects of the brain pose a notable challenge for unravelling
the mystery of the brain. From the structural aspect, one of the milestones set out for the future
is collecting the connectome, i.e., a detailed map of the neurons and the synapses in an adult
human [Sporns et al., 2005]. Such data have already been collected for C. Elegans [White et al.,
1986] and certain regions of the mouse brain [Briggman et al., 2011, Bock et al., 2011], but larger
networks are yet to be reconstructed. The hitherto described networks have furthered the un-
derstanding of the underlying neuronal systems and revealed important deviations between the
structure of brain networks and mainstream model networks such as random networks [Watts
and Strogatz, 1998, Milo et al., 2002]. From the dynamical aspect, it is yet unclear how the
co-function of the neurons forms fundamental cognitive processes such as learning and memory,
given either realistic or simplified network structure. Likewise, there are discrepancies over the
role of subcellular and subsynaptic level phenomena, as well as the contribution of glial cells to
the brain processes [Araque and Navarrete, 2010]. In addition to all this, a major extra chal-
lenge is the developmental aspect of the neural network. The connections in the brain as well
as the neurons themselves are plastic and subjected to a multitude of regulatory processes [Tur-
rigiano, 2011]. Such processes include pruning of synapses, spike-timing dependent plasticity,
and activity-dependent growth of neurons, each of which has been proposed to fundamentally
contribute to several brain functions [Shatz, 1990, Chechik et al., 1999, Sjöström et al., 2008].
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2 CHAPTER 1. INTRODUCTION

Neuronal networks have been under a wide range of computational research for the past three
decades. Models on both development and activity of neuronal networks have long been available
[Izhikevich, 2004, Zubler and Douglas, 2009, Van Ooyen, 2011], and they are increasingly drawing
the attention of life scientists due to the advances made in information technology. The systems
modelling approach, where the function of the system is studied as an emergent property of
the function of the single actors and the interactions between them, has proven a valuable
tool [Izhikevich and Edelman, 2008, Hellgren-Kotaleski and Blackwell, 2010, Buzsáki, 2011],
although unresolved challenges exist [Gerstein and Kirkland, 2001, Dada and Mendes, 2011].
Theoretical and computational approaches have assisted in revealing many a brain function,
and they have correctly predicted certain neuroscientific phenomena, to name a few, the need
for a net inhibitory current in order to observe certain Purkinje cell spike patterns [Jaeger et al.,
1997], and that synchronization is more easily obtained using inhibition than excitation [Lytton
and Sejnowski, 1991]. Far more numerous than such predictions are the postdictions, i.e., studies
that show or propose a mechanism for an experimentally observed neural phenomenon. Such
studies often contribute to the generalization of the experimental findings and can thus provide
deep insight into the function of the brain [Abbott, 2008].

The aim of this work is to study the structure and dynamics of neuronal networks by computa-
tional means, and uncover certain aspects on how the dynamics is affected by the structure. It is
indeed the connections between the actors in a complex network (such as neurons in a neuronal
network) that altogether allow the formation of collective activity, and hence, understanding the
structure of the network is utterly important. In this thesis, the structure of a neuronal network
is studied by simulating the growth of the neurons, and methods for analysing the resulting net-
work structure are introduced. The networks produced by simulators of growth are compared to
more abstract network models, such as random and locally connected networks. The networks
are also compared from the dynamical point of view. The different types of bio-electrical activity
that emerge in neuronal networks with different structure are studied. Especially, the emergence
of spontaneous synchronized spiking, namely, the network bursts1, is studied. In addition, the
information diversity of the spiking activity is quantified and the effect of network structure on
complexity is screened. For more general analyses on information diversity and complexity in
dynamical systems, a simpler model class of Boolean networks, which have been used to describe
the dynamics of several different types of physical systems, is considered. In these networks,
the complex temporal dynamics arise from the interplay of actors whose internal dynamics are
reduced to a minimum in a certain sense, namely, to binary functions. The temporal behaviour
in these systems is quantified using novel information-theoretic tools. The ultimate goal of
the work is to further the understanding of structural aspects in complex networks and their
contribution to the type, magnitude, and complexity of the emergent dynamics.

1Throughout this work, the term network burst (used interchangeably with the term “burst”) is used for a
synchronized or nearly synchronized spiking activity (alternative names are population burst, population spike,
network spike, synchronized spike, synchronized burst). This is standard terminology in the literature on neuronal
cultures grown on micro-electrode arrays [Kamioka et al., 1996, Marom and Shahaf, 2002]. To make a distinction
from bursts of a single cell, which usually occur on a shorter time-scale, the term intrinsic burst or single-cell
burst is used for the latter.



Chapter 2

Theoretical background

In this chapter, the mathematical theory underlying the modelling and analysis of the struc-
ture and dynamics of complex networks is introduced. A sound mathematical foundation for
the modelling of complex systems is needed in order to guarantee correct temporal behaviour
and to improve the predictability and generalizability of the systems. Section 2.1 presents the
graph-theoretic tools for assessing network structure, while Section 2.2 introduces the theory of
stochastic processes that can be applied to the modelling of non-deterministic dynamical systems
— although it is also applicable to deterministic systems as a special case of zero randomness.
Section 2.3 provides methods for assessing the amount of information in complex systems.

2.1 Graph theory

Connectivity patterns in networks, such as neuronal, genetic, social, and internet networks, can
be best described by graph-theoretic tools. A graph is an entity (G, E), where G = {v1, . . . , vN}
is the set of nodes, and E ⊂ {(x, y)|x ∈ G, y ∈ G} is the set of egdes between the nodes, x
referring to the source node and y to the target node of the edge. The number N is the number
of nodes in the graph, referred to as the size of the network. The graph can be either directed,
meaning that there is a distinction between edges (vi, vj) and (vj , vi), or undirected, where the
two edges refer to the same object. Two nodes vi and vj are called neighbours if there exists an
edge (vi, vj) or (vj , vi) in the set of edges E . The in-degree of node vi, Di,in, is the number of
edges projecting to the node vi, and the out-degree Di,out is the number of edges projected by
the node. In weighted graphs each edge is affiliated with an additional quantity that represents
the strength of the connection, while in unweighted graphs all the edges are, essentially, equally
important.

The focus of this thesis is in directed, unweighted graphs. These graphs can describe, e.g.,
the connectivity of neuronal networks in a way that the direction of the synapse (which is the
sending, pre-synaptic neuron and which is the receiving, post-synaptic neuron) is respected, but
the strength of all existing connections are equal. Such connectivity graphs can be uniquely
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4 CHAPTER 2. THEORETICAL BACKGROUND

described by binary connectivity matrices M ∈ {0, 1}N×N , where the element Mij denotes the
existence (1) or inexistence (0) of edge (vi, vj) ∈ E . The connectivity matrix of a network
determines the structure (may also be called the topology) of the network, but does not tell
anything about the type of interaction, and thus does not alone imply anything about the
dynamics of the network.

The number of possible connectivity graphs grows superexponentially (2N
2

if self-connections
are allowed and 2N(N−1) if not) with the size of the network, which brings challenges to the clas-
sification of large graphs. Typically, one wants to characterize a specific aspect of the network
connectivity, and compare different networks from this aspect. There are several widely applied
graph measures for such a purpose. Basically, any function {0, 1}N×N → R would do, but a fair
restriction to a graph measure is that it be invariant under the permutation of the nodes and
be applicable to any network size N . The graph measures applied in this work are clustering
coefficient, geodesic path length, node-betweenness, length to self, average degree, degree devia-
tions, degree correlation, maximum eigenvalue, and motif occurrences, each of which meets the
mentioned criteria. In the following these measures are defined.

The clustering coefficient measures the degree of community in the network as a quantity of
“how likely is it that a neighbour of my neighbour is my neighbour as well”. It has originally
been introduced for undirected networks as the ratio between the number of triangles, i.e. fully
connected triples, and the number of (partially or fully) connected triples [Watts and Strogatz,
1998, Newman, 2003]. However, the definition of the clustering coefficient can be extended for
directed networks as follows. First, the local clustering coefficient of a node vi is defined as

Ci =
1

8

(
Gi
2

) N∑
j = 1
j 6= i

j−1∑
k = 1
k 6= i

(Mij +Mji)(Mik +Mki)(Mjk +Mkj), (2.1)

where Gi is the number of neighbours of the node vi. In this definition, each triple of nodes
{vi, vj , vk} may form 0 to 8 different triangles. The number of triangles is one when there is
exactly one unidirected edge between nodes vi and vj , between vi and vk, and between vj and
vk. Furthermore, the number of triangles is doubled whenever a unidirected edge is changed to
bidirected. Another possibility is to consider the number of traversable triangles:

Ci =
1

2

(
Gi
2

) N∑
j = 1
j 6= i

N∑
k = 1

i 6= k 6= j

MijMjkMki. (2.2)

Both methods agree in that Ci = 0 if there are no connections between the neighbours of vi,
and that Ci = 1 if and only if all neighbours of i are bilaterally connected to each other and to
i. The former method is used in Publication VI, while in Publication III, the latter method
is employed. The latter method may overestimate the degree of clustering in networks where
directed loops of length 3 are promoted. This could be an issue in Publication VI, where such
graphs are considered among others, and hence the former method is applied. In both cases,
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the clustering coefficient of the graph is then calculated as the average of the local clustering
coefficients:

C̄ =
1

N

N∑
i=1

Ci. (2.3)

A geodesic path from node vi to node vj is a minimal set of edges {(vi, vK1), (vK1 , vK2), . . .,
(vKl−2

, vKl−1
), (vKl−1

, vj)} ⊂ E through which one can traverse from vi to vj , and the geodesic
path length of the graph is the harmonic average length of these paths. This can be written in
mathematical terms as

L̄ =


1

N(N − 1)

N∑
i=1

N∑
j = 1
j 6= i

L−1
ij



−1

, (2.4)

where
Lij = min{k ∈ N|(Mk)ij > 0} (2.5)

is the length of the shortest path from vi to vj . If such a path does not exist, the set {k ∈
N|(Mk)ij > 0} is empty, and the value of Lij is interpreted as∞. These paths do not contribute
to the harmonic mean of the path lengths, unlike they do to the arithmetic mean, which justifies
the use of the harmonic mean [Newman, 2003, Boccaletti et al., 2006]. The closely related
measure, length to self, is an average geodesic path length from a node to itself, calculated as

L̄self =

(
1

N

N∑
i=1

L−1
ii

)−1

. (2.6)

The centrality of a node in the graph can be described using the measure of node-betweenness.
The node-betweenness of a node vi is an average value of how many geodesic paths the node
lies on. It can be calculated as

Bnode
i =

N∑
j = 1
j 6= i

N∑
k = 1

i 6= k 6= j
Ljk <∞

s
(i)
jk

sjk
, (2.7)

where s
(i)
jk is the number of such shortest paths from node vj to node vk that cross node vi, and

sjk is the total number of shortest paths from vj to vk.

A determinant aspect of the graph is the distribution of the number of inputs and outputs of
the nodes, that is, the degree distributions. The average degree of a graph is the sample mean
of the in- or out-degrees of the nodes, and can be written as

D̄ =
1

N

N∑
i=1

Di,out =
1

N

N∑
j=1

Dj,in =
1

N

N∑
i=1

N∑
j=1

Mij . (2.8)
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Similarly, the degree deviations measure the sample standard deviation of in- and out-degree:

σDout =

√√√√ 1

N − 1

N∑
i=1

(Di,out − D̄)2 (2.9)

σDin =

√√√√ 1

N − 1

N∑
i=1

(Di,in − D̄)2 (2.10)

The degree correlation, in turn, measures the correlation coefficient between in- and out-degree,
i.e., it assesses how likely it is that a node with many inputs has many outputs as well, and vice
versa. This quantity is calculated as

σDin,Dout =

N∑
i=1

(Di,in − D̄)(Di,out − D̄)√√√√ N∑
i=1

(Di,in − D̄)2

√√√√ N∑
i=1

(Di,out − D̄)2

(2.11)

The graph properties can also be viewed by using spectral methods. An important quantity is the
maximum eigenvalue, i.e., the largest eigenvalue of the connectivity matrix. This quantity is real-
valued, as the connectivity matrix is non-negative [MacCluer, 2000], and positively correlated to
the degree correlation [Restrepo et al., 2007]. Yet another approach is a combinatorial method,
where the occurrences of certain connectivity patterns are counted. The network motifs are
local connectivity patterns of three nodes. There are 26 = 64 such connectivity patterns, when
self-connections are excluded, but the number is reduced to 16 when motifs that can be changed
to another one by permutation of the nodes are regarded as one motif. Further, in three of these
16 patterns some of the nodes are completely isolated from the others, and thus the number of
connectivity patterns for triples of nodes is 13 [Milo et al., 2002]. These motifs are illustrated
in Figure 2.1.

1 2 3 4 5 6 7

8 9 10 11 12 13

Figure 2.1: The 13 network motifs of three connected nodes. See [Milo et al., 2002] for reference.
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2.2 Stochastic processes

The theory of stochastic processes is a useful tool for studying non-deterministic dynamical
systems. The collection of random variables {Xt|t ∈ I} is a stochastic process with index set
I, if Xt : Ω → Rn is a random variable for any t ∈ I, Ω representing the sample space of
the random variables [Ross, 1996, Øksendal, 2010]. In dynamical systems, the index set I is
considered the set of time points. This set can be either numerable, such as N, which leads to
a discrete-time system, or innumerable, such as [0,∞), which implies a continuous-time system
[Ross, 1996]. The mapping Xt(ω) : I → Rn, where the sample ω ∈ Ω is fixed, is called the
realization or the sample path of the stochastic process.

The manner in which the stochasticity is incorporated in the system dynamics depends on
the application. Typically, the state of a dynamic system is considered to evolve according to
an “averaged” rule, affected by a constantly present, randomly fluctuating perturbation term
[Øksendal, 2010]. Let us take two examples from the biology that are central to this thesis.
First, consider a cell whose membrane potential can be measured with an electrode. Further,
imagine that the ionic concentrations inside and outside the cell could also be measured and
the fraction of open ionic channels could be evaluated in real time. One would find that the
membrane potential of the cell is largely dictated by the proportion of open ion-channels that
are, in turn, temporally dependent on the membrane potential. However, this dependency
would include some amount of noise, which could be an effect of many biophysical intracellular
processes (see e.g. [Goldwyn and Shea-Brown, 2011]). As a second example, consider the genes
that are expressed in a cell. The product of the gene expression, namely, the proteins and other
macromolecules, direct the expression of other genes. Given that a particular set of genes are
expressed at a time instant, a named gene will with large probability be expressed in the very
near future. However, due to the numerous metabolic aspects of the cell as well as the sparse
density of the macromolecules in the cytoplasm, sometimes the considered gene will not be
expressed, and by contrast, another gene that should be inhibited by the set of expressed genes
could by chance become expressed. The former example (on the membrane potential dynamics)
is most convenient to be considered as a continuous-time continuous-state problem, while for
the latter example (on the gene expression) many approaches are arguable. This work restricts
to discrete-time discrete-state approaches for the latter problem, following the approach of the
seminal paper by Kauffman [Kauffman, 1969]. Let us consider the two mathematical frameworks
best suited for describing these two types of systems, namely, stochastic differential equations
and Markov chains. Let us start from the latter, simpler system.

A discrete-time discrete-state system {Xt : Ω → S|t ∈ N}, where S = {a1, a2, . . .} is the
(numerable) set of possible states of the system, is a Markov chain if it obeys the Markov
property. The Markov property can be formulated as [Ross, 1996]

∀i ≥ 0, k ≥ 0 : P (Xi+1|Xi = xi, . . . ,Xi−k = xi−k) = P (Xi+1|Xi = xi). (2.12)

This means that the future state Xi+1 of a system depends on its history only through the previ-
ous state Xi. That is, given the previous state Xi, the earlier states of the system, X0, . . . ,Xi−1,
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do not bring any extra information for the estimation of Xi+1. The state transitions of a Markov
chain are described by the transition matrix [Ross, 1996, Øksendal, 2010] P11 P12 · · ·

P21 P22 · · ·
...

...
. . .

 ,
where Pij = P (Xi+1 = aj |Xi = ai) is the transition probability from state ai to state aj . The
system is deterministic, if each state of the system inevitably leads to exactly one state, i.e., if
∀i∃j∀k : Pik = δj(k), and non-deterministic in any other case. Both types of Markov chains are
used in Publications IV and V.

The stochastic differential equation (SDE) describes the evolution of a continuous-time continuous-
state system involving stochastic dynamics. Similarly to ordinary differential equations (ODEs),
an SDE is an equation that governs the changes in the state of the system during an infinitesimal
time step. It can be written in differential form as [Øksendal, 2010]

dXt = f(Xt, t)dt+ g(Xt, t)dBt (2.13)

and in integral form as

Xt = X0 +

∫ t

0
f(Xu, u)du+

∫ t

0
g(Xu, u)dBu. (2.14)

The process {Bt|t ∈ [0,∞)} is called the (m-dimensional) Brownian motion. It can be intuitively
derived from a Markov chain that at each time instant either increases or decreases its value
by a constant value with equal probabilities, by considering the limit of small state change and
small time step [Ross, 1996]. Its main properties are the following1 [Ross, 1996]:

1. It is at rest at zero, i.e., B0 = 0 ∈ Rm.

2. It has independent increments, i.e., the increment
∫ τ+∆t
τ dBu = Bτ+∆t−Bτ is independent

of random variables Bt for any t ≤ τ and ∆t ≥ 0.

3. The increment
∫ τ+∆t
τ dBu is normally distributed with mean 0 ∈ Rm and variance c2∆tIm

for any τ,∆t ≥ 0, where c is a normalization constant and Im ∈ Rm×m is an identity
matrix.

The stochastic integral
∫ t

0 g(Xu, u)dBu is defined as the Itō integral, i.e., as the limit random
variable of

k∑
i=1

g(Xti−1 , ti−1)(Bti −Bti−1), (2.15)

1In [Øksendal, 2010], the first and third property are relaxed as follows. The initial distribution may be
centered anywhere as long as it is a point-mass distribution, i.e., P (B0 = X) = δB′

0
(X), where B′0 ∈ Rm is a

fixed vector. This detail is, however, insignificant in the application to the SDEs. As for the third property, any
non-negative definite matrix is allowed as the covariance matrix. This can be compensated for in the framework
of [Ross, 1996] by choosing the drift function g : Rn × R→ Rn×m appropriately.
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where the number k of subintervals obeying 0 = t0 < t1 < . . . < tk = t is increased to
infinity2. Another wide-spread interpretation would be the Stratonovich integral, which assigns
the midpoint value of g(X(ti+ti−1)/2, (ti + ti−1)/2) for increment Bti −Bti−1 , instead of the left
endpoint value of g(Xti−1 , ti−1) as used in the Itō integral. In this thesis, the Itō integral is
employed for the sake of its wider support in applied mathematics.

The Equations 2.13 and 2.14 utilize the bias term f : Rn ×R→ Rn and the drift term g : Rn ×
R→ Rn×m. These terms may depend on the state of the system, as well as the time, and together
they fully determine the time course behaviour of the system. Analytical solutions exist for SDEs
with several types of bias and drift functions, but in general the solution has to be obtained
numerically. There are two different approaches for this. In the partial differential equation
(PDE) approach, the Equation 2.13 is first transformed into a partial differential equation,
namely, a Fokker-Planck equation, where the propagation of the probability mass distribution
of Xt is solved through time [Kloeden and Platen, 1992]. In the sample path approach, several
realizations of the Brownian motion {Bt|t ∈ [0,∞)} are generated and the Equation 2.13 is solved
for each of these sample paths. Both approaches produce an approximation of the distribution
of Xt for any time instant t > 0. The PDE approach is efficient for low-dimensional systems,
but the sample path approach is more powerful in large-dimensional systems. The memory
consumption of the sample path method is only linear to the dimension n of the variable Xt,
while in the PDE approach the memory usage grows exponentially with n. This work considers
only the sample path approach in solving the SDEs (or related stochastic equations) — this
approach is used in Publications I, II, III, and VI.

The simplest numerical sample path method is the Euler-Maruyama method which is an exten-
sion of the forward Euler method for ODEs. The state update formula is as follows [Kloeden
and Platen, 1992]:

Xt+∆t(ω) = Xt(ω) + ∆tf(Xt(ω), t) + g(Xt, t)(Bt+∆t(ω)−Bt(ω)). (2.16)

The increment Bt+∆t −Bt obeys the distribution N (0, c2∆tIm), and hence, Bt+∆t(ω)−Bt(ω)
can be picked using a Gaussian random number generator. Thus, given the initial state X0, one
can solve the sample path {Xt(ω)|t ∈ [0,∞)} with a chosen resolution. The solution converges
to the correct distribution in the limit of infinitely small time step and infinite number of
sample paths [Kloeden and Platen, 1992]. There are several extensions for Euler-Maruyama
method, e.g., Milstein method or weak second order Taylor method [Kloeden and Platen, 1992]
that outperform the Euler-Maruyama method in their rate of convergence. The effect of these
extensions is, however, subject to the form of the bias and drift functions. As an example, the
Milstein method is reduced to the Euler-Maruyama method when it is applied to a system with
a constant drift term g(X, t) = g.

2In [Øksendal, 2010], this limit random variable is constructed using a sequence of elementary functions, which
converge toward Xt. The elementary functions are piece-wise (in time) constant, bounded, and measurable with
respect to a specific σ-algebra (see [Øksendal, 2010] for details), and the Itō integral for them is defined as Equation
2.15. The existence of the limit random variable is proven and the convergence (in L2) shown in [Øksendal, 2010].
For an alternative, more measure-theoretically rigorous construction of Itō integrals, see e.g. [Kallenberg, 2002].
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2.3 Information theory

There are two mainstream paradigms for assessing the quantity we call information. In the
probabilistic paradigm, the information can be quantified for any random variable X using the
measure of entropy. This quantity is defined as [Reza, 1961, Li and Vitányi, 2008]

H(X) = −
∑
x

P (X = x) logP (X = x), (2.17)

and it is interpreted as the average amount of uncertainty contained by the random variable X.
In the algorithmic paradigm, information can be quantified for strings, which can be defined as
finite sequences of characters belonging to a certain finite alphabet [Li and Vitányi, 2008]. The
amount of information contained by the string is defined as the length of the shortest program
that outputs the string on a universal computer [Kolmogorov, 1965]. This quantity is called the
Kolmogorov complexity (also terms Kolmogorov-Chaitin complexity and algorithmic complexity
are frequantly used [Li and Vitányi, 2008, Kolmogorov, 1965]) and denoted by K(x), where x

is a string. Depending on the choice of the universal computer, the values of K(x) may differ
from each other by an additive constant [Kolmogorov, 1965].

Both approaches to information have their pros and cons. The main difference is that the proba-
bilistic approach is applicable to random variables, while the algorithmic approach is applicable
to realizations of random variables, given that they can be described as strings. The entropy
measure is addressable for any random variable whose probability distribution is known. How-
ever, in most applications, this is not the case, and instead, the distribution has to be estimated
based on sampled data (cf. [Shalizi et al., 2004, Galas et al., 2010]). On the other hand, the
Kolmogorov complexity K(x) is in general uncomputable [Li and Vitányi, 2008], meaning that
K(x) cannot be assigned for an arbitrary string x, regardless the choice of the computer model.
The Kolmogorov complexity can, however, be effectively approximated in certain applications
by general data compression methods, as discussed in the following.

Normalized compression distance and set complexity

A metric of normalized information distance (NID) based on Kolmogorov complexity has been
proposed in [Li et al., 2004]. The NID is proposed as a universal3 distance between two arbitrary
strings, and it can be formulated as follows:

NID(x, y) =
max(K(x|y∗),K(y|x∗))

max(K(x),K(y))
. (2.18)

In this notation, x and y are strings, and x∗ and y∗ (also strings) are the shortest programs
that output strings x and y, respectively, on a universal computer. Furthermore, the function

3That NID is universal means that there is no other distance measure among the class of considered normalized
distances that gives shorter distances than NID. See [Li et al., 2004] and [Li and Vitányi, 2008] for formal definitions
and proofs.
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K(x|y∗) is the length of the shortest program that outputs x when it is given the string y∗
as an auxiliary input. The distance between two strings can be assessed by other means as
well, for example, using the Hamming distance that is defined as the proportion of differing
characters in the two strings. A downside with Hamming distance is, however, that it is, on one
hand, applicable to equally long strings only, and on the other hand, fully index-specific. This
means that if, for instance, a random binary string is duplicated and the other one is shifted
in indices by one character, the Hamming distance between the resulting strings will be close
to 0.5, which is the mean Hamming distance of two random, independent binary strings. By
contrast, the design of the NID is such that the two strings remain near to each other when the
indexing of one of them is shifted by a certain number of characters — in addition, the NID is
robust to addition or removal of small substrings. The NID can be estimated by the normalized
compression distance (NCD), in which the Kolmogorov complexity of a string is replaced by the
length of the compressed string. General data compressors, such as gzip and LZMA, can be used
for the computation of this metric. The NCD is defined as

NCD(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))
, (2.19)

where C(x) is the length of the string x after compression, and C(xy) is the length of the
concatenation of strings x and y after compression.

Despite the crude approximation (see e.g. the discussion on the subject in [Li et al., 2004])
of the Kolmogorov complexity by general data compressors, there are appealing arguments
for the eligibility of the NCD. Firstly, due to the subtraction of two Kolmogorov complexity
approximations in Equation 2.19 and division by a third one, the resulting value is approximately
invariant to affine transformations of C(x), i.e., transformations of form C̃(x) = aC(x) + b. This
should outdo a great part of the discrepancies between different data compressors that each
add different metadata (such as code dictionaries) in the beginning of the compressed strings,
and that each have different average compression rates. Secondly, the NCD has been found
effective in showing non-trivial similarities in challenging data. Namely, the method has been
successfully applied to reconstruct phylogenetic trees as well as language relation trees, as shown
in [Li et al., 2004]. In their work, the phylogenetic tree was obtained by applying the NCD on
protein sequences of different species and using hierarchical clustering on the resulting distances,
while for the language tree reconstruction the human rights declaration in different languages
was used as data [Li et al., 2004]. Likewise, the phylogenetic tree was correctly reconstructed in
[Otu and Sayood, 2003] by using distance measures that were slightly different from the NCD
but that were as well based on approximating Kolmogorov complexity with general purpose data
compressors.

The NID — and its computable approximation, NCD — has been used as a foundation for
building a measure of context-dependent information, namely, the set complexity [Galas et al.,
2010]. In this approach, the complexity cannot be addressed for a string, but for a set of
strings, and the complexity of the set arises from the amount of non-redundant (yet non-random)
information in the strings of the set. The aspect of redundancy versus randomness is quantified
through the NCD between the strings: Values of NCD near zero represent too high a redundancy
(this is the case for instance when the strings x and y are almost identical copies of each other),
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while values near one represent too little context (this occurs when, e.g., one of the two strings
is random). Obeying these guidelines, the set complexity is defined as

φ({x1, . . . , xk}) =

k∑
i=1

C(xi)
1

k(k − 1)

k∑
j = 1
j 6= i

NCD(xi, xj)(1−NCD(xi, xj)). (2.20)

The strength of this measure is its modular architecture: The NCD can be replaced by another
measure of information distance [Galas et al., 2010], and similarly, the data compressor used for
approximating the Kolmogorov complexity, can be freely chosen. Furthermore, the equalizing
function of NCD, i.e. the factor d(1−d), where d = NCD(xi, xj), can be changed to any function
that is zero at the endpoints d = 0 and d = 1 and positive on some subinterval U ⊂ (0, 1). This
optionality can, however, also be seen as a weakness of the measure, as different choices can
lead to crucially different results. This is discussed in Publication III, where, following the
ideas of [Nykter et al., 2008], information diversity is quantified instead of set complexity. In
Publications IV and V, the set complexity itself is applied.



Chapter 3

Modelling and analysis of complex
systems

The function of a complex system can be decomposed to the interplay between ever simpler
objects. The vertebrate brain can be seen as the set of finely connected brain regions. The brain
regions can, in turn, be decomposed to neurons and glial cells and the connections between
them, these cells to the delicate entities of the cellular machinery such as mitochondria and the
nucleus stored inside the cell membrane, these to macromolecules, molecules, atoms, and all the
way to the elementary particles.

The deeper one goes into the smaller entities, the more identical the actors become. The networks
of the brain are composed of a relatively small number of cell types, each of which consists
of neurons with alike (although by no means identical [Ascoli et al., 2007]) morphology and
functionality. This gives rise to a computational systems approach for studying these networks.
If the dynamics of a single neuron can be modelled, and the type and strength of interaction
among the neurons is known, then the collective activity in the network can be modelled as well.
State-of-the art computer simulations allow the animation of up to millions of neurons in real
time, depending on the required level of detail in the processes modelled.

This section deals with the two biological networks that play a central role in this thesis, namely,
cortical networks of neurons and gene regulatory networks. First, an overview is given on the
models for the structure of complex networks in section 3.1. Abstract models are presented, and
for the cortical networks, a more biologically plausible model is introduced. The section 3.2, in
turn, introduces the single-node dynamics as well as the emergent network dynamics in these
systems.

3.1 Structure of complex systems

The structure of a complex system lays foundation to all collective activity in it. A connectivity
graph representing the network structure can be obtained as a realization of a random graph

13
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model. The simplest and most widely used random graph model is the Erdős-Rényi network
model [Erdős and Rényi, 1960], where the network structure is characterized using a single
parameter, namely, the probability p of finding an edge between two arbitrary nodes. The
original model concerned undirected graphs, but its extension for directed graphs has been
widely used as well. In directed graphs the model results in both in- and out-degree being
binomially distributed as Bin(N − 1, p). An alternative means for generating a random graph is
to fix the number of inputs, and for each node, choose the inputs (or outputs) by random. This
approach is extensively used in e.g. random Boolean networks.

There are several extensions of Erdős-Rényi models, e.g., the Watts-Strogatz [Watts and Stro-
gatz, 1998] model of small-world networks. The small-world networks are characterized by short
geodesic path length and high clustering coefficient — the properties found in many real-world
networks, such as biological, social, and technological networks [Boccaletti et al., 2006]. In the
original model, the nodes of a Watts-Strogatz network are first placed into a ring and connected
to a constant number k of nearest neighbours. Afterwards, a fraction q of connections are
randomly rewired. This model has been extensively used to describe the structure in various
complex systems. Another popular extension is the Barabási-Albert [Barabási and Albert, 1999]
model of scale-free networks. In this model, nodes are added to the network one after another
and the preferential attachment rule directs the resulting network towards a structure that is
hierarchical over different scales. Such a network is described by power-law distributed degree,
meaning that a major part of the distribution obeys the law

P (k = k) = akγ (3.1)

for some constant a and exponent γ. The Barabási-Albert model allows tuning the scaling
exponent γ of the power-law distribution. Both Watts-Strogatz and Barabási-Albert networks
were originally introduced as undirected networks, but their extensions for directed networks
have been widely applied as well.

In addition to these two seminal models, there are many other abstract random graph models.
In Publication III, a model of partly locally connected networks (PLCN) is presented and
applied. The model is similar to Watts-Strogatz networks in that it creates a continuum of
graphs between randomly and locally connected networks. A grave difference is that the rewiring
scheme in [Watts and Strogatz, 1998] chooses the new neighbour from a uniform distribution over
all possible neighbours, while in the PLCNs, there is no distinct rewiring step but the neighbours
are picked from a distance-dependent distribution one after the other. As a consequence, the
Watts-Strogatz networks may have a few long-range connections even with a small rewiring
probability q, while the length of the furthest reaching connections in the PLCNs are only
gradually increased when moving from locally connected networks to random networks. Another
difference is that the PLCNs are directed networks with a binomial in-degree distribution, while
the original Watts-Strogatz networks are undirected networks with degree distribution sharper
than that of Erdős-Rényi networks [Barrat and Weigt, 2000]. In Publication VI, directed
Watts-Strogatz networks are employed and tuned in such a way that they are allowed to have
an arbitrary in-degree distribution. The in-degree distribution can be freely chosen also in the
other abstract network models introduced in Publication VI, where algorithms for producing
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networks with increased numbers of a certain connectivity pattern are presented and applied.
One of the network classes promotes the occurrence of feed-forward patterns1, as the other
network classes encourage the formation of directed loops of a certain length. Two specific
choices for the in-degree distribution are considered, namely, the binomial distribution that is
present in the widely used Erdős-Rényi networks, and the power-law distribution that is a typical
feature of the scale-free networks [Barabási and Albert, 1999].

Abstract network models, especially the small-world and scale-free networks, are applicable to
many different real-world applications [Boccaletti et al., 2006, Eguiluz et al., 2005]. Nevertheless,
there is a rising trend to generate the structure of the network to more and more application-
specific detail [Ascoli et al., 2007]. In computational studies of nervous systems, there are two
mainstream approaches for this. The first approach is to model the processes underlying the
formation of the system, namely, the growth of the neurons and the formation and maturation
of the synaptic connections [Van Pelt et al., 2010]. By simulating such models one can achieve a
number of network realizations where the connectivity is constrained by biological restrictions.
Another approach is to rely on experimentally measured connectivity graphs in the system under
study, and import them to the network simulations as such. These data are yet scarce, but there
is a trend toward increasing amount of connectivity data and easier, world-wide access to such
data [Insel et al., 2003]. This work employs the former approach in Publications I, II, III,
and VI, either in a central or subsidiary role. In the following, this approach is described in
more detail.

Simulating the growth of neuronal networks

The special function of neurons in information transmission is reflected in their tentacular shape
[Kandel et al., 2000]. The soma of a neuron extends projections that can be roughly categorized
into dendrites and axons, commonly referred to as neurites. The dendrites receive inputs from
other neurons, and in case of strong enough excitatory input signals, produce an action potential
in the neuron. The action potential, also called a spike, then proceeds along the axon and
activates synapses that may excite other neurons in a similar way or, alternatively, inhibit the
activity in them. Hence, much of the prequisites for information processing lies in the pattern of
synapses between the neurons [Sporns et al., 2005], also referred to as the synaptic map or simply
as the structure of the neuronal network — although the term “structure” could be thought to
include much more information on the anatomical details of the network.

The formation of the neuronal network is an excessively complex phenomenon affected by pro-
cesses on different scales all the way from molecular to behavioral or cognitive level [Kandel
et al., 2000]. Several attempts have, however, been made to model the growth of neurons and
the resulting pattern of synapses [Van Ooyen, 2003]. One tool for such a purpose is the NET-
MORPH [Koene et al., 2009] simulator that combines statistical models of neuronal growth and

1The basic form of the feed-forward loop is the Motif 5 in Figure 2.1, but the graph algorithm in Publication
VI promotes the occurrences of all motifs that include the required pattern. Among the three-node motifs, Motifs
6, 10, 11, 12, and 13 (see Figure 2.1) include at least one instance of the feed-forward loop.
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synapse generation based on axo-dendritic distance. Another tool, the CX3D [Zubler and Dou-
glas, 2009] simulator, is a general platform for simulating interactions between biological entities,
such as neuron somata and neurites, as well as different chemical species. In addition, CX3D
supports the use of external, statistical rules governing the growth of neurons, which makes it a
fair parallel for NETMOPRH. In both simulators, the parameters governing the growth as well
as the number and initial locations of the neurons can be changed, and the pattern of synaptic
connections for each parameter set can be obtained. Although the strengths and locations of
the synapses are temporally influenced by various chemical processes, the affinity-based rules
for synapse locations can make decent predictions on e.g. the distribution of synapse locations
across the neurites [Hill et al., 2012].

In the NETMORPH simulator, the growth of the neurons is first simulated such that all the
neurons grow independently of each other, and afterwards, the potential synapses are placed
wherever an axon and a dendrite of distinct cells are close enough. The branching and elongation
occur solely on the terminal segments of the neurons, and their magnitude depends on time and
the morphology of the neuron. The rate of elongation is described as follows [Koene et al.,
2009, Van Pelt and Uylings, 2003]:

ν(t) = ν0n(t)−f , (3.2)

where ν(t) represents the average elongation rate of the terminal segments at time t. The
parameter ν0 is the initial rate of elongation, n(t) is the number of terminal segments in the
neuron, and the constant parameter f reflects the level of competition for resources between
terminal segments. Setting f = 0 makes the growth rate independent of the number of terminal
segments, while positive values of f make the elongation rate decrease with each branching. The
branching is governed as follows [Koene et al., 2009, Van Pelt and Uylings, 2003]:

P (Segment j branches during (ti, ti + ∆t]) = n(ti)
−cb∞e

−ti/τ (e∆t/τ − 1)
2−sγj

αi
. (3.3)

Here, the constant parameter c determines the level of competition over resources for branching,
and parameters b∞ and τ represent the intensity and time constant of the branching. Different
branching probabilities can be given for terminal segments of different centrifugal order γj
through the parameter s. The centrifugal order of a segment is the number of segments lying
between it and the soma, or in other words, the number of turning or branching points between
the considered segment and the soma. For s > 0, the branching is more likely to happen in the
terminal segments near the soma (small γj), while for s < 0 the branching is the more likely the
further (larger γj) the terminal segment is from the soma. To compensate for this factor, the
branching probability is divided by the normalizing variable

αi =
1

n(ti)

n(ti)∑
k=1

2−sγk . (3.4)

Finally, the probability of changing the direction of outgrowth is given as [Koene et al., 2009]

P (Segment j turns during (ti, ti + ∆t]) = rL∆Lj(ti), (3.5)
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where the parameter rL describes the frequency of turning points and ∆Lj(ti) is the change in
the length of the terminal segment j during the time step (ti, ti+∆t]. The magnitude of changes
in direction can be controlled as well.

The CX3D, in turn, allows modelling of temporal processes in more detail. The interactions be-
tween physical objects, such as neurites and somas, are taken into account [Zubler and Douglas,
2009]. The neuron somas are modelled as balls, while the neurites are modelled as connected
springs. The growth of the neurites is modelled through the changes in the spring constant of the
springs that represent the terminal segments, and these changes can be given similar statistical
dependencies as in NETMORPH, as shown in Publication II. Figure 3.1 illustrates the growth
of a neuron, extracted from a NETMORPH simulation carried out in a 2D domain.

1 DIV
3 DIV

7 DIV
10 DIV

14 DIV 21 DIV

Figure 3.1: Illustration of the morphology of a neuron in a NETMORPH simulation of a cell
culture at first, third, seventh, tenth, 14th and 21st day in vitro (DIV). Scale bar 200µm. The
green branches represent the axonal tree, while the blue branches constitute the dendritic tree.

The NETMORPH simulator combines the models governing the four mentioned events: Elon-
gation, branching and turning of the terminal segments, and the formation of synapses. These
four phenomena are themselves simple, as described in Equations 3.2, 3.3, and 3.5, but include a
number of interactions. Elongation is dependent on the past branching events, but independent
of the turning events. Branching and turning are by construct independent of each other and
of the elongation, but can be linked through a parameter defining the minimal segment length
that prevents too short terminal segments from turning or branching [Koene et al., 2009]. The
synapse formation does not affect any of the mentioned three events, but is influenced by the
locations and morphologies of the neurons and thus depends on all of them.

The state of the system can be defined as the collection of the segment starting points, lengths
and directions (and notions on which is connected to which), and could therefore be considered
as a variable-dimensional stochastic continuous-time continuous-state system. Nevertheless, the
system does not include a Brownian noise component, and cannot therefore be described by
an SDE. By contrast, certain subsystems of the system, for example the number of terminal
segments in a neuron, can be regarded as a continuous-time discrete-state system. Advanced
simulation methods, such as Gillespie’s stochastic simulation algorithm [Gillespie, 1977], could
therefore be applied. Employing such methods is, however, out of the scope of this thesis, and



18 CHAPTER 3. MODELLING AND ANALYSIS OF COMPLEX SYSTEMS

is left for future work.

3.2 Dynamics of complex systems

In this section, the dynamics of the two types of complex systems that are central to this work
are considered. For the cortical networks, point neuron models2 with various levels of detail are
employed, whereas for the genetic networks the simplistic model of random Boolean networks
is used. In both cases, the single-node dynamics are relatively (or extremely) simple, yet the
incorporation of an adequate number of nodes leads to complex temporal activity patterns. The
neuronal network model is introduced in Section 3.2.1, while the Boolean network model is
addressed in Section 3.2.2.

3.2.1 Neuronal networks: Models for neuron and synapse dynamics

The neuron doctrine states that a neuron is the basic unit of transferring and processing of
information in any neural system [Kandel et al., 2000]. The main mechanism for this processing
is the generation and propagation of action potentials, which is an effect of successive opening and
closing of the voltage-gated ion channels. The main actors are Na+, Cl−, Ca2+, and K+ channels,
each of which reacts to the changes in intra- and extracellular ionic concentrations [Kandel et al.,
2000]. The proportion of these concentrations determines the difference in potential between
the cell and the extracellular medium according to the Nernst equation, or its extension, the
Goldman-Huxley-Katz equation [Junge, 1992]. The dynamics of the membrane potential can
be described using the Hodgkin-Huxley (HH) model or its variations, which can generally be
written as

Cm
dVm
dt

=
∑

ionic channel type i

giSi(V
rev
i − Vm) + I. (3.6)

Here, Vm is a temporal variable representing the membrane potential, which is usually measured
with respect to the potential of the extracellular medium. The evolution of the membrane
potential depends on the ionic conductances gi, the reversal potentials V rev

i of the ions, i.e.,
the potentials at which no diffusion of the considered ion would occur between the cell and its
surroundings, and the ionic gating variables Si. The rate of the evolution is determined by the
membrane capacitance Cm. The gating variables are dimensionless and usually restricted on
interval [0,1], where Si(t) = 0 means that none of the channels of type i are open at time t, and
Si(t) = 1 means that all of them are open. The gating variables are temporally dependent on
the membrane potential through non-linear differential equations (see e.g. Publication VI).

2The term “point neuron” refers to a model of a neuron, where the temporal variables, such as the membrane
potential, are considered to be constants over the whole spatial domain of the neuron. The opposite of a point
neuron is a compartmental neuron model, where the neuron consists of distinct interconnected segments that
each have their own temporal variables [Dayan and Abbott, 2001]. The neurite segments of compartmental
neurons may be modelled as passive or active segments, depending on whether they only conduct the changes in
the membrane potential through diffusion equations or if they also have intrinsic dynamics in their ionic gating
variables. In this work, only point neuron models are considered.
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The current term I represents all other currents applied to the cell, and could include synaptic
currents, currents applied through external electrodes, or just noise.

A down-side of Equation 3.6 is that it is typically time-consuming to solve it numerically due
to the fine temporal scale that is required at the time of the spikes. A computationally less
expensive neuron model is the leaky integrate-and-fire (LIF) model, which is written as

Cm
dVm
dt

=

 gL(V rev
L − Vm) + I, if t− tlast spike > τref

0, otherwise

If Vm > Vthr, then emit a spike and set Vm ← Vrest

(3.7)

In this model, the collection of ionic currents is replaced by a single leak current that drives
the membrane potential toward the leak reversal potential V rev

L . The spikes are discrete events
that take place when the membrane potential exceeds the threshold potential Vthr. Each spike is
followed by an instantaneous fall to the resting potential Vrest and a refractory period of length
τref . During the refractory period the membrane potential stays at the resting potential. Another
widely used, fairly recent activity model is the Izhikevich model [Izhikevich, 2003]. This model
mixes a spiking threshold potential similar to the one in LIF model, and a recovery variable
that represents the opening and closing of the ionic channels [Izhikevich, 2003]. The Izhikevich
model is used in Publication III, while in Publication VI the LIF model and an extension
[Golomb et al., 2006] of the HH model are employed. The time course of the membrane potential
variable in each of these models is illustrated in Figure 3.2. The dynamics of these three types
of models, together with many other neuron models, are reviewed in [Izhikevich, 2004].

Similarly to the modelling of the internal dynamics of a neuron, there are many possible levels of
detail for modelling the synaptic currents. What is common for all models of chemical synapses
is that the synapse becomes activated at or after some delay from the time of an action potential
taking place at the presynaptic neuron. The synapse can have either an excitatory or inhibitory
effect on the post-synaptic neuron, meaning that it either increases or decreases the membrane
potential of the post-synaptic neuron. The main excitatory synaptic currents in mature neu-
rons are those mediated by AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) and
NMDA (N-methyl-D-aspartic acid) receptors, while the main inhibitory synaptic current is that
mediated by GABA (γ-aminobutyric acid) receptors. In reality, both excitatory and inhibitory
outward synaptic currents can coexist in a neuron [Gutiérrez, 2005], but experimental evidence
indicates that most neurons are specialized into projecting either only excitatory or only in-
hibitory currents (see e.g. [Connors and Gutnick, 1990]). For this reason, the neurons in the
brain can be roughly categorized into excitatory and inhibitory neurons, although dozens of
subcategories exist. By contrast, the inward synaptic currents to practically all types of neurons
are diverse combinations of different types of currents, although the distal parts of the dendritic
tree may be specialized in receiving different types of synaptic currents from those received by
the proximal parts (see e.g. [Meǵıas et al., 2001]). This work utilizes synaptic currents to point
neurons only, and hence such fine distinctions are neglected.

The synaptic currents to LIF neurons are most often described using either delta functions or
exponential decay functions. In this work, the exponentially decaying currents are used due
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Figure 3.2: Illustration of single-neuron dynamics according to extended HH-model (left), LIF
model (middle), and Izhikevich model (right). The x-axis shows the time, and the y-axis shows
the membrane potential of the model neuron. Each model neuron is initially at rest. Between
t = 100 ms and t = 300 ms (thick bar), the neuron is given a constant input current, otherwise
the neuron does not receive any input. The different curves represent the neuron response to
different amplitudes of the input current. With low input, the neuron remains silent (lowest
curves), while for higher input currents the neurons fire during the input, yet return to silent
mode after the cessation of the input. The model parameters for the extended HH-model and LIF
model are identical to the ones used in Publication VI, and the Izhikevich model parameters
are the default parameters given in [Izhikevich, 2003]. The current amplitudes are (from bottom
to top) 0.33, 0.70, 1.00, 3.00, and 4.00 µA/cm2 in the extended HH-model, 14.75, 15.25, 16.00,
17.50, and 21.00 pA in the LIF model, and 16.00, 16.06, 16.18, 16.41 and 17.30 (dimensionless
current units) in the Izhikevich model. The time series were solved using forward Euler method
with resolutions ∆t=0.0025 ms (extended HH model), ∆t=0.5 ms (LIF model), and ∆t=0.05
ms (Izhikevich model). The spikes in the LIF model time courses are highlighted by setting the
membrane potential to a high value for one time step.

to their better fit to biological data. At the time of the pre-synaptic spike, or after a possible
transmission delay, the synaptic current is set to a non-zero value, representing the opening of



3.2. DYNAMICS OF COMPLEX SYSTEMS 21

the neurotransmitter-gated ionic channels. This is followed by the smooth decay of the current,
which represents the gradual closing of the channels. The exponential shape of the synaptic
current allows the use of exact integration methods for solving the time course of the membrane
potential in an LIF neuron. The reset value of the current following the pre-synaptic spike
may be a constant or a dynamical variable. In [Tsodyks et al., 2000], a dynamical scheme is
used in order to capture such phenomena as short-term depression and facilitation. These two
are phenomena, where the amplitude of the synaptic current is either decreased or increased,
respectively, from the amplitude of a recently occurred spike at the considered synapse. The
state of the synapse is described by three to four dynamical variables, x, y, z, and u, where
u is constant in synapses that do not express facilitation. The variables x, y, and z represent
the fraction of synaptic resources in recovered, active, and inactive state, respectively, and the
variable u represents the fraction of resting state resources that are ready to be released. Their
dynamics are described as follows:

du

dt
= − u

τfacil
+ U(1− u)δtsp(t)

dx

dt
=

z

τrec
− uxδtsp(t)

dy

dt
= − y

τI
+ uxδtsp(t) (3.8)

dz

dt
=

y

τI
− z

τrec
,

(3.9)

where tsp is the time of the presynaptic spike. With each spike, the value of u is increased by
U(1 − u), and an amount ux of resources are transferred from resting to active state3. This is
represented by the positive change in y and negative in x. After the spike, there is a smooth
transition from active into inactive resources with time constant τrec, and another transition
from inactive to resting state resources with time constant τI . In addition, the amount of
readily releasable resources decreases with time constant τfacil. The facilitation can be removed
by letting this time constant approach zero. In such a case, the variable u returns to zero in no
time after the spike, and hence, the fraction of x transferred to y with the spikes is always Ux.
The time constants τrec and τI and the parameter U together control the synaptic depression.
The larger the parameter U , the more rapidly the resources are used. The shorter the time
constants τrec and τI are, the quicker the resources are replenished.

The synaptic current to neuron j is a weighted sum of the amounts of active state resources (y)
in the synapses that input to the neuron:

Isyn,j(t) =
∑
i

wijyij(t). (3.10)

The parameter wij stands for the strength and type (positive for excitatory, negative for in-
hibitory neuron i) of the synapse between neurons i and j — note the permutated roles of i and

3Note that these two state updates that follow a pre-synaptic spike are successive, in the above order, and not
synchronous.
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j compared to those in [Tsodyks et al., 2000].

In networks of HH type of neurons, no discrete spike events occur, but the dynamics of a synaptic
current depend on the membrane potential of the presynaptic neuron. In these models, the
synaptic interaction is communicated by gating variables that react to high values of membrane
potential in the pre-synaptic neuron. When the pre-synaptic membrane potential exceeds a
certain threshold, the gating variable of the synapse is increased. The gating variable, together
with the post-synaptic membrane potential, determine the value of the synaptic current in a
manner similar to Equation 3.6. For detailed equations, see the supporting information of
Publication VI.

Analysis of observed network dynamics

Various phenomena can be observed when neurons are interconnected into a network. These
include synchronization, population oscillations [Ermentrout and Chow, 2002], and persistent
activity [Brunel, 2000b], to name a few. The main neural phenomenon studied in this thesis is
the formation of network bursts. The network bursts occur as a result of recurrent excitation,
when scarce spiking activity is spread over a large population and soon afterwards diminished.
Such synchronized activity has been observed in maturing (see e.g. [Chiu and Weliky, 2001]) and
behaving (see e.g. [Buzsáki et al., 1983]) animals, but it can also be observed in cultured in vitro
networks [Robinson et al., 1993, Keefer et al., 2001]. Once initiated, a network burst may cease
for several reasons (see e.g. [Compte, 2006] that reviews the relevant mechanisms, although
the focus is on longer persistent activity than the time-scale of the aforementioned bursts). In
cultured networks, the most likely explanation for the cessation of a burst is the depletion of
glutamatergic resources [Maeda et al., 1995], which temporarily weakens the recurrent excitation,
bringing the propagation of the burst to an end. This mechanism has been extensively used
in computational models of network bursting activity [Tsodyks et al., 2000, Gritsun et al.,
2010], Publications III and VI being no exception. Figure 3.3 shows typical bursting activity
produced by the LIF model (Equation 3.7) where the neurons are connected by synapses with
short-term dynamics (Equation 3.8).

For illustrations on HH type of model and Izhikevich model network dynamics, see the example
figures in Publications VI and III. Note, however, that there was an error in the implemen-
tation of the Izhikevich model in Publication III. The article claims to use model parameters
aexc = 0.02, ainh ∈ [0.02, 0.1], dexc ∈ [6, 8], and dinh = 2, both of which affect the updating of
the variable r (see Equation 6 in Publication III). Due to an error in the simulation code, the
update rule rendered the values of r near to zero, and hence, the results shown in Publication
III closely represent the case aexc = ainh = dexc = dinh = 0, where the variable r is initially at
zero. With such model parameters, the variable r remains exactly at zero instead of fluctuating
around it. The corrected version of Table A2 of Publication III is shown in Table 3.1. Re-
running the simulations with these parameters shows that the differences between the bursting
frequencies in different network types remain qualitatively the same. The corrected entries of
the numbers of bursts that were reported in Table 1 of Publication III are shown in Table
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Figure 3.3: Illustration on the network bursts. A network of N = 400 LIF neurons (Equation
3.7) is used with short-term dynamical synapses (Equation 3.8). Each neuron is given a white
noise component, making them spontaneously active. The model parameters are taken from
Publication VI, except for the noise level (6.4 mV/ms) and the synaptic weights (η =9.6). The
neurons are randomly connected with the connection probability p = 0.2. The simulation time
is 60s. On the panels on the left, the dynamics during the whole simulation time are illustrated,
while the panels on the right focus on a short time period around the burst indicated by the
grey vertical bar. The upper panels show the population spike trains. The neurons labelled
with indices 1–320 are excitatory, while neurons 321–400 are inhibitory. In the middle and lower
panels, the single neuron dynamics of a selected neuron (grey horizontal region in the upper-left
panel) are illustrated. The middle panels show the membrane potential (Vm), while the lower
panels show the fraction of synaptic resources in the resting state (x) as a function of time. The
action potentials are indicated by setting the membrane potential to +30mV for one time step
in the middle panels. Following each action potential, there is a discrete fall in the variable x,
which is then smoothly replenished in the absence of action potentials.

3.1. The conclusions on the rest of the bursting properties and the information distances that
are stated in Publication III remain qualitatively unchanged as well (data not shown).
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Table 3.1: Corrections for Table A2 and 1 in Publication III. The Izhikevich model parameters
are shown on the upper table, and the corresponding numbers of bursts are shown below. Note
that the values of parameters b in Table A2 are insignificant, as they only affect through the
multiplication by a, which is zero.

Table A2 | Izhikevich model parameters.

Model parameters Excitatory Inhibitory

a 0 0
b 0 0
c -65+15r2

e -65
d 0 0

Table 1 | Bursting rates of networks of different structure classes.

W = 0 W = 1 W =∞ NETMORPH

p = 0.1 1.7± 1.2 4.8± 1.6 10.0± 2.0 6.1± 1.8
p = 0.16 11.7± 1.7 13.3± 1.3 17.1± 2.6 14.7± 1.5

Values shown: mean ± SD in bursts/min, calculated from 20 different 1-min
recordings per table entry.

The bursts can be effectively detected as follows. First, all the spikes are divided into candidate
bursts by their spike times in such a way that two successive spikes belong to the same candidate
burst if and only if their distance is less or equal to a named constant, maximum inter-spike
interval [Chiappalone et al., 2006]. In other words, two spikes, whose spike times are t and τ ,
belong to the same candidate burst if and only if there exists a set of intermittent spikes with
spike times T = {t1, . . . , tk} such that max(|t− t1|, |t1− t2|, . . . , |tk−1− tk|, |tk− τ |) ≤ ∆t, where
∆t is the maximum inter-spike interval. However, many of the candidate bursts might consist
of single spikes, and hence, only bursts whose size exceeds a certain threshold are considered
as bursts. This can be done by accepting only such candidate bursts that consist of more
than a named number of spikes. In addition, one can restrict to consider only such bursts that
employ a wide enough population — that is, only such bursts in which a large enough number of
individual neurons fired are accepted. In Publication III the former condition is used, whereas
in Publication VI both conditions are applied. The use of both conditions helps to rule out
bursts that are spatially too local, i.e., network bursts where only a fraction of the population,
although densely spiking, contributes to the burst. Such local bursts could emerge in networks
with high in-degree variance, given that the neurons with high in-degree are strongly coupled
to each other. This is a possible outcome in certain network classes considered in Publication
VI, but is hardly an issue in the networks of Publication III, and hence the simpler burst
detection scheme.

In Publications III and VI, the numbers and lengths of the bursts are studied in various
types of neuronal networks. These measures are descriptive aspects of the dynamics of bursting
networks, but other standard measures for characterizing the activity exist as well. Synchronicity
of spiking events in the network can be assessed using the cross-correlation method [Perkel et al.,
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1967]. Given the spike trains of two neurons, one can binarize them into arrays {s(1)
i }i∈{1,...,l}

and {s(2)
i }i∈{1,...,l}, where l is the length of the arrays. The ith entry of the array corresponds

to the number of spiking events of the considered neuron during the interval [(i − 1)∆t, i∆t),
where ∆t is the bin length. The cross-correlation between the two arrays, when s(2) is shifted
by a lag τ , can be calculated as

CCGs(1),s(2)(τ) =
l∑

i=1

(s
(1)
i − λ1)(s

(2)
i+τ − λ2), (3.11)

where λ1 and λ2 are the average spike counts per bin, i.e., λj = 1
l

∑l
i=1 s

(j)
i . Assuming that

the values of the arrays s(1) and s(2) are zero outside the considered indices {1, . . . , l} and that
the average values λ1 and λ2 are representative as the mean spiking frequencies over the whole
arrays, we can write

l∑
i=1

s
(2)
i+τ ≈ (l − |τ |)λ2.

Hence, we have

CCGs(1),s(2)(τ) ≈

(
l∑

i=1

s
(1)
i s

(2)
i+τ

)
− λ1 · (l − |τ |)λ2 − λ2 · lλ1 + lλ1λ2

=

(
l∑

i=1

s
(1)
i s

(2)
i+τ

)
− (l − |τ |)λ1λ2. (3.12)

This function, CCGs(1),s(2)(τ), is called the cross-correlogram between the spike trains. Its
integral over a delay period τ ∈ {−k, . . . , k}, where the constant k ∈ N is sufficiently small,
reflects the coincidence of the spiking events in the two spike trains. The area of the cross-
correlogram is normalized by the average spike counts, and hence, is calculated as

CCGA(s(1), s(2)) =

k∑
τ=−k

1

λ1λ2
CCGs(1),s(2)(τ)

=
k∑

τ=−k

((
1

λ1λ2

l∑
i=1

s
(1)
i s

(2)
i+τ

)
− (l − |τ |)

)
. (3.13)

Furthermore, the area of the cross-correlogram can be normalized by the auto-correlogram areas
in order to cancel the effect of variable auto-correlations. The derived quantity

CCC(s(1), s(2)) =
CCGA(s(1), s(2))√

CCGA(s(1), s(1))CCGA(s(2), s(2))
(3.14)

is called the cross-correlation coefficient [Shadlen and Newsome, 1998] between the two spike
trains.
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The constant k that determines the range of considered time lags is usually chosen according to
the time scale of the presumed interaction between the elements. If chosen too small, only very
close-by spiking events are registered as concurrent spikes, and chosen too large, any two spikes
may be considered concurrent (although, the formula implicitly gives somewhat higher weight
to those spikes that are near to the compared spike). A typical value used in spiking neuronal
networks is such that value of k∆t is several tens of milliseconds. In Publication III, where
the cross-correlation coefficients between simulated spike trains of neurons in a bursting network
are estimated, a value of k∆t = 50 ms is used.

This section has introduced a number of modelling schemes for the dynamics of both individual
neurons and the connections between them, and presented means for analyzing the collective
activity. Depending on the size of the system, the neuronal network simulations can be compu-
tationally very exhaustive. Recently, specialized tools for the solution of the ODEs governing
the neuronal network dynamics have been introduced, including the NEST [Gewaltig and Dies-
mann, 2007] and NEURON [Carnevale and Hines, 2006] simulators, and many others [Brette
et al., 2007]. The former is specialized into simulating networks of integrate-and-fire neurons
(although also supports more complex neuron models), while the latter is especially efficient in
solving Hodgkin-Huxley type of equations, both in point neuron models as well as compartmen-
tal models. Both simulators use efficient integration schemes for the solution of the temporal
variables: NEST employs an exact solution whenever possible, while NEURON uses an adaptive
time step integration scheme. The use of such schemes restricts the ways to involve stochas-
ticity. Two widely adopted approaches to include the noise in these simulators are randomly
timed input events (e.g., Poissonian spike train as an input), or piece-wise constant random
currents [Brette et al., 2007]. Both approaches are arguable when the noise is considered to in-
clude inputs from neurons outside the modelled system. The latter approach is, however, closer
to the SDE approach (although the former approach also converges to SDE equations in the
limit of increasing input frequency [Tuckwell, 1988]) and might account for a wider variety of
sources of noise, and is hence employed in this thesis in Publications III and VI. The NEST
simulator was used for the simulations of the integrate-and-fire model in Publication VI, while
the NEURON simulator was used for validation purposes only in the Hodgkin-Huxley type of
model in Publication VI.

3.2.2 Boolean network model

Boolean networks were first proposed as a model for genetic regulatory networks [Kauffman,
1969], but later, they have become a widely-applied tool for general systems science. A Boolean
network consists of N nodes that can have either 0 (“off”) or 1 (“on”) as their state. The nodes
receive inputs from other nodes, and the state of the node at the next time step is determined by
the combination of the input nodes’ states. The framework of probabilistic Boolean networks also
allows a noise component that can be incorporated in a multitude of ways (see e.g. the choice for
the directions of movement after a collision of two particles in the lattice gas system as described
in Publication IV). The simplest means for including a noise component in a Boolean network
is that the outcome of each node is flipped with probability pflip. Such networks are generally
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called noisy Boolean networks, although the term could refer to Boolean networks with other
types of stochasticity as well, see for instance [Klemm and Bornholdt, 2005].

Mathematically, a noisy Boolean network is a Markov chain, where there are 2N possible states
and a well-defined transition probability between all of them. The construction of such transi-
tivity matrix is, however, unnecessary and impractical due to its large size. Instead, each node
is updated independently of others as follows:

xi(t+ 1) = fi(xIi,1(t),xIi,2(t), . . . ,xIi,ki (t))⊕Wi(t) (3.15)

The Boolean variable xi(t) stands for the state of the node vi at time t ∈ N. The index variables
Iij , where 0 < j ≤ ki, are the indices of the input nodes of the node vi, and ki is the number
of them. The function fi : {0, 1}ki → {0, 1} is a Boolean function that maps the combination of
the input states into the future state of the node. The variables Wi(t), t ∈ N are independent,
identically distributed Bernoulli random variables with parameter pflip, and the operator ⊕ is
the XOR operator. In other words, the state of the node vi is given the value determined by
the function fi when Wi(t) = 0 (which occurs with probability 1− pflip), and the opposite value
when Wi(t) = 1 (occurring with probability pflip).

The noiseless Boolean networks are a valuable tool in studies of attractor theory. Due to the
finite number of states of the network and a deterministic update rule, the system always ends
up going around a cycle of states, and the length of this cycle is between 1 and 2N . These cycles
are called attractors or steady-state cycles. The attractors with cycle length 1, representing a
case where the state stays fixed after arriving to it, is called a point attractor. The networks can
have many different attractors, and depending on the initial state, the network falls on exactly
one of them. The states of the network can thus be divided to basins of attraction, each of
which represents the subset of the state space that leads to a certain attractor. The number of
attractors can vary between 1 and 2N as well. The extreme cases can be easily constructed. The
“identity” network, where each node retains its state, has 2N point attractors, and the “null”
network, where each node is always reset to 0, has exactly one attractor, which is also a point
attractor. Another extreme among the single-attractor networks could be the one that goes
through all 2N possible states in a cyclic order:

(0, 0, 0, . . . , 0) 7→ (1, 0, 0, . . . , 0) 7→ (0, 1, 0, . . . , 0) 7→
(1, 1, 0, . . . , 0) 7→ . . . 7→ (1, 1, 1, . . . , 1) 7→ (0, 0, 0, . . . , 0).

In this network, the first node v1 changes its output every time step, and the other nodes vj
(j > 1) change their output if an only if the outputs of all the earlier nodes vi with i < j are
1. Construction of such a long-attractor network requires a large number of connections, as the
number of inputs of the node vi is ki = i. For comparison, the nodes of the “null” network need
not receive any inputs, and the nodes of the “identity” network require but one input, i.e., a
connection from the node to itself.

Rich Boolean network dynamics can be obtained merely by picking the connections and the input
functions fi by random. Such networks are called random Boolean networks (RBN), and they
can show ordered, chaotic, or critical dynamics, depending on the way they are generated. The
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ordered dynamics are such that the perturbations applied to the system tend to be suppressed,
and by contrast, chaotic dynamics are such that make the perturbations increase by time. These
two regimes are separated by the critical regime, where the average perturbation size remains
fixed. As an example, a random Boolean network, where each node has k = 2 inputs and where
the outcomes of the Boolean functions are assigned by random with equal probabilities of 0 and
1 for each combination of the input states, has been shown to possess critical dynamics [Aldana
et al., 2003]. The RBNs with and without noise have been used as a model for, e.g., cell type
differentiation [Villani et al., 2011]. Typical RBN dynamics are illustrated in Figure 3.4. In
this work, RBNs are considered in Publications IV and V. In the latter, the effect of the
noise on the temporal complexity is studied, while the former concentrates on the noiseless case.
Publication IV also formulates a lattice gas system as a probabilistic Boolean network, and
analyzes the complexity of the dynamics therein.
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k=1 k=2 k=3

Figure 3.4: Illustration of RBN dynamics. The x-axis represents the time t, and y-axis is the
node index. White color stands for the value 0 for corresponding node at the corresponding time
instant, while black stands for the value 1. The three different panels represent three different
types of RBN, k indicating the number of inputs that each node receives. For k = 1, the time
instants t = 1, . . . , 15 are shown, and for k = 2 and k = 3, the time instants t = 1, . . . , 100 are
shown. During these intervals, the networks with k = 1 and k = 2 attain an attractor of length
1 and 4, respectively. By contrast, the network with k = 3 does not reach an attractor during
the shown period. The arrows indicate the time instants of the first arrival to the attractor
state. The RBNs are of size N = 100, and the Boolean functions are picked by random with
equal probabilities for output being 0 or 1.
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Chapter 4

Summary of results

The contributions of this thesis to systems science can be categorized into three groups: 1) the
emergent structure of a growing and interconnecting network of neurons, 2) the effect of structure
of a bursting neuronal network on its dynamics, 3) the complexity of network dynamics. In the
following, the results of the publications included in this thesis are listed under these topics.

Structure of a growing neuronal network

Publication I reveals graph-theoretic aspects of growing neuronal networks. In this work, the
growth of a group of neurons is simulated, and candidate synapses are placed wherever axons
and dendrites of separate cells come close enough to each other. A fraction of them is considered
functional synapses, and the derived map of functional synapses is studied as an unweighted,
directed graph. Motif analysis reveals the difference of these networks (both the ones produced
by NETMORPH and the one produced by CX3D) from the Erdős-Rényi random networks:
They include, e.g., consistently more highly-connected motifs (Motif 13, see Figure 2.1) and
less directed loops of length 3 (Motif 9) than the random networks do. The difference between
the resulting networks of the two simulators is observed. In Publication II this difference
is highlighted in a deeper way. In this piece of work, the CX3D is equipped with the same
statistical rules of branching, elongation, and synapse formation as NETMORPH. The resulting
networks are, however, crucially different in the two simulators. The difference is best seen in
the overall number of synapses, and this difference reflects in the distributions of degree, shortest
path length, and motifs.

In Publication III, the properties of networks produced by NETMORPH are monitored both
from structural and dynamical aspects. The NETMORPH networks are compared to an abstract
network model similar to the class of Watts-Strogatz networks, where the degree of locality can be
controlled by a single parameter. In this network model, one extreme is the Erdős-Rényi random
networks, as the other extreme represents networks, where each node takes inputs only from the
spatially nearest nodes. The NETMORPH networks are very similar to in-between networks of
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this abstract network model, both from the structural and the dynamical point of view. This is
confirmed in Publication VI, where different activity models are used and different structural
aspects are monitored. In this study, the boundary effects are removed in such a way that the
neurites that extend outside the square-shaped area where the neurons’ somata are located, are
considered to appear at the other side of the area. The removal of boundary effects makes the in-
degree distribution of the NETMORPH networks nearly binomial. The NETMORPH networks
without this removal are shown to have much broader in-degree distribution (Publications I
and II).

Effect of structure on bursting properties

Publication III reveals the differences in the bursting properties between networks with dif-
ferent topologies. Locally connected networks produce more and longer bursts than random
networks. This is seen in both sparser and denser connectivities (p = 0.1 and p = 0.16). This
phenomenon serves as a motivation for Publication VI, where the aspects of structure that
have the greatest effect on bursting are sought for. Various abstract networks together with
NETMORPH networks are used for studying the bursting properties. The networks include
random networks, Watts-Strogatz networks, networks with high occurrence of feed-forward mo-
tifs (Motif 5, see Figure 2.1), and networks with a high number of directed loops of a certain
length. The bursting activity is simulated in each network type. In addition, certain graph-
theoretic measures of each network type are calculated, and the contribution of these measures
to the bursting properties is analyzed. A prediction framework is applied for the data analysis:
Different predictors are built, each of which is trained to estimate the bursting properties based
on a certain set of graph measures. Statistically, the predictors that utilize clustering coefficient
perform the best, when the in-degree distribution is sharp (binomial). By contrast, when the
in-degree distribution is broad (power-law), the predictors based on maximum eigenvalue per-
form the best. Both measures are positively correlated with the number of bursts. Moreover, in
networks with binomially distributed in-degree, the clustering coefficient is positively correlated
with burst length and negatively correlated with burst size (number of spikes in a burst). Al-
together, this explains the observations made in Publication III on the difference in bursting
frequency and burst length: In locally connected networks, the bursts are numerous and long,
whereas in random networks, where the clustering coefficient is much smaller, the bursts are
fewer and shorter.

Complexity of dynamical systems

The set complexity and its derivatives are applied to measure the complexity of the dynamics. In
Publication IV, two systems obeying Boolean logic, namely, RBNs and lattice gas systems, are
under study. The temporal complexity is studied by monitoring the set complexity of successive
states. In both systems, the set complexity is maximized near a state transition: In RBNs,
this transition is the entrance to the attractor, whereas in the lattice gas system it is the stage
when the particles (that were initially placed in an orderly fashion) start to mix and spread
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throughout the domain. The highest maximal set complexity in RBNs is attained by the critical
networks, where each node receives k = 2 inputs. Among the RBNs with k = 3, the slightly
chaotic networks produce the highest maximal set complexity. In Publication V, it is shown
that the state of maximal complexity can be sustained by introducing a certain amount of noise.
The ordered networks (k ≈ 1) require a relatively large noise component, while for the near-to-
critical networks, a small noise component is sufficient to sustain the high set complexity. This
result is confirmed with a measure of statistical complexity [Shalizi et al., 2004], which is an
entropy-based measure on the information content of the dynamics of the system. To be more
specific, it measures the information content of a minimal sufficient statistic for predicting the
future of the system [Shalizi et al., 2004]. The statistical complexity is, however, subject to
restrictions on the structure of the network, whereas in order to evaluate the set complexity the
structure of the network need not even be known. The flexibility of the set complexity measure
is indicated by the fact that it can be successfully applied to asynchronous Boolean networks,
as shown in Publication V. In these networks, the nodes are updated one at the time, and
the one updated is randomly picked every time step. The set complexity is calculated over
successive modulo N states, i.e., only every Nth time instant is considered. The results of the
set complexity in asynchronous RBNs are surprisingly similar to those in synchronous RBNs.

In Publication III, the framework of NCD is applied to simulated data on bursting neuronal
activity. Due to its applicability to any data that can be represented by strings, the NCD
can be applied on both structure (the connectivity matrix) and time-discretized activity (the
population spike train) of the neuronal network. The differences between the network types,
shown by phenomenological measures (e.g., number and length of bursts), are also reflected on
the distribution of NCD values in the structure and dynamics of the network. Such distinction
between the network types is not observed in other, more traditional measures of similarity
between spike trains of two neurons, such as Hamming distance or cross-correlation coefficient.
The results argue the compatibility of NCD with neuronal data, and pave the way for more
delicate means of measuring the complexity in the structure and dynamics of neuronal networks.
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Chapter 5

Discussion

This work introduces a wide range of methods for the simulation of neuronal network growth and
dynamics. These methods are applied to study the structure-dynamics relationships in neuronal
networks. In addition, the complexity of dynamics in several physical systems is measured —
for this, the framework of Boolean networks is used. Several conclusions are made both on the
characteristics of networks generated with the simulators of neuronal growth, and on the effect
of network structure on the network dynamics. This chapter is devoted to discussion of these
results.

Abstract models of network connectivity, Erdős-Rényi networks in particular, have dominated
the in silico studies of the neuronal network function (cf. [Roxin, 2011]). This is partly due to the
analytical tractability of such networks [Brunel, 2000a, Van Vreeswijk and Sompolinsky, 1996],
and partly due to the fact that many connectivity patterns in the brain are seemingly random
(see a discussion on the topic in [Sporns, 2011]). However, in most cases where the neuronal
connectivity has been measured in detail, the networks have been found to differ from random
networks. For instance, the feedforward loop is overrepresented in the connectome of C. Elegans
[Milo et al., 2002] when compared to random networks. Recently, the Watts-Strogatz small-
world networks [Watts and Strogatz, 1998] have been extensively used due to their resemblance
to many real-world networks. Nonetheless, this is only the first step towards understanding
the contributions of different structural aspects to network dynamics [Bullmore and Sporns,
2009]. In this work, a special class of network structure, where the connectivity pattern is
an outcome of the growth of neurons and affinity-based synapse formation in the network, is
considered. Two simulators of neuronal growth, NETMORPH and CX3D are applied. The
focus is on creating mid-size (N ∈ [102, 104]) networks with manageable computational load,
disregarding the chemical interactions between the neurons. For the generation of such networks,
the NETMORPH simulator is found more suitable than CX3D (Publications I and II). A
recent finding suggests that the use of randomly oriented neurons and affinity-based synapse
formation rules be an accurate enough model for describing the connectivity in neocortex [Hill
et al., 2012]. Another approach shows that even a simpler model, where the axon is modelled as
a straight line that makes contact to nearby neuron somas, can be fit to experimental data on
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connection length distributions [Kaiser et al., 2009]. These two examples serve as a motivation
for the use of the simulators of growth and the affinity-based models of synapse formation
for reproducing reliable connectivities. The result that there are more feed-forward loops in
networks produced by the simulators of neuronal growth than in random networks, as shown in
Publication I, is in line with the results on experimentally observed connectivity graphs [Milo
et al., 2002].

Similarly to small-world networks [Watts and Strogatz, 1998], the networks generated by NET-
MORPH fall between random and locally connected networks with respect to their structural
properties (Publications III and VI). Furthermore, the bursting properties in both NET-
MORPH networks and Watts-Strogatz in-between networks (or the partly locally connected
networks in Publication III that are very similar to these) are shown to lie between these two
extremes (Publications III and VI). Similar results have been observed in [Maheswaranathan
et al., 2012], where the number of bursts increased rather smoothly when changing from random
to locally connected networks — although the authors also reported an opposite trend when the
fraction of inhibitory neurons was less than 20%. In other settings the small-world networks be-
tween random and local topologies have been shown to possess certain optimal properties, e.g.,
optimal signal propagation [Lago-Fernández et al., 2000] and maximal dynamical complexity
[Shanahan, 2008].

A key aspect where NETMORPH networks deviate from other network classes, such as Watts-
Strogatz networks, is the degree distribution. In both models for the networks between random
and locally connected networks (Publications III and VI), the in-degree distribution can
be explicitly chosen. This is not the case in NETMORPH networks, where the connectivity
patterns are nontrivially dependent on the model parameters. There are, however, ways to
affect the degree distribution. The choice of domain and placement of the somata is one crucial
aspect. If continuous borders are applied to the domain, the difference in the degrees of “border”
neurons versus “central” neurons is abolished, and the degree distribution becomes sharper
(Publication VI). If, by contrast, the neuron somata are given heterogeneous growth parameter
values, the degree distribution could become broader due to difference in neuron morphologies
in the network, e.g., due to some neurons extending their axonal or dendritic trees way further
than others. In this work, the neurons have rather homogeneous morphologies, although they
do have slight randomness in, e.g., the number of basal dendrites (Publication II). Fitting the
amount and type of heterogeneity in the morphology parameters to produce a given in-degree or
out-degree distribution is out of the scope of this work, although such an approach could both
shed light on the statistics of network connectivity and offer a valuable tool for goal-directed
neuronal network generation. This is left for future studies.

From the viewpoint of the activity properties, such as synchronizability, the degree distributions
play an important role. Theoretical and computational studies have highlighted the effect of
average degree in regulating the type of activity [Brunel and Hakim, 1999, Jia et al., 2004]. In
recent in silico studies, the contribution of not only the mean but also the width of the degree
distribution has been analyzed. In [Zhao et al., 2011], the effect of second-order connectivity
motifs (accounting for the widths and correlation of in-degree and out-degree distributions) on
synchronization in neuronal networks was analyzed. In [Roxin, 2011], neuronal activity was
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simulated in networks with both in-degree and out-degree distributions predefined. Both [Zhao
et al., 2011] and [Roxin, 2011] agree on the shape of in-degree distribution influencing the mode
of synchrony in a neuronal network more than the shape of the out-degree distribution does.
This is the reason for the choice of a fixed in-degree distribution in Publications III and VI for
networks whose dynamics are compared to each other (in Publication III binomial in-degree
distribution is chosen, whereas in Publication VI both binomial and power-law distribution
are considered). However, also the out-degree distribution has been recently [Pernice et al.,
2013, Hu et al., 2013] shown to affect the spike train correlation strengths and should thus not
be completely ignored.

Despite the fixed in-degree distribution, both Publication III and VI show that further details
of the connectivity graph have a crucial effect on the network dynamics. Both publications agree
on the increase of bursting frequency with the increase of local connections. Similar results have
been observed in [Litwin-Kumar and Doiron, 2012], where the burstiness of the population,
when measured using the Fano factor of the spiking frequency, was shown to increase by the
degree of clustering in the connectivity pattern. Opposite results have been reported in [Netoff
et al., 2004], where the locally connected networks only produce stably proceeding slow waves,
while random and small-world networks produce variable bursting activity. The difference comes
from the different regime of synaptic weights: In their paper, the synaptic weights were tuned
very high (two action potentials in presynaptic neurons induce an action potential in the target
neuron with a probability near to one), which makes the dynamics in the networks with a lot
of long-range connections much more variable. Another difference to the models presented in
this thesis is that they used a long refractory period (in range of tens of milliseconds) to make
sure that the bursts cease and do not reactivate. By contrast, in this work, the bursting activity
is re-entrant through excitatory connections until the synaptic resources are depleted. If such
a model was used along with the high-weighted synapses of [Netoff et al., 2004], the bursting
dynamics in locally connected networks might as well possess variable, non-trivial activity.

In Publication VI, the effect of network structure on the bursting is monitored in a wider
framework: A number of different types of network structures are considered in order to obtain
as general a result as possible. The graph measures introduced in Section 2.1 are evaluated for
each network, and a prediction framework is applied to find out which one of them plays the
key role with respect to the network dynamics. This should prevent false conclusions on the
influence of a certain graph property, when the influence is actually reflected from the effect of
another, correlated graph property. Such confusions are a frequent source for misinterpretations
in structure-dynamics research [Arenas et al., 2008]. The integrative method of Publication VI
highlights two graph measures above others, namely, the clustering coefficient and the maximal
eigenvalue, the former being effective in networks with a sharp in-degree distribution and the
latter in networks with a broad in-degree distribution. The importance of these measures has
been stressed in the context of other physical systems. For instance, [Restrepo et al., 2006]
showed that there is a critical value of connection weights between Kuramoto [Kuramoto, 1984]
oscillators above which the network attains coherency, and that this critical value depends only
on the maximum eigenvalue of the connectivity graph and the parameters governing single-node
dynamics. For Watts-Strogatz networks of LIF neurons, it has been shown [Masuda and Aihara,
2004] that the clustering coefficient affects the degree of local synchrony more than the path
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length does. The results of Publication VI confirm the importance of these two measures in
bursting neuronal networks. It should be pointed out that much depends on regime of synaptic
weights. If the synaptic weights were tuned high, as in the case of [Netoff et al., 2004], the
path length might become more determinant than the clustering coefficient (see [McGraw and
Menzinger, 2007] for an example in the context of Kuramoto oscillators). However, there is no
guarantee that the bursting dynamics be realistic in such high-weighted networks, nor that the
dynamics of the neurons remains physically feasible. Considering such a regime is thus left to
future studies.

The dynamics of the bursting neuronal networks can be effectively described by statistics on
the number and length of the bursts, as well as the size (number of spikes) of a burst and the
maximal population firing rate (mFr). The burst length and size are considered in Publication
VI, while mFr (along with other measures) is monitored in Publication III. The effect of the
network structure on these measures can be observed in both publications. In Publication
III, the dynamics of the network is additionally assessed using information-theoretic tools,
namely, the NCD distribution between spike trains of neurons. The method shows that different
networks can be separated by the distributions of their NCD values, when both structural and
dynamical aspects are considered. This is not the case with the Hamming distance, nor with
the cross-correlation coefficient.

Similar approaches to classification of spike trains have been applied in, e.g., in [Christen et al.,
2006], where a distance measure based on Lempel-Ziv complexity was applied. In their paper,
the authors estimated distances between a spike train of interest and a random Poisson spike
train. This approach is different from that in Publication III, where the spike trains are
compared within the neuron population. In other words, the approach of Publication III
requires simultaneous spike train data on different neurons of a population, while the approach
of [Christen et al., 2006] compares individual spike trains between a neuron and, in their case, a
random spike train. The authors of [Christen et al., 2006] showed that spike trains measured from
different brain regions lie on different distances from Poisson spike trains. This is best shown
when the classification is aided by another distance measure, which is based on the correlation
between the spike trains. Similarly to NCD, their distance metric utilizes the approximation
of Kolmogorov complexity and normalization to the range [0, 1]. Nevertheless, the authors of
[Christen et al., 2006] used the Lempel-Ziv complexity as such to approximate the Kolmogorov
complexity, whereas in Publication III (as well as in Publications IV and V) the length of
the LZMA-compressed1 string is used. The LZMA employs the Lempel-Ziv complexity only in
the creation of the dictionary for the string that is to be compressed. Another difference is in the
way of normalizing the distance measure — arguments for using the normalization as expressed
in Equation 2.19 are given in [Li et al., 2004].

The difference between the NCD distributions of spike trains of different network types re-
flects the difference between the dynamical behaviours of the corresponding network types. The
spike trains are, however, discretizations (always in voltage and most often also in time) of the
membrane potential, and therefore the NCD values based on them may miss a lot of relevant

1The LZMA (Lempel-Ziv Markov chain algorithm) is a lossless compression algorithm used in, e.g., 7-zip
compression. See http://www.7-zip.org/ for further information.
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information on the system dynamics. By contrast, the NCD can be effectively applied to any
discrete-state discrete-time system without the risk of losing information. In Publications
IV and V, the NCD is calculated for the dynamics of different physical systems that can be
represented by probabilistic Boolean networks. In these publications, the NCD is calculated
between vectorized states at different time instants, unlike in Publication III, where the NCD
between vectorized spike trains of different neurons is calculated. Hence, although both ap-
proaches measure the diversity of the dynamics, the approach of Publication III quantifies
the diversity across the population, and the approach of Publications IV and V quantifies the
diversity across time. Quantifying the dynamical diversity across time allows the estimation of
complexity of the system at different time instants, which is especially interesting in systems
that show changes between states of attraction. Nevertheless, this approach requires data from
a large (if not the whole) population at each time instant, whereas the quantification across
the population can be applied to the time series of a smaller number of measured nodes, and is
hence more easily adaptable to experimental data. Thus, the results obtained by the across-time
approach are more of theoretical interest, but on the other hand, may tell more about the fine
temporal changes than the across-population approach. The difference of these two approaches
is discussed also in [Gong and Socolar, 2012], where an entropy-based complexity measure was
applied to Boolean network dynamics using both approaches.

Publications IV and V reveal an interesting tendency of temporal complexity to be maximized
near a state transition. In random Boolean networks this transition corresponds to the network
attaining an attractor after initial chaotic dynamics, whereas in the lattice gas system, the
transition corresponds to the spreading of the gas particles more uniformly over the whole
domain. This is a novel (to the best of my knowledge) finding in the field of complex systems,
made possible by the recent advances in information theory [Li et al., 2004, Galas et al., 2010].
The phenomenon is also observable using an entropy-based measure of statistical complexity
[Shalizi, 2003, Shalizi et al., 2004], as shown in Publication V. The modular design of the set
complexity and the NCD (the approximator of Kolmogorov complexity can be freely chosen)
makes them a practical tool for diverse types of data. The states or time series that the NCD
is applied to need not be of the same length, which is a great advance compared to many other
approaches, including the Hamming distance and cross-correlation coefficient. In fact, a recent
application [Sadot et al., 2013] has shown the feasibility of the NCD measure to very diverse
temporal objects. In their framework, the authors applied a model of cell population dynamics
that outputs the state of the population at each time point as a text file containing various
information on the number and status of the cells. Their results show a fine classification of
different genetic conditions through the use of NCD between successive states of the system.
Another benefit of the NCD and the set complexity is that they do not require any additional
information on the system structure (as the statistical complexity does) nor on the underlying
probability distributions (as the entropy-based measures in general do).

This work contributes to many topics in the area of systems science, but the main focus of
the thesis is on the dynamics of neuronal networks. Out of the vast number of network-level
phenomena related to neuronal networks that can be studied in silico, this work concentrates on
the network-wide bursts. They are an attractive object due to the fact that they can be observed
in relatively simple systems, such as neuronal cultures. Furthermore, the network-wide bursts
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can be reproduced computationally by using relatively simple models, such as LIF neurons
with short-term synaptic plasticity [Tsodyks et al., 2000]. By using various graph algorithms
and graph-theoretic measures, the influence of network structure can be effectively studied.
Information-theoretic tools can be used to assess the information diversity of the bursting type
of dynamics, although their applications to simpler, discrete systems, such as Boolean networks,
may reveal the dynamical aspects of the system in a more extensive manner.

Graph-theoretic approaches to systems science are a central theme in this thesis. In computer
simulations, the connectivity patterns can easily be modified, and usually changing one aspect in
the structure alters many other structural aspects as well. Recently, advanced graph generation
algorithms have been introduced to tackle this problem [Watts and Strogatz, 1998, Barabási
and Albert, 1999, Palla et al., 2010]. In this thesis, the existing algorithms are modified to
suit the specific needs in the systems discussed here. Special attention is given to the in-degree
distribution. A common factor in most of the network structures generated in this study is
that the in-degree distribution is fixed, but other aspects are allowed to vary. Future graph
generation algorithms should account for the problem of keeping more and more structural
aspects pre-defined, and letting other, more detailed aspects, vary. Such schemes would allow
finer control over the network structure, and hence, enlighten the often complicated structure-
dynamics relationships in ever finer detail.

The future experimental techniques provide ever more detailed data on biological entities and
their interactions. The use of computational models for explaining the observed phenomena as
complex interplays between the different entities is an arguable approach due to its constantly
increasing potential. Given the rapid growth of computer memory capacity and processor per-
formance over the past three decades, the predictive capabilities of the simulations of biological
systems could be far beyond the present level after the three decades to come. However, as
this thesis along with many other pieces of work shows, it is not only the number of interact-
ing elements, but also the details of the connectivity that play a crucial role in shaping the
collective activity. Data on, e.g., the neuronal network connectivity in different animal species
are increasing and becoming more accessible for research, and this brings us closer to first un-
derstanding and then, by time, reproducing the function of the nervous system. Only through
extensive experimental as well as computational research, and their seamless combination, can
such ambitious goals be attained.



Bibliography

[Abbott, 2008] Abbott, L. (2008). Theoretical neuroscience rising. Neuron, 60(3):489–495.

[Aldana et al., 2003] Aldana, M., Coppersmith, S., and Kadanoff, L. (2003). Boolean dynamics
with random couplings, pages 23–89. Springer-Verlag.

[Allen and Barres, 2009] Allen, N. and Barres, B. (2009). Neuroscience: Glia -- More than just
brain glue. Nature, 457(7230):675–677.

[Araque and Navarrete, 2010] Araque, A. and Navarrete, M. (2010). Glial cells in neuronal
network function. Philosophical Transactions of the Royal Society B: Biological Sciences,
365(1551):2375–2381.

[Arenas et al., 2008] Arenas, A., Dı́az-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C. (2008).
Synchronization in complex networks. Physics Reports, 469(3):93–153.

[Ascoli et al., 2007] Ascoli, G., Donohue, D., and Halavi, M. (2007). Neuromorpho.org: A
central resource for neuronal morphologies. The Journal of Neuroscience, 27(35):9247–9251.

[Azevedo et al., 2009] Azevedo, F., Carvalho, L., Grinberg, L., Farfel, J., Ferretti, R., Leite,
R., Lent, R., and Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal
cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative
Neurology, 513(5):532–541.

[Barabási and Albert, 1999] Barabási, A. and Albert, R. (1999). Emergence of scaling in random
networks. Science, 286(5439):509–512.

[Barrat and Weigt, 2000] Barrat, A. and Weigt, M. (2000). On the properties of small-world
network models. The European Physical Journal B–Condensed Matter and Complex Systems,
13(3):547–560.

[Boccaletti et al., 2006] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.
(2006). Complex networks: Structure and dynamics. Physics Reports, 424(4):175–308.

[Bock et al., 2011] Bock, D., Lee, W.-C., Kerlin, A., Andermann, M., Hood, G., Wetzel, A.,
Yurgenson, S., Soucy, E., Kim, H., and Reid, R. (2011). Network anatomy and in vivo
physiology of visual cortical neurons. Nature, 471(7337):177–182.

41



42 BIBLIOGRAPHY

[Brette et al., 2007] Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.,
Diesmann, M., Morrison, A., Goodman, P., Harris Jr, F., Zirpe, M., Natschläger, T., Pecevski,
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tical connectivity provides a sufficient foundation for specific functional connectivity in neocor-
tical neural microcircuits. Proceedings of the National Academy of Sciences, 109(42):E2885–
E2894.
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ABSTRACT
In this work we study the structural changes in neuronal
networks emerging during network maturation. We ana-
lyze two computational models proposed in the literature
that describe the growth of neurons. The models have pla-
nar geometry and the density of cells is chosen to corre-
spond to the ’dense’ and ’sparse’ cultures reported in the
experimental studies. The growth of the model neurons
and networks is simulated using two novel publicly avail-
able simulators. A graph representation of the networks
is obtained from the simulation results and examined at
days 7, 14, and 21. The two models are clearly different
in nature. The first can model large networks phenomeno-
logically, while the second describes some of the relevant
biophysical processes in smaller networks. The difference
in modeling approach is evident in the graph properties.

1. INTRODUCTION

Network models of interconnected neurons have been ex-
tensively studied in the past to assess the mechanisms of
information transmission and processing in different brain
regions. Majority of these studies focus on the models
of mature cortical circuits. The model neurons are de-
scribed by dynamics of the cell membrane potential, in-
cluding various contributing mechanisms at different lev-
els of complexity. The networks have stable topology
based on experimental observations. The contacts between
neurons, the synapses, are activity-dependent.

The structural properties of the network topology im-
pose limitations to the overall functionality. In this work,
we focus on the analysis of realistic topologies without
explicitly considering the activity and function of the cor-
responding networks. Instead, the goal is to examine the
structural changes emerging during realistic simulations
of growth of neurons and neuronal networks.

Growth models reported in the literature often focus
on a single neuron or a single neurite, describing the un-
derlying biophysical processes. For example, the models

* The first two authors equally contributed to this
paper.

of initiation, elongation, and retraction of neurites, sen-
sitivity to extracellular chemicals, selection of growth di-
rection, and branching are reviewed in [1]. In addition,
the phenomenological models of growth based on the sta-
tistical description of these processes and obtained experi-
mentally are studied in [2], [3]. A network level model fo-
cusing on axon growth, particularly on selection of growth
direction based on extracellular cues, is proposed in [4].
Recently, two simulators of neuronal growth were pro-
posed in [3] and [5]. First of them employs statistical ap-
proach from [2]. It allows simulation of large networks
with an approximative description of growth. The second
simulator includes a detailed description of neurons and
extracellular space, but cannot simulate large networks.
We analyze the generic model from [5], but the imple-
mentation of new models is also supported.

The relevant aspects of growth greatly depend on the
considered experimental conditions. We focus on neu-
ronal cell cultures which allow monitoring of growth for
several months, and inspection of the structural changes
at least during the first weeks. Staining and microscopy
techniques provide the tools for monitoring the structural
changes. Various parameters like initial cell density and
environmental chemicals can be easily controlled.

We study the two models proposed in [3] and [5]. In
order to model neuronal cultures, the planar geometry is
imposed as well as the several biophysical parameters defin-
ing the neuron behavior. The presented results correspond
to the days 7, 14, and 21 in vitro. A directed graph captur-
ing the network connectivity pattern is extracted, and var-
ious structural measures are computed according to [6],
[7]. The network activity is not explicitly considered in
any of the models, so the obtained synapses correspond
to the ’potential synapses’, i.e. the places where a contact
between two neurons can be established in the presence of
activity. According to [8], only a fraction of these ’poten-
tial synapses’ become functional synapses, which is taken
into account when examining the connectivity.



2. MATERIALS AND METHODS

We analyze the two recently published simulators of neu-
ronal growth and their generic models corresponding to
neuronal cell cultures described in [3], [5]. The model im-
plemented in NETMORPH focuses on statistical descrip-
tion of elongation, branching, and selection of growth di-
rection [2]. The interaction between neurons, and the role
of extracellular substances are not considered. The sec-
ond simulator, CX3D, allows free selection of the model
with many biophysical details included [5]. We adopt the
generic model for neuronal cell cultures. It includes inter-
action between neurons through extracellular space. Cells
diffuse guidance cues into the extracellular space and the
branching and direction selection of their neighbors de-
pends on the concentration of these cues.

2.1. NETMORPH simulator for modeling network
growth phenomenologically

The NETMORPH is a neuronal growth simulator for gen-
erating large-scale networks with realistic morphologies
[3]. The simulator allows neurons to grow axons and den-
drites but not to divide or to evoke movement. Synapses
are formed when axons and dendrites come close enough
to each other. The growth of the neurites includes elonga-
tion, branching, and the choice of growth direction.

The elongation of a terminal segment of a neurite is
described in [3], [2] as

ν(t) = ν0n(t)−F .

Here, ν(t) represents the average elongation rate of a ter-
minal segment at time t, ν0 is a constant, n(t) is the num-
ber of terminal segments in the neuron, and F is a con-
stant parameter determining the level of competition for
resources between terminal segments. The branching pro-
cess is defined in [3], [2] by the probability of a terminal
segment j branching at time step (ti, ti + ∆t) into two
new terminal segments as follows

pi,j = n−Ei B∞e
−ti/τ (e∆t/τ − 1)2−Sγj/Cni

.

Here, ni is the number of terminal segments in the whole
cell at time ti, E is a constant determining the magni-
tude of competition, and B∞ and τ are constant parame-
ters governing the intensity and slowness of the branching.
The variable γj is the centrifugal order of the terminal seg-
ment j, i.e. the number of segments between the soma and
the terminal segment, S is a constant that determines the
effect of the centrifugal order on the branching rate, and
Cni = 1

ni

∑ni

k=1 2−Sγk is a normalization constant.
Neurites can change growth direction, and the proba-

bility of the change at time t+∆t depends on the increase
in length of the terminal segment during the time interval
(t, t + ∆t). The new direction depends on the previous
growth directions for the considered neurite segment.

The above-mentioned models are used with the fol-
lowing parameters. Axon growth: F = 0.16, ν0 = 45 µm/
day, B∞ = 17.38, E = 0.39, S = 0, τ = 14 days, den-
drite growth: F = 0.39, ν0 = 12 µm/day, B∞ = 4.75,

E = 0.39, S = 0, τ = 3.7 days. In the synapse formation
a filling fraction of 1/4 is used, i.e. only one quarter of po-
tential synapses are accepted as functional synapses. For
other parameters the default values of the NETMORPH
simulator are assigned. Simulation time step is set to 2.4
hours.

2.2. CX3D simulator for modeling network growth bio-
physically

The CX3D is a simulation package suitable for modeling
biophysical processes related to growth of neurons. Both
intracellular and extracellular processes can be taken into
account. The user can specify which processes should be
included and at what level of complexity. We study the
model of neuronal cell cultures proposed for this simulator
in [5].

A fixed number of neurons is randomly distributed in
the planar space that corresponds to the cell culture. No
cell division or death can occur. All cells secrete a sub-
stance which acts as a guidance cue attracting the neurites
of other cells. This is the only chemical implemented in
the model. A number of initial neurite segments are placed
on each cell. Neurite elongation occurs with a fixed rate
that is adopted from NETMORPH, i.e. ν = 12 µm/day
for dendrites and ν = 45 µm/day for axons. Neurite
branching, the splitting of the neurite tip into the two new
segments, occurs with a certain probability if the concen-
tration of the guidance cue is large enough. During elon-
gation dendrites gradually become thinner, losing 0.1% of
their diameter in each time step, and branching stops when
a certain threshold in the diameter is reached. Extracellu-
lar gradients of the guidance cue determine the direction
of growth of neurites. When the concentration of guidance
cue is small the neurites will grow straight. Mechanical
tensions between soma and neurites, present during elon-
gation, retraction and branching, are included in the model
as described in [5]. The filling fraction and the simulation
time step are equal to ones used in NETMORPH.

2.3. Characterization of network properties

The simulated networks are converted into unweighted
directed graphs and analyzed using the following graph
properties: degree distribution, geodesic path length, clus-
tering coefficient, and motifs. Neurons represent graph
nodes and the functional synapses form the edges. The
edges are considered unweighted. Multiple synapses be-
tween two neurons form only one edge.

The set of nodes is denoted as V = {vi}i=1...N and
the edges between them as E = {eij}i,j=1...N . The in-
degree of a node is the number of edges arriving at the
node, and the out-degree is the number of edges leav-
ing the node. The geodesic path from node vi to vj is
the shortest path between vi to vj , and the corresponding
geodesic path length is the number of edges in this path
or paths (there might be more than one shortest path for a
pair of cells). The geodesic path length of the network is
calculated by averaging over the geodesic path lengths of
all connected nodes.



The local clustering coefficient of node vi is defined as
follows. Take all neighbors of vi, i.e. such nodes vj that
eij , eji ∈ E, and calculate the ratio between the number
of existing connections and the maximal number of pos-
sible connections. The global clustering coefficient is the
average over local clustering coefficients of those nodes
that have more than one neighbor. Clustering can also be
assessed by analyzing motifs [7], [6]. All possible con-
nections between triplets of nodes represent one of the 13
motifs (see Figure 2). The proportions of triples represent-
ing the motifs to the total number of triples tells us about
the way the network is clustered.

3. RESULTS AND CONCLUSIONS

We simulated small networks of 100 neurons using both
simulators, and the bigger networks of 10000 neurons us-
ing NETMORPH only. The cell density was selected ac-
cording to the experimental studies reported in the litera-
ture [9]; we studied sparse (590 neurons/mm2) and dense
(1600 neurons/mm2) networks at days 7, 14, and 21 in
vitro (DIV). The simulations started from random initial
conditions (cell positions, number of neurites per cell),
and the presented results are the average over many rep-
etitions. The summary of the results obtained for mea-
sures described in Section 2.3 is given in Figures 1 and 2,
and in Table 1. The in- and out-degree distributions are
shown in Figure 1, and the frequency of motifs in Fig-
ure 2. The remaining measures are given in Table 1. For
comparison, the same measures are evaluated for random
networks chosen to have the same mean of the degree dis-
tribution as the simulation results.

Difference between the two models is already visi-
ble in the degree distributions in Figure 1. The NET-
MORPH model significantly deviates from the random
network (shaded area in figures). The CX3D model dif-
fers less and the difference is bigger for the out-degree
distribution and for the networks with higher overall con-
nectivity (cultures in latter development stage). The ob-
served difference in results is expectable considering the
intrinsic properties of the models. In NETMORPH the
neurites grow in random directions, without interaction
between the cells. Connections are formed when dendrite-
axon pairs become close enough, which depends on sev-
eral model parameters and on the initial conditions. In
the CX3D model cell interaction is implemented through
guidance cues secreted from the cells. The neurites are
more likely to grow toward higher concentrations of guid-
ance cues. This way, the neurons have tendency to strongly
connect to the neighbors with less variability than in NET-
MORPH. Due to the small network size this clustering
effect is not emphasized since all the neurons are close
enough to form connections. The majority of results in
motifs analysis significantly differ from the random val-
ues (U-test, confidence level 0.05). The rare similar val-
ues are marked with ’o’ in Figure 2. In the NETMORPH
model the increase in number of motifs with ’loops’ be-
tween pairs of cells, most of all the number of motifs
12, happens between days 14 and 21. In addition to the
two small scale models, in Table 1 are shown results for a

larger model (10000 neurons) simulated in NETMORPH.
There is a visible increase in the shortest path length, as
a result of the overall network size. The clustering coeffi-
cient remains similar to the one in smaller networks.

In summary, the two neuronal growth models from the
literature were compared to each other and to the random
networks. The obtained results are significantly different,
and different from random networks. More detailed anal-
ysis focused on particular aspects of neuronal growth will
be carried out in the future.
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Figure 1. In-degree and out-degree distribution. Upper rows - degree distributions obtained using NETMORPH;
bottom rows - CX3D results. Left columns - dense cultures, 14 and 21 DIV. Right columns - sparse cultures, 14 an 21
DIV. The x axis - the number of presynaptic (for in-degree) and postsynaptic (for out-degree) neurons. The y axis - degree
probability (in %).

Figure 2. Distribution of motifs - sparse and dense networks, 14 and 21 DIV, two simulators. Gray - random networks,
the results from simulated models are marked with ’+’, vertical arm representing the ST deviation. ’o’ - not significantly
different from random networks (U-test, confidence level 0.05).

SPARSE DENSE
Geodesic Clustering Geodesic Clustering

CX3D 7DIV 5.1± 1 − 5.5± 1 0.3± 0.1

SMALL 14DIV 3.3± 0.3 0.5± 0.08 3.2± 0.2 0.5± 0.04
21DIV 2.7± 0.1 0.5± 0.06 2.6± 0.1 0.6± 0.03

NETMORPH 7DIV 3.1± 1.2 0.3± 0.3 2.3± 0.8 0.3± 0.2

SMALL 14DIV 1.8± 0.6 0.6± 0.1 1.5± 0.5 0.7± 0.08
21DIV 1.4± 0.5 0.7± 0.06 1.3± 0.5 0.8± 0.04

NETMORPH 7DIV 12.8± 5.2 0.3± 0.3

LARGE 14DIV 6.7± 3.2 0.5± 0.09
21DIV 4.5± 2.3 0.6± 0.06

Table 1. Computed measures (mean ± standard deviation). Each row corresponds one of two simulators, one time point,
and small (100 cells) or large (10000 cells) networks. All results are significantly different from the random network.
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We simulate the growth of neuronal networks using the two recently published tools, NETMORPH and CX3D. The goals of the
work are (1) to examine and compare the simulation tools, (2) to construct a model of growth of neocortical cultures, and (3)
to characterize the changes in network connectivity during growth, using standard graph theoretic methods. Parameters for the
neocortical culture are chosen after consulting both the experimental and the computational work presented in the literature. The
first (three) weeks in culture are known to be a time of development of extensive dendritic and axonal arbors and establishment
of synaptic connections between the neurons. We simulate the growth of networks from day 1 to day 21. It is shown that for the
properly selected parameters, the simulators can reproduce the experimentally obtained connectivity. The selected graph theoretic
methods can capture the structural changes during growth.

1. Introduction

Development of computational tools has been one of the
central topics in the computational neuroscience commu-
nity. Several simulators of bioelectrical activity are publicly
available and considered well-established tools. Both the
cellular mechanisms behind this activity and the communi-
cation between cells, through the exchange of activity, can
be modeled and analyzed using these tools [1]. In addition
to the bioelectrical activity, the morphological structure of
neurons and neuronal networks can be reconstructed by
methods based on the experimentally verified morphological
constraints [2]. Recently, two simulators were proposed,
aiming to reproduce the morphological and structural
changes of neuronal networks during growth [3, 4]. These
two tools reproduce the morphological characteristics of
neurons in each step of growth and not only in its final phase.
Both provide a set of components that can be combined in a
user-defined model, including functions defining axonal and
dendritic growth, morphology of different types of neurons,
or environmental constraints. They can reproduce growth in
planar and three-dimensional space. Currently, they simulate
solely the morphological aspects of neuronal circuits, but

they will likely be extended, in the near future, to include the
development of bioelectrical activity.

Various aspects of growth in neuronal systems can be
analyzed using models [5]. Some models concentrate on
details of biophysical processes related to one phenomenon,
while others describe several processes with less details
[6, 7]. Examples of analyzed phenomena are initialization
of dendritic and axonal arbors [5], dynamics of intracellu-
lar chemicals involved in axonal and dendritic outgrowth
[6], and selection of axon growth direction following
guidance cues in the environment [8, 9]. The framework
for phenomenological modeling of growth is proposed in
[3, 10, 11]. Here, the statistics of morphological changes,
including branching and elongation, are computed without
a reference to the intracellular or extracellular processes
leading to those changes. Finally, the models of growth
of neuronal populations and formation of networks are
proposed in [9, 12]. In [9], the influence of guidance cues
on axonal growth and the developed network properties are
studied. In [12], a study of activity-dependent growth of neu-
ronal networks is presented. Recently, an activity-dependent
model of growth was utilized to examine the self-tuning to
criticality [13].
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In this work, we assess the applicability of NETMORPH
and CX3D simulators, proposed in [3, 4], to study the growth
in neocortical cultures. The neocortical cultures represent
an experimental model of moderate size neocortical cir-
cuits, consisting of 10,000–100,000 neurons. The immature
neurons are extracted from the neocortex of rat embryos
and plated on a dish. Such neurons, regularly supplied with
nutrients, develop their full morphology and functionality.
The proportion of different neuronal subtypes observed in
cultures is similar as in the neocortex [14]. The neurons
retain similar morphological and functional properties as
those found in the neocortex [14–17]. Still, the cultures
contain only a moderate number of cells which live in a
suboptimal environment. Their organization is substantially
different from the one observed in the neocortical tissue,
since neurons form planar networks different from the
layered three-dimensional columns in the neocortex.

Several aspects make cultures a valuable tool for the study
of cortical circuits. In cultures, the study of relation between
morphology and functionality is feasible, since both can be
studied simultaneously using the established experimental
techniques. The morphological changes can be followed
using a combination of cell staining and microscopy [15–17].
At the same time, their functionality can be assessed using
either the patch-clamp recordings from single neurons [18]
or by recording the activity from several locations in the
network using the microelectrode arrays (MEA) [14, 19].
The morphological and functional properties of neurons can
be manipulated by changing the content of the extracellular
space. Properly maintained cultures can survive for several
months [14, 19], and all of the described methods can
be applied at different times during the culture life which
provides an experimental framework for study of growth.
The simulated model of neocortical cultures is constructed
using the information available in the literature. We opted for
a model based on the statistical description of morphological
changes during growth, proposed in [10, 11], without trying
to model intracellular or extracellular biophysical processes.
These models are the intrinsic part of NETMORPH sim-
ulator and the implementation of fundamentally different
growth rules would require changing the core of the
simulator. The CX3D allows more flexibility in model
description, and the adopted growth rules are implemented
following [3, 10, 11]. The considered model allows the
precise reconstruction of single neuron morphology and the
constraints it imposes on the connectivity between neurons.
Still, the model employs relatively simple rules and does not
depend on many parameters. Therefore, it is suitable for the
analysis of structural changes in neuronal networks during
growth. The implemented model does not consider the role
of activity that spontaneously emerges in neuronal cultures,
but it mimics the synapse formation. Potential synapses are
formed whenever the presynaptic and the postsynaptic sites
are close enough. A certain percentage of these synapses can
be considered “functional”. According to [20], the percentage
of potential synapses that can be considered functional is
25% in vivo. This percentage might be significantly different
in cultures, due to the absence of columnar organization,
smaller number of neurons that form synapses, and smaller

density of dendrites and axons. The experimental studies
estimate that in a culture a neuron directly connects to 10–30
of other neurons through functional synapses [14, 18].

Section 2 presents the methodology used in this work.
A description of simulators is given in Section 2.1. The
implemented model is described in detail in Section 2.2.
Section 2.3 describes the graph theoretical measures of
connectivity of network structure. Section 3 describes the
obtained results and conclusions. In Section 3.1, we discuss
the properties of the two simulators from the user point of
view. In Section 3.2, the number of synapses per cell and
per dish is evaluated, while varying model parameters and
the obtained statistics are compared to the experimental
evidences from the literature. Section 3.3 shows the basic
statistics evaluated on network graph, extracted from the
simulation results at different development days. Finally,
Section 4 gives the discussion of the obtained results and
their implications in study of morphological changes during
growth of neocortical cultures in vitro.

2. Material and Methods

In this section, the adopted model of neuronal growth in
neocortical cultures is presented in detail, together with the
implementation details in the two simulators. In addition,
the measures used to assess the simulation outcomes to
evaluate the two simulators are listed.

2.1. Simulators of Growth. Recently, two simulators that can
reproduce growth and development of neuronal systems
were published in [3, 4]. Although both aim at simulating
growth and development of neurons and neuronal networks,
the methodology, implementation, and set of problems
where they can be employed differ significantly. From the
user point of view, the difficulty of model implementation,
control of the parameters of the implemented model, and
efficiency of simulations are also very different when using
the two tools.

The NETMORPH simulator (http://netmorph.org/) has
been developed at the Department of Experimental Neuro-
physiology at VU University Amsterdam. It is based on the
extensive work on mathematical models that describe the
morphology of dendritic and axonal arbors and the changes
in the morphology during growth [7, 10, 11]. The software
was written in C++ and provides a set of ready-made
model components. The user can select the components and
define the model parameters in a textual file called from
the command line or directly from the command line. The
software provides separate simulators for 2D and for 3D
models which use the same set of model components.

The CX3D (http://www.ini.uzh.ch/∼amw/seco/cx3d/)
has been developed at the Institute of Neuroinformatics of
the University of Zurich and ETH Zurich. The simulator
includes a wide range of phenomena related to growth and
development. Although we examine it in the context of
growth in cultures, it can be employed to test many other
processes including cell migration, formation of cortical
columns, cell mitosis and apoptosis, and axon guidance
through extracellular cues. The simulator is implemented in
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Figure 1: Schematic representation of a model of neocortical culture. Each block in the figure represents a set of related model components
and model parameters that were selected from the literature.

Java and the users are expected to write their own classes
defining the model components and combining them into
the models of neuronal systems. The simulator essentially
represents three-dimensional systems, but it can be adapted
for the simulation of cultures.

We used the versions of the simulators that were available
on the listed web sites in January 2010. The software was
tested on Linux and Unix servers and on the personal
computers (4 GB RAM, 3 GHz processor) working under
Windows or under MacOS. Both simulators can be straight-
forwardly installed and run under Linux and MacOS. The
CX3D can easily be installed and used under Windows, while
NETMORPH needs the Cygwin environment on Windows.
Simulation time did not depend significantly on the choice of
operating system when working on computers of comparable
performances.

2.2. Model of Neocortical Culture. In the presented study, we
focus on growth in neocortical cultures. The models describ-
ing this phenomenon can be schematically represented as in
Figure 1. The leftmost block defines the context, the char-
acteristics of the environment where neurons live, and the
characteristics of modeled neuronal population. The central
block describes the model on single neuron level, for each
implemented type of neuron. The rightmost block defines
the interactions between neurons. Details of the model
are illustrated on Figure 2(a), including the explanation of
neuron anatomy and the meaning of the model parameters.

The environment block describes the shape and size of the
space occupied by the neurons. In our model, this is a circular
two dimensional dish in NETMORPH implementation, and
a very flat cylinder, with the height equal to a cell diameter,
in CX3D implementation. The CX3D models cannot be
two dimensional due to properties of the simulator, but can
be made nearly two dimensional by constraining the range
of z coordinates to very small values. The dish radius is
computed based on the number and density of neurons.
In addition, the environment might define the properties
of the medium that neurons live in, and the presence of
particular chemicals that may influence growth. We do
not model such extracellular chemicals explicitly, but the

assumptions regarding the medium reflect on the choice of
model parameters. It is assumed that neurons grow in an
environment similar to the standard culturing medium, for
example, as in [19]. The parameters are chosen to correspond
to these conditions as well as possible.

The number and density of neurons are chosen as a
tradeoff between the limitations of the simulators and the
experimental evidence from the literature. The implemented
networks consist of 100 neurons, which is the maximum
number that can be simulated using both tools on standard
personal computers. The selected density is 100 cells/mm2.
The densities reported in the experimental literature vary
from 300 cells/mm2 to 1380 cells/mm2 depending on prepa-
ration and the addressed question [18, 19, 21, 22]. The
density in our model is lower than in the experimental
studies to compensate for the intensive axonal and dendritic
growth and the lack of apoptosis. The axons and dendrites
grow simultaneously in the model, while in the experiments
the beginning of axonal growth precedes the dendritic one
[15]. The total number of neurons is fixed in the model, as a
result of NETMORPH constraints, but in the experiments,
the number of neurons starts to decrease after the second
week in vitro [21]. The radius of the “dish” is computed to
preserve the chosen density for 100 neurons. This gives the
radius of 564.2 μm. The “dish” determines the space where
neuron somata are located, but the dendrites and axons
are allowed to extend beyond its boundaries, in order to
avoid boundary effect that would be severe for such a small
radius. Effectively, we simulate a small portion of 0.1–1% of
a neuronal culture.

We model the two most frequent types of neurons
observed in cultures, the excitatory pyramidal neurons,
and the inhibitory multipolar nonpyramidal neurons that
correspond to the large GABAergic neurons reported in
[17, 22]. The model culture consists of 80 pyramidal and
20 nonpyramidal neurons, following the usual proportion
of excitatory and inhibitory neurons found in in vivo and
in vitro [14]. An example of a pyramidal neuron, simulated
using the CX3D, is shown on Figure 2(a). In addition,
neuron soma (S), axon (AX), a basal dendrite (BD), and the
apical dendrite (AD) are indicated on the figure.
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Figure 2: (a) shows one pyramidal neuron (simulation in CX3D) and its soma (S), axon (AX), basal dendrite (BD), and apical dendrite
(AD). In order to show synapse formation, axon of a proximal neuron is also shown. The synapses (SYN) are marked with red circles on
the figure. The right side of the panel shows computation of the elongation rate (n(t)), centrifugal order for four terminal tips (γk , where
k = 1 . . . 4), and the new growth direction (dnew) from the direction of ten preceding segments. (b) illustrates the influence of elongation rate
on the synapse formation. For smaller elongation rates, for example, 2 μm/day, the maximal space covered by dendrites (or axons) at the end
of a simulation is small and neurons cannot reach each other easily. For the larger values, for example, 20 μm/day, every neuron can cover a
substantial part of the dish and other neurons. For the large values, for example, 45 μm/day, the dendrites extend beyond the dish space and
are able to reach every one of 100 neurons. (c) illustrates all possible connectivity patterns between three neurons. These patterns are called
motifs, and their frequency in a network represents the structural properties of that network.

The description of soma includes the soma size, its shape,
and the number of dendrites extending from the soma.
The diameter of the soma is fixed to 10 μm for all the
neurons following the experimental results from [21]. The
somas are spheres or circles in the model, and their natural
shape is mimicked using a particular placement of neurites
on the soma. In pyramidal neurons, the apical dendrite is
positioned opposite to the axon and the basal dendrites grow
on the axon half of the soma. In the nonpyramidal neurons
dendrites are placed randomly on the entire soma. The total
number of dendrites in all neurons is between 4 and 6. In the
case of pyramidal neurons, one of them is the apical dendrite,
and the remaining 3–5 are the basal dendrites.

The models for axons and dendrites are based on the sta-
tistical description of morphological changes during growth
proposed in [7, 10, 11]. All the axons and dendrites use
the same description with different parameter values. The
parameter values are mainly obtained from NETMORPH

tutorial paper [3]. The axon parameters are originally
estimated from neurons growing in cultures and are available
in [3]. The parameters for basal dendrites are taken from
the three examples of reconstructed neurons in vivo available
on NETMORPH web site. These parameters are consistent
for the three examples, and we assumed that they grow
similarly in vitro, since they are relatively short and placed
around the soma and do not depend much on the guidance
cues that exist in vivo but not in vitro. The parameters for
apical dendrites are not available in the literature, and they
evidently have different properties than those observed in
vivo [15]. We assumed that they grow similarly to basal den-
drites and used the same model, except that we adopted two
times bigger initial elongation rate, following the microscopy
images from [15]. The dendrites of nonpyramidal neurons
are selected from the example of reconstructed basket cells,
also available in [3] and on the web site. The motivation for
this choice is found in [17], where large GABAergic neurons
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Table 1: The list of the relevant model parameters. Model parameters are listed in the third column. The references used to obtain these
parameters are given in the last column. Reference [3] points to the parameters that can be found directly in NETMORPH tutorial paper,
while [3]∗ points to the reconstructed neurons from the same paper, which parameters can be found on the simulator web site. The notation
“simulators” points to the value selected as a result of simulator constraints. The parameters for apical and basal dendrites differ only for
ν0 and they are shown together in the table (the ν0 for the apical dendrites is given between the brackets). The initial elongation rates ν0,
marked with +, are varied in the simulations.

Parameter Value Unit Selection criteria

Number of neurons 100 Simulators

Proportion pyr. 80 % [14]

Proportion nonpyr. 20 % [14]

Density of neurons 100 cells/mm2 Simulators, [14, 18, 19, 22]

Soma diameter 10 μm [21]

Axon

ν+
0 45 μm/day [3]

F 0.16 [3]

Binf 17.38 [3]

τ 14 days [3]

E 0.39 [3]

S 0 [3]

Basal (apical) dendrite

ν+
0

9.635
(19.27)

μm/day [3]∗

([3]∗, [15])

F 0 [3]∗

Binf 2.52 [3]∗

τ 3.006 days [3]∗

E 0.73 [3]∗

S 0.5 [3]∗

Nonpyr. dendrite

ν+
0 9.635 μm/day [3]∗, [17]

F 0 [3]∗, [17]

Binf 2.6475 [3]∗, [17]

τ 4.706 days [3]∗, [17]

E 0.594 [3]∗, [17]

S −0.259 [3]∗, [17]

Synapses NETMORPH

Distance pyr.-pyr. 1 μm [3]

Distance pyr.-nonpyr. 0.1 μm [3]

Distance nonpyr.-pyr. 1 μm [3]

Distance nonpyr.-nonpyr. 0.1 μm [3]

Synapse CX3D Spine length 3 μm [4], [23]

Bouton length 2 μm [4]

are studied in vitro. The study suggested that these neurons
may be similar to the basket cells found in vivo. All the
relevant model parameters are listed in Table 1.

The model for every axon or dendrite consists of three
components: elongation of the terminal segments, branching
of the terminal segments, and the model defining the
shape of terminal segments and, consequently, the shape of
segments between successive branching points. These com-
ponents are also illustrated on Figure 2(a). The CX3D is a
general purpose simulator, and various models of growth can
be implemented and tested. On the contrary, NETMORPH
focuses on a particular set of models that reproduce the
statistics of axonal and dendritic morphology but do not
tackle the biophysical mechanisms leading to this statistics.

Therefore, the model is mainly constrained by NETMORPH,
which, also, makes it more adapted to this simulator.

The elongation of terminal segments depends on the
initial elongation rate ν0 and on the current number of
terminal segments in the same arbor n(t) and is given by (1),
described in details in [3]. The dependency on the number
of terminal segments is regulated by the parameters F. The
terminal segments in the same arbor elongate with the same
speed at a given time. Although they can vary for small
random values, this choice made CX3D implementation
simpler. To illustrate, the elongation rate is computed for an
axon with 4 terminal segments and shown on Figure 2

ν(t) = ν0n(t)−F . (1)
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The branching of terminal segments is defined by the
probability of branching, the initial length assigned to the
two new segments, and the initial angle between them. The
probability of branching, pk, for the terminal segment with
index k is given by (2), described in details in [3]. It depends
on the expected number of branchings in the arbor, Binf , on
the total number of terminal segments at the considered time
instant n(t), and on the centrifugal order of the considered
terminal segment k, γk. This last parameter is equal to
the number of branching points between the considered
terminal tip and the root of the arbor it belongs to. Figure 2
illustrates computation of circular order for the 4 terminal
segments of the axon. The remaining model parameters are
the time constant τ, dependency on the number of terminal
tips E, and dependency on the centrifugal order S. The
normalizing coefficient is denoted as Ck. The parameter Δt
indicates the time step used to simulate the model

pk(t) = Binf

Ck
e−t/τ

(
eΔt/τ − 1

)
n(t)−E2−Sγk ,

Ck = 1
n(t)

n(t)∑

j=1

2−Sγj .
(2)

The initial length of new segments depends on the
simulator. In NETMORPH, they are selected randomly by
dividing the last elongated part of the terminal segment. In
CX3D, they are controlled by the segment “default length”
set to 10 μm. The choice of the initial length affects the
overall simulation result less in CX3D than in NETMORPH.
The first one implements the tensions in a segment during
elongation and retraction, as well as the mechanical inter-
action between different segments and different neurons.
This intrinsic model dynamics modulates the length of the
developed axons and dendrites. The initial angle between
each new pair of segments is π/3 in both simulators, since
it is fixed to that value in CX3D.

The shape of the axons and dendrites is determined by
the model component that defines growth direction in each
time step. In NETMORPH, the shape is entirely defined
by the sequence of movements directions of the terminal
segment. It is computed as the weighted sum of the directions
of previous segments, taking into account the segments up
to the last branching point. The new direction is defined
as dnew = ∑

j(Mj/D
1.2
j )d j,old + α. Here, Mj is the length

of the considered segment j, Dj is the distance between its
center and the tip of the terminal segment (computed along
the segments), d are direction vectors, and α is a random
perturbation. Computation of the new direction vector dnew

from the set of previous direction vectors {d j,old} j=1..10 is

shown on Figure 2 for one terminal segment of the axon.
The probability that direction changes is equal to 2 · ΔL(t),
where ΔL(t) is the elongation during the last time step. In
CX3D, the shape is determined dynamically. The movement
direction in each time step is initially computed as the
random perturbation of the direction from the previous time
step as dnew = 5 · dold + α. Still, the final movement direction
depends on the internal and external forces that affect the
segment. The internal mechanical tensions in the segment

determine how much it can be elongated or retracted. The
segments tend to avoid obstacles which lead to changes in
direction and bending of the segments. We also implemented
NETMORPH growth direction model in CX3D, but the
obtained result did not seem to represent the growth better
than the original choice.

The model for synapse formation is based on the proximity
criteria between pairs of axons and dendrites. Still the
implementation of the model significantly differs in the
two simulators. The NETMORPH requires a user-defined
maximal distance between the presynaptic and the postsy-
naptic sites. For each axon-dendrite pair being on a distance
smaller than the maximal, a synapse can be created with
the likelihood inversely proportional to the distance. The
maximal distances can be defined for different types on
neurons and are listed in the Table 1. In CX3D, the actual
growth of axonal boutons and dendritic spines is simulated.
The length of the formed boutons and spines corresponds
to the experimentally observed values. If a spine and a
bouton touch each other, they form a synapse with certain
probability than can be specified by the user. The model for
synapse formation is the same for all neuron types, a choice
imposed by the simulator. Figure 2 illustrates formation of
four synapses (red circles) on the contacts between the
dendrites of the depicted neuron, and the axon of another
proximal neuron (not shown on the figure).

The axon guidance cues are the chemical species in the
extracellular space that influence the axon growth directions
when sensed by its tip. Both simulators allow some possibility
to model the guidance cues, but only CX3D allows the
simulation of chemical diffusion in the space. We opted to
leave this mechanism out of the presented study and consider
its influence only in the future work.

Parameters Varied in Simulations. In order to test the net-
work formation in model cultures, we varied a parameter
that significantly influences the growth and synapse forma-
tion. The probability of synapse formation is determined
by the capability of neurons to reach each other, which is
controlled by the elongation rate of axonal and dendritic
trees. Figure 2 illustrates the maximal portion of the space
covered by basal dendrites of a single neuron for different
elongation rates. Four different elongation rates can be varied
in the model: for axons, for apical and basal dendrites of
pyramidal neurons, and for the dendrites of nonpyramidal
neurons. In the simulations, the initial elongation rate ν0 is
varied for basal dendrites. The same parameter for axons,
apical dendrites, and dendrites in nonpyramidal neurons is
chosen as the value for basal dendrites multiplied by 4.5, 2,
and 1, respectively. The examined values for the elongation
rate of basal dendrites are 1, 2, 4, 6, and 8 μm/day in NET-
MORPH and 2, 6, 10, 14, and 22 μm/day in CX3D. Axons and
dendrites in CX3D are elongating slower due to their internal
dynamics, and somewhat bigger values for ν0 were needed to
obtain the comparable results to NETMORPH.

2.3. Statistical Measures of Graph Properties. The neuronal
networks developed until days 4, 7, 10, 14, and 21 are
extracted and converted into unweighted directed graphs.
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Every neuron represents a node in the graph, and every
synapse between two neurons introduces an edge between
the two corresponding nodes. Multiple synapses between the
same pair of neurons are not considered. Denote the set
of nodes as V = {vi}i=1...N and the set of edges as E =
{ei j}i, j=1...N . For the obtained graphs, properties such as in-
and out-degree distribution, shortest path length, and the
frequency of motifs are computed.

The in-degree of a node is computed as the number
of edges arriving at the node, that is, the number of
postsynaptic contacts of the corresponding neuron. The out-
degree of a node is the number of edges leaving the node, that
is, the number of presynaptic contacts of the corresponding
neuron.

For every pair of nodes, vi and vj , the number of edges
in every path connecting these nodes is computed. The
smallest number of edges determines the shortest path. The
distribution of shortest paths for all the pairs of nodes in the
network measures the global connectivity in that network.
It indicates how well the nodes are connected and how fast
information can be transmitted within the network.

The count of motifs [24, 25] is a measure of local con-
nectivity. It indicates how well the neighbors connect, how
pronounced the clustering in a network is, and how often the
nodes form loops. All triplets of nodes in the network are
examined in order to count different connectivity patterns.
Such patterns between triplets of nodes are called motifs, and
there are, in total, 13 different motifs (shown in Figure 2 and
in [24, 25]). The frequency of different motifs is considered
to be an indication of distinct structural properties [25].

3. Results

This section summarizes the results and conclusions
obtained by simulating the described model of growth using
the two tools, NETMORPH and CX3D. A network of 100
neurons was constructed using the parameter set described
in Table 1 and Section 2.2. Some of the parameters were
varied, namely, the initial elongation rate (ν0) for axons and
all types of dendrites. The proportion between the elongation
rates of axons, basal, apical, and nonpyramidal dendrites is
fixed and only the overall intensity of growth influencing all
of them is varied. Five different parameter sets were tested
for each of the simulators. The simulations reproduce the
growth of neurons from the first day after plating them on
a dish until the end of the third week (day 21) on the dish.
The simulation step size was fixed to 0.1 h, a value sufficiently
small to ensure stable simulations with both tools.

3.1. Computational Efficiency. The efficiency of the tested
simulators was considerably different. In NETMORPH, the
execution of one batch simulation consisting of 120 repeti-
tions for five sets of parameters required between 2 hours
and 7 days depending on the choice of model parameters.
In CX3D, the same simulation required between 4 and 40
hours for a single repetition and a single set of parameters.
Therefore, collecting 120 repetitions for five parameter sets
would require several weeks. From the simulation efficiency
point of view, NETMORPH was evidently superior to CX3D.

It should be pointed out that we selected the model adjusted
to NETMORPH, so the differences in performance are not
surprising. In CX3D, the limiting factor that influences the
efficiency is the internal dynamics associated to every model
element, that is, soma and neurite segment. It is created
to mimic the natural interactions between model elements,
but it requires memory space and computational time. The
purpose of CX3D simulator is to provide a basis for modeling
and analysis of virtually unlimited set of problems. The
aim of the developers was to propose a sufficiently efficient
general purpose tool, which might be suboptimal when
focusing on one single class of models like in this study.

3.2. Dependence of Synapse Density on Model Parameters.
The first set of simulations, summarized in Figure 3, was
used to test the simulator and model properties. We focused
on how well the simulators and models reproduce the
synapse formation. The results obtained from the two sim-
ulators were compared with the corresponding experimental
results found in the literature [21].

The number of postsynaptic and presynaptic sites, that is,
the number of inputs and outputs, was computed for every
neuron in every simulation repetition (120 repetitions in
NETMORPH, 50 in CX3D). For each set of parameters, the
mean and standard deviation were computed from the values
obtained for 100 neurons and all the repetitions. Figures 3(a)
and 3(b) show the results obtained for NETMORPH, and the
bottom panel the results for CX3D. The curves on the panels
connect the mean values obtained for days 4, 7, 10, 14, 16,
and 21. The standard deviations are indicated with the one-
side bars attached to the curves. The five curves, from blue
to red, correspond to the five different values for the initial
elongation rates. The chosen initial elongation rates for the
basal dendrites of pyramidal neurons are indicated in the
figure (see legend). For NETMORPH these values are ν0 = 1,
2, 4, 6, and 8 μm/day, and for CX3D, they are ν0 = 2, 6, 10, 14,
and 22 μm/day. For the axons, apical dendrites, and dendrites
of nonpyramidal neurons, the initial elongation rates are set
to 4.5ν0, 2ν0, ν0, respectively. Figure 3(b) is a magnification
of the region of interest from Figure 3(a), that is, for days 7–
14 which represents the most accurately simulated phase of
growth using the described model. Before day 7, the synapse
formation is affected by timing of axonal and dendritic
growth. It has been shown that axonal growth precedes the
dendritic one [15]. This aspect of growth cannot be included
in our simulation, due to the NETMORPH constraints. After
day 14, the overall synapse density decreases due to the
pronounced apoptosis in cultures [21]. This is, also, excluded
from our model that has a fixed number of neurons.

Figures 3(a) and 3(b), obtained for NETMORPH, indi-
cate an exponential increase in number of synapses per
neuron over time. As expected, these numbers also increase
when increasing the initial elongation rate. On average,
increasing the elongation rate by 1 to 2 μm/day increases
the number of synapses 2-3 times for the same day of
growth. All of the obtained values are significantly higher
than the experimental results shown in [21]. The reported
experimental values, computed as the total number of
synapses divided by the total number of neurons, are around
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Figure 3: Synapse density. The upper row gives results for NETMORPH and the bottom row for CX3D. The curves mark the mean values,
and the bars show the standard deviations. (a) shows the mean number of synapses per neuron when the elongation rate for basal dendrites
takes values 1, 2, 4, 6, and 8 μm/day. (b) shows the magnified region of interest from (a), that is, the interval between 7 and 14 developmental
days. The “∗” mark the experimental values for the corresponding days, taken from [21]. (c) shows the synapse density obtained using
CX3D, and the elongation rates for basal dendrites equal to 2, 6, 10, 14, and 22 μm/day. The experimental data (∗) correspond well to the
values obtained for ν0 = 2μm/day.

64 synapses per neuron at day 7, 319 at day 14, 355 at day 21,
and 1130 at day 28 [21]. In Figure 3(b), the double values
of these experimental data for days 7 and 14 are marked
with “∗”. The values are doubled, since we consider every
synapse twice, once for the presynaptic and once for the
postsynaptic neuron. The density computed in [21] “assigns”

every synapse to one neuron although it belongs to the two
neurons. These values fall between the simulation results
obtained for ν0 = 2μm/day and ν0 = 4μm/day. Regarding
the increase in the number of synapses between days 7 and
14, it most likely resembles the curve for ν0 = 2μm/day. The
high number of synapses may be explained by the tendency
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Figure 4: Structural changes of the growing networks: in-degree distribution, shortest path length, and the count of motifs. Three upper
rows: NETMORPH results, three lower rows: CX3D results. Different curves correspond to different initial elongation rates ν0, and
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of the NETMORPH simulator to produce many synapses
between the same pair of neurons.

Figure 3(c), obtained for CX3D, shows much better
agreement with the experimental results. The increase in
synapse number is not so dramatic as in NETMORPH, and
the maximal values stay in the range of a couple of thousands.
The differences obtained for different elongation rates are
not so big as in NETMORPH. Finally, the simulation results
obtained for ν0 = 10μm/day show very good agreement with
the experimental values for days 7 and 14.

3.3. Statistics of the Network Graphs. The extracted networks
obtained in different phases of growth are analyzed using
graph theoretic measures. The results for both simulators
are illustrated in Figure 4. The three upper rows show the
statistics of in-degree distribution, shortest path length,
and motifs count computed from the networks simulated
in NETMORPH. The three bottom rows give these same
measures evaluated for the networks simulated in CX3D.
Each panel corresponds to one of days 7, 14, or 21. Different
curves in the same panel show the results obtained for
different values of the initial elongation rate ν0, and the
values of ν0 used for the basal dendrites are indicated in
the legends. The statistics for all NETMORPH results is
computed for 100 neurons in each network, and for 120
repetitions of each condition. The number of repetitions for
CX3D simulations was 50.

The in-degree distribution in all the panels shifts toward
higher values during growth and is higher for bigger values
of growth rate. These results can be compared to the
experimentally estimated connectivity in cultures, shown to
be in the interval of 10–30% [14, 18]. This indicates that the
values ν0 = 1 and 2 μm/day give too small, while the ν0 = 8
and 10 μm/day result in too high connectivity. Taking into
account the conclusions from Figure 3, the values ν0 = 4
and 6 μm/day may give the results closest to the desired ones.
A similar observation holds for the networks simulated in
CX3D. Here, the overall growth of the neurites is slower due
to properties of the simulator, so we used somewhat higher
values for the elongation rates. The smallest tested value also
gives too sparse networks, while the highest overestimated
the connectivity. In CX3D, the values 10 and 14 μm/day give
the connectivity closest to the expected. Similar results were
observed for the out-degree distribution.

The shortest path length distribution depends on the
selected initial elongation rates. The slowly growing networks
(ν0 = 1, 2, 4μm/day for NETMORPH, ν0 = 2, 6μm/day
for CX3D) form a small number of connections until day
7. Most of the neurons are not connected or connected
to a few neighbors. The shortest path is computed from
this small set of short local connections, which results in
a narrow distribution peaked around 0. As the network
grows, new connections are established and distant pairs of
neurons start to connect indirectly through other neurons.
This shifts the shortest path length toward higher values.
Neurons in the faster growing networks (ν0 = 8, 10μm/day
for NETMORPH, ν0 = 14, 22μm/day for CX3D) already
form direct and indirect connections at day 7. In the fol-
lowing days, new connections are added which continuously

decreases the shortest path, since more neurons become
directly connected.

The motifs count is shown as the percentage of total
number of connected triplets of neurons (see Figure 4). The
obtained counts are similar for all the parameter values,
particularly in the NETMORPH examples. The peaks are
visible for the motifs 2, 4, and 7. In the equivalent random
networks, the motifs with two edges only (1, 2, and 4) or
three edges (3, 5, 7, and 9) are the most frequent. Still,
not all of them are equally represented in the simulated
networks. In order to compare the simulation results with
the corresponding random networks, that is, the networks
with the same probability of connection, the statistical tests
are done (t-test, with 0.01 significance level). The results are
also shown in Figure 4, where dashed gray lines indicate the
motifs that are significantly more frequent in the networks
simulated using NETMORPH or CX3D than in the random
networks. The number above each line shows for how many
parameter values this holds, assuming that these are the
smallest values from the set. In other words, number 4
indicates that a certain motif appears significantly more often
in the networks simulated for the four smallest values among
all the tested values, and it is either significantly smaller
or not significantly different for the bigger elongation rate
values. In CX3D figures, the smallest elongation rate was not
considered, since it often gave very sparse random networks
where motifs comparison was not possible. Expectedly, the
motifs with four or more edges appear much more often in
the networks simulated using NETMORPH or CX3D.

4. Discussion

4.1. Comparison of the Simulators. The presented results
reveal several important differences between the two simu-
lators, and indicate when each of them should be employed.

Our general conclusion is that NETMORPH, which
implements computationally inexpensive models, could be
more useful in theoretical studies and particularly for
analysis of large networks. The NETMORPH models do
not depend on many parameters, and the influence of each
parameter can be carefully monitored. The main problem in
the current version of the simulator is the excessive formation
of synapses, which leads to unrealistically high number of
synapses per neuron, and consequently, to very large output
files. Such files are difficult to manipulate and analyze, which
is particularly limiting when working with large networks.
Recently, the authors of the simulator proposed an advanced
algorithm for synapse formation [26] that might help to
overcome this problem.

The principal advantage of CX3D is its flexibility. The
authors aimed at constructing a multipurpose simulator of
neuronal growth that can be used to model development
of different neuronal systems, and include various relevant
mechanisms. This simulator is valuable when modeling
a small number of neurons equipped with intracellular
and extracellular chemical species. It might be useful for
constructing multilevel models that incorporate cellular
and network levels, and in the future the level of genetic
networks. On the other hand, when implementing systems
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of 100 or more neurons with axons and dendrites that
branch extensively, this simulator led to slow and memory
consuming simulations. The complex dynamics of model
elements, which is an intrinsic part of this simulator,
requires time-consuming computations in every time step.
In addition, it limits the maximal simulation time step that
can be safely employed. Although the implemented model
mainly behaved according to expectations, from time to time
unwanted outcomes emerged as a result of the boundaries
imposed by the nearly two-dimensional geometry of the
environment. It was possible to observe axons or dendrites
growing in a tight zigzag pattern in the situation when
those segments found themselves “imprisoned” between the
boundaries of the two-dimensional space and the surround-
ing objects. Finally, the complexity of the simulator imposed
many “hidden” variables that were difficult to control, and
whose influence on the simulation results was not obvious.

4.2. The Employed Model. We analyzed a phenomenological
model established in the literature and adapted it to model
the growth in neocortical cultures [3, 7, 10]. The model
neither describes the role of the activity as in [12, 13], nor the
biophysical processes governing growth as in [9], but it can
reproduce the growth of axons and dendrites and can be used
to study the network formation. In addition, it is relatively
simple and depends on a small number of parameters.

The complete list of model parameters is given in Table 1.
The parameters that define population of neurons, like
number and density of neurons, or percentage of pyramidal
and nonpyramidal neurons, are either well established
knowledge in the literature or imposed by the simulator
constraints. The density can be chosen more freely, but,
when focusing on synapse formation, varying the density
is equivalent to varying the elongation rate, since both
parameters determine how fast pairs of proximal neurons
can reach each other. The synapse formation is determined
by the maximal distance between pairs of neurons that
can form a contact. In NETMORPH, it is set to very
small values, and increasing them leads to even bigger
production of synapses. In CX3D, these parameters are set
according to the well known estimation of dendritic spines
and axonal boutons length. Increasing the parameters would
lead to unrealistic synapse formation model. Finally, the
set of parameters that defines branching and elongation of
dendrites and axons is the most interesting to test. In total,
the model has six parameters for each of the four types
of arbors, axons, basal and apical dendrites of pyramidal
neurons, and basal dendrites of nonpyramidal neurons. Five
of six parameters define the branching probability, which
determines the overall shape of the arbor and also influence
elongation. The elongation rate influences solely the size
of the arbors and how far a neuron can “reach.” Different
neuron types have distinct morphology, and the branching
rate parameters should be selected to provide the correct
morphology. The elongation rates should also be chosen to
reflect the size of axons and dendrites relative to each other.
In this work, we opted to examine solely the influence of
the elongation rate, the parameter that most directly affects
neuron size and, consequently, the probability of forming

synapses. This is also motivated by the choice of neuron
models in [12, 13], where neurons are represented as circular
fields without detailed morphology. The global connectivity
measures, like in-degree distribution or shortest path length,
are likely dominantly influenced by the elongation rate.
This dependency is visible on the presented results. The
local connectivity measures, like motifs frequency, might
significantly depend on the local shape of axonal and
dendritic arbors. The influence of branching rate parameters
on the arbor shape and the frequency of motifs will be the
subject of future studies.

Several adopted choices in the model can be recon-
sidered. For example, all of the neurons have the same
model for axon, which might not be correct. The branching
of the apical dendrite is not very precisely set although
the elongation reflects the ratio between the growth of
basal and apical dendrites of the same neuron [15]. The
environment in which neurons live might affect the growth.
Finally, the model for axon guidance is not considered
here although it is known that it influences the growth of
axons and their capacity to reach other neurons. Some of
the listed criticisms can be corrected by fitting the model
from the experimental data instead of using the parameters
available in the literature. Such data can be collected using
conventional methods, like the combination of staining and
microscopy. Still, the available methodology requires time-
consuming experiments in order to provide sufficiently rich
data set for parameter fitting.

4.3. Structural Changes During Growth, Graph Theoretic
Study. Three measures were evaluated in order to ana-
lyze structural changes in networks during growth, in-
degree distribution, shortest path length, and motifs count.
Expectedly, since no criteria for stopping the growth were
implemented, the number of synapses and the connections
between neurons increased continuously. For the selected
model parameters, the realistic values of in-degree and out-
degree distributions, that correspond to experimental results,
were obtained for days 7 to 14. The shortest path between a
pair of neurons is initially small, with only a few connections
established. As the network grows and new connections are
added, the shortest path increases due to the new established
pathways. When the number of direct connections between
neurons increases enough, the average shortest path starts
to decrease again. The motifs count reveals certain motifs
that are more frequent in simulated than in the correspond-
ing random networks for all the developmental days and
majority of tested model parameters. These motifs have bi-
directional connections. This might indicate that randomly
placed neurons on the dish tend to find a proximal neuron
and strongly connect to it by forming a loop.

The standard graph theoretic measures have been used
in the literature to characterize mature cortical networks.
Both small-scale networks of neurons and large-scale
networks of cortical regions have been analyzed [27]. The
statistics obtained in vitro cannot be straightforwardly
related to the in vivo studies, since neurons develop outside
of three-dimensional cortical columns and without the
guidance cues present in vivo. In our study, the global
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measures of connectivity, like in-degree distribution and
shortest path length, show expected results and can be used
to indicate when the network becomes connected and which
elongation rates give realistic results during the first two
weeks of growth. The motifs count does not give straight-
forward result, but mainly indicates frequent bidirectional
connections in the simulated growth models compared to the
random networks. In this study, we analyzed the connectivity
of unweighted graphs, assuming that neurons that are likely
to connect form multiple synapses and sufficiently strong
connections. Also, synapse pruning is not taken into
account, a mechanism that would remove connections
formed through small number of synapses. The study
on weighted graphs, where each weight corresponds to the
number of synapses between a pair of neurons, will give more
accurate results. This work will be pursued in the future.

To conclude, in this study we constructed a phenomeno-
logical model of neuronal growth in cultures and tested it
on the two recently published simulators of growth. The
graphs extracted from the obtained networks were analyzed
and the observations were compared to experimental results.
Both simulators can reproduce the considered experimental
values, but their overall behavior might be improved by
implementing additional mechanisms. The analysis of the
network structure revealed the expected structural changes
during growth and formation of local motifs.
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COMPUTATIONAL NEUROSCIENCE

The structure and activity can be examined in a simplified but 
easily tractable neuronal system, namely in dissociated cultures of 
cortical neurons. Neurons placed in a culture have the capability 
to develop and self-organize into functional networks that exhibit 
spontaneous bursting behavior (Kriegstein and Dichter, 1983; 
Marom and Shahaf, 2002; Wagenaar et al., 2006). The structure 
of such networks can be manipulated by changing the physical 
characteristics of the environment where neurons live (Wheeler and 
Brewer, 2010), while the activity is recorded using multielectrode 
array chips. Networks of spiking neurons have been systematically 
analyzed in the literature (for example, see Brunel, 2000; Tuckwell, 
2006; Kumar et al., 2008; Ostojic et al., 2009). In addition, models 
aiming to study neocortical cultures are presented in (Latham et al., 
2000; Benayon et al., 2010), among others.

In this work, we follow the modeling approach of a recent study 
(Gritsun et al., 2010) in simulating the activity of a neuronal system. 
The model is composed of Izhikevich model neurons (Izhikevich, 
2003) and the synapse model with short term dynamics (Tsodyks et al., 
2000). We employ an information theoretic framework presented in 
Galas et al. (2010) in order to estimate the information diversity in 
both the structure and dynamics of simulated neuronal networks. 
This framework utilizes the normalized compression distance (NCD), 

1 Introduction
Neuronal networks exhibit diverse structural organization, which 
has been demonstrated in studies of both neuronal microcircuits 
and large-scale connectivity (Frégnac et  al., 2007; Voges et  al., 
2010; Sporns, 2011). Network structure, the connectivity pat-
tern between elements contained in the network, constrains the 
interaction between these elements, and consequently, the overall 
dynamics of the system. The relationship between network struc-
ture and dynamics has been extensively considered in theoreti-
cal studies (Albert and Barabási, 2002; Newman, 2003; Boccaletti 
et al., 2006; Galas et al., 2010). In networks of neurons, the pattern 
of interneuronal connectivity is only one of the components that 
affect the overall network dynamics, together with the non-linear 
activity of individual neurons and synapses. Therefore, the con-
straints that structure imposes on dynamics in such systems are 
difficult to infer, and reliable methods to quantify this relationship 
are needed. Several previous studies employed cross-correlation 
in this context (Kriener et  al., 2008; Ostojic et  al., 2009), while 
the study reported in Soriano et al. (2008) proposed a method to 
infer structure from recorded activity by estimating the moment 
in network development when all of the neurons become fully 
connected into a giant component.
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which employs the approximation of Kolmogorov complexity (KC) 
to evaluate the difference in information content between a pair of 
data sequences. Both network dynamics in the form of spike trains 
and network structure described as a directed unweighted graph can 
be represented as binary sequences and analyzed using the NCD. KC 
is maximized for random sequences that cannot be compressed and 
small for the regular sequences with lot of repetitions. Contrary to KC, 
a complexity measure taking into account the context-dependence 
of data gives small values for the random and regular strings and is 
maximized for the strings that reflect both regularity and randomness, 
i.e., that correspond to the systems between order and disorder (Galas 
et al., 2010; Sporns, 2011). The notion of KC has been employed before 
to analyze experimentally recorded spike trains, i.e., the recordings of 
network dynamics, and to extract relevant features as in Amigó et al. 
(2004) and Christen et al. (2006). Another examples of application 
of information theoretic methods in the analysis of spike train data 
can be found in Paninski (2003).

The NCD has been used for analysis of Boolean networks in Nykter 
et al. (2008), where it demonstrated the capability to discriminate 
between different network dynamics, i.e., between critical, subcriti-
cal and supercritical networks. This study employs NCD in a more 
challenging context. As already mentioned, in neuronal networks the 
influence of structure on dynamics is not straightforwardly evident 
since both network elements (neurons) and connections between 
them (synapses) possess their own non-linear dynamics that con-
tribute to the overall network dynamics in a non-trivial manner. The 
obtained results show that random and regular networks are separable 
by their NCD distributions, while the networks between order and 
disorder cover the continuum of values between the two extremes. 
The applied information theoretic framework is novel in the field of 
neuroscience, and introduces a measure of information diversity capa-
ble of assessing both structure and dynamics of neuronal networks.

2 Materials and methods
2.1 Network structure
Different types of network structures are considered in this study. In 
locally connected networks (LCN) with regular structure every node is 
preferentially connected to its spatially closest neighbors. Only for high 
enough connectivity a node connects to more distant neighbors. In 
random Erdős–Rényi (RN) networks every pair of nodes is connected 
with equal probability regardless of their location. Finally, networks 
with partially local and partially random connectivity (PLCN) possess 
order and disorder in their structure. In Algorithm 1, we describe a 
unified scheme for generating these three types of networks.

Algorithm 1 | Scheme for generating distance-dependent networks.

    for node index i ∈ {1,…,N} do

        Take number of in-neighbors ni ∼ Bin(N − 1, p).

        for in-neighbor index j ∈ {1,…,ni} do

           1. Give weights wk to all nodes k ≠ i that are not yet connected to i s.t. 

                w Dk ik
W= − , where Dik is the spatial distance between nodes i and k.

           2. Normalize by P k w
w
k

k k
( ) ,= ∑  where P(k) represents the probability to  

               draw node k.

           3. Randomly pick k from the probability mass distribution P and create  

                a connection from k to i.

        end for

    end for

The scheme uses three parameters: probability of connection 
between a pair of nodes p ∈ [0,1], factor that defines dependence 
on distance W ≥ 0, and the spatial node-to-node distance matrix 
D ∈ N × N. The matrix D is presumed positive and symmetric. For 
W = 0 the scheme results in a RN, as for W = ∞ we obtain a LCN. 
These latter networks are considered the limit cases of an arbitrarily 
big factor W: when choosing the in-neighbor one always picks the 
spatially closest one that has not yet been chosen as an in-neighbor. 
Randomness in the picking of the in-neighbors is applied only when 
there are two or more possible in-neighbors with the exact minimal 
distance from the considered node. In these cases, the in-neighbor 
is chosen by random.

It is notable that regardless of the choice of the distance-depend-
ence factor W the scheme results in a network with in-degree dis-
tributed binomially as Bin(N−1, p). Equal in-degree distribution 
makes the considered networks comparable: each network has the 
same average number of neurons with a high number of synaptic 
inputs as well as those with a low number. This property does not 
arise in most studied models of networks with varying distance-
dependence, as Watts–Strogatz networks (Watts and Strogatz, 1998) 
or Erdős–Rényi based models where the probability of connection 
is altered by the spatial distance between the nodes (see e.g., Itzhack 
and Louzoun, 2010).

2.1.1 NETMORPH: a neuronal morphology simulator
In addition to networks described above, we study biologically real-
istic neuronal networks. NETMORPH is a simulator that combines 
various models concerning neuronal growth (Koene et al., 2009). 
The simulator allows monitoring the evolution of the network from 
isolated cells with mere stubs of neurites into a dense neuronal 
network, moreover, observing the network structure determined 
by the synapses at given time instants in vitro. It simulates a given 
number of neurons that grow independently of each other, and 
forms synapses whenever an axon of a neuron and a dendrite of 
another neuron come near enough to each other. The neurite seg-
ments are static in the sense that when they are once put onto their 
places they are not allowed to move for the rest of the simulation.

The growth of the axons and dendrites is described by three 
processes: elongation, turning, and branching, all of which are only 
applied to the terminal segments of the dendritic and axonal trees. 
The elongation of a terminal segment obeys the equation

n ni i
Fn= ,−

0 	 (1)

where v
i
 is the elongation rate at time instant t

i
, v

0
 is the initial elon-

gation rate, n
i
 is the number of terminal segments in the arbor that 

the considered terminal segment belongs to, and F is a parameter 
that describes the dependence of the elongation rate on the size 
of the arbor.

The terminal segments continue to grow until a turning or 
branching occurs. The probability that a terminal segment j changes 
direction during time interval (t

i
, t

i
 + ∆t) obeys equation

P r L ti j L j i, = ( ),∆
	

(2)

where ∆L
j
(t

i
) is the total increase in the length of the terminal seg-

ment during the considered time interval and r
L
 is a parameter that 

describes the frequency of turnings. The new direction of growth is 
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Further considered measures of network structures are the 
shortest path length and the clustering coefficient (Newman, 2003). 
We choose these two standard measures in order to show differ-
ences in the average distance between the nodes and the overall 
degree of clustering in the network. The shortest path length l

ij
 

(referred to as path length from now on) from node i to node j 
is the minimum number of edges that have to be traversed to get 
from i to j. The mean path length of the network is calculated as 
L l

N i j
N

ij= ∑ =
1

12 , , where such path lengths l
ij
 where no path between 

the nodes exists are considered 0. The clustering coefficient c
i
 of 

node i is defined as follows. Consider N
i
 as the set of neighbors of 

node i, i.e., the nodes that share an edge with node i in at least one 
direction. The clustering coefficient of node i is the proportion 
of traversable triangular paths that start and end at node i to the 
maximal number of such paths. This maximal number corresponds 
to the case where the subnetwork N

i
 ∪ {i} be fully connected. The 

clustering coefficient can thus be written as

c
j k M M

i

i i j j k k i

i i

=
( ) |{ }

−1( ) .
,

| | | |

, , ,∈ ∧ ∧N
N N

2 M

	

(4)

As the connections to self (autapses) are prohibited, one can 
use the diagonal values of the third power of connectivity matrix 
M to rewrite Eq. 4 as

c
M

i
ii

i i

=
( )

−( ) .
3

1| | | |N N
	 (5)

This definition of clustering coefficient is an extension of Eq. 5 
in Newman (2003) to directed graphs. The clustering coefficient of 
the network is calculated as the average of those c

i
 for which |N

i
| > 1.

Examples of connectivity patterns of different network struc-
ture classes, including a network produced by NETMORPH, 
are illustrated in Figure 1. The figure shows connectivity of a 

obtained by adding perturbation to a weighted mean of previous 
growing directions. The most recent growing directions are given 
more weight than the earliest ones.

The probability that a terminal segment branches is given by

p n B e e Ci j i
E t t S

n
i j

i,
/ /= −1( )2 / ,− − −

∞
∆t t g

	 (3)

where n
i
 is the number of terminal segments in the whole neuron at 

time t
i
 and E is a parameter describing the dependence of branching 

probability on the number of terminal segments. Parameters B∞ 
and t describe the overall branching probability and the depend-
ence of branching probability on time, respectively – the bigger the 
constant τ, the longer the branching events will continue to occur. 
The variable g

j
 is the order of the terminal segment j, i.e., how many 

segments there are between the terminal segment and the cell soma, 
and S is the parameter describing the effect of the order. Finally, 

the probability is normalized using the variable Cn n k
n S

i i

i k= ∑ =
−1

1 2 g .

Whenever an axon and a dendrite of two separate neurons grow 
near enough to each other, there is a possibility of a synapse forma-
tion. The data consisting of information on the synapse formations, 
and hence describing the network connectivity, is output by the 
simulator. Technical information on the simulator and the model 
parameters that are used in this study are listed in Appendix 6.1.

2.1.2 Structural properties of a network
In this study we consider the network structure as a directed 
unweighted graph. These graphs can be represented by connectivity 
matrices M ∈ {0, 1}N × N, where M

ij
 = 1 when there is an edge from 

node i to node j. The most crucial single measure characterizing the 
graphs is probably the degree of the graph, i.e., the average num-
ber of in- or out-connections of the nodes. When studying large 
networks, not only the average number but also the distributions 
of the number of in- and out-connections, i.e., in- and out-degree, 
are of interest.

RN W=0.5 W=1 W=2 LCN NETMORPH

Figure 1 | Upper: Examples of the connectivity patterns. White: target cell, red: cells having output to the target cell, black: cells receiving input from the target 
cell; Middle: Connectivity matrix. Y-axis: From-neuron index, X-axis: To-neuron index; Lower: Selected part of the connectivity matrix magnified.
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Variables x and z are the fractions of synaptic resources in the 
recovered and inactive states, respectively, and t

rec
 and t

I
 are synaptic 

model parameters. The time instant t
sp

 stands for a spike time of 
the presynaptic cell; the spike causes a fraction u of the recovered 
resources to become active. For excitatory synapses the fraction 
u is a constant U, as for inhibitory synapses the dynamics of the 
fraction u is described as

du

dt

u
U u t t

facil

sp= − + −( ) −( ).
t

d1

	

(11)

To solve the differential equations we apply Euler method on 
Eqs 6 and 7 and exact integration (see e.g., Rotter and Diesmann, 
1999) on Eqs 10 and 11. The simulation setup for the activity model 
described above is discussed further in Section 3.1. Values of the 
model parameters and the initial conditions of the model are given 
in Appendix 6.2. Figure 2 illustrates a typical population spike train 
of different network classes with connection probability 0.1, and a 
magnified view of one of their bursts.

2.2.2 Synchronicity analysis
Given a population spike train, we follow the network burst detec-
tion procedure as presented in Chiappalone et al. (2006), but using 
a minimum spike count minSpikes = 400 and maximal interspike 
interval ISI = 10 ms. Once the starting and ending time of the burst 
are identified, the spike train data of the burst are smoothed using 
a Gaussian window with deviation 2.5 ms to obtain a continuous 
curve as shown in Figure 3. The shape of the burst can be assessed 
with three statistics that are based on this curve: the maximum fir-
ing rate (mFr), half-width of the rising slope (Rs) and half-width 
of the falling slope (Fs) (Gritsun et al., 2010).

In addition to the network burst analysis, we estimate the cross-
correlations between spike trains of two neurons belonging to the 
same network. We follow the method presented in Shadlen and 
Newsome (1998), where the cross-correlation coefficient (CC) 
between spike trains of neurons j and k is defined as CCjk

A

A A

jk

jj kk
= . 

Here, the variable A
jk
 represents the area below the cross-correlo-

gram and is computed as

A x i x ijk

j k

j k
i

T

= ( ) ( +








 −











=

−

=−
∑∑ 1

0

1

100

100

l l
t t

t

) ( ) .Θ
	

(12)

The variable x
j
(i) is 1 for presence and 0 for absence of a spike 

in the ith time bin of spike train of neuron j, l
j
 is the mean value of 

x
j
(i) averaged over i, and T is the number of time bins in total. The 

running variable t is the time lag between the two compared signals, 
and the weighting function Θ is chosen triangular as Θ(t) = T−|t|.

2.3 Information diversity as a measure of data complexity
Complexity of different types of data and systems has been studied 
in numerous scientific disciplines, but no standard measure for it 
has been agreed upon. The most widely used measures are probably 
Shannon information (entropy) and the theoretical KC. Shannon 
information measures the information of a distribution. Thus, it is 
based on the underlying distribution of the observed random vari-
able realizations. Unlike Shannon information, KC is not based on 
statistical properties, but on the information content of the object 
itself (Li and Vitanyi, 1997). Hence, KC can be defined without 

single cell (upper row), the connectivity matrix in total with 
black dots representing the ones (middle row) and a zoomed in 
segment of the connectivity matrix (bottom row). The struc-
ture classes shown are a RN, three examples of PLCN obtained 
for different values of distance-dependence factor W, a LCN 
and a NETMORPH network. Connection probability p = 0.1 is 
used in all network types. Note the variability in the spread of 
neighbors within different networks: for RNs they are spread 
totally random, as for LCNs they are distributed around the 
considered neuron. Due to the boundary conditions the spread 
of the out-neighbors in LCN is not circular, as the nodes near 
the border have on average more distant in-neighbors than the 
ones located at the center. In NETMORPH networks the spread 
of the out-neighbors is largely dictated by the direction of the 
axonal growth.

2.2 Network dynamics
2.2.1 Model
To study the network activity we follow the modeling approach 
presented in Gritsun et al. (2010). We implement the Izhikevich 
model (Izhikevich, 2003) of spiking neurons defined by the follow-
ing membrane potential and recovery variable dynamics

dv

dt
v v r I

dr

dt
a bv r

= + + − +

= −

0 04 5 1402.

( )
	

(6)

and the resetting scheme

if thenv
v c

r r d
≥

←
←

30, .
+



 	

(7)

Parameters a, b, c, and d are model parameters and

I I Isyn G= +
	

(8)

is an input term consisting of both synaptic input from other mod-
eled neurons and a Gaussian noise term. The synaptic input to neu-
ron j is described by Tsodyks’ dynamical synapse model (Tsodyks 
et al., 2000) as

I t A y tj syn ij ij
i

, ( ) ( ).= ∑
	

(9)

The parameter A
ij
 accounts for the strength and sign (positive 

for excitatory, negative for inhibitory) of the synapse whose presyn-
aptic cell is i and postsynaptic cell j – note the permutated roles of 
i and j compared to those in Tsodyks et al. (2000). The variable y

ij
 

represents the fraction of synaptic resources in the active state and 
obeys the following dynamics:

dx

dt

z
ux t t

dy

dt

y
ux t t

dz

dt

y z

rec

sp

I

sp

I rec

= − −( )
= − + −( )
= − .

t
d

t
d

t t
	

(10)
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a network (Neel and Orrison, 2006), and a few measures exist also 
for the complexity of the output of a neuronal network (Rapp et al., 
1994), but no measure of complexity that could be used for both 
structure and dynamics has – to the best of our knowledge – been 
studied. To study the complexity of the structure we consider the 
connectivity matrix that represents the network, as for the complex-
ity of the network activity we study the spike trains representing 
spontaneous activity in the neuronal network. We apply the same 
measure for assessing complexity in both structure and dynamics.

2.3.1 Inferring complexity from NCD distribution
We use the NCD presented in Li et al. (2004) as a measure of infor-
mation distance between two arbitrary strings. The NCD is a com-
putable approximation of an information distance based on KC. 
The NCD between strings x and y is defined by

considering the origin of an object. This makes it more attractive 
for the proposed studies as we can consider the information in 
individual network structures and their dynamics. The KC C(x) 
of a finite object x is defined as the length of the shortest binary 
program that with no input outputs x on a universal computer. 
Thereby, it is the minimum amount of information that is needed 
in order to generate x. Unfortunately, in practice this quantity is 
not computable (Li and Vitanyi, 1997). While the computation of 
KC is not possible an upper bound can be estimated using lossless 
compression. We utilize this approach to obtain approximations 
for KC.

In this work we study the complexity of an object by the means 
of diversity of the information it carries. The object of our research 
is the structure of a neuronal network and the dynamics it pro-
duces. There are numerous existing measures for the complexity of 
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Figure 2 | An example of population spike trains of four different networks 
with a selected burst magnified. The distance-dependence factor W = 1 is 
used in the PLCN network. (A): The full population spike train, (B–D): The spiking 
pattern of the selected burst illustrated by different orderings of the neurons, 
and (E): The selected region in (D) magnified. In (B) the neurons are primarily 

ordered by their type and secondarily by their location in the grid such that the 
lower spike trains represent the excitatory neurons and the upper spike trains 
the inhibitory neurons. In (C) the neurons are ordered by the time of their first 
spike in the selected burst, i.e., the lower the spike train is, the earlier its first 
spike occurred. In (D) the neurons are ordered purely by their location in the grid.
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Although the variation of NCD by no means captures all the 
properties that are required of a complexity measure and fulfilled 
by the set complexity Ψ, it lacks the difficulty arising in deter-
mining the functions f and g in Eq. 14. Let us consider this in 
more detail from the point of view that we do not know how the 
functions f and g should be like – which is a fact, apart from the 
knowledge on them having roots in 0 and 1. Suppose we have 
two finite sets of strings, S s sn1 1

1 1= …{ }( ) ( ), ,  and S s sm2 1
2 2= …{ }( ) ( ), , . 

Denote the NCDs between the strings of set S
1
 by dij

( ) ,1 ∈  where 
i,j ∈ {1,…,n}, and accordingly, let dij

( )2  be the NCDs between the 
strings of set S

2
. If any of the NCDs dij

( )1  (i≠j) is unique in the 
sense that it is unequal to all NCDs dkl

( )2  (k≠l), then we find an 
e-neighborhood B dij∈( )( )1  that contains an NCD value of S

1
 but 

none of those of S
2
. Thereby, we can choose the functions f and g 

such that the value of f × g is arbitrarily large at dij
( )1  and arbitrarily 

small outside B dij∈( ),( )1  leading to Ψ(S
1
) > Ψ(S

2
). We can general-

ize this to a case of any finite number of sets S
1
,…,S

N
: if for set S

I
, 

I ∈ {1,…,N} there is an NCD value dij
I( ) (i ≠ j) that is unequal to 

all other NCD values dkl
J( ) (J ≠ I, k ≠ l), then the functions f and g 

can be configured such that ∀J ≠ I:Ψ(S
I
) > Ψ(S

J
). Hence, the lack 

of knowledge on functions f and g imposes severe restrictions on 
the eligibility of the set complexity Ψ as such.

What is incommon for the proposals for f and g presented in 
Galas et al. (2010) is that the product function f × g forms only one 
peak in the domain [0,1]. The crucial question is: where should 
this peak be located – ultimately, this is the same as asking: where 
is the boundary between “random” and “ordered” sets of data? 
Adopting the wideness of NCD distribution as a measure of data 
complexity is a way to bypass this problem. The wider the spread 
of NCD values, the more likely it is that some of the NCD values 
produce large values for f × g. Yet, difficulties arise when deciding 
a rigorous meaning for the “wideness” or “magnitude of variation” 
of the NCD distribution. In the present work, the calculated NCD 
distributions are seemingly unimodal; thereby we use the standard 
deviation of the NCD distribution as the measure of complexity 
of the set.

2.3.2 Data representation for complexity analysis
Two different data analysis approaches to studying the complex-
ity are possible (Emmert-Streib and Scalas, 2010): one can assess 
(1) the complexity of the process that produces a data realization, 
or (2) the complexity of the data realization itself. In this study we 
will apply the approach (2) in both estimating the complexity of 
structure and the complexity of dynamics. To study the complex-
ity in the context-dependent manner described in Section 2.3.1 
we divide the data into a set of data, and represent it as a set of 
strings. For the structure, the rows of the connectivity matrix 
are read to strings, i.e., each string s shows the out-connection 
pattern of the corresponding neuron with s

i
  = “0” if there is 

no output to neuron i and s
i
 = “1” if there is one. The NCDs 

are approximated between these strings. In order to compute 
the NCD of the dynamics every spike train is converted into a 
binary sequence. Each discrete time step is assigned with one if 
a spike is present in that time slot, and with zero otherwise. For 
example, a string “0000000000100101000” would correspond to a 
case where a neuron is at first silent, then spikes at time intervals 
around 10∆t, 13∆t and 15∆t, where ∆t is a sampling interval. 

NCD
min

max
( , )

( ) ( ), ( )

( ), ( )
,x y

C xy C x C y

C x C y
=

− ( )
( )

	

(13)

where C(x) and C(y) are the lengths of the strings x and y when 
compressed – accounting for approximations of KCs of the respec-
tive strings – and C(xy) is that of the concatenation of strings x and 
y. In our study we use standard lossless compression algorithms 
for data compression1.

The NCD has recently been used in addressing the question 
whether a set of data is similarly complex as another (Emmert-
Streib and Scalas, 2010), based on a statistical approach. In another 
study (Galas et al., 2010), the complexity of a set of strings is esti-
mated using a notion of context-dependence, also assessable by 
the means of the NCD. We follow the latter framework and aim at 
estimating the complexity of an independent set of data – in our 
study, this set of data is either a set of connectivity patterns or a set 
of spike trains. In Galas et al. (2010) the set complexity measure is 
introduced; it can be formulated as

Ψ(S C x
N N

f d g di
i

N

ij ij
j i

) = ( )
( − ) ( ) ( ).

=
∑ ∑

1

1

1≠ 	

(14)

To calculate the set complexity Ψ one has to approximate 
the KCs of all strings x

i
 in the set S = {x

1
,…,x

N
} and the NCDs 

d
ij
 = NCD(x

i
,x

j
) between the strings. The functions f and g of NCD 

values are continuous on interval [0,1] such that f reaches zero at 
1 and g reaches zero at 0.

In this study we, for reasons to follow, diverge from this definition. 
We define the complexity of a set of data as the magnitude of variation 
of NCD between its elements: the wider the spread of NCD values, the 
more versatile the set is considered. That is, a complex set is thought 
to include both pairs of elements that are close to each other from 
an information distance point of view, pairs of elements that are far 
from each other, and pairs whose distance is somewhere in between.

Rs Fs

mFr

mFr/2

Figure 3 | Illustration of the meaning of variables mFr, Rs, and Fs. (as 
defined in Gritsun et al., 2010).

1http://7-zip.org/
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are in accordance with experimental studies that consider the 
connectivity of a mature network to be 10–30% (Marom and 
Shahaf, 2002).

Other considered networks are generated by Algorithm 1 using 
the abovementioned connection probabilities. The distance-
dependence factors for these networks are chosen as W = 0, 0.5, 
1, 2, 4, 10, ∞.

The spiking activity in the abovementioned networks is studied 
by simulating the time series of the N = 1600 individual neu-
rons according to Section 2.2. The connectivity matrix of the 
modeled network defines which synaptic variables y

ij
 need to be 

modeled: the synaptic weights A
ij
 are non-zero only for non-zero 

connectivity matrix entries M
ij
, hence for such (i,j) that M

ij
 = 0 

the synaptic variables y
ij
 can be ignored in terms of Eq. 9. In this 

article we disallow multiple synapses from a neuron to another. 
Throughout the paper the fraction of the inhibitory neurons is 
fixed to 25%, which are picked by random, and the sampling 
interval is fixed to 0.5 ms.

3.2 Network structure classes differ in their graph theoretic 
properties
We first study the structural properties of the network classes 
presented above by the means of measures introduced in Section 
2.1.2. The in-degree distributions of the networks generated by 
Algorithm 1 are always binomial, as the out-degree distributions 
vary. Empirically calculated out-degree distributions, path length 
distributions, and local clustering coefficient distributions are 
shown in Figure  5, together with the respective NETMORPH 
distributions.

One can observe an increase in the mean path length as well as 
mean clustering coefficient with the increase of distance-depend-
ence factor W, i.e., when moving from RN toward LCN. The out-
degree distributions of NETMORPH networks are wider than 
those of any other type of network, but regarding the width and 
mean of the path length and clustering coefficient distributions 
the NETMORPH networks are always somewhere between RN 
and LCN.

3.3 Networks with different structure show variation in 
bursting behavior
For the activity part we simulate 61 s of spike train recordings 
using the models described in Section 2.2 and the model param-
eters described in Appendix 6.2. In all of our simulations a net-
work burst occurs in the very beginning due to the transition 
into a steady state, which is why we ignore the first second of 
simulation. We simulate a set of spike trains for structure classes 
W  =  0, 1, ∞ and NETMORPH using connection probabilities 
p = 0.02, 0.05, 0.1, 0.16. The average connection weight and other 
model parameters stay constant, only the connectivity matrix var-
ies between different structure classes and different connection 
probabilities. In the case of p = 0.02 none of the networks shows 
bursting behavior, for p = 0.05 a burst emerges in about one out 
of three 1-min simulations, as for p = 0.1 and p = 0.16 there are 
bursts in every 1-min recording. Table 1 shows the acquired mean 
bursting frequencies – they are comparable to the ones obtained 
in Gritsun et al. (2010). We concentrate on the two bigger con-
nection probabilities.

For the compression of strings we use the general purpose data 
compression algorithm 7zip2. The compressor parameters and 
the motivation for this particular compression method are given 
in Appendix 6.3.

3 Results
3.1 Simulation setup
In the present paper we study both structural and dynamical 
properties of networks of N = 1600 neurons. Regarding the choice 
of the structure of neuronal networks we base our approach 
on the growth properties of those networks produced by the 
NETMORPH simulator. To choose a trade-off between biologi-
cal reality and ease of comparison to other types of networks we 
set the initial cell positions in a two-dimensional regular 40 × 40 
grid. The present work does not consider continuous boundaries, 
i.e., the physical distance between the neurons is the standard 
Euclidean distance. The distance between adjacent neurons is set 
≈25 μm, which is chosen such that the density of neurons cor-
responds to one of the culture densities examined in Wagenaar 
et al. (2006) (1600 cells/mm2). Figure 4 shows the average con-
nection probability in a NETMORPH network as a function of 
time, where the average is taken over 16 simulation realizations. 
The standard deviation of the connection probability is found 
very small between different realizations (<0.002), hence only 
mean values are plotted here.

The main emphasis throughout this article will be on con-
nection probabilities p  =  0.02, 0.05, 0.1, 0.16 that, accord-
ing to Figure 4, correspond to days 8, 11, 15, and 19 in vitro. 
The selected range of days in vitro is commonly considered 
in experimental studies of neuronal cultures. The connection 
probabilities 0.1 and 0.16 of 15th and 19th DIV, respectively, 
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Figure 4 | Connection probability as a function of time in the structure 
of networks generated by the NETMORPH simulator.

2http://7-zip.org/
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We test the difference of the medians statistically between different 
structure classes using U-test. The null hypothesis is that the medians 
of two considered distributions in a panel of Figure 6 are equal. The 
distributions of each measure (SC, mFr, Rs, Fs) and each network 
density are tested pairwise between the different network types. 
The test shows similarity of medians of Rs distributions between 
NETMORPH network and PLCN with connection probability 0.1 
(p-value = 0.59), but not in the case of connection probability 0.16 
(p-value = 1.7 × 10−13). The same holds for medians of Fs distributions 
of these networks, respective p-values being 0.20 and 0.0027. In all 
the rest of the cases the null hypothesis of medians of any measure 
being the same between any two distributions of different structure 
classes can be rejected, as none of the p-values exceeds 0.002. The 
variances of the distributions are not tested, but one can observe 
that LCNs clearly produce the widest SC, Rs, and Fs distributions.

3.4 Complexity results in structure and dynamics
We start by studying simultaneously the KC of the rows of a con-
nectivity matrix and the KC of the spike trains of the corresponding 
neurons. We generate a network for each structure class (W = 0, 0.5, 

The difference between the intraburst patterns of the different 
networks can already be observed in the magnified burst images in 
Figure 2, particularly in 2C where the effect of the location of the 
neuron in the grid is neglected. We show the difference by studying 
the following burst statistics: spike count per burst (SC), and the 
three burst shape statistics defined above (mFr, Rs, and Fs). Figure 6 
shows the distribution of these statistics in activity simulations 
of different network structure classes. The means as well as the 
medians of the three latter measures for both the NETMORPH 
and W = 1 networks constantly fall between the two extremes, LCN 
and RN. The same does not hold for SC.
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Table 1 | Bursting rates of networks of different structure classes.

	 W = 0	 W = 1	 W = ∞	 NETMORPH

p = 0.1	 4.1 ± 1.3	 7.5 ± 2.0	 13.3 ± 0.9	 10.7 ± 2.2

p = 0.16	 16.4 ± 1.2	 17.6 ± 1.2	 19.8 ± 2.0	 19.0 ± 1.6

Values shown: mean  ±  SD in bursts/min, calculated from 16 different 1-min 
recordings per table entry.
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1, 2, 4, 10, ∞; NETMORPH) and a population spike train recording 
for each of these networks. A set of 80 neurons is randomly picked 
from the N = 1600 neurons retaining the proportion of excitatory 
and inhibitory neurons. This data set is considered representative 
of the whole set of neurons. Figure 7 shows approximations of KCs 
for both structure and dynamics of different structure classes and 
different connection probabilities. The value of C(struc) shows the 
length of a compressed row of the connectivity matrix as C(dyn) 
is the length of the compressed spike train data of the correspond-
ing neuron.

Figure 7 shows that the mean of the compression lengths of 
full spike train data descends when moving from local to random 
networks, as the mean compression length of columns of connec-
tivity matrix ascends. The rising of the C(struc) is in accord with 
the fact that random strings maximize the KC of a string, whereas 
the descending of the mean values of C(dyn) can be explained by 
the decrease in the number of bursts. A slightly similar trend is 
visible when studying the KC of intraburst spike trains, but more 
than that, the range of values of C(dyn) seems to decrease when 
moving from local to random networks.

However, as pointed out earlier, the KC alone does not tell much 
about diversity of the data set, only the information content of 
each element of the set alone. We wish to address the question 
of to what extent the information in one element is repeated or 
near-to-repeated in the other elements. We first analyze the structure 
and dynamics data using alternative measures, namely, Hamming 
distance (HD) and cross-correlation coefficient (CC). HD counts 
the proportion of differing bits in two binary sequences: it equals 
zero for identical sequences and one for sequences that are inverse 
of each other. The same elements as those in Figures  7A,C are 

analyzed using HD, i.e., the rows of connectivity matrix and spike 
trains of the corresponding neurons. The same number of 80 sam-
ple neurons is picked randomly, and HD is computed between the 
( )2

80 3160=  pairs of neurons. In addition, the dynamics is analyzed 
using CC between pairs of spike trains. The CC measures similarity 
between two spike trains and is capable of capturing time shifts 
between the signals. Hence the CC serves as an extension of the HD, 
or of the inverse of HD (as cross-correlation measures similarity 
and HD measures divergence). Figure 8 shows the distribution of 
HD computed for both structure and dynamics (Figures 8A,C) 
and that of CC computed for dynamics versus HD computed for 
structure (Figures 8B,D).

In Figures 8A,C one can observe the widening of the HD dis-
tribution in both structure and dynamics when moving from 
random to local networks. The same applies for the CC distri-
bution (Figures 8B,D). The HD(struc) distributions of the most 
locally connected networks are wider than that of RN, because 
for each neuron there exist some neurons with a lot of common 
out-neighbors (the spatially nearby neurons, small HD value) and 
some neurons with zero or near to zero common out-neighbors 
(the spatially distant neurons, large HD value). For some of the 
considered networks a bimodal distribution of HD(dyn) can be 
observed. In such cases, the peak closer to zero corresponds to the 
comparison of neurons of the same type (excitatory–excitatory 
or inhibitory–inhibitory), while the peak further from zero cor-
responds to comparison of neurons of different type (excitatory–
inhibitory). This bimodality is due to the difference in intraburst 
patterns between excitatory and inhibitory neurons: Figure  2B 
shows that on average the inhibitory population starts and ends 
bursting later than the excitatory one. This effect is most visible 
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Section 2.3.1. We take the same elements as in Figure 7 – rows of 
connectivity matrix and full spike train data of neurons or intraburst 
segments only – and calculate the NCDs between these elements. 
These NCD distributions are plotted in Figure 9.

One can observe a gradual increase in the mean values of 
NCD(struc) with the increase of randomness to the structure of 
the network in Figure 9. This is rather expected: the more random-
ness applied to the structure of the network, the further away the 
connectivity data of different neurons are from each other. As for 
the NCD(dyn) values between full spike train data of neurons, 
one can observe a gradual decrease in the mean value with the 
increase of randomness, and a slightly similar evolution is visible 
in the burst-wise calculations as well. Both this and the decrease in 
the deviation of the NCD(dyn) values are in accordance with the 
properties of intraburst spike patterns illustrated in Figure 2: the 
spike train data seem more diverse and wider-spread in the local 
networks than in the random ones. Furthermore, as the bursting 
frequency is higher in LCNs than in RNs (Table 1), the analyzed 
LCN spike trains (1 min recordings) show more variability than 

in RNs, as can be observed both in Figures 2 and 8A. As for the 
CCs, the distributions are unimodal. This indicates that the dif-
ferences between the spiking patterns of inhibitory and excitatory 
neurons are observable on small time scale (HD uses the bins of 
width 0.5 ms), but not on large time scale (cross-correlations are 
integrated over an interval of ±50 ms). This is further supported by 
the fact that when the time window for CC calculations is narrowed, 
the CCs between neurons of same type become distinguishable 
from those between neurons of different type (data not shown).

Both HD and cross-correlation, however, assess the similarity 
between the data by observing only local differences. The HD deter-
mines the average difference between the data by comparing the data 
at exact same locations, as the cross-correlation allows some varia-
tion on the time scale. Both measures fail to capture similarities in 
the data if the similar patterns in the two considered data sequences 
lie too far from each other. This is also the case if the sequences 
include more subtle similarities than time shifts, e.g., if one sequence 
is a miscellaneous combination of the other’s subsequences. Thereby, 
we proceed to the information diversity framework presented in 
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shown). Furthermore, the decrease in the complexity of the struc-
ture by the increase in randomness is also present in the case where 
the neurons in the connectivity matrix are randomly permutated. 
This shows that the trend in the structural complexity in Table 2 
is not an artifact of the order in which the neuron connectivities 
are read into strings.

3.5 Conclusion
The structure of RNs are described by low path length and low 
clustering coefficient, and further by high KC and low information 
diversity. The RN dynamics is described by short and relatively rare 
bursts, and hence low KC of the spike train data. As the opposite, the 
structure of LCNs show longer path length and greater clustering 
coefficient, and the KC approximations of the structural data are 
small while the information diversity is large. The bursts in the LCN 
spike trains are longer and more frequent than in RN spike trains. 
The KC approximations of the LCN spike train data are large on 
average. Based on the variation in NCD, the intraburst complexity 
is higher in LCN output than in that of RN, and for the sparser of 
the two network densities the same holds for complexities of full 
spike trains.

The in-between networks, PLCNs, fall between the two extremes 
(RN and LCN) by their structural properties as well as their bursting 
behavior. The same holds for the biologically realistic NETMORPH 
networks. The information diversity of the structure of these net-
works is between that of RN and LCN. Similarly to LCNs, the 
intraburst dynamics of NETMORPH networks as well as the most 
locally connected PLCNs are more complex in terms of NCD vari-
ation than that of RNs.

those of RN. Consequently, the mean NCD(dyn) is visibly higher 
in LCN. When analyzing the dynamics of the intraburst interval, 
data variability is less pronounced and the difference between the 
means of NCD(dyn) distributions is smaller.

We repeat the experiment of Figure 9 10 times, and for each 
entry we calculate the standard deviations of NCD distributions 
(i.e., the complexities in our definition) of both structure and 
dynamics. Table 2 shows the mean complexities and their stand-
ard deviations, and the network classes in which the complexity is 
significantly different from that of a RN. The table shows that the 
structural complexity decreases with the increase of randomness 
to the structure. The complexity of full spike trains shows a less 
consistent trend. For sparser networks (p = 0.1), the more locally 
connected networks produce more complex full spike trains than 
RNs, as for denser networks (p = 0.16), only one of the PLCNs has 
statistically different complexity from that of RNs. We consider 
the latter statistical difference an outlier as a clear trend is absent. 
For the intraburst complexities the results suggest that the LCNs 
together with NETMORPH and some of the most locally connected 
PLCNs produce more complex dynamics than RNs.

The information diversity results of Table 2 do not clearly indi-
cate which network produces the most complex dynamics. The 
p-values for the test whether the information diversity of the most 
complex full spike trains is different from that of the second most 
complex are 0.13 and 0.38 for sparse and dense networks, respec-
tively. For the intraburst complexities the respective p-values are 
0.80 and 0.62. The results for the complexity of structure are quali-
tatively the same when considering the columns of connectivity 
matrix, i.e., the in-connection patterns, instead of rows (data not 
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and the networks of fixed size (N = 1600). The further studies test-
ing alternative models and examining the influence of network size 
are needed to confirm these findings. Still, the presented results 
demonstrate capability of the employed measure to discriminate 
between different network types.

The basis for the present study is the question: if one changes 
the structure of the neuronal network but keeps the average degree 
(or even the whole in-degree distribution) constant, how does 

4 Discussion
In this work we present and apply an information diversity measure 
for assessing complexity in both structure and dynamics. According 
to this measure the neuronal networks with random structure pro-
duce less diverse spontaneous activity than networks where the con-
nectivity of neurons is more dependent on distance. The presented 
study focuses on only one neuronal activity model, i.e., Izhikevich 
type neurons with dynamical model of synapses (Tsodyks model), 
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Table 2 | Complexities calculated as standard deviations of NCD distributions for both elements of structure and dynamics.

	 STRUCT	 DYN (full)	 DYN (bursts)	 STRUCT	 DYN (full)	 DYN (bursts)

LCN	 0.054 ± 0.003*	 0.040 ± 0.003*	 0.071 ± 0.012*	 0.051 ± 0.003*	 0.027 ± 0.003	 0.057 ± 0.006*

W = 10	 0.045 ± 0.002*	 0.041 ± 0.004*	 0.067 ± 0.008*	 0.045 ± 0.003*	 0.030 ± 0.003	 0.053 ± 0.003*

W = 4	 0.036 ± 0.002*	 0.042 ± 0.003*	 0.075 ± 0.006*	 0.036 ± 0.004*	 0.027 ± 0.002	 0.057 ± 0.007*

W = 2	 0.029 ± 0.001*	 0.045 ± 0.004*	 0.074 ± 0.015*	 0.027 ± 0.002*	 0.027 ± 0.003	 0.048 ± 0.004*

W = 1	 0.022 ± 0.001*	 0.034 ± 0.004*	 0.055 ± 0.007*	 0.019 ± 0.001*	 0.025 ± 0.002*	 0.047 ± 0.006

W = 0.5	 0.017 ± 0.001*	 0.028 ± 0.002	 0.048 ± 0.020	 0.014 ± 0.001*	 0.029 ± 0.002	 0.042 ± 0.003

RN	 0.014 ± 0.001	 0.028 ± 0.002	 0.042 ± 0.002	 0.013 ± 0.001	 0.029 ± 0.003	 0.044 ± 0.005

NETM	 0.040 ± 0.004*	 0.039 ± 0.006*	 0.053 ± 0.008*	 0.033 ± 0.002*	 0.027 ± 0.003	 0.052 ± 0.005*

The three leftmost columns are calculated from simulations with connection probability p  =  0.1, three rightmost with p  =  0.16. Each entry represents the 
mean ± standard deviation of the wideness of the NCD distribution, calculated over 10 repetitions for each entry. The entries where the median of values is signifi-
cantly different (U-test, p-value 0.05) from the corresponding RN entry are marked with asterisk (*).

the spontaneous activity change? In the activity simulations, all 
model parameters remain constant, only the connectivity matrix 
is changed between the simulations of different network types; hence 
the variation in bursting properties emerges from the structure of 
the network only. The selected algorithm for generation of network 
structure possesses the capability to tune distance-dependence on 
a continuous scale. As a result, we have not only fully locally con-
nected networks, where a neuron always first connects to its nearest 
spatial neighbors before the distant ones (W = ∞, i.e., LCN), and 
fully random networks (W = 0, i.e., RN), but everything in between 
(0 < W < ∞, PLCN). The RNs correspond to directed Erdo˝s–Rényi 
networks that are widely used in similar studies in the field. These 
networks are characterized by a binomial degree distribution; 
hence the choice of binomial in-degree distribution for all network 
types. The only network class to violate this binomiality are the 
NETMORPH networks, which are considered in order to increase 
the biological plausibility of the study. The results showing that the 
NETMORPH networks are placed somewhere between the LCNs 
and RNs by most of their structural and dynamical properties also 
support the use of Algorithm 1 for the network generation. If this 
was not the case, one would have to try to find another way to pro-
duce networks with as extreme properties as those in NETMORPH 
networks. The range of networks between LCN and RN could also be 
produced with an application of Watts–Strogatz’ algorithm (Watts 
and Strogatz, 1998). The crucial difference is that in our in-between 
networks (PLCNs) the “long-range connections” are the shorter 
the bigger the parameter W is, while in Watts–Strogatz’ model the 
long-range connections are (roughly) on average equally long in 
all in-between networks. By a long-range connection we mean any 
connection to neuron A from neuron B when A is not yet connected 
to all neurons that are spatially nearer than B.

The complexity framework presented in this paper is adopted 
from Nykter et al. (2008), where critical Boolean networks are found 
to have the most complex dynamics out of a set of various Boolean 
networks. The method for estimating the complexity in the present 
work is different in the way that we apply the NCD measure between 
elements of a set that represents the object whose complexity is 
to be estimated (connectivity matrix, population spike train), not 
between different output realizations as in Nykter et al. (2008). This 
allows the estimation of the complexity of the object itself, not of 
the set of objects generated with the same process. The complexity 

of the object is assessed by the diversity of the information it car-
ries. Although technically applicable to any set of strings, this is 
not supposed to be a universal measure of complexity. However, its 
use lacks the difficulties that arise when applying an alternative set 
complexity measure defined in Galas et al. (2010), as discussed in 
Section 2.3.1. The said non-universality of our measure stems from 
the limited range of deviation values that a NCD distribution can 
have, and on the other hand, the plain standard deviation might 
not be a good measure of wideness if the underlying distributions 
were multimodal. In this work all studied NCD distributions are 
unimodal. Furthermore, we only apply this complexity measure on 
data of comparable lengths and comparable characteristics, hence 
the resulting complexities are also comparable to each other. This 
may not be true in the opposite case, for example, spike trains of 
length 1 s and 1 h cannot be compared in an unbiased way.

In this study we show how the NCD values of both structure 
and dynamics of a neuronal network are distributed across the 
[0,1] × [0,1]-plane in the model networks (Figure 9), and calculate 
the mean information diversities of both structure and dynam-
ics (Table 2). The Figures 9A,C themselves give a good overview 
of the interplay between structural and dynamical information 
diversity. They show that the NCD distributions, computed for 
the considered types of networks, follow a visible trajectory. This 
trajectory is not evident when observing the widths of the NCD 
distributions only, nor when computing simpler distance measures 
(e.g., HD). The trajectory follows an “L”-shape, which is slightly 
violated by the NETMORPH NCD distribution (see Figure 9C). 
Whether there exists a network of the same degree that would 
span the whole “L”-shaped domain or a “superdiverse” network 
whose NCD values would cover also the unoccupied corner of the 
“L”-rectangle remains an open question. We have shown that such 
networks do not exist among the model classes studied here, and in 
the light of the results shown we also doubt the existence of such 
networks altogether, given the constraints of binomial in-degree 
distribution and the selected connection probability.

The different networks are separable also by the KC approxima-
tions of their structure and dynamics (Figure 7). However, we con-
sider the KC analysis alone insufficient because it lacks the notion of 
context-dependence: the KC of a spike train would be maximized 
when the on-set of neurons (i.e., spikes) are as frequent as off-
set of neurons (i.e., silent time steps) and randomly distributed 
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bursts. Similar measures of entropy and KC have been applied 
before, but the capability of the NCD to capture context between 
different data makes it suitable for assessing data complexity. 
The presented measure can be used to analyze different phases 
in neuronal network growth, where the structure is simulated by 
publicly available growth simulators (Koene et al., 2009; Acimovic 
et al., 2011). Analysis of network structure, using the procedure 
described in this paper, can be employed for this study. Analysis 
of the structure and dynamics of the presented models can be 
used in relation to the in vitro studies with modulated network 
structure. The results of model analysis can help to predict and 
understand the recorded activity obtained for certain network 
structures imposed by the experimenter (Wheeler and Brewer, 
2010). Finally, the NCD variation as a measure of structural com-
plexity, can be applied to analyze the large-scale functional con-
nectivity of brain networks, similarly to the examples pointed in 
Sporns (2011).

The framework proposed in this study provides a measure of 
data complexity that is applicable to both structure and dynamics 
of neuronal networks. According to this measure, the neuronal 
networks with random structure show consistently less diverse 
intraburst dynamics than the more locally connected ones. The 
future work will incorporate a larger spectrum of different network 
structures in order to discover the extreme cases that more clearly 
maximize or minimize the complexity of dynamics.
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in time. The effect of number of spikes on KC is already seen in 
Figures 7A,C: the KCs of spike trains of dense networks, where the 
number of spikes is greater, are on average greater than those of 
sparse networks. This is contrary to the case of context-dependent 
complexities, as shown in Table 2, where the information diversities 
of full spike trains of dense networks are on average smaller than 
those of sparse networks. This leads to a profound question: how 
much spiking and bursting can there be before the activity is too 
random in order to contain any usable information? We believe 
that in order to address this question one has to apply a context-
dependent measure of complexity instead of KC.

The complexity result in Table 2 concerning the information 
diversity of structure seems to contradict with the general notion 
according to which the most regular structure should be less com-
plex than the structure that possesses both regularity and random-
ness (Sporns, 2011). It should be noted, however, that also the most 
regular networks studied in this work (LCNs) occupy a degree 
of randomness, since their in-degree distribution is binomial and 
since farthest neighbors of a neuron are picked by random out of 
all equally distant ones. There is a multitude of possibilities for the 
most ordered structure, other than the one chosen in this work. For 
example, in Sporns (2011) a fully connected network is suggested 
to be a highly ordered neuronal system. Applying the information 
diversity measure to such structure in the framework of Table 2 
gives a structural complexity of ≈0.0268, which is less than that of 
the majority of the studied PLCNs. Hence, we regard the proposed 
measure eligible to assess the complexity of the structure.

In addition to analysis of well defined models, the presented 
measure can be used for analysis of experimental data. The method 
is straightforwardly applicable to neuronal activity recorded in 
the form of spike trains. Conversion of spike trains into binary 
sequences is described in the method section of this paper, as well 
as in the previous studies (Christen et al., 2006; Benayon et al., 
2010). It can be observed that variability in NCD distribution cor-
responds to the variability in spiking patterns within population 
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Aćimović, Nykter, Kesseli, Ruohonen, Yli-
Harja and Linne. This is an open-access arti-
cle subject to a non-exclusive license between 
the authors and Frontiers Media SA, which 
permits use, distribution and reproduction 
in other forums, provided the original 
authors and source are credited and other 
Frontiers conditions are complied with.

cultures. Proc. Natl. Acad. Sci. U.S.A. 
105, 13758–13763.

Sporns, O. (2011). Networks of the Brain. 
Cambridge, MA: The MIT Press.

Tsodyks, M., Uziel, A., and Markram, 
H. (2000). Synchrony generation in 
recurrent networks with frequency-
dependent synapses. J. Neurosci. 20, 
1–5.

Tuckwell, H. C. (2006). Cortical network 
modeling: analytical methods for fir-
ing rates and some properties of net-
works of LIF neurons. J. Physiol. Paris 
100, 88–99.

Voges, N., Guijarro, C., Aertsen, A., and 
Rotter, S. (2010). Models of cortical 
networks with long-range patchy 
projections. J. Comput. Neurosci. 28, 
137–154.

Wagenaar, D. A., Pine, J., and Potter, S. 
M. (2006). An extremely rich rep-
ertoire of bursting patterns dur-
ing the development of cortical 
cultures. BMC Neurosci. 7, 11–29. doi: 
10.1186/1471-2202-7-11

Watts, D. J., and Strogatz, S. H. (1998). 
Collective dynamics of small-world 
networks. Nature 393, 440–442.

ground activity, and synaptic prop-
erties shape the cross-correlations 
between spike trains. J. Neurosci. 29, 
10234–10253.

Paninski, L. (2003). Estimation of entropy 
and mutual information. Neural 
Comput. 15, 1191–1253.

Rapp, P. E., Zimmerman, I. D., Vining, 
E. P., Cohen, N., Albano, A. M., and 
Jimenez-Montano, M. A. (1994). 
The algorithmic complexity of 
neural spike trains increases dur-
ing focal seizures. J. Neurosci. 14, 
4731–4739.

Rotter, S., and Diesmann, M. (1999). Exact 
digital simulation of time-invariant 
linear systems with applications to 
neuronal modeling. Biol. Cybern. 81, 
381–402.

Shadlen, M. N., and Newsome, W. T. 
(1998). The variable discharge of 
cortical neurons: implications for 
connectivity, computation, and 
information coding. J. Neurosci. 18, 
3870–3896.

Soriano, J., Rodrígez Martinez, M., Tlusty, 
T., and Moses, E. (2008). Development 
of input connections in neural 

Li, M., Chen, X., Li, X., Ma, B., and 
Vitányi, P. M. B. (2004). The similar-
ity metric. IEEE Trans. Inf. Theory 50, 
3250–3264.

Li, M., and Vitanyi, P. (1997). An 
Introduction to Kolmogorov Complexity 
and Its Applications, 2nd Edn. New 
York: Springer-Verlag.

Marom, S., and Shahaf, G. (2002). 
Development, learning and memory 
in large random networks of cortical 
neurons: lessons beyond anatomy. 
Q. Rev. Biophys. 35, 63–87.

Neel, D. L., and Orrison, M. E. (2006). The 
linear complexity of a graph. Electron. 
J. Comb. 13, 1–19.

Newman, M. E. J. (2003). The structure 
and function of complex networks. 
SIAM Rev. 45, 167–256.

Nykter, M., Price, N. D., Larjo, A., Aho, 
T., Kauffman, S. A., Yli-Harja, O., 
and Shmulevich, I. (2008). Critical 
networks exhibit maximal informa-
tion diversity in structure-dynamics 
relationships. Phys. Rev. Lett. 100, 
058702.

Ostojic, S., Brunel, N., and Hakim, V. 
(2009). How connectivity, back-

Mäki-Marttunen et al.	 Information diversity in neuronal networks

Frontiers in Computational Neuroscience	 www.frontiersin.org	 June 2011  | Volume 5  |  Article 26  |  15

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


For each neuron i the initial values for the membrane potential 
variable v

i
 is drawn from uniform distribution U([c

i
,30]), where c

i
 

is the reset potential parameter of the neuron. The initial recovery 
variable of the neuron is set b

i
v

i
, where b

i
 is the sensitivity parameter 

of the neuron. The synaptic resources are initially in the recovered 
state, i.e., x

ij
 = 1, y

ij
 = 0, z

ij
 = 0. The initial effective fraction vari-

ables u are set u
ij
 = U

ij
, where U

ij
 is the resource fraction constant 

of the synapse ij.

6.3 Compression method
6.3.1 A test study of compressors
The quality of the complexity estimation presented in Section 
2.3 heavily depends on the precision of KC approximation. In 
this section we motivate our choice of compression method by 
examining different compressors in a simple test case. Recent stud-
ies incorporating NCD with data compressors have used mostly 
gzip and bzip2 (Li et al., 2004; Emmert-Streib and Scalas, 2010); 
in addition to these two we study 7zip3.  All compressors are run 
with the default parameters, in addition 7zip is run in a heavy 
mode that requires more memory and computation time. The 
challenge in the compression of strings used in this study is the 
recognition of similar data patterns that may lie very far from 
each other and differ from each other in a more or less subtle way. 

6 Appendix
6.1 Model parameters for NETMORPH
The parameters used for generating realistic networks by 
NETMORPH are listed in Table A1 in Appendix. We use the imple-
mentation netmorph2D, which allows the simulation of strictly 
two-dimensional networks. The version 20090224.1225 of the 
simulator is used. The parameters are obtained from Koene et al. 
(2009), where the axonal parameters were optimized to fit growth 
statistic obtained from real data. We are unaware of any similar 
parameter optimization study done for dendritic growth, hence 
we use the dendritic parameters listed in the context of Figure 12D 
in Koene et al. (2009).

We take into account that not all synapses become functional by 
applying a 25% fraction of effective synapses, i.e., on average every 
fourth of the candidate synapses proposed by the simulator is actu-
ally accepted as a synapse. In addition, we apply the cell placement 
in a fixed 40-by-40 grid where distance between adjacent neuron 
somas is 24.99 μm. To do this we had to recompile the simulator 
with our own extension that overrides the cell soma data created 
by the simulator (code not shown). For parameters not mentioned 
above we use the default values.

6.2 Activity model parameters
The activity simulations are run on MATLAB. The parameters 
for Izhikevich model (Eqs 6 and 7) are obtained from Izhikevich 
(2003). They are listed in Table A2 in Appendix.

The parameters are randomized such that the random numbers 
r

e
 and r

i
 are drawn neuron-wise from a uniform distribution U(0,1). 

The noise term I
G
 (Eq. 8) is a piecewise constant (constant for 

1 ms time windows) zero-mean Gaussian variable with standard 
deviation 8 8 1. .ms  This value is chosen to make the silent periods 
have a spiking frequency not too scarce and not too dense (see the 
inter-burst periods in Figure 2 for the result). The simulation time 
step is chosen 0.5 ms.

The synapse parameters (Eq. 10) are taken from Tsodyks et al. 
(2000), and they are listed in Table A3 in Appendix.

For each synapse the values of variables t
rec

 and t
facil

 are first 
drawn from a Gaussian distribution with the shown mean and 
standard deviation of half of the mean. Values lower than 5 ms 
are replaced by the minimum value 5 ms. The procedure is similar 
with the resource fraction parameter U (Eq. 11), but for U both 
minimum and maximum value are applied. The minimum and 
maximum values are chosen following a test case in the NEST 
(Gewaltig and Diesmann, 2007) simulator, although the simulator 
itself is not used due to difficulties in simultaneous implementation 
of Tsodyks’ synapse model and Izhikevich’s neuron model.

Table A2 | Izhikevich model parameters.

Model parameters	E xcitatory	I nhibitory

a	 0.02	 0.02 + 0.08ri

b	 0.2	 0.25 − 0.05ri

c	 −65 + 15re
2 	 −65

d	 8 − 6re	 2

Table A3 | Tsodyks model parameters.

	E xcitatory	I nhibitory

DYNAMICAL BEHAVIOR PARAMETERS

trec (average)	 800 ms	 100 ms

Tfacil (average)	 0	 1000 ms

TI	 3 ms	 3 ms

RESOURCE FRACTION PARAMETERS

U (average)	 0.5	 0.04

Umin	 0.1	 0.001

Umax	 0.9	 0.07

3http://7-zip.org/

Table A1 | The parameter values used in NETMORPH.

Model selection parameters:	  	G rowth and branching	 Axon	 Dendrite 

		  model parameters:

arbor_elongation_model	 van_Pelt	 growth_nu0	 0.00052083	 0.00013889 (μm/s)

branching_model	 van_Pelt	 growth_F	 0.16	 0.39

TSBM	 van_Pelt	 B_inf	 17.38	 4.75

synapse_formation.PDF	 uniform	 E	 0.39	 0.5

direction_model	 segment_history_tension	 S	 0	 0

History_power	 2	 tau	 1209600	 319680 (s)
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which is dictated by 8 bits in an ASCII character relative to the one 
bit required for the representation of “0”s and “1”s, taking into 
account that the compressed string consists of two identical strings. 
The value 1/4 would be expected as the maximal mean compres-
sion efficiency of compressors with block size smaller than L(x), 
as one would have C(xx)≈2C(x) – this value is best approached by 
the compressor 7zip.

The reason we chose duplicated random strings as a test for 
compressors is that the strings are slightly similar from the com-
pressibility point of view when calculating, e.g., NCD between two 
rows of a connectivity matrix. For example, in the case of a LCN 
two halves of the string will not be fully identical but most often 
merely shifted and some of the bits replaced by their opposite. Also 
in the case of calculating NCD between spike trains of two neurons, 
most of the spikes will probably be clustered around the same time 
indices (the time index of a burst) surrounded by hundreds or 
thousands of “0”s (silent periods). Surely our test case does not 
capture all the phenomena related to this kind of compression 
challenges where most of the data in the two halves of the string 
are equal but not all, but this at least shows that even small chal-
lenges – compressing strictly duplicated data – are managed far 
less efficiently by some compressors than the others. Basing on 
this test, we choose to use the 7zip-heavy compressor to compute 
all the results presented in this work.

6.3.2 Compression software
For compression of data strings we use the LZMA SDK 4.65 pro-
vided by the 7-zip website4. To improve the default compression rate 
we set the number of fast bytes to 273 (default 128), the diction-
ary size to 1 Gb (default 8 Mb) and the number of match finding 
cycles to 750 (default 10), while keeping the rest of the parameters 
(number of literal context and position bits) default.

We test the performance of the above compressors in a simple 
problem, where the data to be compressed consists of a duplicated 
random string. Figure A1 in Appendix shows compression rate of 
these strings, i.e., plots of C(xx)/L(x), where x is a random string 
with equal probabilities of occurrences of “0” and “1”, L(x) is the 
length of the uncompressed string x and C(xx) is the length of the 
compressed duplicated string.

The mainly descending trend of the compression rates is due to a 
supposedly constant size coding overhead, whose proportion of the 
compressed code diminishes as the length of the string is increased. 
One can observe a shift in the compression rate when exceeding 
the block size in both gzip, bzip2 and 7zip at some length of data, 
but not in 7zip-heavy. The latter compressor also most successfully 
approaches the mean limit compression efficiency of 1/8, the value 
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Figure A1 | Compression efficiencies when compressing a duplicated 
random string.
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ABSTRACT
We study the complexity of network dynamics in a couple
of very different model classes: The traditional random
Boolean networks (RBN) and Frisch-Hasslacher-Pomeau
lattice gas automata (FHP). For this we formulate the FHP
dynamics as a probabilistic Boolean network (PBN). We
use the set complexity of successive network states to as-
sess the complexity of the dynamics. We find that the
complexity is maximised near a transition state in both
types of dynamical systems.

1. INTRODUCTION

Boolean networks are one of the simplest existing dynam-
ical systems, yet they can produce an extremely wide range
of different observable types of behavior. This makes them
a suitable target for complexity research: a broad diversity
of dynamics that is reducible to simple building blocks.
Boolean network models have been used to establish and
study several fundamental properties of dynamical sys-
tems. These include, among others, characterization of
attractor structure, information processing properties, dy-
namical regimes, and ability to store information [1]. Re-
markably, many of these properties are present in multi-
ple other classes of dynamical systems, and some of these
properties have been found in real systems, such as living
cells.

While Boolean networks are a highly useful model
class, there are multiple limitations. Some of these be-
come apparent when one wants to understand the com-
plexity of processes that pertain to physical quantities such
as work or energy. Additionally, standard random Bool-
ean model does not capture spatial positioning of the nodes.
To extend the analysis beyond random Boolean networks,
we utilize a model class that captures spatial positioning
and pertains to the quantities such as work and energy: a
lattice gas model. We use both of these model classes to
show that our observations about the dynamical behavior
holds also for both of these systems. Finally, we will es-
tablish a connection between lattice gas model and prob-
abilistic Boolean networks. This connection allows com-
parison and generalization of results between these sys-
tems.

In this work we will study complex behavior of dy-
namical systems during the transition towards a steady
state. Specifically, we address the complexity of the tra-
jectories during this transition. Using an information the-
oretical measure, set complexity, we show that the maxi-
mally complex dynamical behavior is observed during the
transition period. Additionally, we show that this prop-
erty is shared between Boolean networks and lattice gas
model.

2. METHODS

2.1. Random Boolean networks

A Boolean network is defined as a collection of nodes
{V1, . . . , VN} where at each time step t each node is as-
signed a Boolean value xi(t), i.e.

∀t ∈ N ∀i ∈ {1, . . . , N} : xi(t) ∈ {0, 1}.
Each node receives input from 0 to N nodes and the state
of the node at time instant t + 1 is a Boolean function of
the states of its neighbors at time instant t:

xi(t + 1) = fi(xIi1(t), . . . , xIini
(t)),

where Iij (j ∈ {1, . . . , ni}) are the indices of the input
nodes of node i, ni ∈ {0, . . . , N} denoting the number of
them.

By Random Boolean Networks (RBN) we mean such
Boolean networks where the inputting nodes as well as
the Boolean functions are picked by random. We denote
the probability of the output of a Boolean function in the
network being 1 by p. For simplicity, we keep the number
of inputting nodes a network-wide constant: ∀i : ni = K.
The parameters p and K together determine the dynamics
of the network through a sensitivity parameter s = 2Kp ·
(1 − p). Networks with s = 1 are critical networks, as
networks with s > 1 are chaotic and s < 1 stable [2].

RBNs should not be confused with probabilistic Bool-
ean networks (PBN) that are such Boolean networks where
each node may have a number of functions. The choice of
which function to use to update the state of the node de-
pends on a random process. In the present paper we will
use PBNs but skip the formal definitions of the underlying
probability spaces.



2.2. Lattice gas

Movement of gaseous particles in a 2-dimensional box can
be studied using a Frisch-Hasslacher-Pomeau (FHP) lat-
tice gas model [3]. This is a model where the spatial do-
main is divided into a hexagonal grid, and each hexagonal
box in the grid can contain up to six particles. The par-
ticles always move into one of the six directions and can
only move with velocity of one hexagon/time step. Given
that two or more particles are in the same hexagon, they
must have different momenta, that is, different directions
of momentum.

The momentum of a particle can only change with 1) a
collision with the wall and 2) a collision with another par-
ticle. A collision with a wall occurs whenever a particle
enters a hexagon occupied by a wall, and a collision be-
tween particles takes place if a) exactly two particles with
opposite momenta come to the same hexagon or b) ex-
actly three particles with momenta that add up to 0 come
to the same hexagon. In collisions 1 and 2b the momenta
of the particles is changed in a deterministic way whereas
in 2a the momenta of the particles are chosen by random
between the two possibilities (see Figure 1).

Collision with wall (1)

1

Collision of two particles (2a)

2a or

Collision of three
particles (2b)

2b

Figure 1. The collisions in FHP model.

The lattice gas automaton described above can be pre-
sented as a PBN. Each hexagon in the spatial grid contains
six nodes, each of which can contain a particle moving
into one of the six directions, i.e. the state of the node is
’1’ when there is a particle in the hexagon moving into the
specified direction and ’0’ when there is not. The state of
the node at time instant t + 1 is determined by the state of
its surrounding nodes at time instant t. The update rule is
deterministic in all cases but collision 2a — in that case
the outcomes of the four nodes of the possible scattering
directions are random but correlate and anti-correlate with
each other. The Boolean functions of a node Vi0 whose
parent hexagon does not contain a wall are listed in Fig-
ure 2. If in contrast the parent hexagon contains a wall,
then the only input node is in the opposite direction of the
node (i.e. Vi4 would be input for Vi0 in Figure 2), and the
Boolean function is identity.

000000: 0
000001: 0
000010: 0
000011: 0
000100: 0
000101: 0
000110: 0
000111: 0
001000: 0
001001: 0/1
001010: 0
001011: 0
001100: 0
001101: 0
001110: 0
001111: 0

010000: 0
010001: 0
010010: 0/1
010011: 0
010100: 0
010101: 1
010110: 0
010111: 0
011000: 0
011001: 0
011010: 0
011011: 0
011100: 0
011101: 0
011110: 0
011111: 0

100000: 1
100001: 1
100010: 1
100011: 1
100100: 0
100101: 1
100110: 1
100111: 1
101000: 1
101001: 1
101010: 0
101011: 1
101100: 1
101101: 1
101110: 1
101111: 1

110000: 1
110001: 1
110010: 1
110011: 1
110100: 1
110101: 1
110110: 1
110111: 1
111000: 1
111001: 1
111010: 1
111011: 1
111100: 1
111101: 1
111110: 1
111111: 1

xi2
xi3

xi4

xi5
xi6

xi1
xi0

f :

1

Figure 2. The input nodes of a node moving right in the
Boolean network representation of the FHP model. Here,
the state of the node xi0 is determined as xi0(t + 1) =
f(xi1(t), xi2(t), xi3(t), xi4(t), xi5(t), xi6(t)). The values
of function f are listed on the right for each input. In
the type 2a collisions both values ’0’ and ’1’ are possi-
ble: in these cases the scattering direction of the collision
is picked by random and the outcome of the node i0, to-
gether with the other nodes in the hexagon, depends on
this scattering direction.

2.3. Set complexity

Complexity of Boolean network dynamics can be studied
by the means of the context-dependent information it car-
ries. The dynamics of a Boolean network is represented
by a set of its successive states that are read into strings.
To the obtained set of strings one can apply a recently pro-
posed all-purpose measure, set complexity [4], defined as:

S({x1, ..., xN}) =
∑

j

C(xj)
1

N(N − 1)

∑
j 6=k

djk(1−djk),

where C(xj) is the Kolmogorov complexity — or its ap-
proximation — of string xj . The variable djk stands for
the normalized compression distance (NCD) of strings xj



and xk, defined as

djk = NCD(xj , xk) =
C(xjxk)−min(C(xj), C(xk))

max(C(xj), C(xk))
,

where xjxk is the concatenation of strings xj and xk. In
the present study we use the length of the LZMA encoded
string as an approximation for the Kolmogorov complex-
ity of the string.

3. RESULTS

3.1. Information content of dynamics of RBN

We consider RBNs of size N = 1000 with variable num-
ber of neighbors (K = 1, 2, 3). The state of the network
is read into a string of length N , and the complexity of the
dynamics is approximated by the set complexity of suc-
cessive states. Figure 3 shows the set complexity of the
states using a sliding window of four successive states. At
the transition to a short-cycle steady state the set complex-
ity is maximised, as seen for networks with sensitivities
s = 0.5 and s = 1. In the case of K = 3, s = 1.5 the dy-
namics of the network is too chaotic for the set complexity
of four states to find any pattern in — in our simulations a
network of this type never returned to one of its previous
states during the T = 224 time steps, indicating a lengthy
path to a steady state, a long steady state cycle, or both.
For comparison, the median steady state cycle lengths are
1 for all networks with s = 0.5, 16 for networks with
K = 2, s = 1, and 10 for networks with K = 3, s = 1.
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ity trajectories, as the thick curves are medians of 1000
trajectories.

Next we study the maximum values of this kind of set
complexity trajectories in more detail. We consider RBNs
with the same fixed numbers of neighbors (K = 1, 2, 3)
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networks.

but with variable p; hence, with variable sensitivity s. Fig-
ure 4 shows the distribution (the quantiles) of the max-
imum set complexity value as a function of p. For net-
works with K = 2 the critical network produces the dy-
namics that has the greatest maximum set complexity, as
for K = 3 that holds for slightly chaotical (s ≈ 1.1) net-
works. Notice the symmetricity: the dynamical character-
istics of networks with p = q and p = 1− q are identical
with only the role of 0’s and 1’s interchanged.

3.2. Information content of dynamics of the lattice gas

The lattice gases considered are set up in a M × M grid
of hexagonal boxes, surrounded by impenetrable walls. In
the beginning all particles are situated in three overlap-
ping rectangle-shaped regions on the left side of the box.
The first rectangle lies in the upper-left corner of the box
and consists of particles that are moving lower-right, the
second one occupies the whole height of the box and con-
sists of particles moving right, and the third one lies in the
lower-left corner and moves upper-right. The rectangle
sizes are chosen such that it takes an exact number of time
steps (16 in our simulations) before the first particles hit
a wall on the opposite side of the box. The rectangles are
densely packed: in each slot of the rectangle a particle ex-
ists with probability p = 0.95. This particular setup was
chosen as a reference to a classical example in thermody-
namics in which particles spread from a densely packed
cluster to the whole spatial domain to obtain a maximal
entropy.

In the beginning of the simulation there is a short pe-
riod of time during which the particles do not collide but
move in the most ordered fashion, each of the six M ×M
planes only being shifted in their direction of movement.
In contrast, toward the end of the simulation the particles
move chaotically, colliding frequently with each other as
well as with the surrounding walls. Between these phases
lies a period of transition from the orderly motion into the
chaotical one. Figure 5 shows that the set complexity of
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Figure 5. Simulation of a spreading lattice gas. Up-
per axes: The set complexity of twelve successive states
of the lattice gas versus time. A number of realizations
(N=100) plotted in gray, median plotted in black. Lower
axes: Both entropy (dashed), Kolmogorov complexity es-
timate (solid) and number of collisions (solid + x) plot-
ted versus time. The entropy is calculated using the tra-
ditional thermodynamical definition. The state space is
divided into 5-by-5 (10-by-10) boxes, and the number of
particles in all of these microboxes is calculated. The en-
tropy is proportional to the logarithm of the number of
all possible configurations with the said number of parti-
cles in the microboxes. For simplicity, only the interior
of the spatial domain is considered when calculating the
entropy, i.e. the number of particles colliding with the
walls do not contribute to the entropy. Bottom figures:
Lattice gas states visualized at the beginning of the simu-
lation (t = 0), during the transition period (t = 56) and in
the end (t = 4096).

12 successive states of the lattice gas is maximised during
this transition period. In contrast, the Kolmogorov com-
plexity of the state as well as the traditional entropy shows
a mere rising trend in its trajectory. For the compression
the state of the lattice gas is read into a string first column
by column, last plane by plane — i.e. the distance of two
nodes in the same hexagon is always a multiple of M2 in
the string.

4. CONCLUSION AND DISCUSSION

In this article, we have considered set complexity as a
measure of dynamical complexity of state transitions us-
ing two models, RBNs and FHP lattice gases as case stud-
ies. Using these models, we have found that there is a
point of maximal complexity in time, occurring before the
system settles down to its long-term behavior. Although
the generality of the phenomenon is yet to be assessed in
full, it can be suggested that such maximal complexity can
be found in a range of other models of dynamical systems

as well.
A random Boolean network can be thought of as per-

forming a type of a classification task, taking the initial
state of the system and finding out, by computing its char-
acteristic state transitions, to which attractor basin the in-
put vector belongs. Such a parallel calculation can per-
form a huge variety of functions, and what we see in the
set complexity measure can be taken to quantify this ob-
served complexity. In accordance with this idea, critical
or near-to-critical networks show the highest peaks of set
complexity due to the complex dynamics emerging at the
phase transition from ordered to chaotic networks. For the
FHP lattice gas model, the state of the particles changes
through a transient towards a steady state equilibrium. In
this case, the characteristics of the steady state are not de-
pendent on the structured initial state we have selected and
statistically speaking, the end result is always the same.
However, the complexity of the trajectory still reaches its
maximum before equilibrium, showing the generality of
our set complexity approach.

Previously, set complexity has been quantified on the
attractor cycle, with critical networks showing the high-
est complexity in that case as well [4]. Our results agree
with these previous observations, but move the focus to
the transitional states before the attractors are reached. In
the case of biological systems, it can be argued that such
states are more significant in determining the response of
the system to external inputs and variations in the state due
to noise. In future work, such response should be studied
explicitly, using suitable Boolean network models. The
effects of different network characteristics on the com-
plexity of calculation in the transients can then be stud-
ied together with traditional measures of criticality, to see
how the network response is shaped.
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T. Mäki-Marttunen, J. Kesseli, and M. Nykter. Balance between noise and information flow
maximizes set complexity of network dynamics. PLoS ONE, 8(3): e56523, 2013.



Balance between Noise and Information Flow Maximizes
Set Complexity of Network Dynamics
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Abstract

Boolean networks have been used as a discrete model for several biological systems, including metabolic and genetic
regulatory networks. Due to their simplicity they offer a firm foundation for generic studies of physical systems. In this work
we show, using a measure of context-dependent information, set complexity, that prior to reaching an attractor, random
Boolean networks pass through a transient state characterized by high complexity. We justify this finding with a use of
another measure of complexity, namely, the statistical complexity. We show that the networks can be tuned to the regime
of maximal complexity by adding a suitable amount of noise to the deterministic Boolean dynamics. In fact, we show that
for networks with Poisson degree distributions, all networks ranging from subcritical to slightly supercritical can be tuned
with noise to reach maximal set complexity in their dynamics. For networks with a fixed number of inputs this is true for
near-to-critical networks. This increase in complexity is obtained at the expense of disruption in information flow. For a large
ensemble of networks showing maximal complexity, there exists a balance between noise and contracting dynamics in the
state space. In networks that are close to critical the intrinsic noise required for the tuning is smaller and thus also has the
smallest effect in terms of the information processing in the system. Our results suggest that the maximization of
complexity near to the state transition might be a more general phenomenon in physical systems, and that noise present in
a system may in fact be useful in retaining the system in a state with high information content.
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Introduction

Dynamical systems theory is being developed to understand

temporal behavior of complex systems. Groundlaying studies of

dynamical systems range from modeling of, e.g., genetic [1],

neuronal [2], and ecological [3] networks to structural analyses of

complex networks [4–6]. Results obtained for the function of a

dynamical network of a particular type are always subject to the

temporal behavior of the underlying dynamical units, which vary

substantially between objects of interest [7]. To this end, Boolean

network models have been used as a generic tool to study a wide

range of fundamental properties of dynamical systems. These

include features of attractor structure [8], information propagation

and processing [9–11], dynamical regimes [12], structure-function

relationship [13], and the ability to store information [14,15].

Although many of these aspects can be studied with a range of

other models (e.g., [16]) the strength of Boolean networks is that

they are based on simple building blocks that can give rise to

varied dynamics [17]. Random networks can be generated in such

a way that changing one or two parameters in how the networks

are generated makes the resulting network dynamics ordered,

critical, or chaotic [8]. Aspects of Boolean network dynamics have

been suggested as a model of biological network dynamics, such as

cell types determined in part by genetic regulatory networks [18],

and they have later proved efficient in, e.g., correctly reproducing

observed gene expression patterns [19].

A recent development in the field of information theory is the

normalized information distance [20], which can be applied to any

two objects stored on a computer (e.g., genome sequences,

networks, or state representations). This distance uniquely specifies

the informational difference between two objects and is defined in

terms of the Kolmogorov complexity. The Kolmogorov complex-

ity [21], K(x), of an object x is defined to be the length of a shortest

program to output x on a universal computer (i.e., on an all-

purpose machine). Intuitively, K(x) represents the minimal amount

of information required to generate x by any effective process and

can be thought of as the ultimately compressed form of x.

Although the normalized information distance, like the Kolmo-

gorov complexity itself, is not computable, it can nonetheless be

effectively approximated by using real-world data compressors.

Recently, a context-dependent measure of information, set

complexity, has been applied to quantify various aspects of network

topology and dynamics [22,23]. This measure assesses the

complexity of a set of strings in such a way that the approximate

Kolmogorov complexities of the strings are balanced by a function

of the pairwise normalized information distances within the set.

The motivation for this context-dependent measure of information

is that it should be able to quantify the total amount of non-

redundant information, rather than the overall complexity of the

data. This means that while a standard measure of information,

such as Kolmogorov complexity, is maximized for random data,
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the set complexity quantifies the trade-off between randomness

and identically repeated symbols.

The complexity of Boolean networks has hitherto been analyzed

using many approaches. These include, e.g., the computational

complexity of a Boolean network circuit [24,25], the entropy of the

basins of attractors [9], and the statistical complexity of the steady

state of a network or the complexity of single nodes averaged over

time [26]. However, the temporal complexity of the Boolean

network dynamics is still poorly understood. How does the

complexity of Boolean network dynamics vary in time? To what

extent does the complexity change when settling to an attractor? If

there are processes that allow transitions between attractors, how

do they affect the complexity? Is it by any means feasible to assess

the temporal complexity of Boolean networks? In our earlier study

[27] we shed light on some of the questions by applying the set

complexity measure to successive states of Boolean networks. We

found that the complexity of the dynamics was temporally

maximized near a transition to an attractor. This raised many

more questions, most important ones being whether this

phenomenon is real and whether the stage of maximal complexity

could be prolonged by introducing noise to the network. In the

present work we justify our findings using another complexity

measure, namely, the statistical complexity, which was originally

presented in [28] and refined in a series of papers by Shalizi

[29,30]. We also show that the high complexity can indeed be

retained just by tuning the system with a suitable amount of noise.

Noisy Boolean networks have been extensively studied with an

aspect to robustness and stability of the attractor states [31–33]. In

this work we employ the white noise model used in e.g. [31]. The

noise imposes a challenge for the information processing and

storage, and hence, we also consider the noise-induced disruption

in information flow in different networks with variable levels of

noise. We show that the networks near the critical regime can most

easily be added a noise component that elevates the steady-state

complexity value without making the dynamics too random.

Results

Complexity of noiseless Boolean network dynamics is
temporally maximized prior to an attractor

To attain the quantification of temporal complexity, we start by

reprising the study on dynamical complexity in [27], now in the

context of noiseless Poisson networks. Fig. 1 shows the complexity

of Poisson network dynamics as a function of time. Poisson

networks with different expected number of neighbors SKT obtain

statistically different dynamical complexities. As seen in [27] with

fixed-K networks, Fig. 1 shows that the critical (SKT~2) networks

possess a transient state where the set complexity of the dynamics is

maximized, and which is followed by a descent to an attractor level

value. The transient state is also observed in the slightly subcritical

(SKT~1:5) network, but not in the slightly supercritical

(SKT~2:5) network. The dynamical complexity in highly

subcritical (SKT~1) networks is quickly reduced to a steady low

value that represents attaining a short cycle attractor, whereas the

supercritical (SKT~2:5, 3) networks seldom reach an attractor by

the end of the simulation. Due to long transition period the

dynamics of slightly supercritical (SKT~2:5) networks seem to

exhibit higher steady-state complexity than critical networks

(Fig. 1). This is consistent with the finite size network results

reported by [11].

For reference, let us consider the extreme values for set

complexity empirically. The distribution of LZMA-estimated

values of C(x), where x is a random binary string of length

N~1000, is well approximated by a Gaussian distribution with

mean 224.14 and standard deviation 2.96 (data not shown) — the

maximum value we came across among all data of the present

work was 238. Thereby, Eq. 2 can be used to infer the maximal set

complexity value for networks of this size as Smax~59:5&60, as

the theoretical minimum is Smin~0. Fig. 1 shows that the range of

all possible set complexity values is fairly well covered by the

complexity values of RBN dynamics.

A moderate amount of noise elevates the complexity of
the network dynamics

To model the dynamical behavior under noisy conditions, we

study the effect of nonzero flip probability p. Fig. 2 shows

complexity trajectories of noisy networks with zero, moderate, and

high levels of noise. One can observe that for a moderate level of

noise the set complexity value does not fall to a low value that is

typical to a regime of noiseless ordered dynamics.

To explain this observation, we can analyze Eq. 2 to gain an

insight into how the differences in the set complexity values arise.

One can find three different causes for high values of set

complexity. Firstly, the average Kolmogorov complexity
1

N

X
k

C(xk) of the strings may be high, implying higher values

for set complexity. Secondly, the average value of the function of

NCDs (
1

N(N{1)

X
k

X
j=k

djk(1{djk)) may be high, likewise

increasing the set complexity. Greatest set complexities are

attained when the values of NCD (djk) are as close as possible to

0.5, which maximizes the inline function d(1{d). Third cause

would be a combinatory effect of these two such that, although the

mean values of both mentioned quantities were relatively small,

there may be a few strings xk with high Kolmogorov complexity

C(xk) that lie on average on a distance of 0.5 from most of the

other strings and hence raise the set complexity value. In Poisson

networks the Kolmogorov complexities C(xk) show little variation

across both time and network realizations as each string is,

ultimately, a random binary string with equal probabilities of 0

and 1. Therefore, the high values of set complexity must be due to

the values of NCD being close to 0.5. Fig. 3 shows the evolution of

the NCD distributions through time and explains the differences

observed between the set complexity curves of critical networks in

Fig. 2.

The temporal rise and descent of the complexity in Boolean

networks is not a property of the set complexity measure only. In

fact, we can observe similar behavior using a measure of statistical

complexity [30]. In this approach, the complexity is estimated as the

logarithm of the number of causal states of the system. The causal

states are unions of such past configurations that produce equal or

almost equal distribution of the future configurations. These

distributions have to be estimated from the data. The method is

not as such applicable to our network types, as even the fixed-K

networks have variation in the out-degree of the nodes. However,

the fixed-K networks can be modified with minimal changes to

produce fixed out-degree as well, and this allows the use of

statistical complexity measure, yet only in the case where past and

future are considered no more than one step away from the

present. Fig. 4 shows the statistical complexity time series for such

‘‘fixed-Kin-Kout’’ networks.

Let us next quantify the difference between the networks with

varying level of noise that can be observed in Fig. 2. We estimate

the average set complexity of the ‘‘steady state’’ of the network,

which we consider, in networks of this size, all but the first 100

time steps of the simulation. Fig. 5 shows the median of steady-

state set complexities in Poisson networks and fixed-K networks

with K~3. The set complexities are lowest in the regime of the

Balance between Noise and Information Flow
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Figure 1. Set complexity time series for random Poisson Boolean networks shows temporal maximum prior to reaching the
attractor in several networks with different mean number of inputs SSKTT. (A–B): Set complexity trajectories of single simulations of SKT~1
(A) and SKT~2 (B) networks. The first arrivals to the attractor are marked with stars. (C) The median set complexity of 100 simulation results for five
different SKTs. The stars above the curves show the median of the time instant of first arrival to the attractor.
doi:10.1371/journal.pone.0056523.g001

Figure 2. Noise can maintain the network in a high-complexity state. (A–B): Set complexity trajectories of single simulations of SKT~2

Poisson networks with moderate (p~2{8 , A) and high (p~1:25:2{5, B) levels of noise. (C): Medians of set complexity trajectories for noisy Poisson
networks with different degrees SKT and flip probabilities p. The complexity trajectory of the maximally noisy network that is identical for all SKT is
plotted in grey. 100 independent samples were used.
doi:10.1371/journal.pone.0056523.g002
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most ordered dynamics (low sensitivity s, low flip probability p).

Another stable set complexity value is found in the other extreme,

where the dynamics is either chaotic (large s) or random (p near to
1

2
), or both. Between these two extremes lies a region where the set

complexity is actually higher than either of these extremes. The

existence of this region is consistent for different system sizes

(validated with N~750 and N~2000, data not shown). A

corresponding plot of statistical complexity in fixed-Kin-Kout

networks can be found in supplementary data (Fig. S1).

We can observe that among fixed-K (K~3) networks the ones

near the critical network, which by Eqn. 1 is obtained by choosing

the bias as q~
1

2
{

ffiffiffiffiffi
1

12

r
&0:2113, produce the maximal steady-

state complexity. One can also observe that among Poisson

networks one always finds a suitable noise level to obtain a near-to-

maximal steady-state complexity (w55) as long as the sensitivity is

restricted (sv*1:1). Qualitatively the same result can be obtained

with asynchronous random Boolean networks, as Fig. 6 shows.

What is rather non-intuitive about Figs. 5 and 6 is the high

complexity of noisy low-SKT Poisson networks, where a large

proportion of the nodes receive zero inputs. The dynamics of these

nodes are purely an effect of the noise that occasionally pushes the

nodes from their constant output. The effect they have on the set

complexity values of the dynamics is twofold. Firstly, from the

temporal aspect these nodes lie somewhere between chaos and

order, as they most of the time have constant value but may

change their value temporarily. Secondly, although the surround-

ing nodes do not affect the dynamics of these nodes, these nodes

might still output to other nodes, and hence the noisy nature of

these nodes may contribute to the rest of the system. Clearly, we

would like to diminish the first-mentioned effect without removing

the latter aspect. Therefore, we repeat the set complexity

calculation of Fig. 5, but neglect the nodes that we know to

receive no input from the system. In other words, the dynamics of

the system remains untouched, but the complexity is calculated

only over those nodes that receive one or more inputs. Fig. 7 shows

the steady state set complexity values of such networks. One can

observe that the set complexity value for networks approaches zero

as SKT?0, which is due to the ever shortening strings xj — and

ever diminishing Kolmogorov complexity C(xj). What remains

unchanged from Fig. 5 is the high complexity of networks near to

criticality, where the critical and subcritical networks have to be

tuned with moderate level of noise in order to obtain the maximal

complexity and the slightly supercritical networks attain it with no

or little noise. One should note that in order to perform the

complexity analysis in this way we need external information on

the network structure, in the minimum the notion on which nodes

do not have any inputs. By contrast, when we assess the set

complexity of the dynamics using all available nodes, no

information on the structure of the network is required.

How great are these mentioned ‘‘moderate’’ levels of noise? In

critical SKT~2 Poisson networks the maximal steady-state set

complexity was attained with flip probability p~2{8, while in

subcritical SKT~1 and SKT~0 networks it is attained with

p~1:5:2{6 and p~1:25:2{5, respectively (Fig. 5). In the system

size N~1000 these levels of noise mean that in the subcritical

networks on average 39 (SKT~0) or 23 (SKT~1) nodes are

flipped every time step, and in the critical network on average 3.9

nodes. In the critical network also much smaller noise levels suffice

to attain 95% of the overall maximal steady-state complexity (the

least noise level for this is p~1:5:2{10, i.e., the states of 1.5 nodes

on average flipped every time step). The same cannot be said of

SKT~1 and SKT~0 networks, which attain the 95% of the

overall maximum set complexity at the noise levels of p~2{6 and

p~1:75:2{6, respectively.

The contribution of different levels of noise to the Boolean

network dynamics can also be characterized by their Derrida

curves (Eqn. 4). These are plotted for Poisson networks with

SKT[f0,1,2,3g in Fig. 8. For each network both noiseless and

noisy case are plotted, where the noise level is chosen as the one

that produces the maximal set complexity in Fig. 5. The critical

and chaotic (SKT~2,3) networks with noise are very similar to the

corresponding noiseless (SKT~2,3) networks in Derrida sense,

whereas the noisy subcritical networks (SKT~0,1) show greater

difference from the corresponding noiseless networks. The inset in

Fig. 8 shows the L1 difference between the noisy and noiseless

curve for each SKT. This value represents the average amount of

perturbation that is due to the noise, and can be considered the

perturbation-averaged disruption in information flow of the system. For

instance, the SKT~1 network with the noise level that produces

maximal complexity adds on average 3 percentage points to the

perturbation of the noiseless network, while the corresponding

values for SKT~2 and SKT~3 network are 0:3 and 0:05

Figure 3. The propagation of NCD distributions explains the
time course of the set complexity. The panels show the
distributions of NCD values on interval ½0,1� in noiseless (left),
moderately noisy (middle) and highly noisy (right) Poisson networks
with SKT~2. The time instant of observation grows downwards with
the figures plotted: The curve plotted for t~1 corresponds to the

distribution of off-diagonal elements of NCD matrix (djk)6
j,k~1 , while the

curve for t~2 corresponds to (djk)7
j,k~2 , and so forth. The distributions

are pooled across 100 network realizations and smoothened with a
Gaussian filter with standard deviation 0.02. The mean of the NCD
distribution in noiseless critical networks (left) passes 0.5 around time
instant t~10, as expected from the complexity peak at t~10 in Fig. 1.
The small peaks of noiseless networks in the regime of low NCD
correspond to point-attractors. In these attractors the state xk remains
constant, and since the Kolmogorov complexity of a dublicated string is
not much higher than that of the original (C(xx)&C(x)), the resulting
NCD values are very small. The mean of the NCD distribution in Poisson
networks with moderate noise (middle) approaches 0.5 as time passes,
accounting for the high set complexity values in the regime of large t in
Fig. 2. In highly noisy networks (right) the NCD distributions have only
values that are notably higher than 0.5 due to the excess of
randomness, and hence the low set complexity value for these
networks in Fig. 2.
doi:10.1371/journal.pone.0056523.g003
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Figure 4. Statistical complexity produces qualitatively similar temporal complexity as the set complexity. (A–B): Statistical complexity
trajectories of single simulations of noiseless (A) and noisy (B) critical networks. Both in- and out-degree of the nodes are fixed as K~3. (C): Mean
statistical complexity time series of subcritical (s~0:5), critical (s~1) and supercritical (s~1:5) networks over 50 repetitions. The noisy networks are
marked with dashed and the noiseless networks with solid line. The statistical complexity of the fully noisy (p~2{1) network is plotted with grey for
reference.
doi:10.1371/journal.pone.0056523.g004

Figure 5. Poisson networks can be set a noise level that maximizes the steady-state set complexity. The color of the plot shows the
steady-state set complexity of Boolean network dynamics for both Poisson networks (left) and fixed-K networks with K~3 (right) as functions of
sensitivity s and flip probability p. For each simulation, a median of set complexities is taken over time steps t~101,:::,400. Further averaged, the
color shows the median of 100 simulations, smoothened with bilinear interpolation. The lower panels show the maximum of the plane, taken over
the flip probability.
doi:10.1371/journal.pone.0056523.g005
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percentage points, respectively. This suggests that the chosen level

of noise for subcritical networks is too great for the network to

maintain the meaningful information in their dynamics.

Discussion

In this work we have shown that the steady-state complexity in

Boolean network models can be maximized by choosing the noise

level appropriately. In fixed-K networks with K~3 this is

plausible only for near-to-critical networks (Fig. 5, S1). For

Poisson networks this is possible for both sub-critical and near-to-

critical networks (Fig. 2, 5). However, the levels of noise that

maximize the set complexity in subcritical Poisson networks imply

large decrease in information flow compared to those near

criticality (Fig. 8). In addition, neglecting the nodes to which the

system does not contribute fades the high complexity of these

subcritical networks (Fig. 7). The results shown are qualitatively

robust to changes in system size N, and the main result is

confirmed with asynchronous Boolean networks (Fig. 6).

The complexity of dynamics is in this work primarily assessed

through a measure of context-dependent information, i.e., set

complexity [22], of successive states of the network. While a

measure of context-independent information (such as Kolmogorov

complexity) would increase with the unpredictability of the states,

that is with the flip probability, the context-dependent information

starts to decrease after reaching a certain level of noise (Fig. 5). We

have oserved a similar result for the saturation and descent of set

complexity in the context of a lattice gas system [27]. The shown

results suggest that maximization of the complexity at the edge of

chaos and order is robust to the choice of paradigm: One finds it

either by adding order into chaotical dynamics, as is the case when

a random Boolean network state approaches a short-cycle

attractor (Fig. 1), or by increasing randomness into a system with

ordered dynamics, as shown with the steady-state complexities of

noisy Boolean networks (Fig. 5).

The fact that the complexity measure is maximized at the edge

of chaos and order (and not in the totally unpredictable regime as

is the case with Kolmogorov complexity) is not characteristic of the

set-based complexity measure only, but is a design principle for

many other measures of complexity [34], [28], [35], [36]. The

common trend for complexity measures — stated even as a

requirement for complexity measure in [34] — is that they are

based on entropy or Shannon information, and are consequently

dependent on the underlying prior distribution of the strings whose

complexity is to be assessed. This prior knowledge is rarely at hand

in, for instance, applications of biology, as discussed in [22]. For

reference, we confirmed the main result with one such measure

applicable to time series data, namely, the statistical complexity

[30], where the state distributions are estimated from the data

(Fig. 4, S1). The presented method of estimating the statistical

complexity requires a fixed number of inputs and outputs for each

node, and hence it could not be applied to Poisson networks, nor

to fixed-K networks without modifications. In addition, the

structure of the network must be known in order to estimate the

statistical complexity. By contrast, the measure of set complexity is

very flexible and does not require any knowledge on the state

distributions nor the network structure. On the other hand, the set

complexity is based on the Kolmogorov complexity, which has

shown to be uncomputable in general. To this end, the use of

general data compression algorithms for aprroximation of

Kolmogorov complexity has proven to be a powerful tool. As an

example, phylogenetic trees and language family trees have been

successfully reconstructed in [37] and [20] using methods that

Figure 6. Asynchronous Poisson RBNs show qualitatively the
same set complexity statistics as the synchronous ones. The
color of the plot shows steady-state set complexities of asynchronous
Boolean network dynamics for Poisson networks as functions of
sensitivity s and flip probability p. The synchronous state update
described in the Methods section is replaced by N successive single-
node state updates. The node to update is picked by random every
time instant, and thereby after the N state updates some nodes have
most probably been updated several times and some nodes none. The
set complexities are calculated for states at the modulus-N time steps
fNt,N(tz1), . . . ,N(tzT{1)g. Similarly to the Fig. 5, a median of set
complexities is taken over time steps t~101,:::,400, and the color of the
plot shows the median of 40 simulations, smoothened with bilinear
interpolation. The lower panels show the maximum of the plane, taken
over the flip probability. A slight difference to Fig. 5 is that in
asynchronous networks the high-complexity regime extends more to
the chaotic (sw1) regime. This is in agreement with [46], where
networks with random asynchronous updating schemes were observed
to reside more often in an attractor than their synchronous
counterparts, suggesting that their dynamics be on average more
redundant.
doi:10.1371/journal.pone.0056523.g006

Figure 7. The subcritical Poisson networks lose their high
steady-state complexity when nodes with zero inputs are
neglected. In this figure, the set complexity is calculated similarly to
the Poisson network steady-state complexity in 5, but only states of
those nodes that receive at least one input from the system are
included in the strings xj .
doi:10.1371/journal.pone.0056523.g007
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approximate Kolmogorov complexity with data compressors. In

[20], the reconstruction is based on NCD estimated using several

different data compressors, as the authors of [37] utilize only

Lempel-Ziv algorithm for estimating the Kolmogorov complexity

but several similarity metrics closely related to NCD. Built upon

NCD, there is a great promise also in the set complexity measure.

Although it was originally proposed as a heuristic measure, the set

complexity has since then been shown to possess optimal

properties in, e.g., assessing the structure of complete bipartite

graphs [38].

The states with maximal complexity are of interest for several

reasons. As discussed in [22] with aspect to biological systems, a

high value of set complexity reflects large amount of meaningful

information. In our earlier work [27] and in Fig. 1 we have shown

that the temporal context-dependent information content in

noiseless systems is maximized prior to reaching the attractor.

This could mean that the system, if interpreted as a ‘‘decision

maker’’ of on which attractor to fall, performs the crucial decision

during this stage and not earlier when the dynamics are of low

information content due to the lack of context, nor later when the

dynamics are redundant. The interesting result reported in the

present paper is the effect of moderate level of noise on the

elevated steady-state complexity of the system. This suggests that a

moderate level of noise be helpful in retaining the system in an

agile state, i.e., ready to act in a meaningful way to different cues.

Our finding that asynchronous and synchronous random

Boolean networks have very similar steady-state complexity

behavior (Fig. 5 and Fig. 6) is a rather surprising result. Earlier

theoretical and computational analyses show grave differences

between these two model classes in, e.g., number of attractors [39]

and Derrida curves [40]. However, both of these aspects may

suffer from comparing the uncomparable. For instance, in

synchronous RBNs attractors can be either point or cyclic

attractors, as in asynchronous RBNs they are either point or loose

attractors. As for the Derrida-based analysis, the ways to define the

Derrida curve for asynchronous Boolean networks are many. The

authors of [40] choose to compare the two runs after one

synchronous update of a number m of nodes (m picked from a

uniform distribution from 1 to N), while it might be more relevant

to make the comparison after N updates of single node. By

contrast, our analysis, which is based on the amount of

redundancy in the steady-state dynamics, does not require a

definition of any intermediate parameter of the dynamics, but is

straightforwardly applicable to any discrete-time discrete-state

system. Ultimately, assessing the set complexity of the steady-state

dynamics could form a novel, intricate way of characterizing

complex networks.

In addition to models of Boolean networks, above analysis is

highly relevant also for understanding more complex dynamical

systems. Living cells for example, need to maintain their

homeostatic state under noisy environment. Early studies with

Boolean networks have addressed the question of homeostasis by

studying the effect of small perturbations [41]. We have shown

how the Boolean network model parameters together with noise

control information flow in the system. Our analysis in Fig. 8

shows that if too much noise is added to gain higher complexity,

the system can no longer maintain its dynamical function. This is a

hallmark event of the loss of homeostasis. The presented

framework could serve as a general basis for estimating the noise

levels that a given system can tolerate and still maintain its

dynamical function, or a homeostatic state.

Figure 8. Subcritical networks with maximal steady-state set complexity suffer from disruption in information flow. The figure shows
the Derrida curves of different networks according to Eq. 4. The networks are Poisson networks with SKT = 0,1,2,3, where for each network the noise
level is chosen such that the steady-state set complexity is maximized (dashed lines), and the corresponding noiseless networks (solid lines). The
noiseless SKT~0 network is not plotted, as it has the property that Vrt : rtz1~0. The thin grey line shows the diagonal rtz1~rt , which would

correspond to the state-preserving network xtz1~xt. Inset: The L1 norm between the noisy and the corresponding noiseless networks.
doi:10.1371/journal.pone.0056523.g008
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We have studied information flow in systems without external

stimuli, but an important and much more challenging question is

the homeostasis in systems that receive and transfer information.

This could correspond to the case where a system is not only

retaining current state information under noise but is also trying to

adapt and respond to systematic changes in the surroundings. In

doing this, the task is to filter useful information from the external

signals, which also include noise. A key question for future studies

is to analyze the connection between external and internal

information and noise in the system. The real signicance of

maximal complexity states could be in having suitable versatility to

perform the filtering task efficiently, and tuning the system by

noise may help in such filtering tasks as well.

Materials and Methods

Boolean networks
A synchronous Boolean network is defined as a collection of nodes

fV1, . . . ,VNg where at each time step t each node is assigned a

Boolean value xi(t), i.e.

Vt[N Vi[f1, . . . ,Ng : xi(t)[f0,1g:

Here, xi(t) is the state of the node Vi at time instant t. Each node

receives input from Ki[f0, . . . ,Ng nodes and the state of the node

at time instant tz1 is a Boolean function of the states of its input

nodes at time instant t:

xi(tz1)~fi(xIi1
(t), . . . ,xIiKi

(t)),

where Iij (j[f1, . . . ,Kig) are the indices of the input nodes of node

i.

In this work we use two types of synchronous random Boolean

networks. The first class of networks is such that the number of

inputs to a node is picked from a Poisson distribution and the input

nodes are picked by random, creating a Poisson distribution for

the outputs of the nodes as well. The update functions fi are also

picked by random, i.e., each combination of inputs is assigned an

output value 0 or 1 with equal probabilities q~ 1
2
. We refer to these

networks as Poisson networks. In the other class of networks the

number of input nodes is fixed. In this class functionally different

networks are obtained by changing the probability q (also called

the bias of the network) of Boolean function output being 0. We

call this class of networks fixed-K networks. The dynamics in both

Poisson and fixed-K networks can be characterized by sensitivity s,

which is calculated [42] as

s~2SKTq(1{q): ð1Þ

Networks with s~1 are considered critical, as lower and higher

sensitivity values correspond to subcritical and supercritical

dynamics, respectively [13]. Both types of networks can be

assigned a level of noise through a nonzero flip probability p: At

each time step for each node, there is a probability of p of getting

the opposite state than the one dictated by the deterministic

dynamics.

We consider networks of size N~1000 with variable levels of

noise. The complexity of network dynamics at time t is estimated

using the set complexity over T successive states: X (t), X (tz1),
…, X (tzT{1). The value of T used in the calculation

determines the time resolution obtained, and has to be selected

to correspond with the transient lengths observed. The results are

consistent for T ranging from 2 to 10 — in this work, we present

results for T~6. The complexity of dynamics is assigned for time

instants t~1, . . . ,400. The initial state of the network is picked by

random from a uniform distribution over the state space.

NCD and set complexity
We study the complexity of Boolean network dynamics

following the framework we presented in [27]. The dynamics of

a Boolean network is represented by a set of its successive states

that are read into strings. To the obtained set of strings one applies

the set complexity measure [22], defined as:

S(fx1,:::,xNg)~
X

j

C(xj)
1

N(N{1)

X
j=k

djk(1{djk): ð2Þ

The function C(xj) denotes the approximation of Kolmogorov

complexity of string xj . The variable djk represents the normalized

compression distance (NCD), a computable approximation of the

normalized information distance [20] of strings xj and xk, defined

as

djk~NCD(xj ,xk)~
C(xjxk){min(C(xj),C(xk))

max(C(xj),C(xk))
,

where xjxk is the concatenation of strings xj and xk. C(:) is

calculated using LZMA compression.

For the basic properties of the set complexity measure we refer

to [22], which shows, e.g., the effect of increasing level of noise on

the resulting set complexity value of identical strings. In this work,

we use the set complexity exclusively for time series data. We

therefore illustrate the behavior of the set complexity in the case of

random, periodic and quasiperiodic dynamics in the supplemen-

tary data of this paper (Fig. S2). These three types of dynamics are

relevant in our study, as the Boolean network dynamics is periodic

in the noiseless case (p~0) and random in the case of maximal noise

(p~ 1
2
). The dynamics in the case of moderate noise levels could be

viewed as quasiperiodic. In the example of Fig. S2, the periodic

dynamics produces the least set complexity values, while the

complexity of the quasiperiodic dynamics is on average higher

than either the periodic or random dynamics.

Generally, the framework of NCD allows the use of any lossless

data compression method for the estimation of Kolmogorov

complexity. However, in order to obtain reliable results the most

efficient — in terms of compression ratio — should be used when

possible. We have reviewed the use of different compressors for

estimating Kolmogorov complexity in our earlier work [16,43]. In

[43] the LZMA algorithm was found most efficient in compressing

long repeated strings. In [43] an adaptive packing algorithm called

prediction by partial matching (PPM) [44] was found in some

aspects superior to LZMA. However, PPM produced in many

cases NCD values larger than 1, which is not allowed when

computing the set complexity. We have not encountered such

problems with the use of LZMA algorithm. The LZMA software

used in this study is LZMA SDK 4.65.

Statistical complexity
The statistical complexity [29,30] is defined as the amount of

information in the statistic that is minimal and sufficient for

predicting the future of the process. This is done locally through

parametrization of the past states of the nodes that could affect the

state at hand, and similarly, the future states that the node at hand

could affect. These past states are referred to as the past light cone

and the future states as the future light cone — the past light cone

Balance between Noise and Information Flow
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includes the state of the considered node at the present time step

[29]. The objects of interest are the conditional distributions

p(LzDL{), where Lz and L{ are the future and past light cones,

respectively. Whenever two past light cones produce the same

distribution of future light cones, these past light cones are

considered to belong to the same causal state. The statistical

complexity of the process at time t is calculated as the logarithm of

the number of causal states at that moment.

We follow the example given in [30]: We consider only one step

into the past and into the future and estimate the number of causal

states. To do this, we repeat each network simulation 50 times

from random initial state in order to estimate the conditional

distributions p(LzDL{) at each time step and apply Pearson’s x2-

test with p-value 0.05 to obtain the causal states from them. Both

in- and out-degree of the nodes are fixed to K in order to make the

comparison of distributions possible. Our method is, however,

different in one aspect. We quantify the states relative to the past

state. That is, we consider the state of node Vi as

~xxi(t)~xi(t)+xi(t{1) instead of the absolute state xi(t), where

+ represents the exclusive or (XOR). This choice is due to the

random choice of the Boolean functions: As we consider only one

step ahead, we can only expect the absolute future states to be

distributed as repeated Bernoulli distribution

p(x1, . . . ,xK )~q
P

x(1{q)K{
P

x, while the distribution of the

relative states successfully captures the dynamics of the system.

Derrida curves for Poisson networks
Derrida analysis [42] is a widely-used method for studying the

dynamical behavior of discrete systems. The Derrida curve shows

the average difference between the states of two identical networks

at time instant tz1 given their difference at time instant t. To

compute this curve we consider a noisy Poisson Boolean network,

initially at state x(0), and a perturbed run of the same network,

initially at state x0(0). The state update can be decomposed to two

discrete stages. The first stage (10) is the deterministic update

x̂x(tz1)~f(x(t)), and the second stage (20) is the possible bit flip,

defined as

P xi(tz1)~x̂xi(tz1)ð Þ~1{p:

The possible bit flips in the two runs occur independently of each

other. Let us denote the fraction of nodes whose states are different

in the two runs by r̂rtz1 (after 10) and rtz1 (after 20).

For simplicity, we consider networks in the limit of the system

size N??. The number of inputs to a node in the network is

distributed as Poisson: p(k)~
Lk

k!
e{L, k~0,1, . . ., where SKT is

represented by L for the sake of clarity. By the randomness in the

choice of function f, the probability of a node in the perturbed run

having a different value from the one in the reference run after 10

is

r̂rtz1~
1

2

X?
k~0

Lk

k!
e{L 1{ 1{rtð Þk

� �
: ð3Þ

In the stage 20 there is a probability of (1{p)2zp2 that the states

of the two runs stay the same with respect to one another, and a

probability of 2p(1{p) that exactly one of the two bits is inverted.

Hence we have

rtz1~r̂rtz1| (1{p)2zp2
� �

z(1{r̂rtz1)|2p(1{p),

which with Eq. (3) and a bit of algebra gives

rtz1~
1

2
{

1

2
(2p{1)2e{Lrt : ð4Þ

Note that we applied the assumption of independence of the state

x and the random function f in the derivation of Eq. (3). This

assumption is fully valid only during the first state update

x(0).x̂x(1).x(1). However, Derrida and Weisbuch [45] among

others have shown that this annealed approximation predicts many

aspects of network dynamical behavior to a fine degree.

Supporting Information

Figure S1 Networks near to critical can be tuned to
maximal statistical complexity. The color of the plot shows

the steady-state statistical complexity of fixed-Kin-Kout networks as

function of sensitivity s and flip probability p. See Fig. 4 for

reference. The result shown is the median of 65 network

repetitions, smoothened with bilinear interpolation. The lower

panel shows the maximum of the steady-state statistical complexity

over the flip probability p.

(EPS)

Figure S2 Set complexity time series for random,
periodic and quasiperiodpic dynamics. The upper panels

show the control signals, which are functions N?½0,1� that have

either random (left), periodic (middle) or quasiperiodic (right)

behavior. The periodic signal is chosen as
1

2
z

1

2
sin t:

ffiffiffi
p10
p :2p=10

� �
,

where t[N. The factor
ffiffiffi
p10
p

is added to ensure that the control

signal does not receive an exactly same value at distinct time points

in finite time. The quasiperiodic signal is chosen as an

interpolation of two periodic signals as
1

2
z

1

4
sin t:2p=10ð Þzsin(t:

ffiffiffi
p
p :2p=10

� �
. In each of the three cases

a set of N~1000 nodes are created, and each node is given a

random threshold between 0 and 1. When the control signal is

above the threshold, the node output is 1, and 0 otherwise. The

middle row panels show the dynamics of the nodes, black

representing 1 s and white 0 s. In the lower panels the curves

show the average values (100 repetitions) of the set complexity

trajectories of these systems. The set complexity is calculated using

20 successive time steps. The values of set complexity are lowest

for the periodic system, and second lowest for the random data,

while the quasiperiodic system produces the highest average set

complexity.

(EPS)
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Figure S1. Networks near to critical can be tuned to maximal statistical complexity. The
color of the plot shows the steady-state statistical complexity of fixed-Kin-Kout networks as function of
sensitivity s and flip probability p. See Fig. 4 for reference. The result shown is the median of 65
network repetitions, smoothened with bilinear interpolation. The lower panel shows the maximum of
the steady-state statistical complexity over the flip probability p.
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Figure S2. Set complexity time series for random, periodic and quasiperiodic dynamics.
The upper panels show the control signals, which are functions N→ [0, 1] that have either random
(left), periodic (middle) or quasiperiodic (right) behavior. The periodic signal is chosen as
1
2 + 1

2 sin(t · 10
√
π · 2π/10), where t ∈ N. The factor 10

√
π is added to ensure that the control signal does

not receive an exactly same value at distinct time points in finite time. The quasiperiodic signal is
chosen as an interpolation of two periodic signals as 1

2 + 1
4 (sin(t · 2π/10) + sin(t ·

√
π · 2π/10)). In each

of the three cases a set of N = 1000 nodes are created, and each node is given a random threshold
between 0 and 1. When the control signal is above the threshold, the node output is 1, and 0 otherwise.
The middle row panels show the dynamics of the nodes, black representing 1s and white 0s. In the
lower panels the curves show the average values (100 repetitions) of the set complexity trajectories of
these systems. The set complexity is calculated using 20 successive time steps. The values of set
complexity are lowest for the periodic system, and second lowest for the random data, while the
quasiperiodic system produces the highest average set complexity.
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Abstract

The question of how the structure of a neuronal network affects its functionality has gained a lot of attention in
neuroscience. However, the vast majority of the studies on structure-dynamics relationships consider few types of network
structures and assess limited numbers of structural measures. In this in silico study, we employ a wide diversity of network
topologies and search among many possibilities the aspects of structure that have the greatest effect on the network
excitability. The network activity is simulated using two point-neuron models, where the neurons are activated by noisy
fluctuation of the membrane potential and their connections are described by chemical synapse models, and statistics on
the number and quality of the emergent network bursts are collected for each network type. We apply a prediction
framework to the obtained data in order to find out the most relevant aspects of network structure. In this framework,
predictors that use different sets of graph-theoretic measures are trained to estimate the activity properties, such as burst
count or burst length, of the networks. The performances of these predictors are compared with each other. We show that
the best performance in prediction of activity properties for networks with sharp in-degree distribution is obtained when
the prediction is based on clustering coefficient. By contrast, for networks with broad in-degree distribution, the maximum
eigenvalue of the connectivity graph gives the most accurate prediction. The results shown for small (N~100) networks
hold with few exceptions when different neuron models, different choices of neuron population and different average
degrees are applied. We confirm our conclusions using larger (N~900) networks as well. Our findings reveal the relevance
of different aspects of network structure from the viewpoint of network excitability, and our integrative method could serve
as a general framework for structure-dynamics studies in biosciences.
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Introduction

There is a great interest towards understanding the structure of

neuronal networks, and ultimately, the full connectome [1,2]. The

network structure lays a foundation to all collective activity

observed in the system, and understanding this relationship is

relevant both in vivo and in vitro. Promising experimental attempts

have been made in controlling the growth of neurons to produce a

pre-designed network structure [3,4]. If successful, such experi-

ments would inform us on how the collective dynamics of the

neurons is influenced by their patterns of synaptic connectivity.

However, such information is extremely challenging to obtain

using the state-of-the-art equipment due to the complexity of

processes involved in neuronal growth. Furthermore, the connec-

tivity patterns obtained using experimental setups are always

subject to physical constraints posed by the growing platform of

the neurons. For all this, most of the nowadays studies on

structure-function relationship in neuronal networks are likely to

be conducted in silico, where the connectivity can easily be

modified and the effect on the network dynamics instantaneously

screened.

In the past few decades a lot of theoretical and computational

studies on the function of neuronal networks have been carried out

in order to examine the behavior of the network under various

circumstances and various stimuli. However, in most studies the

structure of the network is at least in part based on purely random

networks, i.e., the far and widely studied Erdös-Rényi networks.

These networks are statistically described by a single parameter,

namely, the connection probability p, and by far lack any spatial

organization. Several studies have revealed the contribution of

connection probability to various aspects of neuronal network

dynamics, e.g., emergence of large-scale network synchronization

[5,6] the amplitude of fast network oscillations [7], and emergence

of spontaneous network-wide bursts [8].

Despite their vast usage, the random networks have been found

an insufficient model for the synaptic connectivity in the brain [9–

12]. Recently, steps toward deeper understanding of the details of

the structure and their effects on the dynamics have been made,

which is shown by the devotion of a recent special issue in

Frontiers in Computational Neuroscience particularly to this topic

[13]. The framework of small-world networks [14] which allows

varying the proportion q of long-range connections in addition to

the connection probability p has hitherto been the most studied

alternative to Erdös-Rényi networks in models of neuronal

networks. Analyses on the effects of the long-range connections

on, e.g., oscillation coherency [15], modes of synchrony in models
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of epilepsy [16,17], and self-sustained activity [18] have been

carried out. However, a range of other extensions to random

networks exists as well. The scale-free [19] networks possess a

structure that is hierarchical over different scales, and are

characterized by power-law distributed degrees. These networks

have been applied in a range of neuronal modeling studies due to

their resemblance to the hierarchical connectivity of the brain

[20]. Nevertheless, the preferential attachment algorithm in [19]

(and in most generalizations for directed graphs, e.g. [21]) for

generating scale-free topology only uses the first order connectivity

statistics, i.e., the number of contacts of the nodes, as the criteria

for creating a link. In [22] the effect of second-order connectivity

statistics, which can roughly be captured by the widths and

correlation of the degree distributions, were studied. Similarly,

[23] studied the effect of degree distribution widths through a

framework where both degree distributions can be arbitrarily

predefined, and the networks are created through random

couplings. Both [22] and [23] agree on the significance of the

in-degree over the out-degree in influencing the mode of

synchrony in the network.

A frequent trend in structure-dynamics studies is to overlook the

coeffect of structural measures. The changes in activity are

monitored with respect to one graph measure, ignoring the

possible mutual changes in other structural measures [24]. In this

work we approach this problem by measuring a set of graph

properties simultaneously. In addition, we apply multiple network

generation algorithms in order to avoid too great correlation

between some particular graph measures. As an example, studying

only such networks that are described in [14] would bring about a

large correlation between geodesic path length and clustering

coefficient, which would make it difficult to tell which properties of

dynamics are due to the high path length and which are due to the

clustering.

The focus of this work is on excitability of spontaneously

bursting networks, i.e., on how frequently network bursts occur

and of what magnitude they are. Note that we adopt the term burst

from literature on neuronal networks cultured on a micro-

electrode array, where the term is widely used for a short period

of high spiking activity (alternative names are many, e.g., network

spike, population spike, and synchronized spike) [25,26]. By contrast,

when we refer to a burst of a single neuron, we use the term intrinsic

burst or single-cell burst to make a clear distinction. We apply two

point-neuron models, one of which is based on the integrate-and-

fire formalism and the other on the Hodgkin-Huxley formalism. In

both models, the neurons are connected by chemical synapses

expressing short-term plasticity. The synaptic currents (or

conductances in the Hodgkin-Huxley type of model) are instan-

taneous and decay exponentially after a presynaptic action

potential. In the case of strong enough recurrent excitation, both

models produce network bursts. Our focus is on the regime of

spontaneous bursting activity, where the bursting frequency lies

between 0 and 60 bursts/min. This is a typical range of bursting

in, e.g., cortical cultures [25].

In the present study, we apply a prediction framework to

determine the importance of different graph-theoretic measures.

Simulations of network activity are run on a large set of different

network structures, and measures of both structure and activity are

calculated. For each measure of structure we estimate its capability

to predict the outcome of the activity properties, and to an extent,

its capability to copredict the activity when used together with the

other graph measures. We show that the prediction of activity

properties in networks with sharp in-degree distribution (binomial)

is best when clustering coefficient is used, whereas in networks with

broad in-degree distribution (power-law) the predictions based on

maximum eigenvalue of the connectivity matrix are the most

accurate. Our results could serve as a general guideline for

designing experiments in which several but not all aspects of

structure are measured. With novel experimental techniques and

tools for data analysis [12,27], graph-theoretic measures of the

local connectivity could be estimated without unraveling the whole

connectivity matrix, and our results may help to choose those

measured aspects.

Materials and Methods

We restrict our study on networks in which the structure can be

fully represented by a directed unweighted graph. We use the

notation G~(V ,E), where G is the graph, V~fv1, . . . ,vNg is the

set of nodes, and E~f(x,y)Dx[V ,y[Vg is the set of egdes between

the nodes. The connectivity matrix M[f0,1gN|N
of a graph V is

a binary matrix, where each element Mij denotes the existence (1)

or nonexistence (0) of an edge from node vi to node vj . Self-

connections are excluded in this work. We call neighbors such pair

of nodes, that have at least a unidirected edge between them.

When no risk of confusion, we use the terms ‘‘node vi’’ and ‘‘node

i’’ interchangeably.

Network structure
We assess network structure using the following graph-theoretic

measures.

N Clustering coefficient (CC). The local clustering coefficient CCi of

a node vi describes the density of local connections in the

neighborhood of node vi. We say that the nodes vi , vj and vk

form a triangle if there is at least a unidirected edge between vi

and vj , between vi and vk, and between vj and vk. The local

clustering coefficient of node vi is the number of triangles that

include the node divided by the maximum number of such

triangles if all neighbors of the node were connected [14,28].

The directions of the edges are respected, hence changing a

unidirected edge to a bidirectional edge doubles the counted

triangles that include the considered edge. In mathematical

terms, we can write

CCi~
1

8
ni

2

� � XN

j~1

j=i

Xj{1

k~1

k=i

(MijzMji)(MikzMki)(MjkzMkj),

where ni is the number of neighbors of node vi. The clustering

coefficient CC of the whole network is calculated as the average

over the local clustering coefficients of the nodes – only those

nodes are taken into account that have more than one neighbor.

N Harmonic path length (PL). A geodesic path from a node to

another means the shortest traversable path between the two

nodes. To calculate the harmonic path length, the geodesic

path length PLij between each pair of nodes (vi,vj), i=j is first

calculated, where PLij~? represents the case where no path

exists from vi to vj . The harmonic path length of the network

represents the average distance between two nodes of the

network, and is computed as the harmonic mean of the

geodesic path lengths [28,29]:
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PL~
1

N(N{1)

XN

i

XN

j~1

j=i

1

PLij

0
BBBBB@

1
CCCCCA

{1

:

N Node-betweenness (NB). The local node-betweenness NBi is a

measure of centrality of the node vi. It is calculated as the

number of shortest paths that the considered node lies on [28].

If the node lies on a number s
(i)
jk out of s

(tot)
jk equally long

geodesic paths between nodes vj and vk, then the increment of

this pair of nodes is the fraction of the two quantities. Thus, we

can write NBi~
XN

j~1
j=i

XN

k~1
i=k=j

PLjkv?

s
(i)
jk

s
(tot)
jk

. The node-between-

ness NB of the network is the average of the local

betweennesses NBi.

N Out-degree deviation (OD). The sample standard deviation of the

realized out-degrees of the nodes.

N Degree correlation (DC). The sample correlation coefficient

between the realized in- and out-degrees of the nodes.

N Length-to-self (LtS). The mean geodesic length to self
1

N

XN

i~1
PLii.

N Maximum eigenvalue (MEig). The largest eigenvalue of the

connectivity matrix M. This is always real-valued as the

connectivity matrix is non-negative [30].

N Motif count (MotN, N~1,:::,13). The (absolute) number of

different connectivity patterns of triples of nodes [31] (see

Fig. 1).

Ideally, to study how measures of structure are linked to

measures of dynamics, one would have a direct (possibly

stochastic) function from the measures of structure to measures

of dynamics. However, to obtain the measures of dynamics or

their distributions, a network activity model has to be applied

using a certain connectivity graph. Hence, this sort of mapping is

not possible unless the measures of structure uniquely determine

the underlying graph. To go around this problem, we generate

networks with very different structural properties and simulate the

neuronal activity in them. We concentrate on a few carefully

selected random graph classes that we consider to span wide

enough diversity of network types relevant in neuroscience: Watts-

Strogatz-type networks (WS), networks with high local feed-

forward structure (FF), and networks with high number of loops of

certain length (L2,L3,L4,L6).

Let us motivate the choice of these classes. WS networks were

first introduced in [14] as a class of networks expressing the small-

world phenomenon, and have been extensively used ever since. In

neuroscientific studies the WS networks between ordered and

random topologies have been proposed as a model for, e.g.,

optimal signal propagation [15], maximal dynamical complexity

[32], and optimal pattern restoration [33]. As for the FF networks,

the feed-forward loop is a triple of nodes, vi, vj and vk, where there

is a direct connection from vi to vk, and a ‘‘secured’’ disynaptic

connection from vi through vj to vk. The feed-forward loops have

been found more abundant in C. Elegans neuronal network than in

random networks [31], and their contribution to neural processing

has been much studied [34,35]. We include these networks in the

present study as an alternative to WS networks that should show a

great number of feed-forward loops and yet lack the spatial

structure typical to WS networks. Finally, the loopy networks (L2,

L3, L4 and L6) represent a network structure, where the

connections are organized such that the feed-back loops of certain

length and direction are promoted. The synaptic feed-back

projections in general have been suggested as a mechanism for

working memory [36,37]. Several papers discuss the existence of

directed loops in the brain: [38] and [39] show that such loops

could be produced by rules of spike-timing-dependent plasticity

(STDP) in order to promote stability in the network, contradicting

with the no-strong-loops hypothesis [40]. The reason to include

loopy networks in this study is to address the question whether and

to what extent such loops contribute to the dynamics in recurrent

neuronal networks.

One of the statistically most dominant properties of recurrent

neuronal networks is the connection probability of the neurons.

Increasing or decreasing the connection probability has usually

major effects on the neuronal activity, which has been discussed in

several computational studies, including [7], [41] and [8]. In

addition to this, not only the average number but also the variance

in number of inputs to the neurons plays a significant role in the

synchronization properties of the network [22,23]. Regarding

these facts, we keep the in-degree distributions strictly constrained

while studying the other aspects in the network structure. To do

this we propose to use the following random graph algorithms in

which the in-degree distribution fID can be explicitly set.

Watts-Strogatz [14] algorithm for bidirectional

graphs. Initially, the nodes are placed in a metric space of

choice. The number of inputs is drawn from fID for each node,

and that number of spatially nearest nodes are chosen as inputs.

Finally, all existing edges are rewired with probability q such

that the postsynaptic node is held fixed but the presynaptic node

is picked by random. We call these networks WS1 and WS2

networks, where the number 1 or 2 tells the dimensionality of

the manifold where the nodes lie. In WS1 networks the nodes

are placed on the perimeter of a ring, while in WS2 networks

the nodes are placed on the surface of a torus. To be more

specific, in the ring topology the nodes are placed into a ring in

2D plane as (x,y)~( sin c, cos c), where c[f2p

N
,
4p

N
,:::,2pg.

Similarly, in the torus topology the 2D grid is nested into

4D space as (x,y,z,w)~( sin c1, cos c1, sin c2, cos c2), where

c1,c2[f
2pffiffiffiffiffi

N
p ,

4pffiffiffiffiffi
N
p ,:::,2pg, given that

ffiffiffiffiffi
N
p

is an integer. In both

1 2 3 4 5 6 7

8 9 10 11 12 13

Figure 1. The 13 network motifs of three connected nodes. See [31] for reference.
doi:10.1371/journal.pone.0069373.g001
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topologies the Euclidean distance is used as the metric. We refer

to the limit topologies of Watts-Strogatz networks with zero

rewiring (q~0) as locally connected networks (LCN1 and LCN2).

Scheme for generating graphs with high local feed-

forward occurrence. For each node the number of inputs is

drawn from fID. The inputs are selected sequentially for each

node. For the first node, the inputs are selected by random. For the

next ones, the inputs are selected in such a way, that the

emergence of feed-forward motifs is pronounced. This is done by

giving higher weights to the nodes that project disynaptically to the

considered node than to the others. A detailed scheme for

generating these networks is given in Algorithm S1 in File S1. We

refer to these networks by acronym FF. Note that this is not to be

mistaken for the general term feed-forward networks in the meaning of

opposite for recurrent networks. In this work all considered

networks are recurrent.

Scheme for generating graphs with high occurrence of

loops of length L. For each node the number of inputs is drawn

from fID. The edges are set one by one until each node has all its

inputs selected. In the selection of presynaptic nodes, the

emergence of loops of length L is promoted, while the addition

of edges that shorten these loops is discredited. This is done by

giving different weights to the nodes depending on the shortest

path from the considered node to the candidate nodes. See

Algorithm S2 in File S1 for the detailed algorithm. The resulting

networks are rich in recurrent synfire chains of length L. This is

however conditional to the choice of the in-degree distribution: If

the number of connections is too great, the excessive edges have to

create ‘‘shortcuts’’ into the loops. In this work we refer to these

networks with acronym L2, L3, L4 or L6, depending on the

promoted length of loops.

MATLAB functions to generate these networks are given in

ModelDB entry 147117. Each of these algorithms can be used to

generate both networks where the definitive property of the

respective network is very pronounced, networks where the

strength of that property is zero (random networks), and networks

that lie in between these extremes on a continuous scale. We

denote this strength parameter by W[½0,?�. In Watts-Strogatz

networks, we draw the relation between the rewiring probability q

and the strength parameter as q~ exp ({W=2). Hence, in all

network classes W~0 produces strictly random networks (RN)

and W~? produces the other extreme of networks.

In addition to these networks, we consider biologically realistic

2-dimensional neuronal networks. To generate these, we use the

NETMORPH simulator [42] with the model parameters taken

from [43]. NETMORPH simulates the growth of dendrites and

axons in a population of neurons and outputs the sites of potential

synapses. The potential synapses are formed when an axon and a

dendrite of distinct neurons come close enough to each other. To

remove the effect of boundaries, we place the somas randomly

inside a square-shaped box, and the neurites that grow outside the

box are considered to appear on the opposite side of the box. For

each simulation, we form the connectivity graph from the

simulation result once the required amount of connections has

been reached. We omit the question of to which degree the

potential synapses become functional synapses and consider every

potential synapse as an edge. Multiple synapses with the same pre-

and postsynaptic neurons are considered as one edge. The in-

degree distribution of these NETMORPH networks cannot be

explicitly set, but it is fairly well approximated by binomial

distributions (see Fig. S1 in supporting information). In the

forthcoming sections, we abbreviate the networks obtained with

the NETMORPH simulators as NM.

The different network classes are illustrated in Fig. 2. In

addition, iterations for the generation of extreme FF and L4

networks are shown. Furthermore, a set of graph measures in

extreme FF, L2, L3, L4 and L6 networks are shown. These

statistics, compared to the corresponding statistics in random and

locally connected networks, reveal that the algorithms indeed

produce networks with the desired properties. Further properties

of the networks are shown in Figs. S2, S3 and S4, and discussed in

Section S2 in File S1.

Neuronal dynamics
We apply two neuron models with rather different intrinsic

dynamics. The first one is a leaky integrate-and-fire model with

short-term plasticity [44], and the second one is a Hodgkin-Huxley

type of model with four ionic and three synaptic currents [45]. In

the latter we import a model of synaptic short-term plasticity from

[46]. In both models we input a stochastic white noise term into

the membrane potential of the neurons to make them spontane-

ously active. The models are described in detail in Section S1.3 in

File S1.

We refer to the first model as LIF model and to the latter as HH

model throughout this work, although they are extensions of the

ordinary leaky integrate-and-fire and Hodgkin-Huxley models.

These two models were chosen to represent both a simple model

that can easily be extended to larger networks, and a more

biophysically detailed model that can be extended to study the

effect of, e.g., various neurotransmitters and modulators on

network activity. The latter was introduced as a model for

studying synchronization in low extracellular magnesium concen-

tration, but it allows the use of higher concentrations as well. Here,

we use a value ½Mg2z�o~0:7mM, which is in the range of

magnesium concentrations normally used in studies of neuronal

cultures (see, e.g., [25]).

Network bursts could be produced with simpler models that do

not consider short-term plasticity, e.g., by using widely applied

models of balanced excitation/inhibition [47] or Markov binary

neurons [48]. The ending of the bursts in these models is

dependent on the activation of the inhibitory population, which

returns the elevated firing activity to a baseline level. By contrast,

applying short-term depression to the excitatory synaptic currents

allows the emergence of network bursts in both excitatory-only (E)

and excitatory-inhibitory (EI) networks [44]. This is favorable, as

the experiments carried out on neuronal cultures show that

network bursts cease even in the pathological case of blocked

inhibition (see, e.g., [49] and [26] for spinal cord cultures and [50]

and [51] for cortical cultures). In this work, we study the bursting

dynamics of both E and EI networks, and hence, we employ the

short-term depressing synapses in both cases. In the EI networks,

the structure is first generated using one of the network generation

schemes and then 20% of the neurons, randomly picked, are

assigned as the inhibitory population. The network size is N~100
unless otherwise stated.

As a major simplification to reality, we consider the synaptic

transmission to be instantaneous. The transmission delays and

their effect on neuronal network dynamics have been under wide

examination (see e.g. [52]) and have been shown to play an

important role in various contexts. Their inclusion can be,

however, carried out in multiple ways. For instance, in WS1,

WS2, and NM networks the long-range connections should have

longer delay parameters than the local connections (see e.g. [53]),

whereas for other network types such distance-delay relationship

cannot be straightforwardly defined, and hence, different

approaches should be tested. In this work we restrict our study

to non-delayed networks in order to avoid excessive simulations.

Structure & Dynamics in Bursting Neuronal Networks
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The networks are set into a regime of spontaneous network

bursting. This is done by tuning the synaptic weight g (see Section

S1.3 of File S1) so that the moderately connected networks (RN,

p~0:2, binomial in-degree) show a bursting frequency of 10

bursts/min. These values are in the range of connectivity and

bursting activity in a typical cortical culture [25]. For the applied

proportions of excitatory and inhibitory neurons and model

parameters, we found that the mean bursting frequency is a

monotonically increasing function of the synaptic weight in the

regime of interest (0–60 bursts/min), and hence we use the

bisection method to find the proper synaptic weight.

For each network simulation the spiking activity is solved for a

one minute period (in fact for 61 s, but the first second is neglected

for a possible transition stage). The model parameters and initial

conditions for both models are described in Section S1.3 of File

S1. The code files to carry out the simulations in PyNEST [54]

(LIF model) and MATLAB (HH model) are given in ModelDB

entry 147117. Fig. 3 illustrates the typical dynamics for a single

neuron and a network of neurons.

Activity in a bursting network can be characterized by the

quantity and quality of the network bursts. We employ the burst

detection scheme applied in, e.g., [55] and [56]. The spikes are

first divided into separate network bursts using a maximal inter-

spike interval of 25 ms. This means that two consecutive spikes

belong to the same network burst if and only if their distance is

25 ms or less. Those bursts which consist of less than 1:5NE

(with HH model) or 0:4NE (with LIF model) spikes, where NE

denotes the size of the excitatory population, or in which less

than 0:3NE individual neurons contributed to the burst, are

disregarded. Further, a burst profile is created by convoluting the

population spike train in the range from the first to the last spike

of the burst with a Gaussian with deviation 2.5 ms. The length of

the rising slope and the falling slope, i.e., the halfwidths of the burst

profile, are calculated with a resolution of 0.25 ms. These
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Figure 2. Illustration of network classes. A: Examples of the extreme network types used in the present work. Network size N~6, except in
LCN2 N~36, and in NM N~30. The red arrows highlight the definitive properties of the networks. In NM the connections whose post-synaptic node
lies across the box boundaries are replaced by a link to a copy of the post-synaptic node (plotted with gray at a corresponding location outside the
box). B, C: Illustration of the generation of FF (B) and L4 (C) networks. The red dots show the node that has recently been added the inputs, and these
inputs are in turn highlighted by circles. The number at the upper-left corner of each graph shows the iteration number. D: Mean and standard
deviation of the number of motifs 5 (left) and 6 (right) in different extreme network types (RN, FF, and LCN1). The FF networks possess the greatest
number of both these two motifs. The low number of these motfis in LCN1 networks is explained by the fact that they contain much more highly
connected motifs (motifs 12 and 13) due to their locally coupled design. E: Mean and standard deviation of the length-to-self measure in different
extreme network types (RN, L2, L3, L4, L6, and LCN1). The loopy networks L2, L3, L4, and L6, express a value of LtS near to the corresponding length
of the promoted loop. In both D and E, all networks are of size N~100 and their in-degree distribution is binomial with p~0:16. Statistics are
computed from 150 independent samples.
doi:10.1371/journal.pone.0069373.g002
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measures are illustrated in Fig. 4. We consider the summed value

of these two measures the length of the burst. This measure is more

robust to addition of a single spike to the burst than the absolute

duration of the burst, which is calculated as the time from the

first spike to the last spike of the burst. To further characterize

the burst, we consider the number of spikes in a burst, which we

refer to as the burst size. To average the network activity over a

one minute simulation, we use the median burst length and

median burst size. An important characteristic of the network

activity is also the burst count, i.e. the number of bursts during the

time of simulation, which has been shown to vary substantially in

spontaneously active networks with different structures [57]. In

addition, we consider the total spike count of the network during

the one minute simulation as an indicator of the overall amount

of activity.

All above activity measures are calculated from the population

spike train of the network. In the LIF model the spike trains are

given explicitly by the model, but in the HH model they have to be

extracted from the time series of the membrane potential. In this

work, we consider any local maximum of the membrane potential

above the threshold of 230 mV a spike. It should be noted that

due to the Brownian noise injected to the membrane potential, we

only consider local maxima at the resolution of 10dt, where dt is

the simulation time step. This means that the time instant t is

considered a local maximum if and only if V (t{10dt)vV (t) and

V (t)§V(tz10dt). Given the simulation time step dt~0:0025ms,

this resolution was found scarce enough to prevent the noisy

fluctuation of the membrane potential from being registered as

spikes but on the other hand fine enough to correctly detect spikes

in an intrinsic (single-cell) burst. The chosen threshold potential, -

30 mV, is robust. In a RN with binomial in-degree distribution

(p~0:3), the change of +2:5mV in the threshold potential had no

effect on the detected spikes, and a change of +10:0mV changed

the total number of detected spikes by less than 5%.

Structure-dynamics analysis
Using the above methods, a realization of activity properties

can be obtained for any given connectivity graph by simulating

one of the two neuron models and performing the burst

detection. In purely excitatory networks the graph properties

are extracted using the entire network, while in EI networks only

the excitatory-excitatory part is considered. The activity proper-

ties are likewise calculated from the excitatory population merely.

Throughout this work, we divide the data into 24 simulation

settings, as listed in Table 1. The networks in each simulation
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Figure 3. Illustration of the HH (upper panels) and the LIF (lower panels) model dynamics. Left: Single cell membrane potential with the
spike magnified in the inset. The membrane potential at the time of spike in the LIF model explicitly set 30 mV for the sake of illustration. Middle:
Network spike train in an excitatory-inhibitory RN with p~0:2 connectivity and binomial in-degree distribution. The upmost 20 neurons represent the
inhibitory population. The red spike corresponds to the (first) spike shown in the left panel, and the burst with the red borders corresponds to the
burst shown in the right panel. Right: The selected burst highlighted.
doi:10.1371/journal.pone.0069373.g003
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Figure 4. Illustration of the burst profile attributes. The shaded
dots represent the spikes of the excitatory neurons. The thick blue
curve represents burst profile, i.e., the smoothened firing rate curve. The
time instants when the burst profile for the first and the last time
crosses the value of half of the maximal value (shown with horizontal
dashed line) are identified. The distances of these time instants from the
time instant of the maximal firing rate (vertical line) are the lengths of
the rising (Rs) and falling (Fs) slope. The burst length (BL) is the sum of
these two attributes. The network activity in this figure is simulated
with the HH model, and the structure of the underlying network is a RN
with binomial in-degree distribution, p~0:2. Scale bar (black) 10 ms.
doi:10.1371/journal.pone.0069373.g004
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setting have a fixed average connection probability p (0.16, 0.2, or

0.3), a fixed shape of in-degree distribution (BIN as binomial or

POW as power-law), a fixed choice of population (E or EI) and a

fixed choice of model of dynamics (HH or LIF). Hence, all

variation in activity properties between networks that belong to the

same simulation setting is an effect of the network structure only.

For each setting we generate a series of network structure

realizations and for each of these we simulate a one minute

sample of activity. The chosen network types are FF, WS1 and

WS2 networks with W~1,3,6,?, and L2, L3, L4 and L6

networks with W~3,6,12,?. In addition, RNs are included, and

NM networks are considered in settings with binomial in-degree

distribution, which makes the total number of essentially different

types of network structure Nnt~29 (power-law) or 30 (binomial).

We use two methods for the data analysis, namely, a correlation

analysis and a prediction framework. We use the first to restrict the

number of analyses to be done with the latter. The correlation

coefficient between activity property and graph property is

calculated for each simulation setting separately as

P
G[G

(x(G){mx)(y(G){my)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
G[G

(x(G){mx)2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

G[G
(y(G){my)2

r : ð1Þ

In this notation, G is the set of networks (we use terms network and

network realization interchangeably here) belonging to a said

simulation setting. The term x(G) is a graph property of network

G, while the term y(G) is an activity property obtained from a

neuronal simulation done on network G, and mx and my are the

corresponding average values.

The correlation analysis is useful as a first approximation of the

relationship between the graph measures and activity measures,

but it only sheds light on the linear pair-wise dependence between

the measures. We apply a prediction framework to answer the

question: Which graph measures are the most important when

aiming to predict the activity in the network? To do this, we divide

the data into a teaching data set and a target data set. The

teaching data set consists of Nte~35 networks for each of the

Nnt~30 (29) network types, while the target data set contains only

Nta~5 repetitions. An affine predictor

y~a0z
XK

i~1

aixi ð2Þ

is built using the considered activity properties Y[RNteNnt and the

K chosen structural properties X[RNteNnt|K that are extracted

from the teaching data. We include the realized average degree in

the structural measures in order to compensate for the variety

caused by in-degree variance, and hence, we always have K§1.

Least mean squares is used to solve the predictor coefficients, i.e.,

½a0 a1 � � � aK �~ ½1 X�T ½1 X�
� �{1

½1 X�T Y,

where 1[RNteNnt is a vector consisting of 1’s.

The activity properties of the target data set can be predicted

using Eqn. 2 for each of the NntNta networks, and the prediction

error can be calculated as the average absolute difference between

the predicted and actual value of the activity property. The

prediction is repeated for 10 times in total. During the repetition

the target data are regenerated, but the teaching data are

resampled from a total pool of 100 samples of each network type.

The error distribution for a given predictor, i.e., a predictor that

uses a chosen set of structural measures, is compared to the error

distribution of other predictors. This is done using Mann-

Whitney’s U-test, which tests the null hypothesis that the medians

of the distributions are equal.

It should be noted that we do not use the term ‘‘predict’’ in the

meaning of forecasting the future based on the past. Instead, the

task of the predictor is to estimate the outcome of an activity

property in a separate, unknown network when only some aspects

of the network structure are known to the predictor. This is closely

related to classification tasks, but as the outcome of the predictor is a

continuous value instead of discrete, it is best described by the term

prediction task [58].

Results

As a first step for understanding the structure-dynamics

relationships in bursting neuronal networks, we estimated the

correlations of graph-theoretic measures and activity properties.

Fig. 5 shows the correlation coefficients between the considered

graph measures and measures of activity. We first calculated the

correlation coefficient between all pairs of measures in each

simulation setting by Eqn. 1. We then computed the mean and

standard deviation of the obtained correlations, taken over the

twelve simulation settings with the same shape (binomial or power-

law) of in-degree distribution. We focus our analysis on those

graph measures that at least for some activity property gave an absolute

mean correlation greater than 0.25 in both binomial and power-law

settings. Namely, they were CC, PL, NB, OD, MEig, Mot5, Mot12,

and Mot13. However, CC and Mot13 were very strongly

correlated with each other (correlation coefficient between these

measures ranges from 0.85 to 0.99 in the 24 simulation settings,

mean 0.94). This was the case also between PL and NB (0.91 to

0.99, mean 0.95), which is backed by the analytical derivations

shown in section S2.4 in File S1. Hence we disregarded PL and

Mot13 whenever NB and CC were considered. Other pairs of

Table 1. The list of the 24 simulation settings.

HH LIF

E EI E EI

BIN POW BIN POW BIN POW BIN POW

0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3

The first row denotes the model of dynamics, and the second row shows the choices of population. For each combination of these one may freely choose the shape
(third row) and connection probability (fourth row) of the in-degree distribution.
doi:10.1371/journal.pone.0069373.t001
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measures were considerably less correlated: The strongest corre-

lation among the remaining measures was between CC and

Mot12, where the correlation coefficient ranged from 0.59 to 0.87,

mean 0.77. It should be noted that MEig was to some extent

correlated with the average degree of the network (correlation

coefficient on range from 0.63 to 0.89, mean 0.79) as predicted by

mean-field approximations in [59]. In our framework the mean

degrees E½�dd�~(N{1)p, where �dd represents the average degree of

the nodes, were held fixed between compared networks. However,

drawing from the in-degree distribution resulted in some variance

in the network structure. In the case of binomial in-degree this

variance was negligible (Var �dd~Var
1

N

XN

i~1
di

� �
~

N{1

N
p(1{

p)&0:158 for p~0:2), where di represents the in-degree of a single

node, but in networks with power-law distributed in-degree (with

p~0:2) it was empirically found as large as Var �dd&2:96. This

variance had to be taken into account explicitly in the analyses of

the following sections.

Similarly to structural measures, there was redundancy in the

activity measures. Naturally, the total spike count was largely

dictated by the product of burst count and median burst size:

Correlation coefficient between these measures ranged from 0.866

to 0.999 with mean 0.978. In most of the following analyses we

disregarded one of these measures, namely the burst size, due to its

small coefficient of variation (mean CV 0.16, whereas those of

spike count and burst count were 0.46 and 0.62, respectively). The

low variance in burst size was also reflected in a high correlation

between the spike count and the burst count (correlation

coefficient ranged from 0.532 to 0.998, mean 0.918). Between

other pairs of activity measures, the correlation coefficient ranged

from negative to positive values. Hence, we also neglected the

spike count in most of the forthcoming results and considered it to

behave to a great degree similarly to the burst count.

Clustering coefficient regulates the bursting properties in
networks with binomial in-degree distribution

To further analyze the dependency between activity and graph

properties, we applied the prediction framework for different

activity properties in different simulation settings. Fig. 6 shows the

prediction errors of the burst count in simulation settings with

excitatory-only networks, binomial in-degree distribution, and HH

model. The error distribution (mean, std) is plotted for different

predictors. One finds that predictors using CC are significantly

better than the ‘‘null’’ predictors (the predictors where K~1, i.e.,

only the realized degree is used in the prediction). In the dense

connectivity simulations (p~0:3) the OD performs approximately

equally well, but in other connectivities the effect of OD is

insignificant. The distribution of the values of burst count with

respect to the values of CC are illustrated for the p~0:2 case.

The dominance of CC in prediction of activity properties can be

observed for all simulation settings with binomial in-degree

distribution. This is confirmed in Fig. 7, where the best predictor

was named for the prediction of each activity property in each of

the twelve simulation settings. Furthermore, Fig. 8 shows the

averaged improvements that were obtained by using the said

graph measures in the prediction of burst count and burst length.

One can observe that the predictions were best improved from

both the null predictor and from a predictor using an arbitrary

other graph measure by including CC in the predicting graph

measures. The next best predictors were Mot12 and NB. The

improvements obtained by adding OD, MEig and Mot5 were

small. The improvement in the prediction was most substantial in

the case of burst count: By using only one predicting graph

measure (CC) the error was reduced by up to 35% on average,

while the corresponding prediction error reduction for burst length

was on average 26%. The predictor using all available structural

measures reached corresponding percentages of 49% for burst

count and 45% for burst length (data not shown).

Maximum eigenvalue is the best predictor of activity
when in-degree is power-law distributed

We repeated the analyses carried out in the previous section,

now using networks with power-law distributed in-degree. The

results were substantially different: Changing between excitatory-

only and excitatory-inhibitory networks, between different activity

models, or even between different connection probabilities did not

affect the overall significance of the graph measures in the

prediction of activity measures as much as the choice of in-degree

distribution did. Fig. 9 shows the statistics corresponding to those

shown in Figs. 6, 7 and 8.

One observes a great improvement in prediction by the

inclusion of MEig in Fig. 9. This effect was most evident in the

networks with the lowest connection probability (p~0:16, Fig. 9A)

where the bursts were most rare (see Fig. S5). Fig. 9C shows the

dominance of MEig across activity properties and all simulation

settings with power-law distributed in-degree. The prediction

errors of burst count and burst length were decreased from null

predictions on average by 28% and 13% by the inclusion of MEig

(Fig. 9D), respectively. The corresponding percentages for the

predictor using all structural data were 41% and 34% (data not

shown), which suggests that it be useful to employ more than one

structural measure especially in the prediction of burst length.

In these analyses, the realized degree was included in all the

predictions in order to cancel the effect of correlation between

MEig and the average degree. If the degree was neglected, the

effect of MEig was even more pronounced. By contrast, the

exclusion of degree from the predictions of activity measures in

networks with binomial in-degree had no notable effect due to the

low intrinsic variance in the degree. Furthermore, the results

stayed the same when a neural network predictor (default feed-

forward backpropagation network in MATLAB) was used instead

of linear predictor. If a diagonally quadratic predictor ( 1 X½ �
replaced by ½1 X X(2)� where X(2) is the element-wise second

power) was used, the improvements by the addition of NB and OD

were slightly increased, however retaining the statistical domi-

nance of CC and MEig in the prediction of all activity properties

(data not shown).

We carried out corresponding simulations with larger networks,

N~900. We used the LIF model and excitatory-only networks,

and varied the in-degree distribution. Fig. S6 shows the represen-

tative data about large network activity and the predictor

performances. Our conclusions hold with large networks as well:

The activity properties in networks with binomially distributed in-

degree can be best predicted with CC, whereas the activity in

networks with power-law distributed in-degree can be best

predicted using MEig. In addition, we ran longer, 5 minute

simulations using the LIF model networks with the normal

network size N~100 (data not shown). Our results remained

qualitatively the same and confirmed that the shorter (1 minute)

simulations give statistically significant results in spite of the large

variability in the activity properties.

Discussion

In this work we studied the graph-theoretic properties of several

types of networks, and searched for the most relevant aspects of

network structure from the viewpoint of bursting properties of the
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network. Our framework for network generation allows the use of

arbitrary in-degree distribution. This allows a fair comparison

between the dynamics of different network types, given that the

distribution of in-degree plays a crucial role in determining the

network dynamics [22]. The relevance of the graph-theoretic

properties of the network are assessed in a prediction framework.

We calculated how much the prediction of an activity property,

such as burst count or average length of a burst, is improved when

the prediction is based on a given graph property. We found that

in the networks with sharp (binomial) in-degree distribution CC

plays the most crucial role (Figs. 7 and 8), whereas in networks

with wide (power-law) in-degree distribution MEig is the most

relevant graph property (Fig. 9C–D). These results are consistent

with few exceptions in the twelve combinations of the two neuron

models (HH and LIF), two choices of neuron population

(excitatory-only and excitatory-inhibitory), and three connection

probabilities (p~0:16, 0:2, and 0:3). The simulations were run

using small (N = 100) networks due to the high computational load

needed for generation and analysis of a large enough data set, but

we confirmed our main findings using a small subset of simulations

with larger (N = 900) networks (Fig. S6).

Our framework that combines the use of multiple different types

of networks allows the concurrent study of importance of different

graph measures, namely CC, PL, NB, OD, DC, LtS, MEig, and
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Figure 5. The mean and standard deviation of the correlations between graph measures (see legend) and the activity measures
(spike count, burst count, burst length, and burst size). The Eqn. 1 is used for calculating the correlation coefficients for each simulation
setting separately. The set of networks G consists of 150 repetitions of each of the Nnt~30 (29) network types. In the panels on the left the mean
correlation is taken over correlation coefficients in the twelve simulation settings that use binomial in-degree distribution, while in the panels on the
right the twelve simulation settings with power-law distribution are used. The faded bars represent pairs of measures with absolute mean
correlations smaller than 0.25. The graph measures that were finally chosen for structure-dynamics study are bolded in the legend.
doi:10.1371/journal.pone.0069373.g005
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MotN, N[f1,:::,13g. The structural measures were chosen

according to the mainstream trends in the theory of complex

networks. MEig, which is closely related to DC [59], has been

previously shown to play a crucial role in the synchronization of

the network [60], [22] using the measure of complete synchrony or

its derivatives. We found similar results for networks with power-

law distributed in-degree. We considered the measures of activity

that we find the most describing of spontaneously bursting

networks, namely, the spike count, burst count, burst length, and

burst size. The computational framework allows the study of many

other aspects of dynamics, e.g., Lyapunov exponents during the

onset of the bursts, but in this work we restrict to those measures of

activity that can be obtained experimentally as well. The effect of

variable average degree of the network that is due to the high

variance of the power-law distribution was compensated for by

including the realized degree into all predictions. Excluding the

degree from the prediction would further stress the importance of

MEig in prediction (data not shown). Moreover, the results in

Fig. 8 stay qualitatively the same if MEig is replaced by DC (data

not shown). Furthermore, the domination of MEig and DC

remains even if all 20 graph measures are included in the study or

if quadratic or mathematical neural net based prediction is used

instead of the affine predictor.

However, MEig (or DC) is not the only structural measure that

is determinant of the network activity. The sharp in-degree

distribution in networks with binomially distributed in-degree

results in little variation of MEig and DC compared to networks

with power-law distributed in-degrees. At the same time, the

measures of network dynamics, such as spike count and burst

count, show comparable – although somewhat smaller – ranges of

values for both networks. We found out that in networks with

sharp in-degree distribution the most determinant property is the

CC (or Mot13). The role of CC has been previously highlighted in

other types of systems. To name a few, in [61] the degree of local

synchrony is suggested to be dictated by CC while the global

synchrony is more influenced by PL, and in [62] CC is found

superior to PL in affecting the onset of synchronization. The result

of [61] was obtained using a pulse-coupled leaky integrate-and-fire

model, whereas in [62] the Kuramoto [63] model of oscillating

particles was used. High clustering coefficient has also been linked

with poorer performance of artificial neural (Hopfield) networks

[64], yet experimental studies show that in vivo [65] as well as in

vitro [66] networks possess much greater clustering coefficient than

random networks. Similarly to the study at hand, in our earlier

work we have found that the amount of network bursts increases

with the locality of the network (where also CC is correlated with

the locality) [57] in a network of spontaneously active neurons.

Our results are backed by [67], where the number of 3-node

triangles (comparable to motif 13, see Fig. 1) in the graphs were

positively correlated with the mean level of activity in a discrete-

state model of neuronal networks. Our results are also in line with

[68], where multiple network structures (many of which were

similar to ours) consisting of heterogeneous excitatory neuron

populations were considered. The authors of [68] found that the
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Figure 6. Burst count is best predicted using CC when in-degree is binomial. A: The bars in the three panels show the prediction errors
(mean + std, Nsamp~10) when different graph properties are used as predictors. The errors are calculated as the difference between the predicted
and realized number of bursts. The HH model is used in purely excitatory networks with binomial in-degree distribution and average connectivities
p~0:16 (upper), p~0:2 (middle) and p~0:3 (lower). The leftmost bar (white) shows the mean prediction error of the null predictor. The next group of
six bars shows the prediction errors of predictors with an additional graph property, in the order of descending prediction error. The next three bars
correspond to the best three predictors that use two graph measures, and the next three bars correspond the ones with three measures. The final bar
(black) shows the prediction error of the predictor that uses all available structural data (20 measures in addition to the realized degree). If the error is
significantly (U-test, pv0:05) smaller than that of the null predictor, an asterisk (*) is plotted, whereas (**) announces that the error is also significantly
smaller than that of the best predictor using one graph property (here always CC). The more graph measures are included in the prediction, the more
accurate the prediction is. The error values shown are absolute: For reference, the mean burst counts (averaged over all network types) in the three
connection probabilities are 3.4 (p~0:16), 11.7 (p~0:2) and 31.5 (p~0:3). B: Values of burst count plotted w.r.t. CC in networks with connection
probability p~0:2. Different network classes are plotted with different colors, and the different markers of WS1, WS2, FF, L2, L3, L4 and L6 networks
represent different values of parameter W (‘+’ for the lowest value, and stars for the highest value). One finds that the burst count ascends with
increasing CC, as suggested by the positive correlation of burst count and CC in Fig. 5.
doi:10.1371/journal.pone.0069373.g006
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local connections encourage (single-cell) bursting in the network,

and they propose that the high number of local feed-back loops

(which corresponds to a high CC in our terminology) could

facilitate the spreading of the bursting activity across the network.

Opposite or bilateral results were observed in [53], where the

network bursting frequency was either decreasing or increasing

with the rewiring probability q of WS networks (which is anti-

correlated with CC), depending on the fraction of the inhibitory

population. The differences between their and our results could

emerge from the differences in the burst detection procedures. In

[53] the burst detection is based on finding the peaks in the

smoothened global firing rate, as we applied the burst detection

based on maximum inter-spike interval and minimum burst size

[56]. We found the latter method more reliable in detecting bursts

of variable shape. In addition, it allows the further observation of

the burst length and burst size in a straightforward way.

We did not find consistent trends in the importance of other

structural measures. The good performance of predictors based on

Mot12 (as seen in some simulation settings with binomial in-degree

distribution in Fig. 7) is most likely an effect of the high correlation

between CC and Mot12. The importance of NB (and hence PL as

well) is mostly expressed in the prediction of burst length, but even

considering solely burst length it gives the smallest prediction error

in fewer cases than CC (in binomial in-degree, Fig. 7) or MEig (in

power-law distributed in-degree, Fig. 9C) do. The importance of

OD is highlighted in the prediction of spike count and burst count

in dense (p~0:3) networks with binomial in-degree distribution,

but only in HH model, and hence, no conclusions without deeper

investigations can be made. Similar observations on the subsidiary

effects of the width of the out-degree distribution were reported in

[22] and [23].

Another full dimensionality to the aspects of structure-dynamics

relationship would be brought about if modular networks [69] were

studied. In such networks, not only the local connectivity but also

the connectivity pattern between the clusters would greatly affect

the collective dynamics. This aspect is highly relevant when

unraveling the function of a vertebrate brain, and ground-laying

studies have already been carried out in the context of, e.g.,

emergence of sustained activity [67,70]. Promising attempts were

also done in [68], where a biologically inspired modular network

model of the mammalian pre-Bötzinger complex was studied by

computational means. In their framework, not only the network

structure was varied, but also the effect of placing neurons with

different intrinsic dynamics (three in total) in different ways was

screened. However, we consider that the use of modularly

designed networks requires intricate analysis on both intra- and

inter-modular connectivities as well as the interplay between them,

and leave them to our future studies.

In the generation of the network structure, we fixed the in-

degree distribution and allowed the other aspects of the structure

to vary. In the framework of [22], all the second-order statistics,

which roughly correspond to in-degree deviation, degree correla-

tion, and out-degree deviation, can be controlled in the generation

of the graphs. In our framework, the degree correlation and out-

degree deviation are affected by the other structural aspects of the

network that cannot be ranked by the order of connectivity, such

as the proportion of long-range connections in the generation of

WS networks. By contrast, networks comparable to FF networks

and loopy networks could in principle be generated in a

framework similar to [22], but this would require the use of

motifs of order higher than 2. In fact, to promote loops of length 6,

motifs up to 6th order should be considered, and this might not be

computationally feasible. The choice of letting the second order

statistics vary could lead to misinterpretations of results if their

effect was not screened by other means. Our correlation and

prediction framework, by contrast, ensures that the major effect of

CC on activity properties in networks with binomial in-degree is

not mediated by the other second-order connectivity statistics (or

their correlates DC and OD).

It should be noted that we cannot exclude the possibility that

there exist measures of structure that perform better than CC and

MEig in the prediction of the activity properties. In fact, there may

exist a measure that by itself performs better in the prediction task

than CC does in networks with sharp in-degree and MEig in

networks with wide in-degree distribution. However, the results

shown here restrict the properties of such measure – it should be

highly correlated with the measures of clustering (CC, Mot13) in

networks with binomial in-degree and with measures of degree-

degree correlation (MEig, DC) in networks with power-law

distributed in-degree. The correlations between graph measures

across several network types have been studied in [71], and high

correlation coefficient is found between, e.g., the mean of local

clustering coefficients (denoted by CC in the present study) and

their variance. The high correlation between these measures can

also be observed in our network types (correlation coefficient

ranges from 0.80 to 0.94, mean 0.90). Indeed, if we replace CC
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numbers for Mot12, OD, NB, Mot5 and MEig are 11, 5, 5, 4, 1 and 1.
doi:10.1371/journal.pone.0069373.g007
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with the standard deviation of the local clustering coefficients, the

results in Fig. 7 stay the same. However, if both are included, the

mean of local clustering coefficient remains dominating (data not

shown).

The activity properties we measured lie in a noisy regime:

Multiple runs on an identical connectivity graph results in a great

variance in the dynamics (data not explicitly shown, but the trend

visible in Fig. 6B). The noisiness of the data is explained by the

spontaneous nature of the bursts. As discussed in [53], the

dynamical regime that produces the amount of spontaneous

activity that is typically seen in neuronal cultures may reside near

to the transient from regular to chaotic activity. This transient can

be observed in our results in the sparse (p~0:16) networks with

binomial in-degree distribution: These networks lie near the shift

from tonic spontaneous spiking to spontaneous bursting activity

(the mean burst count is very low in RN, L2, and L4 networks, as

seen in Fig. S5). Our results show that both in the regime of

numerous and few network bursts the prediction of activity

properties using measures of structures is feasible. Yet, in some

cases the improvements made are not that major, see e.g. the

modest difference in prediction errors of the best (black) and the

worst (white) predictors of burst count in the densest (p~0:3)

networks in Figs. 6A and 9A. In these networks, the variance of

burst count among the networks of same type is considerable,

compared to the variability of burst count across the network types

(Fig. S5). However, the statistical significance between the

prediction errors of different predictors indicates that the fine

details of structure still have an effect on the dynamics despite the

noisy nature of the bursts.

In the simulations of the excitatory-inhibitory networks, the

inhibitory subpopulation was randomly picked once the network

structure had been generated. In many brain areas, the

connections to and from the inhibitory population obey different

connectivity rules than the connections of the excitatory popula-

tion do. Many in silico studies take this diversity into account by

applying a specific structure only to the excitatory-excitatory

subnetwork, and connecting the excitatory population randomly

to the inhibitory population. We conducted our simulations on

such networks as well for comparison. The structures of the

excitatory subnetworks were first generated by the graph

generation algorithms described in the methods section and then

randomly coupled to the inhibitory populations. The NET-

MORPH networks were dismissed from these simulations. The

results on the importance of different graph-theoretic measures in

predicting activity properties in such networks were qualitatively

similar to those reported for EI networks in Figures 7 and 9C (data

not shown). Together these results confirm the importance of CC

and MEig (of the excitatory subnetwork) also in the presence of

inhibition. Due to the different choices of the synaptic weights in

excitatory-only and excitatory-inhibitory networks (see Section

S1.3 of File S1), which were chosen to restrict the number of bursts

on the same range, the difference in the overall network dynamics
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was not that significant between the two regimes. Nevertheless,

several differences exist. In the repetitive simulations of a chosen

network type, the spike count varied considerably more in the

excitatory-only networks than in excitatory-inhibitory networks

(data not shown). Hence, in this sense the inhibitory population

brought stability to the total spiking activity of the network. By

contrast, the variance in burst length was larger in excitatory-

inhibitory networks (data not shown). This could be explained by

the many alternatives when and how the inhibitory population can

become active during the network burst. Detailed analyses on how

the different ways of coupling the inhibitory population to the

excitatory population (and the different intrinsic dynamics that the

inhibitory neurons may have) affects the network excitability

should be carried out in order to draw further conclusions.

Moreover, the graph measures should be tuned to consider both

the excitatory and inhibitory populations if detailed structure-

dynamics relationships were to be uncovered.

Our simulations were conducted in different simulation settings

to argue for the generality of our results. The two neuron models

applied in this work differ from each other in many aspects: Spiking

at the crossing of a threshold membrane potential vs. spiking

through the ionic gating variable dynamics; tonic spiking vs.
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intrinsic bursting; current vs. conductance based synapses; one vs.

two excitatory synaptic current components. Although only these

two models were used, we believe that similar results would be

obtained with any neuron model that represents another combina-

tion of these four properties. In both models, the synaptic currents

decay exponentially, although in HH model the exact form of the

decay is also shaped by the effects of the presynaptic and

postsynaptic membrane potentials. A key restriction of our results

is that they apply to network bursting that emerges from

spontaneous spiking activity in the excitatory neurons. A distinction

should be made to synchronization of rhythmically active neurons,

e.g., the Kuramoto model neurons and the phase response curve

model neurons as described in [22]. In such systems, the neurons

possess a constant drive toward the ‘‘forward’’ phase, whereas in the

models used in this work such a drive is replaced by a white noise

current. The effect of CC that is observed in our work could emerge

from the deeper need of local integration to attain the network

burst. In rhythmically active systems this need may be diminished

due to the constant ‘‘forward’’ drive, and hence, only the effect of

MEig (or DC) is highlighted in such systems, as discussed in [60] and

[22]. Another restriction of our conclusions is that only such models

are considered where the network bursts are ceased by the depletion

of the excitatory synaptic resources – although in the excitatory-

inhibitory networks also the activation of the inhibitory population

can contribute to the burst cessation. The first restriction could be

relaxed by considering both networks of rhythmically active neurons

and networks with spontaneously active neurons, and possibly a

continuum between them, while the second restriction cannot be

relaxed without applying another mechanism for the cessation of

the network bursts. We leave both of these questions to be answered

by the future studies.

The focus of this paper is on the bursting properties of networks.

No unified theory on the relevance of network bursts has been

established, but they have been hypothesized as, e.g., a mechanism

of secured information transfer [72], a means for synaptic

modification [73,74], and in the case of power-law distributed

burst size, an optimal information transfer and a sign of the

network acting in a critical regime [75]. In addition to the nervous

system of a maturing (e.g. [76]) and behaving (e.g. [77]) animal,

bursts of large populations of neurons are observed in the most

primitive neuronal systems such as dissociated neuronal cultures

(see for instance [49] or [51]), which emphasizes the fundamen-

tality of the phenomenon. Earlier computational studies enlighten

the cellular mechanisms needed for bursting in neuronal networks

(see for example [45]), but few pieces of work monitor the effect of

network structure on bursting.

Network bursts represent an extreme type of synchronized

spiking activity, and understanding which aspects of structure

contribute to the emergence of this synchronization is a crucial

milestone in structure-dynamics research in neuroscience. The

implications of such knowledge are manifold. The future

techniques may allow indirect measurements of certain structural

properties of the network [12,27] although the full connectome is

unavailable. Knowing which properties are crucial for the network

dynamics could help make predictions on the statistics of the

activity basing on the measured aspects of the structure. On the

other hand, knowledge on structure-dynamics relationship in

neuronal networks could be useful in the design of artificial

intelligence in the future. The increasing computational power will

allow the use of artificial neural networks that are biologically

more realistic than the currently existing ones. Given an in silico

implementation, the designing of the structure in such networks

need not be restricted by the physical limitations, such as wiring

cost, that exist in their biological counterparts.

Supporting Information

Figure S1 In-degree distributions for NM networks with
connection probabilities p~0:16 (orange), 0:2 (purple),
and 0:3 (blue). The dashed lines show the binomial PDFs with

these connection probabilities, and the legend shows the KL-

divergence of the NM in-degree distributions from these binomial

distributions. The obtained values of DKL are considerably small –

the corresponding values between NM in-degree distributions and

the best-fit triangular distribution are 0.22 (p~0:16), 0.24

(p~0:2), and 0.24 (p~0:3), and further, the corresponding DKL

values are 1:8, 1:7 and 1:6 between NM distributions and uniform

distribution. The NM in-degree distributions are constructed from

a pool of 400 network realizations.

(EPS)

Figure S2 CC in FF networks as a function of parameter
W , and, for comparison, the respective values of RN,
LCN1, LCN2 and NETM networks. By the increase of W the

CC of FF networks approaches that of the extreme FF networks,

yet remains lower than that in LCN1, LCN2 or even NM.

Different colors represent networks with different (binomial) in-

degree distributions. The solid line shows the average over

Nsamp~400 trials, and the shaded area the standard deviation.

(EPS)

Figure S3 Number (mean and std, Nsamp~400) of FF-
motifs in FF networks as a function of parameter W ,
and, for comparison, the respective values of RN, LCN1
and NETM networks. The in-degree distribution of FF, RN

and LCN1 networks is chosen as binomial with the shown average

connectivities.

(EPS)

Figure S4 Distribution of eigenvalues l of L2, L3, L4 and
L6 networks with parameter W~3,6,12 and ?. Different

colors represent networks with different binomial in-degree

distributions, average connectivities chosen as p~0:16 (orange),

0:2 (purple), and 0:3 (blue). Each plot shows the combined spectra of

Nsamp~400 networks. The corresponding spectra for RN, LCN1,

LCN2 and NETMORPH networks are plotted for comparison. In

the extreme (W~?) L2, L3, L4 and L6 networks one can observe

the division of the eigenvalues to 2, 3, 4 and 6 distinct horns,

respectively. The number of horns reflects the frequent occurrence

of paths of the corresponding length in the graphs.

(EPS)

Figure S5 Statistics (mean and std) on the activity
properties of different network classes. For the network

classes that allow the use of the strength parameter W (WS1, WS2,

FF, L2, L3, L4 and L6), only the statistics for the extreme networks

(W~?) shown.

(EPS)

Figure S6 CC is most the determinant graph property
in large networks with binomial in-degree, while MEig
is the most relevant in large networks with power-law
distributed in-degree. The upmost panel shows the burst

count statistics for the extreme networks, see Fig. S5 for

reference. The second and third panels show the prediction

errors of burst count in large networks with binomial or power-

law distributed in-degree, respectively, and the 2D-plots show the

burst count w.r.t. dominant graph measure in mid-dense (p~0:2)

networks. The corresponding data for small networks are shown

in Figs. 6 and 9A–B. The lowest panel shows the prediction

improvements in large networks, see Figs. 8 and 9D for

comparison with small networks. In the repetition of the
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predictions both the target and teaching data are resampled from

the total number of 40 networks.

(EPS)

File S1 Supporting Information.
(PDF)
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Structure-Dynamics Relationships in Bursting Neuronal
Networks Revealed using a Prediction Framework —
Supporting information

S1 Supporting information on the methods

S1.1 Network generation algorithms

In this section we show the pseudo-codes for generating the networks with higher occurrence of feed-
ferward loops (Algorithm S1) and the networks with higher occurrence of directed loops of length L
(Algorithm S2). The MATLAB implementations for the algorithms are given in ModelDB entry 147117.
Both algorithms are given the number of nodes N , the in-degree distribution fID, and the strength
parameter W as attributes. The algorithms start with an empty connectivity matrix M ∈ {0, 1}N×N
that is updated every time a connection is made, and finally they output M .

Algorithm S1 Scheme for FF networks.

for node index i ∈ {1, . . . , N} do
· Draw number of inputs ni ∼ fID.
for input index j ∈ {1, . . . , ni} do
· Give weights ak to all nodes k 6= i that do not yet project to i s.t. ak = 1 + |{l|Mkl ∧Mli}|.
· Compute the probability to draw node k as P (k) =

aWk∑
k a

W
k

.

· Randomly pick k according to the probability mass distribution P and create a connection from
k to i.

end for
end for

In Algorithm S1 all inputs of a node i are set successively before setting the inputs of other nodes. The
connectivity graph is updated every time a connection is made, and hence also the probability distribution
P (k) of possible inputs changes with every step. These probabilities are given on the basis of the number
of disynaptic paths they have to the considered node i. That is, higher priority is given to nodes that
project to the input nodes of node i. Conversely, in Algorithm S2 the edges are set in such a way that
the node i for which the input is selected is changed in every iteration. By default, the node i is selected
as the node that was last chosen as an input to another node. This promotes the creation of chains in the
early stage of the iteration, which is crucial for the succesful creation of loops in the later stage. In case
the node that was last chosen as input already has all its inputs set, the node to be updated is picked by
random on the basis of the number of unset inputs of each node. This is also done in the first iteration
of the algorithm.

In addition, the weighting scheme in the picking of inputs in Algorithm S2 is more diverse than that
in Algorithm S1. The highest priority (4 + εk points) is given to such nodes k that, if chosen as an input
to i, would create a loop of length L from i to itself without shortcuts. The second highest priority (3) is
given to such nodes that would not create a loop of length L, but would not either create a shorter loop
from i to itself. The third highest priority (2 + ε′k) is given to nodes that would create a loop of length
L, but would simultaneously create shorter loops. The lowest priority (1) is given to the rest, i.e., the
nodes that, if chosen as input to i, would create a loop shorter than L but would not add loops of length

L. Further difference between nodes on the first or third priority level is given by εk = (ML−1)ik

(N−2
L−2 )

L−2 and

ε′k = (ML−1)ik
(N−1)L−2 , both of which are proportional to the number of paths of length L that would be formed

if the node k was chosen as input. To ensure that these extra terms are subsidiary to the named four
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Algorithm S2 Scheme for loopy networks of length L.

for node index i ∈ {1, . . . , N} do
· Draw number of inputs ni ∼ fID.

end for
while not all edges set do

if this is the very first edge or if the node that was last selected has already been set all its inputs
then
· Give weights bi to all nodes i such that bi is the number of inputs of i that have not yet been set.

· Compute the probability to draw node i as P (i) =
aWk∑
i a

W
i

.

· Randomly pick i according to the probability mass distribution P
else
· Set i to be the node that was selected as the input node in the last round.

end if
For each l < L and each possible input k, calculate (M l)ik, i.e., the number of existing paths of
length l from node i to node k. Give weights ak to all nodes that do not project to i as follows.
for node index k ∈ {1, . . . , N} \ {i} \ {l|Mli = 1} do

if ∀l = 1, . . . , L− 2 : (M l)ik = 0 then
if (ML−1)ik > 0 then

· Set ak = 4 + (ML−1)ik

(N−2
L−2 )

L−2

else
· Set ak = 3

end if
else
if (ML−1)ik > 0 then

· Set ak = 2 + (ML−1)ik
(N−1)L−2

else
· Set ak = 1

end if
end if
· Compute the probability to draw node k as P (k) =

aWk∑
k a

W
k

.

· Randomly pick k according to the probability mass distribution P and create a connection from
k to i.

end for
end while
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priority levels, we show that εk, ε
′
k ≤ 1 as follows.

Proof for εk:

It can be shown that (ML−1)ik ≤
(
N−2
L−2

)L−2
. As the choice of k as an input would not create loops

shorter than L, the minimum path length from i to k has to be L − 1. The maximum number of such
paths is attained by (if possible) ordering the remaining N − 2 nodes into L − 2 layers, each of which
contains a maximum of d(N − 2)/(L− 2)e nodes. In this construction i projects to all nodes in the first
layer, the nodes of the first layer nodes project to all nodes in the second layer, and continuing until the
last layer, where all nodes project to k. The maximum number of paths of length L − 1 from i to k is
then (N−2L−2 )L−2.
Proof for ε′k:
We can show by induction that ∀k : (M t)ik ≤ (N − 1)t−1 in any graph of interest. Since no graph can
have more paths than the fully connected graph, that is, a graph M where Mij = 1 ∀j 6= i and Mii = 0
∀i, it suffices to show the result for that particular graph.

1. The statement is true for t = 1, as the number of paths of length 1 from i to any node are either 0
or 1.

2. Suppose the statement is true for t = t0 − 1. Then, the number of paths of length t0 from i to
any k is

∑N
j=1(M t0−1)ijMjk =

∑N
j=1, j 6=k(M t0−1)ij ≤ (N − 1)(N − 1)t0−1 = (N − 1)t0 . Hence, the

statement is true for t = t0.

Thus, ∀k : ε′k ≤ 1 in any graph M .
In both algorithms the limit case W = ∞ is allowed. In this case, after calculating the weights ak,

the probability mass is divided equally between the nodes that have the exact maximum weight max ak,
and other nodes are given zero probability mass. This can be shown in a simple limit value analysis as
follows. Consider the weight for node k 6= i.

1. Suppose ∃j such that ak < aj . Then
aWk∑
l 6=i a

W
l

≤ aWk
aWj

=
(
ak
aj

)W
→ 0. Hence,

aWk∑
l 6=i a

W
l

→ 0.

2. Suppose ak = max
l 6=i

al. Denote I = {l 6= i|al = ak}, and denote the size of the set by n = |I| < N .

If all nodes have the maximum weight ak, i.e., n = N − 1, we have
aWk∑
l 6=i a

W
l

= 1
N−1 , and hence the

statement is true. Otherwise, let us consider the remaining nonempty set J = {1, . . . , N} \ {i} \ I.

Let us choose j = arg max
l∈J

al. Thus, we have
aWk∑
l 6=i a

W
l

=
aWk∑

l∈I a
W
l +

∑
l∈J a

W
l

≥ aWk
naWk +(N−1−n)aWj

=

1

n+(N−1−n)
(

aj
ak

)W → 1
n . On the other hand we have

aWk∑
l 6=i a

W
l

≤ aWk
naWk

= 1
n . Hence, we have

aWk∑
l6=i a

W
l

→ 1
n .

S1.2 Truncated power-law distribution

In this work, both binomial and power-law distributions are used for the in-degree of the networks. The
power-law distribution is truncated as follows:

fPOW
ID (n|N,α, p) =

 1−
∑N−1
k=nmin

akα, n = nmin

anα, nmin < n < N
0, otherwise

, (S1)

where nmin ∈ N and a ∈ [0,∞) are chosen such that p = 1
N−1EfPOW

ID
[n], and nmin is minimized with

the restriction that 1−
∑N−1
k=nmin

akα be non-negative. The slope of the power-law distribution is chosen
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α = −2 throughout this work, based on the data from functional connectivity graphs [S1]. In the following
we show that such a and nmin exist for every N ∈ N, α ∈ R, and p ∈ [0, 1].

Let N ∈ N be the number of nodes in the network, p ∈ [0, 1] the desired connection probability, and
α ∈ R the slope of the power-law distribution. Let N > 1 — otherwise, the connection probability is
undefined. Let us show that there exist a ∈ [0,∞) and nmin ∈ N such that the function

g(n|N,α, a, nmin) =

 1−
∑N−1
k=nmin+1 ak

α, n = nmin

anα, nmin < n ≤ N − 1
0, otherwise

, (S2)

is a probability density function on Ω = {0, 1, . . . , N − 1} and satisfies

Eg[n] = p(N − 1). (S3)

First, we find that g(·|α, a, nmin) is a well-defined probability density function if and only if nmin =

N − 1, or nmin < N − 1 and a ∈ [0, 1/
∑N−1
k=nmin+1 k

α]. Let us now study the Equation S3.

• If p = 1, we find that nmin = N − 1 satisfies Equation S3 for any a.

• If p < 1, we find that nmin = N − 1 cannot satisfy the Equation S3 for any a. Consider now an
arbitrary nmin ∈ {0, 1, . . . , N − 2}. The expectation value

Eg[n] = (1−
N−1∑

k=nmin+1

akα)nmin +

N−1∑
k=nmin+1

akα+1 = a

(
N−1∑

k=nmin+1

kα+1 − nmin

N−1∑
k=nmin+1

kα

)
+ nmin

is a monotonically increasing function w.r.t. a. For a = 0 we have Eg[n] = nmin, as for other

extreme a = 1/
∑N−1
k=nmin+1 k

α we have

Eg[n] =

∑N−1
k=nmin+1 k

α+1∑N−1
k=nmin+1 k

α
. (S4)

As in the summation terms the index k ≥ nmin + 1 and kα is non-negative, we have

N−1∑
k=nmin+1

kα =

N−1∑
k=nmin+1

kα · 1 ≤
N−1∑

k=nmin+1

kα(k − nmin) =

N−1∑
k=nmin+1

kα+1 − nmin

N−1∑
k=nmin+1

kα,

which gives us
N−1∑

k=nmin+1

kα+1 ≥ (nmin + 1)

N−1∑
k=nmin+1

kα

and further ∑N−1
k=nmin+1 k

α+1∑N−1
k=nmin+1 k

α
≥ nmin + 1.

Hence, the range of expectation values Eg[n] covers at least the range [nmin, nmin+1]. Hence, there is
at least one nmin for which a can be chosen (the choice is unique because of the strict monotonicity)
such that Equation S3 is satisfied and g(·|N,α, a, nmin) is a probability density function. Since there
are a finite number of viable values of nmin, we may choose the smallest one and the corresponding
a. �
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Table S1. Synaptic weights η for different simulation settings, optimized to make BC in moderately
connected networks (RN, p = 0.2, binomial in-degree) 10bursts/min. The same synaptic weights are
used in simulation settings with different choices of in-degree distribution.

HH, N = 100 LIF, N = 100 LIF, N = 900
E 0.144 14.52 2.81
EI 0.177 17.21

S1.3 The LIF and HH models

The parameters for LIF model are taken from [S2] with the following exceptions. In [S2] the background
current Ib has differing values for every neuron, making some neurons in the network intrinsically active
pacemakers and others excitable only with positive input. In this work we set all the neurons of a given
type (excitatory, inhibitory) to the same mean level by their spontaneous activity. The noise level was
chosen such that the neurons express spontaneous spikes with a rate of ≈ 10 spikes/min when no inputs
are given. The lack of pacemakers prevents the network from having a prominent heterogeneousity that
is not due to the structure of the network. The synaptic weights η are tuned such that a RN with a
connection probability p = 0.2 produces approximately 10 bursts/min, see Table S1 for exact values. The
values of the other synaptic parameters (U , τrec, τfacil, τI) are set as the mean value given in [S2] without
perturbation. The simulations are carried out in PyNEST with time step dt = 0.2ms.

The HH model is taken from the Appendix in [S3] with some retuning for our purposes. Here too we
apply random current Ib(t) to the membrane potential such that the neurons fire spontaneously with a
moderate rate (8.1 spikes/min for excitatory neurons and 137 spikes/min for inhibitory neurons; these
values fit fairly well to experimental data [S4]). Euler-Maruyama method with time step dt = 0.0025ms
is used for the integration. The Kdr conductance for excitatory neurons is set gKdr = 6mS/cm2 instead
of the 3mS/cm2 stated in [S3] — the value 6mS/cm2 (given in a ModelDB entry corresponding to their
article) was found to give the correct shape of action potentials.

The proportions of the synaptic currents are similar to [S3] with the exception that also the inhibitory–
inhibitory currents are considered. The dynamics for AMPA currents are modeled according to the
Appendix of [S5]. The model for NMDA currents is a combination with both the synaptic depression
from [S5] and the dynamics of slow rise-time from [S3]. The values of the parameters, when different,
are taken from the Appendix of [S3]. The synaptic depression affects both AMPA and NMDA currents
through the amount of glutamate resources TGlu ∈ [0, 1]. In the following, all the model equations and
parameters are listed.

The membrane potential of a LIF neuron obeys

Cm
dVm
dt

= − Vm
Rm

+ Isyn + Ib,

with Cm=30pF and Rm=1GΩ. The threshold potential is 15mV, the reset potential is 13.5mV, and the
refractory period is 3ms for excitatory neurons and 2ms for inhibitory neurons. The synaptic current Isyn
to the neuron j is the sum of the currents from the presynaptic cells:

Ijsyn =


η(1.0pA ·

NE∑
i=1

Mijyij − 3.0pA ·
N∑

i=NE+1

Mijyij), if j excitatory

η(4.0pA ·
NE∑
i=1

Mijyij − 4.0pA ·
N∑

i=NE+1

Mijyij), if j inhibitory

,

where the neurons are assumed to be ordered such that the excitatory population consists of neurons
with indices 1, . . . , NE and the inhibitory population of neurons NE+1, . . . , NE+NI . Thus, the synaptic
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currents are functions of the dynamic synaptic variables yij , each of which is determined by the following
set of equations:

du

dt
= − u

τfacil
+ U(1− u)δtsp(t)

dx

dt
=

z

τrec
− uxδtsp(t)

dy

dt
= − y

τI
+ uxδtsp(t)

dz

dt
=

y

τI
− z

τrec
,

(S5)

where tsp is the time instant of a presynaptic spike. The parameters are as follows: U(E → E) = U(I →
E) = 0.5, U(E → I) = U(I → I) = 0.04, τrec(E → E) = τrec(I → E) = 800ms, τrec(E → I) = τrec(I →
I) = 100ms, τI(E → E) = τI(I → E) = τI(E → I) = τI(I → I) = 3ms, τfacil(E → E) = τfacil(I →
E) = 0ms, τfacil(E → I) = τfacil(I → I) = 1000ms. The background current Ib, chosen independently for
each neuron, is a stepwise constant random (Gaussian) current with mean 12pA and standard deviation
7.3pA. The value of the background current is re-initialized every 1ms.

The time course of an excitatory HH neuron is determined by

Cm
dVm
dt

= −INa − INaP − IKdr − IK−slow − IL − IE→E
AMPA − IE→E

NMDA − IGABA + Ib,

where Cm = 1µF/cm2. The sodium currents INa obey the following equations:

INa(Vm, h) = gNam
3
∞(Vm)h(Vm − VNa)

dh

dt
= (h∞(Vm)− h)/τh(Vm)

m∞(V ) = (1 + exp(−(V − θm)/σm))−1

h∞(V ) = (1 + exp(−(V − θh)/σh))−1

τh(V ) = 0.1 + 0.75 · (1 + exp(−(V − θth)/σth))−1

INaP(Vm) = gNaPp∞(Vm)(Vm − VNa)

p∞(V ) = (1 + exp(−(V − θp)/σp))−1,

where gNa = 35mS/cm2, VNa = 55mV, θm = −30mV, σm = 9.5mV, θh = −45mV, σh = −7mV,
θth = −40.5mV, σth = −6mV, gNaP = 0.2mS/cm2, θp = −47mV, and σp = 3mV. The potassium
currents are described by the following equations:

IKdr(Vm, n) = gKdrn
4(Vm − VK)

dn

dt
= (n∞(Vm)− n)/τn(Vm)

n∞(V ) = (1 + exp(−(V − θn)/σn))−1

τn(V ) = 0.1 + 0.5 · (1 + exp(−(V − θtn)/σtn))−1

IK−slow(Vm, z) = gK−slowz(Vm − VK)

dz

dt
= (z∞(Vm)− z)/τz

z∞(V ) = (1 + exp(−(V − θz)/σz))−1,
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where gKdr = 6mS/cm2, VK = −90mV, θn = −33mV, σn = 10mV, θtn = −27mV, σtn = −15mV,
gK−slow = 1.8mS/cm2, θz = −39mV, σz = 5mV, and τz = 75ms. The leak current obeys

IL(Vm) = gL(Vm − VL),

where gL = 0.05mS/cm2 and VL = −70mV.
Inhibitory neurons in networks of HH neurons are described by the Wang-Buzsaki model as follows:

Cm
dVm
dt

= −IINa − IIKdr − IIL − IE→I
AMPA − IE→I

NMDA − IGABA + Ib.

The currents are described as follows:

IINa(Vm, h) = gINa(mI
∞(Vm))3h(Vm − V I

Na)

dh

dt
= αh(Vm)(1− h)− βh(Vm)h

mI
∞(V ) = αm(V )/(αm(V ) + βm(V ))

αh(V ) = 0.35 exp(−(V + 58)/20)

βh(V ) = 5/(1 + exp(−(V + 28)/10))

αm(V ) = 0.5(V + 35)/(1− exp(−(V + 35)/10))

βm(V ) = 20 exp(−(V + 60)/18)

IIKdr(Vm, n) = gIKdrn
4(Vm − V I

K)

dn

dt
= αn(Vm)(1− n)− βn(Vm)n

αn(V ) = 0.05(V + 34)/(1− exp(−(V + 34)/10))

βn(V ) = 0.625 exp(−(V + 44)/80)

IIL(Vm) = gIL(Vm − V I
L),

with gINa = 35mS/cm2, V I
Na = 55mV, gIKdr = 9mS/cm2, V I

K = −90mV, gIL = 0.1mS/cm2, and V I
L =

−65mV.
The synaptic currents in the HH model are the AMPA and NMDA currents elicited by excitatory

neurons and the GABA currents elicited by the inhibitory neurons. The AMPA and NMDA currents
express synaptic depression [S5]. For an excitatory neuron (j ≤ Ne), they can be described as follows:

IE→E
AMPA,j(Vm, {sAMPA}) = gE→E

AMPA(Vm − VGlu)η

NE∑
i=1

MijsAMPA,i

dsAMPA,i

dt
= kfPTGlu,is∞(Vi)(1− sAMPA,i)− sAMPA,i/τAMPA

dTGlu,i

dt
= −kts∞(Vi)TGlu,i + kv(1− TGlu,i)

s∞(V ) = (1 + exp(−(V − θs)/σs))−1,

IE→E
NMDA,j(Vm, {sNMDA}) = gE→E

NMDAfNMDA(Vm)(Vm − VGlu)η

NE∑
i=1

MijsNMDA,i

dxNMDA,i

dt
= kxNs∞(Vi)(1− xNMDA,i)− (1− s∞(Vi))xNMDA,i/τ̃NMDA

dsNMDA,i

dt
= kfNTGlu,ixNMDA,i(1− sNMDA,i)− sNMDA,i/τNMDA

fNMDA(V ) = (1 + exp(−(V − θNMDA)/σNMDA))−1,
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where θs = −20mV, σs = 2mV, kfP = 1ms−1, τAMPA = 5ms, gE→E
AMPA = 0.08mS/cm2, VGlu = 0mV,

kt = 1ms−1, kv = 0.001ms−1, kxN = 1ms−1, τ̃NMDA = 14.3ms, kfN = 1ms−1, τNMDA = 100ms,
gE→E
NMDA = 0.07mS/cm2, and σNMDA = 10mV. The value of θNMDA is dependent on the magnesium

concentration as follows: θNMDA = 10.5mV · ln([Mg2+]o/38.3mM). Here, the magnesium concentration
of [Mg2+]o = 0.7mM is used, which is a typical value in cortical cultures. The values of synaptic weights
η are given in Table S1.

The AMPA and NMDA currents to inhibitory neurons (j > NE) differ from the corresponding currents
to excitatory neurons only through the synaptic conductances:

IE→I
AMPA,j(Vm, {sAMPA}) = gE→I

AMPA(Vm − VGlu)η

NE∑
i=1

MijsAMPA,i

IE→I
NMDA,j(Vm, {sNMDA}) = gE→I

NMDAfNMDA(Vm)(Vm − VGlu)η

NE∑
i=1

MijsNMDA,i

(S6)

where gE→I
AMPA = 0.2mS/cm2 and gE→I

NMDA = 0.05mS/cm2. The GABA currents to both excitatory and
inhibitory neurons are described as follows:

IGABA,j(Vm, {sGABA}) = gGABA(Vm − VGABA)η

N∑
i=NE+1

MijsGABA,i

dsGABA,i

dt
= kfAs∞(Vi)(1− sGABA,i)− sGABA,i/τGABA,

where kfA = 1ms−1, τGABA = 10ms, gGABA = 0.05mS/cm2, and VGABA = −70mV. The background
current is a zero-mean Brownian white noise term, described as Ib(t) = 0.9µA/cm2 ·Wt, where Wt is
the independent Wiener process (the “time derivative” of dimensionless Brownian motion).

The initial state of the system is chosen such that all neurons are at or near rest. In LIF model this
is done by setting all membrane potentials to the reset value, and in HH model the membrane potential
and gating variable values are given by steady states of unconnected, noiseless neurons. In the beginning
all synaptic resources are set to the maximum value (x = 1 and y = z = 0 in LIF model, and TGlu = 1
in HH model).

S2 Supporting results on network structure

S2.1 NETMORPH networks have roughly binomial in-degree distribution

Fig. S1 shows that the in-degree distribution in 2-dimensional NETMORPH networks with continu-
ous boundaries is fairly well approximated by binomial distribution. This is opposite to 2-dimensional
NETMORPH networks without the boundary continuity that are characterised by broader in-degree
distribution, as we have shown in [S6]. Hence, we consider NM networks comparable to networks with
binomial in-degree.

S2.2 FF networks have high number of feed-forward loops but relatively low
clustering coefficient

Fig. S2 shows the clustering coefficient of FF networks as a function of parameter W , together with the
RN, LCN1, LCN2, and NM networks. One can observe the rising of the CC in FF networks with the
parameter W , which yet remains lower than the CC in locally connected networks LCN1 and LCN2. Fig.
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Figure S1. In-degree distributions for NM networks with connection probabilities p = 0.16 (orange),
0.2 (purple), and 0.3 (blue). The dashed lines show the binomial PDFs with these connection
probabilities, and the legend shows the KL-divergence of the NM in-degree distributions from these
binomial distributions. The obtained values of DKL are considerably small — the corresponding values
between NM in-degree distributions and the best-fit triangular distribution are 0.22 (p = 0.16), 0.24
(p = 0.2), and 0.24 (p = 0.3), and further, the corresponding DKL values are 1.8, 1.7 and 1.6 between
NM distributions and uniform distribution. The NM in-degree distributions are constructed from a pool
of 400 network realizations.

S3 in turn shows the number of FF-motifs in FF networks with varying parameter W , and for comparison
the corresponding number in RN, LCN1, and NM networks. The number of FF-motifs is calculated as
the number of such ordered triples, whose edges form the functional form of motif 5 (see Fig. 1), i.e.
|{(i, j, k) ∈ {1, ..., N}3|Mij ∧Mjk∧Mik}|. The amount of FF-motifs in FF networks is increased with the
increase of parameter W . The abundance of FF-motifs in LCN1 networks is explained by the frequent
occurrence of motif 13, each of which in itself contains six permutations of the FF-motif. The extreme
FF networks acquire a comparable number of FF-motifs, yet they preserve the relatively low degree of
clustering, as seen in Fig. S2.

S2.3 Loopy networks express loops in their eigenvalue spectra

One way to illustrate the occurrences of loops in a graph is to plot the eigenvalue spectrum of the
connectivity matrix into the complex plane. Consider as an example a perfect ring graph M , consisting
ofN nodes, where each node has exactly one input and one output, and where the nodes form a traversable
ring. The Nth power of the underlying connectivity matrix is an identity matrix, in which all eigenvalues
are 1. By basic linear algebra, these eigenvalues must be the Nth powers of the eigenvalues of M , and
hence the eigenvalues of M are evenly distributed on the unit circle in C. Fig. S4 shows the eigenvalue
spectra of L2, L3, L4 and L6 networks with different parameters W , and for comparison the eigenvalue
spectra of RN, LCN and NM networks. In the extreme cases W =∞ the division of the eigenvalues to 2,
3, 4 or 6 horns is evident. This is fairly non-trivial in the case of denser L6 networks: Since the connection
probability is as high as 0.2 or 0.3, it would be reasonable that the abundance of connections break the
loopy structure of the network. This abundance does bring up malformations in the star-shaped spectra
in the case of p = 0.3, but not notably in the case of p = 0.2.
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Figure S2. CC in FF networks as a function of
parameter W , and, for comparison, the
respective values of RN, LCN1, LCN2 and
NETM networks. By the increase of W the CC
of FF networks approaches that of the extreme
FF networks, yet remains lower than that in
LCN1, LCN2 or even NM. Different colors
represent networks with different (binomial)
in-degree distributions. The solid line shows the
average over Nsamp = 400 trials, and the shaded
area the standard deviation.
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Figure S3. Number (mean and std,
Nsamp = 400) of FF-motifs in FF networks as a
function of parameter W , and, for comparison,
the respective values of RN, LCN1 and NETM
networks. The in-degree distribution of FF, RN
and LCN1 networks is chosen as binomial with
the shown average connectivities.

S2.4 The relation of mean node-betweenness and mean shortest path length

The mean value of node-betweenness correlates highly with the mean path length. In this section we will
analytically derive the connection of these two quantities. The mean betweenness value is calculated as

NB =
1

N

N∑
i=1

NBi =
1

N

N∑
i=1

N∑
j = 1
j 6= i

N∑
k = 1

i 6= k 6= j
PLjk <∞

s
(i)
jk

s
(tot)
jk

. (S7)

The term s
(i)
jk is the number of such shortest paths from j to k where the node i lies on, and s

(tot)
jk

represents the total number of shortest paths from j to k. The nodes k where no path from j to k exists
are excluded from the summation, and hence the quantity is well-defined for any graph.

Let us denote the length of shortest path from j to k by Ljk. A necessary and sufficient condition for
i lying on the shortest path from j to k is that there be a path of length l ∈ {1, . . . , Ljk − 1} from j to i
and a path of length Ljk − l from i to k. The total number of such paths can be counted as the product
of the number of paths of length l from j to i and the number of paths of length Ljk − l from i to k.
This can be expressed using the elements of the lth and (Ljk − l)th exponent of the connectivity matrix
as (M l)ji · (MLjk−l)ik. Hence, the total number of shortest paths from j through i to k is calculated by
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Figure S4. Distribution of eigenvalues λ of L2, L3, L4 and L6 networks with parameter W = 3, 6, 12
and ∞. Different colors represent networks with different binomial in-degree distributions, average
connectivities chosen as p = 0.16 (orange), 0.2 (purple), and 0.3 (blue). Each plot shows the combined
spectra of Nsamp = 400 networks. The corresponding spectra for RN, LCN1, LCN2 and NETMORPH
networks are plotted for comparison. In the extreme (W =∞) L2, L3, L4 and L6 networks one can
observe the division of the eigenvalues to 2, 3, 4 and 6 distinct horns, respectively. The number of horns
reflects the frequent occurrence of paths of the corresponding length in the graphs.

summing this over all possible lengths l as

s
(i)
jk =

Ljk−1∑
l=1

(M l)ji · (MLjk−l)ik,

while the total number of shortest paths is simply

s
(tot)
jk = (MLjk)jk.
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These can be substitued into Eq. S7, and changing the order of summation gives us

NB =
1

N

N∑
j=1

N∑
k = 1
k 6= j

PLjk <∞

Ljk−1∑
l=1

N∑
i = 1

j 6= i 6= k

(M l)ji · (MLjk−l)ik
(MLjk)jk

.

Ordered this way, we notice that the summation over running variable i is actually nothing more than
the matrix multiplication of M l and MLjk−l. The elements corresponding to i = j and i = k can
be excluded, as they cannot contribute to the summed value. If they did, i.e., if (M l)jj · (MLjk−l)jk or
(M l)jk ·(MLjk−l)kk were greater than zero, then there would exist a path of length l < Ljk or Ljk−l < Ljk
from j to k, contradicting with our definition of Ljk. Thereby, we are left with the formula for average
node-betweenness

NB =
1

N

N∑
j=1

N∑
k = 1
k 6= j

PLjk <∞

Ljk−1∑
l=1

(MLjk)jk
(MLjk)jk

=
1

N

N∑
j=1

N∑
k = 1
k 6= j

PLjk <∞

(Ljk − 1).

Hence, the mean node-betweenness is proportional to the mean (non-harmonic, infinite path lengths
excluded) path length substracted by the overall proportion of pairs connected by a path of edges. The
non-harmonic mean path length in turn correlates with the harmonic mean path length: They are both
generalized power means of the same data with exponents 1 and −1, respectively.

S3 Supporting data on network simulations

Fig. S5 shows an overview of the activity properties (SC, BC, BL, and BS) obtained for different extreme
(W =∞) networks. Each bar shows the mean and standard deviation of the named activity property in
150 network simulations. The results of purely excitatory (E) networks with medium connectivity (p =
0.2), modeled by HH, is shown for all activity properties and both in-degree distributions. The statistics
of BC in the excitatory-inhibitory (EI) networks, networks with different connection probabilities, and
LIF networks are shown for reference.

The difference in network activity between the network classes (RN, LCN1, LCN2, FF, L2, L3, L4,
L6 and NM) is evident. The main trend in networks with binomially distributed in-degree is that the
LCN1, LCN2 and NM networks produce the most networks bursts and also the longest bursts. However,
in networks with power-law distributed in-degree some of the loopy networks express higher BC than
LCN1s. In addition, the variance of BC is less negligible than in their counterparts with binomial in-
degree, suggesting that considering a network class as a unity may not be feasible. This serves as an
extra motivation for exploring graph theoretic properties of the networks and their contribution to the
dynamics.

Fig. S6 shows the results of the prediction framework for larger (N=900) networks. The different
panels correspond to the results shown in Figs. S5, 6, 8, and 9. The figure justifies that our conclusions
hold for the bigger networks as well.
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Figure S6. CC is most the determinant graph property in large networks with binomial in-degree,
while MEig is the most relevant in large networks with power-law distributed in-degree. The upmost
panel shows the burst count statistics for the extreme networks, see Fig. S5 for reference. The second
and third panels show the prediction errors of burst count in large networks with binomial or power-law
distributed in-degree, respectively, and the 2D-plots show the burst count w.r.t. dominant graph
measure in mid-dense (p = 0.2) networks. The corresponding data for small networks are shown in Figs.
6 and 9A–B. The lowest panel shows the prediction improvements in large networks, see Figs. 8 and 9D
for comparison with small networks. In the repetition of the predictions both the target and teaching
data are resampled from the total number of 40 networks.
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