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Abstract

Super-resolution (SR) reconstruction is a filtering technique that aims to combine
a sequence of under-sampled and degraded low-resolution images to produce an
image at a higher resolution. The reconstruction attempts to take advantage of the
additional spatio-temporal data available in the sequenceof images portraying the
same scene. The fundamental problem addressed in super-resolution is a typical
example of an inverse problem, wherein multiple low-resolution (LR) images are
used to solve for the original high-resolution (HR) image.

Super-resolution has already proved useful in many practical cases where mul-
tiple frames of the same scene can be obtained, including medical applications,
satellite imaging and astronomical observatories. The application of super resolu-
tion filtering in consumer cameras and mobile devices shall be possible in the fu-
ture, especially that the computational and memory resources in these devices are
increasing all the time. For that goal, several research problems need to be inves-
tigated, i.e., precise modeling of the image capture process, fast filtering methods,
accurate methods for motion estimation and optimal techniques for combining
pixel values from the motion compensated images.

In this thesis, we investigate a number of topics related to the performance
problems mentioned above. We develop novel solutions to improve the image
quality captured by the sensors of a camera phone. Particularly, we present a
framework for producing a high-resolution color image directly from a sequence
of images captured by a CMOS sensor that is overlaid with a color filter array.
In the proposed framework, we introduce a super-resolutionalgorithm that inter-
polates the subsampled color components and reduces the optical blurring. The
results confirm that it is possible to improve the overall image quality by using
few consecutive shots of the same scene.

Achieving accurate and fast registration of the input images is a critical step in
super-resolution processing. Motivated by this basic requirement, we propose a
novel recursive method for pixel-based motion estimation.We use recursive least
mean square filtering (LMS) along different scanning directions to track the sta-
tionary shifts between a pair of LR images, which results in smooth estimates of
the displacements at sub-pixel accuracy. The initial results indicate good perfor-
mance, especially for tracking smooth global motion. One important advantage
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of the proposed method is that it can be easily integrated into super-resolution
algorithms thanks to its relative low computational complexity.

The overall performance of super-resolution is particularly degraded in the
presence of motion outliers. Therefore, it is essential to develop methods to en-
hance the robustness of the fusion process. Towards this goal, we propose an
integrated adaptive filtering method to reject the outlier image regions. The pro-
posed approach consists in applying non-linear filtering techniques to improve the
performance and robustness against motion outliers. In particular, we applied me-
dian filtering for robust fusion of the LR images, and we used generalized order
statistic filters (OSF) for the enhancement of binary text images. Compared with
conventional super-resolution algorithms, the proposed algorithms preserved well
the fine details in the images, additionally, the result images exhibited less arti-
facts in the presence of registration errors. This confirms the advantage of using
order statistic filtering in image super-resolution.
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Chapter 1

Introduction

Super resolution (SR) reconstruction refers to the processof combining a se-
quence of under-sampled and degraded low-resolution (LR) images in order to
produce a single high-resolution (HR) image. The LR input images are assumed to
portray slightly different views of the same scene. In broadsense, super-resolution
techniques attempt to improve the spatial resolution by incorporating into the final
result the additional new details that are revealed in each LR image. Conceptually,
the processing allows to convert the temporal resolution into spatial resolution.

The basic assumption for super-resolution processing is that some LR images
contain novel and non-redundant information about the scene details. This may
be due to relative camera motion from one frame to another, possibly resulting
from the combination of camera motion, moving objects in thescene, camera
jitters, shaking, etc. In order to apply super-resolution,it is important to extract
the relative displacement of the portrayed details at sub-pixel precision.

The fundamental problem that is addressed in super-resolution is a typical ex-
ample of anill-posed inverse problem wherein the original information (HR im-
age) is estimated from the degraded observations (LR images). To solve for the
inverse problem, explicit regularization strategies needto be incorporated in order
to constrain the feasible solution space. The redundant information in the input
LR images is inherently utilized in the solution to regularize the inverse problem
and improve the final solution. Obviously, to obtain a meaningful solution of the
inverse problem, it is critical to employ realistic modeling of the imaging process.

1.1 Super-resolution processing

Given a set of low-resolution images that result from the observation of the same
scene from slightly different views, super-resolution algorithms produce a single
high resolution image by fusing the input LR images such thatthe final HR im-
age reproduces the scene with a better fidelity than any of theLR images. The
central idea in super-resolution processing is to convert the temporal resolution
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Figure 1.1: Illustration of super-resolution inverse problem: Given a number of
low resolution frames of the same scene, construct a single frame with an im-
proved resolution.

into spatial resolution. In broad sense, this approach can be used to perform any
combination of the following image processing tasks:

– Interpolation

– Denoising

– Deblurring

Usually, super resolution methods consist of the followingbasic processing steps:

1. Motion estimation to determine the relative shifts between the LR images
and register the pixels from all available LR images onto a common refer-
ence grid. This step is essential to enable motion compensated filtering.

2. Motion compensation and warping of the input LR images onto the refer-
ence grid. Note that the pixels of the LR images are usually non-uniformly
distributed with respect to the reference grid.

3. Restoration of the LR images in order to reduce the artifacts due to blurring
and sensor noise. The filtering is necessary to improve the perceived image
quality.

4. Interpolation of the LR images with a predetermined zoom factor to obtain
the desired HR size.

5. Fusing of the pixel values from the LR images. This temporal filtering
operation is at the heart of all super-resolution algorithms, and complements
the spatial filtering operations performed in the previous steps.

Fig. 1.2 illustrates the generic processing steps described above. It is impor-
tant to note that in some algorithms, the order of the operations might be different.
In the following chapter, different known approaches for super-resolution are pre-
sented and discussed in more detail.
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Figure 1.2: Schematic of an example algorithm. Several complex processing steps
are integrated in super-resolution.

1.2 Applications

Super-resolution is a computationally intensive process.Nevertheless, the tech-
nique has already proved useful in many practical cases where multiple frames of
the same scene can be obtained. Although most existing applications are still lim-
ited towards specialized imaging products, super-resolution is becoming a main-
stream technique in image processing. Below, we list several industrial applica-
tions where this filtering technique could be used:

• Consumer photography

• Video cameras

• Surveillance applications (multisensor image fusion)

• Satellite and astronomical imaging

• Medical imaging (microscopy, X-ray, diffraction-limitedtomography)

• Remote image sensing1 (passive millimeter, infra-red, synthetic aperture
radar)

1Super-resolution might be particularly useful in remote image sensing systems because the
images are usually undersampled. For example, typical infrared devices have detector sizes in the
order of 20-50µm (in comparison with3µm in CCD sensors). Lately, some are claiming designs
for sensing systems with programmed motion of the sensor in order to apply SR (e.g. [11]).
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(a) (b)

Figure 1.3: Example of a potential application of super-resolution for video play-
back. (a) User interface view while video is playing, (b) on pressing pause button,
a zoom button appears in the toolbar. The adjacent frames aresuper-resolved to
enhance the details in the region of interest.

Additionally, several novel usage scenarios in mainstreamconsumer applica-
tions can be easily conceived using super-resolution. The most intuitive example
is that users capture several pictures of the same scene using a burst mode, and
later post-process the images in order to enhance the resolution. Another example
usage of super-resolution could be to enhance the zoom feature for video playback
(see Fig. 1.3 for an illustrated user interface concept).

It is worth mentioning that the example applications above are not exhaus-
tive. One may predict that in the future there will be more innovative applications,
since the research in super-resolution has been lately veryactive. For example,
super-resolution might be a key technology to achieve very high image quality
by fusing the images captured with multi-sensor cameras (e.g. lenslet cameras
[75]). Another potential application might be related to the emerging video de-
vices that will be capable of capturing and processing videoat a very high frame
rate (e.g. [66]). The latter devices will raise the need for advanced processing
methodologies that are capable of converting temporal and spatial video resolu-
tions, as well as novel compression mechanisms that might bederived and linked
to super-resolution video processing.

1.3 Super-resolution for consumer cameras

Recently, we have witnessed a revolution in digital photography. The quality and
resolution of digital images have been constantly improving with the advances
in sensor technologies, memory capacity, processing powerand image process-
ing techniques. Besides, there has been a significant reduction in manufacturing
costs, which led to massive proliferation of consumer digital cameras. Indeed, it
was estimated that more than 400 million cameras have been sold in 2005 [90].
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Figure 1.4: Potential application of super-resolution filtering in consumer cameras
to enhance the quality of digital zooming, reduce noise and improve the dynamic
range by processing multiple exposures of the same scene.

More than three quarters of these have been embedded in mobile phones, and it is
predicted that main-stream use of camera-phones will soon erode low-end digital
cameras. Nevertheless, due to constant pricing pressure and packaging limita-
tions, there is still serious need for improvement in the imaging quality on camera
phones. On the other hand, the computational and memory resources on mobile
devices are increasing all the time, and it is already possible to consider the im-
plementation of computationally intensive image processing algorithms such as
super-resolution. This approach can help overcome the inherent hardware limita-
tions of the integrated camera systems.

Super-resolution can be implemented in consumer cameras invarious ways.
For instance, the processing can be scheduled in off-line manner to combine the
image sequence that is captured in video or in burst mode; theoverall process-
ing is invisible to the end-user. Super-resolution can be applied in video mode
to enable the capture of still images without interrupting the video feed produc-
ing high resolution images, which can be used for example in automated video
summarization, or for hard copy printing. Another different approach consists
in applying super-resolution using embedded real time implementations, e.g., on
hardware accelerators [20]. In this mode, the frames are continuously saved in a
temporary buffer, and when the snap button is pressed, the latest frames are used
to super-resolve the result image. This mode of operation can be used to enhance
the performance of thedigital zoomby panning and zooming into the region of
interest (Fig. 1.4), without using mechanical parts to movethe lens.

1.3.1 Factors impacting image quality

In general, the critical factors that limit the performanceof the integrated cameras
in consumer devices are the following:

– Spatial frequency response of optical apertures (combinedeffect of objective
lens and sensor photodetectors).

– Optical system distortions, such as geometrical aberrations and vignetting.
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– Subsampling of the different spectral components.

– Nonlinear response of photo-detectors, uneven color sensitivity.

– Photodetector noise, quantization errors.

– Reconstruction artifacts, simplistic filtering.

– Design constraints due to packaging and power consumption.

When designing a hardware camera system, several importantcriteria need to
be considered. These criteria include the lens type, sensortype, pixel size, opti-
cal arrangement, interconnections, packaging, control electronics, power supply,
clocking, dynamic range, exposure design, shuttering, etc. The final image reso-
lution depends on the combination of all these design components.

Some argue that the main limitation in image resolution comes from the em-
ployed sensor technology, and put forward the argument thatcharge coupled de-
vice (CCD) technology is superior to its rival complementary metal oxide semi-
conductor (CMOS) technology. In reality, neither CMOS nor CCD technologies
is categorically superior to the other [15] [74], especially with the ongoing matur-
ing of the fabrication processes. Both CMOS and CCD chips sense light through
similar mechanisms (Fig. 1.5), i.e., by exploiting the photoelectric effect that oc-
curs when photons interact with crystallized silicon to promote electrons from the
valence band into the conduction band.

So far, the most intuitive way to increase spatial resolution has been to re-
duce the pixel area. During the past few years, the pixel sizehas continued to
shrink from the 10-20 microns pixels in the mid-1990s devices, to 2-3 microns
sensors currently in the market. However, since the capacitance of semiconductor
is proportional to the pixel area, there is a trade off between the pixel size and the
associated light sensitivity. For this reason, larger pixels function better in low
light situations, whereas smaller pixels require bright sunlight or a flash to ob-
tain acceptable signal to noise levels. Besides the reduction in photon conversion
efficiency, there are other fundamental optical limits which become increasingly
important in the overall imaging process [47] [67], thus placing a practical lower
limit on the pixel size. In other words, this means that the continuous reduction in
pixel area is not a viable trend in consumer cameras.

The high cost for precision optics and sophisticated image sensors are an im-
portant concern in low-end consumer cameras. Increasing the pixel count by using
a larger sensor area will continue to be an expensive option due to the fabrication
processes on silicon. Additionally, this will result in increased power consump-
tion, as well as an extra cost for the optical arrangement associated with an over-
sized sensor.

Based on the arguments mentioned above, the mere increase inpixel count will
no longer be enough to improve the spatial resolution, or at least, we predict that
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Figure 1.5: CCD versus CMOS sensor concept architectures indigital cameras.
In CCD, the pixel’s charge is transferred sequentially through a limited number
of output nodes. The charge is converted to voltage, then buffered and sent off-
chip as an analog signal, and the pixel’s area is devoted to light capture. In a
CMOS sensor, each pixel has its own charge-to-voltage conversion circuitry. Ad-
ditionally, the pixel area may include amplifiers, noise-correction, and digitization
circuits. Reprinted with permission from Albert Theuwissen [74].

Figure 1.6: Anatomy of the active pixel area in CMOS sensors.Reprinted with

permission from Michael W. Davidson [26].

there will be increasing need for sophisticated signal processing tools to follow
the trend. In fact, the use of signal filtering techniques in image sensing is as old
as digital imaging itself, but the employed techniques havebeen rather confined to
simple and linear solutions. On the other hand, the researchin the field of digital
image and video processing has been very active lately, which resulted in a wealth
of filtering solutions with confirmed results; however, these advanced solutions
have been virtually unexploited in consumer camera applications.
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1.3.2 Image processing to improve resolution

Super-resolution is an example of such processing techniques that may be suc-
cessfully tailored for application in consumer cameras. Inthis context, multi-shot
algorithms can be designed to correct the distortions and improve the specific res-
olution shortcomings by using a sequence of images capturedconsecutively. This
type of processing may be very effective especially if we wish to target specific
image degradations such as:

– Noise: especially in low-light capture conditions, or in the absence of a proper
flashing mechanism. Multi-shot capture combined with proper motion com-
pensated filtering can be efficient against visible noise artifacts.

– Dynamic range: multi-shot image capture with different exposures is an evident
solution to overcome the problem of limited dynamic range and reduced
sensitivity, which is due to increased analog gain values associated with the
miniaturization of the pixel size.

– Optical blurring: especially for fixed focus cameras. In this context, multi-shot
capture may help to regularize the inverse problem.

Nowadays, it is well accepted that the focus on the correction of these degra-
dations is more actual problem than the increase in image size, especially for
low-cost cameras. Although this means that the traditionalapplication of super-
resolution for interpolation may be left out, the application of multi-frame filtering
can greatly benefit from the results in the field of super-resolution, since the basic
approach is the same, i.e., motion compensated filtering. Inthis thesis, the focus
is on the application of super-resolution algorithms for consumer cameras, and
more specifically for non-dedicated imaging platforms suchas camera-phones.

In general, super-resolution is usually considered as an attractive approach for
image processing. However, before it is readily applicablein consumer cameras,
several basic problems need to be investigated, this will also help understand the
real potential of super-resolution. In the following Chapters, we elaborate more
on these problems.

1.4 Beyond algorithms: link to the human visual system?

In [91], Schulz and Stevenson argued that the human visual system is capable of
temporally integrating information in a video sequence, i.e., the perceived spatial
resolution of a sequence appears much higher than the spatial resolution of an
individual frame, however, the exact mechanism in the humanvisual system that
performs this operation is yet to be discovered. In fact, there is significant knowl-
edge to be gained from the discoveries about the mechanisms in early biological
vision, which might be very useful in visual technology applications.
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Figure 1.7: Diagram showing fixational eye movements projected on the retinal
photoreceptors. High-frequency tremor is superimposed onslow drifts (curved
lines). Microsaccades are fast jerk-like movements, whichare believed to bring
the image back towards the center of vision (straight lines), referenced in [77].

In the human eye, only the central part of the retina has a highconcentration
of color sensitive nerve cells, whereas the rest of the retina is mainly made up
of monochrome nerve endings, which are especially good for motion detection.
Knowing these facts, we are tempted to link the enhanced detail perception in
video sequences to the role of saccadic eye motion. We raise the question whether
this ambiguous eye motion is used by the human visual system to apply some sort
of super-resolution processing. The rest of this section isnot meant to provide any
scientific evidence to answer this question, but rather to give a brief overview of a
distinct feature in the human visual system, namely, the saccadic eye motion.

1.4.1 Saccadic eye motion

Our eyes perform different types of movements to accomplishessential early vi-
sion tasks; this is partly done through small, involuntary eye movements (sac-
cade). According to Webster dictionary, a saccade is a smallrapid jerky movement
of the eye especially as it jumps from fixation on one point to another. Visual fix-
ation refers to maintaining the gaze in a constant direction. Humans (and other
animals with a fovea) constantly alternate saccades and visual fixations. For ex-
ample, in reading, fixation refers to the human eye focusing upon an artifact of
printed text such as a white space or a word [76]. Visual fixation is never perfectly
steady, i.e., fixational eye movements occur involuntarily. Although the existence
of fixational eye movements has been known and characterizedsince the 1950’s,
its exact role and importance are still debated [77].
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1.4.2 Fixational eye movements

Fixational eye movements are usually classified into three types of motions: mi-
crosaccades, ocular drifts, and ocular tremor [77]. Microsaccades continuously
jerk the center of gaze in straight lines by small, but resolvable distances. Drifts
are irregular curvy motions that occur between microsaccades, and are character-
ized by low amplitude and relatively slower sweeps. Finally, eye tremor is made
of extremely small oscillations that are superimposed on drifts. Tremor is charac-
terized by constant, physiological, high frequency (peak 90Hz) and low amplitude
vibrations.

Among these three categories of eye movements, microsaccades are the largest
and easiest to characterize; although their role has remained a matter of contro-
versy. Recent research [77] points to some evidence that therole of microsaccades
is to counteract visual fading during fixation. In this theory, microsaccades con-
tinuously stimulate neurons in the early visual areas of thebrain, which mostly
respond to transient stimuli. This explains that even during periods of steady fixa-
tion, the visibility is maintained and the perception remains stable and continuous.
It is argued in [37] that conceiving the eye as an electronic analog camera (with
a simple lens system) does not correspond to the overwhelming evidence, which
suggests that the photoreceptor cell is a differential rather than an integrating de-
tector.

The exact role of the two other types of eye movements (drifts, tremor) is still
unclear [76]. For instance, it was not until recently that some researchers were
arguing that tremor is a useless feature that degrades vision. This belief has re-
ceded and nowadays there is agreement that tremors have a critical role in vision
acuity, even though there is no solid evidence that fully explains the role of tremor
eye motion. According to [37], our eyes employ an analyticalsignal processing
channel for early vision, which is the primary determinant of the resolution perfor-
mance and acuity. This process relies upon tremor as a fundamental mechanism
and employs two dimensional correlation of the signals within the foveola.

Besides understanding its role in stabilizing our vision, there is a need to un-
derstand the precise mechanisms in which tremor motion is exploited. Does our
visual system improve the visual acuity through these miniature shifts by applying
a similar mechanism to super-resolution? Does the processing utilize the differ-
ential images to improve the acuity? How is that done? These are few of the
questions about the human early vision, which hold no definite answers yet.

1.4.3 Dynamic theory of vision for hyperacuity

Due to the limited density of photoreceptors on the retina, normal visual acuity in
humans is limited to about1′ of visual angle. This is imposed by the Nyquist sam-
pling limit in relation to the number of photoreceptors. Surprisingly, it was found
that the human visual system is capable of resolving certainstimuli (e.g. vernier
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stimuli) at much higher resolutions (less than5′′). This enhanced capacity to per-
ceive details is called hyperactuity [38]. Several qualitative theories about visual
perception have been proposed to explain this peculiar property of the human vi-
sual system [50]. Most notably, the so-called dynamic theory of vision, which
claims that hyperacuity would require eye-micromovements(microtremor, mi-
crosaccades) to achieve this property. In this theory, small eye-movements would
shift the photoreceptor grid across the stimulus leading toan enhanced discrim-
ination capability when appropriate spatiotemporal integration is used. In [50],
quantitative tests are reported to validate the theory under different experimental
conditions. It is shown that eye micromovements indeed improve hyperacuity.
Contrary to earlier assumptions, it is reported that eye micromovements have no
effect in the central part of the retina, where optical blurring defines the limit for
hyperacuity tasks; however, at above5o retinal eccentricity, eye micromovements
clearly improve the acuity.

It is not our claim to make any conclusions about the theoriesexplaining the
role of eye movements in the human visual system. On the otherhand, we believe
that electronic image acquisition systems, as well as super-resolution processing
techniques would greatly benefit when the roles of the different mechanisms in
biological vision systems will be better understood.

1.5 Organization of the thesis

Following this introduction, we consider several topics ofinterest to improve the
image resolution. We focus the discussion on the challengesfor efficient use of
image super-resolution in order to improve the imaging performance in portable
camera devices.

Chapter 2 discusses in more detail the filtering methods employed in super-
resolution. We formulate the main approaches for super-resolution that are known
in the literature; and we present few example results to illustrate the possible im-
provement in image resolution when using this processing technique. This chapter
provides the background knowledge to understand the theoretical and practical is-
sues that limit the performance of super-resolution.

Chapter 3 is concerned with the restoration of a single observation of a de-
graded image. The goal is to lay down the basis for the extension towards the use
of multi-frame image restoration in the following chapters. We present a novel
algorithm for multichannel image deblurring of an image that is captured by a
CMOS sensor in a camera phone. Our approach is distinct sincewe consider
the application of the algorithm directly on the raw color image data, such that the
restoration process is the first processing step in the imagereconstruction pipeline.
The proposed algorithm has shown to significantly reduce theoptical blurring on
camera-phone devices with fixed focus optics.

In Chapter 4, we present a framework for producing a high-resolution color
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image directly from a sequence of images captured by a CMOS sensor that is
overlaid with a color filter array. The proposed algorithm isbased on iterative
super-resolution that filters and interpolates the raw Bayer data from the sensor.
We report experimental results using a synthetic image sequence, also using real
data from CMOS sensors. The results exhibit significant improvement in quality
when compared to demosaicing the color data using a single image.

Accurate and fast registration of the input images are critical in super-resolution
processing. In Chapter 5, we propose a novel recursive method for pixel-based
motion estimation. We use recursive LMS filtering along different scanning direc-
tions to track the stationary shifts between the LR images and produce smooth es-
timates of the displacements at sub-pixel accuracy. The initial results demonstrate
the usability of the algorithm, especially when targeting video filtering applica-
tions that are based on motion-compensated filtering such assuper-resolution.

The overall performance of super-resolution is particularly degraded in the
presence of motion outliers; hence it is essential to develop methods to enhance the
robustness of the fusing process. In Chapter 6, we propose anintegrated adaptive
filtering method to reject the outlier image regions. In the process of combining
the gradient images due to each low-resolution image, we useadaptive FIR filter-
ing. The coefficients of the FIR filter are updated using the LMS algorithm, which
automatically isolates the outlier image regions by decreasing the corresponding
coefficients. The adaptation criterion of the LMS estimatoris the error between
the median of the samples from the LR images, and the output ofthe FIR filter.

In Chapter 7, we investigate the use of order statistic filters in super-resolution.
We propose to use signal dependentL-filters for the enhancement of binary text
images. We incorporated a simple mechanism to select the most suitable data
support to preserve the details along the edges. Additionally, we show that or-
der statistic filtering, for instance median fusing, improves the robustness against
motion outliers. Although this algorithm is developed in a heuristic manner, the
experimental results demonstrate good performance of order statistic filters when
used in image super-resolution.

1.6 Author’s contribution

The author’s contribution to the research in super-resolution image processing is
presented in Chapters 3-7. These chapters cover several relevant topics necessary
to understand the performance of super-resolution algorithms in consumer imag-
ing. The distinct contributions of the thesis can be summarized in the following
aspects:

• A unique approach to the topic by considering the practical application of
super-resolution to the mobile imaging domain. This is visible across the
entire thesis since we evaluated most of the proposed algorithms by using
images taken with camera phones.
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• An integrated adaptive filtering method to reject the outlier image regions in
super-resolution (Chapter 6). This chapter is based on the work published
in [103] and [112].

• A new method for dense motion estimation (Chapter 5). The method is
based on recursive 1-D LMS filtering along different scanning directions.
The algorithm is fast and successfully tracks the stationary shifts between a
pair of images. The work in this chapter is published in [110].

• A super-resolution algorithm for demosaicing raw sensor data is presented
(Chapter 4). The results of this algorithm have been recently published in
[111].

• Novel approach for image deblurring by processing directlythe raw color
components, stemming from the observation that optical blur is different in
the color channels (Chapter 3). This work was published in [108].

• We propose to use order statistic filters (OSF) in super-resolution (Chapter
7). The use of generalized OSF (L-filters) in super-resolution constitutes a
novel and interesting approach because it can be further developed to target
different models for noise and registration errors. This chapter is based on
the work published in [113].

Other Work

Apart from the work presented in this thesis, the author was involved in other
projects which are not presented here. One of these is concerned with the imple-
mentation of a document imaging system on camera-phones andthe study of the
relevant applications [104]. An example algorithm that wasdeveloped for this ap-
plication is published in [19]. Another project dealt with the design of optimized
JPEG quantization tables for specific camera models. Additionally, the author
has been researching several topics in multimedia, for example digital rights man-
agement for mobile visual content [105], and the study of seamless transfer of
multimedia content over wireless networks [109]. In earlier work, the author has
been involved with research of content based indexing and retrieval (CBIR) sys-
tem for images [107], and has been developing algorithms forshape similarity
matching based on wavelet decomposition of the contour curves [106].
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Chapter 2

Super-Resolution Techniques –
An Overview

2.1 Introduction

This chapter discusses the filtering methods in image super-resolution. Section 2.2
gives a brief overview of the research developments in imagesuper-resolution. In
Section 2.3, we define a linear image formation model that relates the HR im-
age to the LR observations. This enables to formulate image super-resolution in
an inverse problem setting. In the same section, we give detailed examples of
the blurring and nonuniform interpolation operations thatare usually employed
in super-resolution algorithms. In Section 2.4, differentknown approaches for
super-resolution are presented and discussed. In the following Section 2.5, some
example results are presented to illustrate the achievableenhancement in resolu-
tion using this processing approach. Next, in Section 2.6, we discuss the theoret-
ical and practical issues that limit the performance of super-resolution; we focus
the discussion on the challenges for efficient use of super-resolution in the mobile
imaging context.

2.2 Related work

Extensive research literature exists on the topic of image super-resolution. The
term "super-resolution" generally refers to the problems of recovering image spec-
trum beyond the diffraction limit through the use of signal processing techniques.
It is worth of mentioning that the terminology is often used in different contexts,
for instance in diffraction-limited applications, it refers to deconvolution of a sin-
gle image. In this thesis, the focus is on super-resolution reconstruction, which
consists in the process of creating a high resolution image from a sequence of low
resolution images. This processing is also generically termed multi-frame restora-
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tion [16]; and it implies the use of inter-frame motion information in processing
the video data, i.e., using motion compensated filtering. Inthis sense, the common
property to all super-resolution algorithms is that they combine both temporal and
spatial filtering.

Early works in 1984 by Tsai and Huang [52] on super-resolution showed that
the aliasing effects of the LR images can be reduced, or even completely removed
if the relative sub-pixel displacement between the input images is exactly known.
Their initial formulation of the problem in the frequency domain has attracted
interest in the topic of image super-resolution. Later in 1987, Peleget al. [87] for-
mulated super-resolution in the pixel domain and proposed an iterative algorithm
to minimize the error between the estimated HR image and the simulated LR im-
ages. The formulation of super-resolution in the pixel domain allowed to include
arbitrary motion between LR images. In 1989, Stark and Oskoui [97] proposed a
super-resolution algorithm to reduce sensor blurring due to large pixels, the algo-
rithm was based on the method of projection onto convex sets (POCS). In 1992,
Tekalpet al. [99] extended the POCS formulation to include sensor noise in the
imaging model. In 1994, Cheesemanet al. [24] proposed a Bayesian statistical
formulation of super-resolution, and applied the algorithm to restore astronomical
images. Following these pioneering works, nowadays, thereis a large number of
competing approaches that propose to ameliorate the performance of the recon-
struction process, while addressing different applications.

Several articles have surveyed the classic super-resolution methods. In 1998,
Borman and Stevenson [17] published a review of different techniques that ad-
dress the problem of super-resolution video restoration. Later, other review arti-
cles have followed, for example [85] and [32]. In 2001, Chaudhuri edited a book
[23] containing a collection of articles relating different facets of super-resolution
in imaging. Few special journal issues dedicated to the topic of super-resolution
have followed recently, for example [59] and [83].

The objective comparison of the different super-resolution algorithms in the
literature is a challenging task. The main difficulty stems from the complexity
of the overall filtering process, which involves several detailed operations and a
large number of different parameters that could bias the quality of the final result.
Mostly, the precision of the estimated registration parameters can significantly
impact the overall performance of the different algorithms. However, the com-
mon feature in super-resolution literature is that it is usually treated as an inverse
problem, in the sense that the proposed algorithms attempt to solve the forward
imaging process that relates the formation of a sequence of LR images from a
single HR image scene.
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2.3 Image formation model

In this section, the general model that relates the HR image to the LR observa-
tions is formulated. For tractability, the imaging model isusually assumed to be a
linear one. The imaging model involves consecutively, geometric transformation,
sensor blurring, spatial sub-sampling, and an additive noise term. In the continu-
ous domain, the forward synthesis model can be described as follows: considerN
observed LR images, we assume that these images are obtainedas different views
of a single continuous HR image. Theith LR image can be expressed as:

gi(x, y) = S ↓ (hi ∗ f (ξi)) (x, y) + ηi(x, y), (2.1)

wheregi is theith observed LR image,f is the HR reference image,hi the point
spread function (PSF),ξi the geometric warping,S ↓ the down-sampling operator,
ηi additive noise term, and∗ denotes the convolution operator. If we assume that
each LR imagegi is of equal size(K × L) and the down-sampling factor isS,
then the HR imagef has size(SK × SL).

After discretization, the model can be expressed as:

Gi = AiF + Υi. (2.2)

whereGi, F andΥi correspond respectively togi, f andηi in discrete domain,
and are represented lexicographically column-wise into vectors. The matrixAi

combines successively the geometric transformationξi, the convolution operator
with the blurring parameters ofhi, and the down-sampling operatorS ↓ [30]. If
the down-sampling factorS > 1, thenAi is a sparse matrix with size(KL ×
S2KL).

2.3.1 Problem statement

Given the observed set of LR images{Gi, i = 1 · · ·N}, solve for
the HR imageF according to the imaging model in (2.2).

This type of problem is a typical example of an inverse problem, wherein the
source of information (HR image) is estimated from the observed data (LR im-
ages). The linear formulation of the imaging model enables to formulate the
super-resolution problem in a setting similar to a classic image restoration prob-
lem. The main difference is that we have several observations emanating from a
single source data (whenN > 1).

The inverse problem above isill-posed. First, because the problem is likely to
be under-determined due to insufficient number of LR images.Second, because
the blurring (low-pass filtering) results in an ill-conditioned [12] matrix(Ai). In
other words, this means that the forward imaging process involves an irrecoverable
loss of information. Therefore, the information content ofthe solution, when
it exists, is lower than that of the initial state. Since there is no direct solution



18
CHAPTER 2. SUPER-RESOLUTION TECHNIQUES – AN

OVERVIEW

Figure 2.1: Illustration of the image formation model following the model in (2.1).

to the ill-posed problem, regularization procedures are necessary to stabilize the
solution.

2.3.2 Simulation of the image formation model

As it will be discussed later, the simulation of the forward imaging model is usu-
ally required in super-resolution algorithms. Fig. 2.1 illustrates the model that is
used for generating the sequence of LR images, the model is similar to the one
described in [29].

In order to test various algorithms under controlled conditions, we simulated
the forward imaging model described in (2.1). Given an original HR image, it is
possible to generate a sequence of synthetic LR images by using random warps of
the original image. For that, an 8-parameter projective geometry model is used;
the corresponding parameters are saved for later use in the reconstruction experi-
ments. A continuous Gaussian PSF is used as the blurring operator, which can be
controlled through a single parameter. It is possible to specify any down-sampling
parameter, and different types of additive noise models (Gaussian noise, impul-
sive, mixed). The obtained set of synthetic images are used as input to super
resolution algorithms with the exact knowledge of motion and blur. This type of
experimental data sets enables exact quantitative comparison of different super-
resolution algorithms.

2.3.3 Point spread function

The Point-Spread Function (PSF) of an imaging system describes how the light
energy from a point on the object plane is dispersed onto the sensor plane. The
diagram in Fig. 2.2 shows the basic principle of blurring dueto optics. Due to



2.3. IMAGE FORMATION MODEL 19

Figure 2.2: Illustration of optical blurring in imaging systems. Usually, the corre-
sponding degradation is analytically simplified by space invariant linear convolu-
tion with a point spread function (PSF).

the optical system’s diffraction and aberration pattern, each pointP in the object
plane is extended (spread) onto a regionS in the image plane.

Since the image plane is sampled by the sensor, the PSF,hi in (2.1), is assumed
to incorporate the combined optical blurring and sampling effects of sensor. Usu-
ally, the corresponding degradation is simplified by assuming a space invariant
linear convolution.

2.3.4 Nonuniform interpolation

All super-resolution algorithms need to implement at some stage nonuniform in-
terpolation functions, sometimes referred to as projection functions. Due to ar-
bitrary shifts between the LR images, the registered pixelsare likely to be non-
uniformly distributed over the reference grid. Thus, nonuniform interpolation is
necessary to map those pixel values onto a uniformly spaced HR image (see Fig.
2.4 for an illustration). Even if the output size is the same as the input size, there is
still need to perform this operation. Hence, careful and precise handling of the in-
terpolation process is critical to achieve superior performance in super-resolution
algorithms.

Besides pixel replication, the commonly used algorithms for image interpola-
tion are bilinear, bicubic [63], and B-spline [114] interpolation. These methods
employ a simple weighted sum operation to estimate pixel values at the inter-
polated image grid. Although these methods fail to effectively preserve edges
and introduce additional blurring artifacts, they are simple and can be easily inte-
grated in super-resolution algorithms when the interpolation step is intentionally
designed as a stand-alone operation.

However, in most super-resolution algorithms, it is required to implement both
thesynthesisconvolution and theback-projectionconvolution. The synthesis con-
volution is needed to simulate the forward imaging model, and accordingly gener-
ate the downsampled LR images from the HR image by incorporating the effect of
the assumed PSF. On the other hand, the back-projection convolution is necessary
to implement the inverse process in order to map the registered pixels from the LR
image grid onto the HR image grid. Both operations can be integrated by assum-
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Figure 2.3: Different filters used in projection functions,plotted in 1-D.

ing a continuous interpolation filter that can be easily controlled through a single
parameter (i.e., Gaussian interpolators). Although this choice of implementation
limits the form of the PSF to a pre-defined parametric function, it allows signifi-
cant flexibility in the implementation.

The projection functions are used to interpolate non-uniformly distributed pix-
els onto a rectangular reference grid. This means that we need to precisely cal-
culate the distances between the central pixel position andthe neighboring pixels.
This procedure is needed to achieve efficient implementations of the projection
functions, especially in the presence of significant rotations or perspective change
between the LR images. Below, we describe in detail the back-projection function
when considering the warping that is characterized by an 8-parameter perspective
transformationP .
On the HR image grid, the pixelf(m,n) is defined over the coordinate position(x, y)
(center of the pixel).f(m,n) is calculated as follows:

1. Initialize the HR pixel valuef(m,n) = 0.

2. According to the transformation(x′, y′) = P−1(x, y), determine the coordinates
of the projected pixel position onto the LR image grid.

3. Mark a rectangular window of size(W ×W ) around the coordinates defined by
(x′, y′). The pixels(k = 1 · · ·W 2) inside this window will be used in the in-
terpolation. The size of the window(W ) depends on the desired precision, the
employed filter(ψ), and the zoom factor.

4. For each pixel(gk) inside the window:

4.1. find the distancedk between the center of that pixel and the point(x′, y′)

4.2. usingdk, find the corresponding weight assigned by the filter
(ψ(dk))

4.3. increment the HR pixel value by the LR pixel value times its corresponding
weight:f(x, y) = f(x, y) + ψ(dk)gk

5. Normalize the HR pixel value by dividing it by the sum of theweights used:
f(x, y) = f(x,y)

�
W2

k=1
ψ(dk)
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Figure 2.4: Dependency between LR and HR pixels in non-uniform interpolation.

Note that in this algorithm, the weights are assigned based on the distances
dk, which are calculated in the LR grid rather than on the HR grid. This ap-
proximation assumes that the tilt of the camera is small so that proportionally, the
corresponding distances are quite close. Fig. 2.4 shows thedependency between
the LR and HR pixels.

In our testing software, three different types of interpolation filters are used,
these can be easily selected to generate the desired projection function. These
are the zero order integrating function, triangular integrating function, and the
parametric gaussian interpolator. These functions are continuous and truncated
over a fixed support window. The window support depends on theextent of the
assumed blurring.

2.4 Super-resolution algorithms: a review

In this section, we review some of the most referenced approaches for solving the
super-resolution problem. In the following, the notation used is in accordance the
image formation model in (2.2).

2.4.1 Iterated back-projection

Irani and Peleg [55] formulated the iterative back-projection (IPB) algorithm for
super-resolution by utilizing a similar approach to that used in tomography. In
Computer-Aided Tomography (CAT), the image of a 2-D object is reconstructed
from its 1-D projections along many directions. In a similarfashion, the HR image
(F̂ ) is estimated by consecutively back projecting the error (difference) between
simulated LR images via imaging model(Ĝi) and the observed LR images(Gi).
Starting with an initial estimatêF 0 for the HR image, the back-projection process
is repeated iteratively for each incoming LR image.
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For theith inbound LR image, the basic update equation can be written as:

F̂ i = F̂ i−1 +HBP (Gi − Ĝi)

= F̂ i−1 +HBP (Gi −AiF̂
i−1)

(2.3)

whereHBP is the back-projection filtering operator that performs theprojection
of the error image onto the HR estimate. In our notation, the matrix HBP in-
tegrates the motion compensation and the interpolation filter hbp, consecutively.
Unlike the imaging blur due tohpsf , the back-projection filter(hbp) may be cho-
sen freely, for instance if we assumehbp is Gaussian with parameterσbp, then the
sharpness of the final result may be controlled by selecting asmall value forσbp.

From a practical point of view, one advantage of this algorithm is that it can
handle incoming LR images without the need of buffering, thus significantly low-
ering the memory use, while still producing competitive results. One difficulty
with this filtering approach is the absence of a regularization step. This means
that the algorithm may converge to several possible solutions, and keeps oscil-
lating among some of these. Also, as the iterations go forward, the latest images
may have more influence on the final result. The choice of the initial estimate does
not significantly influence the performance of the algorithmin terms of speed of
convergence or stability [56]. It may, however, influence which of the possible
solutions is reached first. A good choice of initial estimateis the average of the
motion-compensated LR images, which usually leads the algorithm to a smoother
solution.

Fig. 2.5 shows a block diagram of an example algorithm based on iterative
back-projection. Note that it is possible to integrate intermediate filtering steps.
For example in [27], a Wiener filtering step is integrated prior to performing
the back-projection in order to improve the deblurring and noise filtering perfor-
mance. It is possible also to augment the derived algorithmswith a few additional
filtering steps such as additional iterations, regularization filters and simple checks
to improve robustness against motion outliers.

2.4.2 Maximum a-posteriori

This approach (MAP) consists in solving the super-resolution problem by treating
it as a statistical estimation problem (e.g. [21], [24], [45], [91]). The Bayesian
formulation solves for the probability density function (PDF) of the original im-
age by maximizing thea-posteriori conditional probability. Compared with the
Maximum Likelihood (ML) solution, the MAP formulation provides for an easy
method to integratea-priori knowledge concerning the solution, which consider-
ably helps to regularize the inverse problem.
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Figure 2.5: Block diagram of an example algorithm based on iterative back-
projection

Problem formulation

The MAP estimator of̂FMAP maximizes thea-posterioriPDFPr(F |G1, · · · , GN )
with respect toF . Applying Baye’s rule, the MAP estimator can be formulated
as:

F̂MAP = arg max {Pr(F |G1, · · · , GN )}

= arg max
{

Pr(G1,··· ,GN |F )Pr(F )
Pr(G1,··· ,GN )

} (2.4)

Note that in the denominator, the joint probability function Pr(G1, · · · , GN ) is
independent ofF . Further, since all the functions are positive, then if we take the
log of (2.4), the MAP estimator can be written as:

F̂MAP = arg max {log[Pr(G1, · · · , GN |F )] + log[Pr(F )]} (2.5)

In the equation above, the first term is thelog-likelihood function, and the sec-
ond term isa-prior density of the assumed solution. If we drop thea-prior term,
the problem formulation is equivalent to that of theMaximum Likelihood(ML).
On the other hand, thea-prior density function enables to incorporate regulariza-
tion by biasing the set of possible solutions towards the assumed prior model.

According to the imaging model in (2.2), the likelihood function is completely
specified by the joint PDF of the noise(Pr(Υ)), i.e.:

Pr(G1, · · · , GN |F ) = Pr(Υ) {(G1 −A1F ), · · · , (GN −ANF )} (2.6)

Typically, it is assumed that the noise is identically and independently distributed
in the different LR imagesGi. This simplifies the joint density functionPr(Υ)

into a multiplication of the probability distribution of each term. Further, if we
assume a zero-mean Gaussian noise model with varianceσ2, then the conditional
PDF above reduces into the following analytic expression:

Pr(G1, · · · , GN |F ) =
1

(2π)M/2σM
exp

{
− 1

2σ2

N∑

i=1

‖Gi −AiF‖2

}
(2.7)
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whereM = S2KL is the number of pixels on the HR image.

Prior model

In order to solve for the MAP estimator in equation (2.4), we need to define the
prior probabilityPr(F ) for the data model, which is the distinctly Bayesian con-
tribution. The selected statistical image model should reflect the characteristics of
the random process from whichF is considered as a realization. A general model
for the prior distributionp(u) is usually defined as a Markov random field (MRF)
that is characterized by its Gibbs distribution

Pr(F (k)) =
1

Z
exp {−Ω(k)} =

1

Z
exp

{
−
∑

c∈C

ϕc(k)

}
(2.8)

whereZ in the normalizing term is called the partition function in physics ter-
minology, which encodes the statistical properties of a system in thermodynamic
equilibrium.Ω is called the energy function and has the form
Ω(F ) = exp

{
−∑c∈C ϕc(F )

}
, whereC denotes the set of cliques for the MRF,

andϕc is a potential function defined on a clique.
Below, we list some typical prior models that are usually used in image restora-

tion tasks:

• Ω = ||F ||22 (L2 norm) white noise prior

• Ω = ||∇2F ||22 (L2 norm of Laplacian) smoothness prior

• Ω = ||F ||1 (L1 norm) impulsive data prior

• Ω = |∇F | (magnitude of gradient) also known as total variation (TV) prior

Using the Gibbs prior model, the overall MAP estimator is obtained by minimiz-
ing the following cost function

F̂MAP = arg min

{
N∑

i=1

||Gi −AiF ||2 + λΩ(F )

}
(2.9)

whereλ is the regularization parameter which controls the balancebetween
the influence of the Gibbs prior term and that of the likelihood term. Note that
the ML estimator is a special case of MAP estimation with no prior term (λ = 0).
However, due to the ill-posedness of SR inverse problems, the regularization term
is needed to avoid the divergence of the solution. On the other hand, a too largeλ
will emphasize the prior model on the expense of the fidelity to the observed data.

In practice, the minimization of the cost function in (2.9) is solved through
iterative conjugate descent techniques. The gradient function E is obtained by
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differentiating with respect toF and is obtained as follows:

E(F ) = −2
N∑

i=1

AT
i (Gi −AiF ) + λ

∂Ω

∂F
(2.10)

and the HR estimate is iteratively computed as follows:

F̂ k+1 = F̂ k + µkE(F̂ k) (2.11)

whereµk is the step size.µk is usually calculated through the steepest descent
method, and is given by

µk =
N ||E(F̂ k)||2

∑N
i=1 ||AiE(F̂ k)||2

(2.12)

The MAP paradigm for solving the SR problem has been proposedin several
different settings. In [91], Schultz and Stevenson argued that Gaussian image
priors are not effective for image data, instead they proposed a discontinuity pre-
serving model using the Huber-Markov Gibbs prior, resulting in a constrained
optimization problem with a unique minimum. Cheesemanet al. [24] applied
MAP super-resolution restoration techniques to astronomical images. Their for-
mulation assumes Gaussian noise and utilizes prior terms which lead to a linear
system of equations, and which are solved using Gauss-Jacobi methods. Hardie
et al. [45] proposed a similar MAP formulation under the assumption of Gaussian
noise and a Gaussian MRF prior model. Additionally they considered the simul-
taneous estimation of both the HR image and the motion parameters, and they
provided with a detailed algorithm to the resulting iterative optimization problem.

2.4.3 Projection on convex sets

The method of projection onto convex sets (POCS) defines the feasible solution
space as the region of intersection of a collection of convexconstraint sets, which
represent the space containing the possible HR images that can satisfy the image
formation model. The convex setsCk may represent constraints such as fidelity
to the observed data, positivity, bounded energy, smoothness and so on. The es-
timated HR image is restricted to lie in the intersection space of these constraint
setsCF̂ = ∩m

k=1Ck, and the solution is obtained recursively as follows:

F̂n+1 = PmPm−1 · · · P1F̂
n (2.13)

whereF̂ 0 is an initial estimate of the HR image,Pk is the projection operator
that projects an arbitrary image onto the convex setCk, (k = 1 · · ·m). Fig. 2.6
illustrates this approach in solving the super-resolutionproblem.
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Figure 2.6: Illustration of the projection onto convex sets(POCS) approach

One constraint that is commonly used in super-resolution isthe consistency
with observed data. It is usually imposed using the following constraint set

CGi
=
{
F̂ : |Gi(u, v) − (AiF̂ )(u, v)| ≤ Ti(u, v)

}
(2.14)

which is defined for each pixel position(u, v) on the LR image grid.Ti(u, v) is
a threshold that may be freely determined based on the assumed noise power, the
precision of motion parameters, the number of iterations, etc.
In addition to data consistency constraints, the range values in the solution image
may be bounded with the setCB,

CB =
{
F̂ : vmin ≤ F̂ (u, v) ≤ vmax

}
(2.15)

Bounded energy is another common constraint that can help regularize the projec-
tion functions. Also, another useful constrain is to limit the solution to lie within
some distance from a reference imageFref , which can be for instance the inter-
polated reference image that is used in motion estimation. This may be imposed
using the following constraint set,

Cr =
{
F̂ : ||F̂ − Fref || ≤ εr

}
(2.16)

Additional constraints on the solution may be defined in a similar manner. The
inclusion of prior knowledge in this fashion constrains thesolution space thus en-
abling robust performance in the presence of noise, inconsistent data or missing
data. One important advantage of the POCS approach is that itprovides a con-
venient framework for regularizing the inverse problem by incorporating simple
methods to include a-priori information.

Initially, Stark and Oskoui [97] proposed the POCS method insuper-resolution
to reduce sensor blurring due to large pixels, although the image formation model
they assumed did not include a noise term. Tekalpet al. [99] extended the POCS
formulation to include sensor noise, and later Patti [86]et al. further incorporated
the motion blur occurring during the aperture time of the camera, this has been
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done by considering a spatially varying point spread function in the image forma-
tion model. They also described a detailed implementation of the POCS-based
reconstruction algorithm.

The main difficulty with the POCS approach lies in defining proper projec-
tion functions that ensure to reach the intersection of the defined constraint sets.
The associated implementations usually require considerable computational cost,
and a large number of iterations to achieve convergence [16]. In practice, better
performance is usually achieved with heuristic algorithmsthat combine both the
statistical inference methods (i.e., ML or MAP) and POCS approach, since they
combine the speed of convergence of gradient based optimization techniques with
POCS-based intuitive methods for inclusion of simple constraint rules to avoid the
divergence of the solutions.

2.4.4 Other approaches

Nonuniform interpolation approach

This approach is the most intuitive method to implement super-resolution. The
pixels from all the LR images are registered directly onto a HR image grid, and
a non-uniform interpolation technique is employed to interpolate in all missing
pixel positions. Later, it is possible to perform image restoration stage in order
to reduce noise or blur artifacts. For example, Ur and Gross [115] proposed an
algorithm that performs nonuniform interpolation, which is followed by a deblur-
ring step. Nguyen and Milanfar [84] proposed a wavelet-based algorithm that is
a combination of interpolation and restoration operations. They exploit the inter-
lacing structure of the sampling grid in SR and derive a computationally efficient
wavelet interpolation for interlaced image data.

In general, the advantage of this type of approach is the simplicity in imple-
mentation and the lower computational requirements, whichmakes real-time ap-
plications possible. Additionally, it may be easier to integrate heuristic approaches
that improve the performance of the overall process. On the other hand, the main
difficulty with this approach lies within its unpredictableperformance due to the
limited degradation models, also the optimality of the whole reconstruction al-
gorithm is not guaranteed since the interpolation and restoration steps are imple-
mented independently of each other.

Frequency domain processing

Early works on super-resolution by Tsai and Huang [52] published in 1984 showed
that it is the aliasing effects in the LR images that enable the recovery of the high-
resolution (HR) fused image. They derived the equations that describe the rela-
tionship between LR images and the original HR image by exploiting the relative
motion between LR images. Based on the shifting property of the Fourier trans-
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form, they formulated an elegant system of equations relating the aliased DFT
coefficients of the observed LR images to the CFT of the unknown image. This
system of equations is solved for the frequency-domain coefficients of the original
scene, which is then recovered using the inverse DFT. This formulation was the
first to propose super-resolution by using sub-pixel shiftsto improve the spatial
resolution of the images. However, this approach is limitedto global translational
motion model, for this reason, Fourier domain approach is considered nowadays
useless in practical applications.

More recently, Altunbasaket al. [3], [40] proposed a method to perform super-
resolution in compressed domain. They incorporated the compression artifacts in
the image formation model, particularly the quantization effect. They proposed an
algorithm that is based on the technique of projection of convex sets (POCS), and
which operates directly on the DCT coefficients. Although itis quite challenging
to precisely model the compression artifacts and the implementation might be
quite complex, this approach is interesting for practical video applications, since
more often video data is presented exclusively in compressed domain.

Recognition based approaches

Motivated with the observation that smoothness priors usually lead to overly smooth
HR estimates, Baker and Kanade [8] proposed to use recognition-based priors
when the target magnification factor is large. The face hallucination algorithm
they propose is based on the recognition of generic local features, which they use
to predict an image prior that replaces the traditional smoothness priors. They
formulated their solution as a MAP, and integrated the learnt models into the prior
term. They claim that the recognition process provides additional source of infor-
mation for super-resolution, which leads to the enhanced results of face images.

With the target application of face recognition, Gunturk and Batur [42] pro-
posed to transfer the super-resolution reconstruction from pixel domain to a lower
dimensional Eigen face space. The reconstruction algorithm no longer tries to
obtain a visually improved high-quality image, but insteaddirectly constructs the
information required by the recognition system. Such an approach has the ad-
vantage of a significant decrease in the computational complexity as well as an
improved performance.

The idea of integrating sophisticated recognition-based priors in the super-
resolution process is conceptually interesting. It also softens the borders between
different research areas, which might bring some promisingresults in future.
However, the main difficulty lies in defining robust and generic methods to ex-
ploit the prior information into the super-resolution process. Another drawback
is that the processing is closely tied with a limited scope ofimage models and
applications.
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Figure 2.7: Screen shot of user interface options for testing super-resolution algo-
rithms.

2.5 Example results

In this section, we show some example results in order to illustrate the possible
resolution enhancement with super-resolution algorithms. We used two different
methods, the back-projection and the MAP algorithms, whichare discussed in
the previous section. We present two experiment settings todemonstrate the per-
formance of SR algorithms. In the first experimental setting, a synthetic image
sequence is used. The LR images are generated from a single HRimage with the
exact knowledge of the registration parameters and the image formation model. In
the second experiment, the algorithms are tested on real world sequences obtained
from camera hardware.

2.5.1 Testing software

Most of the algorithms that are described in this thesis havebeen implemented in
a Windows based application, which is used as a development and testing envi-
ronment for a variety of different image processing algorithms. Additionally, we
frequently use Matlabc© to test some algorithms in a quick fashion. Fig. 2.7 shows
a screen shot of the user interface options that are related to the testing of different
super-resolution algorithms. The user interface makes it easy to select different
generic parameters such as the zoom factor, the algorithm used, the number of
iterations, the PSF, the back-projection filters, the motion estimation algorithm,
etc.
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(a) (b)

(c) (d)

Figure 2.8: Example of super-resolution on noisy LR sequences (σ2
η = 30). Target

zoom factor4, 16 input images used. (a) Original image. (b) Reference frame
zoomed by4 using bicubic interpolation,SNR = 1.30. (c) Result using back-
projection algorithm, 4 iterations,SNR = 9.11. (d) Result using MAP method
(smooth prior), 4 iterations,SNR = 10.35.

2.5.2 Example results with synthetic image sequences

In Fig. 2.8 and Fig. 2.9, the results of super-resolution on sequences of synthetic
test images are shown. The input images are generated from a single HR image
according to the imaging model described in equation (2.2).The original HR
image was randomly warped using an 8-parameter projective model. The regis-
tration parameters were saved for the reconstruction experiments. This enables us
to compare the images using an objective metric. We used the Signal to Noise
Ratio(SNR), which is defined as follows:

SNR = 10 log
||F ||2

||F̂ − F ||2
(2.17)

In the first experiment, we used a continuous Gaussian PSF(σpsf = 0.6)
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(a) (b)

(c) (d)

Figure 2.9: Example of super-resolution on noisy LR sequences (σ2
η = 15). Target

zoom factor3, 16 input images used, only luminance component (Y) is processed.
(a) Original image. (b) Reference frame zoomed by3 using pixel replication
SNR = 13.76. (c) Result using back-projection algorithm, 1 iteration,SNR =
16.79. (d) Result using MAP method (smooth prior), 3 iterations,SNR = 17.19.
Note that visual fidelity of the original images may be altered due to resizing and
dithering operations used in the printing process.

as the blurring operator and we down-sampled the images by 4 to obtain the 16
LR input images. All the images were contaminated with additive zero-mean
Gaussian noise (σ2

η = 30). Fig. 2.8 (b) shows the reference frame zoomed by4
using bicubic interpolation,SNR = 1.30. Fig. 2.8 (c) shows the result obtained
using the back-projection algorithm after 4 iterations,SNR = 9.11. Fig. 2.8
(d) shows the result using MAP method (with a smooth prior) after 4 iterations,
SNR = 10.35. The visual results, as well as theSNR numbers confirm the
improvement in quality when using super-resolution algorithms compared to a
single interpolated image. Also, comparing the performance of iterated back-
projection against MAP when using similar parameters and computational load,
we can remark the superiority of the MAP estimator, which is more robust to
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(a) (b)

Figure 2.10: Example results using input sequence from a digital camera. 16
JPEG compressed images are used. (a) Reference frame zoomedby 3 using bicu-
bic interpolation. (b) Super-resolution result using iterated back-projection tech-
nique,1 iteration, real time operation.

noise. This is due to the smoothness prior used in MAP, which corresponds well
with the original image structure, and ultimately leads to improved regularization
behavior of the MAP estimation.

In the second experiment, the original HR image is a color image which was
blurred with a Gaussian PSF(σpsf = 0.6) and down-sampled by 3 to obtain 16
LR input images. The images were randomly warped and contaminated with ad-
ditive zero-mean Gaussian noise (σ2

η = 15). Fig. 2.9 (b) shows the reference
frame zoomed to original size using pixel replication, the corresponding signal to
noise ratio of the luminance component was found to beSNR = 13.76. Fig. 2.9
(c) shows the result obtained using the back-projection algorithm after 1 iteration,
SNR = 16.79. Fig. 2.9 (d) shows the result using MAP method (with a smooth
prior) after 3 iterations,SNR = 17.19. In (c) and (d), we can notice that the de-
tails are sharper, whereas the noise artifacts are less visible, especially in (d). The
super-resolution processing was applied only to the luminance component (Y),
whereas the chrominance components have been interpolatedfrom the reference
image. It is worth noting that even if we processed in the RGB domain (which
takes 2 times more processing time), the visual quality of the obtained results is
similar to the images shown in (c) and (d). This is due to the human eye being less
sensitive to the chrominance than to the luminance spatial resolution.

2.5.3 Example results with camera sequences

The true indication on whether an algorithm performs adequately is to test it on
an image sequence captured with a digital camera. In this section we report two
related experiments. In the first experiment, an image sequence of 16 JPEG com-
pressed LR frames (160x120 pixels) is used. The images are captured with a low-
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(a) (b)

Figure 2.11: Example results using input sequence from digital camera (Micron
board MI-SOC1310).6 cropped frames from an uncompressed video sequence
are used. (a) Reference frame zoomed by2 using bicubic interpolation. (b) Super-
resolution result using MAP technique,5 iterations.

end consumer camera (Casio QV-3EX). This sequence was used to obtain a super-
resolved image of size (480x360). The image in Fig. 2.10 (a) shows the zoomed
reference frame using bicubic interpolation (zoom factor =3), and the image in
Fig. 2.10 (b) shows the super-resolved image obtained usinga single iteration of
the back-projection algorithm, which runs in real-time on aPC. Visual inspection
of the images reveals significant improvement in the detailsof the image; note
the details which are completely invisible in the referenceimage, and which have
been reconstructed from different images in the sequence. In this experiment,
we used only one iteration of the back-projection algorithm; it is remarkable that
a single iteration produces significant improvement. In this sense, limiting the
number of iterations works as a regularization mechanism inthe back-projection
algorithm, and prevents the edges from overshooting and thenoise amplification
that may be due to inaccurate assumptions in the assumed image formation model.
In general, this example illustrates remarkable performance for super-resolution
reconstruction, especially that JPEG compression, which eliminates much of the
high-frequency content, has not been considered in the image formation model.

In the second experiment, we used a short image sequence of 6 raw images
(RGB, BMP format), which were captured with a test camera board (Micron board
MI-SOC1310). The image sequence was used to obtain a super-resolved image
with a target zoom-factor of 2. The image in Fig. 2.11 (a) shows the zoomed
reference frame using pixel replication, and the image in Fig. 2.11 (b) shows the
super-resolved image obtained using 5 iterations of the MAPiterative algorithm.
Comparing the images, we could observe significant improvement in the details
of the image, as well as a reduction in visible noise artifacts. This second example
illustrates the usefulness of super-resolution algorithms when used for restoration



34
CHAPTER 2. SUPER-RESOLUTION TECHNIQUES – AN

OVERVIEW

of uncompressed images. The algorithm parameters in this case are not optimized;
instead, they are roughly estimated since the exact image formation model is not
known. This is typical in the case of real hardware experiments. In this respect,
we noted that the MAP estimation is less sensitive to modeling deviations (noise
variance, PSF) than the iterated back-projection technique, which is more prone
to divergence when using the same parameters. This is due to the smooth regular-
ization step that is associated with the MAP estimator, which attenuates the effect
due to deviations from the real acquisition model.

2.6 Factors limiting the performance of super-resolution

Recently, there has been some criticism towards the overallefficiency of the super-
resolution process. The skepticism is fueled by the fast advances in sensor tech-
nology. In fact, some argue that the most direct and cost effective solution to
increase spatial resolution is to reduce the pixel size by sensor manufacturing
techniques. However, as the pixel size decreases, the number of photons incident
on the pixel array decreases, generating shot noise that significantly decreases the
signal to noise ratio(SNR). In practice, this performance problem will be most
noticeable in low-light conditions, where the noise becomes a major problem. In
fact, besides the reduction in photon conversion efficiency, there are other funda-
mental optical limits which become increasingly importantin the overall imaging
process, which place a practical lower limit on pixel size ([47], [67]). Therefore, in
these applications, super-resolution processing might bethe solution to overcome
the future limitations of sensing technologies.

Besides digital cameras, there are several applications that might benefit from
super-resolution. In the previous chapter, we listed some potential applications,
although we are convinced that there are many more applications that were not
considered. So the real questions that we should try to address are not about the
applicability of super-resolution, but rather about the performance. In the fol-
lowing, we discuss the performance limits of super-resolution. First, we consider
the theoretical bounds that limit the performance of super-resolution algorithms.
Next, we raise some practical issues that limit the performance of the derived
algorithms.

2.6.1 Necessity of aliasing

In frequency domain setting, super-resolution processingrestores the DFT sam-
ples at a finer resolution and extrapolates the frequency content such that the re-
stored spectrum is wider than any of the observed LR images. The extrapolation is
the operation that is most specific to super-resolution since it explains the recovery
of the lost information during the sampling process. In [53], Hunt explained the
recovery of the information beyond the diffraction limit cut-off because the sinc
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function (due to rectangular spatial sampling) is infinite in extent, which means
that there will be components of the spectrum portion above the diffraction limit
that will be mirrored into the spectrum below the diffraction cut-off. This means
that it is the presence of the aliased high frequencies that make super-resolution
feasible. In practice, this means that the images need to be under-sampled at the
sensor level, without undergoing excessive low pass filtering due to optical blur-
ring or motion blur.

2.6.2 Ill-posedness

The fundamental problem that is addressed in super-resolution is a typical ex-
ample of anill-posed inverse problem. This means that explicit regularization
strategies need to be employed in order to achieve meaningful solutions. In prac-
tice, regularization is incorporated in the solution as terms that express a-priori
assumptions about the structure of the imaged scene.

Most, if not all super-resolution algorithms are based on the reconstruction
constraints which assume that the LR images are generated from a single HR
image. In [8], Baker and Kanade derived some analytical results which show
that the reconstruction constraints provide less and less useful information as the
magnification factor increases. Most noticeable is their remark that even if the
reconstruction constraints are invertible (which generally are not), the condition
number grows at least as fast as quadratic function of the target magnification fac-
tors, which roughly indicates thatill-posednessof the inverse problem is growing
exponentially with the magnification. This means that the overall estimate of the
HR solution, especially when combined with smoothness priors, is more and more
irrelevant at large magnification factors. In one experiment, Baker showed that for
a magnification factor of 16, the smoothness prior provides more information than
the reconstruction constraints. This illustrates how fastthe inverse problem can
becomeill-conditioned.

2.6.3 Simplistic modeling

Most of the proposed methods for super-resolution in the literature suffer from
simplistic assumptions. Besides the simplification in the image formation model,
usually sub-pixel motion is assumed to be exactly known. In practice, the dis-
placement between the consecutive frames has to be separately estimated, which
makes the super-resolution reconstruction a compound process that heavily de-
pends on the precision and implementation details of the motion estimation. Ad-
ditionally, motion blur1, which has a substantial degrading effect on the perfor-
mance of super resolution [11] is usually skipped in the image formation model.

1In [101], we proposed a new method for the identification of motion blur based on the avail-
ability of two differently exposed images the same scene.
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In fact, few publications dissect in detail the implementation of the different
algorithms required in super-resolution. Rather, most publications concentrate on
the simulated inverse problem and the associated regularization strategies. We
reckon that there is need to investigate and understand the problems that are posed
when considering super-resolution as an entire process, which integrates the mo-
tion estimation process, and which tackles the dependent problems such as motion
outliers, motion blur and internal camera settings, etc.

Nonlinearities

The most evident simplification lies in the image formation model itself, which
is usually assumed linear for tractability of the solution.Usually the employed
models do not cater for the different processes that happen during the sensing of
the scene, which result typically in nonlinearities of the model. For instance, be-
sides the model recently presented in [43], which considersthe limited dynamic
range and the non-linear sensor response in the super-resolution model, most of
the existing literature assume linear sensing models and constant camera exposure
time. Still, there are several additional physical and processing parameters which
are usually skipped in the modeling, e.g., uneven sampling of the different colors,
uneven color response, different gain levels used with eachpicture and the result-
ing signal dependent amplification of the noise, different optical aberrations such
as vignetting or geometrical distortions, etc.

Even when adequate linearization of these processes is corrected by applying
point-wise or spatial processing on the captured images, some additional enhance-
ment algorithms are usually applied inside the camera to reduce the noise, or to
improve the sharpness or the color contrast. The resulting process is extremely
difficult to capture using a simple model, this means that thelinear models used
in the formulations of image super-resolution are approximative at best.

Noise modeling

Usually Gaussian noise models are used in the modeling of theimage formation
process. It is well accepted that this is an over-simplification since in reality the
sensor’s noise is due to a combination of several sources, e.g., shot-noise, pho-
tonic noise, dark current noise, dark signal level, thermalnoise. The processing
on sensor itself might complicate the noise modeling by introducing errors due
to fixed-pattern noise, photon-response non-uniformity, amplifier noise, circuit
noise, pixel cross-talk, correlated double sampling, quantization noise, chromatic
conversions, etc. [25].

Most of the research literature available on the detailed sensor’s noise analysis
is developed within the electronics community, and typically comes to conclusions
and models which are useful only for the purpose of electronic hardware design
and integration. These fragmented models are particularlyinadequate for image
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processing applications since accurate pixelwise knowledge of the noise model is
required in order to properly restore the image details.

In general, signal dependant noise models need to be considered in order to im-
prove the fidelity of the reconstruction process in super-resolution. For example,
recently Foiet al. [36] investigated the effect of precise Poissonian noise model-
ing on the performance of image deblurring. It was found the assumption of signal
dependent noise, which is closer to reality, significantly improves the performance
of the image restoration process, especially for images captured with sensors hav-
ing small pixel size. In a further development [35], he proposed a deconvolution
technique for observations corrupted by signal-dependentnoise. The deblurring
is performed in transform-domain and is applied on varying size blocks. The re-
sults demonstrate good performance of the proposed method,which can be easily
combined with other transform-domain processing.

2.6.4 Algorithmic performance

Precise motion estimation

One critical requirement to achieve good performance in image super-resolution
is the availability of accurate registration parameters. In fact, sub-pixel precision
in the motion field is needed to achieve the desired improvement. In real-life elec-
tronic imaging applications, the motion occurring betweenframes is not known
exactly, since precise control over the data acquisition process is rarely available.
Thus, motion estimates must be computed to determine pixel displacements be-
tween frames. Towards achieving practical implementations of super-resolution,
the problems of sub-pixel image registration and outlier robustness need to be
investigated in more detail.

The employed algorithm for motion estimation needs to compromise the fol-
lowing properties: precision of registration, noise robustness, locality of motion
estimates, robustness to motion outliers and reasonable computational complex-
ity. It is well accepted that motion estimation is the most challenging in super-
resolution because it is affected by aliasing and the degradation in the image for-
mation process, which are precisely the factors that super-resolution proposes to
solve for.

It is well known that an accurate estimation of the motion blur parameters
is non-trivial problem and requires strong assumptions about the camera motion
during integration [101]. It was shown in [11] that even whenan accurate estimate
of the motion blur parameters is available, motion blur has asignificant influence
on the super-resolution result.

The overall performance of super-resolution algorithms isparticularly degraded
in the presence of persistent outliers, for which registration has failed. The arti-
facts caused by an incorrectly registered image are visually much more disturbing
than the intrinsic poor spatial resolution in a single inputimage. To enhance the ro-
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bustness of the processing against this problem, super-resolution algorithms need
to integrate adaptive filtering strategies in order to reject the outlier image regions.

Computational requirements

Super-resolution is a computationally intensive process.Since the initial prob-
lem is numerically ill-posed, most solutions require iterative processing in order
to reach an acceptable solution. Additionally, this filtering technique requires
several processing stages (motion estimation, restoration, interpolation) that are
usually inter-dependent. This makes the overall implementation quite complex,
requiring large memory to store the intermediate results, as well as considerable
computational resources to calculate the final result.

When the targeted filtering is to run in mobile imaging devices, it is desirable
to have real time operation. This might be quite challengingto achieve, especially
that portable devices are currently constrained with limited memory, computa-
tional and power resources. Additionally, if the number of input images is large,
or the output image size is large, the processing delay needed to perform the over-
all filtering might be inexorably long.

On the other hand, the computational power is increasing allthe time, and the
rate of improvement is even faster for portable devices. User’s expectations of
image and video quality is also rising all the time. This means that the opportu-
nity for integrating heavy processing techniques, such as super-resolution will be
possible in the future. In this goal, super-resolution algorithms can be introduced
at first by scaling down the processing, for instance by reducing the number of
iterations, thus favoring the approach of acceptable quality improvement in real
time operation at the expense of best possible quality but slow operation.



Chapter 3

Image Deblurring

3.1 Introduction

This chapter is concerned with the restoration of a single degraded image. The
objective is to lay down the basis for the extension towards multi-frame image
restoration in the following chapters. The problem of imagerestoration is usually
considered a classic topic, however, in this work, we present practical solutions in
order to reduce the optical blur in the images captured by a camera phone. We use
a novel approach which consists in processing the raw color components captured
by the sensor.

In the following, we present a novel multichannel image restoration algorithm.
The goal is to develop practical solutions to reduce opticalblur from noisy ob-
servations produced by the sensor of a camera phone. Iterative deconvolution is
used separately for each color channel. Additionally, we use a modified itera-
tive Landweber algorithm which includes an adaptive denoising filter for optimal
regularization of the inverse problem. The denoising method is based on the local
polynomial approximation (LPA), which operates on windowsthat are selected by
the rule of intersection of confidence intervals (ICI) [60].In order to avoid false
coloring due to independent component filtering in the RGB space, we integrated
a novel saturation control mechanism that smoothly attenuates the high-pass fil-
tering near saturated regions. It is shown by simulations that the proposed filtering
is robust with respect to errors in point-spread function and approximated noise
models.

In Section 3.3, we present the proposed processing paradigmand we describe
the image acquisition model. In Section 3.4, we briefly describe the Landweber it-
erative restoration and we introduce the modified iterativesolution which includes
an adaptive denoising technique. The analysis of the proposed algorithm shows
that the proposed regularization enhances the robustness of the restoration towards
modeling errors of the point-spread function (PSF) and of the noise parameters. In
Section 3.5, we discuss the practical issues relating to theefficient implementation
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of the deconvolution algorithm. Finally, experimental results with the proposed
technique on images taken with a fixed-focus camera are shown. The results indi-
cate that the proposed processing produces significant improvement in perceived
image resolution.

3.2 Related work

Image restoration research begun with the early space programs in the 1960s.
Considering the cost and impact related to acquiring the images from space crafts,
the degradation of the data was not a negligible problem. Hence, there was a
critical need for processing techniques that could correctand revert the unwanted
effects due to suboptimal systems, mechanical vibrations,motion, etc. [10]. Al-
though nowadays this approach towards image processing is still limited for high
end applications, such as astronomy and medical imaging; its use in consumer
electronics starts to take off, especially that more processing power is available in
these devices, and that users are more aware of image qualityon non-dedicated
imaging platforms such as camera phones.

Image restoration usually requires the knowledge of the degradation process
in order to solve the consequent inverse problem. The inverse problem is gener-
ally ill-posed [12], i.e., if the direct solution is considered, a small perturbation in
the input can result in an unbounded output. The direct inverse methods such as
the regularized inverse (RI) and regularized wiener inverse (RWI) deconvolution
techniques [61] are effective, but sensitive to modeling errors. On the other hand,
the iterative methods are more robust to modeling errors ([13], [73]), hence more
interesting for practical implementations. Several algorithms have been proposed
to solve the ill-posed inverse problem by introducing a regularization step that
suppresses over-amplification of the solution. For example, a directional adap-
tive regularization technique was proposed to reduce the ringing artifacts and the
over-smoothing in the iterative restoration process [71].Another regularization
method [79] suggests the use of spatially adaptive intensity bounds in the frame-
work of gradient projection method. The local bounds were shown to offer a
flexible method for constraining the restoration problem.

When the degradation function is unknown, the restoration problem becomes a
blind image deconvolution. A basic survey of different techniques can be found in
[69]. Blind image deconvolution is usually performed usingtwo main approaches.
First approach is to identify the impulse response of degradation, and then restore
the original image using some equalization technique. An example of this ap-
proach can be found in [95], where a mutually referenced equalizers approach is
applied to a set of observations of the same image undergoingdifferent degrada-
tion channels. The second approach to blind deconvolution is to jointly identify
the degradation function and simultaneously restore the original image. The asso-
ciated techniques usually assume regularization terms based on the available prior
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information that model various statistical properties of the image, and relate these
into constrains over the estimated image. A good example of this approach can
be found in [96], where stochastic approach is developed using a multi-channel
framework, and a maximuma posteriori (MAP) solution jointly estimates the
blurring functions and the original image. Another interesting approach was pro-
posed in [54] where the image blur is assumed to be a multivariate Gaussian func-
tion, and the deblurring is performed by extrapolation in the blur parameters. This
technique for restoration in the blur space is based on the compositional proper-
ties of the Gaussian PSF. In [14], we proposed an extension ofthis approach by
using an iterative algorithm in the blur domain. The proposed algorithm uses a
simple stopping rule that finds the optimum number of iterations and a regular-
ization mechanism to control edge overshooting. Simulations performed on arti-
ficially degraded images have shown good performance of the proposed method,
and most notable is that restoration does not necessitate prior knowledge of the
blur parameters.

The specific problem of restoring noisy and blurred color images has been
investigated in the literature since the mid-eighties. Several algorithms ([62],
[80], [100]) have been proposed to restore the color images by utilizing the inter-
channel correlation between the different color components. Nevertheless, most
of literature approaches the problem as a post-processing correction, i.e., the
processing is applied after the image is captured, processed, and stored. Our ap-
proach (discussed next) is inherently different: we consider the application of the
image restoration algorithm directly (and separately) on the raw color image data,
so that the deblurring and denoising are at the first step of the image reconstruc-
tion chain. Applying the image restoration as a pre-processing step ensures that
the linear modeling of the problem holds best. Also, the choice of implement-
ing the deblurring at this level of the image formation chainbenefits the follow-
ing cascaded operations from improved resolution and contrast. Example of the
following typical processing steps include automatic white balance (AWB), and
color filter array interpolation (CFAI) (typically non-linear operations). A similar
processing paradigm was proposed earlier [81] in order to reduce color cross-talk
and to decorrelate the different color components, although the processing was
carried out after color conversion, which may introduce thecross-talk itself. The
restoration was proposed without consideration of the difference in the blur of
the different color channels. In this work, we use separate processing of the raw
RGB color components measured by the camera sensor, and eachcolor channel
is separately deblurred according to its corresponding optical blur. In fact, the
optical blur in each color channel is different, since the focal length depends on
the wavelength of the incoming light [47].
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Figure 3.1: Block diagram of the proposed restoration system. The color chan-
nels are restored according to the corresponding componentblur. The restoration
algorithm is applied as the first operation in the image reconstruction chain to
minimize non-linearities in the image formation model.

3.3 Multichannel image deblurring of raw color compo-
nents

3.3.1 Imaging model

Fig. 3.1 depicts the block diagram of the proposed multi-channel restoration
within the image reconstruction chain. In the imaging model, the incoming light is
blurred by the camera optics, and the image data is measured by a sensor through
the Bayer sampling pattern. The optical blurring and the noise sensitivity of each
color channel can be different. In fact, by implementing therestoration directly on
the raw color components, we are aiming to avoid nonlinearities produced by the
cascaded image reconstruction functions such auto-white balancing (AWB), color
filter array interpolation (CFAI), distortion corrections, denoising, sharpening, etc.
[58].

If we assume a linear response at the sensor and a linear space-invariant blur
in each color channel, then the observed image can be modeledas:

gi(x) = (hi ∗ fi)(x) + ηi(x), i = 1, ..., 4 (3.1)

wheregi is the measured color component image,fi is the original color compo-
nent,hi is the corresponding PSF in that component, andηi is an i.i.d. additive
Gaussian noise term.gi, fi andηi are defined over the arrayx = (m,n) of pixels
spanning the entire image area. In equation (3.1),∗ is the discrete convolution op-
erator. The indexi = {1, 2, 3, 4} denotes respectively the data corresponding to
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theRed, Green1, Green2, andBluecolor channels, those are measured according
to the Bayer matrix sampling pattern. Note that each of theseimages is quarter
size of the final output image. The restoration problem can bestated as recovering
the original imagefi from its degraded observationgi.

3.4 Iterative restoration

3.4.1 Generalized Landweber method

Iterative methods have shown to be an attractive alternative for implementing the
inverse solution of image deblurring, especially when the blurring parameters can
exhibit some modeling errors. The standardLandweber method([57], [73]) to
solve forfi from the observationsgi in equation (3.1) is given by the following
iterative process:

f
(0)
i = 0, (3.2)

f
(k+1)
i = f

(k)
i + µi · hT

i ∗ (gi − hi ∗ f (k)
i ), k = 0, 1, ..., i = 1, ..., 4(3.3)

whereµi is the update parameter,hT
i (t) = hi(−t). If the image formation model

(3.1) is noise-free,ηi(t) = 0, the iterative process described above is converging
[57]. However, the slow convergence [73] is a significant drawback. The problem
of choosingµi is one of balancing the stability against the rate of convergence,
i.e., a largeµi ensures a quick convergence but also increases a risk of instability.

Another aspect of the Landweber method in equation (3.3) is the fact that it is
designed to solve a problemgi(t) = (hi ∗fi)(t). As a result, the obtained solution
is sub-optimal in presence of noise. We propose to use the following modifications
in order to incorporate a noise filtering stage and to enhanceconvergence:

f
(0)
i = 0, (3.4)

f
(k+1)
i = f̃

(k)
i + µi · di ∗ hT

i ∗ (gi − hi ∗ f̃ (k)
i ), (3.5)

f̃
(k+1)
i = Φ{f (k+1)

i }, k = 0, 1, ..., i = 1, ..., 4 (3.6)

wheredi is an impulse response of a special linear filter that can be used to accel-
erate theconvergenceof the solution.Φ{·} is an intermediate filtering operator
that is intended to enhance the robustness of the solution. It can be considered
as a separate regularization step. It is interesting to notethat in the context of
expectation-maximization(EM) methods [34], in the iterative process described
above, the E-step coincides with equation (3.5), and M-stepcorresponds to fil-
tering stage in equation (3.6). The operatorΦ{·} can be, for example, a simple
averaging filter, or any other sophisticated filter that takes into consideration the
local signal statistics. In our algorithm, we chose to plug-in an adaptive denoising
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filter in order to preserve the image details from over-smoothing. The adaptive
filter is based on the polynomial approximation of neighboring pixels from dy-
namically selected windows. The windows are selected by therule of intersection
of confidence intervals in order to ensure statistical homogeneity of the data in
the localized windows. Detailed explanation and results ofthis filtering approach
(LPA-ICI) can be found in the following references ([60], [61]). This adaptive
denoising technique plays an important role in our proposedsolution because it
preserves image details and ensures also efficient noise removal, which is difficult
to achieve using filters operating on fixed data support.

3.4.2 Convergence

To study the convergence and the sensitivity of the proposediterative deconvolu-
tion technique, the analysis is done in the Fourier domain. The image formation
model in equation (3.1) can be written in the frequency domain as follows:

Gi(ω) = Hi(ω)Fi(ω) + Γi(ω), i = 1, ..., 4 (3.7)

whereFi(ω) = F{fi(x)} is the Fourier transform offi, Gi(ω) = F{gi(x)},
Hi(ω) = F{hi(x)}, andΓi(ω) = F{ηi(x)}.

Now, consider the equations (3.4-3.5) in the frequency domain:

F(0)
i = 0,

F(k+1)
i = F(k)

i + µiDiH
∗
i (Gi − HiF

(k)
i ) (3.8)

where,Di(ω) = F{di(x)}, andH∗
i is the complex conjugate ofHi. If we rewrite

equation (3.8) in the following form:

F(k+1)
i = (1 − µiDi|Hi|2)F(k)

i + µiDiH
∗
i Gi, (3.9)

then the error between the original signal and the signal estimate in the frequency
domain can be expressed as:

E
(k+1)
i = qiE

(k)
i − µiDiH

∗
i Γi (3.10)

qi = 1 − µiDi|Hi|2, (3.11)

whereE(k)
i = F{e(k)

i }, ande(k)
i = fi − f

(k)
i is the error between the estimated

and original images.
The idea behind using the operatorDi is to accelerate the iterative process

(3.8), while at the same time ensure that the overall solution converges. As it can
be inferred from equation (3.11), the rate of convergence ofthe iterative process
(3.8) is characterized by the variableqi(ω) = 1 − µiDi(ω)|Hi(ω)|2. Further, the
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convergence takes a place only if|qi(ω)| < 1. This gives us the conditions that
the update parameterµi has to satisfy:

0 < µiDi(ω)|Hi(ω)|2 < 2, for all ω, (3.12)

where it is assumed thatDi(ω) is real and positive everywhere on its frequency
support. Note that for the pure Landweber method in equation(3.3),Di = 1.
The fastest convergence happens when factorqi (3.11) is minimal. If we introduce
the following variable:

λi,max = max
ω

Di(ω)|Hi(ω)|2, (3.13)

then, according to equation (3.12), the solution convergesif µi is selected as fol-
lows:

µ̂i =
2

λi,max + ε
, (3.14)

whereε > 0. When considering frequency domain implementations of theitera-
tive process in (3.8), we propose to use the following realization ofDi in order to
accelerate convergence:

Di =
1

|Hi|2 + r2i
, (3.15)

wherer2i is a regularization parameter. This can be motivated by the fact that this
choice ofDi allows us to approach the behavior of the pseudo-inverse filter at
each iteration, and hence significantly accelerate the convergence to the solution.
In fact, it can be seen from equation (3.9), that the pseudo-inverse filter can be a
particular case of this realization whenµi = 1.

3.4.3 Simulation results with LPA-ICI regularization

To study the properties of the proposed method, we used theCameramantest
image in Fig. 3.2 (a). The image was corrupted by the following Gaussian PSF
blur

hi(m,n) =
1

2πσ2
psf

exp(−m
2 + n2

2σ2
psf

). (3.16)

We usedσpsf = 1. We further degraded the blurred image with an additive white
Gaussian noise,σ2

η = 40 (Fig. 3.2 (b)). We compared the restoration results
obtained with the standard Landweber method (Fig. 3.2 (c)) against the proposed
method with the integrated LPA-ICI filtering (Fig. 3.2 (d)).It can be seen from the
images and from the improvement in signal to noise ratio(ISNR) values that the
proposed denoising step significantly enhances the performance of the restoration
process. It is worth mentioning that the images shown above correspond to the
results of the implementation in frequency domain.
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True Signal Corrupted Signal

(a) (b)
Landweber:  ISNR=1.1 dB Landweber with LPA−ICI:  ISNR=3.37 dB

(c) (d)

Figure 3.2: (a) OriginalCameramantest image. (b) Blurred and noisy image,
Gaussian PSF(σpsf = 1), Gaussian additive noise(σ2

η = 40). (c) Restoration re-
sult with the standard iterative Landweber method after7 iterations. (d) Proposed
Landweber method withLPA− ICI after4 iterations.

Fig. 3.3 (a) shows the improvement in terms of signal to noiseratio (ISNR)
across the iterations for the restored images in Fig. 3.2 (c)and Fig. 3.2 (d). The
ISNR corresponding to the standard Landweber technique (dashedline) takes its
maximum and then tends down, due to the noise amplification. The curve corre-
sponding to the proposed technique with LPA-ICI denoising (solid line) clearly
improves the stability of the solution. In fact, this adaptive filtering stage acts as a
regularization for the inverse solution, while also enhancing the overall quality of
restored images.

In Fig. 3.3 (b), we integrated the acceleration operatorDi in equation (3.15)
into the frequency domain implementation of the iterative restoration. It can be
seen that the number of iterations that is needed to achieve similar performance is
significantly smaller. This result confirms the potential ofintegrating an acceler-
ating spatial operator in the Landweber process in general.
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Figure 3.3: ISNR (in dB) vs. number of iterations (k). (a) Iterative restoration
without acceleration. (b) Iterative restorationwith acceleration. In both Figures,
the Landweber technique with LPA-ICI denoising (solid line) is compared with
the standard Landweber technique without denoising (dashed line).

3.4.4 Sensitivity to PSF errors

In practice, it is rarely possible to have precise estimatesfor the point spread
function (PSF). Therefore, it is essential to have restoration algorithms that are
robust against deviations in PSF parameters.

In order to test the robustness of the proposed solution, we run the algorithms
when the exact PSFhi is known, and when we deliberately introduced different
amounts of errors∆hi into the assumed PSF (ĥi). The corrupted PSF that is
actually used in the restoration model can be expressed as follows:

ĥi = hi + ∆hi, i = 1, .., 4. (3.17)

In our experiments, we used Gaussian PSFĥi with parameterσpsf = 1±τ , where
τ ∈ {0, 0.1, ..., 0.6} is the assumed estimation error. In Fig. 3.4, we compared
the proposed technique (solid line) with the standard Landweber method (dashed
line). It is clear from theISNR curves that the proposed solution is more robust
against possible errors in PSF, since the performance was consistently better than
the standard Landweber method for all the values ofτ that were used.

3.5 Practical considerations

3.5.1 Blur identification

Typically, one of the most difficult practical problems to besolved when restoring
images is usually not the choice of a restoration algorithm itself, but rather finding
a good PSF. The problem is that the PSF changes as a function ofthe wavelength
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Figure 3.4: Simulation of the sensitivity of the iterative deblurring methods to
possible errors in PSF estimates(ĥi). Gaussian PSF with parameterσpsf = 1± τ
is used, whereτ is an error that is deliberately introduced.

and the distance of the imaged target with respect to the camera. In the follow-
ing, we simplify the problem by assuming out-of-focus closerange imaging. We
further assume space invariant blurring. In order to enablethe application to the
images captured with a camera phone, we developed a simple PSF estimation
technique and used it to find the blurring corresponding to each color component.
The procedure is described next.

Given a blurred raw image corresponding to one color component of a checker-
board pattern, the four outer corner points are located manually, and a first rough
estimate of the corner positions is calculated. Next, the exact locations (at sub-
pixel accuracy) are recalculated again by refining the search within a square win-
dow of 10x10 pixels. The algorithms for corner detection arebased on the imple-
mentation of the camera calibration Matlab toolbox developed by Heikkilä ([48],
[49]). Using the detected corner points, we reconstruct an approximation for the
original grid image by averaging the central parts of each square and by asserting
a constant luminance value to those squares. Fig. 3.5 (a) shows an example of a
test image, and Fig. 3.5 (b) shows the corresponding segmented and reconstructed
grid image. Now that we obtained the blurred image (Fig. 3.5 (a)), and the as-
sumed original input (Fig. 3.5 (b)), the blur can be inferredby applying an inverse
filtering method.

In the experiments, the PSF estimates are obtained using simple pseudo-inverse
filtering (in Fourier domain). Since the pseudo-inverse technique is quite sensi-
tive to noise, we further imposed a low pass cut-off frequency to limit the noise
propagation. We repeated the procedure with several images(more than 10, with
different orientations of the checkerboard images), and wefinally averaged all of
them to obtain smooth and reliable estimates. Fig. 3.5 (c) shows an example of the
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(a) (b)

Figure 3.5: Procedure to estimate the PSF. (a) From the captured raw image cor-
responding to each color channel; the corners of the checker-board are located
at sub-pixel accuracy. (b) The corner locations are used to reconstruct the sharp
pattern of the original checkerboard images.

Figure 3.6: An example of the estimated PSF for the blue colorchannel using
raw data from Nokia 6600 camera phone.10 images are used in the calibration
process, all captured at close range (∼ 10cm).

estimated PSF for the blue color channel with a truncated support of 21x21 pixels.
In our experiments, it was also confirmed that the 3 color components exhibited
slightly different blurring characteristics; interestingly, the blue color component,
although it was least contrasted, was the sharpest component.

3.5.2 Implementation of restoration

In order to realize practical real time implementations of the restoration algorithm
in equations (3.4-3.6), some approximations in the algorithm have been consid-
ered. We have implemented a simplified integer implementation of the algorithm.
This causes a loss of precision in the normalized PSF. Because the linear convolu-
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Figure 3.7: Effect of the proposed saturation control mechanism to avoid false
coloring in restored images. (a) Original blurred image (b)Restored image (4 it-
erations)withoutsaturation control; remark the green false coloring. (c) Restored
image (4 iterations)with saturation control. Remark the green false coloring has
disappeared. The same reconstruction chain was used in all3 images.

tion is proportional to the square of the size of the filter support, we have truncated
the PSF support to a window of 9x9, which contains most of the information about
the defocus degradation, and we considered an approximation to the formal solu-
tion in equation (3.4-3.6). We assumed that the first approximation in (3.4) is the
observed image itself. So, the iterative approximate solution can be compactly
expressed as:

f
(0)
i = gi, (3.18)

f
(k+1)
i = f̃

(k)
i + µi,adap · h̃i ∗ (gi − hi ∗ f̃ (k)

i ), (3.19)

f̃
(k+1)
i = Φ{f (k+1)

i }, i = 1, ..., 4 (3.20)

whereµi,adap is a pixel-wise step size parameter that is designed to avoidfalse
coloring. It is derived in the following section.

3.5.3 Saturation control

In the literature, the formulation of the image acquisitionprocess is invariably as-
sumed to be a linear one (equation 3.1). It is true that this assumption simplifies
the inverse problem and allows to develop compact and attractive solutions. How-
ever, in practice, the sensor electronics introduce nonlinearities in the acquisition
model, of which the saturation effect is one of the most serious. In fact, due to
the sensitivity difference of the three color channels, andfuzzy exposure controls,
pixel saturation can happen incoherently in each of the color channels. The sepa-
rate channel restoration near those saturated areas can result in over-amplification
of that color component alone, thus creating artificial color mismatch and false
coloring near those regions. To avoid this, we propose a novel mechanism that
smoothly regulates the restoration process near saturatedregions. The saturation
control is integrated in the iterative solution of equation(3.20). The idea is to
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spatially adapt the update parameterµi so as to limit the restoration effect near
saturated areas. The adaptive update parameter is given as follows:

µi,adap(m,n) = βsat(m,n)µi, (3.21)

whereµi is the global step-size as discussed earlier, andβsat is the local satu-
ration control that modulates the step size.βsat is obtained using the following
algorithm:

1. for each color channel imagegi, i = {1 . . . 4},

2. consider the values of the window(w × w) surrounding pixelgi(m,n),

2.1. count the number of saturated pixelsSi(m,n) in that window,

3. the saturation control parameterβsat is calculated as follows:

βsat(m,n) = max{0, [w2 −
4∑

i=1

Si(m,n)]/w2}.

βsat varies between0 and1 depending on the number of saturated pixels in any
of the color channels. This means for example that if the pixels of a certain color
channels are saturated, thenβsat will be zero, and no restoration will be performed
in that window. Fig. 3.7 shows the effect of the proposed modification to avoid
false coloring in the restored images. It can be seen from theexamples that the
proposed procedure effectively suppresses color mismatchnear saturated areas.

3.5.4 Image reconstruction chain

It is important to remind that our processing framework (in Fig. 3.1) proposes to
apply restoration of each of the color components as the firstspatial filtering op-
eration in the image reconstruction chain. Therefore, an example implementation
of the overall imaging chain includes the following cascaded operations:

• Deblurring of color components(proposed)

• Pedestal noise removal

• Automatic White Balance

• Color Filter Array Interpolation

• Color gamut conversion

• Geometrical correction and vignetting elimination

• Noise reduction (optional)

• Sharpening (optional)
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(a) (b)

Figure 3.8: (a) Test image taken with a Nokia-6600 camera phone and recon-
structed with the default processing chain. (b) Final imageprocessed with the
proposed deblurring of the raw data after4 iterations, and reconstructed with the
same chain.

It is evident that the final image quality depends on the combined result of all
these operations. The implementations corresponding to these individual opera-
tions are usually non-linear. As discussed earlier, the useof restoration as the first
operation in the reconstruction chain ensures the best fidelity to the assumed linear
model. The following algorithms, especially the color filter interpolation (CFAI)
and the noise reduction algorithms, can act as additional regularization steps to
prevent over-amplification due to excessive restoration.

Fig. 3.8 shows the final result that is obtained when the proposed multichan-
nel restoration algorithm is integrated in the reconstruction chain of a real camera
system. The processing was carried out on the raw pictures captured with a Nokia
6600 camera-phone. As it can be seen from the images, there isan evident im-
provement in detail resolution and in color contrast. We have also tested with
a large set of real scene images, and the visual quality of theresult images was
consistently better than the images obtained with the default reconstruction chain.

3.6 Conclusions

In this chapter, we presented an integrated filtering methodthat reduces the op-
tical blur. The filtering is an integral part of the camera image reconstruction
chain. We implemented a modified iterative Landweber algorithm which uses an
adaptive window denoising method to regularize the inversefiltering process. The
proposed deblurring method makes use of the estimated PSF that characterizes
the optical blurring in each of the three color components. To avoid false color-
ing that may happen due to independent component filtering inRGB space, we
integrated a novel saturation control mechanism, which smoothly attenuates the
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(a) (b)

Figure 3.9: (a) Test image taken with a Nokia-6600 camera phone and recon-
structed with the default processing chain. (b) Final imageprocessed with the
proposed deblurring of the raw data after3 iterations, and reconstructed with the
same chain.

iterative restoration near saturated regions. The experimental results have shown
that proposed method for image restoration attenuates the blurring due to fixed-
focus cameras integrated in mobile devices. In general, theresults demonstrate
the potential of considering image deblurring as an integral part of image recon-
struction chains, especially when implemented on hardware.
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Chapter 4

Super-Resolution from Sensor
Data

4.1 Introduction

Despite the continuous improvement in the performance of imaging sensors, there
are still several physical and practical constraints that limit the final image quality.
Therefore, signal processing techniques are widely used toimprove the quality
of the sensed raw data. In this chapter, we present a framework for producing
a high-resolution color image directly from a sequence of images captured by a
CMOS sensor overlaid with a color filter array. The algorithmattempts to uti-
lize the additional temporal resolution in order to improvethe demosaicing of the
color components and filter the noisy and blurred image data.The method is based
on iterative super-resolution that performs separately the filtering of the individ-
ual color image planes. We present experimental results using synthetic image
sequence as well as real data from CMOS sensors.

4.1.1 Spatial resolution in image sensors

Lately, the industry trend has been focusing on reducing thepixel size in order to
improve the spatial resolution. This approach leads to reduced sensitivity of the
individual pixels and amplification of the noise levels because CMOS sensor per-
formance is limited by low quantum efficiency and by dark current non-uniformity
[15]. In fact, regardless of the sensor manufacturing technology, there is a fun-
damental trade-off between spatial sampling (number of pixels), pixel size, and
temporal sampling.
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4.1.2 Color plane interpolation

In most consumer products, the integrated cameras consist of a single imaging
sensor that uses Color Filter Arrays (CFA) to sample different spectral compo-
nents. The most common sampling pattern is called the Bayer-matrix (Fig. 4.2),
which consists of color filter elements arranged such that green component is50%
of the total number of pixels, whereas each of the red and bluecomponents repre-
sent25% of the total number of pixels. At each pixel location, the missing colors
must be interpolated from neighboring samples. This color plane interpolation is
known as demosaicing, and it is one of the important tasks in the image recon-
struction (formation) pipeline.

There has been significant work related to demosaicing of rawcolor images.
A good review of the common techniques can be found in [44]. Besides the tra-
ditional interpolation techniques such as nearest-neighbor replication, bilinear in-
terpolation, and cubic spline interpolation; several algorithms have been proposed
to enhance the performance of demosaicing. For example, in [1], [58] and [65],
inter-channel correlation is exploited in various ways to perform edge-directed in-
terpolation and to prevent color mismatch across the edges.In [41], a technique
using alternating projections onto convex sets is proposed. The performance was
superior to earlier techniques [41] because the projections across the color planes
provided for an efficient way to exploit inter-channel correlation. In all of the
algorithms cited above, only the spatial correlation of theneighboring pixels is
used, without exploiting the additional information that is available in the adja-
cent frames.

Super-resolution can be used to combine a short sequence of raw video output
from the sensor to reconstruct a high-resolution image. Theidea is to exploit the
non-redundant samples that fall on the Bayer sampling lattice in order to perform
demosaicing of the color data, and possibly increase the original image size, with
improved color fidelity. However, to date, almost all super-resolution methods
have been designed to increase the resolution of a single monochromatic channel
(luminance component), and it was not until recently that the use of multi-frame
processing was considered in the problem of demosaicing ([31], [39], [93]). In
[39] and [93], it is argued that although a two-pass algorithm (demosaicing fol-
lowed by super-resolution) improves the overall resolution, this approach results
in blurring effects and artifacts similar to those observedin demosaiced images.
Also, they have shown that it is possible to obtain precise motion using block
matching from aliased raw images. However, the overall method is complicated,
and involves among other processing steps edge directed interpolation. Therefore,
it is not straight-forward to separate the distinct contribution of super-resolution
in the final demosaiced result. In [31], a method based on MAP estimation is pro-
posed to jointly perform demosaicing and super-resolution, but the paper does not
address the problem of estimating motion between the images, and only presents
results with synthetic data sets.
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Figure 4.1: Integrated image formation (reconstruction) model using the proposed
super-resolution filtering.

4.1.3 Our approach

In the following, we consider the application of super-resolution directly on a
sequence of raw images. The idea is to enhance the interpolation of the different
color planes by utilizing the data from neighboring image frames. One benefit
from applying super-resolution as a pre-processing step (before cascading into the
following operations) is that it ensures that the linear modeling of the problem
holds best, at least conceptually. In earlier work [108], wehave demonstrated that
by applying deblurring directly on the raw color components, we were capable of
producing superior results, especially after implementing simple mechanisms to
avoid color mismatch.

In Section 4.2, the image formation model is defined, and in Section 4.3, the
solution is derived by applying super-resolution on the color components, also,
some implementation issues are highlighted. Experimentalresults of the proposed
algorithm with synthetic image set as well as with real sensor data are presented
in Section 4.5. Finally, conclusions are drawn in Section 8.

4.2 Image formation model

In order to produce the final image from the sensor data, the default processing
pipeline includes several cascaded operations such as automatic white balance
(AWB), gamma correction, contrast enhancement, color filter array interpolation
(CFAI), denoising, sharpening. Most of the filtering that isinvolved in these op-
erations is non-linear. Hence, our proposal to apply super-resolution as the first
step of the reconstruction pipeline (before cascading intothe following opera-
tions) ensures that the linear modeling of the problem holdsbest. The modified
reconstruction chain uses few raw images to perform enhanced interpolation of the
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Bayer color data, which replaces the conventional step of CFAI filtering. Fig. 4.1
depicts the block diagram of the proposed super-resolutionreconstruction chain.

In the assumed model, the incoming light is blurred by the camera optics, and
the image data is measured by a sensor through the Bayer sampling pattern. The
optical blurring and the noise sensitivity of each color channel can be different.
We assume linear sensor response, as well as linear space-invariant blur for each
color channel. Now, considerN observed raw LR images(gi , i = 1 · · ·N) that
are captured by the sensor in video mode, such that the imagesare adjacent ob-
servations of a static scene corresponding to a HR color image (f). Further, we
assume that each subsampled color component image is an independent realiza-
tion of the imaged scene, i.e., for theith LR imagegi, we capture separately 4
color channelsgi(c), where the indexc = {1, 2, 3, 4} denotes respectively the data
of the Green1, Red, Blue, andGreen2color channels; as measured according to
the Bayer sampling pattern (Fig. 4.2). Using the assumptions above, the image
formation model can be written as:

gi(1)(x, y) = S ↓
(
h(1) ∗ fG (ξi)

)
(x, y) + η(1)(x, y)

gi(2)(x, y) = S ↓
(
h(2) ∗ fR (ξi)

)
(x, y) + η(2)(x, y)

gi(3)(x, y) = S ↓
(
h(3) ∗ fB (ξi)

)
(x, y) + η(3)(x, y)

gi(4)(x, y) = S ↓
(
h(4) ∗ fG (ξi)

)
(x, y) + η(4)(x, y)

(4.1)

wheref = (fR, fG, fB) is the HR reference image corresponding to the imaged
scene in the RGB domain.h(c) denotes the point spread function, or the PSF due
to optical blurring in each color channel,∗ denotes the convolution operator, and
S ↓ the down-sampling operator. Note that in equation (4.1) each color component
is subsampled at a different offset due to the specific pattern of the Bayer sampling
matrix. ξi is the mapping function corresponding to the geometric warping due
to the scene displacement in each of the LR images relative tothe HR imagef ,
while η(c) is an additive noise term that is associated separately witheach color
channel.

After discretization, the model can be expressed in matrix form as follows:

gi(1) = Ai(1)fG + η(1)

gi(2) = Ai(2)fR + η(2)

gi(3) = Ai(3)fB + η(3)

gi(4) = Ai(4)fG + η(4)

(4.2)

The matrixAi(c) combines successively, the geometric transformationξi, the con-
volution operator with the blurring parameters ofh(c), and the down-sampling
operatorS ↓ over the Bayer grid. For notation convenience, we integratethe
RGB correspondence in matricesAi(c), and we express the image model using
the following equation:

gi(c) = Ai(c)f + η(c) (4.3)

wheregi(c), f andη(c) are lexicographically ordered.
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Figure 4.2: Bayer matrix sampling pattern

Referring to equation (4.3), the size of each of the LR imagesgi(c) is quarter
that of the sensed raw image. The separation of the raw image data into 4 individ-
ual subsampled images introduces significant aliasing, since for each color plane
we are skipping the pixels from the next color component without low-pass fil-
tering. In principle, super-resolution algorithms exploit the aliasing of the image
data in order to reconstruct high frequency information. Inthe following section,
we present the solution for interpolating each color component and combining the
information from adjacent frames.

4.3 Super-resolution from raw sensor data

In this section, we describe the algorithm that performs simultaneously the demo-
saicing of the color components while fusing the data from the LR frames. The
HR image is in RGB domain, while the individual LR images are assumed to be
the monochrome components after performing the subsampling according to the
Bayer pattern. The problem of super-resolution reconstruction can be described
as estimating for each color channel the best HR imagef =

(
fR, fG, fB

)
, which

when appropriately projected and down-sampled by the modelin (4.2) will gen-
erate the closest estimates of the LR imagesgi(c), c = {1 · · · 4}.

4.3.1 Cost function

For each observationgi(c), we associate the following cost function:

εi(c) = ||ĝi − gi||2 = ||Ai(c)f − gi(c)||2, (4.4)

whereĝi(c) is the simulated LR image through the forward imaging model.If all
LR images(i = 1 · · ·N) are assumed to contribute equally to the cost function,
then the overall cost function is the following:

ε(c) =
N∑

i=1

εi(c) =
N∑

i=1

||Ai(c)f − gi(c)||2 (4.5)
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Further, if Gaussian noise is considered in the imaging model (η(c)), then mini-
mizing the cost function in (4.5) (least squares solution) is equivalent to the max-
imum likelihood solution.

4.3.2 Iterative super-resolution

In order to minimize the error functional in (4.5), the method of iterative gradient
descent is used. This technique seeks to convergeε(c) towards a local minimum
by following the trajectory of the negative gradient; i.e.,at iterationn, the high-
resolution image is updated as follows:

f
n+1

= f
n

+ µnrn
(c), (4.6)

whereµn is the step-size, andrn
(c) is the residual gradient due to the LR color

images(c).
The residual gradientrn

(c) is computed as follows:

rn
(c) =

N∑

i=1

Wi(c)

(
gi(c) − Ai(c)f

n
)
. (4.7)

The matrixWi(c) corresponds toA(−1)
i(c) , i.e., the inverse process of the image

formation. In practice,Wi(c) combines successively the up-sampling and the
inverse geometric warp (ξ−1

i ) such as to map theith LR image grid onto the HR
grid.

In the update equation (4.6), the same step sizeµn is used for all color channels
(c = 1, 2, 3, 4)); this means that all the color channels are iteratively minimized
at the same speed to minimize consequent false coloring. Forexample the step
size is calculated using the green component(fG) using the method of steepest
descent [12] as follows:

µn =
1

N

N∑

i=1

||gi(1) − Ai(1)f
n
G||2

||Ai(1)r
n
i(1)||2

. (4.8)

4.4 Implementation

In the following, we highlight some implementation issues that are needed to re-
alize a practical implementation of the proposed algorithm. We recall that super-
resolution shall be considered as a processing framework that involves several op-
erations such as motion estimation, interpolation and demosaicing. In the specific
context of super-resolution of raw images, we deal with multiple data channels
corresponding to different spectral components (colors) as well as different tem-
poral samples (images), this makes the alignment of all these data channels a chal-
lenging task in the implementation stage. Next, we show how we deal with this
problem when implementing the different operations neededin super-resolution.
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Figure 4.3: Pixel projection from interpolated RGB domain (dashed lines) onto a
single raw color component (green 1). Note the uneven spacing that is used in the
pixel projections.

4.4.1 Motion estimation

One critical aspect to achieve efficient implementations ofimage super-resolution
is the need for accurate sub-pixel registration of the inputimages. The problem
of estimating sub-pixel motion from raw data has been investigated in detail in
[93]. In our implementation, we used the subsampled components to estimate
global projective motion parameters. The motion was estimated for each of the
color channels separately, and the resulting motion parameters were refined using
a simple averaging operation.

Because the overall performance of super-resolution algorithms is particularly
degraded in the presence of persistent outliers, we included a simple mechanism
in the motion estimation process that asserts the confidenceof the obtained esti-
mates; i.e., if the mean square error (MSE) between the reference frame and the
motion-compensated LR image is larger than a given threshold, then we skip that
frame throughout the entire reconstruction process.

4.4.2 Initialization of iterative super-resolution

It is well known that the iterative Least Squares solution, as in equation (4.6), is
prone to divergence especially when the number of input images is limited. If this
happens, annoying artifacts start to appear when over-iterated. This is due to the
absence of a proper regularization term. To avoid this, we use a smooth initial
estimate of the HR image and we limit the number of iterations, especially when
we know that the input sequence is noisy. The initial HR estimate is obtained by
demosaicing the reference frame (which is used in the motionestimation process)
by applying simple bilinear CFAI, and then interpolating tothe desired zoom fac-
tor, for instance by using bilinear interpolation in the RGBdomain.



62 CHAPTER 4. SUPER-RESOLUTION FROM SENSOR DATA

4.4.3 Projection functions

When implementing the image synthesis and the inverse process defined respec-
tively by Ai(c) andWi(c), we used a process similar to that described in [21]. In
the synthesis process, or the forward-projection, we warp the HR image as point
samples and convolve with a continuous form of the point-spread function (PSF),
and we downsample at the required positions on the Bayer pattern. We assumed
the PSF can be approximated with a Gaussian function, so thatwe can easily inte-
grate the blurring as a single parameter in the convolution process. This operation
is rather delicate to implement, Fig. 4.3 shows an example ofthe assumed posi-
tioning of the HR image grid (in dashed line) with respect to the LR image grid.
The corresponding half pixel shifts need to be integrated inthe motion parameters
of each LR image. The inverse mapping, or the back-projection process(Wi(c))
is handled in a similar manner: instead of naive downsampling, we interpolate
to the required Bayer pattern positions. The region of influence affected by the
back-projected pixel is determined by the interpolation filter (also Gaussian). The
smaller the variance of the filter, the sharper the resultingHR image is. However,
this also means that more LR samples(N) are needed to avoid amplification of
the noise and annoying pixelized effect in the solution. A smoother interpolation
filter will make a compromise between the number of input images, the noise level
and the sharpness of the result.

4.4.4 Processing the green channel

Another problem that we need to take in consideration is the fact that for each
LR image, we have 2 sub-images corresponding to the green spectral component,
gi(1) andgi(4), which correspond to a single channel in the HR image(fG). This
can be handled in many ways, for example by averaging the corresponding back-
projected components, i.e., the residual gradientsrn

(1) andrn
(4) due to the green

spectral component, this procedure has been used in the experiments presented in
the following section. Alternatively, it is possible to useone of the channels for
the regularization of the iterative solution, meaning thatwhile gi(1), gi(2) andgi(3)

components of the Bayer image are used as reconstruction constraints of the G, R
and B color components respectively,gi(4) may be used as smoothness constraint
of the final solution, especially if we assume a MAP iterativeimplementation, in
this casegi(4) can be used to calculate a non-redundant prior distributionof the
HR image.

4.5 Experimental results

In this section, we present experiments on synthetic and on real sensor data. First,
we tested the algorithm on a sequence of synthetic test images. The images,6 in
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(a) (b)

(c) (d)

Figure 4.4: (a) Original HR image. (b) Example LR image obtained according
to model in equation (4.1), Gaussian PSF (σ2

psf = 1.5), zoom factor2, additive
Gaussian noise (σ2 = 20). (c) Image obtained using bilinear CFAI interpolation
and bicubic interpolation (SNRR = 9.44, SNRG = 10.77, SNRB = 10.45,
SNRY = 10.19). (d) Image obtained using the proposed algorithm,2 iterations,
(SNRR = 10.88, SNRG = 12.19, SNRB = 11.68, SNRY = 11.50).

total, were generated from a single HR image according to theimaging model de-
scribed in equation (4.1). The original HR image was randomly warped using an
8 parameter projective model. We used a continuous GaussianPSF (σ2

psf = 1.5)
as the blurring operator, and we down-sampled the images by2 to obtain the6 LR
images. We added to all input images a zero-mean Gaussian noise with variance
σ2

η = 20. Fig. 4.4 (c) shows the image that is reconstructed using bilinear CFAI
interpolation and interpolated to target size (by 2) using bicubic interpolation. Fig.
4.4 (d) shows the result image that is obtained using the proposed algorithm after
2 iterations. For the images in (c) and (d), we calculated the signal to noise ratio
with respect to the original image in (a) corresponding to the RGB color channels
(SNRR, SNRG andSNRB), as well as for the luminance component (SNRY ).
These are shown in the caption of Fig. 4.4. In terms ofSNR, the proposed super-
resolution algorithm enables an improvement of about1.5db over equivalent tra-
ditional processing which consists in applying separatelythe CFAI interpolation
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(a) (b)

(c) (d)

Figure 4.5: (a) Original HR image. (b) Example LR image obtained according
to model in equation (4.1), Gaussian PSF (σ2

psf = 2.5), zoom factor2, additive
mixed noise (Gaussian noiseσ2

η = 20, impulsive noisep = 0.06). (c) Image ob-
tained using bilinear CFAI interpolation and bicubic interpolation (SNRR = 9.5,
SNRG = 9.43, SNRB = 10.12, SNRY = 9.21). (d) Image obtained
by applying super algorithm (median fusing),4 iterations, (SNRR = 10.92,
SNRG = 11.22, SNRB = 12.16, SNRY = 11.19).
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(a) (b)

(c) (d)

Figure 4.6: (a) Example of raw data captured (4 images) with Micron test camera
board (MI SOC1310). (b) Image obtained using bilinear CFAI interpolation of
reference image. (c) Image obtained by applying proposed algorithm, zoom factor
1, 3 iterations. (d) Close-up comparison between zoomed portions of the images
shown in (b) and (c).

(in this case bilinear) and resizing operation (bicubic interpolation). In addition,
close visual inspection of the images in (c) and (d) confirms the good performance
of the proposed algorithm seeing that some fine details of theoriginal image have
been recovered in the super-resolved image shown in (d), whereas these details
are not visible when using a single interpolated image (c). The perceived image
quality is also improved, since the contrast is enhanced andthe colored artifacts
due to noise are reduced thanks to the integrated filtering approach used in the
algorithm. It is worth mentioning that the algorithm is relatively fast, for example
in Fig. 4.4, the target image size was320 × 240, and in this setting, the resulting
images were computed in real-time on an ordinary PC.

In Fig. 4.5, we perform a similar experiment as above with different burring
and noise parameters.4 LR images were generated from a single HR image by
random warp. We used a continuous Gaussian PSF (σ2

psf = 2.5) and down-
sampling factor2. A mixture of Gaussian noise (σ2

η = 20) and impulsive noise
(p = 0.06) is added to all LR images. The aim is to emulate random noise that
may appear in CMOS sensed images. Fig. 4.5 (c) shows the imagethat is re-
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constructed using bilinear CFAI interpolation and interpolated to target size (by
2) using bicubic interpolation. Fig. 4.5 (d) shows the result image that is ob-
tained using the proposed algorithm after4 iterations. One simple modification
with respect to earlier results is that in equation (4.7) we used the median filter
instead of averaging filter, the idea is to account for impulsive noise present in the
LR images. In terms ofSNR, the super-resolved image is about2db better than
the image obtained using equivalent traditional processing, in particular the super-
resolved image has less false coloring artifacts that are due to impulsive noise in
the individual color components. This result is interesting because it shows that it
is relatively easy to account for other types of spatial noise (in this case impulsive)
by modifying the fusing step of the super-resolution algorithm, this result may be
further developed in future work to account for other types of noise distributions.

In Fig. 4.6, we show the performance of the proposed method using real sensor
data without prior knowledge of the distortion or motion that happened between
the LR images. The proposed algorithm is applied on a set of4 images captured
by a CMOS camera board (Micron SOC1310). The images were taken slightly
out-of-focus, on purpose to simulate a fixed-focus optical system. In Fig. 4.6
(d), we show a zoomed portion of the image to compare the results obtained by
applying simple bilinear interpolation against the imagesobtained using the pro-
posed algorithm. Although the parameters that were used in our algorithm were
tuned without accurate knowledge of the forward imaging model; the obtained re-
sults were good, i.e., from the visual inspection it is clearthat the details became
sharper, the noise was decreased and the contrast in the result image was better.
This confirms the usability of the proposed solution for practical application in
camera systems.

4.6 Conclusions

In this chapter, we presented a super-resolution algorithmthat takes a sequence
of raw color images, and produces a demosaiced color image inthe RGB do-
main. The proposed algorithm was compared with Bilinear CFAI interpolation,
and it showed an outstanding performance both visually and in terms of signal to
noise ratio; and at a reasonable computational complexity.The results confirm
that this approach for super-resolving raw sensor data is promising, and is capa-
ble of producing superior results. In future work, we shall validate our method
against an extensive set of known demosaicing algorithms toconfirm that the use
of multi-shot mode is capable to improve significantly the color and detail reso-
lution. Another interesting direction is to explore integrated fusing methods that
may be more appropriate to use in different noise environments of the sensors.
Also, we shall consider the development of fast motion estimation techniques that
will be suitable for the application of super-resolution onraw image data.



Chapter 5

Motion Estimation

5.1 Introduction

The estimation of motion in image sequences is often required in various video
applications. In the literature, there is an enormous variety of different approaches,
which we can not exhaustively survey here. Instead, we provide in this chapter an
introductory discussion on the challenging problem of motion estimation (Section
5.2), we focus on the specific context of image super-resolution. In the following
Sections (5.3–5.8), we present a novel filtering method thatis based on a recursive
LMS filtering scheme to match the intensity values. The adapted filter coefficients
are used to calculate a dense motion field between two adjacent video frames. The
employed filtering takes advantage of the localized correlation of image data in
adjacent frames, and produces refined estimates of the displacements at sub-pixel
accuracy. The proposed method for pixel-based motion estimation is well suited
for the estimation of small displacements within video frames, and can be applied
in several applications such as super-resolution, video stabilization and denoising
of video sequences.

5.2 Image registration

Image registration establishes the correspondences between the pixel positions
from a target frame with respect to a reference frame. This operation is funda-
mental to many image and video processing tasks, and most notably in video
compression systems. Although the understanding of the issues involved in mo-
tion estimation has significantly increased in the last decade, we are still far from
generic, robust and real-time algorithms [98]. Fundamentally, the problem is chal-
lenging because of its ill-posedness, the aperture problem, and the occlusion that
happens when 3-D moving objects past each other are projected on a 2-D plane.

In this thesis, we are mostly concerned with motion estimation techniques that
can be used for super-resolution. In this context, the majorrequirements for image
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registration are the following:

– Accuracy: sub-pixel precision is required in super-resolution

– Robustness towards image degradations1

– Robustness to outliers represented by moving objects in thescene

– Robustness to changes in illumination

– Reasonable computational complexity2

It is well known that satisfying these requirements together is not straightfor-
ward. In principle, motion estimation aims to reveal the 3-Dmotion trajectory
from the observed image intensities, which means that we need to constrain the
problem and assume certain imaging and scene models. The most common as-
sumption is that the image intensity along a motion trajectory remains constant.
This is usually known as the brightness constancy assumption. Additionally, some
other constraints may be assumed, such as the constant gradient assumption, or the
smoothness of the motion field, etc.

5.2.1 Motion field representation

Motion field representations can be divided into two broad categories: non-
parametric and parametric models. In the first model, the motion field is rep-
resented at each point (or point samples) by a vector indicating the estimated

1e.g. noise, blur caused by camera motion during the exposuretime, or by out-of-focus optical
system.

2image registration is usually the most computationally complex part of a multi-shot image
processing application. This requirement is important if real-time operation with large image sizes
is desired.



5.2. IMAGE REGISTRATION 69

displacement at that point. In the parametric representation, only few parame-
ters corresponding to a pre-determined geometric model areneeded to represent
the motion in a given image area. The table above displays some common lin-
ear parametric motion models and their corresponding geometric transformations.
Additionally, if the imaging system suffers from optical distortions, higher order
polynomial models can be used to integrate the corresponding geometric distor-
tions into the parametric model.

The motion fields, in particular the parametric representations, are usually rep-
resented on various partitions of the image plane. The most frequently employed
regions of support for motion are the following: global models, block-based mod-
els, triangular or hierarchical block-based meshes, and single point support (to
represent dense motion fields).

For super-resolution processing, one particular advantage of the parametric
motion field representation is its capability to accuratelyregister camera transla-
tion, rotation, zooming, or projection on a static planar scene. On the other hand,
a major problem (with global registration techniques) is that they are limited to the
assumed parametric model, and completely fail in the presence of local outliers.
Such outliers may be for instance due to moving objects inside the scene, or due to
the presence of repetitive textures and noisy areas. In those cases, non-parametric
registration techniques (dense optical flow field) may be more suitable to handle
the moving objects. However, this usually comes at the expense of precision loss
and additional memory to store the motion field.

5.2.2 Common approaches for motion estimation

Two different approaches for motion estimation have been separately developed;
i.e., image based discrete motion estimation (block matching), and gradient based
techniques, or optical flow estimation.

Block-based methods

This method for discrete motion estimation establishes thecorrespondences by
measuring similarity using blocks or masks (block-matching). The technique is
simple, but nevertheless the most widely used because of itsubiquitous appli-
cation in video coding schemes such as H.261, H.263, MPEG-1,MPEG-2, and
MPEG-4, AVC. The motion of each block (typically 16x16 pixels) is represented
by a two-parameter vector. Sub-pixel accuracy is often achieved by interpolating
between the pixel intensity values. There are several variations of this basic esti-
mation approach using different combinations of minimization strategies, search
techniques, interpolation procedures, hierarchical derivations, smoothing meth-
ods, etc.

In general, the advantages of block-matching are simplicity and reliability for
discrete large motion. Originally, this approach has been mainly developed to
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improve compression performance in video coding applications. As a result, the
motion vectors do not necessarily reflect real motion, suffer from discontinuities
along the block boundaries, and they generally fail to register detailed motion.
Due to the shortcomings listed above, the direct application of block-based motion
estimation in filtering applications is not considered a viable option.

Optical flow methods

These methods aim to obtain a velocity field by computing the spatial and tem-
poral image derivatives. Since the initial formulation of the optical flow equation
for motion estimation by Horn and Schunck [51] in 1981, several variations based
on this approach have been described in the literature. The reported algorithms
usually consist in deriving a dense flow field by applying a variety of techniques
to compute the gradient images and regularization strategies to solve for the local
parametric motion at each pixel position. This approach hasbeen very popular in
applications considering different sorts of computer vision tasks.

In general, the advantage of this approach is the capabilityto accurately es-
timate of the elastic displacement between frames, i.e., the adequate handling of
piecewise motion. However, the computational complexity associated with opti-
cal flow estimation techniques is usually prohibitively expensive (see Table 1 in
[9]), and this makes it unsuitable for direct use into video filtering applications.

Motion estimation for filtering applications

Based on the arguments mentioned above, and mainly because they have been de-
signed for different applications, one may conclude that the traditional approaches
for motion estimation are not very suitable for motion-compensated filtering ap-
plications, such as super-resolution. For instance, in video filtering applications,
we can afford to skip areas that may not be accurately registered, but we may
not afford blocking artifacts in the final result. This raises the need for research in
new approaches for motion estimation, which may provide a compromise between
computational complexity, ease of integration and accuracy.

5.3 Dense optical flow field estimation using recursive LMS
filtering

Introduction

In the following, we develop a novel motion estimation algorithm that can be used
in video filtering applications. The method is inspired fromthe analogy of audio
echo-cancellation, which successfully applies adaptive filtering to match the de-
layed audio components. Similarly, we attempt to use a 2-D LMS filter to match
the intensity values and calculate the displacement between two adjacent video
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frames. The proposed algorithm adapts the corresponding set of FIR coefficients.
The peak value in the resulted coefficient distribution points to the localized dis-
placement that happens between two successive frames.

The adaptive filtering takes advantage of the localized correlation of image
data in adjacent frames, and produces refined estimates of the displacements at
sub-pixel accuracy. One particular advantage is that the proposed method is flexi-
ble and well suited for the estimation of small displacements within video frames,
which makes it useful in video filtering applications such assuper-resolution
[103], video stabilization [102], and denoising of video sequences.

Adaptive filters

An adaptive filter has an adaptation mechanism that is meant to monitor the en-
vironment and vary the filter transfer function accordingly. The algorithm starts
from a set of initial conditions, that may correspond to complete ignorance about
the environment, and based on the actual observed signals, it tries to find the opti-
mum filter design. In principle, adaptive filters derive all their information from a
given realization of a stochastic process, i.e., one sequence of time samples, thus
canceling the need for a-priori assumptions.

A wealth of adaptive filtering algorithms have been developed in the literature,
and can be found from classic books on the topic (e.g. [46], [89]). Rather than
solving optimally for an unique solution, different types of adaptive algorithms
are usually considered as a set of tools that enable to filter non-stationary signals
in a given way, and each alternative algorithm offers desirable features of its own.

LMS filters

One of the simplest adaptive filters is the well known Least Mean Squares (LMS)
algorithm. It is usually used to determine the filter coefficients that relate to pro-
ducing the least mean squares of the error signal, i.e., the difference between the
desired and the observed signals. The LMS uses the FIR filter input vector as a
correction vector modulated by a step size parameter, whichcontrols the speed of
the adaptation. LMS filters do not make a priori assumptions about the statistics
of the signal data, and this enables a robust performance against various types of
noise and outliers signal. This filter is particularly attractive due to its simplicity
and its low computational complexity. However to date, LMS filters have not been
widely used in image processing applications.

LMS filtering for image and video processing

Earlier, 1-D LMS filtering has been extended to the 2-D case, and has been ap-
plied in few example image processing tasks, e.g., image enhancement [94]. In
[6], a 2-D block diagonal LMS algorithm was developed for image processing
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applications. It was claimed that it is possible to preservethe local correlation in-
formation of the pixels in both directions when utilizing a 2-D diagonal scanning
pattern. In [92], a two-dimensional recursive least squares (LS) filtering scheme
was introduced. The filter was tuned to remove the mismatching effects in a stereo
image pair, and the weights of the filter were computed using ablock-based LS
method. In the context of block motion estimation, it was suggested in [82] that
the estimation of motion vectors based on the spatio-temporal neighborhood in-
formation is an effective solution to reduce the effects of uneven error surface. In
[64], an adaptive matching scan was employed to reduce the amount of computa-
tions needed to perform the full-search block-matching algorithm. However, it is
somehow surprising that none has yet proposed to use LMS algorithms for direct
estimation of the optical flow in image pairs.

In the following Section (5.4), we present the observation model which as-
sumes small displacement between two successive frames. InSection 5.5, we
introduce the LMS matching filter, and then the procedure that we used to extract
the motion from the adapted coefficient distribution. In Section 5.6, we discuss
the effect of the scanning from one direction, and we proposea method to scan
from different directions and to combine the final result. Experimental results are
presented in Section 5.7 using synthetic test set to illustrate the capability of the
proposed algorithm to detect motion as well as motion outliers. Finally, in Sec-
tion 5.8, we discuss the advantages of the proposed method inthe context of video
filtering and we draw some conclusions.

5.4 Observation model

Consider two successive frames of a video sequence, a reference imageI, and
a template imageT , which we would like to register with respect toI. Both
images have the same size(X,Y ). The images are ordered lexicographically into
vectors, such thatI(k) andT (k) denote the intensity values on the grid positionk
(1 ≤ k ≤ XY ). We want to estimate the displacement fieldD(k) = [u(k), v(k)],
which establishes the correspondence betweenI(k) andT (k). We assume that
the relative displacementD(k) is constrained, such that

{
−s ≤ u(k) ≤ s
−s ≤ v(k) ≤ s

(5.1)

In order to solve for the pixel-based motion estimation problem, the following
cost function may be considered

C(k) = [T (k) − Ĩ(k +D(k))]2 (5.2)

Ĩ denotes the estimated intensity value of the reference image after performing
the motion compensation. Note that the displacementD(k) need not be integer
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valued. In equation (5.2), we chose the simple quadratic functional of the reg-
istration error for tractability of the formulation, especially in case of Gaussian
additive noise.

The main hypothesis in our formulation is that the pixel value I(k) in the
reference image can be expressed as an estimate using a linear filter combination
of the window around the central pixel locationT (k) in the template image. That
is:

I(k) = w(k)
′ ∗ Tw(k) + η(k) (5.3)

whereTw(k) is a matrix of windowed pixel values from the template image with
sizeS = (2s + 1)2 and centered around the pixel positionk. w(k) corresponds
to the modulating coefficient matrix,η(k) is an additive noise term. For nota-
tion convenience, the matricesTw(k) andw(k) are ordered lexicographically into
column vectors, and′ denotes the transpose operation.

The model in (5.3) tells that each pixel value in the reference image can be esti-
mated with a linear model of a window that contains the possible shifted pixels in
the template image. In this setting, the motion estimation problem can be mapped
into the simpler problem of linear system identification, i.e., we have the desired
signalI(k), the input dataTw(k), and we would like to estimatew(k) according
to the linear model in (5.3). The goal is to minimize the cost function in (5.2) by
limiting the motion search within the bounds expressed in (5.1).

5.5 2-D LMS adaptive pixel matching

The 2-D LMS filter is essentially an extension of its 1-D counterpart. In our
solution, it takes the two dimensional windowTw(k) as input data and the desired
response to be matched is the intensity value in the reference imageI(k). In order
to solve for the weight arrayw(k), we apply the standard LMS recursion [46].
The recursion is applied along a pre-determined scanning path of the image grid
(indexed byn), as follows

{
e(n) = I(k) − w(n− 1)

′

Tw(k)
w(n) = w(n− 1) + µ(n)Tw(k)e(n)

(5.4)

whereµ(n) is a positive step size parameter,e(n) is the output estimation error,
n refers to the iteration number, andk denotes the current pixel position that we
are filtering. Note that if the indexing of the pixelsk is the same as the indexing
of the scanning path, thenn andk are identical.w(n− 1) refers to the coefficient
values that were estimated in the previous pixel position following the employed
scanning direction (see the following section for discussion). Fig. 5.1 shows an
illustration of this basic filtering process.

Like its 1-D counterpart, the 2-D adaptive filter does not assume any knowl-
edge about the cross correlation functions [94]. The filter approximates their val-
ues by using instantaneous estimates at each pixel positionaccording to the step
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Figure 5.1: Illustration of the LMS filtering that is used to calculate the optical
flow between the frames.

sizeµ. For LMS filters, there is a well-studied trade-off between stability and
speed of convergence, i.e., a small enough step sizeµ(n) will result in slow con-
vergence; whereas a large step size may result in unstable solutions. Alternatively,
there are several modifications of the standard LMS algorithm that offer simpler
stability requirements, for example, the normalized LMS (NLMS). The NLMS
algorithm is obtained by substituting in equation (5.4) thefollowing step size:

µ(n) =
µ

ε+ ‖Tw(k)‖2
(5.5)

whereε is a small positive constant. In this form, the filter is also calledε-NLMS
[2], and the stability condition is given by:

µ <
2

3
(5.6)

The choice of the step size parameter is critical in tuning the proper perfor-
mance of the overall algorithm. In general, the motion can beassumed locally
stationary, such that a small step sizeµ can be used to favor smooth and slowly
varying motion field rather than a spiky and fast changing motion field.

Determining the motion from the adapted filter coefficients

The function of the 2-D LMS filter is to match the pixels in a search window on
the template image to the central pixel in the reference image. This matching
is done through the smooth modulation of the filter coefficient matrix. Fig. 5.2
shows an example plot of the coefficient values, which peak atthe position of the
displacement between the corresponding images.

In order to obtain the displacement vectorD(k) from the adapted coefficient
distributionw(k), we apply a simple filtering operation, which first finds the clus-
ter of neighboring coefficients that contains the global maximum coefficient value
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Figure 5.2: Example distribution of adapted coefficient values. The peak value
points to the displacement that happened between the two frames at pixel location
k.

Figure 5.3: Obtaining the displacement from the coefficientdistribution.

(Fig. 5.3). Then, the center of mass of this cluster is calculated over the sup-
port window. The resulting displacement in thex andy directions constitute the
horizontal and vertical components ofD(k) at sub-pixel accuracy. A simple in-
termediate check is inserted to assert whether motion can beconfirmed from the
obtained coefficient distribution. This filtering operation is described next in more
detail:

1. Find the3 × 3 window support, over which the sum of neighboring coefficients is
maximum.

2. Check that the sum is larger than a pre-determined threshold (confidence in esti-
mation process). If not, assert an empty pointer.

3. Calculate the center of mass over the obtained3 × 3 support window. The vector
from the origin to the resulting position is the estimated motion vector.
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Figure 5.4: Implementation alternative of the proposed motion estimation tech-
nique for raw Bayer data. The scanning is performed from4 different directions
separately for each subsampled color component. The final result is obtained by
fusing the resulting motion fields in a robust manner.

One important remark relates to the last step where the motion vector is es-
timated as the center of mass of the maximum coefficient distribution. This is
done by calculating the weighted average of the pre-selected 3 × 3 grid positions
with respect to the corresponding adapted FIR coefficients.In our experiments,
this operation is performed in floating point, which means that the obtained dis-
placement is inherently at sub-pixel precision. Alternatively, the operations can
be easily converted to include desired the subpixel integerprecision, this modifi-
cation is useful if we would like to further reduce the computational complexity
of the algorithm.

5.6 Scanning direction

The proposed filtering method is based on recursive scanningof the 2D image
grid. As a consequence, the employed scanning pattern impacts the coefficient
adaptation, especially if we favor stable adaptation by using a small step size
µ. This means that the overall estimation process is spatially causal with respect
to the employed scan method. In case the motion is global stationary and con-
strained, which may be for instance due to camera shaking with respect to a fixed
scene, even the simplest of scanning patterns, e.g., rasterscan, is sufficient to
correctly estimate the stationary displacement.



5.7. EXPERIMENTAL RESULTS 77

5.6.1 Multiple scanning directions

On the other hand, if we want to detect arbitrary and localized motion, it may not
be possible to estimate the corresponding motion field by utilizing a single scan-
ning direction. Instead, the scanning can be performed in four different directions
and obtain the displacement field independently for each scanning direction. The
final motion field is computed by combining the resulted motion fields obtained
from the different directions. The combining of the displacement vectors can be
performed by selecting the vector that minimizes the corresponding error value
at each pixel location (error images due to LMS adaptation are stored temporar-
ily in the memory). Another elegant method is to apply a component-wise scalar
median filter (or vector median [4]) for the obtained displacement vectors; this
allows to obtain the consolidated motion through a voting process and enhance
the performance of the estimation process against outliers.

5.6.2 Scanning method for raw Bayer data

In the previous chapter, we proposed to use super-resolution for raw sensor data
in RGBG domain (Bayer image data). Interestingly, since theraw data inherently
has four separate color components, which are assumed to undergo the same mo-
tion; we can apply the multiple scanning scheme described above in 4 different
directions by treating each subsampled color component as aseparate data source.
This may be done at no extra computational cost. The final motion field can be
obtained by fusing the motion field obtained from the different directions, as de-
scribed above. This scheme (illustrated in Fig. 5.4) will becombined in future
work with the method proposed in the previous chapter in order to develop an
integrated method for super-resolving raw sensor data.

5.6.3 Enhanced scanning patterns

Additionally, instead of the basic raster scan, space-filling curves [78] can be used
to traverse the image plane while adapting the LMS coefficients. The typical space
filling patterns (e.g., Peano and Hilbert curves [78]) are defined over grid areas that
are powers of2. Fig. 5.5 shows an example of the Hilbert scanning pattern for a
rectangular window of 16x16. This mode of scanning through the pixels, though
more complicated, has the important advantage of staying localized within areas
of stationary shifts before moving to another area. This scanning mode typically
results in superior performance of the overall estimation process, especially in the
presence of localized motion or other random outliers. The pattern in Fig. 5.5 can
be easily mirrored and traversed from four directions as discussed previously.
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Figure 5.5: Possibility to employ more elaborate scanning patterns. In this exam-
ple, we propose to use mirrored Hilbert scanning patterns totraverse the image
plane from4 different directions.

5.7 Experimental results

In this section, we briefly show the performance of the proposed approach for
motion estimation. We present three different experimentsto simulate practical
situations that may arise in video filtering applications.

In the first experiment illustrated in Fig. 5.6, a template image is generated
from an original reference image by simulating a global translation(D = [0, 3.5]).
Zero-mean Gaussian noise(σ2

η = 40) is added to both the template and the refer-
ence image. We tested our algorithm with the following parameters(s = 7, µ =
0.02)3. In this experiment, simple raster scanning of the image wasemployed
to adapt the LMS coefficients. The obtained sampled motion field is displayed
in Fig. 5.6; the red arrows display the estimated displacement vectors, whereas
the blue points show areas where the algorithm cannot resolve constrained motion
with certainty; these areas generally contain little imagedetails, which confuse the
LMS adaptation. The algorithm was successful in determining the global trans-
lational motion, e.g., the motion vector that was estimatedin the middle of the
image wasDest = [0.048, 3.513]. In fact, since the step sizeµ was small, the
overall performance was robust against noise, meanwhile the coefficient adapta-
tion was capable to track the stationary shift, because the same shift is consistently
confirmed in the areas that contain contrasted details.

In the second experiment, a template image is generated by warping the ref-
erence image with an affine transformation. The test image ismeant to simulate
the geometric skew that is due to camera rotation with respect to an axis, which
is parallel to the image plane. Fig. 5.7 shows the estimated motion field that was
obtained with the following algorithm parameters(s = 15, µ = 0.02). The filter-
ing was performed using a single scanning direction (rasterscan). In the border

3The extent of the search (s) can be set according to the video type and the target filtering appli-
cation. When we know the motion is constrained, smaller search windows ensure faster operation
and improved precision.
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Figure 5.6: Example of the estimated motion field that is obtained by scanning in a
single direction (horizontal). Global translation and noisy input images (Gaussian
noise,σ2

η = 40). Blue points represent the pixel positions where the algorithm
cannot resolve any motion with certainty.

area, the algorithm did not detect motion due to the absence of any image details
that fall inside the search window. In the rest of the image area, the algorithm was
capable to track the smoothly varying motion field.

In the third experiment, a template image is generated by translating the refer-
ence image and by inserting an outlier area in the middle of the image. This exper-
iment is designed to simulate the performance of the algorithm in the presence of
combined motion. The following algorithm parameters were used(s = 10, µ =
0.02). In this setting, we used the block Hilbert scanning to traverse the image
plane from 4 different directions, and we finally fused the obtained displacement
vector components using a median filter. Fig. 5.8 displays the estimated motion
field. The blue points show areas where the algorithm cannot resolve for motion
with certainty, which corresponds well to the outlier area that was in the template
image. This experiment reveals that the use of multiple scanning from different
directions and the subsequent voting process through the median selector adds ro-
bustness to the motion estimation. We reckon that this result is useful in video
filtering, since the detected outlier points can be left out from the filtering process
to avoid unwanted artifacts.

In all our experiments, the obtained dense motion field is smooth and spatially
correlated, which reflects well the real motion that happened in the video frames.
The complexity of the algorithm isO((2s+1)2N). Comparing to the complexity
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Figure 5.7: Example of the estimated motion field that is obtained by scanning in a
single direction (horizontal). The template image was obtained from the reference
image by an affine geometric transformation.

of optical flow methods (table 1 in [9]), the proposed method is much simpler and
faster, thus enabling real-time operation of motion compensated filtering.

5.8 Conclusions

In this chapter, we presented a novel recursive method for pixel-based motion es-
timation. The proposed algorithm employs 2-D LMS filter to adapt a window of
coefficients so that we can match the pixel value in the reference frame. The peak
value in the resulted coefficient distribution points to thedisplacement between
the frames at each pixel position. The recursive LMS filtering along the scanning
direction enables to track the stationary shifts that happen between the reference
and template frames, and inherently produces smooth estimates of the displace-
ments, directly at sub-pixel accuracy. We also proposed variations of the initial
algorithm such as the use of multiple scanning directions and patterns in order to
track complicated motion in the scene.

Experimental results have demonstrated that the overall performance was ro-
bust against Gaussian noise. Also, the algorithm was capable to accurately track
smooth affine motion, even when using a single scanning direction. When using
multiple scanning directions, it was possible to single outoutlier regions which
correspond for example to moving or disappearing objects inthe scene.

One important advantage of the proposed method is its simplicity and relative
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Figure 5.8: Example of the estimated motion field in the presence of outliers. Blue
points represent points where the algorithm cannot resolvemotion with certainty.
The result was obtained by combining the motion estimates from 4 directions
(using median operator). The algorithm detected the outlier region (blue points in
the center) and isolated it from the smooth motion field in therest of the image.

low computational complexity. The initial results demonstrate the usability of the
algorithm, especially when targeting motion-compensatedfiltering such as video
denoising, video stabilization and super-resolution processing. In future work,
we may investigate different variations of the algorithm inorder to enhance the
basic motion tracking performance, and derive simple rulesfor LMS step size
adaptation. Also of interest, is the research of different extensions of the algorithm
in order to cover complex motion patterns.
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Chapter 6

Robust Fusion in
Super-Resolution

6.1 Introduction

As we have discussed in the previous chapter, one critical aspect in image super-
resolution is the need for accurate sub-pixel registrationof the input images. The
overall performance is particularly degraded in the presence of persistent outliers.
To enhance the robustness of super-resolution algorithms,we propose in this chap-
ter an integrated adaptive filtering method to reject the outlier image regions. In
the process of combining the gradient images due to each low-resolution image,
we use adaptive FIR filtering. The coefficients of the FIR filter are updated us-
ing the LMS algorithm, which automatically isolates the outlier image regions by
decreasing the corresponding coefficients. The adaptationcriterion of the LMS
estimator is the error between the median of the samples fromthe LR images, and
the output of the FIR filter. Through simulated experiments on synthetic images
and on real camera images, we show that the proposed technique performs well
in the presence of motion outliers. This relatively simple and fast mechanism en-
ables to add robustness in practical applications of image super-resolution, while
still effective against Gaussian noise in the image formation model.

6.2 Related work

Super-resolution is considered to be one of the most promising techniques that
can help overcome the limitations due to optics and sensor resolution [85]. The
technique consists in combining a set of low-resolution images portraying slightly
different views of the same scene, in order to reconstruct a high-resolution image
of that scene. The idea is to increase the information content in the final image by
exploiting the additional spatio-temporal information that is available in each of
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the LR images.

In practice, the quality of the super-resolved images depends heavily on the ac-
curacy of the motion estimation; in fact, sub-pixel precision in the motion field is
needed to achieve the desired improvement. Global parametric motion estimation
using affine or projective models can provide accurate enough registration, which
positively impacts the over-all performance of the SR algorithms. If the images
exhibit optical distortions, higher order polynomial models can be used to obtain
better pixel correspondence within the LR images. One majorproblem with global
registration techniques is that they are limited to the assumed parametric model,
and more importantly, they completely fail in the presence of local outliers. For
example, such outliers may be due to moving objects inside the scene, or due to
the presence of repetitive textures or localized noisy areas. In those cases, the
super-resolved image can exhibit severe artifacts. Local registration techniques
such as optical flow are capable of handling moving objects, although their per-
formance suffers from from lack of precision [7], and the result is not completely
prone to outliers. For these reasons, robustness towards registration errors is a crit-
ical requirement in super-resolution, especially if we target to realize commercial
applications. Moreover, if we consider current mobile devices, we can afford only
a limited number of LR frames in the memory buffer; so it’s useful to consider
optimized algorithms that reject localized outliers, but that are able to exploit the
rest of the image areas to improve the final resolution.

Registration error

Several solutions have been proposed to handle registration errors by solving it as
part of the regularization of the solution (e.g. [45], [70],[91]). In [45] and [91],
motion error noise is incorporated asa priori information within the smoothness
prior, and the result image is obtained as the MAP solution. In [70], a regular-
ization functional is plugged in a constrained least squares setting and solved by
iterative gradient descent. This approach for handling theregistration error as part
of the regularization certainly helps towards the conditioning of the ill-posed in-
verse problem. However, it is argued in [8] that for large magnification factors,
and regardless of the number of LR images used, regularization suppresses useful
high-frequency information, and ultimately leads to smooth results. Note that in
most of the literature, localized motion outliers are not properly handled in the
model. Further, it is implicitly assumed that the extra resolution content is equally
distributed among all the LR images, and usually, the resultis obtained by aver-
aging the contributions from all LR images, which propagates the outlier pixels
from any of the LR images into the final HR image.
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Robust fusion

In [33], it was shown through simulations that in the presence of small errors due
to motion estimation or due to inconsistent pixel areas in the consecutive frames,
the combined noise is better modeled with a Laplacian distribution rather than
a Gaussian distribution. So, if this is taken into consideration, the mixed noise
model is best handled through the minimization of theLp (1 ≤ p ≤ 2) norm.
Specifically, if theL1 norm is considered, the pixelwise median minimizes the cor-
responding cost function, and when used together with the bilateral prior regular-
ization [33], the solution was robust towards errors, and still preserved details near
sharp edges. In the context of super-resolution reconstruction, the median filter
was used earlier [117] in the fusing process of the gradient images. It was shown
that together with a bias detection procedure, it is possible to increase resolution
even for those regions that contained outlier objects. However, it is well known
that the median operator is not optimal for filtering Gaussian noise. Also, the
median tends to consistently eliminate those measurementsthat significantly de-
viate from the majority, and which may contain most of the novel high-frequency
information. So at least in principle, there is a delicate trade-off between outlier
rejection performance, noise removal capability, and the capability to reconstruct
aliased high frequencies. One possible approach is to consider studying, instead
of the mean or median filters, theα-trimmed mean or{r, s}-trimmed mean1 in
the fusing process. The generalized class of order statistics filters, orL-filters [5]
constitute a suitable filtering framework to derive the desired balance between the
different trade-offs that are involved in the fusing process of the LR images. We
have used this approach [113] to super-resolve text images by emphasizing either
the maximum or minimum values to enhance the contrast near character edges.

Our approach

In order to efficiently handle localized outliers, in the following we propose to
use an adaptive FIR scheme that automatically reduces the contribution of the
outliers, and averages the rest of the pixels. As the scanning progresses over the
image grid, the weights associated with each LR image are adapted using an LMS
estimator. The median estimator is used as an adaptation criterion that tunes the
FIR coefficients to reject consistent outliers. Our approach is different in that we
use the median estimator as an intermediate step in the adaptation process, and
this inherently eliminates the need for a bias detection procedure [117], making
the overall algorithm more robust to Gaussian noise in the image formation model.

The rest of the chapter is organized as follows: in Section 6.3 we present the
assumed imaging model. In Section 6.4, the general framework of the iterative

1These filters are effective against impulsive noise that maybe due to registration errors, and are
relatively easy to tune.
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super-resolution is presented. Next, we review briefly the existing fusing tech-
niques, and we explain the issues that need to be addressed inorder to tune the SR
algorithm for robustness against outlier regions. In Section 6.6, we introduce our
approach that uses an adaptive FIR filter to combine the gradient images. In Sec-
tion 6.7, we show the experimental results, and Section 6.8 concludes the topic.

6.3 Imaging model

In this section, the general model that relates the HR image to the LR observa-
tions is formulated. The degradation process involves consecutively, geometric
transformation, sensor blurring, spatial sub-sampling, and an additive noise term.
In continuous domain, the forward synthesis model can be described as follows:
considerN observed LR images, we assume that these images are obtainedas
different views of a single continuous HR image. Following asimilar notation as
in [22], theith LR image can be expressed as:

gi(x, y) = S ↓ (hi ∗ f (ξi)) (x, y) + ηi(x, y), (6.1)

wheregi is theith observed LR image,f is the HR reference image,hi the point
spread function (PSF),ξi the geometric warping,S ↓ the down-sampling oper-
ator, ηi additive noise term, and∗ denote the convolution operator. The overall
degradation process is illustrated in Fig. 6.1.

After discretization, the model can be expressed in matrix form as follows:

gi = Aif + ηi. (6.2)

The matrixAi combines successively, the geometric transformationξi, the con-
volution operator with the blurring parameters ofhi, and the down-sampling op-
eratorS ↓ [30]. Note that in equation (6.2)gi, f andηi are lexicographically
ordered.

6.4 Iterative super-resolution

The problem of super-resolution reconstruction is formulated as estimating the
best HR image, which when appropriately warped and down-sampled by the
model in (6.2) will generate the closest estimates of the LR imagesgi. If we
assume thatηi is Gaussian white noise, then the least squares solution maximizes
the likelihood that each LR image is the result of an observation of the original
HR image. In other words, for each observationgi, the corresponding solution is
a high-resolution imagef , which minimizes the following cost function:

εi = ||ĝi − gi||2 = ||Aif − gi||2, (6.3)
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Figure 6.1: An illustration of the image degradation process following the model
in (6.2).

with ĝi being the simulated LR image through the forward imaging model.
In order to minimize the error functional in (6.3), the method of iterative gra-

dient descent is commonly employed. This optimization technique seeks to con-
vergeεi towards a local minimum, following the trajectory defined bythe negative
gradient. That is, at iterationn, the high-resolution image according to observa-
tion gi, is updated as:

f
n+1

= f
n

+ µn
i r

n
i , (6.4)

µn
i andrn

i are respectively, the step-size and the residual gradient at iterationn.
The residual gradientrn

i is computed as follows:

rn
i = Wi

(
gi − Aif

n
)
. (6.5)

The matrixWi combines successively the up-sampling, and the inverse geometric
warpξ−1

i . The step sizeµn
i that achieves the steepest descent is given by [12]:

µn
i =

||gi −Aif
n||2

||Airn
i ||2

. (6.6)

In equation (6.4), each scaled gradient term,pi = µn
i r

n
i , corresponds to the up-

date image that verifies the reconstruction constraint for theith observationgi. We
definezk as the data vector that points to the values from all the gradient images at
pixel positionk, zk = {pi(k), i = 1 . . . , N}. In the process of SR reconstruction,
we need to perform a temporal filtering operation that combines the observations
in zk. For convenience of notation, we denote this filtering operator Φ. For each
pixel k on the HR image grid, the resulting update valueyk is given as

yk = Φ(zk), (6.7)
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Figure 6.2: Generic block diagram of the iterative super-resolution process. The
gradient images are combined using a filtering operatorΦ that can be modulated
depending on the application.

whereΦ is a generic filtering operator that performs the fusing of the pixels from
all the available gradient images. Fig. 6.2 depicts an illustration of the iterative
SR algorithm that we considered. Note that so far our formulation does not as-
sume a proper regularization term for the solution. Certainly, super-resolution is
an ill-posed inverse problem, so regularization is necessary to obtain a stable so-
lution. In the literature, there has been significant effortto formulate suitable prior
models for iterative super-resolution (e.g. [32], [45], [70]). These solutions can
be implemented in the iterative setting of Fig. 6.2 by assuming a generic filterΓ
that operates on the previous SR estimatef

n
, or on the fused gradient image. If

we denotesk as the contribution that is due to the regularization process at pixel
k, then at iterationn, the final output at each pixelk is updated as follows:

fn+1
k = fn

k + yk + µnαsk, (6.8)

whereα is the regularization parameter that controls the conditioning of the so-
lution. In the rest of the chapter, and in our experiments, weomitted the use of
a regularization operator, i.e., we assumedsk = 0. We focus the discussion on
the efficient implementation of the fusing processΦ in the presence of motion
outliers.
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6.5 Fusing the gradient images

Ideally, the fusing process defined by operatorΦ will retain the novel information
from each LR frame, filter out the noise due to the image formation process, and
of course reject the motion outliers. Thus, at least in principle, we shall consider
all the observations independently, and design a filtering mechanism that adapts
itself to instantly recognize and reject the outliers, while constantly adjusting its
behavior according to the non-stationary noise distribution of the input images.

One straightforward implementation of the fusing process would be to select
Φ as the mean filter. In this case, if Gaussian noise is assumed in the imaging
model, the algorithm is equivalent to the maximum likelihood solution. How-
ever, the solution is not robust against outliers. Another possibility is to select
the median filter, which would be efficient against impulsiveerrors inzk. This
idea was used earlier in iterative super-resolution [117],and was shown to im-
prove the robustness against motion outliers. In fact, the median minimizes the
L1 cost function [33] which corresponds to the Laplacian distribution of the com-
bined noise. However, in the case when the errors have a mixeddistribution, for
instance, Gaussian and impulsive, the class oftrimmed mean filters might have
better performance. Note that the filters discussed above can be derived as special
cases of the generalizedL-filters2 which operate on the sorted data vectorz(k).

When we consider error modeling due to motion estimation, itis difficult in
practice to assume a stationary distribution. This is especially true when dealing
with local outliers, for example due to moving objects inside the scene. More
difficult is the case when the user tilts the camera, resulting in a significant per-
spective change. This situation is quite challenging for most motion estimation
techniques, which may register parts of the image correctly, but may completely
fail in some other regions. It is beneficial to use an adaptivefusing strategy that is
capable of automatically isolating localized outliers. Inthe following section, we
introduce our approach which is based on spatially adaptiveFIR filtering of the
gradient images. It is shown that this technique enables theoverall process to deal
adequately with outliers.

6.6 Our approach

6.6.1 Outlier rejection by adaptive FIR filtering

In equation (6.7), the fusing operatorΦ is implemented as a weighted mean filter,
i.e., at each iteration, the update valueyk is calculated as the output of an FIR

2For example, the median filter is a special case of theL-filters, which can be obtained by
selecting all the coefficients to be zero, except for the center coefficient that has unity value.
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filter, as follows:

yk =
N∑

i=1

aipi(k) = a
T
zk, (6.9)

wherea is the FIR coefficient vector. The filter coefficients relate the contribution
that each LR image brings into the fused image. In most conventional techniques,
it is generally implied that all the LR images contribute equally to the total gradi-
ent image, i.e.,ai = 1

N , i = 1, . . . , N . However in the presence of outliers, the
computed solution may be corrupted by the consistent presence of large projection
errors coming from the same frames.

To take into account the presence of outlier regions at the fusing stage, we
introduce an adaptation mechanism that modulates the weights associated with
each input image. The coefficients of the FIR filter are varying with the pixel
locationk, that is in equation (6.9), we useak instead ofa.

6.6.2 Coefficient adaptation

For its simplicity and computational efficiency, we chose touse the least mean
squared (LMS) estimator to adapt the filter coefficients. Thecoefficients are up-
dated progressively according to a pre-determined scanning pattern across the se-
lected image region (k = 1 . . . L). Our proposed method for spatially adapting
the FIR coefficients, and simultaneously computing the update value is described
below:

1. Initialization: k = 1, a0 =
[

1
N , . . . ,

1
N

]

2. While scanning inside the image (k ≤ L)
2.1. Filtering:yk = a

T
k−1zk

2.2. Error computation:ek = dk − yk = median(zk) − yk

2.3. Coefficient update:ak = ak−1 + λekzk

2.4. Move to next pixel location (k + 1)
3. Update the HR estimate according to equation (6.8)

In the LMS coefficient adaptation shown above,λ is the step-size parameter. We
set the desired response of the LMS estimator (dk) to be the median of all the er-
rors. In this setting, the median is used to point out those frames that consistently
present error values that deviate from the majority. For example, if scanning pro-
gresses through an area where theith LR image contains an outlier region, then
pixel after pixel, the error with respect to the median is going to be large, and the
coefficient bias due toλekzk(i) is going to adjust the corresponding FIR coeffi-
cientak(i). Fig. 6.3 depicts an illustration of the proposed filtering method.

When combined with a suitable step-size, the LMS estimator gathers reliable
statistics from the immediate pixel neighborhood. The resulting FIR coefficients
tend to stabilize, rejecting the outlier contribution, while still averaging the rest of
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Figure 6.3: Block diagram of the proposed fusing method. Thegradient images
are combined with a spatially varying FIR filter. The coefficients of the FIR are
chosen with an LMS estimator that is tuned to reject outliers.

the error values. Given a sufficient set of samples, the median can approximate the
mean quite well [5], although with a reduced set of LR images (fewer samples),
the result can be biased, and that’s why we chose to set it onlyas an intermediate
step for the coefficient adaptation. The experiments in the following section con-
firm that this fusing scheme is also efficient to filter the Gaussian noise assumed
in the image formation model.

Note that the desired response of the LMS estimation (dk) can be changed to
modulate the performance of the super-resolution process.In this case, the median
estimator is used to tune the algorithm for robustness against local outliers. Other
functions might be studied and plugged indk to obtain a specific property of the
fusing process. For example, to speed up the reconstructionproperty for all the
input images, we can setdk = 0. In this case, since we are fusing gradient images,
the algorithm will favor the contribution of those LR imagesthat consistently
present most of the novel information.

6.6.3 Stability of LMS adaptation

Although its simplicity and good adaptation performance, the LMS has also some
sensible points that must be addressed. First issue is the initialization of the step-
sizeλ. It is well known that the value ofλ provides a trade-off between speed
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of convergence and quality of adaptation. If its value is large, the convergence
is fast, but at the expense of an increased adaptation error.On the contrary, a
small step-size provides good adaptation performance, butthe transient time is
increased.

The problem of stability and adaptation speed for the LMS estimator is well
studied in the literature [46]. Several modified solutions have been proposed to
solve the problem for 1D signals. To ensure the stability of the LMS estimator,
the step-size must be bounded3:

0 < λ <
2

3tr [R]
. (6.10)

whereR = E
{
zkz

T
k

}
is the cross-correlation matrix of the input vector,E {}

denotes the expectation operator, andtr [R] is the sum of the diagonal elements
of matrixR.

The above stability criterion is valid and easy to implementwhen the input
sequence is stationary. However, for non-stationary inputs, as it is often the case
with image data, the cross-correlation matrixR changes when scanning through
the image. As a consequence, the stability interval in (6.10) is not fixed throughout
the entire image. To overcome this difficulty, the simplest solution consists in
selecting a small value ofλ, such that it is always within the stability bounds for
all the pixel locations. However, such a small step-size will significantly slow
down the convergence. Moreover, although in some parts of the image, a small
step-size will be beneficial to avoid fast and unnecessary variations in the the FIR
coefficients, a larger value ofλ will be required in regions containing outliers.

To overcome those difficulties, and to simplify the setup of the algorithm, we
have implemented the normalized LMS (NLMS). The gradient step factor is nor-
malized by the energy of the data vector. In our case,λk is modified depending
on the pixel location, and is given by the following equation:

λk =
γ

||zk||2
, (6.11)

where||zk|| is the Euclidean norm of vectorzk, andγ denotes the step size pa-
rameter of the NLMS estimator. In this setup, the stability condition of (6.10)
becomes:

0 < γ <
2

3
. (6.12)

As it can be seen from equation (6.11), the algorithm maintains a step size value
that is inversely proportional to the input power. As a result, the normalized al-
gorithm converges faster within fewer samples in many cases. To overcome the

3for several applications, relaxed boundary conditions maybe used forλ. However, the stability
condition in equation (6.10) has been shown to ensure stability for a wider class of input statistics,
including non-stationary signals.
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Figure 6.4: Hilbert scanning pattern is used to maximize efficient adaptation of
the FIR coefficients.

possible numerical problems when||zk||2 is very close to zero, the step-size of the
Normalized LMS in equation (6.11) is usually modified as follows [46]:

λk =
γ

c+ ||zk||2
, (6.13)

with c > 0. Note that the stability interval ofγ remains unchanged, and is the
same as in (6.12). In equation (6.13), the constantc can be used to prevent very
large changes of the step size. If we use a relatively large value of c >, the speed
of coefficient adaptation is decreased, but on the other hand, this improves the
robustness of the employed NLMS adaptation against fast changing edges and
other local image details that are present in the gradient images.

6.6.4 Scanning pattern

To better handle outlier regions, especially those due to moving objects, the pro-
posed fusing algorithm is most efficient when the coefficientadaptation procedure
stays localized around the 2-D outlier patterns. Ideally, we would like the scan-
ning path to satisfy the following constraints:

• cover the entire image area,

• pass through each point only once,

• stay in the highly correlated image areas as long as possible.

By default, if we use the simple raster scan over the entire HRimage, we fail
to satisfy condition 3. One immediate solution is to divide the image into areas
of equal size, and to apply the filtering in these areas independently, with careful
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handling of the borders. Instead of the raster scan, space-filling curves can be used
to traverse the image plane during the filtering process. These curves have been
successfully used in several other applications such as image coding [78]. This
mode of scanning through the pixels, though more complicated, has the important
advantage of staying localized within areas of similar frequencies before moving
to another area. Fig. 6.4 shows the Hilbert scanning patternfor a rectangular
window of 16 × 16. Notice that the filtering following the Hilbert path will stay
longer in regions having 2-D correlation than the one following the raster scan. In
our implementations, we tested the Hilbert space filling curves of 64x64, as well as
16× 16. It was clear to us that applying this type of scanning pattern significantly
enhanced the coefficient adaptation, and allowed to use smaller values ofλ, thus
resulting in better stability of the LMS estimator. It is worth of mentioning that
these scanning patterns are easily integrated in the overall implementation using
pre-defined look up tables.

The typical space filling patterns (such as Peano, Hilbert [78]) are defined over
grid areas that are powers of 2. To confine with this restriction, the image area is
devided into smaller tiles that are powers of 2. This option is rather a limitation
to the performance of the LMS estimator. Moreover, if the tiles happen inside an
outlier area, some artifacts might appear at the borders of the tiles, and may get
amplified with the iterations. To avoid these artifacts, oneimmediate solution is
to slow down the LMS adaptation by decreasingλ. Another solution is to smooth
the coefficients at the borders of adjacent tiles, but this procedure makes the over-
all implementation rather cumbersome. Better solution would be to apply space
filling curves that are defined over arbitrary sized images, for example the scan-
ning technique that is proposed in [88] provides an elegant method for preserving
two-dimensional continuity.

To further enhance the stability of the LMS estimator, the adapted FIR coeffi-
cients are saved in between successive iterations of the super-resolution algorithm.
These are used to initialize the input coefficients at the beginning of each scan-
ning block. In fact, in the presence of consistent outliers,the coefficients tend to
stabilize quickly after scanning through a small part of theimage (see Fig. 6.6),
and the outlier regions can be pointed out, since their corresponding coefficients
are much smaller than the rest. The detected outlier regionscan be thrown away
when processing the following iterations to reduce the computational complexity
of the overall algorithm.

6.7 Simulation results

In this section, we show the performance of the proposed technique. First, we
tested the algorithm on a sequence of synthetic test images.The images, 5 in
total, were generated from a single HR image according to theimaging model
described in equation (6.1). The original HR image was randomly warped using
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Figure 6.5:5 noisy LR were synthetically generated by random warp and down-
sampling by2, additive Gaussian noise(σ2

η = 40); 1 outlier image. (a) Reference
LR image,SNR = 11.85. (b) SR result with mean fusing (ML solution) after10
iterations,SNR = 14.12. (c) Iterative median fusing after10 iterations,SNR =
15.32. (d) SR using adaptive FIR filtering after10 iterations,SNR = 15.99.

Figure 6.6: Adaptation of the filter coefficients during the first iteration corre-
sponding to the image shown in Fig. 6.5 (d). The coefficienta(3) reflecting the
contribution of the outlier image is automatically decreased.
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Figure 6.7:SNR comparison across the first10 iterations for the super-resolved
images shown in Fig. 6.5.SNR curves for (a) proposed adaptive solution,
(b) median fusing of the gradient images, and (c) average fusing of the gradient
images.

an 8 parameter projective model. The registration parameters were saved for the
reconstruction experiments. We used a continuous GaussianPSF (σ2

psf = 0.5) as
the blurring operator, and we down-sampled the images by 2 toobtain the 5 LR
images. All the images were contaminated with additive Gaussian noise (σ2

η =
40). Out of the 5 obtained images, we singled out one image, and we introduced
a deliberate error in its registration parameter corresponding to a translation error
of 1.5 pixels on the LR image grid.

We ran the algorithm on the resulting set of images. Fig. 6.6 shows the tra-
jectory of the adapted coefficients through the first iteration. In this experiment,
the LMS step-size is fixed to a small valueγ = 5 · 10−7. Although the step size
is relatively small, the LMS estimator successfully singles out the outlier image
(third image) by decreasing its corresponding FIR coefficient a(3), after scanning
through a small part of the image.

We compared the results of iterative super-resolution obtained using the pro-
posed fusing process against the mean and median filters. Forthe three compared
techniques, the same step sizeµn

i in the update equation (6.4) is used. Fig. 6.5
shows the result images; both our fusing technique and the median fusing suc-
cessfully singled out the outlier image and improved the robustness of the overall
SR process. Compared to median fusing, the proposed filtering has shown better
robustness towards noise, and was able to reconstruct finer character details. Fig.
6.7 shows the correspondingSNR values across the iterations. TheSNR num-
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Figure 6.8: (a) Original HR image. (b) The set of LR images used in the ex-
periment: 4 noisy LR were synthetically generated from the original HR im-
age. The last image was generated from the same image with artificial objects
inserted. All images were shifted, downsampled by2 and contaminated with ad-
ditive Gaussian noise(σ2

η = 40). (c) Interpolated reference image (pixel replica-
tion), SNR = 8.6. (d) SR result using iterative mean fusing after4 iterations,
SNR = 11.4. Remark the shaded outlier regions. (e) SR result using iterative
median fusing after4 iterations,SNR = 11.3. (f) SR using adaptive FIR filtering
after 4 iterations,SNR = 12.1.

ber confirm that the proposed filtering scheme consistently performs better than
the mean and median filters. It is worth mentioning that the intermediate result
was truncated in between iterations, which helped to constrain the solution and
achieve steadier convergence for this set of almost binary images. Note that in
all the experiments, we have not used a regularization operator, because we are
mainly interested to isolate the effect of the fusing strategy. We assume that it
would be possible to enhance the final result, when we assert some prior knowl-
edge about the image content in the regularization step.

In Fig. 6.8, we repeated the same experiment. We generated 4 LR resolution
images with the same parameters described above, but in thissetting, we selected
the last LR frame, and we inserted several outlier objects. Fig. 6.10 shows the
SNR values across the iterations for the three fusing techniques. The convergence
of the SR algorithm is fast during the first 4 iterations of thesteepest descent (SD),
but in the following iterations, theSNR starts to oscillate without significant
improvement. This example illustrates the need for a regularization step in order to
ensure the convergence of the solution. Early abortion of the iterations is the only
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Figure 6.9: Adaptation of the filter coefficients during the fourth and last iteration
corresponding to the result in Fig. 6.8 (f). The coefficienta(4) reflecting the
contribution of the last LR image is automatically decreased when inside an outlier
region, when the scanning steps outside the outlier area, the coefficient increases
again.16 × 16 Hilbert scanning is used in this example.

available option to avoid over-amplified edges. In Fig. 6.8,we show the results
after 4 iterations, again, both the median and the proposed solution eliminated the
outlier areas, whereas the mean failed. BetterSNR performance, as well as better
visual result was obtained with our fusing method (Fig. 6.8 (f)). Fig. 6.9 shows
the trajectory of the adapted coefficients through the last iteration. The coefficient
a(4) reflecting the contribution of the last LR image is automatically decreased
when stepping inside an outlier area. When the scanning steps outside the outlier
area, the coefficient increases again. The other coefficients corresponding to the
non-outlier images are kept around the same level. As indicated in Fig. 6.9,
basically our method operates as a weighted mean filter, except for the detected
outlier areas. So, compared to median fusing, an improved performance against
Gaussian noise is predictable. In Fig. 6.8 (f), it can be noticed some artifacts
near the borders of the Hilbert scanning blocks that containoutlier regions. These
are due to the fast and abrupt change of the coefficient valueson the borders
of the sub-areas that were used for the scanning. To reduce this effect, some
implementation enhancements can be designed, such as the use of larger scanning
areas, or the smoothing of the coefficients near adjacent blocks.

Fig. 6.11 shows the super-resolved images obtained using 5 LR scenery images
taken with a cameraphone (Nokia 6600). To register the pixels on the reference
HR grid, we used hierarchical block matching in the central parts of the image,
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Figure 6.10:SNR comparison across the first10 iterations for the super-resolved
images shown in Fig. 6.8.SNR curves for (a) proposed adaptive solution,
(b) median fusing of the gradient images, and (c) average fusing of the gradient
images.

followed by the estimation of the global projective motion parameters. In one of
images, the registration failed due to a significant perspective change. Fig. 6.11
(a) shows the interpolated reference frame (pixel replication). Fig. 6.11 (b) shows
the result when simple mean fusing is used; note the picture of a ghost car that
does not belong to the original scene. Fig. 6.11 (c) and (d) show respectively the
results after 5 iterations, when fusing with the median and with the proposed tech-
nique. For both images, the sharpness of the scene detail is significantly enhanced
and the outlier region in the bottom of the image is successfully eliminated. In
this specific set of input images, the clouds were particularly difficult to register,
because they were deformed from one shot to the next. In fact,for the correspond-
ing area, the only information that needs to be considered isthe one that comes
from the reference frame. This specific example illustratesthe inadequacy of the
median filter to fuse this kind of fuzzy regions (Fig. 6.11 (c)). Since the input
samples do not constitute a reliable majority to obtain a correct vote, the median
filter picks borders randomly from any one of the input images. The proposed
filtering does not solve the problem completely, but at leastit prevents the forma-
tion of excessive artifacts in those regions (clouds in Fig.6.11 (d)). The reason is
that similar FIR coefficients are employed when filtering adjacent pixels, unless a
clear outlier frame is consistently voted after scanning through several consecutive
pixels, which is not the case in this example. Note that Zometet. al. [117] have
tackled this problem and proposed to use a bias detection procedure in conjunc-
tion with the median. The detection procedure outputs a binary mask indicating
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Figure 6.11: The super resolved images using the proposed algorithm,5 LR im-
ages were used. The global motion estimation failed to register at least one frame.
(a) Interpolated reference frame, zoom factor2; (b) result using mean fusing,
(c) result using median fusing, and (d) super-resolved image using the proposed
method.

where to perform the filtering. Although it is unclear how thethresholds and the
windows would be selected.

Fig. 6.12 shows a similar example depicting the performanceof the proposed
algorithm on real image scenes. We used 5 LR images that were cropped from
VGA pictures imaged at close range (the images are JPEG compressed at 90%).
The last frame contained an outlier object. Again, note thatthe median fusing (c)
and our technique (d) successfully wiped out the outlier object from the recon-
structed scene. Looking more closely, we can notice that theresult image of the
proposed filtering method has less noise artifacts, especially on smooth areas.

6.8 Conclusions

The overall performance of super-resolution algorithms isparticularly degraded in
the presence of persistent outliers, for which registration has failed. The artifacts
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Figure 6.12: The super resolved images using the proposed algorithm. 5 LR
images were cropped from VGA images taken with a cameraphone(Nokia 9500).
One outlier object appears in the last frame. (a) Zero order interpolated reference
frame, zoom factor 2; (b) result using mean fusing, (c) result using median fusing,
and (d) super-resolved image using the proposed method.

caused by an incorrectly registered image are visually muchmore disturbing than
the intrinsic poor spatial resolution in a single input image. To enhance the ro-
bustness of the processing against this problem, super-resolution algorithms need
to integrate adaptive filtering strategies in order to reject the outlier image regions.

In this chapter, we have proposed to use adaptive FIR filtering of the gradient
images in iterative super-resolution. The FIR coefficientsare adapted using an
LMS estimator that is tuned to detect motion outliers. The algorithm performs
adequately in the presence of Gaussian noise, and is capableof automatically iso-
lating outlier regions, which are due to registration errors. The proposed method
is useful to enhance the robustness of super-resolution in practical applications.

The topic of outlier rejection in super-resolution has beensomehow under-
explored in comparison to the wealth of solutions in the literature that propose to
solve for the inverse problem by assuming exact registration parameters. Possible
future research in the topic may include the development of systematic filtering
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approach for the fusing step and the improvement of the performance in the pres-
ence of different types of noise and motion outliers. The results may be useful
in several more applications which propose to employ multi-frame fusion such
as high dynamic range image capture, panoramic scene reconstruction, multiple
focused imaging, etc.



Chapter 7

Order Statistic Filters in
Super-Resolution

7.1 Introduction

In this chapter, we investigate the use of order statistic filters in the iterative
process of super-resolution reconstruction. At each iteration, order statistic filters
are used to filter and fuse the error images. We use a signal dependentL-filters
structure that tunes its coefficients to achieve maximum noise suppression in ho-
mogeneous regions. We incorporate a simple mechanism to select the most suit-
able data support, which preserves the details along the edges. The filter switches
to use the orientation that is most likely to preserve the image edges depending
on the variance of the pixels across different directional masks. Experimental re-
sults show the improvement obtained on sequences of noisy text images, when the
motion is exactly known.

In another setting, we show that the integration of an order statistic filtering
stage into the iterative process of super-resolution improves the robustness to-
wards motion errors and image outliers. We simulate the filtering by assuming
inaccurate registration of a sequence of synthetic LR images. The results demon-
strate that the proposed filtering is robust towards random motion errors, and pro-
duces visually acceptable results.

7.2 Related work

We recall that super-resolution algorithms consist of the following basic process-
ing steps:

1. Motion estimation to determine the relative shifts between the LR images
and register the pixels from all available LR images onto a common refer-
ence grid. This step is essential to enable motion compensated filtering.
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2. Motion compensation and warping of the input LR images onto the refer-
ence grid. Note that the pixels of the LR images are usually non-uniformly
distributed with respect to the reference grid.

3. Restoration of the LR images in order to reduce the artifacts due to blurring
and sensor noise. The filtering is necessary to improve the perceived image
quality.

4. Interpolation of the LR images with predetermined zoom factor to target
HR size.

5. Fusing of the pixel values from all the LR images. This temporal filtering
operation is at the heart of all super-resolution algorithms, and compliments
the spatial filtering operations performed in the previous steps.

In the following, we are mostly concerned with the last step,which deals with the
fusing of the pixels from the registered LR images. We consider the application
of the generic order statistic filters (L-filters) to enhance the images. The filtering
is applied in a maximum likelihood (ML) iterative estimation framework, and can
be considered as a heuristic method to improve the robustness of the estimation
process and to help regularize the inverse problem.

In super-resolution, the ML estimate of the HR image minimizes the mean
square error (MSE) between the LR images and the simulated ones through the
assumed imaging model. In [22], it is illustrated through simulations that the poor
conditioning of the problem makes the result extremely sensitive to even small
amounts of noise in the input images, the main reason is that super-resolution is an
ill-posed inverse problem. A common way to regularize the problem is to impose
a smoothness prior to the result in a maximum a-posteriori (MAP) framework (e.g.
[24], [45]). However, for large magnification factors, the smoothness priors lead
to overly smooth results with little high-frequency content, and this regardless of
the number of images used [8]. Such smooth images may not correspond to user
expectations, especially if the target images contain well-defined details, such as
text, geometric shapes, etc. To address this problem, Schultz and Stevenson [91]
proposed to incorporate in a Bayesian framework a discontinuity-preserving prior
through a Huber penalty function on edge response. Experimental results in [21]
have confirmed the suitability of this kind of total variation priors as opposed to
simplistic smoothing ones, especially for the enhancementof text images. In the
following, we target a similar application for super-resolving text images, and
we use order statistic filters (OSF) in order to encourage a piecewise continuity
along the edges of the HR image. The data support of the filtering is selected by
choosing the orientation that minimizes the variance of theerror from the motion-
compensated gradient images. The mechanism for the selective directional filter-
ing is similar to that presented by Li and Orchard [72] for image interpolation. At
each pixel location, the local covariance is estimated in several directions of the
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gradient images, and the orientation yielding the minimum covariance is selected
to assert a possible step edge in that direction.

It is well known that the quality of the super-resolved images depends heav-
ily on the accuracy of the calculated motion between the LR frames. In fact, the
presence of registration errors usually leads to the propagation of a signal depen-
dent noise from the motion-compensated LR images. On the other hand, it is well
known that the generic class ofL-filters is effective against signal-dependent noise
as well as being robust against impulsive noise. A good overview of order statistic
filters can be found from the following references ([5], [68], [116]). In the con-
text of SR reconstruction, the median filter was used earlier[117] in a temporal
filtering scheme of the gradient images, and it was shown thatthe procedure in-
creases the resolution even for regions with outliers. Thisproperty is particularly
interesting for practical implementations, so in the following, we also apply the
proposed order statistic filtering to reduce the artifacts due to motion error. We
assumed that the forward imaging model and the motion parameters of the LR
images are exactly known, and we simulated the inaccurate registration by intro-
ducing a random error into the motion coefficients. The experimental results show
the robustness of the proposed technique.

The rest of the chapter is organized as follows: in the next Section (7.3), we
present the image degradation model used for solving the super-resolution prob-
lem. Section 7.4 presents the gradient-based formulation of the maximum likeli-
hood solution. In the same section, we present the fusing technique used in our
proposed method and we describe the orientation selection procedure. In Section
7.6, we explain our approach, which usesL-filters to enhance the image edges.
In Section 7.7, we present the experimental results obtained when applying the
method on a synthetic sequence of LR text image. We present also experimen-
tal results when random motion error is introduced. Conclusions and possible
extensions are discussed in Section 7.8.

7.3 Model used

We use the same image formation model as in the previous chapter. ConsiderN
observed LR imagesgi, i = {1 . . . N} , we assume that these images are produced
from a single HR imagef . Theith LR image can be expressed as:

gi = Aif + ηi. (7.1)

WhereAi corresponds to the image formation process, which involvesconsecu-
tively the geometric transformation mapping the HR image grid onto the observed
LR image grid, sensor blurring and spatial sub-sampling.ηi is an additive noise
term. Note that in equation (7.1) the imagesgi, f andηi are lexicographically or-
dered into vectors, meaning for example that if the LR imageshave size(K ×L),
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then the pixel position(i, j) on the LR image grid is indexed asgi(m) where
m = j + iL. This indexing is used throughout the rest of the chapter to simplify
the notation.

7.4 Maximum likelihood estimation

Assuming that for all images, the additive image noise is independently distributed
Gaussian with zero mean and varianceσ2

η, the probability that the LR imagēgi is
generated by the HR imagēf is given by [22]:

Pr
(
ḡi | f̄

)
=
∏

∀m

1√
2πση

exp

(
−
(
ˆ̄g(m) − ḡ(m)

)2

2σ2
η

)
(7.2)

whereˆ̄g is the simulated low resolution image given an estimate off̄ . The associ-
ated negative likelihood function is:

L (ḡi) = −
∑

∀m

(
ˆ̄g(m) − ḡ(m)

)2
= −‖Aif̄ − ḡi‖2 (7.3)

If we further assume that all the images are equally likely tobe the realizations
of the same statistical process, then the maximum likelihood estimate,f̄ML, is
obtained by maximizing the summation of the function in (7.3) over all observed
images.

f̄ML = arg max
i

(
N∑

i=1

L (ḡi)

)
= arg max

i

(
N∑

i=1

‖Aif̄ − ḡi‖2

)
(7.4)

The solution above coincides with the total least squares formulation. If we
use the same method of recursive gradient projections to maximize the likelihood
function in (7.4), we get a solution similar to that in equation (6.4), i.e., at iteration
n, the HR estimate is updated as:

f̄n+1
ML = f̄n

ML +
1

N

N∑

i=1

p̄i (7.5)

wherep̄i is the scaled gradient image that is due to each LR image and iscalcu-
lated as described in (6.5) and (6.6).

7.5 Gradient fusing process

In the maximum likelihood solution above, all LR images are assumed to con-
tribute equally to the total gradient update image. In the presence of outliers, the
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Figure 7.1: An illustration of the proposed iterative SR method.

computed solution may be corrupted by the consistent presence of large projec-
tion errors across the iterations. Also, in regions of high frequencies, large error
values may be due to aliasing [117], which provides the main source of true res-
olution enhancement in the process. For these reasons, we believe that the use of
a non-intuitive filtering stage is necessary to produce a reliable gradient update.
Consequently, the update equation at iterationn is given as follows:

f̄n+1 = f̄n + T (p̄1, p̄2 · · · p̄N ) (7.6)

whereT{} denotes a generic filtering operator that fuses the gradientimages
and produces a single update image. Ideally, the fusing takes into account the
LR observations independently, eliminates possible outliers, restores the aliased
high frequencies and adjusts its behavior according to the local error content. A
schematic of the overall SR framework is shown in Fig. 7.1.

Note that ifT is assumed to be the mean operator, then the update equation in
(7.6) is equivalent to the iterative solution of the maximumlikelihood estimation
in (7.5). Alternatively, ifT is selected to be the pixel wise median operator, then
the solution is equivalent to the super-resolution algorithm proposed in [117]. In
the following, we propose to ameliorate the fusing process by considering also
the spatial neighborhood around the central pixel location. The goal is to detect
possible edge features in the gradient images, and perform the filtering along the
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Figure 7.2: Possible orientations used in the experiments(q = 2). This figure
illustrates the data support that is used as input to the filtering operation in (7.7).
The input samples are collected from all the gradient images.

corresponding data support, in such a way to achieve edge preservation, as well
as maximum noise suppression in homogeneous regions.

Mask selection procedure

The main motivation to use an orientation adaptive scheme comes from the funda-
mental property of an ideal step edge; i.e., the intensity field evolves more slowly
along the edge orientation than across the edge orientation[72]. At each pixel
location, the filter considers four candidate masks: horizontal, vertical, cross 1
and cross 2, and this for all the data from the error images(p̄1, p̄2 · · · p̄N ) (see
Fig. 7.2). We assume that the filter mask that presents the minimum error vari-
ance is most likely to align an image feature in that direction. The values coming
from that orientation will be used in the filtering step to update the central pixel
location.

Along each orientation, we form the possible windows of dimensions2q + 1
around the central pixelk, as follows:

W (k) =



p1(k − p) · · · p1(k) · · · p1(k + p)

...
...

...
pN (k − p) · · · pN (k) · · · pN(k + p)


 (7.7)

If we arrange the samples in lexicographical order (row-wise) and combine the
windowed samples from all the gradient images into vectorw; we obtain the fol-
lowing vector of sizeM × 1, whereM = N(2q + 1):

w(k) = [w1(k), w2(k), · · · , wM (k)]T

= [p1(k − q), · · · , p1(k + q), · · · , pN (k − q), · · · pN (k + q)]T

(7.8)
The choice of the window sizes defined byq depends on the target interpolation
factor and the noise level in the LR images.
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Figure 7.3: Example distribution of the ordered error pixels (wL(k)) within a
rectangular filter mask.

An unbiased estimator for the variance of the maskσ2
mask can be calculated as:

σ̂2
mask =

1

M − 1

M∑

i=1

(wi(k) −mean(w(k)))2 (7.9)

The mask that has the minimum variance (σ2
mask) is selected as a data support

for the fusing stage, since it is most likely to align an imagefeature along that
direction.

7.6 Order statistic filtering: an enhancement process

Now that we selected the windoww(k) that indicates a possible edge feature, we
propose to filter it using an order statistic filter. The median filter is well known
for its ability to remove impulsive noise while preserving edges, however, the only
tunable parameter is its sliding window shape or size. Henceit is more flexible to
useL-filters, which output is defined as a linear combination of theorder statistics
(sorted samples).L-filters are parameterized by a set ofN weights, which allow
the filter to reach various profiles, including the mean or median behavior [68].

At each pixel positionk, the corresponding ordered input vectorwL(k) denotes
the following data:

wL(k) =
[
w(k)(1), w(k)(2), · · · , w(k)(M)

]T
(7.10)

wherew(k)(1) ≤ w(k)(2) ≤ · · · ≤ w(k)(M) are the ordered error values coming
from the windoww(k). The vectorwL(k) is commonly referred to as theorder
statistics vector[68]. Fig. 7.3 shows an example distribution of the ordered error
samples.
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Figure 7.4:L- filters used in the experiments. The x-axis depicts the ordered index
of the pixel over the employed filter mask, y-axis shows the corresponding weight.

Let p(k) be the output of the genericL-filter that linearly weights the ordered
statistic vector of the observation errorswL(k); it is given by [18]:

p(k) = aT wL =

M∑

i=1

aiw(i). (7.11)

wherea = [a1, a2, . . . , aM ]T is the vector of coefficients of theL-filter. Note that
the formulation presented above is non-restrictive. If we assume equal values of
theL-filter coefficients and we further limit the window at the central pixel values
(q = 0), then we end up averaging the gradient images, which is equivalent to the
maximum likelihood (ML) solution.

L-filters used

In the proposed algorithm, three differentL-filters amin, amed andamax are used.
Since we are targeting the application for the enhancement of text images, i.e. we
know in advance that the original image data is binary; the idea is to use biased
distributions (amin andamax) in order to favor the extremes of the input samples.
Additionally, we use a symmetricL-filter structure (amed) when we detect large
deviations in the input samples, which indicates the presence of evident outliers.

The employed filters were derived using thegeneralized beta distribution[28],
the coefficients ofamin, amed andamax were defined by sampling the following
beta functions B(α = 2, β = 5), B(α = 5, β = 5) and B(α = 5, β = 2), respec-
tively. There is no specific reason why we chose to use this particular distribution,
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however, looking at distribution of the coefficients in Fig.7.4, we can remark that
it is possible to filter out extreme outliers. Additionally,it was easy to tune the
coefficients by modulating only two parameters, and yet obtain symmetric distri-
butions with different curve shapes.

Signal dependent filtering

At each pixel location, we evaluate the variance of the errorvalues in the employed
mask (σ2

mask). If the variance is larger than a pre-defined threshold value, then we
useamed to smooth the data in that window. Otherwise, if the varianceis below
the threshold value, then we use eitheramin or amax in order to enhance the image
features. In that case, the decision on which filter to use (amin or amax) is simply
taken by thresholding the median of the error values. The binary nature of text
images allows us to bias the projected error towards negative errors (usingamin)
or positive errors (usingamax ) in order to enhance the image contrast. We recall
that this filtering procedure is plugged in an iterative SR algorithm, so if there is
an error in the filter selection process, it is likely to be corrected in the following
iterations.
The proposed fusing algorithm is defined as follows:

if (σ2
mask ≥ Sσ)
p(k) = amedwL

else if (median(wL) < −Sm)
p(k) = aminwL

else if (median(wL) > Sm)
p(k) = amaxwL

else
p(k) = amedwL

The threshold valuesSσ andSm are preset positive threshold values that are de-
termined empirically.

7.7 Experimental results

In this section, we show the performance of the proposed technique on a sequence
of synthetic LR images. The images, nine in total, were synthetically generated
from a single HR text image according to the imaging model described in Section
7.3. The LR images were randomly warped using a projective model (eight pa-
rameters). The registration parameters are exactly known.We used a continuous
Gaussian PSF(σ2

psf = 0.5), as the blurring operator and we down-sampled the
images by three to obtain the LR images. All the images were contaminated with

an additive Gaussian white noiseσ2
η = 40. The HR estimatê̄f0 is initialized as the

average of all registered LR images, this ensures that we start with a smooth image
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Figure 7.5: Super-resolution at zoom factor3, 9 LR images used. (a) Original
HR text image. (b) One LR frame interpolated using bicubic resample,SNR =
10.31. (c) Result after10 iterations of gradient averaging (ML solution),SNR =
15.19. (d) Result using proposed SR filtering technique,SNR = 15.52. For (c)
and (d), exact motion coefficients were used. (e) result using ML, when random
uniform error is used to corrupt the registration parameters, SNR = 13.58, (f)
same data as in (e), super-resolved using the proposed method, SNR = 13.98.
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Figure 7.6:SNR comparison across the first10 iterations for the result images
shown in Fig. 7.5.

which is approximately equidistant to all LR observations,hence encouraging the
solution to converge to a local minimum.

We compared the proposed SR technique against the constrained ML solution,
which is obtained by averaging the gradient images as specified in (7.6). For both
methods, we constrained the HR estimate in between the iterations to be in the
range[0, 255]. The same step sizes were used in both methods. In our algorithm,
the orientation selection operation was performed throughall the iterations. We
set the values of bothSσ andSm to 25 and20, respectively.

In Fig. 7.5, we show the resulting images obtained after10 iterations. The
signal to noise ratio(SNR) is calculated for each image and is indicated in the
caption. Fig. 7.5 (c) shows the result using ML estimation, and Fig. 7.5 (d)
shows the result using the proposed filtering. It can be noticed that the visual
quality of the images obtained with our algorithm is better than the result of the
ML solution; this is most visible in homogeneous regions. Straight edges and
details corresponding to lines are also adequately enhanced due to the use of the
orientation selective filtering. As predicted, the contrast is also enhanced in our
result thanks to the use of the filters that emphasized extreme values.

To check for the robustness of the filtering towards registration errors, we
added a uniformly distributed random error to the motion coefficients correspond-
ing to translation. The error causes the registration to vary in both directions in the
interval [0 − 2] pixels. In this setting, Fig. 7.5 (e) shows the result when applying
ML estimation. We can notice in this case the presence of annoying artifacts that
are due to dislocated pixels from the mis-registered images. In Fig. 7.5 (f), the
result obtained with the proposed method looks relatively better; this is because
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the spatial filtering limits the propagation of errors in theiterative process and en-
hances the stability, and the median selector isolating theoutlier pixels from the
mis-registered images. These observations are confirmed bythe corresponding
SNR values indicated in the caption of Fig. 7.5.

In Fig. 7.6, theSNR values are plotted for both techniques across all the iter-
ations. The plots show the convergence of the proposed method in terms ofSNR,
and the small improvement it presents over the ML solution across iterations. It is
worth mentioning that both iterative methods are clipping the intermediate images
between0 and255, which helps the convergence of the solutions. It should also
be said that the use of clipping and zero-order interpolation in the iterative process
complicates the task of identifying the separate contribution of each step in the SR
procedure, especially for binary text images.

7.8 Conclusions

In this chapter, we proposed a novel filtering method of the gradient images in
iterative super-resolution. The filtering is aimed at the enhancement of text images
by incorporating a prior that assumes the edges to be piecewise constant along a
finite number of orientations. We used order statistic filtering to encourage piece-
wise constancy together with an orientation selection mechanism that is based on
the variance of the error images along certain orientations.

We tested the filtering scheme and found that it improves resolution and pre-
serves the edges. The proposed method performs better than the ML solution.
The integrated spatial filtering step reduces the signal dependent error that is due
to mis-registration.

In the described algorithm, the added computational complexity and the de-
pendence of the filtering on threshold values may overshadowthe improvement
in quality. In future work, we shall concentrate on the refinement of the method
to reduce its computational complexity and to improve the orientation selection
mechanism. Also, we may consider the generic application ofL-filters in super-
resolution such as to minimize modified cost functions.
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Conclusions

Super-resolution reconstruction consists in the process of creating a high resolu-
tion image from a sequence of low resolution images. In the context of low-end
consumer imaging products, this filtering technique has thepotential to make sig-
nificant economies of scale since it proposes to overcome theintrinsic hardware
limitations by using the available computational resources.

Recently, super-resolution has been a very active researcharea. However, we
are still far from generic, robust and real-time algorithms. In the absence of precise
imaging models that relate the LR observations to the original scene, the under-
standing of the potential and limits of super-resolution remains a challenging task.
Alternatively, we focused on the development of fast and robust algorithms that
are applicable for consumer imaging devices.

In this dissertation, we addressed several aspects of the resolution enhancement
problem. First, we presented an integrated filtering methodthat reduces the optical
blur in a single image. The proposed filtering is an integral part of the camera
image reconstruction chain, and makes use of the estimated PSF that characterizes
the optical blurring in each of the RGB color components. This unique approach,
which consists in filtering the raw sensor data was extended to produce high-
resolution color image from a sequence of images captured bya CMOS sensor
that is overlaid with a color filter array. The experimental results have confirmed
that this approach is promising, and is capable of producingsuperior resolution
from sensor data.

Second, we considered the problem of pixel registration in the input images.
We proposed a novel recursive algorithm for pixel-based motion estimation. We
used recursive LMS filtering along different scanning directions to track the sta-
tionary shifts between the LR images, and produce smooth estimates of the dis-
placements at sub-pixel accuracy. The initial results demonstrated the usability of
the algorithm, especially when targeting video filtering applications that are based
on motion-compensated filtering such as video denoising, video stabilization and
super-resolution processing.
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Third, we investigated the problem of robust fusion of the motion compensated
images. We proposed an integrated adaptive filtering method, which uses the
median estimator as an intermediate filtering step to rejectthe outliers that are
due to registration errors. Experiments have shown that thealgorithm performs
adequately in the presence of Gaussian noise, and is capableof automatically
isolating outlier regions.

Finally, we applied non-linear filtering techniques to improve the performance
and robustness of super-resolution. In the last chapter, weused generalized order
statistic filters for the enhancement of binary text images.We tested the pro-
posed filtering scheme and found that it improves resolutionand adequately pre-
serves the edges. Except for the added computational complexity, order-statistic
filters present a considerable advantage in super-resolution, since they are effi-
cient against signal dependent error, and are capable to reject outliers that are due
to registration errors.

It is well acknowledged that super-resolution methodologyis useful since it al-
lows to combine the temporal and spatial filtering of the video content. Therefore,
we believe that the incremental development of the researchin this area will be
beneficial for the development of future multimedia systems. In future work, we
will try to further build on the results obtained so far, and develop integrated al-
gorithms with reduced computational complexity. The ultimate goal is to develop
scalable algorithms that can be utilized to improve the performance of digital cam-
eras in mobile devices.
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