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Abstract

Super-resolution (SR) reconstruction is a filtering teghrithat aims to combine
a sequence of under-sampled and degraded low-resolutiagesrto produce an
image at a higher resolution. The reconstruction attenapizkie advantage of the
additional spatio-temporal data available in the sequehoeages portraying the
same scene. The fundamental problem addressed in supkrtias is a typical
example of an inverse problem, wherein multiple low-resolu(LR) images are
used to solve for the original high-resolution (HR) image.

Super-resolution has already proved useful in many pratases where mul-
tiple frames of the same scene can be obtained, includindgcaleghplications,
satellite imaging and astronomical observatories. Théegion of super resolu-
tion filtering in consumer cameras and mobile devices sleafidssible in the fu-
ture, especially that the computational and memory resaurcthese devices are
increasing all the time. For that goal, several researchlgnos need to be inves-
tigated, i.e., precise modeling of the image capture psydast filtering methods,
accurate methods for motion estimation and optimal teclesigfor combining
pixel values from the motion compensated images.

In this thesis, we investigate a number of topics relatechéoperformance
problems mentioned above. We develop novel solutions tadwgpthe image
quality captured by the sensors of a camera phone. Particuee present a
framework for producing a high-resolution color image dilgfrom a sequence
of images captured by a CMOS sensor that is overlaid with arddter array.
In the proposed framework, we introduce a super-resolwdlgarithm that inter-
polates the subsampled color components and reduces tfhaldgtirring. The
results confirm that it is possible to improve the overall gmauality by using
few consecutive shots of the same scene.

Achieving accurate and fast registration of the input insaigex critical step in
super-resolution processing. Motivated by this basic ireqent, we propose a
novel recursive method for pixel-based motion estimatidie.use recursive least
mean square filtering (LMS) along different scanning dicets to track the sta-
tionary shifts between a pair of LR images, which resultsnmosth estimates of
the displacements at sub-pixel accuracy. The initial tesaticate good perfor-
mance, especially for tracking smooth global motion. Onpdrtant advantage
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of the proposed method is that it can be easily integrates snper-resolution
algorithms thanks to its relative low computational commjiie

The overall performance of super-resolution is partidylaiegraded in the
presence of motion outliers. Therefore, it is essentialewetbp methods to en-
hance the robustness of the fusion process. Towards thils\gegoropose an
integrated adaptive filtering method to reject the outlirage regions. The pro-
posed approach consists in applying non-linear filteriohrigues to improve the
performance and robustness against motion outliers. ticpkar, we applied me-
dian filtering for robust fusion of the LR images, and we usedegalized order
statistic filters (OSF) for the enhancement of binary texages. Compared with
conventional super-resolution algorithms, the proposgorithms preserved well
the fine details in the images, additionally, the result iesagxhibited less arti-
facts in the presence of registration errors. This confitmesadvantage of using
order statistic filtering in image super-resolution.
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Chapter 1

Introduction

Super resolution (SR) reconstruction refers to the prooéssombining a se-
guence of under-sampled and degraded low-resolution (irlRpés in order to
produce a single high-resolution (HR) image. The LR inplages are assumed to
portray slightly different views of the same scene. In breadse, super-resolution
techniques attempt to improve the spatial resolution bgriparating into the final
result the additional new details that are revealed in e&mage. Conceptually,
the processing allows to convert the temporal resolutitm $patial resolution.

The basic assumption for super-resolution processingaissttme LR images
contain novel and non-redundant information about theescletails. This may
be due to relative camera motion from one frame to anothessiply resulting
from the combination of camera motion, moving objects in shene, camera
jitters, shaking, etc. In order to apply super-resolutibiis important to extract
the relative displacement of the portrayed details at syl precision.

The fundamental problem that is addressed in super-résolista typical ex-
ample of anll-posedinverse problem wherein the original information (HR im-
age) is estimated from the degraded observations (LR imagessolve for the
inverse problem, explicit regularization strategies rniedak incorporated in order
to constrain the feasible solution space. The redundaatrivdtion in the input
LR images is inherently utilized in the solution to regutarthe inverse problem
and improve the final solution. Obviously, to obtain a meghihsolution of the
inverse problem, it is critical to employ realistic modejiaf the imaging process.

1.1 Super-resolution processing

Given a set of low-resolution images that result from thecoletion of the same
scene from slightly different views, super-resolutionagithms produce a single
high resolution image by fusing the input LR images such thatfinal HR im-

age reproduces the scene with a better fidelity than any of fhemages. The
central idea in super-resolution processing is to converttémporal resolution
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l Super-Resolution
K —> .
processing

. |- E HR estimate

LR input images

Figure 1.1: lllustration of super-resolution inverse peoh: Given a number of
low resolution frames of the same scene, construct a simgieef with an im-
proved resolution.

into spatial resolution. In broad sense, this approach eamsbd to perform any
combination of the following image processing tasks:

Interpolation

— Denoising

— Deblurring

Usually, super resolution methods consist of the followbagic processing steps:

1.

Motion estimation to determine the relative shifts betwéhe LR images
and register the pixels from all available LR images onto mmon refer-
ence grid. This step is essential to enable motion compeh$idtering.

Motion compensation and warping of the input LR image® ahe refer-
ence grid. Note that the pixels of the LR images are usualhsur@formly
distributed with respect to the reference grid.

Restoration of the LR images in order to reduce the attifdae to blurring
and sensor noise. The filtering is necessary to improve tleeped image
quality.

. Interpolation of the LR images with a predetermined zoaotdr to obtain

the desired HR size.

. Fusing of the pixel values from the LR images. This tembpbltering

operation is at the heart of all super-resolution algorghamd complements
the spatial filtering operations performed in the prevideps.

Fig. 1.2 illustrates the generic processing steps destdbeve. It is impor-
tant to note that in some algorithms, the order of the opmratimight be different.
In the following chapter, different known approaches fquesuresolution are pre-
sented and discussed in more detail.
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Figure 1.2: Schematic of an example algorithm. Several ¢exmrocessing steps
are integrated in super-resolution.

1.2 Applications

Super-resolution is a computationally intensive procdésvertheless, the tech-
nique has already proved useful in many practical casesenxhatltiple frames of
the same scene can be obtained. Although most existingcafiplis are still lim-
ited towards specialized imaging products, super-reisollis becoming a main-
stream technique in image processing. Below, we list seusdastrial applica-
tions where this filtering technique could be used:

e Consumer photography

e Video cameras

e Surveillance applications (multisensor image fusion)

e Satellite and astronomical imaging

e Medical imaging (microscopy, X-ray, diffraction-limitadmography)

e Remote image sensihdpassive millimeter, infra-red, synthetic aperture
radar)

ISuper-resolution might be particularly useful in remoteagma sensing systems because the
images are usually undersampled. For example, typicarned devices have detector sizes in the
order of 20-50um (in comparison with3um in CCD sensors). Lately, some are claiming designs
for sensing systems with programmed motion of the sensatdierdo apply SR (e.g. [11]).
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Figure 1.3: Example of a potential application of supechason for video play-
back. (a) User interface view while video is playing, (b) sagsing pause button,
a zoom button appears in the toolbar. The adjacent framesuger-resolved to
enhance the details in the region of interest.

Additionally, several novel usage scenarios in mainstreansumer applica-
tions can be easily conceived using super-resolution. T imtuitive example
is that users capture several pictures of the same scerg albirrst mode, and
later post-process the images in order to enhance the tiesoldnother example
usage of super-resolution could be to enhance the zoonrédatwideo playback
(see Fig. 1.3 for an illustrated user interface concept).

It is worth mentioning that the example applications abore reot exhaus-
tive. One may predict that in the future there will be moreowative applications,
since the research in super-resolution has been latelyaaiye. For example,
super-resolution might be a key technology to achieve vagh fmage quality
by fusing the images captured with multi-sensor cameras (enslet cameras
[75]). Another potential application might be related te #merging video de-
vices that will be capable of capturing and processing vitem very high frame
rate (e.g. [66]). The latter devices will raise the need fiwaenced processing
methodologies that are capable of converting temporal patia video resolu-
tions, as well as novel compression mechanisms that migtietieed and linked
to super-resolution video processing.

1.3 Super-resolution for consumer cameras

Recently, we have witnessed a revolution in digital phaipby. The quality and
resolution of digital images have been constantly imprgwivith the advances
in sensor technologies, memory capacity, processing pamwgimage process-
ing techniques. Besides, there has been a significant feduntmanufacturing
costs, which led to massive proliferation of consumer digiameras. Indeed, it
was estimated that more than 400 million cameras have bdeérinsa005 [90].
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Options

Figure 1.4: Potential application of super-resolutiorefiig in consumer cameras
to enhance the quality of digital zooming, reduce noise amgtdove the dynamic
range by processing multiple exposures of the same scene.

More than three quarters of these have been embedded inenpbloihes, and it is
predicted that main-stream use of camera-phones will smaedow-end digital
cameras. Nevertheless, due to constant pricing pressdr@atkaging limita-
tions, there is still serious need for improvement in theging quality on camera
phones. On the other hand, the computational and memoryn@soon mobile
devices are increasing all the time, and it is already ptes$tbconsider the im-
plementation of computationally intensive image proaegsilgorithms such as
super-resolution. This approach can help overcome thegnhbardware limita-
tions of the integrated camera systems.

Super-resolution can be implemented in consumer camenrzarious ways.
For instance, the processing can be scheduled in off-linenerao combine the
image sequence that is captured in video or in burst modepubeall process-
ing is invisible to the end-user. Super-resolution can bdieg in video mode
to enable the capture of still images without interruptihg video feed produc-
ing high resolution images, which can be used for examplautoraated video
summarization, or for hard copy printing. Another differ@pproach consists
in applying super-resolution using embedded real time é@mgntations, e.g., on
hardware accelerators [20]. In this mode, the frames aréremusly saved in a
temporary buffer, and when the snap button is pressed, tihat fRames are used
to super-resolve the result image. This mode of operatiarbeaused to enhance
the performance of thdigital zoomby panning and zooming into the region of
interest (Fig. 1.4), without using mechanical parts to mineelens.

1.3.1 Factors impacting image quality

In general, the critical factors that limit the performamé¢he integrated cameras
in consumer devices are the following:

— Spatial frequency response of optical apertures (combéfiedt of objective
lens and sensor photodetectors).

— Optical system distortions, such as geometrical abermatimd vignetting.
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— Subsampling of the different spectral components.

— Nonlinear response of photo-detectors, uneven colorthétysi

— Photodetector noise, quantization errors.

— Reconstruction artifacts, simplistic filtering.

— Design constraints due to packaging and power consumption.

When designing a hardware camera system, several impariteria need to
be considered. These criteria include the lens type, sewmger pixel size, opti-
cal arrangement, interconnections, packaging, contemtegnics, power supply,
clocking, dynamic range, exposure design, shuttering, Bte final image reso-
lution depends on the combination of all these design coraptsn

Some argue that the main limitation in image resolution cofm@m the em-
ployed sensor technology, and put forward the argumentctieaige coupled de-
vice (CCD) technology is superior to its rival complementaretal oxide semi-
conductor (CMOS) technology. In reality, neither CMOS n@[Ttechnologies
is categorically superior to the other [15] [74], espegialith the ongoing matur-
ing of the fabrication processes. Both CMOS and CCD chipseséght through
similar mechanisms (Fig. 1.5), i.e., by exploiting the medé¢ctric effect that oc-
curs when photons interact with crystallized silicon torpote electrons from the
valence band into the conduction band.

So far, the most intuitive way to increase spatial resofutias been to re-
duce the pixel area. During the past few years, the pixel lsé#econtinued to
shrink from the 10-20 microns pixels in the mid-1990s desjde 2-3 microns
sensors currently in the market. However, since the cagramtof semiconductor
is proportional to the pixel area, there is a trade off betwibe pixel size and the
associated light sensitivity. For this reason, larger IgiXenction better in low
light situations, whereas smaller pixels require brightligit or a flash to ob-
tain acceptable signal to noise levels. Besides the ramuitiphoton conversion
efficiency, there are other fundamental optical limits vahilcome increasingly
important in the overall imaging process [47] [67], thuscilg a practical lower
limit on the pixel size. In other words, this means that theticmous reduction in
pixel area is not a viable trend in consumer cameras.

The high cost for precision optics and sophisticated imagsars are an im-
portant concern in low-end consumer cameras. Increasingixiel count by using
a larger sensor area will continue to be an expensive optiertalthe fabrication
processes on silicon. Additionally, this will result in leased power consump-
tion, as well as an extra cost for the optical arrangememicésted with an over-
sized sensor.

Based on the arguments mentioned above, the mere incregigelinount will
no longer be enough to improve the spatial resolution, ogadt| we predict that
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Figure 1.5: CCD versus CMOS sensor concept architecturdgital cameras.
In CCD, the pixel's charge is transferred sequentially digto a limited number
of output nodes. The charge is converted to voltage, thefedaaf and sent off-
chip as an analog signal, and the pixel's area is devotedyk Gapture. In a
CMOS sensor, each pixel has its own charge-to-voltage csiovecircuitry. Ad-
ditionally, the pixel area may include amplifiers, noisereotion, and digitization
circuits. Reprinted with permission from Albert Theuwissen [74].
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Figure 1.6: Anatomy of the active pixel area in CMOS sens®sprinted with
permission from Michael W. Davidson [26].

there will be increasing need for sophisticated signal ggeing tools to follow
the trend. In fact, the use of signal filtering techniquesmiage sensing is as old
as digital imaging itself, but the employed techniques Hsaen rather confined to
simple and linear solutions. On the other hand, the resaartte field of digital
image and video processing has been very active latelyjwhgulted in a wealth
of filtering solutions with confirmed results; however, thexlvanced solutions
have been virtually unexploited in consumer camera apjics.
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1.3.2 Image processing to improve resolution

Super-resolution is an example of such processing techgithat may be suc-
cessfully tailored for application in consumer cameraghis context, multi-shot
algorithms can be designed to correct the distortions apdave the specific res-
olution shortcomings by using a sequence of images captanegsecutively. This
type of processing may be very effective especially if wehwiis target specific
image degradations such as:

— Noise: especially in low-light capture conditions, or irthbsence of a proper
flashing mechanism. Multi-shot capture combined with propetion com-
pensated filtering can be efficient against visible noiséaats.

— Dynamic range: multi-shot image capture with different@syres is an evident
solution to overcome the problem of limited dynamic rangd eeduced
sensitivity, which is due to increased analog gain values@ated with the
miniaturization of the pixel size.

— Optical blurring: especially for fixed focus cameras. Irstbdontext, multi-shot
capture may help to regularize the inverse problem.

Nowadays, it is well accepted that the focus on the corneaticthese degra-
dations is more actual problem than the increase in image sipecially for
low-cost cameras. Although this means that the traditiapalication of super-
resolution for interpolation may be left out, the applioatof multi-frame filtering
can greatly benefit from the results in the field of superitggm, since the basic
approach is the same, i.e., motion compensated filterinthisrthesis, the focus
is on the application of super-resolution algorithms fonsuumer cameras, and
more specifically for non-dedicated imaging platforms sasltamera-phones.

In general, super-resolution is usually considered asteactive approach for
image processing. However, before it is readily applicableonsumer cameras,
several basic problems need to be investigated, this wgitl Belp understand the
real potential of super-resolution. In the following Chexgt we elaborate more
on these problems.

1.4 Beyond algorithms: link to the human visual system?

In [91], Schulz and Stevenson argued that the human viss&dsyis capable of
temporally integrating information in a video sequencoe, the perceived spatial
resolution of a sequence appears much higher than the Ispestitdution of an
individual frame, however, the exact mechanism in the huwisunal system that
performs this operation is yet to be discovered. In factgli®significant knowl-
edge to be gained from the discoveries about the mechaniseerly biological
vision, which might be very useful in visual technology apafions.
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Figure 1.7: Diagram showing fixational eye movements ptefon the retinal
photoreceptors. High-frequency tremor is superimposedlon drifts (curved
lines). Microsaccades are fast jerk-like movements, whighbelieved to bring
the image back towards the center of vision (straight linefgrenced in [77].

In the human eye, only the central part of the retina has a ¢tigicentration
of color sensitive nerve cells, whereas the rest of the aggnmainly made up
of monochrome nerve endings, which are especially good futram detection.
Knowing these facts, we are tempted to link the enhanced| gegieception in
video sequences to the role of saccadic eye motion. We rasguestion whether
this ambiguous eye motion is used by the human visual sysiegpply some sort
of super-resolution processing. The rest of this sectiowisneant to provide any
scientific evidence to answer this question, but rathente gibrief overview of a
distinct feature in the human visual system, namely, theagdic eye motion.

1.4.1 Saccadic eye motion

Our eyes perform different types of movements to accomggsential early vi-
sion tasks; this is partly done through small, involuntayg enovements (sac-
cade). According to Webster dictionary, a saccade is a samf jerky movement
of the eye especially as it jumps from fixation on one pointrtother. Visual fix-

ation refers to maintaining the gaze in a constant directtdomans (and other
animals with a fovea) constantly alternate saccades andMisations. For ex-
ample, in reading, fixation refers to the human eye focusiponuan artifact of

printed text such as a white space or a word [76]. Visual fixsis never perfectly
steady, i.e., fixational eye movements occur involuntaAlighough the existence
of fixational eye movements has been known and charactesined the 1950's,
its exact role and importance are still debated [77].
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1.4.2 Fixational eye movements

Fixational eye movements are usually classified into thyped of motions: mi-
crosaccades, ocular drifts, and ocular tremor [77]. Miacosades continuously
jerk the center of gaze in straight lines by small, but remolle distances. Drifts
are irregular curvy motions that occur between microsaesaand are character-
ized by low amplitude and relatively slower sweeps. Finalye tremor is made
of extremely small oscillations that are superimposed dtsdifremor is charac-
terized by constant, physiological, high frequency (pe@ii#® and low amplitude
vibrations.

Among these three categories of eye movements, microseseae the largest
and easiest to characterize; although their role has remamatter of contro-
versy. Recent research [77] points to some evidence thablinef microsaccades
is to counteract visual fading during fixation. In this thganicrosaccades con-
tinuously stimulate neurons in the early visual areas oflttan, which mostly
respond to transient stimuli. This explains that even duperiods of steady fixa-
tion, the visibility is maintained and the perception rensastable and continuous.
It is argued in [37] that conceiving the eye as an electronal@y camera (with
a simple lens system) does not correspond to the overwhgleviidence, which
suggests that the photoreceptor cell is a differentialeratiian an integrating de-
tector.

The exact role of the two other types of eye movements (dtiesnor) is still
unclear [76]. For instance, it was not until recently thatnsoresearchers were
arguing that tremor is a useless feature that degradesviSibis belief has re-
ceded and nowadays there is agreement that tremors haveal cdle in vision
acuity, even though there is no solid evidence that fullyl&xg the role of tremor
eye motion. According to [37], our eyes employ an analytgighal processing
channel for early vision, which is the primary determinafithe resolution perfor-
mance and acuity. This process relies upon tremor as a fusmtahrmechanism
and employs two dimensional correlation of the signals withe foveola.

Besides understanding its role in stabilizing our visidiere is a need to un-
derstand the precise mechanisms in which tremor motiongkied. Does our
visual system improve the visual acuity through these ringsshifts by applying
a similar mechanism to super-resolution? Does the prougssilize the differ-
ential images to improve the acuity? How is that done? Thesdeav of the
guestions about the human early vision, which hold no defamitswers yet.

1.4.3 Dynamic theory of vision for hyperacuity

Due to the limited density of photoreceptors on the retimagmal visual acuity in
humans is limited to about of visual angle. This is imposed by the Nyquist sam-
pling limit in relation to the number of photoreceptors. @isingly, it was found
that the human visual system is capable of resolving cestainuli (e.g. vernier
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stimuli) at much higher resolutions (less th&f). This enhanced capacity to per-
ceive details is called hyperactuity [38]. Several qualieatheories about visual
perception have been proposed to explain this peculiargptypf the human vi-
sual system [50]. Most notably, the so-called dynamic thexrvision, which
claims that hyperacuity would require eye-micromovememigrotremor, mi-
crosaccades) to achieve this property. In this theory, lssgatmovements would
shift the photoreceptor grid across the stimulus leadingnt@nhanced discrim-
ination capability when appropriate spatiotemporal iraéign is used. In [50],
guantitative tests are reported to validate the theory wdifferent experimental
conditions. It is shown that eye micromovements indeed avgryperacuity.
Contrary to earlier assumptions, it is reported that eyegomovements have no
effect in the central part of the retina, where optical bhgrdefines the limit for
hyperacuity tasks; however, at abdferetinal eccentricity, eye micromovements
clearly improve the acuity.

It is not our claim to make any conclusions about the theaigdaining the
role of eye movements in the human visual system. On the btrat, we believe
that electronic image acquisition systems, as well as sigsaiution processing
techniques would greatly benefit when the roles of the diffemechanisms in
biological vision systems will be better understood.

1.5 Organization of the thesis

Following this introduction, we consider several topicsntérest to improve the
image resolution. We focus the discussion on the challefayesfficient use of
image super-resolution in order to improve the imaginggrerfince in portable
camera devices.

Chapter 2 discusses in more detail the filtering methods @yedlin super-
resolution. We formulate the main approaches for supatutisn that are known
in the literature; and we present few example results tstifie the possible im-
provement in image resolution when using this processicignigue. This chapter
provides the background knowledge to understand the ttiealrand practical is-
sues that limit the performance of super-resolution.

Chapter 3 is concerned with the restoration of a single ebtien of a de-
graded image. The goal is to lay down the basis for the exiarteivards the use
of multi-frame image restoration in the following chaptei&/e present a novel
algorithm for multichannel image deblurring of an imagettisacaptured by a
CMOS sensor in a camera phone. Our approach is distinct simeceonsider
the application of the algorithm directly on the raw colorige data, such that the
restoration process is the first processing step in the imempmstruction pipeline.
The proposed algorithm has shown to significantly reduceghieal blurring on
camera-phone devices with fixed focus optics.

In Chapter 4, we present a framework for producing a higbtati®sn color
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image directly from a sequence of images captured by a CM@Sosdhat is

overlaid with a color filter array. The proposed algorithmbsed on iterative
super-resolution that filters and interpolates the raw Bawata from the sensor.
We report experimental results using a synthetic imageeyag) also using real
data from CMOS sensors. The results exhibit significant am@ment in quality

when compared to demosaicing the color data using a singlgeém

Accurate and fast registration of the input images arecatith super-resolution
processing. In Chapter 5, we propose a novel recursive mdtrgixel-based
motion estimation. We use recursive LMS filtering alongetiéint scanning direc-
tions to track the stationary shifts between the LR imagespmoduce smooth es-
timates of the displacements at sub-pixel accuracy. Thialinésults demonstrate
the usability of the algorithm, especially when targetirideo filtering applica-
tions that are based on motion-compensated filtering susbes-resolution.

The overall performance of super-resolution is partidylaegraded in the
presence of motion outliers; hence it is essential to dgm@lethods to enhance the
robustness of the fusing process. In Chapter 6, we proposeegmated adaptive
filtering method to reject the outlier image regions. In thegess of combining
the gradient images due to each low-resolution image, wadagtive FIR filter-
ing. The coefficients of the FIR filter are updated using theS Migorithm, which
automatically isolates the outlier image regions by desingathe corresponding
coefficients. The adaptation criterion of the LMS estimasothe error between
the median of the samples from the LR images, and the outphed¥IR filter.

In Chapter 7, we investigate the use of order statistic §ili@super-resolution.
We propose to use signal dependefilters for the enhancement of binary text
images. We incorporated a simple mechanism to select thé sndable data
support to preserve the details along the edges. Additigpnaé show that or-
der statistic filtering, for instance median fusing, im@s\the robustness against
motion outliers. Although this algorithm is developed ineukistic manner, the
experimental results demonstrate good performance of etdtstic filters when
used in image super-resolution.

1.6 Author’s contribution

The author’s contribution to the research in super-regmiutnage processing is
presented in Chapters 3-7. These chapters cover severadmetopics necessary
to understand the performance of super-resolution algustin consumer imag-
ing. The distinct contributions of the thesis can be summpeariin the following
aspects:

e A unique approach to the topic by considering the practipalieation of
super-resolution to the mobile imaging domain. This ishlesiacross the
entire thesis since we evaluated most of the proposed #igwiby using
images taken with camera phones.
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¢ Anintegrated adaptive filtering method to reject the outtieage regions in
super-resolution (Chapter 6). This chapter is based on trk published
in [103] and [112].

e A new method for dense motion estimation (Chapter 5). Thehaukis
based on recursive 1-D LMS filtering along different scagniirections.
The algorithm is fast and successfully tracks the statipshifts between a
pair of images. The work in this chapter is published in [110]

e A super-resolution algorithm for demosaicing raw sensta tapresented
(Chapter 4). The results of this algorithm have been reggniblished in
[111].

e Novel approach for image deblurring by processing direttig/ raw color
components, stemming from the observation that opticalibldifferent in
the color channels (Chapter 3). This work was published @3]1

e We propose to use order statistic filters (OSF) in supertugea (Chapter
7). The use of generalized OSE-filters) in super-resolution constitutes a
novel and interesting approach because it can be furthetajgd to target
different models for noise and registration errors. Thigpthr is based on
the work published in [113].

Other Work

Apart from the work presented in this thesis, the author waelved in other
projects which are not presented here. One of these is cqevith the imple-
mentation of a document imaging system on camera-phonetharsiudy of the
relevant applications [104]. An example algorithm that weasgeloped for this ap-
plication is published in [19]. Another project dealt witietdesign of optimized
JPEG quantization tables for specific camera models. Autditly, the author
has been researching several topics in multimedia, for pkadigital rights man-
agement for mobile visual content [105], and the study ofrdess transfer of
multimedia content over wireless networks [109]. In eanli®rk, the author has
been involved with research of content based indexing atnigval (CBIR) sys-
tem for images [107], and has been developing algorithmshape similarity
matching based on wavelet decomposition of the contouresyd06].
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INTRODUCTION




Chapter 2

Super-Resolution Techniques —
An Overview

2.1 Introduction

This chapter discusses the filtering methods in image swsetution. Section 2.2
gives a brief overview of the research developments in insager-resolution. In

Section 2.3, we define a linear image formation model thatteslthe HR im-

age to the LR observations. This enables to formulate imagergesolution in

an inverse problem setting. In the same section, we givdleldtaxamples of

the blurring and nonuniform interpolation operations the usually employed
in super-resolution algorithms. In Section 2.4, differknbwn approaches for
super-resolution are presented and discussed. In thevfofjoSection 2.5, some
example results are presented to illustrate the achiewatilancement in resolu-
tion using this processing approach. Next, in Section 2eédiscuss the theoret-
ical and practical issues that limit the performance of supsolution; we focus

the discussion on the challenges for efficient use of sugshation in the mobile

imaging context.

2.2 Related work

Extensive research literature exists on the topic of imageeisresolution. The
term "super-resolution" generally refers to the problefrecovering image spec-
trum beyond the diffraction limit through the use of signedgessing techniques.
It is worth of mentioning that the terminology is often usedlifferent contexts,

for instance in diffraction-limited applications, it regeto deconvolution of a sin-
gle image. In this thesis, the focus is on super-resolutemomstruction, which

consists in the process of creating a high resolution imeaya & sequence of low
resolution images. This processing is also genericalipegrmulti-frame restora-
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tion [16]; and it implies the use of inter-frame motion infwation in processing

the video data, i.e., using motion compensated filteringhilsense, the common
property to all super-resolution algorithms is that thegnbine both temporal and
spatial filtering.

Early works in 1984 by Tsai and Huang [52] on super-resatusbhowed that
the aliasing effects of the LR images can be reduced, or ev@apletely removed
if the relative sub-pixel displacement between the inpuwtdes is exactly known.
Their initial formulation of the problem in the frequencyrdain has attracted
interest in the topic of image super-resolution. Later iB7,%Peleget al. [87] for-
mulated super-resolution in the pixel domain and proposeitegative algorithm
to minimize the error between the estimated HR image andithelated LR im-
ages. The formulation of super-resolution in the pixel dionadlowed to include
arbitrary motion between LR images. In 1989, Stark and Ogedt] proposed a
super-resolution algorithm to reduce sensor blurring ddargge pixels, the algo-
rithm was based on the method of projection onto convex S8CS). In 1992,
Tekalpet al. [99] extended the POCS formulation to include sensor noithe
imaging model. In 1994, Cheesemanal. [24] proposed a Bayesian statistical
formulation of super-resolution, and applied the alganitto restore astronomical
images. Following these pioneering works, nowadays, tisesdarge number of
competing approaches that propose to ameliorate the peafare of the recon-
struction process, while addressing different applicetio

Several articles have surveyed the classic super-resolatiethods. In 1998,
Borman and Stevenson [17] published a review of differeahiéques that ad-
dress the problem of super-resolution video restoraticatel,. other review arti-
cles have followed, for example [85] and [32]. In 2001, CHawrdedited a book
[23] containing a collection of articles relating diffetdacets of super-resolution
in imaging. Few special journal issues dedicated to thectopsuper-resolution
have followed recently, for example [59] and [83].

The objective comparison of the different super-resofutgorithms in the
literature is a challenging task. The main difficulty stemenf the complexity
of the overall filtering process, which involves severalailet! operations and a
large number of different parameters that could bias théityud the final result.
Mostly, the precision of the estimated registration paransecan significantly
impact the overall performance of the different algorithniéowever, the com-
mon feature in super-resolution literature is that it isalisutreated as an inverse
problem, in the sense that the proposed algorithms attenrgulve the forward
imaging process that relates the formation of a sequenceRoirages from a
single HR image scene.
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2.3 Image formation model

In this section, the general model that relates the HR imaghe LR observa-
tions is formulated. For tractability, the imaging modelsially assumed to be a
linear one. The imaging model involves consecutively, geim transformation,
sensor blurring, spatial sub-sampling, and an additiveentgarm. In the continu-
ous domain, the forward synthesis model can be describedlas$: considerV
observed LR images, we assume that these images are otagiddterent views
of a single continuous HR image. TH# LR image can be expressed as:

whereg; is thei?" observed LR imagef is the HR reference image; the point
spread function (PSFj; the geometric warping§ | the down-sampling operator,
7n; additive noise term, ane denotes the convolution operator. If we assume that
each LR imagey; is of equal sizg K x L) and the down-sampling factor i,
then the HR imagé¢ has sizg SK x SL).

After discretization, the model can be expressed as:

whereG;, F andY; correspond respectively g, f and; in discrete domain,
and are represented lexicographically column-wise intdors. The matrix4;
combines successively the geometric transformatjothe convolution operator
with the blurring parameters @f;, and the down-sampling operatsr| [30]. If
the down-sampling factof > 1, then 4; is a sparse matrix with sizeK'L x
S?KL).

2.3.1 Problem statement

Given the observed set of LR imadés;,i = 1--- N}, solve for
the HR imagéeF” according to the imaging model in (2.2).

This type of problem is a typical example of an inverse pnohlevherein the

source of information (HR image) is estimated from the oles@data (LR im-

ages). The linear formulation of the imaging model enabtefotmulate the

super-resolution problem in a setting similar to a classiage restoration prob-
lem. The main difference is that we have several obsenstonanating from a
single source data (whel > 1).

The inverse problem aboveilsposed First, because the problem is likely to
be under-determined due to insufficient number of LR ima@escond, because
the blurring (low-pass filtering) results in an ill-conditied [12] matrix(A;). In
other words, this means that the forward imaging procesdvas an irrecoverable
loss of information. Therefore, the information contenttio¢ solution, when
it exists, is lower than that of the initial state. Since thés no direct solution
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Figure 2.1: lllustration of the image formation model foling the model in (2.1).

to the ill-posed problem, regularization procedures aessary to stabilize the
solution.

2.3.2 Simulation of the image formation model

As it will be discussed later, the simulation of the forwambging model is usu-
ally required in super-resolution algorithms. Fig. 2.uslrates the model that is
used for generating the sequence of LR images, the modehikasito the one
described in [29].

In order to test various algorithms under controlled caadg, we simulated
the forward imaging model described in (2.1). Given an oajHR image, it is
possible to generate a sequence of synthetic LR images iy tssidom warps of
the original image. For that, an 8-parameter projectivengetoy model is used;
the corresponding parameters are saved for later use iet¢bastruction experi-
ments. A continuous Gaussian PSF is used as the blurringtopewhich can be
controlled through a single parameter. Itis possible t@ifpany down-sampling
parameter, and different types of additive noise modelsi¢&ian noise, impul-
sive, mixed). The obtained set of synthetic images are usedpat to super
resolution algorithms with the exact knowledge of motiod &tur. This type of
experimental data sets enables exact quantitative cosmpadf different super-
resolution algorithms.

2.3.3 Point spread function

The Point-Spread Function (PSF) of an imaging system desctiow the light
energy from a point on the object plane is dispersed ontogheas plane. The
diagram in Fig. 2.2 shows the basic principle of blurring do@ptics. Due to
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Figure 2.2: lllustration of optical blurring in imaging dgms. Usually, the corre-
sponding degradation is analytically simplified by spaemiiant linear convolu-
tion with a point spread function (PSF).

the optical system'’s diffraction and aberration patteaghepointP in the object
plane is extended (spread) onto a regim the image plane.

Since the image plane is sampled by the sensor, thefR8H2.1), is assumed
to incorporate the combined optical blurring and sampliffigets of sensor. Usu-
ally, the corresponding degradation is simplified by assgn@ space invariant
linear convolution.

2.3.4 Nonuniform interpolation

All super-resolution algorithms need to implement at somages nonuniform in-
terpolation functions, sometimes referred to as projactimctions. Due to ar-
bitrary shifts between the LR images, the registered piagdslikely to be non-
uniformly distributed over the reference grid. Thus, ndfarm interpolation is
necessary to map those pixel values onto a uniformly spaéeihtdge (see Fig.
2.4 for an illustration). Even if the output size is the saméh@ input size, there is
still need to perform this operation. Hence, careful and@igeshandling of the in-
terpolation process is critical to achieve superior penfmce in super-resolution
algorithms.

Besides pixel replication, the commonly used algorithmsrfage interpola-
tion are bilinear, bicubic [63], and B-spline [114] intefation. These methods
employ a simple weighted sum operation to estimate pixalesat the inter-
polated image grid. Although these methods fail to effedyivoreserve edges
and introduce additional blurring artifacts, they are dargnd can be easily inte-
grated in super-resolution algorithms when the interpatastep is intentionally
designed as a stand-alone operation.

However, in most super-resolution algorithms, it is regdito implement both
thesynthesigonvolution and thback-projectionconvolution. The synthesis con-
volution is needed to simulate the forward imaging moded, arcordingly gener-
ate the downsampled LR images from the HR image by incorporte effect of
the assumed PSF. On the other hand, the back-projectioolotion is necessary
to implement the inverse process in order to map the regist@xels from the LR
image grid onto the HR image grid. Both operations can bgiated by assum-
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Figure 2.3: Different filters used in projection functiopsotted in 1-D.

ing a continuous interpolation filter that can be easily malgd through a single
parameter (i.e., Gaussian interpolators). Although th@ae of implementation
limits the form of the PSF to a pre-defined parametric fumgtiballows signifi-
cant flexibility in the implementation.

The projection functions are used to interpolate hon-unifg distributed pix-
els onto a rectangular reference grid. This means that we toeprecisely cal-
culate the distances between the central pixel positiorttendeighboring pixels.
This procedure is needed to achieve efficient implememiataf the projection
functions, especially in the presence of significant rotetior perspective change
between the LR images. Below, we describe in detail the Ipagjection function
when considering the warping that is characterized by aar8meter perspective
transformationP.

On the HR image grid, the pixgl(m,n) is defined over the coordinate position, y)
(center of the pixel)f(m,n) is calculated as follows:

1.
2.

Initialize the HR pixel valug (m, n) = 0.

According to the transformatiaiz’, y') = P~!(z,y), determine the coordinates
of the projected pixel position onto the LR image grid.

Mark a rectangular window of siZ@V x W) around the coordinates defined by
(2',y"). The pixels(k = 1---W?) inside this window will be used in the in-
terpolation. The size of the windo@W?") depends on the desired precision, the
employed filter(¢)), and the zoom factor.
For each pixe{gy) inside the window:
4.1. find the distancé; between the center of that pixel and the pdirit y)
4.2. usingdg, find the corresponding weight assigned by the filter
(¢ (dk))
4.3. increment the HR pixel value by the LR pixel value timesbrresponding
weight: f(z,y) = f(z,y) + ¥ (dk)gx

. Normalize the HR pixel value by dividing it by the sum of theights used:

o) = @y
f(z,y) STGRTCR
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Figure 2.4: Dependency between LR and HR pixels in non-umifiaterpolation.

Note that in this algorithm, the weights are assigned basethe distances
di, which are calculated in the LR grid rather than on the HR.grldhis ap-
proximation assumes that the tilt of the camera is small abgfoportionally, the
corresponding distances are quite close. Fig. 2.4 showdgpendency between
the LR and HR pixels.

In our testing software, three different types of intergiola filters are used,
these can be easily selected to generate the desired pojéahction. These
are the zero order integrating function, triangular inéigg function, and the
parametric gaussian interpolator. These functions arémaus and truncated
over a fixed support window. The window support depends orexitent of the
assumed blurring.

2.4 Super-resolution algorithms: a review

In this section, we review some of the most referenced appesafor solving the
super-resolution problem. In the following, the notati@ed is in accordance the
image formation model in (2.2).

2.4.1 lterated back-projection

Irani and Peleg [55] formulated the iterative back-pragct(IPB) algorithm for
super-resolution by utilizing a similar approach to thagdign tomography. In
Computer-Aided Tomography (CAT), the image of a 2-D objsateiconstructed
from its 1-D projections along many directions. In a simfshion, the HR image
(F) is estimated by consecutively back projecting the errdfdigince) between
simulated LR images via imaging modg};) and the observed LR imagés);).
Starting with an initial estimaté™ for the HR image, the back-projection process

is repeated iteratively for each incoming LR image.
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For thei* inbound LR image, the basic update equation can be written as

A .

= Fi_1+HBP(Gi—Gi)

. . 2.
— FZ_1+HBP(GZ'—AZ'FZ_1) ( 3)

where Hpp is the back-projection filtering operator that performs pingjection
of the error image onto the HR estimate. In our notation, tlrisan Hgp in-
tegrates the motion compensation and the interpolaticer filf,, consecutively.
Unlike the imaging blur due té,,, ¢, the back-projection filteths,) may be cho-
sen freely, for instance if we assurhg, is Gaussian with parameter,,, then the
sharpness of the final result may be controlled by selectsmall value foroy,,.

From a practical point of view, one advantage of this algonitis that it can
handle incoming LR images without the need of bufferingsthignificantly low-
ering the memory use, while still producing competitiveutess One difficulty
with this filtering approach is the absence of a regulairastep. This means
that the algorithm may converge to several possible saistiand keeps oscil-
lating among some of these. Also, as the iterations go fatwhe latest images
may have more influence on the final result. The choice of iitialiestimate does
not significantly influence the performance of the algoritimterms of speed of
convergence or stability [56]. It may, however, influenceichhof the possible
solutions is reached first. A good choice of initial estimiatéhe average of the
motion-compensated LR images, which usually leads theigdigoto a smoother
solution.

Fig. 2.5 shows a block diagram of an example algorithm baseiieoative
back-projection. Note that it is possible to integrate rimediate filtering steps.
For example in [27], a Wiener filtering step is integratedoptio performing
the back-projection in order to improve the deblurring anda filtering perfor-
mance. Itis possible also to augment the derived algorithitisa few additional
filtering steps such as additional iterations, regulaidzdfilters and simple checks
to improve robustness against motion outliers.

2.4.2 Maximum a-posteriori

This approach (MAP) consists in solving the super-resatugiroblem by treating

it as a statistical estimation problem (e.qg. [21], [24],][4®1]). The Bayesian
formulation solves for the probability density functiond(P) of the original im-
age by maximizing the-posteriori conditional probability. Compared with the
Maximum Likelihood (ML) solution, the MAP formulation prales for an easy
method to integrata-priori knowledge concerning the solution, which consider-
ably helps to regularize the inverse problem.



2.4. SUPER-RESOLUTION ALGORITHMS: A REVIEW 23

backprojection step

(F) l current HR

+ timate
Previous HR estimate | /| ST
(F)
dowri- <—‘ blurring —o ""apge

simulation step

Figure 2.5: Block diagram of an example algorithm based eraiive back-
projection

Problem formulation

The MAP estimator of'; 4 p maximizes the-posterioriPDF Pr(F|Gy, -+ ,GN)
with respect toF'. Applying Baye's rule, the MAP estimator can be formulated
as:
Fyap = arg max {Pr(F|Gi,---,Gn)}
(2.4)

Gi,,G
= arg nmax {Pr( P}T(G17N[Z)NP)T(F)}
Note that in the denominator, the joint probability functi®r (G, - ,Gn) is
independent of’. Further, since all the functions are positive, then if wetthe
log of (2.4), the MAP estimator can be written as:

Faap =arg max {log[Pr(Gy,-  Gy|F)] +log[Pr(F)]}  (25)

In the equation above, the first term is thg-likelihoodfunction, and the sec-
ond term isa-prior density of the assumed solution. If we drop #erior term,
the problem formulation is equivalent to that of thlaximum LikelihoodML).

On the other hand, the-prior density function enables to incorporate regulariza-
tion by biasing the set of possible solutions towards tharassl prior model.

According to the imaging model in (2.2), the likelihood ftioo is completely
specified by the joint PDF of the noig&r v)), i.e.:

PT(Gl,"' ,GN’F) = P?"(’r) {(Gl — AlF), ,(GN — ANF)} (26)

Typically, it is assumed that the noise is identically andkeipendently distributed
in the different LR imagegs;. This simplifies the joint density functiof’r )
into a multiplication of the probability distribution of el term. Further, if we
assume a zero-mean Gaussian noise model with varightaen the conditional
PDF above reduces into the following analytic expression:

N
1 1
Pr(Gy,- - GN|F) = —— _ NG - AFIEY 27
T( 1 N| ) (27T)M/20'M exp{ QO_QZZIH H} ( )
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whereM = S?K L is the number of pixels on the HR image.

Prior model

In order to solve for the MAP estimator in equation (2.4), veea to define the
prior probability Pr(F’) for the data model, which is the distinctly Bayesian con-
tribution. The selected statistical image model shoulectthe characteristics of
the random process from whidhis considered as a realization. A general model
for the prior distributionp(u) is usually defined as a Markov random field (MRF)
that is characterized by its Gibbs distribution

Pr(F(R) = exp {-Q(k)} = 7 exp {— Z@cw)} 28)

ceC

where Z in the normalizing term is called the partition function ihygics ter-
minology, which encodes the statistical properties of aesysn thermodynamic
equilibrium. Q is called the energy function and has the form
Q(F) = exp {— Y .cc ¢c(F)}, whereC denotes the set of cliques for the MRF,
and, is a potential function defined on a clique.

Below, we list some typical prior models that are usuallydisémage restora-
tion tasks:

Q = ||F||3 (L norm) white noise prior

Q = ||[V2F||2 (L, norm of Laplacian) smoothness prior

Q= ||F||: (L1 norm) impulsive data prior

Q = |VF| (magnitude of gradient) also known as total variation (TX®p

Using the Gibbs prior model, the overall MAP estimator isaitéd by minimiz-
ing the following cost function

N
Fyap=arg nin {Z |Gi — A:F|)? + )\Q(F)} (2.9)
i=1
where )\ is the regularization parameter which controls the baldreteveen
the influence of the Gibbs prior term and that of the likelidderm. Note that
the ML estimator is a special case of MAP estimation with riorderm (A = 0).
However, due to the ill-posedness of SR inverse problereggfjularization term
is needed to avoid the divergence of the solution. On the titued, a too large
will emphasize the prior model on the expense of the fidelitthe observed data.
In practice, the minimization of the cost function in (2.8)solved through
iterative conjugate descent techniques. The gradientibmd is obtained by
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differentiating with respect té” and is obtained as follows:

N
o0
E(F)= -2 AJ(Gi— A;F) + \on (2.10)
=1

and the HR estimate is iteratively computed as follows:
Frl = Pk 4 yFE(FF) (2.11)

where /" is the step sizeu” is usually calculated through the steepest descent
method, and is given by

. N|E(FN?
- ! (2.12)
N SN A2

The MAP paradigm for solving the SR problem has been propwsséveral
different settings. In [91], Schultz and Stevenson argued Gaussian image
priors are not effective for image data, instead they preg@sdiscontinuity pre-
serving model using the Huber-Markov Gibbs prior, resgltin a constrained
optimization problem with a uniqgue minimum. Cheesenearal. [24] applied
MAP super-resolution restoration techniques to astronahimages. Their for-
mulation assumes Gaussian noise and utilizes prior ternishvidiad to a linear
system of equations, and which are solved using Gauss4iJaatbods. Hardie
et al. [45] proposed a similar MAP formulation under the assumptbGaussian
noise and a Gaussian MRF prior model. Additionally they aered the simul-
taneous estimation of both the HR image and the motion pdesmjeand they
provided with a detailed algorithm to the resulting iteratoptimization problem.

2.4.3 Projection on convex sets

The method of projection onto convex sets (POCS) definesethslfle solution
space as the region of intersection of a collection of comamstraint sets, which
represent the space containing the possible HR imagesahatatisfy the image
formation model. The convex sef may represent constraints such as fidelity
to the observed data, positivity, bounded energy, smosthaad so on. The es-
timated HR image is restricted to lie in the intersectioncgpaf these constraint
setsC = ML, Cy, and the solution is obtained recursively as follows:

Frtl = p P -- PLE™ (2.13)

where £ is an initial estimate of the HR imag@) is the projection operator
that projects an arbitrary image onto the convexgt(k = 1---m). Fig. 2.6
illustrates this approach in solving the super-resolugorblem.
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“._Solution space

Figure 2.6: lllustration of the projection onto convex IE®©CS) approach

One constraint that is commonly used in super-resolutiaih@ésconsistency
with observed data. It is usually imposed using the follgpdonstraint set

Ce, = {F |G, v) — (A F)(u,v)] < Ti(u,v)} (2.14)

which is defined for each pixel positiqm, v) on the LR image gridT;(u, v) is
a threshold that may be freely determined based on the adsooige power, the
precision of motion parameters, the number of iteratiotts, e

In addition to data consistency constraints, the rangesgaluthe solution image
may be bounded with the sélg,

Cp = {F D Unin, < F(u,v) < vmax} (2.15)

Bounded energy is another common constraint that can hgljieréze the projec-
tion functions. Also, another useful constrain is to linmigtsolution to lie within
some distance from a reference image,, which can be for instance the inter-
polated reference image that is used in motion estimatitnis may be imposed
using the following constraint set,

Cr={F:|IF = Fefll < &} (2.16)

Additional constraints on the solution may be defined in dlaimmanner. The
inclusion of prior knowledge in this fashion constrains séution space thus en-
abling robust performance in the presence of noise, instargi data or missing
data. One important advantage of the POCS approach is thaivildes a con-
venient framework for regularizing the inverse problem bgarporating simple
methods to include a-priori information.

Initially, Stark and Oskoui [97] proposed the POCS methagliper-resolution
to reduce sensor blurring due to large pixels, althoughrttegye formation model
they assumed did not include a noise term. Teledlal. [99] extended the POCS
formulation to include sensor noise, and later Patti @&]l. further incorporated
the motion blur occurring during the aperture time of the eeamthis has been
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done by considering a spatially varying point spread fumcin the image forma-
tion model. They also described a detailed implementatiothes POCS-based
reconstruction algorithm.

The main difficulty with the POCS approach lies in defining gao projec-
tion functions that ensure to reach the intersection of #fendd constraint sets.
The associated implementations usually require conddtieammputational cost,
and a large number of iterations to achieve convergence [hG)ractice, better
performance is usually achieved with heuristic algorititheg combine both the
statistical inference methods (i.e., ML or MAP) and POCSragph, since they
combine the speed of convergence of gradient based optiarizachniques with
POCS-based intuitive methods for inclusion of simple a@mst rules to avoid the
divergence of the solutions.

2.4.4 Other approaches
Nonuniform interpolation approach

This approach is the most intuitive method to implement su@golution. The
pixels from all the LR images are registered directly ontoRvikhage grid, and
a non-uniform interpolation technique is employed to iptdate in all missing
pixel positions. Later, it is possible to perform image oestion stage in order
to reduce noise or blur artifacts. For example, Ur and Grb45][proposed an
algorithm that performs nonuniform interpolation, whistfollowed by a deblur-
ring step. Nguyen and Milanfar [84] proposed a wavelet-badgorithm that is
a combination of interpolation and restoration operatioftsey exploit the inter-
lacing structure of the sampling grid in SR and derive a caatjmnally efficient
wavelet interpolation for interlaced image data.

In general, the advantage of this type of approach is thel&itypin imple-
mentation and the lower computational requirements, whiekes real-time ap-
plications possible. Additionally, it may be easier to grte heuristic approaches
that improve the performance of the overall process. On tiherdand, the main
difficulty with this approach lies within its unpredictalgberformance due to the
limited degradation models, also the optimality of the vehodconstruction al-
gorithm is not guaranteed since the interpolation and ratitm steps are imple-
mented independently of each other.

Frequency domain processing

Early works on super-resolution by Tsai and Huang [52] mitgld in 1984 showed
that it is the aliasing effects in the LR images that enalderétovery of the high-
resolution (HR) fused image. They derived the equationsdhacribe the rela-
tionship between LR images and the original HR image by étipipthe relative

motion between LR images. Based on the shifting properth@fRourier trans-
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form, they formulated an elegant system of equations nglatie aliased DFT
coefficients of the observed LR images to the CFT of the unknmmage. This

system of equations is solved for the frequency-domairficoerdts of the original

scene, which is then recovered using the inverse DFT. Thisutation was the

first to propose super-resolution by using sub-pixel shdtgnprove the spatial
resolution of the images. However, this approach is limitedlobal translational

motion model, for this reason, Fourier domain approach isicered nowadays
useless in practical applications.

More recently, Altunbasaét al. [3], [40] proposed a method to perform super-
resolution in compressed domain. They incorporated thepeession artifacts in
the image formation model, particularly the quantizatiffiaeat. They proposed an
algorithm that is based on the technique of projection oferrsets (POCS), and
which operates directly on the DCT coefficients. Althougis ijuite challenging
to precisely model the compression artifacts and the imeigation might be
quite complex, this approach is interesting for practigdkwe applications, since
more often video data is presented exclusively in compdedeeain.

Recognition based approaches

Motivated with the observation that smoothness priorslislesgd to overly smooth
HR estimates, Baker and Kanade [8] proposed to use recoigptiised priors
when the target magnification factor is large. The face hadation algorithm
they propose is based on the recognition of generic localifes, which they use
to predict an image prior that replaces the traditional shmuess priors. They
formulated their solution as a MAP, and integrated the lieawodels into the prior
term. They claim that the recognition process providestemidil source of infor-
mation for super-resolution, which leads to the enhancedltiseof face images.

With the target application of face recognition, Gunturld @&atur [42] pro-
posed to transfer the super-resolution reconstructiam fsixel domain to a lower
dimensional Eigen face space. The reconstruction algoritb longer tries to
obtain a visually improved high-quality image, but instefebctly constructs the
information required by the recognition system. Such arraguh has the ad-
vantage of a significant decrease in the computational aaxitplas well as an
improved performance.

The idea of integrating sophisticated recognition-basgdrg in the super-
resolution process is conceptually interesting. It aldtess the borders between
different research areas, which might bring some promisesylts in future.
However, the main difficulty lies in defining robust and génenethods to ex-
ploit the prior information into the super-resolution pess. Another drawback
is that the processing is closely tied with a limited scopéntdge models and
applications.
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Figure 2.7: Screen shot of user interface options for tgstirper-resolution algo-
rithms.

2.5 Example results

In this section, we show some example results in order tetitile the possible
resolution enhancement with super-resolution algorithwile used two different
methods, the back-projection and the MAP algorithms, wisigh discussed in
the previous section. We present two experiment settingenaonstrate the per-
formance of SR algorithms. In the first experimental settmgynthetic image
sequence is used. The LR images are generated from a singlaatje with the
exact knowledge of the registration parameters and thedrf@gation model. In
the second experiment, the algorithms are tested on reld s@guences obtained
from camera hardware.

2.5.1 Testing software

Most of the algorithms that are described in this thesis leen implemented in
a Windows based application, which is used as a developnmehtesting envi-
ronment for a variety of different image processing aldwns. Additionally, we
frequently use MatlgB to test some algorithms in a quick fashion. Fig. 2.7 shows
a screen shot of the user interface options that are relatbe testing of different
super-resolution algorithms. The user interface makeasy ¢o select different
generic parameters such as the zoom factor, the algoritieah, tise number of
iterations, the PSF, the back-projection filters, the moistimation algorithm,
etc.
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(d)

Figure 2.8: Example of super-resolution on noisy LR seqee:(n:,z, = 30). Target
zoom factor4, 16 input images used. (a) Original image. (b) Reference frame
zoomed by4 using bicubic interpolationSNR = 1.30. (c) Result using back-
projection algorithm, 4 iterations§ NR = 9.11. (d) Result using MAP method
(smooth prior), 4 iterations§ N R = 10.35.

2.5.2 Example results with synthetic image sequences

In Fig. 2.8 and Fig. 2.9, the results of super-resolution @juences of synthetic
test images are shown. The input images are generated frimgla BIR image
according to the imaging model described in equation (2)e original HR
image was randomly warped using an 8-parameter projecta@em The regis-
tration parameters were saved for the reconstruction erpats. This enables us
to compare the images using an objective metric. We usedigmlo Noise
Ratio (SN R), which is defined as follows:

2
SNR = 10log A||F7||2 (2.17)
|F = F]

In the first experiment, we used a continuous Gaussian @Bsf = 0.6)
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(d)

Figure 2.9: Example of super-resolution on noisy LR SeQGBI@f% = 15). Target
zoom factor3, 16 input images used, only luminance component (Y) is prockesse
(a) Original image. (b) Reference frame zoomed3bysing pixel replication
SNR = 13.76. (c) Result using back-projection algorithm, 1 iteratiéfiiy R =
16.79. (d) Result using MAP method (smooth prior), 3 iteratiofi/ R = 17.19.
Note that visual fidelity of the original images may be altedeie to resizing and
dithering operations used in the printing process.

as the blurring operator and we down-sampled the images byobtain the 16
LR input images. All the images were contaminated with adelizero-mean
Gaussian noiseaﬁ = 30). Fig. 2.8 (b) shows the reference frame zoomed! by
using bicubic interpolationS N R = 1.30. Fig. 2.8 (c) shows the result obtained
using the back-projection algorithm after 4 iteratiodSyR = 9.11. Fig. 2.8
(d) shows the result using MAP method (with a smooth priot@rad iterations,
SNR = 10.35. The visual results, as well as tl#aV R numbers confirm the
improvement in quality when using super-resolution althons compared to a
single interpolated image. Also, comparing the perforneaatiterated back-
projection against MAP when using similar parameters amdpedational load,
we can remark the superiority of the MAP estimator, which @renrobust to
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(@) (b)

Figure 2.10: Example results using input sequence from iatligamera. 16
JPEG compressed images are used. (a) Reference frame zbpheding bicu-
bic interpolation. (b) Super-resolution result usingated back-projection tech-
nigue, 1 iteration, real time operation.

noise. This is due to the smoothness prior used in MAP, whictesponds well
with the original image structure, and ultimately leadsmpioved regularization
behavior of the MAP estimation.

In the second experiment, the original HR image is a cologienahich was
blurred with a Gaussian PSF,s; = 0.6) and down-sampled by 3 to obtain 16
LR input images. The images were randomly warped and conted with ad-
ditive zero-mean Gaussian noisg?(: 15). Fig. 2.9 (b) shows the reference
frame zoomed to original size using pixel replication, theresponding signal to
noise ratio of the luminance component was found t&bBeR = 13.76. Fig. 2.9
(c) shows the result obtained using the back-projectioorétgn after 1 iteration,
SNR = 16.79. Fig. 2.9 (d) shows the result using MAP method (with a smooth
prior) after 3 iterationsSN R = 17.19. In (c) and (d), we can notice that the de-
tails are sharper, whereas the noise artifacts are lesdeyisispecially in (d). The
super-resolution processing was applied only to the lundaacomponent (Y),
whereas the chrominance components have been interpdlatedhe reference
image. It is worth noting that even if we processed in the R@Bhalin (which
takes 2 times more processing time), the visual quality efdhtained results is
similar to the images shown in (¢) and (d). This is due to thedmeye being less
sensitive to the chrominance than to the luminance spasalution.

2.5.3 Example results with camera sequences

The true indication on whether an algorithm performs adesyas to test it on
an image sequence captured with a digital camera. In thi®beewe report two
related experiments. In the first experiment, an image seguef 16 JPEG com-
pressed LR frames (160x120 pixels) is used. The images ptered with a low-
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(@) (b)

Figure 2.11: Example results using input sequence fromadigamera (Micron
board MI-SOC1310).6 cropped frames from an uncompressed video sequence
are used. (a) Reference frame zoomea higing bicubic interpolation. (b) Super-
resolution result using MAP techniqugjterations.

end consumer camera (Casio QV-3EX). This sequence wasasbthin a super-
resolved image of size (480x360). The image in Fig. 2.10Kajvs the zoomed
reference frame using bicubic interpolation (zoom fact@)=and the image in
Fig. 2.10 (b) shows the super-resolved image obtained @ssiggle iteration of
the back-projection algorithm, which runs in real-time oR@. Visual inspection
of the images reveals significant improvement in the det#ilhe image; note
the details which are completely invisible in the referemsage, and which have
been reconstructed from different images in the sequeneehid experiment,
we used only one iteration of the back-projection algorithitris remarkable that
a single iteration produces significant improvement. lis §ense, limiting the
number of iterations works as a regularization mechanistharback-projection
algorithm, and prevents the edges from overshooting anddlse amplification
that may be due to inaccurate assumptions in the assumed fovagation model.
In general, this example illustrates remarkable perfocedor super-resolution
reconstruction, especially that JPEG compression, wHiakiretes much of the
high-frequency content, has not been considered in thedrfgation model.

In the second experiment, we used a short image sequenceaof Bnages
(RGB, BMP format), which were captured with a test camerad@dicron board
MI-SOC1310). The image sequence was used to obtain a segaked image
with a target zoom-factor of 2. The image in Fig. 2.11 (a) shde zoomed
reference frame using pixel replication, and the image ¢n Bill (b) shows the
super-resolved image obtained using 5 iterations of the Médtive algorithm.
Comparing the images, we could observe significant impreverm the details
of the image, as well as a reduction in visible noise artifathis second example
illustrates the usefulness of super-resolution algoritvhen used for restoration
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of uncompressed images. The algorithm parameters in thésara not optimized;

instead, they are roughly estimated since the exact imageafmn model is not

known. This is typical in the case of real hardware experismem this respect,

we noted that the MAP estimation is less sensitive to modaleviations (noise

variance, PSF) than the iterated back-projection tecleniginich is more prone
to divergence when using the same parameters. This is dhe tmtooth regular-

ization step that is associated with the MAP estimator, Whittenuates the effect
due to deviations from the real acquisition model.

2.6 Factors limiting the performance of super-resolution

Recently, there has been some criticism towards the oedfigiiency of the super-
resolution process. The skepticism is fueled by the fasaacks in sensor tech-
nology. In fact, some argue that the most direct and costtafée solution to
increase spatial resolution is to reduce the pixel size mg@emanufacturing
techniques. However, as the pixel size decreases, the muarhpleotons incident
on the pixel array decreases, generating shot noise thaficégntly decreases the
signal to noise ratigS N R). In practice, this performance problem will be most
noticeable in low-light conditions, where the noise becsmenajor problem. In
fact, besides the reduction in photon conversion efficigtigre are other funda-
mental optical limits which become increasingly importamthe overall imaging
process, which place a practical lower limit on pixel sizZ&r{[ [67]). Therefore, in
these applications, super-resolution processing migttidoeolution to overcome
the future limitations of sensing technologies.

Besides digital cameras, there are several applicati@tgrttght benefit from
super-resolution. In the previous chapter, we listed soatenpial applications,
although we are convinced that there are many more applicathat were not
considered. So the real questions that we should try to asldne not about the
applicability of super-resolution, but rather about thef@enance. In the fol-
lowing, we discuss the performance limits of super-resmutFirst, we consider
the theoretical bounds that limit the performance of supsolution algorithms.
Next, we raise some practical issues that limit the perfogeaof the derived
algorithms.

2.6.1 Necessity of aliasing

In frequency domain setting, super-resolution processistpres the DFT sam-
ples at a finer resolution and extrapolates the frequenctenbsuch that the re-
stored spectrum is wider than any of the observed LR imadas eXtrapolation is
the operation that is most specific to super-resolutionesitrexplains the recovery
of the lost information during the sampling process. In [F3lint explained the
recovery of the information beyond the diffraction limittenff because the sinc
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function (due to rectangular spatial sampling) is infiniteektent, which means
that there will be components of the spectrum portion abbeedtffraction limit
that will be mirrored into the spectrum below the diffractiout-off. This means
that it is the presence of the aliased high frequencies tla&ersuper-resolution
feasible. In practice, this means that the images need todberisampled at the
sensor level, without undergoing excessive low pass filgedue to optical blur-
ring or motion blur.

2.6.2 lll-posedness

The fundamental problem that is addressed in super-ré@olig a typical ex-
ample of anill-posed inverse problem. This means that explicit regularization
strategies need to be employed in order to achieve meahisgjfitions. In prac-
tice, regularization is incorporated in the solution asn®that express a-priori
assumptions about the structure of the imaged scene.

Most, if not all super-resolution algorithms are based am réconstruction
constraints which assume that the LR images are generaiged drsingle HR
image. In [8], Baker and Kanade derived some analyticallt®esvhich show
that the reconstruction constraints provide less and Iss&ilinformation as the
magnification factor increases. Most noticeable is thamaek that even if the
reconstruction constraints are invertible (which gerigrate not), the condition
number grows at least as fast as quadratic function of thgetanagnification fac-
tors, which roughly indicates thdkposednes®f the inverse problem is growing
exponentially with the magnification. This means that therail estimate of the
HR solution, especially when combined with smoothnesggrie more and more
irrelevant at large magnification factors. In one experitnBaker showed that for
a maghnification factor of 16, the smoothness prior provideseriformation than
the reconstruction constraints. This illustrates how fastinverse problem can
becomaeill-conditioned

2.6.3 Simplistic modeling

Most of the proposed methods for super-resolution in tregdture suffer from
simplistic assumptions. Besides the simplification in thage formation model,
usually sub-pixel motion is assumed to be exactly known. rhctice, the dis-
placement between the consecutive frames has to be sépastimated, which
makes the super-resolution reconstruction a compouncdegsothat heavily de-
pends on the precision and implementation details of theomeistimation. Ad-
ditionally, motion blut, which has a substantial degrading effect on the perfor-
mance of super resolution [11] is usually skipped in the ienfagmation model.

1In [101], we proposed a new method for the identification otiotoblur based on the avail-
ability of two differently exposed images the same scene.
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In fact, few publications dissect in detail the implemeiotatof the different
algorithms required in super-resolution. Rather, mostipations concentrate on
the simulated inverse problem and the associated regafianizstrategies. We
reckon that there is need to investigate and understanddbéems that are posed
when considering super-resolution as an entire processhwititegrates the mo-
tion estimation process, and which tackles the dependebtegns such as motion
outliers, motion blur and internal camera settings, etc.

Nonlinearities

The most evident simplification lies in the image formationdal itself, which
is usually assumed linear for tractability of the solutiddsually the employed
models do not cater for the different processes that happengdthe sensing of
the scene, which result typically in nonlinearities of thedel. For instance, be-
sides the model recently presented in [43], which consitterdimited dynamic
range and the non-linear sensor response in the supettiesoimodel, most of
the existing literature assume linear sensing models anst@ot camera exposure
time. Still, there are several additional physical and pssing parameters which
are usually skipped in the modeling, e.g., uneven samplitigeadifferent colors,
uneven color response, different gain levels used with paxthre and the result-
ing signal dependent amplification of the noise, differgutical aberrations such
as vignetting or geometrical distortions, etc.

Even when adequate linearization of these processes sctedrby applying
point-wise or spatial processing on the captured imagese salditional enhance-
ment algorithms are usually applied inside the camera tocedhe noise, or to
improve the sharpness or the color contrast. The resultiogegs is extremely
difficult to capture using a simple model, this means thatitrear models used
in the formulations of image super-resolution are apprexive at best.

Noise modeling

Usually Gaussian noise models are used in the modeling afrthge formation

process. It is well accepted that this is an over-simplificasince in reality the

sensor’s noise is due to a combination of several sourcgs,shot-noise, pho-
tonic noise, dark current noise, dark signal level, therntaée. The processing
on sensor itself might complicate the noise modeling byothiicing errors due
to fixed-pattern noise, photon-response non-uniformitgpliier noise, circuit

noise, pixel cross-talk, correlated double sampling, tjgation noise, chromatic
conversions, etc. [25].

Most of the research literature available on the detailed@és noise analysis
is developed within the electronics community, and typyoabmes to conclusions
and models which are useful only for the purpose of eleatrbiardware design
and integration. These fragmented models are particuilaglgequate for image
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processing applications since accurate pixelwise knaydexd the noise model is
required in order to properly restore the image details.

In general, signal dependant noise models need to be coeditheorder to im-
prove the fidelity of the reconstruction process in supsoligion. For example,
recently Foiet al. [36] investigated the effect of precise Poissonian noisdefio
ing on the performance of image deblurring. It was found gsimption of signal
dependent noise, which is closer to reality, significantipiioves the performance
of the image restoration process, especially for imagesioaghwith sensors hav-
ing small pixel size. In a further development [35], he pregmba deconvolution
technique for observations corrupted by signal-dependeise. The deblurring
is performed in transform-domain and is applied on varyiag blocks. The re-
sults demonstrate good performance of the proposed metlinich can be easily
combined with other transform-domain processing.

2.6.4 Algorithmic performance
Precise motion estimation

One critical requirement to achieve good performance irgensuper-resolution
is the availability of accurate registration parametensfatt, sub-pixel precision
in the motion field is needed to achieve the desired impromtnhe real-life elec-
tronic imaging applications, the motion occurring betwémes is not known
exactly, since precise control over the data acquisitiatess is rarely available.
Thus, motion estimates must be computed to determine pigpladements be-
tween frames. Towards achieving practical implementatiminsuper-resolution,
the problems of sub-pixel image registration and outlidbusiness need to be
investigated in more detail.

The employed algorithm for motion estimation needs to camise the fol-
lowing properties: precision of registration, noise rahess, locality of motion
estimates, robustness to motion outliers and reasonabiputational complex-
ity. It is well accepted that motion estimation is the mosaltdnging in super-
resolution because it is affected by aliasing and the degiadin the image for-
mation process, which are precisely the factors that stgstution proposes to
solve for.

It is well known that an accurate estimation of the motionr igarameters
is non-trivial problem and requires strong assumptionsiabite camera motion
during integration [101]. It was shown in [11] that even wla@raccurate estimate
of the motion blur parameters is available, motion blur hagaificant influence
on the super-resolution result.

The overall performance of super-resolution algorithmpaigicularly degraded
in the presence of persistent outliers, for which registrahas failed. The arti-
facts caused by an incorrectly registered image are visgalch more disturbing
than the intrinsic poor spatial resolution in a single inpudge. To enhance the ro-
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bustness of the processing against this problem, supaluties algorithms need
to integrate adaptive filtering strategies in order to 1tetfee outlier image regions.

Computational requirements

Super-resolution is a computationally intensive proceSmce the initial prob-
lem is numerically ill-posed, most solutions require ite& processing in order
to reach an acceptable solution. Additionally, this filgritechnique requires
several processing stages (motion estimation, restaratiterpolation) that are
usually inter-dependent. This makes the overall impleatént quite complex,
requiring large memory to store the intermediate resutsyell as considerable
computational resources to calculate the final result.

When the targeted filtering is to run in mobile imaging desjdeis desirable
to have real time operation. This might be quite challengingchieve, especially
that portable devices are currently constrained with &himemory, computa-
tional and power resources. Additionally, if the numberngdut images is large,
or the output image size is large, the processing delay dgedeerform the over-
all filtering might be inexorably long.

On the other hand, the computational power is increasintpaltime, and the
rate of improvement is even faster for portable devices. rssxpectations of
image and video quality is also rising all the time. This neetrat the opportu-
nity for integrating heavy processing techniques, suchupsrsresolution will be
possible in the future. In this goal, super-resolution athms can be introduced
at first by scaling down the processing, for instance by rieguthe number of
iterations, thus favoring the approach of acceptable tyualiprovement in real
time operation at the expense of best possible quality but speration.



Chapter 3

Image Deblurring

3.1 Introduction

This chapter is concerned with the restoration of a singtgatéed image. The
objective is to lay down the basis for the extension towarddtiframe image
restoration in the following chapters. The problem of imagsoration is usually
considered a classic topic, however, in this work, we priggeattical solutions in
order to reduce the optical blur in the images captured byreeca phone. We use
a novel approach which consists in processing the raw colmponents captured
by the sensor.

In the following, we present a novel multichannel imageaesgion algorithm.
The goal is to develop practical solutions to reduce optitat from noisy ob-
servations produced by the sensor of a camera phone. \feedconvolution is
used separately for each color channel. Additionally, we aisnodified itera-
tive Landweber algorithm which includes an adaptive dengifilter for optimal
regularization of the inverse problem. The denoising metikdoased on the local
polynomial approximation (LPA), which operates on winddit are selected by
the rule of intersection of confidence intervals (ICI) [60].order to avoid false
coloring due to independent component filtering in the RG&:spwe integrated
a novel saturation control mechanism that smoothly attesutae high-pass fil-
tering near saturated regions. It is shown by simulatioasttie proposed filtering
is robust with respect to errors in point-spread functiod approximated noise
models.

In Section 3.3, we present the proposed processing paraatignve describe
the image acquisition model. In Section 3.4, we briefly desdhe Landweber it-
erative restoration and we introduce the modified iteratolation which includes
an adaptive denoising technique. The analysis of the peapafyorithm shows
that the proposed regularization enhances the robusth#esrestoration towards
modeling errors of the point-spread function (PSF) andefibise parameters. In
Section 3.5, we discuss the practical issues relating tefftegent implementation
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of the deconvolution algorithm. Finally, experimentaluis with the proposed
technique on images taken with a fixed-focus camera are shbwenresults indi-
cate that the proposed processing produces significanbiraprent in perceived
image resolution.

3.2 Related work

Image restoration research begun with the early space gregin the 1960s.
Considering the cost and impact related to acquiring thgé@sdrom space crafts,
the degradation of the data was not a negligible problem. cklethere was a
critical need for processing techniques that could comadtrevert the unwanted
effects due to suboptimal systems, mechanical vibratiomdion, etc. [10]. Al-
though nowadays this approach towards image processitij isrsted for high
end applications, such as astronomy and medical imagiagjsi in consumer
electronics starts to take off, especially that more preiogspower is available in
these devices, and that users are more aware of image gomlitpn-dedicated
imaging platforms such as camera phones.

Image restoration usually requires the knowledge of theatkdion process
in order to solve the consequent inverse problem. The iavarsblem is gener-
ally ill-posed [12], i.e., if the direct solution is consigel, a small perturbation in
the input can result in an unbounded output. The direct s®/enethods such as
the regularized inverse (RI) and regularized wiener iree€RWI) deconvolution
techniques [61] are effective, but sensitive to modelingrsr On the other hand,
the iterative methods are more robust to modeling errof,([Z3]), hence more
interesting for practical implementations. Several athars have been proposed
to solve the ill-posed inverse problem by introducing a fedeation step that
suppresses over-amplification of the solution. For examldirectional adap-
tive regularization technique was proposed to reduce tiggng artifacts and the
over-smoothing in the iterative restoration process [7Afother regularization
method [79] suggests the use of spatially adaptive intehsitinds in the frame-
work of gradient projection method. The local bounds werewshto offer a
flexible method for constraining the restoration problem.

When the degradation function is unknown, the restoratioblpm becomes a
blind image deconvolution. A basic survey of different teicjues can be found in
[69]. Blind image deconvolution is usually performed usinwg main approaches.
First approach is to identify the impulse response of degiad, and then restore
the original image using some equalization technique. Aangde of this ap-
proach can be found in [95], where a mutually referenced lespia approach is
applied to a set of observations of the same image undergliffiegent degrada-
tion channels. The second approach to blind deconvolugido jointly identify
the degradation function and simultaneously restore tiggnat image. The asso-
ciated techniques usually assume regularization ternela@sthe available prior
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information that model various statistical propertiestaf image, and relate these
into constrains over the estimated image. A good examplaisfapproach can
be found in [96], where stochastic approach is developetgusimulti-channel
framework, and a maximura posteriori (MAP) solution jointly estimates the
blurring functions and the original image. Another intdireg approach was pro-
posed in [54] where the image blur is assumed to be a mubikea@aussian func-
tion, and the deblurring is performed by extrapolation mbfur parameters. This
technique for restoration in the blur space is based on thepositional proper-
ties of the Gaussian PSF. In [14], we proposed an extensitiisoapproach by
using an iterative algorithm in the blur domain. The propgbakgorithm uses a
simple stopping rule that finds the optimum number of iteratiand a regular-
ization mechanism to control edge overshooting. Simulatigerformed on arti-
ficially degraded images have shown good performance ofrthygoped method,
and most notable is that restoration does not necessitatekmowledge of the
blur parameters.

The specific problem of restoring noisy and blurred colorgesmhas been
investigated in the literature since the mid-eighties. eBavalgorithms ([62],
[80], [100]) have been proposed to restore the color imagedilizing the inter-
channel correlation between the different color compaehtevertheless, most
of literature approaches the problem as a post-processingotion, i.e., the
processing is applied after the image is captured, prodessel stored. Our ap-
proach (discussed next) is inherently different: we carsile application of the
image restoration algorithm directly (and separately)@raw color image data,
so that the deblurring and denoising are at the first stepeointtage reconstruc-
tion chain. Applying the image restoration as a pre-prangsstep ensures that
the linear modeling of the problem holds best. Also, the chaf implement-
ing the deblurring at this level of the image formation chlagmefits the follow-
ing cascaded operations from improved resolution and asntiExample of the
following typical processing steps include automatic whialance (AWB), and
color filter array interpolation (CFAI) (typically non-lear operations). A similar
processing paradigm was proposed earlier [81] in orderdaae color cross-talk
and to decorrelate the different color components, althahg processing was
carried out after color conversion, which may introducediass-talk itself. The
restoration was proposed without consideration of thesdifice in the blur of
the different color channels. In this work, we use separetegssing of the raw
RGB color components measured by the camera sensor, andg@actthannel
is separately deblurred according to its correspondingcalpblur. In fact, the
optical blur in each color channel is different, since thealdength depends on
the wavelength of the incoming light [47].
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Figure 3.1: Block diagram of the proposed restoration syst&he color chan-
nels are restored according to the corresponding compdhamtThe restoration
algorithm is applied as the first operation in the image rsetrogtion chain to
minimize non-linearities in the image formation model.

3.3 Multichannel image deblurring of raw color compo-
nents

3.3.1 Imaging model

Fig. 3.1 depicts the block diagram of the proposed multiacleh restoration
within the image reconstruction chain. In the imaging motked incoming light is
blurred by the camera optics, and the image data is measyr@ddnsor through
the Bayer sampling pattern. The optical blurring and the@sensitivity of each
color channel can be different. In fact, by implementingrénestoration directly on
the raw color components, we are aiming to avoid nonlinieariproduced by the
cascaded image reconstruction functions such auto-waitabing (AWB), color
filter array interpolation (CFAIl), distortion correctigrédenoising, sharpening, etc.
[58].

If we assume a linear response at the sensor and a linearispadant blur
in each color channel, then the observed image can be maatsled

gi(x) = (h; * fi)(x) + ni(z), i=1,....4 (3.1)

whereg; is the measured color component imagjeis the original color compo-
nent, h; is the corresponding PSF in that component, and an i.i.d. additive
Gaussian noise terng,, f; andn; are defined over the array= (m,n) of pixels
spanning the entire image area. In equation (319 the discrete convolution op-
erator. The index = {1,2, 3,4} denotes respectively the data corresponding to
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the Red Greenl Green2 andBluecolor channels, those are measured according
to the Bayer matrix sampling pattern. Note that each of tlmesges is quarter
size of the final output image. The restoration problem castdted as recovering
the original imagef; from its degraded observatigp.

3.4 lterative restoration

3.4.1 Generalized Landweber method

Iterative methods have shown to be an attractive altem#bivimplementing the
inverse solution of image deblurring, especially when tluerlng parameters can
exhibit some modeling errors. The stand&mhdweber method57], [73]) to
solve for f; from the observationg; in equation (3.1) is given by the following
iterative process:

PO, (3.2)
FED = B BT k(g — b £, k=01, i =1,...,4(3.3)

wherey; is the update parametér! (t) = h;(—t). If the image formation model

(3.1) is noise-freey;(t) = 0, the iterative process described above is converging

[57]. However, the slow convergence [73] is a significantdack. The problem

of choosingy; is one of balancing the stability against the rate of cormecg,

i.e., alargeu; ensures a quick convergence but also increases a risk abilitst
Another aspect of the Landweber method in equation (3.3)eiddct that it is

designed to solve a probleg(t) = (h; * f;)(t). As aresult, the obtained solution

is sub-optimal in presence of noise. We propose to use tlesviolg modifications

in order to incorporate a noise filtering stage and to enhaaneergence:

9 = o, (3.4)
AV = B i dix b s (g = hex £, (3.5)
];Z(kJrl) _ @{fi(kﬂ)}’ k=0,1,..,i=1,..,4 (3.6)

whered; is an impulse response of a special linear filter that can ed tesaccel-
erate theconvergencef the solution. ®{-} is an intermediate filtering operator
that is intended to enhance the robustness of the solutiocanl be considered
as a separate regularization step. It is interesting to th@ein the context of
expectation-maximizatio(EM) methods [34], in the iterative process described
above, the E-step coincides with equation (3.5), and M-stepesponds to fil-
tering stage in equation (3.6). The operaddr-} can be, for example, a simple
averaging filter, or any other sophisticated filter that sakd¢o consideration the
local signal statistics. In our algorithm, we chose to pilugn adaptive denoising
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filter in order to preserve the image details from over-smiogt The adaptive
filter is based on the polynomial approximation of neighbgrpixels from dy-

namically selected windows. The windows are selected byulesof intersection
of confidence intervals in order to ensure statistical hoenegy of the data in
the localized windows. Detailed explanation and resulthisffiltering approach
(LPA-ICI) can be found in the following references ([60],1]6. This adaptive
denoising technique plays an important role in our propasgdtion because it
preserves image details and ensures also efficient noisavagnwhich is difficult

to achieve using filters operating on fixed data support.

3.4.2 Convergence

To study the convergence and the sensitivity of the propdseative deconvolu-
tion technique, the analysis is done in the Fourier domahre image formation
model in equation (3.1) can be written in the frequency donaaifollows:

Gz(w) = Hi(w)Fi(w) + Fi(w), 1=1,....4 (37)

whereF;(w) = F{fi(x)} is the Fourier transform of;, G;(w) = F{gi(z)},
Hi(w) = F{hi(z)}, andl's(w) = F{ni(x)}.
Now, consider the equations (3.4-3.5) in the frequency doma

FO = o
FED = W 4 DiHE (G — HiFWY) (3.8)

where,D;(w) = F{d;(z)}, andH is the complex conjugate &f;. If we rewrite
equation (3.8) in the following form:

FMY = (1 — wDiHiP)FY + uDiH; G, (3.9)

then the error between the original signal and the signahast in the frequency
domain can be expressed as:

pk+D)

)

k *
= ¢EY — i, DHIT, (3.10)
g = 1— pDiH?, (3.11)

whereEi(k) = f{egk)}, andegk) = fi— fl.(k) is the error between the estimated
and original images.

The idea behind using the operatby, is to accelerate the iterative process
(3.8), while at the same time ensure that the overall soiutanverges. As it can
be inferred from equation (3.11), the rate of convergench®fiterative process

(3.8) is characterized by the variallgw) = 1 — p; D;(w)|H;(w)|?. Further, the
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convergence takes a place onlydf(w)| < 1. This gives us the conditions that
the update parametgr has to satisfy:

0 < wiDi(w)|H;(w)|? < 2, forall w, (3.12)

where it is assumed thd®;(w) is real and positive everywhere on its frequency
support. Note that for the pure Landweber method in equd8d@), D; = 1.

The fastest convergence happens when fagt®.11) is minimal. If we introduce
the following variable:

i max = Max Di(w)]Hi(w)P, (3.13)

then, according to equation (3.12), the solution conveiigesis selected as fol-

lows: 5
= 3.14
= e (3.14)
wheree > 0. When considering frequency domain implementations ofttra-
tive process in (3.8), we propose to use the following raditim of D; in order to
accelerate convergence:
1

Di=—— .
CH

(3.15)
wherer? is a regularization parameter. This can be motivated byabethat this
choice of D; allows us to approach the behavior of the pseudo-inversr flt
each iteration, and hence significantly accelerate theargence to the solution.
In fact, it can be seen from equation (3.9), that the psendexse filter can be a
particular case of this realization whep= 1.

3.4.3 Simulation results with LPA-ICI regularization

To study the properties of the proposed method, we used#meramartest
image in Fig. 3.2 (a). The image was corrupted by the follgn@aussian PSF
blur

1 m? + n?
hi(m,n) = 5— exp(————). (3.16)
27rapsf QUpSf

We usedv,,;; = 1. We further degraded the blurred image with an additive evhit
Gaussian noiset;rf7 = 40 (Fig. 3.2 (b)). We compared the restoration results
obtained with the standard Landweber method (Fig. 3.2 @@t the proposed
method with the integrated LPA-ICI filtering (Fig. 3.2 (d))can be seen from the
images and from the improvement in signal to noise rgti®N R) values that the
proposed denoising step significantly enhances the pesfacenof the restoration
process. It is worth mentioning that the images shown abowegpond to the
results of the implementation in frequency domain.
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True Signal Corrupted Signal

(b)

Landweber with LPA-ICI: ISNR=3.37 dB
ST =

(d)
Figure 3.2: (a) OriginalCameramartest image. (b) Blurred and noisy image,
Gaussian PSko,,s; = 1), Gaussian additive noig{er?, = 40). (c) Restoration re-

sult with the standard iterative Landweber method &ftiéerations. (d) Proposed
Landweber method witlh. PA — IC1T after4 iterations.

Fig. 3.3 (a) shows the improvement in terms of signal to ncasie (/SN R)
across the iterations for the restored images in Fig. 3.2r{d)Fig. 3.2 (d). The
IS N R corresponding to the standard Landweber technique (ddisiz@dakes its
maximum and then tends down, due to the noise amplificatitve. Cirve corre-
sponding to the proposed technique with LPA-ICI denoisisgjid line) clearly
improves the stability of the solution. In fact, this adegtfiltering stage acts as a
regularization for the inverse solution, while also entiagthe overall quality of
restored images.

In Fig. 3.3 (b), we integrated the acceleration operdpin equation (3.15)
into the frequency domain implementation of the iteratigstoration. It can be
seen that the number of iterations that is needed to achieaisperformance is
significantly smaller. This result confirms the potentiaimiegrating an acceler-
ating spatial operator in the Landweber process in general.
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— Landweber with LPA-ICI — Landweber with LPA-ICI
iweber andweber

- - Landweb:

(@) (b)
Figure 3.3: ISNR (in dB) vs. number of iterationsk{. (a) Iterative restoration
without acceleration. (b) Iterative restoratiavith acceleration. In both Figures,

the Landweber technique with LPA-ICI denoisingplid line) is compared with
the standard Landweber technique without denoisitaglied ling

3.4.4 Sensitivity to PSF errors

In practice, it is rarely possible to have precise estim&deshe point spread
function (PSF). Therefore, it is essential to have restmmaalgorithms that are
robust against deviations in PSF parameters.

In order to test the robustness of the proposed solutionuwehe algorithms
when the exact PSE; is known, and when we deliberately introduced different
amounts of errorg\h; into the assumed PSIFZZ-Q. The corrupted PSF that is
actually used in the restoration model can be expressedias$o

hi=h; + Ah;, i =1, .., 4. (3.17)

In our experiments, we used Gaussian RASWith parametev, s = 17, where

7 € {0,0.1,...,0.6} is the assumed estimation error. In Fig. 3.4, we compared
the proposed technique (solid line) with the standard Laeimer method (dashed
line). Itis clear from the/ SN R curves that the proposed solution is more robust
against possible errors in PSF, since the performance wessstently better than
the standard Landweber method for all the values tifat were used.

3.5 Practical considerations

3.5.1 Bluridentification

Typically, one of the most difficult practical problems tosmved when restoring
images is usually not the choice of a restoration algorittselfi, but rather finding
a good PSF. The problem is that the PSF changes as a functibe whvelength
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Figure 3.4: Simulation of the sensitivity of the iterativebdurring methods to
possible errors in PSF estimatgs). Gaussian PSF with parametg),f = 1 £ 7
is used, where is an error that is deliberately introduced.

and the distance of the imaged target with respect to the reanhe the follow-

ing, we simplify the problem by assuming out-of-focus closege imaging. We
further assume space invariant blurring. In order to entii@eapplication to the
images captured with a camera phone, we developed a simples§tBnation

technique and used it to find the blurring corresponding th &alor component.
The procedure is described next.

Given a blurred raw image corresponding to one color comptoofea checker-
board pattern, the four outer corner points are located alnand a first rough
estimate of the corner positions is calculated. Next, trecebocations (at sub-
pixel accuracy) are recalculated again by refining the seaithin a square win-
dow of 10x10 pixels. The algorithms for corner detectiontzased on the imple-
mentation of the camera calibration Matlab toolbox devetbpy Heikkila ([48],
[49]). Using the detected corner points, we reconstructpgmaximation for the
original grid image by averaging the central parts of eactasgjand by asserting
a constant luminance value to those squares. Fig. 3.5 (ajsstio example of a
testimage, and Fig. 3.5 (b) shows the corresponding segihent reconstructed
grid image. Now that we obtained the blurred image (Fig. &), @nd the as-
sumed original input (Fig. 3.5 (b)), the blur can be inferbgdapplying an inverse
filtering method.

In the experiments, the PSF estimates are obtained usiplesiseudo-inverse
filtering (in Fourier domain). Since the pseudo-inversentégue is quite sensi-
tive to noise, we further imposed a low pass cut-off freqyeiaclimit the noise
propagation. We repeated the procedure with several im@aga® than 10, with
different orientations of the checkerboard images), andinadly averaged all of
them to obtain smooth and reliable estimates. Fig. 3.5 @yslan example of the
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)

(@) (b)

Figure 3.5: Procedure to estimate the PSF. (a) From the reaptaw image cor-
responding to each color channel; the corners of the chdxdend are located
at sub-pixel accuracy. (b) The corner locations are useddonstruct the sharp
pattern of the original checkerboard images.

Average estmaled PSF for blue color component
(Pseudo-lnverse fillerng). . -

Figure 3.6: An example of the estimated PSF for the blue cthannel using
raw data from Nokia 6600 camera phori€ images are used in the calibration
process, all captured at close rangel(0cm).

estimated PSF for the blue color channel with a truncategatpf 21x21 pixels.

In our experiments, it was also confirmed that the 3 color camepts exhibited

slightly different blurring characteristics; intereglp, the blue color component,
although it was least contrasted, was the sharpest componen

3.5.2 Implementation of restoration

In order to realize practical real time implementationshef testoration algorithm
in equations (3.4-3.6), some approximations in the algorihave been consid-
ered. We have implemented a simplified integer implemaeontaif the algorithm.

This causes a loss of precision in the normalized PSF. Bedhadinear convolu-
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Figure 3.7: Effect of the proposed saturation control medm to avoid false
coloring in restored images. (a) Original blurred imageRe}stored imagei(it-
erations)withoutsaturation control; remark the green false coloring. (StBed
image { iterations)with saturation control. Remark the green false coloring has
disappeared. The same reconstruction chain was used3iinagiges.

tion is proportional to the square of the size of the filtensap we have truncated
the PSF support to a window of 9x9, which contains most ofrtf@mation about
the defocus degradation, and we considered an approximatitne formal solu-
tion in equation (3.4-3.6). We assumed that the first appration in (3.4) is the
observed image itself. So, the iterative approximate gwlutan be compactly
expressed as:

fi(k+1) = f@(k) + Wi adap El * (gi — hi * fi(k))v (3.19)
FE = @t =14 (3.20)

where 1; q.4qp IS @ pixel-wise step size parameter that is designed to datsd
coloring. It is derived in the following section.

3.5.3 Saturation control

In the literature, the formulation of the image acquisitpocess is invariably as-
sumed to be a linear one (equation 3.1). It is true that thearaption simplifies
the inverse problem and allows to develop compact and &teasolutions. How-
ever, in practice, the sensor electronics introduce neatities in the acquisition
model, of which the saturation effect is one of the most s&ridn fact, due to
the sensitivity difference of the three color channels, fazdy exposure controls,
pixel saturation can happen incoherently in each of theraflannels. The sepa-
rate channel restoration near those saturated areas cétrimes/er-amplification
of that color component alone, thus creating artificial cotasmatch and false
coloring near those regions. To avoid this, we propose almoeehanism that
smoothly regulates the restoration process near satureg@mhs. The saturation
control is integrated in the iterative solution of equati@?20). The idea is to
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spatially adapt the update parametgrso as to limit the restoration effect near
saturated areas. The adaptive update parameter is givehaugst

ﬂi,adap(ma n) = 5sat(m7 n)ui, (321)

where; is the global step-size as discussed earlier, @ndis the local satu-
ration control that modulates the step siz&,; is obtained using the following
algorithm:

1. for each color channel imagg, i = {1...4},
2. consider the values of the winddw x w) surrounding pixel;(m, n),
2.1. count the number of saturated pixgl$m, n) in that window,

3. the saturation control parametegy,; is calculated as follows:

4

Bsat(m,n) = maz{0, [w? — Z Si(m,n)]/w?}.

=1

Bsqt Varies betwee and1 depending on the number of saturated pixels in any
of the color channels. This means for example that if thelpigéa certain color
channels are saturated, theg; will be zero, and no restoration will be performed
in that window. Fig. 3.7 shows the effect of the proposed ffication to avoid
false coloring in the restored images. It can be seen fronexhenples that the
proposed procedure effectively suppresses color misnmetghsaturated areas.

3.5.4 Image reconstruction chain

It is important to remind that our processing framework (ig.3.1) proposes to
apply restoration of each of the color components as thesfiatial filtering op-
eration in the image reconstruction chain. Therefore, amgte implementation
of the overall imaging chain includes the following cas@hdperations:

e Deblurring of color componen{proposed)

e Pedestal noise removal

e Automatic White Balance

e Color Filter Array Interpolation

e Color gamut conversion

e Geometrical correction and vignetting elimination

e Noise reduction (optional)

e Sharpening (optional)
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Figure 3.8: (a) Test image taken with a Nokia-6600 cameran@ramd recon-
structed with the default processing chain. (b) Final impgecessed with the
proposed deblurring of the raw data afteiterations, and reconstructed with the
same chain.

It is evident that the final image quality depends on the coebiresult of all
these operations. The implementations correspondingesetindividual opera-
tions are usually non-linear. As discussed earlier, theofisestoration as the first
operation in the reconstruction chain ensures the besitfitiethe assumed linear
model. The following algorithms, especially the color filteterpolation (CFAI)
and the noise reduction algorithms, can act as additiormpllagzation steps to
prevent over-amplification due to excessive restoration.

Fig. 3.8 shows the final result that is obtained when the meganultichan-
nel restoration algorithm is integrated in the reconstoucthain of a real camera
system. The processing was carried out on the raw pictupgarea with a Nokia
6600 camera-phone. As it can be seen from the images, thareggident im-
provement in detail resolution and in color contrast. Weehailso tested with
a large set of real scene images, and the visual quality ofethd@t images was
consistently better than the images obtained with the dtafeconstruction chain.

3.6 Conclusions

In this chapter, we presented an integrated filtering methatireduces the op-
tical blur. The filtering is an integral part of the camera gaaeconstruction
chain. We implemented a modified iterative Landweber allgoriwhich uses an
adaptive window denoising method to regularize the invélteging process. The
proposed deblurring method makes use of the estimated R&Elharacterizes
the optical blurring in each of the three color components.avoid false color-
ing that may happen due to independent component filterirRGB space, we
integrated a novel saturation control mechanism, whichaoghty attenuates the
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(@) (b)

Figure 3.9: (a) Test image taken with a Nokia-6600 cameran@tend recon-
structed with the default processing chain. (b) Final impgecessed with the
proposed deblurring of the raw data afgeiterations, and reconstructed with the
same chain.

iterative restoration near saturated regions. The exgetiah results have shown
that proposed method for image restoration attenuatesltineny due to fixed-
focus cameras integrated in mobile devices. In generalrehalts demonstrate
the potential of considering image deblurring as an infggget of image recon-
struction chains, especially when implemented on hardware
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Chapter 4

Super-Resolution from Sensor
Data

4.1 Introduction

Despite the continuous improvement in the performance aginmg sensors, there
are still several physical and practical constraints tinat the final image quality.
Therefore, signal processing techniques are widely uséahpoove the quality
of the sensed raw data. In this chapter, we present a frarkei@pproducing
a high-resolution color image directly from a sequence aiges captured by a
CMOS sensor overlaid with a color filter array. The algorithttempts to uti-
lize the additional temporal resolution in order to imprdle demosaicing of the
color components and filter the noisy and blurred image ddta.method is based
on iterative super-resolution that performs separatedyfittering of the individ-
ual color image planes. We present experimental resultgyusinthetic image
sequence as well as real data from CMOS sensors.

4.1.1 Spatial resolution in image sensors

Lately, the industry trend has been focusing on reducingitke size in order to
improve the spatial resolution. This approach leads toaedsensitivity of the
individual pixels and amplification of the noise levels bes CMOS sensor per-
formance is limited by low quantum efficiency and by dark entmon-uniformity
[15]. In fact, regardless of the sensor manufacturing teldgy, there is a fun-
damental trade-off between spatial sampling (number aélg)x pixel size, and
temporal sampling.
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4.1.2 Color plane interpolation

In most consumer products, the integrated cameras corfsissingle imaging
sensor that uses Color Filter Arrays (CFA) to sample diffeispectral compo-
nents. The most common sampling pattern is called the Baggrix (Fig. 4.2),
which consists of color filter elements arranged such tregmgcomponent i50%
of the total number of pixels, whereas each of the red anddaogonents repre-
sent25% of the total number of pixels. At each pixel location, the simg colors
must be interpolated from neighboring samples. This cdamginterpolation is
known as demosaicing, and it is one of the important taskkenirhage recon-
struction (formation) pipeline.

There has been significant work related to demosaicing ofc@ar images.
A good review of the common techniques can be found in [44kidBes the tra-
ditional interpolation techniques such as nearest-neigtgplication, bilinear in-
terpolation, and cubic spline interpolation; several dtgms have been proposed
to enhance the performance of demosaicing. For examplé],ifi5B8] and [65],
inter-channel correlation is exploited in various wayséofprm edge-directed in-
terpolation and to prevent color mismatch across the edgdé.l], a technique
using alternating projections onto convex sets is proposbe performance was
superior to earlier techniques [41] because the projestammnoss the color planes
provided for an efficient way to exploit inter-channel ctaton. In all of the
algorithms cited above, only the spatial correlation of mieégghboring pixels is
used, without exploiting the additional information thatavailable in the adja-
cent frames.

Super-resolution can be used to combine a short sequenaw efdeo output
from the sensor to reconstruct a high-resolution image. idéa is to exploit the
non-redundant samples that fall on the Bayer samplingéaiti order to perform
demosaicing of the color data, and possibly increase tlginatiimage size, with
improved color fidelity. However, to date, almost all supeselution methods
have been designed to increase the resolution of a singlechoomatic channel
(luminance component), and it was not until recently thatuke of multi-frame
processing was considered in the problem of demosaicirid, ([39], [93]). In
[39] and [93], it is argued that although a two-pass algaritfilemosaicing fol-
lowed by super-resolution) improves the overall resohutithis approach results
in blurring effects and artifacts similar to those obseriredemosaiced images.
Also, they have shown that it is possible to obtain precis¢ionousing block
matching from aliased raw images. However, the overall ookt complicated,
and involves among other processing steps edge directapatation. Therefore,
it is not straight-forward to separate the distinct conttitn of super-resolution
in the final demosaiced result. In [31], a method based on Mgtimation is pro-
posed to jointly perform demosaicing and super-resolytiom the paper does not
address the problem of estimating motion between the imagesonly presents
results with synthetic data sets.
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Figure 4.1: Integrated image formation (reconstructioogei using the proposed
super-resolution filtering.

4.1.3 Our approach

In the following, we consider the application of super-tagon directly on a
sequence of raw images. The idea is to enhance the intéguotatthe different
color planes by utilizing the data from neighboring imaganies. One benefit
from applying super-resolution as a pre-processing stejpfe cascading into the
following operations) is that it ensures that the linear glid) of the problem
holds best, at least conceptually. In earlier work [108] haee demonstrated that
by applying deblurring directly on the raw color componemte were capable of
producing superior results, especially after implemensmple mechanisms to
avoid color mismatch.

In Section 4.2, the image formation model is defined, and itiG@e 4.3, the
solution is derived by applying super-resolution on theoc@omponents, also,
some implementation issues are highlighted. Experimeesallts of the proposed
algorithm with synthetic image set as well as with real sedsta are presented
in Section 4.5. Finally, conclusions are drawn in Section 8.

4.2 Image formation model

In order to produce the final image from the sensor data, tfeutigorocessing
pipeline includes several cascaded operations such amatitowhite balance
(AWB), gamma correction, contrast enhancement, color fiteay interpolation
(CFAl), denaising, sharpening. Most of the filtering thaitrigolved in these op-
erations is non-linear. Hence, our proposal to apply swgsslution as the first
step of the reconstruction pipeline (before cascading théfollowing opera-
tions) ensures that the linear modeling of the problem hbkdg. The modified
reconstruction chain uses few raw images to perform enlddnterpolation of the
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Bayer color data, which replaces the conventional step &fl @kering. Fig. 4.1
depicts the block diagram of the proposed super-resolugoanstruction chain.

In the assumed model, the incoming light is blurred by thearanoptics, and
the image data is measured by a sensor through the Bayerisgmppttern. The
optical blurring and the noise sensitivity of each colorrue can be different.
We assume linear sensor response, as well as linear spacir blur for each
color channel. Now, conside¥ observed raw LR imageg; ,i = 1--- N) that
are captured by the sensor in video mode, such that the insgesdjacent ob-
servations of a static scene corresponding to a HR colorémag Further, we
assume that each subsampled color component image is greirdint realiza-
tion of the imaged scene, i.e., for ti#& LR imageg;, we capture separately 4
color channelg; ), where the index = {1,2, 3,4} denotes respectively the data
of the Greenl Red Blue, andGreen2color channels; as measured according to
the Bayer sampling pattern (Fig. 4.2). Using the assumgtabove, the image
formation model can be written as:

gy (@y) = S| (ha) = fa(&)) (@) +na(z,y)

gioy(@,y) = S| (he * fr(&)) (@) +ne (@) 4.1)
9i(3) (r,y) = S| (h(3) * [ (51)) (w,y) + 7}(3)(93,1/) '
Giny(@,y) = S| (hw* fe(&)) (@,9) +nw(z,y)

wheref = (fr, fa, fB) is the HR reference image corresponding to the imaged
scene in the RGB domairh, .y denotes the point spread function, or the PSF due
to optical blurring in each color channel denotes the convolution operator, and
S | the down-sampling operator. Note that in equation (4.1) eator component
is subsampled at a different offset due to the specific pattethe Bayer sampling
matrix. &; is the mapping function corresponding to the geometric imgrpgue
to the scene displacement in each of the LR images relatitleetéiR imagef,
while 7, is an additive noise term that is associated separately emith color
channel.

After discretization, the model can be expressed in matrimnfas follows:

i)y = Ai(l)zGJ’_ﬁ(l)
i) = AiyfrtT) (4.2)
93y = Ai)SpTTm
Giy = Aiwfa T+

The matrixA ;) combines successively, the geometric transformagjptie con-
volution operator with the blurring parameters /gf,, and the down-sampling
operatorS | over the Bayer grid. For notation convenience, we integtage
RGB correspondence in matricés; ), and we express the image model using
the following equation:;

Gie) = Aie)f + (o) (4.3)

whereg; ., f and., are lexicographically ordered.
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Figure 4.2: Bayer matrix sampling pattern

Referring to equation (4.3), the size of each of the LR imaggs is quarter
that of the sensed raw image. The separation of the raw imgtgdrdo 4 individ-
ual subsampled images introduces significant aliasingedior each color plane
we are skipping the pixels from the next color component aitHow-pass fil-
tering. In principle, super-resolution algorithms explbie aliasing of the image
data in order to reconstruct high frequency informationthie following section,
we present the solution for interpolating each color congpbvand combining the
information from adjacent frames.

4.3 Super-resolution from raw sensor data

In this section, we describe the algorithm that performautiemeously the demo-
saicing of the color components while fusing the data fromUltR frames. The
HR image is in RGB domain, while the individual LR images assuamned to be
the monochrome components after performing the subsagnatinording to the
Bayer pattern. The problem of super-resolution reconstmiacan be described
as estimating for each color channel the best HR imfage(f g, f, f 5), which
when appropriately projected and down-sampled by the miaddl.2) will gen-
erate the closest estimates of the LR imaggs, ¢ = {1---4}.

4.3.1 Cost function

For each observatiog ), we associate the following cost function:

cie) = 19 — Gill* = 1) f — Tio 1% (4.4)
whereg; . is the simulated LR image through the forward imaging motfedll

LR images(i = 1--- N) are assumed to contribute equally to the cost function,
then the overall cost function is the following:

N

N
o) = Y €ite) = DA f = i)’ (4.5)
i—1

=1
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Further, if Gaussian noise is considered in the imaging in@ge ), then mini-
mizing the cost function in (4.5) (least squares solutisrgduivalent to the max-
imum likelihood solution.

4.3.2 lterative super-resolution

In order to minimize the error functional in (4.5), the methaf iterative gradient
descent is used. This technique seeks to convergéowards a local minimum
by following the trajectory of the negative gradient; i.& jterationn, the high-
resolution image is updated as follows:

—n+1 —-n n=n
f = f +u T(C), (46)
where ™ is the step-size, anﬁ&) is the residual gradient due to the LR color

images(c).
The residual gradieﬁt?c) is computed as follows:

N
Tle) = Zl Wi(e) <§i(c) - Ai(c)?n) . (4.7)

The matrix W, corresponds tmﬁ)”, i.e., the inverse process of the image
formation. In practice, W;) combines successively the up-sampling and the
inverse geometric war[zztl) such as to map thé" LR image grid onto the HR
grid.

In the update equation (4.6), the same stepsizis used for all color channels
(c = 1,2,3,4)); this means that all the color channels are iteratively mined
at the same speed to minimize consequent false coloringeXnple the step
size is calculated using the green componght) using the method of steepest
descent [12] as follows:

N = =N (12
1 Z ||9i(1) - A fell

4.4 Implementation

In the following, we highlight some implementation issuleattare needed to re-
alize a practical implementation of the proposed algorithve recall that super-
resolution shall be considered as a processing framewatlrivolves several op-
erations such as motion estimation, interpolation and daining. In the specific
context of super-resolution of raw images, we deal with ipldtdata channels
corresponding to different spectral components (colossyell as different tem-
poral samples (images), this makes the alignment of aletteta channels a chal-
lenging task in the implementation stage. Next, we show hendeal with this
problem when implementing the different operations needediper-resolution.
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Figure 4.3: Pixel projection from interpolated RGB domaiaghed lines) onto a
single raw color component (green 1). Note the uneven spdlat is used in the
pixel projections.

4.4.1 Motion estimation

One critical aspect to achieve efficient implementationisnafge super-resolution
is the need for accurate sub-pixel registration of the inmaiges. The problem
of estimating sub-pixel motion from raw data has been ingatad in detail in

[93]. In our implementation, we used the subsampled compusni® estimate
global projective motion parameters. The motion was eséthéor each of the
color channels separately, and the resulting motion paemeere refined using
a simple averaging operation.

Because the overall performance of super-resolution igtgos is particularly
degraded in the presence of persistent outliers, we indladgmple mechanism
in the motion estimation process that asserts the confidefnites obtained esti-
mates; i.e., if the mean square error (MSE) between theemderframe and the
motion-compensated LR image is larger than a given thrdskioén we skip that
frame throughout the entire reconstruction process.

4.4.2 Initialization of iterative super-resolution

It is well known that the iterative Least Squares solutianjraequation (4.6), is
prone to divergence especially when the number of input @aéglimited. If this
happens, annoying artifacts start to appear when ovextéter This is due to the
absence of a proper regularization term. To avoid this, veeausmooth initial
estimate of the HR image and we limit the number of iterati@specially when
we know that the input sequence is noisy. The initial HR estéms obtained by
demosaicing the reference frame (which is used in the mestimation process)
by applying simple bilinear CFAI, and then interpolatinghe desired zoom fac-
tor, for instance by using bilinear interpolation in the R@&mnain.
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4.4.3 Projection functions

When implementing the image synthesis and the inverse gsaefined respec-
tively by A;) andW, ), we used a process similar to that described in [21]. In
the synthesis process, or the forward-projection, we waefHR image as point
samples and convolve with a continuous form of the pointagifunction (PSF),
and we downsample at the required positions on the BayegrpattVe assumed
the PSF can be approximated with a Gaussian function, se#hean easily inte-
grate the blurring as a single parameter in the convolutiongss. This operation
is rather delicate to implement, Fig. 4.3 shows an exampteefssumed posi-
tioning of the HR image grid (in dashed line) with respecthe LR image grid.
The corresponding half pixel shifts need to be integrataiérmotion parameters
of each LR image. The inverse mapping, or the back-projegiiocesg W, )

is handled in a similar manner: instead of naive downsargplive interpolate
to the required Bayer pattern positions. The region of imiteeaffected by the
back-projected pixel is determined by the interpolatiotefijalso Gaussian). The
smaller the variance of the filter, the sharper the resuliRgimage is. However,
this also means that more LR samp(é@¢) are needed to avoid amplification of
the noise and annoying pixelized effect in the solution. Absther interpolation
filter will make a compromise between the number of input iesgaghe noise level
and the sharpness of the result.

4.4.4 Processing the green channel

Another problem that we need to take in consideration is #loe that for each
LR image, we have 2 sub-images corresponding to the greetrapbeomponent,
;1) @andg;,(4), which correspond to a single channel in the HR image). This
can be handled in many ways, for example by averaging thesponding back-
projected components, i.e., the residual gradié@t)sandf&) due to the green
spectral component, this procedure has been used in theragpés presented in
the following section. Alternatively, it is possible to usee of the channels for
the regularization of the iterative solution, meaning thiatle g; ), g;) andg; s,
components of the Bayer image are used as reconstructiatraions of the G, R
and B color components respectivegy,,) may be used as smoothness constraint
of the final solution, especially if we assume a MAP iterativplementation, in
this casey,4) can be used to calculate a non-redundant prior distribudfcthe
HR image.

4.5 Experimental results

In this section, we present experiments on synthetic aneéalrsensor data. First,
we tested the algorithm on a sequence of synthetic test sndgee images; in
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Figure 4.4: (a) Original HR image. (b) Example LR image afedi according
to model in equation (4.1), Gaussian Psgsg = 1.5), zoom factor2, additive
Gaussian noises = 20). (c) Image obtained using bilinear CFAI interpolation
and bicubic interpolation{NRr = 9.44, SNRg = 10.77, SNRp = 10.45,
SN Ry = 10.19). (d) Image obtained using the proposed algoritBriterations,
(SNRr =10.88, SNRg = 12.19, SNRp = 11.68, SN Ry = 11.50).

total, were generated from a single HR image according tortaging model de-
scribed in equation (4.1). The original HR image was rangondrped using an
8 parameter projective model. We used a continuous GauBﬁlEr(yzs ;= 1.5)
as the blurring operator, and we down-sampled the imag@ddpbtain thes LR
images. We added to all input images a zero-mean Gaussiaa with variance
a% = 20. Fig. 4.4 (c) shows the image that is reconstructed usirgesait CFAI
interpolation and interpolated to target size (by 2) usieglbic interpolation. Fig.
4.4 (d) shows the result image that is obtained using thegsexbalgorithm after
2 iterations. For the images in (c) and (d), we calculated itpea to noise ratio
with respect to the original image in (a) corresponding ®oRGB color channels
(SNRgr, SNRg andSN Rg), as well as for the luminance compone&i\ Ry).
These are shown in the caption of Fig. 4.4. In term8 dfR, the proposed super-
resolution algorithm enables an improvement of ablobdb over equivalent tra-
ditional processing which consists in applying separatieéy CFAI interpolation
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Figure 4.5: (a) Original HR image. (b) Example LR image aiedi according
to model in equation (4.1), Gaussian P3ES§ = 2.5), zoom factor2, additive
mixed noise (Gaussian noie% = 20, impulsive noisep = 0.06). (c) Image ob-
tained using bilinear CFAI interpolation and bicubic ipgelation SN Rr = 9.5,
SNRg = 943, SNRp = 10.12, SNRy = 9.21). (d) Image obtained
by applying super algorithm (median fusing),iterations, FNRr = 10.92,
SNRg =11.22, SNRp = 12.16, SNRy = 11.19).
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(@) (b)
(c) (d)

Figure 4.6: (a) Example of raw data capturédniages) with Micron test camera
board (Ml SOC1310). (b) Image obtained using bilinear CHAtéipolation of
reference image. (c) Image obtained by applying propoggatighm, zoom factor
1, 3 iterations. (d) Close-up comparison between zoomed prid the images
shown in (b) and (c).

(in this case bilinear) and resizing operation (bicubieipblation). In addition,

close visual inspection of the images in (c) and (d) confitmesgood performance
of the proposed algorithm seeing that some fine details adtignal image have

been recovered in the super-resolved image shown in (d)eabdhese details
are not visible when using a single interpolated image (t)e perceived image
guality is also improved, since the contrast is enhancedtlamdolored artifacts

due to noise are reduced thanks to the integrated filteripgoaph used in the
algorithm. It is worth mentioning that the algorithm is talaly fast, for example

in Fig. 4.4, the target image size w30 x 240, and in this setting, the resulting
images were computed in real-time on an ordinary PC.

In Fig. 4.5, we perform a similar experiment as above witliedént burring
and noise parameterd. LR images were generated from a single HR image by
random warp. We used a continuous Gaussian I%%ff (= 2.5) and down-
sampling factor2. A mixture of Gaussian noiseri = 20) and impulsive noise
(p = 0.06) is added to all LR images. The aim is to emulate random nabige t
may appear in CMOS sensed images. Fig. 4.5 (¢) shows the ithagés re-
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constructed using bilinear CFAI interpolation and intégped to target size (by
2) using bicubic interpolation. Fig. 4.5 (d) shows the resulage that is ob-
tained using the proposed algorithm afteiterations. One simple modification
with respect to earlier results is that in equation (4.7) weduthe median filter
instead of averaging filter, the idea is to account for impalsoise present in the
LR images. In terms of N R, the super-resolved image is ab@db better than
the image obtained using equivalent traditional procgssimparticular the super-
resolved image has less false coloring artifacts that agetalimpulsive noise in
the individual color components. This result is interegtiecause it shows that it
is relatively easy to account for other types of spatial @@is this case impulsive)
by modifying the fusing step of the super-resolution aldyon, this result may be
further developed in future work to account for other typesaise distributions.

In Fig. 4.6, we show the performance of the proposed mething vsal sensor
data without prior knowledge of the distortion or motiontthappened between
the LR images. The proposed algorithm is applied on a sétimiages captured
by a CMOS camera board (Micron SOC1310). The images wera tslightly
out-of-focus, on purpose to simulate a fixed-focus optigatesn. In Fig. 4.6
(d), we show a zoomed portion of the image to compare thetseshtained by
applying simple bilinear interpolation against the imagb&ined using the pro-
posed algorithm. Although the parameters that were usedrilgorithm were
tuned without accurate knowledge of the forward imaging efatie obtained re-
sults were good, i.e., from the visual inspection it is cliat the details became
sharper, the noise was decreased and the contrast in theimesge was better.
This confirms the usability of the proposed solution for ticad application in
camera systems.

4.6 Conclusions

In this chapter, we presented a super-resolution algorttiahtakes a sequence
of raw color images, and produces a demosaiced color imagjeeifRGB do-
main. The proposed algorithm was compared with Bilinear OR#erpolation,
and it showed an outstanding performance both visually aterims of signal to
noise ratio; and at a reasonable computational compleXihe results confirm
that this approach for super-resolving raw sensor dataoimising, and is capa-
ble of producing superior results. In future work, we shallidate our method
against an extensive set of known demosaicing algorithmesnéirm that the use
of multi-shot mode is capable to improve significantly théoc@and detail reso-
lution. Another interesting direction is to explore intagpd fusing methods that
may be more appropriate to use in different noise envirotsnehthe sensors.
Also, we shall consider the development of fast motion egiiom techniques that
will be suitable for the application of super-resolutionraw image data.



Chapter 5

Motion Estimation

5.1 Introduction

The estimation of motion in image sequences is often reduirevarious video
applications. In the literature, there is an enormous tsadedifferent approaches,
which we can not exhaustively survey here. Instead, we geowi this chapter an
introductory discussion on the challenging problem of mgstimation (Section
5.2), we focus on the specific context of image super-resolutn the following
Sections (5.3-5.8), we present a novel filtering methodishzdsed on a recursive
LMS filtering scheme to match the intensity values. The agthfitter coefficients
are used to calculate a dense motion field between two adjeiceo frames. The
employed filtering takes advantage of the localized caimglaof image data in
adjacent frames, and produces refined estimates of thedispents at sub-pixel
accuracy. The proposed method for pixel-based motion edtmis well suited
for the estimation of small displacements within video fesyand can be applied
in several applications such as super-resolution, videuilstation and denoising
of video sequences.

5.2 Image registration

Image registration establishes the correspondences &etthe pixel positions
from a target frame with respect to a reference frame. Thésaijpn is funda-
mental to many image and video processing tasks, and masblpan video
compression systems. Although the understanding of thiessgvolved in mo-
tion estimation has significantly increased in the last decave are still far from
generic, robust and real-time algorithms [98]. Fundaminthe problem is chal-
lenging because of its ill-posedness, the aperture prqtdechthe occlusion that
happens when 3-D moving objects past each other are projenta 2-D plane.
In this thesis, we are mostly concerned with motion estiomatiechniques that
can be used for super-resolution. In this context, the mafguirements for image
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registration are the following:

Accuracy: sub-pixel precision is required in super-resoiu

Robustness towards image degradatibns

Robustness to outliers represented by moving objects iadbee

Robustness to changes in illumination

Reasonable computational complexity

It is well known that satisfying these requirements togetheot straightfor-
ward. In principle, motion estimation aims to reveal the 3¥vtion trajectory
from the observed image intensities, which means that we teeonstrain the
problem and assume certain imaging and scene models. Thecoromon as-
sumption is that the image intensity along a motion trajgctemains constant.
This is usually known as the brightness constancy assumpaidditionally, some
other constraints may be assumed, such as the constargrgragsumption, or the
smoothness of the motion field, etc.

5.2.1 Motion field representation

Transformation
Model Tx] = Camera motion Number of
=T parameters
L v]
) [\-‘ =x+1, )
Translational 5 2D translation 2
{‘r =y+1,
) J x = xcos(a) - ysin(@) + 7, ) )
Euclidean i . translation, rotation 3
|y =xsin(a) + ycos(a) +1,
[x' =ax+by+t, translation, rotation
Affine 1 ' - ’ ’ 6
| =ex+dv+t, skew
. x =(ax+by+1)/(gx+hy+1) | translation, rotation,
Projective s i 9
v =(ex+dy+t)/(gx+hy+1) skew, perspective

Motion field representations can be divided into two broakgaries: non-
parametric and parametric models. In the first model, theamdteld is rep-
resented at each point (or point samples) by a vector indgdhe estimated

le.g. noise, blur caused by camera motion during the expdsnee or by out-of-focus optical
system.

2image registration is usually the most computationally ptex part of a multi-shot image
processing application. This requirement is importangé#l#time operation with large image sizes
is desired.
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displacement at that point. In the parametric represematnly few parame-
ters corresponding to a pre-determined geometric modeategded to represent
the motion in a given image area. The table above display® smmmmon lin-
ear parametric motion models and their corresponding geanteansformations.
Additionally, if the imaging system suffers from opticakthrtions, higher order
polynomial models can be used to integrate the correspgrgtiometric distor-
tions into the parametric model.

The motion fields, in particular the parametric represémtat are usually rep-
resented on various partitions of the image plane. The meguéntly employed
regions of support for motion are the following: global misdélock-based mod-
els, triangular or hierarchical block-based meshes, amglesipoint support (to
represent dense motion fields).

For super-resolution processing, one particular advantdghe parametric
motion field representation is its capability to accuratelgister camera transla-
tion, rotation, zooming, or projection on a static planarse On the other hand,
a major problem (with global registration techniques) & they are limited to the
assumed parametric model, and completely fail in the presehlocal outliers.
Such outliers may be for instance due to moving objects éid scene, or due to
the presence of repetitive textures and noisy areas. | tteses, non-parametric
registration techniques (dense optical flow field) may beesoiitable to handle
the moving objects. However, this usually comes at the esgoefiprecision loss
and additional memory to store the motion field.

5.2.2 Common approaches for motion estimation

Two different approaches for motion estimation have begarseely developed;
i.e., image based discrete motion estimation (block magdhiand gradient based
techniques, or optical flow estimation.

Block-based methods

This method for discrete motion estimation establishesctireespondences by
measuring similarity using blocks or masks (block-matghinThe technique is
simple, but nevertheless the most widely used because abitgiitous appli-
cation in video coding schemes such as H.261, H.263, MPERGPEG-2, and
MPEG-4, AVC. The motion of each block (typically 16x16 pigkls represented
by a two-parameter vector. Sub-pixel accuracy is ofteneagtl by interpolating
between the pixel intensity values. There are severaltiang of this basic esti-
mation approach using different combinations of minini@attrategies, search
techniques, interpolation procedures, hierarchicalvdddns, smoothing meth-
ods, etc.

In general, the advantages of block-matching are simyplaniid reliability for
discrete large motion. Originally, this approach has beainiyn developed to
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improve compression performance in video coding appboati As a result, the
motion vectors do not necessarily reflect real motion, sdffam discontinuities
along the block boundaries, and they generally fail to tegidetailed motion.
Due to the shortcomings listed above, the direct applinaifdlock-based motion
estimation in filtering applications is not considered @ilgsoption.

Optical flow methods

These methods aim to obtain a velocity field by computing tragial and tem-
poral image derivatives. Since the initial formulation loé toptical flow equation
for motion estimation by Horn and Schunck [51] in 1981, saleariations based
on this approach have been described in the literature. dperted algorithms
usually consist in deriving a dense flow field by applying detgirof techniques
to compute the gradient images and regularization steddgisolve for the local
parametric motion at each pixel position. This approachbeas very popular in
applications considering different sorts of computeransiasks.

In general, the advantage of this approach is the capabiligccurately es-
timate of the elastic displacement between frames, i.e.attequate handling of
piecewise motion. However, the computational complexéigogiated with opti-
cal flow estimation techniques is usually prohibitively erpive (see Table 1 in
[9]), and this makes it unsuitable for direct use into vidéerfing applications.

Motion estimation for filtering applications

Based on the arguments mentioned above, and mainly bedsyskave been de-
signed for different applications, one may conclude thatthditional approaches
for motion estimation are not very suitable for motion-camgated filtering ap-

plications, such as super-resolution. For instance, inorifiltering applications,

we can afford to skip areas that may not be accurately regdtdout we may

not afford blocking artifacts in the final result. This raigbe need for research in
new approaches for motion estimation, which may providenagromise between

computational complexity, ease of integration and acgurac

5.3 Dense optical flow field estimation using recursive LMS
filtering

Introduction

In the following, we develop a novel motion estimation altfon that can be used
in video filtering applications. The method is inspired frtime analogy of audio
echo-cancellation, which successfully applies adaptiterifig to match the de-
layed audio components. Similarly, we attempt to use a 2-C5lfler to match

the intensity values and calculate the displacement betwee adjacent video
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frames. The proposed algorithm adapts the correspondtraf B&R coefficients.
The peak value in the resulted coefficient distribution ®to the localized dis-
placement that happens between two successive frames.

The adaptive filtering takes advantage of the localizedetation of image
data in adjacent frames, and produces refined estimateg afishlacements at
sub-pixel accuracy. One particular advantage is that thpgsaed method is flexi-
ble and well suited for the estimation of small displacersavithin video frames,
which makes it useful in video filtering applications suchsaper-resolution
[103], video stabilization [102], and denoising of vide@gences.

Adaptive filters

An adaptive filter has an adaptation mechanism that is meaminitor the en-
vironment and vary the filter transfer function accordinghhe algorithm starts
from a set of initial conditions, that may correspond to ctatgpignorance about
the environment, and based on the actual observed signaissito find the opti-
mum filter design. In principle, adaptive filters derive &kir information from a
given realization of a stochastic process, i.e., one saguehtime samples, thus
canceling the need for a-priori assumptions.

A wealth of adaptive filtering algorithms have been devetbipethe literature,
and can be found from classic books on the topic (e.g. [46]})[8Rather than
solving optimally for an unique solution, different typekamlaptive algorithms
are usually considered as a set of tools that enable to filerstationary signals
in a given way, and each alternative algorithm offers desréeatures of its own.

LMS filters

One of the simplest adaptive filters is the well known Leasai8quares (LMS)
algorithm. It is usually used to determine the filter coedfits that relate to pro-
ducing the least mean squares of the error signal, i.e.,ifteeashce between the
desired and the observed signals. The LMS uses the FIR filpert ivector as a
correction vector modulated by a step size parameter, wdantrols the speed of
the adaptation. LMS filters do not make a priori assumptidwutithe statistics
of the signal data, and this enables a robust performandesagarious types of
noise and outliers signal. This filter is particularly attiee due to its simplicity

and its low computational complexity. However to date, LMt&fs have not been
widely used in image processing applications.

LMS filtering for image and video processing

Earlier, 1-D LMS filtering has been extended to the 2-D casd, feas been ap-
plied in few example image processing tasks, e.g., imagare@ment [94]. In
[6], a 2-D block diagonal LMS algorithm was developed for gaegprocessing
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applications. It was claimed that it is possible to preséeclocal correlation in-
formation of the pixels in both directions when utilizing @2diagonal scanning
pattern. In [92], a two-dimensional recursive least sqaidksS) filtering scheme
was introduced. The filter was tuned to remove the mismagohiiects in a stereo
image pair, and the weights of the filter were computed usibtpek-based LS
method. In the context of block motion estimation, it wasgasied in [82] that
the estimation of motion vectors based on the spatio-teahpmighborhood in-
formation is an effective solution to reduce the effectsmdven error surface. In
[64], an adaptive matching scan was employed to reduce toe@tnof computa-

tions needed to perform the full-search block-matchingigm. However, it is

somehow surprising that none has yet proposed to use LM&talgs for direct

estimation of the optical flow in image pairs.

In the following Section (5.4), we present the observatiomdetl which as-
sumes small displacement between two successive frameSedion 5.5, we
introduce the LMS matching filter, and then the proceduréwleaused to extract
the motion from the adapted coefficient distribution. Int&er5.6, we discuss
the effect of the scanning from one direction, and we proosgethod to scan
from different directions and to combine the final resultpEsimental results are
presented in Section 5.7 using synthetic test set to iltestthe capability of the
proposed algorithm to detect motion as well as motion awstli€inally, in Sec-
tion 5.8, we discuss the advantages of the proposed mettiod aontext of video
filtering and we draw some conclusions.

5.4 Observation model

Consider two successive frames of a video sequence, anmetemmagel, and

a template imagd’, which we would like to register with respect {0 Both
images have the same siz€, Y'). The images are ordered lexicographically into
vectors, such that(k) andT'(k) denote the intensity values on the grid position
(1 <k < XY). We want to estimate the displacement fielgk) = [u(k), v(k)],
which establishes the correspondence betwéén and7'(k). We assume that
the relative displacemeri®(k) is constrained, such that

—s<u(k) <s
{ —s<w(k) <s (5.1)

In order to solve for the pixel-based motion estimation fgol the following
cost function may be considered

C(k) = [T(k) — I(k+ D(k)))? (5.2)

I denotes the estimated intensity value of the referencedraétgr performing
the motion compensation. Note that the displaceniefi) need not be integer
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valued. In equation (5.2), we chose the simple quadratictifomal of the reg-
istration error for tractability of the formulation, esjty in case of Gaussian
additive noise.

The main hypothesis in our formulation is that the pixel ealifk) in the
reference image can be expressed as an estimate usingrdillee@ombination
of the window around the central pixel locati@tik) in the template image. That
is:

I(k) = w(k) * Tw(k) + (k) (5.3)

whereT,, (k) is a matrix of windowed pixel values from the template imagtaw
sizeS = (2s + 1)? and centered around the pixel positibnw (k) corresponds
to the modulating coefficient matrixy(k) is an additive noise term. For nota-
tion convenience, the matric&y, (k) andw(k) are ordered lexicographically into
column vectors, antldenotes the transpose operation.

The model in (5.3) tells that each pixel value in the refeesintage can be esti-
mated with a linear model of a window that contains the pdssihifted pixels in
the template image. In this setting, the motion estimati@blem can be mapped
into the simpler problem of linear system identificatioe, ,iwe have the desired
signalI(k), the input dat&’,,(k), and we would like to estimate (k) according
to the linear model in (5.3). The goal is to minimize the castction in (5.2) by
limiting the motion search within the bounds expressed ih)(5

5.5 2-D LMS adaptive pixel matching

The 2-D LMS filter is essentially an extension of its 1-D carpart. In our
solution, it takes the two dimensional winddy, (k) as input data and the desired
response to be matched is the intensity value in the referiemegel (k). In order
to solve for the weight array(k), we apply the standard LMS recursion [46].
The recursion is applied along a pre-determined scannitiggiahe image grid
(indexed byn), as follows

e(n) = I(k) — w(n — 1)/Tw(k‘)
{ wn) = wn—1)~+ pn)Ty(k)e(n) (5.4)

wherep(n) is a positive step size parametefp) is the output estimation error,
n refers to the iteration number, akddenotes the current pixel position that we
are filtering. Note that if the indexing of the pixéetsis the same as the indexing
of the scanning path, thenandk are identicalaw(n — 1) refers to the coefficient
values that were estimated in the previous pixel positidioviong the employed
scanning direction (see the following section for discmssi Fig. 5.1 shows an
illustration of this basic filtering process.

Like its 1-D counterpart, the 2-D adaptive filter does nouass any knowl-
edge about the cross correlation functions [94]. The filpgraximates their val-
ues by using instantaneous estimates at each pixel poaiticording to the step
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Figure 5.1: lllustration of the LMS filtering that is used talculate the optical
flow between the frames.

size . For LMS filters, there is a well-studied trade-off betwedabgity and
speed of convergence, i.e., a small enough stepgizewill result in slow con-
vergence; whereas a large step size may result in unstdbtess. Alternatively,
there are several modifications of the standard LMS alguorittat offer simpler
stability requirements, for example, the normalized LM3.¥&). The NLMS
algorithm is obtained by substituting in equation (5.4)fibleowing step size:

7!
p(n) = ——F—— (5.5)
e+ ||Tw (k)2
wheree is a small positive constant. In this form, the filter is alstledc-NLMS
[2], and the stability condition is given by:
2
— 5.6
p< g (5.6)
The choice of the step size parameter is critical in tunirg groper perfor-
mance of the overall algorithm. In general, the motion cam$sumed locally
stationary, such that a small step sjzean be used to favor smooth and slowly
varying motion field rather than a spiky and fast changingiomdield.

Determining the motion from the adapted filter coefficients

The function of the 2-D LMS filter is to match the pixels in a s#Bawindow on
the template image to the central pixel in the reference @naghis matching
is done through the smooth modulation of the filter coefficratrix. Fig. 5.2
shows an example plot of the coefficient values, which pedkeaposition of the
displacement between the corresponding images.
In order to obtain the displacement veciofk) from the adapted coefficient

distributionw(k), we apply a simple filtering operation, which first finds thesel
ter of neighboring coefficients that contains the global imasn coefficient value
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Example Distribtion of the Adapted Coefficient Values

Figure 5.2: Example distribution of adapted coefficienueal The peak value
points to the displacement that happened between the twefrat pixel location
k.

Figure 5.3: Obtaining the displacement from the coeffictésitribution.

(Fig. 5.3). Then, the center of mass of this cluster is cateal over the sup-
port window. The resulting displacement in thendy directions constitute the
horizontal and vertical components Df(k) at sub-pixel accuracy. A simple in-
termediate check is inserted to assert whether motion caotfdmed from the

obtained coefficient distribution. This filtering operatiis described next in more
detail:

1. Find the3 x 3 window support, over which the sum of neighboring coeffitiés
maximum.

2. Check that the sum is larger than a pre-determined thict¢bonfidence in esti-
mation process). If not, assert an empty pointer.

3. Calculate the center of mass over the obtafhed3 support window. The vector
from the origin to the resulting position is the estimatediomvector.



76 CHAPTER 5. MOTION ESTIMATION

0 L]

LI JCI

o N m = mEEE

0

= m mm mE-as —] Decide &
M m mw EEs .
--I-I-I-I-l-.l.- » combine
OECECE I o R

B o m m meams ~a— best estimates
o m N = E N

0o

Figure 5.4: Implementation alternative of the proposediomotstimation tech-
nique for raw Bayer data. The scanning is performed frodifferent directions
separately for each subsampled color component. The figaltfis obtained by
fusing the resulting motion fields in a robust manner.

One important remark relates to the last step where the metator is es-
timated as the center of mass of the maximum coefficientiloligion. This is
done by calculating the weighted average of the pre-selécte3 grid positions
with respect to the corresponding adapted FIR coefficielmsur experiments,
this operation is performed in floating point, which mearet the obtained dis-
placement is inherently at sub-pixel precision. Altenvlti, the operations can
be easily converted to include desired the subpixel intpgeeision, this modifi-
cation is useful if we would like to further reduce the congtiastnal complexity
of the algorithm.

5.6 Scanning direction

The proposed filtering method is based on recursive scarofitige 2D image
grid. As a consequence, the employed scanning pattern tegae coefficient
adaptation, especially if we favor stable adaptation bygqusi small step size
1. This means that the overall estimation process is spatiallisal with respect
to the employed scan method. In case the motion is globabstay and con-
strained, which may be for instance due to camera shakirngresipect to a fixed
scene, even the simplest of scanning patterns, e.g., rssder is sufficient to
correctly estimate the stationary displacement.
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5.6.1 Multiple scanning directions

On the other hand, if we want to detect arbitrary and locdliz®tion, it may not
be possible to estimate the corresponding motion field bigziag a single scan-
ning direction. Instead, the scanning can be performedunddferent directions
and obtain the displacement field independently for eachrsieg direction. The
final motion field is computed by combining the resulted mofiields obtained
from the different directions. The combining of the disglia®ent vectors can be
performed by selecting the vector that minimizes the cpording error value
at each pixel location (error images due to LMS adaptatienstsred temporar-
ily in the memory). Another elegant method is to apply a congmi-wise scalar
median filter (or vector median [4]) for the obtained displament vectors; this
allows to obtain the consolidated motion through a votingcpss and enhance
the performance of the estimation process against outliers

5.6.2 Scanning method for raw Bayer data

In the previous chapter, we proposed to use super-resolfdioraw sensor data
in RGBG domain (Bayer image data). Interestingly, sincerélvedata inherently
has four separate color components, which are assumed ¢éoganthe same mo-
tion; we can apply the multiple scanning scheme describegealn 4 different
directions by treating each subsampled color componensegaate data source.
This may be done at no extra computational cost. The finalandield can be
obtained by fusing the motion field obtained from the différdirections, as de-
scribed above. This scheme (illustrated in Fig. 5.4) willdoenbined in future
work with the method proposed in the previous chapter in rotdalevelop an
integrated method for super-resolving raw sensor data.

5.6.3 Enhanced scanning patterns

Additionally, instead of the basic raster scan, spacajltiurves [78] can be used
to traverse the image plane while adapting the LMS coeffisieFhe typical space
filling patterns (e.g., Peano and Hilbert curves [78]) afindel over grid areas that
are powers of. Fig. 5.5 shows an example of the Hilbert scanning patterma fo
rectangular window of 16x16. This mode of scanning throughgixels, though
more complicated, has the important advantage of stayirajileed within areas
of stationary shifts before moving to another area. Thisisitey mode typically
results in superior performance of the overall estimati@tess, especially in the
presence of localized motion or other random outliers. Tdteepn in Fig. 5.5 can
be easily mirrored and traversed from four directions asudised previously.
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Figure 5.5: Possibility to employ more elaborate scannitepns. In this exam-
ple, we propose to use mirrored Hilbert scanning patterrisaterse the image
plane fromd different directions.

5.7 Experimental results

In this section, we briefly show the performance of the prepoapproach for
motion estimation. We present three different experiméemtsimulate practical
situations that may arise in video filtering applications.

In the first experiment illustrated in Fig. 5.6, a templatege is generated
from an original reference image by simulating a globalgfation(D = [0, 3.5]).
Zero-mean Gaussian noi(ste?7 = 40) is added to both the template and the refer-
ence image. We tested our algorithm with the following pagtars(s = 7, u =
0.02)3. In this experiment, simple raster scanning of the image evaployed
to adapt the LMS coefficients. The obtained sampled motidd f&edisplayed
in Fig. 5.6; the red arrows display the estimated displacgmectors, whereas
the blue points show areas where the algorithm cannot resokstrained motion
with certainty; these areas generally contain little imdeils, which confuse the
LMS adaptation. The algorithm was successful in deterrgirtire global trans-
lational motion, e.g., the motion vector that was estimatethe middle of the
image wasD.s; = [0.048,3.513]. In fact, since the step size was small, the
overall performance was robust against noise, meanwhgledefficient adapta-
tion was capable to track the stationary shift, becauseatime shift is consistently
confirmed in the areas that contain contrasted details.

In the second experiment, a template image is generated ipingahe ref-
erence image with an affine transformation. The test imageeisnt to simulate
the geometric skew that is due to camera rotation with regpesn axis, which
is parallel to the image plane. Fig. 5.7 shows the estimatatibmfield that was
obtained with the following algorithm parametérs= 15, u = 0.02). The filter-
ing was performed using a single scanning direction (rastan). In the border

3The extent of the search)(can be set according to the video type and the target fityenpli-
cation. When we know the motion is constrained, smallerckeaindows ensure faster operation
and improved precision.
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Figure 5.6: Example of the estimated motion field that isiole by scanning in a
single direction (horizontal). Global translation andgydinput images (Gaussian
noise,a?7 = 40). Blue points represent the pixel positions where the #lgor
cannot resolve any motion with certainty.

area, the algorithm did not detect motion due to the abseharyomage details
that fall inside the search window. In the rest of the imagaathe algorithm was
capable to track the smoothly varying motion field.

In the third experiment, a template image is generated Imglating the refer-
ence image and by inserting an outlier area in the middlesoiittage. This exper-
iment is designed to simulate the performance of the algaorin the presence of
combined motion. The following algorithm parameters wesed(s = 10, u =
0.02). In this setting, we used the block Hilbert scanning to treeehe image
plane from 4 different directions, and we finally fused théagted displacement
vector components using a median filter. Fig. 5.8 displagsefiimated motion
field. The blue points show areas where the algorithm caresative for motion
with certainty, which corresponds well to the outlier ardeat was in the template
image. This experiment reveals that the use of multiple récanfrom different
directions and the subsequent voting process through tdeamselector adds ro-
bustness to the motion estimation. We reckon that this trésuiseful in video
filtering, since the detected outlier points can be left ooitrf the filtering process
to avoid unwanted artifacts.

In all our experiments, the obtained dense motion field isatimnand spatially
correlated, which reflects well the real motion that hapddndhe video frames.
The complexity of the algorithm i©((2s + 1)2N'). Comparing to the complexity
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Figure 5.7: Example of the estimated motion field that isioletby scanning in a
single direction (horizontal). The template image was ioletd from the reference
image by an affine geometric transformation.

of optical flow methods (table 1 in [9]), the proposed methwohuch simpler and
faster, thus enabling real-time operation of motion corspeed filtering.

5.8 Conclusions

In this chapter, we presented a novel recursive method fef-pased motion es-
timation. The proposed algorithm employs 2-D LMS filter t@ptla window of
coefficients so that we can match the pixel value in the referdrame. The peak
value in the resulted coefficient distribution points to thigplacement between
the frames at each pixel position. The recursive LMS filg@afong the scanning
direction enables to track the stationary shifts that hagmween the reference
and template frames, and inherently produces smooth @stnaé the displace-
ments, directly at sub-pixel accuracy. We also proposetati@ns of the initial
algorithm such as the use of multiple scanning directiorbpaiterns in order to
track complicated motion in the scene.

Experimental results have demonstrated that the overdthipeance was ro-
bust against Gaussian noise. Also, the algorithm was capal@ccurately track
smooth affine motion, even when using a single scanningtéirecWhen using
multiple scanning directions, it was possible to single autlier regions which
correspond for example to moving or disappearing objectisérscene.

One important advantage of the proposed method is its siitypéind relative
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Figure 5.8: Example of the estimated motion field in the presef outliers. Blue
points represent points where the algorithm cannot resobion with certainty.
The result was obtained by combining the motion estimatesh # directions
(using median operator). The algorithm detected the outhigion (blue points in
the center) and isolated it from the smooth motion field inrdst of the image.

low computational complexity. The initial results demaagt the usability of the
algorithm, especially when targeting motion-compenséitezting such as video
denoising, video stabilization and super-resolution esstng. In future work,

we may investigate different variations of the algorithnonder to enhance the
basic motion tracking performance, and derive simple rédedMS step size

adaptation. Also of interest, is the research of differetdmsions of the algorithm
in order to cover complex motion patterns.
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Chapter 6

Robust Fusion In
Super-Resolution

6.1 Introduction

As we have discussed in the previous chapter, one critipacasn image super-
resolution is the need for accurate sub-pixel registradioiihe input images. The
overall performance is particularly degraded in the presari persistent outliers.
To enhance the robustness of super-resolution algorittwapropose in this chap-
ter an integrated adaptive filtering method to reject théierumage regions. In
the process of combining the gradient images due to eachidsalution image,
we use adaptive FIR filtering. The coefficients of the FIR ffiiee updated us-
ing the LMS algorithm, which automatically isolates thelisutimage regions by
decreasing the corresponding coefficients. The adaptatitarion of the LMS
estimator is the error between the median of the samplestfierbR images, and
the output of the FIR filter. Through simulated experimemssgnthetic images
and on real camera images, we show that the proposed teehpégforms well
in the presence of motion outliers. This relatively simphel éast mechanism en-
ables to add robustness in practical applications of imagersresolution, while
still effective against Gaussian noise in the image foromatodel.

6.2 Related work

Super-resolution is considered to be one of the most pramisichniques that
can help overcome the limitations due to optics and sensotuon [85]. The

technique consists in combining a set of low-resolutiongaesaportraying slightly
different views of the same scene, in order to reconstruaglatesolution image
of that scene. The idea is to increase the information coiedhe final image by
exploiting the additional spatio-temporal informatioratlis available in each of
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the LR images.

In practice, the quality of the super-resolved images dépéeavily on the ac-
curacy of the motion estimation; in fact, sub-pixel premisin the motion field is
needed to achieve the desired improvement. Global paremesdtion estimation
using affine or projective models can provide accurate emoggistration, which
positively impacts the over-all performance of the SR dthors. If the images
exhibit optical distortions, higher order polynomial mtglean be used to obtain
better pixel correspondence within the LR images. One npayaslem with global
registration techniques is that they are limited to the meshiparametric model,
and more importantly, they completely fail in the present®cal outliers. For
example, such outliers may be due to moving objects insidestiene, or due to
the presence of repetitive textures or localized noisysarda those cases, the
super-resolved image can exhibit severe artifacts. Lagibtration techniques
such as optical flow are capable of handling moving objedtispagh their per-
formance suffers from from lack of precision [7], and theutes not completely
prone to outliers. For these reasons, robustness towayidsragion errors is a crit-
ical requirement in super-resolution, especially if wgédrto realize commercial
applications. Moreover, if we consider current mobile desi we can afford only
a limited number of LR frames in the memory buffer; so it'sfuséo consider
optimized algorithms that reject localized outliers, thattare able to exploit the
rest of the image areas to improve the final resolution.

Registration error

Several solutions have been proposed to handle registratiors by solving it as
part of the regularization of the solution (e.g. [45], [7[@1]). In [45] and [91],
motion error noise is incorporated agpriori information within the smoothness
prior, and the result image is obtained as the MAP solution[70], a regular-
ization functional is plugged in a constrained least squasdting and solved by
iterative gradient descent. This approach for handlingebestration error as part
of the regularization certainly helps towards the conditig of the ill-posed in-
verse problem. However, it is argued in [8] that for large nifigation factors,
and regardless of the number of LR images used, regulamizatippresses useful
high-frequency information, and ultimately leads to snho@sults. Note that in
most of the literature, localized motion outliers are naigarly handled in the
model. Further, it is implicitly assumed that the extra haion content is equally
distributed among all the LR images, and usually, the rasudbtained by aver-
aging the contributions from all LR images, which propagéatee outlier pixels
from any of the LR images into the final HR image.
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Robust fusion

In [33], it was shown through simulations that in the preseotsmall errors due
to motion estimation or due to inconsistent pixel areas endbnsecutive frames,
the combined noise is better modeled with a Laplacian digion rather than
a Gaussian distribution. So, if this is taken into consitlena the mixed noise
model is best handled through the minimization of the(1 < p < 2) norm.
Specifically, if theL; norm is considered, the pixelwise median minimizes the cor-
responding cost function, and when used together with tlageloal prior regular-
ization [33], the solution was robust towards errors, aildseserved details near
sharp edges. In the context of super-resolution reconginjdhe median filter
was used earlier [117] in the fusing process of the gradieages. It was shown
that together with a bias detection procedure, it is posdiblincrease resolution
even for those regions that contained outlier objects. Rewaet is well known
that the median operator is not optimal for filtering Gaussiaise. Also, the
median tends to consistently eliminate those measurerttgttsignificantly de-
viate from the majority, and which may contain most of theeldigh-frequency
information. So at least in principle, there is a delicatal&-off between outlier
rejection performance, noise removal capability, and #pability to reconstruct
aliased high frequencies. One possible approach is toaemnsiudying, instead
of the mean or median filters, thetrimmed mean ofr, s}-trimmed meah in
the fusing process. The generalized class of order statifitiers, orL-filters [5]
constitute a suitable filtering framework to derive the debsbalance between the
different trade-offs that are involved in the fusing prace$the LR images. We
have used this approach [113] to super-resolve text imagesiphasizing either
the maximum or minimum values to enhance the contrast nesacter edges.

Our approach

In order to efficiently handle localized outliers, in theléwing we propose to
use an adaptive FIR scheme that automatically reduces thteiledion of the
outliers, and averages the rest of the pixels. As the scgrmrimgresses over the
image grid, the weights associated with each LR image amgtedasing an LMS
estimator. The median estimator is used as an adaptati@ni@ni that tunes the
FIR coefficients to reject consistent outliers. Our appoadifferent in that we
use the median estimator as an intermediate step in theadidapprocess, and
this inherently eliminates the need for a bias detectiorcguiare [117], making
the overall algorithm more robust to Gaussian noise in tfeg@formation model.
The rest of the chapter is organized as follows: in Secti@nw& present the
assumed imaging model. In Section 6.4, the general frantewfothe iterative

These filters are effective against impulsive noise that beague to registration errors, and are
relatively easy to tune.
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super-resolution is presented. Next, we review briefly tkistiag fusing tech-
nigues, and we explain the issues that need to be addresseteirto tune the SR
algorithm for robustness against outlier regions. In ®ach.6, we introduce our
approach that uses an adaptive FIR filter to combine the gmadnages. In Sec-
tion 6.7, we show the experimental results, and Sectiondh8lades the topic.

6.3 Imaging model

In this section, the general model that relates the HR imagdkd LR observa-
tions is formulated. The degradation process involves exis/ely, geometric
transformation, sensor blurring, spatial sub-samplimgl, @n additive noise term.
In continuous domain, the forward synthesis model can berithesl as follows:
considerN observed LR images, we assume that these images are ob&ained
different views of a single continuous HR image. Followingimilar notation as

in [22], thei?” LR image can be expressed as:

whereg; is thei’” observed LR imagef is the HR reference imageg, the point
spread function (PSF}; the geometric warping$ | the down-sampling oper-
ator, n; additive noise term, and denote the convolution operator. The overall
degradation process is illustrated in Fig. 6.1.

After discretization, the model can be expressed in matrimnfas follows:

7= Aif +7; (6.2)

The matrixA; combines successively, the geometric transformagjothe con-
volution operator with the blurring parametersigf and the down-sampling op-
eratorS | [30]. Note that in equation (6.2);, f and7; are lexicographically
ordered.

6.4 Iterative super-resolution

The problem of super-resolution reconstruction is forrredaas estimating the
best HR image, which when appropriately warped and dowrpkainby the
model in (6.2) will generate the closest estimates of the ildgesg;. If we
assume thay; is Gaussian white noise, then the least squares solutiomizaes
the likelihood that each LR image is the result of an obsewmadf the original
HR image. In other words, for each observatignthe corresponding solution is
a high-resolution imagg, which minimizes the following cost function:

e =5 — 5ll* = I|Af — 7il%, (6.3)
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Figure 6.1: An illustration of the image degradation pracidlowing the model
in (6.2).

with g; being the simulated LR image through the forward imaging ehod

In order to minimize the error functional in (6.3), the madtaf iterative gra-
dient descent is commonly employed. This optimization négple seeks to con-
vergee; towards a local minimum, following the trajectory definedtbg negative
gradient. That is, at iteration, the high-resolution image according to observa-
tion g;, is updated as:

—n—+1 —-n n—n
= +wr (6.4)

w andr} are respectively, the step-size and the residual gradietetration.
The residual gradient is computed as follows:

TP =W, (?i - Az7n> : (6.5)

The matrixW,; combines successively the up-sampling, and the inverseeteic
warpé;” ! The step size] that achieves the steepest descent is given by [12]:

w15~ AT
M AE o)

In equation (6.4), each scaled gradient tepms= 1’7, corresponds to the up-
date image that verifies the reconstruction constraintiei’t observatiory;. We
definez;, as the data vector that points to the values from all the graitnages at
pixel positionk, zx = {p;(k),i = 1..., N}. Inthe process of SR reconstruction,
we need to perform a temporal filtering operation that combithe observations
in z;. For convenience of notation, we denote this filtering ojperé. For each
pixel k on the HR image grid, the resulting update vajyds given as

yr = P(zk), (6.7)
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Figure 6.2: Generic block diagram of the iterative supsphation process. The
gradient images are combined using a filtering operéttrat can be modulated
depending on the application.

where® is a generic filtering operator that performs the fusing efpixels from
all the available gradient images. Fig. 6.2 depicts antitid®n of the iterative
SR algorithm that we considered. Note that so far our fortrariadoes not as-
sume a proper regularization term for the solution. Celgiaguper-resolution is
an ill-posed inverse problem, so regularization is neggdseobtain a stable so-
lution. In the literature, there has been significant effoformulate suitable prior
models for iterative super-resolution (e.g. [32], [45]0]¢ These solutions can
be implemented in the iterative setting of Fig. 6.2 by assgna generic filtel”
that operates on the previous SR estimateor on the fused gradient image. If
we denotes; as the contribution that is due to the regularization preepixel
k, then at iteratiom, the final output at each pixélis updated as follows:

= 4y + 1 asy, (6.8)

wherea is the regularization parameter that controls the conditip of the so-
lution. In the rest of the chapter, and in our experimentsométed the use of
a regularization operator, i.e., we assumgd= 0. We focus the discussion on
the efficient implementation of the fusing proceksn the presence of motion
outliers.
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6.5 Fusing the gradient images

Ideally, the fusing process defined by operabowill retain the novel information
from each LR frame, filter out the noise due to the image foiangirocess, and
of course reject the motion outliers. Thus, at least in fpie¢ we shall consider
all the observations independently, and design a filterieghranism that adapts
itself to instantly recognize and reject the outliers, whibnstantly adjusting its
behavior according to the non-stationary noise distriutf the input images.
One straightforward implementation of the fusing processilal be to select
® as the mean filter. In this case, if Gaussian noise is assumtgkiimaging
model, the algorithm is equivalent to the maximum likelitlosolution. How-
ever, the solution is not robust against outliers. Anothesspbility is to select
the median filter, which would be efficient against impulséreors inz;. This
idea was used earlier in iterative super-resolution [14AY was shown to im-
prove the robustness against motion outliers. In fact, thdiam minimizes the
L, cost function [33] which corresponds to the Laplacian distion of the com-
bined noise. However, in the case when the errors have a rdigadbution, for
instance, Gaussian and impulsive, the clasg-6fimed mean filters might have
better performance. Note that the filters discussed abavbederived as special
cases of the generalizédfilters® which operate on the sorted data veagy.

When we consider error modeling due to motion estimatiois difficult in
practice to assume a stationary distribution. This is dafigdrue when dealing
with local outliers, for example due to moving objects imsithe scene. More
difficult is the case when the user tilts the camera, reguitina significant per-
spective change. This situation is quite challenging fostmotion estimation
techniques, which may register parts of the image correlotlymay completely
fail in some other regions. It is beneficial to use an adafftisang strategy that is
capable of automatically isolating localized outliers the following section, we
introduce our approach which is based on spatially adagtiefiltering of the
gradient images. It is shown that this technique enableswtbiall process to deal
adequately with outliers.

6.6 Our approach

6.6.1 Outlier rejection by adaptive FIR filtering

In equation (6.7), the fusing operatéris implemented as a weighted mean filter,
i.e., at each iteration, the update valyeis calculated as the output of an FIR

2For example, the median filter is a special case ofltH#ters, which can be obtained by
selecting all the coefficients to be zero, except for thearerdefficient that has unity value.
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filter, as follows:
N
yk = Y _aipi(k) = a’z, (6.9)
=1

wherea is the FIR coefficient vector. The filter coefficients reldte tontribution
that each LR image brings into the fused image. In most cdiowel techniques,

it is generally implied that all the LR images contribute alfyuto the total gradi-
ent image, i.e.q; = % 1 =1,...,N. However in the presence of outliers, the
computed solution may be corrupted by the consistent pcesafiarge projection
errors coming from the same frames.

To take into account the presence of outlier regions at teadustage, we
introduce an adaptation mechanism that modulates the tgefgsociated with
each input image. The coefficients of the FIR filter are vayyivith the pixel
locationk, that is in equation (6.9), we usg instead ofa.

6.6.2 Coefficient adaptation

For its simplicity and computational efficiency, we choseute the least mean
squared (LMS) estimator to adapt the filter coefficients. gtefficients are up-
dated progressively according to a pre-determined scgrpdttern across the se-
lected image regionk(= 1...L). Our proposed method for spatially adapting
the FIR coefficients, and simultaneously computing the tgudalue is described
below:

=

Initialization: k = 1, ag = [%,..., &

2. While scanning inside the imagé (< L)

2.1. Filtering:y, = a} _,zy

2.2. Error computatione, = dy, — yr = median(zg) — yx
2.3. Coefficient updatea, = ap_1 + Aepzg

2.4. Move to next pixel locationk(+ 1)

3. Update the HR estimate according to equation (6.8)

In the LMS coefficient adaptation shown abowds the step-size parameter. We
set the desired response of the LMS estimad) {o be the median of all the er-
rors. In this setting, the median is used to point out thoamés that consistently
present error values that deviate from the majority. Fonga, if scanning pro-
gresses through an area where #ffeLR image contains an outlier region, then
pixel after pixel, the error with respect to the median isngdio be large, and the
coefficient bias due tdeyz (i) is going to adjust the corresponding FIR coeffi-
cienta(i). Fig. 6.3 depicts an illustration of the proposed filteringthod.

When combined with a suitable step-size, the LMS estimadtinags reliable
statistics from the immediate pixel neighborhood. ThelteguFIR coefficients
tend to stabilize, rejecting the outlier contribution, \ehstill averaging the rest of
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filtered gradient image, ;

Figure 6.3: Block diagram of the proposed fusing method. Jiaglient images
are combined with a spatially varying FIR filter. The coe#fitis of the FIR are
chosen with an LMS estimator that is tuned to reject outliers

the error values. Given a sufficient set of samples, the mexdia approximate the
mean quite well [5], although with a reduced set of LR imadewér samples),
the result can be biased, and that’s why we chose to set itasrdyn intermediate
step for the coefficient adaptation. The experiments inalieviing section con-
firm that this fusing scheme is also efficient to filter the G#ars noise assumed
in the image formation model.

Note that the desired response of the LMS estimatii) ¢an be changed to
modulate the performance of the super-resolution prodeshkis case, the median
estimator is used to tune the algorithm for robustness agkioal outliers. Other
functions might be studied and pluggeddinto obtain a specific property of the
fusing process. For example, to speed up the reconstrugtperty for all the
input images, we can sét, = 0. In this case, since we are fusing gradient images,
the algorithm will favor the contribution of those LR imagtst consistently
present most of the novel information.

6.6.3 Stability of LMS adaptation

Although its simplicity and good adaptation performanbe, tMS has also some
sensible points that must be addressed. First issue isittadization of the step-
size \. It is well known that the value ok provides a trade-off between speed
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of convergence and quality of adaptation. If its value igéarthe convergence
is fast, but at the expense of an increased adaptation e@orthe contrary, a
small step-size provides good adaptation performancethieutransient time is
increased.

The problem of stability and adaptation speed for the LM$8resbr is well
studied in the literature [46]. Several modified solutiomsdrbeen proposed to
solve the problem for 1D signals. To ensure the stabilityhef tMS estimator,
the step-size must be bounded

2
S 1
0< A< R (6.10)

whereR = E {zz] } is the cross-correlation matrix of the input vectér{}
denotes the expectation operator, anfR| is the sum of the diagonal elements
of matrix R..

The above stability criterion is valid and easy to implemehen the input
sequence is stationary. However, for non-stationary s it is often the case
with image data, the cross-correlation mafiixchanges when scanning through
the image. As a consequence, the stability interval in jasl@ot fixed throughout
the entire image. To overcome this difficulty, the simplestiSon consists in
selecting a small value of, such that it is always within the stability bounds for
all the pixel locations. However, such a small step-sizé sugnificantly slow
down the convergence. Moreover, although in some partseointlage, a small
step-size will be beneficial to avoid fast and unnecessatgti@ans in the the FIR
coefficients, a larger value ofwill be required in regions containing outliers.

To overcome those difficulties, and to simplify the setuphaf algorithm, we
have implemented the normalized LMS (NLMS). The gradiegp $actor is nor-
malized by the energy of the data vector. In our cageis modified depending
on the pixel location, and is given by the following equation

A= (6.11)
||z ||

where||z|| is the Euclidean norm of vectat,, and~ denotes the step size pa-

rameter of the NLMS estimator. In this setup, the stabilijndition of (6.10)

becomes:

2
<y < 3" (6.12)

As it can be seen from equation (6.11), the algorithm maistaistep size value
that is inversely proportional to the input power. As a restle normalized al-
gorithm converges faster within fewer samples in many casesovercome the

3for several applications, relaxed boundary conditions beysed for\. However, the stability
condition in equation (6.10) has been shown to ensure gyatail a wider class of input statistics,
including non-stationary signals.
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Figure 6.4: Hilbert scanning pattern is used to maximizeieffit adaptation of
the FIR coefficients.

possible numerical problems whéay||? is very close to zero, the step-size of the
Normalized LMS in equation (6.11) is usually modified asdalé [46]:

B
M Tl €19

with ¢ > 0. Note that the stability interval of remains unchanged, and is the
same as in (6.12). In equation (6.13), the constazdn be used to prevent very
large changes of the step size. If we use a relatively largeevat ¢ >, the speed
of coefficient adaptation is decreased, but on the other,hmlimproves the
robustness of the employed NLMS adaptation against fastgihg edges and
other local image details that are present in the gradieatj@s.

6.6.4 Scanning pattern

To better handle outlier regions, especially those due teimgoobjects, the pro-
posed fusing algorithm is most efficient when the coefficataptation procedure
stays localized around the 2-D outlier patterns. Ideally,would like the scan-
ning path to satisfy the following constraints:

e cover the entire image area,
e pass through each point only once,
e stay in the highly correlated image areas as long as possible

By default, if we use the simple raster scan over the entirarhiiye, we fail
to satisfy condition 3. One immediate solution is to divitle image into areas
of equal size, and to apply the filtering in these areas inutgatly, with careful
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handling of the borders. Instead of the raster scan, spiing-fiurves can be used
to traverse the image plane during the filtering process.sé@ loeirves have been
successfully used in several other applications such agemading [78]. This
mode of scanning through the pixels, though more compligdtas the important
advantage of staying localized within areas of similar fiextcies before moving
to another area. Fig. 6.4 shows the Hilbert scanning paftera rectangular
window of 16 x 16. Notice that the filtering following the Hilbert path willay
longer in regions having 2-D correlation than the one foitaythe raster scan. In
our implementations, we tested the Hilbert space fillingyeaiof 64x64, as well as
16 x 16. It was clear to us that applying this type of scanning patsggnificantly
enhanced the coefficient adaptation, and allowed to usdesmvalues of)\, thus
resulting in better stability of the LMS estimator. It is wlorof mentioning that
these scanning patterns are easily integrated in the bum@kementation using
pre-defined look up tables.

The typical space filling patterns (such as Peano, Hilb&j) [are defined over
grid areas that are powers of 2. To confine with this restigtthe image area is
devided into smaller tiles that are powers of 2. This opt®nather a limitation
to the performance of the LMS estimator. Moreover, if thestihappen inside an
outlier area, some artifacts might appear at the borderseofiles, and may get
amplified with the iterations. To avoid these artifacts, anenediate solution is
to slow down the LMS adaptation by decreasigAnother solution is to smooth
the coefficients at the borders of adjacent tiles, but thisguure makes the over-
all implementation rather cumbersome. Better solutionlditne to apply space
filling curves that are defined over arbitrary sized imagesgkample the scan-
ning technique that is proposed in [88] provides an elegathaod for preserving
two-dimensional continuity.

To further enhance the stability of the LMS estimator, themdd FIR coeffi-
cients are saved in between successive iterations of tiee-sepolution algorithm.
These are used to initialize the input coefficients at thenmgg of each scan-
ning block. In fact, in the presence of consistent outlithis, coefficients tend to
stabilize quickly after scanning through a small part of ithage (see Fig. 6.6),
and the outlier regions can be pointed out, since their spmeding coefficients
are much smaller than the rest. The detected outlier regiande thrown away
when processing the following iterations to reduce the aataifpnal complexity
of the overall algorithm.

6.7 Simulation results

In this section, we show the performance of the proposediiqah. First, we
tested the algorithm on a sequence of synthetic test imagks.images, 5 in
total, were generated from a single HR image according tdrntaging model
described in equation (6.1). The original HR image was ramgavarped using
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Figure 6.5:5 noisy LR were synthetically generated by random warp andndow

sampling by2, additive Gaussian nois{er?7 = 40); 1 outlier image. (a) Reference

LR image,SNR = 11.85. (b) SR result with mean fusing (ML solution) aft&d

iterations,SN R = 14.12. (c) Iterative median fusing aftéo iterations,SN R =

15.32. (d) SR using adaptive FIR filtering aftéf iterations,SN R = 15.99.
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Figure 6.6: Adaptation of the filter coefficients during thestfiteration corre-
sponding to the image shown in Fig. 6.5 (d). The coefficigi3) reflecting the
contribution of the outlier image is automatically deceshs
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Figure 6.7:SN R comparison across the firsd iterations for the super-resolved
images shown in Fig. 6.5.5NR curves for (a) proposed adaptive solution,
(b) median fusing of the gradient images, and (c) averagaedus the gradient
images.

an 8 parameter projective model. The registration parasetere saved for the
reconstruction experiments. We used a continuous GauBgﬁrtrgsf = 0.5) as
the blurring operator, and we down-sampled the images byobtain the 5 LR
images. All the images were contaminated with additive Giansnoise oi?? =
40). Out of the 5 obtained images, we singled out one image, anithtnoduced
a deliberate error in its registration parameter corredpgnto a translation error
of 1.5 pixels on the LR image grid.

We ran the algorithm on the resulting set of images. Fig. Bdvs the tra-
jectory of the adapted coefficients through the first iteratiln this experiment,
the LMS step-size is fixed to a small valye= 5 - 10~7. Although the step size
is relatively small, the LMS estimator successfully sisgtit the outlier image
(third image) by decreasing its corresponding FIR coefiici€3), after scanning
through a small part of the image.

We compared the results of iterative super-resolutioniobthusing the pro-
posed fusing process against the mean and median filterghd-three compared
techniques, the same step sjzein the update equation (6.4) is used. Fig. 6.5
shows the result images; both our fusing technique and thdtamdusing suc-
cessfully singled out the outlier image and improved theustiess of the overall
SR process. Compared to median fusing, the proposed fgtbdas shown better
robustness towards noise, and was able to reconstruct finesiater details. Fig.
6.7 shows the correspondirifyV R values across the iterations. TE& R num-
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Figure 6.8: (a) Original HR image. (b) The set of LR imagesduisethe ex-
periment: 4 noisy LR were synthetically generated from the original HR i
age. The last image was generated from the same image wifthiarobjects
inserted. All images were shifted, downsample®tand contaminated with ad-
ditive Gaussian nois@;?7 = 40). (c) Interpolated reference image (pixel replica-
tion), SNR = 8.6. (d) SR result using iterative mean fusing aftetterations,
SNR = 11.4. Remark the shaded outlier regions. (e) SR result usingtiver
median fusing aftet iterations,S N R = 11.3. (f) SR using adaptive FIR filtering
after 4 iterationsSNR = 12.1.

ber confirm that the proposed filtering scheme consisterjopms better than
the mean and median filters. It is worth mentioning that therinediate result
was truncated in between iterations, which helped to caimsthe solution and
achieve steadier convergence for this set of almost bimaagées. Note that in
all the experiments, we have not used a regularization tpefaecause we are
mainly interested to isolate the effect of the fusing strateWe assume that it
would be possible to enhance the final result, when we ass@ prior knowl-
edge about the image content in the regularization step.

In Fig. 6.8, we repeated the same experiment. We generat&lirédolution
images with the same parameters described above, but isetiiisg, we selected
the last LR frame, and we inserted several outlier objectg. 6.10 shows the
SN R values across the iterations for the three fusing techsiqliee convergence
of the SR algorithm is fast during the first 4 iterations of skeepest descent (SD),
but in the following iterations, the&’ N R starts to oscillate without significant
improvement. This example illustrates the need for a regaltion step in order to
ensure the convergence of the solution. Early abortioneitérations is the only
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Figure 6.9: Adaptation of the filter coefficients during toerth and last iteration
corresponding to the result in Fig. 6.8 (f). The coefficieft) reflecting the
contribution of the last LR image is automatically decrelasben inside an outlier
region, when the scanning steps outside the outlier areayaéfficient increases
again.16 x 16 Hilbert scanning is used in this example.

available option to avoid over-amplified edges. In Fig. &w®8,show the results
after 4 iterations, again, both the median and the propadetien eliminated the
outlier areas, whereas the mean failed. BeftdrR performance, as well as better
visual result was obtained with our fusing method (Fig. )8 Fig. 6.9 shows
the trajectory of the adapted coefficients through the tasttion. The coefficient
a(4) reflecting the contribution of the last LR image is autonwljcdecreased
when stepping inside an outlier area. When the scanning stegide the outlier
area, the coefficient increases again. The other coefficmmtesponding to the
non-outlier images are kept around the same level. As itelican Fig. 6.9,
basically our method operates as a weighted mean filterpefaethe detected
outlier areas. So, compared to median fusing, an improvefdrpeance against
Gaussian noise is predictable. In Fig. 6.8 (f), it can beceotisome artifacts
near the borders of the Hilbert scanning blocks that cortather regions. These
are due to the fast and abrupt change of the coefficient valoethe borders
of the sub-areas that were used for the scanning. To redigeffbct, some
implementation enhancements can be designed, such astbélasyer scanning
areas, or the smoothing of the coefficients near adjacenk&lo

Fig. 6.11 shows the super-resolved images obtained usifgdeenery images
taken with a cameraphone (Nokia 6600). To register the pigelthe reference
HR grid, we used hierarchical block matching in the centeatgpof the image,
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Figure 6.10:S N R comparison across the firdd iterations for the super-resolved
images shown in Fig. 6.8.S5NR curves for (a) proposed adaptive solution,
(b) median fusing of the gradient images, and (c) averagadus the gradient
images.

followed by the estimation of the global projective moticarameters. In one of
images, the registration failed due to a significant petsgechange. Fig. 6.11
(a) shows the interpolated reference frame (pixel reptioqt Fig. 6.11 (b) shows
the result when simple mean fusing is used; note the picthieeghost car that
does not belong to the original scene. Fig. 6.11 (c) and (ovsiespectively the
results after 5 iterations, when fusing with the median aiid the proposed tech-
nigue. For both images, the sharpness of the scene detigihiantly enhanced
and the outlier region in the bottom of the image is succélgs@liminated. In
this specific set of input images, the clouds were partibuldifficult to register,
because they were deformed from one shot to the next. Inféadhe correspond-
ing area, the only information that needs to be considerd¢ldei®ne that comes
from the reference frame. This specific example illustrétesinadequacy of the
median filter to fuse this kind of fuzzy regions (Fig. 6.11)(chince the input
samples do not constitute a reliable majority to obtain aembrvote, the median
filter picks borders randomly from any one of the input imag&se proposed
filtering does not solve the problem completely, but at I@gstevents the forma-
tion of excessive artifacts in those regions (clouds in Bidl (d)). The reason is
that similar FIR coefficients are employed when filteringaaet pixels, unless a
clear outlier frame is consistently voted after scannimgubh several consecutive
pixels, which is not the case in this example. Note that Zoghetl. [117] have
tackled this problem and proposed to use a bias detectiareguooe in conjunc-
tion with the median. The detection procedure outputs arpimaask indicating



100 CHAPTER 6. ROBUST FUSION IN SUPER-RESOLUTION

Figure 6.11: The super resolved images using the propogedtain, 5 LR im-
ages were used. The global motion estimation failed to texgid least one frame.
(@) Interpolated reference frame, zoom fac2or(b) result using mean fusing,
(c) result using median fusing, and (d) super-resolved enaging the proposed
method.

where to perform the filtering. Although it is unclear how theesholds and the
windows would be selected.

Fig. 6.12 shows a similar example depicting the performanri¢he proposed
algorithm on real image scenes. We used 5 LR images that wepped from
VGA pictures imaged at close range (the images are JPEG essaut at 90%).
The last frame contained an outlier object. Again, note tt@imedian fusing (c)
and our technique (d) successfully wiped out the outlieecbfrom the recon-
structed scene. Looking more closely, we can notice thatabelt image of the
proposed filtering method has less noise artifacts, edheoimsmooth areas.

6.8 Conclusions

The overall performance of super-resolution algorithmzaidicularly degraded in
the presence of persistent outliers, for which registratias failed. The artifacts
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Figure 6.12: The super resolved images using the propoggditam. 5 LR
images were cropped from VGA images taken with a camerapfidmida 9500).
One outlier object appears in the last frame. (a) Zero omterpolated reference
frame, zoom factor 2; (b) result using mean fusing, (c) tassihg median fusing,
and (d) super-resolved image using the proposed method.

caused by an incorrectly registered image are visually nmuate disturbing than
the intrinsic poor spatial resolution in a single input imagdlo enhance the ro-
bustness of the processing against this problem, supauties algorithms need
to integrate adaptive filtering strategies in order to rigjlee outlier image regions.

In this chapter, we have proposed to use adaptive FIR fijerfrthe gradient
images in iterative super-resolution. The FIR coefficieares adapted using an
LMS estimator that is tuned to detect motion outliers. Thgoathm performs
adequately in the presence of Gaussian noise, and is cagfaleomatically iso-
lating outlier regions, which are due to registration esréfFhe proposed method
is useful to enhance the robustness of super-resolutioraatipal applications.

The topic of outlier rejection in super-resolution has beemehow under-
explored in comparison to the wealth of solutions in theditere that propose to
solve for the inverse problem by assuming exact registrgiirameters. Possible
future research in the topic may include the developmenystiesnatic filtering
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approach for the fusing step and the improvement of the paeice in the pres-
ence of different types of noise and motion outliers. Thelltesmay be useful
in several more applications which propose to employ nitdtine fusion such
as high dynamic range image capture, panoramic scene tagcits, multiple

focused imaging, etc.



Chapter 7

Order Statistic Filters in
Super-Resolution

7.1 Introduction

In this chapter, we investigate the use of order statistter§ilin the iterative
process of super-resolution reconstruction. At eachtiteraorder statistic filters
are used to filter and fuse the error images. We use a signahdeptL-filters
structure that tunes its coefficients to achieve maximursensuppression in ho-
mogeneous regions. We incorporate a simple mechanismeot sbe most suit-
able data support, which preserves the details along theseddpe filter switches
to use the orientation that is most likely to preserve thegenedges depending
on the variance of the pixels across different directionasks. Experimental re-
sults show the improvement obtained on sequences of naisyrtages, when the
motion is exactly known.

In another setting, we show that the integration of an orthissic filtering
stage into the iterative process of super-resolution ivgsahe robustness to-
wards motion errors and image outliers. We simulate theifiljeby assuming
inaccurate registration of a sequence of synthetic LR imagke results demon-
strate that the proposed filtering is robust towards randatiom errors, and pro-
duces visually acceptable results.

7.2 Related work

We recall that super-resolution algorithms consist of thifving basic process-
ing steps:

1. Motion estimation to determine the relative shifts betw¢he LR images
and register the pixels from all available LR images onto mmon refer-
ence grid. This step is essential to enable motion compeohdittering.
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2. Motion compensation and warping of the input LR image® ahe refer-
ence grid. Note that the pixels of the LR images are usualhsur@formly
distributed with respect to the reference grid.

3. Restoration of the LR images in order to reduce the attifdae to blurring
and sensor noise. The filtering is necessary to improve tleeped image
quality.

4. Interpolation of the LR images with predetermined zooridato target
HR size.

5. Fusing of the pixel values from all the LR images. This terapfiltering
operation is at the heart of all super-resolution algorggthand compliments
the spatial filtering operations performed in the prevideps.

In the following, we are mostly concerned with the last stepich deals with the
fusing of the pixels from the registered LR images. We carsitle application
of the generic order statistic filters-filters) to enhance the images. The filtering
is applied in a maximum likelihood (ML) iterative estimatiramework, and can
be considered as a heuristic method to improve the robussufabe estimation
process and to help regularize the inverse problem.

In super-resolution, the ML estimate of the HR image minasizhe mean
square error (MSE) between the LR images and the simulates thmough the
assumed imaging model. In [22], itis illustrated throughwations that the poor
conditioning of the problem makes the result extremely ifgasto even small
amounts of noise in the input images, the main reason istiparsesolution is an
ill-posed inverse problem. A common way to regularize trabpgm is to impose
a smoothness prior to the result in a maximum a-posteriofiR)Mramework (e.g.
[24], [45]). However, for large magnification factors, the@othness priors lead
to overly smooth results with little high-frequency cortteand this regardless of
the number of images used [8]. Such smooth images may natspannd to user
expectations, especially if the target images contain-defined details, such as
text, geometric shapes, etc. To address this problem, @dmdl Stevenson [91]
proposed to incorporate in a Bayesian framework a discoityipreserving prior
through a Huber penalty function on edge response. Expataheesults in [21]
have confirmed the suitability of this kind of total variatipriors as opposed to
simplistic smoothing ones, especially for the enhancerottext images. In the
following, we target a similar application for super-ragog text images, and
we use order statistic filters (OSF) in order to encourageseepiise continuity
along the edges of the HR image. The data support of the ffigfési selected by
choosing the orientation that minimizes the variance oftiner from the motion-
compensated gradient images. The mechanism for the selelitectional filter-
ing is similar to that presented by Li and Orchard [72] for geanterpolation. At
each pixel location, the local covariance is estimated uweis¢ directions of the
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gradient images, and the orientation yielding the minimawvaciance is selected
to assert a possible step edge in that direction.

It is well known that the quality of the super-resolved imagepends heav-
ily on the accuracy of the calculated motion between the lafs. In fact, the
presence of registration errors usually leads to the pmatpagof a signal depen-
dent noise from the motion-compensated LR images. On tlex btnd, it is well
known that the generic class bffilters is effective against signal-dependent noise
as well as being robust against impulsive noise. A good éeeref order statistic
filters can be found from the following references ([5], [6H]16]). In the con-
text of SR reconstruction, the median filter was used eddi&r] in a temporal
filtering scheme of the gradient images, and it was shownttigaprocedure in-
creases the resolution even for regions with outliers. plogerty is particularly
interesting for practical implementations, so in the faillog, we also apply the
proposed order statistic filtering to reduce the artifacts tb motion error. We
assumed that the forward imaging model and the motion paeamef the LR
images are exactly known, and we simulated the inaccurgtstration by intro-
ducing a random error into the motion coefficients. The expental results show
the robustness of the proposed technique.

The rest of the chapter is organized as follows: in the negti@e (7.3), we
present the image degradation model used for solving thergepolution prob-
lem. Section 7.4 presents the gradient-based formulafitimeamaximum likeli-
hood solution. In the same section, we present the fusirtgiigee used in our
proposed method and we describe the orientation seleat@megure. In Section
7.6, we explain our approach, which udesilters to enhance the image edges.
In Section 7.7, we present the experimental results oldaivteen applying the
method on a synthetic sequence of LR text image. We pressmteabperimen-
tal results when random motion error is introduced. Conghss and possible
extensions are discussed in Section 7.8.

7.3 Model used

We use the same image formation model as in the previouserhaponsiderV
observed LRimages,: = {1... N}, we assume that these images are produced
from a single HR imagg . Thei'" LR image can be expressed as:

G, = A f +7;. (7.1)

WhereA; corresponds to the image formation process, which invateesecu-
tively the geometric transformation mapping the HR image gnto the observed
LR image grid, sensor blurring and spatial sub-samplipgis an additive noise
term. Note that in equation (7.1) the imagesf and7, are lexicographically or-
dered into vectors, meaning for example that if the LR imdga® sizd K x L),
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then the pixel positior(i, j) on the LR image grid is indexed gs(m) where
m = j + ¢L. This indexing is used throughout the rest of the chaptemiplgy
the notation.

7.4 Maximum likelihood estimation
Assuming that for all images, the additive image noise isfrahdently distributed

Gaussian with zero mean and variam%ethe probability that the LR imageg is
generated by the HR imagfis given by [22]:

] 1 (4(m) — g(m))”
Pr(gi ! f) = l;[ \/%Un exp <— 2072] > (7.2)

whereg is the simulated low resolution image given an estimatg. dfhe associ-
ated negative likelihood function is:

_ ~ _ 2 & _
L(g:) = — Z (G(m) —g(m))” = —[|Aif — gl (7.3)
VYm
If we further assume that all the images are equally likelpéathe realizations
of the same statistical process, then the maximum liketihestimate,f;, is
obtained by maximizing the summation of the function in @@er all observed
images.

N N
fup = argmax <Z L (5@)) = arg max (Z |Ai f — Qz‘H2> (7.4)

i=1 i=1

The solution above coincides with the total least squarasdtation. If we
use the same method of recursive gradient projections tanmieexthe likelihood
function in (7.4), we get a solution similar to that in eqoat{6.4), i.e., at iteration
n, the HR estimate is updated as:

N

- - 1

n+l _ rn —

o = fyr+ N Z;Pz (7.5)

wherep; is the scaled gradient image that is due to each LR image atalds-
lated as described in (6.5) and (6.6).

7.5 Gradient fusing process

In the maximum likelihood solution above, all LR images asswuaned to con-
tribute equally to the total gradient update image. In thesence of outliers, the
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Figure 7.1: Anillustration of the proposed iterative SR hoet

computed solution may be corrupted by the consistent pcesehlarge projec-

tion errors across the iterations. Also, in regions of higdgfiencies, large error
values may be due to aliasing [117], which provides the maimce of true res-

olution enhancement in the process. For these reasons,lierechiat the use of
a non-intuitive filtering stage is necessary to produce iabyle gradient update.
Consequently, the update equation at iteratias given as follows:

= " T (p1,po - BN) (7.6)

where T{} denotes a generic filtering operator that fuses the gradieages
and produces a single update image. Ideally, the fusingstite account the
LR observations independently, eliminates possible enstlirestores the aliased
high frequencies and adjusts its behavior according todbal lerror content. A
schematic of the overall SR framework is shown in Fig. 7.1.

Note that if T is assumed to be the mean operator, then the update equation i
(7.6) is equivalent to the iterative solution of the maximlikelihood estimation
in (7.5). Alternatively, ifT is selected to be the pixel wise median operator, then
the solution is equivalent to the super-resolution alhamifproposed in [117]. In
the following, we propose to ameliorate the fusing processdnsidering also
the spatial neighborhood around the central pixel locatibime goal is to detect
possible edge features in the gradient images, and perfarfiltering along the
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Figure 7.2: Possible orientations used in the experimgnts: 2). This figure
illustrates the data support that is used as input to theifijeperation in (7.7).
The input samples are collected from all the gradient images

corresponding data support, in such a way to achieve edgermedion, as well
as maximum noise suppression in homogeneous regions.

Mask selection procedure

The main motivation to use an orientation adaptive schemesdrom the funda-
mental property of an ideal step edge; i.e., the intensitgl &golves more slowly
along the edge orientation than across the edge orientgtizln At each pixel
location, the filter considers four candidate masks: hotalp vertical, cross 1
and cross 2, and this for all the data from the error imagesp: - - - pn) (see
Fig. 7.2). We assume that the filter mask that presents thigrmin error vari-
ance is most likely to align an image feature in that directibhe values coming
from that orientation will be used in the filtering step to af@lthe central pixel
location.

Along each orientation, we form the possible windows of disiens2q + 1
around the central pixéd, as follows:

pi(k—p) - pi(k) --- pi(k+p)
W(k) = : : : (7.7)

pn(k—p) -+ pn(k) -+ pn(k+Dp)
If we arrange the samples in lexicographical order (roweyvisnd combine the

windowed samples from all the gradient images into veatowe obtain the fol-
lowing vector of sizeM x 1, whereM = N(2q + 1):

w(k) = [wi(k),wa(k),--- (k)]
[p1(k —q),---spi(k+q),- .pn(k—q), - pn(k + q)]T( )
7.8
The choice of the window sizes defined bylepends on the target interpolation
factor and the noise level in the LR images.
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Figure 7.3: Example distribution of the ordered error Bxél; (k)) within a
rectangular filter mask.

An unbiased estimator for the variance of the mask ., can be calculated as:

2 1 - k k)))? 7.9
Omask = 7 1 ;(wz( ) — mean(w(k))) (7.9)

The mask that has the minimum varianeég (,) is selected as a data support
for the fusing stage, since it is most likely to align an imdgature along that
direction.

7.6 Order statistic filtering: an enhancement process

Now that we selected the window(k) that indicates a possible edge feature, we
propose to filter it using an order statistic filter. The medidter is well known
for its ability to remove impulsive noise while preservirdges, however, the only
tunable parameter is its sliding window shape or size. Hénseanore flexible to
useL-filters, which output is defined as a linear combination ofdrder statistics
(sorted samples).-filters are parameterized by a set/@fweights, which allow
the filter to reach various profiles, including the mean or isnetbehavior [68].

At each pixel positiork, the corresponding ordered input veotgr(k) denotes
the following data:
]T

wi (k) = [w(k)ay, w(k) @), wk)an (7.10)

wherew(k)qy < w(k)) < --- < w(k),) are the ordered error values coming
from the windoww(k). The vectowy, (k) is commonly referred to as theder
statistics vectof68]. Fig. 7.3 shows an example distribution of the ordenedre
samples.
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Figure 7.4.L- filters used in the experiments. The x-axis depicts the eledex
of the pixel over the employed filter mask, y-axis shows theesponding weight.

Let p(k) be the output of the generlcfilter that linearly weights the ordered
statistic vector of the observation erravg (k); it is given by [18]:

M
p(k) =alwy, = Zaiw(i). (7.11)
=1
wherea = [ay, as, ..., ap]T is the vector of coefficients of tHefilter. Note that

the formulation presented above is non-restrictive. If weume equal values of
the L-filter coefficients and we further limit the window at the aahpixel values
(¢ = 0), then we end up averaging the gradient images, which is algmi/to the
maximum likelihood (ML) solution.

L-filters used

In the proposed algorithm, three differdnfilters a,,,;., &,,.cq anda, ., are used.
Since we are targeting the application for the enhancenféakbimages, i.e. we
know in advance that the original image data is binary; teai$ to use biased
distributions &,,,;,, anda,,...) in order to favor the extremes of the input samples.
Additionally, we use a symmetric-filter structure &,,,.4q) when we detect large
deviations in the input samples, which indicates the presei evident outliers.
The employed filters were derived using tieneralized beta distributiof28],
the coefficients o&,,in, ameq aNdan,q.: Were defined by sampling the following
beta functions Ba = 2,3 = 5), B(aw = 5,3 = 5) and Ba = 5, 5 = 2), respec-
tively. There is no specific reason why we chose to use thigcp&r distribution,
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however, looking at distribution of the coefficients in Fig4, we can remark that
it is possible to filter out extreme outliers. Additionally,was easy to tune the
coefficients by modulating only two parameters, and yetinlgmmetric distri-
butions with different curve shapes.

Signal dependent filtering

At each pixel location, we evaluate the variance of the embres in the employed
mask ¢2,,.,.). If the variance is larger than a pre-defined thresholdesahen we
usea,,.q to smooth the data in that window. Otherwise, if the variaisdaelow
the threshold value, then we use eitbgf,, or a,,,.. in order to enhance the image
features. In that case, the decision on which filter to asg,(or a,,.qz) is simply
taken by thresholding the median of the error values. Tharpinature of text
images allows us to bias the projected error towards negatiors (USING,in)

or positive errors (using,,... ) in order to enhance the image contrast. We recall
that this filtering procedure is plugged in an iterative Sgoathm, so if there is
an error in the filter selection process, it is likely to bereoted in the following
iterations.

The proposed fusing algorithm is defined as follows:

i f (J?nask > Sy)
p(kﬁ) = AmedWL

el se i f (median(wg) < —Sy,)
p(k) = QminW[L

el se if (median(wg) > Sp,)
p(k) = Qnaz WL

el se
p(kﬁ) = AmedWL

The threshold valueS, and.S,, are preset positive threshold values that are de-
termined empirically.

7.7 Experimental results

In this section, we show the performance of the proposedigah on a sequence
of synthetic LR images. The images, nine in total, were stithlly generated
from a single HR text image according to the imaging modetdiesd in Section
7.3. The LR images were randomly warped using a projectivdahfeight pa-
rameters). The registration parameters are exactly kndvnused a continuous
Gaussian PSI(—“ogsf = 0.5), as the blurring operator and we down-sampled the
images by three to obtain the LR images. All the imageg wengacoinated with

an additive Gaussian white noisg = 40. The HR estimatg” is initialized as the
average of all registered LR images, this ensures that wensth a smooth image
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Figure 7.5: Super-resolution at zoom fac8&r9 LR images used. (a) Original
HR text image. (b) One LR frame interpolated using bicubgareple,SNR =
10.31. (c) Result afted 0 iterations of gradient averaging (ML solutiot§N R =
15.19. (d) Result using proposed SR filtering technigdéy R = 15.52. For (c)
and (d), exact motion coefficients were used. (e) resultgusih, when random
uniform error is used to corrupt the registration paranst€V R = 13.58, (f)
same data as in (e), super-resolved using the proposed dnéthar = 13.98.
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Figure 7.6: SN R comparison across the firsd iterations for the result images
shown in Fig. 7.5.

which is approximately equidistant to all LR observatidmsnce encouraging the
solution to converge to a local minimum.

We compared the proposed SR technique against the corestislib solution,
which is obtained by averaging the gradient images as spédifi(7.6). For both
methods, we constrained the HR estimate in between theidgiesato be in the
range[0, 255]. The same step sizes were used in both methods. In our algorit
the orientation selection operation was performed thraalgthe iterations. We
set the values of both,, andS,,, to 25 and20, respectively.

In Fig. 7.5, we show the resulting images obtained afteiterations. The
signal to noise ratig SN R) is calculated for each image and is indicated in the
caption. Fig. 7.5 (c) shows the result using ML estimatiomg &ig. 7.5 (d)
shows the result using the proposed filtering. It can be edtibat the visual
guality of the images obtained with our algorithm is betteart the result of the
ML solution; this is most visible in homogeneous regionsraight edges and
details corresponding to lines are also adequately entathee to the use of the
orientation selective filtering. As predicted, the corttiasalso enhanced in our
result thanks to the use of the filters that emphasized ertratues.

To check for the robustness of the filtering towards redisinaerrors, we
added a uniformly distributed random error to the motiorfficients correspond-
ing to translation. The error causes the registration tg alboth directions in the
interval [0 — 2] pixels. In this setting, Fig. 7.5 (e) shows the result wheplypg
ML estimation. We can notice in this case the presence ofyangartifacts that
are due to dislocated pixels from the mis-registered imatre$ig. 7.5 (f), the
result obtained with the proposed method looks relativeldr; this is because
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the spatial filtering limits the propagation of errors in ttezative process and en-
hances the stability, and the median selector isolatingtitker pixels from the
mis-registered images. These observations are confirmeklebgorresponding
SN R values indicated in the caption of Fig. 7.5.

In Fig. 7.6, theS N R values are plotted for both techniques across all the iter-
ations. The plots show the convergence of the proposed chattterms ofSN R,
and the small improvement it presents over the ML solutionsiterations. It is
worth mentioning that both iterative methods are clippimgintermediate images
betweend and 255, which helps the convergence of the solutions. It should als
be said that the use of clipping and zero-order interpalatidhe iterative process
complicates the task of identifying the separate contidlbubf each step in the SR
procedure, especially for binary text images.

7.8 Conclusions

In this chapter, we proposed a novel filtering method of tredignt images in
iterative super-resolution. The filtering is aimed at thikarcement of text images
by incorporating a prior that assumes the edges to be piseasdinstant along a
finite number of orientations. We used order statistic filigto encourage piece-
wise constancy together with an orientation selection meisin that is based on
the variance of the error images along certain orientations

We tested the filtering scheme and found that it improvesluéea and pre-
serves the edges. The proposed method performs betterhtbavilt solution.
The integrated spatial filtering step reduces the signatmiggnt error that is due
to mis-registration.

In the described algorithm, the added computational coxitgleand the de-
pendence of the filtering on threshold values may overshatlevwmprovement
in quality. In future work, we shall concentrate on the rafieat of the method
to reduce its computational complexity and to improve therdation selection
mechanism. Also, we may consider the generic applicatidn-filfers in super-
resolution such as to minimize modified cost functions.
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Conclusions

Super-resolution reconstruction consists in the procésseating a high resolu-
tion image from a sequence of low resolution images. In theest of low-end
consumer imaging products, this filtering technique hapttential to make sig-
nificant economies of scale since it proposes to overcomathiasic hardware
limitations by using the available computational resosrce

Recently, super-resolution has been a very active reseaech However, we
are still far from generic, robust and real-time algorithimsthe absence of precise
imaging models that relate the LR observations to the aalgioene, the under-
standing of the potential and limits of super-resolutiomaés a challenging task.
Alternatively, we focused on the development of fast andisblalgorithms that
are applicable for consumer imaging devices.

In this dissertation, we addressed several aspects ofsbkitien enhancement
problem. First, we presented an integrated filtering methatireduces the optical
blur in a single image. The proposed filtering is an integeat pf the camera
image reconstruction chain, and makes use of the estim&EedHat characterizes
the optical blurring in each of the RGB color components.sTunique approach,
which consists in filtering the raw sensor data was extendegraduce high-
resolution color image from a sequence of images captureal ®1OS sensor
that is overlaid with a color filter array. The experimenedults have confirmed
that this approach is promising, and is capable of produsinggerior resolution
from sensor data.

Second, we considered the problem of pixel registratioméinput images.
We proposed a novel recursive algorithm for pixel-basedanatstimation. We
used recursive LMS filtering along different scanning dits to track the sta-
tionary shifts between the LR images, and produce smootmatsts of the dis-
placements at sub-pixel accuracy. The initial results destrated the usability of
the algorithm, especially when targeting video filteringlagations that are based
on motion-compensated filtering such as video denoisirtgorstabilization and
super-resolution processing.
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Third, we investigated the problem of robust fusion of the¢iorocompensated
images. We proposed an integrated adaptive filtering metiwbith uses the
median estimator as an intermediate filtering step to refextoutliers that are
due to registration errors. Experiments have shown thaalgerithm performs
adequately in the presence of Gaussian noise, and is capiblgomatically
isolating outlier regions.

Finally, we applied non-linear filtering techniques to iroye the performance
and robustness of super-resolution. In the last chapteused generalized order
statistic filters for the enhancement of binary text imag@ée tested the pro-
posed filtering scheme and found that it improves resolwdioth adequately pre-
serves the edges. Except for the added computational crityplerder-statistic
filters present a considerable advantage in super-resojusince they are effi-
cient against signal dependent error, and are capablesttt mjtliers that are due
to registration errors.

Itis well acknowledged that super-resolution methodolisgyseful since it al-
lows to combine the temporal and spatial filtering of the @identent. Therefore,
we believe that the incremental development of the resdarttis area will be
beneficial for the development of future multimedia systemguture work, we
will try to further build on the results obtained so far, arelelop integrated al-
gorithms with reduced computational complexity. The uéttmgoal is to develop
scalable algorithms that can be utilized to improve thegrerance of digital cam-
eras in mobile devices.
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