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Abstract

Temperature affects virtually all biophysical processes inside cells. Relevantly, it shifts over time,
periodically and stochastically, sometimes in minutes. For these reasons, organisms have evolved

complex mechanisms to cope with both temperature shifts as well as with temperature cycles.

Endothermic organisms have evolved cellular processes to generate and dissipate heat so as to
regulate their body temperature. Failure in these processes can lead to death. Meanwhile, ecto-
thermic organisms, such as Escherichia coli, do not have this ability. Instead, they evolved mech-
anisms to minimize potential harms. These are activated if temperature deviates from optimal
ranges and are controlled by genes and genetic circuits. The robustness and sensitivity of genetic

circuits to temperature shifts and what determines them remain largely uncharacterized.

In this thesis, we have studied the effects of temperature shifts on the dynamics of genes and small
genetic circuits in Escherichia coli using in vivo single-cell, single-RNA detection techniques,
microscopy and microfluidics devices, and image and signal analysis tools. Relevantly, two syn-
thetic constructs were built specifically for these studies: i) an RNA sequence with multiple bind-
ing sequences for fluorescent probes was integrated into E. coli’s chromosome and, ii) the

Elowitz-Leibler ‘repressilator’ circuit was inserted into a single-copy F-plasmid.

First, we focused on the effects of temperature shifts on the dynamics of a synthetic genetic clock,
the above mentioned Elowitz-Leibler low-copy repressilator (LCR). By studying its fluorescence
over time, we observed a loss of functionality (fraction of cells exhibiting oscillations) and ro-
bustness (fraction of expected oscillations that do occur) for higher-than-optimal temperatures.
We hypothesized that this is due to a loss of functionality of the CI repressor, which is one of the
proteins composing the structure of this circuit. To test this, we made use of a genetic switch (CI-
Cro, where CI is also a component of the circuit’s structure), which we subjected to the same
temperature shifts. We found a behavioral change at the same temperature. Namely, as
temperature is increased, at a given value, the kinetics of RNA production of the Prym promoter
changes from sub-Poissonian to super-Poissonian, consistent with the emergence of tangible re-
pression by the opposing protein, Cro. These behavioral changes in the two circuits, at the same
temperature ranges, are best explained by the loss of functionality of CI, which is the only com-

ponent present in both circuits.

Second, we investigated how coupling within a cell between the copies of the Elowitz-Leibler
synthetic genetic clock affects its efficiency in time tracking. For that, we compared the function-
ality and robustness of the LCR and the newly engineered single-copy repressilator (SCR) to
temperature shifts and to external perturbations by introducing Isopropyl f-D-1-thiogalactopyra-
noside (IPTG), an inducer of the Prr.co promoter. By analyzing the mean and variability of the

periods of oscillation of these two constructs we found that, surprisingly, contrary to when at



optimal conditions, the SCR is more robust in regimes of low-temperatures and low-concentra-
tions of IPTG.

Third, we focused on how intrinsic factors to single gene expression dynamics are affected by
temperature shifts. Namely, we studied the effects of temperature fluctuations on the kinetics of
transcription initiation of the promoters Piac-ara-1 and Pieia. For that, time intervals between consec-
utive transcription events were extracted using time-lapse, single-RNA microscopy measure-
ments in live cells. To identify which rate-limiting steps of transcription initiation were responsi-
ble for the observed differences in varying temperature conditions, detailed stochastic models
were fitted to the empirical data using statistical methods. The results suggest that different genes
have different rate-limiting steps patterns, i.e. in number and duration of rate-limiting steps, which
may allow them to adapt their sensitivity and RNA production kinetics (mean rate and variability)

to environmental fluctuations.

Next, we studied the differences in the dynamics of RNA production of a gene when integrated
into the chromosome and when integrated into a single-copy plasmid, for various temperature
conditions. The results showed that when chromosome-integrated, long-lasting super-coiled
states affect the temperature-dependence of the kinetics of transcription initiation. This was not
observed in the plasmid-borne promoter, explaining why it is less noisy at low temperatures. We
expect this to occur in other genes and to depend on the location in the chromosome. If true, and
assuming that the location of genes in the chromosome is subject to natural selection, it implies

that cells may make use of supercoiling as a means to regulate noise in gene expression.

Finally, we focused on the effects of temperature shifts on extrinsic factors to gene expression. In
particular, we focused on the temperature-dependence of the cytoplasm viscosity. For that, the
spatial distribution and mobility of large synthetic and natural protein aggregates in cells were
assessed. Previous studies reported that their spatial distribution, at optimal temperatures, is heav-
ily affected by the phenomenon of nucleoid exclusion. However, when cells were subject to crit-
ically low temperatures or osmotic stress, we found that both the natural and synthetic protein
aggregates became more homogeneously distributed (consistent with weaker effects from nucle-
oid exclusion). We showed also that this is a result of increased cytoplasm viscosity, which re-
duced the effects of nucleoid exclusion. Interestingly, in agreement, we observed a reduction in
the degree of asymmetries in aggregate numbers between sister cells across generations, which

may affect the ability of rejuvenation of cell lineages.

Overall, the results above contribute to a better understanding of the complex consequences of
temperature shifts on cellular processes. By affecting intrinsic and extrinsic factors, these shifts
can alter significantly the dynamics of gene networks in bacteria. This knowledge is particularly
important to understand the high degree of plasticity of natural genetic circuits, which will assist

the engineering of robust synthetic genetic circuits.
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1 Introduction

1.1 Background and Motivation

In all kingdoms of life, organisms have developed regulatory mechanisms that can control the activity of many
genes and genetic circuits (Kannan et al. 2008; Arseéne et al. 2000) in response to a wide variety of environ-
mental conditions. Temperature is one of the most challenging environment fluctuations for cells to adapt and
survive. Because temperature fluctuations can cause rapid changes, e.g. in seconds to minutes, cells have
evolved complex different biological responses to cope with them. Endothermic organisms evolved mecha-
nisms to generate and dissipate heat, regulate their body temperature. Meanwhile, ectothermic organisms, such
as Escherichia coli, are unable to robustly control their internal temperature and, thus, instead, evolved mech-

anisms that assist adapting the internal processes kinetics to the environment temperature.

E. coli is a widely spread, in most cases harmless, bacteria. In the wild, they live in the intestinal system of
mammals with an optimal-controlled temperature, where they assist in the breakdown of carbon compounds
(Touchon et al. 2009). Given its relative simplicity, easy propagation and maintenance in the laboratory, E.
coli has been extensively used to host synthetic genes and genetic circuits. Thus, it has been used in several
studies over the years and allowed researchers to better understand the basic mechanisms of molecular genetics.
In particular, in studies of environmental fluctuations, where cells must experience temperature shifts, £. coli
cells have been used to assess the limits and sensitivity of temperature-response mechanisms, e.g. the modifi-
cations of chemical-structure or composition of proteins that alter the dynamics of gene expression and net-
work connections (Jana et al. 1999; K. S. Koblan & Ackers 1991; K S Koblan & Ackers 1991). Furthermore,
E. coli cells have been used in studies of how the cellular biophysical processes change with temperature
(Stylianidou et al. 2015; Parry et al. 2014), and how long-term cellular biological adaptations occur, e.g. the
regulation of specific genes to avoid potential harms to cells across generations (Richter et al. 2010; Arséne et
al. 2000; Sabate et al. 2010).



Regarding E. coli’s long-term adaptations to temperature fluctuations, specific genes and gene networks are
activated in order to produce heat or cold shock proteins that prevent cellular mechanisms from breaking down
(Richter et al. 2010; Verghese et al. 2012). In the case of above-optimal temperatures, heat shock mechanisms
provoke the transient expression of cytoprotective proteins, which first attenuate its effects by re-folding non-
function proteins, and then prevent protein aggregate formation and avoid changes in cell morphology (Arsene
et al. 2000; Richter et al. 2010; Verghese et al. 2012). Meanwhile, in the case of temperature downshifts, the
cold shock machinery is activated. The expressed proteins enhance both transcription and translation rates,
helping cells to cope with the lowering temperature (Yamanaka 1999; Phadtare 2004). Besides such adaptation

mechanisms, other intracellular processes have their dynamics affected by temperature fluctuations.

Cellular processes are regulated by genes and gene networks that can perform complex tasks, such as time-
counting (Ko & Takahashi 2006), state holding (Gally et al. 1993) and signal filtering (Wolf & Arkin 2003).
Such natural circuits have to be sensitive and robust to environmental changes in order for cells to maintain
their cellular functions efficient when subject to external perturbations (Nandagopal & Elowitz 2011; Becskei
et al. 2000). For instance, circadian clocks (Dunlap 1999; Mihalcescu et al. 2004), chemotaxis (Oleksiuk et al.
2011), cell cycle oscillators (Pomerening et al. 2008), and physiological adaptations (Siiel et al. 2006; Balaban
et al. 2004) in bacterial cells have been tested for their stability in varying environmental conditions. Similar
performance is desired for synthetic circuits designed for performing complex tasks in live cells (Gardner &
Collins 2000; Khalil et al. 2012; Litcofsky et al. 2012). In this regard, since 2000, synthetic oscillatory net-
works have been constructed, tested, and optimized to approximate the precision of natural circuits (Potvin-
Trottier et al. 2016). Further, recent studies demonstrate that they can perform time-keeping tasks at optimal
(and some even at sub-optimal) environmental conditions, in organisms ranging from bacteria (Elowitz et al.
2000; Atkinson et al. 2003; Stricker et al. 2008) to mammalian cells (Fussenegger et al. 2009).

The first functional synthetic genetic clock, a ring type oscillator named ‘repressilator’, was built and imple-
mented in E. coli cells (Elowitz et al. 2000) to generate oscillatory signals at optimal conditions. The circuit
consists of a negative feedback loop of three genes, one gene repressing the activity of the next. Measurements
of a fluorescence signal probing the numbers of one of the component proteins in live cells over time showed
that, in optimal conditions, this artificial network oscillates (stochastically) with a period length longer than
cells’ lifetime (Elowitz et al. 2000). Its noisy behavior arises from fluctuations in the dynamics of its compo-
nent genes (thus, it is named ‘intrinsic’ noise to gene expression, i.e. the kinetics of transcription and translation
processes) (Leibler & Kussell 2010; Elowitz et al. 2002). However, the cell-to-cell variability in the dynamics
of this circuits arises not just from intrinsic noise, but also from ‘extrinsic’ noise sources, such as variability in

the numbers of cell components, cell health, differences in the interactions with the environment, etc.

These circuit’s dynamics is temperature dependent since, among other reasons, the interactions between pro-
teins and regulatory operator sites of genes are temperature-dependent (Goncalves et al. 2018; Tran et al. 2015).
For instance, while the functionality of the wild-type CI protein has been reported to be maximized at ~30 °C,

its activity gradually reduces (~50%) as temperature increases (Jana et al. 1999) due to either a CI inability to



discriminate between operator sites (K S Koblan & Ackers 1991) in these conditions, and/or to a temperature-
dependence of CI ‘s dimerization (K. S. Koblan & Ackers 1991). In addition, the interactions between proteins
and their operators can be further affected by the interactions of these proteins with other specific molecules
in the cells, e.g. the regulation of the P.upap promoter promoted by the interaction between the repressor AraC
and the inducer L-arabinose in the araBAD operon (Schleif 2002; Bondeson et al. 1993). Interestingly, the
temperature-dependence of particular components of gene networks have been used to engineer synthetic cir-
cuits whose performance is, purposely environment-dependent (Isaacs et al. 2003), or to compensate for the

dynamical changes caused by temperature shifts on other components (Hussain et al. 2014).

Gene expression, which converts genetic information into functional proteins, through transcription and trans-
lation reactions, is made possible by complex, multi-stepped, sequence-dependent reactions. In E. coli, since
translation can begin prior to the completion of transcription, the two processes are dynamically coupled
(McClure 1985; Saecker et al. 2011; Ramakrishnan 2002; Jones et al. 2014). Importantly, the major regulatory
mechanisms of gene expression dynamics act at the transcription initiation stage. In particular, in vitro studies
have characterized the key steps in transcription initiation processes (McClure 1980; Browning & Busby 2004,
Buc & McClure 1985; Lutz et al. 2001). Recent advancements in the methodologies for live cell imaging with
single molecule sensitivity have allowed the kinetics of rate-limiting steps of transcription initiation to be
characterized also in vivo (Golding et al. 2005; Lloyd-price et al. 2016; Mikeld et al. 2017).

In in vivo studies of transcription dynamics, individual RNA molecules are detected in real-time by the MS2-
GFP tagging on RNA sequences (Golding et al. 2005; Xie et al. 2008). From measurements of the numbers of
RNA molecules per cell over time and the times between consecutive transcription events, information was
extracted on the dynamics of the underlying processes of transcription, i.e. the number and duration of rate-
limiting steps in transcription. Initially, this was done by obtaining a distribution of time intervals between
consecutive RNA production events in individual cells, the assumption of a multi-step model of transcription,
and statistical inference of the kinetics of each step that best fits the data (Hakkinen & Ribeiro 2015). A study
made use of this methodology to study how temperature fluctuations affect the dynamics of the underlying
steps of transcription initiation for the promoter Piia (Muthukrishnan et al. 2014). The results showed that, for
this promoter, in particular, a third rate-limiting step appears at sub-optimal temperatures, in agreement with
past studies using in vitro techniques (Buc & McClure 1985).

Gene expression and the activity of gene networks can also be affected by ‘network coupling’. Namely, when
multiple copies of a circuit are present in a cell, the communication between the components of each copy of
the circuit causes their behavior to differ from that of individual circuits. Theoretical studies have addressed
the effects of copy-number on the network behavior (Klappenbach et al. 2000; Mileyko et al. 2008; R. Zhu et
al. 2007; Zhu et al. 2007; Ribeiro 2007¢). One of these studies (Mileyko et al. 2008) has suggested that changes
in the copy-number of the repressilator can severely affect the behavior of the circuit, from sustained oscilla-
tions to single steady states. In addition, the communications between the components of multiple copies of
the circuit may be affected by the intracellular (Klappenbach et al. 2000; Stevenson & Schmidt 2004) and



environmental contexts (Cardinale & Arkin 2012). Thus, when engineering synthetic circuits to be inserted in
E. coli host cells, one usually needs to deal with unexpected divergences between design and actual function
of these systems in real contexts. E.g., having multiple copies of a circuit in a cell has, in some cases, create
an excessive burden of important biological cellular functions such as, cell growth and vitality, which leads to
unwanted contextual issues (Cardinale & Arkin 2012; Dong et al. 1995).

In this regard, changes in the intracellular context can emerge, directly or indirectly, from environmental fluc-
tuations. To address these, E. coli can resort to energy-consuming mechanisms (Govers et al. 2014) that attempt
to avoid loss of protein functionality (Deuerling et al. 1999; Wickner et al. 1999), degrading mal-functioning
proteins (Viaplana et al. 1997), or neutralize mal-functional proteins by grouping them into protein aggregates
(Sabate et al. 2010; Tyedmers et al. 2010; Bednarska et al. 2013). Subsequent studies have shown that once
produced, protein aggregates are segregated and accumulated at the cell poles by an energy-free biophysical
mechanism (Winkler et al. 2010; Gupta et al. 2014) called ‘nucleoid occlusion’, a phenomenon reported to be
temperature-dependent (Gupta et al. 2014). In that, protein aggregates tend to move away from mid-cell by a
volume exclusion phenomenon (Winkler et al. 2010; Coquel et al. 2013; Stylianidou et al. 2015), due to higher
density of the nucleoid when compared to the cytoplasm. This phenomenon is also believed to affect the spatial
distribution of other large molecular species in the cytoplasm, such as plasmids (Vecchiarelli et al. 2012) and
other large complexes (Straight et al. 2007). Relevantly, due to the aggregates being mostly at the poles, as
cell division occurs, they first become asymmetrically distributed in the daughter cells. Namely, they prefer-
entially locate at the older pole of each daughter cell. As new division events occur, only some daughter cells
will carry such aggregates. This allows the generation of ‘rejuvenated’ cells, free from aggregates (Lindner et
al. 2008; Govers et al. 2014).

Overall, we focused on the study of the effects of temperature shifts on gene expression and genetic circuits
and, more generally, on the cell’s functioning as observed in vivo, at the single-cell level. The results contribute
to our understanding of the robustness and sensitivity of natural circuits, and thus, to the enhancement of our

ability to engineer functional synthetic circuits with pre-defined dynamics.

1.2 Thesis Objectives

We focused on studying the effects of temperature fluctuations on the dynamics of individual genes and of
small genetic circuits (switches and clocks), using both stochastic models and microscopy measurements. First,
we measured the robustness and sensitivity of the repressilator to temperature fluctuations and searched for
possible causes for the lack of robustness observed in the repressilator dynamics, when at higher-than-optimal
temperatures. Second, we implemented a single-copy plasmid repressilator from its original sequence, meas-
ured the dynamics in the same temperature range, and compared the results with those from the original low-

copy repressilator, so as to investigate why single-copy and multi-copy circuits differ in behavior. After that,



we studied the temperature-dependence of difference in the dynamics of the two constructs. Third, we synthe-
sized de novo an RNA sequence with multiple binding sequences as part of the construction of a fluorescent
probe to be integrated both into E. coli’s chromosome and in a single-copy plasmid. This probe allows the
detection and tracking of individual RNA molecules as they are produced in cells. We used it to measure the
temperature-dependence of the dynamics of transcription initiation process and studied whether this is affected
by the gene location, i.e. whether on a plasmid or on the chromosome. Finally, we observed an independent
phenomenon that may also affect, indirectly, the functioning of genetic circuits. In particular, we found that
the diffusion process in E. coli’s cytoplasm is heavily temperature dependent, in that at lower temperatures, it
can affect the process of the nucleoid exclusion of aggregates from midcell. It is tangible that a similar, alt-
hough weaker in effect, phenomenon occurs for some proteins, which would affect the response of some ge-

netic circuits to temperature shifts.
In particular, our objectives are:

I. Study the robustness of the repressilator (periodicity length, amplitude, and shape) and of a genetic switch
(stability of its genes kinetics over time) to various temperature conditions.

II. Study the effects of network coupling and transient perturbations, differing in duration, strength, and nature

(chemical or temperature-based), on the functionality of the repressilator.

III. Characterize the temperature-dependence of transcription initiation dynamics at the level of the kinetics of
the rate-limiting steps, to better understand how temperature shifts affect the functioning of circuits. For that,
we perform measurements of RNA production at the single molecule level for varying temperatures and then

fit detailed multi-step stochastic models to the data in maximum likelihood sense using statistical methods.

IV. Study the effect of the location of a gene on the temperature-dependence of its transcription initiation
dynamics. Namely, for various temperature conditions, we compared the RNA production levels of a gene

when located in E. coli’s chromosome with when in a single-copy plasmid.

V. Study the temperature-dependence of other cellular processes. For this, we tracked synthetic and natural
aggregates in live cells, to measure the relative dynamic viscosity of the cytoplasm as a function of temperature.
From this, we studied the effects of changes in this viscosity on the robustness of nucleoid occlusion and
aggregate polar segregation.

Objectives [ and II were complete in Publications-I and II, respectively. Objective III was completed in Pub-

lication-III. Objective IV was completed in Study-IV. Finally, Objective V was completed in Publication-V.



1.3 Thesis Outline

This thesis is organized as follows. After the introduction to the problem and objectives described in the present
chapter, it follows Chapter 2 that introduces the biological background on the topics covered. Namely, it con-
sists of an introduction of the present knowledge related to the regulatory mechanisms and dynamics of gene
expression in bacteria. In addition, it discusses intrinsic and extrinsic sources of noise in gene expression along
with known effects of temperature fluctuations on the dynamics of gene expression. Chapter 2 further intro-
duces the design principles of synthetic biology and describes recent advancements in the tools used in molec-
ular biology for DNA assembly and genome editing. At the end of Chapter 2, the concepts of fluorescence
microscopy techniques for in vivo single-cell, single-molecule measurements are presented. Next, Chapter 3
presents concepts underlying the stochastic models of gene expression, along with the modeling strategy and
the simulation algorithm used in the studies included in this thesis. Subsequently, Chapter 4 presents a sum-
mary of the main results of the research work conducted. First, it is provided a description of the design process
and the results of the methods of validation of the genetic constructs engineered during the course of these
research efforts. Second, it is presented the results of perturbation assays performed using a microfluidics
platform tailored for keeping cells at various conditions during microscope image acquisition. Third, it is pre-
sented the results of image and data analysis methods of the images collected by microscopy. Finally, in Chap-

ter 5, the final conclusions and a discussion on wider issues are provided.



2 BIOLOGICAL BACKGROUND

This chapter provides an introduction to our present knowledge on how the process of gene expression in
Escherichia coli takes place, with emphasis on its kinetics. In particular, we focus on the multiple steps that
occur during the process of transcription initiation. It follows a description of the mechanisms of regulation of
the dynamics of transcription and of the concept of operons. Afterward, it is provided a general description of
what constitutes a genetic circuit and how they operate in E. coli. Further, it is introduced the concept of cell-
to-cell variability and what phenomena generate it. Subsequently, the design principles of synthetic biology
are presented, along with the most recent molecular biology tools employed for DNA assembly and genome
editing. Finally, it is provided an overview of fluorescence microscopy techniques, of in vivo single-cell, sin-
gle-molecule measurement techniques, and of computational tools used for extracting and processing infor-

mation from the empirical data, including microscopy images, on single-RNA measurements.

2.1 Gene Expression in Escherichia coli

Gene expression is the process by which genetic information, encoded in genes in the form of DNA (a deoxy-
ribonucleic acid molecule), is transformed into gene products, such as functional proteins and various non-
protein coding RNA sequences that are able to perform specific tasks in the cells. The process of gene expres-
sion follows the central dogma of molecular biology (presented in Figure 2.1) proposed by (Crick 1970). It
consists of two major steps, namely transcription, and translation, which together can modulate the dynamics

of expression of a gene (Alberts et al. 2002).

In detail, during transcription, genetic information encoded in genes, i.e. DNA nucleotide sequences, is tran-
scribed into complementary mRNAs (messenger RNA, a ribonucleic acid) (McClure 1985). Subsequently,
during translation, the mRNA molecule is used as a template to translate a linear amino-acid structure
(Ramakrishnan 2002). This linear structure of amino-acids is then converted into a functional protein by a

process named ‘protein folding’, a simpler but similar process to post-translational modifications of higher-



order organisms (Lewin 2008). In bacteria, transcription and translation are dynamically coupled, in that the
latter can initiate prior to the completion of the former.

The activity of genes, measured by its mRNAs and proteins production rates, is determined by the affinity of
its sequence to interact with RNA polymerases, ribosomes, and other global regulatory molecular species. Also,
specific genes response to specific regulatory molecules, such as metabolites, repressors, activators, and ions
(Alberts et al. 2002). All of these can change (in number, affinity, etc.), e.g., in response to changes in the

extracellular environment (Alberts et al. 2002), which causes the gene’s activity to change accordingly.
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Figure 2.1: The central dogma of molecular biology. The first step of transcription is responsible for the produc-
tion of an individual mRNA molecule whose sequence is determined by the genetic code in the DNA sequence
which is read by RNA polymerases. The second step, translation, generates linear amino-acid sequences from
the mRNA sequence, a process performed by ribosomes. Also, before cell division, all genetic information in the
double-stranded DNA sequences is duplicated by the process of DNA replication (Alberts et al. 2002). In addi-
tion, in some virus species having the enzyme reverse transcriptase and lacking DNA polymerases, double-
stranded DNA sequences can be produced from RNA templates by a reverse transcription process. Finally, in
many viruses, the replication of the RNA material is made possible by RNA-dependent RNA polymerases (Ortin
& Parra 2006).

E. coli is one the most common host organism, due to its simplicity and easy manipulation. Namely, it is used
as a host for synthetic genes and genetic circuits used to study the basic mechanisms of molecular genetics,
such as DNA replication, RNA degradation, and gene expression (Blattner et al. 1997; Bernstein et al. 2002;
Chen et al. 2015). In this organism, many types of DNA sequences can carry genetic information, e.g. the E.
coli’s genome, bacterial F-plasmids, cosmids, fosmids, and bacterial artificial chromosomes (BAC).

The genome of E. coli, in particular, consists of a double-stranded DNA sequence ranging from 4.5Mbp to
SMbp in length, which contains ~ 4500 genes coding for structural and regulatory functional proteins (Blattner
et al. 1997; Bergthorsson & Ochman 1998). Meanwhile, circular plasmids are additional double-stranded DNA
sequences, physically separated from E. coli’s chromosome that can replicate independently. These usually
range from 1kbp to over 300kbp (Thomas & Summers 2008), and usually, carry additional genes that benefit

the organism’s maintenance and survival (Eliasson et al. 1992). Several molecular biology techniques have



allowed researchers to isolate and engineer artificial bacterial plasmids carrying, e.g., synthetic genes encoding
for antibiotic selection markers and functional heterologous proteins (Kahl & Endy 2013).

In prokaryotes, a functional regulatory gene (or multiple genes, i.e. operons) consists of three main units: a
promoter region, regulatory operator sites, and one (or more, if an operon) encoding region for a structural or
regulatory protein (Alberts et al. 2002). The promoter region is a highly-specific region of the DNA that has
high affinity with sub-units of the RNA polymerase (RNAp) core enzyme. These regions are responsible for

transcription initiation.

To regulate transcription initiation, highly-specific DNA regions named ‘operator sites’ are located around and
sometimes within the promoter region, repressing or activating gene expression when bound by transcription
factors (Lutz & Bujard 1997), small regulatory RNAs (Levine et al. 2007), or other regulators, which de-
crease/increase the binding affinity of RNAp to the promoter region (Figure 2.2) (Ellefson et al. 2014).

Importantly, as mentioned above, due to the lack of physical barriers between E. coli’s chromosome and the
gene expression machinery, transcription and translation are dynamically coupled (unlike eukaryotic organ-
isms). In particular, translation starts soon after the ribosome binding site (RBS) of the mRNA becomes ex-
posed (Figure 2.2) (Miller et al. 1970). To initiate translation, a key regulatory operator site, named RBS,
attracts a ribosome, which is a complex molecular machine made of small ribosomal subunits. Once this occurs,
it follows the elongation process that converts the genetic information on the mRNA into a polypeptide chain
by following a triplet-wise degenerated universal code (codon) of nucleotides (Alberts et al. 2002).
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Figure 2.2: Representation of the dynamic coupling between transcription and translation in £. coli. RNA mol-
ecules are elongated after the RNAp escapes from the promoter region, where the transcription start site (TSS)
is located, following the formation of the open complex (OC) (McClure 1980). As soon as the RBS becomes
exposed in the newly produced mRNA molecule, linear-structured proteins are synthesized by ribosomes. This
allows transcription and translation of a gene to occur simultaneously in E. coli (Miller et al. 1970).

Since the expression rate of genes and operons is strongly dependent on the binding/unbinding of regulatory

molecules to the DNA, and as these usually exist in small numbers, there are significant temporal fluctuations
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in the effective expression rate of gene expression, which cause significant temporal fluctuations in the num-
bers of gene products. This then causes significant differences in the numbers of gene products between iden-

tical cells, even when in the same environment.

2.1.1 Transcription Initiation and its Rate-Limiting Steps

In E. coli, the process of transcription consists of three sequential steps, namely, transcription initiation fol-
lowed by elongation and then termination. These step kinetics depend on the ability of the multi-functional
RNAp holoenzyme (Ec) to bind to a promoter region, to initiate transcription, and then to coordinate the syn-
thesis of an individual mRNA molecule.

The RNAp holoenzyme (Eoc) is composed of the RNAp core enzyme (i.e. a complex of multiple subunits
BP’02w) (Murakami et al. 2002; Young et al. 2002) and a o-subunit, which confers to the RNAp complex
affinity to specific sequences in the promoter regions of genes, named consensus sequences, located at -10
(TATAAT) and -35 (TTGACA) positions upstream to TSS (von Hippel et al. 1984; Harley & Reynolds 1987).
For example, for genes related to heat shock responses in E. coli to be expressed under these conditions, the
RNAp core enzyme is bound by a 6** unit (Alberts et al. 2002).

The formation of the RNAp holoenzyme (Ec) complex and the search and binding of this complex to specific
regions of the promoter are followed by a partial unwinding of the double-stranded DNA until a transcription
bubble is formed, exposing a small region in each of the strands. Consequently, the transcription bubble allows
the RNAp to move along the DNA template in 3’ to 5” direction, which consists of the elongation step during
which an individual mRNA molecule is synthesized. Lastly, when reaching a specific DNA structure known
as the transcription termination site, the newly synthesized mRNA and the RNAp are released from the DNA
template (Nudler & Gottesman 2002).

Studies suggest that it is during transcription initiation that most regulatory mechanisms act on, implying also
that it is the kinetics of this stage that most affects the expression kinetics of E. coli genes (McClure 1985;
Browning & Busby 2004; Saecker et al. 2011). For that reason, the steps during transcription initiation are
referred to as the rate-limiting steps of transcription. Evidence suggests that there are two main rate-limiting
steps of active transcription (Walter et al. 1967; Chamberlin 1974; McClure 1985; Saecker et al. 2011), repre-
sented in Equation 2.1.

R+P—£5CC —£50C —2>rna 2.1

In Equation 2.1, the first step represents the binding of an RNAp holoenzyme (. ) to a promoter (P), with an
equilibrium constant (K ), which allows forming the closed complex (CC). This is a reversible step, which can
occur several times. When successful, it follow an isomerization reaction with a rate constant (k;) to form the
open complex (OC). At this stage, the process is generally irreversible. Once complete the OC formation, it
follows the relatively fast step of promoter escape. In particular, the RNAp holoenzyme attempts to synthesize
a small portion of the DNA template (~10 nucleotides) (Hsu 2002) via a scrunching mechanism that pulls the
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downstream DNA into itself while keeping its position fixed on the promoter region (Revyakin et al. 2006).
During this stage, depending on a 6-8 nucleotides non-consensus sequence located upstream to TSS of the
promoter, transcription elongation should occur by following two possible ways, i.e. the ‘branched’ and ‘un-
branched’ mechanisms (Figure 2.3) (Susa et al. 2006; Henderson et al. 2017).

In the ‘branched’ mechanism, based on in vitro studies of the dynamics of transcription initiation of the
lacT7AL1 and of Apr promoters (Susa et al. 20006), transcription initiation has been considered to account for a
productive and a non-productive pathway. In a productive pathway, an RNAp is capable of escaping from the
promoter region and synthesizing a long mRNA sequence without releasing a short (abortive) RNA molecule.
Meanwhile, in the non-productive pathway, the abortive cycling only leads to the production of abortive RNA

molecules, and never moves towards the formation of EC (Figure 2.3).

Importantly, most studies of bacterial transcription initiation have considered the ‘unbranched’ as the most
common mechanism driving the formation of the elongation complex (EC), in which all OCs undergo rapid
cycles of abortive initiation, until a productive initiation and synthesis of RNA are achieved (Hsu 2002; Straney
& Crothers 1987). This accumulated stress during transcription initiation is used to successfully release RNAp
holoenzyme and transcription factors from the promoter region, thus making the formation of the transcription
elongation complex (EC) and elongation phase to begin (Kapanidis et al. 2006). Although relevant, this process
is expected to be much higher than all other rates (e.g. CC and OC), and thus assumed to be ‘negligible’ in
terms of defining the rate-limiting steps of transcription initiation (Equation 2.1) (Bremer & Dennis 1996). For
this reason, the rate constant of this process in Equation 2.1 is assumed to equal ‘infinite’, since its time-length

is much short than that of the previous steps (Hsu 2002).

The characterization of the rate-limiting steps in E. coli genes has been conducted using in vitro and in vivo
methods (Buc & McClure 1985; McClure et al. 1978; McClure 1980; Lutz et al. 2001; Lloyd-price et al. 2016).
In the first proposed in vitro method, the derivation of the OC formation rate is based on the time taken for
abortive initiation products to be formed until reaching a state-steady (McClure et al. 1978). In another in vitro
method, the CC formation rate is derived from the linear-dependence of this step with varying RNAp concen-
trations on transcription in vitro assays (Buc & McClure 1985; Cech & McClure 1980). Relevantly, this direct
linear relationship between the lag times for RNA production and the inverse of the reciprocal RNAp

concentration can be drawn in a Lineweaver-Burk plot (Lineweaver & Burk 1934), named as ‘t-plot’.

From the line drawn in t-plots, the mean time for CC formation is obtained from its slope and the mean time
for OC formation from its intercept with the y-axis (McClure 1980; Patrick et al. 2015). Since the duration of
such steps has been reported to range from seconds to minutes, much longer than elementary steps in enzyme-
catalyzed reactions, and to be sequence-dependent as they differ between promoters (Lutz et al. 2001; Jones et
al. 2014), such steps are considered to be the rate-limiting steps in transcription initiation of £. coli genes (Buc
& McClure 1985; Saecker et al. 2011).
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Figure 2.3: Proposed mechanisms of transcription initiation and promoter escape by bacterial RNAp. In the first
mechanism, RNAp holoenzyme containing a specific 6-subunit binds to a promoter region and forms a closed
complex (CC). This is followed by the formation of the open complex (OC) responsible for creating the tran-
scription bubble, exposing a short sequence of nucleotides. After the OC is formed, abortive synthesis occurs,
on the pathway to promoter escape, during the initial transcribing complex formation (ITC). Following an abor-
tive initiation cycle, the mRNA starts to be synthesized by the transcription elongation complex (EC). In that,
the RNAp holoenzyme moves along the DNA template through alternative pathways, such as spontaneous or
transcription factor-mediated pausing, until finding the transcription termination site, leading to the release of
the o-subunit of the RN Ap core enzyme and the complete mRNA molecule. Second, in the branched mechanism,
two classes of initiating complexes are proposed: the formation of a productive complex (OCp) that can escape
from promoter without releasing any short RNA; and the formation of a nonproductive (abortive) complex
(OCnp) that cannot escape towards the elongation complex (EC), and can only synthesize and release short RNA
sequences. Adapted and reprinted with permission from (Henderson et al. 2017); Copyright 2017, PNAS.

Interestingly, using the concept underlying the in vitro ‘t-plot’, the number and duration of rate-limiting steps
in transcription initiation were also characterized using in vivo measurements (Lloyd-price et al. 2016;
Kandavalli et al. 2016; Mékela et al. 2017). It is important to note that, when implemented in live cells, this
method can present severe limitations due to the limit at which the in vivo intracellular concentration of RNAp
is increased while maintaining the cells’ functionality unaffected. This method is based on measuring time-
intervals between consecutive RN A production events in individual cells using an RNA fluorescent probe to
detect individual RNA molecules in live cells in the microscope, then applying statistical analysis from these
distributions to infer the number and duration of underlying steps in transcription initiation. In recent years,
this approach has been widely employed to characterize the kinetics of transcription initiation of multiple pro-
moters in various environmental conditions. The results of these studies suggest that transcription kinetics can
be explained by the existence of multiple rate-limiting steps (Muthukrishnan 2014; Mikeld 2016), in agree-
ment with in vitro characterization of the rate-limiting steps (McClure 1985; Saecker et al. 2011; Lloyd-price
et al. 2016; Mikela et al. 2017).

Other studies have used in vivo single cell imaging microscopy techniques to study transcription by measuring
mRNA molecules in populations of cells using fluorescence in situ hybridization (FISH) microscopy. In this
regard, recent studies have shown that transcription initiation is a sequence-dependent process that dictates the
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mean and variability of mRNA numbers in a population of cells (Jones et al. 2014; So et al. 2011). In general,
most of the studies above suggest that the mean rate and variability of transcription process are promoter-
dependent and that the regulatory molecules present in the promoter regions can accelerate/reduce the duration
of one or more steps involved in transcription initiation. Further, the dynamics of these steps is not immune to
environmental factors such as temperature (Muthukrishnan 2014). In this study, in particular, it has been shown
that the best-fitting models explaining the empirical data contain two main rate-limiting steps that are associ-
ated with the closed and OC formation. Further, the results showed that a third step emerges and becomes also
a rate-limiting step as temperature decreases from optimal (down to 24°C). This additional temperature-de-
pendent step was hypothesized to be the isomerization step that happens immediately before the completion
of the OC formation, in agreement with in vitro studies on the transcription dynamics of the /acUVS5 promoter
(Buc & McClure 1985), and multiple failures in promoter clearance and escape (Hsu 2002). In Publication
III, from the distributions of time-interval between RNA production events in individual cells, we assessed
the temperature-dependence of the kinetics of the rate-limiting steps in transcription initiation, when subject
to temperature shifts.

Finally, recent studies have shown that DNA supercoiling, which affects DNA compaction and thereby the
activity of most genes in E. coli’s chromosome, is also affected by temperature shifts. This can occur by direct
means, such as tuning the activity of different DNA topoisomerases (Lopez-Garcia & Forterre 2000), or by
indirect means, such as varying the binding affinity of nucleoid-associated proteins (NAPs) to the chromosome
(Amit et al. 2003). Thus, the temperature-dependence of the kinetics of DNA-supercoiling in chromosomal
genes is assumed to be one of the most important factors regulating gene expression in E. coli (Jones et al.
1987). In Study IV, we performed a similar quantitative analysis of the temperature-dependence of the kinetics
of RNA production, relative to the optimal temperature condition, when the Pi.c0301 promoter is located in a

single-copy plasmid and in E. coli’s chromosome while being subject to temperature fluctuations.
2.1.1.1 Transcription Regulation

To function properly, cells need to produce essential, functional and structural proteins at the proper time
during their lifetime. From DNA to proteins, cells have to regulate when and how genes are expressed by
tuning transcription and translation. Studies of the dynamics of transcription in E. coli suggested that, in pro-
karyotes, the kinetics of transcription initiation and its key regulatory components (e.g. RNAp core enzyme, ¢
factors, and transcription factors) are the major factors controlling the production of mRNA and proteins
(Farewell et al. 1998; Rouviére et al. 1995; Dong & Schellhorn 2009; McClure 1985; Browning & Busby
2004), while the degradation of these products, at optimal conditions, is kept at nearly constant rate for most
genes of E. coli (Bernstein et al. 2002; Chen et al. 2015). Therefore, E. coli has evolved regulatory systems
that can control when, and by how much, transcription starts/stops by turning genes on/off from direct bind-
ing/unbinding reactions of transcription factors (e.g. activator and inhibitor molecules) to promoter regions
(Schleif 2002; Becker et al. 2013; Browning et al. 2009).
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In these regions, activator molecules up-regulate transcription by either directly interacting with RNAps, or
promoting DNA conformational changes, which expose the consensus regions of the promoter thus increasing
the binding affinity of RNAp to promoters (Busby & Ebright 1999), e.g. the activation of araBAD promoter
by AraC activators (Schleif 2010). Meanwhile, during transcription initiation, repressor molecules can down-
regulate transcription by either competing with RNAp molecules to occupy the promoter region (e.g. the oc-
cupancy of O2 and O3 operator sites of the native lac promoter by Lacl repressors (Oehler 2009)), or by
preventing the steps of OC formation or promoter escape from happening (Sanchez et al. 2011). The transcrip-

tion mechanism of both native araBAD and lac operons are presented (section 2.1.1.2).

As described, promoter sequences play an important role in determining the regulation of transcription (Jones
et al. 2014). Besides, the configuration of its rate-limiting steps is also important to determine the kinetics of
mRNA production. Further, transcription initiation can be tuned by the interactions between the promoter
region and local and global regulatory factors that are determined by the intracellular and external contexts
(Bremer & Dennis 1996), such as the activity and intracellular concentration of RNAp, of specific ¢ factors
(Kandavalli et al. 2016) (Browning & Busby 2016; Kandavalli et al. 2016), of small-ligands (e.g. ppGpp) that
regulate the synthesis machinery of ribosomes in E. coli (Browning & Busby 2004), among others.

Regarding o factors, since transcription kinetics in most promoters of E. coli is a 670-dependent process, the
intracellular concentration and activity of this transcription factor are also critical factors determining the ex-
pression profile of cells. When cells undergo specific stress conditions, other ¢ factor units are expressed and
specific cellular response mechanisms are triggered, defining global changes in the dynamics of transcription
of multiple genes and gene regulatory networks (Ishihama 2000). In particular, when cells are subject to sub-
optimal temperatures, cells respond and adapt to it by precisely regulating the activity of specific genes that,

e.g. are responsible for heat/cold shock responses (Kannan et al. 2008; Arsene et al. 2000).

Additionally, the activity of a gene located in E. coli’s chromosome can be locally and globally affected by
DNA compaction due to, either the activity of DNA-supercoiling (Stuger et al. 2002; Holmes & Cozzarelli
2000; Dorman 2006; Dorman & Dorman 2016), or the functionality of nucleoid-associated proteins (NAPs)
and other DNA-binding proteins (Dillon & Dorman 2010). Thus, depending on the degree of compaction and
the position of each gene in the chromosome, the expression of a gene can be up- or down-regulated (Dorman
& Dorman 2016).

Further, E. coli’s chromosome has segments of topological constraints in its structure such that the effect of
DNA-supercoiling on DNA compaction can be accumulated (built-up) with the increase of transcription ac-
tivity in neighboring regions (Postow et al. 2004; Hardy & Cozzarelli 2005; Rovinskiy et al. 2012). Importantly,
since plasmids have transient protein binding activity, they have been reported to have transient topological
constraints (Leng et al. 2011; Chong et al. 2014). However, studies have shown that, plasmids encoding for
membrane-associated proteins, carrying tandem copies of DNA-binding sites, and carrying the T7 promoter,

in E. coli strains lacking fopA gene (of topoisomerase, responsible for preventing excessive supercoiling in
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DNA segments), can exhibit longer-lasting topological constraints (Boeke & Model 1982; Pruss & Drlica 1986;
Fulcrand et al. 2016; Samul & Leng 2007).

Interestingly, Chong, S. et al. have recently shown by in vitro measurements that, due to the lack of topological
constraints, in plasmids, transient DNA supercoiling build-ups are freely diffused in the plasmid DNA structure
in opposite directions, leading to their eventual annihilation (Chong et al. 2014). Finally, in vivo measurements
have suggested that, prior to annihilation, transient supercoiling can influence the activity of genes located in
both plasmids and chromosomes (Samul & Leng 2007; Rahmouni & Wells 1992; Moulin et al. 2005). In Study
IV, we observed the differences in the dynamics of transcription initiation of a promoter when located in a

plasmid and in the chromosome of E. coli.
2.1.1.2  lac and ara Operons

In bacterial genetics, an operon is defined as a functional unit containing two or more structural genes regulated
by the same transcription unit, with transcription regulators and a terminator. This definition and the first op-
eron, the Jac operon, were described by Jacob and Monod in 1961, from empirical observations of the behavior
of bacterial cultures when selecting for preferable sugar sources in the media. This operon consists of three
neighboring genes that encode specifically for three proteins, responsible for the absorption and metabolism
of lactose in E. coli. The choice for lactose is driven by complex mechanisms of activation and repression of
transcription in the /ac promoter region, where interactions between transcription factors (lactose inducer and

Lacl repressor) and promoter-operator sites (O1, O2, and O3) occur (Jacob & Monod 1961).

The O3 operator site is located upstream to the /ac promoter consensus region. The O1 site is located imme-
diately downstream the promoter region, and the O2 site located far from the promoter region, within the lacZ
gene coding sequence (Figure 2.4) (Schlax et al. 1995; Pruss & Drlica 1986; Riggs et al. 1970). The three
structural proteins encoded by the /ac promoter are, respectively, the f-galactosidase (LacZ), the lactose trans-
membrane permease (LacY), and the transacetylase (LacA). These enzymes are responsible for, respectively,
the process of lactose breakage into galactose and glucose, the intake of lactose from outside into the cell, and
the transferring of an acetyl group from coenzyme A (CoA) to galactosidase (Jacob & Monod 1961; Lewis
2005).

Regarding its function, while in the presence of lactose in the media, the lac operon modulates the absorption
and metabolism of lactose. Meanwhile, in the absence of lactose, the operon remains transcribing its genes in
small amounts. During the latter, cells preferably produce the catabolites to intake and process other sugars as

a primary carbon source.

The down-regulation of the /ac promoter occurs when lactose is absent and Lacl monomers are able to form
dimers, then dimers of dimers (i.e. homo-tetramers) (Beyreuther et al. 1973; Gilbert & Maxam 1973; Miller
1980). Lacl dimers and tetramers are able to bind to promoter’s operator sites, preventing RNA polymerase

from binding to it. This process turns-off the production of lactose metabolites, forcing the cells to metabolize



16

a different carbon source (Ohshima et al. 1974; Lewis 2005). For the /ac promoter to be fully repressed, a
coordinated binding of Lacl dimers, between O1 and either O2 or O3, must occur, thereby causing the for-
mation of a DNA loop and blocking transcription initiation (Oehler et al. 1990; Becker et al. 2013).

The up-regulation of lac occurs when lactose is present. In that, the natural allolactose (or its artificial deriva-
tive, IPTG) act as an inducer of the promoter by binding with Lacl repressors and changing its conformational
structure. This reduces the affinity of Lacl dimers to promoter’s operator sites (Barkley et al. 1975; Lewis et
al. 1996; Lewis 2005) and allows RNAp to bind to the promoter and transcribe the genes of the operon for
lactose metabolism (Figure 2.4) (Shuman & Silhavy 2003).

Besides the regulation achieved by lactose and Lacl interactions with promoter’s operator sites, transcription
activity of /ac can be further regulated by the presence and absence of glucose in the media. Namely, when
glucose and lactose are present, cells preferably metabolize glucose as a primary source, in detriment of lactose.
Lactose is only consumed after the former is completely depleted from the media. This preference and selection
for sugar source are made possible by the interaction between the secondary messenger cyclic adenosine mono-
phosphate (cAMP) and a fourth operator site, named ‘catabolite activator protein’ (CAP), located upstream the
promoter consensus region next to the O3 operator site (Beckwith et al. 1972; Reznikoff et al. 1974), which
positively regulates the transcription of the lac operon (Emmer et al. 1970). In that, when glucose is consumed
by cells via the glucose metabolism, causing the intracellular concentration of glucose to be reduced, the in-
tracellular levels of cAMP increase, leading to the formation of a protein complex, named cAMP receptor
protein (cAMP-CRP), which acts as an activator of the /ac operon by increasing the affinity of the RNAp to
the promoter region (Zubay et al. 1970).

Similar to the mechanism employed by the /ac operon to control sugar preference and metabolism, another
well-known operon of E. coli, named araBAD, can control the selection and breakdown of the sugar L-arabi-
nose when glucose is not present in the media (Helling & Weinberg 1963; Englesberg et al. 1965; Schleif
2000b). Namely, depending on the metabolic need of the cells, and the concentration of L-arabinose in the
intracellular environment, the operon can decide which task to perform, e.g. activation or repression of L-
arabinose metabolites. It controls the expression of three structural genes encoding for the enzymes required
for L-arabinose metabolism into D-xylose-5-phosphate for the pentose phosphate pathway (Figure 2.5)
(Schleif 2000b).

Prior to the metabolism of L-arabinose, two different transport mechanisms have been reported to support
araBAD, i.e. low- and high-affinity transport systems that are able to control the uptake of L-arabinose (Lee
et al. 1981; Hogg & Englesberg 1969; Schleif 2010). In the first, once araE gene is active, the L-arabinose
transporter protein (AraE) binds to the inner membrane, transporting L-arabinose molecules from outside to
cell cytoplasm by electrochemical potential driving forces (Lee et al. 1981). In the second, once araFGH
operon is active, the high-affinity protein transporter complex (ABC transporter) uptakes L-arabinose by spe-
cifically binding to it via an active transport mechanism, which uses energy from the hydrolysis of Adenosine
Triphosphate (ATP) molecules (Hogg & Englesberg 1969; Schleif 2010).
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Figure 2.4: Representation of the native /ac operon of E. coli. The lac operon contains the lacZpl promoter
region with the operator sites for Lacl repressor binding, along with the three genes (lacZ, lacY, and lacA) re-
sponsible for lactose metabolism and the terminator site for transcription. Also shown from up- to downstream
the /ac promoter region are the locations of the three /ac operator sites (O3, O1, and 02), the catabolite activator
protein (CAP) binding site, and the TSS. Further, the /acl gene responsible for Lacl repressor production is
constitutively produced by its own native promoter unit located upstream to the /ac operon in E. coli’s chromo-
some (Shuman & Silhavy 2003).

After the concentration of L-arabinose crosses a certain threshold inside the cell, the activation of the Paapap
promoter is achieved by the interaction of L-arabinose with AraC dimers, which forms an activator complex
that is able to bind to I1 and I2 half-sites and increase the affinity of RNAp to bind to the promoter consensus
regions. This process allows the initiation of transcription in the Puapap promoter and the two promoters re-
sponsible for L-arabinose intake (Lee et al. 1981; Hogg & Englesberg 1969; Schleif 2010).

The Paapap promoter is repressed when in the absence of L-arabinose. Consequently, Paac, the promoter re-
sponsible for AraC production is also repressed (Figure 2.5). In that, AraC dimers remain bound to the half-
operator 11 and O2 site, forming a DNA loop that prevents RNAp from binding to the promoter region and
initiating transcription (Figure 2.5) (Lobell & Schleif 1990; Johnson & Schleif 1995; Schleif 2000a; Schleif
2010).

The engineering of synthetic promoters, e.g. variations of /ac and araBAD promoters, and their dynamical
studies have been performed as a means to understand how natural systems work, and to increase the degree
of predictability in the design of artificial genetic systems (Studier & Moffatt 1986; Elowitz et al. 2000;
Golding & Cox 2004). In the past decades, multiple combinations of the native lac operator sites have been
engineered in various synthetic promoters, from harboring only one operator to containing all three operators
with no CAP binding site, to demonstrate how a variety of transcription responses can be achieved when com-
pared to the native expression levels (Oehler et al. 1990; Oehler et al. 1994). Making use of this knowledge,
Lutz et al. created an artificial promoter, named ‘Pjac-ara-1 promoter’, which is a combination of promoter ele-
ments extracted from the both P, and Parapap native sequences, point-mutations and synthetic fragments (Lutz

& Bujard 1997) to study the kinetics of transcription regulation in E. coli.
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Figure 2.5: Representation of the native araBAD operon of E. coli. The araBAD operon contains the bidirectional
Parac-ParaBap promoter and operator sites for dimeric AraC activator/repressor binding. On one side, the Paapap
promoter region is followed by the three genes (araB, araA, and araD) responsible for L-arabinose metabolism
and the terminator site for transcription. On the other side, the Paac promoter is followed by the araC gene
responsible for AraC repressor expression. Also shown are the operator sites of both promoters, along with the
CAP binding site and TSSs. In addition, the operator sites I1 and 12 are named as half-sites when bound by a
single subunit of AraC. The O1 operator site consists of two-half-sites and regulates the activity of the Pauc
promoter to express AraC. The O2 site is a single half-site and regulates the activity of Paragap promoter (Schleif
2010).

In Study IV, we made use of a derivative lac promoter carrying two of the three native operator sites (O3 and
O1). This promoter has lower repression strength than the native promoter. We use it to study the temperature-
dependence of the rate-limiting steps in transcription initiation due to its location in the chromosomal or a
plasmid DNA. In Publications III, we made use of the promoter Pjac-ara-1, mentioned above, to measure the
temperature dependence of the kinetics of the rate-limiting steps in transcription initiation in varying induction
schemes. We then made use of the same system to study the temperature-dependence of the biophysical prop-

erties of cell cytoplasm at fluctuating temperatures in Study IV.

2.1.2 Gene Regulatory Networks and Genetic Motifs

In the previous section, from two examples of native operons in E. coli, we showed how a single promoter can
coordinate the expression of two or more genes. These genes, while having a completely different structure
and biological function, can work together to achieve a desired task inside the cells. In this section, we describe
how genes can coordinate their functions into creating complex tasks, not possible by individual genes inde-

pendently.

Individual genes have a limited set of dynamical functions, such as the graded production and the degradation
of specific mRNAs and proteins. In a system of interactive genes, or gene regulatory networks (GRNs), con-
nections among the genes can govern the communication and coordination of more complex dynamics. These
connections are able to coordinate the interdependent expression of multiple mRNAs and proteins, and are

regulated by molecular regulators, such as DNA, RNA, transcription factors, protein complexes, and other
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molecules from intra- and extra-cellular contexts, to control complex biological functions such as cell division
(Mashaghi & Dekker 2014), sugar metabolism (Ozbudak et al. 2004), and amino-acids and structural protein
synthesis (Chubukov et al. 2014). These connections, established between a molecular regulator and a specific
DNA binding sequence (recognition motifs), form the physical architecture or topology of GRNS.

Natural motifs are sets of genes with highly specific connections among them that are usually responsible for
executing complex behavioral patterns, such as amplitude or frequency filtering, time tracking, decision mak-
ing, etc. (Wolf & Arkin 2003). Each of these tasks requires a specific topology. E.g. decision making is made
possible by pairs of genes repressing one another, as in the bi-stable switch of (Gardner et al. 2000), while time
tracking is made possible by having three genes repressing each other in a loop formation, as in the repressilator
circuit of (Elowitz et al. 2000).

This can also be achieved by self-regulating individual genes, via either ‘positive’ or ‘negative’ feedback loops,
which allow an individual gene to, respectively, self-activate or self-repress its activity. Such simple circuits
allow performing non-linear tasks, such as signal pulsing (Levine et al. 2013). The characterization of various
motifs has provided a better understanding of the functionality of regulatory mechanisms in live cells. Syn-
thetic circuits have also been created to explore the potential use of the motifs to externally control internal
cellular processes. E.g. there have been designed toggle genetic switches, that can switch between two steady-
states by external signaling, with each state being stable across generations (Gardner et al. 2000), and genetic

oscillators that create periodic signals (Elowitz et al. 2000).

Importantly, due to the stochastic nature of the interactions between genes, and the small number of molecular
species involved in these interactions, in some motifs small fluctuations can ‘propagate’ between the compo-
nent genes, thus influencing the stability of the corresponding biological function (Paulsson 2005a; Elowitz et
al. 2002).

In this regard, there are genetic motifs that can suppress/amplify fluctuations, thereby, attenuating/increasing
cell-to-cell heterogeneity (Paulsson & Ehrenberg 2001; Hilfinger & Paulsson 2011; Paulsson 2004). Regarding
the latter, a study reported the construction of an artificial genetic AND logic gate, which can act as an ampli-
tude filter inside cells. In that, the expression of an output gene is triggered only within a certain magnitude
range of an input signal (near-digital AND gate behavior), which is regulated depending on the heterogeneity
of the signal observed at each state (media conditions) (Figure 2.6) (Anderson et al. 2007). Relevantly, most
natural and artificial GRNs can act as low-pass frequency filters (Samoilov et al. 2002) given the long-lasting
duration of transcription rate-limiting steps (Lloyd-price et al. 2016) and the short time taken by mRNA and
protein degradation (Taniguchi et al. 2010).



20

+Sal +Sal
+Ara
Input 1
[Sal]
-, E ‘
Psal o]
o
& | No inducer +Ara
Input 2
[“"’]% ouTPUT
PEAD

| - 1
100 102 104100 102 104
Fluorescence (au)

Figure 2.6: A synthetic genetic AND logic gate and the dynamics of the output signal measured from single-cell
measurements. (A) The schematic representation of the AND logic gate constructed with two promoters as inputs
and one promoter as the output of the gate. The first Py, promoter, regulated by the inducer salicylate and the TF
NahR, controls the transcription of the nonsense suppressor transport RNA (tRNA), supD, which enables the
translation of polymerase, while the second Paragap promoter (regulated by the inducer L-arabinose and the re-
pressor AraC) controls the transcription of T7-RNA polymerase. T7 polymerases are only expressed when SupD
is present in the cells. This enables the two stop codons (T7ptag, shown in ‘red’), present in the T7-polymerase
RNA sequence, to encode for serine amino-acid, allowing translation to generate a full-length functional T7-
polymerase. From this, the output, a Pr7 promoter, controls the expression of the fast-degrading green fluorescent
protein. (B) To determine the system behavior at the population level, fluorescence signal in individual cells
were measured by a flow cytometer. When both arabinose and salicylate are present, the entire population of
cells is turned ‘on’ (top-right corner). Meanwhile, when only one of the inducers is present, the entire population
is turned ‘off’. Adapted and reprinted with permission from (Anderson et al. 2007); Copyright 2007, EMBO and
Nature Publishing Group.

In E. coli’s chromosome, thousands of genes are linked through regulatory molecules, e.g. DNA-binding pro-
teins (Tamsir et al. 2011) and DNA recombinases (Bonnet et al. 2013), to form GRNs (as e.g. the E. coli’s
operons previously described) able to perform specific tasks (Martinez & Walhout 2009; Martinez- Antonio et

al. 2012). Based on this knowledge, researchers have been able to engineer synthetic circuits with pre-defined
structure and dynamics, such as the logic gate described (Figure 2.9) (Brophy & Voigt 2014; Siuti et al. 2013).

2.1.2.1 Natural and Synthetic Small Genetic Circuits

Bacterial cells have evolved robust small genetic circuits that play important roles in determining cell-to-cell
heterogeneity and cell fate determination (Kaern et al. 2005; Norman et al. 2015). One essential task for cells
is the ability to make decisions. This task can be achieved by natural toggle switch systems, where two operons
mutually inhibit one another. In that, repression occurs at the transcription unit level, and a gene produces the
repressor of the other. An example of a natural genetic switch is the lysis-lysogenic regulation switch, which

is introduced in E. coli following A bacteriophage infection (Lederberg & Lederberg 1953).

This system has been widely studied, theoretically and empirically, to investigate mechanisms of cell fate
determination (Friedman & Gottesman 1983; Santillan & Mackey 2004; Zong et al. 2010). In one of these
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studies, the results showed that infected cells follow either lysogenic or lytic pathways according to the intra-
cellular fluctuations in the concentration of one of the regulatory proteins of the system, originated from fluc-
tuations in its production (Arkin et al. 1998). Other recent studies have used similar synthetic versions of the
genetic switch to studying the dynamics of cell states and fate determination in bacteria (Gardner et al. 2000)

and in mammalian cells (Kramer et al. 2004).

Another crucial cellular task is the ability to control temporal events. This function is performed naturally by
internal clocks that regulate, periodically, the activity of cellular processes, such as the circadian clock (Dunlap
1999), the cell cycle (Tyson et al. 2001; Pomerening et al. 2005), and the mechanism that defines cellular
division point along the cell major axis (Shih et al. 2003). Relevantly, natural oscillators have been also re-
ported in more complex organisms, such as Sacharomyces cerevisae (Mihalcescu et al. 2004), and Drosophila
melanogaster (Hardin et al. 1990; Glossop et al. 1999). Similar to natural genetic switches, a number of theo-
retical and experimental studies have provided important insights on the dynamics of natural systems that aid

the engineering of synthetic oscillators (Gardner et al. 2000; Elowitz et al. 2000; Fung et al. 2005).

The main goals of the studies aiming at engineering synthetic circuits have been: (i) to test the design principles
of synthetic biology (described in chapter 2.2.1); (ii) to explore potential applications of these circuits; and (ii)
to understand the complex architecture, regulatory interactions and behavior of natural GRNS.

The rational combination of in silico predictions and in vivo validations of the dynamics of parts and systems
compose a bottom-up approach to engineer more complex artificial GRNs with predictable behavior. In par-
ticular, in what regards the design of such circuits, one should take into account the information on the struc-
tural and dynamical profile of each bio-parts to be used (e.g. transcription units, transcription factors, network
motifs, transcription terminators, RBSs, etc.). Computational tools have aided in the organization and assembly
of bio-parts into genetic devices, as building blocks (Clancy & Voigt 2010; Rodrigo et al. 2012), then the
implementation of synthetic systems into live organisms (Weiss et al. 2003; Voigt 2006; Mutalik et al. 2013).

An early synthetic circuit implemented in E. coli cells was a toggle switch, consisting of two genes, carried by
a plasmid, with one repressing the activity of the other, and vice-versa. When implemented in live cells, as
previously described, this system is able to switch between two stable states (Gardner et al. 2000). Namely,
for a switch of two genes, A and B, one state being ‘A-On and B-Off” or another state being ‘A-Off and B-
On’. Further, due to being biased to favor one state over the other as a function of media conditions, this system

has been shown to be capable of making decisions following environmental changes (Gardner et al. 2000).

In 2000, the first functional synthetic oscillator, named as ‘repressilator’, was implemented in E. coli cells,
carried by plasmids. The ‘repressilator’ consists of a small network of three transcription units in a negative
feedback loop formation, where the activity of one gene represses the expression of the subsequent gene in the
loop (Figure 2.7-A) (Elowitz et al. 2000). To report the dynamics of the system, a second plasmid, carrying

one of the three promoters present in the repressilator, Pr.«01, controls the expression of a green fluorescence
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protein (GFP). Interestingly, from the fluorescence signals observed by time-lapse images, the repressilator
presented noisy GFP oscillations with periods of hours, longer than cell lifetime.

Next, in 2003, the first artificial oscillator implemented into E. coli’s chromosome was constructed with altered
connectivity in that, depending on the interactions established between a ‘repressor” module and an ‘activator’
module, the genetic system is able to escape from damped oscillations regime to a toggle-switch behavior
(Atkinson et al. 2003).

Following the same concept explored by (Atkinson et al. 2003), Stricker, J. ef al. engineered a robust oscillator,
named as relaxation oscillator, implemented in multi-copy plasmids in E. coli cells. This system is also based
on the interactions between an activator and a repressor module. It is able to interactively exhibit oscillatory
signals in periods of oscillations that vary depending on the context where cells are inserted into, e.g. by

changes in inducer levels, temperature and media richness (Figure 2.7-B) (Stricker et al. 2008).

Next, an artificial gene-metabolic oscillator (the ‘metabolator’) was implemented in plasmids and into E. coli’s
chromosome with transcription and metabolic integration characteristics of natural GRNs. This synthetic net-
work uses the natural glycolytic metabolic flux, and external stimuli via carbon sources, to control oscillations
through the native metabolite acetyl phosphate (Fung et al. 2005). Following the same logic of integrating the
dynamics of a synthetic construct with the functioning of an endogenous cellular process, another study made
use of the natural process of competitive protein degradation to create rapid and tunable coupled oscillators at

both intracellular and colony levels (Prindle et al. 2014).
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Figure 2.7: The network diagrams of the ‘repressilator’ designed by (Elowitz et al. 2000) then modified by
(Potvin-Trottier et al. 2016), and of the relaxation oscillator designed by (Stricker et al. 2008), respectively. (A)
The ‘repressilator’ system is a ring type oscillator with three genes in a negative feedback loop repressing one
another. Oscillations in GFP levels are generated following the changes in the dynamics of the promoter (Pio1),
present in both repressilator and reporter systems. (B) In the relaxation oscillator, a repressor module (red) inter-
acts with an activator module (green) creating an oscillatory signal (output) by the expression of green fluores-
cence protein (yellow). Adapted and reprinted with permission from (Stricker et al. 2008; Potvin-Trottier et al.
2016); respectively, Copyright 2016 & 2008, Macmillan Publishers Limited.

Another factor that influences the behavior of both natural and synthetic systems is the environment tempera-
ture. While natural networks have been shown to be robust to temperature changes (Tyson et al. 2001; Dunlap

1999), synthetic oscillators have been shown to have their dynamics significantly changed as a function of

temperature (Stricker et al. 2008).
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In all biochemical reactions, when temperature increases, the rate of these reactions increases, which makes
most dynamical processes in cells faster (also known as ‘Arrhenius scaling’) (Segel 1975). As observed in the
study of (Stricker et al. 2008), an increase in the environment temperature is followed by a drastic reduction
in the oscillation period. Meanwhile, naturally occurring oscillatory systems, such as circadian clocks can
maintain their period of oscillations almost constant under extreme conditions (Dunlap 1999; Hastings &
Sweeney 1957). To create a synthetic oscillator that is robust temperature changes, Hussain, F. ef al. engineered
an oscillator with a structural temperature compensation module. For that, the authors followed the design
concept presented in (Stricker et al. 2008) of an oscillator with dual-feedback reactions and added a special
module, a temperature-sensitive lactose repressor mutant, which is incapable of repressing its target promoter
at high temperatures (Hussain et al. 2014). By making the period lengths to increase as temperature increases,
the circuit is able to compensate the decrease expected from the overall increased in reactions rates (Figure
2.8-A) (Hussain et al. 2014; Segel 1975).

Another promising means to make synthetic networks robust to environmental changes is by integrating ge-
netic circuits with key elements of quorum-sensing machineries. In a recent study, based on the quorum-sens-
ing mechanisms of the organisms Vibrio fischeri and Bacillus Thurigensis, Danino, T. et al. combined these
key elements with elements of the ‘relaxation-oscillator” (Stricker et al. 2008) to construct a ‘quorum-sensing’
oscillator that is able to couple genetic clocks from multiple individual cells of population, and generate stable
synchronized oscillations at the colony level (Danino et al. 2010). Interestingly, the cells were able to sustain
communication and stable synchronized oscillations even when subject to varying environmental conditions,
provided that certain intracellular concentration of AHL (required for the activation of the genes and needed
for both intracellular oscillations and intercellular coupling) was achieved in individual cells (Figure 2.8-B)
(Danino et al. 2010).
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Figure 2.8: The network schemes of the ‘temperature-compensation oscillator’ designed by (Hussain et al. 2014),
and of the ‘quorum-sensing oscillator’ engineered by (Danino et al. 2010), respectively. (A) The ‘temperature-
compensation’ oscillator is based on the synthetic dual-feedback type of oscillator (Stricker et al. 2008), with
both activator and repressor modules carrying copies of the Piac-ara-1 promoter encoding, separately, the AraC
activator, the wild-type or the temperature-sensitive Lacl repressor, and GFP to monitor the dynamics of the
system. All three proteins were tagged with an ssr4 degradation tag to enhance their degradation rates. (B) The
‘quorum-sensing’ oscillator consists of a synthetic dual-feedback type of oscillator containing three genes con-
trolled by three copies of the P promoter. In the first module, this promoter controls the expression of the
enzyme Luxl, and a second copy of the promoter encodes for yemGFP. In the second module, the third copy of
this promoter drives the expression of the repressor AiiA. The protein LuxI enzymatically produces a small
molecule AHL (an activator of the Piux promoter) that diffuses through the cell membrane to outside, reaching
other cells in the colony. Once in the cytoplasm, AHL activates the promoter. The repressor AiiA, indirectly,
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negatively regulates the network by degrading the AHL molecules in the cytoplasm. Adapted and reprinted with
permission from (Hussain et al. 2014; Danino et al. 2010); respectively, Copyright 2014, National Academy of
Sciences, and Copyright 2010, Macmillan Publishers Limited.

Many studies have used the principles of stochasticity in biochemical reactions in their theoretical interpreta-
tions of genetic systems, to aid the rational design of synthetic circuits (Paulsson 2005a; Ribeiro 2007a). A
recent study, for instance, has engineered several synthetic oscillators, from the noisy low-copy repressilator
by (Elowitz et al. 2000), to test which internal features of the repressilator system are more/less related to
generating the noisy behavior observed in its original version (Potvin-Trottier et al. 2016). Then, according to
mathematical predictions, observations of the dynamics of multiple repressilator modifications revealed that a
reduction in the copy-number of the reporter plasmid caused a reduction in the relative standard deviation (i.e.
fluctuations) in the amplitude of the signal, making the repressilator system to oscillate more regularly with
less noise. Interestingly, Potvin-Trottier, L. e al. further showed that this system was robust to varying envi-
ronmental conditions, able to reduce error propagation across generations, could display macroscopic, popu-

lation-scale oscillations with no cell-to-cell communication mechanism (Potvin-Trottier et al. 2016).

The functioning of these systems is highly determined by the kinetics of transcription. Namely, depending on
the circuit topology, the kinetics of reactions involved in the activity of the genes, such as the binding/unbind-
ing of regulator molecules and transcription factors to promoter sequences, may highly influence the circuit
dynamics. Taking this into account, synthetic biologists have used the knowledge on the various classes of
transcription regulatory species (e.g. DNA-binding proteins (Figure 2.9-A) (Tamsir et al. 2011) and DNA
recombinases (Figure 2.9-B) (Bonnet et al. 2013) to design and construct complex transcriptional circuits that
are able to perform advanced computational tasks, such as memory storage and logical operations. In particular,
multiple digital genetic circuits (with two or more inputs returning one output) have been constructed in vivo
following the Boolean logic in multiple logic gates configurations (e.g. AND, NOR, OR, or NOT gates). These
systems were shown to be able to turn the expression of fluorescent proteins ‘ON‘ and ‘OFF’ controlled by an
output promoter, by following pre-defined logic gate topologies by using multiple transcription factor and
regulation mechanisms of input-promoters (Figure 2.9) (Siuti et al. 2013; Wang et al. 2011; Moon et al. 2012;
Anderson et al. 2007; Brophy & Voigt 2014).
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Figure 2.9: The design of transcriptional logic gates, based on different transcription regulation strategies, with
two input promoters (P and Pivz2) and one output promoter (Pout). The graphs show how the gates respond to
inputs introduced at the same time (center) or sequentially (right). In all panels, the ON state is assumed to
generate tenfold higher response than the OFF state. (A) Top, NOR gate based on a repressor that binds DNA
(Tamsir et al. 2011). The response curves are based on measured induction (ti2 = 36 min) and relaxation (ti2 =
35 min) half-lives (Lentini et al. 2013). Bottom, AND gate based on an activator that requires a second protein
to be active (Moon et al. 2012). The responses are based on measured induction (t12 = 36 min) and approximate
relaxation (112 = 35 min) half-lives (Moon et al. 2012). (B) Top, NOR gate based on integrases that flip two
terminators to turn off the output (Bonnet et al. 2013; Siuti et al. 2013). The responses are based on a rate of 1.8
h (Bonnet et al. 2013; Moon et al. 2011; Ham et al. 2006). Bottom, AND gate based on integrases (Bonnet et al.

2013). Adapted with permission from (Brophy & Voigt 2014); Copyright 2014, Nature America, Inc.

Nevertheless, synthetic networks can further make use of natural ‘post-transcriptional’ regulatory elements,
such as the binding of non-coding RNA sequences to DNA, proteins or amino-acids (Isaacs et al. 2004; Isaacs

2012), to achieve a more complex integrated dynamical behavior. Due to their ability to control and sense

various key signals inside cells, non-coding RNAs have become novel regulatory mechanisms of transcription

and post-transcription processes (Isaacs et al. 2004; Mutalik et al. 2012) in synthetic constructs and applica-

tions using prokaryotic and eukaryotic organisms. Further, due to the reduced stress and burden caused to the

cells in comparison with transcriptional circuits, when large amount of synthetic circuits are engineered in

eukaryotic organisms, for instance, post-transcriptional regulation, through protein-protein interactions and

allosteric systems is preferably chosen, allowing direct spatial-temporal regulation of protein functionality
(Olson & Tabor 2012). Interestingly, in a recent study, based on transcription-activator-like effector (TALE)

repressors competing with activators in an additional positive feedback loop connection for the same promoter
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region, bi-stable switches were engineered using programmable pairs of DNA-binding domains to attain epi-
genetic bi-stability in cells across generations (Lebar et al. 2014).

In Publications I and II, we made use of the transcriptional circuit the low-copy repressilator (LCR) circuit,
originally engineered by (Elowitz et al. 2000), to engineer the first functional, single-copy repressilator (SCR)
circuit and study the effects of internal perturbations, e.g. networking coupling due to copy-number, and ex-

ternal perturbations, such as temperature shifts.

2.1.3 Coupling of Genetic Circuits

In live cells, the dynamics of GRNs are determined by the kinetics of their individual genes and their interaction
with the complex intracellular context that is environment-dependent. The synthetic biology field has moved
towards advancing the knowledge for the rational design of larger, more complex synthetic circuits with mul-
tiple components, modules, and devices, with pre-defined intra- and inter-connection behavior when imple-
mented in live cells. In particular, researchers have tried to engineer synthetic oscillators that, once imple-
mented in live cells, are able to achieve and sustain a robust behavior under environmental condition changes
(Stricker et al. 2008), as in natural oscillators (Dunlap 1999).

One of the factors that may interfere in the dynamics of GRN’s components is ‘network coupling’. In that, due
to the gene dosage inside cells, more than one copy of the component of a circuit may interact among them,
thus affecting the functioning of one another (Brophy & Voigt 2014). The dosage of a particular gene, or an
entire circuit, can be altered by either changing the copy-number of the plasmid, where the sequence is located

or by increasing the number of motifs and transcription units within a single plasmid.

Several studies have evaluated the degree at which gene dosage can aid in achieving desired expression levels,
while not affecting the cell’s behavior (Molin et al. 1980; Jones et al. 2000; Chew & Tacon 1990; Togna et al.
1993). However, while these strategies can be beneficial in terms of increasing the expression levels of heter-
ologous genes, depending on the number of plasmid types and their copy-numbers within the cells, those can
also be not beneficial for the cells in a long-term. It has been reported that the increase in gene dosage, by
increasing plasmid copy-number is associated with an increased burden effect on cell healthiness, as it de-
creases cell growth rate and promotes morphological changes (Chew & Tacon 1990; Togna et al. 1993). In
this regard, natural cellular mechanisms, such as plasmid segregation (Ebersbach & Gerdes 2005; Million-
Weaver & Camps 2014), become a problem for synthetic biologists. In that, a balanced point between heter-
ologous gene expression and sustainable cell metabolism needs to be determined, prior to implementing high-
copy number plasmids into cells (Bailey et al. 1986). Relevantly, for various synthetic oscillators implemented
in E. coli cells, this balanced point has been reported to be different in terms of copy-number, i.e. from bacterial
chromosome-integrated (Atkinson et al. 2003), to low-copy plasmid-borne (Elowitz et al. 2000), to medium-
copy plasmid-borne (Stricker et al. 2008; Hussain et al. 2014; Danino et al. 2010). Finally, providing a support

for researchers aiming at changing plasmid copy-number in E. coli studies, Kittleson, J.T. et al. have presented
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an in vivo methodology to test the effects of gene and DNA cassette dosage on the kinetics of a gene when
inserted in plasmids or integrated in E. coli’s chromosome (Kittleson et al. 2011).

Theoretical studies on gene dosage have further contributed to the understanding of gene dosage as a relevant
parameter to fine-tune the expression of coupling elements, thus altering the circuit’s behavior. Some studies
have used modeling and mathematical techniques to aid synthetic biologists in assessing which properties and
parameters should synthetic oscillatory systems have to attain a desired dynamics (Elowitz et al. 2000; Hasty
et al. 2002; Garcia-Ojalvo et al. 2004; Danino et al. 2010; Stricker et al. 2008). For instance, in the case of the
‘repressilator’, small changes in copy-number can lead to a qualitative shift in the system dynamics among
oscillatory and equilibrium (Mileyko et al. 2008). More recently, Brophy et al. have used a mathematical model
of the ‘relaxation’ oscillator (Stricker et al. 2008) to test the effect of copy-number on the dynamics of the
circuit. The results showed that, by increasing (or reducing) gene dosage of the original circuit by tenfold (as
in a high-copy plasmid) and single-copy (as inserted in the chromosome), respectively, a substantial increase

(or reduction) emerged in the amplitude of oscillations (Brophy & Voigt 2014).

In Publication II, we used the original sequence of the LCR circuit to construct the first functional SCR
implemented in a full F-plasmid in E. coli cells. Then, we studied the effect of intracellular coupling between
the genetic components in LCR and SCR cells on the temperature-dependence of the dynamics of the repressi-
lator circuit (Elowitz et al. 2000). We investigated the effects of networking coupling on the dynamics of the
repressilator (e.g. oscillation period length, signal amplitude, and circuit’s functionality) when under temper-
ature and inducer IPTG perturbations. For that, the kinetics of one of the three promoters of the network, i.e.
the Pr«i01 promoter, was monitored by single cell confocal microscopy measurements of GFP levels over time.
From the observed differences in period of oscillations, we found that when under temperature fluctuations,
decreasing the copy-number of the repressilator circuit increased the mean and variability in oscillation periods,
while keeping the dynamics of both circuits robust and sensitive to temperature shifts. Finally, when varying
the concentrations of IPTG (the inducer of Praco1, one of the promoters of the repressilator circuit), we found
that decreasing the copy-number provide cells higher robustness to external perturbation, suggesting that the
oscillatory behavior of the LCR can be disrupted by only a few of the copies of the circuit being affected in
the cells.

2.1.4 Extrinsic Factors to Gene Expression Affecting the Dynamics of Genetic Circuits

Genetic circuits provide cells with the ability to regulate key intracellular processes, such as transcription,
translation, DNA replication, and cellular metabolites. Despite the possibility of a rational design of circuits
with pre-defined dynamics, the availability of their key regulatory molecules, within the intracellular context,
and their responses to environmental changes can heavily affect the functioning of such circuits (Brophy &
Voigt 2014; Cardinale & Arkin 2012).

The changes in the intracellular context may be one of the main reasons why failures in the functioning of the

first synthetic circuits were observed when implemented in live cells (Elowitz et al. 2000; Gardner et al. 2000).
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For instance, when studying the synchronization of oscillations in a population of cells containing the ‘quorum-
sensing’ oscillator, Danino, T. e/ al. have shown that the oscillator has its function hampered when the context
in the environment changes such, that the concentration of AHL per cell (i.e. the molecule responsible for
intra- and inter-connection among the circuits of the cell population) varies due to a change in the cells’ density
(Danino et al. 2010). Further, synthetic circuits can also create a metabolic loading effect in the cells by mo-
nopolizing the host resources, which can eventually decrease cell growth rate and cell’s vitality, thus changing
the intracellular concentrations of RNAp and ribosomes required for optimal circuit functionality (Dong et al.
1995).

However, Atkinson, M. R. et al. and Fung, E. ef al. presented two successful implementations of synthetic
constructs in E. coli’s intracellular context. They integrated a relaxation oscillator and a gene-metabolic oscil-
lator into E. coli’s chromosome, respectively, and showed that these circuits were able to carry out desired
functions by exploiting the host machinery and metabolism (Nandagopal & Elowitz 2011). Since the dynamics
of such a system heavily depends on the amount of key molecular species available in each individual cell,
being able to measure these single molecules, at the single-cell level, has become crucial when determining
the sources of variability in the functioning of individual genes and circuits in live cells (Golding et al. 2005;
So et al. 2011; Yu et al. 2006; Hensel et al. 2012).

The variability in the phenotype of genetically identical cells can be generated by both intrinsic and extrinsic
noise sources (Elowitz et al. 2002; Taniguchi et al. 2010). Intrinsic noise is linked to the nature of the kinetics
of transcription and translation kinetics, i.e. from the random encounters between molecules that act inde-
pendently on individual genes with the same cell (Taniguchi et al. 2010; Yu et al. 2006; Mékeld et al. 2017;
Lloyd-price et al. 2016). Meanwhile, extrinsic noise can be generated from multiple factors related to how
changes in the intracellular context of individual cells vary from cell-to-cell (due to e.g. changes in environ-
mental conditions). These factors can, independently or combined, affect differently the expression of genes

and the functioning of genetic circuits in individual cells of a population (Figure 2.10) (Brophy & Voigt 2014).

Cell-to-cell variability can further arise from extrinsic factors such as fluctuations in protein numbers and RNA
numbers in individual cells (Paulsson 2005a; Paulsson 2005b). Further, they can emerge from variations in
global regulators of transcription, e.g. o-factors, transcription factors, ribosomes, and RNAp (Yang et al. 2014;
Bakshi et al. 2012), due to differences in cell volume (Becskei et al. 2005; Newman et al. 2006; Stewart-
ornstein et al. 2012) and cell cycle position (Zopf et al. 2013).

In recent years, other mechanisms, such as DNA replication, negative DNA supercoiling, DNA condensation
by nucleoid proteins (Chong et al. 2014; Sanchez & Golding 2013; So et al. 2011) have been shown to con-
tribute to cell-to-cell variability. In addition, changes in the spatial distribution, mobility (Stylianidou et al.
2015), and asymmetries in the partitioning of intracellular molecules during cell division (Huh & Paulsson
2011) associated to the nucleoid exclusion phenomenon (Winkler et al. 2010; Coquel et al. 2013; Gupta et al.
2014), have been shown additional contributors. Finally, changes in biophysical properties of cells, such as
cytoplasm viscosity (Van Den Bogaart et al. 2007; Konopka et al. 2009; Mika et al. 2010), in the cellular
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metabolism (Klumpp et al. 2009; Parry et al. 2014), in the expression of specific endogenous genes (Figure
2.10-A) (Cardinale et al. 2013), or in the growth media (Figure 2.10-B) (Moser et al. 2012), can strongly alter
the dynamics of synthetic genetic circuits by affecting the activity of their components within the cells.
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Figure 2.10: The effect of host processes on the dynamics of synthetic circuits in E. coli cells. (A) Multiple
assays of bacterial transformation of a plasmid containing two reporter proteins, and the analysis of host inter-
ference on the two read-outs dynamics (shown as outputl and output2). The relation between the two outputs,
measured by their expression ratios (shown in the plot on the right), by varying strains (with wild-type E. coli
strain shown as MG1655, on the left plot), and by varying multiple KEIO collection knockouts (on the right plot)
(Cardinale et al. 2013). (B) The effect of media changes on the in vivo performance of the AND logic gate
designed by (Anderson et al. 2007). Cells containing the AND gate circuit were grown in various minimal media
compositions in shake flask experiments using the lab strain £. coli DH10B, in the absence (white) and presence
(black) of both inputs (inducers) of the logic gate. In the x-axis of the plot, minimal medium is shown as Min,
and the media with input variations, i.e. by tryptone and/or yeast extract concentrations, are presented as #T
and/or #Y, where # indicates their amounts supplemented in the media (in grams). Induced AND gates never
grew on minimal media without any supplement and were active in varying supplemented media. Adapted and
reprinted with permission from (Brophy & Voigt 2014) and (Moser et al. 2012); respectively, Copyright 2014,
Nature America, Inc., Copyright 2012 American Chemical Society.
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Furthermore, the kinetics of rate-limiting steps can be regulated by external factors such as environmental
conditions and stress-related processes (Muthukrishnan et al. 2014; Browning & Busby 2004; Browning &
Busby 2016). Since transcription kinetics, in most promoters of E. coli, is a 670-dependent process, the intra-
cellular concentration and activity of ¢’ are critical factors determining the expression profile of individual
cells. When cells undergo specific stress conditions, other ¢ factor units are expressed and specific cellular
responses triggered to define global changes in the dynamics of transcription of multiple genes and gene reg-
ulatory networks (Ishihama 2000). In particular, when cells are subject to sub-optimal temperatures, cells re-
spond and adapt to it by precisely regulating the activity of specific genes that, e.g. are responsible for heat/cold
shock responses (Kannan et al. 2008; Arséne et al. 2000).
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The characterization of the most relevant extrinsic factors to gene expression that can generate cell-to-cell
variability, along with the understanding of methods used by natural systems to mitigate them, can contribute
to the knowledge of which design principles and techniques for rational engineering of synthetic circuits should
be taken into account. For instance, the design of synthetic circuits with orthogonal, i.e. isolated expression
systems not coupled with cellular regulation, can be used as an alternative to avoid extrinsic sources interfer-
ence in the dynamics of genes or circuits dynamics (Rao 2012). However, this requires the complete isolation
of gene expression pathways, or expression systems, to reduce any interaction between exogenous and endog-
enous reactions, which is a not trivial task. Finally, to aid in these designs, several theoretical studies have
investigated the effects of internal and external perturbations on the dynamics of natural, artificial, and theo-
retical GRNs using several modeling and mathematical approaches (Ribeiro et al. 2006; Ribeiro 2007c;
Kauffman 1969; Veliz-Cuba et al. 2015), as the examples described in the next chapter.

In Publications IV, we studied the effects of gene location on the temperature-dependence of the kinetics of
rate-limiting steps in transcription initiation, an important regulatory mechanism of the components that com-
pose synthetic circuit. In the efforts to characterize the intracellular context where genes and genetic circuits
are inserted, the temperature-dependence of the cytoplasm viscosity, and correlation of this process with other
relevant cellular processes, such as nucleoid exclusion phenomenon and polar localization of protein aggre-

gates, were investigated in Publication V.

2.2 Methods in Synthetic Biology

2.2.1 Engineering Principles of Synthetic Biology and Advancements in Synthetic Biology
Tools

The discovery of restriction enzymes in the 1970’s paved the way for important advancements in synthetic
biology, e.g. the ability to write artificial genetic information on the DNA of natural organisms (Roberts &
Murray 1976). Techniques for molecular cloning and DNA recombination allowed the production of heterol-
ogous proteins, such as human insulin, in engineered E. coli (Goeddel et al. 1979). At the beginning of the 21*
century, with the advent of DNA sequencing techniques, scientists became able to partially ‘read” and ‘write’
the genetic information in the genome of small and higher-order organisms, e.g. humans (Fleischmann et al.
1995; Venter et al. 2001). During the recent years, both capabilities have been continuously improved. Syn-
thetic biologists, in particular, have focused their efforts in making the ‘writing’ of genetic information of
newly designed cells through a more rational process, i.e. with an engineering, controlled and predictable

framework, due to many advancements in synthetic biology techniques (Endy 2005).

These frameworks commonly take into account in silico simulations and mathematical models of an expected

network and computational tools to measure the best-fitted circuit that can perform this specific task in vivo.
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In that, from the model’s specifications, one could rationally, physically construct genetic systems and imple-
ment them in real organisms. For that to be rational, synthetic sequences, named as ‘bio-parts’, can be designed,
constructed, and empirically assembled into genetic circuits, ‘bio-devices’, by following the pre-defined dy-
namics of each component-gene from in silico analysis. Next, for the validation of the construct, the dynamics
of a genetic circuit is measured and compared with those from model predictions. In the end, a genetic circuit
with specific ‘components’ (i.e. DNA, RNA, and proteins), ‘topology’ (e.g. protein-DNA, protein-protein, or
RNA-DNA interactions), and components’ interactions that are ‘context-dependent’ (e.g. RNAp, ribosomes
and sigma factors), can be engineered (Beal et al. 2012; Haseltine & Arnold 2007).

Importantly, the knowledge from electrical engineering and components have aided synthetic biologists in the
engineering of genetic circuits. Namely, the design principles for genetic engineering have been proposed by
(Miyamoto et al. 2013) according to the similarity between electrical and genetic functions. The first principle
consists of creating standard, specific, and modular components that can be assembled into devices and sys-
tems with compatibility and simplicity (Marchisio & Stelling 2009). This way, the design of a genetic circuit
can be achieved from the characterization of their components’ input-output relationships (Weiss et al. 2003).
Second, genetic circuits can be engineered by assembling these characterized, modular component-genes with
independent dynamics from most cellular processes (Sprinzak & Elowitz 2005). Finally, fluctuations in the
components’ behaviors, if existing, have to be also characterized in order to avoid changes in the dynamics of
the assembled system. Relevantly, studies on synthetic logic gates in E. coli, in particular, are analogous to
electrical circuits, and have contributed significantly to the understanding and construction of improved auto-
regulation, switches, and genetic oscillators, or even more complex devices, such as circuits based on quorum-

sensing communication between different E. coli cell types (Bulter et al. 2004).

Efforts in rationalizing this construction framework have provided new insights into how a synthetic construct
should be designed, built, and its functioning validated in the cells. Following the design principles of synthetic
biology, i.e. capability, functionality, compatibility, modularity and predictability, forward engineering work-
flows have been proposed in order to combine specific tools, from the varying and increasing pool of possible
tools available, in a rational, precise, and efficient way, such as SynBioSS (Hill et al. 2008), Clotho (Xia et al.
2011), Cello (Nielsen et al. 2016), among others.

Besides following these principles and selecting the best-suited molecular biology methodologies, the structure
and dynamics of each genetic part must be thought, independently, in terms of its: transcription unit, input
signal, transcription regulators, and role in a network topology. As described in detail in Chapter 2, the tran-
scription unit is the promoter region of a gene that controls the expression of the sequence encoding for a
protein. Promoter sequences are usually extracted from natural systems (Nandagopal & Elowitz 2011), but can
also be synthetically modified in the search for a better-fitted dynamics, when compared to the original (Lutz
& Bujard 1997; Lutz et al. 2001; Jones et al. 2014). Then, to measure the dynamics of transcription units,

researchers have engineered synthetic probes that, once inserted in the host strain . coli, can detect and track
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single copies of RNA in individual cells soon they are produced (Gasnier et al. 2013; Golding et al. 2005;
Peabody & Lim 1996).

Following transcription and translation processes, regulatory proteins or non-coding mRNAs (Qi & Arkin
2014) are produced and, once functional, can send an activation/repression signals to one or more genes of the
network (Lucks et al. 2011). This communication depends on the association of modulators (i.e. regulatory
operator site) for this protein on the promoter region of other genes. In that, operator sites can be occupied by
regulatory proteins (activators/repressors), influencing the rate of production of gene products, mRNA, and
proteins. Additionally, transcription units can be affected by input signals from the environmental context. In
the case of external signals, cells have complex cellular processes, such as membrane-bound receptors, signal
transducers, and trans-membrane transporters, which are responsible for sensing, communicating, and physi-
cally incorporating such signals into the cells, respectively (Hoch 2000). Relevantly, Danino, T. et al. engi-
neered an inter-cellular communication genetic clock with increased sensitivity and robustness to environmen-
tal perturbations, indicating that quorum sensing is an important property of cells when designing genetic

systems (Danino et al. 2010).

Studies on the dynamics of synthetic circuits whose components, structure, and interactions with intracellular
and environmental contexts are known a priori have effectively allowed researchers to have a better under-
standing of how natural systems work (Gardner et al. 2000; Elowitz et al. 2000; Cagatay et al. 2009). In 2000,
Elowitz and Leibler built the first functional synthetic genetic clock (the ‘repressilator’, Figure 2.7) in indi-
vidual E. coli cells, which periodically activates the expression of a green fluorescent protein whose levels
inform on the circuit’s state (Elowitz et al. 2000). In the same year, Gardner ef al. constructed the first synthetic
genetic switch (the ‘toggle switch’) able to generate two-stable states based on the expression of two repressor
proteins, one repressing the activity of the other at the transcription level. After that, complex regulatory net-
works, containing multiple genes connected by protein-DNA repression/activation reactions and positive/neg-
ative feedback loops, were built to perform logic-gates functions (see e.g. Figure 2.9) (Siuti et al. 2013; Chen
et al. 2012). Finally, regarding the role of each component in the network topology, in silico and in vivo studies
have investigated how regulatory networks with varying topologies can generate similar system dynamics, and
why particular circuit-architectures are preferred by cells to accomplish specific cellular tasks (Cagatay et al.
2009).

2.2.2 DNA Assembly and Genome Engineering Techniques

More recently, advances in DNA assembly and de novo synthesis technologies (Gibson et al. 2009) have al-
lowed researchers to construct the first functional artificial genome of Mycoplasma genitalium (Gibson et al.
2008). In that, multiple small fragments of DNA have been, separately, synthesized and assembled into larger
pieces of DNA, then finally transferred into a genome-free host cell. The unification of these pieces into an
artificial genome occurs when these fragments recombine in specific order inside the organism itself (Dymond
et al. 2011; Daniel G. Gibson et al. 2010; Daniel G Gibson et al. 2010). Lastly, these advancements have
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contributed to the efforts in engineering artificial organisms with a completely programmable genome, with
pre-defined specifications and functions.

The DNA assembly methods are able to create genetic parts with standardized and modular specifications,
which are necessary steps for the rational engineering of complex systems. During the past decade, several
fast, cheap, reliable DNA assembly methods have been reported. A survey conducted by (Kahl & Endy 2013)
revealed the most used methods for de novo DNA synthesis of small fragments and physical assembly of DNA
fragments by recombination techniques. An expressive reduction in the costs of de novo DNA synthesis, along
with the ability to design and predict the functioning of genetic constructs, has allowed synthetic biologists to
move from traditional methodologies, such as molecular cloning using traditional restriction enzymes, to mod-
ern protocols and frameworks for the design of artificial systems in prokaryotes (Nielsen et al. 2016) and
eukaryotes (Khalil et al. 2012). Meanwhile, advancements in the precision and cost of DNA recombination
techniques have allowed scientists to assemble DNA fragments, e.g. small gene cassettes, into much large final
fragments, or to implement modifications in parts of the genome (i.e. biochemical pathway or large cassettes)

to create completely new synthetic genomes.

Up to date, many innovative recombination techniques have been developed, and widely implemented by re-
searchers for DNA assembly tasks (Ellis et al. 2011; Engler et al. 2008; Beal et al. 2012). In particular, the
‘Gibson Assembly’ method introduced in 2009 by (Gibson et al. 2009), very suited to constructions of multiple
(and long) DNA fragments that require simultaneous ligation forming large DNA products. This technique has
proven its value when employed in projects aiming at synthesizing complete functional genomes, such as the
Mycoplasma genitalium (Gibson et al. 2008) and; mouse mitochondria (Daniel G Gibson et al. 2010), and then

implementing them into host cells, e.g. in M. capricolum recipient cells (Daniel G. Gibson et al. 2010).

The ‘Gibson Assembly’ methodology consists of a master mix reaction based on the ‘one-step isothermal
reaction’ strategy connects multiple DNA fragments by using specific overlapping sequences (overhangs be-
tween two or more fragments to be ligated) that are incorporated into each fragment. After preparing the frag-
ments with specific overhangs by polymerase chain reaction (PCR), these fragments sharing complementary
regions are then ligated using a ‘one-step PCR reaction mix’ containing the enzymes T5 exonuclease and DNA
polymerase (Figure 2.11).

When considering DNA assembly methods in an engineering framework, an important aspect of the method
that needs to be taken into account is its scalability, i.e. its ability to rapidly and modularly produce standard
genetic parts that can be easily implemented into multiple large constructions, with no need for further modi-
fications in the future. Because ‘Gibson’ assembly demands the creation of overhangs between fragments to
be ligated by PCR or de novo DNA synthesis, every time a new ligation is required, new fragment combina-
tions with new overhangs need to be produced, a protocol that cannot be used in a rapid forward engineering
manner. The forward engineering platforms require a great scalability of all methods involved in the frame-

work so that the production of solutions can be automatized.
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Figure 2.11: Schematics of Gibson Assembly one-step isothermal reaction. The PCR reaction occurs isother-
mally at 50°C with a reaction mix containing the DNA fragments to be ligated (harboring overhangs, i.e. points
of ligation), the T5 exonuclease, the DNA polymerase (here referred to as ‘Phusion polymerase’, and the DNA
ligase (referred to as ‘Taq ligase’). In this scheme, two target DNA fragments are treated (de novo synthesized
or amplified by PCR) so as to present a complementary region (Overlap, in black), and new overhangs in the 5’
ends of the fragments are treated by the exonuclease. Next, the targets annealed in their 3’ overhangs, and are
covalently sealed by the activity of both the DNA polymerase and DNA ligase filling the gaps of the final ligated
DNA product. Adapted and reprinted with permission from (Gibson et al. 2009); Copyright 2009, Macmillan
Publishers Limited.

To keep the assembly of standard parts fast and automated, synthetic biologists have most commonly used a
hierarchical design strategy and DNA assembly methods that are based on the use of unique restriction en-
zymes. In that, depending on the hierarchy of the construction step and the function of each DNA piece to be
ligated, the DNA fragment is flanked with a different restriction enzyme type. That is, if a particular fragment
is in a lower hierarchical level (e.g. promoter sequence, RBS, open reading frames), then this first fragment
receives enzyme X, while if another fragment is in a higher hierarchical level (e.g. individual gene), then it
harbors an enzyme Y, and so on (Speer & Richard 2011). Although being beneficial in terms of modularity,
compatibility, and scalability, these methods can be somewhat time-consuming due to their dependency on
restriction-enzymes molecular cloning protocols. Then, most recently, a more modern, innovative, and high-
throughput assembly methods, such as MoClo (Weber et al. 2011), and Gateway® cloning BP and LR reaction
(Guye et al. 2013), have been proposed. They are based on the same principle of hierarchical design (with the
use of non-conventional restriction enzymes) and the cornerstones of an alternative sub-cloning method called
Golden Gate (Engler et al. 2008). In detail, Engler, C. ef al. have used type Il restriction sites to ligate multiple
DNA targets to prove its high-throughput capability in transferring any DNA fragment of interest from a plas-

mid into an expression vector, without leaving any sequence fragments behind.

Type IIs restriction endonucleases can cleave the DNA during ligation at defined distances relative to their
non-palindromic asymmetric recognition sites. Interestingly, after ligation, these enzymes can remove their
restriction sites completely out of the final product, while keeping intact the desired sequences flanking the
location of the restriction sites in the target fragments (Pingoud & Jeltsch 2001). This allows for sequential
sub-cloning assembly set-ups of multiple sequences with no interruption of the process when physically ob-

taining these fragments from a library. However, when an entry clone fragment is to be ligated to an expression
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vector by e.g. Bsal (a type II enzyme) and the activity of T4 DNA ligase, non-desired intermediate products
can be also created and need to be removed from the final product. For that, since only the desired product (i.e.
a restriction-site-free construct) is stable in the final solution, this can select during downstream selection
treatments, such as the clones selected based on their kanamycin resistance and galactosidase activity (Engler
et al. 2008).

Moreover, when instead of constructing synthetic systems, one is interested in modifying the information writ-
ten in the chromosome of an organism, synthetic biologists have used genome editing techniques to reprogram
key regulatory pathways in several organisms, including E. coli. Most of these studies focused on the metabolic
engineering of organisms aiming to improve cellular processes, cellular behavior, enhanced conversion of
substrates to products, and to develop improved artificial systems for novel products production in e.g. bacteria
and yeast (Martin et al. 2003; Paddon et al. 2013). In the latter, in particular, recombination-mediated genetic
engineering techniques, based on homologous recombination systems, such as the bacteriophage A-Red system
(Zhang et al. 1998), are commonly used for bacterial and yeast manipulation (Baba et al. 2006; Baudin et al.
1993). Interestingly, The re-writing of the stop codons to a different triplet sequence in the whole genome of
E. coli was used to investigate the functionality of biological processes in recoded organisms (Lajoie et al.
2013). To date, maybe the most promising and revolutionary method for chromosome editing is named
CRISPR. This method is based on the natural prokaryotic immune response to foreign genetic elements, and
it has been reported to effectively and specifically make modifications in genes within multiple organisms,
providing an important opportunity to advance genetic-dependent therapies and diagnosis (Sander & Joung
2014; Zhang et al. 2014).

In Publications II and IV, using computer-aided design, DNA assembly, and genetic engineering tools, two
constructs were engineered aiming at performing specific tasks in E. coli, respectively, a single-copy F-plasmid
repressilator (SCR), and a DNA fragment containing multiple repeats for individual mRNA detection. The
latter was further integrated into E. coli’s chromosome and in a single-copy plasmid. The construction plan

and validation of these constructs are presented in section 4.1.

2.3 Methods for RNA Detection and Quantification from Single-Cells Images

Biological systems, including monoclonal cell populations, exhibit diversity of phenotypes (Elowitz et al.
2002). One cause is noise in gene expression. Classical bulk measurements of gene expression, such as quan-
titative PCR (qPCR) and RNA sequencing (RNAseq), while of use to analyze the mean behavior of cell pop-
ulations, are not able to capture the cell-to-cell variability (Snijder et al. 2009). To address this, quantitative
measurement techniques have been developed for analyzing the dynamics of such systems at the single-cell,
single-molecule level, using live cell fluorescence imaging methods (Golding & Cox 2004; Mékeld 2016;

Golding et al. 2005). The ability to detect fluorescent molecules in biological samples is inversely correlated
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to the difficulty that a fluorescent measurement approach (i.e. fluorescent probe selected and fluorescent tech-
nology available) has in distinguishing two features located closer than approximately half of the wavelength
of the illumination light, defined by Rayleigh’s resolution limit (Born & Wolf 1999). This criterion, and other
aspects of the illumination (e.g. the number of molecules occupying the same region) and the noise-to-signal
ratio (affected, e.g., by cell background fluorescence), need to be considered when choosing the fluorescent

probe and fluorescent microscopy technology to employ.

Fluorescent proteins have been isolated from organisms, such as GFP from the jellyfish Adequorea victoria
(Prasher et al. 1992), and used as labels of target proteins in live cells (Tsien 1998), becoming useful tools in
biotechnological applications. These applications follow the advances in molecular biology techniques and
synthetic biology that allow, e.g. the engineering of DNA probes de novo and their implementation in live
cells, such as E. coli (Yu et al. 2006; Golding et al. 2005). Recent advances in the properties of fluorescent
proteins, allow for most of the visible spectrum of light to be sampled by unique fluorescent proteins (Shaner
et al. 2004; Day & Davidson 2009), and new properties, such as photo-activation (turn protein On/Off) and
photo-conversion by exciting them with lights of specific wavelengths, can now be used as applications in
biological sciences (Day & Davidson 2009; Wu et al. 2011), including advanced imaging techniques, such as
super-resolution microscopy (Huang et al. 2009). Furthermore, fluorescent probes (FP) have been structurally
improved into modified structures that can last longer in live cells, as e.g. the mutated GFP fluorescent probe
used for individual mRNA detection (Golding & Cox 2004).

The development of fluorescence microscope technologies towards attaining increased resolution and contrast
in fluorescence images have followed the advances in fluorescent labeling techniques, allowing the progress
of live-cell studies and measurements of biological processes in their native environments. Methodologies of
super-resolution microscopy can attain higher image resolution (i.e. the ability to distinguish between two
objects in an image) than the diffraction limit in fluorescent images (Neice 2010). Two of these methodologies,
i.e. the stochastic optical reconstruction microscopy (STORM) and the photo-activation localization micros-
copy (PALM), can achieve up to 10 nm spatial resolution (out of the usually ~200-300 nm defined), even when
a great number of target molecules are present in the system (Huang et al. 2009; Walter et al. 2008).

To attain higher contrast (i.e. the distinction between objects and image background), the methodologies, re-
gardless if they can achieve super-resolution, must consider the physical reduction of noise that is unavoidably
created by the measurement technique used during image acquisition. In the case of confocal microscopy tech-
nology, it requires the use of a pinhole (light blocker) that reduces the volume of light from out-of-focus regions
(Pawley 2006). Other microscopy technologies, such as the total internal reflection fluorescence (TIRF) mi-
croscopy (Axelrod 1981) and the highly inclined and laminated optical sheet (HILO) microscopy (Konopka &
Bednarek 2008) have proposed the increase of contrast by illumination of a thin region, in between the cover
glass, the gel-pad, and the micro-slide where light penetrates (~150 nm from the surface in the case of TIRF),
due to the inclination of the laser beam, thus avoiding light from out-of-focus regions. Differently from the

above, in the conventional wide-field epi-illumination fluorescence microscope, due to its lack of pinhole (or
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any exit slit) in the light path, the light emitted from out-of-focus regions is usually not easily distinguished
from those of focused regions, which increases the background fluorescence in the images.

FPs can be used to probe RNA numbers in live cells by different means (Pitchiaya et al. 2014). Among the
most relevant methods to achieve single RNA sensitivity, the most common methods are based on two strate-
gies. First, one can use the direct binding of multiple FPs to structural motifs in the RNA (Golding & Cox
2004; Fusco et al. 2003), where an RNA fragment spontaneously forms stem-loop secondary structures that
are chemically reactive to specific protein motifs (Keryer-Bibens et al. 2008). Second, one can use methods
based on the sequence-based complementary hybridization of RNA labels carrying a fluorescent protein (e.g.
FISH) with multiple specific RNA motifs (Raj et al. 2008; Levsky 2003). These methods allow measurements
of cell-to-cell variability in endogenous RNAs, not possible by ensemble methods such as gPCR and RNAseq
methods (Raj & Oudenaarden 2008). In the former, in particular, a DNA fragment containing multiple stem-
loop RNA structures are designed in the DNA template of a target gene, so that multiple tagging proteins, the
protein with affinity to bind to stem-loop RNA structure fused with a FP, can bind to the same nascent RNA
molecule, allowing the detection and tracking of single mRNA in live cells (shown as a spot of light in fluo-
rescence microscope images, e.g. Figure 2.12-B) (Fusco et al. 2003; Golding et al. 2005; Coulon et al. 2013;
Larson et al. 2011; Hocine et al. 2013). To achieve a good contrast to differentiate spots of light (corresponding
to the appearance of mRNA molecules) from the cell background fluorescence, the high production of fluo-
rescence tagging proteins not yet bound to an mRNA molecule contributes to increasing cell background flu-

orescence, and thereby, entails the need for higher number of binding sites in the target RNA.

In this approach, to allow the detection of a target RNA as soon as they are produced in live cells, fused FPs
(part of the reporter system) should be produced independently and extensively prior to the target promoter
activation (part of the target system) (Golding et al. 2005; Mékela 2016). Relevantly, the tagging of MS2-GFP
fused proteins provides the mRNA with a long lifetime and constant fluorescence beyond the observation time
of the measurement (Tran et al. 2015). The two systems can be genetically designed and integrated into plas-
mids or E. coli’s chromosome, as the MS2-GFP RNA tagging system implemented in all studies of the publi-
cations of the thesis. In Publications III and IV, MS2-GFP tagging system was used to detect mRNA mole-
cules as soon as they are produced by the target promoter Piac-ara-1 (Figure 2.12-B) and Piaco301, contributing

for the better understanding of the cell-to-cell variability of gene expression in live E. coli cells.

The use of multiple binding sites also provides higher precision in detecting individual RNAs, by reducing the
effect of undesired photo-bleaching during image acquisition. This, however, comes with several problems in
the RNA quantification during image analysis: (i) the amount of fluorescence per tagged RNA fluctuates due
to the incomplete and heterogeneous binding of tagging proteins to the stem-loop RNA structures (Fusco et al.
2003; Wu et al. 2012); (ii) the functioning of target RNAs can be affected by the binding of multiple tagging
proteins (Wu et al. 2012), becoming e.g. safe from natural degradation (Golding & Cox 2004; Tran et al. 2015).

One must account for these facts when designing new RNA tagging systems.
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Figure 2.12: (A) Schematic representation of the genetic components present in the engineered MS2-GFP RNA
tagging system used for live imaging of E. coli cells of the DH5a-PRO strain. In detail, the RNA tagging system
consists of a ‘target gene’ located in a single-copy F-plasmid and induced by IPTG, taken by cells from the media.
When in the cytoplasm, IPTG neutralizes the overexpressed Lacl repressors by forming inducer-repressor com-
plexes (Lacl-IPTG), allowing the promoter Pjac.ara-1 to express RNA molecules carrying an array of 48 MS2-
binding sites. Meanwhile, the expression of MS2d-GFP tagging proteins is controlled by the activity of the P
wet0-1 promoter regulated by the activity of TetR repressor (constitutively produced by E. coli’s chromosome) and
the inducer anhydrotetracycline (aTc), also obtained externally. The reporter system is located in a multi-copy
plasmid to allow the abundant production of MS2-GFP fused proteins prior to the activation of the target. In this
system, once an RNA molecule is produced, multiple MS2d-GFP tagging proteins (here, referred to as ‘G’) rap-
idly binding to the RNA stem-loop structures, forming a visible bright spot under confocal microscope. (B) Ex-
ample of confocal microscopy image of E. coli cells expressing the MS2-GFP proteins and target RNAs. The
uniform background of the cell is visible due to abundant MS2-GFP production, due to the unbound MS2-GFP
freely diffusing in the cell cytoplasm, while individual RNA molecules appear as fluorescent bright spots. Image
in (B) obtained and adapted from Publication III.

Finally, the advent of fluorescence probing methodologies for studying the dynamics of cellular processes in
live cells has made possible the use of such methods for many biological studies, including of the biophysical
properties of cells. In Publication V, for example, we measured the mean displacement of MS2-GFP RNA
complexes, considered as synthetic protein aggregates, within the cytoplasm in live E. coli cells, to evaluate
the temperature-dependence of the biophysical properties of cell cytoplasm, in this case, the cytoplasmic vis-
cosity. This study required selecting an adequate fluorescence probe and fluorescence microscopy technology,
developing tailored image and data analysis software tools as well as inference methods of data-driven math-
ematical models (Hékkinen & Ribeiro 2015), and the use of microscope platforms mimicking natural environ-

ments for the cells while under observation (presented in section 4.2).
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3 THEORETICAL BACKGROUND

This chapter gives an overview of the theoretical concepts of the modeling of biological systems. It also pre-

sents the modeling techniques and the simulation algorithm used in this thesis.

3.1 Stochastic Models of Gene Expression

3.1.1 Stochastic Simulation Algorithm (SSA) — Monte Carlo Simulation of the Chemical Mas-
ter Equation (CME)

A chemical reaction is the instantaneous transformation process of types and quantities of chemical substances,
named as ‘reactants’, into other substances different in properties, named as ‘products’. The transformation
process of molecules when occurring in live organisms, or in cell-free systems (e.g. myTXTL®), mediated by
a biocatalyst that can alter its rate and specificity, is called biochemical reaction. The collection of biochemical
reactions that occur inside an organism is known as metabolism and is responsible for keeping cells alive at
all times. The occurrence of these events inside cells is determined by the presence, position, and velocity of
each individual molecule necessary for each biochemical reaction at each time moment. To understand and
predict the behavior of these dynamical systems in live cells, multiple theoretical methods and models have

been proposed, most of which are mathematical formalizations of the biological processes.

In deterministic methods, the models can provide qualitative information on the long-term behavior of the
system with no room for random variation, informing on the dynamics of the system by population concentra-
tions alone in a single trajectory through the state space. This, however, is not valid to describe the quantities
and the timing of the interactions between species in biochemical reactions. On this regard, given that bio-
chemical species appear in very low copy numbers in cells (Taniguchi et al. 2010) and that the time evolution
of their interactions is stochastic (Gillespie 2007), realistic modeling approaches can provide a qualitative
understanding of the dynamics of a system. In that, the probability distribution of the states that a system
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occupies at a given time and the transition between these states as time evolves are described by the stochastic
chemical kinetics (Gillespie 2007).

The stochastic approach considers the following definitions: namely, (i) N chemical species exist in the quan-
tities {Sy, - , Sy} in a well-stirred system; (ii) the system has constant volume (V') when in thermal equilibrium
at constant a temperature; (iii) the biochemical species {Sy, -+ , Sy} can interact through M chemical reactions
{Ry,:+ , Ry} resulting in a variation in their quantities; (iv) the number of molecules of species S; in the system
at a given time t is represented as X; (t); and finally (v) the state vector X(t) = (X;(t), -+ , Xy (t)) can be es-
timated, given an initial condition assuming that the system was in state X, = X, at the initial time t,
(Gillespie 2007). Since in stochastic implementations systems are assumed to be well-stirred and to have con-
stant volumes system, the position and velocities of individual molecules during all collisions and non-reactive
collisions (i.e. not resulting in changes in species quantities) can be neglected (Daniel T. Gillespie 1977). Thus,
only molecular collisions involved in reactive reactions, which change the numbers of chemical species, are
considered (Gillespie 2007).

In the stochastic chemical kinetics, the changes in biochemical species amount caused by a reactive reaction
(Ry) are determined by two quantities. First, a state-change vector v = (vlu, ,VNH), where vy, is the
change in the S; species population. Second, a propensity function (@) that specifies the probability of reac-
tion R, to happen in the next infinitesimal time interval [t,t + dt) in the volume V, defined as follows
(Gillespie 2007):

Given X(t) = x, a,(x) = ¢, x h(x) 3.1

In Equation 3.1, h(x) is a vector with all possible combinations of reactants of the reaction R, at a given time
t. Derivations of the propensity function a,, can be written depending on the underlying physics of the reac-
tions that determine variations of h(x). For instance, for a first order reaction (S; — Product), the constant
¢, is the probability that any molecule of species S; will react in the next infinitesimal time interval dt. The
higher the number of molecules of S; in the system (defined by the vector x,), following the laws of probabil-
ity, the higher is the probability that a particular molecule will react (a,,(x) = ¢, X x;). Meanwhile, for second
order reactions (S; + S, — Product), the propensity function is written following the law probability of two

species to react given their numbers in the system at a particular time (@, (X) = ¢, X X1 X x3) (Gillespie 1976).

The changes in species population defined by biochemical reactions, at any particular time, can be considered
as a Markov process (satisfying the Markov property of a ‘memoryless’ system), and the propensity function
a,, solely dependent on its current state (i.e. independently from its history of past states) (Gillespie 2007).

Then, assuming that P(x, t | X, to) is the state probability of the complete system at time t, the probability of
the system to be in state x at time t + dt can be written as follows:
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P(x,t+dt | Xg, to) = P(x,t | X, to) X P(no reactionin [t,t + dt)) +
M

Z (x—vu,t | Xo, to) X P(one reaction R, in [t,t + dt))
u=1

32

The temporal evolution of the probability density function of X(t) can be deterministically derived from equa-
tion 3.1 and from the laws of probability in 3.2 and described as a partial differential equation, i.e. the Chemical
Master Equation (CME) (Gillespie 1976), defined as:

P(x t|x0 ty)
R T— = Z [ay(x — v )P(x — vt | Xo, to) — ap(X)P(x,t | Xo, to)] 33

p=1

The CME in 3.3 then determines a set of coupled ordinary differential equations that inform on the probability
that a system will have a particular molecular composition, i.e. a combination of biochemical species amounts,
given an initial condition, at a particular time in the future. Then, depending on the different types of biochem-
ical species, the amounts of each species in the system, and the number of reactions of the system, the space
of all possible states created by the CME can be virtually impossible to be solved analytically. To avoid this
problem and calculate the dynamics of these systems, the use a Monte Carlo approach has been proposed to
construct a set of simulated trajectories of random samples of the probability density function of X(t) as a
function of t, using a stochastic simulation algorithm (SSA) (Gillespie 1976; Gillespie 1977).

The simulation of individual trajectories using SSA is based on a new probability function p(z, u|x, t)dt that,
given the state of the system X (t) = x, defines the next reaction Ry, will occur in the infinitesimal time interval
[t +7,t + 7 + dt) (Gillespie 2007). This probability function p(z, u|x, t)dt describes the joint probability
density function of two random variables: (i) the time when the next reaction will occur (7); and (ii) the index
of the next reaction () that will take place. An exact formulation of p(z, plx, t)dt can be derived from (3.1)
and written as follows (Daniel T. Gillespie 1977; Gillespie 2007):

p(T,ulx, 1) = @, (exp(~ao (7). 34

where, ay(x) = 2921 a;(x). 35

From the mathematical basis of SSA described in equations (3.4) and (3.5) [69], T is an exponential random
variable with a mean of 1 / ao(x), and p is a statistical independent random variable with point probabilities
a, (x) / ag(x). The calculation of 7 and  can be achieved by the original Monte Carlo algorithm named *di-
rect method’ that accounts for the standard inversion generating method of Monte Carlo theory, following their
uniform distributions (Gillespie 2007).

Finally, by running a simulation of the SSA in time with a probability density suited for shorter time and lower

data storage consumption, users can create multiple trajectories of the system, i.e. multiple realizations in the
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possible state-space described by the CME, thus yielding an exact estimation of the details of the dynamics of

the system with certain precision.

3.1.2 Delayed SSA and Stochastic Model of Transcription

In general, stochastic models of gene expression assume that the events involved in gene expression are in-
stantaneous reactions, following the occurrence cascade represented by the central dogma of molecular biology
(namely, gene activation - [mRNA] — [protein]). In that, the processes of transcription, translation, and
of mRNA and protein degradation are considered stochastic reactions. Therefore, the time interval between
occurrences per unit time of these processes follow exponential distributions and are modeled as independent
Markov processes (Paulsson 2005a) using the SSA approach described (Gillespie 2007). However, other cel-
lular processes involved in gene expression, such as transcription elongation (Greive & von Hippel 2005) and
protein maturation (Megerle et al. 2008), can last for minutes before completion. Since this non-negligible lag
time for completion cannot be simulated in the original SSA, a new version of the SSA approach was proposed
so that ‘delayed reactions’ are introduced (Gibson & Bruck 2000). In that, although the knowledge of all pos-
sible steps of a process might not exist, models including delays can be supported by measurements of the
overall duration of the process or following arbitrary distributions of such events. Overall, in a delayed reaction,
when a reactant is consumed/removed from the system, the product is stored in a wait list and only released to

take part into other reactions after a certain lag time.

The use of the delayed SSA has allowed the implementation of multiple delays for each reaction in delayed
stochastic models (Roussel & Zhu 2006). Studies using delayed stochastic models have then investigated the
potential effects of delays on the dynamics of transcription initiation (Ribeiro 2007a) and of small gene regu-
latory networks (Ribeiro 2010). In delayed stochastic models of gene expression, the following concepts must
be taken into account in order to realistically model biological processes. First, time delays t; can be used to
represent the lag time that mRNAs and proteins take to be produced from multiple steps in transcription and
translation processes, respectively (Roussel & Zhu 2006; Ribeiro 2010; Bratsun et al. 2005; Ribeiro et al. 2006).

Second, since in live cells transcription and translation are independent from one another and the translation
of proteins from single mRNA molecules is a noisy process (Zhu et al. 2007), they must be modeled as two
independent stochastic reactions. Finally, since the mean and noise of mRNA and protein numbers are affected
by their both production and degradation processes in live cells (Paulsson 2005b), the temporal dynamics of

RNA and protein numbers must consider the following reactions (Paulsson 2005a):

Pro,,, +RNAp—k’—> Pro (7,) +RBS (7,) +RNAp (7,) 3.6
RBS + Rib—5 RBS (z,)+ Rib (z,) + Prot (z,) 3.7
RBS _9ma_ o 3.8

Prot d protein %) 39
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In this model, the processes of transcription and translation of a constitutive gene (i.e. not subject to repression)
are described in (3.6) and (3.7), and their stochastic rate constants represented as k; and k., respectively. The
species involved in these reactions are: (i) the promoter region (Proon) of the gene in the ‘ON’ state (i.e.
available for RNAp to bind); (ii)) RNA polymerases (RNAp); (iii) ribosomes (Rib); (iv) the RBS of a tran-
scribed mRNA; and (v) a translated protein (Prot).

The time delay (7;) of appearance of a product from a multi-step reaction (e.g. 3.6) is a random variable deter-
mined by the single probability distribution that best approximates the overall dynamics of this complex reac-
tion (Ribeiro et al. 2006). Namely, 7, determines the time taken for by RNAp to release the promoter region
after the steps in transcription initiation, prior to elongation complex formation; 7, is the time taken by a ribo-
some to elongate an mRNA molecule depending on the length of the gene’s open reading frame (ORF); 75 rep-
resents the time that a RBS stays occupied by a ribosome; 7, is the time taken by a ribosome to complete the
translation of a protein and get released from mRNA molecule; and finally, 75 is the time taken by proteins to
become functional (i.e. protein folding). Finally, the processes of mRNAs and proteins degradation occur at
dynq and dy,yo; constant rates and are described in reactions (3.8) and (3.9), respectively. Importantly, these
two reactions have been shown to exhibit exponential-like behavior in prokaryotes (Taniguchi et al. 2010;
Bernstein et al. 2002), and to be crucial regulatory factors of the dynamics of small genetic circuits (Cameron
& Collins 2014).

Inducible promoters, on the other hand, are transcribed only when induced, due to having their transcription
activity regulated by transcription factors (TF), such as repressor (Rep) molecules, which can down-regulate
the activity of the promoter by an occlusion mechanism (Garcia et al. 2010) that prevents RNAp from binding.
One example of such a mechanism in prokaryotes is the /ac operon regulation, where Lacl dimers can occupy
specific operator sites of the native /ac promoter, which prevents transcription initiation (Oehler et al. 1994).

Such repression mechanism can be modeled as follows (Ribeiro & Kauffman 2007):

krep
Pro,, + Rep Z=——=Pro; 3.10

kunrep

In reaction (3.10), a repressor (Rep) molecule binds to a promoter in ‘ON’ state (Proon) at k;.p, constant rate
and forms a promoter-repressor complex that prevents the binding of RNAp to the promoter region and sets
the promoter in ‘OFF’ state (Proorr). The unbinding of the repressor from the promoter region sets the promoter

to ON state and occurs at Kyprep constant rate.

The values set for the parameters of the above reactions can be obtained from empirical data of several studies
that are based on the genome-wide heterogeneity in RNA numbers (Bernstein et al. 2002; Taniguchi et al.
2010), the kinetics of transcription initiation of individual genes (Lloyd-price et al. 2016), the dynamics of

translation process at the single protein level (Mitarai et al. 2008; Bremer & Dennis 1996; Kennel & Riezman
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1977), the properties of protein folding and activation in live cells (Cormack et al. 1996), and the behavior of
natural and synthetic genetic circuits (Arkin et al. 1998).

Relevantly, the knowledge from the dynamics of gene expression in live cells by single-RNA measurements
have allowed the multi-step transcription process of an active promoter Pon, represented by 7, in reaction 3.6,
to be alternatively model by a sequence of rate-limiting steps in transcription initiation activity, as follows
(McClure 1980):

-

k
prOON+RNApk—1) cc—f s o005 Pro,, +RBS +RNAp (7,) 3.11
1

In equation (3.11) and Figure 2.3, the transcription rate k; and the time delay 7, are replaced by the following
reactions: (i) the CC formation after RNAp finds and binds to an active (free) promoter (Proon) at the rate k4,
and k_; is the rate of reversibility of CC (Chamberlin 1974); (ii) the OC formation at the rate k, (Saecker et
al. 2011; Chamberlin 1974); and (iii) the promoter clearance and elongation complex formation at the rate ks,
after OCs undergo rapid cycles of abortive initiation until a productive initiation (Hsu 2002; Straney &
Crothers 1987). In the end, an mRNA is synthesized, still represented by the time delay t, for RNAp to com-
plete elongation and release the mRNA. Relevantly, due their much shorter time-length when compared to the
time taken for transcription initiation, when using this type of model simplification, both the rate constant k3
and the time delay 7, can be considered negligible (Lloyd-price et al. 2016).

Finally, the set of reactions and possible derivations presented here can be used to model the dynamics of gene
expression and regulatory networks, e.g. genetic switches and repressilator circuits, to support empirical stud-
ies in many ways, from engineering in vitro and in vivo implementations of these systems to generating hy-
pothesis that can be empirically tested, to fitting distributions of empirical data of biological systems aiming
at characterizing their underlying mechanisms. In Publication III, we used a model of transcription initiation
(Hékkinen & Ribeiro 2015) that accounts for the active-inactive promoter model (Peccoud 1995) and the se-
quential model of transcription initiation (McClure 1985; Saecker et al. 2011), as the one described in equation
3.11, where a promoter can switch between being active and inactive (on/off) for transcription to initiate,
depending on the binding and unbinding of regulatory molecules (Golding & Cox 2006; Lutz & Bujard 1997).
Importantly, the “full commitment” of the system to produce an RNA molecule only occurs once an individual
RNAp reaches the OC formation step, which, differently from the CC step (Kontur et al. 2008; Roe et al. 1985),
makes highly unlikely that the system returns back to the previous states (Kontur et al. 2008). By fitting this
stochastic model to the empirical data, we detected which rate-limiting steps during RNA production were
most responsible for the observed differences in transcription dynamics between environmental conditions. In
the end, the derived models were used to explore a possible cause for why the identified steps were identified

as the main cause for behavior modifications with changing temperature.
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In Study IV, based on models and parameter values derived from studies of transcription initiation, including
genome-wide studies of variability in transcript counts (Taniguchi et al. 2010; Bernstein et al. 2002), transcrip-
tion dynamics of lac-derivative promoters and mean RNAp intracellular concentrations (Lloyd-price et al.
2016; Kandavalli et al. 2016), and long-lasting super-coiled states driving stochastic bursts in bacterial genes
(Chong et al. 2014). In that, assuming that the promoter is integrated in the chromosome, we performed 500
instances of 75 minutes-long simulations of a stochastic model of transcription initiation for differing rates of
promoter escape from a supercoiled state, with high values corresponding to high temperatures (30 °C), as
reported in (Chong et al. 2014). We extracted the expected mean relative RNA numbers in individual cells for
every 15 minutes, as in the empirical data, and found that the differences in mean RNA production rate over
time between cells with the chromosome-integrated promoter at critically low (10 °C) and at high (30 °C) can
be explained by a positive supercoiling buildup on the DNA segment that eventually stops transcription initi-

ation of chromosomal genes, when at critically low temperatures.

3.1.3 Delayed Stochastic Model of Small Genetic Networks

Several modeling strategies have been employed to investigate in silico the dynamics of both natural and ab-
stract genetic circuits, as a means to obtain comprehensive understanding of the building blocks of biology
and the principles, not possible through only experimental approaches, upon which new, simpler, and more
general in vivo synthetic systems with pre-defined kinetics should be based (Hasty et al. 2001). Researchers
must define which parameters and features are the most relevant for a particular modeling strategy. In the case
of oscillatory systems, e.g. the ‘repressilator’ (Figure 2.7), to simulate the dynamics of this network, authors
have presented a model strategy that accounts for the stochasticity of coupled reactions using a SSA (Daniel

T Gillespie 1977) due to the stochastic nature of the reactions involved in the system.

Lipshtat, A. et al. used a stochastic model combining network structures and key biological features of this
system to demonstrate, from in silico analysis of the dynamics of genetic toggle switch for a range of biologi-
cally relevant conditions, that an appropriate combination of the stochasticity of the interactions and the net-
work structure is sufficient to give rise to bi-stability, even in the absence of cooperative binding of transcrip-
tion factors to promoters (Lipshtat et al. 2006). However, the interaction of these regulatory molecules in the
promoter region has been shown to be essential in determining the kinetics of transcription initiation (Mékeld
2016; Golding & Cox 2004), thus the behavior of the gene networks where individual genes are present. On
this regard, using a similar modeling strategy of gene expression and transcription regulation to the set of
reactions described in the previous section, Ribeiro, A.S. et al. studied the dynamics of small gene regulatory
networks by employing the delayed SSA approach and stochastic models of a couple of genes that can interact
among them via the binding/unbinding activity of transcription factors produced by a gene to their respective

operator sites located in the promoter region of another (Ribeiro 2010; Ribeiro et al. 2006).

Aside from the activity of regulatory molecules, many other parameters, such as promoter strength, mRNA

and protein degradation rates, and gene copy-number, can be used as a means to alter the dynamics of small
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genetic circuits (Brophy & Voigt 2014). Delayed stochastic models have been widely used to accurately de-
scribe the dynamics of varying small genetic circuits, e.g. genetic switches and oscillatory systems, as well as
to predict the effects of perturbation in the intracellular and extracellular contexts (Rajala et al. 2010; Zhu et
al. 2007; Ribeiro 2007a). For such studies, the general modeling strategy of small genetic circuits was proposed
in (Ribeiro et al. 2006), including the following set of delayed reactions:

Pro{ 7 +RNAp#> Pro{ }(r)+RBS’(rl)+RNAp (z3) 3.12
RBS'+ Rib— 5 RBS(z!) + Rib(!) + Prot' (/) 313
Pro’&mﬁ Prot” — i Pro’{wmtw’ 3.14
Proé»ﬁpmtw’%+ Prot® — s Proiwmﬁ’m} 3.15
Proiwmw’m} AT Pro%ojw} + Prot"~* 3.16

RBS — %mai s o 3.17

Proti — Jeroteini g 3.18

Pro%’mprmw’ . SEL/EEN Pro@o, » 3.19

Pro’ + RNAp— 5 Pro (¢') + RBS (z') + RNAp (') 3.20

Similar to the set of reactions previously described, reaction (3.12) describes the transcription process, where
Pro{iﬁ} denotes the promoter of gene i in the system, and the array {op} is the set of operator sites and their
activity states (i.e. whether bound or not by repressors), which thereby defines the state of the promoter {op}
as either repressed ‘{---, Prot"?,--- }" or activate ‘{---,0, --- }’, respectively. The translation of the proteins of

gene i from their individual mRNA molecules (RBS?) is described in reaction (3.13).

Next, in reaction (3.14), structural variations of the repressor monomer (Prot") produced by gene w, such as
dimers and tetramers (Rutkauskas et al. 2009), are represented as Prot?, and their binding affinities to gene i
are denoted as k; ,,, ,. The general reaction of cooperative binding/unbinding of repressors to promoter operator
sites of gene i (Pro{i..,y protw....}) are represented in reactions (3.15) and (3.16), respectively. As such, the state
of promoter resulted from the cooperative binding/unbinding reactions are denoted as {---, Prot"#,---} and

{---,0,--+}, respectively. Nevertheless, similarly to reactions (3.8 and 3.9), the degradation processes of
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mRNAs (RBS') and proteins (Prot") are described in (3.17) and (3.18), respectively. Additionally, the deg-
radation of repressors (Prot"#) can occur when bound to the promoter, as described in reaction (3.19), thus
making the promoter available. Finally, reaction (3.20) represents the possibility for leaking events in tran-
scription in each gene i (Ribeiro 2010).

Among the most common and widely studied types of small genetic circuits are the genetic toggle switch (R.
Zhu et al. 2007; Atkinson et al. 2003; Roberts et al. 2011), and the repressilator and relaxation oscillator sys-
tems (Figure 2.7) (Stricker et al. 2008; Elowitz et al. 2000; Hilborn & Erwin 2008; McMillen et al. 2002;
Pomerening et al. 2005; Ribeiro 2007a; Rajala et al. 2010). Regarding their mathematical methodologies,
Elowitz and Leibler studied their repressilator system by stochastic models and SSA (Elowitz et al. 2000) and
showed the importance of time delays in negative feedback reactions as the key regulatory parameters to con-
trol oscillation period lengths. Further, Zhu, R. ef al. used the mean-field deterministic approach to theoreti-
cally study a repressilator model with time delays and showed that oscillation period lengths can be tuned by
decreases in protein degradation (R. Zhu et al. 2007). Relevantly, (Tuttle et al. 2005) used a hybrid stochastic
discrete-continuous algorithm to investigate in a system with no time delays which conditions of the repressi-
lator dynamics sustainable oscillations can theoretically exist. Nevertheless, again by stochastic simulations,
Loinger, A. et al. have shown that structural changes on the repressor proteins, e.g. their ability to cooperatively
bind to operator sites, can differ the kinetics of oscillations (Loinger et al. 2007).

Oher theoretical studies have performed simulations of stochastic models using the delayed SSA approach to
investigate how internal and external perturbations in the dynamics of a network component affect the dynam-
ics of the repressilator and toggle switch, namely, the period of oscillations and the existence of multiple
steady-states, respectively, due to their interaction with intracellular context of the host strain, among others
(Ribeiro et al. 2006; R. Zhu et al. 2007; Ribeiro 2007a; Samad et al. 2005). These studies can provide valuable
insights into the underlying dynamics of genetic parts, units, and modules and how their kinetics can affect the
behavior of more complex systems. This knowledge can aid the physical construction of their corresponding
networks by predicting or avoiding possible problems, such as those caused by intracellular and intercellular
communications (Hasty et al. 2002).

In Publication II, based on a model proposed by (R. Zhu et al. 2007) and parameter values used in (Elowitz
et al. 2000), we implemented delayed stochastic models of the SCR and the LCR, and simulated 1000 instances
(cells) of each. We extracted the functionality of each cell before and after perturbing the two repressilator
system with the inducer of one of the promoters. Results showed that the LCR functionality is more drastically
reduced after perturbation than in the case of SCR, according to the empirical results, suggesting that the SCR

is more robust to environmental changes than the original LCR.
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4 RESULTS: GENETIC CONSTRUCTS, MEASUREMENTS, AND
ANALYSIS

This chapter presents a summary of the results of the studies conducted that are included in this thesis, along
with the description of the new methods and tools developed to obtain these results. Namely, first, it is de-
scribed the strategy used to engineer the two synthetic constructs used in the studies, followed by the report of
the results of experimental validations of their composition and functionality. Next, it is described the micro-
fluidics platform that was here designed and employed in multiple perturbation assays (i.e. various temperature
and induction schemes). Finally, there is a brief description of the computational methods of image and data

analysis here tailored to extract information from the measurements.

4.1 Genetic Constructs

4.1.1 Single-Copy Repressilator (SCR)

Most studies on how the dosage of genes and genetic circuits, i.e. their copy-number in the cells, affect their
own dynamics have so far been based on theoretical models and predictions (Mileyko & Weitz 2010;
Klappenbach et al. 2000; R. Zhu et al. 2007; Ribeiro 2007c; Ribeiro 2007b). To conduct an empirical analysis
of the behavioral differences in the in vivo dynamics of the repressilator circuit due to copy-number differences,
we engineered a F-plasmid SCR from the original Elowitz-Leibler LCR, using conventional molecular cloning

protocols based on restriction enzymes.

In particular, the functional repressilator cassette from the original plasmid (pZS1-1TIrLLtCL) was amplified
by PCR, and then inserted into a single-copy F-plasmid (pTRUEBLUEScript), known to exist as a single-copy
and with high stability inside the cells (Gordon et al. 1997; Ogura & Hiraga 1983). The sequences to be ligated,
i.e. the repressilator cassette from pZS1-ITIrLLtCL and the fragment from the pTB-BAC2 F-plasmid backbone
containing the single-copy origin of replication and the chloramphenicol resistance were amplified by PCR
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with Smal flanking regions. The construction plan of the SCR (pBAC2-1TIrLLtCL) along with amplification
and ligation steps of these DNA fragments are presented in Publication II. £. coli Alacl MC4100 strain cells
containing no plasmids and cells of the same strain containing both the original repressilator plasmid and the
reporter plasmid (pZE21-GFPaav) were generously provided by M. Elowitz (Elowitz et al. 2000) (California
Institute of Technology, USA). Plasmid-free E. coli Alacl MC4100 cells were transformed with the newly
constructed SCR and the reporter plasmid. The oscillatory dynamics was confirmed by qPCR and live cell

microscope imaging.

In Publication I1, to validate the construction of the SCR system, first, gel assays were performed confirming
the sizes of PCR fragments and plasmids in the various steps of the construction pipeline. Second, the ligation
regions between the repressilator cassette and the single-copy plasmid were confirmed by sequencing from the
final SCR construct. To test the expression levels of Lacl, TetR, and CI present in the SCR, and compare them
with those from the LCR, gPCR measurements were performed using 16S ribosomal RNA (rRNA) expression
levels as a reference (Livak & Schmittgen 2001). Green fluorescence protein (GFP) expression levels from the
SCR were assessed by inspection under fluorescence microscopy. These measurements showed that the fluo-
rescent signal produced by cells over time is similar to that of the original LCR. Finally, the functionality,
sensitivity, and robustness of the SCR were measured at optimal and sub-optimal temperatures and then com-
pared with those of the LCR.

4.1.2 Synthetic Fluorescent Probe Integrated in E. coli’s Chromosome

The MS2 tagging system for mRNA detection in live cells uses an RNA coding sequence of multiple binding
sites as a ‘target gene’ for the MS2 viral coat protein fused with a green fluorescent protein (MS2-GFP), pro-
duced by a ‘reporter gene’ (Peabody 1993; Golding et al. 2005). Using confocal microscopy imaging, when
MS2-GFP proteins bind to the MS2 binding sites of the target RNA, this mRNA appears as a fluorescent ‘spot’
(usually in less than 1 minute following the appearance of the mRNA in the cell), provided sufficient MS2-
GFP proteins in the cell (Figure 2.12-B). This system allows temporal (and spatial) analyses of mRNA pro-
duction in individual cells. Such information has been used to characterize the dynamics of transcription initi-
ation of the promoter of interest. By sensing the integer-valued RNA numbers over time, intervals between
consecutive RNA production events can be empirically measured in live individual E. coli cells
(Muthukrishnan 2014; Mikeld 2016; Hiakkinen, Tran, et al. 2013; Lloyd-price et al. 2016; Mékela et al. 2017).
In addition, distributions of RNA numbers in individual cells can be measured, and their mean (M) and coef-
ficient of variation (CV) calculated (Goncalves et al. 2018; Kandavalli et al. 2016). The corresponding protein
numbers can also be assessed since, the prior to the MS2 binding sites, the target RNA codes for a red fluores-
cent protein (Golding et al. 2005).

To enhance its efficiency, in Study IV, a new fluorescent MS2 tagging system was designed, constructed, and
integrated into a single-copy plasmid, and then into the chromosome of E. coli. For this, first, a DNA fragment
sequence was designed and synthesized de novo to contain the promoter Pi.co301 controlling the expression of
a ‘target gene’ consisting of a red fluorescent protein (mCherry) followed by an RNA sequence with 48 binding
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sites of the MS2 viral coat protein (mCherry-48BSxMS2) (Figure 4.1). In addition, in this new design, the
RNA tagging system harbors unique restriction enzymes (pre-defined ‘cutting points”) to allow future manip-
ulations, such as replacing the promoter or RBS sequences, as well as the integration/replacement of sequences
in regions between arrays of 12 MS2 binding sites (out of the 48), and the reduction of the number of binding
sites. This DNA fragment was inserted into a single-copy F-plasmid and the construct was validated by both
sequencing and gel assays (GenScript, USA).
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Figure 4.1: Linear representation of the plasmid-borne mRNA tagging system engineered using de novo DNA
synthesis and GenEZ™ molecular cloning. The single-RNA, single-protein fluorescent probe ‘mCherry-
48BSxMS2’ under the control of Piaco301 promoter in a single-copy plasmid. The Pi.co301 promoter region, con-
taining the O3, O1 operators, and cAMP-CRP binding site, is followed by a coding region for mCherry and a
DNA sequence of multiple binding sites for MS2-GFP proteins, which were independently constructed by de
novo DNA synthesis, inserted into multi-copy plasmids, and then cloned together into a single-copy F-plasmid
(pPBELO) using GenEZ™ molecular cloning, until forming the final sequence of the ‘target gene’ (11686bp)
(GeneScript, USA). The chloramphenicol resistant marker (CmR) and the single-copy origin of replication (0i2)
of the plasmid backbone (pBELO) are shown at their exact location in the final product. This scheme was adapted
from the construction history generated by SnapGene® 1.5.2).

Second, the newly designed ‘target gene’ (Figure 4.1) was used as DNA template to create an integration
cassette (mCherry-48BSxMS2) to be inserted in the genomic /ac locus of E. coli strain BW25993 by multi-
staged Red/ET® mediated recombination strategy (Zhang et al. 1998). The DNA cassette, part of the developed
RNA tagging system, consists of the ORF of mCherry followed by 48 repeats of a 19bp long binding motive
(MS2-BS) interspaced by random DNA sequences of about 20-200bp. Due to the lack of a promoter sequence
in the DNA cassette, the transcription unit of the lac locus, i.e. the native lac-promoter (lacZpl), was kept
intact (Figure 4.3). The multiple steps for DNA cassette construction, the integration of this sequence into E.
coli’s chromosome, and the final selection of the best-clone were validated by sequencing and gel assays (Fig-
ure 4.2) (GeneBridges, Germany).

Before the integration of the DNA cassette into E. coli’s chromosome, a modification in the original cassette
was performed to reduce the probability that MS2 repeat sequences are lost during Red/ET® recombination in
future steps. Namely, to avoid undesired deletions during homologous recombination, especially in this sensi-
tive region, a selectable marker gene was inserted in the middle of the 48 repeats sequence. In that, first, a
bilaterally FRT-flanked KanR cassette (with resistance for the antibiotic kanamycin) was created by PCR and
introduced into the DNA cassette by a Red/ET-mediated modification, in between the 24" and 25™ MS2-bs
repeats of the 48BSx sequence. For that, E. coli DHS5a. cells were transformed with the original pPBELO-(lacZ-
mCherry-MS2-48bs) single-copy plasmid and pRed/ET plasmid for the Red/ET-mediated integration of the
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FRT-KanR-FRT cassette in the middle of MS2 repeats, creating a more stable intermediate cassette ‘mCherry-
48BSx-MS2-KanR’ (Figure 4.2).

BW25993 genomic /ac locus zp
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1o186p knock in cassette ssokp
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target genome target genome
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Figure 4.2: Representation of the construction of the knock-in (KI) cassette (mCherry-48BSxMS2) into E. coli’s
chromosome by multi-staged Red/ET® mediated recombination. The DNA fragment mCherry-Ms2-bs-FRT-
KanR-FRT knock-in cassette (6675bp, featuring two long terminal homology arms, 1018bp, and 650bp) was
generated by Ndel/Apal double restriction digestion, to guide the cassette insertion into the desired /ac locus of
the target genome. Next, the homology arms of the KI cassette recombine with the corresponding regions of the
lac locus of E. coli BW25993 by Red/ET-mediated recombination. Second, successfully recombined clones con-
taining Kanamycin-resistance are obtained. Finally, cells are transformed with specific plasmids for FLP-medi-
ated recombinase expression to perform the excision of the region in between FRT sites, thus removing kanamy-
cin resistance in the final clone. Scheme adapted from the construction history generated by SnapGene® 1.5.2).

After adding the kanR resistance gene into the 48BS region, a second strategy was performed to improve the
stability of the DNA cassette, prior to the recombination step for chromosomal integration. Given that repeti-
tive regions in linear DNA fragments gain stability when flanked by non-repetitive sequences, the use of long
homology regions of the chromosomal locus in the final knock-in cassette can increase the stability of this
fragment for genomic integration (Gray & Honigberg 2001). For that, first, the desired genomic integration
site, i.e. the lac locus of E. coli BW25993’s genome, was entirely sub-cloned to an intermediate R6K-ZeoR
vector backbone (7340bp in size, from lacl, lacZ, lacY, to lacA genes). Second, this construct was used as
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DNA template to create long homologous regions (~50bp) from the lacZ promoter (lacZpl) and lacl gene in
one side, and lacA-lacY stretch in the other side, to guide the integration of the knock-in (KI) cassette into .
coli’s chromosome. Both homologous sequences contain HindIIl/Mfel restriction fragments for the subsequent
one-step ligation with the previously prepared DNA cassette ‘mCherry-48BSx-MS2-KanR’, in a so-called
‘linear-linear’ recombination, producing the circular knock-in (KI) cassette with the homologous regions for
later genomic integration. After verifying the sequence of the circular KI cassette by a set of control PCRs and
sequencing, the final linear knock-in cassette is generated by Ndel/Apal double digestion. In this step, large
homologous arms were left in both sides of the final linear KI cassette (~1kb at the 5’-end of the /acY gene,
and ~650bp at the 3’-end of the lacl gene).

Next, BW25993 cells were transformed with the KI cassette along with the pRed/ET plasmid. The interactions
between KI cassette and genomic loci are mediated by the Red/ET system using the 50bp terminal homologies
that the DNA fragments have in common. In that, the lac locus in the genome is replaced by the knock-in
cassette (Figure 4.2). Successfully recombined BW25993 clones were subsequently selected on LB agar plates
supplemented with Kanamycin, along with X-Gal and IPTG following the galactosidase blue/white screening
(Ullmann et al. 1967).

Finally, a verified knock-in clone was transformed with an FLP-recombinase expression construct for site-
directed recombination reaction with the FRT sequences present in the clone genome, to eliminate the kana-
mycin resistance gene from the genome (Sadowski et al. 1995). During this last step, sequencing results of the
multiple MS2-bs revealed that a couple of repeats linked with the removed KanR cassette were lost. Two
massive deletions were detected: one deletion of 109bp length (comprising 2 MS2-bs), and a second deletion
of 853bp length (comprising 13 MS2-bs) (Figure 4.3).
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Figure 4.3: Sequence of BW25993 AlacZ::mCherry-MS2-33bs. To make a marker-less E. coli cell, i.e. with no
Kanamycin resistance, the gene kanR was eliminated by FLP-recombinase activity, leaving a single FRT-site in
the middle of the MS2-bs repeat region (green). After this procedure, the selected clone harbored 15 repeats less
than the former 48 expected by unpredictable but expectable rearrangement events (two sites of deletions, pre-
sented in pink boxes). The final clone carries 33 MS2 binding sites (yellow boxes) in total. This scheme was
adapted from the construction history generated by SnapGene® 1.5.2).

The two probes, one in a single-copy plasmid and another in the chromosome, along with the activity of the
reporter gene, a multi-copy plasmid carrying the Py.«i01 promoter controlling the expression of the fused fluo-
rescent protein ‘MS2-GFP’, can inform on the temporal and spatial dynamics of RNA molecules at the single
cell level. The empirical and computational single-cell approaches used for such analysis in Publications III,

IV and V are presented in section 4.3.
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4.2 Microfluidics Platform for Perturbation Assays

A thermo-chiller chamber equipped with a thermos-chiller device (ranging from 5°C to 50°C + 0.2°C) and a
micro-perfusion pump was engineered to assist the studies described in all publications of this thesis. For
instance, in Publications III and IV, we studied the temperature-dependence of the kinetics of gene expres-
sion of multiple promoters under various induction schemes at the single-cell, single-molecule level, by ob-
serving mRNA molecules in live cells using the MS2-GFP-RNA tagging system and a tailored microfluidics
platform able to keep temperature constant assays under time-lapse microscopy.

Furthermore, in Publications I and II, we also studied the temperature-dependence and the effects of external
perturbations to the original and the single-copy version of the Elowitz-Leibler repressilator (Elowitz et al.
2000), by respectively altering the environment temperature and adding inducers in the growth media during
cell growth. In the former, we expected that changes in temperature would cause variations in the oscillatory
behavior of the circuit, i.e. in the stability of period of oscillations, due to changes in the rates of biochemical
reactions from the Arrhenius scaling (Segel 1975), as observed from the drastic reduction in the oscillation
period in (Stricker et al. 2008). In the latter, we expected that, when the promoter Py.i.co1 is induced by IPTG,
cells presenting oscillatory behavior have their GFP signal disrupted (close-to-null) in LCR cells containing
more than one copy of the repressilator. Namely, we hypothesized that a failure in the functioning of one of
the copies would hamper the activity of the others due to the existence of network coupling between the mul-
tiple copies of the circuit in individual cells. In agreement, we showed that the SCR strain responds more
robustly to weak perturbations than the LCR strain, suggesting that a system with a single copy of a functional

repressilator is more robust to transient, weak, external perturbations than a multi-copy one.

Also, a microfluidic platform containing a thermal chamber (Figure 4.4) was used to assist the studies de-
scribed in all publications of this thesis to ensure a desired temperature of the environment and the continuous
flow of fresh media supplemented with desired chemicals during microscope image acquisition. As shown in
Figure 4.4-C, while under the microscope, cells are kept in an agarose gel-pad of fresh growth media, located
between the micro-aqueduct slide and a coverslip inside the optical cavity of the chamber, allowing a uniform
and rapid exchange of media with the cell population due to the laminar flow of fluids in this microenvironment.
Importantly, while the gel-pad contains the nutrients for cell growth and inducers for the activity of both target
and reporter genes, additional fresh media, inducers and, particularly, chemicals related to perturbation assays
can be pumped into the optical cavity, throughout the duration of the experiment, by a micro-perfusion peri-

staltic pump, allowing steady-state growth for several hours under the microscope.

In Publication I, the set-up (Figure 4.4) was used to maintain the environment temperature (28°C, 30°C, 33°C,
or 37°C) of cells containing the original repressilator system, and to keep the temperature range (24°C, 27°C,
30°C, 33°C, or 37°C) used for the studies of cells containing the genetic switch. Meanwhile, in Publication
111, the thermal chamber was used to keep the temperature of multiple experiments constant (24°C, 27°C, 30°C,
34°C, or 37°C), while providing cells with fresh media containing the appropriate concentrations of the inducer
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of the reporter and target promoters. This approach allowed the study of the temperature-dependence of the
kinetics of transcription initiation of the promoter Pjac.ara-1 in varying induction schemes. Relevantly, in Publi-
cation II, using the thermal chamber equipped with a peristaltic pump (Figure 4.4), pre-warmed fresh M63
media containing 50 uM or 1000 uM IPTG (the inducer of the promoter Pr..c01, @ component of the repressi-
lator circuit) was continuously pumped to the cells after 2-3 hours of microscope image acquisition (to allow
at least one oscillation cycle). This set-up was used to test for the response of both LCR and SCR systems to

external perturbations, while keeping cells at the optimal temperature for repressilator functionality (30°C).
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microfluidics and the temperature control system (Bioptechs, CFCS2, Pennsylvania, USA) mounted on the stage
of the inverted microscope for the culturing of cells under microscope observation. In this system, to control the
temperature of the system (5°C to 50°C + 0.2°C), i.e. the temperature of the metal chamber and the optical cavity
(where cells are placed), a thermo-chiller device (not shown) is connected to two inlets and outlets of the CFCS2
chamber for the flow of heat/chilled fluidics. Further, to continually perfuse cells with fresh media and chemicals
required for cell growth, a micro-perfusion pump (not shown) is connected to one inlet and one outlet of the
CFCS2. (B) The illustration of the front-cut-view of the cooled FCS2 adapter (CFCS2) showing the optical cavity
where cells are placed. In addition, to increases/decrease the temperature of both the metal chamber and an optical
cavity, an independent tubing system facilitates the circulation of a heat/chilled fluid. (C) Finally, the represen-
tation of the top view of the micro-aqueduct slide that is placed inside the optical cavity, and of the laminar flow
of fluids allowing a uniform and rapid exchange of media and cell population in the gel pad. Adapted and re-
printed with permission from (Goncalves et al. 2018); Copyright 2018, IOP Publishing Ltd.
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Finally, a study on the effect of osmotic stress on cells’ morphology reported that a rapid osmotic upshift can
be reached by increasing the concentration of sodium chloride (NaCl) in the media, thus causing cytoplasm
plasmolysis of E. coli cells (Van Den Bogaart et al. 2007). From this, in Publication V, the same set-up was
used to expose cells to osmotic stress during time-lapse microscopy, at 37°C. In that, the growth media was
supplemented with 300mM of NaCl, approximately ~0.680sm (Konopka et al. 2009), and pumped to cells
into the thermal chamber for 1 hour. In these cells, since high osmolality levels (> 0.150sm) cause the diffusion
coefficient of GFP to be heavily reduced, we combined the ability to track of synthetic protein aggregates
(MS2-GFP system) in individual cells with the fact that osmotic stress can change the viscosity of cell cyto-
plasm, to validate the changes observed in the dynamics of nucleoid occlusion phenomenon due to an increase

in cellular cytoplasmic viscosity, when cells are subject to critically-low temperatures.

4.3 Live Cell Imaging and Data Analysis

To measure the mean fluorescence intensity inside cells and to estimate the number of RNA molecules in each
cell at a given time, from either a single population or multiple time-lapse fluorescence images, we made use
of tailored image and signal processing tools. The implementation of these tools and the results extracted from

the measurements are presented in the following sections.

4.3.1 Dynamics of Genetic Oscillators

In Publications I and II, from time-lapse images, we used a tailored semi-automatic method for cell segmen-
tation and principal component analysis (PCA) to obtain dimensions and orientations of the cells from fluo-
rescence images of cells containing either the LCR or the SCR systems. Then, the total fluorescence intensity
in each cell was extracted to compute the mean pixel intensity of each cell over time. The same analysis pipe-
line was implemented at each time moment to study cells containing the CI-Cro genetic switch (Publication

D).

In Publications I and II, the ‘raw’ total fluorescence intensity overtime of LCR and SCR cells was measured
to assess the functionality of the cells using the methods described in (Elowitz et al. 2000). In that, only cells
exhibiting any fluorescence throughout the entire time-series, by following the Fourier criterion (i.e. the power
spectra bandwidth of cells exhibiting peaks higher than the background), were considered for image analysis.
After considering only functional cells, each fluorescence signal was treated as follows: detected-trend sub-
traction by fitting a quadratic curve in the least-squares sense then subtracting the measured intensities from it
(i1) normalization of the residual to unit power; and (iii) auto-correlation function calculation. From the treated
signal, periods of oscillations of each cell were computed from the distance between the zero-crossing points
of the autocorrelation function (Figure 4.5-A). Thus, distributions of period lengths were computed for LCR
and SCR cells for each temperature condition. Interestingly, at temperatures higher than 30 °C, we observed
that a few cells exhibit an oscillatory signal but also a few brief periods of no activity. These failures can be



57

due to either no oscillation occurring in the repressilator system or because the reporter system (see Figure
2.7) did not track properly the repressilator dynamics.

Since the methods for signal treatment and period estimation rely on robust periodic behavior, they cannot
detect failed oscillations, but instead, assume a longer ‘apparent’ period length that combines ‘true’ and ‘failed’
oscillations, which are double the length of ‘true’ oscillations. To address this, we quantified failed oscillations
from the ratio between ‘true’ and ‘apparent’ cycles in functional cells, in each condition. The mean and stand-
ard deviation of the two types of cycles are determined by the maximum likelihood estimates for the mean and
variance of the second are double than that of the first of a single Gaussian or a mixture of two Gaussians (with
mean and variance of the second being the double of the first) to the measured periods, using an iterative
expectation maximization algorithm (Dempster et al., 1977). (Figure 4.5-B).
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Figure 4.5: (A) Estimating period length of oscillatory signals in individual cells. In the top panel, the raw signal
extracted from time-lapse fluorescence images is shown along with the estimated trend. The middle panel shows
the new (treated) signal after trend subtraction and residual scaling to unit power. In the bottom panel, the com-
puted autocorrelation function of the treated signal. The first and third zeros are represented by black circles, and
the distance between them corresponds to the period of oscillation in each cell. Image extracted and adapted from
Publication L. (B) Distribution of period lengths of the LCR system, with magnitude scaled to represent proba-
bility density, at 30 °C and 37 °C temperatures. Solid lines represent the probability density functions of the fitted
model with one (top) or two Gaussians (bottom). Dashed lines represent the probability density functions of the
fitted model with two Gaussians (bottom). In the bottom panel, each bimodal distribution presents two bulks of
period lengths, with ‘failed’ oscillations having double the length of ‘true’ periods. Image extracted and adapted
from the Supplementary Material of Publication II.

The results of the LCR oscillation dynamics, in varying temperatures, are presented in Table 1 and Figures

4&5 of the main manuscript of Publication I. Meanwhile, the results of the SCR oscillation dynamics, in

varying temperatures and induction schemes, are presented in Tables 1-3 of the main manuscript, and Figures
S1&S2 of Publication II.
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4.3.2 Dynamics of Transcription Initiation

In Publications III, IV and V, phase contrast images are automatically segmented and manually corrected to
determine the location, orientation, and size of cells, and cell lineages determined from overlapping areas
between consecutive images, using CellAging (Hakkinen, Muthukrishnan, et al. 2013). Next, the information
obtained from cell segmentation of each cell is used to align with fluorescence images using cross-correlation
maximization, as in (Lloyd-price et al. 2016). In particular, in Publications III and IV, to accurately estimate
the number of RNAs in individual cells containing both target and reporter systems, the total fluorescent MS2-
GFP-RNA spot intensity in each cell was automatically detected inside each cell by kernel density estimation
(KDE) method using a Gaussian kernel (Chen et al. 2008) and Otsu’s Thresholding (Litcofsky et al. 2012).
The changes in RNA numbers in each cell, over time, can be estimated from the changes in the corrected total
spot intensity in individual cells, which is obtained by subtracting the mean cell background intensity (multi-
plied by the area of the spot) from the total fluorescence intensity of the spot (Hékkinen 2016). As such, since
the lifetime of an MS2-GFP-RNA molecule is much longer than cell division times (Tran et al. 2015; Peabody
1993; Golding & Cox 2004), the corrected total spot intensity is expected to always increase by ‘jumps’ of

intensities corresponding to the appearance of new tagged RNAs.

The phenotypic heterogeneity of transcription in a cell population can be characterized by measurements of
mRNA molecules in individual cells. Because mRNA numbers are also affected by degradation and dilution
(due to cell division), this heterogeneity is best characterized by the distribution of time intervals between
produced mRNAs in individual cells. To assign integer-valued RNA numbers to the corrected spot intensities
for each cell in a population over time, the position and time between the ‘jumps’ in spots intensity are
estimated by least square fit of a monotone piecewise-constant curve (Figure 4.6-A). The time interval be-
tween these jumps is thus extracted from the measurements (Figure 4.6-B). Importantly, because the observed
time intervals in microscope measurements are biased, i.e. longer intervals are less likely to be detected due to
cell division (~60 minutes on average in these studies) and the time duration of time-lapse measurements (~2
hours duration), to avoid underestimating these time interval durations, we consider right censoring (Hékkinen
& Ribeiro 2015). The results of transcription kinetics of the promoters Piac-ara-1 and Pieia, as measured by time
intervals between jumps, for various temperature and induction schemes, are presented in Figures 2&3&5 of
the main manuscript of Publication III. Similarly, the results of transcription kinetics of the promoter Prm
(one of the promoters of the CI-Cro genetic switch), in varying temperatures, are presented in Table 2 of the

main manuscript of Publication I.

Meanwhile, in Study IV, integer values corresponding to RNA numbers in each cell were quantified from
population images using the methods described in (Golding et al. 2005) from the distribution of total spot
intensity in each cell in the image, where the first peak of intensity, which corresponds to a single mRNA
molecule, is used to normalize all values of the histogram assigning to each spot intensity an integer-valued
RNA number. In this study, in particular, this method was used to quantify the number of RNAs produced by

the same Pi.c0301 promoter when located in a plasmid and in E. coli’s chromosome. The results of Picoson
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transcription kinetics for various temperature conditions are presented in Tables 1&2 and Figures 1-6 of the
manuscript and in Tables S1&S3&S9 and Figures S6-S10&S15 of the supplementary results of Study IV.
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Figure 4.6: (A) In the top panel (a), example fluorescence microscopy images of E. coli cells carrying the MS2-
GFP tagging system used in the studies of the kinetics of transcription initiation. Unprocessed and segmented
cells, the spatial distribution of unbound MS2-GFP tagging proteins (gray background in the cell), RNA fluores-
cence spots detected (white circles). The time moments of the frame, when images were taken, are indicated on
the top (in seconds). In the bottom panel (b), the example of a time series of a cell with scaled intensity levels
(circles) and the line representing the monotone piecewise constant fit (solid lines) used to estimated RNA num-
bers. Image extracted and adapted from Publication I. (B) Distributions of time intervals between subsequent
productions of mRNA molecules, in individual cells, under the control of the promoter Pia, in varying temper-
ature and induction schemes. Cells were grown: (A) at 0 ng/ml aTc and 37 °C; (B) at 15 ng/ml aTc and 24 °C;
and (C) at 15 ng/ml aTc and 37 °C. The probability density functions of inferred models of transcription initiation
with a differing number (N) of rate-limiting steps (denoted as ‘d = N’) are presented in each plot. The time
intervals were extracted from ~110 cells in all conditions. Adapted and reprinted with permission from
(Muthukrishnan 2014).

Finally, for fluorescent RNAp studies in varying media richness, the abundance of RNAp in individual cells
was quantified from the mean fluorescence intensity in each cell, which was extracted from fluorescence mi-
croscopy images using the methods and software previously mentioned, i.e. CellAging and alignment of phase-
contrast and fluorescence images. The results related to the measured RNAp abundance per cell are presented
in Table S7&S8 and Figure S7 of the supplementary results of Study IV.

4.3.3 Diffusion Coefficient of Fluorescent Aggregates and Cytoplasmic Viscosity

An osmotic stress adaptation process can result in two distinct populations of cells, adapted and non-adapted,
which differ in cell and nucleoid morphology, and in division rate (Jin et al. 2013). In particular, plasmolyzed
(non-adapted) cells can exhibit longer length and elliptic shape (visible in phase contrast images), and contain
a condensed nucleoid (visibly in fluorescence images) (Konopka et al. 2009; Mika et al. 2010; Jin et al. 2013).
Relevantly, in plasmolyzed cells, the high osmolality leads to a heavily reduced diffusion coefficient of GFP
(Van Den Bogaart et al. 2007; Konopka et al. 2009). For the studies of osmotic stress in Publication V, after
selecting cells exhibiting filamentous and elliptical morphology (Konopka et al. 2009) by cell segmentation
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using phase-contrast images, tailored image and data analysis tools were developed in the search for cells that
had diffusion coefficient of fluorescence spots reduced, that were not dividing during the measurement period
and, finally, that contained a single condensed nucleoid (Mika et al. 2010; Jin et al. 2013).

First, spot tracking was performed using a semi-automatic method. Namely, we collected the information on
the location of detected RNA molecules (fluorescent spots) in each frame using the method above. Next, the
mobility of each fluorescence spot, referred to as synthetic protein aggregates, was measured in each cell using
a semi-automatic method. Namely, in each frame, each spot in each cell was assigned an identification number
using an automatic method. Next, we manually corrected errors in spot detection and location. In cells con-
taining more than one spot, the spot location in each cell, per frame, is determined beforehand to avoid misi-

dentification of spots between consecutive frames.

From the spatial information of each spot in a time-series, we used the mean squared displacement (MSD),
based on the shortest distance between the spot in consecutive frames, to measure the diffusion coefficient (D)

of aggregates after a time lag 7, as follows:
MSD(r)=E|p(t)-p(t —7 )" + &> =2D7 + & 5.1

2
where p(t) is the position of a spot at time t, E is the expectation over all spots and over all t, and £ is the

2
measurement noise. To extract D, discounting £ , we used the slope of the line taken from the first two points,

i.e. D = (MSD(2) — MSD(1))/2. From D, and assuming that the aggregates are spherical, we calculated the

dynamic viscosity 1 of the medium in which the diffusive particle is moving (Stokes-Einstein equation):

— kBT

= 52
T 67xrD

where kg is the Boltzmann’s constant, temperature is T, and r is the radius of the spherical particle. In equation
(5.2), if changes in the relative diffusion coefficient D, /D, are solely explained by changes in between two
temperatures T; /T, the relative dynamic viscosity between conditions 7, /1, should be approximately 1. This

relative diffusion coefficient D, /D, can be quantified as the following:

D, _nT i3

D, nT,

The results related to the measured diffusion coefficient and the calculated relative dynamic viscosity of the
cellular cytoplasm (17, /14), in varying temperatures and when exposed to osmotic stress, are presented in Table

3 of the main manuscript, and in Table S5 and Figure S8 of the supplementary results of Publication V.
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4.3.4 Nucleoid and Protein Aggregates Spatial-Distribution

In Publication V, the detection and segmentation of nucleoids in each cell, in each frame, were performed
using the gradient path labeling algorithm (Mora et al. 2011) and the Levenberg-Marquardt least-squares op-
timization algorithm (More 1978). After that, PCA was used to obtain the position, dimension, and orientation
of the nucleoid in each cell, which were used to define the polar regions of each cell relative to cell extremities
at the cell major axis. In that, the normalized fraction of cell poles was calculated from the measured relative
values of cell width (along the cell minor axis) and the relative values of cell and nucleoid lengths (along the
cell major axis). The results related to the measured nucleoid spatial-distribution in varying temperatures are
presented in Table 1 and Figure 1 of the main manuscript, and in Tables S1&S3 and Figure S4 of the supple-
mentary results of Publication V.

Therefore, the mean 3-D concentration of aggregate numbers at the cell poles was estimated from the ratio
between the mean fraction of aggregate numbers at the poles and the volume of the cell poles, assuming uni-
form intracellular distribution and accounting for the capped cylindrical shape of the cells. Importantly, the
above definitions and equations (5.1-5.3) were applied to cells with two nucleoids. In these cells, the midcell
region was defined as the region between the outer borders of the two nucleoids. Further, these equations can
be applied to all temperature conditions tested, even for possibly elongated cells when temperature increases.
The results related to the measured synthetic aggregates spatial-distribution, and to the calculated aggregates
concentrations inside cells, in varying temperatures, are presented in Tables 1&4&5 of the main manuscript,

and in Tables S2&S3 and Figure S4 of the supplementary results of Publication V.
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S CONCLUSIONS AND DISCUSSION

In this thesis, we studied the effects of temperature fluctuations on the dynamics of genes and
small genetic circuits (switches and clocks) in E. coli cells, using single-cell, single-RNA, time-
lapse fluorescence microscopy and delayed stochastic models. In Publication I, we focused on
genetic switches and repressilators and how the temperature dependence of one of the proteins
present in both circuits affects their robustness to temperature shifts. In Publication II, we engi-
neered a single-copy ‘repressilator’ circuit, inserted in a single-copy F-plasmid, to study the effect
of gene dosage on the repressilator dynamics, as well as its robustness to temperature shifts. In
Publication III, we focused on the effects of temperature fluctuations on transcription initiation
kinetics, using the MS2-GFP tagging system to detect single RNA molecules as soon as they are
produced in live cells. In Study IV, we implemented a newly designed MS2-GFP tagging system
into E. coli’s chromosome, to study the temperature-dependence of the kinetics of transcription
of a promoter when chromosomally-integrated and when plasmid-borne. Finally, in Publication
V, we studied the effects of critically high and low temperatures on the cytoplasm biophysical
properties. All studies were supported by microfluidic platforms to perform perturbation assays
and by tailored image and signal processing tools to analyze the microscopy images, obtained
using various techniques. These studies have contributed to a better understanding of how tem-
perature fluctuations can affect the dynamics of genes and gene networks, as well as of their

environment, namely the cytoplasm of E. coli cells.

In Publication I, we studied the dynamics of the ‘Elowitz & Leibler’ repressilator circuit when
subject to temperature fluctuations in live E. coli cells. For that, we extracted the raw oscillatory
fluorescent signal generated by the repressilator using live cell microscopy and used signal pro-
cessing techniques to characterize not only the observed period of oscillations but also the failures
in oscillation. That allowed us to also characterize the functionality (fraction of cells exhibiting
oscillations) and the robustness (fraction of expected oscillations that occur) of this circuit. From

this detailed analysis, we found that the repressilator is sensitive to temperature fluctuations, as
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the mean and variability of oscillation period lengths differ as temperature changes. Next, we
showed that the robustness of the period lengths gradually decreases with increasing temperature,
in that most cells exhibit ‘failed” oscillations when temperature increases beyond 30 °C, while the
‘apparent’ (measured) period was minimized at 30 °C. Meanwhile, the ‘true’ period, extracted
from the fitting of a 2-Gaussians model to the measured period length distributions, was found to
decrease with increasing temperature. This result is in accordance with the behavior of other syn-
thetic genetic clocks (Stricker et al. 2008) and with the expected increase in speed of thermody-
namic processes with temperature, e.g. protein decay rates (Loinger et al. 2007), and increased
protein ‘dilution’ rate due to increased cell doubling rate. Meanwhile, at lower-than-optimal
temperatures, the ‘true’ periods expectedly increased due to the reduction in rate of most of the

chemical processes involved in the functioning of this circuit.

Possible causes that could explain the shift in behavior as temperature increased were further
investigated. In particular, we focused on the ‘failed’ oscillations and on why were these
temperature-dependent. From previous evidence that the functionality of the CI repressor (one of
the circuit’s components) is highly affected at temperatures above 30 °C (Jana et al. 1999; Frank
et al. 1997; Hillen et al. 1982), we hypothesized that this was the main cause for the failures in
oscillating. Namely, we hypothesized that the increasing temperature compromised the wild-type
CTI’s binding stability to the promoter region (likely caused by failures in CI’s dimerization (K. S.
Koblan & Ackers 1991)).

To test this, we analyzed the dynamics of the CI-Cro genetic switch in the same temperature range.
Namely, the transcription dynamics of the Prm promoter, regulated by CI protein produced by the
other gene of the switch, was followed at various temperatures, using MS2-GFP RNA tagging.
The results showed that, at the same temperature as in the repressilator, there is a significant
behavioral change as well. Namely, the dynamics of RNA production by Prw shifts from sub-
Poissonian to super-Poissonian (consistent with long periods of repression by the other protein of
the switch, Cro). This implies that, with increasing mal-functioning of CI protein (as in the case
of the repressilator), the ability to repress the second gene of the switch (Pr) decreases, making
Pr to become more active thus increasing the repression on Pry. We find these results to be con-
sistent with the general concept that noise in gene expression and phenotypic cell-to-cell varia-
bility ought to be analyzed accounting for context-dependent regulatory interactions (Dunlop et
al. 2008).

Supported by the behavioral shifts at the same temperature in the two circuits studied and the fact
that they have only one component in common, the CI protein, we concluded that it was the
temperature-dependency of CI’s functionality (K S Koblan & Ackers 1991; K. S. Koblan &
Ackers 1991) the cause for the observed behavioral changes. These results demonstrate that future

genetic circuits should consider the temperature sensitivity of the components and make use of
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them or, instead, introduce temperature-compensation mechanisms to minimize the effects

(Hussain et al. 2014), or the replacement of such components by others shown to be less-sensitive .

In Publication II, we compared the dynamics of the original Elowitz & Leibler repressilator cir-
cuit (LCR) and a single-copy repressilator (SCR), engineered from its original sequence (Elowitz
et al. 2000) into a single-copy F-plasmid. The main questions were whether it is possible to engi-
neer a single-copy genetic clock and whether multiple copies support or decrease the stability of
the periodicity. Further, we addressed these questions in multiple temperature conditions, to in-
vestigate whether the answers are temperature-dependent. We expected that the period length and
the robustness to temperature fluctuations of the two systems would differ, due to one of them
having network coupling. In agreement, we found that the variability in period length (measured
by the variability of the time length of the oscillations, from the squared coefficient variation CV?)
of the SCR is higher. This agrees with the concept that lowering the copy-number can decrease
the rhythmicity of a coupled system (Garcia-Ojalvo et al. 2004). Also, the mean period of oscil-
lations of the SCR was found to be higher than that of the LCR, in all temperatures tested, except
28 °C. Further, we found that the functionality of the SCR, when compared to the LCR, was
higher at lower temperatures, but lower at higher temperatures. This suggests that the lowering
functionality at non-optimal temperatures is caused by different factors at higher-than-optimal

and lower-than-optimal temperatures.

Relevantly, the functionality and the period length of both systems are, respectively, maximized
and minimized at 30 °C. Overall, the fact that the dynamics of the two systems differ when at the
same conditions demonstrates that the functioning of the original LCR is affected, to some extent,

by the dynamical coupling of the multiple functional copies of the circuit in a cell.

Next, we studied the functionality and robustness of the repressilator to external perturbations as
a function of the copy numbers and of the perturbation strength, i.e. low and high IPTG concen-
trations. We found that the functionality of SCR was sensitive to the strength of the perturbation,
and more robust than of the LCR at low IPTG concentrations (50 uM). This was expected, since
having multiple copies of the circuit ought to make the coupled networks more sensitive to exter-
nal perturbations than when only one network is present in the cell. This result was in agreement
with the behavior of a delayed stochastic model that assumed perfect coupling between the iden-
tical copies of the circuit in the model cell. It also shows that, when perturbing one circuit, all

other coupled circuits are perturbed as well.

In summary, our results suggest that the SCR is a more robust clock than the LCR under certain
conditions. Therefore, we expect that the implementation of synthetic genetic circuits in a single-
copy DNA location (F-plasmids or chromosome), which avoid the phenomenon of network
coupling, can be a successful strategy towards designing genetic clocks whose functioning

requires robust time tracking under external perturbations.
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In Publication III, we analyzed the temperature-dependence of the dynamics of the underlying
steps in transcription initiation of the Pjacara-1 promoter for varying induction schemes of IPTG
and arabinose, and for a wide range of temperatures above and below the optimal growth temper-
ature. For this, we used time-lapse single-RNA microscopy measurements in live E. coli cells and
tailored image and signal processing tools. From the images, using those tools, we extracted time
intervals between consecutive transcription events. Next, we used statistical methods to find
which stochastic model best fitted the empirical data in maximum likelihood sense (for models
varying in number and duration of rate-limiting steps in transcription initiation). The selected
models informed which rate-limiting steps of transcription initiation are more/less responsible for
the changes observed in RNA production kinetics with changing temperature and induction
schemes. The results showed that not all steps in transcription initiation are affected equally by
temperature changes. In particular, for the Piac.ara-1 promoter, regardless of the induction scheme,
varying only some of the steps suffices to explain the changes observed in the measured time
intervals between transcription events. Interestingly, we found that changes in RNAp concentra-
tions with changing temperatures can only explain partially the observed changes in transcription
dynamics. Further, the analysis indicates that the temperature changes mainly affect the dynamics
of the OC formation, rather than the steps prior to this.

Next, we quantified the temperature-dependence of the transcription kinetics of the Peta promoter
using the same methods. We found that the distribution of time intervals between consecutive
RNA production events to be less noisy than of the Pisc-ara-1, due to having a different rate-limiting
steps kinetics. In particular, as temperature is changed, for Piac.ar-1 promoter the changes occur in
the stage of CC formation. Meanwhile, for the promoter P4, this response arises from changes

in the OC formation and/or promoter escape dynamics.

Subsequently, by tuning the dynamics of transcription initiation, by changing the kinetics of the
rate-limiting steps, the selected inferred models were further studied to explore why the identified
steps were preferred as the main ‘sources’ for tuning both mean and variance of time intervals,
with temperature fluctuations. We found that the dynamics of transcription initiation is either
insensitive or responds reciprocally to changes in the other steps, thus providing promoters greater
adaptability to temperature changes than if tuned by other means. The results may be an explana-
tion for why different natural promoters differ in their response to temperature shifts.

In Study IV, we studied the temperature-dependence of the dynamics of transcription initiation
of the promoter Piac0301, under full induction, when integrated into E. coli’s chromosome and
when on a single-copy plasmid. Temperature-dependent changes in DNA supercoiling have been
proposed to be one of the sensing mechanisms used by E. coli, to rapidly identify and transduce
external temperature fluctuations (Los 2004; Eriksson et al. 2002). E.g., the buildup of DNA

supercoiling on a chromosomal DNA segment, if occurring close to a promoter region, can stop



67

transcription initiation. When occurring, the promoter activity will only be resumed upon the re-
lease of supercoiling topological constraints by gyrase activity (Chong et al. 2014). Interestingly,
the same does not appear to occur in plasmids (Chong et al. 2014). We hypothesized that temper-
ature affects the propensity for supercoiling buildup and/or escape from these states. If so, genes
would differ in how their activity is affected by temperature shifts, depending on whether they

are located on a plasmid or on the chromosome.

To investigate the hypothesis that genes located in plasmids and chromosome differ in sensitivity
to temperature fluctuations, we engineered two MS2-GFP tagging systems for single RNA detec-
tion under the control of the same promoter, Pic0301. We then implemented a copy of this system
into a single-copy F-plasmid and another into E. coli’s chromosome. Importantly, this /ac deriv-
ative promoter lacks the O2 operator site, known to form topological constraints when repressed

by its corresponding repressor (Fulcrand et al. 2016).

While both constructs were found to be functional and responsive to temperature changes, at crit-
ically low temperatures they differ more in behavior from one another. Namely, unlike the plas-
mid-borne promoter, the chromosome-integrated promoter presents a weaker and noisier relative
RNA production activity. Also, we showed that, in the chromosome-integrated promoter, the pro-
cess of resuming transcription events due to the release of DNA supercoiling buildup is hampered
at lower-than-optimal temperatures, thus drastically reducing the activity of the promoter, when
compared to the plasmid-borne promoter. This result was validated by the dissection of the kinet-
ics of transcription initiation of the two promoters, following the methods described in (Lloyd-
price et al. 2016). In that, when compared to the plasmid-borne, the chromosomally-integrated
Piaco301 exhibited a widely reduced transcription rate in stages prior to the OC formation, i.e. in-

dicating that it remains longer in a locked state, before committing to transcription.

Overall, the results showed that the chromosomally-integrated promoter has longer-lasting super-
coiled states at critically low temperatures, which provides the promoter with increased sensitivity
to temperature fluctuations. The results thus suggest that the sensitivity of transcription activity
to temperature fluctuations depends on whether the promoter is on the chromosome or on a plas-

mid.

Next, we studied why this reduction was observed only at low temperatures. If it is true that a
locked promoter due to DNA supercoiling buildup can resume transcription activity by gyrase or
topoisomerase-I activities, then the promoter activity should be reduced in the presence of the
inhibitors of these proteins’ activity. To test for this, first, we conducted temporal measurements
of RNA numbers in individual cells at 10 °C and 30 °C in the presence and absence of inhibitors.
We found that the activity of the chromosomally-integrated Pi.co301 promoter (compared to plas-

mid-borne) was reduced in the presence of inhibitors at both temperatures, but further reduced at
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critically-low temperatures. In agreement with the hypothesis that the proteins gyrase or topoiso-
merase-I may have evolved mechanisms to function at critically-low temperatures (Yamanaka
1999; Jones et al. 1987), these results suggested that the blocking of the release of Piacosor from
supercoiled buildup states, at low temperatures, is not due to reduced functionality of either gy-
rases or topoisomerases-I, but, instead, to an energy-associated increasing difficulty in releasing

the promoters from the ‘locked’ state.

To test this hypothesis, we first conducted an additional experiment where cells were subject to
energy depletion stress, via DNP treatment, with cells grown at 30 °C. The results showed that
promoter release from DNA supercoiling buildup is hampered when cellular energy is depleted,
similarly to when at critically-low temperatures, confirming that the activity of the chromoso-
mally-integrated promoter at 10 °C is being hampered by an energy-related increased difficulty
in unblocking the DNA from supercoiled states. Relevantly, we also studied the long-term con-
sequences of temperature on the transcription activity of blocked promoters. For that, we con-
ducted an experiment where cells were subject to consecutive shifts between high and low tem-
peratures. The results showed that low temperatures have no long-term consequences on the abil-
ity of the promoters to transcribe. In the end, simulations of a stochastic model with realistic
parameter values for /ac derivative promoters showed that the differences observed empirically
are consistent with models of transcription that model the effects of supercoiling buildups using

a single parameter, namely, the escape time from supercoiled states.

In Publication V, we studied the temperature-dependence of the phenomenon of segregation of
large protein aggregates to the cell poles by a nucleoid exclusion phenomenon (Gupta et al. 2014),
which, following cell division, biasedly partitions the aggregates between daughter cells, thus
resulting in the renewal of some cell lineages, at the expense of accelerating cell aging in others
(Lindner et al. 2008). For that, we measured the motion of protein aggregates in cells at a wide
range of temperatures by assessing the spatial-distribution and mobility of MS2-GFP tagged
RNAEs, i.e. synthetic fluorescent aggregates, and fluorescently-tagged natural aggregates (IbpA)
using confocal microscopy. During imaging, temperatures were changed from optimal (37°C) to
substantially low (10°C) in short periods of time. We also studied the long-term consequences of
sub-optimal temperatures on the spatial distribution of the aggregates in mother cells and their
partitioning between daughter cells. We found that, as temperature decreases, protein aggregates
became more homogeneously distributed and less correlated with nucleoid size and location. This
was found to be correlated with an increased cytoplasm viscosity in the cells that, not only weak-
ens the anisotropy in aggregate displacements at the nucleoid borders but also increases the con-
centration of aggregates in between two nucleoids in cells close to division. Consequently, we
found reduced asymmetries in aggregates partitioning between daughter cells at the lower tem-

peratures.
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Overall, at low temperatures, the nucleoid exclusion phenomenon becomes nonfunctional in that,
on average, aggregates no longer preferentially locate at the cell poles, due to enhanced cytoplasm
viscosity that renders ‘ineffective’ the interactions between nucleoid and aggregates. We vali-
dated these findings by subjecting cells to osmotic stress. Similarly to lowering temperature, we
observed that plasmolyzed cells (i.e. with enhanced relative dynamic cytoplasmic viscosity) were
also unable to segregate the aggregates to the poles. The results suggest that, in any stress condi-
tion where cytoplasm viscosity is increased, such as carbon starvation, energy depletion, and dur-
ing the stationary phase (Parry et al. 2014), one can expect a loss of aggregate’s preference for
polar localization. Further, we expect that the spatial localization of other large cellular compo-
nents such as plasmids, enzyme complexes, micro-compartments (Kerfeld et al. 2010) and other

macromolecules, to be likewise affected by enhanced cytoplasm viscosity.

Interestingly, the increased relative cytoplasmic viscosity with decreasing temperature creates the
same glassy-like behavior of the cytoplasm that occurs when the metabolic activity is reduced
(Parry et al. 2014). In that study, the cytoplasm viscosity was found to be ‘metabolism dependent’.
Namely, enhanced metabolism activity causes the cytoplasm to be fluidized, which allows larger
components to move more freely and reach larger regions of the cytoplasm. In the case of the
plasmolyzed cells that observed, the increase in viscosity is likely due to increased macromolec-

ular crowding, which reduces the diffusion rate of large components.

Interestingly, due to the above phenomena being biophysical in nature, we expect their effects on
aggregate preference of polar localization to occur during the exposure to these stressful
conditions but have short-term consequences once normal temperatures are resumed, particularly

in the case of E. coli cells able to have fast division rates.

In conclusion, from our single-cell based studies on E. coli, we found core cellular processes to
be widely affected by temperature fluctuations in a variety of aspects. We observed temperature-
dependent transcription initiation dynamics configurations, temperature-dependent robustness
and sensitivity of synthetic genetic circuits, temperature-dependent effects of DNA topological
constraints on transcription activity, and, temperature-dependent diffusion and segregation kinet-
ics of protein aggregates. We expect this knowledge, along with the methodologies presented in
this thesis, to contribute to a better understanding of how, in general, temperature affects single-
cell organisms. Regarding genetic circuits, we expect that this added knowledge on their temper-
ature-dependent to be of assistance to future efforts in synthetic biology aiming to improve the

robustness and sensitivity of genetic circuits to environmental changes.
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Effects of temperature on the dynamics of the
Lacl-TetR-Cl repressilator

Jerome G. Chandraseelan, Samuel M. D. Oliveira, Antti Hakkinen, Huy Tran,
llya Potapov, Adrien Sala, Meenakshisundaram Kandhavelu and Andre S. Ribeiro*

We studied the behaviour of the repressilator at 28 °C, 30 °C, 33 °C, and 37 °C. From the fluorescence
in each cell over time, we determined the period of oscillations, the functionality (fraction of cells
exhibiting oscillations) and the robustness (fraction of expected oscillations that occur) of this circuit.
We show that the oscillatory dynamics differs with temperature. Functionality is maximized at 30 °C.
Robustness decreases beyond 30 °C, as most cells exhibit ‘failed’ oscillations. These failures cause
the distribution of periods to become bimodal, with an ‘apparent period’ that is minimal at 30 °C, while
the true period decreases with increasing temperature. Based on previous studies, we hypothesized
that the failures are due to a loss of functionality of one protein of the repressilator, Cl. To test this, we
studied the kinetics of a genetic switch, formed by the proteins CI and Cro, whose expression is
controlled by Pry and Pg, respectively. By probing the activity of Pry by in vivo detection of MS2-GFP
tagged RNA, we find that, beyond 30 °C, the production of the Cl-coding RNA changes from sub-
Poissonian to super-Poissonian. Given this, we suggest that the decrease in efficiency of Cl as a
repressor with temperature hinders the robustness of the repressilator beyond 30 °C. We conclude that
the repressilator is sensitive but not robust to temperature. Replacing Cl for a less temperature-
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Introduction

Natural genetic circuits can efficiently perform various tasks,
such as time counting," state holding,” and signal filtering,’
while maintaining robustness to environmental changes. This
is necessary for them to be able to regulate complex cellular
processes under various conditions*™® or to efficiently determine
cells’ response to environmental shifts and signals. Much effort has
been made to reproduce their behaviour in synthetic circuits.®®
Once proven reliable, these synthetic circuits should have a wide
range of applications.”™* For example, synthetic genetic clocks
promise to be of use as regulators of intracellular processes. For
that, they will need to be robust to environmental changes,
similarly to natural circuits.

One of the most famous synthetic circuits is the ‘repressilator’,
engineered by Elowitz et al.” This circuit has three genes, whose
interactions form a negative feedback loop. Namely, the three
genes form a cycle, with each gene expressing a protein that
represses the next gene in the cycle. At 30 °C, the repressilator
exhibits periodic oscillations,” visible in time-lapse measurements

Computational Systems Biology Research Group, Tampere University of Technology,
P.O. Box 553, 33101 Tampere, Finland. E-mail: andre.ribeiro@tut.fi

This journal is © The Royal Society of Chemistry 2013

dependent protein should enhance robustness.

of a green fluorescent protein (GFP) reporter that is under the
control of a promoter that is also present in the 3-gene circuit.

Temperature affects the dynamics of most cellular processes,
including gene expression.”® Evidence suggests that natural,
time-keeping circuits, such as circadian oscillators, evolved
robustness to temperature fluctuations.’* ' Similar robustness
is desired in synthetic circuits designed for time keeping.

The degree of robustness of the repressilator to temperature
is unknown, but studies on some of its components suggest
that its behaviour is bound to be strongly affected by small
changes in temperature. For example, one of its proteins, the
wild-type CI,” has temperature-dependent DNA-binding stability."”
Namely, it is maximized at ~30 °C and is gradually lost as
temperature increases, becoming ~50% weaker at 42 °C."” This
decrease may arise from the fact that the ability of CI to discriminate
between operator sites depends on ion binding/release reactions'®
and/or from the temperature-dependence of the CI's dimerization
process.”®

Here, we investigate how temperature affects the dynamics
of the repressilator. Afterwards, we search for causes. Motivated
by previous evidence that CI's functionality is temperature-
dependent, we also study the temperature-dependence of
another circuit, the CI-Cro switch. After comparing the effects
of temperature on the kinetics of the two circuits, we propose

Mol. BioSyst, 2013, 9,3117-3123 | 3117
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modifications to the repressilator that may enhance its robust-
ness to temperature fluctuations.

Methods

Repressilator: strain, plasmid, and microscopy

Cells of E. coli lac™ strain MC 4100 with the repressilator (pZS1-
ITI'LLtCL) and the reporter plasmid (pZE21-GFPaav) were
generously provided by M. Elowitz, Princeton University, NJ,
USA. Minimal media were prepared with 2 mM MgSO,-7H,0
(Sigma-Aldrich, USA), 7.6 mM (NH,),SO, (Sigma Life Science,
USA), 30 uM FeSO,-7H,O (Sigma Life Science, USA), 1 mM
EDTA (Sigma Life Science, USA), 60 mM KH,PO, (Sigma Life
Science, USA) pH 6.8 with Glycerol 0.5% (Sigma Life Science,
USA) and Casaminoacids 0.1% (Fluka Analytical, USA).

E. coli cells with the repressilator and reporter plasmids were
grown in minimal media overnight at 28 °C, 30 °C, 33 °C or
37 °C with shaking at 300 rpm, to an optical density (OD) of 0.1
at 600 nm. Next, cells were diluted into fresh media and a few pl
of the culture was placed between a cover-slip and a slab of 2%
low melting agarose in minimal media, 0.75 mm thick. During
time lapse microscopy, the temperature of the samples was kept
stable by a control chamber (Bioptechs, FCS2, Pennsylvania, USA).
Images were obtained every 15 minutes for 10 hours by a Nikon
Eclipse (TE2000-U, Nikon, Tokyo, Japan) inverted C1 confocal
laser-scanning system with a 100x Apo TIRF (1.49 NA, oil)
objective. GFP fluorescence was measured using a 488 nm laser
(Melles-Griot) and a 515/30 nm detection filter. For image
acquisition, we used Nikon software EZ-C1.

Switch: strain, plasmid, and microscopy

E. coli CZ071 with a reporter plasmid PLtetO-1-MS2d-GFP and a
target plasmid pIG-BAC (Pgy-limm(rexAB::bs48)) were generously
provided by I. Golding (University of Illinois, USA). The target
plasmid is a single-copy F-plasmid with a genetic switch coding for
CI, under the control of Pgy, and Cro,*° under the control of Py.
Further, the plasmid contains the immunity region of wild-type
1,”" where the rexA and rexB genes were replaced by a 48 binding
site array for MS2d proteins, so as to detect individual RNAs whose
production is controlled by Pgy;. Depending on the occupation of
the sites OR1, OR2 and OR3, one of the two promoters will be in a
repressed state.’>** Note that OR3 is absent in the repressilator.
Nevertheless, the existence of oscillations’ shows that CI still
achieves repression of Pg.

Cells were grown in Luria-Bertani (LB) medium with the
following components: 10 g L™" of Tryptone (Sigma Aldrich,
USA), 5 g L™ " of yeast extract (LabM, UK) and 10 g L™ of NaCl
(LabM, UK), with addition of 34 pg ml™" of Kanamycin and
34 pg ml™!' of Chloramphenicol (both antibiotics from Sigma
Aldrich, USA). Cells were grown overnight with shaking at
260 rpm, in an orbital shaker (Labnet), at 30 °C for 12-16 h
to an optical density (OD) of 0.1 at 600 nm. Thereafter, cells
were grown until they reached an OD of ~0.01 and diluted to
1:10 in LB medium with antibiotics. Then, they were grown at
37 °C with shaking at 260 rpm for a few hours, until they
reached the exponential phase and an OD of ~0.3.
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The reporter gene, TetO1-MS2d, was activated using 10 ng ml™*
of anhydrotetracycline (aTc) (IBA GmbH, Germany), for at least
45 minutes, to allow the production and maturation of enough
reporter MS2-GFP proteins. For acclimatization, cells were grown at
room temperature for 1 hour. Afterwards, they were transferred to a
microscope chamber, for image acquisition.

Cells were kept at 24 °C, 27 °C, 30 °C, 34 °C, or 37 °C during
microscopy in a thermal chamber (Bioptechs, FCS2, Pennsylvania,
USA). We poured 100 pl of melted agarose-medium with 1% agarose
(Sigma life science, USA), LB medium, and aTc (10 ng ml™"), into a
microscope slide with a glass coverslip on top. After waiting for the
gel-pad to solidify, prior to adding cells, we removed the coverslip
and left the gel-pad to dry for 2-5 minutes at room temperature.
Finally, we added 5-8 pl of cell suspension into the gel and placed
this sandwich in the thermal chamber for image acquisition.

Cells were visualized in a Nikon Eclipse (TE2000-U, Nikon,
Japan) inverted microscope with C1 confocal laser-scanning
and a 100x Apo TIRF objective. Images were taken every
minute for 2 hours. GFP fluorescence was measured using
488 nm argon ion laser (Melles-Griot) and a 515/30 nm emission
filter. Images were acquired with Nikon EZ-C1 software and
were analysed by custom software written in MATLAB 2011b
(MathWorks).

Image analysis

Images of cells with the repressilator and with the switch were
analysed differently. To detect cells with the repressilator from
images (Fig. 1), we segment them by manually masking the area
each occupies in each frame. Next, the total fluorescence
intensity in each mask is extracted and the mean pixel intensity
of each cell is calculated for each time moment.

For cells containing the switch, thus expressing MS2-GFP
and its target RNA, the region occupied by each cell over time
was manually masked. In each mask, principal component
analysis (PCA) was used to obtain dimensions and orientation
of the cell at each moment. By kernel density estimation using a
Gaussian kernel®” and Otsu’s thresholding,* fluorescent spots
were automatically segmented. To obtain the intensity of each spot,
the cell background was subtracted. Finally, RNA numbers in each
cell were obtained from the time series of the corrected total spot
intensity by a least squares fit of a monotone piecewise-constant
curve (Fig. 2b).>* The number of terms in the curve was selected by
an F-test with a p-value of 0.01. Each jump corresponds to the
production of one RNA** (Fig. 2, for details see ref. 25).

Assessing functionality and apparent period of oscillations

To determine if a repressilator is ‘functional’ during a time
series, we use the criterion used in Elowitz et al.” A fast Fourier
transform is applied to the temporal fluorescence signal from

Fig. 1 Cell exhibiting oscillatory fluorescence. 5 frames are shown, along with
time stamps in minutes. In this case, the images were taken at 30 °C.

This journal is © The Royal Society of Chemistry 2013
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Fig. 2 MS2-GFP tagged RNAs in E. coli cells. Unprocessed and segmented cells
and RNA spots (a). Moments when images were taken are indicated in each
frame. Examples of time series in cells with scaled intensity levels (circles) and
estimated RNA numbers (solid lines) (b).

each cell and divided by the transform of a decaying exponen-
tial with a time constant of 90 min, the measured lifetime of the
fluorescent protein used (GFPaav).” Power spectra with peaks
4.5 times higher than the background at frequencies of 0.15-0.5
per hour were classified as oscillatory. The bandwidth used
here is larger than in ref. 7 so as to include failed oscillations
that should cause apparent oscillations with close to double
period.
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For cells considered functional, we estimated the ‘apparent
period’ as follows. First, we fit a quadratic curve in the least-
squares sense to the intensity time series, to estimate the
general trend (Fig. 3, top panel) since the measured intensity
is affected by, e.g., photo-bleaching. After subtracting the
estimated trend, the residual is scaled to unit power (Fig. 3,
middle panel), and then the autocorrelation function is com-
puted (Fig. 3, bottom panel). From this function, we estimate
the period by locating the first and the third zeros of the
autocorrelation function and computing their distance (Fig. 3,
bottom panel, black circles).

Detecting failed oscillations and estimating the true period

The above method of period estimation relies on robust periodic
behaviours. If a repressilator halts its activity for a while and
then resumes it, the above method cannot detect it. Instead, it
assumes an oscillation length that includes the halting and the
‘true’ oscillation. We observed by inspection that, in some cells,
the GFP reporter failed to report an oscillation, either because
the oscillation itself failed or because the reporters’ expression
failed. In general, the reporter signal ‘recovered’ in the next cycle.
In these cases, the measured time was double that between other
consecutive oscillations.

To extract the ‘true period’, we employed a method that
relies on the fact that the distributions of period lengths, when
failures occur, resemble bimodal distributions. Namely, we
estimate the mean and standard deviation of the true period
in the population and the fraction of failed oscillations from
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Fig. 3 Period estimation from the fluorescence intensity signal. In the top panel, the raw signal extracted from images is shown along with the estimated trend. In the
middle panel, the trend was subtracted from the raw signal and the residual was scaled to unit power. The bottom panel shows the autocorrelation function of the
treated signal. The distance between first and third zeros (black circles) corresponds to the period of oscillation in the cell.
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the measured periods from each cell. For that, we find the
maximum likelihood estimates for a single Gaussian (given by
the mean and standard deviation of the measured periods) and
for a mixture of two Gaussians, such that the mean and variance
of the second are double that of the first (found using an iterative
expectation maximization algorithm).>® The appropriate model
is selected by a likelihood ratio test with significance level of 0.01
between the two models. That is, we only select the 2-Gaussian
model if the p-value of this test is smaller than 0.01. Finally, we
performed the fitting with each subset of data lacking one of the
measured periods (leave-one-out technique). This procedure
results in N estimates each using N — 1 measured periods from
which the variance of the estimates is estimated.

Results

We measured the behaviour of the repressilator at 28 °C, 30 °C,
33 °C, and 37 °C. We also conducted measurements for lower and
higher temperatures than these, but the number of functional
repressilators was negligible or non-existing. We limited the
measurements’ length to 10 h, as cells tend to enter the
stationary phase beyond this point, which halts the repressilator.”
Cells with a non-functional repressilator, for this or other reasons,
were discarded by the method used to determine if the GFP levels
oscillate throughout the measurement period (see Methods).

We first tested if the distributions of lengths of the oscilla-
tions (Fig. 4) here referred to loosely as ‘periods’, differ with
temperature. For that, we compared all pairs of distributions
using the Kolmogorov-Smirnov (KS) test. All, except 33 °C vs.
37 °C, differ in a statistical sense (p-values smaller than 0.03),
which implies that the circuit is sensitive to temperature.

Molecular BioSystems

Under all conditions, as visible from the distributions in
Fig. 4, the period lengths vary widely. Given their mean and
variability, a number of short-lasting periods (<100 min) are
expected (visible in Fig. 4). To verify that these did not occur in
a higher than expected frequency, for the condition ‘30 °C’ (the
one with most samples), we computed the probability of having
such or a more extreme number of periods smaller than
100 min (i.e. a p-value) assuming the fitted model (see below
and the Methods section). From the model, 2.93 ‘short periods’
are expected while 3 were detected, which results in a p-value of
0.56 i.e., the number of events observed is not unlikely.

The effects of temperature on the distribution of periods’ length
are visible in Fig. 4. The distribution appears to become bimodal for
T'> 30 °C. This bimodality, not possible if the oscillations in protein
numbers were robust, appears to arise from ‘failed oscillations’ that
occur with non-negligible probability. Namely, in some of the cells
at 7> 30 °C, the GFP levels appear to remain low for approximately
one cycle and only increase again in the following cycle.

To test for bimodality, for each of the four distributions, we
determined the maximum likelihood estimates for a single
Gaussian and for a mixture of two Gaussians with the mean
and variance of the second Gaussian being double those of the
first. The preferred model (see Methods) in each condition is
shown in Fig. 4 as well. For 33 °C and 37 °C, the model of two
Gaussians was preferred.

Using the fitting, we estimated the number of failed oscillations
in each cell, under each condition (see Methods). The fraction of
successtul oscillations (R) is shown in Table 1, for each condition.
Beyond 30 °C, the repressilator loses much of its robustness, as
several expected oscillations were not detected. This agrees with the
observed decrease in functionality (F) for temperatures above 30 °C
(Table 1).
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Fig. 4 Distribution of periods (magnitude scaled to represent probability density) for each temperature. Solid lines represent the probability densities of the fitted
model with one or two Gaussians. Dashed lines represent the densities of individual components in the case of two Gaussians. For 28 °C and 30 °C, the p-values of the
likelihood ratio tests are 0.08 and 1, respectively, indicating a lack of evidence for the two-Gaussian model, whereas for 33 °C and 37 °C, the p-values are 0.0065 and
0.0015, respectively, indicating that the two-Gaussian model should be favored over the one-Gaussian model.
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Table 1 Kinetics of the repressilator at different temperatures. Temperature (7),
fraction of functional cells (F), total number of cells exhibiting oscillations, fraction
of robust oscillations (R), mean (m) and standard deviation (s) of the apparent
period, and mean (u) and standard deviation (o) of the estimated true period are
shown

No. of cells

T (°C) F (%) oscillating R (%) m (min) s (min) u (min) o (min)

28 20 43 100 290 120 290 120
30 30 71 100 258 91 258 91
33 15 62 26 328 126 188 59
37 5 25 20 347 92 192 36

Also in Table 1, we show the mean and standard deviation of both
the apparent period and the true, estimated period. The mean true
period, , always decreases with increasing temperature. On the other
hand, the mean apparent period, m, is minimal at 30 °C.

Given this, we investigated whether the distributions of
durations of true oscillations alone also differ with tempera-
ture, as the distributions of apparent oscillations do. Namely,
we estimated the mean true period (Fig. 5) and then the one
standard deviation of this estimate (error bars in Fig. 5). From
Fig. 5, this mean always decreases significantly as temperature
increases, except beyond 33 °C.

Next, we investigated the causes for the decrease in robust-
ness with temperature. In particular, we investigated how
temperature affects the functionality of the three component pro-
teins of the repressilator, namely, CI, Lacl, and TetR. First, studies
suggest that as temperature increases from 30 °C to 42 °C, CI loses
approximately half of its DNA-binding stability.'” On the other
hand, the DNA-binding affinity of LacI does not vary significantly
between 28 °C and 37 °C.”” Similarly, TetR’'s functionality is
unaltered from 20 °C to 40 °C.*® We thus hypothesized that a
possible cause for the loss of robustness of the repressilator with
increasing 7 was the weakening effectiveness of CI as a repressor.

There is another circuit, the CI-Cro genetic switch, of which
CI is a component. If CI loses functionality with increasing
temperature (partially or completely) the behaviour of this switch
should change with temperature. To determine whether this is

Estimated True Mean Period
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Fig. 5 Estimated mean values of the true period. Error bars indicate one
standard deviations of the mean period estimated by the leave-one-out
technique.
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Table 2 Intervals between the appearances of novel, consecutive RNA mole-
cules in individual cells. For condition, the table shows the number of intervals,
mean (), standard deviation (¢) and, square of the coefficient of variation (CV?)
of the interval duration

T (°C) No. intervals u(s) o (s) cv?
24 157 1242 1166 0.88
27 229 1452 1191 0.67
30 88 1130 1040 0.85
33 539 788 807 1.05
37 324 714 785 1.21

Table 3 P-values of the Kolmogorov-Smirnov test between distributions of
intervals between consecutive RNA production events, under the control of Pry,,
obtained at different temperatures. For p-values <0.01, the hypothesis that the
two distributions are the same is rejected

T (°C) 24 27 30 33
27 0.149

30 0.006

33 0.009

37 0.478

the case, we conducted in vivo measurements of RNA produc-
tion, one event at a time, by one of the two genes of this switch.
This particular gene is controlled by the promoter Pgry, and
codes for CI as well as for a 48 MS2d binding array. The second
gene of the switch, whose activity is not followed, is controlled by
the promoter Pr and codes for Cro. Relevantly, Cro-DNA inter-
actions do not vary significantly from 24-37 °C,* thus, behaviour
changes in this switch with increasing temperature should mostly
arise from the changes in CI-DNA interactions.

We measured intervals between consecutive productions of the
RNA target for MS2-GFP in individual cells, from in vivo measure-
ments 2 h long, with images taken every minute, at 24 °C, 27 °C,
30 °C, 33 °C and 37 °C. In Table 2, we show for each condition the
number of samples (ie. intervals) and the mean and standard
deviation of the intervals’ duration. As temperature increases, the
kinetics of production of the target RNA changes. Specifically, aside
from a decrease in the mean interval between consecutive transcrip-
tion events, one observes that the production kinetics changes
from sub-Poissonian (CV* < 1) for T < 30 °C, to super-Poissonian
(CV* > 1) for T > 30 °C.

To verify if the change is significant, we compared the
distributions of intervals in consecutive temperatures with the
K-S test. The results in Table 3 indicate that the distributions at
24 °C and 27 °C cannot be statistically distinguished from one
another. Similarly, the distributions at 33 °C and 37 °C cannot be
distinguished. Meanwhile, the distributions from 27 °C and
30 °C, as well from 30 °C and 33 °C, differ from one another.
Thus, there is a change in the dynamics of transcript production,
and it occurs around 30 °C, which is similar to the point where
changes in behaviour of the repressilator are observed.

Conclusions and discussion

We studied the behaviour of the repressilator at different
temperatures. We observed that the fraction of functional cells
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(i.e. exhibiting oscillations), the robustness of the oscillations
in functional cells, and also the apparent and the real period all
differ with temperature.

Because the robustness decreases at higher-than-optimal
temperatures, the extraction of the period in this regime
requires the identification of failed oscillations. Otherwise,
the period will likely be overestimated. The extraction method
here proposed should be applicable to other genetic clocks
as well.

The apparent period was minimized at 30 °C. However, the
results of employing the novel method of period extraction
suggest that the increase in apparent period when increasing
temperature beyond 30 °C is due to an increasing rate of failed
oscillations. Meanwhile, the true period decreased significantly
with increasing temperature (until 33 °C), in accordance with
the response of other synthetic genetic clocks to increasing
temperature.® This decrease is likely caused by the increased
rate of the underlying thermodynamic processes (see ref. 30). In
particular, we expect the decay rates of the proteins to increase,
which decreases the period length.*” The increased protein
decay rates are expected from both increased rates of degrada-
tion and increased doubling rate of the cells. This allows the
repressilator to be sensitive to temperature changes in the
range tested.

We hypothesize that the design of genetic clocks that are
insensitive to temperature will have to be able to compensate
for increased speed of processes such as cell division, open
complex formation,"® among others.

Subsequently, based on previous studies on the functional-
ity of the proteins of the repressilator,'”*”*® we hypothesized
that the loss of robustness with increasing temperature was
associated with the temperature-dependent functionality of one
component protein, CI. We tested this indirectly, by studying
how temperature affects the CI-Cro switch. In particular, we
conducted in vivo measurements, one event at a time, of the
kinetics of production of an MS2-GFP tagged RNA that probed
the transcription kinetics of the RNA coding for CI. From these,
we observed that, when increasing temperature beyond 30 °C,
the dynamics of production of the tagged RNA changed from
sub-Poissonian to super-Poissonian, which suggests that the
production of the tagged RNA became subject to repression.

Recent studies in E. coli suggest that, provided no repression,
RNA production is a sub-Poissonian process, within the range of
temperature tested here.”>***>?*! To be super-Poissonian, the
promoter ought to have intervals of inactivity”"** (e.g. due to
repressors) or due to another, similar mechanism. In the case of
the CI-Cro switch, the occurrence of periods of inactivity of Pry
is expected if CI loses functionality, allowing Cro to be
expressed.’®* Thus, these results suggest that CI loses function-
ality with increasing temperature.

The repressilator and the CI-Cro switch only share CI in
common, while the other component proteins differ. Relevantly,
the interactions between all these other proteins and their
respective DNA binding sites are not temperature-dependent in
the range studied.”’ > Given this and all of the above, it is
therefore reasonable to conclude that, in both circuits, the
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behavioural changes with temperature observed are primarily
due to the temperature-dependence of CI's activity.'®"?

Further, we hypothesize that it is possible to modify the
repressilator so as to make it more robust to a wider range of
temperatures. For that, the CI-DNA interaction should be
replaced by a less temperature-dependent repression mechanism.
This modification is not expected to compromise the sensitivity
(which likely depends more heavily on the temperature-dependent
cell division rate, among others).

It is worthwhile discussing the different effects of tempera-
ture on robustness and functionality. Namely, while function-
ality is maximized at 30 °C, robustness was only compromised
at higher-than-optimal temperatures. In the latter regime, the
two decreases are likely related. As robustness decreases, we
expect a higher chance for repressilators to not function during
the measurements. However, at lower-than-optimal tempera-
tures, the loss in functionality is likely caused by other reasons,
as the robustness was not compromised. Future research is
needed to identify such causes.

Finally, the results presented here demonstrate that the
behavioural changes in genetic circuits upon changing conditions
depend not only on the topology of the circuit, but also on how
each of its components responds to the environmental changes.
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Single-cell kinetics of a repressilator when
implemented in a single-copy plasmidf

Samuel M. D. Oliveira,* Jerome G. Chandraseelan,® Antti Hakkinen,?
Nadia S. M. Goncalves,? Olli Yli-Harja,” Sofia Startceva® and Andre S. Ribeiro*?

Synthetic genetic clocks, such as the Elowitz—Leibler repressilator, will be key regulatory components of
future synthetic circuits. We constructed a single-copy repressilator (SCR) by implementing the original
repressilator circuit on a single-copy F-plasmid. After verifying its functionality, we studied its behaviour
as a function of temperature and compared it with that of the original low-copy-number repressilator
(LCR). Namely, we compared the period of oscillations, functionality (the fraction of cells exhibiting
oscillations) and robustness to internal fluctuations (the fraction of expected oscillations that would
occur). We found that, under optimal temperature conditions, the dynamics of the two systems differs
significantly, although qualitatively they respond similarly to temperature changes. Exception to this is in
the functionality, in which the SCR is higher at lower temperatures but lower at higher temperatures.
Next, by adding IPTG to the medium at low and high concentrations during microscopy sessions, we
showed that the functionality of the SCR is more robust to external perturbations, which indicates that
the oscillatory behaviour of the LCR can be disrupted by affecting only a few of the copies in a cell. We
conclude that the SCR, the first functional, synthetic, single-copy, ring-type genetic clock, is more
robust to lower temperatures and to external perturbations than the original LCR. The SCR will be of use

www.rsc.org/molecularbiosystems

Introduction

Efforts in synthetic biology dedicated to the engineering of
artificial genetic circuits have focused on constructing func-
tional switches (for decision making), clocks (for time keeping),
and noise and frequency filters," as these modules are likely
candidate regulatory components of the activity of future, more
complex synthetic circuits.

One of the first reported functional synthetic circuits is the
‘repressilator’,> a ring-oscillator with three genes, each expres-
sing a protein that represses the next gene in the loop. From the
study of the signal from GFP reporters in cells at 30 °C, it was
shown that it oscillates (stochastically) at a slower rhythm than
the cell cycle. Interestingly, for unknown reasons, only approxi-
mately 40% of the cells exhibit oscillations, i.e. are ‘functional’.
Further, even though the circuits’ behaviour is uncoupled from
the cell cycle in the previous phase,” these functional cells
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in future synthetic circuits, since it complements the array of tasks that the LCR can perform.

become non-functional in the stationary phase, suggesting that
this synthetic network is not fully uncoupled from the regulatory
mechanisms of cell growth. Finally, the oscillatory behaviour can
be halted by external signals. E.g. most cells lose the functionality
following the addition of 50 puM of isopropyl B-p-1-thio-
galactopyranoside (IPTG) to the medium.>

A subsequent study® analysed the behaviour of the repressi-
lator at temperatures below and above the optimal (from 28 °C
to 37 °C, with 30 °C being considered as optimal), focusing on
the period of oscillations, the functionality (the fraction of cells
exhibiting oscillations) and the robustness (the fraction of
expected oscillations that would occur) of the signal from the
cells. Both the functionality (maximum at 30 °C) and the period
length were found to be temperature-dependent. The minimum
period length was observed at 30 “C. While the reason for longer
periods at lower-than-optimal temperatures is likely the slower
rate of most chemical processes, at temperatures beyond optimal,
longer periods emerge due to the loss of functionality of one of
the component proteins of the repressilator, CI.*

Originally, the repressilator was implemented on a low-copy
plasmid (pZS1-ITIrLLtCL). Because of this (as the origin of
replication is pSC101), each cell has, on average, 3-4 copies
of the repressilator,* which are functionally coupled in that the
proteins coded by a gene in one of the copies can act as
repressors of the next gene in the loop in all other copies of

Mol. BioSyst., 2015, 11, 1939-1945 | 1939
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the plasmid in the cell. This coupling, according to simulations
of stochastic models, is expected to reduce the fluctuations in
period lengths that arise from the stochasticity in gene expres-
sion and in RNA and protein degradation.>® So far, it is
unknown whether the repressilator would function if imple-
mented on a single-copy plasmid.

If functional, a single-copy repressilator (SCR) ought to be of
use to ongoing efforts in synthetic biology. For example, by
comparing its behaviour with that of the original LCR, we may
obtain a better understanding of how the copy number variation
in bacteria can lead to changes in bacterial growth rates”® and
phenotypic innovation,” among others. In the case of the repres-
silator, it is expected that the copy-number will affect the
dynamics severely enough to allow the system to change from
a single steady state to sustained oscillations."”

As these and other expectations are, so far, solely based on
theoretical models,”'*"® we have implemented the Elowitz-
Leibler repressilator” on a single-copy F-plasmid (pBAC2) in
order to conduct an empirical analysis of the behavioural
changes due to copy-number differences. This plasmid is well-
known for its high hereditary, i.e. copy-number and stability.'*"
For most of the cell cycle there is only one copy of the plasmid in
the cell, which is replicated once, prior to cell division.

After verifying the functionality of our SCR, we compared its
dynamics with the original LCR at optimal temperatures. Next,
we compared their responses to changing temperatures.
Finally, we studied their robustness to external perturbations.

The results provide new insights into the effects of coupling
on genetic circuits in general, and clocks in particular. Under-
standing the functioning of natural, as well as synthetic clocks,
such as the repressilator, will assist in the understanding of
how cells regulate the timing of several processes'® and con-
tribute to ongoing efforts in synthetic biology to produce circuits
useful in assisting medicine and biotechnology, particularly
given the important role that synthetic clocks are expected to
play as sensors and regulators in future synthetic circuits.

Methods

Design, validation, and functioning of single-
copy repressilators

The repressilator consists of a three-gene network in a loop
formation, with each gene repressing the next gene in the loop®
(Fig. 1, top). Such a network is expected to exhibit periodic
oscillations in the protein levels of the component genes (Fig. 1,
bottom). To observe them, a GFP reporter is used, which is
regulated by one of the proteins of the circuit.”

To build the SCR, we transferred the sequence coding for the
repressilator from the original low-copy plasmid into a single-
copy F-plasmid (pBAC2-ITIrLLtCL). The original GFP reporter
system” was left unchanged. The construction history of the
SCR is shown in Fig. S1 (ESIt). Images of the gels of the SCR
plasmid and PCR are shown in Fig. S4 and S5 (ESIT), respec-
tively. To further confirm the proper construction of the SCR
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Fig. 1 Top: graphical representation of the 3-gene network (repressilator)
along with the GFP reporter. Bottom: an example output from a stochastic
model of the repressilator.'* The black curve represents the output of the
reporter while the grey curves represent the actual protein numbers of the
three genes of the repressilator. The signals of the GFP reporter and . ClI
are nearly superimposed, as expected.
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Fig. 2 Top: example images of a cell exhibiting oscillatory fluorescence
levels. 5 frames are shown along with the time stamps in minutes. Images
taken at 37 °C. Bottom: the mean fluorescence intensity level (in arbitrary
units) over time of the cell shown above. The dashed lines indicate points
at which the above frames were captured.

plasmid we performed sequencing and qPCR (Fig. S6 and ESI, T
respectively).

Finally, we conducted live cell microscopy to determine
whether cells with the SCR exhibited a fluorescent signal whose
intensity oscillates (for example Fig. 2 and Fig. S7, ESI{), similar
to the original LCR. The observations confirmed the existence
of oscillations.

Strains, genetic circuit assembly, and growth conditions

Cells of E. coli host strain lac- MC 4100, containing the low-copy
repressilator (pZS1-ITIrLLtCL) and the reporter (pZE21-GFPaav)

This journal is © The Royal Society of Chemistry 2015
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plasmids, were generously provided by M. Elowitz (Princeton
University, NJ, USA).> In cells of the same strain, MC4100,
containing only the reporter system (also generously provided
by M. Elowitz), controlled by the tetracycline repressor (7etR) and
the promoter Py tetO1,> we inserted the engineered single-copy
F-plasmid containing the repressilator system (pBAC2-ITIrLLtCL)
from pZS1-ITIrLLtCL (Fig. S1, ESIT).

The low-copy (LCR) and single-copy repressilator (SCR)
strains were grown in agar lysogeny broth (LB) medium from
glycerol stock (kept at —80 °C) for 12 hours until single colonies
could be detected. Single colonies selected from the LB plates
were transferred to LB-agar plates for 8 hours of fast growth.
A single colony was then inoculated into a minimal medium
for 10 hours at 28 °C, 30 °C, 33 °C or 37 °C with shaking at
250 rpm (6 rcf), to an optical density (OD) ~ 0.1 at 600 nm.
Next, cells were centrifuged at 8000 rpm (6093 rcf) for 1 minute
and diluted into fresh minimal medium. In all steps, besides
image acquisition, LCR cells’ preparation contained 35 pg ml™*
of kanamycin and 20 pg ml™" of ampicillin, while SCR cells’
preparation contained 35 pg ml~ " of kanamycin and 35 ug ml ™!
of chloramphenicol (all antibiotics from Sigma Aldrich, USA).
For imaging, a few pl of the culture were placed between a
cover-slip and a 2.5% low melting agarose gel pad of minimal
medium with 1 mm thickness.

As mentioned above, the LCR and SCR differ in their
antibiotic markers, as the SCR uses chloramphenicol instead
of ampicillin. However, as we do not use either of antibiotics
during the microscopy measurements and given the identical
growth rates of the two strains during those measurements
(see below), this difference is not expected to affect their dynamics.

Cell culturing optimization

To avoid plasmid instability’”™*® and to optimize culturing

protocols®® we proceeded as follows: (i) as in the original
protocol,”” cells were taken from a stock (at —80 °C) and
streaked onto an LB agar medium with appropriate antibiotics
for 14-16 hours; (ii) at this stage, we added to the original
protocol an extra step of 8 hours of cell growth from single
colonies in LB agar medium;>® (iii) next, as in the original
protocol, a few colonies from the second plate were inoculated
in M63 liquid minimal medium with antibiotics for 10 hours.
Finally, we placed cells at 28 °C, 30 °C, 33 °C, or 37 °C for
8 hours, after which we measured the optical density (OD). After
these 8 hours of culturing ODgoo & 0.1-0.2 was reached under
all conditions, as reported in ref. 3 No differences in behaviour
were found between cells with the LCR and with the SCR during
this procedure.

Microscopy

During time lapse microscopy, cells were kept at a stable
temperature in a thermal chamber (Bioptechs, FCS2, PA, USA).
Images of both LCR and SCR cells were obtained every 15 minutes
for 10 hours using a Nikon Eclipse (Ti-E, Nikon, Japan) inverted
microscope equipped with a C2+ confocal laser-scanning system
and a 100x Apo TIRF (1.49 NA, oil) objective. Images were taken
from multiple locations at each moment. GFP fluorescence was

This journal is © The Royal Society of Chemistry 2015
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excited using a 488 nm argon ion laser (Melles-Griot) and
measured using a 515/30 nm emission filter. The pixel dwell time
was set to 2.4 ps, so that the total image acquisition time per
location was ~2.5 s. The laser shutter was open only during
exposure to minimize photo-bleaching. We used NIS-Elements
software (Nikon) for image acquisition.

Data and image analysis

For image and data analysis, we used custom software written
in MATLAB 2011b (MathWorks). Cells with either the LCR or
the SCR were manually segmented in the images.’ Next, the
segments were automatically tracked based on the overlapping
areas of the segments in consecutive frames, and the total
fluorescence intensity was extracted and used to calculate the
mean pixel intensity of the cell at each moment.?

We used the following criterion to determine the function-
ality of the repressilator:> for cells presenting the fluorescence
signal from start to end, a discrete Fourier transform was
applied and divided by the transform of a decaying exponential
of the measured lifetime of the fluorescent protein used
(GFPaav), with a time constant of 90 min.” From these, cells
with power spectra with peaks 3 times higher than the back-
ground, at frequencies of 0.2-0.5 per hour, were classified as
oscillatory. As discussed in ref. 3, the bandwidth was larger
than that reported in ref. 2 to detect failed oscillations, which
create apparent periods close to the double mean and standard
deviation.?

The same method as reported in ref. 3 was used to estimate
the period of oscillations for each cell. It consists of subtracting
the detected trend from a raw signal, followed by scaling the
residual to unit power and computing an autocorrelation
function. Afterwards, periods were estimated by locating the
first and third zeros of the autocorrelation function, and com-
puting their distance.

Robustness of the oscillations to internal fluctuations

It is known that some cells fail to report an oscillation at times,
particularly at temperatures higher than 30 °C.* This occurs
either because no oscillation occurred or because the reporter
failed to report it. Typically, such ‘halted’ signals resume in
the next cycle. Regardless of the cause, these events are
evidence for the lack of robustness to internal fluctuations of
the repressilator-reporter system. To quantify this phenom-
enon and assess its temperature dependence in each system,
we defined robustness to internal fluctuations as the fraction of
expected oscillations that do occur according to the reporter
(i.e. the ratio between true and apparent cycles). To find the
fraction of ‘apparent’ and ‘true’ cycles in functional cells under
each condition, distributions of period lengths were analysed
(Fig. S2 and S3, ESIY).

As reported in ref. 3, these distributions were fitted to either
a single Gaussian or to a mixture of two Gaussians. In the
distributions where bimodality was observed, the ‘apparent’
and ‘true’ periods were extracted from the fitting of a 2-Gaussian
model such that the mean and the variance of the second period
were twice that of the first (found using an iterative expectation
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maximization algorithm).>* The appropriate model was selected
by a likelihood ratio test with a significance level of 0.01 between
the two models. That is, we only select the 2-Gaussian model if
the p-value of this test is smaller than 0.01. This methodology
was used here solely to quantify the robustness of the repressi-
lator-reporter system to internal fluctuations.

External perturbation of the activity of the repressilator

In one experiment, we assessed the robustness of the SCR and
LCR to external perturbations by introducing a certain concen-
tration of IPTG into the medium, 180 minutes after starting the
microscopy measurements (to allow at least one cycle of
oscillation). IPTG induces the Py, lacO1 promoter and, as such,
it should disrupt the functioning of the repressilator. We
performed three such experiments. First, we perturbed cells
with the SCR and cells with the LCR by adding 50 uM of IPTG to
the medium at 30 °C, to compare the robustness of these two
circuits to external perturbations. Next, we perturbed cells with
the SCR by adding 1 mM of IPTG to the medium, so as to
compare the effects of ‘weak’ (50 uM) and ‘strong’ (1 mM)
perturbations on the SCR dynamics. In all tests, pre-warmed
fresh M63 medium containing IPTG at the desired concen-
tration was added to the medium using a peristaltic pump at
the rate of 0.3 ml min~". Images were taken every 15 minutes
for 6 hours (3 hours prior to perturbation and 3 hours after the
perturbation).

Results
Effects of the plasmid copy number under optimal conditions

We imaged cells with the SCR and LCR at 30 °C, the tempera-
ture at which the LCR exhibits shorter period and higher
functionality and robustness,® due to, among others, the tem-
perature dependence of CI**'™>* (see results in Table 1). It is
noted that in both cases, cells grow at a relatively slow rate
under the microscope (division time of ~60 min). Thus, it is
reasonable to assume that, in the case of SCR cells, most of the
time only one copy of the repressilator is present in the cells.
Nevertheless, in all cases, the SCR cells contain significantly
fewer copies of repressilators than the LCR cells (see below).
From these data, we assessed if the dynamics of the LCR and
SCR differed significantly by performing a Kolmogorov-Smir-
nov (K-S) test of statistical significance to determine whether
the two sets of time lengths of oscillations could be obtained
from equal distributions. We obtained a p-value of 0.006, from

Table 1 Kinetics of the LCR and the SCR at 30 °C. The table shows the
fraction of functional cells (F), the number of cells exhibiting oscillations,
the fraction of robust oscillations in functional cells (R), the mean (m) and
standard deviation (s) of the period, and the squared coefficient of variation
(CV?) of the period in functional cells

No. of
Copy no. F (%) oscillating cells R (%) m (min) s (min) CV?
LCR 42 37 100 251 89 0.126
SCR 48 59 100 313 122 0.152

1942 | Mol. BioSyst., 2015, 11, 19391945
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Table 2 Kinetics of the LCR and the SCR at various temperatures. The
temperature (7), the fraction of functional cells (F), the number of cells
exhibiting oscillations, the fraction of robust oscillations (R), the mean (m)
and standard deviation (s) of the period are shown

No. of
Copy no. T (°C) F (%) oscillating cells R (%) m (min) s (min)
LCR 28 30 41 100 393 40
LCR 30 42 37 100 251 89
LCR 33 35 38 43 275 100
LCR 37 30 38 34 291 111
SCR 28 32 46 100 342 124
SCR 30 48 59 100 313 122
SCR 33 24 84 39 364 161
SCR 37 21 49 31 404 145

which we concluded that the dynamics of the circuits differs
statistically (typically, the null hypothesis is rejected at a
significance level of 0.01). From this difference, and since the
repressilator circuits in the SCR and LCR implementation do
not differ, it is possible to conclude that more than one copy of
the 3-4 copies® of the LCR present in each cell is active.

Interestingly, this difference in the period distributions
(particularly the higher variance) is not reflected in the robust-
ness of the oscillations of the SCR, which does not differ from
the robustness of the LCR. Also, the SCR exhibits higher
functionality at 30 °C than the LCR (similar values to those
previously reported in ref. 2). Finally, the period of the SCR is
longer and noisier (higher CV?).

Dynamics at different temperatures

Next, we measured the behaviour of the LCR and of the SCR at
28 °C, 30 °C, 33 °C, and 37 °C (Table 2). We also conducted
measurements at lower and higher temperatures than these,
but the number of functional repressilators was negligible. We
limited the measurement period to 10 h, as cells tend to enter
the stationary phase at this stage, halting the repressilator.*

From the images, for each condition, we extracted the
fraction of functional cells (F), the number of cells exhibiting
the oscillatory fluorescent signal, the robustness (R) of the
oscillations in ‘functional’ cells, and the mean and standard
deviation of the period (m and s). The results are shown in
Table 2.

In Table 3, we show the results from K-S tests of statistical
significance to determine whether the distributions of periods
from the LCR and the SCR could be obtained from equal
distributions, at each temperature. This table indicates that
the two circuits exhibit different dynamics at all temperatures.
Nevertheless, Table 2 indicates that both circuits respond
similarly (but not identically) to temperature changes, in the
range tested. Specifically, one similarity is that in both circuits

Table 3 p-values of the K-S test between distributions of periods from
different copy number plasmids. For p-values < 0.01, the null hypothesis
that the two distributions are equal is rejected

T (°C) 28 30 33 37
p-value 5.02 x 10°* 0.006 0.36 x 10 * 7.04 x 1077
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Table 4 p-values of the Kolmogorov—-Smirnov test between distributions
of the LCR and SCR periods from different temperatures. For p-values <
0.01, the null hypothesis that the two distributions are equal is rejected

Copy no. 28 “Cvs. 30 °C 30 “Cwvs. 33 °C 33°Cwvs. 37 °C
LCR 3.09 x 10~ ** 0.13 0.33
SCR 0.44 6.70 x 107° 0.30

the mean period is minimized at 30 °C. Another is that the
robustness of both circuits is hampered at temperatures
beyond 30 °C, due to the loss of effectiveness of CI as a
repressor.”’* Finally, in both systems, the functionality is
maximized at 30 °C.

On the other hand, as indicated in Table 2, one main
difference in how the two circuits respond to temperature
changes is that the functionality of the SCR has a steeper
decrease with increasing temperature. This causes the SCR’s
functionality to be lowered at higher temperatures (33 °C and
37 °C). The other significant difference is in how the oscilla-
tions change with temperature. While in the LCR the steepest
change in the mean period length occurs when raising the
temperature from 28 °C to 30 °C (decrease of 142 min), in the
SCR it occurs when raising the temperature from 30 °C to 33 °C
(increase by 51 min). We verified this by K-S tests of statistical
significance to determine whether the sets of oscillation
lengths at different temperatures could be obtained from equal
distributions, for both the LCR and the SCR (Table 4). From
these, one observes a p-value smaller than 0.01 in the LCR only
when comparing data from 28 °C and 30 °C, while in the SCR
such observation only occurs when comparing data from 30 °C
and 33 °C, in agreement with the observed changes in the
oscillations’ mean time length with temperature.

Perturbing the functioning by IPTG induction

One important property of genetic clocks is their robustness
and/or responsiveness to external perturbations. In natural
systems, depending on the tasks that they are involved in, it
is expected that the genetic clocks have evolved specific robust-
ness and/or responsiveness to perturbations. E.g., some clocks
likely evolved robustness to weak, spurious perturbations but
responsiveness to strong perturbations (such as due to an
environmental shift). For similar reasons, these properties are
also important in the case of synthetic circuits, as they will
define their applicability.

We compared the robustness of the LCR and the SCR to a
‘weak’ perturbation, by addition of a small amount of IPTG to
the medium. Also, we compared the robustness of the SCR to a
‘weak’ and to a ‘strong’ perturbation. For this, after starting
measurements as before, we introduced IPTG into the medium
at the end of the third hour of the measurements, as this is
approximately the time length of one oscillation (see the
Methods section). The expected effect of this permanent per-
turbation is the continuous induction of the Py lacO1 promoter
(i.e. up-regulation of TetR) in the repressilator. Consequently,
P;, tetO1 ought to become permanently repressed. Since this
promoter also drives the reporter, the reporter signal should
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become negligible, following the perturbation, if the perturba-
tion succeeds in disrupting the oscillations.

First, we compared the effects of perturbation (50 pM of
IPTG) on the dynamics of the LCR with of the SCR. For that, we
assessed the functionality (see the Methods section) in the first
3 hours prior to perturbation and in the subsequent 3 hours
after the perturbation. We found that the functionality of cells with
the LCR equalled 93.3% in the first 3 hours, and 1.64% in the
subsequent 3 hours (61 cells imaged) (i.e. 98% of the cells were
perturbed). Meanwhile, the functionality of cells containing the
SCR equalled 100.0% in the first 3 hours, and 8.96% in the
subsequent 3 hours (145 cells imaged) (i.e. 91% of the cells were
perturbed). Thus, surprisingly, we conclude that the LCR is less
robust to this perturbation than the SCR. As a side note, the reason
why the functionality values are much higher than those shown in
Table 2 is the shorter duration of the present measurements and
the criteria of the functionality (see the Methods section).

Next, we compared the effects of a ‘strong’ versus a ‘weak’
perturbation in cells containing the SCR (by adding 1 mM or
50 uM of IPTG to the medium, respectively), at the end of the
third hour of the measurements (112 cells imaged). We measured
a functionality of 100.0% in the first 3 hours as before, but only
0.89% in the later 3 hours (99.1% of the cells were perturbed).
We conclude that, as predicted in simulations of models of this
and similar circuits,”*" the robustness of the SCR’s functionality
to external perturbations decreases with the strength of the
perturbation, in this case defined by the concentration of IPTG
in the medium.

Assessing the robustness to perturbations

Given that the LCR and the SCR exhibit different dynamics at
any of the temperatures tested, we concluded that more than
one repressilator circuit is active in cells with the LCR. Also, it is
reasonable to assume that, following the introduction of IPTG
into themedia with LCR cells, in each cell, it is always equally or
more likely that at least one circuit is affected by IPTG than all
of its circuits. Finally, it is reasonable to assume that for the
same perturbation, it is more likely that at least one circuit is
perturbed in cells with the LCR than in cells with the SCR, due
to the larger number of circuits.

Given the above and the observation that cells with the LCR
exhibit weaker robustness to the external perturbations than
cells with the SCR, it is possible to conclude that, in cells with
the LCR, not all copies of the repressilator need to be perturbed
in order to disrupt the periodic signal. This is expected, given
that all circuits of the LCR are necessarily dynamically coupled
in a cell (as demonstrated by the existence of a periodic signal
prior to perturbation), since they produce and are affected by
identical proteins, which are equally available to interact with
any of the circuits.

To exemplify this, we implemented stochastic models of the
SCR and the LCR (based on a model proposed by Zhu et al.'").
The methods are described in the ESL.+ We simulated the two
models for each of the 1000 instances (cells) and extracted
the functionality of each cell prior to and after perturbation. In
the model with three repressilator copies the functionality is
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reduced from 81.7% to 1.09% as a result of the perturbation,
while in the model of the SCR the corresponding numbers are
96.3% and 9.60%. The functionalities do not differ significantly
from the measurements in either case (p-values larger than 0.01),
as determined by a set of Fisher’s exact tests. Meanwhile, the LCR
and SCR models differ significantly (p-values are 5.2 x 10~*” and
6.5 x 10" for before and after perturbation, respectively).

Conclusions and discussion

We inserted the genetic repressilator of Elowitz and Leibler”
into a single-copy F-plasmid to obtain, to our knowledge, the
first functional, synthetic, single-copy, ring-type genetic clock.

The SCR was found to exhibit stronger fluctuations
(the lower copy number is expected to decrease the rhythmicity
of the coupled system**) and longer mean periods and, as such,
to differ in dynamics from the LCR. Regardless, the signal of
the SCR is stable enough so as to maintain its main feature,
periodicity. Interestingly, this difference in dynamics is a
demonstration that the stability of the signal of the original
LCR relies, to some extent, on the existence of more than one
functional copy of the repressilator in each cell. In addition,
as these multiple copies exhibit a periodic signal, one can
conclude that they are dynamically coupled (as expected, given
the indistinguishability between the proteins they produce and
are regulated by).

On the other hand, the response of the two systems to
temperature changes is similar. In both circuits, the mean period
is minimized and the functionality is maximized at 30 °C. Also,
both systems lose robustness at temperatures above 30 °C. These
behaviours have been explained in a previous study.®

There are only two differences in their response to tempera-
ture changes. First, the functionality appears to have a more
rapid decrease with increasing temperature in the SCR. Second,
the most temperature-sensitive regions of the two systems
differ (between 28 °C vs. 30 °C in the LCR and between 30 °C
vs. 33 °C in the SCR). At present, we do not have sufficient
information to further investigate the causes of these two
differences between the SCR and the LCR, particularly since it
is presently unknown which underlying parameters regulate
the functionality. Our study suggests that the number of func-
tional circuits in a cell is likely one of these parameters.

Finally, we studied the effects of external perturbations on
the robustness of the repressilator as a function of the copy
numbers and the perturbation strength. First, we observed that
the LCR is less robust to a constant perturbation (50 uM of
IPTG in the medium) than the SCR, which shows that not all
copies of a repressilator in a cell have to be perturbed in order
to disrupt the periodic signal. This result was exemplified using
a model, which assumed perfect coupling within a cell and
no differences in the promoter strength of the two circuits.
Consequently, we find it reasonable to hypothesize that the
measured differences between the dynamics of the LCR and the
SCR are solely due to the differences in copy-numbers.
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From the perturbation studies, we also observed that the
SCR is sensitive to the strength of the perturbation, which is
particularly relevant in that it increases the number of possible
future applications for this circuit.

Overall, we find that the differences in robustness to external
perturbations as well as the differences in the dynamics of the
two circuits reported here justify the need for a version of the
synthetic repressilator implemented on a single-copy plasmid. In
particular, its higher robustness to external perturbations and
higher functionality at lower temperatures allow the SCR to be
more useful than the LCR under certain conditions (i.e. by being
a more robust clock). This is important for future efforts of
synthetic biology aiming to engineer artificial genetic circuits
whose proper functioning requires robust time tracking.

Finally, our study also provides much needed empirical
data for developing more accurate models of coupled genetic
circuits which, so far, have relied on arbitrary parameter values
(see e.g. ref. 5, 6, 25 and 26). In this regard, the observed
fluctuations in the length of the oscillations strongly supports
the need to use detailed stochastic modelling strategies®”*® to
accurately mimic the behaviour of the circuits.
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Supplementary Methods

Media and chemicals

Media used were Lysogeny Broth (LB) and minimal nutrient (M63) with the following
components, respectively: (i) 10g/L of Tryptone (Sigma Aldrich, USA), 5g/L of yeast extract
(LabM, UK) and 10g/L of NaCl (LabM, UK); (ii)) 2 mM MgS0O,4.7H,0 (Sigma-Aldrich, USA),
7.6 mM (NH4),SO4 (Sigma Life Science, USA), 30 uM FeS0O,.7H,0O (Sigma Life Science, USA),
1 mM EDTA (Sigma Life Science, USA), 60 mM KH,PO, (Sigma Life Science, USA) pH 6.8
with Glycerol 0.5% (Sigma Life Science, USA) and Casaminoacids 0.1% (Fluka Analytical,
USA).

Isopropyl B-D-1-thiogalactopyranoside (IPTG) was used for testing the effects of external
perturbations on the Repressilator. All antibiotics used for SCR and LCR strains culturing were
purchased from Sigma-Aldrich (USA), respectively: (i) 35 mg/mL kanamycin and 35 mg/mL
chloramphenicol; (ii) 35 mg/mL kanamycin and 20 pg/mL Ampicillin. Agarose (Sigma Life

Science, USA) was used for the microscopic slide gel preparation.

Bacterial strains and single-copy repressilator plasmid construction and validation
Cells of E. coli lac™ strain MC 4100 with the repressilator (pZS1-ITIrLLtCL) here named, low-
copy repressilator (LCR), and the reporter plasmid (pZE21-GFPaav) were generously provided
by M. Elowitz, Princeton University, NJ, USA. Cloning and measurements were performed on
this strain.

To construct the single-copy F-plasmid repressilator (SCR) system pBAC2-ITIrLLtCL, we
amplified the functional repressilator cassette from the original plasmid (de Novo Smal restriction

sites were added to the end of cassette during this procedure). The primers used were:

1-Rep.Smal-Fw: 5 CCCGGGTCGAGAATTGTGAGCG 3’
2-Rep.Smal-Rev: 5> CCCGGGTCAAGCTGCTAAAGCGTAG 3°

The vector, pTB-BAC2 F-plasmid, containing the origin of replication and Chloramphenicol
resistance gene, was amplified using PCR, also amplified with Smal restriction enzyme sites,

using the following primers:

3-Sc.ori.Cam-Smal-Fw: 5> CCCGGGTTCGAACGCGTATGCATGAG 3’
4-Sc.ori.Cam-Smal-Rev: 5> CCCGGGTTAGGGCCGTCGACCAA 3’

_2-
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The amplified sequences of the repressilator and pTB-BAC2 vector were digested using Smal
and then ligated. The plasmid was then transferred into lacl E. coli MC4100 containing the
reporter plasmid.

We validated the SCR construction as follows. First, we performed gel electrophoresis (Fig.S4,
for the construct; Fig. S5 for the final product) to confirm the presence of the plasmid containing
the SCR.

Next, a fraction of the new plasmid (covering the vector and insert) was amplified by PCR and
sequenced using appropriate primers. The sequence obtained from sequencing was aligned with

the expected sequence using BLAST. The results confirm the SCR construction (Fig. S6).

Sequencing for confirmation of the plasmid

A part of the plasmid covering the vector and the insert was amplified from the Chloramphenicol
resistance gene in the vector to the tetR region of the Repressilator, and sequenced. The primers
used for amplification were:

5. CmR-1-F: CCGCTGGCGATTCAGGTTC
6. tetR-3-R: AGCAAAGCCCGCTTATTTTTTACATG

The alignment of sequence obtained from sequencing against the expected sequence using NCBI
BLAST* is shown in Fig S6.

¢PCR for SCR validation and LCR copy-number estimation

gPCR was used to validate whether the SCR plasmid is functional in the host cell. For that, we
quantified the levels of mRNA of the component genes, /acl, tetR and cI, and compared their
expression levels against the No-Template and No-RT controls (see Methods of the main
manuscript). We also compared the mRNA numbers of /acl, tetR and c/ of the SCR and of LCR

plasmids.

lacI E. coli MC 4100 cells, containing either LCR or SCR with the reporter systems, were grown
following the same culturing protocols described in the methods section of the manuscript. After
10 hours of culturing in 5 mL liquid M63 medium at shaking 250 rpm, one sample of the LCR or
SCR strain was taken, and rifampicin was immediately added, to prevent further transcription.
RNA protect reagent was used to fix cells before their enzymatic lysis with Tris-EDTA lysozyme
buffer (pH 8.3). RNA was isolated from cells using RNeasy mini-kit (Qiagen) following
manufacturer’s instructions. 1 pg of RNA was used as a starting material. To ensure purity of the

-3-



Electronic Supplementary Material (ESI) for Molecular Biosystems.
This journal is © The Royal Society of Chemistry 2014

RNA, the RNA samples were treated with DNase free of RNase to remove residual DNA. Next,
RNA was reverse transcribed into cDNA using iSCRIPT reverse transcription super mix (Biorad).
gPCR was performed using Power SYBR-green master mix (Life Technologies) with primers for
the amplification of the target and the reference genes at a concentration of 200 nM. Reactions
were carried out in 20 pL reactions triplicates with 500 nM per primer. The following primers
were used for quantification:

-For lacl gene:

7-lacl.pro-Fw: 5 GTGGTGTCGATGGTAGAACG 3’

8-lacl.pro-Rev: 5 CTGTTGATGGGTGTCTGGTC 3’

- For tetR gene:
9-tetR.pro-Fw: 5 CGCTGTGGGGCATTTTAC 3°
10-tetR.pro-Rev: 5 AAGAAGGCTGGCTCTGCAC 3’

- For ¢/ gene:
11-cl.pro-Fw: 5> GATGCGGAGAGATGGGTAAG 3’
12-cl.pro-Rev: 5 ACTCATCACCCCCAAGTCTG 3’

The length of amplicons was kept at 90 bp. The sequences of the primers of the reference gene

16 S rRNA (EcoCyc Accession Number: EG30090) were obtained from Thermo Scientific:

13- Fw-5' CGTCAGCTCGTGTTGTGAA 3'
14- Rev 5' GGACCGCTGGCAACAAAG 3'

The level of each target gene was normalized to the level of the 16 S rRNA for all samples.
The PCR cycling protocol used was 94 °C for 15 s, 51 °C for 30 s, and 72 °C for 30 s, up to 39
cycles. We used NO-RT enzyme and NO-Template as controls. The Cq values were obtained
from the CFX ManagerTM Software and the fold change of the genes from the LCR were
analysed using as reference their expression in the SCR according to the Livak method

(reference’ in the main manuscript). Results are described in the main manuscript.
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Supplementary Figures
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Fig. S1 Plasmids used for the construction of the SCR plasmid. The pBAC2-ITIrLLtCL plasmid
was engineered by inserting the repressilator cassette into pBAC2 (Pjuc/ara--mRFP1-MS2-96x)
vector (generously provided by Ido Golding of the University of Illinois, USA), containing the
single-copy origin of replication (the construction history was generated and adapted using

SnapGene® 1.5.2).
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Fig. S2 LCR period distributions at different temperatures. Dashed lines represent the probability
densities of the fitted model with two Gaussians. Solid lines represent the densities of individual
components in the case of one and two Gaussians. Magnitudes were scaled to represent the
probability density.
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Fig. S3 SCR period distributions at different temperatures. Dashed lines represent the probability
densities of the fitted model with two Gaussians. Solid lines represent the densities of individual
components in the case of one and two Gaussians. Magnitudes were scaled to represent the
probability density.
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Fig. S4 Split gels for intermediate steps of the SCR plasmid construction. (A) PCR fragment of
3114 bp amplified from original pZS1-ITIrLLtCL with appropriate primers (in triplicate). (B)
Lane containing pTB-BAC2 backbone amplified region with the single-copy origin of replication
(6961 bp). (C) Lane 1: plasmid profile of the strain containing only the reporter plasmid. Lanes 2
and 3: two replicates of the plasmid profile of the strain with the reporter and the final construct
pBAC-ITIrLLtCL (SCR plasmid, 10069 bp). Note the white arrow and the white lines (indicating
the lanes). The numbers of the DNA ladders on the left side of Figures A, B, and C, are shown on
an identical ladder on the right side of the figure, for easier visualization.

Fig. S5 Split gel of the final product of the SCR plasmid construction. Lane 1: unused. Lanes 2
and 3: PCR amplification of 3114 bp from the SCR plasmid, pBAC-ITIrLLtCL, with appropriate
primers. Note the white line indicating the lanes. The ladder is identical to those in Fig. 1.
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Fig. S6. Alignment of sequence obtained from sequencing, using primer CmR-1-F, against the
expected sequence.
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Abstract

Transcription kinetics is limited by its initiation steps, which differ between promoters and
with intra- and extracellular conditions. Regulation of these steps allows tuning both the
rate and stochasticity of RNA production. We used time-lapse, single-RNA microscopy
measurements in live Escherichia colito study how the rate-limiting steps in initiation of the
Plac/ara-1 promoter change with temperature and induction scheme. For this, we compared
detailed stochastic models fit to the empirical data in maximum likelihood sense using sta-
tistical methods. Using this analysis, we found that temperature affects the rate limiting
steps unequally, as nonlinear changes in the closed complex formation suffice to explain
the differences in transcription dynamics between conditions. Meanwhile, a similar analysis
of the Pieta promoter revealed that it has a different rate limiting step configuration, with
temperature regulating different steps. Finally, we used the derived models to explore a
possible cause for why the identified steps are preferred as the main cause for behavior
modifications with temperature: we find that transcription dynamics is either insensitive or
responds reciprocally to changes in the other steps. Our results suggests that different pro-
moters employ different rate limiting step patterns that control not only their rate and vari-
ability, but also their sensitivity to environmental changes.

Author Summary

Temperature affects the behavior of cells, such as their growth rate. However, it is not well
understood how these changes result from the changes at the single molecule level. We
observed the production of individual RNA molecules in live cells under a wide range of
temperatures. This allowed us to determine not only how fast they are produced, but also
how much variability there is in this process. Next, we fit a stochastic model to the data to
identify which rate-limiting steps during RNA production are responsible for the observed
differences between conditions. We found that genes differ in how their RNA production
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is limited by different steps and in how these are affected by the temperature, which
explains why different genes respond differently to temperature fluctuations.

Introduction

Temperature is known to affect gene expression patterns in cells. This has profound effects, as
changes in transcription and translation dynamics propagate to the behavior of genetic net-
works, which manifests in their sensitivity to temperature changes [1-3].

The expression patterns are not solely characterized by the rates at which the genes are
expressed, but also by the associated stochasticity. The latter affects the phenotypic variability
of populations of genetically identical cells [4-6] and the temporal variations in the behavior of
the individual cells [7]. In unicellular organisms, such variations, even at the level of single mol-
ecules [8], can determine a cell fate.

In bacteria, much of the stochasticity in gene expression stems from transcription [9]. Live-
cell measurements report that different promoters and intra- and extracellular conditions
result in wide differences in transcription dynamics, both in rate and stochasticity [10]. Sub-
Poissonian [11], Poissonian [12], and super-Poissonian [10, 13] dynamics (featuring less, equal
to, and more variability than a corresponding Poisson process, respectively) have been
reported, each resulting from a different combination of mechanistic properties that shape
RNA production dynamics.

The way the effects of temperature changes on transcription kinetics propagate to the cellu-
lar behavior is still poorly understood. Rates of biochemical reactions are known to be affected
by temperature changes, as dictated by the laws of physics, such as the Arrhenius law; however,
biochemical laws have been found to not suffice to explain changes in more complex biological
processes such as bacterial growth [14].

For example, it is expected that the number of RNA polymerases, the rate at which they
work, and RNA lifetimes are affected by temperature. Also, at suboptimal temperatures,
Escherichia coli shifts to specific expression patterns by changing in transcription factor num-
bers [15], by regulating of the relative o-factor concentrations [16], and by affecting DNA con-
formation: negative supercoiling increases at low temperatures, and relaxes at high ones [17].
Despite these findings, quantitative information of the changes and on their contribution to
the changes in transcription dynamics is still lacking.

Some progress toward these goals has been made through in vitro measurements of the
closed and open complex formation dynamics [18-20]. Another study reports that RNA poly-
merase, rRNA, and tRNA concentrations, and the fraction of stable RNA remained constant,
while the elongation rate, ppGpp concentration, and cell growth rate increase to up to 40°C,
while after 40°C the changes become complex and, e.g. the growth rate decreases [21]. So far,
these studies only identified changes in mean expression rates. Further information on other
dynamical properties, such as stochasticity, is required. In addition, it is unclear to what extent
these measurements reflect what occurs in live cells.

Here, we study the transcription dynamics of the Py /a1 promoter in live E. coli at the sin-
gle RNA level, under various inducer concentrations, for a wide range of temperatures. Using
statistical models, we identify the most likely changes with temperature in the rate limiting
steps of transcription initiation. This expands on our previous work [22-24] in that the analysis
at different temperatures allows identifying more complex underlying details of the kinetics of
transcription. Also, we test if similar changes are observed in the Py, promoter. Finally, we
use the inferred models to study the possible causes of the underlying changes.
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Materials and Methods
Model of Transcription Initiation

We use the following model of transcription initiation [25], which combines the active-inactive
promoter model [26] with a sequential model of transcription initiation [27, 28]:

Kon kR ko kg
PoffTPm\—> Il—>12—)Pon+E (1)

pre—commit step post—commit step

where P.gand P, represent the promoter in an inactive (i.e. repressed) and active (i.e. free
from repressors or bound by an activator) states, respectively, R represents RNA polymerases,
and I are intermediate complexes of transcription initiation. Finally, the product E represents
the elongation complex. As the RNA polymerase numbers are not observed, we let k, =k, R to
represent the effective forward rate for an active gene.

In the model, the promoter switches between being active and inactive (on/off) for tran-
scription, i.e. whether an RNA polymerase can unobstructedly reach the start site and initiate
transcription [9], depending on the binding and unbinding of regulatory molecules [9, 29]. In
some cases, these molecules can also affect subsequent steps [28, 30].

Note that once the promoter is in a state that allows the RNA polymerase to bind and form
the closed complex, not necessarily will this result in the production of an RNA, as the closed
complex can reverse to the previous state [20, 31]. As such, the system is not yet fully commit-
ted to transcription. This “full commitment” only occurs once reaching the next state (I;). At
this stage, it becomes highly unlikely that any reversion occurs (e.g. in the A PR promoter, I is
always unstable compared to the complete open complex state, even at 0°C [31]).

Once this commitment occurs, it is followed by a sequence of steps responsible for the for-
mation of a stable open complex, which includes the isomerization steps [20, 28, 31, 32]. The
last step in this model represents the complex escaping the start site, clearing the promoter
region. Note that the reversibility of the closed complex formation [20, 24] does not reduce the
applicability of the model [24, 25]. Also, regardless of this reversibility, the model can still be
separated into an R-dependent (pre-commit) and R-independent (post-commit) parts.

The ability of regulatory molecules to create an on/off promoter dynamics allows bursty
RNA production when fast production events are separated by long, random off periods (due
to, e.g. slow repressor unbinding) [7]. If this process dominates RNA production, the transcrip-
tion intervals are highly noisy (coefficient of variation ¢, > 1). Meanwhile, if the subsequent
sequential process dominates transcription, the intervals between RNA production events are
more regular, resulting in less noisy transcription (¢, < 1).

Which and how many steps most contribute to the observed transcription dynamics
appears to depend on the promoter and intra- and extracellular conditions [10, 11, 13, 22, 23].
In what concerns modeling this process, for example, if the promoter’s visit to the off-state or a
sequential step are fast, these can be eliminated from the model, as they do not contribute sig-
nificantly to the transcription dynamics. The steps with most influence on the transcription
rate are called rate limiting [32].

Here we equate the transcription intervals with those of transcription initiation, which
implies that transcription elongation is neglected. This is justified by the fact that, on average,
elongation is not expected to affect the transcription intervals, as each transcript is expected to
be delayed by a similar time. As a result, elongation primarily adds solely extra variance in the
inter-transcription intervals. However, given the timescales of elongation and transcription
initiation, this additional variance can be ignored: e.g. chain elongation at 50 nt/s [33] for a
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5000 nt gene is expected to add a noise term with a standard deviation of 2 s [25]. Even consid-
ering elongational pauses under GTP-starved conditions [34], the elongation noise term is
therefore likely negligible at the resolution of our measurements (cf. sampling interval of 60 s).
Further, we note that no differences have been found between genes with elongation regions of
different length [7, 35].

As each of the steps are complex processes rather than elementary chemical reactions, it is
not yet well understood how the temperature affects of each of the steps in Eq (1) in live cells.
For this reason, we let each of the model parameters change as a function of the temperature
according to a polynomial function, rather than according to some biochemical model. As we
have relatively few samples on the temperature axis, a quadratic equation was deemed suffi-
cient to capture either temperature-independent or a linear and nonlinear temperature-depen-
dent relationship:

kx(T)il = Oy T + A 11 T+ A 1o (2)

where a; -1 ; are the order-j coefficients of the polynomial of the temperature-dependence of
the parameter k,, and T is the temperature. While this model is not expected to provide partic-
ular insight of the mechanisms of temperature-dependence (i.e. 4, -1 ; do not encode a particu-
lar physical meaning), it allows us to identify how each parameter likely responds to
temperature changes, be it independent or dependent, linear or nonlinear, or monotonic or
bitonic.

The parameters of the model can be estimated from the transcription intervals in a maxi-
mum likelihood sense [25]. Confidence in the model parameters can be estimated using the
delta method [36]. Further, to determine if each of the steps in the above model play a signifi-
cant role in the overall dynamics, we use the Bayesian information criterion (BIC) [37] as the
model selection criterion. A difference in BICs (ABIC) of 0 to 2, 2 to 6, or > 6 indicates weak,
positive, or strong evidence, respectively, against the model with the greater BIC [37]. For the
purposes of BIC, a censored sample is assumed to be worth 0.5 exact samples (the exact value
varies depending on how badly the sample is censored). To avoid drawing false conclusions
due to this approximation, we also compute a lower bound for ABICs when determining if the
best models fits significantly better than the alternatives (see SI Appendix).

Measurements and Data Acquisition

Transcription intervals in individual cells were measured in live E. coli using the MS2-GFP
RNA-tagging system [7]. The cells feature a multi-copy reporter gene expressing MS2-GFP
and a single-copy target gene, controlled by the promoter of interest, containing 96 MS2-GFP
binding sites. Shortly after a target RNA is produced, the binding sites are quickly occupied by
the abundant GFPs, allowing the fully tagged RNAs to be visualized using fluorescence micros-
copy [38]. Once formed, the RNA-96-MS2-GFP complex remains fluorescent for much longer
than the cell lifetime [38]. The constructs used here were engineered previously [7, 11]. An
example microscopy image is shown in Fig 1.

The activity of the target genes was also analyzed by quantitative PCR (qPCR) as a function
of the media composition. To quantify intracellular RNA polymerase concentrations in each
condition, we measured the amount of RpoC subunits by western blot (WB), as these are the
limiting factor in the assembly of the RNA polymerase holoenzyme [39, 40]. Measuring gene
activity as a function of the RNA polymerase abundance allows extrapolating the relative dura-
tion of the pre- and post-commit steps [24, 32].

More details of the constructs, measurement procedures, and data acquisition methods is
given in S1 Appendix.
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Fig 1. Example of a confocal microscopy image of Escherichia coli expressing the MS2-GPF and the
target RNA. The cells are visible due the abundant MS2-GFP while the GFP-tagged target RNA appear as
bright spots. The image was acquired at 35EC.

d0i:10.1371/journal.pchi.1005174.g001

Results and Discussion

Effects of Temperature on the P 4¢/ara-1 Promoter under Various Inducer
Concentrations

We studied how the distribution of durations between consecutive RNA productions in multi-
ple, individual cells (afterwards denoted by transcription intervals) of the Pj,¢/ara-; promoter
differ with temperature. This study was conducted for each possible induction scheme of this
promoter, so as to assess if the temperature-dependence of the initiation kinetics is inducer
scheme-dependent. Those induction schemes are: a) 1 mM of IPTG and 0.1% of arabinose
(denoted by Full), b) 1 mM of IPTG only (IPTG), and ¢) 0.1% of arabinose only (Ara). In each
condition, we recorded multiple time series of 120 minutes in length with a 1 minute sampling
interval for temperatures between 24 and 41°C (see S1 Appendix for details).

We first quantified how the mean and the standard deviation (sd) of the transcription inter-
vals change with temperature. As the cell division time varies significantly between conditions,
a procedure accounting for the uneven truncation of the intervals must be used. For this, the
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Fig 2. Distributions of transcription intervals in individual cells as a function of temperature for the Pac/ara-1
promoter. The gray gradients represent quantiles of the interval distributions, as indicated by the color bar on the right.
The crosses denote means, and the error bars represent the lower and upper standard deviations of the distributions.
Cases from top top bottom: IPTG (red), Ara (green), Full (blue).

doi:10.1371/journal.pcbi.1005174.9002

right-censored (unobserved) transcription intervals at the end of each time series are commu-
nicated to the estimator as in [25]. First, we used gamma distribution as the model, as it can
have any mean and sd independent of each other (a model must be assumed in order to esti-
mate moments from the censored data). The results are tabulated in S1 Table. The distributions
are shown in Fig 2. These data suggest that, the transcription interval duration changes by
about a 2x factor along the range of temperatures tested, for each induction scheme. In addi-
tion, these changes appear to be nonlinear, and even non-monotonic in some cases. Mean-
while, the standard deviation of the transcription intervals tends to follow the mean, resulting
in a coefficient of variation (c,) of slightly above unity with a slight increase as temperature
increases. The median-to-mean ratio is approximately constant with respect to temperature at
about 0.61, which indicates that the temperature affects the whole distribution and not only the
long intervals.

Next, we fit the data with the model of Eq (1) independently in each induction scheme and
temperature, and tested if the on/off switching and which forward steps are most responsible
for the observed transcription dynamics using the Bayesian information criterion (BIC) (see
Materials and Methods). The results are summarized in S2 Table. In all cases, we found evi-
dence only for a single sequential rate limiting step. While there is weak evidence that this is
true in all cases (ABIC lower bound (ABIC LB; see S1 Appendix) against any multi-step model
is no less than 1.15), strong (statistically significant) evidence exists that this holds at least in
certain temperature ranges (for all induction schemes, there exists a temperature with ABIC LB
no less than 5.16). In addition, we also found evidence for the presence of on/off switching in
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each induction scheme, as there is a condition where the lower bound for ABIC is no less than
9.20, providing strong evidence that the on/off switching plays a role, in at least certain temper-
ature ranges, regardless of the induction scheme.

As the order of the steps with rates ki, k,, k3 cannot be identified from an individual mea-
surement by this methodology (see e.g. [25]), at this stage we cannot resolve if the rate limiting
step occurs prior or after commitment to transcription. To achieve this, we combine the data
from different temperatures, as models with equivalent changes in their transcription intervals
can be rejected on the basis that they would require too intricate changes in their parameters
between conditions (e.g. multiple parameters co-varying in a complex manner). Using this pro-
cedure, the order of the last two steps remains unknown, but the changes in each can be
identified.

To combine the data, we fit the data jointly in each of the three induction schemes, such
that the parameters k,, ', k; ', k, ', k, ', and k, ' are either a) constant, b) vary linearly, or
¢) vary quadratically as a function of temperature (the quadratic curve representing a nonlinear
relationship). Meanwhile, no model is imposed on the changes as a function of induction
scheme, as these are likely nonlinear. Again, model selection is used to determine which
parameters change significantly with temperature.

We found the preferred model to be the one where k,y, kop; k2, and k; are constant and k, -
is a non-linear (Full and IPTG) or linear (Ara) as a function of the temperature. The ABICs
between the second best and the best fitting models were about 1.32, 4.92, and 1.57 (ABIC LBs
1.31,4.91, and 1.30) for Ara, IPTG, and Full, respectively. Meanwhile, we found similar results
in models where the step with rate k; is removed, with ABICs of 1.32, 4.39, and 1.51 for Ara,
IPTG, and Full, respectively, indicating that using the higher-order model does affect the iden-
tification of the temperature-dependence of the parameters.

In the best fitting models, the relationship between k, ' and temperature differs under dif-
ferent induction schemes. However, we tested if a similar change in this parameter could
explain the changes in all cases, by deriving a combined model where this parameter follows a
single function, up to a scale, in the three induction schemes. We found this new model to have
smaller BIC with a ABIC of 10.6 when compared to the best unconstrained model, (ABIC LB of
8.80), which provides strong evidence that the temperature affects the promoter by regulating
k,”" in a similar, nonlinear fashion, regardless of the induction scheme.

Finally, we tested if the changes in k, ' could be explained solely by the changes in RNA
polymerase numbers (cf. R in Eq (1)). For this, we quantified in an independent measurement
the relative abundance of the RpoC subunits using western blot analysis for 24, 37, and 41°C.
We found that the numbers were 0.415 and 0.562 at 24 and 41°C, respectively, relative to that
of at 37°C. By plugging these numbers in our model, we found strong evidence that the param-
eter k; does not follow the changes in RNA polymerase numbers (ABIC of 27.9, ABIC LB of
27.0), i.e. k, is not constant with temperature. Moreover, we found that if the above RNA poly-
merase numbers were the sole change caused by the temperature, the changes in the transcrip-
tion intervals ought to be larger than what was observed in vivo. This suggests that there are
other temperature-dependent changes in k 1» which attenuates the effects of RNA polymerases
number changes.

The means and sds of the transcription intervals resulting from the best fitting model (qua-
dratic k, " with a similar pattern in each induction scheme) are shown in Fig 3. In this model,
the steps prior to transcription commitment vary between temperature conditions from 3060
to 5000 s, from 2310 to 3770 s, and from 1580 to 2590 s, while the duration of the process after
transcription commitment is a constant equal to 399, 7.79, and 1.50 s for Ara, IPTG, and Full
induction schemes, respectively. Interestingly, in each case, the temperature-independent post-
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Fig 3. Mean and standard deviation of transcription intervals as a function of temperature for the
Plac/ara-1 promoter. The solid curves are those shown in Fig 2. The dashed curves represent the means and
standard deviations of the best fitting models.

doi:10.1371/journal.pchi.1005174.9003

commit step tends to be no more than 12% of the total duration of the mean interval between
consecutive RNA production. Consequently, as the temperature modulates the longer lasting
step in transcription, it allows for large changes in the transcription interval with temperature.

To assess whether the data fit the model as expected, we also performed Monte Carlo simu-
lations to determine if the empirical data fits the model significantly worse than that generated
from the appropriate model. For this, we generated a transcription interval from the best fitting
model to correspond each sample extracted from the measurements, which was subsequently
censored using the same procedure that constrains the empirical data (i.e. observation time is
limited by the remaining cell lifetime, and observations occur at intervals of 60 s). This simula-
tion was repeated for 1000 rounds, from which likelihoods were calculated. The fraction of
rounds where the simulated data fit worse than the empirical data (cf. a p-value) were 0.230,
0.161, and 0.040 for Ara, IPTG, and Full, respectively, and 0.095 for all cases combined. As
such, we found no evidence to reject our model (typically done e.g. when this probability is less
than 0.01). The mean and sd for a single simulation is shown in S1 Fig (cf. the equivalent figure
for the empirical data in Fig 3).

We compared our results on the relative durations of the pre- and post-commit steps with
an independent method, namely, by extrapolating the corresponding values from a Linewea-
ver-Burk plot [24, 32]. For this, we used qPCR to measure the target gene activity and western
blot to estimate the RNA polymerase concentrations in different media conditions (see S1
Appendix for details). We found the post-commit step to take up only about 22.5% (sd 14.6%)
of the transcription duration for Full induction at 37°C. This confirms the previous result, as
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the values reported above, derived from the microscopy measurements, are well within the
95% confidence interval (CI; [-6.08,51.1]%) of the gPCR/WB measurements.

The parameter values for the best fitting models are listed in S3 Table and some derived fea-
tures of the kinetic of the on/off switching in S4 Table. These parameter values suggest that the
promoter remains most of the time unavailable for RNA polymerases to bind (small duty
cycle). After this, it produces a small (< 1) burst, whose size is temperature-dependent. The
mean interval between bursts appears to be unaffected by the removal of arabinose (cf. IPTG
versus Full; as k,,, is nearly constant and much smaller than k), while removing IPTG has
more complex effects. These results are consistent with observed changes in the median-to-
mean ratio.

Two studies, one using fluorescent in situ hybridization (FISH) [41] and the other using a
yellow fluorescent protein fusion library for E. coli [10] to quantify the cell-to-cell diversity in
RNA numbers from several promoters, have reported Fano factors ranging from 1 to 3. Also,
in the work by Golding and colleagues [7], it was estimated that the Fano factor in transcript
production could be as large as 4.1. These results were taken as indicative of bursty RNA pro-
duction. However, recent works have shown that much of this cell-to-cell diversity in RNA
numbers can be explained by other factors [42], such as RNA degradation [43] and stochastic
partitioning of RNA molecules in cell division [44]. As we base our study on the transcription
intervals between consecutive RNA production events in individual cells, rather than the vari-
ability in RNA numbers, our analysis is less susceptible to such errors. In addition, only
under specific conditions does a large Fano factor correspond to large burst sizes [45]. As
such, we do not expect our estimate of the average burst size to be in contradiction with these
studies.

Effects of Temperature on the Pa Promoter

Even though the Lac-Ara-1 Promoter initiation kinetics responded similarly to temperature
changes under all induction schemes, this response might not generalize to different promoters
with different rate-limiting step configuration. To test this, we studied the effects of tempera-
ture changes on the transcription dynamics of the P, promoter.

For this, using raw data from [11], we made use of the methodology in [25] in order to
extract the single-cell transcription intervals of the Py.s promoter at 24 and 37°C with 15 ng of
aTc (Full induction). In each case, the time series were of about 60 minutes in length with 1
minute sampling. S5 Table tabulates the mean, sd, and c, of the transcription intervals esti-
mated from the data. The mean transcription interval changed by about a 2.5x factor.

Unlike the Pc/ara 1 promoter, the Pieca promoter appears to have sub-Poissonian dynamics,
suggesting that its RNA production kinetics is mostly dictated by a sequence of multiple rate
limiting steps, rather than the activation of the promoter. To confirm this, we fit the data with
the model of Eq (1) and tested for on/off switching and number of rate limiting steps. The
results, shown in S6 Table, provide strong evidence for two or three rate limiting steps (ABIC
LBs against any single step model were no less than 19.0). Meanwhile, no evidence of signifi-
cant on/off switching is present (ABICs against best on/off model are 1.14 (LB 0.387) for 24
and 5.74 (LB 5.34) for 37°C).

Finally, we fit the two data points jointly with a 3-step model, where one of the three param-
eters changes as a function of the temperature (more complex changes cannot be identified
with only two temperature conditions). The results suggest that the two common rate limiting
steps are about 121 s each in duration, while the changing step is 1910 and 543 s for 24 and
37°C, respectively. As there is no on/off switching, we cannot identify which steps are in the
pre-commit and post-commit stages. It is however possible to determine that the relative
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duration of the post-commit step must be either 11.3% or 94.4% for 24°C and 30.9% or 84.6%
for 37°C.

To determine whether the post-commit step is the longer or shorter one, we extrapolated
the relative durations of the post- and pre-commit steps from a Lineweaver-Burk plot [32]
based on qPCR and WB measurements. At 37°C, we found the duration of the post-commit
step to be about 77.1% (sd 6.64%) of the transcription duration with a 95% CI of [64.1,90.1]%,
suggesting that, in the P4 promoter, the long, temperature-sensitive step occurs after tran-
scription commitment.

Modeling the Effects of Changes in the Rate Limiting Steps

Having measured the dynamics of transcription initiation of Pj,c/ara-1 and Py, as a function of
temperature and induction scheme, and assessed which parameter values are most responsible
for the changes in the observed dynamics, we next make use of the model extracted from the
data to investigate the ability of each parameter of the model in changing the dynamics of RNA
production and the overall the range of behaviors possible with this model.

Response and bounds of mean, sd, and cv for parameter changes. We next explored the
extent to which the dynamics of RNA production can change as these parameter values change.
Namely, we used our model to study how changes in k,, ', k,; ', and k, " affect the mean and
standard deviation (sd) of the duration of the pre-commit step. The mean, sd, and ¢, of this step
cannot be freely varied when changing k,,, or ko only. Specifically, the mean is bounded to
[k, !, 00) while the variance is limited to [k, *, o0). Meanwhile, ¢,? is bounded to [1, 1 + 2k; /kogl
and to [1, 1 + k;/(2k,,,)] when changing k,,, and kg only, respectively. For changes in ko ¢, is
maximized at kog = kop, while for k,, ¢, monotonically increases with konfl. In S2 Fig, these
changes in mean and sd are exemplified by varying each parameter about
(ky ks kT kT k) = (1,1, 1,0, 0) and computing the mean and sd.

Regardless of the dynamics of the post-commit step, the mean and sd of the total transcrip-
tion interval are less tightly restricted when k; is allowed to vary when compared to the case
where only ko, or ko varies. This results from the fact that by varying k., or ko the on/off
switching can be disabled, but the forward step with rate k; remains rate limiting, while for
varying k;, the entire pre-commit step can be made negligible. E.g., in Eq (1) the mean is lim-
itedtok, " +k, ' versusk, ' +k, " +k, " (cf. mean and sd < 1 for small k, " in S2 Fig).

On the mean transcription interval, the changes in k,,, and kg have an opposite effect (as the
meanis (1 +k,, ' [k )k, ' +k, " +k,'). Consequently, relative changes in both k"
and kg induce an equal change in the mean (as quantified by the derivative k™' / k. 'k, '),
while k, " always induces a greater change (derivative of (1 4 k,, " / k., ') k,”'); cf. the large
mean limits in S2 Fig). Whether the above changes are smaller or larger than those induced by
changes in the post-commit steps (k, " or k, ) is determined by the relative durations of the
steps. Meanwhile, the reciprocality of k,,, and k. does not extend for sd, despite the fact that at
the lower bound the models become equivalent. For large k,, ™" versus ko, the sd always changes
more with relative changes in the former. These changes also differ from those induced by k, .
For large values, the transcription intervals can change more with either k,, or k;, depending on
the parameters, but will never change most with kg (cf. large sd limits in S2 Fig).

While the mean and sd of the transcription intervals vary monotonically with respect to the
changes in the parameters, the noise can change in an intricate manner. This is demonstrated
in Fig 4. Specifically, the ¢, can be minimized/maximized for specific values of the means and
sds of both the pre-commit and post-commit steps.
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Fig 4. Coefficient of variation (c,) of transcription intervals as a function of relative changes in the
parameters k., ", k', k', and k, . The horizontal axis corresponds to the relative value in the speci®ed
parameter. The dotted line denotes a ¢, of unity. The ¢, at the pivot parameteris 1/ v/2. Left (right) insets

represent the asymptotic transcription interval distributions for small (large) parameter values, their color
indicating the varying parameter.

doi:10.1371/journal.pchi.1005174.9004

In addition to the changes in c, of the transcription intervals, we also studied the possible
shapes of the distributions (cf. the insets of Fig 4) that can be attained by varying each parame-
ter. The shape information is important as, for example, by varying kon, a ¢, of unity can be
attained, but in this regime the distribution necessarily lacks fast intervals (cf. exponential dis-
tribution) and consists of a population of regular intervals mixed with large outliers.

As exemplified in the insets of Fig 4, for varying k,, ', the distribution of transcription inter-
vals ranges from a regular (in other words, hypoexponential, a sequence of exponentials with
rates ki, k, k3) with a low ¢, (¢, < 1) to a mixed population with fast intervals combined with
large outliers (highly noisy, ¢, > 1). Meanwhile, by varying k; the distribution ranges from
regular to an exponential (¢, = 1), as the effects of on/off switching become time-averaged.
When varying k, ', the distribution ranges from that of the post-commit steps alone to an
exponential with time-averaged on/off switching. However, in the latter two cases, it is possible
that a highly noisy distribution can be attained for some intermediate parameter values. Alter-
natively, a noise minimum might exist somewhere in the intermediate region in each of the
three cases. When varying k, ' (or any other post-commit step), the distribution varies from a
process lacking that particular step to a single exponential step with that particular rate, and a
noise minimum always exists for some intermediate value where the means and sds of the
steps are of specific values.
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The lower bounds for the ¢, of the transcription intervals are limited by the relative dura-
tions of the pre- and post-commit stages and number of steps in the post-commit stage. This is
exemplified in S3 Fig. Generally, for a post-commit stage consisting of 7 steps and having a rel-
ative duration of r (relative to the mean interval between consecutive transcription events), the
lower bound is (r — 1)* + r*/n (cf. green curves in S3 Fig). Consequently, the lower bound for ¢,
for any value of ris 1/(n + 1) at r* = n/(n + 1), which occurs when the pre-commit step is expo-
nential-like, and this step and all the # steps of the post-commit stage are of equal duration. As
a result, the change in the ¢, with changes in the rate limiting step durations is controlled by
the number and relative durations of these steps during both post- and pre-commit stages.

Exploring the Model Using the Empirical Data of P\a¢/ara-1 and Pieta
Promoters

Finally, we explored, in terms of the model, why the analysis identified some parameters as the
most likely candidates for being responsible for the observed changes in RNA production
dynamics with temperature and induction scheme, while other parameters were identified as
not fit to explain these changes. In other words, we investigate the limitations of each parame-
ter in changing the dynamics of RNA production. In this regard, note that the fitting procedure
does not equate the transcription interval mean, standard deviation, nor the coefficient of vari-
ation of the model and data in particular, but maximizes the likelihood that the selected model
generates the data.

S4 Fig shows the mean, sd, and ¢, of the transcription intervals for the Pj,c/ara 1 as a function
of temperature for the Full induction case, while Fig 5 shows the same variables in the relative
parameter space about the parameters of the best-fitting model. The additional curves in Fig 5
detail the behavior of the mean, sd, and c, if other parameters were changing instead. For the
Plac/ara-1 promoter, the mean, sd, and ¢, would not change significantly with changes in k, and
k3. This holds as k, and k5 are relatively small (not rate limiting) and relatively large changes in
them barely affect the transcription intervals. Meanwhile, while varying k,,,, could result in the
observed changes in the mean and sd, it could not explain the observed changes in the ¢, of the
data. This is due to the fact that the model features a large k,, ', implying that the noise can
only be effectively tuned by varying the burst size k, ' / k,; . Consequently, the changes
observed in the data must be explained by variations in either k ;' or k,'. We verified that
these conclusions hold for the other model candidates as well (varying k, ", k", k, ", and
k,™"), as they could shift the model into different regions of the parameter space. In addition,
we found the curves for IPTG to be similar, while for Ara, varying k, can modulate mean and
sd, but cannot explain the changes in c,.

Meanwhile, the corresponding curves displaying the changes in mean, sd, and ¢, of the tran-
scription intervals for the Py promoter, are shown in S5 and S6 Figs. Here, both the mean
and sd do not change significantly with changes in k; and ks, the smaller two of the rate limit-
ing steps. Again, this is due to the fact that these steps are relatively smaller. Interestingly, k,
and k; could be used to manipulate ¢, appropriately, which is in contrast with the behavior
observed in the Pj,c/ora. promoter, and enabled by the more even distribution of the transcrip-
tion interval durations to the pre- and post-commit stages.

Another reason why changing the identified parameters could be preferred over changing
the other feasible parameters is that the two have opposite effects as a function of increasing
temperature. Such results are found both in Pj,/ar,1, Where kogand k; have opposite effects on
both mean and sd of the transcription intervals, and in P4, where k; and k, (or k3) have
opposite effects on the c,. Alternatively, there could be some physical constraints e.g. on the
parameters ranges which are not considered in our models.
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Fig 5. Mean, standard deviation (sd), and coefficient of variation (c,) of the transcription intervals when
varying each parameter independently around the parameter values found for the P\,¢/ara.1 promoter, full
induction. The numeric labels for the crosses indicate temperature (EC) The data points are derived from the best
fitting model. The curves for k, ' correspond to those shown in S4 Fig. The curve for k,, " is close to that of k, ', k, ",
and k,”" for mean, sd, and c,, respectively. The curve for k, " is similar to that of k, " in all cases and is thus omitted.

doi:10.1371/journal.pchi.1005174.9005

Conclusion

We quantified how temperature affects the dynamics (rate, stochasticity, underlying steps, etc.)
of the transcription initiation kinetics of the Py,c/.ra.; promoter in live individual E. coli cells.
This was performed in three differing induction schemes of IPTG and arabinose, for a wide
range of temperatures above and below the optimal growth temperature.

For this, we used statistical methods to compare detailed stochastic models fit to the empiri-
cal data in maximum likelihood sense. The selected models inform on the most likely way the
changes in RNA production kinetics with temperature and induction scheme emerge from the
changes in the rate limiting steps underlying transcription initiation. To overcome the limita-
tions of the presently available methods of observing transcription dynamics in live cells, we
performed a differential analysis of several measurements under a diverse set of conditions.

We found that not all steps in transcription initiation are affected equally by temperature
changes: varying only some of them suffices to explain the changes found in the measured tran-
scription intervals, regardless of the induction scheme. Specifically, nonlinear changes in the
closed complex formation alone suffice to explain the observed changes in transcription
dynamics of the P,c/ar, 1 promoter. By correlating these changes with variations in RNA poly-
merase numbers, we found that these can be only partly responsible for the observed changes
in transcription dynamics, which indicates that temperature affects the interaction between the
transcription start site and an RNA polymerase.
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Next, we used similar methods to analyze Pys promoter under two different temperatures.
We found that this promoter rate-limiting events occur at different stages of transcription initia-
tion, resulting in a different, less noisy transcription kinetics shape. In agreement, we found that
its response to temperature is not explained by modulating the closed complex formation step
as for the Pj,c/ary-1 promoter, but instead arises from changes in the open complex formation
and/or promoter escape dynamics. Overall, this suggests that the patterns of rate-limiting step
kinetics of E. coli’s promoters not only cause the genes to differ in RNA production rate and
noise, but also in how responsive is their RNA production dynamics to temperature changes.

Finally, we used stochastic models to explore the possibilities of tuning transcription
dynamics by varying each of the rate limiting steps. An advantage of modulating the identified
steps over the other rate limiting steps was identified: it allows more flexibility in tuning both
the mean and variance of the transcription intervals. In addition, in the region of the parameter
space suggested by our data, the transcription dynamics is most sensitive to these particular
changes, while other means of tuning the dynamics result in opposite changes in the response.
This suggest that varying these particular steps might offer the promoters greater adaptability
to temperature changes than if the transcription dynamics were tuned by other means.

Our study exemplifies how differential analysis of transcription intervals with statistical meth-
ods can inform on the underlying steps of transcription initiation which, at the moment, cannot
be directly measured in live cells. We expect these techniques to be applicable, with small modifi-
cations only, to study similar processes such as translation or the behavior of genetic circuits.

Supporting Information

S1 Appendix. Extended Methods and Materials.

S1 Table. Mean, standard deviation (sd), and coefficient of variation (c,) of the transcrip-
tion intervals for the Py,./,.,.; promoter. The table shows the condition, number of exact
intervals (samples), number of right-censored intervals (R-samples), and the estimated mean,
sd, and ¢, of the intervals (considering exact and right-censored ones).

(CSV)

S2 Table. Presence or absence of on/off switching and number of identified steps in Pi,c/ara 1
promoter. The table shows the condition, the existence or absence (yes/no) of on/off switching,
the durations of significant steps (Steps 1 to 3), the second-best fitting model (Alt model), and
the difference in BICs (ABIC) of the second-best and the best fitting models and its lower
bound.

(CSV)

S3 Table. Estimated model parameters for Pj,/,r,-1 promoter. The table shows the induction
condition and the estimated parameter values. Here, kfl = AT? +BT + C, where Tis the
temperature in degrees Celsius.

(CSV)

S4 Table. Statistics of the on/off switching for Py, /ara 1 promoter. The table shows the condi-
tion, the fraction of time the gene is on (Duty cycle) and the average burst size and interval.
(CSV)

S5 Table. Mean, standard deviation (sd), and coefficient of variation (c,) of the transcrip-
tion intervals for the Py 4 promoter. The table shows the temperature condition, number of
exact intervals (samples), number of right-censored intervals (R-samples), and the estimated
mean, sd, and ¢, of the intervals.

(CSV)
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S6 Table. Presence or absence of on/off switching and number of identified steps in the
Picta promoter. The table shows the temperature condition, the presence or absence of on/off
switching (On/off), the durations of the significant steps (Steps 1 to 3), the second-best fitting
model (Alt model), the difference in BICs (ABIC) of the second-best and the best fitting model,
and its lower bound (LB).

(CSV)

S7 Table. List of promoters and measurement conditions used in the manuscript. The table
shows an arbitrary condition ID, the promoter, concentrations of the inducers IPTG (mM),
Ara (L-arabinose; %), and aTc (anhydrotetracycline; ng/mL)), and the temperature (°C).
(CSV)

S8 Table. List of all intervals between the production of consecutive transcripts used in the
manuscript. The table shows an arbitrary interval ID, condition ID (a foreign key to), the
lower (Interval LB) and upper bounds (Interval UB), and the ID of the interval that precedes in
time (Previous Interval ID) for each interval observed in the cells under both promoters in
each condition. The order of the rows has no particular meaning.

(CsV)

S1 Fig. Mean and standard deviation of transcription intervals generated using a Monte
Carlo simulation as a function of temperature for the Pj,./,., ; promoter. The dashed curves
represent the means and standard deviations of the best fitting models.

(EPS)

S2 Fig. Mean and standard deviation (sd) of transcription intervals as a function of the rela-
tive change in k,,, ", k4 ', and k&, '. The horizontal axis corresponds to the relative value in
the specified parameter. The dashed curves are the asymptotes discussed in the text. The pivot

parameters result in a mean of 2 and sd of v/B.
(EPS)

$3 Fig. Lower bound for the coefficient of variation of transcription intervals as a function
of the relative durations between pre- and post-commit stages. Blue points represent
instances of random models. Green curves are the ¢, lower bounds for different number of
steps 7 in the post-commit stage: from top to bottom: 1, 2 (solid curve; the model in Eq (1)), 3,
4, and 5. The dotted black line is the absolute lower bound attained with a constant-duration
post-commit stage (1 = 00).

(EPS)

$4 Fig. Mean, standard deviation (sd), and coefficient of variation (c,) of the transcription
intervals for the Py,¢/ar,.1 promoter under full induction, and the corresponding best fitting
model. The data points correspond to those shown in S1 Table. Error bars denote one sd of the
estimator uncertainty.

(EPS)

S5 Fig. Mean, standard deviation (sd), and coefficient of variation (c,) of the transcription
intervals for the Py s promoter under full induction, and the corresponding best fitting
model. The data points correspond to those shown in S5 Table. Error bars denote one sd of the
estimator uncertainty.

(EPS)

S6 Fig. Mean, standard deviation (sd), and coefficient of variation (c,) of the transcription
intervals when varying each parameter independently around the parameter values found
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for the Py, promoter, full induction. The numeric labels for the crosses indicate temperature
(°C). The data points are derived from the best fitting model.
(EPS)
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S1 Appendix: Extended Materials and Methods

Cells, Plasmids, Media, and Chemicals

The strain E. coli DH50-PRO (identical to DH50-Z1) [1], generously provided
by I. Golding (Baylor College of Medicine, Houston, TX), was used to ex-
press the target and reporter plasmids. The strain genotype is deoR, endAl,
gyrA96, hsdR17(rK- mK™), recAl, relAl, supE44, thi-1, A(lacZYA-argF)U169,
®R0dlacZAM15, F-, X, Pnos/tetR, Placiq/lacl, SpR. Importantly, this strain
contains two constitutively overexpressed genes, lacl and tetR, under the control
of Placiq and Pnos promoters, respectively, ensuring stable tight transcription
regulation [1].

Two bacterial systems were used. The first is the mentioned strain contain-
ing: i) a medium-copy vector PROTET-K133 with the reporter gene Preto-1-
MS2d-GFP, which produces the dimeric fusion protein MS2d-GFP; and ii) a
single-copy F-plasmid pIG-BAC, carrying the target gene Piac/ara-1-mRFP1-
MS2-96bs with a coding region for a monomeric red fluorescent protein (mRFP)
followed by an array of 96 MS2 binding sites [2]. The second is a modified ver-
sion of the original strain with the following differences: i) the low-copy vector
pZS12 carries the reporter gene Prj.c0.1-MS2-GFP; and ii) the single-copy F-
plasmid vector pIG-BAC carries the target gene Piora-mRFP1-MS2-96bs [3].
The activity of the promoters Pret0-1 and Piega is regulated by the repressor
tetracycline (TetR) and the inducer anhydrotetracycline (aTc). Meanwhile, the
activity of the promoter Pri..o.1 is regulated by the Lacl repressor and the
inducer IPTG, and the activity of the promoter Piac/ara-1 is regulated by both
Lacl and AraC repressors and the inducers IPTG and L-arabinose.

All strains were grown in Lysogeny Broth (LB) medium, supplemented with
the appropriate antibiotics (35 pg/mL kanamycin and 34 pg/mL chlorampheni-
col for the first strain, and 100 pg/mL ampicillin and 34 pg/mL chloramphenicol



for the second strain). Antibiotics were from Sigma-Aldrich (USA). The com-
position of LB was: 10 g/L of tryptone (Sigma Aldrich, USA), 5 g/L of yeast
extract (LabM, UK) and 10 g/L of NaCl (LabM, UK).

Finally, in order to obtain a set of medium conditions where differences
between intracellular RNAP concentrations are maximized while differences
in growth rates are minimized, we followed the procedure established in [4].
Namely, we carried out measurements in modified LB medium that have lower
tryptone and yeast extract concentrations (by 0.25 or 0.5 fold), which reduces
intracellular RNAP concentrations accordingly [4].

Induction of Target and Reporter Genes

Cell cultures were diluted in LB from overnight cultures to ODgg of 0.05, and
kept at 37 °C at 250 RPM in a shaker until reaching mid-logarithmic phase
with an ODggo of 0.3. After that, cells containing the promoters Pi.c/ara-1
and Prieto.1 were induced with 0.1% L-arabinose and 1 mM IPTG for target
activation, and 100 ng/mL aTc for reporter activation. Cells containing the
target promoter Piea and the reporter promoter Ppj..0.1 were induced with
15 ng/mL aTc for target activation and 1 mM IPTG for reporter activation.
In both cases, for the cells to produce sufficient MS2-GFP for the detection of
target RNAs, the reporter and target genes were induced 50 minutes prior to
the measurements, while keeping cells shaking at 250 RPM in the incubator
at the appropriate temperature (24, 27, 30, 33, 35, 37, 39, or 41 °C). In the
case of Plac/ara-1, the induction was complemented by adding 1 mM IPTG 10
minutes prior to microscopy. In the end, cells were collected by centrifugation
at 8000 x g for 1 minute, and diluted in fresh LB medium. For this, 5 pL of
cells were added to an agarose pad (Sigma Life Science, USA), and placed into
a temperature chamber (Bioptechs, FCS2) at the appropriate temperature for
image acquisition.

Microscopy

The imaging was performed using a Nikon Eclipse (Ti-E, Nikon) inverted mi-
croscope, equipped with a 100x Apo TIRF (1.49 NA, oil) objective and a C2+
(Nikon) confocal laser-scanning system. Images were captured with the aid of a
motorized stage. To visualize fluorescent-tagged RNA spots, we used a 488 nm
laser (Melles-Griot) and an emission filter (HQ514/30, Nikon). Time-lapse fluo-
rescence images were taken once per minute for 120 or 60 minutes. The software
used for image acquisition was NIS-Elements (Nikon), and the images were an-
alyzed using a custom software, described below.

Image Analysis

The fluorescence microscopy images were processed as follows. First, consec-
utive images in the time series were aligned such that the cross-correlation of



fluorescence intensities is maximized. Next, a region occupied by each cell dur-
ing the time series is manually annotated. After this, the locations, dimensions,
and orientation of each cell in each frame are found by principal component
analysis and the assumption that the fluorescence inside the cells is uniform [5].
Cell lineages were constructed using CellAging, which associates segments in
consecutive frames based on their overlapping areas [6].

Next, the intensity of each cell is fit with a surface, which is a quadratic
polynomial of the distance from the cell border, in least-deviations sense [7].
This surface is taken to represent the cellular background intensity resulting
from the abundant, unbound MS2-GFPs, and is subtracted to obtain the fore-
ground intensity. The foreground intensity is fit with a set of Gaussian surfaces,
in least-deviations sense, with decreasing heights until the heights are in the
99% confidence interval of the background noise (estimated assuming a normal
distribution and using median absolute deviation) [7]. The Gaussians are taken
to represent fluorescent RNA spots, the volume under each representing the
total spot intensity.

Since the lifetime of a MS2-GFP-tagged RNA is much longer than the cell
division time [8, 3], the cellular foreground intensity is expected to be an increas-
ing curve, with a jump corresponding to an appearance of a new tagged RNA.
The jump positions are estimated using a specialized curve fitting algorithm [9].
Any observed interval between two consecutive RNA productions is recorded
for further analysis as-is, while the interval occurring after the last observed
production is rendered right censored [10]. These right censored data improve
the accuracy and avoid underestimating the transcription duration [10], as the
exactly observed intervals tend to lack more longer intervals than shorter ones.

Modeling Transcription Initiation and Transcription Inter-
vals

We assume the model of transcription initiation specified in Eq (1) of the main
manuscript. This model is a submodel of the more general model proposed in
[10], which in turn combines the models of [11] and [12]. The reactions are:

POH%POnkHIIIE)IZQPon‘FE (1)
off

where Pug, Pon, I1, and I5 represent the different states of the promoter, and
E represents a produced elongation complex (can be taken to approximate
produced RNAs). The mechanistic details are further discussed in the main
manuscript. We expect the dynamics of the above reactions to follow the
stochastic chemical kinetics [13, 14].

While the phenotypic distribution of a cell population with respect to a par-
ticular gene is characterized by the RNA and protein numbers, the contribution
of transcription is best characterized by the distribution of produced transcripts
in a given period of time, as the former is affected by the latter along with other
processes such as degradation and dilution (due to cell division) of the tran-
scripts.



Meanwhile, the distribution of the number of produced transcripts is inti-
mately related to the distribution of consecutive transcription intervals:

k+1

Fp (k) =P E(t) < k] P{Zn > t] — 1= (f R ) @

where Fg(t) is the cumulative density of E(t), fr and F;, are the probability
density function and cumulative density of the intervals between the produc-
tion of consecutive transcripts 7; (assumed to be independent and identically
distributed), f g is the convolution of f and g, and [~ ¥ is the k:th convolution
power of f.

For exponential 7 ~ £(A\) with rate A, the produced RNA numbers are
Poisson distributed E(t) ~ P(At), in which case it is said that the RNAs are
produced according to a Poisson process, or more concisely, that the transcrip-
tion is Poissonian. Regardless of the interval distribution, the two moments of
the two distributions are related in the long-term limit [15]:

tim SEO] _ E[r]”!
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that is, the mean number of RNA produced per unit time equals the inverse
of the transcription interval mean, while the Fano factor of the produced RNA
numbers equals the squared coefficient (variance over squared mean) of varia-
tion of the transcription intervals. Conveniently, the latter equals always unity
for Poissonian process. The long-term limit assumption is necessary such that
short-term memory effects (which are present for a non-Poissonian transcription
process) of the transcription process vanish.

Note that the long-term limit assumption is only necessary to link the mo-
ments of the transcription interval distribution to that of the RNA numbers as
specified above, and not in determining the appropriate transcription process
from the measurement data—the link in Eq (2) holds for any ¢.

The transcription intervals of the model of Eq (1) are conveniently written
using the following functional equation:

S k1 kot * * k+1 *k
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where fi(t) = k exp(—kt) is the probability density function of the waiting
time of a reaction with rate k. The parenthesized expression arises from the
random number of visits to Pyg prior to transitioning to I, and the latter two
terms from the remaining reactions. The expression for f. can be simplified
by manipulating it in the Laplace space (X + E[e'*]) [10]. The result can be



written as:
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provided that kon, p1, -+, pn are distinct. The singularities p; = p; can be
removed, and a more general result can be found in our previous article [10]:
essentially, in such case, the density is a mixture of Erlang densities instead of
the exponential ones as above.

From the above equation, several choices of parameters can result in an iden-
tical distribution of transcription intervals (and, consequently, RNA numbers).
For example, ko and k3 can be interchanged. This implies that while the best
fitting distribution for a set of data can be found, the order of the steps ky and
ks, or in fact, the exact values of any of the parameters, cannot be identified
without additional information. In the manuscript, we exploit the details of
how the parameters change to provide such additional information to identify
Koty kon, and ky.

The other properties of the transcription intervals can be derived from the
density, e.g. the mean and variance of the transcription intervals can be inte-
grated from f;:
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which can alternatively be derived from the results of Peccoud and Ycart [12]
using Eq (3), which links the moments of the long-term RNA distribution to
those of the transcription intervals.

The duty cycle, average burst size, and average burst interval of the on/off
switching loop are kon / (kon + Koft), k1 / ko, and koo™t + ko, respectively.
Here, the duty cycle is the fraction of time the gene spends in the on versus off
state, the burst size is the number of RNAs produced prior to turning off, and
the burst interval is the duration between such bursts.

In the temperature-dependent models, each model parameter changes as a
function of temperature according to a polynomial function:

p
ko(T) ™ = Zakm‘l,j 1’ (7)
=0

where a;,_-1 ; is the order-j coefficient for the parameter k, and 7' is tempera-
ture. In practice, we consider polynomials up to the second order p = 2, as an



order-p polynomial (or higher) can always pass through to p + 1 data points.
We do not expect the polynomial models to provide particular insight, rather,
parameters with a model of orders 0, 1, and 2, indicate that the parameter
is independent of, varies linearly, or in a nonlinear fashion, respectively, with
temperature.

Model Fitting and Selection

The models are fit using censored time intervals between the production of con-
secutive transcripts extracted from live-cell measurements (intervals are avail-
able in S8 table). The censoring is necessary, as production intervals longer
than cell division cannot be observed, resulting in underestimation of the true
transcription intervals, and as it improves the accuracy of the parameter estima-
tion by properly accounting for the effects of finite sampling rate (60 s sampling
interval) [10]. With censoring, rather than observing the production intervals
7;, we observe bounds for each interval: 7; € [x;, y;].

The models are fit in a maximum likelihood sense. The maximum likelihood
estimate is:

0= arg max P[ T € [3617?/1], o Tm S [Irm ym] ‘ 0 }
0
= arg maxz log( Fr(y1|0) — Fr(21]0)) (8)
o =
i)

where 0 represents a vector of the parameters to be estimated. If multiple mod-
els are to be fit together with independent data sets, the likelihoods sum as for
the different samples above. The parameter vector © contains the appropriate
set of the polynomial coefficients ay, ; that determine the model parameters for
each temperature 7'. Here, the objective { is some function that is equal up to
some additive constant to the logarithm of the likelihood function ¢.

In general, the maximum likelihood objective is not guaranteed to feature
attractive properties such as convexity or unimodality, but it is smooth almost
everywhere and in practice well behaved, provided that the model is somewhat
correct. The optimization was performed using a general-purpose derivative-
free nonlinear optimization algorithm [16]. To counter the convergence of the
optimization procedure to a local maximum, we used 1,000 random restarts,
with each parameter being generated from an unit-interval uniform distribution.
The parameters were scaled to have a mean equal to that of the data, assuming
that the data were exponential.

The distribution of the estimated parameters or any model feature derived
from them can be estimated using the delta method. It can be shown that a
mapping applied to the maximum likelihood estimate converges in distribution
to that applied to the true parameter such that [17]:

Vi (8(0) —g(0) ) % N(0,0(0) Z(0) ' go(0)" ) (9)



for any g(0) that is continuous almost everywhere. Here, gg is the Jacobian of g,
Z(0) is the Fisher information matrix, and - 4N (b, ¢) represents a convergence
in distribution to a normal distribution with a mean of b and covariance c. For
practical purposes, the Jacobian gg(6) can be approximated with that of at the

parameter estimate gq(0), and the Fisher information at the true parameter ©
can be approximated with the observed information *Zeg(é) at the parameter
estimate, where £(0) is the logarithm of the likelihood function and lg¢ its
Hessian. In this work, ge(é) is computed using automatic differentiation and
loo(0) = loo(B) is computed numerically.

As the models with more parameters fit never worse than those with less, a
scheme to penalize the excess degrees of freedom in the models is required. For
this, we use the Bayesian information criterion (BIC) [18]. The BIC is computed
according to [18]:

BIC = —2/(0) + k log(n) (10)

where £(0) is the log-likelihood at the maximum likelihood estimate, k is the
number of parameters, and n is the number of samples. In general, Z(é) and
n are not known when some of the data are censored. Instead, we know £(8),
the log-likelihood up to some additive constant, and n is known to be in some
range, as each censored interval can contain information worth of 0 to 1 samples
(the specific value depending on both the sample and the true model, and as
such, cannot be determined). However, the additive constant vanishes when
comparing two BICs, so the difference of two BICs can be estimated as:

A]ﬁ\CLQ = ]ﬁf}l — ]i\CQ =-2 </~1(é1) - /Nz(ég)) + (kl - ]{,‘2) log(ﬁ) (11)

where n = 1n; + 0.5n, is an estimate of the effective number of samples.
As indicated above, in this work, each of the n; interval censored samples is
assumed to be worth of 1 samples, as the sampling intervals are relatively short
compared to the transcription intervals, and each of the n,. right censored sample
is assumed to be worth of 0.5 samples.

Finally, a conservative lower bound for ABIC; » can be derived:

ABICLBi,= min -2 (Zl(él) 722(é2)) + (k1 — ko) log(n)  (12)
neni,ni+n,]

which guarantees that invalid conclusions are not drawn due to the inaccuracy

of the approximation, and allows a degree of inaccuracy in the former.

qPCR of Target Gene Activity

The activity of the target genes were also analyzed using quantitative PCR
(qPCR). Cells containing the target plasmids were grown at various LB media
[4] at 37 °C, and induced with their respective inducers (0.1% L-arabinose and
1 mM IPTG for Pyc/ara-1-mRFP1-96BS, and 15 ng/mL aTc for Pyea-mRFP-
96BS), as described above. Cells were collected by centrifugation at 8000 X g



for 5 minutes. Twice the cell culture volume of RNA protect reagent (Qiagen)
were added to the reaction tube, following the addition of Tris EDTA lysozyme
buffer (pH 8.0) for enzymatic lysis. The total RNA from cells was isolated
by the RNeasy kit (Qiagen), according to the manufacturer instructions. The
concentration of RNA was quantified by Nanovue plus spectrophotometer (GE
Healthcare). To remove the residual DNA, the samples containing the total iso-
lated RNA samples were treated with DNase. Following that, iSCRIPT reverse
transcription super mix was added for cDNA synthesis. Next, the cDNA samples
were mixed with the qPCR master mix, containing iQQ SYBR Green supermix
(Biorad), with specific primers for the target and reference genes. The reaction
was carried out in triplicates with a total reaction volume of 20 nL. For quantify-
ing the target gene, we used mRFP1 primers (forward: 5° TACGACGCCGAG-
GTCAAG 3’ and reverse: 5 TTGTGGGAGGTGATGTCCA 3’) and for the
reference gene, we used the 16S RNA primers (forward: 5 CGTCAGCTCGT-
GTTGTGAA 3’ and reverse: 5> GGACCGCTGGCAACAAAG 3’). The gPCR
experiments were performed using a MiniOpticon Real time PCR system (Bio-
rad). The following conditions were used during the reaction: 40 cycles at 95 °C
for 10 s, 52 °C for 30 s, and 72 °C for 30 s for each ¢cDNA replicate. We used
no-RT controls and no-template controls to crosscheck non-specific signals and
contamination. PCR efficiencies of the reactions were greater than 95%. The
data from CFX Manager TM software was used to calculate the relative gene
expression and its standard error [19].

Western Blot for RNA Polymerase Quantification

To quantify RNA polymerase abundance in DH5a-PRO strain at the different
media, we measured the amount of RpoC subunits by western blot. Cells were
grown until reaching mid-logarithmic phase, and harvested by centrifugation
at 8000 x g for 1 minute. After that, cell lysate was treated with the B-PER
bacterial protein extraction reagent (Thermo scientific), containing protease in-
hibitors, and incubated at room temperature for 10 minutes. The samples were
centrifuged at 15000 x g for 10 minutes, after which the supernatant was col-
lected. Next, the total protein samples were diluted to the 4x lamellae sample
loading buffer, containing 3-mercaptoethanol, and boiled for 5 minutes at 95 °C.
The samples containing about 30 pg of total protein were resolved by 4 to 20%
TGX stain free precast gels (Biorad). Proteins were separated by electrophore-
sis and then electro-transferred on the PVDF membrane. Membranes were
blocked with 5% non-fat milk and incubated with primary RpoC antibodies of
1:2000 dilutions (Biolegend) overnight at 4 °C, followed by the HRP-secondary
antibodies 1:5000 dilutions (Sigma Aldrich) for 60 minutes at room tempera-
ture. For detection of the RpoC protein, chemilumiscence reagent (Biorad) was
used. Images were generated by the Chemidoc XRS system (Biorad). Band
quantification was done by using the Image Lab software (version 5.2.1).



References

[1] Lutz R, Bujard H. Independent and tight regulation of transcriptional units
in Escherichia coli via the LacR /O, the TetR/O and AraC/I1-12 regulatory
elements. Nucl Acids Res. 1997;25(6):1203-1210.

[2] Golding I, Paulsson J, Zawilski SM, Cox EC. Real-time kinetics of gene
activity in individual bacteria. Cell. 2005;123(6):1025-1036.

[3] Muthukrishnan AB, Kandhavelu M, Lloyd-Price J, Kudasov F, Chowdhury
S, Yli-Harja O, et al. Dynamics of transcription driven by the tetA pro-
moter, one event at a time, in live Escherichia coli cells. Nucl Acids Res.
2012;40(17):8472-8483.

[4] Lloyd-Price J, Startceva S, Kandavalli V, Chandraseelan JG, Goncalves
N, Oliveira SMD, et al. Dissecting the stochastic transcription initiation
process in live Escherichia coli. DNA Res. 2016;23(3):203-214.

(5] Kandhavelu M, Hakkinen A, Yli-Harja O, Ribero AS. Single-molecule dy-
namics of transcription of the lar promoter. Phys Biol. 2012;9(2):026004.

(6] Hakkinen A, Muthukrishnan AB, Mora A, Fonseca JM, Ribeiro AS. Cel-
lAging: a tool to study segregation and partitioning in division in cell
lineages of Escherichia coli. Bioinformatics. 2013;29(13):1708-1709.

[7] Hakkinen A, Kandhavelu M, Garasto S, Ribeiro AS. Estimation of
fluorescence-tagged RNA numbers from spot intensities. Bioinformatics.
2014;30(8):1146-1153.

[8] Golding I, Cox EC. RNA dynamics in live Escherichia coli cells. Proc Natl

Acad Sci USA. 2004;101(31):11310-11315.

[9] Hakkinen A, Ribeiro AS. Estimation of GFP-tagged RNA numbers from
temporal fluorescence intensity data. Bioinformatics. 2015;31(1):69-75.

[10] Hakkinen A, Ribeiro AS. Characterizing rate limiting steps in transcription
from RNA production times in live cells. Bioinformatics. 2016;32(9):1346
1352.

[11] McClure WR. Rate-limiting steps in RNA chain initiation. Proc Natl Acad
Sci USA. 1980;77(10):5634-5638.

[12] Peccoud J, Ycart B. Markovian Modelling of Gene Product Synthesis.
Theor Pop Biol. 1995;48:222-234.

[13] McQuarrie DA. Stochastic approach to chemical kinetics. J Appl Prob.
1967;4(3):413-478.

[14] Gillespie DT. A rigorous derivation of the chemical master equation. Phys-
ica A. 1992;188(1-3):404-425.



[15] Cox DR. Renewal theory. London, UK: Methuen; 1962.

[16] Nelder JA, Mead R. A simplex method for function minimization. Comput
J. 1965;7(4):308-313.

[17] Lehmann EL, Casella G. Theory of point estimation. 2nd ed. New York,
NY: Springer-Verlag; 1998.

[18] Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90(430):773
795.

[19] Livak KJ, Schmittgen TD. Analysis of relative gene expression data
using real-time quantitative PCR and the 2722C¢7 method. Methods.
2001;25(4):402-408.

10



UNPUBLISHED MANUSCRIPT - STUDY
W

Chromosome and plasmid-borne lacO301 promoters differ in sensitivity to critically low
temperatures

N.S.M. Goncalves®, S.M.D. Oliveira®, L. Martins, R. Neeli-Venkata, J. Reyelt, ].M. Fonseca, J. Lloyd-
Price, H. Kranz, and A.S. Ribeiro

Under Revision. “Equal contributions.
doi: -

Publication reprinted with the permission of the copyright holders.






v b

O 00 N O

10
11
12
13
14

15

16

17
18

19

20

21

22

23

24

25

26

27

Chromosome and plasmid-borne lacoszo; promoters differ in sensi-
tivity to critically low temperatures

Nadia S.M. Goncalves"*, Samuel M.D. Oliveira"”, Leonardo Martins'?>, Ramakanth Neeli-
Venkata', Jan Reyelt®, Jose M. Fonseca?, Jason Lloyd-Price*, Harald Kranz®, and Andre S. Ri-
beiro!?*

! Laboratory of Biosystem Dynamics, Multi-Scaled Biodata Analysis and Modelling Research
Community and BioMediTech Institute and Faculty of Biomedical Sciences and Engineering,
Tampere University of Technology, PO Box 553, 33101 Tampere, Finland.

2 CA3 CTS/UNINOVA. Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa,
Quinta da Torre, 2829-516, Caparica, Portugal.

3 Gene Bridges, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany.

4 Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115,
USA

S Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA

* Corresponding author. Email: andre.ribeiro@tut.fi, Tel: +358408490736, Fax: +358331154989
Running title: Temperature sensitivity of transcription

Keywords: In vivo transcription; single-RNA; chromosome integration; plasmid integration; crit-
ically low temperatures.

*Equal contributions



28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63

64
65
66
67

Summary

Bacteria undergo genome-wide expression changes following temperature shifts. Using in vivo
single-RNA detection, we study, in Escherichia coli, whether these changes differ between
chromosome-integrated and single-copy plasmid-borne genes. We show that, for Pracosor, while
the induction range, fold change, and initial response to temperatures downshifts are similar, at
critically low temperatures, the chromosome-integrated promoter kinetics becomes weaker and
noisier. Dissection of the initiation kinetics indicates longer duration of the states preceding open
complex formation when chromosome-integrated, suggesting enhanced super-coiling. Measure-
ments at 10 °C, 30 °C, and with Gyrase and Topoisomerase I inhibitors, show longer escape
times from DNA super-coiling at low temperatures, although Gyrase and Topoisomerase I are
active. Similarly, long-lasting buildups are found at 30 °C in energy-depleted cells. We find no
long-term consequences of low temperatures, as transcription rates are restored by raising
temperature. Simulations of a stochastic, multi-step model of Pracosor dynamics with empirical
parameter values and a temperature-dependent escape rate from super-coiled states support the
conclusions. We conclude that, when chromosome-integrated, Pracozor has long-lasting super-
coiled states at critically low temperatures that enhance sensitivity to shifts to critically low tem-
peratures. We hypothesize that E. coli may be capitalizing this phenomenon to directly encode
temperature-sensitive global transcriptional programs.

Introduction

Escherichia coli has evolved sophisticated regulatory programs to adapt to fluctuating environ-
ments that involve the precise regulation of the expression of many specific genes (Arsene et al.,
2000; Kannan et al., 2008). In general, this regulation occurs at the stage of transcription initia-
tion (Browning and Busby, 2016), and is performed, e.g., by transcription factors (Brewster et
al., 2014; McClure, 1985) and o factors (Cho et al., 2014; Dong and Schellhorn, 2009; Farewell
et al., 1998; Rouviere et al., 1995). Chromosomal DNA compaction, caused by supercoiling
(Holmes and Cozzarelli, 2000; Stuger et al., 2002) and regulated by nucleoid-associated proteins
(NAPs) (Dillon and Dorman, 2010; Postow et al., 2004), is expected to have both local and glob-
al effects on gene expression (Dillon and Dorman, 2010; Peter et al., 2004; Pruss and Drlica,
1989). Namely, changing the degree of compaction will affect many genes’ expression level, but
it does so such that, in some genes expression increases while in others it decreases (Dorman,
2006; Dorman and Dorman, 2016; McClure, 1985; Travers and Muskhelishvili, 2005).

E. coli’s genome has approximately 4000 chromosomal genes (Blattner et al., 1997), and extra-
chromosomal DNA in plasmids. In general, genes in plasmids are associated to, among other,
antibiotic resistance (Davies and Davies, 2010). When beneficial, over time, these tend to be in-
tegrated into the chromosome, likely increasing stability and reducing the metabolic burden of
plasmid maintenance (Ochman et al., 2000; Rankin et al., 2011).

While the chromosome has topologically constrained segments that allow a buildup of supercoil-
ing (Hardy and Cozzarelli, 2005; Higgins, 2016; Postow et al., 2004; Rovinskiy et al., 2012),
plasmids lack discrete constraints, i.e. only have transient ones, e.g., due to transient protein
binding (Chong et al., 2014; Leng et al., 2011). Exceptions to this are, e.g., plasmids encoding
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membrane associated proteins that, due to anchoring to the membrane (Boeke and Model, 1982;
Deng et al., 2004; Pruss and Drlica, 1986; Lynch and Wang, 1993), can form longer lasting con-
straints, plasmids carrying tandem copies of one or two DNA-binding sites (Fulcrand et al.,
2016; Leng et al., 2011), and plasmids carrying the T7 promoter, when expressed in topA mutant
strains (Samul and Leng, 2007). These specific topologically constrained segments in plasmids
are more ‘efficient’ than transient ones in causing the emergence of negative and positive super-
coiling in transcription (respectively, behind and ahead of the RNA polymerase (Deng et al.,
2005; Liu and Wang, 1987)).

Further, in vitro measurements suggest that, when supercoiling buildups emerge in plasmids due
to transient constraints, they diffuse freely in opposite directions and annihilate one another, due
to the lack of the segment-based constraints (Chong et al., 2014). This may be one of the reasons
for significant differences in the transcription kinetics of genes chromosome-integrated and
genes carried in plasmids (Chong et al., 2014). Nevertheless, it is worth noticing that in vivo
measurements suggest that, prior to annihilation, transient supercoiling changes can influence
transcription rates of both plasmid-borne and chromosome-integrated promoters (Moulin et al.,
2005; Rahmouni and Wells, 1992; Samul and Leng, 2007).

Temperature shifts affect DNA supercoiling directly (Goldstein and Drlica, 1984; Lopez-Garcia
and Forterre, 2000) as well as indirectly, e.g., by affecting the interactivity between NAPs and
chromosomal DNA (Amit et al., 2003). It is therefore not surprising that the activity of virtually
all chromosomal genes in E. coli is affected by temperature downshifts (Jones et al., 1987). Nev-
ertheless, the means by which such global ‘shut-downs’ occur remain unknown.

Another process affecting the kinetics of transcription that is also temperature-dependent is the
sequence-dependent process of promoter escape (Kapanidis et al., 2006), the stage at which the
RNA polymerase is freed from the promoter and moves downstream towards the elongation re-
gion of the DNA template (Hsu, 2002). The stronger is the binding between the RNA polymer-
ase and the promoter, the longer it usually takes for the polymerase to be released from the pro-
moter and begin elongation, due to the multiple failures in escape (Hsu, 2002). Recent evidence
suggests that for this escape to be successful, the RNA polymerase needs to pull a sufficient
amount of downstream DNA into itself (so as to reach its active center), which involves the
breakage of interactions between the RNA polymerase and promoter, and between the RNA pol-
ymerase and initiation factors (Kapanidis et al., 2006).

Given the above, we hypothesized that genes carried on plasmids and chromosome-integrated
genes can differ in sensitivity to temperature shifts. To test this, we compare quantitatively the
effects of temperature shifts on the in vivo kinetics of transcription of the Pracoso1 promoter,
when on a plasmid and when chromosome-integrated (Experimental Procedures). For this, we
use the MS2-GFP RNA tagging technique in E. coli, along with a recently proposed methodolo-
gy to resolve the rate-limiting steps governing the in vivo dynamics of initiation of prokaryotic
promoters (similar to established steady-state assays to resolve the in vitro dynamics) (Lloyd-
Price et al., 2016), to characterize, with single-RNA sensitivity, the RNA production dynamics
by these constructs at various temperatures, as well in the presence of Gyrase and Topoisomerase
I inhibitors and of DNP-based energy depletion. Finally, we make use of stochastic modeling to
show that the observed differences in transcription kinetics between chromosome and plasmid
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integrated promoters at low temperatures are consistent with currently accepted models of tran-
scription initiation that account for the effects super-coiling build-ups, provided that such low
temperatures result in the hindrance to release of DNA super-coiling.

To our knowledge, this study is the first to compare, at the single RNA level, the transcription
kinetics of a promoter on a plasmid and in the chromosome as a function of temperature. Further,
we study this process at critically low temperatures (below 23 °C), a regime in which most cellu-
lar processes exhibit significant differences due to, e.g., globally-altered transcription rates
(Jones et al., 1987) and increased cytoplasmic viscosity (Oliveira et al., 2016a).

Results

To study the differences in the dynamics of plasmid and chromosome integrated promoters as a
function of temperature, we compare the kinetics of RNA production under the control of the
Pracoso1 promoter when integrated into the chromosome with the kinetics of RNA production
under the control the same promoter but integrated into a single-copy F-plasmid. We note that, in
both cases, the reporter is identical and carried by a multi-copy plasmid (see Experimental Pro-
cedures). Also, in all measurements, for each condition, we performed three or more biological
repeats. Since in no case did we find statistically significant differences between the repeats, all
results are obtained from the cumulative number of cells (composed of all cells from all three
replicates).

The Praco3o01-BS chromosome construct (Figures S1 and S2) is the first engineering of a chromo-
some-integrated gene coding for an RNA with multiple MS2-GFP binding sites in E. coli, which
allow a quantification of target RNA molecules from microscopy images (Golding et al., 2005).

It is noted that this method of RNA counting based on MS2-GFP tagging of RNAs (Golding et
al., 2005) provides an ‘integer-valued absolute number’ of RNA molecules in a single cell (Gold-
ing and Cox, 2004; Kandavalli et al., 2016; Lloyd-Price et al., 2016; Mikela et al., 2017; Mékeld
et al., 2011; Muthukrishnan et al., 2014; Oliveira et al., 2016b). The term ‘integer-valued’ is here
used due to these numbers being extracted from distributions of spot intensities (Experimental
Procedures).

To obtain such numbers, one needs to determine the fluorescence intensity of 1 tagged RNA.
This is achieved by determining the fluorescence intensity of each RNA ‘fluorescent spot’ from
the images captured by microscopy. This intensity is obtained from the intensity of the smallest
spots, as these should correspond to individual RNA molecules. The number of RNAs of ‘larger’
spots is then calculated by dividing their intensity with the intensity of individual RNAs (Gold-
ing et al., 2005). This method is described in detail in Experimental Procedures, section ‘RNA
counting from fluorescent spots’ (Hékkinen et al., 2013).

To strengthen the argument that the smallest spots correspond to a single RNA, we extracted this
intensity from non-induced cells containing a single spot. In addition, we also merged all data
from different measurements at different induction levels and again detected the smallest peak of
fluorescence intensity arising from spots (as described in Experimental Procedures, section ‘Im-
age Analysis’). This peak intensity was found to be indistinguishable (in a statistical sense) from
the one detected using the previously described methodology. Further, to ensure that the MS2-
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GFP do not form spots of such intensity in the absence of target RNAs, we assessed if spots of
similar intensity existed in cells not carrying the target gene. ‘Fake spots” were found to occur
very rarely (Experimental Procedures, section ‘Control test of the RNA counting method’ and in
Supporting Material, Table S1, condition “no target gene”).

It is also of relevance to consider that the target RNA molecules, once tagged by MS2, due to the
robustness of the fluorescent properties of the tagging proteins, do not degrade nor lose fluores-
cence intensity for the duration of measurements reported here (Experimental Procedures) (Gold-
ing and Cox, 2004; Tran et al., 2015). We verified these past results, as they were obtained at
different temperatures. From the new measurements (Table S2 in Supporting Material), we con-
clude that, during the measurement period, the fluorescence of tagged RNAs do not decrease
significantly over time (gradually or abruptly), in either construct or temperature, in agreement
with those previous reports (Golding and Cox, 2004; Tran et al., 2015). In addition, we conclude
that tagged RNAs from the chromosome integrated gene and from the plasmid-borne gene have
nearly indistinguishable lifetime times from one another, with these lifetimes differing only with
temperature. The methodology used to obtain the values in Table S2 are described in Experi-
mental Procedures, section “Half-life of the fluorescence intensity of MS2-GFP tagged RNA
molecules”.

In addition, we also verified whether the time for the RNA to become fully tagged did not differ
between strains or temperature conditions. We verified that, in all cases, the total fluorescence of
individual tagged RNAs was already maximal at the first moment it was detected, meaning that
the time for its tagging was always under 1 minute (measurements were taken once per minute).
This result is in agreement with previous measurements (Tran et al., 2015).

Finally, in the calculations below we assume that, for both strains (see ‘Experimental Proce-
dures’), only one copy of the target promoter is present in each cell at any given time. This as-
sumption/approximation is based on two facts. First, F-plasmids replicate at the same time
(Cooper and Keasling, 1998) or shortly after (Keasling et al., 1991) the chromosome (which also
ensures that differences in RNA production between the two strains is not due to differences in
copy-numbers). Second, we performed measurements (Experimental Procedures, section “Num-
ber of promoter copies during the cell lifetime”) which showed that, 1 hour after the start of the
measurements, at 10 °C, only ~15% of the cells had 2 nucleoids, while at 30 °C only ~12% of
the cells had 2 nucleoids (in both cases, more than 600 cells were analyzed). Finally, we deter-
mined the plasmid copy numbers using RT-qPCR (Experimental Procedures, section ‘Plasmid
copy number calculation using RT-qPCR’). These showed that the pBELO absolute copy num-
ber equaled 1.00 and 1.02 for the conditions 10°C and 30°C, respectively (Figure S9 and Table
S12 in Supporting Material), validating our assumption.

In addition to this, since the two strains are not subject to the same antibiotics (only the cells car-
rying the target gene in the single-copy plasmid are subject to chloramphenicol), we tested
whether the two strains produce non-distinguishable levels (in a statistical sense) of MS2-GFP
reporter proteins (as differences in these could result in different ability to count target RNAs).
To test this, inducing only the reporter gene, we measured the total background fluorescence in-
tensity of individual cells in both strains (which is almost exclusively due to MS2-GFP reporters)
and then compared the two distributions of single-cell background fluorescence intensity by per-
forming a Kolmogorov-Smirnov (KS) test of statistical significance. We found no significant
difference between the two distributions. Namely, we obtained a p-value of 0.46, which is much
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larger than 0.01 (only when smaller than 0.01 do we reject the null hypothesis that the two sets of
data are from the same distribution).

Induction of gene expression is similar in the chromosome and plasmid-integrated con-
structs

We first verified if this construct is functional and responsive to the inducer, IPTG, and then
compared its functioning to the single copy F-plasmid construct (Figures S1 and S2) (Tran et al.,
2015). As mentioned in the Experimental Procedures, each of these constructs was inserted in E.
coli strain BW25993 cells (Datsenko and Wanner, 2000).

For this, first, we verified that there are no significant differences between the growth curves of
the strains carrying each of the constructs (Figure S5 in Supporting Material). Next, for each
construct and IPTG concentration, we quantified the RNA numbers in live cells at 30 °C by mi-
croscopy imaging 1 hour after induction of the target promoter by IPTG (Experimental Proce-
dures), and then image processing cells and RNA-GFP spots within (Experimental Procedures).
We find that the mean RNA numbers per cell, relative to maximum induction (1 mM IPTG) ex-
hibit a similar fold change in both constructs (~4 for the plasmid and ~5 for the chromosome
construct), as shown in Figure 1, which is specific to the Praco3o1 promoter (see, e.g. (Kandavalli
et al., 2016)).

Table S3 shows the P values of KS tests (Massey, 1951) comparing all pairs of distributions of
absolute integer-valued RNA numbers per cell obtained in each induction condition, for the
plasmid, and for the chromosome construct, when at 30°C. We find that these numbers differ
significantly (in a statistical sense) with increasing IPTG concentration in the plasmid construct.
In the chromosome construct, these numbers differ in behavior in the absence versus the pres-
ence of IPTG, meaning that, while responsive to the inducer, this construct is less sensitive to
varying IPTG concentrations. Nevertheless, it is possible to conclude that both constructs are
active and responsive to IPTG, while the plasmid construct being more sensitive. Further, for
both, these numbers do not increase significantly beyond 500 uM IPTG, indicating that 1 mM
IPTG suffices for full induction, in agreement with previous studies (e.g. (Kandavalli et al.,
2016; Lloyd-Price et al., 2016)).

Overall, the results suggest that the same model of transcription (reactions 1-3 in Experimental
Procedures) is applicable to both constructs, aside from the values in one or more rate constants
(e.g. tuning kee or kunock suffices to account for changes in mean RNA numbers per cell as a
function of induction).

Transcription by the chromosome-integrated construct is noisier at lower temperatures

We next study whether the chromosome and plasmid constructs are affected differently by tem-
perature changes. We measured the RNA numbers in cells subject to full induction (1 mM of
IPTG) by microscopy, for both constructs at various temperatures (30°C, 27°C, 23°C, 20°C,
16°C and 10°C). Cells were induced and kept at the specific temperature for 60 minutes prior to
imaging. From the absolute integer-valued RNA numbers in each cell, we calculated the mean
and squared coefficient of variation (CV?) of the RNA numbers in single cells for each condition
(Table 1).
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Tables S4 and S5 show the P values of KS tests comparing the distributions of RNA numbers in
individual cells between conditions for the chromosome and the plasmid (Table S4) constructs,
and between these constructs at each temperature (Table S5). This test assesses if the RNA pro-
duction kinetics of these constructs differ with temperature and from each another, in a statistical
sense. For P values smaller than 0.01, the null hypothesis that the two sets of data are from the
same distribution is rejected.

From Table 1 and Table S4, we find that Praco3o1, when integrated into the single-copy plasmid,
is highly responsive to temperature decreases only until 23 °C. Below this, changes in RNA
numbers are only significant for temperature shifts wider than those considered in Table S4 (e.g.
p <0.01 for 23 °C and 10 °C, not shown in Table S4). Interestingly, this behavior is in line with
previous reports for a Prea promoter and for a Lac/Ara-1 promoter on single-copy plasmids
(Oliveira et al., 2016b).

Meanwhile, from Table 1 and Table S4, when chromosome-integrated, Pracosor activity decreas-
es significantly for a wider range of temperatures. Differences are detectable between all pairs of
‘neighboring’ conditions, except between 16 °C and 10 °C.

These results are supported by those in Table S5. The P values of the KS tests indicate that, be-
low 23 °C, the plasmid and chromosome constructs differ in all temperature conditions. Mean-
while, for 23 °C and above, they only differ at 30 °C. From this and Table 1, we conclude that
the activity of the chromosome-integrated promoter is more heavily reduced as temperature is
lowered because it remains sensitive to a wider range of temperature shifts.

To validate these results, we used RT-PCR (Experimental Procedures) to obtain the mean RNA
numbers relative to the control (30°C) in cells subject to full induction (1 mM of IPTG) at 23 °C,
16 °C and 10 °C. Results are shown in Figure S6 in Supporting Material. Meanwhile, from Table
1, we calculated the same quantities in the microscopy measurements. We find that both the
chromosome and plasmid constructs exhibit the same qualitative behavior as temperature de-
creases when measured by microscopy and RT-PCR.

Finally, we assessed if the weaker transcriptional activity of the chromosome-integrated promot-
er at the lowest temperatures could be explained by changes in the known heterogeneities in the
spatial distribution of RNAPs (Bratton et al., 2011) or of the nucleoid. For this, we performed
measurements of RNAP intracellular spatial distributions as described in Experimental Proce-
dures (section “Tuning intracellular RNAP concentrations and nucleoid staining with DAPI”).
However, this hypothesis is rejected by the fact that measurements at 10 °C and 30 °C (Figure S7
in Supporting Material) show no significant differences in the spatial distribution of RNAPs or in
nucleoid size.

In this regard, we performed two tests for cells with a chromosome-integrated promoter. First,
since the mean RNA numbers per cell in induced cells at 10 °C (Table 1) appears to be smaller
than in non-induced cells at 30 °C (Table S1), we tested whether this difference is statistically
significant. For that, we performed a KS test between the distributions of RNA numbers in indi-
vidual cells in the two conditions. We obtained a p-value of 0.99 and, thus, we conclude that the
null hypothesis that the two sets of data are from the same distribution cannot be rejected (p-
value larger than 0.01). In other words, the RNA numbers in the two conditions do not differ, in
a statistical sense. As such, induced cells at 10 °C produce at least as much RNAs as non-



276
277
278
279
280
281

282
283

284
285
286
287
288
289
290

291
292
293
294
295
296
297
298
299

300
301
302
303
304
305

306
307
308
309

310
311
312
313
314
315
316

induced cells at 30 °C. Second, we tested whether the induction mechanism is functional at 10
°C, i.e. whether the differences in produced RNA numbers are significant (in a statistical sense)
between induced and non-induced cells. For that, we performed a KS test between the distribu-
tions of RNA numbers in individual cells in the two conditions (Figure 2 and Table S1). We
found the p-value to be much smaller than 0.01, from which we conclude that the two distribu-
tions can be distinguished, in a statistical sense. Thus, there is tangible induction at 10 °C.

Mean relative time prior to the commitment to transcription increases in the chromosome-
integrated construct at low temperature

To investigate the cause for the different behavior of the two constructs at the lower tempera-
tures, we assessed whether the changes in kinetics with decreasing temperature occur prior to or
following commitment to open complex formation. For this, we estimated the mean fraction of
time between consecutive transcription events taken by the steps preceding (tprior) and following
(tafier) the commitment to open complex formation (Kandavalli et al., 2016; Lloyd-Price et al.,
2016) at the highest and lowest temperature conditions (Experimental Procedures, section ‘Rela-
tive mean duration prior to and following commitment to transcription’).

In short, this method established in (Lloyd-Price et al., 2016) (also used in (Kandavalli et al.,
2016)), similar to established steady-state assays to investigate the in vitro dynamics of transcrip-
tion in bacteria (McClure, 1985), is based on the assumption that, increasing the concentration of
active RNAP molecules in the cell, one should increase the rate of RNA production. Importantly,
this increase in RNA production rate occurs due to the increased rate of the steps prior to the start
of the open complex formation (which depend on RNAP numbers, see reaction 1 in Experi-
mental Procedures), while the rate of the steps following the start of open complex formation is
not altered. Given this, one can assume that, for infinite RNAP numbers, the rate-limiting step of
transcription are solely the steps after the open complex formation.

To estimate the duration of these steps, one needs to plot the inverse of the RNA production rate
against the inverse of the RNAp concentrations, for various conditions differing in the concentra-
tion of RNAP in the cells, thus obtaining a Lineweaver—Burk plot, and then fit a line to obtain
the estimated rate of RNA production for infinite concentration of RNAP. This method is valid if
the increase in the rate of RNA production is linear with the increase in RNAP concentration,
within the range of conditions used to obtain the data points (Lloyd-Price et al., 2016).

Importantly, in (Lloyd-Price et al., 2016), it was found that, for a certain range of media richness
conditions (here obtained by differing Glycerol concentrations), the cell growth rates can remain
unaltered, while the RNAP numbers increase as the richness increases (resulting in higher RNAP
intracellular concentrations), which is the condition needed to use a Lineweaver—Burk plot.

Thus, first, we tested if the differences in Glycerol concentration of the M9 medium used to alter
intracellular RNAP concentrations (Experimental Procedures), do not affect the cell growth rate.
Cells were grown in media with 0.2, 0.4, 0.6 and 0.8% of Glycerol, denoted as 0.5X, 1X, 1.5X
and 2X, respectively. For each of these media conditions, growth rates were assessed from the
ODsoo over time by a spectrophotometer (Muthukrishnan et al., 2014). For cells with either con-
struct, we found no significant differences in growth rates with changes in media (Figure S8 in
Supporting Material).
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In addition, to show that these changes in the media conditions also do not generate differences
in the cells” DNA spatial organization, we obtained the DAPI signal in each cell for each of the
0.5X, 1X, 1.5X and 2X conditions, for cells at 30 °C and 10 °C. Then we tested (KS-tests),
whether the single-cell distributions of these fluorescence levels differed between conditions.
Results in Table S6 show that the distributions cannot be distinguished, in a statistical sense (ex-
cept when comparing, at 10 °C, the 0.5X and the 2.0X conditions directly).

Next, for each condition, we obtained the RNAP levels relative to a ‘control’ condition (Experi-
mental Procedures). This is obtained by, first, subtracting the mean absolute fluorescence values
measured in the 0.5X condition from the values obtained in each of the other conditions.
Afterward, we obtained the ratio between each of these differences (namely, for the 1.5X and the
2.0X conditions) and the difference in the 1X (control) condition. Finally, we obtained the in-
verse of these two values. These calculations, whose results are shown in Table S7 along with
the KS-tests shown in Table S8, demonstrate that the RNAP concentrations differ in cells in dif-
ferent media, as expected. Interestingly, the degree of this change with media composition ap-
pears to be temperature dependent.

Subsequently, we measured the RNA production rates of both constructs by RT-PCR for each
media condition (1.5X and 2X) relative to the 1X condition. Results in Table S9 show significant
differences with media, temperature, and construct, as expected from the microscopy measure-
ments and the present and previous data on the effects of changing media richness on in vivo
RNA production rates (Kandavalli et al., 2016; Lloyd-Price et al., 2016).

Relevantly, it is the relative free RNAp concentration in the cells that determines the transcrip-
tion rate. Here, we measure RNAp concentrations from the RNAP-GFP signal intensity (Exper-
imental Procedures). Meanwhile, previous studies have shown that, in some cases, RNAP foci
(here RNAP-GFP), may not be adequate in reflecting the ability of RNAp to synthesize mRNA
(Cabrera and Jin, 20006).

To determine whether, in the conditions studied here, the relative differences in RNAp-GFP con-
centration between conditions (measured here and shown in Supporting Table S7) are a good
proxy for the relative differences in free RNAp concentrations and, thus, can be used to assess
the ability of RNAP to synthesize mRNA in the cells, we need to test if, for the range of media
richness used, the inverse of the RNA production rates (Supporting Table S9) change linearly
with the inverse of the RNAP concentrations (Kandavalli et al., 2016; Lloyd-Price et al., 2016).
L.e., a Lineweaver—Burk plot (Lineweaver and Burk, 1934) should exhibit a line, since this is
evidence that, for the conditions tested, both the relative free RNAp concentrations can be ap-
proximately assessed from the total RNAp concentrations, as well as that no factors other than
the changes in the free RNAp concentration affect the promoter of interest.

Lineweaver—Burk plots are shown for the plasmid and chromosome constructs in Figure S10 in
Supporting Material. In each, the above-mentioned linear relationship was tested by a likelihood
ratio test, to determine whether the small deviations from linearity are statistically significant
(here we used a weighted total least-squares algorithm for fitting a straight line, WTLS (Krystek
and Anton, 2007)).

From Figure S10, the linear relationship can be observed for both chromosome and plasmid con-
structs. In agreement, the results of the linearity tests show that, within this range of RNAp con-
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centrations, the linear model cannot be rejected in either case (P > 0.25). Overall, we find that,
for the conditions used here, the relative free RNAp concentrations in the cells are well-
approximated by the total RNAp concentrations, and there are no significant other factors affect-
ing the initiation dynamics of Placo301.

Finally, from the values in Table S9, along with the RNAP relative concentrations shown in Ta-
ble S7, we estimated the mean time-length (relative to the mean duration of the intervals between
Lo
A
open complex formation, for each construct and temperature condition. The methodology to per-
form these estimations was first described in (Lloyd-Price et al., 2016) and later used in (Kanda-
valli et al., 2016) and (Mikela et al., 2017) (see Experimental Procedures, section ‘Relative mean
duration prior to and following commitment to transcription’ for a detailed description of this
methodology). Results in Table 2 show that, in all 4 conditions, the most rate-limiting events
occur after commitment to open complex formation.

transcription events) of transcription initiation prior (%) and after ( ) the initiation of the
t

From Table 2, in the plasmid construct, in agreement with previous in vitro measurements for the
synthetic Lac-UV5 promoter, the reduction in RNA production rate with lowering temperature is
mostly due to a reduction in the rate of the events after the commitment to open complex for-
mation. Meanwhile, in the chromosome construct, we observe the opposite. Le., at 10 °C, the
mean fraction of time spent prior to commitment to open complex formation increased signifi-
cantly. This suggests that the events whose rates were most reduced occur prior to commitment
to open complex formation, provided that the RNA production rate decreases with lowering tem-
perature (as is the case, given the data in Table 1).

Local DNA supercoiling in the chromosome-integrated gene drives the differences between
constructs

We observed an increased time-length of the events preceding the open complex formation in the
chromosome-integrated construct at lower temperatures. Our model of transcription initiation
(Experimental Procedures, reactions 1-3) allows for this to occur, provided that decreasing tem-
perature leads to significant changes in specific rate constants. In particular, it can occur when
decreasing temperature causes a decrease in the rate of unlocking (kuniock) of the promoter from
the locked state (reaction 3 in Experimental Procedures) or in the rate of unbinding of a repressor
from the promoter (kon, reaction 2 in Experimental Procedures), or both.

A third reasonable possibility is that decreasing temperature leads to a significant modification in
the kinetics of closed complex assembly-disassembly that results in an increased relative dura-
tion of the closed complex formation, e.g. due to reduced ki or k», or instead increased k.;. How-
ever, this would result in reduced noise in RNA production (Lloyd-Price et al., 2016; Manner-
strom et al., 2011), and thus reduced CV? in RNA numbers in individual cells (because, at 30 °C,
most time between transcription events is spent in open complex formation, as shown in Table
2). The data on CV? in RNA numbers in Table 1 disproves this hypothesis.

To increase the relative duration of the events preceding the open complex by tuning the physics
of the locking/unlocking process (due to supercoiling), the unlocking step must last longer on
average, equivalent to reduced kuniock in the model. This modification results in increased noise in
RNA production (Golding et al., 2005), increasing the CV? in RNA numbers in individual cells,
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which was observed in Table 1. Since a decrease of kon with decreasing temperature would have
a similar effect, the CV? in RNA numbers cannot distinguish between these possibilities. In any
case, both of them result in increased ‘escape time’, from two different ‘forms’ of ‘OFF” states,
during which the promoter is not available to RNA polymerases.

The increase in ‘escape time’ at critically low temperatures could be due to several effects, in-
cluding the efficiency of repressors (see e.g. (Oliveira et al., 2015)), DNA packaging (known to
differ between plasmid and chromosomes (Higgins and Vologodskii, 2015), or DNA super-
coiling (Lopez-Garcia and Forterre, 2000) (known to affect both packaging (Stuger et al., 2002)
and transcription (Blot et al., 2006; Chong et al., 2014; Fulcrand et al., 2016; Marr et al., 2008)).
However, the change in the efficiency of the repressors should affect both the chromosome and
plasmid constructs similarly, while we observe divergent behaviors between these two constructs
at the lowest temperatures, with the plasmid-borne one being unable to turn ‘OFF’ its RNA pro-
duction as efficiently as the chromosome-integrated construct (Table 1). Because of this, we
conclude that the stronger decrease in the chromosome construct in RNA production rate with
lowering temperature (at the lowest temperature conditions tested) should be due to an increased
amount of time required to remove the promoter from the ‘Locked’ state, which does not occur
in the plasmid construct.

Finally, to determine if the divergence in behavior between the two constructs is mostly associat-
ed with DNA packaging and/or super-coiling, we measured the nucleoid sizes in cells with one
nucleoid (Experimental Procedures). If changing temperature (within the ranges in Table 1) af-
fects DNA packaging significantly, we expect differences in the mean or variability of the size of
the nucleoids. However, we found no significant differences between 10 °C and 30 °C (Table
S10). Similar results were reported in (Oliveira et al., 2016a). Thus, we discard effects on DNA
packaging as the main cause of the differences between chromosome and plasmid responses to
the temperature shifts.

Given all of the above, we hypothesize that the divergence in behaviors of chromosome and
plasmid-integrated gene with lowering temperature is due to an increased rate of accumulation of
local DNA super-coiling in the chromosome-integrated gene, which enhances the strength of
Locked states, resulting in increased escape times (reactions 1 and 3 in Experimental Proce-
dures).

To test this, we performed several experiments. First, in cells with the chromosome construct and
in cells with the plasmid construct, we measured at 10 °C, from the moment when the target gene
was activated, the RNA numbers in individual cells every 15 minutes for 90 minutes (for each
time point, new cells were taken from the original culture). If the weaker activity of the chromo-
some-integrated promoter is due to an increased propensity to be in the Locked state due to the
accumulation of DNA super-coiling, we expect these cells to have their transcription activity
blocked after a few events. At a population level, this will result in a sharp decrease in the mean
rate of RNA production, sometime after the start of the measurements. Meanwhile, in cells with
the plasmid construct, we expect a constant RNA production rate over time, due to the lack of
accumulation of local DNA super-coiling (Chong et al., 2014).

Results in Figure 2A confirm these predictions. Cells at 10 °C with the chromosome construct
only exhibit production in the first 30 minutes. Cells with the plasmid construct exhibit an ap-
proximately constant RNA production rate throughout the measurement period.
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We also performed measurements in cells with the plasmid construct and with the chromosome
construct at 30 °C. Given the similar behaviors previous observed in this condition (Table 2), we
expect approximately constant RNA production rates in both constructs. Results in Figure 2B
confirm this.

Next, we compared the two constructs at 30 °C, when subjecting cells to Novobiocin, a repressor
of Gyrase activity (Experimental Procedures) (Chong et al., 2014; Gellert et al., 1976). Gyrase
releases positive supercoiling (Drlica, 1992), but not negative supercoiling (Wang, 1996). Ac-
cording to the twin-supercoiled-domain model (Liu and Wang, 1987), which predicts that nega-
tive/positive supercoils should accumulate in the absence of supercoil-relaxing enzymes, we ex-
pect cells with the chromosome construct to exhibit a similar behavior as when at 10 °C. Mean-
while, cells with the plasmid construct should exhibit a constant rate of transcription over time
(Ching et al., 2014). Figure 3A confirms these predictions.

We note that, in both strains, the gene acrA is present, and thus, Novobiocin is not expected to
affect cell division rates (Ma et al., 1995). To test this, we measured cell growth rates by ODsoo
for varying Novobiocin concentrations (0, 50, 75, 100 and 150 ng pl™"). We found the growth
rates not to differ significantly between the conditions (data not shown). Note that it is also pos-
sible to state that 100 ng ul"' Novobiocin concentration suffices to affect (but not halt) the tran-
scription rate of the chromosome-integrated construct (compare the results for this construct in
Figures 2B and 3A, at 30 °C).

Subsequently, we observed cells carrying the chromosome and construct when subject to Novo-
biocin and at 10 °C. Results are shown in Figure 3B. Comparing to the previous results (Figures
2A and 3A), we find that transcription in cells carrying the chromosome is more strongly
blocked when combining the two factors. I.e. while at 10 °C alone and subject to Novobiocin
alone, RNA numbers increase by a factor of 4 (from 0.25 to 1) in a period of 90 min., when sub-
jecting cells to 10 °C and to Novobiocin, the RNA numbers increase only by a factor of 2 (from
0.5 to 1) in the same period of time. Meanwhile, regarding cells carrying the plasmid, we ob-
served exactly the same RNA production as in Figure 2A, meaning that, for these cells, Novobi-
ocin has no effect at 10 °C, confirming the results for the same cells at 30 °C (Figure 3A).

Given this, we suggest that the transcription activity of the chromosome-integrated gene at 10 °C
is hampered by an increased difficulty in executing the unblocking of the DNA from supercoiled
states that is not directly caused by a loss of functionality of Gyrases.

Next, we observed the dynamics of transcription of cells with the chromosome-integrated gene at
30 °C subject to Topotecan, a repressor of Topoisomerase I activity (Chen and Liu, 1994; Patel
et al., 1998) (Experimental Procedures). Topoisomerase I releases negative, but not positive
supercoiling (Wang, 1996). Again, we expect these cells to exhibit a similar behavior as when at
10 °C, which Figure 3C confirms.

In addition, we observed cells with chromosome integrated gene subject to Topotecan when at
10 °C. From Figure 3D, transcription is again blocked more strongly than in cells at 10 °C not
subject to Topotecan and then in cells at 30 °C subject to Topotecan. Namely, while in the latter
two conditions, RNA numbers increased by a factor of 4 (from 0.25 to 1) in a period of 90 min.,
when subjecting cells to 10 °C and to Topotecan the RNA numbers increase only by a factor of 2
(from 0.5 to 1) in the same period of time.



485
486
487
488
489
490

491
492
493

494
495

496
497
498
499
500
501
502

503
504
505
506
507
508

509
510

511
512
513
514
515
516
517

518
519
520
521
522

523
524
525

These results again suggest that the activity of the chromosome-integrated gene at 10 °C is being
hampered by an increased difficulty in unblocking the DNA from supercoiled states, rather than
directly due to a loss of functionality of Topoisomerases 1. Finally, from Supporting Table S15,
showing the results of the KS tests between the distributions of RNA numbers in individual cells
at 10 °C and 30 °C, when subject to Novobiocin or Topotecan, confirm that the distributions dif-
fer with temperature, in a statistical sense.

Finally, as seen in Figures 3A-3D, in cells carrying the single-copy F-plasmid, the presence of
Topotecan causes the same qualitative behavior as the presence of Novobiocin (at 30 °C and at
10 °C).

Promoter release from supercoiling buildup is similarly hampered if cellular energy is de-
pleted

If the release from DNA supercoiling buildups in the chromosome-integrated construct at low
temperatures is an ‘energy deficiency’ problem due to the low temperatures (namely, the energy
required for the necessary endothermic reactions to occur is expected to be much higher in such
conditions), it should be possible to mimic the observed phenomena by, instead of lowering tem-
perature, depleting cells of their energy via DNP treatment (Parry et al., 2014) (Experimental
Procedures). In particular, we expect cells subject to this, even at 30 °C, to become less able to
maintain the chromosome integrated promoter active over time, similar to when at 10 °C.

We tested this by subjecting cells to DNP for 90 minutes prior to imaging (Experimental Proce-
dures). As expected, we observe a similar RNA production dynamics (Figure 4) as in untreated
cells at 10 °C with a chromosome-integrated Pracosor (Figure 2A). Namely, beyond 30 minutes,
there is little to no transcription. This similarity further confirms that the activity of the chromo-
some-integrated promoter at 10 °C is being hampered by an increased difficulty in unblocking
the DNA from supercoiled states.

Low temperatures have no long-term consequences on transcription blocking by DNA
supercoiling

We expect that, if the release from DNA supercoiling buildup in the chromosome construct at
low temperatures is an ‘energy deficiency’ problem due to the low temperatures, changing tem-
perature again to near-optimal conditions (e.g. 30 °C) should restore the cells’ ability to relax
DNA supercoiling. We thus tested, for cells with a chromosome-integrated Pracozo1, whether
shifting temperature, first from ‘high’ (30 °C) to ‘low’ (10 °C) and then from ‘low’ (10 °C) to
‘high’ (30 °C), results in smooth transitions in the release of blocked promoters and correspond-
ing changes in RNA production rates.

Results in Figure 5 on the relative mean RNA numbers in cells over time show that this is the
case. Clearly, while the cells are at 30 °C there is constant RNA production. Once temperature is
shifted to 10 °C, after 15-30 minutes, little to no RNA production is observed (similar to the re-
sults in Figure 2A). More importantly, as soon as high temperatures are restored (to 30 °C), RNA
production is restored to nearly the original rate.

This result reinforces the conclusion that the activity of the chromosome integrated promoter at
10 °C is hampered by an increased difficulty in unblocking the promoter from supercoiled states,
and that, once temperature is restored to near-optimal numbers, so is the RNA production rate.
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Note that, following the shift from 30 °C to 10 °C, it does not follow a transient of ~15-30
minutes of reduced transcription activity that is visible in Figures 2, 3, and 4. This is because
here, when the shift occurs, the cells already contain sufficient IPTG for full transcription while,
in the other experiments, the inducer was added immediately before the microscopy measure-
ments began, and thus, a transient time to reach ‘quasi-equilibrium’ RNA production rates is ex-
pected, due to the non-negligible time to intake inducers from the media (Kapanidis et al., 2006)
particularly at low temperatures. In the case of IPTG, this transient is expected to be ~15-30
minutes long (Tran et al., 2015), in agreement with the results in Figures 2A, 3A-D, and 4.

Stochastic modeling also suggests increased long-lasting super-coiled states at critically low
temperatures to be the cause for enhanced sensitivity to shifts to critically low tempera-
tures

We tested whether the increase in the expected time to release promoters from a supercoiling
state across the cell population is, in accordance with current stochastic models of transcription
(Kandavalli et al., 2016; Lloyd-Price et al., 2016), a plausible explanation for the change with
decreasing temperature in the measured average RNA numbers over time for cells with the
chromosome integrated promoter (Figure 2). For this, we use the stochastic model of transcrip-
tion initiation described in Experimental Procedures (reactions 1-3), derived from multiple stud-
ies, including genome-wide studies of variability in transcript counts (Bernstein et al., 2002;
Taniguchi et al., 2010) and studies of the transcription dynamics of individual genes (Kandavalli
et al., 2016; Lloyd-Price et al., 2016).

All parameter values (Table S11, in Supporting Material) are from single-cell, single-RNA em-
pirical data on the activity of Lac derivative promoters (Chong et al., 2014; Lloyd-Price et al.,
2016). Mean RNA polymerase numbers are set so as to correspond to the intracellular RNAp
concentration reported in (Lloyd-Price et al., 2016). Finally, based on the results above, we as-

prior

sume that the rate constant most responsible for the increase in as temperature is lowered

(Table 2) is a decrease in Kunlock- The remaining rate constants are, for simplicity, left unchanged.

For each value of kuniock tested, we performed 500 independent 75 minutes long simulations, eve-
ry 15 minutes as in the experiments (Figure 2). The values of kunock Were selected as follows: the
highest value, corresponding to high temperatures (30 °C), is reported in (Chong et al., 2014).
This value was then gradually lowered until the mean number of RNAs per cell at the end of the
measurement period was similar to that observed in cells at 10 °C. We then assessed if the model
was able to reproduce the observed RNA numbers over time at both high and low temperatures,
and if there is a gradual behavioral change between these extreme conditions.

Initial numbers of all molecular species were set to zero, with the exception of Pon (set to 1, cor-
responding to one active promoter per cell), RNAp (as noted above), and RNA. Initial RNA
numbers were drawn randomly from a Poisson distribution with rate 0.7 RNA/cell to match ob-
served spurious RNA production events. We observed that this number did not differ with tem-
perature, as expected, since prior to moment ‘0’ cells were kept at the same temperature (30 °C)
in both cases.

In Figure 6, we compare the results of the model with those in Figures 2A (10 °C) and 2B (30
°C) for the chromosome-integrated promoter. For simplicity, as noted above, we ignore the first
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time moment of the empirical data (0 minutes following induction) as, at this stage, the cells do
not yet have fully active transcription (Tran et al., 2015). This removes the need to model the
intake process for the inducers (for an example of how to model this process see (Tran et al.,
2015)).

Results in Figure 6 support the earlier conclusions. The accuracy with which the model repro-
duces the results from the measurements suggests that the difference in mean RNA production
rates over time between cells with the chromosome-integrated promoter at critically low (10 °C)
and at high (30 °C) temperatures can be explained by a reduced ability to release chromosome-
integrated promoters from the effects of DNA super-coiling when at critically low temperatures.

Finally, we note that, setting Kunlock to ‘infinite’ in reaction 3 (which is equivalent to having a
model that does not allow the promoter to become locked) results in a similar behavior to that
observed for the plasmid-borne construct, and, therefore, to the chromosome integrated promoter
at 30 °C (data not shown).

Discussion

Temperature-driven changes in genomic DNA supercoiling are expected to be one of E. coli’s
mechanisms of sensing and responding to temperature shifts (Los, 2004). A previous study
(Chong et al., 2014) using detailed single-cell, single-RNA detection methods found that, at op-
timal temperatures, DNA supercoiling buildup on DNA segments by transcription eventually
stops transcription initiation, which can be resumed upon release of the supercoiling by Gyrase.
This buildup only has significant effects in chromosomal genes, since plasmids lack discrete top-
ological constraints, allowing the negative and positive supercoiling emerging in transcription to
diffuse freely in opposite directions, until nullifying one another (Chong et al., 2014).

We studied this phenomenon in the Pracosor promoter, under full induction, as a function of tem-
perature (this promoter, due to the lacking of the O2 site and due to being under full induction is
not expected to form significant discrete topological constraints (Fulcrand et al., 2016)). We
showed that, depending on whether it is chromosome-integrated or carried on a plasmid, there
will be major differences in its response to temperature downshifts. Namely, at lower tempera-
tures, similar to when Gyrase or Topoisomerase I are inhibited, the release of transcription due to
the buildup of supercoiling is hampered in the chromosome-integrated construct. Consequently,
Pracozor suffers a transcriptional shutdown at critically low temperatures, which does not occur
when it is plasmid-borne. Overall, these results show that promoters’ in E. coli can differ in their
degree of sensitivity to shifts to critically low temperatures, depending on whether they are
chromosome-integrated and when they are plasmid-borne.

Our conclusion is supported by two independent sets of experiments. First, we dissected the ki-
netics of transcription of Pracozor by measuring RNA production kinetics in cells at 10 °C and 30
°C with various RNA polymerase concentrations. These showed that only the chromosome-
integrated Pracozor exhibits a wide reduction in the speed of transcription at the stages prior to
initiation of the open complex formation. More precisely, we showed that it remained more often
in the locked state, as expected if transcription is blocked. Secondly, we conducted temporal
measurements of RNA numbers in individual cells at 10 °C and 30 °C in the presence and ab-
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sence of the Gyrase or Topoisomerase I inhibitors, Novobiocin and Topotecan. The results from
these measurements also supported our hypothesis.

Simulations of a stochastic model with realistic parameter values for Pracozor further supported
our explanation for the observed behavioral changes with temperature in the chromosome-
integrated construct and for the behavioral differences between the chromosome and plasmid-
borne constructs at low temperatures. Not only was the model capable of matching the transcript
numbers of cell populations over time, at both normal and low temperatures, but this was
achieved by tuning a single parameter: the expected time to unlock a promoter locked due to su-
per-coiling.

Importantly, we found evidence that the blocking of the release of Pracozoi from supercoiled
buildup states at low temperatures is not due to the significant loss of functionality of Gyrases or
Topoisomerases I. Specifically, we observed that blocking the activity of either of these proteins
in cells at 10 °C further reduced transcription reactivation. This is agreement with the fact that
these proteins are believed to have evolved to act in response to cold-shock (Jones et al., 1987;
Yamanaka, 1999).

Consequently, the blocking of the transcription at low temperatures in the chromosome-
integrated gene is likely due to an energy-associated increase in difficulty to release the promot-
ers from the blocked state, rather than due to a reduced functionality of Gyrases or Topoisomer-
ases I. This hypothesis is supported by our results from two additional measurements that
showed that subjecting cells to energy depletion via DNP treatment results in a similar transcrip-
tion dynamics as when at low temperatures, and subjecting cells to consecutive shifts between
high and low temperatures results in smooth transitions in the transcription dynamics.

Another evidence for the existence of this promoter blocking in some cells at low temperatures is
the very high cell-to-cell variability in RNA numbers in cells at 10 °C with a chromosomally
integrated promoter (Table 1). This variability one hour after the start of induction indicates that,
while on average only a small amount of RNAs have been produced per cell, this production oc-
curs in a few cells of the population (in agreement with the existence of ‘locked’ promoters in
the remaining cells), meaning that those cells with ‘active promoters’ will have produced, most
likely, a biologically significant number of RNAs (~1 to 4) (Taniguchi et al., 2010). Neverthe-
less, it is worth mentioning that such biological significance is expected to differ significantly
between genes, depending on various factors. L.e. in some genes, only wide changes in resulting
protein numbers suffice to cause phenotypic changes, while for other genes small changes suffice
(see e.g. (Choi et al., 2008)).

Interestingly, these results suggest that £. coli may not have evolved efficient gene expression
regulation mechanisms to make transcription immune to temperature fluctuations (future studies
may reveal whether this is a ‘genome-wide’ phenomenon). This may be due to the cumbersome
energy requirements involved, that led this organism to capitalize instead on the opportunity to
directly leverage the molecular dynamics characteristics at these temperatures to directly encode
a temperature-dependent global transcriptional program. Here, we provided evidence that this
global program, if existing, could be composed of (at least) the gene’s localization (chromosomal
or on a plasmid) and its initiation dynamics. Interestingly, this is in contrast to the complex sig-
naling cascades used by E. coli to respond to other environmental stimuli.
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We do not know whether this phenomenon of transcriptional halting at low temperatures of
Praco3o1, when integrated into the chromosome, is enhanced by the known overexpression at low
temperatures of H-NS and similar NAP proteins present in the nucleoid, which, in these condi-
tions, appear to selectively inhibit early step(s) in transcription initiation by binding to the pro-
moter and acting as transcriptional repressors (Ueguchi and Mizuno, 1993). However, the fast
recovery of the kinetics of RNA production under the control of Pracozor observed in Figure 5,
when changing temperature from 10 °C and 30 °C, could be an indication that these proteins are
not involved in the phenomenon observed. Similarly, we also do not know whether there is any
influence from stringent response mechanisms. Studies of the roles of, e.g., dskA and ppGpp,
may prove to be of value to determine whether, e.g., the biophysical phenomena here reported
are affected by these mechanisms.

Overall, particularly if future studies show that this phenomenon occurs on various genes, we
expect our results to contribute to a better understanding of the dynamics of natural genetic cir-
cuits at critically low temperatures and to near-future efforts in Synthetic Biology. For example,
our results suggest that the behavior of synthetic circuits integrated into plasmids could be more
robust to critically low temperatures. On the other hand, if the aim is to avoid leaky RNA pro-
duction at such temperatures, the implementation should be on the chromosome. Finally, our
findings may be of relevance to the understanding of the evolutionary process of genetic circuits,
i.e. the factors here studied could be one of the many evolutionary forces behind the localization
of genes, not only whether they are integrated on the chromosome or on a plasmid, but also
where in the chromosome are they located.

Experimental Procedures

Cells and Plasmids

E. coli strain BW25993 (lacl? hsdR514 AaraBADan33; ArthaBADip7s) (Datsenko and Warner,
2000) was used to carry the target and reporter genes. The target gene, controlled by Pracozor,
codes for an array of 48 binding sites (Kandavalli et al, 2016; Goncalves et al, 2016) for the
modified viral coat protein MS2-GFP (Peabody, 1993; Peabody, 1997; Golding and Cox, 2004).
Praco3o1, inducible by IPTG, was engineered from the E. coli native lac promoter, by removing
the O2 repressor binding site downstream of the transcription start site (Oehler et al., 1990). Due
to the lacking of the site O2 in Pracozo1, and provided full induction, we expect it not to form sig-
nificant topological constraints (Fulcrand et al, 2016). Further, also due to lacking the O2 site,
the repression strength of Lacl on this promoter is expected to be 2-3 fold weaker than on the
wild-type promoter (Oehler et al., 1990).

To compare RNA production rates of Pracozor when in a single-copy plasmid and when in the
chromosome, two strains were engineered from the original BW25993. One strain carries a sin-
gle copy full F-plasmid (~11 kbp) (Goncalves et al., 2016), pPBELOBACI 1 (the target plasmid),
unknown to form long-lasting bounds to the membrane and originally responsible for the expres-
sion of transient DNA-binding proteins (Hayakawa et al., 1985; Mori et al., 1986). In this, we
inserted the target gene, Pracoso1, coding for the bindings sites for MS2-GFP (Figure S1 in Sup-
porting Material). In the other strain, the target gene under the control of Praco3o1 was integrated
into the lac locus of E. coli’s genome using Red/ET recombination (performed by Gene Bridges,



690
691

692
693
694
695
696
697
698
699
700

701
702
703
704
705
706
707
708

709

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

Heidelberg, Germany) (Figure S2 in Supporting Material). Additional information is provided in
Supplemental Tables S13 and S14.

Both strains were also transformed with the medium copy reporter plasmid pZA25-GFP (Nevo-
Dinur et al. 2011) (kind gift from Orna Amster-Choder, Hebrew University of Jerusalem, Israel),
coding for the reporter protein MS2-GFP under the control of the Pgap promoter. The multiple
MS2-GFP binding sites in the target RNAs and the strong binding affinity of each site allow tar-
get RNAs to appear as bright spots soon after produced (see example images in Figure S3 in
Supporting Material) (Golding and Cox, 2004). Namely, their maximum fluorescence is reached
rapidly (always less than 1 min) (Tran et al., 2015)) and, once reached, it remains constant for
several hours (Tran et al., 2015), facilitating their counting, due to lack of interference from
RNA degradation (Golding et al., 2004; Tran et al., 2015).

We note that while the strain carrying the target gene in single-copy F-plasmid also contains a
native Lac promoter in the chromosome (and thus, has higher number of Lacl binding sites over-
all than the strain carrying the chromosome integrate target gene since the original Lac promoter
was replaced by the target one), both strains overexpress Lacl, thus reducing the possibility that
there would be a significant effect due to ‘shortage’ of repressors in the strain carrying the F-
plasmid. Further, our measurements were all conducted under full induction (except to obtain the
induction curves), which further reduces any possibility of effects of differences in number of
available repressors.

Chemicals, Growth Conditions, and Induction of the Reporter and Target Gene

From single colonies on LB agar plates, cells were cultured in LB medium with the appropriate
concentration of antibiotics and incubated overnight at 30 °C and 250 rpm. These overnight cul-
tures were then diluted to an initial optical density (ODsoo) of 0.05 in fresh M9 medium, with a
culture volume of 20 ml supplemented with the appropriate antibiotics and 0.4% of Glycerol
(Sigma-Aldrich, USA), which was incubated at 37 °C with a 250 rpm agitation, until reaching an
ODsoo of ~ 0.3.

Regarding antibiotic controls, as we used the same reporter (plasmid-borne) in two strains differ-
ing in the location of the target gene, we also use the same antibiotic as a control (kanamycin).
As a control for the target gene (when on the single-copy plasmid), we used chloramphenicol.

Next, to induce the expression of the reporter MS2-GFP proteins, 0.4% of L-Arabinose (Sigma-
Aldrich, USA) was added and cells were incubated at 37 °C for 30 min with 250 rpm agitation.
At this point, cells were incubated at the respective temperature (30 °C, 27 °C, 23 °C, 20 °C, 16
°C and 10 °C) (Innova® 40 incubator, New Brunswick Scientific, USA), for 15 min with agita-
tion, to allow adaptation to a new temperature condition before activating the target gene. For all
conditions, the temperature of the culture was constantly measured during the experiments using
a thermometer, allowing to ensure that the culture had reached and kept the desired temperature.
Following full induction of the target gene (1000 uM IPTG, Sigma-Aldrich, USA), cells were
incubated at the respective temperature for 1 hour, prior to image acquisition or RT-PCR meas-
urements.
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To obtain the induction curve of the target gene (Figure 1), cells were incubated with different
concentrations of IPTG (0, 50, 100, 250, 500 and 1000 uM) for 1 hour, at 30 °C, before imaging.

To compare RNA production of the chromosome and plasmid genes at 10 °C and at 30 °C, cells
were grown as previously described and incubated at 10 °C and 30 °C, respectively, for 15
minutes prior the induction of the target gene. Next, 1000 uM of IPTG was added. To determine
the target RNA production level of both constructs, while keeping the temperature of the cultures
constant, samples were taken right before adding the IPTG (time 0), and afterward for every 15
minutes, for a total of 90 minutes.

We also quantified RNA numbers in cells with repressed Gyrase activity and with repressed
Topoisomerase I activity. For that, we used, respectively, Novobiocin and Topotecan (Chen and
Liu, 1994; Gellert et al., 1976; Patel et al., 1998). Cells with the target and reporter systems were
grown as described below in the section ‘Growth Conditions and Induction of the Reporter and
Target Gene’. Following induction of the reporter gene, cells were incubated at the appropriate
temperature (10°C or 30°C), at 250 rpm for 15 minutes, prior to induction of the target gene.
Afterward, 1000 uM of IPTG and 100 ng pl-1 of Novobiocin or 100 uM of Topotecan were add-
ed to the cells.

To determine the RNA levels in cells treated with 2,4-Dinitrophenol (DNP) (known to uncouple
the oxidative phosphorylation, thus resulting in the depletion of Adenosine triphosphate) (de Bo-
er, Bakker, Weyer, and Gruber, 1976) the growth and activation of the reporter genes were car-
ried out as previously described. Next, 1000 pM of IPTG and 200 pM of DNP were added to the
media and cells were incubated at 30°C.

Tuning intracellular RNAP concentrations and nucleoid staining with DAPI

To measure intracellular concentrations of RNA polymerases (RNAP), we used E. coli RL1314
strain (a kind gift from Robert Landick, University of Wisconsin-Madison, USA), carrying GFP
tagged RNAPs (RNAP-GFP) (Bratton et al., 2011). To change intracellular RNAP concentra-
tions in E. coli RL1314 cells, we followed the strategy proposed in (Lloyd-Price et al, 2016).
Shortly, it consists of placing cells in media with differing richness that, for a limited range of
media richness, results in different intracellular RNAP concentrations without significant differ-
ences in cell growth rates between conditions (Lloyd-Price et al, 2016). Further, it was shown
that, in that range, the RNA production rate in the cells changes hyperbolically with the RNAP
concentrations (i.e. the inverse of this rate changes linearly with the inverse of the RNAP con-
centration) (Lloyd-Price et al, 2016), as expected from standard models of transcription in E. coli
obtained from studies using in vitro measurement techniques (McClure, 1985).

To obtain cell populations with significantly different mean RNAP concentrations, instead of LB
medium with various concentrations of tryptone and yeast extract as in (Lloyd-Price et al, 2016),
we used M9 medium and supplemented it with different concentrations of Glycerol. As we set
M9 medium supplemented with 0.4% Glycerol as our ‘standard’ medium, this condition is here
denoted as ‘1X’. When the Glycerol concentration was increased by 50 % relative to the ‘con-
trol’ 1X condition, the altered media was denoted as ‘2X’.
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To ensure the validity of this methodology, we studied cell growth rates as a function of Glycerol
concentrations. Results are shown in Figure S6 in Supporting Material, confirming that changes
in Glycerol concentration did not affect cell growth rates significantly.

The observed changes in fluorescence levels (see example image in Figure S4A in Supporting
Material) with varying media richness are consistent with RT-PCR (rpoC transcript levels) and
plate reading measurements (Lloyd-Price et al., 2016).

Finally, we assessed if the weaker transcriptional activity of the chromosome-integrated promot-
er at the lowest temperatures could be explained by changes in the known heterogeneities in the
spatial distribution of RNAPs or of the nucleoid. For this, starting from a single colony, cells
were incubated overnight at 30 °C with agitation and aeration, in LB medium supplemented with
35 pg ml! Kanamycin. The overnight culture was then diluted to an initial ODgoo of 0.05 in the
respective M9 medium (0.5X, 1X, 1.5X and 2X), supplemented with Kanamycin, and grown at
37 °C until an OD600 of 0.3. At this point, cells were transferred and incubated at the appropri-
ate temperature (10 °C, 16 °C, 23 °C and 30 °C), with agitation, for 75 minutes. Afterward, cells
were fixed with 3.7 % formaldehyde, at room temperature, and then centrifuged. To visualize the
nucleoid, cells were re-suspended in 1 X PBS, and 4°,6-Diamidino-2-Phenylindole (DAPT) (0.2
ug ml™!) was added to this suspension (Figure S4B) (Wery et al., 2001). Next, cells were incubat-
ed at room temperature, for 20 minutes, and then washed twice with PBS. Cells were then re-
suspended in PBS, and 3 pl aliquots of these samples were placed on 2% agarose pads for imag-
ing.

Results of these tests are reported in the Results section ‘Transcription by the chromosome-
integrated construct is noisier at lower temperatures’.

RT-PCR

Two sets of RT-PCR measurements were conducted. One to validate the microscope measure-
ments at different temperatures for both target genes and the other to produce t plots. In both, the
target gene is activated as described above and cells were grown as for the microscopy meas-
urements. The reporter gene was not activated, as it was not necessary.

To determine the fold change of the target gene as a function of RNAP concentrations, the E.
coli strain BW25993 was grown in 0.5X, 1X, 1.5X, and 2X media, as described in the section
‘Growth Conditions’. These measurements were conducted in cells kept at 10 °C and 30 °C (the
lowest and highest temperature conditions in the microscopy measurements, respectively).

One hour after induction of the target gene, cells were fixed by adding the RNAprotect bacteria
reagent (Qiagen, Germany), followed by enzymatic lysis with Tris-EDTA Lysozyme (15 mg ml
1 buffer (pH 8.3). From the lysates, the RNA content was isolated using the RNeasy purification
kit (Qiagen) according to the manufacturer instructions. The RNA was then separated by electro-
phoresis, using 1% agarose gel stained with SYBR® Safe DNA Gel Stain (Thermo Scientific,
USA). The RNA was found to be intact, with clear bands for the 16S and 23S ribosomal RNA.
The RNA yield (~2 pg ul™") and the A260/A280 nm ratio were determined by a Nanovue Plus
Spectrophotometer (GE Healthcare Life Sciences, USA). The ratio obtained (2.0-2.1) is indica-
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tive of a highly purified RNA. To remove DNA contamination, the samples were treated with
DNasel (Thermo Scientific, USA) following the manufacturer instructions. The cDNA was syn-
thesized from 1 pg of RNA using the iScript Reverse Transcription Supermix (Biorad, USA)
according to the manufacturer instructions.

cDNA samples (10 ng pl™') were mixed with the qPCR master mix containing iQ SYBR Green
Supermix (Biorad, USA) with primers (200nM) for the target and reference genes. The 16S
rRNA was used as a reference. Since the sequences of MS2-GFP binding sites consist of many
repeats, for this we use the sequence in between the promoter sequence and these sites sequences
(Supplementary Figure S2). Namely, the primers set for the target mRNA (mCherry) and refer-
ence (16S rRNA) genes were: mCherry (Forward: 5 CACCTACAAGGCCAAGAAGC 3, Re-
verse: 57 TGGTGTAGTCCTCGTTGTGG  3), 16S rRNA  (Forward: 5’
CGTCAGCTCGTGTTGTGAA 3, Reverse: 5> GGACCGCTGGCAA CAAAG 3°).

The qPCR experiments were performed using a Biorad MiniOpticon Real-Time PCR System
(Biorad, USA). The thermal cycling protocol used was 40 cycles of 95 °C for 10s, 52 °C for 30s,
and 72 °C for 30s, with the fluorescence being read after each cycle. All reactions were per-
formed in 3 replicates per condition. The PCR efficiencies of these reactions were greater than
95%. No-RT and no-template controls were used to crosscheck non-specific signals and contam-
ination. The Cq values generated by the CFX Manager™ Software were used to calculate the
fold changes in the target gene, normalized to the reference gene, and its standard error using
Livak’s 2"24°T method (Livak and Schmittgen, 2001).

Microscopy

To image cells, cells with the target and reporter genes were grown as described above (section
‘Growth Conditions and Induction of the Reporter and Target Gene’). After, cells were pelleted
and re-suspended in ~100 pl of the remaining media. Three microliters of cells were placed on a
2% agarose gel pad of M9 medium and kept in between the microscope slide and a coverslip. It
took, on average, ~3 minutes to move cells from the incubator to the microscope and start the
observation. This time includes the assembly of the microscope imaging-chamber containing the
slides and cells.

Cells were visualized by a Nikon Eclipse (Ti-E, Nikon) inverted microscope with a 100x Apo
TIRF (1.49 NA, oil) objective. Confocal images were taken by a C2+ (Nikon) confocal laser-
scanning system, with a pinhole size set to 1.2 AU. For confocal images, the size of a pixel cor-
responds to 0.062 um using a scan area resolution of 2048x2048 pixels. MS2-GFP-RNA “spots”
and fluorescence from RNAP-GFP were visualized by a 488 nm laser (Melles-Griot) and an
HQ514/30 emission filter (Nikon). Epifluorescence images, for visualization of DAPI-stained
nucleoids, were taken by a mercury lamp excitation and a DAPI filter cube (EX 340-380, DM
400, BA 435-485, Nikon). Phase contrast images were taken (for cells segmentation) by an ex-
ternal phase contrast system and DS-Fi2 CCD camera (Nikon). Size of the phase contrast images
was 2560x1920 pixels, in which a pixel corresponds to 0.048 um. Phase contrast and confocal
images were taken once and simultaneously by Nis-Elements software (Nikon).

Image Analysis
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Cell segmentation from the images was performed by the software “iCellFusion” (Santinha et al.,
2015) (Supporting Material, example Figures S3, and S4). iCellFusion first performs automatic
cell segmentation from phase contrast images. The results were then manually improved. Next,
iCellFusion conducts automatic inter-modal image alignment between the phase-contrast and the
corresponding fluorescence images (see example Figure S7 in Supporting Material).

Next, detection of RNA-MS2-GFP fluorescence ‘spots’ inside cells was automatically done in
each segmented cell by the software ‘‘CellAging’’ (Hékkinen et al., 2013). Spots were detected
by the Kernel Density Estimation (KDE) method using a median filter. An example of cell seg-
mentation and spot detection results are shown in Figures S7 (A) and (B), respectively.

Nucleoid (red channel) and the RNAP (green channel) intensity levels were obtained from the
images by iCellFusion as well. For these, Principal Component Analysis (PCA) (Abdi and Wil-
liams, 2010) was used to normalize the major and minor axes lengths and the center coordinates
of each cell, in order to plot the intensity distribution of the selected fluorescence levels along the
major cell axis (by dividing each cell in normalized bins along the major axis). Example images
of cells with fluorescent RNAPs and nucleoids are shown in Figures S7 (C) and S10 (D), respec-
tively.

Nucleoid segmentation is made using the algorithm described in (Oliveira et al., 2016a), where a
Gaussian approximation is applied. To detect the presence of one nucleoid or two separated nu-
cleoids, we applied the Gradient Path Labelling algorithm (Mora et al., 2011). This selection was
manually inspected and corrected. After nucleoid detection and segmentation, principal compo-
nent analysis was used to obtain the position, dimension and orientation of the nucleoid in each
cell (Oliveira et al., 2016a).

To quantify the integer-valued RNA numbers in each cell from the total fluorescence intensity of
the spots within, we used the method proposed in (Golding et al., 2005). Briefly, the intensity of
a single RNA molecule is set to correspond to the first peak of the distribution of total spots’ in-
tensity in multiple cells. Next, the number of tagged RNAs in each spot in each cell is estimated
by dividing its intensity by that of the first peak.

RNA counting from fluorescent spots

We used the method described in (Hakkinen et al., 2013) to quantify the number of MS2-GFP-
tagged mRNA molecules in individual cells. First, ‘RNA-spots’ are detected as described in the
previous section. Then, the cellular background fluorescence intensity is subtracted from the in-
tensity of each fluorescent ‘RNA-spot’ light intensity, accounting for the number of pixels occu-
pied by the RNA-spot. The resulting RNA-spot intensities are given in arbitrary units (a.u.) and,
as such, do not inform on how many RNAs the spot actually contains.

Thus, the next step is to estimate the intensity of a single RNA-spot. For this, given several
measurements of RNA-spots intensities, a histogram of the results can be plotted, and the intensi-
ty corresponding to the first “peak” of the histogram should be selected. The integer-valued abso-
lute number of RNA molecules in each spot is then calculated by dividing the spot intensity with
the intensity of the first peak of the histogram, followed by a rounding to the nearest integer.
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Control test of the RNA counting method

In order to determine whether the smallest spots detected by microscopy and image analysis of
the cells correspond to a single RNA, we assessed if cells not carrying the target gene while car-
rying the reporter produced any spots of similar intensity. As shown in Table S1, such ‘Fake
spots’ were found to occur only very rarely and, importantly, in much lower numbers than in
cells carrying the target gene but non-induced, both in the case of chromosome integration and
plasmid-borne.

This difference between the two latter conditions and the first condition shows that ‘leaky” RNA
production is the main responsible for ‘RNA spot detection’ in the two latter conditions, rather
than being the appearance of ‘fake spots’ due to MS2-GFP ‘clumpiness’.

Model of transcription kinetics

First, we consider chromosome-integrated promoters. We assume the model of transcription
whose rates have been empirically validated in (Lloyd-Price et al., 2016) and (Chong et al.,
2014). The model includes active transcription, a repression mechanism, and accounts for the
effects of DNA super-coiling.

Active transcription (deHaseth et al., 1980; Saecker et al., 2011) consists of a multi-step process
(reaction 1) that starts with the binding of an RNA polymerase (R) to a free, active promoter
(Pon). This results in the formation of an unstable closed complex, RP. (McClure, 1985). The
reversibility of this step allows multiple occurrences of the closed complex formation between
the occurrences of two transcription events.

Once a closed complex successfully leads to the initiation of an open complex (RP,) formation,
the process becomes nearly irreversible (Lutz and Bujard, 1997). Once the DNA double helix is
opened and the open complex is formed, the RNA polymerase moves to elongation (clearing the
promoter for additional initiation events), and finally, it completes RNA production (Bertrand-
Burggraf et al., 1984; Buc and McClure, 1985; Chamberlin, 1974; Chong et al., 2014; Golding
and Cox, 2004; Golding et al., 2005; McClure, 1980; Lutz and Bujard, 1997; McClure, 1985;
deHaseth et al., 1998; Peccoud and Ycart, 1995; Saecker et al., 2011). Promoter clearing may be
preceded by the production of a few short RNA transcripts (<10 nt) from abortive initiation
events (deHaseth et al., 1998; Hsu, 2009), but only in rare promoters, with short-living open
complexes, are these events rate limiting (Hsu, 2002). As such, these events are not represented
here.

Note that the steps in reaction 1 do not represent elementary transitions, but rather the effective
rates of rate-limiting steps (Lloyd-Price et al., 2016). E.g., ki is the rate at which R binds to the
promoter, but its value includes the influence of the time spent in non-specific bindings to the
DNA and 1D diffusive searches (Bai et al., 2006). We refer to this collection of events as the
closed complex formation. Meanwhile, k> is the rate at which a series of steps is completed once
initiated (deHaseth et al., 1998). As mentioned above and in accordance with the literature
(McClure, 1980), we refer to these steps as the open complex formation. Finally, note that, in
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reaction 1, when the forward rate of a given step is much faster than its backward rate, the negli-
gible reversibility is not represented:

P, +le<:>‘RPc —~5RP P ,tR+RNA (1)

Aside from the process of active transcription, there is a repression mechanism, due to the action
of Lacl molecules (Lloyd-Price et al., 2016; Lutz and Bujard, 1997), accounted for by reaction 2:

kON )
PRep (_km— pON +Rep (2)

Note that we expect that, when the promoter is under full induction (which is the condition that
we focus on in the present study), the effects of repression will be very mild in the overall pro-
cess of RNA production.

Finally, in reaction 1, following a transcription event, it is assumed that the promoter changes
directly into a ‘locked’ state, making it unable to initiate a new closed complex until released by
the action of Gyrase or Topoisomerase I, depending on the nature of the supercoiled state (Chong
et al., 2014; Golding et al., 2005). This model of locking by DNA super-coiling is, to an extent,
‘simplistic’, since this is a cumulative process that does not necessarily occur after each tran-
scription event (as the model assumes), only occurring after “one to a few” events (Chong et al.,
2014) (i.e. it is a stochastic, cumulative process). However, as shown in the results section, this
approximation does not affect the ability of the model to match the empirical data for the entire
range of conditions tested, suggesting that it takes very few events for locking to occur (as the
results reported in (Chong et al., 2014) suggest).

The process of ‘unlocking’ from super-coiling states is modeled by reaction 3 (Gyrase and
Topoisomerase 1 are not explicitly represented due to their large copy numbers (Chong et al.,
2014)):

P,

Locked
The rate of this reaction, kunlock, 1s assumed the most temperature-dependent variable of this sys-
tem of three reactions.

" 3)

Meanwhile, in the case of plasmid-borne promoters, we assume a similar model but with no su-
per-coiling effects, in agreement with (Chong et al., 2014). The model of transcription of plas-
mid-integrated promoters can thus be obtained from the above by allowing the promoter to
change to a Pon state following a transcription event, or equivalently by setting kuniock to ‘infi-
nite’.

In normal conditions, the subsequent steps of elongation, termination and RNA release (deHa-
seth et al., 1978; Harden et al., 2016; Mooney et al., 2005; Raffaelle et al., 2005), are much faster
than initiation (Epshtein and Nudler, 2003; Erie et al., 1993; Greive and Von Hippel, 2005; Her-
bert et al., 2006; Mékela et al., 2011; Proshkin et al., 2010) in both plasmids and in the chromo-
some. Thus, k3 is assumed ‘infinitely’ fast. Further, regardless of the duration of these steps; note
that rate-limiting steps in elongation should not affect the mean of the time-length of the inter-
vals between consecutive RNA productions, only their variance (Mannerstrom et al., 2011).

Finally, simulations of the stochastic models of gene expression were performed by SGNS
(Lloyd-Price et al., 2012), a simulator of chemical reaction systems whose dynamics is driven by
the Stochastic Simulation Algorithm (Gillespie, 1977) but that allows for multi-time-delayed
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reactions (Russel and Zhu, 2006). SGNS also allows hierarchical, interlinked compartments to be
created, destroyed and divided at runtime, a feature used to generate dynamically independent
model cells that can differ in any of the model features, such as an initial number of molecular
components, to lifetimes, to rate-constant values, etc.

Relative mean duration prior to and following commitment to transcription

We use a recently developed technique to dissect the in vivo kinetics of transcription initiation in
live E. coli cells (Kandavalli et al., 2016; Lloyd-Price et al., 2016), based on previous in vitro
techniques (Buc and McClure, 1985; McClure, 1985; 1980). This method allows us to estimate
the mean fraction of time between consecutive transcription events that is taken by the steps fol-
lowing the commitment to the open complex formation.

Given our model of transcription, let tprior be the mean time for a successful closed complex for-
mation, i.e. it is the mean time-length of all events prior to the commitment of the RNAP to open
complex formation. As such, tprior includes the expected time in OFF state as well as the time
taken by multiple (failed) attempts to form a stable closed complex. Note that the kinetics of
these steps depends on the RNAP intracellular concentrations.

Meanwhile, the remaining time to produce an RNA is denoted tafer., and includes all steps follow-
ing the commitment to the open complex formation, e.g. isomerization (Saecker et al., 2011), and
prior to commitment to transcription elongation. Relevantly, the kinetics of these steps does not
depend on the RNAP intracellular concentrations. Given this, the mean time interval between
consecutive RNA productions (At) is:

At=t, +t,, (4)

Since only tprior is affected by a change in RNAP concentration, the new mean interval between
consecutive RNA productions after such a change can be written:

A[ e = pr:ornew + tt/ﬂe" (5)
Where:
tpr‘mr'“gw = Sil x tl”'i"’ (6)
with
RNA P new
 (w (7)
[RNAP]

From this, one can write:

new -1 +7
At — S xt prior tafler ( 8)
At tp,'iul' + tufter
Next, assume that in the new condition the cells contain an infinite number of RNAPs (same as-
sumption as in (Lloyd-Price et al., 2016)). Given this, S becomes null and, from equation 8:

Liw  _ At™(RNAP =)

tpr‘ior + tafler At

)
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Given this, from the normalized mean interval between RNA productions and the inverse of the
relative RNAP concentration for a few conditions differing in RNAP concentrations (section
‘Tuning intracellular RNAP concentrations’ in Experimental Procedures), one can extrapolate
At (RNAP = o)
At
Weighted Total Least Squares (Krystek and Anton, 2007) with error in both coordinates, is valid
if At changes linearly with changes in the inverse of the RNAP concentrations (shown to be valid
within a certain range of media richness (Lloyd-Price et al., 2016; Kandavalli et al., 2016)). From
this, one can also obtain the fraction of time prior to commitment to the open complex formation:
If,ﬂzl_At"“(RNAP:oo) (10)
At At
Here, the empirical values of At are estimated from the inverse of the RNA production rates ob-
tained by RT-PCR, as in (Kandavalli et al., 2016). While these values are relative to a reference
gene (here 16S RNA), the ratio between rates () in the ‘new’ and ‘control’ conditions equal the
inverse of the ratio between the time intervals between consecutive RNA productions in individ-
ual cells, since RNA degradation rates do not differ with media richness within the range em-
ployed here (Chen et al., 2015).

afier

. ..t . . .
the ratio , thus obtaining v This extrapolation, done here with the method of

Confidence Intervals

Using Fieller's theorem (Fieller, 1954), we can derive the 90% CI of the ratio between the refer-
ence condition B and the tested condition A (Motulsky, 1995) as follows:

90%CT = [mean(A)j+ o [mean(A)J>< (o-/4 )2 . (o‘g )2 , (O'A.B) (1 1)
mean(B)

mean(B) mean(A)’ mean(B)’ - mean(A)* mean(B)

Where ¢" is the critical Student's t-value for the degrees of freedom of the sum of A and B sam-
ples minus 2. Since we perform two-side tests, we search the table for the critical values for a
probability of 0.95.

Number of promoter copies during the cell lifetime

In general, we assume that there is only one copy of the target promoter in a cell at all times, for
both strains. To determine the extent to which this assumption is accurate, we measured the frac-
tion of cells containing two chromosomes, 1 hour after the start of the microscopy measure-
ments. Since, in E. coli, single-copy F-plasmids replicate at the same time (Cooper and Keasling,
1998) or shortly after (Keasling et al., 1991) the chromosome, we only measured chromosome
numbers, both in cells carrying the gene of interest in the chromosome as well as in cells carry-
ing the gene of interest in the single copy F-plasmid.

For this, cells of both strains were grown as described in Experimental Procedures. Next, they
were fixed and stained with DAPI to assess the location and size of nucleoids in live cells (Ex-
perimental Procedures, section “Tuning intracellular RNAP concentrations and nucleoid staining
with DAPI”).
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From images taken 1 hour after the start of the microscopy measurements, cells and nucleoids
were segmented as described in Experimental Procedures (section ‘Image Analysis’). Results are
reported in the third paragraph of the Results section. An example image of DAPI-stained nucle-
oid(s) is shown in Figure S7-D in Supporting Material.

Plasmid copy number calculation using RT-qPCR

To assess the plasmid copy number, we followed the method described in (Lee et al., 2006).
Briefly, it allows the absolute quantification of plasmid copy number using a standard curve that
correlates the copy number of a gene with the Cr (cycle threshold) value obtained from RT-
gPCR measurements. For this, the separate detection of the plasmid and the host strain chromo-
somal DNA is required, which is achieved by using two primer sets, one specific for a single
copy gene present in the plasmid and the other present in the host strain chromosome.

Here, we used two sets of primers, one for the Chloramphenicol acetyltransferase (catr) gene (a
single copy gene on the pPBELO plasmid), and another for the lac/ gene (a single copy gene on
the E. coli BW25993 chromosome). For obtaining the curve, these genes were inserted in the
same plasmid (gene ratio 1:1), which then can be used to calculate the copy number of the plas-
mid of interest. Since cat and lacl are single-copy genes, the plasmid copy number is the ratio of
cat to lacl.

Cells carrying the plasmid-borne gene were grown as described in the section “Growth Condi-
tions and Induction of the Reporter and Target Gene” of the Experimental Procedures. After the
induction of the target gene (at 10°C and at 30°C), the total DNA content of the cells was ex-
tracted using the QIAamp DNA Mini kit (Qiagen) following the method for bacterial cells as per
manufacturer’s instructions.

For the construction of the standard curves, we used the plasmid pCA24N-ligase (Kitagawa et
al., 2005; Wilson et al., 2013), which carries the coding sequence for both the cat and lacl genes.
This plasmid was purified from an overnight culture grown in LB medium at 37°C, using the
QIAprep Spin Miniprep kit (Qiagen).

The DNA concentration of both samples (the plasmid and the extracted DNA from E. coli
BW25993 cells) was determined using the Qubit 4 Fluorimeter (ThermoFisher Scientific) and
the Qubit 1X dsDNA HS kit (ThermoFisher Scientific).

A 10-fold serial dilution of the pCA24N-ligase plasmid, ranging from 10* to 10° copies pl”', was
performed to obtain the standard curves for the cat and lacl genes. After determining the plasmid
concentration in each of these dilutions, the plasmid copy number was calculated from (Lee et
al., 2006; Whelan et al., 2003):

6.02x10” (copy/mol) x DNA amount (g)
DNA length (dp) x 660(g/mol/dp)

DNA(copy) =
(12)

The real-time qPCR was performed using a Biorad MiniOpticon Real-Time PCR System (Bio-
rad, USA). The RT-qPCR reaction mixture contained the iQ SYBR Green Supermix (Biorad,



1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

1119
1120
1121

1122
1123
1124
1125
1126
1127
1128

1129
1130
1131
1132
1133
1134
1135
1136

1137

1138
1139
1140
1141
1142
1143

USA), the DNA template, and the primers for the target (cat) and reference (lacl) genes at a final
concentration of 200nM. The primers for the car gene were (Forward: 5’
ATTCACATTCTTGCCCGCC 3’ and Reverse: 5> CACCGTAACACGCCACATC 3°) and for
the lacl were (Forward: 5° ACCAGGATGCCATTGCTGTG 3’ and Reverse: 5’
TTTATGCCAGCCAGCCAGAC 3°), with the amplicon size being 209 and 221, respectively.
The thermal cycling protocol used was: denaturation at 95°C for 3 min, followed by 40 cycles of
95°C for 10s, 58°C for 30s and 72°C for 30s, with the fluorescence being read at the end of each
cycle. For all the samples tested, (the DNA extracted from E. coli BW25993 cells and for each of
the pCA24N-ligase serial dilution), the reaction was conducted in triplicates, with a final volume
of 25 ul. No-template controls were used to crosscheck for non-specific signals and contamina-
tion. After the amplification, a melting curve analysis, with a temperature gradient of 0.5°C/s
from 65°C to 95°C, was performed to confirm the specificity of the amplification. The Ct values
generated by the CFX Manager™ Software were then used to obtain the standard curve for both
genes, where these Ct values were plotted against the logarithm of their initial template copy
numbers, determined using equation (12). In addition, the Ct obtained from the DNA extracted
from E. coli BW25993 cells was used, along with the standard curve to determine the pBELO
plasmid copy-number.

Each standard curve was generated using a linear regression of the plotted data. From the slope
of each standard curve, the amplification efficiency (E) was determined from (Lee et al., 2006;
Rasmussen, 2001):

E — 10—1/slope _1 (13)

The standard curves for cat and lacl, ranging from 10* to 10° copies ul™!, are presented in Figure
S9 in Supporting Material. Both curves were linear, in the tested range, with a R? > 0.997 and
0.999, respectively. The slopes of each standard curve were -3.12 and -3.08, for cat and lacl,
respectively. From these, we determined the amplification efficiency for both genes, with the
results being 1.10 for both cat and lacl.

The absolute quantification of the plasmid copy number was determined using the standard
curves in Figure S9. The copy number of the car and lacl genes in the total DNA extracted from
E. coli BW25993 cells was determined from the corresponding standard curve, using the Cr val-
ues. The plasmid copy number of the pBELO was then calculated by dividing the copy number
of cat by the copy number of /acl, given that both are single copy genes of pBELO and
BW25993 chromosome, respectively. Thus, the ratio of cat to lacl is equal to the plasmid copy
number of pBELO. The results from this quantification are shown in Table S12 and described in
the Results section.

Half-life of the fluorescence intensity of MS2-GFP tagged RNA molecules

We observed several cells with a single MS2-GFP tagged RNA molecule for 1 hour, since the
moment the tagged RNA was first detected. Next, we fitted the intensity of each such RNA over
time with a decaying exponential function and inferred the degradation rate of its fluorescence
intensity. We obtained the decaying rates, calculated the mean of these rates and then converted
it into the mean half-life of MS2-GFP tagged RNAs.
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The results in Table S2 in Supporting Material agree with previous analyses of the coat protein
of bacteriophage, MS2, which showed that the MS2 binding sites on the RNA are constantly oc-
cupied by MS2-GFP proteins provided that these exist in sufficient abundance, resulting in the
‘immortalization’ of the target RNA due to isolation from RNA-degrading enzymes for time-
series microscopy measurements of 1-2 hours (see e.g. (Golding et al., 2005)).
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Tables

Table 1. Number of cells observed, mean, and squared coefficient of variation (CV?)
of the absolute integer-valued RNA numbers per cell for the chromosome-integrated
and the plasmid-integrated constructs, when induced by 1 mM IPTG. Cells are in-
duced and kept at 30 °C, 27 °C, 23 °C, 20 °C, 16 °C and 10 °C for 60 minutes prior to the
acquisition of the results. Results are obtained from 3 biological repeats. Since these exhib-
ited no statistically significant differences, the results presented here are composed of the
data from the 3 biological replicates.

Mean integer-valued

Condition No. cells RNA no. per cell CcV?
Chromosome construct
30°C 645 2.08 2.60
27°C 632 2.00 1.93
23°C 668 1.74 2.30
20 °C 646 0.59 7.17
16 °C 668 0.22 15.81
10 °C 648 0.25 16.12
Plasmid construct
30°C 675 2.86 1.06
27 °C 654 2.46 1.42
23°C 665 1.63 2.73
20 °C 660 1.61 3.08
16 °C 663 1.50 2.99
10 °C 676 1.35 3.46

Table 2. Relative mean duration of the rate limiting steps in transcription initiation at
30 °C and 10 °C. Shown are the mean durations, relative to the mean time-length of the

intervals between transcription events (At), of the rate-limiting steps prior (%) and after
t

t,. . . .
(%) commitment to open complex formation for the chromosome-integrated and the
t

plasmid-integrated constructs.
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prior afier

Condition

At At
30 °C
Chromosome construct 0.09 0.91
Plasmid construct 0.08 0.92
10 °C
Chromosome construct 0.27 0.73
Plasmid construct 0.02 0.98

Figure Legends

Figure 1. Induction curves, measured by microscopy imaging and single RNA tagging
by MS2-GFP, of the target promoter Pracozo1 when integrated into the chromosome
(light grey) and into a single-copy F-plasmid (dark gray) (E. coli strain BW25993).
Shown are the RNA numbers (relative to the reference case, 1 mM IPTG) in individual
cells of the two constructs, 1 hour after induction at 30 °C. Data presented as relative mean
to the reference case with 90% confidence intervals obtained from a two-tailed Student’s t-
test. Sample size per condition, as IPTG is increased, is (chromosome) 665, 655, 675, 670,
660 and 645 cells, and (plasmid) 670, 670, 665, 655, 655, 675 cells. Also shown is the ratio
between the integer-valued mean RNA numbers per cell between cells with the target gene
chromosome-integrated and on a single-copy plasmid. Absolute integer-valued RNA num-
bers per cell in each condition can be obtained from the absolute integer-valued RNA
numbers per cell for ImM IPTG shown in Table 1 along with the relative values shown
here. Results are obtained from 3 biological repeats. Since these exhibited no statistically
significant differences, the results presented here are composed of the data from the 3 bio-
logical replicates.

Figure 2. Mean RNA numbers in individual cells, relative to the last time moment, as
a function of temperature, measured by microscopy with single RNA tagging by MS2-
GFP, when Pracoso1 is integrated into the chromosome (light grey) and in a single-
copy F-plasmid (dark gray). (A) Cells are at 10 °C. (B) Cells are at 30 °C. Data presented
as relative mean to the reference case with 90% confidence intervals obtained from a two-
tailed Student’s t-test. Sample size per condition, as time progresses is: A) Chromosome at
10 °C (610, 611, 615, 610, 609, 602 and 605 cells), and Plasmid at 10 °C (615, 610, 610,
612, 608, 606 and 606 cells); B) Chromosome at 30 °C (604, 615, 610, 610, 605, 608 and
605 cells), and Plasmid at 30 °C (610, 615, 606, 615, 610, 613 and 609 cells). For each
time point, new cells were taken from the original culture. Results are obtained from 3 bio-
logical repeats. Since these exhibited no statistically significant differences, the results pre-
sented here are composed of the data from the 3 biological replicates. Finally, at t = 0 min,
the mean absolute number of RNA molecules per cell was (A) 0.1 for chromosome and 0.9
for plasmid, and (B) 0.2 for the chromosome and 0.9 for the plasmid.
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Figure 3. Mean RNA numbers in individual cells, relative to the last time moment, as
a function of temperature and gyrases and topoisomerases I inhibitors, measured by
microscopy with single RNA tagging by MS2-GFP, when Pracoso1 is integrated into
the chromosome (light grey) and in a single-copy F-plasmid (dark gray). (A) Cells at
30 °C and subject to Novobiocin. (B) Cells at 10 °C and subject to Novobiocin. (C) Cells
at 30 °C and subject to Topotecan. (D) Cells at 10 °C and subject to Topotecan. Data pre-
sented as relative mean to the reference case with 90% confidence intervals obtained from
a two-tailed Student’s t-test. Sample size per condition, as time progresses is: A) Chromo-
some, 30 °C, Novobiocin (608, 606, 605, 610, 613, 610 and 615 cells) and Plasmid, 30 °C,
Novobiocin (615, 605, 613, 610, 610, 601 and 602 cells); B) Chromosome, 10 °C, Novo-
biocin (615, 610, 615, 625, 605, 620 and 620), and Plasmid, 10 °C, Novobiocin (615, 620,
615, 610, 620, 620 and 615 cells); C) Chromosome, 30 °C, Topotecan (615, 610, 612, 610,
605, 603 and 610 cells) and Plasmid, 30 °C, Topotecan (662, 623, 626, 606, 643, 659 and
647 cells) and, finally, D) Chromosome, 10 °C, Topotecan (620, 610, 620, 610, 610, 610
and 615 cells) and Plasmid, 10 °C, Topotecan (679, 629, 649, 645, 642, 601 and 632 cells).
For each time point, new cells were taken from the original culture. Results are obtained
from 3 biological repeats. Since these exhibited no statistically significant differences, the
results presented here are composed of the data from the 3 biological replicates. In all cas-
es, Novobiocin or Topotecan was added to the culture at the same time as the inducer of
the target gene, IPTG. Finally, at t = 0 min, the mean absolute number of RNA molecules
per cell was (A) 0.3 for chromosome and 0.9 for plasmid, (B) 0.1 for chromosome and 0.9
for plasmid, (C) 0.1 for chromosome and 0.9 for plasmid, and (D) 0.1 for chromosome and
0.9 for plasmid.

Figure 4. Mean RNA numbers in individual cells at 30 °C subject to DNP treatment
relative to the last time moment, measured by microscopy with single RNA tagging by
MS2-GFP, when PLaco3o1 is integrated into the chromosome (light grey). Data present-
ed as relative mean to the reference case with 90% confidence intervals obtained from a
two-tailed Student’s t-test. Sample size per condition, as time progresses is 601, 610, 601,
605, 610, 605 and 608 cells. For each time point, new cells were taken from the original
culture. Results are obtained from 3 biological repeats. Since these exhibited no statistical-
ly significant differences, the results presented here are composed of the data from the 3
biological replicates. Finally, at t = 0 min, the mean absolute number of RNA molecules
per cell was 0.2.

Figure 5. Mean RNA numbers in individual cells, relative to the last time moment, as
a function of temperature shifts, measured by microscopy with single RNA tagging by
MS2-GFP, when Pracosor is integrated into the chromosome (light grey). In these
measurements, first, the cells are kept at 30 °C for 30 minutes. Next, they are kept at 30 °C
and measurements are conducted (starting point of the measurements is defined as moment
‘t = 0%). 30 minutes after starting the measurements, the temperature is changed to 10 °C
and then kept constant until reaching moment 120 min. Then it is altered again to 30 °C
and kept constant until the end of the measurements. Data presented as relative mean to the
reference case with 90% confidence intervals obtained from a two-tailed Student’s t-test.
Sample size per condition, as time progresses is 600, 601, 603, 615, 613, 610, 603, 614,
611, 608, 607 cells. For each time point, new cells were taken from the original culture.
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Results are obtained from 3 biological repeats. Since these exhibited no statistically signif-
icant differences, the results presented here are composed of the data from the 3 biological
replicates. Finally, at t = 0 min, the mean absolute number of RNA molecules per cell was
1.3.

Figure 6. Expected mean RNA numbers in individual cells, relative to the last time
moment, from simulations of a stochastic transcription model. The model assumes that
the promoter is integrated into the chromosome for differing values of the rate of promoter
escape from the supercoiled state (solid lines increasingly darker as Kunlock increases). Also
shown are the measurements of mean RNA numbers from cells at 10 °C (dashed black
line) and cells at 30 °C (dashed grey line). Data presented as relative mean to the reference
case with 90% confidence intervals obtained from a two-tailed Student’s t-test.



Abbreviated Summary

Temperature shifts alter the gene expression profile of Escherichia coli. We show that, in Pracosor,
these changes in transcription kinetics differ when chromosome-integrated and when on a single-
copy plasmid, being weaker and noisier in the former, particularly at critically low temperatures.
Measurements at 10 and 30 °C, in the presence/absence of DNP and topoisomerases inhibitors,
indicate that these differences at low temperatures are due to longer-lasting super-coiled states of

the chromosome-integrated promoter.
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Figure S1. Single-RNA detection system schematic. Single-RNA detection system using MS2-
GFP reporter proteins, whose production is controlled by Psap, when applied to an RNA coding
for multiple MS2 binding sites (BS), whose production is controlled by Pracoso1 integrated into
the chromosome, and when applied to an RNA with multiple BS for MS2-GFP whose
production is controlled by Pracozor integrated into a single-copy plasmid. In both systems, when
individual target RNA molecules are produced, they are rapidly tagged by multiple MS2-GFP
proteins produced by the reporter plasmid, making each RNA target for MS2-GFP visible under
the fluorescence microscope as a fluorescent ‘spot’.
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Figure S2. Genetic constructs. (A) Single-copy plasmid-borne gene (expected length of 4019
base pairs). MS2-BS cassette (depicted in yellow) under the control of Pricozo1 promoter in a
single-copy F-Plasmid in E. coli strain BW25993, followed by a Rho-Independent transcription
termination site. (B) Chromosome-integrated gene (expected length of 5116 base pairs). MS2-BS
cassette (depicted in yellow) under the control of Pracoszor promoter in the lac locus of E. coli
strain BW25993 (AlacZ:MS2-BS), followed by the native lacY and lacA genes (depicted in
purple), and the native Rho-Independent transcription termination site (depicted in white boxes).
Constructs were confirmed by sequencing. Expected lengths are obtained from the difference
between the position of the RBS (Ribosome Binding Site) and the downstream terminator
sequences of the gene being transcribed. As the plasmid carrying the target gene does not code
for lacY and lacA, and the cells carrying this plasmid also contain the original lacY and lacA
genes in the chromosome, the two strains express lacY and lacA proteins similarly, and thus do
not differ significantly in the dynamics of intake of IPTG. (Inset) The inset image in between the
images of the two constructs shows in detail the Pricozo1 promoter with functional domains,
which is identical in both A and B constructs. It is in this identical region for both constructs that
is located the operator site O3 (operator sites depicted in blue), followed by the lac promoter’s
RNAp binding regions (starting from positions -10 and -35), the transcription start site (TSS, at
+1 position), and the operator site O1. Note the mCherry sequence in between the promoter and
the sequence coding for the MS2-BS in both constructs (depicted in red). Finally, note that in the
plasmid construct there is a terminator upstream of the TSS, 27 nucleotides long, located 9
nucleotides downstream of the CmR gene (not represented in the figure), so as to be similar to
the chromosome-integrated construct, where there is an upstream transcriptional terminator
provided by the lacl gene.
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Figure S3. Example Microscopy Images. (A) Phase contrast image of cells at 30 °C along with
results of semi-automatic cell segmentation. (B) Confocal microscopy image of the same cells at
30 °C with MS2-GFP tagged RNA spots, detected and segmented by the automatic spot
detection method. (C) Phase contrast image of cells at 10 °C along with results of semi-
automatic cell segmentation. (D) Confocal microscopy image of the same cells at 10 °C with
MS2-GFP tagged RNA spots, detected and segmented by the automatic spot detection method.
Note the scale bar in (B), which applies to all figures.




Figure S4. Example images of GFP and DAPI fluorescence distribution within cells. (A)
Confocal microscopy image of cells with GFP-tagged RNA Polymerases. (B) Epifluorescence
microscopy image of the same cells with DAPI-stained nucleoids. Note the scale bar in (B),
which applies to both figures.
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Figure S5. OD curves of cell populations in fresh media at 30 °C. The original E. coli strain
where both the plasmid and chromosome constructs were inserted is BW25993. From a -80 °C
glycerol stock, cells with the target and reporter genes were placed in LB medium agar plates
with 34 pg ml!' Chloramphenicol and 35 pg ml! Kanamycin (Sigma-Aldrich, USA) and
incubated overnight at 37 °C. From these plates, a single colony was picked and cultured
overnight at 30 °C, with agitation (250 rpm) and aeration, in LB medium supplemented with the
appropriate concentration of antibiotics. From the overnight culture, cells were diluted to an
initial optical density (ODsoo) of 0.05, in fresh M9 medium supplemented with the appropriate
antibiotics and 0.4 % of Glycerol (Sigma-Aldrich, USA), and were incubated at 37 °C until
reaching an ODeoo of 0.3 (for the first 3 hours). They were then placed at 30 °C for 3 hours. The
ODsoo was then measured every 30 minutes for 6 hours.
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Figure S6. Mean relative RNA numbers in individual cells. Mean relative RNA numbers in
individual cells subject to full induction (1 mM IPTG) at different temperatures relative to the
control (30°C) as measured by (A) microscopy and by (B) RT-PCR. Cells carrying the
chromosome (light gray) and plasmid (dark gray) construct were induced 1 hour prior to the
measurements. RT-PCR (3 technical replicates) and microscopy measurements are relative to the
30 °C condition (thus removing the error from that point). Data presented as relative mean to the
reference case with 90% confidence intervals obtained from a two-tailed Student’s t-test. Also
shown is the ratio (C/P) between the integer-valued mean RNA numbers per cell between cells
with the target gene chromosomally-integrated (C) and on a single-copy plasmid (P).
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Figure S7. RNAP and nucleoid fluorescence along the major cell axis. (A) RNAP
fluorescence along the major cell axis (binned) as normalized by the total mean fluorescence of
the cells (RL1314 strain). Measurements at 30 °C from 614 cells. (B) RNAP fluorescence along
the major cell axis (binned) as normalized by the total mean fluorescence of the cells (RL1314
strain). Measurements at 10 °C from 613 cells. A two-sample KS test comparing the spatial
distributions at 10 °C and 30 °C fails to reject that they are from the same distribution (P value =
0.98). (C) Normalized average nucleoid fluorescence intensity distribution along the normalized
major axis of the cells as measured by DAPI staining. Measurements are from 614 cells at 30 °C.
(D) Normalized average nucleoid fluorescence intensity distribution along the normalized major
axis of the cells (RL1314 strain). Measurements are from 613 cells at 10 °C. A two-sample KS
test comparing the spatial distributions at 10 °C and 30 °C fails to reject that they are from the
same distribution (P value = 0.99). In all figures, in the x axis, ‘0’ corresponds to the cell center,
while ‘0.5” corresponds to both extremities (cells folded in half, with undefined poles). Cells
were fixed with formaldehyde prior to imaging.
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Figure S8. Cell growth curves. Growth curves (ODgoo, measured by an Ultrospec 10 Cell
Density Meter, Amersham Bioscience) of cells carrying the (A) chromosome and (B) plasmid
constructs at 30 °C. Cells grown overnight in LB medium at 30 °C with aeration of 250 rpm, and
diluted into fresh 0.5X, 1X, 1.5X and 2X medium to an initial ODsoo of 0.05. Next, they were
incubated at 37 °C until reaching the mid-log phase (first 3 hours), and placed at 30 °C for the
remaining 3 hours. The ODgoo was measured every 30 minutes.
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amplified by RT-qPCR, in triplicates, using primer sets specifics for car and lacl genes. For each
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Figure S10. Lineweaver-Burk plots of both constructs at 30°C. (Left) chromosome-integrated
construct. (Right) plasmid borne construct. The inverse of the relative production rate of mRNA
from the Pracozor promoter is plotted against the inverse of relative difference of RNAp
concentrations for cells grown in three different media (1.0x, 1.5x, 2.0x M9-Gly). RNAp
concentrations are presented relative to the RNAp concentration at 1.0x, from the difference of
RNAp concentration at 0.5x (Table S7). Relative production rates were measured by RT-PCR
with three technical replicates for each condition relative to 1.0x condition (Table S9). The linear
relationship between the points for each relative production rate and its corresponding relative
difference of RNAp concentration (circles) is visible in both constructs. A likelihood ratio test
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was performed to determine whether the small deviations from linearity are statistically
significant. In no construct was linearity rejected (P > 0.25 in both cases). Standard uncertainties
are also shown (horizontal and vertical error bars in each data point).

Supporting Tables

Table S1. Mean number of tagged RNAs produced under the control of Pracosor in cells
lacking the target gene for MS2-GFP, and non-induced cells carrying the target gene
(chromosome and plasmid constructs). Measurements were obtained 1 hour after the start of
incubation of the cells in liquid culture at 30°C. Shown are the number of cells observed and
their mean integer-valued RNA numbers per cell. In cells lacking the target gene, there is no
coding ability of the RNA target for MS2-GFP and thus, in these, any ‘detected” RNA is a false
positive due to MS2-GFP. Measurements were conducted at 30 °C and at 10 °C.

Condition No. cells Absolute mean RNA no. per cell
No target gene (30 °C) 612 0.015
No target gene (10 °C) 630 0.022
Plasmid construgté )no induction (30 670 0.919
Plasmid construgtc, )no induction (10 605 0.466

Chromosome construct, no
induction (30 °C)
Chromosome construct, no
induction (10 °C)

665 0.332

615 0.135

Table S2. Absolute mean half-life times of RNA molecules tagged with MS2-GFP in the two
strains and temperature conditions, extracted from 1-hour long time series, with images
taken every minute. Mean half-lives were obtained by fitting the intensity of each RNA over
time with a decaying exponential function and then inferring the degradation rate of the RNA
fluorescence intensity. Note that no tagged RNA was observed to ‘disappear’ during any
measurement.

Construct Temperature (°C) No. RNAs  Mean half-life (min)
Chromosome 30 10 151.3

Plasmid 30 10 148.0
Chromosome 10 10 121.6

Plasmid 10 40 120.2
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Table S3. P values of the KS tests comparing pairs of distributions of integer-valued RNA
numbers per cell. Each distribution corresponds to a given induction level for the the induction
of the targer gene of the plasmid construct (top table) and the chromossome construct (bottom
table). In these tests, for P values smaller than 0.01, the null hypothesis that the two sets of data
are from the same distribution is rejected. These tables are related to Figure 1 in main
manuscript.

Plasmid

50 uM 100 uM 250 uM 500 uM 1000 uM

0uM 5.6x1077  1.7x10%7 2.9x10%® 7.8x103  5.5x10%
50 uM - 0.2276  8.0x107  3.5x10°  7.9x107
100 uM - - 0.001 0.018 3.4x10°¢
250 uM - - -- 0.7641 0.015
500 uM - - - - 0.206
Chromosome

50 uM 100 M~ 250 uM 500 pM 1000 pM

0 uM 271015 3.1x10"% 2.8x10"¢ 21107 2.7x10°"3
50 uM - 0.956 0.906 0.040 0.190
100 uM - - 0.893 0.225 0.730
250 uM - - - 0.190 0.845
500 uM - - - - 0.917

Table S4. P values of the KS tests comparing the distributions of integer-valued RNA
numbers per cell between temperature conditions for the plasmid construct and for the
chromossome construct. In these tests, for P values smaller than 0.01, the null hypothesis that
the two sets of data are from the same distribution is rejected. This table is related to Table 1 in
main manuscript.

Condition Plasmid Chromosome
30°C vs 27°C 2x10* 3.4x107
27°C vs 23°C 3.7x107 1.7x10*
23°C vs 20°C 0.138 6.0x10"°
20°Cvs 16 °C 1 0.008
16 °C vs 10°C 0.58 1.000

Table SS. P values of the KS tests comparing the distributions of integer-valued RNA
numbers per cell between the two constructs at the various temperatures. In these tests, for
P values smaller than 0.01, the null hypothesis that the two sets of data are from the same
distribution is rejected. This table is related to Table 1 in main manuscript.

Condition Plasmid vs Chromosome
30 °C 9.2x10%
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27°C 0.044

23°C 0.177

20 °C 3.5x10™
16 °C 1.6x1028
10 °C 3.9x1071?

Table S6. P values of the KS tests comparing the distributions of the DAPI fluorescence
levels in individual cells as a function of the conditions (0.5X, 1.0X, 1.5X and 2.0X), in
RL1314 cells at 30 °C and 10 °C. In these tests, for P values smaller than 0.01, the null
hypothesis that the two sets of data are from the same distribution is rejected. Cells were fixed
with formaldehyde prior to imaging.

30 °C
Media Richness 0.5X 1.0X 1.5X
1.0X 0.655 - -
1.5X 0.310 0.162 -
2.0X 0.697 0.964 0.182
10 °C
Media Richness 0.5X 1.0X 1.5X
1.0X 0.029 - -
1.5X 0.057 0.787 -
2.0X 0.001 0.697 0.511

Table S7. Number of cells observed, mean fluorescence from RNAP-GFP in individual cells
(in arbitrary units, A.U.), absolute difference between these values and the 0.5X condition,
ratio between these values and the 1X control condition, and inverse of this value. Data
from RL1314 cells at 30 °C and at 10 °C. This table is related to Table 2 in main manuscript.
Cells were fixed with formaldehyde prior to imaging.

Mean RNAP Absolute  Relative value  Inverse of the

Condition  No. cells fluorescence  difference to to 1X relative value to
per cell (A.U.) 0.5X condition  condition 1X condition

30°C
0.5X media 605 1.50+0.03 0 - -
1.0X media 614 1.554+0.03 0.05 1 1
1.5X media 614 1.58+0.03 0.07 1.6 0.6
2.0X media 612 1.66+0.05 0.16 32 0.3
10 °C
0.5X media 607 1.47+0.03 0 - -
1.0X media 613 1.524+0.03 0.05 1 1
1.5X media 616 1.63+0.03 0.16 32 0.3
2.0X media 603 1.784+0.03 0.31 6.2 0.2
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Table S8. P values of the KS tests comparing the distributions of RNAP fluorescence levels
in individual cells as a function of the conditions (0.5X, 1.0X, 1.5X and 2.0X), in RL1314
cells at 30 °C and 10 °C. In these tests, for P values smaller than 0.01, the null hypothesis that
the two sets of data are from the same distribution is rejected. This table is related to Table 2 in
main manuscript.

30 °C
Media Richness 0.5X 1.0X 1.5X
1.0X 0.009 - -
1.5X 6.4x10™ 0.728 -
2.0X 9.0x107 0.313 0.253
10 °C
Media Richness 0.5X 1.0X 1.5X
1.0X 0.168 - -
1.5X 0.001 0.038 -
2.0X 2.1x107* 4.4x1071° 6.5x107°¢

Table S9. Inverse of the RNA production rates in the 1.5X and 2.0X conditions relative to
the 1X condition. Data from the chromossome integrated and the plasmid integrated constructs
when cells are at 30 °C and at 10 °C. This table is related to Table 2 in main manuscript.

Condition 1X 1.5X 2.0X
30°C
Plasmid construct 1 0.99 0.91
Chromosome construct 1 0.86 1.1
10°C
Plasmid construct 1 0.95 1.09
Chromosome construct 1 0.66 1.04

Table S10. Number of cells observed, along with the mean values of the absolute length (in
pm) of the major and minor cell axes, and major and minor nucleoid axes at various
temperatures. Also shown is the length of the major and minor axes of the nucleoid, relative to
the cell major and minor axes lengths. Cells were fixed with formaldehyde prior to imaging.

Measurements 10 °C 16 °C 23 °C 30°C

No. cells 613 613 615 614

Absolute Major Cell Axis 3.79 3.54 3.14 3.00
Absolute Minor Cell Axis 1.19 1.20 1.13 1.08
Absolute Major Nucleoid Axis 2.47 2.19 1.99 1.77
Absolute Minor Nucleoid Axis 0.84 0.85 0.88 0.78
Relative Major Nucleoid Axis 0.65 0.62 0.64 0.59
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Relative Minor Nucleoid Axis 0.71 0.71 0.78 0.73

Table S11. Parameter values of the rate constants of transcription in model cells. The value
of ki accounts for the expected RNA polymerase concentration in the cells. k3 is set to infinite
(0), as it is much faster than all other rate constants.

Rate Constants ~ Parameter Value (s')  Reference

kon 0.011 )
Krep 281 (1)
ki 6469 (1)
ki 1 1)
k2 0.005 (1)
ks © )
Kunlock See Figure 6 )

Table S12. Estimated plasmid copy number, using absolute quantification. Shown are the
average and the standard deviation of the triplicates results obtained by RT-qPCR.

Cr Copies (ul') Absolute
T (°C) Plasmid Copy
cat lacl cat lacl Number

10°C  2298+0.03 2334+0.07 546+0.02 5.47+0.01 1.00 £ 0.00

30°C  23.00+0.13 23.68+0.04 5.46+0.01 5.36+0.04 1.02 +£0.01

Table S13. Bacterial strains used in this study.

Strain Genotype Source
. F-, A(araD-araB)567, A-, rph-1, A(rhaD- (Datsenko and
E. BW2
coli BW25993 rhaB)568, lacl%, hsdR514 Wanner, 2000)
E. coli BW25993 F-, A(araD-araB)567, A-, rph-1, A(rhaD- In this stud
AlacZ::MS2-BS rhaB)568, lacl9, hsdR514, AlacZ::MS2-BS Y

E. coli RL1314 F-, A-, IN(rrnD-rmE)1, rph-1, rpoC::GFP-kan (Bratton et al., 2011)

Table S14. Bacterial plasmids used in this study.

Plasmid Genotype Source
Ori2, CmR, lacza, GenBank Accession
PBELOBACII P17, Psps # US1113
Ori2, CmR,

pBELOBACI11-PLacO301-BS (Target Plasmid) In this study

PLaco301-BS
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pSC101, KanR, Pao-  (Nevo-Dinur et al.,
MS2-GFP 2011)
Kit t al.
Ori, CR, lacls, prs. _ itagawa tal,

pCA24N-ligase 2005; Wilson et al.,
fee 2013)

pZA25-GFP (Reporter Plasmid)

Table S15. Number of cells observed, mean and squared coefficient of variation (CV?) of
the absolute integer-valued RNA numbers per cell, in cells with the chromosome-integrated
construct, when grown at 30 °C or 10 °C and subject to Novobiocin or Topotecan for 90
minutes. Also shown are the P values of the KS-test of statistical significance comparing the two
pairs of distributions of RNA numbers at the two temperature conditions. For p values smaller
than 0.01, the null hypothesis that the two sets of data are from the same distribution is rejected.
This table is related to Figure 3 in the main manuscript.

Temperature and Mean integer-valued

2 -
Perturbation No. cells RNA no. per cell CV~- P value of the KS-test

Novobiocin, 30 °C 615 0.85 7.62

0.004
Novobiocin, 10 °C 615 0.25 8.7

ovobiocin, (30 °C vs 10 °C)
Topotecan, 30 °C 610 1.23 3.67
“11

Topotecan, 10 °C 615 0.23 7.95 2.8x10

(30 °C vs 10 °C)
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Summary

In Escherichia coli, under optimal conditions, protein
aggregates associated with cellular aging are
excluded from midcell by the nucleoid. We study the
functionality of this process under sub-optimal tem-
peratures from population and time lapse images of
individual cells and aggregates and nucleoids within.
We show that, as temperature decreases, aggregates
become homogeneously distributed and uncorrelated
with nucleoid size and location. We present evidence
that this is due to increased cytoplasm viscosity,
which weakens the anisotropy in aggregate displace-
ments at the nucleoid borders that is responsible for
their preference for polar localisation. Next, we show
that in plasmolysed cells, which have increased cyto-
plasm viscosity, aggregates are also not preferentially
located at the poles. Finally, we show that the inability
of cells with increased viscosity to exclude aggregates
from midcell results in enhanced aggregate concen-
tration in between the nucleoids in cells close to divid-
ing. This weakens the asymmetries in aggregate
numbers between sister cells of subsequent genera-
tions required for rejuvenating cell lineages. We con-
clude that the process of exclusion of protein
aggregates from midcell is not immune to stress con-
ditions affecting the cytoplasm viscosity. The findings
contribute to our understanding of E. coli’s internal
organisation and functioning, and its fragility to
stressful conditions.

Accepted 25 October, 2015. *For correspondence. E-mail andre
.ribeiro@tut.fi; Tel. +358408490736; Fax +358331154989.

Introduction

Unicellular organisms, such as Escherichia coli, particu-
larly when in optimal environments, can continuously
divide into genetically identical cells although, similarly to
multicellular organisms, they are not free from errors, e.g.
in protein production (Miot and Betton, 2004), that result in
malfunctional proteins that can hamper the functioning of
cellular processes (Maisonneuve et al., 2008).
Escherichia coli has evolved a complex machinery
responsible for ensuring protein functionality that is able
to catalyse proper protein folding and assist in the rescue
of misfolded ones (Deuerling et al., 1999; Wickner et al.,
1999), and can target misfolded proteins for degradation
(Viaplana et al., 1997), which allows both error correction
and renewal of protein numbers (Willetts, 1967; Goldberg,
1972). When this fails, E. coli can resort to protein aggre-
gation (Sabate etal., 2010; Tyedmers etal., 2010;
Winkler et al., 2010), which likely reduces potentially
harmful effects by rendering some of the malfunctional
proteins inert (Bednarska et al., 2013). Recent evidence
suggests that the aggregation is not an energy-free
process (Govers et al., 2014), which is consistent with
being of importance for proper cellular functioning.
Unfavourable growth conditions or continued stress can
enhance protein aggregation (Lindner etal., 2008;
Maisonneuve et al., 2008; Winkler et al., 2010; Govers
et al., 2014). This can lead to excessive aggregate accu-
mulation (Bednarska et al., 2013) that interferes with cel-
lular functioning (Goldberg, 2003; Lindner et al., 2008;
Maisonneuve et al., 2008). Recent studies showed that
these aggregates are segregated to the cell poles (Winkler
et al., 2010; Coquel et al., 2013), due to a volume exclu-
sion effect caused by the presence of the nucleoid at
midcell, similar to how plasmids are partitioned
(Vecchiarelli et al., 2012; Reyes-Lamothe et al., 2014) and
to how other large complexes (Straight et al., 2007) are
segregated to the poles. Provided that the segregation
process is successful (evidence suggests that it is not
entirely successful, even in optimal conditions; Gupta
et al., 2014), when the cell divides, it generates an asym-
metry, in that both daughter cells will receive one new pole
that is free of aggregates (Lindner et al., 2008; Govers
et al., 2014). Consequently, as cells continue to divide, this
segregation process results in the rejuvenation of several
cells of the lineage (freeing them from aggregates), at the
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cost of a few cells with reduced reproductive vitality, due to
inheriting the oldest poles containing several aggregates
(Lindner et al., 2008).

Several observations support the conclusion that the
exclusion of aggregates from midcell is an energy-free
process, caused by nucleoid exclusion (Gupta et al., 2014)
(first hypothesised in Winkler et al., 2010). First, the exclu-
sion effect is visible in a strong anisotropy in aggregate
kinetics, located at the nucleoid borders, which favours
aggregates accumulation at the poles (Gupta et al., 2014).
Also, while in cells where the nucleoid is centred the choice
of pole is symmetric, in cells with off-centred nucleoids, a
higher-than-by-chance fraction of aggregates preferen-
tially locates at the larger pole (Gupta et al., 2014). Finally,
the aggregate kinetics, while affected by the nucleoid
(Stylianidou et al., 2014), is diffusive-like (Coquel et al.,
2013), even when at the pole (in agreement with the
absence of transport or anchoring mechanisms).

Consequently, the efficiency with which aggregates are
excluded from midcell should depend on factors such as
nucleoid size as well as aggregate size and mobility within
the cytoplasm, etc (Kuwada et al., 2015). As these prop-
erties are likely affected by environmental conditions, e.g.
temperature, it is reasonable to hypothesise that this
process might lack robustness to some environmental
stresses (Jeon et al., 2013; Cherstvy and Metzler, 2015),
particularly since, in those conditions, other functions are
likely to be more critical (Clegg et al., 2014).

Here, we study the robustness to non-optimal tempera-
tures of the processes of segregation and retention of
aggregates at the cell poles in E. coli. We address the
following questions: To what extent are aggregate intrac-
ellular distributions temperature dependent? What are the
causes for the temperature dependence? Finally, what
are the long-term consequences of sub-optimal tempera-
tures to aggregates numbers in cell lineages? To address
these questions, we observed fluorescently tagged
natural aggregates as well as synthetic fluorescent aggre-
gates, along with inclusion bodies and nucleoids in indi-
vidual cells subject to a wide range of temperatures.

Results

To study the temperature dependence of aggregate seg-
regation and polar retention in E. coli, we observe aggre-
gates by tracking IbpA-YFP proteins, which are accurate
identifiers of the in vivo localisation of natural protein
aggregates (Lindner et al., 2008; Coquel etal., 2013)
(unlike e.g. Clp proteases and other proteins, whose
tagging can alter their localisation and, possibly, aggrega-
tion; Landgraf etal., 2012). Importantly, these tagged
aggregates co-localise with inclusion bodies (Allen et al.,
1992). As such, we refer to the aggregates tagged by
IbpA-YFP as ‘natural’ aggregates, even though, in the

© 2015 John Wiley & Sons Ltd, Molecular Microbiology, 99, 686—699
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measurements here conducted, their emergence in the
cells is externally enhanced by the addition of streptomycin
to the media (Lindner et al., 2008). We also observe aggre-
gates consisting of RNA sequences bound by multiple
MS2-GFP proteins (Golding et al., 2005), as previous
studies suggest that they behave similarly to natural aggre-
gates (Gupta et al., 2014), have long lifetimes (Gupta
et al., 2014), do not vary significantly in size, do not aggre-
gate and can be tracked individually (Golding et al., 2005;
Muthukrishnan et al., 2012; Gupta et al., 2014; Hakkinen
etal., 2014). As their composition differs from natural
aggregates, we refer to these as ‘synthetic’ aggregates.
Finally, since the segregation of aggregates to the poles is
caused by nucleoid exclusion (Gupta et al., 2014), we
measure nucleoids’ size (measured by the relative length
along the major cell axis, given the invariance in width with
temperature) and location (position of the nucleoid centre
along the major cell axis). For this, we performed 4',6-
diamidino-2-phenylindole (DAPI) staining of the nucleoid
and, for validation, HupA-mCherry tagging.

We first assessed which range of temperatures is not
lethal to the strain used (DH50-PRO). Results in Fig. S1
show that between 10°C and 43°C, conditions are not
lethal (although at 10°C no growth is visible). Given this,
microscopy measurements were performed for tempera-
tures ranging from 10 to 43°C. Prior to image acquisition,
cells were kept at the appropriate temperature for 60
minutes (e.g. Fig. S2) since, at this stage, aggregates and
nucleoids already exhibit long-term behaviours (see
below).

Behaviour of the synthetic MS2-GFP-tagged
RNA aggregates

The MS2-GFP-tagged RNA synthetic aggregates are used
since previous studies have shown that they behave simi-
larly to the natural aggregates (at least, in optimal growth
conditions), such as exhibiting preference for polar locali-
sation (Gupta etal., 2014). Also, they are visible for
periods of time significantly longer than cell division
(Muthukrishnan et al., 2012). Further, their fluorescence
intensity, which is determined by the number of MS2-GFP
molecules bound to the target RNA (Golding et al., 2005),
has been reported to very stable over time (Muthukrishnan
etal., 2012; Gupta et al., 2014; Hakkinen et al., 2014).
Finally, these properties do not appear to be significantly
affected by temperature (for temperatures ranging from at
least 10 to 43°C), suggesting that the number of bound
MS2-GFP proteins is also not significantly temperature
dependent (provided sufficient number of MS2-GFP pro-
teins in the cytoplasm).

We performed additional tests to verify the robustness
in time of their fluorescence intensity, which is a valuable
property for purposes of quantification and tracking, and
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to verify the similarly in behaviour with natural aggregates.
For this, first, we studied the temporal fluorescence inten-
sity of MS2d-GFP-tagged RNA molecules. Namely, we
observed the fluorescence intensity of 40 individual, MS2-
GFP-tagged RNAs over time (1 min™") in independent
cells at 37°C. By inspection, we verified that each cell
contained only one tagged RNA, to facilitate tracking.
From the time lapse images, we obtained the fluores-
cence intensity of each of the 40 individual tagged RNAs
for 30 minutes, since first detected. We fitted the intensity
of each spot over time with a decaying exponential func-
tion and inferred the first-order, degradation rate constant
of the spot intensity. We obtained a mean decay rate of
~8.1x10°s™", corresponding to a mean half-life of
~ 144 min, which is longer than our observation window
(60 min). As such, we conclude that, during the micros-
copy measurement period, the fluorescence of synthetic
aggregates does not decrease significantly over time
(gradually or abruptly), in agreement with previous reports
(Golding et al., 2005; Muthukrishnan et al., 2012). These
results are expected given previous studies of the coat
protein of bacteriophage MS2 that show that MS2 binding
sites are constantly occupied by MS2d proteins (Talbot
etal., 1999; Fusco etal., 2003), which results in the
‘immortalisation’ of the target RNA due to isolation from
RNA-degrading enzymes.

Next, we verified whether the synthetic aggregates,
similar to IbpA-YFP, also co-localise with inclusion bodies.
For this, we observed 85 cells at 37°C for 1 hour. At that
moment, we counted in each cell the number of inclusion
bodies (visible by Phase Contrast) and the number of
synthetic aggregates (visible by fluorescence micros-
copy). Then, we counted how many times an aggregate is
co-localised with an inclusion body. We also counted how
many inclusion bodies ‘contained’ at least one aggregate,
provided that the cell contained at least one aggregate
(Fig. S3). We observed that 83% of the synthetic aggre-
gates were co-localised with an inclusion body and that
91% of the inclusion bodies had a fluorescent synthetic
aggregate co-localised with it. We conclude that the syn-
thetic aggregates can be used to accurately inform on the
in vivo presence and localisation of protein aggregates,
similar to IbpA-YFP (Lindner et al., 2008).

Positioning of IbpA-YFP-tagged aggregates as a
function of aggregate size

The IbpA-YFP-tagged aggregates (of sufficient size to
allow detection) exhibit significant variance in size (as
measured by their fluorescence intensity). As such, we
investigated whether their size (within the range of detec-
tion) significantly affected their behaviour, such as the
degree of exclusion from midcell. For this, we investigated
the location of IbpA-YFP-tagged aggregates along the

major cell axis as a function of their size, from cells at
37°C. We then extracted the 10% and the 25% smallest
aggregates and their location along the major cell axis.
From there, we obtained the fraction of aggregates
excluded from midcell. Also, we calculated the fraction of
aggregates that would be expected to be excluded from
midcell if they distributed uniformly along the major cell
axis, and accounting for the relative size of the nucleoid.
This fraction equals 0.41 (assuming a uniform distribution
along the major axis).

We found that 86% of all aggregates were located at the
poles. Meanwhile, 85% of the 25% smallest aggregates
were found at the poles. Finally, 88% of the 10% smallest
aggregates were found at the poles. Thus, the distribu-
tions of aggregates along the major cell axis do not differ
significantly with aggregate size. We conclude that, for the
range of aggregate sizes that we can detect, their size
does not influence the degree of exclusion from midcell.

Adaptation time of the relative nucleoid size and
aggregate distributions to temperature shifts

We performed multi-modal microscopy at 10, 24, 37 and
43°C of DH50-PRO cells expressing MS2-GFP proteins
along with the RNA target that form the synthetic aggre-
gates (Methods). First, cells were grown at 37°C and then
kept at the appropriate temperature for 15, 45, or 60
minutes. At these points in time, we performed DAPI
staining and imaged cells once. From the images, we
extracted the distributions of location and fluorescence
intensity from synthetic aggregates and from stained
nucleoids along the major and minor axes of each cell. We
then determined whether a cell has one or two nucleoids
and the nucleoid(s) borders along the cell axes (Methods).
We define the region along the major axis containing the
nucleoid(s) as ‘midcell’, while ‘poles’ are the two regions
between these borders and the cell extremities.

Next, we compared the distribution of fluorescence
intensity of aggregates along the major cell axis of cells
with one nucleoid, when kept at the appropriate tem-
perature for 15, 45 and 60 minutes. Results in Fig. S4
show that, for all temperatures, there are no significant
differences between aggregate distributions at 15 and
45 min. We also compared the normalised distances of
the nucleoid borders to the cell centre at 15 and 45 min.
Again, we found no significant differences (Fig. S4). The
same result was obtained when comparing distributions
at 45 and 60 min after placing cells at the appropriate
temperature.

We conclude that, for both aggregates and nucleoids,
the distributions of fluorescence intensity at each tem-
perature beyond 15 min. of adaptation time are repre-
sentative of the long-term distributions in those
conditions. Given this, from here onwards, we analyse
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Table 1. Relative concentration of synthetic aggregates at the poles in cells with 1 nucleoid.

Mean (standard)

Mean relative 3-D

No. relative nucleoid Mean fraction of P value of concentration of aggregate P value of the
T (°C) cells length (um) aggregates at poles the t-test numbers at poles KS test
10 147 0.63 (0.12) 0.44 1.32
24 604 0.56 (0.11) 0.39 0.21 1.09 0.11 (10 vs 24)
37 300 0.53 (0.11) 0.69 <0.01 1.86 <0.01 (24 vs 37)
43 204 0.47 (0.13) 0.81 <0.01 1.79 0.05 (37 vs 43)

For each temperature condition, it is shown the number of cells analysed along with the mean and standard deviation of the relative nucleoid length.
Also shown is the mean fraction of synthetic aggregates’ numbers at the poles along with the p values of a t-test of statistical significance. Next,
itis shown the relative 3-D concentration of synthetic aggregates at the poles (as measured by the ratio between the fraction of synthetic aggregate
numbers at the poles and the normalised pole volume in individual cells), and the p values of a KS-test of statistical significance. In both statistical
tests, for p values smaller than 0.01, the null hypothesis that the two sets of data are from the same distribution is rejected.

data collected from cells kept at the appropriate tempera-
ture for 60 min, unless otherwise stated.

Temperature dependence of relative nucleoid lengths
and aggregate spatial distributions

From images of cells expressing synthetic aggregates, we
obtained the mean relative nucleoid length along the
major cell axis by DAPI staining and the mean fraction of
synthetic aggregates at the poles, for each condition.
Results in Table 1 show that the mean relative nucleoid
length decreases slowly with increasing temperature. This
decrease is significant according to Kolmogorov—Smirnov
(KS) tests between all pairs of conditions (p values
smaller than 0.01).

Nucleoid size assessment by HupA-mCherry tagging
(Table S1) matched the results from DAPI staining for
temperatures between 24 and 43°C (showing only slightly
larger nucleoids in all cases). We attempted measure-
ments at 10°C, but the HupA-mCherry signal was too
weak.

Also from Table 1, in accordance with a t-test of statis-
tical significance, the mean fraction of aggregates at the
poles increases significantly with temperature, except
between 10 and 24°C. This increase appears to be much

A B4

C

Minor axis position of aggregates

D4

larger than what would be expected from the small
decrease in relative nucleoid length.

To analyse whether the increase in the mean fraction of
aggregates at the poles with temperature can be
explained by the decrease in relative nucleoid length, for
each condition, we obtained the relative 3-D concentra-
tion of aggregate numbers at the poles in each cell,
accounting for the nucleoid length and the capped cylin-
drical shape of the cells (Methods). Also, we performed
KS tests to compare the distributions of concentrations in
individual cells from different conditions. Note that, if the
aggregates tend to be excluded from midcell, their relative
concentration at the poles will be larger than 1. Else, in the
absence of nucleoid exclusion, this concentration should
equal 1. In addition, if the degree of exclusion of aggre-
gates from midcell is temperature dependent, we expect
their relative concentration at the poles to change with
temperature.

Results in Table 1 show that the mean relative concen-
tration of aggregates at the poles is much higher than 1 at
37 and 43°C, but close to 1 at 10 and 24°C. The KS tests
confirm that there is a significant change between 24 and
37°C (p value < 0.01). This difference in aggregate behav-
jor is also visible when plotting the distances to the cell
centre of aggregates and mean nucleoid border (Fig. 1),

Fig. 1. Relative position versus normalised
distance to cell centre of each aggregate, for
various temperatures. Images were taken 1
hour after placing the cells at the specific
temperature. Also shown, by the black solid
line, is the mean relative nucleoid length.
Measurements are from (A) 195 aggregates
at 10°C (206 cells), (B) 707 aggregates at
24°C (1036 cells), (C) 398 aggregates at
37°C (367 cells) and (D) 288 aggregates at
43°C (306 cells).

g 05 1T 05 1 o 0.5
Normalized distance Normalized distance Normalized distance
to cell center to cell center to cell center
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Table 2. Correlations between synthetic aggregates positioning and nucleoid size and positioning in cells with one nucleoid.

Correlation between relative dis-

Correlation between the locations

No. No. tance of aggregates to cell extreme of nucleoid centre and aggregates
T (°C) cells aggregates and relative nucleoid length t-Test along major cell axis t-Test Mnucleoid
10 147 195 -0.01 0.84 -0.03 0.64 0.18
24 604 707 -0.14 <0.01 -0.09 0.02 0.14
37 300 398 -0.25 <0.01 —0.2 <0.01 0.16
43 204 288 -0.25 <0.01 -0.25 <0.01 0.19

For each temperature condition, it is shown the number of cells and of synthetic aggregates analysed, along with the correlation between the
relative distance of aggregates to the closest cell extreme and the relative nucleoid length and the P values of a t-test of statistical significance.
Also shown is the correlation between the locations (i.e. distance to midcell) of the nucleoid centre and of each synthetic aggregate, followed by
a t-test of statistical significance. For values < 0.01, it is accepted that the correlation is significant. Finally, the mean distance of the nucleoid centre

to the cell centre (Unuceoia) IS presented.

which shows an increase in aggregate density at the
poles with increasing temperature. We conclude that the
aggregate exclusion from midcell is much weaker at sub-
optimal temperatures.

We performed the same measurements in cells
expressing IbpA-YFP (Lindner et al., 2008). Results in
Table S2 show identical changes with temperature in the
relative nucleoid length as well as in the mean fraction of
IbpA-YFP aggregates at the poles. This allows concluding
that the similarity in behaviour between synthetic and
IbpA-YFP-tagged aggregates is maintained in the entire
range of temperatures studied here. Further, we conclude
that the spatial distributions of natural and synthetic
aggregates change with temperature. Namely, the mean
fraction of aggregates at the poles is significantly lower at
the two lowest temperatures tested, and this cannot be
explained by changes in the relative nucleoid length along
the major cell axis.

Correlations of aggregate positioning with nucleoid size
and positioning in individual cells

Next, we studied how temperature affects the correlation
between aggregate positioning and nucleoid size and
positioning. We first calculated the correlation between
aggregate distance from the closest cell extreme and
relative nucleoid length. Also, we performed t-tests of
statistical significance of the correlation for each condi-
tion. Results in Table 2 show a negative correlation in all
conditions that weakens with decreasing temperature,
becoming not statistically significant at 10°C.

Next, we calculated the correlation between nucleoid
centre and aggregate positioning’s along the major cell
axis (Fig. S5), and performed t-tests of statistical signifi-
cance of the correlation for each condition. Since this
correlation depends on the degree of ‘off centring’ of the
nucleoid (Gupta et al., 2014), we also compare the mean
distance between nucleoid and cell centre (Unucieoid)
between conditions. From Table 2, first, Unuceois ShOWS no

significant temperature dependence. Second, there are
statistically significant negative correlations between the
positioning of nucleoid centre and aggregates at 37 and
43°C, while at 10 and 24°C, this correlation is weak and
not statistically significant.

We conclude that the aggregates positioning becomes
less correlated with the nucleoids size and location for
decreasing temperature, i.e., there is a reduction in the
degree with which nucleoids affect aggregate positioning.

Anisotropies in aggregate dynamics

A previous study (Gupta et al., 2014) showed that the
correlations between aggregates and nucleoid, when
existing, are generated by multiple encounters over time
between them (rather than by a single event, such as a
transport process). These encounters generate anisotro-
pies in the aggregate dynamics at the nucleoid borders
(Gupta et al., 2014) (Fig. 2). A similar anisotropy, opposite
in direction, occurs at the cell extremes, as the aggre-
gates collide with the cell walls (Gupta etal., 2014)
(Fig. 2). The combination of anisotropies of opposite
directions at the nucleoid borders and at the cell walls
explains the long-term spatial distribution of the aggre-
gates, namely, their preference for polar location (Gupta
etal., 2014).

To assess how these anisotropies are affected by tem-
perature, we performed time lapse microscopy at 10, 24,
37 and 43°C for 45 minutes long, with images taken every
minute, from which we obtained the displacement vectors
of individual aggregates between consecutive frames
and, from there, the ‘anisotropy curve’ for each condition
(Methods), shown in Fig. 2.

From the distributions in Fig. 2, we quantified the
‘degree of anisotropy’, for each condition, from the area
under the curve in the region of positive anisotropy
(responsible for retaining aggregates at the poles; Gupta
et al., 2014). The sizes of these areas are shown in the
insets in Fig. 2, and inform that, on average, the area has
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Fig. 2. Anisotropy curves of synthetic
aggregates at different temperatures from
time lapse images. Kernel Density Estimate
(bandwidth of 0.1 normalised cell lengths) of
the fraction of displacement vectors oriented
towards the cell pole as a function of the
distance towards midcell along the major cell
axis. Measurements are at 10°C (43 cells), at
24°C (66 cells), at 37°C (184 cells) and at
43°C (41 cells).
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half the size in the two lowest temperature conditions,
indicating much weaker anisotropy. A similar reduction in
the ‘negative’ areas (at the cell extremes) is also visible in
these conditions. These reductions in the degree of ani-
sotropies explain the loss of heterogeneity in the aggre-
gate spatial distribution with decreasing temperature.

Further, we find no changes in nucleoid morphology
with temperature changes that could explain this change
in aggregate behaviour. Note that the mean positioning of
the positive peak of anisotropy along the major cell axis is
not significantly affected by temperature. This indicates
that the nucleoid relative size only changes mildly with
temperature (in accordance with the nucleoid relative size
measurements reported in Table 1). In addition, we meas-
ured the absolute nucleoid length and width and found no
significant changes with temperature (Table S3). From
this lack of change in absolute nucleoid size, it is reason-
able to assume that the nucleoid density does not change
significantly in the range of temperatures tested, and thus
is also not likely to be responsible for changes in aggre-
gate spatial distributions with temperature. This is con-
firmed by inspection of the microscopy images, where it is
visible that in no condition do aggregates exhibit a behav-
iour consistent with, e.g., ‘entering’ the nucleoid region.
Rather, in all conditions, when at midcell, the aggregates
locate near the cell inner-membrane.

Aside from this, it is noted that changes in cell morphol-
ogy also cannot explain the observed changes in aggre-
gate dynamics. First, we found no significant changes in
the absolute cell width with temperature (Table S3).
Second, while the absolute cell length increases with tem-
perature (Table S3), it cannot explain the changes in

© 2015 John Wiley & Sons Ltd, Molecular Microbiology, 99, 686—699
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aggregate relative concentrations at the poles given the
definition of ‘pole region’ (Methods). Given this, we next
investigated the short-term dynamics of the aggregates
as a function of temperature.

Spatial dynamics of the aggregates as a function
of temperature

We speculated that the reduction in anisotropies with
decreasing temperature is caused by a decrease in
aggregate mobility. This is supported by the fact that both
the area of positive anisotropy at the nucleoid borders and
the area of the ‘negative anisotropy’ at the cell extremes
are reduced with decreasing temperature, which is con-
sistent with a general decrease in aggregate mobility
throughout the cytoplasm, rather than a change in the
properties of nucleoid or cell walls (while the nucleoid’s
ability to exclude aggregates could be affected by tem-
perature, e.g. due to changes in density, no such changes
are expected to occur to the cell walls, for the range of
temperatures tested).

We thus performed time-lapsed, multi-modal micros-
copy at 10, 24, 37 and 43°C to measure the degree of
diffusion of synthetic aggregates in each condition (as
measured by the Diffusion coefficient, D) at the single cell
level (Methods). Results in Table 3 show that D changes
widely with temperature, being much smaller at lower
temperatures.

We next assessed whether these differences in D
between conditions could be explained by the differences
in temperature alone (i.e. by the differences in free
energy). For that, we calculated the relative dynamic vis-
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Table 3. Relative dynamic viscosity of the cytoplasm and displacements bias at midcell.

Relative dynamic

T (°C) No. cells D (um? min") viscosity (relative to 37°C) T (um? min")
10 43 0.005 1.67 5.4 x10°
24 110 0.007 1.37 4.6 x 10°
37 184 0.01 1 1.6 x 10
43 41 0.015 0.67 2.7 x10*

For each condition, it is shown the number of cells studied along with the synthetic aggregates’ diffusion coefficient, D, the relative dynamic
viscosity of the cytoplasm relative to 37°C, and the bias in the displacement of aggregates located at midcell, I'". Cells were kept at 37°C for 1 hour
under the microscope and then kept at the appropriate temperature for 1 hour, after which we collected images for 45 minutes, with 1 minute

interval.

cosity in each condition (relative to 37°C). This quantity
should equal 1, if the differences in D with temperature
between conditions are caused solely by differences in
free energy.

Results in Table 3 show that the relative dynamic vis-
cosity changes widely with temperature, being much
higher at lower temperatures. Thus, we conclude that
the differences in D with changing temperature are not
caused solely by the differences in free energy, but
also by changes in the thermophysical properties of the
cytoplasm.

Finally, we verified that D, and thus the relative dynamic
viscosity, is not biased by the cell growth rates (which
differ between conditions). For that, we calculated the
bias in the displacements of aggregates at midcell, I
(Table 3). Since the values of this quantity are much
smaller than the values of D in all conditions, we conclude
that this bias is not significant.

Given this, and considering also the results on the
correlations between the aggregates positioning and the
nucleoids size and location (Table 2), as well as the meas-
urements of local anisotropies along the major cell axis,
we conclude that, at lower temperatures, the aggregates
and nucleoid interact much less frequently during the
measurement period. This, along with the stochasticity in
diffusion, explains the observed near-uniform distribution
of aggregates along the major cell axis at the two lower
temperature conditions.

Finally, we considered another possibility, namely, that
the lower fraction of aggregates at the poles at the lower
temperature conditions could be explained by the fact that
the aggregates do not have sufficient time to reach the
poles prior to image acquisition. However, if this, rather
than the reduced interactions between nucleoid and
aggregates, was the cause, one would not observe the
decrease with decreasing temperature in the area of the
regions of positive anisotropy that is visible in the plots of
the fraction of aggregates heading towards the poles
along the major cell axis (Fig. 2), since this quantity is
independent of the number of aggregates studied.

Spatial distribution and dynamics of aggregates
following osmotic stress

Given the above, it is reasonable to expect that different
means to increase the cytoplasm viscosity will cause
similar changes on the short- and long-term aggregate
behaviours.

It is known that, under osmotic stress, cells (when plas-
molysed) exhibit enhanced cytoplasmic viscosity (van den
Bogaart et al., 2007; Konopka et al., 2009; Mika et al.,
2010; Jin et al., 2013). We placed cells under osmotic
stress, and then assessed the consequences to the short-
term dynamics and long-term spatial distribution of the
synthetic aggregates within. We studied plasmolysed and
adapted cells, which we compared with control cells (in
optimal growth conditions).

We first assessed the spatial distributions of aggregates
in control, plasmolysed and adapted cells for population
images obtained by DAPI staining, following the applica-
tion of osmotic stress (Methods). Results in Table S4
show that the relative 3-D concentration of aggregate
numbers at the poles is much lower in plasmolysed cells
than in the control (P value much smaller than 1). Further,
it is close to 1, similar to low temperature conditions
(Table 1). We conclude that the phenomenon of aggre-
gate exclusion from midcell is absent in plasmolysed
cells. Further, from Table 1, in adapted cells, this quantity
is not statistically different from the control, from which we
conclude that these cells recovered the ability to exclude
aggregates from midcell.

To determine if the change in aggregates spatial distri-
bution in plasmolysed cells has the same cause as in cells
in low temperatures, we conducted 1-hour long, time-
lapsed microscopy measurements with the perfusion of
osmotic stress-inducing agent, to measure the diffusion
coefficient of the aggregates and, thus, the cytoplasm’s
relative viscosity. From Table S5, the relative dynamic
viscosity of plasmolysed cells is much higher than of
control or adapted cells. Also, the bias in the displace-
ments of aggregates at midcell, I, is not significant. We
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Table 4. Mean relative concentration of synthetic aggregate numbers in between nucleoids in cells with two nucleoids.

Mean relative 1-D concen-
tration of aggregate

Mean relative length of
midcell (two nucleoids and

T (°C) No. cells space in between) (um) numbers in the gap P value of permutation test
10 38 0.75 0.85

24 154 0.68 0.78 <0.01 (10°C vs 24°C)

37 46 0.72 0.69 <0.01 (24°C vs 37°C)

43 93 0.7 0.68 <0.01 (37°C vs 43°C)

For each temperature condition, it is shown the number of cells studied, the mean relative length along the major cell axis of the midcell region
(which includes the two nucleoids and the space in between), the relative 1-D concentration of synthetic aggregate numbers in the space in
between nucleoids (gap) (as measured by dividing the fraction of aggregate numbers in the gap by the distance between the inner borders of the
nucleoids in individual cells) and the results of a test of statistical significance between differences in concentration (permutation test between pairs

of conditions). For P values smaller than 0.01, the null hypothesis that the two sets of data are from the same distribution is rejected.

conclude that the changes in aggregate spatial distribu-
tion in plasmolysed cells and in cells subject to low tem-
peratures are both due to increased cytoplasm viscosity.

Long-term consequences of the effects of temperature
changes on the degree of exclusion of aggregates
from midcell

Finally, we assessed whether the loss of effectiveness in
excluding aggregates from midcell at lower temperatures
causes tangible, long-term effects in cells of subsequent
generations. These are expected to emerge, provided that
the fraction of aggregates in between nucleoids in cells
close to division increases significantly (see for example
Fig. S6) (Stewart et al., 2005; Lindner et al., 2008; Govers
et al., 2014; Gupta et al., 2014).

We thus investigated the distribution of synthetic aggre-
gates along the major cell axis in cells with two nucleoids
as a function of temperature. From each cell, we extracted
the mean relative length along the major axis of each
nucleoid (in general, the two nucleoids are of nearly iden-
tical size) and of the space in between the inner borders
of the nucleoids (named here as the ‘gap’). Also, we

obtained the mean relative 1-D concentration of aggre-
gate numbers in the gap for each cell and performed a
permutation test to compare the mean concentration
between pairs of conditions.

Results in Table 4 first show that the mean relative
length of the midcell region does not exhibit a consist-
ent, significant change with temperature. Meanwhile, the
mean relative 1-D concentration of synthetic aggregates
in the gap region increases significantly with decreasing
temperature. We conclude that, at lower temperatures, a
larger fraction of aggregates will be randomly partitioned
in division and then located at the new pole of the
daughter cells, thus hampering the generation of asym-
metries in aggregate numbers between the cells of a
lineage.

Finally, we performed the same measurements in cells
expressing IbpA-YFP. Results in Table 5 show no change
in the mean relative length of the midcell region but a very
significant increase in mean relative concentration of
IbpA-YFP aggregate numbers in the gap. Thus, we con-
clude that, for both the natural and synthetic aggregates
studied here, the relative concentration of aggregates in
between nucleoids in cells near division is significantly

Table 5. Mean relative concentration of natural aggregate numbers in between nucleoids in cells with two nucleoids.

Mean relative length of
midcell (two nucleoids and

Mean relative 1-D concen-
tration of aggregate

T (°C) No. cells space in between) (um) numbers in the gap P value of permutation test
10 195 0.72 0.53

24 346 0.75 0.36 <0.01 (10°C vs 24°C)

37 66 0.76 0.23 <0.01 (24°C vs 37°C)

43 209 0.71 0.13 <0.01 (37°C vs 43°C)

For each temperature condition, it is shown the number of cells studied, the mean relative length along the major cell axis of the midcell region
(which includes the two nucleoids and the space in between), the relative 1-D concentration of natural IbpA-YFP aggregate numbers in the space
in between nucleoids (gap) (as measured by dividing the fraction of aggregate numbers in the gap by the distance between the inner borders of
the nucleoids in individual cells) and the results of a test of statistical significance between differences in concentration (permutation test between
pairs of conditions). For P values smaller than 0.01, the null hypothesis that the two sets of data are from the same distribution is rejected.
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higher at lower temperatures and that this is not due to
changes in the relative nucleoid length along the major
cell axis but rather due to the homogenous distribution of
the aggregates in the cytoplasm.

Discussion

In optimal conditions, E. coli cells segregate large
protein aggregates to the poles via nucleoid exclusion
(Gupta etal., 2014). Following cell divisions, this will
result in the renewal of some cells of a lineage, which
will be void of aggregates, at the expense of others that
will contain several aggregates and exhibit accelerated
aging (Lindner etal., 2008). We observed live cells
within the range of temperatures where they exhibit rep-
lication and found that, at low temperatures, the aggre-
gate segregation and retention processes become non-
functional in that, on average, aggregates no longer
preferentially locate at the poles. Also, at the single cell
level, their positioning no longer correlates with nucleoid
size or positioning.

This non-functionality is shown to be due to an altera-
tion in the aggregates’ short-term behaviour. Namely,
their displacements distribution no longer exhibits strong
anisotropies at the nucleoid borders and cell extremes,
due to a much enhanced cytoplasm viscosity that
renders the interactions between nucleoid and aggre-
gates too infrequent and weak to generate significant
heterogeneities in the aggregate spatial distribution. To
validate these findings, we subjected cells to osmotic
stress. We observed that plasmolysed cells were also
unable to segregate aggregates to the poles, due to
their much enhanced cytoplasmic viscosity (Konopka
et al., 2009) (here verified).

The similarity in aggregate behaviour at low tempera-
tures and under osmotic stress suggests that, in any
conditions where cytoplasm viscosity is increased, one
should expect loss of aggregate preference for polar
localisation. Relevantly, increases in cytoplasm viscosity
are known to occur under common stresses, such as
carbon starvation and energy depletion, as well as during
the stationary growth phase (Parry et al., 2014). Further,
we expect that, aside from large aggregates, other large
cellular components such as plasmids, enzyme com-
plexes, micro-compartments (Kerfeld et al., 2010) and
other macromolecules will be subject to nucleoid exclu-
sion under optimal conditions. As such, we expect their
spatial localisation in the cytoplasm to be similarly
affected by increases in cytoplasm viscosity.

What is the origin of the increase in relative viscosity
with decreasing temperature? Given the size of the aggre-
gates studied here, in accordance to (Parry et al., 2014),
this is likely caused by the decrease in cellular metabo-
lism rates responsible for ‘fluidising’ the cytoplasm (which

is in a ‘near-glass’ transition state when in optimal tem-
perature; Parry et al., 2014). Meanwhile, in the case of
plasmolysed cells, it may be that the increased viscosity
results from increased macromolecular crowding rather
than reduced metabolism.

Our findings complement recent findings on how the
bacterial cytoplasm functions. In Parry et al. (2014), the
cytoplasm viscosity was shown to be ‘metabolism depend-
ent’. Conditions imposing poor metabolic rates cause
increased cytoplasmic viscosity, which decreases the dif-
fusion rate of macromolecules and other large cell compo-
nents. We found that this has long-term consequences,
namely, it renders nucleoid exclusion of protein aggregates
far less effective, which perturbs the internal organisation
of these components in the cell.

The negative effects of hampered aggregate prefer-
ence for polar localisation should increase with prolonged
exposure to stressful conditions. However, the conse-
quences of failures in segregation and polar retention are
likely to be rapidly dealt with (i.e. in a few generations),
once conditions return to optimal, particularly in E. coli,
which is capable of rapid division rates. This may explain
its lack of energy-dependent ‘repair’ mechanisms (Clegg
et al., 2014). It might be that other bacteria, with much
lower division rates (e.g. extremophiles), cannot employ
the same strategy. In that scenario, compartmentalisation
(Kerfeld et al., 2010; Cornejo et al., 2014) or transport
mechanisms (in the case of eukaryotes) might be the
adopted solutions.

Experimental procedures

Briefly, we used E. coli strain DH50-PRO, generously pro-
vided by |. Golding (Baylor College of Medicine, Houston, TX)
to study synthetic aggregates, and E. coli strain MGAY (kind
gift from Ariel Lindner, Paris Descartes University, France) to
study tagged natural aggregates. Bacterial cell cultures were
grown in lysogeny broth (LB). Synthetic aggregates were
induced with 100 ng mI”" of anhydrotetracycline (aTc) and
0.1% L-arabinose for 50 min. After, 1 mM IPTG is added for
10 min. Natural aggregate production is induced by adding
streptomycin (10 pg.ml™") for 30 min. Nucleoids were visual-
ised by either DAPI staining or HupA-mCherry tagging. Live
single-cell, single-molecule experiments were performed
using Nikon Eclipse (Ti-E, Nikon) inverted microscope
equipped with C2+ (Nikon) confocal laser-scanning system,
and a thermal imaging chamber (CFCS2, Bioptechs, USA).
Also, a peristaltic pump was used to provide continuous flow of
fresh media to the cells. Example movies of time-lapse micros-
copy at 10°C (Movie S1) and 43°C (Movie S2) are provided.
Cells were segmented from phase contrast images using
software ‘MAMLE’ (Chowdhury et al., 2013). Fluorescent
aggregates were segmented as in Gupta et al. (2014) and
Hakkinen et al. (2014). Nucleoids were detected and quanti-
fied as in Mora et al. (2011). Lineages were constructed by the
software ‘CellAging’ (Hakkinen et al., 2013). For additional
information, see below.
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Cells and plasmids

Experiments using synthetic aggregates were conducted in
E. coli strain DH50-PRO, generously provided by |. Golding
(Baylor College of Medicine). The strain information is: deoR,
endA1, gyrA96, hsdR17(r«- mx*), recA1, relA1, supE44, thi-1,
A(lacZYA-argF)U169, ®803/acZAM15, F-, A-, Prs/tetR, Prac®
lacl and SpR. This strain contains two constructs: (i)
PROTET-K133 carrying Pie0.-MS2d-GFP and (ii) a plG-
BAC vector carrying Pjagaa-mMRFP1-MS2-96bs (MS2-96bs
stands for 96 MS2 binding site array) (Golding et al., 2005).
Dimeric-fused proteins MS2d-GFP are produced from the
medium-copy vector, controlled by Pye0.1, regulated by tetra-
cycline repressor and aTc inducer. RNA targets for multiple
MS2d-GFP are produced from a single-copy F-plasmid, con-
trolled by Prgarat (Lutz and Bujard, 1997), regulated by Lacl
and AraC repressors and IPTG and L-arabinose inducers.
Further, to validate the results from DAPI measurements of
nucleoid size and location, we inserted the plasmid pAB332
carrying hupA-mcherry (Fisher et al., 2013). Expression of
HupA-mCherry is controlled by a constitutive promoter
(hupA).

Experiments to study natural aggregates were conducted
using the E. coli MG1655 (MGAY) strain carrying the ibpA-yfp
sequence in the chromosome under the control of the endog-
enous chromosomal IbpA promoter (kind gift from Ariel
Lindner, Paris Descartes University, France).

Media and chemicals

Bacterial cell cultures were grown in LB media. The chemical
components of LB (Tryptone, Yeast extract and NaCl) were
purchased from LabM (Topley House, Bury, Lancashire, UK)
and the antibiotics from Sigma-Aldrich (St. Louis, MO). Iso-
propyl b-D-1-thiogalactopyranoside (IPTG) and aTc used for
induction of the target genes are from Sigma-Aldrich.
Agarose (Sigma-Aldrich) was used for microscope slide gel
preparation. Finally, DAPI from Sigma-Aldrich was used to
stain nucleoids.

Induction of production of fluorescent synthetic and
natural aggregates

Pre-cultures were diluted from the overnight culture to ODggp
of 0.1 in fresh LB media, supplemented with appropriate
antibiotics and kept at 37°C at 250 r.p.m. in a shaker until
reaching ODgg = 0.3.

Next, to produce synthetic aggregates, we proceeded as
follows. After the DH50-PRO cells reached an ODgg = 0.3,
they were induced with 100 ngml”' of aTc and 0.1%
L-arabinose for 50 minutes until ODgo = 0.5. At that stage,
cells contain sufficient MS2d-GFP to detect target RNAs, and
induction of Ppgarat Was completed by adding 1 mM IPTG.
After 10 more minutes, cells were placed the appropriate
temperature (10, 24, 37 or 43°C) for 1 hour.

To induce the production of natural aggregates, first, after
MGAY cells reached an ODgg = 0.3, they were placed at the
appropriate temperature (10, 24, 37 or 43°C) for 1 hour.
Then, they were incubated with streptomycin (10 ug mi~") for
30 min.
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Nucleoid visualisation by DAPI nucleoid staining

For nucleoid staining, cells were kept at a specific tempera-
ture for 60 min, and then fixed with 3.7% formaldehyde for
30 min. Next, cells were re-suspended in PBS, and DAPI
(2 mg mI™") was added and cells were incubated for 20 min at
room temperature. Finally, cells were washed twice with PBS
(to remove DAPI in excess), and placed on a 1% agarose gel
pad prepared with the appropriate media for microscopy
(Chazotte, 2011).

Nucleoid visualisation by hupA-mCherry
nucleoid tagging

The dimeric histone-like protein HU is one of the most abun-
dant nucleoid-associated proteins that participates in the
DNA structural organisation (Claret and Rouviere-Yaniv,
1997; Azam et al., 1999). A version of this protein (HupA) has
been tagged with the red fluorescent protein (mCherry) to
study nucleoids in live E. coli cells (Maisonneuve et al.,
2008). This study showed that hupA-mCherry allows a proper
assessment of the location and size of nucleoids in vivo.
Expression of this synthetic protein was placed under the
control of a constitutive promoter (hupA).

Osmotic stress

In van den Bogaart et al. (2007), it was reported that increas-
ing sodium chloride (NaCl) concentration in the media results
in a rapid osmotic upshift (from 0.15 to 0.6 Osm). This causes
cytoplasm plasmolysis of E. coli cells (the water in the cyto-
plasm is expelled to the environment in a few seconds).
Subsequently, cells undergo an adaptation process that
allows recovering the ability to divide. As the adaptation time
differs from cell to cell, when observing a population shortly
after imposing osmotic stress conditions, one usually finds
two distinct populations: adapted and non-adapted (Jin et al.,
2013), which differ in cell and nucleoid morphology, as well as
in division rate (Jin et al., 2013). Namely, plasmolysed (non-
adapted) cells exhibit longer length and elliptic shape, contain
only one condensed nucleoid and do not divide (Konopka
et al., 2009; Mika et al., 2010; Jin et al., 2013). Relevantly, in
these cells, the high osmolality (>0.15 Osm) causes the
Diffusion coefficient of GFP to be heavily reduced (van den
Bogaart et al., 2007; Konopka et al., 2009).

To expose cells to osmotic stress during time-lapse micros-
copy, 300 mM of NaCl was added to the growth media and
pumped into the thermal chamber (set to 37°C) for 1 hour. For
population microscopy imaging, the cells were kept under
osmotic stress for 30 minutes (osmotic stress-inducing media
with 300 mM of NaCl). In both cases, approximately ~ 0.68
Osm was reached (Konopka et al., 2009).

Cells were considered to be plasmolysed when exhibiting
filamentous and elliptical morphology (Konopka et al., 2009),
not dividing during the measurement period (1 hour), and if
containing only one, condensed nucleoid (Mika et al., 2010;
Jin et al., 2013).

Microscopy

Cells were visualised using a Nikon Eclipse (Ti-E, Nikon)
inverted microscope equipped with a 100x Apo TIRF (1.49
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NA, oil) objective. The software for image acquisition was
NIS-Elements (Nikon). Confocal images were taken by a C2+
(Nikon) confocal laser-scanning system. The pinhole size
was set to 1.2 AU. For confocal images, the size of a pixel
corresponds to 0.124 um using a scan area resolution of
1024 x 1024 pixels. To visualise MS2-GFP-RNA ‘spots’, we
used a 488 nm laser (Melles-Griot) and an emission filter
(HQ514/30, Nikon). To visualise HupA-mCherry-tagged
nucleoids, we used a 543 nm HeNe laser (Melles-Griot) and
an emission filter (HQ585/65, Nikon). Phase contrast images
of cells were captured using an external setup using a CCD
camera (DS-Fi2, Nikon). Size of the images was 2560 x 1920
pixels, in which a pixel corresponds to 0.049 um. Epifluores-
cence images, for visualisation of DAPI-stained nucleoids,
were taken by a mercury lamp excitation and a DAPI filter
cube (EX 340-380, DM 400, BA 435-485, Nikon).

For fixed and live cell measurements, we placed 5 ul of
culture on, respectively, 1% and 2% agarose gel pads of LB
media between a microscope slide and a cover slip. Fixed
cells were imaged once, while for time lapse microscopy the
fluorescence images were taken once per minute for 45
minutes. In the latter, the desired temperature was kept from
start to end of the session by a cooling/heating microfluidic
system that provides continuous flow of deionised water at
stable temperature (which does not enter in contact with the
cells) into a thermal imaging chamber (CFCS2, Bioptechs,
USA). Meanwhile, a peristaltic pump provided continuous
flow of fresh media to the cells, at the rate of 0.3 ml min,
through the thermal chamber. In the case of cells with syn-
thetic aggregates, we added to the media the inducers of
fluorescent synthetic aggregate production in the appropriate
concentrations.

Spot detection

Fluorescent ‘spots’ are automatically segmented inside each
cell using the kernel density estimation method for detecting
fluorescently labelled subcellular objects in microscope
images. This method measures the local smoothness of the
image and determines spot locations by designating areas
with low smoothness as a fluorescent spot. The spot intensity
is then corrected by subtracting the mean cell background
intensity multiplied by the area of the spot from the total
fluorescence intensity of the spot (Gupta et al., 2014).

Spot tracking

Spot tracking was performed using a semi-automatic method.
First, we perform spot segmentation in each frame using the
method above. An ID number is provided to the spot (auto-
matically and then manually adjusted if needed) to identify it
in each frame. Next, we manually correct for possible errors
in the detection of the location of the spot. Afterwards, a
displacement vector is automatically inserted, based on the
shortest distance between the locations of the spot in con-
secutive frames. When the cell contains more than one spot,
spots locations are determined as before but making use of
the ID numbers so as to not misidentify spots between con-
secutive frames. Displacement vectors are then placed as
before, based on the ID numbers of the spots. If, at any time
point of the measurements, there are any doubts on the ID of
the spots in a cell, that cell is discarded from the analysis.

Nucleoid detection and segmentation

Nucleoid detection and segmentation was done in each cell
(in time series it was done at each frame). The nucleoid
detection is performed using the Gradient Path Labelling
algorithm (Mora et al., 2011). This method starts by labelling
each pixel based on its gradient azimuth and propagating
these labels according to its gradient paths. The reduction
of labels is obtained by applying equivalences (two labels
are tagged as equivalents when both belong to the same
maximum). Afterwards, a segmented image is obtained with
the number of labels equaling the number of nucleoids. The
Levenberg-Marquardt Least-Squares optimisation algorithm
(More, 1978) is then used to obtain the parameters of 3D
modified Gaussian functions that, in the case of two nucle-
oids, is described by F(x,y) = Gi(x,y) + Go(X,y) + zo, Which
fits each of the detected maximums. If only one nucleoid is
present, G; is set to zero. In general:

G (x,y)=A exp(—(a (x — X0 +2b;, (X = X0 )(¥ — Yor)
(2/d
ey -yo))

where:
a=c0s%0/2c,2+sin?0/2c,>
b = -sin20/4c,%+sin20/4c,>
¢ =sin%0/2c,%+c0s%0/2c,>

These functions allow translation in the xyz axes (xo, Yo, Zo),
amplitude scaling (A), rotation (6), width in x-plane (o), width
in y-plane (cy) and amplitude profiling between square shape,
bell shape and thin shape (d). The nucleoid fitting is done
using a predefined value for d of 10, which was empirically
selected to allow using the value z, as a threshold, in order to
obtain the segmented nucleoid masks.

After nucleoid detection and segmentation, principal com-
ponent analysis was used to obtain the position, dimension
and orientation of the nucleoid in each cell. The polar region
of a cell was defined as the area between the nucleoid and
the major axis extremities (Fig. S7).

Example microscope images of cells along with the results
of the segmentation process are shown in Fig. S2.

Estimation of the 3-D concentration of aggregates at the
cell poles

The estimation of the concentration of aggregates at the
poles accounts for the measured nucleoid size and the
capped cylindrical shape of the cells. Fig. S7 shows a 2-D
representation of a cell with a nucleoid within.

Let x be the absolute length of the nucleoid, w be the width
of the cell along the minor axis and | be the length of the cell
along the major axis. Then, the volume of the bacteria equals,
approximately:

2 3
Volume = n(ﬂ) (1-w)+ ir:(ﬂ)
2 3 12
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To attain the volume of the midcell region, for simplicity, we
assume that: x <1 — w. Given this:

2
Midcell volume = n(%) X

From this, one can derive the normalised fraction of midcell
and poles volumes. These equal respectively:

Normalized Fraction of midcell volume =

il
1_Vy(le)

X
Normalized Fraction of poles volume = 1- #
1-W,
/(3 x 1)

Note that the latter quantity is also the expected fraction of
aggregates at the poles, assuming uniform intracellular dis-
tribution and accounting for the capped cylindrical shape of
the cells.

To obtain the measured mean 3-D concentration of aggre-
gate numbers at poles, we divide the mean fraction of aggre-
gate numbers at the poles (Table 1) by the normalised
volume of that region:

Mean 3D concentration of aggregate numbers at poles
- Mean fraction of aggregate numbers at poles

e
=%

Results of this estimation are presented in Table 1, for each
condition. The values for x, / and w are shown in Table S3.

The above definitions and formulas are applied also to
cells with two nucleoids, where the midcell region is defined
as the region between the outer borders of the two nucleoids.
Note that these formulas apply to all temperature conditions
tested, even though as temperature increases the cells
become, on average, longer.

Mean square displacement of the aggregates and
relative viscosity of the medium

To measure the diffusion coefficient of the aggregates, we
use the Mean Squared Displacement (MSD) of the aggre-
gates after a time lag =

MSD (1) =Ellp(t)-p(t - )" + &=2D7 + &

where p(t) is the position of a spot at time ¢, E is the expec-
tation over all spots and over all t, and & is the measurement
noise. To extract D discounting &, we use the slope of the line
taken from the first two points, i.e. D = (MSD(2) — MSD(1))/2.
As seen in Fig. S8, the MSD is approximately linear for the
first few 7. That is, for all measurements, MSD(3) lies imme-
diately beneath the line going through MSD(1) and MSD(2),
justifying the assumption of approximately diffusive motion at
this timescale.

From D, and assuming that the aggregates are spherical,
the dynamic viscosity n of the medium in which the diffusive
particle is moving is (the Stokes-Einstein equation):
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kT
s

where kg is Boltzmann’s constant and r is the particle
radius. If the changes in temperature alone suffice to
explain the changes in D, the relative dynamic viscosity
between conditions should be approximately 1. The relative
dynamic viscosity 1:/n. between two temperatures T, and
T, with diffusion coefficients D, and D, can be quantified as:

m _TDy
n. Dy

Anisotropy distributions

From the time lapse images, we obtained their displacement
vectors along the major cell axis between consecutive
frames. These inform on the directionality of an aggregate
between consecutive images (assessed by the sign of the
displacement vector). Also, they inform on the degree of
diffusion of the aggregates along the major cell axis during
the intervals between consecutive images (assessed by the
magnitude of the displacement vector).

As in Gupta et al. (2014), we extracted the displacement
vectors going toward a pole and towards the cell centre, as a
function of their point of origin. Next, we defined a sliding
window with a width of 0.1 cell lengths and determined which
displacement vectors originated within that window and their
direction. We then analysed the directionality of the displace-
ment vectors by counting the number of displacement vectors
originated in the window, which were directed towards the
midcell and towards the poles. Finally, we calculated the
fraction of synthetic aggregates moving towards the poles in
each window, as a function of the normalised distance to the
cell centre. Cell growth between consecutive frames was
accounted for by projecting the origin of each displacement
vector into the cell space in the following frame, before cal-
culating the magnitude and direction. The ‘anisotropy curves’
obtained for each condition are shown in Fig. 2.

Possible biases in the mean square displacement of
aggregates due to cell growth

Escherichia coli cells grow by increasing the walls’ length via
incorporating new components at the midcell region (Laloux
and Jacobs-Wagner, 2014). This is likely accompanied by the
absorption of materials from the environment, which main-
tains the cytoplasm density nearly constant (90% of the cells
in exponentially growing populations exhibit densities differ-
ing less than 0.75% from the mean) (Martinez-Sala et al.,
1981). Consequently, the process of cell walls growth is likely
heterogeneous. However, this does not affect our calcula-
tions of MSD, since, during growth, the increase in cytoplasm
volume is approximately homogenous along the major cell
axis, as extracellular materials (e.g. water) do not enter the
cell through a particular cell region. Given this and that the
position of aggregates is not determined by the cell walls, as
they float in the cytoplasm, our calculation of aggregate dis-
placement vectors between consecutive frames does not
need to be compensated for the heterogeneity of the cell
walls growth process.
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In any case, we can assume the extreme scenario of new
materials entering the cell solely at the midcell region (which
can bias our estimations of displacement vectors in cells with
fast growth relative to aggregate movement), and estimate
the upper bound of this bias. Let x(f) be the un-normalised
position of an aggregate along the major cell axis at time t
and let the cell length at time t be /(f). In the extreme case, the
position of the aggregate at time t+ 7 is:

x(t+r)=x(t)+N(0,D)+%

where N is a Gaussian distribution with a mean of 0 and a
variance of D. The displacement vectors are calculated as:

X(t+ r)fl‘/ix(t) = (.. ,/1)(%7 XI(t)

j+N(0,D)

Given the above formula, and assuming the ‘worst case’
scenario of all aggregates being located at midcell, the bias in
the measurement of D equals:

]

We obtained this quantity for each temperature condition
and compared with the measured diffusion coefficient, D.
Results in Table 3 show that even in this extreme case, the
values of D are much larger than those of I', which can thus be
ignored.
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Supplementary Figures
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Fig. S1. Cell growth rate analysis. OD curves at 10°C, 20°C, 24°C, 37°C, 40°C, 43°C and
46°C. DH5a-PRO cells were grown in liquid LB media and the culture absorbance (OD at 600



nm) was measured every 30 minutes for 4 hours at 10 °C, 20 °C, 24 °C, 37 °C, 40 °C, 43 °C and
46 °C. The Y-axis is presented in the log scale.

Fig. S2. Example microscopy images prior and after segmentation. (A) DAPI-stained
nucleoids in cells, (B) cells with visible cytoplasm (filled with MS2-GFP proteins) along with
MS2-GFP tagged RNA molecules (synthetic aggregates), visible as bright white “spots”, and (C)
segmentation of the images in (A) and (B) merged into one image. Dark grey areas show
segmented cells while segmented nucleoids are shown in lighter grey and synthetic aggregates

are shown as small white spots.

A- B-C-

Fig. S3. Example images of cells visualized by Phase-Contrast and confocal microscopy

along with merged image. (A) Example image of cells visualized by Phase-Contrast
microscopy. The red arrows indicate example inclusion bodies. (B) Image by confocal
microscopy of the cells with visible cytoplasm (filled with MS2-GFP proteins) along with MS2-
GFP tagged RNA molecules (synthetic aggregates), visible as bright “spots”. The red arrows
indicate example synthetic aggregates. (C) Images in (A) and (B) merged into one image. The
red arrows indicate examples of co-localization between synthetic aggregates and inclusion

bodies.
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Fig. S4. Kernel density estimation of distribution of fluorescence intensity of aggregates and
mean nucleoid border positioning. Kernel density estimation (KDE) of the spatial distribution of
fluorescence intensity (in arbitrary units) of aggregates (black lines) and mean positioning of the
nucleoid borders (vertical lines) relative to the cell center, 15 minutes (dashed lines) and 45
minutes (solid lines) after maintaining the cells at the appropriate temperature. Distances are
normalized by the length of the major cell axis. All cells contain only 1 nucleoid. Measurements

are from more than 300 cells per condition.
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Fig. S5. Relative distance to midcell (RDM) of aggregates versus RDM of nucleoid center.
RDM of individual aggregates versus RDM of the nucleoid center (along the major cell axis)
measured from: (A) 195 aggregates at 10 °C, (B) 707 aggregates at 24 °C, (C) 398 aggregates at
37 °C, and (D) 288 aggregates at 43 °C. All cells contain only 1 nucleoid. The black solid line is
the linear fit to the aggregates” RDM along the major cell axis as a function of the RDM of the
nucleoid center. The negative inclination of the lines shows that, on average, if the nucleoid is
off-centre, the aggregates will be located on the opposite side of the cell and closer to the cell

center.
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Fig. S6. Schematic representation of long-term effects of aggregates in between nucleoids
prior to cell division. Cells are represented in light grey while nucleoids are represented in dark
grey. (Left) Aggregates present at midcell (red balls), unlike segregated ones (green balls), will
likely be located at the new poles of the cells of the next generation (with the selection of which
cell following a random unbiased partitioning scheme). Consequently, only one cell of the last
generation is free of aggregates. (Right) When the segregation and retention of aggregates at the
poles is efficient, in the next generation all new poles of the cells will be free of aggregates, and
when these cells divide, each will produce one daughter cell free from aggregates (unless new
aggregates are produced in that time period). The letters ‘O’ and ‘N’ near the cells indicate

whether a pole is old or new, respectively.

Fig. S7. Scheme of a cell with stained nucleoid. Also shown are I, the length of the cell along
the major axis, w, the width of the cell along the minor axis, x, the length of the nucleoid region

along the major cell axis, and p, the length of a “polar region’ of the cell.
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Fig. S8. Mean squared displacement of aggregates against the time lag 7. Error bars denote
one standard error of the mean. The slopes of the lines represent the diffusion coefficients
corresponding to the measurements presented in Table 3 in the main manuscript and in Table S5.
Measurements are from 43 cells (at 10 °C), 66 cells (at 24 °C), 184 cells (at 37 °C), 41 cells (at
43 °C), and 43 plasmolyzed cells (at 37 °C and 300mM NaCl).



Supplementary Tables

Table S1. Relative nucleoid length along the major cell axis versus temperature as measured
by HupA-mCherry tagging. Both mean and standard deviation (in parentheses) of each
quantity are shown. Also shown is the number of cells analysed in each condition. For each
condition, the mean relative length of nucleoids is shown. Visibly, as temperature is increased,

this quantity decreases.

No Relative Nucleoid
T (°O) Cells  Length (li\:fiillll and Std)
24 78 0.60 (0.16)
37 53 0.57 (0.07)
43 60 0.51 (0.16)

Table S2. Relative nucleoid length along the major cell axis (mean and standard deviation),
along with the fraction of IbpA-YFP aggregates at the cell poles at various temperatures, in
cells with 1 nucleoid. For each condition, the mean relative length of nucleoids and the fraction
of IbpA-YFP tagged aggregates at the poles are shown. Visibly, as temperature is increased, the

former quantity decreases while the latter increases.

Mean (std) Relative Mean Fraction of IbpA-YFP
TCO No. Cells NucleoiEi Lgngth (um) Aggregates at PI())les
10 166 0.65 (0.07) 0.56
24 122 0.62 (0.12) 0.64
37 306 0.59 (0.10) 0.73
43 409 0.54 (0.09) 0.78

Table S3. Changes in absolute cell and nucleoid length and width along the major and
minor cell axes with temperature as measured by DAPI staining. Both mean and standard
deviation (in parentheses) of each quantity are shown. For each condition, width and length of
cells and nucleoids within are shown. Note that, of these quantities, only the absolute cell length

differs significantly with temperature.

Absolute Cell Absolute Cell Absolute Nucleoid  Absolute Nucleoid
T (°C) Length (Mean Width (Mean Length (Mean and Width (Mean and
and Std) in pm and Std) in pm Std) in pm Std) in um




10 2.69 (0.86) 1.05 (0.12) 1.66 (0.56) 0.66 (0.11)

24 2.40 (0.67) 1.06 (0.11) 1.33 (0.39) 0.74 (0.11)
37 2.80 (0.67) 1.06 (0.12) 1.46 (0.43) 0.67 (0.11)
43 3.77 (1.18) 1.07 (0.12) 1.76 (0.57) 0.74 (0.11)

Table S4. Mean relative 3-D concentration of synthetic aggregate numbers at the poles, in
cells under osmotic stress, containing 1 nucleoid. For each condition, it is shown the number
of cells studied in the microscopy measurements, along with the relative 3-D concentration of
synthetic aggregate numbers at the poles at 37°C in control (LB media), plasmolyzed and
adapted cells. Cells were subject to osmotic stress (300 mM NaCl) for 30 min. prior to imaging.
A permutation test was applied to test for statistical differences between the concentrations
between the stress conditions and the control. For p-values smaller than 0.01, the null hypothesis

that the two sets of data are from the same distribution is rejected.

Mean Relative 3-D

. Cells Analyzed Concentration of P-Value_ ofa
Condition permutation test
(No. Cells) Aggregate Numbers
at Poles (vs. Control)
Control 300 1.86
Plasmolyzed (NaCl) 19 (from 222) 1.07 <0.01
Adapted (NaCl) 203 (from 222) 1.55 0.06

Table SS. In vivo diffusion coefficient, D, relative dynamic viscosity (relative to Control), 7,
and bias in the displacement of aggregates located at midcell, I', for cells under osmotic
stress (plasmolyzed and adapted) along with control cells, containing 1 nucleoid. For each
condition, it is shown the number of cells studied in the time-lapsed microscopy measurements,
the diffusion coefficient, D, the relative dynamic viscosity at 37°C in control (LB media), and the
bias in the displacement of aggregates located at midcell, 77, in plasmolyzed and adapted cells as
well as in control cells. Cells were subject to osmotic stress (300mM NaCl) during the 1-hour
imaging procedure. A permutation test was applied to test for statistical differences between the
concentrations between the stress conditions and the control. For p-values smaller than 0.01, the

null hypothesis that the two sets of data are from the same distribution is rejected.

N Relative Dynamic
Condition o D (um* min™) Viscosity (1, I (um?® min™")
Cells .
relative to Control)
Control 184 0.01 1 1.6x 10"




Plasmolyzed (NaCl) 43 0.007 1.35 1.5x 10*
Adapted (NaCl) 61 0.015 0.62 0.8 x 10













