


 
 
Tampereen teknillinen yliopisto. Julkaisu 1338 
Tampere University of Technology. Publication 1338 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Terhi Kaarakka 
 
Fractional Ornstein-Uhlenbeck Processes 
 
Thesis for the degree of Doctor of Philosophy to be presented with due permission for 
public examination and criticism in Sähkötalo Building, Auditorium S4, at Tampere 
University of Technology, on the 6th of November 2015, at 12 noon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tampereen teknillinen yliopisto - Tampere University of Technology 
Tampere 2015 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN 978-952-15-3604-5 (printed) 
ISBN 978-952-15-3620-5 (PDF) 
ISSN 1459-2045 
 
 



Abstract

In this monograph, we are mainly studying Gaussian processes, in particularly three
different types of fractional Ornstein–Uhlenbeck processes. Pioneers in this field may be
mentioned, e.g. Kolmogorov (1903-1987) and Mandelbrot (1924-2010).

The Ornstein–Uhlenbeck diffusion can be constructed from Brownian motion via a Doob
transformation and also from a solution of the Langevin stochastic differential equation.
Both of these processes have the same finite dimensional distributions. However the
solution of the Langevin stochastic differential equation, which driving process is fractional
Brownian motion and a Doob transformation of fractional Brownian motion do not have
same finite dimensional distributions. Indeed we verify, that the covariance of the fractional
Ornstein–Uhlenbeck process of the first kind (which we call the solution of the Langevin
stochastic differential equation in which the driving process is fractional Brownian motion)
behaves at infinity like a power function and the covariance of the fractional Ornstein–
Uhlenbeck process (constructed by a Doob transformation of fractional Brownian motion)
behaves at infinity like an exponential function. Moreover we study the behaviour of
the covariances of these fractional Ornstein–Uhlenbeck processes. We also calculate the
spectral density function for the Doob transformation of fractional Brownian motion
using a Bochner theorem.

We present the Doob transformation of fractional Brownian motion via solution of the
Langevin stochastic differential equation. One of the main aims of our research is to
analyse its driving process. This driving process is Y (α)

t = e−tαZτt , where τt = He
αt
H

α and
{Zt : t ≥ 0} is fractional Brownian motion. We find out that the process Y (α) := {Y (α)

t :
t ≥ 0}, if scaled properly, has the same finite dimensional distributions as the process
Y (1) := {Y (1)

t : t ≥ 0}. The main result in this monograph is that we define a stationary
fractional Ornstein–Uhlenbeck process of the second kind as a process with a two-sided
driving process {Ŷ (1)

t : t ∈ R} and create a new family of fractional Ornstein-Uhlenbeck
processes. We study many properties of the fractional Ornstein–Uhlenbeck process of the
second kind. For example, we show that the fractional Ornstein–Uhlenbeck process of the
second kind is Hölder continuous of any order β < H and find the kernel representation
of its covariance.

We research many properties of the processes Y (α) and Y (1), since they are quite interesting
themselves. We represent these processes as stochastic integrals with respect to Brownian
motion and prove that the sample paths of the process Y (α) are Hölder continuous of
any order β < H. In the case H ∈ ( 1

2 , 1), we find out the covariance kernel of increment
process of Y (α), and using that we investicate the covariance of Y (α) and the variance of
Y (α), when t tends to infinity. One of our main results is that the increment process of
Y (α) is short-range dependent. We also study weak convergence and tightness and then

i



ii Abstract

finally prove that 1√
a
Y

(α)
at converges weakly to scaled Brownian motion.

In the case H ∈ ( 1
2 , 1), fractional Brownian motion and the fractional Ornstein–Uhlenbeck

process of the first kind both exhibit a long-range dependence, but the fractional Ornstein–
Uhlenbeck process of the second kind exhibits a short-range dependence. This offers more
opportunities to model network traffic or economic time series via tractable fractional
processes. The fractional Ornstein–Uhlenbeck process of the first kind and the fractional
Ornstein–Uhlenbeck process of the second kind are quite similar to simulate, since they
can both be represented via stochastic differential equations.
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1 Introduction

The main topics of this dissertation in the field of stochastic are fractional Ornstein1 –
Uhlenbeck2 processes, that are special types of Gaussian3 processes. This area has been
studied by several authors. There are many publications devoted to fractional Ornstein–
Uhlenbeck processes, e.g., Klepsyna and Le Breton [33], Cheridito [11], Mashui and Shieh
[40], Nualart and Hu [48] and Azmoodeh and Viitasaari [3] or Morlanes [2]. We also
find out that the Wolfram Demonstration Project has a demonstration of the fractional
Ornstein–Uhlenbeck process [37]. In this software, there is an interactive simulation with
the options to choose from, for example, the mean, the variance and the Hurst constant
H.

It is well-known that the Ornstein–Uhlenbeck diffusion can be constructed from Brownian
motion via a Doob4 transformation as well as a solution of the Langevin 5 stochastic
differential equation (see Doob [16]). Both of these processes have the same finite
dimensional distributions. We thought that this would be the same for the fractional
Ornstein–Uhlenbeck processes, but noticed fairly soon that this is not the case, since the
covariance of the fractional Ornstein–Uhlenbeck process as a solution of the Langevin
stochastic differential equation (abbreviated fOU(1)) behaves at infinity like a power
function and the covariance of the fractional Ornstein–Uhlenbeck process constructed by
the Doob transformation of fractional Brownian motion (abbreviated fOU) behaves at
infinity like an exponential function. (A detailed discussion is presented in Chapter 2)

We present the Doob transform of fractional Brownian motion via the Langevin stochastic
differential equation. One of the main objects is to analyse the driving process of
this stochastic differential equation. The driving process of the Langevin equation is
Y

(α)
s = e−sαZτs , where τs = He

αs
H

α and {Zt : t ≥ 0} is fractional Brownian motion
(abbreviated fBm). We find out that the process Y (α), if scaled properly, has the same
finite dimensional distributions as the process Y (1). We define a stationary fractional
Ornstein–Uhlenbeck process of the second kind (abbreviated fOU(2)) as a process in
which a driving process is the two-sided process {Ŷ (1)

t : t ∈ R} (see Definition 3.6)

U
(D,γ)
t = e−γt

t∫
−∞

eγsdŶ (1)
s = e−γt

t∫
−∞

e(γ−1)sdZ
τ

(1)
s
, γ > 0, (1.1)

1Leonard Ornstein (1880-1941), Dutch physicist.
2George Uhlenbeck (1900-1988), Ducht physicist.
3Karl F. Gauss (1777-1855), German mathematician.
4Joseph L. Doob (1910-2004), American mathematician.
5Paul Langevin (1872-1946), French physicist.
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2 Chapter 1. Introduction

where τ (1)
s = He

s
H , H ∈ (0, 1) and Z is fractional Brownian motion. This fOU(2) coincides

with fOU (the Doob transformation of fBm), when γ = 1.

One major motivation for studying these fractional Ornstein–Uhlenbeck processes is that
if H > 1

2 , fractional Brownian motion and the fractional Ornstein–Uhlenbeck process
of the first kind both exhibit a long-range dependence, but the fractional Ornstein–
Uhlenbeck process of the second kind exhibits a short-range dependence. This offers more
options to model network traffic or economic time series via tractable fractional processes.
However, the fractional Ornstein–Uhlenbeck process of the first kind and the fractional
Ornstein–Uhlenbeck process of the second kind are quite similar to simulate, since they
can all be represented via stochastic differential equations. In Subsection 3.1.2 of Section
3.1 we present some simulations of these processes.

The fractional Ornstein–Uhlenbeck process of the second kind, U (D,γ), can be defined via
a stochastic differential equation, where the driving process is the two-sided process Ŷ (1).
The process {Y (1)

t : t ≥ 0} itself is interesting, since it is also a similar type of stochastic
process as another fOU and

Y
(α)
t =

t∫
0

e−αsdZ
He

αs
H
α

,

scaled properly, has the same finite dimensional distributions as the process Y (1) (in
Chapter 3). We also study properties of weak convergence and tightness and then prove
that 1√

a
Y

(α)
at converges weakly to the scaled Brownian motion.

We also study other properties of U (D,γ) and Y (α). For example, we verify that they
are locally Hölder continuous of the order β < H, Y (α) has stationary increments and
U (D,γ) is stationary. We find the kernel representation of the covariance of the increment
process of Y (α) and the process U (D,γ) and using these representations we find many
other properties of these processes. One of the main results is that the both processes
U (D,γ) and the increment process of Y (α) are short-range dependent.

In order to make this monograph reader-friendly, we recall in Chapter 1 the basic
definitions and properties of the Gaussian processes. We also recall stationarity and
self-similarity and define some important Gaussian processes: Brownian motion, two
Ornstein–Uhlenbeck processes, fractional Brownian motion and the fractional Ornstein–
Uhlenbeck process as a solution of the Langevin stochastic differential equation and the
fractional Ornstein–Uhlenbeck process as the Doob transformation of fractional Brownian
motion. We present and prove numerous properties of these processes.

We calculate the spectral density function for the Doob transformation of fractional
Brownian motion, using a Bochner theorem. To make the representation self-contained,
the Bochner theorem is also given. We recall that in the Bochner theorem the covariance
of the process is expressed as an integral with respect to its spectral density function (in
Chapter 2, Sections 2.3 and 2.4).

Collecting everything together, our aim is to write a clear self-explanatory monograph,
dealing with different fOU processes and their important properties.

In mathematics it is a habit to write things using "we" form, since we think that in a
process of understanding there is a writer and a reader together. This means that the
personal pronoun we is actually me and a reader.
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The brief list of the novelty values and author’s role in all chapters of the monograph are
the following:
1. Introduction. In this chapter I compile the theoretical background, I recall basic
definitions and theorems. There are plenty of proofs of mine, but only with minor novelty
value.
2. Covariance and spectral density functions. I have written this chapter using
my licentiate theses [28], which is written in Finnish. I have also developed further its
ideas and improved results. Some theorems, for example, Corollary 2.4 is new. The main
theorem of this chapter is Theorem 2.8, where the spectral density function of the Doob
transformation of fBm is given, this theorem has also a novelty value.
3. Fractional Ornstein-Uhlenbeck processes. All results in this chapter are nov-
elties. Fractional Ornstein-Uhlenbeck processes of second kind is defined for the first
time in the publication [29], where I was the corresponding author and did the main
mathematical work. In this chapter I have written propositions with complete proofs
and some of them were already published (there is references in title) in [29], but with
brief proofs. The publication [29] was important to publish fast, since results have strong
novelty value.
4. Weak convergence. In Section 4.1., I recall the main concept of the weak con-
vergence and in Section 4.2., I show that the driving process of fOU(2), Y (α), if scaled
properly, converges weakly to scaled Brownian motion. This novelty result and proof of
mine is also published in [29].

1.1 Gaussian processes

1.1.1 Basic properties of Gaussian processes
In this section we recall some important definitions and properties that we use the most
in this dissertation. They are quite standard in the literature. There are several good
references on this subject. We mention, for example, Doob [17] and Dym and McKean
[18].

Definition 1.1. A real-valued stochastic process {Xt : t ∈ R} in the probability space
(Ω,F ,P) is called a Gaussian process if the vector

(Xt1 , Xt2 , . . . , Xtn)

is multivariate Gaussian for every t1, t2, . . . , tn ∈ R, n ≥ 1, i.e., every finite collection of
random variables has a multivariate normal distribution.

It is well-known that the distribution of a Gaussian process {Xt : t ∈ R} is determined
uniquely by its mean function t 7→ E(Xt) and the covariance function

(s, t) 7→ E ((Xt −E(Xt)) (Xs −E(Xs))) .

Often in the definition of a Gaussian process it is assumed that the mean is zero.
An important property is the stationarity of a process. This means that the finite
dimensional distributions do not change in time. We define in Definition 1.7, when
stochastic processes have the same infinite dimensional distributions. We state the
definition and the theorem of Dym and McKean [18]. In this definition the mean is
assumed to be zero.
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Definition 1.2. The Gaussian process {Xt : t ∈ R} of zero mean is called stationary if
the process {XT+t : t ∈ R} has the same finite dimensional distributions as the process
{Xt : t ∈ R}, for any T ∈ R. In other words, in the stationarity case the probability

P(
n⋂
i=1
{ai ≤ Xti+T ≤ bi})

does not depend on T ∈ R for any n ∈ N.

There is also a weaker form of stationarity for all processes (not only Gaussian). If the
process is not necessarily stationary but its mean and variance are constants and the
covariance depends only on the difference of the time, then we say that the process is
second order stationary. This definition is used, for example, in Cowpertwait and Metcalfe
[13]. In the next theorem we actually show that every stationary Gaussian process is
also second order stationary. Thus, another way to state the stationarity for Gaussian
processes is

Theorem 1.3. The Gaussian process {Xt : t ∈ R} of zero mean is stationary if and only
if the covariance E(Xt1+TXt2+T ) does not depend on T , for any t1, t2 ∈ R.

Proof. Let {Xt : t ∈ R} be a Gaussian process of zero mean. If the process is stationary
then obviously the covariance does not depend on T .
Conversely, if we assume that

E(Xt1+TXt2+T ) = E(Xt1Xt2)

then

P
(

n⋂
i=1
{ai ≤ Xti+T ≤ bi}

)
= P

(
n⋂
i=1
{ai ≤ Xti ≤ bi}

)
for any n ∈ N, since in the Gaussian case, the covariance function determines distribution
uniquely.

We denote the covariance function by

cov(Xt, Xs) := E ((Xt −EXt)(Xs −EXs)) .

And we define the covariance matrix or covariance-variance matrix of two random vectors
X := (Xt1 , Xt2 , · · · , Xtn) and Y := (Ys1 , Ys2 , · · · , Ysn) for ti, sj ∈ R, i, j = 1, . . . , n by
[aij ]n×n, with the general element

aij = E
(
(Xti −EXti)(Ytj −EYtj )

)
.

Theorem 1.4. Let {Xt : t ∈ R} be a Gaussian process. Then for any n ∈ N and
every t1, . . . , tn ∈ R the covariance matrix of the multivariate Gaussian random vector
(Xt1 , . . . , Xtn) is non-negative definite.

Proof. Let {Xt : t ∈ R} be a Gaussian process and therefore the random vector
(Xt1 , Xt2 , . . . , Xtn) is Gaussian for any t1, t2, . . . , tn ∈ R. We write its covariance matrix
as

Q :=

 Q11 · · · Q1n
...

Qn1 · · · Qnn

 ,
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where
Qjk := E

(
(Xtj −E(Xtj ))(Xtk −E(Xtk))

)
.

Since every covariance matrix Q is symmetric and symmetric matrices are orthogonally
diagonalizable there exists a n× n matrix C such that the matrix CTQC, denoted by B,
is a diagonal matrix and the eigenvalues of Q are located in the main diagonal of B.
We consider the diagonal matrix B

B = CTQC
= CTE

(
[Xt1 , Xt2 , . . . , Xtn ]T [Xt1 , Xt2 , . . . , Xtn ]

)
C

= E
(
CT [Xt1 , Xt2 , . . . , Xtn ]T [Xt1 , Xt2 , . . . , Xtn ]C

)
= E

(
([Xt1 , Xt2 , . . . , Xtn ]C)T [Xt1 , Xt2 , · · · , Xtn ]C

)
,

where Y = [Xt1 , Xt2 , · · · , Xtn ]C, is Gaussian being a linear combination of Gaussian
random variables Xti , i = 1, . . . , n and therefore it is a Gaussian random vector. Thus,
B is the covariance matrix of the Gaussian vector Y . Since B is a diagonal matrix it
actually consists of the variances of Y and we write that B = Var(Y ) . Let v be a row
vector v = uCT . Applying previous statements, we may write as follows

vQvT = uCTQCuT

= uBuT

= uVar(Y )uT

= Var(u · Y )
≥ 0.

Hence vQvT =
d∑

j,k=1
Qjkvivj ≥ 0, and therefore the covariance matrix is non-negative

definite.

We represent some important definitions of continuity and equality of stochastic processes.

Definition 1.5. A process {Xt : t ∈ R} is called L2−continuous at t0, if for any ε > 0
there exists δ > 0 such that the property

E
(
|Xt −Xt0 |2

)
< ε

holds for all |t− t0| < δ.

Dealing with stochastic processes, we often need their continuous versions (modifications).
The following definition of a version may be found in Klebaner [32].

Definition 1.6. Two stochastic processes {Xt : t ∈ R} and {Yt : t ∈ R} are called
versions (modifications) of each other if

P (Xt = Yt) = 1, for all t ≥ 0.

Note that two stochastic processes may be versions of each other although one of them is
continuous, but the other is not. However, if X is a version of Y , then X and Y have the
same finite dimensional distributions. The definition is in Karatzas and Shreve [31].
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Definition 1.7. Rd-valued Stochastic processes X = {Xt : t ≥ 0} and Y = {Yt : t ≥ 0}
have the same finite dimensional distributions if, for any integer n ≥ 1, real numbers
0 ≤ t1 < t2 < · · · < tn < ∞ and A ∈ B(Rnd), where B(Rnd) is the smallest σ-field
containing all open sets of Rd, we have:

P ((Xt1 , . . . , Xtn) ∈ A) = P ((Yt1 , . . . , Ytn) ∈ A) .

If X and Y have the same finite dimensional distributions we use the notation

{Xt : t ≥ 0} d= {Yt : t ≥ 0}.

There is also a stricter requirement for the identity of the two processes:

Definition 1.8. Two processes {Xt : t ≥ 0} and {Yt : t ≥ 0} are indistinguishable, if

P (Xt = Yt, for all t ≥ 0) = 1.

The indistinguishability of the processes means the sample paths of the processes are
almost surely equal. The indistinguishability of processes requires slightly more than that
the property of processes be versions of the each other, since indistinguishable processes
are versions of each other, but the converse is not necessarily true. See, for example,
Capasso and Bakstein [9].

If the processes X and Y are defined on the same state space but different probability
space, we can define whether they have the same finite dimensional distribution, see, for
example, [31].

Definition 1.9. Let X = {Xt : t ≥ 0} and Y = {Yt : t ≥ 0} be stochastic processes
defined on probability spaces (Ω,F ,P) and (Ω̃, F̃ , P̃), respectively, and having the same
state space (Rd,B(Rd)). Stochastic processes X and Y have the same finite dimensional
distributions if, for any integer n ≥ 1, real numbers 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn < ∞ and
A ∈ B(Rnd), we have:

P ((Xt1 , . . . , Xtn) ∈ A) = P̃ ((Yt1 , . . . , Ytn) ∈ A) .

We emphasize that if there is a continuous version, we use that. For this reason we
rewrite the special continuity theorem modified for the 1-dimensional time parameter
from Borodin and Salminen [7, Ch.1, Sec.1]

Theorem 1.10 (The Kolmogorov6 continuity criterion). Let X = {Xt : t ∈ [0, T ]} be a
stochastic process. If there exist positive constants α > 0, β > 0 and M > 0 such that

E (|Xt −Xs|α) ≤M |t− s|1+β

for every 0 ≤ s, t ≤ T , then X has a continuous version.

We recall the following technical lemma and after that we consider more continuity
properties of a covariance and the L2 continuity of a stationary Gaussian process. If the
process {Xt : t ∈ R} of zero mean is stationary we denote

Q(t1, t2) = E(X0Xt2−t1) = Q(0, t2 − t1) =: Q(t2 − t1).
6Andrey N. Kolmogorov (1903-1987), Russian mathematician.
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Lemma 1.11. Let {Xt : t ∈ R} be a stationary Gaussian process. Then

E
(
(Xt2 −Xt1)2) = 2 (Q(0)−Q(δ)) ,

for any δ = t2 − t1 and t1, t2 ∈ R.

Proof. We calculate

E
(
(Xt2 −Xt1)2) = E

(
X2
t2 − 2Xt1Xt2 +X2

t1

)
= E(X2

t2)− 2E(Xt1Xt2) + E(X2
t1)

= Q(t2 − t2)− 2Q(t2 − t1) + Q(t1 − t1)
= 2 (Q(0)−Q(δ)) .

Applying Lemma 1.11 we obtain more properties for the covariance function.

Theorem 1.12. Let {Xt : t ∈ R} be a Gaussian process. If {Xt : t ∈ R} is stationary,
then its covariance function Q is an even function. Moreover, if Q is continuous at zero,
then it is continuous everywhere.

Proof. The covariance is even, since

Q(t− s) = E(XsXt) = E(XtXs) = Q(−(t− s))).

Since Q is continuous at zero, using the Cauchy–Schwarz inequality, we obtain

lim
h→0
|Q(t+ h)−Q(t)|

= lim
h→0
|E (X0Xt+h)−E (X0Xt)|

= lim
h→0
|E (X0 (Xt+h −Xt))|

≤ lim
h→0

(
E
(
X2

0
)) 1

2
(

E (Xt+h −Xt)2
) 1

2

= lim
h→0

(Q(0))
1
2 (2 (Q(0)−Q(−h)))

1
2

= 0.

We are able to state the following lemma concerning the L2 continuity. We first recall
that the L2 continuity of the process {Xt : t ∈ R} is uniform if for any ε > 0 there exists
δ > 0 such that

E
(
(Xt2 −Xt1)2) < ε

for all t1, t2 ∈ R with |t2 − t1| < δ. In other words, uniform L2 continuity means that the
continuity does not depend on t1, t2 ∈ R.

Lemma 1.13. The stationary Gaussian process X := {Xt : t ∈ R} is uniformly L2

continuous if it is continuous at zero.
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Proof. Assume that X is a stationary Gaussian process and let Q be its covariance
function. We assume that Q is continuous at zero. By the previous theorem it is
continuous everywhere. Let t1, t2 ∈ R and ε > 0. Since Q is continuous at zero there
exists a δ > 0 such that

|Q(0)−Q(u)| < ε

2 ,

for |u| < δ. Denoting u = t2 − t1 and applying Lemma 1.11, we infer

E
(
(Xt2 −Xt1)2) < ε,

hence the process is uniformly L2 continuous.

Corollary 1.14. The covariance function Q of a stationary Gaussian process X attains
its maximum at zero.

Proof. Applying the technical Lemma 1.11 and the fact that E
(
(Xt2 −Xt1)2) is always

non-negative, we infer that Q(0) ≥ Q(δ), for all δ and therefore the greatest value of Q
is attained at zero.

Definition 1.15. Let X = {Xt : t ≥ 0} be a stochastic process and T ∈ R+. If for
all T > 0 there exists some β > 0 and a finite random variable KT (ω) satisfying the
condition

sup
s,t<T ;s6=t

|Xt(ω)−Xs(ω)|
|t− s|β

≤ KT (ω)

for almost all ω, then X is called locally Hölder continuous of the order β.

There is the following connection between the Kolmogorov criterion and the Hölder
continuity. If there exist strictly positive α and β such that

E|Xt −Xs|α ≤M |t− s|1+β

then the process X has a Hölder continuous version of any order γ < β
α . This remark can

be found, for example, in Revuz and Yor [52, Theorem 2.1, p.26].

1.2 Self-similarity

Sometimes a process looks the same as the original one, although the scale, on which
it is looked at, is changed from macroscopic to microscopic. This phenomenon is called
self-similarity and it is known from nature. For example, the branching of trees is a
self-similar process. Another visual example is the romanesco broccoli, which contributes
to understanding the meaning of self-similarity.

The process in Figure 1.2 is Brownian motion {Bt : t ≥ 0} and it is still perhaps the most
famous example of self-similarity.

In the middle of the 20th century Hurst7 studied changes of the elevation of the water in
theNile (for a long period of time). He noticed that the changes did not depend on the
time scale. Hurst built up a new statistical method, R/S analysis, which has connections
with long-range dependent processes, see, for example, Hurst [23], [24] and [25]. When

7Harold E. Hurst (1880-1978), British hydrologist.
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Figure 1.1: Romanesco broccolli, the picture is from Walker [57]
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Figure 1.2: Sample paths of one Brownian motion, t ∈ [0, 1], t ∈ [0, 0.2] and t ∈ [0, 0.1]

Mandelbrot8 and Van Ness [38] started to study fractional Brownian motion, they named
the constant H as a Hurst constant in his honour.

8Benoît B. Mandelbrot (1924-2010), Polish-born, French and American mathematician
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Lamperti9 investigated mathematically the same kind of processes as Hurst. He studied
the convergence of stochastic processes [34] and recognized stationarity in many of those
processes. In [35] Lamperti introduced semi-stable processes that satisfy the same scaling
property as the self-similar processes.

Definition 1.16. A stochastic process {Xt : t ∈ R} is called H-self-similar, if the
stochastic processes {Xαt : t ∈ R} and {αHXt : t ∈ R} have the same finite dimensional
distributions for all α ∈ R and for H ∈ (0, 1), that is,

{Xαt : t ∈ R} d=
{
αHXt : t ∈ R

}
.

We study many processes that exhibit the property of self-similarity. The most common
self-similar process is Brownian motion studied in Section 1.4.1.

1.3 Asymptotic behaviour and long-range dependence

We also need some properties of the asymptotic behaviour of the processes when studying
long and short-range dependencies.
Thus, we present the familiar symbol "Ordo" to consider the growing rates of functions.
Remark 1.17. Let the functions f and g be defined in the same neighbourhood N0 on
x ∈ R ∪ {−∞,∞}. If there exists strictly positive k such that∣∣∣∣f(x)

g(x)

∣∣∣∣ ≤ k,
for any x ∈ N0, then we define

f(x) = O(g(x)) as x→ x0.

The idea of this notation is that f increases more slowly or decreases more rapidly than
some multiple of g. If there exist strictly positive k1 and k2 such that

k1 ≤
∣∣∣∣f(x)
g(x)

∣∣∣∣ ≤ k2,

for any x ∈ N0, then f has the same asymptotic behaviour as g, and they both increase
or decrease at the same rate. In this case we use the notation

f(x) = θ(g(x)) as x→ x0.

In the literature there are many definitions of long-range dependence. These all have
the same idea or contents: If the process {Xt : t ≥ 0} is long-range dependent then its
covariance vanishes slowly, in particularly not exponentially.

Definition 1.18. A stationary second order process {Xt : t ∈ R} or a sequence {Xn :
n ∈ N} of zero mean is called long-range dependent if

∞∑
n=1

cov(X1, Xn) =
∞∑
n=1

E(X1Xn)

diverges. If the sum converges, then the process or the sequence is called short-range
dependent.

9John W. Lamperti, American mathematician.
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Remark 1.19. We use Definition 1.18, since it is easy to understand and apply. However,
a stationary second order stochastic process X = {Xn : n = 0, 1, 2, . . . } of mean zero is,
sometimes called

• long-range dependent if there exists α ∈ (0, 1) and a constant C > 0 such that

lim
n→∞

ρX(n)
C n−α

= 1, where ρX(n) := E (XiXi+n) , for any non-negative integer i,

and

• short-range dependent if lim
k→∞

k∑
n=0

ρX(n) exists.

This kind of definition, for example, stated in Beran [4, p. 6 and p. 42] and is occasionally
more convenient to use than our Definition 1.18.

Definition 1.18 is not always equivalent to the above definition from [4]. Indeed, if we
consider the case where

E(Xn+kXk) = 1
n
, n = 1, 2, . . . .

Then we have harmonic series and
∞∑
n=1

ρX(n) = lim
k→∞

k∑
n=1

ρX(n) = lim
k→∞

k∑
n=1

1
n

=∞.

Hence, X is a long-range dependent according to Definition 1.18. But if α ∈ (0, 1)

lim
n→∞

ρX(n)
Cn−α

= 0,

for any C > 0. This means that process X is not a long-range dependent according to
the definition of the remark 1.19.

In this dissertation we will use Definition 1.18 for long-range dependence and short-range
dependence.

1.4 Some important Gaussian processes

1.4.1 Brownian motion and OU processes
Brownian motion was invented by botanist Robert Brown in 1827 [8]. Calling Brown an
inventor of Brownian motion may be venturesome, since there were some other researchers
at his time studying the same field. Brown might have been the first to have published
something about this phenomenon. Anyhow, he observed the pollen grains moving on
the surface of water. The movement was random, and he did not understand the reason
for this movement. First he thought that the reason was connected only to the organic
particles, but later he also observed the same kind of movements with synthetic particles.

It took quite some time to find an explanation for this movement. Albert Einstein10

recognized in 1905 that the reason for the movement is thermodynamic. But actually
10Albert Einstein (1879-1955), German theoretical physicist
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Luis Bachelier11 was the first person to model Brownian motion. He used Brownian
motion to model stock prices on the Paris Stock Exchange in 1900. In mathematics
Brownian motion is also often called the Wiener process, since Norbert Wiener12 proved
the existence of Brownian motion defined as:

Definition 1.20. A real valued stochastic process {Bt : t ≥ 0} is called the standard
Brownian motion (Bm) starting at zero, if the following properties holds

(i) B0 = 0 a.s.;

(ii) E
(
Bti −Bti−1

)2 = ti − ti−1;

(iii) for any 0 = t0 < t1 < · · · < tn the increments

Btn −Btn−1 , Btn−1 −Btn−2 , . . . , Bt1 −Bt0

are independent and normally distributed with

E
(
Bti −Bti−1

)
= 0.

The item (ii) from Definition 1.20 implies, that B has continuous paths a.s. We recall the
definition of the Markov process in [32] and Ornstein–Uhlenbeck process [50], since they
both involved Brownian motion.

Definition 1.21. If for any t and s > 0, the conditional distribution of Xt+s given σ-field
Ft is the same as the conditional distribution of Xt+s given Xt, that is, for all y ∈ R

P(Xt+s ≤ y|Ft) = P(Xt+s ≤ y|Xt) a.s. ,

then X is a Markov process.

There are two different ways to construct the OU process; either via a time and space
transformation, which is also called the Doob transformation or as a solution of a stochastic
differential equation of which the driving process is the standard Brownian motion. First
we present definition of the Doob transformation.

Definition 1.22. Let {Bt : t ≥ 0} be the standard Brownian motion and α > 0. Then
the process {Vt : t ∈ R}

Vt := e−αtB e2αt
2α
,

is called the Ornstein–Uhlenbeck process (OU).

The preceding well-known construction of the OU process is due to Doob [16] and it is
a deterministic time and space transformation of the standard Brownian motion. The
covariance of V is

E(VtVs) = e−αt−αsE
(
B e2αt

2α
B e2αs

2α

)
= e−αt−αs min

(
e2αt

2α ,
e2αs

2α

)
= 1

2αe−α(t−s), if t ≥ s.
11Louis J-B. A. Bachelier (1870-1946), French mathematician
12Norbert Wiener (1894-1964), American mathematician
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Since the covariance depends only on the time difference, therefore the process is stationary.
Secondly we construct an OU process, as a strong and unique solution to the Langevin
stochastic differential equation. The solution of the linear first order differential equation
is unique if we have initial value Xa = b.

Definition 1.23. Let {Bt : t ≥ 0} be the standard Brownian motion and α > 0. The
solution of the stochastic differential equation

dUt = −αUtdt+ dBt, (1.2)

is also called the Ornstein–Uhlenbeck process (OU1). The solution is

Ut = e−αt
x+

t∫
0

eαsdBs

 , t ≥ 0, (1.3)

where x is the random initial value of U .

Recall the properties of a strong solution from Øksendal [49, p.66]. We first define some
terms: F∞ is the smallest σ-algebra contains

⋃
t>0 Ft and {Bt : t ≥ 0} is 1-dimensional

Brownian motion.

Theorem 1.24. Let T > 0 and b : [0, T ]×Rn → Rn, σ : [0, T ]×Rn → Rn be measurable
functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|); x ∈ Rn, t ∈ [0, T ]

for some constant C, (where |σ|2 =
∑
|σij |2) and such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|; x, y ∈ Rn, t ∈ [0, T ]

for some constant D. Let Z be a random variable which is independent of the σ-algebra
F∞ generated by {Bs : s ≥ 0} and such that

E(|Z|2) <∞.

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt,

where 0 ≤ t ≤ T,X0 = Z, has a unique t-continuous solution Xt(ω) with the property
that Xt(ω) is adapted to the filtration FZt generated by Z and Bs; s ≤ t and

E

 T∫
0

|Xt|2dt

 <∞.

This kind of solution X = {Xt : t ∈ [0, T ]} from Theorem 1.24 is called a strong solution,
see, for example, [49, p. 70]. We know that every linear stochastic differential equation
with constant coefficients has a unique strong solution at every interval [0, T ], see, for
example, Mikosch [42, p. 138].
In fact the solution of stochastic differential equation (1.3), The Ornstein–Uhlenbeck
process, in Definition 1.23 is strong and unique, but it is not yet stationary. First we
extend it to the whole time space and then define the initial value to make it stationary.
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Definition 1.25. Let B(−) = {B(−)
t : t ≥ 0} be another Brownian motion, independent

of B, also starting from 0. When t ∈ R, we set the two-sided Brownian motion

B̂t :=
{
Bt , t ≥ 0,
B

(−)
−t , t < 0.

If in Definition 1.23 the variable x is equal to ξ

ξ :=
∫ 0

−∞
eαsdB̂s,

then ξ is a normally distributed random variable with the mean 0 and the variance 1
2α .

Theorem 1.26. The Ornstein-Uhlenbeck process U , defined by

Ut = e−αt
t∫

−∞

eαsdB̂s, (1.4)

is the stationary solution of (1.2).

Proof. From the considerations above it is clear that {Ut : t ≥ 0} solves (1.3) with

U0 = x =
∫ 0

−∞
eαsdB̂s.

To prove stationarity, we compute as follows. The covariance of the process U may be
computed as

Q(t− s) = E(UtUs)

= E

e−αt
t∫

−∞

eαrdB̂r

e−αs
s∫

−∞

eαrdB̂r


= e−αte−αs

E


 s∫
−∞

eαrdB̂r

2


+E

 t∫
s

eαrdB̂r
s∫

−∞

eαrdB̂r

 ,

when t > s. If we use the Itô isometry in the first part of the sum and the independence
of the increments of Brownian motion in the second one, we obtain

Q(t− s) = e−αte−αs
s∫

−∞

(eαr)2dr (1.5)

= e−α(t−s)

2α .

As we notice, the covariance is dependent only on the difference of time, so the process is
stationary.
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We may also note that the covariance of U is the same as the covariance of V . Since these
processes are both Gaussian processes, they are equally determined by their covariances.
Thus the processes have the same finite dimensional distributions.
This connection was the first and the main one to lead me to study fractional OU processes.
One of the main questions was whether or not they have the same finite dimensional
distributions.
In this dissertation we study fractional Ornstein–Uhlenbeck processes and their properties.
These processes are constructed similarly to OU processes but Brownian motion is replaced
by fractional Brownian motion.

1.4.2 Fractional Brownian motion
In various problems, existing models are unsatisfactory. Brownian motion and the short-
range dependent processes derived from it are not the best explanation for problems in
data traffic or in the economical time series, for example.
A concept called fractional Brownian motion is an answer to many questions, it is
neither a specified Brownian motion nor its contraction. Fractional Brownian motion is a
generalization of Brownian motion in the sense that the when H = 1

2 it coincides with
Brownian motion. It belongs to the class of processes with a long memory, when H > 1

2 .
Mandelbrot and Van Ness were the pioneers of studies of fractional Brownian motion [38].
Their definition for fBm is not so easy to use as the definition which we propose here.
Fractional Brownian motion is at the heart of the studies in this dissertation. We state
two definitions of fractional Brownian motion.
The first definition by Mandelbrot and Van Ness can be found in [38]. Their definition of
fractional Brownian motion uses an integral with respect to Brownian motion

BH(0, ω) = b0

BH(t, ω)−BH(0, ω)

= 1
Γ(H + 1

2 )

 0∫
−∞

(
(t− s)H− 1

2 − (−s)H− 1
2

)
dB(s, ω)

+
t∫

0

(t− s)H− 1
2 dB(s, ω)

 ,

where Γ is the Gamma function.
The definition above is not so easy to use, and we state the more common definition, see,
for example, Memin, Mishura and Valkeila [41], as follows.

Definition 1.27. Let 0 < H < 1. Fractional Brownian motion (fBm) {Zt : t ≥ 0} with
Hurst parameter H is a centered Gaussian process with Z0 = 0 and

E(ZtZs) = 1
2(t2H + s2H − |t− s|2H), t, s ≥ 0. (1.6)

Theorem 1.28. The fractional Brownian motion (fBm) Z = {Zt : t ≥ 0} with a Hurst
parameter H ∈ (0, 1) satisfies the properties
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(i) Z is H-self-similar;

(ii) Z has stationary increments;

(iii) E (Zt) = 0 for any t ≥ 0;

(iv) E
(
Z2
t

)
= t2H for any t ≥ 0.

Proof.

(i) Fractional Brownian motion is H-self-similar, i.e.,

{Zαt : t ≥ 0} d=
{
αHZt : t ≥ 0

}
for any α > 0. (1.7)

Indeed, the self-similarity of fBm follows from (1.6), since

E(ZαtZαs) = 1
2((αt)2H + (αs)2H − |αt− αs|2H)

= α2H 1
2(t2H + s2H − |t− s|2H)

= E(αHZtαHZs)

and the covariance determines the Gaussian distribution uniquely.

(ii) When s1 < s2 < t1 < t2, the relation (1.6) implies that

E ((Zt2 − Zt1)(Zs2 − Zs1)) (1.8)

= 1
2((t2 − s1)2H − (t2 − s2)2H + (t1 − s2)2H − (t1 − s1)2H).

By (1.8) and Theorem 1.3 we observe that the increments of fractional Brownian motion
are stationary, since

E ((Zt2+h − Zt1+h)(Zs2+h − Zs1+h))

= 1
2((t2 − s1)2H − (t2 − s2)2H + (t1 − s2)2H − (t1 − s1)2H).

(iii) E (Zt) = 0, for any t ≥ 0, since {Zt : t ≥ 0} is a centered process.

(iv) For any t ≥ 0, using (1.6)

E
(
Z2
t

)
= E (ZtZt)

= 1
2
(
t2H + t2H

)
= t2H .
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In the literature there are also more axiomatic definitions for fractional Brownian motion.
These definitions usually contain a collection of same kind of properties as we have in
Theorem 1.28. A more axiomatic definition can be found, for example, in Norros, Valkeila
and Virtamo [45]. The literature also has definitions of fractional Brownian motion where
the time parameter t belongs to R. See, for example, [40]. We chose our definition,
because using it makes it simpler to construct stationary processes, as stochastic integrals,
where fBm is a driving process or to make some time transformations with respect to
fBm.

Next, we consider more properties of fractional Brownian motion.
Remark 1.29. From Theorem 1.28 (iv) we directly obtain that

E(Z2
0 ) = 0 and E(Z2

1 ) = 1.

Using the first identity of the proof of Lemma 1.11, the property (iv) and the Kolmogorov
continuity criterion (Theorem 1.10), we may notice that fractional Brownian motion
Z has a continuous version, when H > 1

2 , since the increments of fractional Brownian
motion are stationary and Z0 = 0 and therefore

E
(
(Zt − Zs)2) = E

(
Z2
t−s
)
. (1.9)

Indeed, we obtain the stronger result using the next lemma stated, for example, in Nualart
[47].

Lemma 1.30. Let Z = {Zt : t ≥ 0} be fractional Brownian motion with Hurst parameter
H ∈ (0, 1). Then

E
(
(Zt − Zs)2k) = (2k)!

k!2k |t− s|
2Hk,

for any integer k ≥ 1.

Proof. Using (), we obtain

E
(
(Zt − Zs)2k) = E

(
Z2k
t−s
)

= E
(
(|t− s|HZ1)2k)

= |t− s|2kHE
(
Z2k

1
)
,

where the second equation follows from the fact that fractional Brownian Motion is
H self-similar. From the definition of fractional Brownian motion we conclude that
Z1 ∼ N (0, 1) and so its moment generating function is

mZ1(p) =
∞∫
−∞

exp 1√
2π

e− x
2

2 dx

=
∞∫
−∞

1√
2π

e−
(
x√

2
− p√

2

)2

e
p2
2 dx

= e
p2
2 .
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Since m(n)
X (0) = E(Xn), then

E(Z2k
1 ) = d2kmZ1(p)

dp2k

∣∣∣∣∣
p=0

= (2k − 1)(2k − 3)(2k − 5) · · · 1 = (2k − 1)!!

= (2k − 1)(2k − 3)(2k − 5) · · · 1 · 2k(2k − 2)(2k − 4) · · · 2
2k(2k − 2)(2k − 4) · · · 2

= (2k)!
2kk! .

Hence

E
(
(Zt − Zs)2k) = |t− s|2kHE

(
(Z1)2k)

= (2k)!
2kk! |t− s|

2kH .

Theorem 1.31. Fractional Brownian motion {Zt : t ≥ 0} has a version with continuous
paths.

Proof. Applying Lemma 1.30 we notice that

E
(
(Zt − Zs)2k) = (2k)!

k!2k |t− s|
2Hk,

for any integer k ≥ 1. Choosing k > 1
2H , we have a continuous version by the Kolmogorov

continuity criterion (Theorem 1.10), for all H ∈ (0, 1) .

From now on Z is assumed to be continuous. Moreover, Z is locally Hölder continuous of
the order β for any β < H, (see the definition of the Hölder continuity in Definition 1.15).
The proof of the locally Hölder continuity of fractional Brownian motion, can be found,
for example, in Sottinen [56]. We give a brief proof.

By Lemma 1.30 we infer

E
(
(Zt − Zs)2k) = C|t− s|2kH (1.10)

and so in the Kolmogorov continuity criterion α = 2k and β = 2kH − 1.

Theorem 1.32. Fractional Brownian motion has locally Hölder continuous version of
any order β < H.

Proof. Equation (1.10) states a connection between the Kolmogorov continuity criterion
and the Hölder continuity (on page 8), as follows, if

E|Xt −Xs|α ≤M |t− s|1+β

holds, then the process X is Hölder continuous of any order γ < β
α . Applying (1.10) the

process Z is Hölder continuous of the order H − 1
2k . When k →∞ we obtain that Z is

Hölder continuous of the order γ < H.
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Proposition 1.33. If a stochastic process is locally Hölder continuous of the order β
and γ < β, then the stochastic process is locally Hölder continuous of the order γ.

Proof. We assume that a stochastic process X is locally Hölder continuous of the order β
and I = [a, b] ⊂ R+, then

sup
s,t∈I;s6=t

|Xt −Xs|
|t− s|γ

= sup
s,t∈I;s6=t

|Xt −Xs|
|t− s|β

|t− s|β−γ

≤ sup
s,t∈I;s6=t

|Xt −Xs|
|t− s|β

(b− a)β−γ < M,

since |t− s| < b− a <∞ and β − γ > 0.

Applying Mishura [43, Section 1.2.] we have the kernel representation of increments’
covariance of fractional Brownian motion for H ∈ (0, 1

2 ) ∪ ( 1
2 , 1), that is

E ((Zt2 − Zt1)(Zs2 − Zs1)) =
s2∫
s1

t2∫
t1

(2H − 1)H(u− v)2H−2dudv, (1.11)

if s1 < s2 < t1 < t2.

We state the following proposition

Proposition 1.34. Let {Zt : t ≥ 0} be fractional Brownian motion and H ∈ (0, 1). Then

• if H = 1
2 the increments are independent (Bm case),

• if H > 1
2 the increments are positively correlated and

• if H < 1
2 the increments are negatively correlated.

Proof. We may prove this proposition using the covariance representation (1.8) of the
increments of fractional Brownian motion and the kernel representation (1.11).

We recall that if the autocorrelation function ρX(n) := E(X0Xn) is positive, the process
{Xt : t ∈ R} is positively correlated, and if it is negative, the process is negatively
correlated.

Thus we consider the covariance of the increments, in the case H = 1
2

E ((Zt2 − Zt1)(Zs2 − Zs1))

= 1
2((t2 − s1)2H − (t2 − s2)2H + (t1 − s2)2H − (t1 − s1)2H)

= 0.

Hence in the case of Brownian motion the increments are independent.
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In the case H 6= 1
2 we calculate the covariance of the increments of fractional Brownian

motion to use the kernel representation as follows

E ((Zt2 − Zt1)(Zs2 − Zs1)) =
s2∫
s1

t2∫
t1

(2H − 1)H(u− v)2H−2dudv

= (2H − 1)H
s2∫
s1

t2∫
t1

(u− v)2H−2dudv.

The integral is non-negative, since s1 < s2 < t1 < t2, and therefore

(2H − 1)H
s2∫
s1

t2∫
t1

(u− v)2H−2dudv > 0, when H >
1
2

and

(2H − 1)H
s2∫
s1

t2∫
t1

(u− v)2H−2dudv < 0, when H <
1
2

completing the proof.

Recall that Theorem 1.28 (ii) states stationarity of the increments of fractional Brownian
motion Z = {Zt : t ≥ 0}, however, Z itself is not stationary. Hence the natural step is to
define the increment process of fractional Brownian motion.

Definition 1.35. A stationary second order stochastic process {IZ(n) : n ∈ N0} is called
the increment process of fractional Brownian motion or the fractional Gaussian noise, if

IZ = {Zn+1 − Zn : n = 0, 1, 2 . . .} , (1.12)

and {Zt : t ≥ 0} is fractional Brownian motion.

The kernel representation (1.11) implies the following result. It can also be found, for
example, in [56, p. 9], but we present a brief proof.

Proposition 1.36. Let IZ be the increment process of fractional Brownian motion. Then
the autocorrelation function ρIZ (n) satisfies

ρIZ (n) := E (IZ(0)IZ(n))
= E (Z1(Zn+1 − Zn))

and holds

ρIZ (n) = θ(n2H−2), (1.13)

when n tends to ∞.

Proof. Note first that

ρIZ (n) = E (IZ(0)IZ(n))
= E ((Z1 − Z0)(Zn+1 − Zn))
= E (Z1(Zn+1 − Zn)) .
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Then we use the kernel representation (1.11) to obtain

E (Z1(Zn+1 − Zn)) =
1∫

0

n+1∫
n

(2H − 1)H(u− v)2H−2dudv

=
1∫

0

1∫
0

(2H − 1)H(t+ n− v)2H−2dtdv.

Applying twice the Mean Value Theorem we see that there exists d ∈ (0, 1) and c ∈ (0, 1),
such that

ρIZ (n) =
1∫

0

(2H − 1)H(d+ n− v)2H−2dv

= (2H − 1)H(d+ n− c)2H−2.

Denoting a := d− c, we have

ρIZ (n) = (2H − 1)H(n+ a)2H−2,

where −1 < a < 1. After some approximations, we obtain

(n+ a)2H−2 ≤ (n− 1)2H−2 ≤ 2n2H−2

and

(n+ a)2H−2 ≥ (n+ 1)2H−2 ≥ 1
2n

2H−2

and therefore

ρIZ (n) = (2H − 1)H(n+ a)2H−2 = θ(n2H−2),

when n is large and tending to infinity.

Since we have an asymptotic approximation of the autocorrelation function, we may
consider if the preceding increment process is long-range dependent or not. To study that
we may use Definition 1.18 and (1.13).

Proposition 1.37. The increment process IZ of fractional Brownian motion Z is

• long-range dependent if H > 1
2 ,

• short-range dependent if H < 1
2 .

Proof. From the proof of Proposition 1.36 we obtain

|ρIZ (n)| ≤ H(1− 2H)(n− 1)2H−2,

for H < 1
2 . We consider the sum of the absolute values of covariance and obtain

∞∑
n=1
|H(2H − 1)(n− 1)2H−2| =

∞∑
n=0
|H(2H − 1)n2H−2| <∞.
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Using direct comparison we infer that

∞∑
n=1

ρIZ (n) <∞,

for H < 1
2 . Applying again the proof of Proposition 1.36 we obtain

ρIZ (n) ≥ (2H − 1)H(n+ 1)2H−2,

for H > 1
2 . We consider the sum and obtain

∞∑
n=1

H(2H − 1)(n+ 1)2H−2 =
∞∑
n=2

H(2H − 1)n2H−2 =∞,

when 2H − 2 > −1. Thus
∞∑
n=1

H(2H − 1)(n+ 1)2H−2

diverges for H > 1
2 and therefore the sum

∞∑
n=1

ρIZ (n) also diverges by direct comparison.

We conclude, in the case H < 1
2 that the sum

∞∑
n=1

ρIZ (n) is finite and, in the case H > 1
2

that the sum
∞∑
n=1

ρIZ (n) is infinite. Using Definition 1.18 we conclude that the increment

process IZ is long-range dependent if H > 1
2 , and short-range dependent if H < 1

2 .

1.4.3 The Fractional Ornstein–Uhlenbeck process, fOU(1)

To define a fractional Ornstein–Uhlenbeck process as a solution of the Langevin SDE, we
proceed similarly as in the usual OU case, but we use fractional Brownian motion instead
of Brownian motion. Consider the following linear stochastic differential equation

dU
(Z,α)
t = −αU (Z,α)

t dt+ dZt, (1.14)

where α > 0. Using integrating factor eαt we obtain the solution as follows

U
(Z,α)
t = e−αt

(
x+

∫ t

0
eαsdZs

)
, (1.15)

where x is some random initial value. This pathwise Riemann–Stieltjes integral does
indeed exist (see, for example, Cheridito, Kawaguchi and Maejima [12]). For positive
values s the following integration by parts holds

s∫
0

eαudZu = eαsZs −
s∫

0

αeαuZudu. (1.16)

We define the two-sided fractional Brownian motion next:
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Definition 1.38. Let Z(−) = {Z(−)
t : t ≥ 0} be another fractional Brownian motion,

independent of Z, also starting from 0. When t ∈ R, the two-sided fractional Brownian
motion is

Ẑt :=
{
Zt , t ≥ 0,
Z

(−)
−t , t < 0.

Lemma 1.39. Let Ẑ = {Ẑt : t ∈ R} be the two-sided fractional Brownian motion. Then
the formula

ξ :=
0∫

−∞

eαsdẐs (1.17)

yields a well-defined random variable.

Proof. We first extend (1.16) for negative values by
0∫
s

eαudẐu = −eαsẐs −
0∫
s

αeαuẐudu. (1.18)

Then we have to prove that the limit on the right-hand side of (1.18) exists, when s→ −∞.
If we prove that the integral on the right-hand side in (1.17) exists and eαsẐs tends to
zero, then the random variable ξ is well defined.
If we define {

Z
(o)
t := t2H Ẑ− 1

t
: t > 0

}
,

then Z(o)
t is a centered Gaussian process and has the same covariance kernel as fractional

Brownian motion, since the covariance of
{
t2H Ẑ− 1

t
: t > 0

}
is given by

E
(
t2H Ẑ− 1

t
s2H Ẑ− 1

s

)
= 1

2 t
2Hs2H

(∣∣∣∣−1
t

∣∣∣∣2H +
∣∣∣∣−1
s

∣∣∣∣2H − ∣∣∣∣−1
t

+ 1
s

∣∣∣∣2H
)

= 1
2

(∣∣∣∣− tst
∣∣∣∣2H +

∣∣∣∣− tss
∣∣∣∣2H − ∣∣∣∣− tst + ts

s

∣∣∣∣2H
)

= 1
2

(
|s|2H + |t|2H − |−s+ t|2H

)
,

which is actually the same as the covariance of fractional Brownian motion {Zt : t > 0}.
We obtain {

Z
(o)
t : t > 0

}
d=
{
Ẑ−t : t > 0

}
.

We may prove that both of these processes

{Ẑ−t : t > 0} and {Z(o)
t : t > 0}

goes to the zero when t tends to the zero. By Definition 1.38 we know that Ẑ0 = 0.
Hence using the Borel-Cantelli Lemma we first prove lim sup

t→0+
Z

(o)
t = 0. Let ε > 0. Since

fractional Brownian motion has continuous paths, we have

Ẑ0 = lim
t→0+

Ẑ−t = 0
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and thus lim sup
t→0+

Ẑ−t = 0. This means that

P
(
Ẑ−t > ε i. o.

)
= 0.

If
∞∑
n=1

P
(
Z

(o)
1
n

> ε
)
<∞,

then the Borel-Cantelli Lemma implies that there exists ε > 0 such that

P
(
Z

(o)
1
n

> ε i. o.
)

= 0,

which means that lim sup
t→0+

Z
(o)
t = 0 almost surely.

We manipulate the sum of probabilities as follows
∞∑
n=1

P
(
Z

(o)
1
n

> ε
)

=
∞∑
n=1

P
((

1
n

)2H
Ẑ−n > ε

)

=
∞∑
n=1

P
((

1
n

)2H
nH Ẑ−1 > ε

)

=
∞∑
n=1

P
((

1
n

)H
Ẑ1 > ε

)

=
∞∑
n=1

P
(
Ẑ1 > εnH

)
.

For the term inside the summation on the right-hand side, we have the upper bound

P(Ẑ1 > εnH) ≤ E(Ẑ2k
1 )

ε2kn2kH , (1.19)

which is obtained using inequality

E(Ẑ2k
1 ) ≥ E(Ẑ2k

1 1{Ẑ1>εnH}
)

≥
(
εnH

)2k P(Ẑ1 > εnH).

Using (1.19), we infer
∞∑
n=1

P
(
Z

(o)
1
n

> ε
)

=
∞∑
n=1

P
(
Ẑ1 > εnH

)

≤
∞∑
n=1

E
(
Ẑ2k

1

)
ε2kn2kH .

This sum converges for every H > 0, since we can choose 2k, such that 2kH > 1, and
∞∑
n=1

1
n2kH <∞.
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Hence
∞∑
n=1

P
(
Z

(o)
1
n

> ε
)
<∞.

Applying Borel-Cantelli Lemma there exists ε > 0 such, that

P
(
Z

(o)
1
n

> ε i. o.
)

= 0

and therefore we deduce that lim sup
t→0+

Z
(o)
t = 0 a.s. for any Z(o).

Next we prove that lim inf
t→0+

Z
(o)
t = 0 a.s.. This follows from the fact that {−Z(o)

t , t ≥ 0} is
also fractional Brownian motion and, hence

lim inf
t→0+

Z
(o)
t = − lim sup

t→0+

(
−Z(o)

t

)
= 0 a.s..

Therefore the property
lim
t→0+

Z
(o)
t = lim

t→0+
Ẑ−t = 0 a.s. (1.20)

holds. We still have to prove that the integral on the right-hand side of (1.18) exists when
s tends to −∞. First we show that∣∣∣∣∣∣

N∫
−∞

αeαuẐudu

∣∣∣∣∣∣ <∞,
for small negative N . To see this, we deduce from (1.20) that

lim
s→−∞

Ẑs
|s|2H

= lim
t→0+

t2H Ẑ− 1
t

= lim
t→0+

Z
(o)
t = 0, (1.21)

and therefore for any ε > 0 there exists N < 0 such that
∣∣∣Ẑs/s2H

∣∣∣ < ε for any s < N .
Thus, we infer ∣∣∣∣∣∣

N∫
−∞

αeαuẐudu

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∫

−∞

αeαu|u|2H Ẑu
u2H du

∣∣∣∣∣∣
≤ ε

∣∣∣∣∣∣
N∫

−∞

αeαu|u|2Hdu

∣∣∣∣∣∣
< ∞.

In the case α > 0, we can use the same argument (1.21) to prove that eαsẐs tends to
zero, when s tends to −∞

lim
s→−∞

eαsẐs = lim
s→−∞

eαs|s|2H Ẑs
|s|2H

= 0,

thereby completing the proof.
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Remark 1.40.
1) Note that for Brownian motion (H = 1

2 ) the result

lim
s→−∞

Ẑs
|s|2H

= 0 (1.22)

is an application of the Strong Law of Large Numbers (SLLN), that is

1
n

n∑
i=0

(
Bn−i −Bn−(i+1)

)
= Bn

n
→ E(B1) = 0.

Hence the result (1.22) appear to be a kind of strong law of large numbers for fractional
Brownian motion. Note that we cannot use the Kolmogorov strong law of large numbers
for fractional Brownian motion, since the Kolmogorov strong law of large numbers is valid
only for independent and identically distributed random variables.

2) A different proof that ξ is well defined can be found in Maslowski and Schmalfuss [39]
and in Garritdo-Atienza, Kloeden and Neuenkirch [21].

We apply the previous result, setting x = ξ in (1.15) we get

U
(Z,α)
t = e−αt

∫ t

−∞
eαsdẐs. (1.23)

Theorem 1.41. The process {U (Z,α)
t : t ∈ R} is stationary.

Proof. In the case of Gaussian process by Theorem 1.3 stationarity follows from equality

E
(
U

(Z,α)
t1+h U

(Z,α)
t2+h

)
= E

(
U

(Z,α)
t1 U

(Z,α)
t2

)
,

for any h ∈ R. Let h ∈ R, then changing variables r := s− h in both integrals, we obtain

E
(
U

(Z,α)
t1+h U

(Z,α)
t2+h

)
= E

((
e−α(t1+h)

∫ t1+h

−∞
eαsdẐs

)(
e−α(t2+h)

∫ t2+h

−∞
eαsdẐs

))

= E
((

e−α(t1+h)
∫ t1

−∞
eα(r+h)dẐr+h

)(
e−α(t2+h)

∫ t2

−∞
eα(r+h)dẐr+h

))
.

Since the increments of fractional Brownian motion are stationary, that is

{Zt+h − Zs+h : s, t ∈ R} d= {Zt − Zs : s, t ∈ R}

and the integrals are pathwise Riemann-Stieltjes integrals, which actually consist of the
sums of the increments of Z, we conclude

E
(
U

(Z,α)
t1+h U

(Z,α)
t2+h

)
= E

((
e−αt1

∫ t1

−∞
eαrdẐr

)(
e−αt2

∫ t2

−∞
eαrdẐr

))
= E

(
U

(Z,α)
t1 U

(Z,α)
t2

)
,

thereby completing the proof.



1.4. Some important Gaussian processes 27

Definition 1.42. The process U (Z,α) = {U (Z,α)
t : t ∈ R} introduced in (1.23) is called the

stationary fractional Ornstein–Uhlenbeck process of the first kind, abbreviated fOU(1).

1.4.4 The Doob transformation of fBm
In Brownian motion case, there are two ways to construct stationary Ornstein–Uhlenbeck
processes: one via Definition 1.22 and the other via (1.4). We are interested in studying
the same kind of situation for fractional Brownian motion. We will prove that for fractional
Brownian motion these two processes have different finite dimensional distributions.

The time and space scaling fractional Ornstein–Uhlenbeck process is called a Doob (as
also in the OU process case) transformation of fractional Brownian motion, see [16, Eq.
(1.2.1)] or a Lamperti transformation of fBm, as in [12].

The Doob transformation is a deterministic time and space transformation, but a Lamperti
transformation is a larger class of stochastic semi-stable processes, therefore we do not use
the term the Lamperti transformation for this process. The concept semi-stable means
the same as self-similarity in 1.16, self-similarity being nowadays more commonly used.
See, for example, Chaumont, Panti and Rivero [10].

With Ornstein–Uhlenbeck processes we did not use the concept of Lamperti transforma-
tion, since, in addition to the above, Ornstein–Uhlenbeck processes were described in the
middle of the 20th century, but the concept of Lamperti transformation of fBm did not
appear until in the latter part of the 20th century. In fact the Lamperti transformation is
more than mere the time scaling of a process.

Definition 1.43. Let Z = {Zt : t ≥ 0} be the fractional Brownian motion. Then the
process X(D,α) = {X(D,α)

t : t ∈ R} is the Doob transformation of fBm (abbreviated fOU)
if

X
(D,α)
t := e−αtZτt ,

where t ∈ R, H ∈ (0, 1), α > 0 and τt = He
α
H t

α
.





2 Covariances and spectral density
functions

2.1 Covariances and stationarity

2.1.1 Covariance of the Doob transformation of fBm
The covariance of the Doob transformation X(D,α) of fBm may be directly computed
from the covariance of fractional Brownian motion. Using the self-similarity of fBm, we
infer that the random variable X(D,α)

t is normally distributed with zero mean and the
variance

(
H
α

)2H for all t. Calculations of the covariance concurrently imply stationarity
of the process.

Proposition 2.1. The covariance of the Doob transformation of fBm is

E
(
X

(D,α)
t X(D,α)

s

)
(2.1)

= 1
2

(
H

α

)2H (
eα(t−s) + e−α(t−s) − eα(t−s)

(
1− e−

α(t−s)
H

)2H
)
,

when t > s, and therefore the Doob transformation of fBm is stationary.

Proof. Using covariance of fBm with τt = He
α
H
t

α , we calculate the covariance as follows

E
(
X

(D,α)
t X(D,α)

s

)
(2.2)

= E
(
e−αtZτte−αsZτs

)
= e−α(t+s) 1

2

(
H

α

)2H (
e2αt + e2αs − e2αt

(
1− e

−α(t−s)
H

)2H
)

(2.3)

= 1
2

(
H

α

)2H (
eα(t−s) + e−α(t−s) − eα(t−s)

(
1− e

−α(t−s)
H

)2H
)
.

Since the process X(D,α) is Gaussian and, its covariance function depends only on the
difference, whence the process is stationary.

2.1.2 Covariance of fOU(1)
The covariance function of fOU(1) is more complicated to calculate. The asymptotic
formula of the covariance of U (Z,α) is given by [12, Theorem 2.3.].

29
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Proposition 2.2 ([12], Th. 2.3.). Let H ∈ (0, 1
2 ) ∪ ( 1

2 , 1) and N = 1, 2, . . .. Then

E
(
U (Z,α)
s U

(Z,α)
s+t

)
(2.4)

= 1
2

N∑
n=1

α−2n

(2n−1∏
k=0

(2H − k)
)
t2H−2n + O(t2H−2N−2),

for s ∈ R and when t→∞.

2.2 On asymptotic behaviour of the Doob transformation of
fBm

The OU process introduced by Definition 1.22, called the Doob transformation, is short-
range dependent. Similarly OU defined in (1.4) is also short-range dependent. This follows
from their covariance functions. This is one of the reasons why we consider behaviour of
covariances of fOU and fOU(1), for large values of t. Hence, without a loss of generality
we may assume that t ≥ 0.

Recall that both processes {X(D,α)
t : t ∈ R} and {U (Z,α)

t : t ∈ R} are stationary.

Theorem 2.3 ([29], Prop. 3.1.). The Doob transformation of fBm {X(D,α)
t : t ≥ 0} is

short-range dependent for all H ∈ (0, 1).

Proof. We start by writing the covariance of X(D,α)
t in a more usable form. Using Taylor

series

(1 + x)2H = 1 +
∞∑
n=1

2H(2H − 1) · · · (2H − n+ 1)
n! xn, when |x| < 1, (2.5)

and setting x = −e−αtH , we infer

(
1− e−αtH

)2H
= 1 +

∞∑
n=1

2H(2H − 1) · · · (2H − n+ 1)
n!

(
−e−αtH

)n
= 1 +

∞∑
n=1

(
2H
n

)(
−e−αtH

)n
, (2.6)

since |e−αtH | < 1 and αt
H > 0, for α, t > 0 and H ∈ (0, 1).

Using Proposition 2.1 and (2.6) we compute

E
(
X

(D,α)
t X

(D,α)
0

)
= 1

2

(
H

α

)2H
(

e−αt − eαt−αtH
∞∑
n=1

(
2H
n

)
(−1)ne−

αt(n−1)
H

)

= 1
2

(
H

α

)2H
(

e−αt − e−αt( 1
H−1)

∞∑
n=1

(
2H
n

)
(−1)ne−

αt(n−1)
H

)
(2.7)

= 1
2

(
H

α

)2H
e−αt − 1

2

(
H

α

)2H
e−αt( 1

H−1)
∞∑
n=1

(
2H
n

)
(−1)ne−

αt(n−1)
H .
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Obviously, the sum of the first part of the previous covariance, namely
∞∑
n=1

1
2

(
H

α

)2H
e−αn

converges as the geometric series. Therefore we consider the sum of the latter part. We
find an upper bound of the sum as follows∣∣∣∣∣

∞∑
n=1

(
2H
n

)
(−1)ne−

αt(n−1)
H

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
n=0

(
2H
n+ 1

)
(−1)n+1e−αtnH

∣∣∣∣∣
=

∣∣∣∣∣−2H +
∞∑
n=1

n− 2H
n+ 1

(
2H
n

)
(−1)ne−αtnH

∣∣∣∣∣
≤ |−2H|+

∣∣∣∣∣
∞∑
n=1

(
2H
n

)
(−1)ne−αtnH

∣∣∣∣∣ , (2.8)

since
∣∣∣∣n− 2H
n+ 1

∣∣∣∣ < 1. It is allowed to use triangle inequality in (2.8), since the sum

∞∑
n=1

n− 2H
n+ 1

(
2H
n

)
(−1)ne−αtnH

is not actually alternative

• if H < 1
2 , the sum is always positive, because 2H is positive, 2H − 1 is negative

and all the rest (n− 3 pieces) are negative. So, if n is odd, then n− 2 is also odd
and the sum is positive.

• if H > 1
2 , the sum is always negative, since 2H is positive, 2H − 1 is positive and

all the rest (n− 3 pieces) are negative. So, if n is odd, then n− 3 is even and the
sum is negative and if n is even, then n− 3 is odd and the sum is negative.

Using (2.6), we obtain∣∣∣∣∣
∞∑
n=1

(
2H
n

)
(−1)ne−

αt(n−1)
H

∣∣∣∣∣ ≤ |−2H|+
∣∣∣(1− e−αtH )2H − 1

∣∣∣ < 4.

Hence ∣∣∣∣∣e−αt( 1
H−1)

∞∑
n=1

(
2H
n

)
(−1)ne−

αt(n−1)
H

∣∣∣∣∣ < 4e−αt( 1
H−1).

Note that H ∈ (0, 1) implies that 1
H − 1 > 0.

Since 0 < 1
H − 1 ≤ 1, for H ≥ 1

2 , it holds∣∣∣E(X(D,α)
t X

(D,α)
0

)∣∣∣ ≤ K|e−αt( 1
H−1))|,

for some K ∈ R+ and further

E
(
X

(D,α)
t X

(D,α)
0

)
= O(e−αt( 1

H−1))) (2.9)
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by Remark 1.17. In the case H < 1
2 , it holds

E
(
X

(D,α)
t X

(D,α)
0

)
= O(e−αt). (2.10)

Thus we have
∞∑
n=1

E
(
X(D,α)
n X

(D,α)
0

)
≤ K

∞∑
n=1

e−αn( 1
H−1) <∞ (2.11)

or
∞∑
n=1

E
(
X(D,α)
n X

(D,α)
0

)
≤ K

∞∑
n=1

e−αn <∞. (2.12)

Applying Definition 1.18, we note that the process {X(D,α)
t : t ≥ 0} is short-range

dependent.

We obtain the following corollary directly from the proof of the previous theorem.

Corollary 2.4. For the covariance function of the Doob transformation of fBm {X(D,α)
t :

t ≥ 0}, we have

E
(
X

(D,α)
t X

(D,α)
0

)
= O(e−αt), if H <

1
2

E
(
X

(D,α)
t X

(D,α)
0

)
= O(e−αt( 1

H−1))), if H ≥ 1
2 .

Theorem 2.5 ([29], Prop. 2.4.). The fractional Ornstein–Uhlenbeck process of the first
kind {U (Z,α)

t : t ∈ R} is long-range dependent if H > 1
2 , and short-range dependent if

H < 1
2 .

Proof. Let c ∈ R be arbitrary. Using (2.4) of Proposition 2.2 in the case H > 1
2 , we

obtain
∞∑
n=0
|ρU(Z,α)(n)| =

∞∑
n=0
|E
(
U (Z,α)
c U

(Z,α)
c+n

)
|

=
∞∑
n=0

∣∣∣∣∣12
N∑
k=1

α−2k

(2k−1∏
i=0

(2H − i)
)
n2H−2k + O(n2H−2N−2)

∣∣∣∣∣
=

∞∑
n=0

(
1
2

N∑
k=1

α−2k

(2k−1∏
i=0

(2H − i)
)
n2H−2k + O(t2H−2N−2)

)

= 1
2

∞∑
n=0

α−22H(2H − 1)n2H−2 (2.13)

+1
2

∞∑
n=0

N∑
k=2

α−2k

(2k−1∏
i=0

(2H − i)
)
n2H−2k (2.14)

+
∞∑
n=0

O(n2H−2N−2). (2.15)
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We prove that the sums (2.14) and (2.15) are finite. First, we consider the term

α−2k

(2k−1∏
i=0

(2H − i)
)
n2H−2k inside the sums of (2.14). Since it is positive and finite, we

use the Fubini theorem (see Rudin [54, Theorem 7.8.]) to obtain
∞∑
n=0

N∑
k=2

α−2k

(2k−1∏
i=0

(2H − i)
)
n2H−2k =

N∑
k=2

α−2k

(2k−1∏
i=0

(2H − i)
) ∞∑
n=0

n2H−2k

< ∞,

since
∞∑
n=0

n2H−2k converges. The sum (2.15) converges, since 2H − 2N − 2 is always

less than −1. We know that the sum of covariances
∞∑
n=0
|ρU(Z,α)(n)| converges only if

1
2

∞∑
n=0

α−22H(2H−1)n2H−2 converges. Hence in the case H > 1
2 ,
∞∑
n=0
|ρU(Z,α)(n)| diverges.

Lastly, we consider the case H < 1
2 . In this case the sum −1

2

∞∑
n=0

α−22H(2H − 1)n2H−2

converges, since H < 1
2 and therefore

∞∑
n=0
|ρU(Z,α)(n)| converges by comparison test.

Consequently the series
∞∑
n=0
|ρU(Z,α)(n)| converges if H < 1

2 and diverges if H > 1
2 , thereby

completing the proof.

With the next corollary we show that the processes fOU and fOU(1) do not have the
same finite dimensional distributions following the idea presented in Kaarakka [28] (see
also [12]). We also present this corollary and the proof here, since it follows easily from
the previous theorems.

Corollary 2.6. The fractional Ornstein–Uhlenbeck process of first kind and the Doob
transformation of fBm have not the same finite dimensional distributions.

Proof. fOU(1) is long-range dependent if H > 1
2 , and short-range dependent if H < 1

2 by
Theorem 2.5. The Doob transformation of fBm is short-range dependent for all H ∈ (0, 1)
by Theorem 2.3. These processes are Gaussian, the covariance determines its distribution
uniquely and therefore their finite dimensional distributions are not the same when H > 1

2 .
If H < 1

2 , both of these processes are short-range dependent, but the covariance of the
Doob transformation X(D,α) vanishes exponentially due to (2.10) and the covariance of
fOU(1), U (Z,α), vanishes as a power function on the strength of Proposition 2.2. This
establishes the desired property.

2.3 Spectral density function

Bochner 1 proved a theorem where every non-negative definite function can be represented
as a Fourier transformation or Riemann–Stieltjes integral, where the integrator is an odd

1Salomon Bochner (1899-1982), American mathematician (born in Poland).
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increasing function. Since every stationary Gaussian process has a non-negative definite
covariance function (Theorem 1.4) of one variable, this theorem may be applied to find an
odd increasing function ∆′ that is called spectral density function of this process (see [18]).
This function is used to find a trigonometric isometry between the Gaussian Hilbert space
G (that is Hilbert space formed by Gaussian processes) and L2(R, d∆) via the formula
(from the Theorem 2.7, which we will prove later in this section)

E(Xt1Xt2) =
∫

eiγt1eiγt2d∆(γ), (2.16)

for all t1, t2 ∈ R. This is the main tool of the prediction, since it connects the two spaces
and their elements.

The spectral density function is used in prediction. Dym and McKean described a
prediction method in their book [18], and we give here a brief representation of this idea.
Lamperti also studied the same problem in his book [36].

Let G be the Gaussian Hilbert space and let {Xt : t ∈ R} ∈ G be a random process with
the spectral function ∆. Then {Xt : t ∈ R} is Gaussian and the conditional probability
P (XT ≤ x | Xt : t ≤ 0) also has Gaussian distribution. The prediction means that we
solve the conditional expectation and the conditional mean square error

mc = E (XT | Xt : t ≤ 0) and Qc = E
(

(XT −m)2 | Xt : t ≤ 0
)
.

Actually the conditional expectation mc is the perpendicular projection of XT onto the
space generated by {Xt : t ≤ 0}. In other words, it is the best linear approximation to
XT given {Xt : t ≤ 0} and for the Gaussian case the linear approximation is the best
possible. Dym and McKean describe a way to solve mc and Qc for stationary Gaussian
processes.

We may calculate the spectral density function ∆′ (γ) using the covariance function of
X. If we have a spectral density function of a stationary Gaussian process, with some
condition, then using the spectral density function we get the connection between the
spaces G and L2(R, d∆).

Let L′[a,b] be the closed subspace of L2(R, d∆) spanned by {eiγt : a ≤ t ≤ b}. In this
particular case, the conditional expectation of XT is actually a projection onto L′(−∞,0).
To calculate the projection, we apply another isometry between a Hardy class in the
upper half plane H2+ and the space of the Fourier transformations of the space L′(−∞,0).
Then we do the projection using the Hardy Class and the outer function of the Hardy
class. These classes and their properties are all described precisely in [18].

Prediction theory is very interesting and applicable, for example, in finance, and it might
be one object of our interest in future, but it does not belong in the main focus of this
dissertation and so we concentrate on isometry (2.16).

The next theorem and the sketch of its proof are from [18], where the writers state that
" the proof is adapted from Carleman [1944]." In this chapter there are many integrals,
where the integration is over the whole real line. For notational simplification, we do not
indicate this in the proof. Instead of nondecreasing, which was used in [18], we use term
increasing here meaning the same.

In the proof of the Bochner Theorem we need Fourier transformation and its inverse
transformation, therefore we define these transformations: The Fourier transformation of
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a function f is
∧ : f̂(γ) =

∫
f(x)eiγxdx,

and its inverse Fourier transformation is

∨ : f̌(x) = 1
2π

∫
f(γ)e−iγxdγ.

There exists a Fourier transformation and its inverse transformation, see, for example,
Kaplan [30, p. 519] if ∫ ∞

−∞
|f(γ)|dγ <∞. (2.17)

Theorem 2.7. [The Bochner Theorem] If the covariance function Q of a stationary
Gaussian process X is continuous at zero, then Q is possible to express as

Q(t) =
∫

eiγtd∆(γ), (2.18)

with an odd increasing function ∆ satisfying lim
γ→∞

∆(γ) <∞.

The proof of the Bochner theorem is long and complicated. In many books it is written
very briefly and details are omitted. For the sake of completeness we want to clarify its
details.

In the Bochner theorem, the covariance is a function of t. Substituting in (2.18) t := t2−t1,
we have

Q(t2 − t1) =
∫

eiγ(t2−t1)d∆(γ) =
∫

eiγt2(eiγt1)d∆(γ).

Proof. The Bochner Theorem. We first write an outline of the proof.

• We start by defining u(ω) = u(a, b) =
∫

ei(at+bi|t|)Q(t)dt.

• Then we prove that in the upper half plane the function u(ω) is bounded, harmonic
and non-negative

• Since u(ω) is bounded, harmonic and non-negative in the upper half plane, we are

allowed to apply the Poisson formula and obtain u(ω) = b

π

∫
d∆(γ)

(γ − a)2 + b2
, where

∆ is an odd increasing function.

• Finally we use the inverse Fourier transform to obtain the function Q(t).

Note that we have ω = a+ bi in this proof. Consider the Fourier transformation given by

u(ω) =
[
e−b|t|Q(t)

]∧
(a) (2.19)

=
∫

eiate−b|t|Q(t)dt

=
∫

ei(at+bi|t|)Q(t)dt.
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First we prove that u(ω) is bounded and harmonic in the upper half plane.
Let b > 0, then

|u(ω)| =
∣∣∣∣∫ eiate−b|t|Q(t)dt

∣∣∣∣
≤

∫
|eiat|e−b|t||Q(t)|dt

≤ max
t≥0
|Q(t)|

∫
e−b|t|dt

≤ 2
b

max
t≥0
|Q(t)|

= 2
b
‖Q‖∞ (2.20)

= 2
b

Q(0),

where we obtain the last equation using the Lemma 1.14, which says that the maximum
value of Q is attained at zero. Hence u(ω) is bounded.
To prove that u(ω) is harmonic, we compute the Laplacian of u(ω) as follows

∂2

∂a2u(ω) + ∂2

∂b2
u(ω)

= ∂2

∂a2

∫
eiate−b|t|Q(t)dt+ ∂2

∂b2

∫
eiate−b|t|Q(t)dt.

(2.21)

We are allowed to change the order of the integration and the differentiation (or to be
precise the limit)

∂

∂x

∫
f(t, x)dt

by using the Lebesgue Dominated Convergence Theorem (for example, in Royden [53]
and more precisely in Ash [1, p. 52]), if

• the absolute value of the integrand function is integrable for any x:
∫
|f(t, x)|dt <∞,

• the absolute value of the derivative of the integrand function is bounded by some
integrable function i.e.

∣∣∣∣ ∂∂xf(t, x)
∣∣∣∣ ≤ N(t) and

∫
N(t)dt <∞.

In this case, the integrand is bounded by an integrable function, since∣∣∣eiate−b|t|Q(t)
∣∣∣ ≤ ∣∣∣e−b|t|Q(t)

∣∣∣
≤

∣∣∣e−b|t|Q(0)
∣∣∣

and ∫ ∣∣∣e−b|t|Q(0)
∣∣∣ dt = |Q(0)|

∫
e−b|t|dt

= 2
b
|Q(0)| <∞.
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Since the derivative of the integrand is dominated by the integrable function as follows∣∣∣∣ ∂∂aeiate−b|t|Q(t)
∣∣∣∣ =

∣∣∣iteiate−b|t|Q(t)
∣∣∣ ≤ ∣∣∣te−b|t|Q(0)

∣∣∣ ,
where

|Q(0)|
∫ (∣∣∣te−b|t|∣∣∣) dt = 2 |Q(0)|

b2
<∞.

Also in the second term of (2.21), the absolute value of the derivative function of the
integrand is also dominated by an integrable function∣∣∣∣ ∂∂beiate−b|t|Q(t)

∣∣∣∣ =
∣∣∣(−|t|)eiate−b|t|Q(t)

∣∣∣ ≤ ∣∣∣|t|e−b|t|Q(0)
∣∣∣ ,

where
|Q(0)|

∫ (∣∣∣|t|e−b|t|∣∣∣) dt = 2 |Q(0)|
b2

<∞.

Hence we may change the order of integration and differentiation

∂2u(ω)
∂a2 + ∂2u(ω)

∂b2
= ∂

∂a

∫
∂

∂a
eiate−b|t|Q(t)dt (2.22)

+ ∂

∂b

∫
∂

∂b
eiate−b|t|Q(t)dt

= ∂

∂a

∫
iteiate−b|t|Q(t)dt (2.23)

+ ∂

∂b

∫
(−|t|)eiate−b|t|Q(t)dt.

Similarly we may change the order of the integration and the differentiation again, since∣∣∣iteiate−b|t|Q(t)
∣∣∣ ≤ ∣∣∣te−b|t|Q(0)

∣∣∣
and also ∣∣∣(−|t|)eiate−b|t|Q(t)

∣∣∣ ≤ ∣∣∣te−b|t|Q(0)
∣∣∣ ,

where ∫ ∣∣∣te−b|t|Q(0)
∣∣∣ dt <∞.

Thus
∂

∂a

∣∣∣iteiate−b|t|Q(t)
∣∣∣ =

∣∣∣t2eiate−b|t|Q(t)
∣∣∣ ≤ ∣∣∣t2e−b|t|Q(0)

∣∣∣ ,
and

∂

∂b

∣∣∣teiate−b|t|Q(t)
∣∣∣ =

∣∣∣t2eiate−b|t|Q(t)
∣∣∣ ≤ ∣∣∣t2e−b|t|Q(0)

∣∣∣ ,
where

|Q(0)|
∫ ∣∣∣t2e−b|t|

∣∣∣ = 4 |Q(0)|
b3

<∞.
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Hence

∂2u(ω)
∂a2 + ∂2u(ω)

∂b2

=
∫

∂

∂a
iteiate−b|t|Q(t)dt+

∫
∂

∂b
(−|t|)eiate−b|t|Q(t)dt

= −
∫
t2eiate−b|t|Q(t)dt+

∫
t2eiate−b|t|Q(t)dt

= 0

and therefore u(ω) is harmonic.

We also prove that u(ω) is non-negative. Since

−1
b

1
2

(
lim

k→−∞
(−1 + ebk) + lim

h→∞
(e−bh − 1)

)
= 1
b
,

we infer
1
b

= −1
b

1
2

∫ ∞
−∞

(−b)e−b|t|dt.

Substituting this equation into (2.19):

1
b
u(ω) = 1

2

(
−1
b

)∫
(−b)e−b|t1|dt1

∫
eiat2e−b|t2|Q(t2)dt2

= 1
2

∫ ∫
e−b|t1|eiat2e−b|t2|Q(t2)dt1dt2. (2.24)

We change the variables t1 by t1 + t2 and t2 by t1 − t2 and we obtain further

1
b
u(ω) =

∫ ∫
eia(t1−t2)e−b(|t1+t2|+|t1−t2|)Q(t1 − t2)dt1dt2.

Since
|t1 + t2|+ |t1 − t2| = |t1|+ |t2|+ ||t1| − |t2|| (2.25)

for all t1, t2 and

e−b|t| = b

π

∫ ∞
−∞

eiγt
γ2 + b2

dγ, (2.26)

(see, for example, in Erdélyi (editor) [20, p 118]) we obtain

1
b
u(ω) =

∫ ∫
eiat1e−b|t1|e−iat2e−b|t2|

· b
π

∫ eiγ(|t1|−|t2|)

γ2 + b2
dγQ(t1 − t2)dt1dt2

= b

π

∫ ∫ ∫
eiat1−b|t1|+iγ|t1|e−iat2−b|t2|−iγ|t2|

· 1
γ2 + b2

Q(t1 − t2)dt1dt2dγ

= b

π

∫ 1
γ2 + b2

∫ ∫
fγ(t1)fγ(t2)Q(t1 − t2)dt1dt2dγ,
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where fγ(t1) = e−b|t|+i(at+γ|t|) and fγ(t2) is its complex conjugate.
We may approximate the double integral by a limit of the sums as follows∫ ∫

fγ(t1)fγ(t2)Q(t1 − t2)dt1dt2

= lim
n→∞

n∑
j=−n

n∑
k=−n

fγ

(
j

n

)
fγ

(
k

n

)
Q
(
j − k
n

)
2
n

2
n

= lim
n→∞

n∑
j=−n

n∑
k=−n

fγ

(
j

n

)
fγ

(
k

n

)
E
(
X j

n
X k

n

) 2
n

2
n

= lim
n→∞

E

 n∑
j=−n

fγ

(
j

n

)
X j

n

2
n

n∑
k=−n

fγ

(
k

n

)
X k

n

2
n


= lim
n→∞

E


∣∣∣∣∣∣

n∑
j=−n

fγ

(
j

n

)
X j

n

2
n

∣∣∣∣∣∣
2


≥ 0.

Consequently the function u is non-negative.
Every positive harmonic function on the upper half plane has the Poisson formula (see,
for example, [18, Section 1.2])

u(ω) = kb+ b

π

∫ 1
|γ − ω|2

d∆(γ), (2.27)

where k ≥ 0 is a constant and ∆ is an increasing function with∫ 1
γ2 + 1d∆(γ) <∞. (2.28)

The right-hand side of (2.27) is unbounded if k 6= 0. Since u is bounded k must be equal
to zero for all b ∈ R+. Hence we obtain

u(ω) = b

π

∫
d∆(γ)

(γ − a)2 + b2
. (2.29)

Formula (2.29) is valid for increasing function ∆, which is integrable in the sense as
inequality (2.28).
To prove ∆(γ) odd, we consider the function ub := u(a, b), for b > 0

ub(a) =
∫ ∞
−∞

ei(at+ib|t|)Q(t)dt.

Since Q is even by Corollary 1.12, substituting t = −s we obtain

ub(a) = −
∫ −∞
∞

ei(−as+ib|−s|)Q(−s)ds,

=
∫ ∞
−∞

ei(−as+ib|s|)Q(s)ds

= ub(−a),
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hence ub is even. Applying the Poisson formula (2.29), we note that ∆(γ) must be odd.

The condition lim
γ→∞

∆(γ) <∞ is valid, since

2 (∆(N)− 0) = 2
N∫

0

d∆(γ)

= 2
N∫

0

lim
b→∞

b2

γ2 + b2
d∆(γ).

Changing the order of integration and limits using the Lebesgue Convergence Theorem
[53, Ch. 11 Sec.3 Theorem 16] and applying the formula (2.20) we obtain further

2 (∆(N)− 0) ≤ lim
b→∞

2πb

 b

π

∞∫
0

1
γ2 + b2

d∆(γ)


= lim

b→∞
πbu(0, b)

≤ π‖Q‖∞ <∞.

Finally, we use the inverse formula of u(a, b) =
[
e−b|t|Q(t)

]∧
. The constant b is fixed and

we make the transformation with respect to a. Note that in the following calculation the
equality signs are almost surely (almost everywhere) valid:

A := e−b|t|Q(t)

=
[
e−b|t|Q(t)

]∧∨
= u(a, b)∨

=

 b
π

∞∫
∞

d∆(γ)
(γ − a)2 + b2

∨

= − 1
2π

∞∫
−∞

b

π

∞∫
∞

e−iat d∆(γ)
(γ − a)2 + b2

da.

If we make the substitution s = γ − a and then change the order of integrations using the
Fubini Theorem in [54, Theorem 7.8.], we obtain

A = 1
2π

∞∫
−∞

 b

π

∞∫
∞

eist
s2 + b2

ds

 e−iγtd∆(γ).

Applying (2.26) we compute further

A = 1
2π

∞∫
−∞

e−b|t|e−iγtd∆(γ)

= e−b|t| 1
2π

∞∫
−∞

e−iγtd∆(γ).
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Now we have proved that

Q(t) = 1
2π

∞∫
−∞

e−iγtd∆(γ) a.s., for all t. (2.30)

Since Q is continuous and the right-hand side of (2.30) is a continuous function of t,
we infer that equality (2.30) holds everywhere. An adjustment of the minus γ and 2π
completes this proof as follows

Q(t) = 1
2π

∞∫
−∞

e−iγtd∆(γ)

= 1
2π

−∞∫
∞

e−i(−γ)td∆(−γ)

= 1
2π

∞∫
−∞

eiγtd∆(γ)

if we embed 1
2π into function ∆, we obtain the assertion.

It is possible to do Lebesgue decomposition of the measure induced by ∆ denoted by
d∆(γ), as follows

d∆(γ) = d∆◦(γ) + ∆′(γ)dγ.
See, for example, [53, ch.11. Sec. 6. Prop. 24.],

The singular part d∆◦(γ) is singular with respect to Lebesgue measure dγ and the
nonsingular part, which is absolutely continuous with respect to the Lebesgue measure dγ.

We recall that

• ∆′(γ)dγ is absolutely continuous with respect to dγ, that is, if
∫
A
dγ = 0, then∫

A
∆′(γ)dγ = 0, for all Lebesgue measurable A.

• d∆◦(γ) is singular with respect to dγ, that is, there exists Lebesgue measurable E
such that

∫
E
dγ = 0 and

∫
Ω\E d∆◦(γ) = 0.

We have a Riemann-Stieltjes measure ∆, which can be thought of as a Borel measure.
Every Borel measure can be decomposed using the Lebesgue decomposition theory as
before. Hence ∫

eiγtd∆(γ) =
∫

eiγt∆′(γ)dγ +
∫

eiγtd∆◦(γ).

The function ∆′ is called the spectral density of the underlying Gaussian process.

2.4 Spectral density functions of OU and fOU

In this section we apply the Bochner theorem to find the spectral density functions of the
Ornstein-Uhlenbeck process and the Doob transformation of fBm (fOU).
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2.4.1 Spectral density function of the Ornstein–Uhlenbeck process
We calculate the spectral density function of OU process. First we manipulate the
covariance function and using Formula (2.26) we obtain the spectral density function. Let
t > 0, then

Q(t) = E(XtX0)

= e−αt
2α

= e−α|t|
2α

= 1
2α

∞∫
−∞

eiγtα
π

1
γ2 + α2 dγ

= 1
2π

∞∫
−∞

eiγt 1
γ2 + α2 dγ.

Hence the spectral density function of Ornstein-Uhlenbeck process is

∆′ (γ) = 1
2π

1
γ2 + α2 .

Note also that ∫ ∞
−∞

∣∣∣∣ 1
2π

1
γ2 + α2

∣∣∣∣ dγ = 1
2π

∫ ∞
−∞

1
γ2 + α2 dγ = 1

2α <∞.

2.4.2 Spectral density function of the Doob transformation of fBm
(fOU)

Next, we derive the spectral density function of the Doob transformation of fractional
Brownian motion.

Theorem 2.8. The spectral density function of the Doob transformation of fBm (fOU) is

∆′(γ) = 1
2

(
H

α

)2H
(
α

π

1
γ2 + α2 −

α

π

∞∑
n=1

(
2H
n

) (−1)n
(
n
H − 1

)
γ2 +

(
αn
H − α

)2
)
.

Proof.
Applying Proposition 2.1, we obtain the covariance of fOU

Q(t) = E(X(D,α)
t X

(D,α)
0 )

= 1
2

(
H

α

)2H
eαt
(

1 + e−2αt
(

1− e−αtH
)2H

)
.

Using (2.7), we infer

Q(t) = 1
2

(
H

α

)2H
(

e−αt − e−αt( 1
H−1)

∞∑
n=1

(
2H
n

)
(−1)ne−

αt(n−1)
H

)
(2.31)

= 1
2

(
H

α

)2H
(

e−α|t| − e−α|t|( 1
H−1)

∞∑
n=1

(
2H
n

)
(−1)ne−

α|t|(n−1)
H

)
,
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since t ≥ 0.

Due to Bochner Theorem (Theorem 2.7), the covariance function of the Gaussian process
has the following form

Q(t) =
∞∫
−∞

eiγtd∆(γ).

Applying (2.26), we deduce

e−α|t| =
∞∫
−∞

eiγtα
π

1
γ2 + α2 dγ.

Since the Fourier transformation is additive we can substitute (2.26) into the sum in
(2.31) and obtain

Q(t) = 1
2

(
H

α

)2H
 ∞∫
−∞

eiγtα
π

1
γ2 + α2 dγ

−
∞∑
n=1

(
2H
n

)
(−1)n

∞∫
−∞

eiγt
αn
H − α
π

1
γ2 +

(
αn
H − α

)2 dγ
 .

Using [54, Theorem 1.38] we can change the order of the integration and the sum, if the
following lemma holds

Lemma 2.9. If α > 0 and H ∈ (0, 1), then

∞∑
n=1

∞∫
−∞

∣∣∣∣∣
(

2H
n

)
(−1)neiγt

αn
H − α
π

1
γ2 +

(
αn
H − α

)2
∣∣∣∣∣ dγ <∞. (2.32)

Proof. Denoting m = αn
H − α > 0 and noting that |eiγt| = 1, we compute as follows

∞∫
−∞

∣∣∣∣∣
(

2H
n

)
(−1)neiγt

αn
H − α
π

1
γ2 +

(
αn
H − α

)2
∣∣∣∣∣ dγ

=
∞∫
−∞

|eiγt|
∣∣∣∣∣
(

2H
n

) αn
H − α
π

1
γ2 +

(
αn
H − α

)2
∣∣∣∣∣ dγ

≤
∞∫
−∞

∣∣∣∣(2H
n

)
m

π

1
γ2 +m2

∣∣∣∣ dγ =: An.
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Making the change of variable u = γ
m we obtain

An =
∣∣∣∣(2H

n

)∣∣∣∣
∞∫
−∞

m

π

∣∣∣∣ 1
γ2 +m2

∣∣∣∣ dγ
=

∣∣∣∣(2H
n

)∣∣∣∣
∞∫
−∞

1
π

∣∣∣∣ 1
(u2 + 1)

∣∣∣∣ du
=

∣∣∣∣(2H
n

)∣∣∣∣ .
Hence, the left-hand side of (2.32) has

∞∑
n=1

An as an upper bound and we have

∞∑
n=1

An =
∞∑
n=1

∣∣∣∣(2H
n

)∣∣∣∣
=

∞∑
n=1

∣∣∣∣2H(2H − 1) · · · (2H − n+ 1)
n!

∣∣∣∣
=

∞∑
n=1

∣∣∣∣−−2H(−2H + 1) · · · (−2H + n− 1)
n!

∣∣∣∣
=

∞∑
n=1

∣∣∣∣ Γ(n− 2H)
Γ(−2H)Γ(n+ 1)

∣∣∣∣ .
Using the recursion formula we may write

Γ(−2H) =


Γ(−2H+2)
−2H(−2H+1) , if 1

2 < H < 1

Γ(−2H+1)
−2H , if 0 < H < 1

2 .

Γ(−2H) = Γ(−2H + 2)
−2H(−2H + 1)Γ(1− 2H) = Γ(−2H + 2)

1− 2H .

By virtue of the Stirling formula (see, for example, Rudin [55, Section 8.22.]), the
asymptotic behaviour of the Gamma function is

Γ(x+ 1) ∼ xx+ 1
2 e−x

√
2π, when x→∞.

In the other words
lim
x→∞

Γ(x+ 1)
xx+ 1

2 e−x
=
√

2π.

Actually this means that there exist d ∈ R+ and c ∈ R+ such that

dxx+ 1
2 e−x

√
2π ≤ Γ(x+ 1) ≤ cxx+ 1

2 e−x
√

2π,

when x is greater than some large N . Since

Γ(n− 2H) ≤ ce−(n−2H−1)(n− 2H − 1)n−2H− 1
2
√

2π
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and
Γ(n+ 1) ≥ de−nnn+ 1

2
√

2π ≤ ce−nnn+ 1
2
√

2π,
we obtain

Γ(n− 2H)
Γ(n+ 1) ≤ ce−(n−2H−1)(n− 2H − 1)n−2H− 1

2

de−nnn+ 1
2

= c

d
e1+2H (n− 2H − 1)n−2H− 1

2

nn+ 1
2

= c

d
e1+2H

(
n− 2H − 1

n

)n−2H− 1
2
(
nn−2H− 1

2

nn+ 1
2

)

= c

d
e1+2H

(
1− 2H + 1

n

)n(
1− 2H + 1

n

)−(2H+ 1
2 )( 1

n1+2H

)
,

where (
1− 2H + 1

n

)n
→ e−(2H+1)

and (
1− 2H + 1

n

)−(2H+ 1
2 )
→ 1.

Hence, the inequality Γ(n− 2H)
Γ(n+ 1) ≤

C

n1+2H holds, when n is large enough. Since 2H > 0

the series
∞∑
n=1

1
n1+2H converges and also the series

∞∑
n=1

Γ(n− 2H)
Γ(n+ 1) (2.33)

converges completing the proof of Lemma 2.9.

We can therefore change the order of the integration and the summation, leading to

Q(t) = 1
2

(
H

α

)2H ∞∫
−∞

eiγt α

π(γ2 + α2)dγ

−1
2

(
H

α

)2H ∞∫
−∞

eiγt
∞∑
n=1

(
2H
n

) (−1)n(αnH − α)

π
(
γ2 +

(
αn
H − α

)2)dγ.
Thus the spectral density function of the Doob transformation of fBm is

∆′(γ) = 1
2

(
H

α

)2H
α

π

(
1

γ2 + α2 −
∞∑
n=1

(
2H
n

) (−1)n
(
n
H − 1

)
γ2 +

(
αn
H − α

)2
)
.

We recall that a function f has the Fourier transformation if∫ ∞
−∞
|f(γ)|dγ <∞.

In the next lemma we consider that the previous condition is true in our case.
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Lemma 2.10. Let ∆′(γ) be the spectral density function of the Doob transformation of
fBm

∆′(γ) = 1
2

(
H

α

)2H
α

π

(
1

γ2 + α2 −
∞∑
n=1

(
2H
n

) (−1)n
(
n
H − 1

)
γ2 +

(
αn
H − α

)2
)
,

then ∫ ∞
−∞
|∆′(γ)|dγ <∞,

and there is a Fourier transformation of ∆′(γ).

Proof. We compute

∫ ∞
−∞
|∆′(γ)|dγ =

∞∫
−∞

∣∣∣∣∣12
(
H

α

)2H
α

π

(
1

γ2 + α2 −
∞∑
n=1

(
2H
n

) (−1)n
(
n
H − 1

)
γ2 +

(
αn
H − α

)2
)∣∣∣∣∣ dγ

and approximate further

∫ ∞
−∞
|∆′(γ)|dγ ≤ 1

2

(
H

α

)2H
α

π

 ∞∫
−∞

∣∣∣∣ 1
γ2 + α2

∣∣∣∣ dγ
+

∞∫
−∞

∣∣∣∣∣
∞∑
n=1

(
2H
n

) n
H − 1

γ2 +
(
αn
H − α

)2
∣∣∣∣∣ dγ


≤ 1

2

(
H

α

)2H
α

π

π

α
+
∞∫
−∞

∣∣∣∣∣
∞∑
n=1

(
2H
n

) n
H − 1

γ2 +
(
αn
H − α

)2
∣∣∣∣∣ dγ

 .

Decomposing the sum

∞∑
n=1

(
2H
n

) n
H − 1

γ2 +
(
αn
H − α

)2
=
(

2H
1

) 1
H − 1

γ2 +
(
α
H − α

)2 +
∞∑
n=2

(
2H
n

) n
H − 1

γ2 +
(
αn
H − α

)2
and computing

∫ ∞
−∞

(
2H
1

) 1
H − 1

γ2 +
(
α
H − α

)2 = 2πH
α

, we obtain

∫ ∞
−∞
|∆′(γ)|dγ ≤ 1

2

(
H

α

)2H
α

π

(
π

α
+ 2πH

α

+
∞∫
−∞

∞∑
n=2

∣∣∣∣(2H
n

)∣∣∣∣ n
H − 1

γ2 +
(
( nH − 1)α

)2 dγ
 .
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Changing the order of the integration and summation we infer∫ ∞
−∞
|∆′(γ)|dγ ≤ 1

2

(
H

α

)2H
α

π

(
π

α
+ 2πH

α

+
∞∑
n=2

∣∣∣∣(2H
n

)∣∣∣∣
∞∫
−∞

n
H − 1

γ2 +
(
( nH − 1)α

)2 dγ
 ,

since
∞∑
n=2

∣∣∣∣(2H
n

)∣∣∣∣ converges, as we proved before (2.33). Computing the integral we

conclude∫ ∞
−∞
|∆′(γ)|dγ ≤ 1

2

(
H

α

)2H
α

π

(
π

α
+ 2πH

α
+
∞∑
n=2

∣∣∣∣(2H
n

)∣∣∣∣ πα
)
<∞,

completing the proof.

Consequently the function is absolutely integrable and the spectral density function is
unique. By uniqueness all requirements of spectral density functions are valid and we
have proved Theorem 2.8. 2





3 Fractional Ornstein–Uhlenbeck
processes

3.1 fOU(2), Fractional OU process of the second kind

The fractional Ornstein–Uhlenbeck process of the first kind (fOU(1)) is stationary and, in
the case H > 1

2 long-range dependent since its driving process is long-range dependent. In
this chapter we will study how this situation is changed if we take a process which is short-
range dependent as driving process. Is it possible to represent the Doob transformation of
fBm (fOU) as a solution of a stochastic differential equation? What is the nature of the
driving process? If the driving process of a process X is stationary, is then the process X
stationary? What is its variance? We will answer these questions in this chapter.

First, we define the driving process Y (α) of the Doob transformation of fBm. We make
some changes to obtain a slightly better behaving process Y (1), but it still has some
properties similar to Y (α). The two-sided process Ŷ (1) is a driving process of a fractional
OU process of the second kind, called fOU(2).

3.1.1 Definition

To explain the idea, we first look at the Ornstein-Uhlenbeck process and its representation
as a stochastic differential equation. Considering the OU process of Definition 1.22 given
by

Vt = e−αtB e2αt
2α
.

Using the chain rule we infer

dVt = −αe−αtB e2αt
2α
dt+ e−αtdB e2αt

2α

= −αVtdt+ e−αtdB e2αt
2α
.

Here
∫ t

0 e−αsdB e2αs
2α

is the standard Brownian motion according to the Lévy character-
ization theorem, which states that every centered continuous local martingale M with
the quadratic variation t is Brownian motion see, for example, [32]. To see this, we look
at the variance of

∫ t
0 e−αtdB e2αt

2α
, since the quadratic variation and the variance are the

same in this situation. Changing the variable e2αt

2α by u and using the Itô formula we

49
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obtain

E

 T∫
0

e−αtdB e2αt
2α

2

= E


e2αT

2α∫
1

2α

1√
2αu

dBu


2

=

e2αT
2α∫

1
2α

1
2αudu = T

which was the assertion.

In the classical OU case we have H = 1
2 , to extend the construction for all H ∈ (0, 1), we

introduce:

Definition 3.1. For H ∈ (0, 1) and α > 0, we define

Y
(α)
t :=

t∫
0

e−αsdZτs =
t∫

0

e−αsdZ
He

αs
H
α

, (3.1)

where τt = HeαtH
α

, where the stochastic integral is the pathwise Riemann-Stieltjes integral.

The process Y (α) may be represented as the Volterra process with respect to Brownian
motion, which we shall verify later in Section 3.1.4.

Proposition 3.2. The Doob transformation of fBm X(D,α) is a solution of the linear
stochastic differential equation

dX
(D,α)
t = −αX(D,α)

t dt+ dY
(α)
t , (3.2)

with the random initial value

X
(D,α)
0 = ZH

α
∼ N

(
0,
(
H

α

)2H
)
. (3.3)

Proof. Using Definition 1.43 we get the form X
(D,α)
t = e−αtZτt , where Z is fractional

Brownian motion and τt = He
α
H
t

α . Hence (3.3) holds. For (3.2) consider

dX
(D,α)
t = d

(
e−αt

)
Zτt + e−αtdZτt

= −αe−αtZτtdt+ e−αtdZτt
= −αX(D,α)

t dt+ dY
(α)
t .

The next theorem, stated in Kaarakka and Salminen [29], is the key result for defining
the Langevin stochastic differential equation, where the driving process is slightly simpler
than Y (α).
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Proposition 3.3 ([29], Prop. 3.2.). The property

{αHY (α)
t
α

: t ≥ 0} d= {Y (1)
t : t ≥ 0}

holds for any α > 0.

Proof. Using the integration by parts formula we obtain a different form of the process
Y

(α)
t as follows

Y
(α)
t =

t∫
0

e−αsdZτs

= e−αtZτt − ZH
α

+ α

t∫
0

e−αsZτsds. (3.4)

Introducing a new variable p := αs and using the self-similarity property of fBm, we infer

{
αHY

(α)
t
α

: t ≥ 0
}

=

αH
e−tZτ t

α

− ZH
α

+ α

t
α∫

0

e−αsZτsds

 : t ≥ 0


=

αH
e−tZ

e
t
α H
α

− ZH
α

+
t∫

0

e−pZτ p
α

dp

 : t ≥ 0


d=

αH
 1
αH

e−tZ
e
t
αH
− 1
αH

ZH +
t∫

0

e−pZ
τ

(1)
p
dp

 : t ≥ 0


=


t∫

0

e−pdZ
τ

(1)
p

: t ≥ 0


=

{
Y

(1)
t : t ≥ 0

}
,

where τ (1)
t = He t

H , and this proves the statement.

Proposition 3.3 is inspiring since we can define a new Langevin stochastic differential
equation, where the driving process is Y (1). In the solution of that Langevin equation
we need the extended process Ŷ (1), which is the two-sided Y (1) defined similarly to the
two-sided fBm in the case of fOU(1).

Definition 3.4. Let Y (1) = {Y (1) : t ≥ 0} be an independent copy of Y (1), starting from
0. Then for t ∈ R, we define the process {Ŷ (1) : t ≥ 0} via

Ŷ
(1)
t :=

{
Y

(1)
t , t ≥ 0,
Y

(1)
−t , t < 0.
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Proposition 3.5. The Langevin stochastic differential equation

dU
(D,γ)
t = −γU (D,γ)

t dt+ dY
(1)
t , γ > 0 (3.5)

has the solution

U
(D,γ)
t = e−γt

t∫
−∞

eγsdŶ (1)
s = e−γt

t∫
−∞

e(γ−1)sdZ
τ

(1)
s
, γ > 0, (3.6)

where τ (1)
t = He t

H .

Proof. We can prove the existence of the integral in (3.6) in the same way as in the proof
of Theorem 1.39. The most important thing is to show that

t∫
−∞

e(γ−1)sdZ
τ

(1)
s

is well defined.
For γ ∈ (0, 1] we use the integration by parts in (3.4), to obtain

s∫
T

e(γ−1)udZ
τ

(1)
u

= e(γ−1)sZ
τ

(1)
s
− e(γ−1)TZ

τ
(1)
T

(3.7)

−(γ − 1)
s∫

T

e(γ−1)uZ
τ

(1)
u
du,

where τ (1)
u = He uH and T < 0.

Note again that fractional Brownian motion Z is locally Hölder continuous of the order β
for any β < H, see Theorem 1.32. Hence, for β < H

|Zs − Z0| ≤ C|s|β .

For any β there exists β0 such that β < β0 < H and

|Zs − Z0| ≤ C|s|β0−β+β ,

which means that
|Zs|
|s|β

≤ C|s|β0−β .

Hence we obtain
lim
s→0

|Zs|
|s|β

= 0 a.s. ∀β < H. (3.8)

We consider the term e(γ−1)TZ
τ

(1)
T

in (3.7), when T → −∞ as follows

lim
T→−∞

e−(1−γ)TZ
τ

(1)
T

= lim
r→0

e−(1−γ)H log( rH )Zr

= lim
r→0

( r
H

)−(1−γ)H
Zr

= lim
r→0

H(1−γ)H Zr
r(1−γ)H .
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Since (1− γ)H < H for γ > 0 and applying (3.8), we infer

lim
T→−∞

e−(1−γ)TZ
τ

(1)
T

= 0.

Next we prove the convergence of the integral in (3.7). Changing variables, we obtain

lim
T→−∞

∣∣∣∣∣∣
s∫

T

e(γ−1)uZ
τ

(1)
u
du

∣∣∣∣∣∣ ≤ lim
T→−∞

s∫
T

e(γ−1)u|Z
τ

(1)
u
|du (3.9)

= lim
τT→0

τs∫
τT

( r
H

)(γ−1)H H

r
|Zr|dr (3.10)

= lim
τT→0

τs∫
τT

H−(γ−1)H+1 |Zr|
r−(γ−1)H+1 dr

= lim
τT→0

τs∫
τT

H−(γ−1)H+1 |Zr|
rβ

r(γ−1)H−1+βdr

≤ lim
τT→0

τs∫
τT

H−(γ−1)H+1 |Zr|
rβ

r(γ−1)H−1+Hdr.

Since we have proved in (3.8) that lim
r→0

|Zr|
rβ

= 0 for any β < H and∫ ε

0
r(γ−1)H−1+Hdr =

∫ ε

0
rγH−1dr = εγH

γH
<∞,

then

lim
T→−∞

∣∣∣∣∣∣
s∫

T

e(γ−1)uZ
τ

(1)
u
du

∣∣∣∣∣∣ <∞
for γ > 0.

It is clearer to see that the integral exists when γ > 1 than when γ ∈ (0, 1], for T < 0,
the limit e(γ−1)TZ

τ
(1)
T

→ 0, since e(γ−1)T → 0. We also proved previously that the limit
of the integral

lim
T→−∞

∣∣∣∣∣∣
s∫

T

e(γ−1)uZ
τ

(1)
u
du

∣∣∣∣∣∣
is bounded for any γ > 0, in particular γ > 1.

Therefore, we conclude that the right-hand side of (3.7) is well defined, when T tends to
−∞. This completes the proof.

Now we are ready to define a new family of fractional Ornstein–Uhlenbeck processes as
follows.

Definition 3.6. The process U (D,γ) introduced in (3.6) is called the fractional Ornstein–
Uhlenbeck process of the second kind, abbreviated fOU(2).
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Remark 3.7. For γ = 1, we have

U
(D,1)
t = e−t

t∫
−∞

dZ
τ

(1)
s

= e−t
t∫

−∞

dZ
He

s
H

= e−t(Z
He

t
H
− Z0)

by continuity
lim

t→−∞
Z
He

t
H

= Z0 = 0.

Also,

U
(D,1)
t = e−tZ

He
t
H

= X
(D,1)
t .

3.1.2 Simulations of fractional Ornstein–Uhlenbeck processes
We have analysed mathematically the fractional Ornstein–Uhlenbeck processes. Now we
present simulations of these processes. We have done these simulations in MatLab using
Cholensky decomposition medhod (see, for example, Embrechts and Maejima [19]), where
we calculated values in 270 points. In Figures 3.1, 3.2, 3.3 and 3.4 there are sample paths
of all three fractional Ornstein–Uhlenbeck processes with Hurst constant H values of
0.15, 0.4, 0.6 and 0.8 γ = α = 1. In Figures 3.5, 3.6, 3.7 and 3.8 there are sample paths
of all three fractional Ornstein–Uhlenbeck processes with Hurst constant H values of 0.4
and 0.7 with two different value of γ and α 0.5 and 2.5.
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Figure 3.1: Fractional Ornstein-Uhlenbeck processes with H=0.15
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Figure 3.2: Fractional Ornstein-Uhlenbeck processes with H=0.4

In Figures 3.1 and 3.2 fractional Ornstein Uhlenbeck process of the second kind, fOU(2),
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and the Doob transformation of fBm, fOU, describe actually the same process, since
α = γ = 1. All the three processes are short-range dependent processes, when H < 1

2 ,
which is the case in these Figures 3.1 and 3.2.
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Figure 3.3: Fractional Ornstein-Uhlenbeck processes with H=0.6

In Figures 3.3 and 3.4 the fractional Ornstein Uhlenbeck processes of the second kind
and the Doob transformation of fBm are both short-range dependent, but the fractional
Ornstein Uhlenbeck process of the first kind, fOU(1), is long-range dependent, since
H < 1

2 . Since α = γ = 1, fOU(1) and fOU describe the same process again.

In Figures 3.5 and 3.6, we consider, how the values of the parameters γ and α impact to
the sample path, when H = 0.4 and in figures 3.7 and 3.8 we do the same when H = 0.7.
It is clear that the sample path is smoother with greater γ or α.

3.1.3 Stationarity of Y (α) and U (D,γ)

In this section we consider the stationarity of Y (α) and U (D,γ). In both cases the proof of
stationarity or the proof of stationarity of increments follows from the definitions of the
fOU processes.

Proposition 3.8. The process Y (α) has stationary increments and fOU(2), that is the
process U (D,γ), is stationary.
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Figure 3.4: Fractional Ornstein-Uhlenbeck processes with H=0.8
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Figure 3.5: Fractional Ornstein-Uhlenbeck processes with γ = 2.5 and α = 0.5
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Figure 3.6: Fractional Ornstein-Uhlenbeck processes with γ = 0.5 and α = 2.5
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Figure 3.7: Fractional Ornstein-Uhlenbeck processes with γ = 2.5 and α = 0.5
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Figure 3.8: Fractional Ornstein-Uhlenbeck processes with γ = 0.5 and α = 2.5

Proof. We use the longer form (3.4) of Y (α), where

Y
(α)
t2 − Y (α)

t1 = e−αt2Zτt2 − e−αt1Zτt1 + α

t2∫
t1

e−αsZτsds

Y (α)
s2
− Y (α)

s1
= e−αs2Zτs2

− e−αs1Zτs1
+ α

s2∫
s1

e−αsZτsds,

and consider

E
((
Y

(α)
t2 − Y (α)

t1

)(
Y (α)
s2
− Y (α)

s1

))
. (3.11)

By self-similarity of fBm, we note{
e−α(t+h)Z

He
α(t+h)
H
α

: t ∈ R

}
=

{
e−α(t+h)Z

H
α e

αt
H e

αh
H

: t ∈ R
}

(3.12)

d=
{

e−α(t+h)
(

eαhH
)H

ZH
α e

αt
H

: t ∈ R
}

=
{

e−αtZH
α e

αt
H

: t ∈ R
}
.

Using (3.12) and changing the variable s by u− h, we infer further

E
((
Y

(α)
t2 − Y (α)

t1

)(
Y (α)
s2
− Y (α)

s1

))
= E

((
Y

(α)
t2+h − Y

(α)
t1+h

)(
Y

(α)
s2+h − Y

(α)
s1+h

))
,
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where

Y
(α)
t2+h − Y

(α)
t1+h = e−α(t2+h)Zτt2+h − e−α(t1+h)Zτt1+h + α

t2+h∫
t1+h

e−α(u−h)Zτu−hdu

Y
(α)
s2+h − Y

(α)
s1+h = e−α(s2+h)Zτs2+h − e−α(s1+h)Zτs1+h + α

s2+h∫
s1+h

e−α(u−h)Zτu−hdu

and 0 < s2 < s2 < t1 < t2 and h > 0. We deduce using Theorem 1.3 that the increment
process of Y (α) is stationary.

Next, we prove that the process U (D,α) is stationary. Using Proposition 3.5 we calculate
the covariance

E
(
U

(D,α)
t U (D,α)

s

)
= E

e−γt
t∫

−∞

e(γ−1)pdZ
τ

(1)
p

e−γs
s∫

−∞

e(γ−1)pdZ
τ

(1)
p


To prove that process U (D,α) is stationary it is enough to show that

E
(
U

(D,α)
t+h U

(D,α)
s+h

)
= E

(
U

(D,α)
t U (D,α)

s

)
.

When we calculate the covariance

E
(
U

(D,α)
t+h U

(D,α)
s+h

)
= E

e−γ(t+h)
t+h∫
−∞

e(γ−1)pdZ
τ

(1)
p

e−γ(s+h)
s+h∫
−∞

e(γ−1)pdZ
τ

(1)
p


changing the variable p by r + h, we obtain

E
(
U

(D,α)
t+h U

(D,α)
s+h

)
= E

e−γ(t+h)
t∫

−∞

e(γ−1)(r+h)dZ
τ

(1)
r+h

e−γ(s+h)
s∫

−∞

e(γ−1)(r+h)dZ
τ

(1)
r+h

 .

Using self-similarity of fractional Brownian motion, we infer further

E
(
U

(D,α)
t+h U

(D,α)
s+h

)
= E

e−γ(t+h)
t∫

−∞

e(γ−1)(r+h)ehdZ
τ

(1)
r

e−γ(s+h)
s∫

−∞

e(γ−1)(r+h)ehdZ
τ

(1)
r


= E

e−γt
t∫

−∞

e(γ−1)rdZ
τ

(1)
r

e−γs
s∫

−∞

e(γ−1)rehdZ
τ

(1)
r


= E

(
U

(D,α)
t U (D,α)

s

)
,

thereby completing the proof.
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3.1.4 Processes Y (α) and Y (1) as stochastic integrals with respect to
Brownian motion

When we present a stochastic process as an integral, where the integrator is a semimartin-
gale and the integrand bounded deterministic real-valued function, then we are dealing
with Volterra processes see, for example, Mytnic and Neuman [44]

M(t) =
∫ t

0
F (t, r)dX(r), t ∈ R+.

It is possible to represent the processes Y (α) and Y (1) with respect to the stochastic
integral of Brownian motion using the representation of fractional Brownian motion.

There are some relationships between two-sided Brownian motion and two-sided fractional
Brownian motion. The first presentation is due to Mandelbrot and Van Ness [38]. Almost
simultaneously Molchan and Golosov published their presentation, where the one-sided
fractional Brownian motion is presented as the integral with respect to Brownian motion.
Proofs of both presentations can be found, for example, in Jost [27].

We use the presentation by Norros and Virtamo [46], from which the presentation of
Mandelbrot and Van Ness can actually be attained.

When H > 1
2 fractional Brownian motion may be represented with respect to a stochastic

integral of Brownian motion and Brownian motion may be presented with respect to the
stochastic integral of fractional Brownian motion as follows

Zt = C

t∫
0

K(t, s)dBs, (3.13)

Bt = C ′
t∫

0

KW (t, s)dZs, (3.14)

where we use the abbreviation

K(t, s) =
(
H − 1

2

)
s−H+ 1

2

∫ t

s

uH−
1
2 (u− s)H− 3

2 du,

KW (t, s) = s−H+ 1
2 tH−

1
2 (t− s)−H+ 1

2

−s−H+ 1
2

(
H − 1

2

) t∫
s

uH−
3
2 (u− s)−H+ 1

2 du,

and

C =
√

2H
(H − 1

2 )Beta(H − 1
2 , 2− 2H)

=

√
(2H)Γ( 3

2 −H)
Γ(2− 2H)Γ(H + 1

2 )
,

c = 1
Beta(H + 1

2 ,
3
2 −H)

=
sin((H − 1

2 )π)
(H − 1

2 )π
,

C ′ = c

C
.
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We use the previous formulas to present the processes Y (α) and Y (1) in the integral forms
with respect to Brownian motion. The key to these presentations is (3.1) in Definition
3.1.
Making the substitution u = τs = He

αs
H

α , we obtain

Y
(α)
t =

t∫
0

e−αsdZτs

=
(
H

α

)H τt∫
H
α

u−HdZu

=
(
H

α

)H τ−Ht Zτt −
(
H

α

)−H
ZH
α
−

τt∫
H
α

Hu−(H+1)Zudu

 .

Using the formula (3.13) for fractional Brownian motion, we infer that

Y
(α)
t =

(
H

α

)H
C (I1 − I2 + I3) ,

where

I1 := τ−Ht

τt∫
0

K(τt, s)dBs

I2 :=
(
H

α

)−H H
α∫

0

K

(
H

α
, s

)
dBs

I3 :=
τt∫
H
α

Hu−(H+1)
u∫

0

K(u, s)dBsdu.

Next we split I3 into two parts and change the order of the integration. This is allowed
by the Fubini-type theorem for stochastic integrals if we find an integrable function f(u)
such that

|Hu−(H+1)K(u, s)| ≤ f(u)
see, for example, Ikeda and Watanabe [26]. To achieve this, we make some approximations.
Let s ≤ u. Then we compute

Hu−(H+1)K(u, s) = Hu−(H+1)(H − 1
2)sH− 1

2

u∫
s

rH−
1
2 (r − s)H− 3

2 dr

≤ Hu−(H+1)(H − 1
2)uH− 1

2uH−
1
2

u∫
s

(r − s)H− 3
2 dr

= Hu−(H+1)u2(H− 1
2 )(u− s)H− 1

2

≤ Hu−(H+1)u2(H− 1
2 )uH−

1
2

= Hu2H− 5
2

=: f(u)
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and
τt∫
H
α

u2H− 5
2 du =

τ
2H− 3

2
t −

(
H
α t

)2H− 3
2

2H − 3
2

<∞.

Hence we may change the order of integrations, yielding

I3 =
τt∫
H
α

Hu−(H+1)

H
α∫

0

K(u, s)dBsdu+
τt∫
H
α

Hu−(H+1)
u∫

H
α

K(u, s)dBsdu

=

H
α∫

0

τt∫
H
α

Hu−(H+1)K(u, s)dudBs +
τt∫
H
α

τt∫
s

Hu−(H+1)K(u, s)dudBs.

Then, using the integration by parts and denoting K(t, s) :=
∫ t
s
k(u, s)du, where

k(t, s) := (H − 1
2)
(
t

s

)H− 1
2

(t− s)H− 3
2 ,

we obtain

I3 =

H
α∫

0

(
H

α

)−H
K

(
H

α
, s

)
− τt−HK(τt, s)dBs

−

H
α∫

0

τt∫
H
α

(
−u−H

(
k(τt, u)− k

(
H

α
, u

)))
dudBs

+
τt∫
H
α

s−HK(s, s)− τ−Ht K(τt, s)dBs

−
τt∫
H
α

τt∫
s

(
u−H (k(τt, u)− k(s, u))

)
dudBs.

Simplifying, we infer

Y
(α)
t =

(
H

α

)H
C


H
α∫

0

τt∫
H
α

u−Hk(τt, u)dudBs

−

H
α∫

0

τt∫
H
α

u−Hk

(
H

α
, u

)
dudBs

−
τt∫
H
α

τt∫
s

u−Hk (τt, u) dudBs +
τt∫
H
α

τt∫
s

u−Hk (s, u) dudBs

 .
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Since there are integrals which are independent on s and
b∫
a

dBs = Bb −Ba, we conclude

Y
(α)
t =

(
H

α

)H
C

BH
α

 τt∫
H
α

u−H
(
k(τt, u)− k

(
H

α
, u

)
du

)
+

τt∫
H
α

τt∫
s

u−H (k (s, u)− k (τt, u)) dudBs

 .

If α = 1, we infer directly Y (1) as follows

Y
(1)
t = HHC

BH
 τ

(1)
t∫
H

u−H
(
k(τ (1)

t , u)− k (H,u) du
)

+
τ

(1)
t∫
H

τ
(1)
t∫
s

u−H
(
k (s, u)− k

(
τ

(1)
t , u

))
dudBs

 .

Collecting the previous results we have proved the following proposition

Proposition 3.9. Let H > 1
2 and

k(α)(t, s, u) := k(t, u)− k(s, u)

= (H − 1
2)u 1

2−H
(
tH−

1
2 (t− u)H− 3

2 − sH− 1
2 (s− u)H− 3

2

)
,

then the Volterra representations of Y (α)
t and Y (1)

t are

Y
(α)
t =

(
H

α

)H
C

(
BH

α

( τt∫
H
α

u−Hk(α)(τt,
H

α
, u)du

)

+
τt∫
H
α

τt∫
s

u−Hk(α)(s, τt, u)dudBs

)

Y
(1)
t = HHC

(
BH

( τ
(1)
t∫
H

u−Hk(α)(τ (1)
t , H, u)du

)

+
τ

(1)
t∫
H

τ
(1)
t∫
s

u−Hk(α)(s, τ (1)
t , u)dudBs

)
.
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3.1.5 Hölder continuity of the order β < H

Knowing that both processes Y (α) and U (D,γ) have the same kind of continuity properties
is useful. We prove that they are both locally Hölder continuous of any order β < H.
This result is strong enough for us but in Zähle [58] there is a more general result. We
recall that a definition of locally Hölder continuity is given in Definition 1.15. Azmoodeh
and Viitasaari used the same kind of approximations of the fractional Ornstein-Uhlenbeck
process of the second kind in [3, Lemma 2.4] as we use in the proof of Proposition 3.11.

Proposition 3.10 ([29], Prop. 3.4). The sample paths of the process Y (α) are locally
Hölder continuous of any order β < H.

Proof. Applying (3.4), we obtain

Y
(α)
t = e−αtZτt − ZH

α
+ α

t∫
0

e−αsZτsds

= X
(D,α)
t −X(D,α)

0 + α

t∫
0

X(D,α)
s ds, (3.15)

where X(D,α)
t = e−αtZτt is the Doob transformation of fBm and τt = e

αt
H H
α . We first

prove that X(D,α) is locally Hölder continuous of any order β < H. We just compute∣∣∣X(D,α)
t −X(D,α)

s

∣∣∣
|t− s|β

= |e−αtZτt − e−αsZτs |
|t− s|β

= |e−αtZτt − e−αsZτt + e−αs (Zτt − Zτs)|
|t− s|β

≤ |e−αt − e−αs| |Zτt |
|t− s|β

+ e−αs |Zτt − Zτs |
|t− s|β

, (3.16)

where β > 0 and 0 < s, t < T . The first part of the sum (3.16) must be

|e−αt − e−αs| |Zτt |
|t− s|β

≤ CT ,

when β < H. By the Mean Value Theorem there exists ξ ∈ (s, t) such that

|e−αt − e−αs| = | − αe−αξ(t− s)| ≤ α|t− s|.

So
|e−αt − e−αs|
|t− s|β

≤ α |t− s|
|t− s|β

= α|t− s|1−β .

Let ST = sup
0≤u≤T

|Zτu |, then we infer, since β < H < 1,

|e−αt − e−αs| |Zτt |
|t− s|β

≤ αST |t− s|1−β

≤ αSTT
1−β =: CT .
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Next, we consider the second part of the sum (3.16)

e−αs |Zτt − Zτs |
|t− s|β

= |Zτt − Zτs |
eαs |t− s|β

.

Using the Mean Value Theorem we know that there exists ξ ∈ (s, t) such that

eαtH − eαsH = α

H
e
αξ
H (t− s).

Let ξ be the previous value, then it is possible to write

e−αs |Zτt − Zτs |
|t− s|β

= |Zτt − Zτs |

eα(s−ξ)
∣∣∣eαξβ (t− s)

∣∣∣β
and approximating it upwards, since β < H, we obtain

e−αs |Zτt − Zτs |
|t− s|β

≤ |Zτt − Zτs |

eα(s−ξ)
∣∣∣eαξH (t− s)

∣∣∣β .
Now in (3.17) we use the already fixed ξ ∈ (s, t), which we found using the Mean Value
Theorem, such that

|Zτt − Zτs |

eα(s−ξ)
∣∣∣eαξH (t− s)

∣∣∣β = |Zτt − Zτs |

eα(s−ξ)
∣∣∣Hα (eαtH − eαsH

)∣∣∣β
and we approximate further

e−αs |Zτt − Zτs |
|t− s|β

≤ |Zτt − Zτs |

eα(s−ξ)
∣∣∣Hα (eαtH − eαsH

)∣∣∣β (3.17)

≤ eαT |Zτt − Zτs |∣∣∣Hα (eαtH − eαsH
)∣∣∣β = KT

|Zτt − Zτs |
|τt − τs|β

.

Hence we obtain ∣∣∣X(D,α)
t −X(D,α)

s

∣∣∣
|t− s|β

≤ KT
|Zτt − Zτs |∣∣∣ eαtH H
α − e

αs
H H
α

∣∣∣β + CT ,

where KT and CT are random constants that are independent of s and t. Since fBm
is locally Hölder continuous of the order β < H, we conclude that X(D,α) is Hölder
continuous of the order β < H. Last we consider integral term in (3.15). Since∣∣∣∣∣∣

t∫
s

X(D,α)
u du

∣∣∣∣∣∣ ≤ sup
s≤u≤t

|X(D,α)
u ||t− s|

≤ sup
1≤u≤T

|X(D,α)
u ||t− s| =: CT |t− s|,
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then
∫ t
s
X

(D,α)
u du is Hölder continuous of the order 1. And therefore it is also Hölder

continuous of the order β < 1, since∣∣∣∫ ts X(D,α)
u du

∣∣∣
|t− s|β

=
|t− s|−β+1

∣∣∣∫ ts X(D,α)
u du

∣∣∣
|t− s|

≤ |t− s|−β+1CT

≤ T 1−βCT .

Hence the sample paths of the process Y α are locally Hölder continuous.

Proposition 3.11 ([29], Prop. 3.4.). The sample paths of the process U (D,γ) are locally
Hölder continuous of any order β < H.

Proof. Using exactly the same idea as in the proof of Proposition 3.10, we can prove
that U (D,γ) is locally Hölder continuous of the order β < H, since we have the following
connection between U (D,γ) and Y (1)

U
(D,γ)
t − e−γtU (D,γ)

0 = Y
(1)
t − γe−γt

t∫
0

eγsY (1)
s ds, t > 0.

Using the previous equation we start to calculate the difference of U (D,γ)

∣∣∣U (D,γ)
t − U (D,γ)

s

∣∣∣ =
∣∣∣∣∣(e−γt − e−γs)U (D,γ)

0 + Y
(1)
t − Y (1)

s

−

(
γe−γt

t∫
0

eγsY (1)
s ds− γe−γs

s∫
0

eγrY (1)
r dr

)∣∣∣∣∣
≤

∣∣e−γt − e−γs
∣∣ ∣∣∣U (D,γ)

0

∣∣∣+
∣∣∣Y (1)
t − Y (1)

s

∣∣∣
+
∣∣∣∣∣γ
( t∫

0

e−γpY (1)
t−pdp−

s∫
0

e−γpY (1)
s−pdp

)∣∣∣∣∣
≤

∣∣e−γt − e−γs
∣∣ ∣∣∣U (D,γ)

0

∣∣∣+
∣∣∣Y (1)
t − Y (1)

s

∣∣∣
+
∣∣∣∣∣γ
( s∫

0

e−γp
(
Y

(1)
t−p − Y

(1)
s−p

)
dp+

t∫
s

e−γpY (1)
t−pdp

)∣∣∣∣∣,
where

• using the Mean Value Theorem we know that there is ξ ∈ (s, t) such that∣∣e−γt − e−γs
∣∣ =

∣∣−γe−γξ|t− s|
∣∣ .

Denoting CT0 := γ
∣∣∣U (D,γ)

0

∣∣∣ we infer∣∣e−γt − e−γs
∣∣ ∣∣∣U (D,γ)

0

∣∣∣ ≤ ∣∣−e−γξCT0 |t− s|
∣∣

≤ CT0 |t− s|,



68 Chapter 3. Fractional Ornstein–Uhlenbeck processes

• using the Hölder continuity of Y (1) we obtain∣∣∣Y (1)
t − Y (1)

s

∣∣∣ ≤ CT1 |t− s|β ,

• using again the Hölder continuity of Y (1) we deduce∣∣∣∣∣γ
s∫

0

e−γp
(
Y

(1)
t−p − Y

(1)
s−p

)
dp

∣∣∣∣∣ ≤
∣∣∣∣∣γ

s∫
0

e−γpCT2 |t− s|βdp

∣∣∣∣∣
≤ CT2 |t− s|β(1− e−γs)
≤ CT2 |t− s|β ,

• lastly the continuity of Y (1) at t, implies that

∣∣∣∣∣γ
t∫
s

e−γpY (1)
t−pdp

∣∣∣∣∣ ≤ γ sup
s≤p≤t

∣∣∣Y (1)
t−p

∣∣∣ t∫
s

e−γpdp

and ∣∣∣∣∣γ
t∫
s

e−γpY (1)
t−pdp

∣∣∣∣∣ ≤ sup
0≤p≤T

∣∣∣Y (1)
t−p

∣∣∣ e−γξ|t− s|
≤ CT3 |t− s|.

Combining the previous approximations, we infer∣∣∣U (D,γ)
t − U (D,γ)

s

∣∣∣ ≤ ∣∣e−γt − e−γs
∣∣ ∣∣∣U (D,γ)

0

∣∣∣+
∣∣∣Y (1)
t − Y (1)

s

∣∣∣
+

∣∣∣∣∣∣γ
 s∫

0

e−γp
(
Y

(1)
t−p − Y

(1)
s−p

)
dp+

t∫
s

e−γpY (1)
t−pdp

∣∣∣∣∣∣
≤ CT0 |t− s|+ CT1 |t− s|β + CT2 |t− s|β + CT3 |t− s|.

Denoting CT0 + CT3 =: CTa and CT1 + CT2 =: CTb , we are able to write∣∣∣U (D,γ)
t − U (D,γ)

s

∣∣∣
|t− s|β

≤ CTa |t− s|1−β + CTb

≤ CTaT
1−β + CTb

As we have seen above, U (D,γ) is Hölder continuous of the order β if Y (1) is Hölder
continuous of the order β.
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3.2 Covariance kernels

In this section we consider the kernel representation of fOU processes and the driving
processes of fOU processes. Since fractional Brownian motion is behind all these processes
the kernel representation of fractional Brownian motion we recall here

E ((Zt2 − Zt1)(Zs2 − Zs1)) =
s2∫
s1

t2∫
t1

(2H − 1)H(u− v)2H−2dudv,

for all H ∈
(
0, 1

2
)
∪
( 1

2 , 1
)
.

3.2.1 The Doob transformation of fBm (fOU)

Our aim is to find the kernel representation of the covariance of the Doob transformation.
Differentiating twice the covariance of the Doob transformation of (2.3) given in the proof
of Proposition 2.1 yields

∂

∂t

∂

∂s

(
E
(
X

(D,α)
t X(D,α)

s

))
= ∂

∂t

∂

∂s

(
e−α(t+s) 1

2

(
H

α

)2H (
e2αt + e2αs − e2αt

(
1− e−

α(t−s)
H

)2H
))

= 1
2

(
H

α

)2H
e−α(t+s)α2

(
−e2αs − e2αt + e2αt

(
1− e

−α(t−s)
H

)2H

+
(

4− 2
H

)
e2αt

(
1− e

−α(t−s)
H

)2H−1
e
α(t−s)
H

+
(

4− 2
H

)
e2αt

(
1− e

−α(t−s)
H

)2H−2 (
e
α(t−s)
H

)2
)
.

This leads to

∂

∂t

∂

∂s

(
E
(
X

(D,α)
t X(D,α)

s

))
= α2

2

(
H

α

)2H (
−e−α(t−s) − eα(t−s)

)
+α2

2

(
H

α

)2H
eα(t−s)

(
1− e

α(t−s)
H

)2H
×1 +

(
1
H
− 2
) e

α(t−s)
H

1− e
α(t−s)
H

−

(
e
α(t−s)
H

1− e
α(t−s)
H

)2
 .

The kernel is quite complicated. Nevertheless, it is still good to know the kernel represen-
tation of the Doob transformation.

We have just proved the next theorem

Proposition 3.12. For H ∈ (0, 1) and α > 0, the covariance kernel of the increments
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of X(D,α) is

kX(D,α)(u, v) = α2

2

(
H

α

)2H (
−e−α(v−u) − eα(v−u)

)
+α2

2

(
H

α

)2H
eα(v−u)

(
1− e

α(v−u)
H

)2H
×1 +

(
1
H
− 2
) e

α(v−u)
H

1− e
α(v−u)
H

−

(
e
α(v−u)
H

1− e
α(v−u)
H

)2
 ,

and the covariance of the increments of X(D,α) is

E
((
X

(D,α)
t2 −X(D,α)

t1

)(
X(D,α)
s2

−X(D,α)
s1

))
=

t2∫
t1

s2∫
s1

kX(D,α)(u, v)dvdu, (3.18)

where s1 < s2, t1 < t2.

3.2.2 Covariance kernels of Y (α) and Y (1), when H > 1
2

We note that in the case H ∈ ( 1
2 , 1), the increments of fBm are positively correlated and

the covariance kernel has some nice integrability properties, see, for example, Pipiras and
Taqqu [51, p.16] Equation (4.1) and discussion after that.

Proposition 3.13 ([29], Prop. 3.5.). For H ∈ ( 1
2 , 1), the covariance kernel of the

increments of Y (α) is

E
((
Y

(α)
t2 − Y (α)

t1

)(
Y (α)
s2
− Y (α)

s1

))
(3.19)

= C(α,H)
t2∫
t1

s2∫
s1

e−
α(1−H)(u−v)

H∣∣∣1− e−
α(u−v)
H

∣∣∣2−2H dudv,

where s1 < s2, t1 < t2 and

C(α,H) := H(2H − 1)
( α
H

)2−2H
.

Proof. We need Proposition 2.2 of Gripenberg and Norros [22], stating that

E
(∫

R
f(s)dZs

∫
R
g(t)dZt

)
(3.20)

= H(2H − 1)
∫
R

∫
R
f(s)g(t)|s− t|2H−2dtds,

when H ∈ ( 1
2 , 1) and f, g ∈ L2(R) ∩ L1(R).

Note that the integrals in (3.20) are over the real axis, but we also have a similar result
for bounded intervals when using the indicator function

b∫
a

f(t)dt =
∫
R
f(t)1[a,b]dt.
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We may indeed modify the process Y α to a form that fits into (3.20). Substituting

u := eαsH H
α

, we obtain

e−αs =
(

1
eαsH

)H
=
( α
H

)−H
u−H .

Therefore

Y αt =
∫ t

0
e−αsdZτs

=
(
H

α

)H ∫ e
αt
H H
α

H
α

u−HdZu.

We consider the function

f(s) =
{
s−H , if τ0 < s < τt
0, otherwise,

where τt = eαtH H
α

. Since in the case H ∈ ( 1
2 , 1) the function u−H belongs to L2(I)∩L1(I),

where I = [τ0, τt] ⊂ R we can change the variables two times, to obtain

E
((
Y

(α)
t2 − Y (α)

t1

)(
Y (α)
s2
− Y (α)

s1

))
= E


(H

α

)H τt2∫
τt1

p−HdZp


(H

α

)H τs2∫
τs1

r−HdZr




=
(
H

α

)2H
H(2H − 1)

τt2∫
τt1

τs2∫
τs1

p−Hr−H |p− r|2H−2dpdr

=
( α
H

)2−2H
H(2H − 1)

t2∫
t1

s2∫
s1

e−
1−H
H α(t−s)

∣∣∣1− e−
α(t−s)
H

∣∣∣2H−2
dtds,

thereby completing the proof.

The next corollary is quite obvious, but the proof is a nice example of the behaviour of
the exponential function.

Corollary 3.14 ([29], Prop. 3.5.). In the case H ∈ ( 1
2 , 1), the kernel in the representation

of the covariance of the increments of the process Y (α) is symmetric.

Proof. We recall the kernel in the representation of the covariance of Y (α), given in
Proposition 3.13,

rα,H(u, v) := C(α,H) e−
α(1−H)(u−v)

H∣∣∣1− e−
α(u−v)
H

∣∣∣2−2H .
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Note that rα,H(u, v) is symmetric. This property follows from the computations

rα,H(u, v) = C(α,H) e−
α(1−H)(u−v)

H∣∣∣1− e−
α(u−v)
H

∣∣∣2−2H = C(α,H) e
α(1−H)(v−u)

H∣∣∣1− e
α(v−u)
H

∣∣∣2−2H

= C(α,H) e
α(1−H)(v−u)

H∣∣∣∣1− 1

e−
α(v−u)
H

∣∣∣∣2−2H = C(α,H) e
α(1−H)(v−u)

H∣∣∣∣ e−α(v−u)
H −1

e−
α(v−u)
H

∣∣∣∣2−2H

= C(α,H)e
α(1−H)(v−u)

H − 2α(1−H)(v−u)
H∣∣∣1− e−

α(v−u)
H

∣∣∣2−2H

= C(α,H) e−
α(1−H)(v−u)

H∣∣∣1− e−
α(v−u)
H

∣∣∣2−2H = rα,H(v, u),

which establish the desired property.

3.2.3 Covariance kernel of fOU(2), when H > 1
2

We assume again that H ∈ ( 1
2 , 1) since the covariance kernel has some integrability

properties, see, for example, Pipiras and Taqqu [51, p.16]. are valid in this interval.

Proposition 3.15 ([29], Prop. 3.10.). The covariance of the process U (D,γ), for H ∈
( 1

2 , 1), (fOU(2)) has the kernel representation

E
(
U

(D,γ)
t U (D,γ)

s

)
(3.21)

= (2H − 1)H2H−1e−γ(t+s)
t∫

−∞

s∫
−∞

e(γ−1+ 1
H )(u+v)∣∣e uH − e v
H

∣∣2(1−H) dudv.

Proof. The proof has the same elements as the proof of Proposition 3.13. However, the
situation is not identical because, now, we consider the expectation of the processes
instead of the expectation of their differences. Therefore, we do not have integrals over
any restricted interval, instead we have double integrals over unrestricted intervals. To
state that the property (3.20) holds for the functions f and g we need an extended version
of this property, stated in [51, Eq. (4.1)]. For using this Equation (4.1) of Pipiras and
Taqqu the functions f and g have to satisfy the condition∫

R

∫
R
|f(s)||g(t)||s− t|2H−2dtds <∞. (3.22)

We recall that in Definition 3.6 of fOU(2), the process U (D,γ) is given by

U
(D,γ)
t = e−γt

t∫
−∞

e(γ−1)sdZ
τ

(1)
s
,
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where τ (1)
t = He t

H . Changing the variable u by He s
H , we infer

U
(D,γ)
t = e−γt

τ
(1)
t∫

0

(( u
H

)H)γ−1
dZu

= e−γtH−H(γ−1)

τ
(1)
t∫

0

uH(γ−1)dZu.

Substitution is allowed, since the integral is the pathwise Riemann-Stieltjes integral. We
still have to check that the condition (3.22) is valid for the functions f(u) = g(u) =
uH(γ−1)1(0,τ(1)

t )(u). We make the following calculations∫
R

∫
R
|f(p)||g(r)||p− r|2H−2dpdr

=
τ

(1)
t∫

0

τ
(1)
t∫

0

pH(γ−1)rH(γ−1)|p− r|2H−2dpdr

=
1∫

0

1∫
0

(τ (1)
t u)H(γ−1)(τ (1)

t v)H(γ−1)|τ (1)
t u− τ (1)

t v|2H−2(τ (1)
t )2dudv

=
(
τ

(1)
t

)2Hγ
1∫

0

1∫
0

(uv)H(γ−1)|u− v|2H−2dudv,

and by the symmetry of the integrand we infer∫
R

∫
R
|f(p)||g(r)||p− r|2H−2dpdr

= 2
(
τ

(1)
t

)2Hγ
1∫

0

duuH(γ−1)
u∫

0

vH(γ−1)(u− v)2H−2dv

= 2
(
τ

(1)
t

)2Hγ
1∫

0

duuH(γ−1)
1∫

0

(uw)H(γ−1)(u− uw)2H−2udw

= 2
(
τ

(1)
t

)2Hγ
1∫

0

duuH(γ−1)uH(γ+1)−1
1∫

0

wH(γ−1)(1− w)2H−2dw

= 2
(
τ

(1)
t

)2Hγ
1∫

0

duuH(γ−1)uH(γ+1)−1Beta (H(γ − 1) + 1, 2H − 1)

=

(
τ

(1)
t

)2Hγ

γH
Beta (H(γ − 1) + 1, 2H − 1) <∞,

where Beta stands for the Beta function Beta(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx, which is

defined and finite for any positive a and b.
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Hence, we can calculate the covariance as follows

E
(
U

(D,γ)
t U (D,γ)

s

)

= E


e−γtH−H(γ−1)

τ
(1)
t∫

0

uH(γ−1)dZu


e−γsH−H(γ−1)

τ(1)
s∫

0

vH(γ−1)dZv




= e−γ(t+s)H−2H(γ−1)H(2H − 1)
τ

(1)
t∫

0

τ(1)
s∫

0

uH(γ−1)vH(γ−1)|u− v|2H−2dudv.

Substituting u with He p
H and v by He r

H , we obtain

E
(
U

(D,γ)
t U (D,γ)

s

)
= e−γ(t+s)H−2H(γ−1)H(2H − 1)×

t∫
0

s∫
0

(
He

p
H

)H(γ−1) (
He r

H

)H(γ−1) |He
p
H −He r

H |2H−2e
p
H e r

H dpdr

= H(2H − 1)H(2H−2)e−γ(t+s)
t∫

0

s∫
0

e(γ−1+ 1
H )(p+r)|e

p
H − e r

H |2H−2dpdr,

verifying the assertion.

3.2.4 Covariance and variance of Y (α)

We recall the definition of Y (α) of (3.1)

Y
(α)
t =

t∫
0

e−αsdZτs ,

where τs = He
αs
H

α . In this section we consider covariance of Y (α) and variance of Y (α)

and increments of Y (α). We also examine the asymptotic bahaviours of variance and
covariance, when t→∞. For the sake of readability, we include many propositions with
their brief proofs.

Corollary 3.16 ([29], Cor. 3.7.). In the case H ∈ ( 1
2 , 1), the increments of Y (α) are

positively correlated.

Proof. The coefficient in Proposition 3.13

C(α,H) = H(2H − 1)
( α
H

)2H−2
,

is always positive since H ∈ ( 1
2 , 1). The kernel in Proposition 3.13

e−
α(1−H)(u−v)

H∣∣∣1− e−
α(u−v)
H

∣∣∣2−2H
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is obviously positive. Thus we conclude that the covariance of the increments of Y (α) is
positive and the increments of Y (α) are positively correlated.

Proposition 3.17 ([29], Prop. 3.8.). In the case H ∈ ( 1
2 , 1), the variance of the

increments of Y (α) is

E
(

(Y (α)
t − Y (α)

s )2
)

= 2
t−s∫
0

(t− s− x)kα,H(x)dx. (3.23)

Proof. Applying Proposition 3.13, we infer

E
(

(Y (α)
t − Y (α)

s )2
)

=
t∫
s

t∫
s

rα,H(u, v)dvdu

= 2
t∫
s

u∫
s

rα,H(u, v)dvdu,

by Corollary 3.14. Substituting x with u and y by u− v we obtain

E
(

(Y (α)
t − Y (α)

s )2
)

= 2
t∫
s

x−s∫
0

kα,H(y)dydx

= 2
t−s∫
0

t∫
y+s

kα,H(y)dxdy. (3.24)

We are allowed to change the order of integration in (3.24) using the Fubini theorem [54,
Theorem 7.8.], since kα,H is positive and continuous. Note that we have to take into
account that the limits of the integral are changing, too. We can calculate the inner
integral

E
(

(Y (α)
t − Y (α)

s )2
)

= 2
t−s∫
0

kα,H(y)(t− (y + s))dy,

verifying the statement.

The fact that in the next proposition the covariance is also positive, follows from the
Corollary 3.16.

Proposition 3.18 ([29], Prop. 3.8.). In the case H ∈ ( 1
2 , 1), the covariance of the Y (α)

is

E
(
Y

(α)
t Y (α)

s

)
=

t∫
0

(t− x)kα,H(x)dx (3.25)

+
s∫

0

(s− x)kα,H(x)dx−
t−s∫
0

(t− s− x)kα,H(x)dx.



76 Chapter 3. Fractional Ornstein–Uhlenbeck processes

Proof. Using identity ab = 1
2
(
a2 + b2 − (a− b)2) , for all a, b ∈ R, we observe that

E
(
Y

(α)
t Y (α)

s

)
= 1

2

(
E
(

(Y (α)
t )2

)
+ E

(
(Y (α)
s )2

)
−E

(
(Y (α)
t − Y (α)

s )2
))

.

Now, from Proposition 3.17 we conclude the result as follows

E
(
Y

(α)
t Y (α)

s

)
=

t∫
0

(t− x)kα,H(x)dx+
s∫

0

(s− x)kα,H(x)dx

−
t−s∫
0

(t− s− x)kα,H(x)dx.

In this subsection we consider the covariance and the variance of Y (α) when the time
parameter tends towards infinity. We rewrite the symmetric kernel in Corollary 3.14 as
follows

rα,H(u, v) = kα,H(u− v),
where

kα,H(x) = C(α,H) e−
α(1−H)x

H∣∣1− e−αxH
∣∣2−2H . (3.26)

Proposition 3.19 ([29], Prop. 3.8.). In the case H ∈ ( 1
2 , 1), the variance of the Y (α)

satisfies

E
(

(Y (α)
t )2

)
= O(t) as t→∞. (3.27)

Proof. Applying Proposition 3.17 and substituting s = 0, we obtain

E
(

(Y (α)
t )2

)
= 2

t∫
0

(t− x)kα,H(x)dx

= 2t
t∫

0

kα,H(x)dx− 2
t∫

0

xkα,H(x)dx. (3.28)

Using (3.28) we prove that
E
(

(Y (α)
t )2

)
= O(t).

For this, it is sufficient to show the properties
∞∫

0

kα,H(x)dx <∞ (3.29)

and
∞∫

0

xkα,H(x)dx <∞. (3.30)
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We do not need approximate the integral in (3.29) since it is possible to calculate its
exact value. Substituting e−αxH with u, we have dx = −H

α

1
u
du, and

lim
t→∞

t∫
0

kα,H(x)dx = lim
t→∞

1∫
e−

αt
H

C(α,H)H
α
u−H(1− u)2H−2du

= C(α,H)H
α

lim
t→0

1∫
t

u−H(1− u)2H−2du

= C(α,H)H
α
Beta(1−H, 2H − 1).

To prove (3.30), we have to study both limits, since there may be difficulties at zero and
infinity. We manipulate the kernel

xkα,H(x) = C(α,H) xe−
α(1−H)x

H∣∣1− e−αxH
∣∣2−2H

= C(α,H) xe
αx(1−H)

H∣∣eαxH − 1
∣∣2−2H . (3.31)

We use the l’Hospitals rule, to obtain

lim
x→0

x∣∣eαxH − 1
∣∣2−2H = lim

x→0

1
(2− 2H) αH eαxH

∣∣eαxH − 1
∣∣1−2H

= lim
x→0

H
∣∣eαxH − 1

∣∣2H−1

(2− 2H)αeαxH
= 0,

since H ∈ ( 1
2 , 1). Therefore

ε∫
0

xkα,H(x)dx <∞

for any ε > 0.

Thus, we have to study the integral in (3.30) for large values of x. For all α > 0 and
H ∈ ( 1

2 , 1) we can always find n such that

1− e
−αx
H >

1
2 ,

when x > n. Let a > n, we approximate the integral
∞∫
a

xe
−αx(1−H)

H

|1− e−αxH |2−2H dx <

∞∫
a

22−2Hxe
−αx(1−H)

H dx <∞

and therefore
∞∫
a

xkα,Hdx <∞.
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We have finally verified that
∞∫

0

kα,H(x)dx <∞ and
∞∫

0

xkα,H(x)dx <∞.

Since
E
(

(Y (α)
t )2

)
< Kt, for some finite K,

we conclude that
E
(

(Y (α)
t )2

)
= O(t) as t→∞,

thereby completing the proof.

Corollary 3.20 ([29], Prop. 3.8.). The covariance of Y (α) satisfies

lim
t→∞

E
(
Y

(α)
t Y (α)

s

)
= s

∞∫
0

kα,H(x)dx+
s∫

0

(s− x)kα,H(x)dx. (3.32)

Proof. The proof is a straightforward calculation. Applying Proposition 3.18, we obtain

lim
t→∞

E
(
Y

(α)
t Y (α)

s

)
= lim

t→∞

 t∫
0

(t− x)kα,H(x)dx

+
s∫

0

(s− x)kα,H(x)dx

−
t−s∫
0

(t− s− x)kα,H(x)dx


=

s∫
0

(s− x)kα,H(x)dx+ lim
t→∞

 t∫
0

(t− x)kα,H(x)dx

−
t−s∫
0

(t− x)kα,H(x)dx+
t−s∫
0

skα,H(x)dx

 ,

where we can combine the integrals yielding

lim
t→∞

E
(
Y

(α)
t Y (α)

s

)
=

s∫
0

(s− x)kα,H(x)dx+ lim
t→∞

 t∫
t−s

(t− x)kα,H(x)dx

+
t−s∫
0

skα,H(x)dx


=

s∫
0

(s− x)kα,H(x)dx+
∞∫

0

skα,H(x)dx,

thereby completing the proof.
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3.2.5 Increment process of Y (α)

We are ready to define the increment process of Y (α), and prove that it is a short-range
dependent stationary process. We already proved in Proposition 3.8 that the process Y (α)

itself has stationary increment. Next we prove the same result but in more useful way.

Proposition 3.21 ([29], Cor. 3.7.). In the case H ∈ ( 1
2 , 1), the increment process of

Y (α)

IY := {IYn : n = 0, 1, . . .} = {Y (α)
n+1 − Y (α)

n : n = 0, 1, . . .}
is stationary for any α > 0.

Proof. According to Proposition 3.13, the covariance of the increments of Y (α) is

E
((
Y

(α)
n+1 − Y (α)

n

)(
Y

(α)
m+1 − Y (α)

m

))
= C(α,H)

n+1∫
n

m+1∫
m

e−
α(1−H)(u−v)

H∣∣∣1− e−
α(u−v)
H

∣∣∣2−2H dudv.

To prove the stationarity, we need to show that for any h > 0, we have

E
((
Y

(α)
n+1+h − Y

(α)
n+h

)(
Y

(α)
m+1+h − Y

(α)
m+h

))
= E

((
Y

(α)
n+1 − Y (α)

n

)(
Y

(α)
m+1 − Y (α)

m

))
.

In (3.33) we can make the substitutions s := u− h and r := v − h

E
((
Y

(α)
n+1+h − Y

(α)
n+h

)(
Y

(α)
m+1+h − Y

(α)
m+h

))
= C(α,H)

n+1+h∫
n+h

m+1+h∫
m+h

e−
α(1−H)(u−v)

H∣∣∣1− e−
α(u−v)
H

∣∣∣2−2H dudv, (3.33)

= C(α,H)
n+1∫
n

m+1∫
m

e−
α(1−H)(s+h−(r+h))

H∣∣∣1− e−
α(s+h−(r+h))

H

∣∣∣2−2H dsdr,

= C(α,H)
n+1∫
n

m+1∫
m

e−
α(1−H)(s−r))

H∣∣∣1− e−
α(s−r)
H

∣∣∣2−2H dsdr,

E
((
Y

(α)
n+1 − Y (α)

n

)(
Y

(α)
m+1 − Y (α)

m

))
.

Hence the sequence IY is stationary according to Theorem 1.3.

Proposition 3.22 ([29], Cor. 3.7.). In the case H ∈ ( 1
2 , 1), the increment process IY

defined in Proposition 3.21 is short-range dependent.

Proof. The idea of the proof is to apply Proposition 3.13. We have to show that the
condition in Definition 1.18

∞∑
n=1

E(IY1IYn) =
∞∑
n=1

E
(
Y

(α)
1

(
Y

(α)
n+1 − Y (α)

n

))
<∞
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holds. We start by considering

E
(
Y

(α)
1

(
Y

(α)
n+1 − Y (α)

n

))
=

n+1∫
n

1∫
0

rα,H(u, v)dvdu

= C(α,H)
n+1∫
n

1∫
0

e−
α(1−H)(u−v)

H∣∣∣1− e−
α(u−v)
H

∣∣∣2−2H dudv.

Changing the variable u to w + n, we infer that

E
(
Y

(α)
1

(
Y

(α)
n+1 − Y (α)

n

))
= C(α,H)e−

α(1−H)n
H

1∫
0

1∫
0

e−
α(1−H)(w−v)

H∣∣∣1− e−αnH e−
α(w−v)
H

∣∣∣2−2H dwdv.

We are only interested in the large values of n, and therefore we need evaluate only
the limit. To change the order of the integral and the limit we have to use Extended
Monotone Convergence Theorem [1, p.47]. Let

gn(w, v) = e−
α(1−H)(w−v)

H∣∣∣1− e−αnH e−
α(w−v)
H

∣∣∣2−2H .

If the sequence of functions gn is increasing with respect to n, and we find the integrable
minorant, or if the sequence of functions is decreasing with respect to n, and we find the
integrable majorant, then we are allowed to change the order of the integration and the
limit. We consider that in two separable situations: when w > v and v ≥ w.

• Let 1 ≥ w > v ≥ 0 and n ≥ 2. Then

1− e−αnH e−
α(w−v)
H

is strictly positive for any n and therefore has no poles and is continuous in the
bounded area [0, 1] × [0, 1]. It is also increasing with respect to n and therefore
functions has a minorant

1− e−αnH e−
α(w−v)
H > 1− e− 2α

H e−
α(w−v)
H .

We approximate the sequence of functions gn(w, v) to find the majorant of the
decreasing sequence of functions gn(w, v) and obtain

gn(w, v) <
e−

α(1−H)(w−v)
H(

1− e− 2α
H e−

α(w−v)
H

)2−2H

= 1(
e
α(w−v)

2H − e−
α(w−v)

2H − 2α
H

)2−2H ,

which is continuous on the bounded area [0, 1]× [0, 1] with no poles, therefore it is
integrable, since w − v < 2. Hence we have an integrable majorant and this allows
to change the order of operations by Extended Monotone Convergence Theorem.
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• Let 0 ≤ w ≤ v ≤ 1 and n ≥ 2. Since we are only interested in large values of n, we
need only to evaluate the sequence when n ≥ 2. The sequence of functions

gn(w, v) = e
α(1−H)(v−w)

H∣∣∣1− e−αnH e
α(v−w)
H

∣∣∣2−2H

= e
α(1−H)(v−w)

H(
1− e−αnH e

α(v−w)
H

)2−2H

since αn− α(w − v) > 0. And it is again decreasing with similar reasoning as in
the case w > v. Also for any n ≥ 2 we may approximate

gn(w, v) < e
α(1−H)(v−w)

H(
1− e− 2α

H e
α(v−w)
H

)2−2H

and also in this case a majorant which is continuous on the bounded area [0, 1]×[0, 1]
with no poles, therefore it is integrable.

Subsequently we always have the integrable majorant of the sequence of functions and we
can change the order of integration and the limit. We obtain

lim
n→∞

1∫
0

1∫
0

e−
α(1−H)(w−v)

H∣∣∣1− e−αnH e−
α(w−v)
H

∣∣∣2−2H dwdv

=
1∫

0

1∫
0

e−
α(1−H)(w−v)

H dwdv

=
1∫

0

e−
α(1−H)w

H dw

1∫
0

e
α(1−H)(v)

H dv = D <∞,

where D is constant. Hence, we infer that

E
(
Y

(α)
1

(
Y

(α)
n+1 − Y (α)

n

))
< DC(α,H)e−

α(1−H)n
H .

Consequently, as n→∞, we have

E
(
Y

(α)
1

(
Y

(α)
n+1 − Y (α)

n

))
= O(e−

α(1−H)n
H ).

Lastly, we consider the sum
∞∑
n=1

E (IY1IYn) =
∞∑
n=1

E
(
Y

(α)
1

(
Y

(α)
n+1 − Y (α)

n

))
= lim

N→∞

N∑
n=1

E
(
Y

(α)
1

(
Y

(α)
n+1 − Y (α)

n

))
,

= lim
N→∞

(
E
(
Y

(α)
1 Y

(α)
N+1

))
−E

((
Y

(α)
1

)2
)
.
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By Proposition 3.18 and (3.28) of the proof of Proposition 3.19, we obtain

lim
N→∞

E
(
Y

(α)
1 Y

(α)
N+1

)
−E

((
Y

(α)
1

)2
)

=
∞∫

0

kα,H(x)dx+
1∫

0

kα,H(x)dx−
1∫

0

xkα,H(x)dx

−2
1∫

0

kα,H(x)dx+ 2
1∫

0

xkα,H(x)dx

=
∞∫

0

kα,H(x)dx−
1∫

0

kα,H(x)dx+
1∫

0

xkα,H(x)dx <∞

due to equations (3.29) and (3.30).

Applying the previous equations, we can conclude

∞∑
n=1

E (IY1IYn) = lim
N→∞

(
E
(
Y

(α)
1 Y

(α)
N

))
−E

((
Y

(α)
1

)2
)
<∞,

thereby completing the proof.

3.3 Conclusion of the stationarity of the fOU processes

The following processes are stationary;

• {U (Z,α)
t : t ∈ R} the fractional Ornstein–Uhlenbeck process of the first kind, fOU(1)

(follows from Definition 1.42),

• {X(D,α)
t : t ∈ R} the Doob transformation of fBm, fOU (follows from Proposition

2.1),

• {U (D,γ)
t : t ∈ R} the fractional Ornstein–Uhlenbeck process of the second kind,

fOU(2) (follows from Proposition 3.8),

• {IYn = n = 0, 1, . . .} the increment process of {Y (α)
t : t ∈ R} (follows from

Proposition 3.21).

The following processes have stationary increments;

• {Zt : t ≥ 0} fractional Brownian motion (follows from Definition 1.35).

• {Y (α) : t ∈ R} (follows from Proposition 3.8, (however it is not itself stationary)).

• {Y (1) : t ∈ R} (follows from Proposition 3.8).
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3.4 fOU(2) is a short-range dependent for H > 1
2

We have already calculated long- or short-range dependence properties for all our stationary
processes except fOU(2). We prove that fOU(2) is short-range dependent. In this section
we consider the rate of decrease of the covariance of U (D,γ), where γ > 0, and after that
deduce that the process is short-range dependent.

Proposition 3.23 ([29], Prop. 3.11.). In the case H ∈ ( 1
2 , 1), the covariance of the

process {U (D,γ)
t : t ∈ R}, fOU(2), decreases exponentially

E
(
U

(D,γ)
t U (D,γ)

s

)
= O(e−min{γ, 1−H

H }t), as t→∞. (3.34)

Proof. When we calculate the asymptotic covariance of U (D,γ), we may, without loss of
generality, set s = 0. If T > 0, then

E
(
U

(D,γ)
t U

(D,γ)
0

)
= (2H − 1)H2H−1e−γt

t∫
−∞

0∫
−∞

e(γ−1+ 1
H )(u+v)

|e uH − e v
H |2−2H dvdu

= (2H − 1)H2H−1e−γt
 T∫
−∞

0∫
−∞

e(γ−1+ 1
H )(u+v)

|e uH − e v
H |2−2H dvdu

+
t∫

T

0∫
−∞

e(γ−1+ 1
H )(u+v)

|e uH − e v
H |2−2H dvdu


= (2H − 1)H2H−1e−γt (D1(T ) +D2(t)) .

Since D1(T ) does not depend on t, we obtain

lim
t→∞

(2H − 1)H2H−1e−γtD1(T ) = 0.

Thus
(2H − 1)H2H−1e−γtD1(T ) = O(e−γt), as t→∞. (3.35)

For the term D2(t), we factorise the denominator and deduce

D2(t) =
t∫

T

0∫
−∞

e(γ−1+ 1
H )(u+v)

e2u( 1
H−1)|1− e v−uH |2−2H

dvdu

=
t∫

T

0∫
−∞

e(γ−1+ 1
H )u+(γ+1− 1

H )v

|1− e v−uH |2−2H
dvdu.

In the previous integral the pair (u, v) belongs to the set (T, t) × (−∞, 0), where the
difference v − u is always less than or equal to −T , which implies

1 ≥
(

1− e
v−u
H

)2(1−H)
≥
(

1− e
−T
H

)2(1−H)
.
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We deduce further
t∫

T

0∫
−∞

e(γ+1− 1
H )u+(γ−1+ 1

H )v(
1− e v−uH

)2−2H dvdu

≤
t∫

T

0∫
−∞

e(γ+1− 1
H )u+(γ−1+ 1

H )v(
1− e−TH

)2−2H dvdu

= (1− e
−T
H )−2+2H

t∫
T

e(γ+1− 1
H )udu

0∫
−∞

e(γ−1+ 1
H )vdv

= (1− e
−T
H )−2+2H

(
e(γ+1− 1

H )t − e(γ+1− 1
H )T

γ + 1− 1
H

)(
1

γ − 1 + 1
H

)
.

Approximating, we obtain
(2H − 1)H2H−1e−γtD2(t)
≤ (2H − 1)H2H−1e−γt(1− e

−T
H )−2+2H

·

(
e(γ+1− 1

H )t − e(γ+1− 1
H )T

γ + 1− 1
H

)(
1

γ − 1 + 1
H

)
≤ Ce−γt+(γ+1− 1

H )t +M2e−γt

= Ce−
1−H
H t +M2e−γt

and therefore
(2H − 1)H2H−1e−γtD2(t) = O(max(e−

1−H
H t, e−γt)), as t→∞. (3.36)

Hence combining (3.35) and (3.36), we deduce

E
(
U

(D,γ)
t U (D,γ)

s

)
= O(max(e−γt, e−

1−H
H t)

= O(emax(−γt,− 1−H
H t))

= O(e−min(γ, 1−H
H )t), as t→∞,

which is the assertion.

Theorem 3.24 ([29], Prop. 3.11.). The stationary process U (D,γ) is short-range depen-
dent.

Proof. We see that in the previous Proposition 3.23 the leading term of the covariance
of the stationary process U (D,γ) is e−min(γ, 1−H

H )t. With that information and Definition
1.18 we prove that U (D,γ) is short-range dependent as follows:

∞∑
n=0

ρU(D,γ)(n) =
∞∑
n=0

E
(
U (D,γ)
n U

(D,γ)
0

)
≤ C

∞∑
n=0

e−min(γ, 1−H
H )n

where the sum converges, since 1−H
H > 0 and γ > 0.
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4.1 Weak convergence

According to Proposition 3.19, the growth of the variance of Y (α)
t is asymptotically linear

as t→∞. Recall that for the standard Brownian motion {Bt : t ≥ 0} the variance of Bt
is equal to t. This property - similarity in variances - can be taken further. We prove in
this section that Y (α), if the time parameter is scaled properly, converges weakly to a
standard Brownian motion.

4.1.1 Weak convergence and tightness
An example of convergence of finite dimensional distributions helps us to understand
weak convergence. The following example is taken from Billingsley [5]

Example 4.1. Let Ω = [0, 1], B be the collection of the Borel sets in [0, 1] and P the
Lebesgue measure on B. Then the triplet (Ω,B,P) is a probability space. If we define

Xt(ω) = 0

and

Yt(ω) =
{

0, if t 6= ω
1, if t = ω,

when 0 ≤ t ≤ 1 and ω ∈ Ω, then for all 0 ≤ t ≤ 1

P(Xt = 0) = P(Yt = 0) = 1

and the stochastic processes {Xt : 0 ≤ t ≤ 1} and {Yt : 0 ≤ t ≤ 1} have the same finite
dimensional distributions. This means that

P(Xt1 ≤ x1, . . . , Xtk ≤ xk) = P(Yt1 ≤ x1, . . . , Ytk ≤ xk)

for any choices of xj and ti. Note that the finite dimensional distributions are the same,
but the the process behaves very differently. In fact,

sup
0≤t≤1

Xt(ω) = 0 and sup
0≤t≤1

Yt(ω) = 1,

for all ω.

Hence it is also true that the convergence of finite dimensional distributions does not
imply the convergence of the distribution of every functional of the process. The theory
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of weak convergence of probability measures in metric spaces gives conditions which
guarantee the convergence.

The previous example is a good motivator to study these problems. We now briefly
present some basic elements from the theory of weak convergence using [5, p. 5-6, p.
9-10]).

Let

• S be a separable complete metric space,

• C(S) be the class of bounded, continuous real-valued functions on S,

• S be the σ-algebra of Borel sets of S,

• P be a probability measure on S.

Definition 4.2. Let {Pn}n≥1 be a sequence of probability measures on (S,S). Then, we
say Pn converges weakly to P , denoted by Pn

w⇒ P if

lim
n→∞

∫
S

fdPn =
∫
S

fdP

for all functions f in C(S).

The classical setting of the weak convergence is S = R and S = B, i.e. Borel sets on
the line R. In this situation the probability measure P is completely determined by
its distribution function F , which is defined by F (x) = P ((−∞, x]), since F has to be
continuous from the right. Suppose that {Pn} is a sequence of probability measures on
(R,B), with the distribution functions Fn. Then we have

Theorem 4.3 ([5], Th. 2.3.). Following statements

(i) Pn
w⇒ P ,

(ii) Fn(x)→ F (x) for all continuity points x of F

are equivalent.

In a more general setting, we have the probability space (Ω,B,P) and X : Ω → R a
real-valued random variable. Let PX denote the distribution of X, i.e.

PX(A) = PX−1(A) = P({ω : X(ω) ∈ A}) = P({X ∈ A}),

where A ∈ B. Let {Xn}n≥1 be a sequence of random variables defined on the probability
spaces (Ωn,Bn,Pn) with distributions (PX)n = PnX

−1, in other words Pn(x) = Pn(Xn ≤
x).

Definition 4.4. If Pn
w⇒ P , then we say that the sequence {Xn}n≥1 converges in

distribution to X and we write Xn
d⇒ X.
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Definition 4.5. A family Π of probability measures on S is said to be relatively compact
if each sequence {Pn}n≥1 of the elements of the family Π contains some subsequence
{Pni}n≥1 converging weakly to some probability measure P .

The Prokhorov Theorem, for example in [5], combines these basic elements of weak
convergence and probability theory. We recall that a family Π of probability measures is
tight if for every ε there exists a compact set Kε such that P (Kε) > 1− ε for every P in
Π, see, for example, Billingsley [6, pages 8 and 58–59 ].

Theorem 4.6 ([5], Th. 4.1.). Family Π of probability measures is relatively compact if
and only if it is tight.

From Theorem 4.6, we obtain

Corollary 4.7. If a family of probability measures {Pn}n≥1 is tight, then it is relatively
compact and it has a subsequence converging weakly to P .

The same subject matter was also studied by Lamperti and he proved an important result
[34]. We use our terminology in this theory, but first define the Lipα space. Let Lipα be
the space of all real-valued functions t 7→ Xt defined for t ∈ [0, 1], with X0 = 0 and such
that

‖X‖α = sup
t1,t2∈[0,1]

|Xt2 −Xt1 |
|t2 − t1|α

+ max
t2∈[0,1]

|Xt2 | <∞.

Lamperti presented his theorems of continuity, which we need in using separable stochastic
or Gaussian processes. Therefore we have to represent one definition of separability, see,
for example, Creamer and Leadbetter [14]

Definition 4.8 ([14] p.48 ). A stochastic process {Xt : t ∈ [0, t]} is said to be separable
if there is a countable subset S of [0, 1] such that for any open interval I ⊂ [0, 1], with
probability one,

sup
t∈I∩S

Xt = sup
t∈I

Xt and inf
t∈I∩S

Xt = inf
t∈I

Xt.

Theorem 4.9 ([34], p.432 ). Let {Xt : t ∈ [0, t]} and X0 = 0 be a sequence of separable
stochastic processes satisfying the Kolmogorov criterion (Th. 1.10) with α, β and M
independent on n. Suppose also that the finite dimensional distributions of {X(n)

t : t ∈
[0, 1]} converge when n → ∞. Then there exists a process {Xt : t ∈ [0, t]} whose finite
dimensional distributions are these limits whose path-functions belong a.s. to Lipγ for

every γ < β

α
and such that

lim
n→∞

∫
S

fdPn =
∫
S

fdP

for every functional f which is continuous at almost all points of Lipγ for some γ < β

α
(with respect to the measure induced by the process

{Xt : t ∈ [0, t]}

)

In the case of Gaussian processes we have a more specific Theorem (with our terminology).
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Theorem 4.10 ([34], Cor. 2). Let {X(n)
t : t ∈ [0, 1]} and n = 1, 2, . . . be a sequence of

real separable Gaussian stochastic processes such that

E
(
X

(n)
t

)
= µn(t)

E
((
X(n)
s − µn(s)

)(
X

(n)
t − µn(t)

))
= ρn(s, t).

We assume also that
lim
n→∞

µn(t) = µ(t) and lim
n→∞

ρn(s, t) = ρ(s, t).

Suppose also that there exist constants ξ ∈ [0, 2] and A,B <∞ such that for t, t+ ∆t ∈
[0, 1]

|µn(t+ ∆t)− µn(t)| ≤ A|∆t|
ξ
2 and

|ρn(t, t)− 2ρn(t, t+ ∆t) + ρn(t+ ∆t, t+ ∆t)| ≤ B|∆t|ξ.
Then there is a separable Gaussian process {Xt : t ∈ [0, t]} with the mean function µ(t),
the covariance ρ(s, t) and whose paths belongs a.s. to Lipγ for every γ < ξ

2 such that

lim
n→∞

∫
S

fdPn =
∫
S

fdP

holds for every functional f which is continuous a.s. in the topology of Lipγ (with respect
to the measure induced by the process {Xt : t ∈ [0, t]}) for some γ < ξ

2 .

In the next section we will consider the weak convergence of

Y
(α)
t =

t∫
0

e−αsdZτs ,

where τt = HeαtH
α

. We recall that sample paths of Y (α) are locally Hölder continuous of
any order β < H by Proposition 3.10, and therefore the process Y (α) have a continuous
modification. This guarantees that the process is also separable and we may apply
Theorem 4.10. In this theorem there is a condition for tightness

|ρn(t, t)− 2ρn(t, t+ ∆t) + ρn(t+ ∆t, t+ ∆t)| ≤ B|∆t|ξ.
We rewrite the left-hand side of the previous inequality

ρn(t, t)− 2ρn(t, t+ ∆t) + ρn(t+ ∆t, t+ ∆t)
= E(X(n)

t − µn(t))2 − 2E(X(n)
t − µn(t))(X(n)

t+∆t − µn(t+ ∆t))

+ E(X(n)
t+∆t − µn(t+ ∆t))2

= E
(

(X(n)
t − µn(t))− (X(n)

t+∆t − µn(t+ ∆t))
)2

and in our case, where processes are Gaussian processes of zero mean, we obtain
|ρn(t, t)− 2ρn(t, t+ ∆t) + ρn(t+ ∆t, t+ ∆t)|

=
∣∣∣∣E(X(n)

t −X(n)
t+∆t

)2
∣∣∣∣ .

Hence we may conclude that weak convergence of a zero mean locally Hölder continuous
Gaussian process is tight, if we can prove that the variance of increments of the Gaussian
process is bounded by B|∆t|ξ, where ∆t is increment of the time parameter and ξ ∈ [0, 2].
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4.2 Weak convergence of Y (α)

In this section, we prove that the process {Z(a,α)
t : t ≥ 0} := { 1√

a
Y

(α)
at , t ≥ 0} converges

weakly to the scaled Brownian motion. This holds if we show that the finite dimensional
distributions of this process converge weakly as a→∞ and that the sequence of probability
measures is tight. This is the contents of the next result.
In the next theorem we state the precise result for arbitrary α > 0.
Proposition 4.11 ([29], Prop. 3.12.). Let for t ≥ 0

Z
(a,α)
t := 1√

a
Y

(α)
at ,

where a > 0. If B = {Bt : t ≥ 0} is a standard Brownian motion starting from 0, then it
holds

{Z(a,α)
t : t ≥ 0} w⇒ {σBt : t ≥ 0}, as a→∞,

where w⇒ stands for the weak convergence in the space of continuous functions and
σ(α,H) = σ is a non-random quantity depending only on α > 0 and H ∈ ( 1

2 , 1).

Proof. First we prove that the finite dimensional distributions of {Z(a,α)
t : t ≥ 0} converge

to the finite dimensional distributions of that {σBt : t ≥ 0}. Since both processes Z(a,α)

and σB are Gaussian processes of zero mean the covariance functions determine their
distributions uniquely. Hence, it suffices to verify the convergence of the covariance
functions. Applying Proposition 3.18 we infer, for t > s

E
(
Z

(a,α)
t Z(a,α)

s

)
= 1

a
E
(
Y

(α)
at Y (α)

as

)
= 1

a

 at∫
0

(at− x)kα,H(x)dx+
as∫

0

(as− x)kα,H(x)dx

−
a(t−s)∫

0

(at− as− x)kα,H(x)dx

 ,

where the kernel

kα,H(x) = C(α,H) e−
α(1−H)x

H∣∣1− e−αxH
∣∣2−2H

= H(2H − 1)
( α
H

)2−2H e−
α(1−H)x

H∣∣1− e−αxH
∣∣2−2H

is as in Proposition 3.13. If a→∞ we obtain

lim
a→∞

E
(
Z

(a,α)
t Z(a,α)

s

)
= lim
a→∞

1
a

 at∫
0

(at− x)kα,H(x)dx+
as∫

0

(as− x)kα,H(x)dx

−
a(t−s)∫

0

(at− as− x)kα,H(x)dx


 .
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Reorganizing the terms, we infer

lim
a→∞

E
(
Z

(a,α)
t Z(a,α)

s

)
= lim
a→∞

(1
a

[
a

at∫
0

tkα,H(x)dx+ a

as∫
0

skα,H(x)dx

−a
a(t−s)∫

0

tkα,H(x)dx+ a

a(t−s)∫
0

skα,H(x)dx
]

(4.1)

−1
a

( at∫
0

xkα,H(x)dx+
as∫

0

xkα,H(x)dx−
a(t−s)∫

0

xkα,H(x)dx
) .

Since we have proved in (3.30) that
∞∫

0

xkα,H(x)dx <∞,

and t− s > 0, the expression on the last line of (4.1) tends to zero as a→∞.
Hence, we obtain

lim
a→∞

E
(
Z

(a,α)
t Z(a,α)

s

)
= 2

∞∫
0

skα,H(x)dx.

After changing the variables in the kernel we conclude for t > s

lim
a→∞

E
(
Z

(a,α)
t Z(a,α)

s

)
= 2H(2H − 1)

( α
H

)1−2H
s

1∫
0

u−H

|1− u|2−2H du

= 2H(2H − 1)
( α
H

)1−2H
Beta(1−H, 2H − 1)s

= 2H(2H − 1)
( α
H

)1−2H
Beta(1−H, 2H − 1) min(s, t)

= 2H(2H − 1)
( α
H

)1−2H
Beta(1−H, 2H − 1)E(BtBs),

since E(BtBs) = min(t, s).We define

κ(α,H) := 2H(2H − 1)
( α
H

)1−2H
Beta(1−H, 2H − 1)

= 2C(α,H)
( α
H

)
Beta(1−H, 2H − 1).

We have now proved that the finite dimensional distributions of Z(a,α) converge to the
finite dimensional distributions of σB with

σ = σ(α,H) =
√
κ(α,H).
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We still have to prove the tightness. It suffices to verify, see [34] or Theorem 4.10 that for
every α > 0 and H ∈ ( 1

2 , 1) there exists a constant D(α,H) (not depending on a) such
that for t > s

∆ := E
((

Z
(a,α)
t − Z(a,α)

s

)2
)
≤ D(α,H)(t− s).

Applying Proposition 3.17 we obtain

∆ = 1
a

E
((

Y
(α)
t − Y (α)

s

)2
)

= 21
a

∫ a(t−s)

0
(a(t− s)− x)kα,H(x)dx

= 2
∫ a(t−s)

0
(t− s)kα,H(x)dx− 21

a

∫ a(t−s)

0
xkα,H(x)dx

≤ 2(t− s)
∫ ∞

0
k
α,H(x)dx

= D(α,H)(t− s),

thereby completing the proof.





5 Conclusion

5.1 Main results

The main result of the dissertation is that we have represented the Doob transformation
of fBm via the solution of a Langevin stochastic differential equation, see Proposition 3.2

dX
(D,α)
t = −αX(D,α)

t dt+ dY
(α)
t ,

and have analysed the driving process

Y
(α)
t :=

t∫
0

e−αsdZ
He

αs
H
α

.

Moreover,
{αHY (α)

t
α

: t ≥ 0} d= {Y (1)
t : t ≥ 0}

holds, which was proved in Proposition 3.3. Using this connection and the two-sided
extension of Y (1)

s we have defined a new family of processes

U
(D,γ)
t = e−γt

t∫
−∞

eγsdŶ (1)
s ,

where γ > 0, and named it the fractional Ornstein–Uhlenbeck process of the second kind,
fOU(2). See Section 3.1. We have also studied many properties of U (D,γ), for example, it
is stationary (Proposition 3.8) and its paths are locally Hölder continuous of any order
β < H (Proposition 3.11).
We have proved that the Doob transformation of fBm {XD,α : t ≥ 0} is short-range
dependent for all H ∈ (0, 1) (in Theorem 2.8). Theorem 2.5 states that the stationary
fractional Ornstein–Uhlenbeck process of the first kind is long-range dependent if H > 1

2
and short-range dependent if H < 1

2 . Therefore we have deduced and proved in Corollary
2.6 that these processes do not have the same finite dimensional distributions (Chapter
2).
We found using the Bochner theorem that (Theorem 2.8) the spectral density function of
the Doob transformation of fBm is

∆′(γ) = 1
2

(
H

α

)2H
(
α

π

1
γ2 + α2 −

α

π

∞∑
n=1

(
2H
n

) (−1)n
(
n
H − 1

)
γ2 +

(
αn
H − α

)2
)
.

This function is useful, for example, for prediction.
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One quite powerful result, when H ∈ ( 1
2 , 1), is the kernel representation of the covariance

function of the increments of Y (α) in Proposition 3.13, namely

E
((
Y

(α)
t2 − Y (α)

t1

)(
Y (α)
s2
− Y (α)

s1

))
= C(α,H)

t2∫
t1

s2∫
s1

e−
α(1−H)(u−v)

H∣∣∣1− e−
α(u−v)
H

∣∣∣2−2H dudv,

where s1 < s2, t1 < t2 and C(α,H) := H(2H − 1)
(
α
H

)2−2H
. We have generated a lot of

information on processes Y (α) and U (D,γ) using that kernel, for example, the covariance,
the variance of the increments and how they behave when t tends to infinity. We would
like to highlight a few results of processes Y (α) likewise U (D,γ). The increment process of
Y (α) is short-range dependent (Proposition 3.22) and also the process U (D,γ) is (Theorem
3.24). In the case H ∈ ( 1

2 , 1) it holds that fBm and fOU(1) are long-range dependent
processes, but fOU(2) is short-range dependent. This offers interesting opportunities to
model real life applications with tractable fractional processes.
Finally, we prove the following on weak convergence result:

{ 1√
a
Y

(α)
at : t ≥ 0} w⇒ {σBt : t ≥ 0},

as a → ∞ and σ(α,H) = σ is a non-random quantity depending only on α and H
(Proposition 4.11).

5.2 On some statistical studies of fOU(2)

We briefly present some results of the fractional Ornstein–Uhlenbeck of the second kind
defined by us. Azmoodeh and Morlanes [2] and Azmoodeh and Viitasaari [3] have obtained
statistically parameter estimation in fOU(2) model. Let U (D,γ) = {U (D,γ)

t : t ∈ R} be
the non-stationary fractional Ornstein-Uhlenbeck process of the second kind. We have
defined that in (3.5) but in the publications [2] and [3] is with initial value U (D,γ)

0 = 0
and drift parameter γ > 0. Then

U
(D,γ)
t =

t∫
0

e−γ(t−s)dY (1)
s .

We also need the definition of least squares estimator

γ̂T = −
∫ T

0 U
(D,γ)
t δU

(D,γ)
t∫ T

0 U
(D,γ)
t

2
dt

, (5.1)

where the integral
∫ T

0 U
(D,γ)
t δU

(D,γ)
t is the Skorokhod integral. See, for example, Di

Nunno, Øksendal and Proske [15].

Theorem 5.1 ([2], Th. 3.1). The least squares estimator γ̂T given by (5.1) is weakly
consistent, i.e.

γ̂T → γ

in probability, as T tends to infinity.
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Theorem 5.2 ([3], Th. 3.1.). Let U (D,γ) be a fractional Ornstein-Uhlenbeck process of
the second kind given in definition 3.6. Then as T tends to infinity, we have

√
T

 1
T

T∫
0

(
U

(D,γ)
t

)2
dt−Ψ(γ)

→ N(0, σ2),

where
Ψ(γ) := (2H − 1)H2H

γ
Beta((γ − 1)H + 1, 2H − 1), (5.2)

and where the variance σ2 is given by

σ2 = 2α2
HH

4H−2

γ2

∫
[0,∞]3

[
e−γx−γ|y−z|e(1− 1

H )(x+y+z) (5.3)

×
(

1− e−
y
H

)2H−2 ∣∣e− x
H − e− z

H

∣∣2H−2
]
dzdxdy (5.4)

and αH = H(2H − 1).

Theorem 5.3 ([3], Th. 3.2.). Assume we observe U
(D,γ)
t at discrete points {tk =

k∆N , k = 0, . . . , N} and TN = N∆N . Assume we have ∆N → 0, TN →∞ and N∆2
N → 0

as N tends to infinity. Set

µ̂2,N = 1
TN

N∑
k=1

U
(D,γ)
tk

2
∆tk and γ̂N := Ψ−1(µ̂2,N ),

where Ψ−1 is the inverse of function Ψ given in (5.2).

Then γ̂ is a strongly consistent estimator of drift parameter γ in the sense that as N tends
to infinity, we have

γ̂N → γ

almost surely. Moreover, as N tends to infinity, we have√
TN (γ̂N − γ) d→ N (0, σ2),

where
σ2
γ = σ2

[Ψ′(γ)]2

and σ is given by (5.3).





A Summary of some properties and
definitions

A.1 Gaussian processes: conclusions

We have actually studied five different Gaussian processes. Since some properties are at
the beginning of this dissertation and some in the middle part and so on, we present a
summary of definitions and some basic properties of these five processes.

fBm Def.1.27

E(ZtZs) = 1
2 (t2H + s2H − |t− s|2H), t, s ≥ 0. Def.1.27

H- self-similar Th. 1.28
Locally Hölder continuous of any order β < H Th. 1.32
Short-range dependent, if H < 1

2 Prop. 1.37
Long-range dependent, if H > 1

2 Prop. 1.37

fOU Def. 1.43

E
(
X

(D,α)
t X(D,α)

s

)
= 1

2

(
H

α

)2H (
eα(t−s) + e−α(t−s)

−eα(t−s)
(

1− e−
α(t−s)
H

)2H
)

Prop.2.1

E
(
X

(D,α)
t X

(D,α)
0

)
= O(e−αt), if H < 1

2 Cor. 2.4

E
(
X

(D,α)
t X

(D,α)
0

)
= O(e−αt( 1

H−1))), if H ≥ 1
2 Cor. 2.4

Short-range dependent Th. 2.3

97



98 Appendix A. Summary of some properties and definitions

fOU(1) Def. 1.42

U
(Z,α)
t = e−αt

t∫
−∞

eαsdẐs Def. 1.42

lim
t→∞

E
(
U (Z,α)
s U

(Z,α)
s+t

)
= 1

2

N∑
n=1

α−2n

(2n−1∏
k=0

(2H − k)
)
t2H−2n + O(t2H−2N−2) Prop. 2.2

Short-range dependent, if H < 1
2 Th. 2.5

Long-range dependent, if H > 1
2 Th. 2.5

Y Def. 3.1

Y
(α)
t =

t∫
0

e−αsdZτs =
t∫

0

e−αsdZ
He

αs
H
α

Def. 3.1

{αHY (α)
t
α

: t ≥ 0} d= {Y (1)
t : t ≥ 0} Prop. 3.3

Locally Hölder continuous of any order β < H Prop. 3.10

E
(
Y

(α)
t Y (α)

s

)
=

t∫
0

(t− x)kα,H(x)dx

+
s∫

0

(s− x)kα,H(x)dx

−
t−s∫
0

(t− s− x)kα,H(x)dx, if H ∈ ( 1
2 , 1) Prop. 3.18

fOU(2) Def. 3.6

U
(D,γ)
t = e−γt

t∫
−∞

e(γ−1)sdZ
τ

(1)
s

= e−γt
t∫

−∞

e(γ−1)sdZ
He

s
H

Def. 3.6

Locally Hölder continuous of any order β < H Prop. 3.11
lim
t→∞

E
(
U

(D,γ)
t U (D,γ)

s

)
= C exp−min (γ, 1−H

H )t, if H ∈ (1
2 , 1) Prop. 3.23

Short-range dependent, if H ∈ ( 1
2 , 1) Th. 3.24
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