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Abstract

In all organisms, cellular functions, such as growth and differentiation, are coordi-
nated by gene networks. These networks control both which genes are transcribed
as well as when these events occur, based on intracellular and environmental
information. Due to the often small number of specific regulatory molecules in
the cell, stochastic fluctuations in molecular numbers tangibly affect the control
of transcription. The stochasticity has consequences on the phenotype of the cell
and the course of future cellular events. To obtain a detailed understanding of
the dynamics of these processes, one must use techniques that allow observing
individual events in time. Recent advancements in single-molecule detection
techniques in live cells have made this possible and studies using these techniques
are beginning to shed light on the functioning of cellular processes at a molecular
level.

In this thesis, the dynamics of the multi-step transcription process in Escherichia
coli was characterized using a combination of in vivo single-RNA detection tech-
niques and single-nucleotide level stochastic models. Fluctuations at different
stages of the transcription process and their propagation were investigated.

First, intake and transcription dynamics were investigated in different promoters
and various induction schemes. Following the beginning of induction, waiting
times for the first transcription event and the time intervals between consecutive
ones were measured. The measurements were conducted using an MS2-GFP
RNA tagging technique to detect single RNA molecules in vivo. To accurately
measure the time moments when novel transcripts are produced, an automatic
method for detecting non-spurious changes in time series data was developed.
The stochasticity of the intake dynamics of inducers was found to be responsible
for a large transient variability in RNA numbers that gradually vanishes, as
the fluctuations from active transcription on the intracellular RNA numbers
accumulate.

Next, contributions from the promoter dynamics and steps in transcription and
translation elongation to fluctuations in RNA and protein numbers were studied.
For this, stochastic single-nucleotide-level models to observe the dynamics of
initiation at the promoter region and the dynamics of coupled transcription and
translation elongation were constructed. In the closely spaced promoter regions,
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ii Abstract

interference between RNA polymerases was shown to affect the dynamics and
create transient correlations in transcription initiations. During coupled elongation
phases, the propagation of fluctuations from transcription to translation was shown
to depend on both transcription and translation processes. For example, sequence-
dependent transcriptional pauses were shown to affect simultaneously transcription
and translation elongation. Together these findings suggest that the dynamics
of transcript production is sensitive to the sequence-dependent mechanisms of
initiation and elongation.

These results contribute to understanding how different sources of fluctuations
contribute to the outcomes of gene expression. While the in vivo single-molecule
detection techniques allow quantifying the fluctuations in principal components
of the process at a molecular level, stochastic modeling contributes to the study
by explaining how they fluctuate, as different mechanisms can give rise to similar
behaviors. Combination of these methodologies will be crucial in future efforts for
better understanding of biological systems.
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1 Introduction

1.1 Background and Motivation

In all organisms, from viruses to mammals, gene regulatory networks coordinate
cellular functions, such as growth and differentiation (Arkin et al. 1998; Süel et al.
2007; Acar et al. 2005; Takahashi and Yamanaka 2006). These networks control
both which genes are transcribed as well as when these events occur, based on
intracellular and environmental information. Such regulation is essential for cells
to alternate between different physiological and morphological states, in order to
cope with changing environmental conditions (Errington 2003; Süel et al. 2006;
Balaban et al. 2004). Notably, not all cellular decisions to change phenotypic
state are driven by environmental or internal signals (Arkin et al. 1998; Lewis
2007; Kearns and Losick 2005). Namely, evidence suggests that monoclonal cells
in a homogenous environment can exhibit a mixture of different phenotypes in a
stochastic manner (Norman et al. 2015). The main source of phenotypic diversity
has been identified to be stochasticity in gene expression (Elowitz et al. 2002).

Many regulatory molecules in cells exist in very low copy-numbers (Kaern et al.
2005; Taniguchi et al. 2010). Molecular events involving such low-abundance
molecules, such as in gene expression, are poised with randomness in the timing
of events. Stochasticity in gene expression causes identical cells in the same
environment to exhibit different numbers of RNA and proteins (Paulsson 2004).
Aside from this, small differences in cell size, cellular history, etc., have been
shown to contribute to the diversity of cell fates (St-Pierre and Endy 2008; Zeng
et al. 2010; Robert et al. 2010). Relevantly, not all stochasticity is detrimental,
as in some cases, it is the mean by which cellular organisms adjust to challenges
posed by the competition and environmental fluctuations (Leibler and Kussell
2010; Süel et al. 2006; Balaban et al. 2004; Raj et al. 2010; Ribeiro et al. 2008).

Gene expression consists of transcription, the reading of DNA and production of
a specific RNA molecule, and translation, the reading of the RNA sequence and
engineering of a correspondent peptide. Both are complex, multi-step processes
with sequence-dependent dynamics (McClure 1985; Saecker et al. 2011; Ramakr-
ishnan 2002). For example, the promoter sequence has been shown to control
both the mean and variability in constitutive expression in Escherichia coli (Jones
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2 Chapter 1. Introduction

et al. 2014). The regulation of the steps in transcription initiation, especially
the closed and open complex formations, allow cells to regulate the rate of RNA
production (Lutz et al. 2001; McClure 1980; Sanchez et al. 2011). The coupling
between transcription and translation in prokaryotes allows this regulation also
to be extended to peptide production dynamics (Yarchuk et al. 1992).

Recent advancements in single-molecule detection techniques have made possible
measurements of fluctuations in the RNA and protein numbers in individual
cells (Golding et al. 2005; Yu et al. 2006; Fusco et al. 2003; Taniguchi et al.
2010). The fluorescence in situ hybridization (FISH) and tagging of RNAs with
fluorescent proteins, e.g., MS2-GFP method (Fusco et al. 2003), have rapidly
become popular due to their ability to probe variability in endogenous RNA
numbers, which is not attainable from averaged measurements of abundance
(Raj and van Oudenaarden 2009). By measuring fluctuations in the number of
molecules, quantitative information about the underlying processes responsible
for the observed fluctuations and even the dynamics, can be determined. Such
measurements have been used to probe different stages of transcription, such as
RNAp binding, transcription initiation, and elongation, which has proven to be
insightful for the understanding of the transcription process (Larson et al. 2011;
Friedman et al. 2013; Muthukrishnan et al. 2012).

From the measurements, models of gene expression have been constructed. These
seek to explain how the fluctuations in the numbers of involved components arise
and how they contribute to the overall dynamics (Sanchez et al. 2011; Garcia
et al. 2012). To incorporate stochasticity, gene expression has been modeled using
stochastic modeling approaches (Arkin et al. 1998; Ribeiro et al. 2010). The
stochastic simulation algorithm (SSA) is a common way to simulate exact sample
trajectories from the distribution described by the chemical master equation
(CME), which captures the dynamics of molecular scale interactions (Gillespie
1992; Gillespie 2007). Other methods, such as finite state projection (FSP)
algorithm (Munsky and Khammash 2006), can provide approximations or exact
analytical solutions for biological systems with small number of species. Meanwhile,
dynamics of a system with a large number of interacting species can be only
simulated with SSA.

1.2 Thesis Objectives

This thesis focuses on studying variability in the transcription process in E. coli.
First, an automatic methodology to detect changes from time series data is
presented. The method aimed to be general and applicable to different biolog-
ical systems, e.g., single genes, small gene networks, and large-scale networks.
Relevantly, it can be used to detect changes in simulated time series and in
measurements from time-lapse microscopy. Second, the induction kinetics and
subsequent transcription dynamics in live cells for a few promoters and induction
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schemes were studied. Specifically, time intervals between transcription events and
the waiting time for the first transcription event were measured using an MS2-GFP
RNA tagging method. Third, closely spaced promoters, common in E. coli and
other organisms, were studied assuming various configurations and localizations
of promoter start sites using stochastic, single-nucleotide level models. Also, the
co-regulation of the promoters with shared transcription factor binding sites was
characterized. Finally, a stochastic transcription and translation elongation model
at the single nucleotide and codon level was developed. This model was used to
study the propagation of fluctuations in transcription kinetics into translation
kinetics as a function of the underlying processes.

The thesis has three objectives:

I Propose a novel automatic method to detect changes in the dynamics of gene
regulatory networks. This method has to be general so as to be applicable
to the study of a broad type of changes in synthetic and empirical time
series data.

II Study the timing of promoter activation and consequent transcription dy-
namics using single-RNA measurement techniques. Characterize the conse-
quences of asynchronous promoter dynamics on the temporal population
variability.

III Characterize the dynamics of transcription initiation and coupled tran-
scription and translation elongation using single nucleotide level stochastic
models. The models should account for the detailed processes occurring
during initiation and elongation of both transcription and translation.

Objective I was completed in Publication I. Objective II was completed in
Publication II. Finally, Objective III was completed in Publication III and
Publication IV.

1.3 Thesis Outline
This thesis is organized as follows. Chapter 2 introduces the biological background
by describing the current knowledge on transcription and translation initiation,
elongation and regulation in E. coli. Chapter 3 introduces the models, modeling
strategies and simulation algorithms employed in the publications of this thesis.
In particular, the CME, the SSA and the FSP algorithms to model biochemical
systems are described in this chapter. Chapter 4 presents fluorescence microscopy
techniques to measure in vivo single RNA numbers in individual cells. In particular,
the measurements and analysis of in vivo single RNA detection experiments used
in this thesis are discussed. Finally, conclusions and discussion are presented in
Chapter 5.





2 Biological Background

This chapter gives an overview on the biological processes studied in this thesis.
It includes a description of transcription and translation in Escherichia coli along
with a more detailed view into transcription initiation, elongation, regulation,
closely spaced promoters and noise in gene expression.

2.1 Gene Expression in Escherichia coli
Gene expression is the process of reading-out or expressing the genetic information
stored in the genome. There are two main steps by which the genetic information
is expressed in all cells, namely transcription and translation that together form
the central dogma of molecular biology (presented in Figure 2.1) (Crick 1970). In
the first step, transcription, a particular region of the DNA nucleotide sequence,
a gene, is replicated into a complementary mRNA (messenger RNA) nucleotide
sequence (McClure 1985). Following transcription, an mRNA template is used to
synthesize the corresponding amino-acid sequence by a process called translation
(Ramakrishnan 2002). Each gene in the genome can be transcribed and translated
with a given efficiency, allowing the cell to express different, gene-dependent
quantities of mRNAs and proteins (Alberts et al. 2002). Moreover, the amount of
expression from a gene can be regulated to address changes in the demand of gene
products. In prokaryotes this commonly happens through controlling the rate of
RNA production. Finally, in the case of many genes, the RNA is the final product
of gene expression, and it can have either a structural, catalytic or regulatory role
(Alberts et al. 2002).

One of the most studied organisms in the fields of biochemistry and molecular
biology, E. coli, has been the main source of information on the basic mechanisms
involving genes, such as DNA replication, gene expression, and protein synthesis
(Blattner et al. 1997; Lee and Lee 2003). The genome of E. coli, consisting of
a single circular chromosomal double stranded DNA, contains over 4000 genes
coding for structural and regulatory proteins (Blattner et al. 1997). Additionally,
the cell can contain extra-chromosomal DNA, called plasmids, with additional
genes that code for, e.g. antibiotic resistance (Eliasson et al. 1992).

The genes in prokaryotes mainly consist of three components: a promoter, operator
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6 Chapter 2. Biological Background

DNA RNA Protein

Transcription Translation
Replication

Figure 2.1: The central dogma of molecular biology. The information
stored in the DNA can be transferred to mRNA by transcription and from
the mRNA to proteins by translation. Information in the DNA can be
replicated in the process of DNA replication. Additionally, in special cases,
information from the RNA can be transferred to the DNA in a process called
reverse transcription.

site(s) and structural gene(s) (Alberts et al. 2002). The promoter is a specific
region of DNA recognized by RNA polymerase (RNAp) to initiate transcription.
The operator sites are small segments of DNA recognized by regulatory molecules
that control the expression from the promoter, e.g. repressor molecules prevent
binding of RNAp. Structural genes in prokaryotes are usually organized into
operons, in which a set of genes is controlled by a single promoter (Osbourn and
Field 2009)(Figure 2.2). Consequently, the operon is transcribed into a single
mRNA molecule often containing multiple genes (polycistronic mRNA). The first
operon to be described was the lac operon by Jacob and colleagues (Jacob et al.
1960). Aside the operon structure, some bacterial genes are organized as closely
spaced promoters, which is believed to allow further coordination of the gene
products (Beck and Warren 1988).

Β

ρ�� ρ��

λ�ΓΒ∆ΥΠΣ

3/∀1

∃ΒΟΠΟϑ∆ΒΜ�ΘΣΠΝΠΥΦΣ
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Figure 2.2: Genes in prokaryotes are organized as operons. A promoter
in a region between genes initiates mRNA synthesis by recruiting RNAp
and facilitate the formation of a transcription elongation complex, which
produces mRNAs that terminate at an intrinsic terminator. The genes
within operon are transcribed as a single mRNA. Adapted with permission
from (Wade and Grainger 2014).
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2.2 Mechanisms of Transcription and Translation
The main enzyme involved in transcription is the core RNAp. It consists of several
subunits (ββ’α2ω) and contains all necessary enzymatic components required for
the synthesis of RNA but it cannot initiate transcription from a promoter (Young
et al. 2002). To bind specifically to the promoter and initiate transcription, the
core RNAp must be bound by one of the σ-subunits (Murakami et al. 2002). This
produces an RNAp in the holoenzyme form (Eσ), which contains exactly one
σ-subunit that has affinity for specific promoters in the genome. E.g., σ32 is a
heat shock sigma factor in that it allows the RNAp to express the genes associated
with the response of E. coli to heat shock conditions (Alberts et al. 2002).
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Figure 2.3: Transcription process in E. coli. (a) Transcription initiates as
an RNAp binds the promoter region and forms a closed complex. Next, in
the process of open complex formation, the DNA’s double helix is opened
and a short stretch of nucleotides are exposed. Finally, the RNAp enters
a productive elongation state following an abortive initiation cycle. (b)
During elongation the RNAp can go through alternative pathways, such
as spontaneous or transcription factor-mediated pausing. Elongation ends
in the process of transcription termination. Adapted with permission from
(Robinson and Oijen 2013).

The transcription process consists of initiation, elongation and termination as
depicted in Figure 2.3 (Alberts et al. 2002). Initiation consists of the RNAp
holoenzyme finding a promoter, unwinding the DNA, and initiating the elongation.
Next, in elongation, mRNA is synthesized by the transcription elongation complex
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(TEC) moving along the DNA template in 3’ to 5’ direction. Reaching a specific
termination signal encoded into the DNA, elongation is terminated and a newly
transcribed mRNA is released. The termination signal typically destabilizes the
TEC on the DNA by forming an secondary RNA structure. In prokaryotes,
translation can initiate as soon as the 5’ end of an mRNA including a ribosome
binding site (RBS) is synthesized (Miller et al. 1970; Yarchuk et al. 1992).

A translation cycle, similar to transcription, consists of initiation, elongation and
termination. Translation in prokaryotes is conducted by ribosomes that are highly
complex molecular machines consisting of ribosomal proteins and specialized RNA
molecules (rRNAs). E. coli ribosome (70S) consists, as in other species, of two
main sub-units: a small (30S) and a large (50S) subunit (Ramakrishnan 2002).
The small subunit contains a 16S RNA subunit and 21 proteins. The large subunit
contains a 5S RNA subunit, a 23S RNA subunit and 31 proteins.

Translation is initiated at the start codon AUG, which is recognized by a special
initiator tRNA carrying N -formylmethionine (fMet). mRNA contains the RBS
consisting of a specific Shine-Dalgarno sequence which is located upstream of
the initiation codon (Ramakrishnan 2002). The RBS is recognized by the 16S
rRNA of the ribosome. To initiate translation, first, the small ribosomal subunit
(30S) of the ribosome binds to the RBS of the mRNA and fMet-tRNA binds
to the P-site forming a 30S-RNA complex (Ramakrishnan 2002). Next, the
large ribosomal subunit (50S) binds to the complex to complete the ribosome
(70S) and initiates the translation elongation. During the elongation, transfer
RNAs (tRNAs), carrying specific amino acids, bind to the appropriate codons
in mRNA and with the help of the ribosome, an amino acid is added to the
growing polypeptide until stop codon is reached (Ramakrishnan 2002). Following
this, a release factor binds to the ribosome releasing both the ribosome and the
completed polypeptide.

2.2.1 Transcription Initiation

Transcription initiation in prokaryotes is a complex, multi-stepped process that has
been observed to include three main steps: binding, isomerization and promoter
clearance (McClure 1985; Saecker et al. 2011):

R + P KB←→ RPC
kf−→ RPO →→→ RNA (2.1)

This scheme was first suggested by Walter, Zillig and colleagues (McClure 1985;
Walter et al. 1967; Chamberlin 1974). It involves binding of a holoenzyme (R) to a
promoter (P) with an equilibrium binding constant, KB, to form a closed complex,
RPc, which subsequently isomerizes with a rate constant kf to form a stable open
complex, RPo. After an initial RNA synthesis, the RNAp breaks its interactions
with the promoter and enters into an elongation phase. Various alterations of this
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scheme exist in different promoters and these may include additional steps and
equilibrium reactions.

A promoter region in E. coli is defined by a consensus sequence at -10 and -35
positions upstream of the transcription start site (Cho et al. 2009; Harley and
Reynolds 1987). The highly conserved consensus sequence is required for the
RNAp holoenzyme to recognize the transcription initiation site (Hippel et al.
1984). To initiate transcription, the holoenzyme must first find and bind to the
promoter. DNA binding proteins have been shown to find the target site faster
than the 3D diffusion limit (Riggs et al. 1970). To achieve this, additional search
mechanisms such as 1D sliding, 1D hopping and inter-segment transfer are likely
necessary (Dangkulwanich et al. 2014; Hammar et al. 2012). The holoenzyme is
known to adhere only weakly to non-specific DNA and to slide rapidly along the
DNA molecule until it dissociates from it, unless a start site is found (McClure
1985). Recent studies tracking single fluorescent holoenzymes in vitro reported
that long-range 1D sliding does not significantly affect the search times (Friedman
et al. 2013; Wang et al. 2013). Nevertheless, the exact contribution of different
mechanisms for the binding of the holoenzyme to the promoter region have not
been thoroughly quantified in live cells. Once the holoenzyme finds the promoter,
it recognizes the promoter site by making specific contacts with the bases that
are exposed on the outside of the helix in the consensus sequence (Alberts et al.
2002).

Following the binding of the holoenzyme to the promoter, the holoenzyme unwinds
the DNA’s double helix and exposes a short stretch of nucleotides on each strand.
This does not require ATP energy in σ70 promoters as it is achieved through a
reversible structural change of the holoenzyme-DNA complex that is more favorable
than the initial state (Alberts et al. 2002). The consequent isomerization into the
open complex form is found to contain at least three intermediate steps, namely
DNA loading, DNA unwinding, and assembly of the polymerase clamp (Saecker
et al. 2011). To enter the elongation phase of transcription, the holoenzyme goes
through an abortive initiation cycle before committing to elongation (Goldman
et al. 2009; Hsu 2002). Consequently, the holoenzyme synthesizes small transcripts
of length up to 10 nucleotides. The abortive initiation is shown to occur via a
’scrunching’ mechanism, in which the holoenzyme remains stationary while the
downstream DNA is pulled into the active site (Revyakin et al. 2006; Kapanidis
et al. 2006). After initial RNA synthesis, the holoenzyme breaks its interaction
with the promoter and finally enters into elongation phase. The exact moment
of σ70 release remains unclear and it has been suggested to remain bound to
promoter, be released in beginning of elongation, or be retained in TEC (Bar-
Nahum and Nudler 2001; Kapanidis et al. 2005; Raffaelle et al. 2005; Harden et al.
2016). A recent study using in vitro techniques showed that a substantial fraction
of elongating TEC retained the σ70-factor throughout elongation (Harden et al.
2016).
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Regulation of the steps in transcription initiation have been traditionally studied
with abortive initiation and in vitro transcription assays (Buc and McClure 1985;
McClure et al. 1978; McClure 1980; Lutz et al. 2001). The open complex formation
rate can be derived from the delay of reaching the steady-state production of
the abortive product assays (McClure et al. 1978; McClure 1980). The closed
complex formation is dependent on the RNAp concentration, which allows it
to be distinguished from the open complex formation (Buc and McClure 1985).
This dependence of the lag time for the RNAp concentration allows drawing a
τ -plot, which portrays a direct relationship between lag times and the reciprocal
RNAp concentration (McClure 1980; Patrick et al. 2015). From this plot, the
slope yields the mean time for the closed complex formation and the intercept
gives the mean time for the open complex formation. Compared to the time
required for elementary steps in enzyme catalyzed reactions, the observed lags
are much longer, spanning from a few seconds to several minutes. As such, these
processes are rate-limiting for transcription initiation (McClure 1985; Saecker
et al. 2011). Studies of transcription reactions in vitro have also showed that
the reactions times were sequence-dependent as they differed between promoters
(Bertrand-Burggraf et al. 1984; McClure 1985; Saecker et al. 2011).

More recent techniques, based kinetic and intermediate trapping experiments,
as well as footprinting and crystallographic analysis, have identified multiple
intermediate steps during the initiation (Sclavi et al. 2005; Davis et al. 2007;
Saecker et al. 2011). Recently, in vitro single-molecule fluorescence spectroscopy
was used to visualize the rate-limiting steps in transcription initiation including
binding, open complex formation, transcript production, and σ54 dissociation
(Friedman and Gelles 2012). The main steps of the initiation process, including
reversible intermediates, were characterized. The isomerization step was found to
limit the initiation rate, in agreement with previous findings of DNA supercoiling
altering initiation rates in certain σ54-dependent promoters (Amit et al. 2011;
Huo et al. 2006).

Compared to in vitro environment, in vivo measurements of the transcription
initiation rates are much more complicated to execute. Most studies quantifying
the transcription process have used measurements of the heterogeneity in number
of RNAs per cell e.g., using FISH (Jones et al. 2014; So et al. 2011). The
measurements have shown that the sequence-dependent transcription initiation
process dictates both the mean and variability in mRNA numbers (Jones et al.
2014). Aside from the observed population variability, recent in vivo single-
RNA level measurements have quantified the time intervals between consecutive
production events in single cells for various promoters (Kandhavelu et al. 2011;
Kandhavelu et al. 2012a; Kandhavelu et al. 2012b; Muthukrishnan et al. 2012).
These studies proposed that the distributions of time intervals could not be
explained by a single elementary step. Thus, it was suggested that the dynamics
could be explained by multiple rate-limiting steps in transcription in line with the
results from in vitro studies. Alternatively, the nature of the rate-limiting steps
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may correspond to other mechanisms than elementary steps in the transcription
cycle.

In Publication II, measurements of time intervals between consecutive produc-
tion events were conducted to study the transcription process. In Publication
III the closed complex formation, open complex formation and abortive initiation
were included in the models to accurately depict the transcription initiation
process.

2.2.2 Transcription and Translation Elongation

The transcription elongation phase initiates as the RNAp clears the promoter
region. In this phase, the transcription elongation complex (TEC) incorporates
nucleotides into the nascent RNA chain while advancing on the DNA template.
In active translocation, the TEC has been shown to move up to 50 bp/s (Greive
and Von Hippel 2005; Proshkin et al. 2010). The movement of TEC occurs
in discontinuous manner as the TEC, also exhibits pausing or even backward
diffusion on the template (Greive and Von Hippel 2005). As such, pausing can
significantly reduce the overall transcription rate during elongation. The duration
of pauses has been shown to vary from less than a second to minutes (Herbert
et al. 2006; Herbert et al. 2010; Landick 2009). The pauses can be divided into
two categories: short ’ubiquitous’ pauses and longer-lived pauses that often are
stabilized by backtracking or formation of a hairpin structure in the nascent
RNA (Landick 2006). Transcription factors and the DNA sequence have been
shown to affect the dynamics of pausing, e.g. the transcription factor NusG can
increase the overall transcription rate by both enhancing elongation rate and
decreasing the entry rate into long-lifetime, backtracked pause states (Herbert
et al. 2010). Also, retained σ-factors have been shown to affect the recognition of a
class of transcriptional pause sequences while appearing similar in elongation rates
(Harden et al. 2016). Aside pauses, transcription elongation has the alternative
pathways of premature termination, pyrophosphorolysis, misincorporation or
editing (Arndt and Chamberlin 1988; Greive and Von Hippel 2005; Erie et al.
1993).

Translation elongation occurs in a discontinuous manner as series of transloca-
tion–pause events takes place in the movement (Wen et al. 2008)(see Figure 2.4).
The ribosome moves three bases (which corresponds to one codon) at a time,
followed by a peptide-bond formation between amino-acids. The latter defines the
overall rate of translation and is also dependent on the secondary structure of the
mRNA. Additionally, longer pauses during elongation were observed and these
may lead to translational frameshifting (Farabaugh 1996) and protein misfolding
(Kimchi-Sarfaty et al. 2007). Ribosomes stalled on the mRNA can be rescued by
transfer-messenger RNA (tmRNA), which releases the ribosome by terminating
translation prematurely (Moore and Sauer 2005). Approximately 0.4 per cent of
all in vivo translations are prematurely terminated.
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Figure 2.4: Translation cycle. Initiation of protein synthesis involves the
formation of a 70S ribosome from a 30S and a 50S subunits in start codon of
the mRNA with the initiator tRNA positioned at the P-site. The elongation
cycle consists of the delivery of the aminoacylated-tRNA to the A-site of
the ribosome by EF-Tu, peptide-bond formation between tRNAs of the A-
and P-sites, translocation of the tRNAs, which is catalysed by EF-G, and
elongation of the nascent chain. In the termination, the polypeptide chain
and subsequent dissociation of the 70S ribosome are released, followed by
recycling of the components for the next translation event. Adapted with
permission from (Wilson 2014).

Transcription and translation elongation in prokaryotes are dynamically coupled.
The majority of genes initiate translation as soon as the RBS emerges from
the TEC (Miller et al. 1970). Implications of this coupling have been mostly
studied in specific cases of transcription attenuation and polarity (Adhya and
Gottesman 1978; Yarchuk et al. 1992). In both mechanisms, slow translating
ribosomes increase the distance to the TEC and allow the premature termination
of transcription. The premature transcription termination occurs through the
formation of a hairpin in the leader RNA sequence that destabilizes the RNAp.
This occurs if ribosome binding on the nascent RNA is not fast enough (Yanofsky
1981). In the polarity effect, the growing gap between TEC and the first ribosome
allows the termination factor Rho to access the nascent RNA, which results in
premature termination of TEC and, in polycistronic mRNAs, reduces expression
of the downstream genes (Richardson 1991).
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The transcription elongation rate is strongly affected by the rate of translation
elongation (Proshkin et al. 2010). Slowing down translation elongation using
antibiotics or slow-to-translate codons reduces the transcription elongation rate
as well. The first ribosome in the nascent RNA has been proposed to assist TEC
during elongation, by preventing backward translocation and pausing (Proshkin et
al. 2010). This cooperative mechanism is believed to prevent discrepancy between
transcription and translation efficiencies in different genes and environments.

Translation rates have been shown to be codon-specific (Sørensen et al. 1989;
Sørensen and Pedersen 1991). The redundancy between codons (64) and amino
acids (20) allows an additional level of regulation for translation. E.g. synonymous
codons do not change the encoded protein but they can affect translation elonga-
tion. Two synonymous codons, read by the same tRNA species, were translated
with a threefold difference in rate, which implies that the difference in translation
rates are not caused only due to differences in tRNA abundances (Pedersen 1984).
The extent of slow translating codons promoting queue formation and causing
collisions between ribosomes was studied using stochastic models of translation
with different codon translation rates (Mitarai et al. 2008). The simulations
suggest that traffic and collisions frequently affect the efficiency of translation.

The average translation efficiency of a sequence, i.e. the protein yield, has been
traditionally analyzed with the Codon Adaptation Index (CAI) (Sharp and Li
1987). To estimate the translation efficiency of a specific sequence, a given sequence
is compared to a reference set of highly expressed genes. Nevertheless, a study
utilizing a synthetic library of 154 synonymous sequences of GFP found no strong
correlation with the CAI and gene expression levels (Kudla et al. 2009). This was
proposed to be due to the CAI increasing the elongation rate but the translation
initiation remaining the rate-limiting step in translation. The expression levels of
individual genes were also proposed to be more affected by the mRNA secondary
structures. The CAI was proposed to have more influence on global translation
efficiency and cellular fitness.

To investigate translation efficiency profiles, native codon sequences and tRNA
pools were compared in various organisms (Tuller et al. 2010). Interestingly, most
genes were shown to have a ramp of slow-to-translate codons in the beginning
of genes, which is proposed to reduce collision between ribosomes and improve
the efficiency of translation (Tuller et al. 2010). The length of the ramp was
measured to be approximately 30-50 codons. Increasing the translation initiation
rate decreases the average spacing between ribosomes and creates collisions
between the ribosomes that can stall or even abort translation. The ramp could
prevent collisions, by spacing the ribosomes more evenly, especially in abundantly
translated genes (Tuller et al. 2010). Also, it would allow some genes to be
especially sensitive to the low abundance of amino acid-loaded tRNAs.

The functioning of slow ramps on single genes and small gene circuits were
investigated in a recent modeling study (Potapov et al. 2012). This study examined
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the effects of codon sequences on the fluctuations of gene expression using stochastic
models of coupled transcription and translation at the codon level (first published
in Publication IV). The model supports the hypothesis of slow ramps reducing
ribosomal jams by reducing the rate of translation initiation. Also, the model
proposed that the mean and noise in the protein numbers can be separately
regulated by the coding sequence.

Noise propagation from transcription initiation to protein expression was studied
in Publication IV. The stochastic model incorporates the transcription model
at the nucleotide level, that includes transcription initiation, pausing, premature
termination, and accounts for the RNAp footprint in the DNA template (Ribeiro et
al. 2009). The translation model at the codon level includes translation initiation,
codon-specific translation rates, stalling, and accounts for the ribosome footprint
(Mitarai et al. 2008). The model in Publication IV coupled the transcription
and translation models to allow events to simultaneously affect both processes.

2.3 Regulation of Transcription
Transcription in E. coli is a relatively rare event at the genome level (Taniguchi
et al. 2010). Transcription is the main regulator of mRNA abundance, as mRNA
degradation rates cannot explain the observed abundance (Bernstein et al. 2002;
Chen et al. 2015a). Degradation has been proposed to have an alternative role
as a regulator of abundance, e.g. in response to environmental perturbations.
Additionally, at the ensemble level, the mean mRNA and respective protein levels
were found to be only moderately correlated (Taniguchi et al. 2010).

The regulation of transcription primarily occurs during the main steps of initiation:
promoter binding, isomerization and promoter escape (Browning and Busby 2004).
The most common mechanism by which regulation occurs is the binding of a
transcription factor at the promoter region. Globally, the concentration and
activity of RNAp can be used to regulate transcription initiation (Bremer and
Dennis 1996; Klumpp et al. 2009). Transcription can also be regulated during
elongation in specific leader sequences that can terminate the elongation. E.g., in
tryptophan attenuation, if the concentration of charged tRNAtrp is high enough,
transcription is terminated by a RNA hairpin structure (Simao et al. 2005). An
example of transcription regulation is shown in Figure 2.5.

2.3.1 Transcription Factor Dynamics

The regulation of transcription initiation by transcription factors is traditionally
described by the operator occupancy model. The transcription factor’s state,
bound or not bound, determines the state of a gene, which will be not expressing
or expressing, depending on the mode of regulation. Namely, the association
and dissociation of the transcription factor will turn the gene off and on. The
architecture of the promoter, i.e. the location of binding sites and their affinities
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Figure 2.5: Example of transcription regulation. Tryptophan biosynthesis
is subject to (a) transcription attenuation, and (b) transcription repression.
In transcription attenuation, leader regions of biosynthetic operon serve
to synchronize the progress of RNAP with ribosomes. The transcription
inhibition of trpEDCBA operon by the dimeric holorepressor results from
the combination of the product of the repressor gene trpR with the amino
acid Trp. Reproduced with permission from (Simao et al. 2005).

for transcriptional regulators, determines the transcriptional responses of the
promoter to changes in transcription regulators numbers and the consequent
protein numbers in the cells.

The most common way of regulating the promoter activity in E. coli is by
repression (Garcia et al. 2010). The exact mechanism by which the repression of
transcription initiation occurs varies between promoters. First, the repressor can
directly compete with the RNAp in binding to the promoter (Hawley et al. 1985;
Schlax et al. 1995). Alternatively, the repressor can prevent the open complex
formation (Heltzel et al. 1990; Sanchez et al. 2011). Finally, the repressor can
inhibit promoter escape, in which the open complex can be formed but elongation is
blocked (Krummel and Chamberlin 1989; Lee and Goldfarb 1991). The promoters
in E. coli exhibit a wide range of locations for the repressor binding sites in
respect to the transcription start site (Garcia et al. 2012; Gama-Castro et al.
2011). Interpreting the repression mechanism can be difficult from population
measurements only. Recent single-molecule spectroscopy measurements and
statistical analysis approaches have allowed a direct quantification of individual
RNAp-DNA interactions in the presence and absence of the repressor molecule
(Sanchez et al. 2011; Friedman and Gelles 2012).

The different repression mechanisms lead to qualitatively distinct regulatory
behaviors (Sanchez et al. 2011). In the case of inhibition of promoter binding,
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the transcription initiation rate is proportional to the RNAp binding rate to the
promoter, which can be reduced simply by increasing the repressor numbers. By
inhibiting the subsequent steps of transcription initiation, the transcription rate
is controlled by the dissociation rate of the repressor from the promoter, which
is independent of the repressor numbers in the cell. In this case, the promoter
kinetics, including the rate-limiting steps in initiation, have a major contribution
on the dynamics of the repression, which makes the equilibrium occupancy model
not always valid.

This is also supported by a recent experiment that characterized repression, by
having binding sites artificially placed either upstream or downstream from a
promoter in E. coli (Garcia et al. 2012). The strength of repression could not
be explained by the occupancy of binding site alone. In another study, a direct
measurement of transcription factor association and dissociation in live E. coli cells
showed also inconsistencies of the operator occupancy model of gene regulation
(Hammar et al. 2014). These findings suggest that these inconsistencies are
most likely due to non-equilibrium mechanisms in transcription initiation i.e. its
multiple rate-limiting steps. To accurately dissect the regulation of transcription,
the effect of promoter dynamics must thus be taken into account, e.g the locations
of binding sites, rate-limiting steps in transcription initiation, etc. (McClure 1985;
Friedman and Gelles 2012; Garcia et al. 2012).

To investigate this issue, in Publication III a single nucleotide level model of
the promoter region incorporated a mechanism of repression of transcription to
study transcription initiation. In the model, regulatory molecules reserved specific
space on the DNA template and thus, depending on the location of the binding
site, they either inhibited binding, opening of the DNA template or promoter
escape.

2.3.2 Transcription Induction

In fluctuating environments, a single phenotype or behavior of a cell cannot
be optimal. To cope with this, cells developed the ability to adapt to different
environments by changing phenotypic state. In many cases, these adaptations are
triggered directly by signals from environment. In other cases, the switching is
stochastic, in that the choices between phenotypes are, for the most part, made
randomly (Süel et al. 2007). A common example is persistence in E. coli: while
antibiotics kill most cells, a small sub-population of genetically identical but
persister cells survives (Lewis 2007). The commitment to these phenotypes is
usually transient, i.e if a cell is allowed to grow long enough, the mixture of all
phenotypes will be restored.

Novick and Weiner studying the lac operon in E. coli, proposed that the cells
switched from a non-producing to a producing state through a single random
event (Novick and Weiner 1957). Later, this event was found to be related to the
crossing of a critical threshold in permease concentration (Choi et al. 2008). The
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phenomena was described as a ’all-or-none phenomenon’, as only a fraction of
the population, proportional to extracellular thiomethyl-β-D-galactoside (TMG)
concentration, produced β-galactosidase. The high variability in the response
times was a consequence of a variability in permease molecule numbers prior to
the induction event in addition to the inherent stochasticity of chemical reactions
at low concentrations (Rao et al. 2002).

The number of permease molecules in uninduced cells have been measured with
single molecule sensitivity (Choi et al. 2008). Half of the cells were found to contain
at least one permease molecule (Choi et al. 2008). This basal-level expression was
proposed to result from a partial dissociation of the tetrameric lactose repressor
from one of its operator sites on a looped DNA. The complete dissociation of the
repressor from the DNA produces a large production burst of permease molecules
fully inducing the lac utilization system (Choi et al. 2008). This was verified by
disabling the DNA looping mechanism which was shown to be the main regulator
of these events.

The process of inducing gene expression differs between genetic motifs (Choi et al.
2008; Schleif 2010; Schnappinger and Hillen 1996). In general, the process by
which a cell becomes induced has been described as a single rate-limiting event
or a chain of many molecular steps (Choi et al. 2010). At the molecular level,
the activation of gene expression consists of multiple molecular steps, such as
the uptake of the inducer molecules, dissociation of repressor(s), association of
activator(s) etc. The details vary from gene to gene and can include transitions
between multiple different phenotypes (Ozbudak et al. 2004). Understanding
the process in detail requires a model of the process built using an experimental
approach to measure the fluctuations in the components.

In Publication II the variability in the response times between individual cells
in the arabinose utilization system were observed using a single RNA detection
technique. Previously, such dynamics have been observed using population level
techniques (Johnson and Schleif 1995; Siegele and Hu 1997) or following single
cell trajectories of fluorescent protein products (Megerle et al. 2008; Fritz et al.
2014). The RNA detection techniques used in Publication II allowed also the
measurement of time intervals between transcription events following the induction.
Further, to compare with the arabinose promoter, additional measurements were
conducted on a synthetic promoter (Lutz and Bujard 1997) and under various
induction schemes.

2.3.3 Arabinose Operon

The arabinose utilization system is used by E. coli for catabolizing L-arabinose as
a source of carbon and energy (Helling and Weinberg 1963; Englesberg et al. 1965).
This system imports pentose L-arabinose from the environment into the cell by
AraFGH, a high-affinity ABC transporter, and by a low-affinity transporter, AraE,
which binds to the inner cell membrane and makes use of an electrochemical
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potential to intake the arabinose (see Figure 2.6)(Hogg and Englesberg 1969;
Schleif 2000; Lee et al. 1981). The AraJ protein of the utilization system is poorly
characterized but it is thought to act as a transporter or an exporter of arabinose
containing polymers (Schleif 2010). The dimeric AraC protein is the regulatory
protein for all genes in the arabinose system with a copy-number of approximately
20 molecules per cell (Schleif 2010).

Figure 2.6: Scheme of the arabinose utilization in E. coli. Arabinose is
imported via the arabinose transporters AraE and AraFGH. AraC, once
bound by arabinose, activates the promoters PE , PF GH , PBAD and PJ ,
expressing proteins araE, araFGH, araBAD and araJ, respectively. AraBAD
encodes arabinose catabolism proteins, while AraJ is assumed to efflux
arabinose. Arrows indicate arabinose transport, negative (red) and positive
(green) regulation. T-shaped arrow represents arabinose metabolization.
Reproduced with permission from (Fritz et al. 2014).

The AraC protein both activates and represses the genes responsible for the intake
and catabolism of arabinose (Englesberg et al. 1965; Sheppard and Englesberg
1967; Johnson and Schleif 1995; Schleif 2010). In the presence of high intracellular
arabinose, AraC binds to the I1 and I2 half-sites close to the promoter which
activates the transcription initiation at PBAD (Schleif 2010). Otherwise, AraC
promotes the DNA loop formation between two AraC binding sites on the DNA
(I1 and O2), which prevents access of the RNAp to the promoters region (PBAD
and PC) (Schleif 2010).

The response of the arabinose pathway has been traditionally described as a
’all-or-nothing’ response to induction (Schleif 2010; Siegele and Hu 1997). This
is a simplification of the overall dynamics and a recent study on the bacterial
sugar utilization described the response to be all-or-nothing at low concentrations
and graded at high concentrations (Afroz et al. 2014). At low concentrations of
arabinose, the fraction of cells expressing the gene products defined the overall
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expression. When exceeding the concentration when most cells are induced,
further increases in the concentration lead to an increase in enzyme expression in
a graded manner.

Recent studies have observed the activation dynamics of the arabinose utilization
system by following the gene expression trajectories in single cells (Megerle et al.
2008; Fritz et al. 2014). The timing of activation and in the rates of accumulation
of gene products have been shown to exhibit a wide cell-to-cell variability and this
timing variability has been shown to be dependent on the arabinose concentration.
The variability in the importer molecules have been proposed to have a contribution
to the diverse activation dynamics (Siegele and Hu 1997). Replacement of the
promoter responsible for the expression of AraE caused the population to produce
more uniformly (Khlebnikov et al. 2001; Morgan-Kiss et al. 2002). Interestingly,
the variability in timings of de-activation of gene expression upon removal of
arabinose was shown to be more homogeneous than the activation (Fritz et al.
2014).

2.4 Closely Spaced Promoters

The genome of E. coli contains various configurations of promoters with closely
spaced transcription start sites (TSSs) (Gama-Castro et al. 2011). Approximately
15 per cent of the promoters in E. coli are closely spaced (Gama-Castro et al.
2011). Such arrangements have been commonly observed in bacterial genomes
and in other organisms (Beck and Warren 1988; Häkkinen et al. 2011; Wang et al.
2011).

The geometry of the promoters with closely spaced TSSs can be tandem (→→),
divergent (←→), or convergent (→←) (McClure 1985; Beck and Warren 1988;
Korbel et al. 2004). The closely spaced promoters can also be classified according
to the function of the gene products (Beck and Warren 1988). In the first type,
both transcripts code for structural proteins, e.g. bioA-bioBFCD (Nath and Guha
1982). In the second type, one transcript codes for a regulatory molecule while
the other codes for a structural protein, e.g. araC-araBAD (Schleif 2010). In the
third type, both transcripts code for regulatory molecules, e.g. cI-cro (Arkin et al.
1998). In addition to differing in geometry, closely spaced promoters also differ in
the number of nucleotides between promoters and the location of the transcription
factor binding sites in respect to the TSSs (Gama-Castro et al. 2011).

A hypothesis for the existence of closely spaced promoters is that the proximity
of the genes facilitates their transfer between species, especially for genes that are
non-essential (Lawrence and Roth 1996; Lawrence 2003). Also, the proximity of
essential genes could make them less likely to be disrupted by deletion or insertion
of DNA (Fang et al. 2008). Nevertheless, the small distance between the promoters
provides unique opportunities for the regulation of the gene expression. RNAps
can interact between each other directly or indirectly by affecting the binding of
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transcription factors (Shearwin et al. 2005). Such interactions are likely to affect
the transcription initiation kinetics in one or both promoters. Finally, it may allow
the same transcription factor to regulate the transcription of both promoters,
especially in divergent promoters, where the transcription factor binding sites are
often centrally located (Beck and Warren 1988).
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Figure 2.7: Mechanisms of transcriptional interference. Schematic of a
general system of closely spaced promoters. (A) RNAp collision during
elongation. (B) Sitting duck mechanism, where an elongating RNAp collides
with a promoter bound RNAp. (C) Roadblock, where a DNA bound protein
prevents elongation of RNAp. (D) Occlusion mechanism, where an elongating
RNAp prevents binding of another RNAp to a promoter. Adapted with
permission from (Courtney and Chatterjee 2014).

In overlapping promoters, transcription factors are not always needed for accurate
regulation. The prosigma factor Crl in E. coli stimulates the interaction between
RpoS (σ38) and core RNA polymerase (RNAp). This makes it an important factor
for global gene regulation (Lelong et al. 2007). The control of the expression of
Crl is based on two overlapping promoters transcribing two mRNAs of which, one
of them is lacking the RBS and cannot be translated (Pratt and Silhavy 1998;
Zafar et al. 2014). The RNAp transcribing this RNA blocks the expression of Crl
without the need to produce any trans-acting regulatory molecules. The regulatory
response of this mechanism was found to be near-instantaneous making it even
faster than an sRNA. The mechanism might also be economical as the protein
synthesis is found to require far more energy than the transcription (Neidhardt
et al. 1990).

Transcriptional interference in closely spaced promoters has been studied in
different configurations (Sneppen et al. 2005; Bendtsen et al. 2011). These models
of traffic between the RNAps have been shown to match with measurements from
convergent promoters (Sneppen et al. 2005; Bendtsen et al. 2011; Callen et al. 2004).
RNAps in closely spaced promoters interact by several mechanisms, depicted in
Figure 2.7. The occlusion mechanism in which the RNAp momentarily prevents
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binding of an another RNAp to the promoter, was originally proposed to explain
an upstream promoter inhibiting the activity of a downstream promoter (Adhya
and Gottesman 1982). This mechanism can cause a high level of interference
between convergent promoters and overlapping divergent promoters (Sneppen
et al. 2005). The sitting duck mechanism describes the removal of promoter-
bound complexes by the elongating RNAp from the opposing promoter (Sneppen
et al. 2005; Callen et al. 2004). Finally, collisions between the RNAps elongating
in opposite directions causes termination of one or both RNAps (Ward and
Murray 1979; Prescott and Proudfoot 2002; Sneppen et al. 2005). The amount of
interference is also defined by the promoter-dependent kinetics of transcription
initiation.

The dynamics of gene expression from closely spaced promoters depends on many
factors such as the transcription initiation kinetics, promoter orientation and
distances. Also, empirical data suggests that, in principle, any DNA binding
protein can be used for both activation and repression of transcription, depending
on the promoter architecture (Bendtsen et al. 2011). Also, small changes in the
location of the promoter sites and transcription factors can cause drastic changes
in the behavior, suggesting that not only the sequence determining the location
of the binding sites but also the sequence between adjacent promoters may be
subject to strong selective pressure (Garcia et al. 2012; Bendtsen et al. 2011).

In Publication III, stochastic single nucleotide models of closely spaced pro-
moters were used to study the activity of the promoters as a function of the
distance between TSSs, geometry and locations of repressor binding sites. Also,
coordination between the promoter sites and the favorable orientations were
investigated.

2.5 Noise in Gene Expression

Genetically identical cells in the same environment can exhibit significant amount
of variation in molecular species and in the phenotype of the cell (Neubauer
and Calef 1970; McAdams and Arkin 1997; Elowitz et al. 2002; Kaern et al.
2005). This variability is often linked to stochasticity in gene expression caused
by low copy number fluctuations. The regulation of transcription is mediated by
molecular events, such as binding of a molecule to a promoter, resulting from
random encounters between molecules that are inherently stochastic. Further,
molecular fluctuations in one molecular species will act as a source of fluctuations
for all other species it interacts with (Paulsson 2005; Elowitz et al. 2002). The
fluctuations in molecular species can be suppressed by some genetic motifs for more
robust functioning or amplified to enhance cell-to-cell heterogeneity (Paulsson
and Ehrenberg 2001; Paulsson 2004).

To better understand the sources of variability that contribute to the overall cell-
to-cell variability in gene expression, Elowitz and colleagues constructed strains
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Figure 2.8: Variability in gene expression between genetically identical
cells using a double reporter system in (Elowitz et al. 2002). Left: Intrinsic
and extrinsic noise sources can be distinguished with two different fluorescent
proteins controlled by identical regulatory sequences. Cells with the equal
amount of proteins appear yellow, while cells with different expression of
the two proteins appear as red or green. (A) Without intrinsic noise, the
two fluorescent proteins fluctuate in a correlated fashion over time. (B)
Expression of the two genes become uncorrelated due to the intrinsic noise.
Right: Microscopy images of cells expressing CFP and YFP were combined
in the green and red channels, respectively. Different strains exhibit widely
different levels of noise. Reproduced with permission from (Elowitz et al.
2002).

of E. coli with a dual reported system (shown in Figure 2.8) (Elowitz et al. 2002).
In this setup, two identical promoters coding for two different color fluorescent
proteins are integrated at equal distance from the origin of replication but on
opposite sides of the chromosome. The relative difference in fluorescence intensity
of the two reporters indicates the inherent stochasticity in the process of gene
expression, referred as intrinsic noise. The correlated component between the
two reporters indicates the contribution of other cellular components to overall
variation, referred to as extrinsic noise. Interestingly, different strains of E. coli
varied in the levels of noise (Elowitz et al. 2002) implicating that noise in gene
networks is subject to regulation and/or have different levels of extrinsic noise.

Stochasticity in gene networks can act as a mechanism for phenotypic differ-
entiation (Kaern et al. 2005), e.g. cells can adapt to fluctuating environments
in stochastic manner in opposition to responsive switching (Leibler and Kussell
2010; Norman et al. 2015). A classical example of stochastic switching between
phenotypes is the lysis-lysogeny regulation circuit in E. coli (Neubauer and Calef
1970; McAdams and Arkin 1997). The same cell lineage can transiently switch
back and forth between two distinct states: immune (im+), where the negative
control over virus growth is present, and the non-immune (im−), in which a
superinfecting λ is specifically channeled towards the lytic cycle (Neubauer and
Calef 1970). A lineage can persist for many generations in one of the states. The
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choice between the lysogenic or lytic pathways in individual cells have been shown
to result from fluctuations in the protein numbers due to stochasticity in gene
expression (Arkin et al. 1998). This cell-to-cell variability in protein numbers is
present even in cells that have not gone through the differentiation pathway.

Cell-to-cell variability in gene expression products, namely in mRNAs and pro-
teins, have been intensively studied. The methodologies have improved to allow
measurement of RNA and protein numbers with single molecule sensitivity in
single cells (Taniguchi et al. 2010; Golding et al. 2005; So et al. 2011; Jones et al.
2014; Yu et al. 2006; Hensel et al. 2012). These measurements show that the
stochasticity in the transcription and translation processes can only partially
explain the observed variability and part of the variability arises from extrinsic
sources (Elowitz et al. 2002; Taniguchi et al. 2010). The exact contribution of
different sources of fluctuations on the RNA and protein numbers is still unclear.
Independent fluctuations from molecular species can contribute to the overall
fluctuations by interacting with the transcription machinery. Also, fluctuations
can be propagated through molecular species, e.g. fluctuations in RNA numbers
causing protein numbers to fluctuate (Paulsson 2005).

Transcription and translation are often assumed to follow Poisson processes where
the production probabilities per time unit depend on the promoter occupancy
and mRNA numbers, respectively (Paulsson 2005). However, transcription and
translation are also known to be complex multi-step processes that exhibit wide
sequence-dependent dynamics (Saecker et al. 2011; Lutz et al. 2001; Jones et al.
2014). Also, regulation of transcription has been shown to contribute to the
observed dynamics independently of TF occupancy (Garcia et al. 2012). Finally,
steps in the transcription and translation elongation can fluctuate greatly (Herbert
et al. 2006; Tuller et al. 2010). Unless a single elemental step in the overall process
is rate-limiting, gene expression dynamics would exhibit non-exponential time
intervals between production events. Recent measurements of time intervals
between transcription events in live E. coli cells have reported non-Poissonian
dynamics in various promoters (Kandhavelu et al. 2011; Kandhavelu et al. 2012b;
Muthukrishnan et al. 2012). The shape of time interval distribution was shown
to be less dispersed than Poisson process and depend on the promoter sequence,
environmental conditions and induction conditions.

Additional diversity in RNA and proteins numbers have been proposed to arise
from fluctuations in molecule species involved in gene expression such as σ-factors,
transcription factors, ribosomes, and RNAps (Taniguchi et al. 2010; Bakshi et al.
2012; Yang et al. 2014; Jones et al. 2014; Hensel et al. 2012). Other mechanisms
not directly related to gene expression such as DNA replication, negative DNA
supercoiling, DNA condensation by nucleoid proteins and asymmetries in protein
and mRNA partitioning during cell division have been also shown to contribute
to the observed variability (Huh and Paulsson 2011; Sanchez and Golding 2013;
So et al. 2011; Chong et al. 2014).
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Finally, cellular physiology strongly affects gene expression dynamics (Bremer
and Dennis 1996; Klumpp et al. 2009). A recent study in E. coli reported that
fluctuations in gene expression of metabolic enzymes can perturb cell growth,
which in turn can propagate back to gene expression, influence even genes unrelated
to metabolism (Kiviet et al. 2014). The interdependence between growth and gene
expression fluctuations was proposed to be important in coordinating metabolic
activities and growth homeostasis. It could also act as a generic source of cellular
heterogeneity for the cell population (Balazsi et al. 2011).



3 Theoretical Background

This chapter is an overview of the theoretical concepts of simulation and modeling
approaches used in this thesis. It includes the basics about modeling biological sys-
tems, a description of stochastic simulation methods and concepts of incorporating
complex biological processes involved in transcription and translation.

3.1 Chemical Master Equation
Many biochemical processes involved in gene expression result from the interaction
between chemical species that are present in very low copy numbers. E.g., DNA,
RNA and regulatory proteins generally have only a few copies per cell (Taniguchi
et al. 2010). Regarding the dynamics of interactions between such species, a
description of concentration alone is meaningless, and deterministic approaches are
not valid, which entails that discrete models are needed (Munsky and Khammash
2008).

To accurately model the time evolution of a system of chemically reacting species,
one would have to track each individual molecule through space, detect collisions
between the molecules and once a chemical reaction occurs change the populations
of the species. Chemical reactions are considered instantaneous and can be
divided into two categories: unimolecular reactions, which are internal processes
of individual molecules, and bimolecular reactions, which result from the collision
and interaction between two molecules. In both cases, the exact timing of the
reaction cannot be deduced (Gillespie 2007).

The dynamics of such systems cannot be described by a single trajectory of the
system through the state space. Given the discrete nature and the stochastic time
evolution of the population, to accurately describe the dynamics of a such system,
one must consider the probability distribution of states the system occupies at a
certain time moment. For a discrete population of chemically reacting species,
the time evolution of this probability distribution is described by the stochastic
chemical kinetics (Gillespie 2007).

In the stochastic formulation, a system of molecules of N chemical species homo-
geneously spread at a time t is represented by an N -dimensional vector x. These
chemical species interact through M chemical reactions that can occur between

25
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the species and result in a change in the populations of the species. The system is
assumed to have a constant volume and to be well-stirred, which allows the exact
trajectories of the particles and non-reactive collisions between them to be ignored
(Gillespie 1977). As such, only molecular events that change the populations of
the species need to be considered.

The change in the population of the species is a consequence of chemical reactions
which are characterized by two quantities. One is the state-change vector vµ
that defines the change in the population species x. The other is the propensity
function aµ of reaction Rµ, which is defined as the following (Gillespie 2007):

aµ(x)dt = the probability that a particular combination of the molecules
that are presently in the system will react via reaction Rµ in
the next infinitesimal time interval [t, t+ dt).

(3.1)

The rationale behind the propensity function depends on which of the two cate-
gories the reaction belongs to. For unimolecular reactions, the underlying physics,
which often can only be described in quantum mechanical terms, defines the
existence of a constant cµ that gives a probability that this particular molecule
will go through the reaction Rµ in the next infinitesimal time moment dt (Gillespie
2007). Overall, the propensity function for X molecules of this species is:

aµ(x) = cµX (3.2)

For bimolecular reactions, the assumption of a well-stirred system and the kinetic
theory define the existence of a constant cµ that is the probability that single
random pair of X1 and X2 molecules will react according to the reaction Rµ in
the next infinitesimal time window dt (Gillespie 2007). The propensity function
of this event is:

aµ(x) = cµX1X2 (3.3)

In the case of two molecules of the same species reacting together, the propensity
function is (Gillespie 2007):

aµ(x) = cµX(X − 1)
2 (3.4)

From 3.1 and the probability P (x, t|x0, t0) of having a given state vector x at
time t after the initial conditions x = x0 at t = t0, the time-evolution equation for
stochastic chemical kinetics can be derived according to the laws of probability



3.2. Stochastic Simulation Algorithm 27

(Gillespie 2007). The result is a partial differential equation for P called the
chemical master equation (CME):

∂P (x, t|x0, t0)
∂t

=
M∑
µ=1

[aµ(x− vµ)P (x− vµ, t|x0, t0)− aµ(x)P (x, t|x0, t0)] (3.5)

The CME determines the probability that each species will have a specified
molecular population at a given time in the future. The CME simultaneously
describes the probability of all possible trajectories as a set of coupled ODEs with
one equation for every possible combination of the reactant species. Consequently,
the CME can only be analytically solved for the probability density function of
X(t) for a few, very simple systems. To circumvent this problem, the Monte
Carlo approach can be used. Namely, multiple numerical realizations of X(t)
trajectories over t can be constructed, in order to sample the distribution of X(t).
This approach was proposed by Gillespie to simulate chemical or biochemical
systems of reactions (Gillespie 1976; Gillespie 1977).

3.2 Stochastic Simulation Algorithm
The approach of simulating individual trajectories from X(t) is not based on
P (x, t|x0, t0) but on a probability function p(τ, µ|x, t) (Gillespie 2007). This
function defines the probability that given X(t) = x, the next reaction to occur
in the system will be Rµ and it will occur in the next infinitesimal time interval
[t, t+ dt).

This joint probability density function in a state x is a function of two random
variables: the time to the next reaction (τ) and the index of the next reaction
(µ). The exact formula for p(τ, µ|x, t) can be derived as before by applying the
laws of probability to the aforementioned premise 3.1 (Gillespie 1977):

p(τ, µ|x, t) = aµ(x)e−a0(x)τ (3.6)

where,

a0(x) =
M∑
µ=1

aµ(x) (3.7)

These equations (3.6 and 3.7) are the mathematical basis for the SSA. The time
to the next reaction τ is an exponential random variable with a mean of 1/a0(x)
while the index of the next reaction µ is a statistically independent integer random
variable with point probabilities aµ(x)/a0(x).

This formula is based on the fact that the distribution of the earliest next reaction
time is the distribution of the minimum of all next reaction times (see derivation of
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this method (Gillespie 1976)). The minimum of a set of independent exponential
distributions with different rates is an exponential distribution with a rate equal
to the sum of the individual exponentials’ rates (Gillespie 1976).

Several Monte Carlo procedures exist for generating samples of τ and µ according
to these distributions. In the original formulation of the SSA two methods, the
direct method (DM) and the first reaction method (FRM) were proposed (Gillespie
1976; Gillespie 1977). Since then, other sampling procedures such as the next
reaction method (NRM) (Gibson and Bruck 2000) and the logarithmic direct
method (LDM) (Li and Petzold 2006) have been proposed.

The original DM follows the standard inversion generating method of the Monte
Carlo theory (Gillespie 1992): two random numbers r1 and r2 are generated from
the uniform distribution. These two random numbers are used to generate τ and
µ as follows:

τ = 1
a0(x) ln( 1

r1
) (3.8)

µ = the smallest integer satisfying
µ∑

µ′=1
aµ′(x) > r2a0(x) (3.9)

With help of these formulas (or any other mentioned methods for generating
samples of τ and µ), the exact distribution described by the CME can be sampled.
The SSA can be used for constructing the exact numerical realization of the
process X(t). Given a start time t0, a stop time tstop, and an initial vector of
species populations x0, the procedure of the SSA is given in Algorithm 1 (Gillespie
1977).

Algorithm 1 : Stochastic Simulation Algorithm
1: Set t← 0, and x← x0.
2: With the system in state x at time t, evaluate all the aµ(x) and their sum
a0(x).

3: Using a suitable sampling procedure, generate a random pair (τ, µ) according
to the joint probability distribution defined above by p(τ, µ|x, t).

4: Output the system state for each of the sampling points in the time interval
[t, t+ τ).

5: If t+ τ ≥ tstop, terminate.
6: Set t← t+ τ , and x← x + vµ.
7: Go to step 2.

3.2.1 Delayed SSA

The SSA does not allow explicit delays to be simulated, as the time evolution
would no longer be a pure Markov process. However, complex biological processes
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such as protein maturation take a non-negligible time to be completed (Cormack
et al. 1996; Megerle et al. 2008). Also, transcription elongation, during which
the RNAp transcribes thousands of nucleotides, can last up to several minutes
(Greive and Von Hippel 2005). Importantly, delays in many cellular processes
have been shown to affect the dynamics of gene regulatory networks and, as such,
they need to be considered in the simulations (Ribeiro et al. 2010).

The construction of explicit models for complex biological events might not even
be possible, as all steps in the process might not be known even though the
overall duration of such events can be measured. Adding delays based on such
measurements or following arbitrary distributions allow to model these events
without knowing all details of the system. A version of the SSA was proposed
that allow introducing such events as ’delayed reactions’ (Gibson and Bruck 2000).
In delayed reactions, the substrates are consumed instantaneously (i.e. removed
from the system to avoid further reactions) but the products are released only
after a specific time lag. Using delays potentially allows removing many reactions
from the system without affecting its dynamics, which speeds up simulations
(Gibson and Bruck 2000) without necessarily affecting the realism of the results. A
later implementation of the delayed SSA allows multiple delays for each reaction
(Roussel and Zhu 2006).

To implement such simulations, reactions with delays can be stored in a wait
list L, which is sorted by the time of occurrence. The products of a reaction are
placed on the wait list L as a tuple (tr, i, n), where tr is the time at which the
n molecules of the species Si are to be released. A heap-based priority queue
with the same runtime boundaries can be implemented to run alongside the DM
implementation. The steps in this variant of the SSA execution (Roussel and Zhu
2006) are shown in Algorithm 2. The NRM is also well befitted to run wait lists,
as both reactions and a wait list can share the same priority queue (Gibson and
Bruck 2000).

Algorithm 2 : Delayed SSA
1: Set t← 0, and x← x0. Create an empty wait list L for delayed reactions.
2: Perform the normal SSA procedure to generate (τ, µ).
3: If tmin < t+ τ , where tmin is the earliest entry in L then

Add the earliest molecule in L and add it to x.
Set t← t+ tmin.

4: Else
Set t← t+ τ , and x← x + vµ.
If reaction µ has delayed products then

Add them to L.
5: Go to step 2.
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3.3 Modeling Gene Expression
The models built in the stochastic formulation, for simplicity, are represented here
as a set of chemical reactions. In general, reactions are presented as follows:

A + B k−→ C (3.10)

Here, one molecule of the species A and and one molecule of species B react to
form a molecule of species C, with a stochastic rate constant cµ = k.

When modeling gene expression, only the most important steps affecting the
overall behavior are included (Ribeiro et al. 2006). For example, the binding of
an RNAp to a promoter, the transcription of an RNA followed by the translation
of proteins can be modeled as a single, compact reaction, as follows:

Pro + RNAp kt−→ Pro + RNAp + nP (3.11)

Here, Pro represents the promoter of the gene, RNAp is an RNA polymerase
holoenzyme, P is the protein produced and n is the number of proteins produced
from a single RNA molecule. Note that the promoter is always available as no
regulation have been imposed on the gene making the gene produce in a constitutive
manner. Also note that this compaction results in an oversimplification of the
model, in that the number of proteins translated from a single RNA is a constant,
when this is not true in real biosystems. Another oversimplification is that this
model does not account for, e.g. noise in translation.

In reality, the transcription and translation processes are separate and conducted
by different macromolecules. To account for this in the model, these processes need
to described as separate reactions. This model is already capable of recreating
variability in number of proteins produced per mRNA (Yu et al. 2006; Zhu et al.
2007).

Pro + RNAp kt−→ Pro + RNAp + RBS (3.12)

RBS + Rib ktr−→ RBS + Rib + P (3.13)

In this model, RBS is the binding site for ribosomes in the mRNA, and Rib is
the ribosome. This model, while far more realistic than the former one, it still
lacks some features of gene expression, such as, e.g., effects of traffic in elongation
ribosomes and RNA polymerases.

To model the temporal RNA and protein number in cells, the degradation of these
species must accounted for. Both production and degradation processes affect the
mean and noise in the RNA and protein numbers (Paulsson 2005). Degradation of
RNAs and proteins is also an important factor in the dynamics of genetic circuits
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as it dictates the time to reach a steady-state. In prokaryotes, both mRNAs and
proteins have been shown to exhibit exponential-like degradation (Taniguchi et al.
2010; Bernstein et al. 2002; Chen et al. 2015a). In other species, this might not
be true (Pedraza and Paulsson 2008). Degradation of mRNAs and proteins are
thus modeled as follows:

RBS krbsd−→ � (3.14)

P kd−→ � (3.15)

The stochastic mRNA production and decay, in which mRNA production events
are uncorrelated and memoryless, is described by a Poisson distribution, for which
the variance is equal to the mean. For proteins, the variance is usually higher
than the mean as they are produced in bursts from mRNA, i.e. each mRNA is
translated several times and these events are separated by much shorter intervals
than the intervals between transcription events. Further, the propagation of
fluctuations from RNA to proteins is dependent on the lifetimes of both RNA and
proteins (Paulsson 2005).

Previous models presented here assume transcription and translation to be instan-
taneous. In reality, transcription initiation, elongation in both transcription and
translation, and protein maturation involves series of chemical reactions which
takes a considerable time and thus affect the numbers and fluctuations in mRNA
and protein species (McClure 1985; Pedraza and Paulsson 2008; Cormack et al.
1996). The dynamics of these events are gene specific and are known to affect the
dynamics of genetic motifs (e.g. with feedback loops) (Bratsun et al. 2005; Ribeiro
et al. 2006; Gaffney and Monk 2006). A complex process of transformation from
species A to species B can be described by n-step reaction:

A k1−→ S1
k2−→ S2 . . . Sn−2

kn−1−→ Sn−1
kn−→ B (3.16)

A k−→ B(τ) (3.17)

Multi-step reaction 3.16 can be shortened as reaction 3.17. Here, while the
reacting molecule is immediately removed from the system, the produced molecule
B is not available to react until τ time has passed. The delays with specific
distributions allow to model complex dynamics without explicitly knowing the
reactions underlying the dynamics, provided that the overall dynamics is known.
Note that, during the delay, the product cannot interact with other species or go
through unimolecular reactions such as degradation. In general, this approximation
has little effect on the dynamics of genetic motifs and can thus be made.

Gene expression with delayed products can be written as the follows:
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Pro + RNAp kt−→ Pro(τpro) + RNAp(τtransc) + RBS(τpro) (3.18)

RBS + Rib ktr−→ RBS(τrbs) + Rib(τtransl) + P(τfolding) (3.19)

Here, τpro represents the delay in transcription initiation consisting of e.g. the
open complex formation and promoter escape, τtransc represents the transcription
elongation time, τrbs is the time to initiate the translation after binding the RBS,
τtransl is the time to complete the translation elongation and finally, τfolding is
time for the folded protein to appear. The gene expression as a complex process
with delays no longer is a simple Poisson process. The delays that are gene specific
differentiate the dynamics between genes and allow a wide spectrum of behaviors
to be expressed (Lutz et al. 2001; Jones et al. 2014).

Most genes in live cells are not constitutively expressing and thus the regulation
of gene expression must be taken into account. Most genes in E. coli are regulated
by means of transcription factors binding the promoter region (Gama-Castro et al.
2011). E.g., the lac promoter in E. coli can be bound and regulated by lacI and
Crp (Schlax et al. 1995).
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Figure 3.1: Example state trajectory from a model containing transcription
and translation with delays, repression and degradation. Top: protein
numbers. Middle: RNA numbers. Bottom: promoter state.

Regulation of transcription initiation by transcription factor (TF) can be modeled
as follows (Roussel and Zhu 2006; Ribeiro and Kauffman 2007):
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Pro + TF kb−→ Pro · TF (3.20)

Pro · TF kub−→ Pro + TF (3.21)

Here, TF is the transcription factor that binds and unbinds promoter region.
While bound, e.g. repressor prevents transcription events from initiating. The
repression here occurs by a occlusion mechanism (Garcia et al. 2010). Note
that during promoter delay, τpro (in reaction 3.18), repressors cannot bind the
promoter. Alternatively, if the TF activates transcription, this can be modeled by
an additional reaction:

Pro · TF kact−→ Pro · TF + RNAp(τtransc) + RBS(τproact) (3.22)

Here, kact > kt. Two types of activators can be considered: activators that recruit
RNAp to the promoter, and activators that stimulate the transition rate of bound
RNAp from a closed to an open complex the transition from a closed to an open
complex form (Lutz et al. 2001). In the model, the first type is based on kact rate
and the second type on the promoter delay τproact.

The models of gene expression shown here provide a simple description of gene
expression that can be useful for higher-level studies of, e.g., gene regulatory
networks. The model captures the dynamics of transcripts and protein production
without the need to explicitly model details of every component. See an example
time series from the model in Figure 3.1. Aside the notion of fitting experimental
data, the model can be used to explain how different mechanisms affect the
fluctuations and further it can be used to generate hypothesis that, in turn, can
be tested with experiments.

The delayed model of transcription and translation is used in Publication I to
model gene expression and interactions between the genes.

3.4 Detailed Model of Transcription and Translation

To model detailed aspects of the dynamics of transcription and translation, more
underlying steps than those shown above must be represented explicitly. Compared
to the usage of delays, this representation allows regulation of the underlying
events (e.g. at the nucleotide level). This also allows fine-grain tuning of the
dynamics of the processes (e.g. of transcription and translation elongation). The
current knowledge of detailed events that occur during transcription (Greive and
Von Hippel 2005; Davenport et al. 2000; Herbert et al. 2006; McClure 1985)
and translation (Sørensen and Pedersen 1991; Moore and Sauer 2005; Keiler
2008; Wen et al. 2008) is extensive, and its known that they can have tangible
effects on the fluctuations in RNA and protein numbers. Additionally, there is an
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interdependence between transcription, translation and mRNA degradation that
should be considered (Yarchuk et al. 1992; Proshkin et al. 2010; Yanofsky 2004).

1

Transcription initiation Reaction

RNAp binding to the DNA
D D

b
[n-Δ ,  n+Δ ] n

kRNAp  +  U O¾¾®

RNAp unbinding from the DNA
D D

f
n [n-Δ ,  n+Δ ]

kO RNAp + U¾¾®

RNAp diffusion on the DNA
D D

m
n n+Δ +1 n+1 n-Δ

kO + U O + U¾¾¾®

Closed complex formation
D

c
TSS+Δ c

kO RP¾¾¾®

Isomerization i
c [TSS+1, TSS+19] i+ kRP U RP¾¾¾®

Open complex formation o
i o

kRP RP¾¾¾®

Elongation complex formation el
o TSS

kRP E¾¾¾®

Initial elongation (Scrunching) el/4
TSS+n TSS+n+1

kE E¾¾¾®

Abortive initiation a
TSS+n o

kE RP¾¾®

TSS clearance
el

E

D

TSS+12 TSS+Δ 12

TSS+13 [TSS+12, TSS+2Δ +12]

+
+

kE U
E U

+ ¾¾¾®

Figure 3.2: Example reactions from the transcription initiation model.
On stands for occupied nucleotides (by RNAp or a repressor), where n
denotes its location in the DNA sequence, and Un stands for the nth
unoccupied nucleotide. Ranges of nucleotides are denoted as U[start,end].
The range occupied by the RNAp is referred to as [n-∆D, n+∆D]. TSS
refers to transcription start site location. RPc, RPi and RPo refers to
closed, isomerized and open complex form of RNAp, respectively. E refers
to elongation complex. The stochastic rate constants are shown above each
reaction arrow. For more detailed description, see Publication III.

The transcription initiation process at the promoter region involves several se-
quential steps: finding of the promoter site through different forms of diffusion,
opening of the DNA, and initiation of the RNA synthesis. These reactions can be
modeled explicitly by adding reactions for each nucleotide on the promoter region.
For example reactions, see Figure 3.2. The first step is the non-specific binding
of the RNAp to random location of the DNA template. The footprint of the
RNAp covers a specific range of nucleotides on the DNA, which prevents binding
of other molecules in that location. 1D diffusion on the template is modeled
to occur one nucleotide at a time in a random direction chosen initially. The
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contribution of 1D diffusion to the finding of the start site might not be relevant
when compared to 3D diffusion, depending on the reaction rates (Friedman et al.
2013; Dangkulwanich et al. 2014). The diffusing RNAp can unbind randomly
from the template at any position. Multiple RNAps moving on the DNA template
can cause collisions, e.g. in convergent promoters (Callen et al. 2004), and in the
collision events, the model assumes that one or both RNAps are removed from
the template (Sneppen et al. 2005).

Binding of the RNAp to the transcription start site forms the closed complex
between RNAp and the promoter. The dynamics of the subsequent, consecutive
initiation reactions, including isomerization and open complex formation, follow
elemental steps with means extracted from in vitro measurements (Buc and
McClure 1985; Lutz et al. 2001; Saecker et al. 2011). The promoter escape occurs
through a step-wise abortive initiation process that has been shown to release from
small to very high amounts of abortive transcripts, depending on the promoter.
The latter case reflects the instability of the initial elongation complex (Hsu 2002;
Hsu et al. 2003). Following this, RNAp commences the production of nascent
RNA.

The model also allows binding of repressor molecules on the specific sites in the
promoter region. Depending on the specific DNA region occupied by the repressor,
different reactions can be prevented by steric occlusion. The repressor can prevent
RNAp binding, isomerization or promoter escape and each mode of repression
exhibits different dynamics (Sanchez et al. 2011). In Publication III stochastic
nucleotide level model of the promoter region was used to study the dynamics of
transcription initiation in closely spaced promoters.

The elongation phase of transcription and translation proceeds in steps, each
of which involving the addition of a specific nucleotide or amino-acid. RNAp
molecules have been shown to move at varying rates along the template strand
(Herbert et al. 2006; Landick 2009). This is due to alternative reaction pathways,
e.g. pausing, pyrophosphorolysis or editing, which compete with normal elonga-
tion and can reduce the overall elongation rate (Greive and Von Hippel 2005).
Additionally, reactions such as transcriptional pausing can generate traffic on the
template, as they force multiple trailing RNAps to stop at very close distances
and then proceeding jointly forward in elongation. Traffic slows down the overall
transcription rate to an extent, but its main effect is the induction of bursty
production of RNAs. Stochastic transcription elongation models have been shown
to be reproduce these results (Dobrzynski and Bruggeman 2009; Klumpp and Hwa
2008; Rajala et al. 2010). The probability of RNAp entering alternative pathways
not only depends on the nucleotide sequence but also on transcription elongation
factors (Davenport et al. 2000; Herbert et al. 2006; Herbert et al. 2010).

To accurately model elongation, reactions for each pathway with specific rates
in each template position must be stated. In Figure 3.3 example reactions for
coupled transcription and translation elongation processes are shown. RNAps
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Figure 3.3: Example reactions from the transcription and translation
elongation model. In the transcription model, An, On and Un depict for
the nth nucleotide when activated, occupied, and unoccupied, respectively.
Ranges of nucleotides are denoted such as U[start,end]. Each RNAp occupies
(2∆RNAp+1) nucleotides. UR

n denotes transcribed ribonucleotides (denoted
by the R superscript) which are free, i.e. not under the RNAp’s footprint.
In the translation model, each ribosome occupies (2∆Rib+1) ribonucleotides.
AR

n denotes that a ribosome has created peptide bond for the peptide coded
by the codon at position [n−2, n], where n is a multiple of 3 (n = 3, 6, 9, . . .).
The activation reaction has a codon-specific rate (Sørensen and Pedersen
1991). The stochastic rate constants are shown above each reaction arrow.
For more detailed description, see Publication IV.

(and ribosomes) occupy a specific range of nucleotides on the template. This is
modeled with occupied nucleotides that are occupied and released as the elongation
ensues. During elongation, ribonucleotides are released from each RNAp loci,
allowing ribosomes to translate the sequence. Each reaction in elongation states
the requirement of different molecular species for each pathway. The stochastic
rates for each pathway can be defined for each template position separately,
e.g. codons are translated with variable rates independent of the tRNA species
(Sørensen and Pedersen 1991). The impact of slow-translating codons on ribosome
collisions and translation efficiency has been studied in different codon sequences
(Mitarai et al. 2008). This study showed that neither deterministic nor stochastic
models with uniform translation rates are able to reproduce the experimental
results of translation elongation rates. For simulated movement of RNAps and
ribosomes on the DNA and mRNA, respectively, from the model in Publication
IV, see Figure 3.4.

In Publication IV the transcription and translation elongation models were
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combined to study the coupling between the two elongation processes. In com-
bination with the model of transcription initiation at the promoter region, the
final model can used to study complex regulatory patterns of transcription and
translation dynamics and the effects of stochastic events during these processes.
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Figure 3.4: Movement of RNAps and ribosomes during the elongation
processes observed from the elongation model. (Left) RNAps transcribing
a DNA template over time. Horizontal lines are momentary pauses during
the elongation processes. (Right) Ribosomes translating nascent RNA. The
continuous black area depicts the transcription progression of the RNAp,
which is followed by a number of ribosomes. In both processes, pauses cause
traffic between elongating macromolecules. For more detailed description of
the model, see Publication IV.

3.4.1 SGNS2

To accurately model the coupled transcription and translation elongation, each
RNA molecule state must be explicitly modeled to correctly account for gradual
degradation of RNA, traffic, and interaction between RNAp and the ribosomes
simultaneously in multiple RNAs. This can be achieved by utilizing transient
compartments that contain the necessary reactions. These transient compartments
allow molecules to react with other molecules of the same compartment or between
compartments and their containing compartments, for a certain amount of time.
The same set of reactions can be utilized in multiple compartments (e.g. two
different compartments containing identical RNA molecules will have the same
set of possible reactions). See illustration in Figure 3.5.

A simulator of chemical reaction systems (SGNS2) have been proposed, which
can simulate reactions according to the Stochastic Simulation Algorithm with
multi-delayed reactions (Lloyd-Price et al. 2012). Importantly, this simulator
utilizes the concept of transient compartments as in (Spicher et al. 2008). SGNS2
is based on NRM which allows to incorporate other simulation algorithms as
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sub-simulations (Gibson and Bruck 2000). The NRM priority queue of each
compartment defines the ’next reaction to happen’ for the overall NRM priority
queue which can add and remove entire sub-simulations at runtime (Lloyd-Price
et al. 2012).

Two main features of SGNS2 are: transient, interlinked, hierarchical compartments
that can be created, destroyed and divided at run time; and support for multiple
molecule and compartment partitioning schemes, applicable separately for each
molecular species (Lloyd-Price et al. 2012). Aside the coupled transcription and
translation elongation, these novel features allow to simulate, e.g. biased parti-
tioning of protein aggregates in cell division that affect cell fitness or aggregation
and the functioning of small genetic networks, among other (Lindner et al. 2008;
Lloyd-Price et al. 2012; Gupta et al. 2015).

RNARNA

DNA

Figure 3.5: A transient compartment consists of a virtual independent space
where a set of reactions take place. The single-nucleotide transcription model
places the transcribed ribonucleotides into RNA compartments. Meanwhile,
multiple single-nucleotide translation models can operate inside each RNA
compartment. The dynamics of the RNAps guarantees the temporal ordering
of the RNA production.

An early version of SGNS2 was used in Publication IV to simulate the dynamics
of coupled transcription and translation model.

3.5 Finite State Projection Algorithm

The finite state projection (FSP) algorithm differs from the SSA in that it provides
a direct solution or approximation of the CME without requiring the computation
of large numbers of sample time traces (Munsky and Khammash 2006). In the
case of any Markov process containing only a finite number number of states,
the FSP method provides an exact analytical solution. When the number of
possible states is infinite, the approximate solution provided by the FSP method
guarantees, unlike simulation based methods, its own accuracy. The size of the
finite state projection can be systematically increased until a specific accuracy is
achieved (Munsky and Khammash 2006; Munsky et al. 2015).

From the CME (see equation 3.5), the probability mass functions for all possible
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states can be collected into vector form (Munsky and Khammash 2006):

P(t) =
[
PT

0 PT
1 . . .

]
(3.23)

which allows to write the CME in a simplified matrix:

d

dt
P(t) = AP(t) (3.24)

In this expression, A, the infinitesimal generator, has the following elements
(Munsky and Khammash 2006):

Aj,i =


−
∑M
µ=1 αµ(xi) if i = j

αµ(xi) for every j such that xj = xi + νµ

0 elsewhere
(3.25)

The FSP algorithm provides an approximation to the CME solution by, instead of
analyzing infinite set of all possible states, selecting a finite subset of states that
still captures most of the probability for the specified finite time interval (Munsky
and Khammash 2006). E.g. in transcription only include states where the RNA
number is less than some integer Nm, while the rest of the states are transformed
into a single absorbing state. The reduced master equation has the form:

d

dt

[
PFSP

≤Nm
(t)

g(t)

]
=
[

A≤Nm 0
-1TA≤Nm 0

] [
PFSP

≤Nm
(t)

g(t)

]
(3.26)

The FSP solution, PFSP≤Nm
(t), is an approximation of the CME and g(t) is the

computable error in the approximation (Munsky et al. 2015). Theorems guarantee
that the FSP is a lower bound of the true solution PFSP

≤Nm
≤ P≤Nm , and the

total error in the approximation is
∣∣∣P≤Nm −PFSP

≤Nm

∣∣∣ ≤ g(t) (Munsky et al. 2015).
In practice, the matrix can be extended until the solution is within some error
tolerance (g(t) < ε) and in some scenarios such as the maximum number of RNAs,
this truncation can be applied directly. An illustration of modeling transcription
using the FSP approach is shown in Figure 3.6.

While the order of the CME is significantly reduced by the FSP algorithm, the
reduction might not be sufficient for more complicated systems. For this, the
method can be further improved or modified to extend it’s capabilities (Munsky
2008). E.g. the dynamics can be projected onto a lower dimensional slow reactions
manifold, multiple periods of time can be solved using different projections, or part
of the states can be interpolated at the cost of loss of accuracy. Nevertheless, even
with the aforementioned improvements, the FSP cannot be applied to systems
with many interacting chemical species. Instead, the advantages of the FSP
method are the speed and the precision of the solution for systems with small
number of possible configurations.
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The FSP has been used along with single-cell experiments to study the dynamics
of various systems, such as in a recent study measured the osmotic stress response
pathway in Saccharomyces cerevisiae using the FISH method for RNA detection
(Neuert et al. 2013). Models with varying complexity were generated with FSP and
parameter estimation and cross-validation were used to select the most predictive
model. Additionally, the method has been used to quantify e.g. the transcriptional
activity of the proto-oncogene c-Fos at individual endogenous alleles (Senecal et al.
2014).

In Publication II, the FSP approach was used to model the intake kinetics of
inducer and the production dynamics of RNAs.

Figure 3.6: Illustration of modeling transcription using the FSP approach.
(A) Multiple states of a gene with different rates of transcription. Adding
more gene states in the model will increase the complexity of behaviors. (B)
A lattice for all possible combinations of gene (x-axis) and number of RNAs
(y-states) states. The lattice is infinite as the number of RNAs can, in theory,
exceed any finite bound. (C) The FSP algorithm truncates the infinite state
space at N RNAs. Reactions exceeding the truncated value are absorbed
into a sink state with a probability g(t). (D) As a result, a finite state space
is used so as to estimate the probability of the system to be in each state
within that space. Consequently, the RNA distribution at each time moment
can be produced. Reproduced with permission from (Munsky et al. 2015).



4 Measurements and Analysis

This chapter is an overview of the fluorescence microscopy techniques and analysis
methods employed in this thesis. These methods include single-RNA detec-
tion methods, cell and spot segmentation, RNA quantification and change-point
detection algorithms.

4.1 Fluorescent Proteins and Microscopy

Fluorescent proteins were discovered in the early 1960s (Shimomura et al. 1962) and
were successfully cloned in the 1990s (Prasher et al. 1992). Since then, fluorescent
proteins have become one of the most used tools in biological sciences. This is
mostly due to the simplicity of fusing fluorescent proteins with cellular target
proteins (Tsien 1998). The availability of fluorescent proteins has evolved to cover
most of the visible spectrum of light (Shaner et al. 2004; Day and Davidson 2009).
Also, development in the field have led to the appearance of novel properties
of fluorescent probes, such as photoactivation and photoconversion (Day and
Davidson 2009; Wu et al. 2011). These fluorescent proteins can be switched
on and off or be converted to a different emission wavelength by using specific
wavelengths of excitation light. These properties are the foundation for many
advanced imaging techniques in microscopy, e.g. super-resolution microscopy
(Huang et al. 2009).

An optimal fluorescent protein for single cell microscopy has high quantum yield
and brightness, favorable photo-physical properties, and sufficient inertness so as
not to interfere with the functioning of the target molecule (Shaner et al. 2004).
Drawbacks of many fluorescent proteins include blinking (intensity fluctuations)
and limited photo-stability (Ha and Tinnefeld 2012). Organic fluorophores,
compared to fluorescent proteins, have a smaller size, and superior stability and
brightness (Pitchiaya et al. 2014). Nevertheless, the possibility of expressing
fluorescent proteins fused to desired cellular target proteins inside a cell makes
fluorescent proteins convenient for many studies.

To accurately detect fluorescent proteins, the emitted fluorescence signal have to
be significantly above the cellular background fluorescence, referred as autofluo-
rescence. To achieve this, first, the selection of a bright fluorophore that absorbs

41
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and emits light outside the spectrum of the autofluorescence is recommended (Ha
and Tinnefeld 2012). Second, media exhibiting a low autofluorescence should
be selected. Third, the choice of light source, optics, illumination scheme, and
detector contribute directly to the signal-to-noise ratio in microscopy experiments.

The most commonly used illumination scheme in fluorescence microscopy is a
wide-field epi-illumination. The epi-illumination excites the entire depth of the
sample causing the out-of-focus fluorescent molecules also to contribute towards
the background fluorescence. To avoid out-of-focus illumination, several methods
have been developed to restrict the illumination volume of the sample: confocal
microscopy (Pawley 2006), total internal reflection fluorescence (TIRF) microscopy
(Axelrod 1981), and highly inclined and laminated optical sheet (HILO) microscopy
(Konopka and Bednarek 2008). Confocal microscopy is based on reducing the
focal volume and consequently the out-of-focus light with a pinhole (Pawley 2006).
A drawback is that as the sample is illuminated only one volume at a time and has
to be scanned, making the imaging slower than in wide-field techniques. The scan-
speed can be improved with setups, such as the spinning-disc confocal microscopy,
which simultaneously illuminate multiple regions of the sample (Nakano 2002).

In TIRF microscopy, only a thin section at the sample surface is illuminated
(Axelrod 1981). Light in total internal reflection creates a thin lamina of evanescent
wave that penetrates the coverglass-sample surface and excites molecules within
approximately 150 nm from the surface. The low penetration depth of the TIRF
microscopy allows only to probe molecules close to the coverglass surface, e.g. in
the cell membrane. TIRF has been more commonly used to study processes in
vitro. To increase the penetration depth without significantly reducing the signal-
to-noise ratio, the HILO microscopy was developed (Konopka and Bednarek 2008;
Tokunaga et al. 2008). In the HILO microscopy, light is refracted into the sample
at high inclination angle (less than the critical angle in TIRF) only illuminating
an angled layer within the sample, resulting in lower out-of-focus fluorescence.

4.2 Single-Molecule Approaches for RNA Detection

One of the earliest implementations of a single molecule technique to study
biological processes was the observation of single β-galactosidase molecules trapped
into microscopic droplets by using fluorogenic substrate to measure the quantity
(Rotman 1961). Another example is the measurement of the unidirectional
movement of kinesin driving plastic beads along microtubules in vitro (Gelles
et al. 1988). Also, enzymatic reactions of single cholesterol oxidase molecules
have been observed using a real-time single-molecule approach (Lu et al. 1998).
Among other findings, the analysis of single-molecule measurements have shown
fluctuations in the rate of reactions.

In light microscopy, Abbe’s law defines the limit of ability to distinguish two
features located closer than half of the wavelength of the illuminating or the
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emitted light. This is directly related to the ability of detecting single fluorescent
molecules in biological samples. In order to accurately detect fluorescent molecules
in the observation area, the number of the target molecules must be low enough
to distinguish them. This is problematic as many molecules are present in high
quantities, e.g. RNAps and ribosomes in E. coli.

Various strategies have been utilized to limit the number of molecules in the
observation area (Pitchiaya et al. 2014). For example, the expression of the target
can be limited (Yu et al. 2006), the delivery of the probes can be controlled
(Santangelo et al. 2009), or the visualization of the probes at any given time can
be limited to a subset of the probes (Huang et al. 2009). The latter strategy is
used in super-resolution microscopy. These methods are based on turning only a
few fluorescent proteins into a bright state simultaneously and cycling through the
total population of fluorescent proteins in a stochastic manner. This is achieved
by using photoactivatable or photoconvertible fluorephores (Day and Davidson
2009). Stochastic optical reconstruction microscopy (STORM) or photoactivation
localization microscopy (PALM) can achieve up to 10 nm spatial resolution, even
with a high copy numbers of target molecules (Huang et al. 2009; Walter et al.
2008).

Methods have been developed to probe RNA numbers in vivo with fluorescent
probes. Techniques of labeling RNAs generally use two different schemes, di-
rect and indirect labeling. Indirect labeling involves sequence-complementary
oligonucleotides or fluorophore labeled RNA binding probes, which bind to a
specific RNA motif (Pitchiaya et al. 2014). Direct labeling uses chemically reactive
functional groups or structural motifs in the RNA, which can be naturally present
or introduced by chemical synthesis and RNA modifying proteins, for fluorophore
attachment (Pitchiaya et al. 2014). Currently, indirect labeling methods are
more popular due to the possibility of probing endogenous RNAs, in addition to
exogenous constructs (Raj and van Oudenaarden 2009).

One of the first methods to achieve single RNA sensitivity was the fluorescence in
situ hybridization method (Raj and van Oudenaarden 2009). The method is based
on the fluorescently labeled oligonucleotide probes that specifically hybridize to
its complementary sequence on the RNA. It can be used to probe the cell-to-
cell variability in endogenous RNAs, which cannot normally be quantified with
population level measurements such as qPCR, microarrays, or deep-sequencing
(Raj and van Oudenaarden 2009). Additionally, FISH can be used to measure
the spatial localization of RNAs inside the cell (Montero Llopis et al. 2010;
Lecuyer et al. 2007). The protocol for FISH generally entails fixation of the cells,
permeabilization of the cell membrane, hybridization of probes to their target
RNA sequences, extensive washing of the cells to remove non-bound probes, and
image acquisition (Gasnier et al. 2013).

The difficulties in the FISH methodology that affect the quantification of RNA
numbers are the following: the variability in fluorophores labeled to the oligonu-
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cleotides, long probes with a poor cell-membrane permeability, and low signal-to-
noise ratio caused by the unbound and non-specifically bound probes (Pitchiaya
et al. 2014). To avoid these problems, various approaches have been proposed. E.g.
multiple short probes that bind to the adjacent sequences within the target RNA
for improved cell-membrane permeability, probes that minimize the proximity
mediated fluorescence self-quenching (Femino 1998; Raj et al. 2008), and single
fluorophore labeled oligonucleotides that improve the labeling homogeneity of the
RNA (Raj et al. 2008; Taniguchi et al. 2010)

4.2.1 MS2-GFP Tagging Method

Since RNA binding proteins can be fused with fluorescent proteins, using them
instead of oligonucleotides to label RNAs has been proposed to detect single RNAs.
This method allows detection and tracking of single RNAs in living cells (Fusco
et al. 2003; Golding et al. 2005; Coulon et al. 2013). The method is based on
fusing an endogenous RNA with multiple copies of an RNA motif. This motif is
then bound by a specific protein fused to a fluorescent protein. The RNA binding
fusion protein should be extensively expressed in the cell prior to the measurement
(see Figure 4.1) so as to be able to detect any target RNA. Both constructs (the
target RNA and the RNA binding fusion protein) can be genetically engineered
into a plasmid transfected into the cell or integrated into the genome.

Figure 4.1: In vivo RNA detection with MS2-GFP method. (A) Illustration
of the MS2-tagging system for RNA detection. Target RNA carrying 96
MS2 biding sites is produced under the control of a promoter in a single copy
F-plasmid (large circle). MS2-GFP molecules (green balls) are produced
by a high copy-number plasmid (small circles). Once the target RNA is
transcribed, MS2-GFP molecules bind to it. The target RNA also has
a coding region for a red fluorescent protein (red balls). (B) Example
fluorescence microscope image of E. coli cells expressing both target RNAs
and MS2-GFP proteins. Individual RNA molecules are visible as fluorescent
spots. The uniform background of the cells is due to the unbound MS2-GFP
diffusing inside the cells.



4.2. Single-Molecule Approaches for RNA Detection 45

The most common high-affinity RNA binding protein used in RNA detection is
the MS2 coat protein derived from the MS2 bacteriophage (Fusco et al. 2003).
The protein binds to a 21 nt long RNA fragment that spontaneously forms a
stem-loop secondary structure (Keryer-Bibens et al. 2008). Other proteins used
for the RNA binding are the PP7, derived from the PP7 bacteriophage (Larson
et al. 2011; Chao et al. 2008), and the λN peptide, derived from the lambda
bacteriophage (Lange et al. 2008; Daigle and Ellenberg 2007). The binding sites of
the tagging proteins are orthogonal between MS2, PP7 and λN , i.e. the MS2 does
not bind the PP7 binding site and vice-versa (Lange et al. 2008; Chao et al. 2008).
This allows to simultaneously imaging up to three independent RNA targets, or
probe three different regions of a single RNA, using a combination of MS2, PP7
and λN systems (Hocine et al. 2013; Lange et al. 2008).

The binding of multiple tagging proteins (an RNA binding protein fused with
a fluorescent protein) to the same target RNA renders it much brighter than
the fluorescence from freely diffusing unbound tagging proteins and the cellular
autofluorescence (Fusco et al. 2003; Golding et al. 2005; Xie et al. 2008). Further,
the unbound tagging proteins normally diffuse much faster than the time resolution
of the image acquisition, blurring the fluorescence over a large area inside the
cell. On the other hand, the target RNA bound by multiple tagging proteins
moves slowly and can be detected as a distinct diffraction limited spot. However,
the highly expressed, unbound tagging proteins contribute significantly to the
background, creating need for a high number of binding sites in the target RNA.
In the first implementation of the method, 24 binding sites of the tagging protein
were used in the target RNA, resulting in the binding of 48 fluorescent proteins,
as the MS2 protein binds as a dimer (Valegard et al. 1994). Versions with a lower
(Haim et al. 2007; Fusco et al. 2003) or a higher number of binding sites have been
used (Golding and Cox 2004). As an alternative technique to improve the signal-
to-noise ratio, recent studies have utilized split green fluorescent protein (GFP)
fragments to reduce the background fluorescence (Kerppola 2006; Wu et al. 2014).

Certain drawbacks of the method hinder its usage as a probe for RNA dynamics.
These are to be considered in the analysis of the microscopy experiment. First,
an incomplete and heterogeneous binding of tagging proteins to target RNA
affect the quantification as the amount of fluorescence fluctuates between tagged
RNAs (Fusco et al. 2003; Wu et al. 2012). Next, the binding of a large number
of the tagging proteins to the target RNA can affect the mobility, functioning
or localization of target RNAs (Wu et al. 2012; Oliveira et al. 2016). Also, the
target RNA becomes protected against natural degradation by the bound tagging
proteins (Tran et al. 2015; Muthukrishnan et al. 2012). Lastly, this method can
only be used to probe genetically engineered RNAs due to the requirement of the
RNA binding sites.

In Publication I and Publication II MS2-GFP tagging method was used to
measure the production of target RNAs from a single promoter in live cells.
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4.3 Image Analysis and Data Extraction
To accurately estimate the number of RNAs in each cell from fluorescence mi-
croscopy images, image analysis and signal processing methods must be used.
This section describes the methods used in Publication I and Publication II.

4.3.1 Image Analysis and RNA Quantification

The first step in the analysis is to segment the cells from a background. The
image is manually divided into separate regions occupied by each cell. From these
regions, the location, the orientation and the dimensions of the cell are extracted
by using principal component analysis (PCA) (Kandhavelu et al. 2012a). This
segmentation method requires the cells not to be too clustered. For cell clusters, a
more sophisticated method of cell segmentation has been proposed, which employs
a multi-scale morphological edge detection with an image denoising algorithm
(Chowdhury et al. 2013). For time series data, the images are temporally aligned
using a cross-correlation to remove any drift during the image acquisition process,
e.g. due to temperature changes or movement of the stage, since small drifts
altering the position of the cells can complicate significantly the tracking of cells
over time. The tracking of cells during the time series is conducted by associating
a cell with the most overlapping cell in the previous frame. If there exist two
cells with significant overlap in the previous frame beyond a threshold, the cell is
expected to have divided.

To measure the production of RNA molecules in each cell, the diffraction limited
spots of the MS2-GFP tagged RNAs must be segmented. The intensity distribution
of a diffraction-limited spot can be mathematically described by a point spread
function (PSF) and can be approximated by a two-dimensional Gaussian function
(Ruusuvuori et al. 2010). The spots inside each cell area are automatically
segmented using a Kernel Density Estimation (KDE) method for spot detection
(Ruusuvuori et al. 2010). A probability density of intensity values is used to
compare the likelihood of pixel intensities with a threshold to obtain a binary
image of the spots. A circular window and a Gaussian kernel were used for the
detection. The threshold was obtained with Otsu’s method (Otsu 1979).

The spot intensities are corrected for the background fluorescence as follows. The
average intensity of the cell outside the spots, consisting of unbound MS2-GFP
molecules, is multiplied by the area of the spot and then subtracted from the total
intensity of each spot. This background corrected spot intensity can then be used
to quantify the number of RNAs in each cell. The number of RNA molecules in
the cell can be extracted from the intensity histogram from all spot intensities by
normalizing it with the intensity of a single tagged RNA molecule (equivalent to
the first peak in the intensity histogram) (Golding et al. 2005). The consecutive
peaks correspond to the integer valued number of RNAs.

Recently, an automatic method for quantifying the fluorescent spot intensities
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Figure 4.2: Distribution of measured intensities from MS2-GFP-tagged
RNAs with different number of binding sites (96 or 48 bs). Panels from top
to bottom: spot intensities (96 bs), cell intensities (96 bs), spot intensities
(48 bs) and cell intensities (48 bs). The solid black lines shows the overall
estimated distributions, the dashed black lines their components and the
dashed gray lines the decision boundaries. Reproduced with permission from
(Häkkinen et al. 2014).

was proposed (Häkkinen et al. 2014). This other method consists of a numerical
maximum likelihood parameter estimation followed by a maximum a posterior
classification. This method is applicable to any fluorophore-tagged molecule
quantification if the molecules in a cell are present in low-copy numbers. The
advantage of an automatic method is that it does not rely on a human intervention,
which in many cases complicates comparison between the experiments (Häkkinen
et al. 2014). Also, the distribution of the number of RNA molecules from a single
molecule experiment is often noisy and a simple rounding can cause errors. This
quantification error is expected to increase with the number of tagged RNAs
as the variance increases. An example of RNA number detection is shown in
Figure 4.2.

The cell and spot segmentation methods were used Publication I and Publi-
cation II. The RNA quantification methods were used in Publication II to
extract the RNA numbers over time in the cells.

4.3.2 Measurement of Intervals

Information from time series data can be used to quantify the RNA production
dynamics in single cells. The time series data contains more information than a
stationary RNA distribution from a cell population. Since the MS2-GFP tagged
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Figure 4.3: Detection of RNA production events from temporal data.
Upper panel: florescence microscope images at 1, 34 and 61 min after the
start of time series. Lower panel: example intensity series and fit curves using
the least-deviations (LD) method and two other methods. RNA numbers
estimated by the LD method are shown by the curves. Reproduced with
permission from (Häkkinen and Ribeiro 2015).

RNAs do not degrade in the time span of several hours (Golding et al. 2005;
Muthukrishnan et al. 2012; Tran et al. 2015), the total spot intensity increases
over time as the production of RNAs ensues (Kandhavelu et al. 2012a). Thus, the
moment of appearance of a novel RNA molecule in a cell results in a discrete jump
in the background corrected total spots intensity of the cell, given an accurate
sampling.

These discrete jumps in the total spots intensity of the cell are used to measure the
time intervals between consecutive production events of novel RNAs. The method
does not provide the absolute number of RNAs if the production does not initiate
from zero RNAs. From a time series of a cell population, this method can be used
to extract a distribution of time intervals in RNA production (Muthukrishnan
et al. 2012; Kandhavelu et al. 2012b). The automatic method in (Kandhavelu
et al. 2012a) fits the total spots intensity over time to a monotone piecewise-
constant function by least squares (LSQ) fitting. The model order is selected
using the F-test. Each jump has been shown to correspond to the production of a
single RNA molecule (Kandhavelu et al. 2012a). Recently, an improved method
for countering outliers observed in the intensity time series, e.g. spots moving
out-of-focus, proposes least-deviations (LD) cost for the detection (Häkkinen and
Ribeiro 2015). An example of the jump detection in RNA production is shown in
Figure 4.3.

This method can be also used to quantify the time for the first RNA production
event to occur following induction. This requires usage of microfluidics, as the cells
have to be induced under the microscope observation. The time series acquisition
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is initiated simultaneously to the induction of target promoter and the duration
for the first RNA production events to occur is counted from the start of induction.
Examples of distributions of time intervals between transcription events and of
the waiting times for the first transcription event following induction are shown
in Figure 4.4

The methods of measurement of time intervals between RNA production events
and the waiting time for the first production event were used in Publication II
to quantify these processes in different promoters and induction schemes.

t = 0 t = 120 min

ǻt1 ǻt2 t3t0

ǻt1 t2t0

ǻt1 t2t0

Figure 4.4: Distributions of time intervals. Top: Description of the waiting
time for the first RNA production (t0) and intervals between subsequent
transcription events (∆t). Bottom: Example kinetics of the intake and
production. (A) Probability density distribution of waiting times for the
first RNA to be produced in cells (B) Probability density distribution of
intervals between transcription events.

4.4 Change Point Detection Methods
Automatic change point detection methods are often general and can be used
to detect changes in the dynamics of the system without explicitly knowing the
exact nature of the change. These methodologies recognize candidates for the
moment of changes in the dynamics. The earliest approaches were based on the
Behrens–Fisher problem, a statistical hypothesis test of equal means (Belloni
and Didier 2008; Fisher 1939). These approaches, e.g. the Welch’s t-test, assume
normal distributions which makes them sensitive for heavy-tailed distributions
that many biological processes exhibit (Taniguchi et al. 2010). The detection
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in non-parametric cases is still, in general, an open problem. The different
approaches are based on statistics, density estimation, theory of kernel machines
and classification (Kawahara and Sugiyama 2009; Harchaoui et al. 2009).

The problem of change point detection can be formulated as the following. Given
a multidimensional time series x0,x1, . . . ,xN ∈ Rn, where the time moment K
represents a change in the dynamics. Given the data samples in the M-point
backward window XB = (xK−M , . . . ,xK−1) and the M-point forward window
XF = (xK+1, . . . ,xK+M ), the dissimilarity of the two windows can be posed as a
hypothesis testing problem:

{
H0 : pXF(x) = pXB(x)
H1 : pXF(x) 6= pXB(x)

(4.1)

where pXF(x) and pXB(x) denote the probability density functions of the forward
and backward windows, respectively.

Two recent change point detection methods, namely, the unconstrained least-
squares importance fitting (uLSIF) (Kawahara and Sugiyama 2009) and kernel
change point analysis (KCpA) (Harchaoui et al. 2009) have been reported to
exhibit good performance, when compared with alternative methods. The first
detection method attempts to model the densities based on the data (Kawahara
and Sugiyama 2009). Instead of estimating both windows separately and measuring
their similarity with e.g. the Kolmogorov-Smirnov test, this method considers
the likelihood of a change using the density ratios directly. For this, there are
estimation methods, such as Kullback-Leibler importance estimation procedure
(KLIEP) (Sugiyama et al. 2008) and uLSIF (Kanamori et al. 2009). The density
ratio w(x) : Rn → R is the following:

w(x) = pXF(x)
pXB(x) , (4.2)

where pXF(x) and pXB(x) are the probability densities of the forward and back-
ward windows, respectively.

The second method, the KCpA method, as all kernel methods, is based on mapping
the data into a higher dimensional feature space, which allows the data in the
backward and forward windows to be modeled with linear models. The kernel
methods were originally developed for pattern recognition but they have since
been applied to the problem of change point detection (Harchaoui et al. 2009;
Desobry et al. 2005; Schölkopf and Smola 2002). Harchaoui and colleagues used a
kernel-based binary classifier to separate the forward and backward windows based
on the dissimilarity of the two sets (Harchaoui et al. 2009). Their separability
can be directly measured by using the Kernel Fisher Discriminant, which defines
the ratio of the between-class-variance and the within-class-variance.
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Most parameters of change point detection algorithms can be inferred from the
data by cross-validation. However, the window length cannot be determined from
the training data due to multiple time scales of the change and the algorithm
cannot know which time scale is relevant. Thus, the time scale of the processes
to be studied must be known beforehand. Provided a prior knowledge on the
time scale of the changes, automatic methods to detect changes in time series
data accurately and robustly are important for future analysis of gene regulatory
networks.

In Publication I these methods were used to detect changes in simulations
of gene expression in small and large gene networks and in measurements of
transcription in live cells using the MS2-GFP tagging method.





5 Conclusions and Discussion

This thesis has studied the transcription process in Escherichia coli using stochas-
tic modeling approaches and RNA measurements with single molecule sensitivity.
The four publications contribute to this by, first, presenting a new tool for auto-
matically detecting changes in time series data from simulations or measurements
(Publication I). This was followed by a study that quantifies the dynamics of
induction and subsequent transcription process (Publication II), a study of
transcription initiation in closely spaced promoters (Publication III), and a
study of coupled transcription and translation elongation (Publication IV).

In Publication I a new method for detecting non-spurious changes in simulated
data and time-lapse microscopy of gene expression was proposed. The method
finds candidate moments when the the dynamics of the system changed from time
series data. Two recent methods, the density ratio method (Harchaoui et al. 2009)
and the kernel change point analysis (Kawahara and Sugiyama 2009), are based
on a non-parametric approach for the detection problems. These methods show
good performance compared to alternative methods, as expected, given that they
presently represent state-of-the-art approaches to the problem.

To assess the accuracy of these methods, the ground truth of the changes must be
known. Thus, the performance of the two methods was tested in detecting changes
in the dynamics of delayed stochastic models of small genetic networks, including
a toggle-switch (Gardner et al. 2000), and a large genetic network (Chowdhury
et al. 2010). The changes that occur during the time series were implemented
so as to mimic natural changes in the dynamics, e.g. different mean expression
levels and noise levels, or the switching between producing and non-producing
states. These changes can occur for various reasons, such as gene copy numbers
change as a results of DNA replication (Peterson et al. 2015), a change in the
transcription factor concentration (Ozbudak et al. 2004; Kandhavelu et al. 2012b),
or a change in the environment (Young et al. 2013). In most tests, the kernel
method outperforms the density method. This might be due to the nature of the
changes aimed to detect. Overall, the methods showed good accuracy in detecting
the moments when changes occurred.

Finally, the methods were used to detect novel transcription events from time-lapse
microscopy where the RNAs in live E. coli cells were detected by the MS2-GFP
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RNA tagging method (Golding et al. 2005). Both methods accurately detected
the production moments of novel RNAs.

Most detection parameters can be inferred from the data by cross-validation, but
the window length for the detection was found to have a significant effect on the
accuracy of detection. Changes in the dynamics in gene networks usually have
multiple time scales in which they occur, e.g. gene expression levels are affected by
events that can range from a simple repressor unbinding to a complex cell division
process. Consequently, some information on the time scales of the process and/or
changes must be known beforehand, in order to detect change points accurately.
This is especially true for gene regulatory networks capable of exhibiting a wide
range of dynamics.

In Publication II, the contributions of induction and the subsequent transcription
process to the cell-to-cell diversity in RNA numbers were quantified for a few
promoters and induction schemes. First, the waiting times for the production
of the first RNA following introduction of inducers to the environment and the
subsequent intervals between transcription events were measured using the MS2-
GFP RNA tagging method (Golding et al. 2005) in live E. coli cells. Both processes
were found to exhibit broad distributions of intervals. The dynamics of intake is
determined by the induction mechanism and the extra-cellular concentration of
inducers. Meanwhile, the transcription dynamics of active promoters is mostly
dictated by the promoter sequence and the presence of transcription factors.

The induction kinetics showed a surprisingly broad distribution of waiting times
in all measured cases. This was shown to have a tangible effect on the diversity in
RNA numbers of a cell population, increasing it much above than expected from
noise in the transcription process alone. This effect is, however, transient in that
as the transcription is initiated, the RNA numbers in cells become defined more
and more by the kinetics of transcription and RNA degradation. To estimate
the duration of the transient caused by the non-negligible times of the intake
process, both the intake and transcription processes were studied using the FSP
algorithm (Munsky and Khammash 2006). Both processes were modeled as d-step
processes, each step with an exponentially distributed duration corresponding to
an elementary step. The models were fitted with experimental data in different
experimental conditions and compared with a model where transcription is fully
active since the first time moment of the observation window.

The cell-to-cell variability in RNA numbers increased transiently due to the intake
process. Relevantly, this effect was found to last for a long period after the start
of induction, in that a large fraction of the population was slowly induced. Also,
different intake mechanisms exhibited different dynamics which had non-negligible
effects on the RNA population statistics. The regulation of gene activation might
be an important source of variability in the population, as it allows additional
coordination of transcription dynamics that is gene independent.

In Publication III, the dynamics of transcription initiation in closely spaced
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promoters were investigated using stochastic nucleotide level models. Compared
to an isolated promoter, dynamics from closely spaced promoters is affected
by RNAps interfering with each other during binding, transcription initiation,
and elongation (Sneppen et al. 2005). The mechanisms of interference include
occlusion, RNAp collisions, road blocks and sitting duck interference (see section
2.4), which are easily modeled with the nucleotide level model, where bound
RNAps and transcription factors reserve a range of nucleotides on the DNA.

First, the binding rate of RNAps to the promoter region was found to be non-
uniform due to rate-limiting steps in transcription initiation. Importantly, the
localization of the promoters’ start sites and the promoter’s geometry were found
to affect the distributions of intervals between transcription initiations due to
the interferences between the promoters. Also, the interference causes transient
correlations between consecutive transcription initiations of the dual promoter
system, in that, the spatial closeness causes a promoter to be more likely to
express more times in a row than if spatially more separated. This correlation is
dependent on the existence of a multiple rate-limiting steps transcription initiation
process and affected by the orientation and distance between promoter sites.

Next, repression mechanisms of transcription initiation were studied. A change in
the location of the repressor binding site leads to qualitatively distinct regulatory
behaviors, as it causes the repressor to interact differently with the transcriptional
machinery. E.g. inhibiting the promoter binding, the transcription initiation
rate is proportional to RNAP binding rate and can be reduced by increasing the
repressor concentration. Meanwhile, inhibition of the open complex formation or
promoter escape is partially independent of the repressor numbers, as the fraction
of time that gene is expressed, is also controlled by the dissociation constant of
the repressor and the rate-limiting steps in transcription initiation.

Finally, a single repressor binding site can simultaneously repress both closely
spaced promoter sites. The mechanism by which the repression occurs differs
between promoters, causing differences in repression strength. Relevantly, using
shared repression sites allow coordinating the activity between the promoter sites.

In Publication IV, the coupled transcription and translation elongation was
studied using stochastic models of transcription and translation at the nucleotide
and codon level. During transcription and translation elongation, alternative
reaction pathways, including pausing, premature termination, and backtracking,
can occur in various DNA template positions, in accordance with experimental
data (see section 2.2.2). Consequently, transcription of a gene consisting of a
few thousand nucleotides can give rise to complex dynamics. For example, the
stochastic events during elongation affect the distribution of distances between
elongating RNAps (Dobrzynski and Bruggeman 2009) and between elongating
ribosomes (Mitarai et al. 2008), which gives rise to bursts in RNA and peptides
production. Further, collisions between elongating macromolecules can attenuate
bursts introduced by transcription initiation (Dobrzynski and Bruggeman 2009).
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To study the propagation of fluctuations, transcription and translation initiation
rates were varied, as these directly affect the average distance between elongating
macromolecules. To maintain the mean mRNA and protein levels unaltered with
changing initiation rates, the degradation of mRNA and protein species were
tuned accordingly. Fluctuations in the RNA numbers were found to decrease
with increasing transcription initiation. This was due to the existence of a
promoter open complex formation step, that was shown to reduce collisions and
bursting between consecutive RNA productions. In the absence of this event
or significant reduction of its duration, the distribution of time intervals would
become exponential-like. In this case, increasing initiation rates would lead to
more collisions with RNAps.

The fluctuations in the transcription process were found to propagate to translation,
due to these processes being dynamically coupled. Reduction of the translation
initiation rate led to a decrease in ribosome traffic on the RNA, which consequently
reduced the fluctuations in the protein numbers. Reduction in the fluctuation was
also partly caused by the de-coupling of transcription and translation. This was
shown by calculating the normalized maximum correlation between time-series of
protein and mRNA numbers for each set of parameters. Finally, transcriptional
stalling e.g. due to transcriptional arrests (Davenport et al. 2000) was found to
simultaneously affect both transcription and translation elongation processes.

Recent measurements with single molecule sensitivity have shown the extent
of heterogeneity in mRNA and protein numbers in E. coli cells in homogenous
environments (So et al. 2011; Taniguchi et al. 2010; Jones et al. 2014). While the
observation of full distributions of molecule numbers is interesting per se, dynamics
in single cells is more informative about the underlying processes. In particular,
the possibility of observing single cell trajectories following single cell events, when
complemented with modeling approaches, can provide mechanistic understanding
of the processes underlying the kinetics (Norman et al. 2013; Nachman et al. 2007).
The methodology of measuring time intervals between events or waiting times
from a perturbation, utilized in this thesis, can be used to understand molecular
events involved in, e.g., gene activation, repairing of DNA, switching between cell
states etc. (Norman et al. 2013; Uphoff et al. 2013). The properties of fluctuations
on the time intervals inform about the mechanisms involved in the process and
hypothesized mechanisms can be tested with modeling approaches, e.g. how the
model responds to perturbations (Uphoff et al. 2016).

Current methods of tagging RNAs with fluorescent proteins in live cells allow
simultaneous measurement of up to three different RNAs or regions of RNA, in
addition to a wide spectrum of fluorescent proteins that can be fused with target
proteins (Hocine et al. 2013; Lange et al. 2008; Bakshi et al. 2013). Even with
limited number of probes, careful selection of molecular species to probe would
allow detection of sequential events in transcription, such as TF binding, open
complex formation, elongation of the nascent RNA, and degradation of RNA
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(Larson et al. 2011). Conceivably, all sequential steps resulting in gene expression
could be monitored in individual cells. Advanced microscopy techniques, such as
combinatorial probe labeling (Lubeck and Cai 2012; Chen et al. 2015b), could
provide methods to visualize all intermediates of the process in a single cell.

Naturally, genes do not act as independent units inside the cell, neither are
they the sole controllers of RNA and protein numbers. Several studies have
proposed that a large portion of the observed variability in mRNA and protein
numbers arises from other sources than the transcription and translation processes
themselves (So et al. 2011; Taniguchi et al. 2010; Sanchez and Golding 2013). Non-
gene-specific factors involved in transcription and translation, such as σ-factors,
transcription regulators, ribosomes and RNA polymerases, have been shown to
fluctuate significantly (Taniguchi et al. 2010; Bakshi et al. 2012; Yang et al. 2014).
Additional mechanisms, including DNA replication, negative DNA supercoiling,
asymmetric protein and mRNA partitioning during cell division, and cellular
aging, contribute also to the observed RNA and protein numbers (Peterson et al.
2015; Chong et al. 2014; Huh and Paulsson 2011; Lindner et al. 2008). It will be
interesting to quantify the contributions of these sources of fluctuations on the
dynamics of gene expression in the future. This would provide a more embedded
view of gene expression and its association with the functioning of the organism
as a whole.

Overall, gene expression has been shown to exhibit a wide range of dynamics,
likely due to the existence of multiple regulatory mechanisms. Further, the
possibility of attaining similar kinetics through different mechanisms complicates
the characterizing of a particular process. These complications ought to be tackled
with a combination of advanced measurement techniques and novel modeling
approaches. As most cellular processes depend on gene expression, the more
details we understand of it, the more understanding we will have of cellular
behaviors in general.
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ABSTRACT

Motivation: Production and degradation of RNA and proteins are
stochastic processes, difficulting the distinction between spurious
fluctuations in their numbers and changes in the dynamics of a
genetic circuit. An accurate method of change detection is key to
analyze plasticity and robustness of stochastic genetic circuits.
Results: We use automatic change point detection methods to
detect non-spurious changes in the dynamics of delayed stochastic
models of gene networks at run time. We test the methods in
detecting changes in mean and noise of protein numbers, and
in the switching frequency of a genetic switch. We also detect
changes, following genes’ silencing, in the dynamics of a model of
the core gene regulatory network of Saccharomyces cerevisiae with
328 genes. Finally, from images, we determine when RNA molecules
tagged with fluorescent proteins are first produced in Escherichia
coli. Provided prior knowledge on the time scale of the changes, the
methods detect them accurately and are robust to fluctuations in
protein and RNA levels.
Availability: Simulator: www.cs.tut.fi/∼sanchesr/SGN/SGNSim.html
Contact: andre.ribeiro@tut.fi
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Gene regulatory networks (GRNs) are stochastic. However, their
behavior is, to some extent, robust, e.g. when responding to
environmental changes. The behavior is determined by the structure
of the genetic circuits. Thus, when structural changes occur, in many
cases there are changes in the dynamics of RNA and protein numbers
of some genes. Some such structural changes (e.g. a mutation) can be
rare, occurring once in a cell’s lifetime. It is thus important to develop
robust methods for detecting permanent changes in the dynamics of
genetic circuits, and distinguish these from spurious fluctuations in
RNA and protein numbers.

∗To whom correspondence should be addressed.

We apply automatic change detection methods to simulated and
real gene expression data, to recognize candidate change points in
RNAand protein numbers’dynamics.Automatic detection of change
points is the discovering of points in time where the properties of the
time series change. Earliest approaches were based on the Behrens–
Fisher problem, a statistical hypothesis test of equal means (Belloni
and Didier, 2008; Fisher, 1939). A widely used approximation to
solve this problem is the Welch’s t-test. However, these approaches
assume normal distributions, typically causing them to be too
sensitive for heavy-tailed distributions. The dynamics of RNA and
protein production are usually not normal like, especially if a
structural change occurs in the GRN during the observations.

We use two recent change point detection methods, namely, the
density ratio method and the kernel change point analysis (Harchaoui
et al., 2009; Kawahara and Sugiyama, 2009). Our choice is based on
their reported good performance compared with alternative methods.
These methods use different approaches: the density ratio method
has its roots in statistics and density estimation, while the kernel
change point analysis is based on the theory of kernel machines and
classification. In our understanding, they represent state-of-the-art
approaches to the problem.

To assess the accuracy of the methods, knowing the ground truth
signal is needed. For this, we require realistic simulations of RNA
and protein expression dynamics. The dynamics of the models ought
to be as realistic as possible so as to mimic accurately the temporal
dynamics of RNA and protein numbers in real cells.

Recently, a delayed stochastic modeling strategy of gene
expression and GRNs was proposed (Ribeiro et al., 2006). It
is based on the delayed stochastic simulation algorithm (delayed
SSA) (Zhu et al., 2007), and thus it accounts for the key dynamical
features of real GRNs, namely, the stochasticity of the chemical
kinetics (Arkin et al., 1998), and the duration of events such as
the promoter complex formation (McClure, 1980) and transcription
elongation (Zhu et al., 2007). This modeling strategy was shown
to match the dynamics of RNA and protein production at the single
molecule level (Yu et al., 2006; Zhu et al., 2007). Delayed stochastic
models of GRNs can be simulated by SGNSim (Ribeiro and Lloyd-
Price, 2007), which also allows introducing changes in the structure
of the GRN at run time, needed to test the change point detection
methods.

We apply and test the accuracy of the automatic detection of
change points methods to model GRNs subject to a permanent

2714 © The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
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change at run time in mean level of a protein, noise strength of
a protein’s time series and in the frequency of switching of a genetic
switch. Further, to verify the applicability of the methods to large-
scale clusters of interconnected genes, we test the ability to detect
a change in the dynamics of a model GRN with 328 genes, subject
to the silencing of a randomly selected gene at run time. Finally,
we apply the methods to determine when new RNA molecules are
produced, from our temporal measurements by confocal microscopy
of RNA tagged with MS2d-GFP in Escherichia coli.

2 METHODS

2.1 In vivo detection of RNA molecules in E.coli
RNA detection and quantification in vivo in E. coli cells DH5α-PRO uses the
ability of the coat protein of bacteriophage MS2 to tightly bind specific RNA
sequences (Peabody and Lim, 1996). High-resolution detection of single
RNA transcripts with 96 tandem repeats of MS2 binding sites in E.coli is
possible by using dimeric MS2 fused to GFP (MS2d-GFP fusion protein) as a
detection tag (Golding et al., 2005). The method uses two genetic constructs.
The first is a medium-copy vector expressing the MS2d-GFP fusion protein,
whose promoter (PtetO) is regulated by tetracycline repressor. The second is
a single copy F-based vector, with a Plac/ara promoter controlling production
of the transcript target, specifically mRFP1 followed by a 96 MS2 binding
site array. Constructs were generously provided by I. Golding (University of
Illinois). Experimental procedures of induction of the target RNA, confocal
microscopy and cell and RNA spots segmentation from images are described
in Supplementary Material.

2.2 Models of GRNs
We follow the modeling strategy of delayed stochastic GRNs proposed in
Ribeiro et al. (2006). The models are implemented in the simulator SGNSim
(Ribeiro and Lloyd-Price, 2007), and the dynamics is based on the delayed
SSA (Zhu et al., 2007), that unlike the SSA (Gillespie, 1977), uses a waiting
list to store delayed output events. The algorithm of delayed SSA is presented
in Supplementary Material. Delayed reactions are represented as: A → B +
C(τ1) + D(τ2). In this reaction, B is instantaneously produced, while C and
D are placed on the waitlist until they are released, after τ1 and τ2 seconds,
respectively. This strategy accounts for the stochastic nature of chemical
reactions and for the fact that transcription and translation are multistep
processes that take non-negligible time to be completed once initiated.
The strategy was validated in Zhu et al. (2007) by matching temporal
measurements of expression of individual proteins (Yu et al., 2006).

We implement four model GRNs, named models 1, 2, 3 and 4. Models 1
and 2 are identical, and consist of a two-gene network, where Gene 1
represses Gene 2. These models differ in the change at run time. In Model 1,
mean protein levels change at run time, while in Model 2 it is the strength
of fluctuations in protein levels that changes. Model 3 is a genetic switch
whose switching frequency is changed at run time.

We also test if changes in the dynamics of larger GRNs can be detected.
Gene networks consist of hundreds to thousands of genes, usually organized
in clusters of dozens to hundreds, that are involved in specific tasks in
development, metabolism, etc. Changes known to occur in the dynamics
of these networks may be caused by mutations, deletions or duplications, or
as a response to external signals or stress. Usually, such events cause one to
a few genes, along with several of its neighbor genes, to alter the expression
level (e.g. from high to low). The models and how the changes at run time
are implemented are described in Supplementary Material.

To test if the algorithms of change point detection are successful for large
genetic circuits, we apply them to a model of the core gene network of
Saccharomyces cerevisiae inferred from microarray measurements following
gene deletions and overexpressions (Chowdhury et al., 2010). This network
contains 328 genes. Inferred connections were verified by gene enrichment.

The perturbations consist of selecting genes randomly (see Supplementary
Material) and subject them to silencing at run time, one per simulation.

2.3 Methods of change point detection
Formally, the problem of change point detection can be stated as follows.
Given a multidimensional time series x0, x1, … , xN ∈ Rn, which time points
K represent change in some sense, given the data samples in the M-point
backward window XB = (xK−M , … , xK−1) and the M-point forward window
XF = (xK+1, … , xK+M ). To define the dissimilarity of the two windows one
can pose the question as a hypothesis testing problem:

{
H0 :pXF (x)=pXB (x)
H1 :pXF (x) �=pXB (x)

(1)

where pXF (x) and pXB (x) denote the probability density functions of the
forward and backward windows, respectively.

Detection in non-parametric cases is still, in general, an open problem.
We apply two recent change point detection methods proposed for the
non-parametric case. Namely, we apply a direct density ratio test (uLSIF)
(Kawahara and Sugiyama, 2009) and a kernel change point analysis method
(KCpA) (Harchaoui et al., 2009), described in Supplementary Material.

3 RESULTS AND DISCUSSION

3.1 Selecting a proper window size
Most parameters of change point detection algorithms can be
inferred from the data by cross-validation. However, the detection
window length cannot be determined from training data, since
changes appear at multiple scales. Thus, the algorithm cannot
decide which time scale is biologically relevant. Below, we choose
the window size from knowledge of the scale of the biological
phenomena studied. Before, we study the performance of the
detectors for a wide range of window sizes to search for differences
in robustness and to compare performances with larger number of
test cases.

We first apply KCpA and uLSIF algorithms to three models. We
change at run time mean protein levels in Model 1, noise in protein
numbers in Model 2 and frequency of switching between noisy
attractors in Model 3 (Section 2.2). Examples of the time series of
protein numbers in these models, prior and after a change are shown
in Supplementary Material. The performance is assessed by the area
under the receiver operating characteristics (ROC) curve or the AUC
criterion (Kay, 1998). The ROC curve and the corresponding AUC
value were based on the specificity–sensitivity coordinates obtained
by varying the detection threshold.

To improve the detection performance, the data are appended by
auxiliary variables. This attempts to cast the change in, e.g. variance
into a change in the mean of the auxiliary variable. For example, in
Model 2, the change is in the degree of the fluctuations in protein
numbers. One can convert this into a change in ‘local variance’
(that is, variance within a small time interval). Appending the local
variance estimates for both proteins to mean levels significantly
improves the detection of changes in noise in protein numbers.

We also include auxiliary variables in Model 3. The added feature
is the average absolute difference of consecutive samples. This
improves performance because of the nature of the change (in
switching frequency) and because the levels of the two protein are
dynamically coupled. The change in switching frequency from low
to high is reflected in the difference between consecutive samples
of |P1 −P2| (similarly one could have used the sum of P1 and P2).
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(a) (b) (c)

Fig. 1. Effect of window length on change point detection methods. KCpA (linear kernel) (open circle), KCpA (polynomial kernel) (open square), KCpA
(RBF kernel) (asterisk) and uLSIF (diamond) detection results for each model. Horizontal axis is the size of forward and backward windows (window length
size 1000 uses 1000 + 1000 = 2000 samples for detection). Vertical axis is the area under the ROC curves (AUC) for different window lengths when applied
to Models 1 (a), 2 (b) and 3 (c).

The performance of detection of change points for various
window sizes is summarized in Figure 1. For all models, KCpA
seems more effective (higher AUC values for most window lengths).
Also, uLSIF is more sensitive to the choice of parameters, but their
manual adjustment can improve the performance to comparable
levels. However, the cross-validated automatic parameter setup
does not provide good results. We acknowledge that the ad hoc
addition of auxiliary variables may favor KCpA over uLSIF.
Without it, the two detectors exhibited similar (poor) performances,
although for Model 2, uLSIF performed slightly better. This is likely
because uLSIF models more extensively the characteristics of the
distribution, while KCpA assumes Gaussian densities with equal
covariances. However, for our practical purposes, neither method
was robust enough, so we decided to improve the detection by adding
auxiliary variables.

In general, widening the window improves performance. The
best robustness of detection is obtained by KCpA with the linear
kernel. This is not surprising, since simple linear models typically
exhibit small variance (e.g. repeated experiments tend to have
similar results). The drawback is a high bias if the model is not
complex enough. However, according to Figure 1, the linear model
with KCpA seems sufficient for our data.

3.2 Detection of change points in genetic circuits
Examples of the application of KCpA with linear kernel to one
realization of the time series of each model are shown in Figure 2a–c,
and the results for uLSIF in Figure 2d–f. The inputs for change point
detection are the time series in Supplementary Figure S3a–S3c. In
all cases, the true change point occurs at midpoint of the time series.
KCpA outperforms uLSIF, as it is less sensitive to spurious, transient
changes. We used in all cases a window length of 1100 samples
as it enhances detection when compared with smaller lengths, and
further increases in length did not improve the detection significantly
(Fig. 1). This length corresponds to 105 s simulation time, allowing

spurious transient fluctuations to be recognized as such. The length
is realistic given the time scales of transient fluctuations in protein
numbers in bacteria and eukaryotic cells. In the models, the effects
of fluctuations in protein numbers last for long periods of time
(103 −104 s). Therefore, it is expected the need of using a window
size longer by one order of magnitude. In cells, since proteins have
lifetimes of the order of tenths of minutes, fluctuations last by a
similar order of magnitude. For example, oscillations in protein P53
numbers in Human cells have a period of 5 h (Geva-Zatorsky et al.,
2006) and the period of oscillation of a repressilator engineered in
E.coli is ∼104 s (Elowitz and Leibler, 2000).

For the KCpA method (Fig. 2a–c), we performed multiple tests on
independent time series, all of which with identical initial conditions.
In the figures, we show the results of three of such independent runs
for the three models. The aim is to test if KCpA is robust to the
stochasticity of the time series, which will cause different spurious,
transient fluctuations in each independent simulation. Visibly, the
algorithm is highly robust in the first two models (Fig. 2a and b), in
the sense that the change is accurately detected in all independent
simulations and at the moment following occurrence of the structural
change.

The results for Model 3 are more complex. Namely, while in all
cases the change is detected (as depicted in Fig. 2c), the detection
takes place at different points in time following the change. This is
explained by the nature of the change. What changes is the frequency
of switching between noisy attractors. For such a change to be
detected (even by a human observer), switches between the two
protein levels must take place (so that the algorithm can ‘measure’
the frequency). In some simulations, switches will take place shortly
after the change, while in others it takes longer time. The duration of
switches follows approximately an exponential distribution (Ribeiro
and Lloyd-Price, 2007) causing the interval between switches to vary
widely. Due to that, it is expected that the algorithm, from different
runs, will detect the change in the dynamics in different moments
following the structural change in the genetic circuit. Relevantly,
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Fig. 2. Results of change point detection for KCpA (linear kernel) in models 1 (a), 2 (b) and 3 (c) and uLSIF in models 1 (d), 2 (e) and 3 (f ). Vertical axis
are the KCpA and uLSIF indicator outputs. In all cases, the window length is 1100 samples. Ground truth (in gray) used to compute the ROC curves. uLSIF
parameters were selected by 10-fold cross-validation. In (a), (b) and (c) the results of applying KCpA to the time series from three independent runs are shown
for assessing robustness to the stochastic fluctuations in protein numbers.

even for this case, in all runs KCpA detected the change, while at
different moments.

We now compare the results of KCpA and uLSIF in each model.
Figure 2a and d illustrate the change point detection results for
Model 1. KCpA largely outperforms uLSIF. As mentioned, KCpA
determines accurately the exact moment when the protein levels start
changing for this model. After, the two protein levels only fluctuate
around a mean level, and KCpA does not detect any significant
changes. We conclude that KCpA is appropriate to detect changes
in mean expression levels in highly stochastic time series, since
fluctuations due to noise in the chemical kinetics are not confused
with the change in mean expression levels.

Next, we test the ability of detecting changes in the degree of
fluctuations in a protein’s level (Model 2). In our example, the noise
strength in protein numbers changes from 0.63 to 0.73, as measured
by the square of the coefficient of variation (SD over the mean).
The results of the detection are shown in Figure 2b and e. Again
KCpA outperforms uLSIF, indicating the true change shortly after
the midpoint of the time series. In comparison to the first case, the
results are not as clear as there are a few false matches after the
true change point. Nevertheless, the moment at which the structure
changed was correctly identified. In addition, the highest peak occurs
at the true change point. Thus, we conclude that KCpA detects
changes in the noise strength of temporal expression levels even
from time series of protein numbers that are highly stochastic both
before and after the change.

We now compare KCpA and uLSIF in detecting a change
in the frequency of switching of a genetic switch (Model 3).

The decrease in switching frequency is due to weaker fluctuations in
the protein numbers and leads to a slight increase in mean number
of proteins since the decrease in fluctuations is not symmetric in
relation to the mean protein level (see Supplementary Material).
Thus, there are two changes, in mean and in fluctuations, which
also have different time scales to be completed once initiated. The
results of the detection are shown in Figure 2c and f. In this case,
both the uLSIF and the KCpA have a poor performance. The KCpA
does detect the true change point from one of the realizations of the
data, but this might only be a coincidence. However, both methods
are able to detect the strong changes in the mean levels (due to
the switching dynamics) that occur at time 6×106 and 7.5×106 s
(see Supplementary Fig. S1c). Thus, we conclude that for networks
with switching dynamics, the detection of change of frequency
requires complex analysis of the results, namely, there actually was
a detection of a change point (but not of the frequency of switching),
from which one can infer that the structure of the switch changed at
run time. From this point of view, the uLSIF detector outperforms
KCpA in this case.

3.3 Detecting change points in a complex genetic circuit
We simulate the dynamics of models from a core genetic network
model of S.cerevisiae with 328 genes (Chowdhury et al., 2010). Both
topology as well as genes’ transfer functions were inferred from
microarray measurements following deletions and overexpressions
of a gene, in optimal environmental conditions. Perhaps due to this,
it was observed that unless the inferred model network is perturbed,
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Fig. 3. (a) Example of protein numbers of 3 out of the 328 genes from a simulation (two were affected by the perturbation, one was not). (b) Results of
detection. The vertical axis is the AUCs for all window sizes and all genes (the symbols ‘open circle’, ‘asterisk’, ‘square’ and ‘diamond’ are results when
silencing different genes). Window size is 200 in all cases. (c) Example of detection results of KCpA for window size 200. Vertical axis is KCpA indicator
output.

its dynamics remain relatively stable (Chowdhury et al., 2010) even
when modeled with the stochastic modeling strategy.

Since the topology is highly clustered and the mean connectivity
�5, and this was inferred from observing how many genes’
expression level was affected by the deletion or overexpression of
another gene (Chowdhury et al., 2010), we can expect that when
perturbing the model network by gene silencing, only a few genes’
expression level will be affected, on average.

Due to that, and given our prior knowledge of the topology of this
network, it is possible, for simplicity, to provide the algorithm with
the data comprising only the perturbed gene and its near neighbors
(between 20 and 30 genes’ expression levels, selected based on
smallest path length to the randomly perturbed node). In general,
adding non-informative data can only decrease the performance of
any detection algorithm. Therefore, attempting to detect from the
expression of all 328 genes, is likely harder than when using a
subset of genes. Nevertheless, this decrease ought to be minimal
in this case, since even most of the selected genes were found to
also be non-informative (no clear change was observed in the time
series of protein numbers following the perturbation).

The dynamics is simulated for a period of time and one gene,
chosen at random (see Supplementary Material), is silenced at
midpoint. Examples of the protein numbers of a few genes of the
network are shown in Figure 3a. Note that the mean expression
levels (30–50 when gene expression is active, and close to 0 when
repressed) are within realistic intervals for S.cerevisiae (Bar-Even
et al., 2006). As expected, we observed that following a perturbation,
only a small fraction of genes was dynamically perturbed.

Figure 3b shows the results of detection by KCpA for varying
window sizes. We use only KCpA as it exhibited the best results so
far. The detection is highly accurate and robust to varying window
size. In all, we ran four experiments. In each case, a different gene
from the GRN was silenced. In two cases, the silenced gene was
included in the simulated measurement data, while for the two other
cases, we only included measurements of non-silenced genes. As
one can see, the AUC’s are in all case very close to 1, and it seems

irrelevant whether the particular silenced gene is included or not.
The accuracy in the four cases differs slightly. This is expected,
since different genes have different number of outputs and thus its
silencing will have differing range of effects in the GRN’s dynamics.
Figure 3c shows the detection results of KCpA in one case.

3.4 Time series of images of E.coli cells expressing
RNA target for MS2d-GFP

We now apply the methods to detect changes in the number of
tagged RNA molecules in cells over time from series of images taken
by confocal microscopy of E.coli cells expressing RNA target for
MS2d-GFP. The time series of total fluorescence intensity of MS2d-
GFP-RNA spots in a cell is shown in Figure 4a (extracted from
the images of the cell shown in Supplementary Material). Note that
some time points are missing due to the microscope getting out-of-
focus. From the images, one can see that in that period the objects
become blurred and determining the appearance of RNA molecules
becomes impossible even by a human observer. Inclusion of these
outliers in the data would only result in detection of the problems
of robustness of the images acquisition process.

Instead of compensating this by acquiring new data or by
interpolating the existing data, we marked the out-of-focus time
points as missing data and apply the detection algorithms to the
remaining points. After all, missing data are common in biological
measurements, and any practical algorithm should tolerate it. In our
case, missing data are treated in a natural manner: both methods
define a forward and a backward window, but do not restrict
them to be of equal size. Thus, their use with missing data are
straightforward, and it is interesting to their response to missing data.

Figure 4b and c show the results of the detection. From Figure 4a,
it is visible that the fluorescence intensity of RNA-MS2d-GFP spots
over time is a very noisy signal, although once the target RNA is
tagged by MS2d-GFP it does not degrade (Golding et al., 2005).
This implies that decreases in fluorescence are not due to RNA
degradation. One cause is the movements in and out of focus
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Fig. 4. (a) Time series of fluorescence intensity of RNAspots from images of
an E.coli cell. Images taken for 2 h, one per minute (vertical axis is total spot
intensity in arbitrary units). (b) Result of KCpA (vertical axis is the KCpA
indicator output). (c) Result of uLSIF (vertical axis is the uLSIF indicator
output). In both cases, window size is 25 (1500 s).

of the RNA spots along the z-axis scanned. Another source is
endogenous to the tagging method, namely the number of MS2d-
GFP molecules bound to the target RNA varies from 40 to 120
over time. Nevertheless, the method was found reliable in detecting,
within ≤30 s, the appearance of new RNA molecules in the cell both
empirically as well as using semiautomated methods (Golding and
Cox, 2004; Golding et al., 2005). From the images (Supplementary
Material), a new RNA spot is detected to appear at 4100 s both
empirically and by semiautomated methods. This moment should
be identified by the point detection method as the one when the
most significant change takes place.

The result of KPcA is shown in Figure 4b and of uLSIF in
Figure 4c. For the 1D case, all kernels for KCpA are equivalent,
giving the same result. In both cases, the window length was selected
arbitrarily to 50 frames (i.e. 25 frames in both the backward and
forward windows). Again, KPcA performed better, although both
methods detect the change in the same location (at ∼4000 s). Note
that the window size is much smaller than the size used for the
models. From the experimental data, we aim to detect the appearance
of individual RNA molecules, whose effect on the number of RNAs
in the cell is readily observable (given the small number produced
by a cell). On the other hand, in the models we detected changes in
mean levels of the order of tenths of new proteins, which is a change
that requires much longer time to be completed once initiated, and
thus wider windows to be detected.

The accuracy of the detection in this case is of relevance for
studies of gene expression dynamics from measurements. So far, the
MS2d-GFP tagging system is the only method available to detect
the appearance of individual RNAs in vivo. The analysis of the
images is, unfortunately, cumbersome (see movie in Supplementary
Material). Our results are promising as they show that these methods
can be used to detect in an automated fashion the moments when new
RNAs appear, which will provide greater confidence in the results
and allow the analysis of much larger samples of cells, making the
analysis of the dynamics of gene expression, one molecule at a time,
more robust. An automated unbiased analysis will also facilitate
comparative studies of transcription activity of different promoters.

4 CONCLUSION
Genetic networks are subject to various structural changes and
external signals, which alter their dynamics in various degrees.
The detection of changes requires observing the dynamics of gene
expression at the single cell, single molecule level. So far, very few
direct or indirect methods allow this observation (Fusco et al., 2003;
Golding et al., 2005; Yu et al., 2006), and usually the extraction of
the data from the measurements is cumbersome. Further, the ground
truth signal is commonly unknown, further enhancing the need of
using models to develop new methods for detecting changes in the
dynamics of genetic circuits.

Changes in gene expression can be complex and diverse, e.g. in
time scale. To detect them it is necessary to combine the use of
adequate algorithms to particular changes, and provide information
of the nature of the change one wishes to detect, which requires
prior knowledge of the dynamics of gene expression at the molecular
level combined with the development of new data analysis methods
to distinguish real changes in signals from spurious fluctuations.

We applied recently developed point change detection methods
to this problem. We tested their ability in detecting changes at run
time in the dynamics of stochastic models of GRNs. The changes
implemented mimic naturally occurring ones. A change in the mean
expression level of a gene can occur, e.g. due to gene duplication
or to silencing of a gene expressing a repressor. A change in noise
in protein levels can occur, e.g. due to changes in the rate of RNA
degradation. A change in the switching frequency of a two-gene
switch can occur, e.g. due to a change in the number or binding
affinity of the repressor proteins. Finally, the silencing of a gene that
is part a large gene network can occur as a response to an external
signal, and will affect the expression levels of multiple genes in the
network.

In most of our test cases, KCpA outperforms uLSIF. This is likely
a result of the nature of the changes that we aimed to detect and
of the dynamics of protein and RNA levels. uLSIF has problems
with cross-validated parameter selection and its results suffer from
the sensitivity to the choice of parameter. The best kernel for
detection is the linear kernel. This is probably because the changes
in our examples are simple changes in mean levels or, for the more
complicated cases (Models 2 and 3), the data can be cast to a change
in mean level. In theory, the other kernels may detect more complex
changes, which is probably the cause for multiple false matches in
our case. Future studies may determine which algorithms are more
appropriate to which type of change.

When applying KCpA to a model of an inferred core network
of 328 genes of S.cerevisiae (Chowdhury et al., 2010), we found
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it to be very accurate in detecting changes in the overall gene
expression dynamics of the network, following the silencing of
randomly selected genes. The size of the network did not seem to
be problematic. This example is of relevance in that it shows that
the method can be applied to the analysis of time series of complex
gene networks, when affected by a change in either the network’s
structure or by an external signal or perturbation.

Finally, we applied the methods to detect, from time series
of fluorescence intensity of RNA tagged with MS2d-GFP, single
transcription events in live cells. Tagging RNA with MS2d-GFP
proteins is, so far, the only method for detecting in vivo individual
RNA molecules, thus, the correct extraction of information from
the measurements, such as when new RNA molecules appear, is of
relevance. Also in this case, the best detector appears to be KCpA,
which produces a distinctive peak at the true change point.

We note that, to detect changes in the expression level of strongly
expressing genes, it may be possible to assume ergodicity of the
expression dynamics (similar temporal and ensemble averages),
as several strongly expressing genes in, e.g. bacteria and yeast,
usually exhibit fast temporal fluctuations. Provided this assumption,
the changes can be detected from measurements at several time
moments of expression levels across an isogenic cell population,
rather than using our method since, while it is also valid, it would
be more fastidious. However, generally, this assumption may not be
valid. For example, studies in vivo and in vitro in E.coli show that
most genes are rarely expressed (Bernstein et al., 2002; Taniguchi
et al., 2010). Our measurements in Figure 4a are in agreement, since
the promoter has a very slow dynamics, expressing on average only
once every 700 s.

We believe that the results are promising. While the signals
analyzed were poised with noise from multiple sources, the
information of dynamical changes was, to a great extent,
successfully extracted, both when detecting changes in the dynamics
of model GRNs as well as when detecting when RNA molecules
were produced in E.coli. Information on the nature of the changes
that one wants to detect needs to be provided, to some extent.
Particularly, prior knowledge is needed on the expected time length
that a change takes to provoke a tangible change in the protein
numbers. This is likely to be necessary regardless of the method
used, as the dynamics of GRNs is extremely ‘rich’ in that a variety
of mechanisms can affect the system in different ways, and the
change may take different time lengths to be completed. In the
future, we aim to further develop these methods and use them to
analyze fluorescence measurements of expression of genes within
genetic circuits in live cells.
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1 Introduction
In this supplement we describe the method of induction of the expression of the RNA targets for MS2d-
GFP as well as the details regarding microscopy and cell segmentation (Section 2). The details of the
image analysis for in vivo detection of RNA molecules are described in Section 3. After that, the delayed
stochastic simulation algorithm used to simulate models of gene expression is described (Section 4).
Also, the parameters for small (Section 5) and large (Section 6) genetic circuits are described. Finally, we
review the two change point detection methods used, namely the Direct Density Ratio Estimation (Section
7) and the Kernel Change Point Analysis (Section 8).

2 Inducing expression of the RNA target for MS2d-GFP, microscopy
and cells segmentation

Cells with both MS2d-GFP and transcript target plasmids were grown overnight at 37oC in LB sup-
plemented by the appropriate antibiotics. The following day, cells were diluted in fresh medium plus
antibiotics. To induce production of MS2d-GFP, 100 ng/mL of anhydrotetracycline (IBA GmbH, Göttin-
gen, Germany) was added to the diluted bacterial culture. Expression of the RNA target is induced by
adding IPTG (1 mM, Fermentas, Finland) and L-arabinose (6.7 mM, Sigma-Aldrich, Schnelldorf, Ger-
many). Cells are subsequently incubated with the inducers at 37oC for 1 hour with shaking to a final
optical density (600 nm) of 0.4.

Following induction, cells are placed on a microscopic slide between a cover slip and 0.8% LB-
agarose gel pad set. Cells are visualized by fluorescence microscopy, using a Nikon Eclipse (TE2000-U,
Nikon, Tokyo, Japan) inverted C1 confocal laser-scanning system with a 100x Apo TIRF (1.49 NA, oil)
objective. GFP fluorescence is measured using a 488 nm laser (Melles-Griot) and a 515/30 nm detection
filter. Images of cells are taken from each slide using C1 with Nikon software EZ-C1, approximately
7 min after induction, one per minute, for approximately 2 hours. Measurements under the microscope
were made in room temperature (∼ 24oC).

We detect cells from raw images according to the method in [Wang et al., 2010], that divides a gray-
scale image in three classes: background, cell border and cell region (Fig. S1). An iterative cell segmenta-
tion process identifies and segments clumped cells based on size and edge information. The performance
of detection of cells degrades in regions where several cells are clumped together. This can be avoided by
applying a threshold based on cell size and discarding the cells whose size goes beyond the threshold.
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3 Detection in vivo of individual RNA molecules in E. coli
The automatic spot detection method segments the MS2d-GFP-RNA spots with the kernel density esti-
mation method for spot detection proposed in [Chen et al., 2008]. This method estimates the probability
density function over the image from local information, and processes an image f by filtering it with a
kernel:

f̂(i, j) =
1

card(C(i, j))h

∑

(k,l)∈C(i,j)

K

(
f(i, j) − f(k, l)

h

)
(1)

where h is the smoothing parameter or bandwidth, (k, l) represents pixel location in the kernel, card is the
cardinality of the set, and K(u) is the kernel. We used a Gaussian kernel [Devroye et al., 1996], and then
applied Otsu’s threshold [Otsu et al., 1979] to segment spots from the kernel density estimated image,
highlighting the spots.

To obtain the total fluorescence of tagged RNA spots, one needs to discount the cellular background.
Let FGI be the total (sum) foreground (spots) intensity, FGA the total foreground area, BGI the total
background (cell) intensity, and BGA the cell area. The total intensity I of a spot is given by:

I = FGI − FGA
BGI − FGI

BGA − FGA
(2)

Finally, the number of RNA molecules in each spot is quantified using the spot intensity distribution
slicing approach [Golding et al., 2005], that assumes that the first peak of the distribution of intensities
of many RNA spots from cells on the same slide correspond to individual RNA molecules. Subsequent
peaks in the distribution of intensities correspond to spots of multiple RNA molecules.

We observed that in liquid culture each cell transcribes, on average, 3-4 RNA molecules per hour
[Golding et al., 2005] (confirmed by qPCR). In the measurements under the microscope, the average time
between the productions of consecutive RNA molecules was 700 s.

4 Delayed stochastic simulation algorithm
The delayed stochastic simulation algorithm [Roussel et al., 2006] (delayed SSA) differs from the orig-
inal SSA [Gillespie et al.,1977] in that it allows the release of products of a reaction to be delayed by a
specified time interval, which can be constant or a random variable. For this, a wait list of delayed events
is necessary, that stores delayed products and the time when they should be released into the vessel of
reactions [Roussel et al., 2006]. The delayed SSA proceeds as follows (t denotes time):

1. Set t = 0, tstop = stop time, set initial number of molecules and reactions, and create empty waitlist
L.

2. Generate an SSA step for reacting events to get the next reacting event R1 and its time of occurrence,
t1.

3. Compare t1 with the least time in L, tmin. If t1 < tmin or L is empty, set: t = t1. Update the number
of molecules by performing R1, adding delayed products (if existing) and the time delay that they
have to stay in L from the appropriate distribution.

4. If L is not empty and if t1 ≥ tmin, set t = tmin. Update the number of molecules and L, by releasing
the first element in L.

5. If t < tstop, go to step 2; otherwise stop.

5 Models of small genetic circuits
We implement three model GRNs, named 1, 2, and 3. In all, parameter values are within realistic intervals
for E. coli [Ribeiro et al., 2010]. Each model is used to test the ability of the algorithms in detecting a
different type of change in the dynamics of the GRN at runtime. All models are built from the set of
reactions (3) to (8) [Ribeiro et al., 2008], where i = 1, 2 (when only the index i is present), and i, j = 1, 2
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Supplementary Figure S1: Unprocessed image of MS2d-GFP-tagged RNA molecules in E. coli cells (left)
and the corresponding segmented image showing the detected cells (grey) and the spots (white) within
(right).

Supplementary Figure S2: The small genetic network used in models 1 and 2 (Left). The small genetic
network used in model 3 (Right). The line ending with a dot represents repression of a gene by the other
gene.

with i ̸= j (when both indices are present):

Proi + Rp
kt−→ Proi(τ1) + Rp(τ2) + Ri(τ1) (3)

Ri + Rib
ktr−→ Ri(τ3) + Rib(τ4) + Pi(τ5, τ5std) (4)

Ri

rbsd−→ ∅ (5)

Pi

kd−→ ∅ (6)

Proi + Pj

krep−⇀↽−
kunrep

ProiPj (7)

ProiPj

kd−→ Proi (8)

Gene expression is modeled by the multiple time-delayed reactions for transcription (3) and translation
(4), where Proi is the promoter of gene i, Rp is an RNA polymerase, Rib is a ribosome, and Ri is the
ribosome binding site of each RNA. The delays (τ1 to τ5) account for the duration of the processes in
transcription and translation. When a product X has a delay τ , represented by X(τ ), it implies that when
the reaction occurs, it takes τ seconds after that for X to appear in the system.

Reaction (4) for translation accounts for the variability of the time to complete a functional protein
(translation, folding, activation, etc.), given that the delay of Pi follows a normal distribution, with a mean
of τ5 and a standard deviation of τ5,std [Zhu et al., 2007]. Reactions (8) model the binding and unbinding
of a repressor protein to a gene’s transcription factor binding site. Reaction (5) models the degradation
of RNAs, while reactions (6) and (8) model the degradation of proteins, when free and when bound to a
promoter region, respectively.

Unless stated otherwise, the rates (in s−1) of these reactions are kt = 0.01, ktr = 0.00042, drbs = 0.01,
krep = 0.1, kunrep = 0.1, and kd = 0.0012. Time delays (in seconds) are τ1 = 40, τ2 = 90, τ3 = 2, τ4 =
58, τ5 = 420, and τ5std = 140. Each ‘cell’ is initialized with Pi = 0 and Ri = 0, for all i, and with one
promoter of each gene (Pro1 = 1, Pro2 = 1), 40 RNA polymerases (Rp = 40), and 100 ribosomes (Rib
= 100).

Model 1 is a 2-gene network, where the protein expressed by gene 1 represses the expression of gene
2. It is used to model a change in the mean level of proteins at runtime. For that, at moment t = 5x105 s
of a simulation, the repression on gene 2 is increased by increasing the expression of P1. This decreases
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Supplementary Figure S3: (a) Time series of proteins P1 (grey) and P2 (black) of model 1, prior and
after the change of mean levels at runtime (t = 5x105 s). (b) Time series of proteins P1 (grey) and P2

(black) of model 2, prior and after increasing the amplitude of fluctuations (t = 5x105 s). (c) Time series
of proteins P1 (grey) and P2 (black) of model 3, prior and after increasing the toggling frequency of the
genetic switch (at t = 5x106 s).

the mean rate of production of P2. An example of a time series of the number of proteins of both genes,
prior and after the change point, is shown in Fig. 1(a). The schematic illustration of network is shown in
Figure S2 (left).

Model 2 is identical to model 1. Also, initially, all parameter values are identical to those of model
1. In Model 2 occurs a different change at run time, which allows changing the noise strength of the time
series of the proteins. For this, at t = 5x105 s, both the transcription initiation rate of gene 1, as well as
the degradation rate of P1, are set to 10 times less their initial value (Fig. 1 (b)). Since the release of
the promoter for new transcription events is delayed, this causes the noise strength of the time series of
RNA and, thus, protein numbers to increase [Ribeiro et al., 2010]. The schematic illustration of network
is shown in Figure S2 (left).

Model 3 consists of a genetic toggle switch (the protein expressed by each gene represses the expres-
sion of the other). The change at runtime time is a change in the noise strength of the protein levels of
both genes (Fig. 12 (c)). Due to this, the switching frequency changes at runtime. To do this, at t = 5x106

s, we decrease in the two genes, both the rate of transcription initiation (kt) as well as the degradation
rate of the proteins to a fraction of their initial values [Ribeiro et al., 2009]. The schematic illustration of
network is shown in Figure S2 (right).

Examples of the time series of proteins numbers in these models, prior and after a change are shown
in Figure S3.

6 Model of a large scale genetic circuit
We also apply the methods to detect change points in a large scale genetic network. We model the
inferred core gene regulatory of Yeast [Chowdhury et al., 2010]. This network consists of 328 genes,
each of which expressing a protein and connected by repressive and activating interactions. At a given
moment in time we delete a random gene, and then detect when this occurs, from the time series of a
subset of the 328 genes. In general, the subset was defined to be the closer neighbors and of size of 20
to 30 genes. We do not inform the algorithms of when the deletion takes place, neither of what gene was
randomly selected for deletion.

7 Direct density ratio estimation for change point detection
Formally, the problem of change point detection can be stated as follows. Given a multidimensional
time series x0, x1, . . . , xN ∈ Rn, which time points K represent change in some sense, given the data
samples in the M -point backward window XB = (xK−M , . . . ,xK−1) and the M -point forward window
XF = (xK+1, . . . ,xK+M ).

The first detection method used is based on kernel density estimation [Kawahara et al., 2009] and
attempts to model the densities based on the data. In the case of change point detection, one could
find the kernel density estimates of both the backward and forward window directly, and judge their
similarity using, for example, the Kolmogorov-Smirnov test. Instead, this method considers the likelihood
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of change using density ratios directly, thus requiring the inference of only one function (the density ratio)
instead of two (the densities of the forward and backward windows), which aids in avoiding the curse of
dimensionality as the required data does not increase as rapidly with the dimension.

There are two direct density ratio estimation methods: Kullback-Leibler importance estimation pro-
cedure (KLIEP) [Sugiyama et al., 2008] and Unconstrained least-squares importance fitting (uLSIF)
[Kanamori et al., 2009]. We use the latter due to the lower computational cost of the least squares ap-
proach, since the two methods are similar in accuracy [Kanamori et al., 2009]. The goal of the uLSIF
estimation is to estimate the density ratio (called the importance function) w(x) : Rn → R:

w(x) =
pXF (x)

pXB
(x)

, (9)

where pXF and pXB are the probability densities of the forward and backward windows, respectively.
The least squares approach to estimate w(x) uses the following linear model:

ŵ(x) =

M∑

k=1

αkφk(x), (10)

where the weights αk ∈ R are learned from the data, and serve as coefficients for the basis functions
φk(x) ≥ 0 for all x ∈ Rn. A common choice for the basis function is the Gaussian kernel of width σ
centered at the forward window points XF = (xK+1, . . . ,xK+M ):

φk(x) = exp

(
−∥x − xK+k∥2

2σ2

)
. (11)

The centers are chosen as the forward window points, because the forward window density pXF (x) is
the numerator of (9), and in this way the centers are at points where w(x) is likely to have large values.
With these definitions, the direct density ratio estimation problem can be formulated as a minimization
problem “Least Squares Importance Fitting (LSIF)”:

min
α∈Rb

(
1

2
αT Ĥα − ĥT α + λ1T α

)
(12)

subject to α ≥ 0, (13)

where α = (α1, α2, . . . , αm)T and 1 = (1, 1, . . . , 1)T ∈ RM . Moreover, the matrices Ĥ and ĥ are
defined through their (i, j)-th and i-th elements as

[
Ĥ
]

i,j
=

1

M

M∑

k=1

φi (xK−k) φj (xK−k) (14)

and

[ĥ]i =
1

M

M∑

k=1

φi (xK+k) (15)

Finally, the LS procedure is regularized using the regularization parameter λ > 0. Equations (12) and
(13) represent a convex quadratic programming problem, which can be solved [Kanamori et al., 2009]. It
turns out, that the nonnegativity constraint (13) can be discarded without a significant loss in accuracy.
However, this makes the problem ill-posed, and the linear penalty of Equation (12) has to be replaced
by a quadratic one [Kanamori et al., 2009]. This results in the Unconstrained LSIF (uLSIF) optimization
problem:

min
α∈Rb

(
1

2
αT Ĥα − ĥT α +

λ

2
αT α

)
. (16)

The (regularized) solution for such a quadratic minimization problem is given by:

α̂ =
(
Ĥ + λI

)−1

ĥ. (17)

Having estimated the density ratio, we only need to evaluate it at the forward window points. The esti-
mated likelihood ratio for the existence of the change-point can be shown to be [Kawahara et al., 2009]:

LR =

M∑

k=1

log(ŵ(xK+k)) =

M∑

k=1

log




M∑

j=1

αjφj(xK+k)


. (18)
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There remains two open parameters, the kernel width σ and the regularization parameter λ. Their values
can be estimated using cross-validation (CV), carried out at 100 randomly selected time points of the
entire time series. The final value for the actual change point detection is the mean of these 100 CV tests.
Note, that the selection of exactly 100 CV tests is arbitrary, which was selected based on experimentation
with our data.

8 Kernel change point analysis for change detection
Kernel methods are a class of algorithms originally developed for pattern recognition, but their use has
spread to other areas [Scholkopf et al., 2002]. Among the kernel methods, support vector machines
(SVM) have gained the widest popularity. All kernel methods are based on mapping the input data into a
higher dimensional feature space, and the calculations can be done effectively even in infinite dimensional
spaces using the kernel trick. The kernel trick replaces all dot products between vectors x and y in the
algorithm by a Mercer kernel, such as the Gaussian RBF kernel,

κ(x,y) = exp

(
−∥x − y∥2

2σ2

)
. (19)

Kernel methods have been applied to the problem of change point detection in [Harchaoui et al., 2009,
Desobry et al., 2005]. The Kernel Change Detection (KCD) [Desobry et al., 2005] uses a single class
SVM, where the data in the backward and forward windows are clustered using the SVM and the similar-
ity metric is calculated from the common area of the two clusters. Harchaoui et al. [Harchaoui et al., 2009]
used a kernel-based binary classifier to separate the forward and backward windows from each other. The
success of the classification is the dissimilarity of the two sets. Their separability can be directly measured
when using the Kernel Fisher Discriminant, which is the basis of this method, named Kernel Change-point
Analysis (KCpA). Since KCpA outperforms KCD [Desobry et al., 2005] and is conceptually simpler, we
use it as a representative of kernel methods for our change-point detection problem.

The Kernel Fisher Discriminant Ratio (KFDR) is the ratio of the between-class-variance and the
within-class-variance. The optimal classifier is the one that maximizes this ratio, but here we are more
interested on using the KFDR itself as a measure of dissimilarity of the two sets (classes). It can be shown
that the (maximum) KFDR is proportional to

KFDR =

∥∥∥∥
(
Σ̂XF + Σ̂XB + λI

)−1/2 (
µ̂XF

− µ̂XB

)∥∥∥∥
2

, (20)

where Σ̂XF and Σ̂XB denote the sample covariance matrices and µ̂XF
and µ̂XB

denote the sample
means of the forward and backward windows calculated in the feature space, respectively. Moreover, the
term λI is a diagonal matrix with λ > 0, and the purpose is to regularize the solution. More specifically,

µ̂XF
=

1

M

M∑

k=1

κ (xK+k, ·), (21)

and

Σ̂XF
=

1

M − 1

M∑

k=1

(
κ (xK+k, ·) − µ̂XF

)
⊗
(
κ (xK+k, ·) − µ̂XF

)
, (22)

where symbol ⊗ denotes outer product in the kernel space. The backward mean and covariance are
defined in a similar manner. Note that, although the explicit calculation of the above quantities may be
impossible due to the structure of the kernel space, the evaluation of the KFDR can be made in the feature
space [Mika et al., 1999].

The KFDA based point of change indicator is obtained after a normalization procedure known as
studentization [Harchaoui et al., 2009]. However, the studentization does not improve the detection’s
accuracy, as it is only used to normalize the expected mean and variance of the indicator.

In [Harchaoui et al., 2009], a running maximum partition strategy is used, meaning that the entire
sequence x0, x1, . . . , xN is partitioned into two sets at all time points K = 1, . . . , N − 1. Our implemen-
tation uses the same online sliding window method as the direct density ratio approach. Although this
choice prohibits the use of the quick computational strategy of [Harchaoui et al., 2009], it is essential for
comparison of the two methods.

The KFDA detector has a few parameters, which affect the performance of detection. However, there
are guidelines for inferring suitable values [Harchaoui et al., 2009]. The regularization term is proposed
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to have a fixed value of λ = 10−5, which we use. Another significant parameter when using the RBF
kernel of Equation (19) is the kernel bandwidth σ. Harchaoui et al. propose using the Silverman’s Rule of
Thumb (ROT) for inferring a suitable bandwidth from the data, which we follow. The Silverman’s ROT
is used in kernel density estimation and is defined by σ̂ROT = 1.06σ̂xN−1/5, where σ̂x is the variance of
the data and N is the number of samples [Silverman et al., 1986].
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ABSTRACT

Using a single-RNA detection technique in live
Escherichia coli cells, we measure, for each cell,
the waiting time for the production of the first RNA
under the control of PBAD promoter after induction by
arabinose, and subsequent intervals between tran-
scription events. We find that the kinetics of the ara-
binose intake system affect mean and diversity in
RNA numbers, long after induction. We observed
the same effect on Plac/ara-1 promoter, which is
inducible by arabinose or by IPTG. Importantly, the
distribution of waiting times of Plac/ara-1 is indistin-
guishable from that of PBAD, if and only if induced
by arabinose alone. Finally, RNA production under
the control of PBAD is found to be a sub-Poissonian
process. We conclude that inducer-dependent
waiting times affect mean and cell-to-cell diversity
in RNA numbers long after induction, suggesting
that intake mechanisms have non-negligible effects
on the phenotypic diversity of cell populations in
natural, fluctuating environments.

INTRODUCTION

Transcription in E. coli is, at a genome-wide scale, a rela-
tively rare stochastic event (1–3). Further, many genes
only become active in response to external stimuli (4–7),
via processes that are also stochastic (7). Although much
is known on the noise in gene expression at the single-cell
level (1–3,7–10), most of our present knowledge concern-
ing the kinetics of response, in terms of gene activity, to
external signals concerns the average behaviour of cell
populations alone (11). However, to characterize the
dynamics and the underlying steps of intake processes, it
is necessary to observe their effects in individual live cells
(12). This observation should inform also on the

robustness of cellular response mechanisms by informing
on the degree of change in the responses of a single cell to
multiple occurrences of the same stimulus, as well as the
difference in responses to different stimuli.

One of the most well-known gene activation mechan-
isms is the arabinose utilization system of E. coli.
This system imports arabinose into the cell by AraFGH,
an arabinose-specific high-affinity ABC transporter
(11,13–15), and by a low-affinity transporter, AraE,
which binds to the inner membrane and makes use of
electrochemical potential to intake the arabinose
(11,16,17). This system exhibits wide variability in the
timing of activation and in the rates of accumulation of
inducer molecules (18). It has been hypothesized that this
is due to the cell-to-cell variability in the numbers of
proteins responsible for the intake of arabinose (18).
Interestingly, if the intake gene araE is placed under the
control of a constitutive promoter the intake rates become
more homogenous (19–21), suggesting that the diversity in
the number of intake proteins is a non-negligible source of
cell-to-cell variability in the kinetics of the arabinose util-
ization system (12).

Evidence suggests that when the intracellular concentra-
tion of arabinose exceeds a threshold, the dimeric AraC
protein activates the genes that code for the proteins re-
sponsible for the intake (AraE and AraFGH) and for the
catabolism of arabinose (araBAD) (11,22). In the absence
of arabinose, AraC binds two half-sites on the DNA
(I1 and O2) and promotes the formation of a DNA loop
that prevents access of RNA polymerases to the pro-
moters in that region (PC and PBAD). When bound by
arabinose, AraC binds instead to the adjacent I1 and I2
half-sites. The resulting configuration promotes transcrip-
tion initiation at PBAD (11).

Transcription initiation is a complex, multi-stepped
process (23,24). In vitro measurements suggest that this
process has at least two to three rate limiting steps
(25,26). It starts when the RNA polymerase binds to the
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promoter region of the DNA molecule, forming the closed
complex, which is followed by the open complex forma-
tion and promoter escape (27,28). The RNA polymerase
then elongates the nascent RNA (28). Evidence suggests
that, in general, initiation is much longer in duration than
elongation (26,29). Recent in vivo measurements of the
kinetics of initiation of Plac/ara-1 and PtetA promoters
have shown that RNA production under the control of
these promoters is a sub-Poissonian process (8–10). These
studies also support the existence of multiple steps at the
stage of initiation, significantly limiting the rate of RNA
production, as suggested by in vitro measurements (30).

Here, we investigate the degree of contribution of the
process of intake of arabinose and of the process of tran-
scription under the control of PBAD to the cell-to-cell
diversity in RNA production. Namely, we report measure-
ments of the in vivo kinetics of induction and transcript
production of PBAD with single-molecule sensitivity,
making use of the MS2d-GFP tagging of RNA in E. coli
(31). For that, in each cell, we measure the waiting time
until the first RNA is produced after induction and the
subsequent intervals between consecutive transcript pro-
ductions. For comparison, we conduct the same measure-
ments for Plac/ara-1 when induced by either of its two
inducers, arabinose and IPTG.

MATERIALS AND METHODS

Strains and plasmids

Escherichia coli strain DH5a-PRO was generously
provided by I. Golding, University of Illinois and
contains the construct PROTET-K133, carrying PLtetO-1-
MS2d-GFP (31), along with a new construct, pMK-BAC
(PBAD-mRFP1-MS2-96bs), which is a single-copy F-based
vector carrying a sequence coding for a monomeric red
fluorescent protein (mRFP1) followed by a 96 binding
site array under the control of PBAD (cloning information
provided in Supplementary Methods) (see also
Supplementary Figures S1 and S2). The strain with
plasmids PLtetO-1-MS2d-GFP and pIG-BAC (Plac/ara-1-
mRFP1-MS2-96bs) (32) was used as well. The DH5a-
PRO strain [identical to Z1 (31)] is a genuine producer
of AraC (33). No modifications were made to the chromo-
some of this strain in our experiments.

Media and growth conditions

Cells were grown overnight at 30�C with aeration and
shaking in Luria-Bertani (LB) medium, supplemented
with antibiotics according to the plasmids. The cells
were diluted in fresh M63 medium and allowed to grow
until an optical density of OD600 &0.3–0.5. To attain full
induction of the MS2d-GFP reporter, cells were pre-
incubated for 40 min with 100 ng/ml anhydrotetracycline
(aTc, IBA GmbH). The same protocol was used for each
strain.

Microscopy

For microscopy measurements, cells were pelleted and re-
suspended in �50 ml of fresh M63 medium. Afterwards,

few microlitres of cells were placed between a 3%
agarose gel pad made with medium and a glass coverslip
before assembling the imaging chamber (FCS2,
Bioptechs). Before the starting of the experiment, the
chamber was heated to 37�C.
Cells were visualized in a Nikon Eclipse (TE2000-U,

Nikon, Japan) inverted microscope with C1 confocal
laser-scanning system using a �100 Apo TIRF objective.
A flow of fresh, pre-warmed M63 medium containing the
inducer was provided with a peristaltic pump at a rate of 1
ml/min. Images were taken once per minute for 2 h, and
the laser shutter was open only during the exposure time
to minimize photobleaching. The peristaltic pump was
initialized at the same time as the collection of the time
series. For image acquisition, we used Nikon EZ-C1
software. GFP fluorescence was measured using a
488 nm argon ion laser (Melles-Griot), 515/30 nm
emission filter and a pixel dwell time of 3.36 ms (total
image acquisition time of 3.5 s).
An interacting multiple model filter-based autofocus

strategy (34) was used to correct focus drift in time
series acquisitions. The method estimates the focal drift
using an interacting multiple model filter algorithm to
predict the focal drift at time t based on the measurement
at t-1. It allows reducing the number of required images at
different z-planes for drift correction, thus minimizing
photobleaching.

Data and image analysis

Data and images were analysed using custom software
written in MATLAB 2011b (MathWorks). Cells were
detected from fluorescence images by a semi-automatic
method described previously (8). In time series, the area
occupied by each cell was manually masked. Principal
component analysis was used to obtain the dimensions
and orientation of the cells within each mask.
Fluorescent spots in the cells were automatically seg-
mented using density estimation with a Gaussian kernel
(35) and Otsu’s thresholding (36). Finally, background-
corrected spot intensities were calculated and summed to
produce the total spot intensity in each cell.
Moments of appearance of novel target RNA mol-

ecules in each cell were obtained from time-lapse
fluorescence images by fitting the corrected total spots
intensity over time in each cell to a monotone
piecewise-constant function by least squares (37). The
number of terms was selected using the F-test with a
P-value of 0.01. Each jump corresponds to the produc-
tion of a single RNA molecule (37). An example of this
procedure is shown in Figure 1D. For more details on
the image analysis see (8). Note that, in cells that do not
contain target RNA molecules at the start of the meas-
urements, the number of novel RNA molecules detected
since the start of the measurements until a given moment
equals the total number of RNA molecules in the cell at
that moment.
Because some cells already contained target RNA mol-

ecules at the start of the measurement, the total RNA
numbers within cells at a given moment in time is
obtained using a different method. Specifically, when
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comparing measurements using MS2d-GFP tagging and
using plate reader (Supplementary Figure S4), the total
number of MS2d-GFP–tagged RNA molecules was ex-
tracted from the total spot intensity distribution,
obtained from all cells in an image obtained at a given
moment after induction. For this, the first peak of the
obtained distribution is set to correspond to the intensity
of a single-RNA molecule. The number of tagged RNAs
in each spot can be estimated by dividing its intensity by
that of the first peak (32).

RESULTS

Experimental design

To study the kinetics of expression of PBAD, we detect
individual RNA molecules, as these are produced in live
cells and register when these events occur. For this, we
placed the PBAD promoter on a single-copy F-plasmid,
followed by a coding region for mRFP1 and an array of
96 binding sites for MS2d-GFP–tagging proteins (32)
(Figure 1A). The expression of MS2d-GFP is controlled
by PTetO, which is activated before the gene of interest
so that sufficient MS2d-GFP proteins are present
when target RNA molecules appear. Induction of PBAD

and image acquisitions is initialized simultaneously
(Figure 1B). For this, we use a temperature-controlled
imaging chamber and a peristaltic pump for introducing

inducers and fresh media. From the fluorescence images,
using semi-automated cell segmentation and tracking
(Figure 1C) (8), we measure in each cell the time for the
first RNA to appear (named ‘waiting time’, t0), as well as
the subsequent intervals between consecutive RNA pro-
ductions, �t, until cell division occurs or until the end of
the measurement period (Figure 1D).

Given that values of t0 can only be obtained from cells
of the first generation (i.e. cells already on the slide when
the measurement begins), and as cells that do not divide in
the first 2 h will not, in general, divide afterwards, we
limited the measurement period to 2 h for simplicity.
This was possible, as this period also proved to be suffi-
cient to acquire enough samples of �t.

From cells born during the measurement period, we
only extract intervals between consecutive RNA produc-
tions, not waiting times, as these contain inducers by
inheritance. We detected no difference in the distributions
of intervals obtained from such cells and cells already
present when induction is initiated. Finally, we observed
�0.2 RNA molecules per cell, at the moment preceding
induction, because of spurious transcription events. Cells
where a target RNA was already present at the start of the
measurement were also not used to obtain values of t0.

First, we compared by quantitative polymerase chain
reaction the RNA production from the F-plasmid and
from the native gene under the control of PBAD

(Supplementary Methods). Using 16S rRNA as reference

Figure 1. Measurement system. (A) Components of the detection system. The expression of the tagging protein, MS2d-GFP, is controlled by PLtetO

(33) and is inducible by anhydrotetracycline (aTc). The target RNA contains an mRFP1 coding region, followed by an array of 96 MS2d-binding
sites. Expression of the target RNA is controlled by PBAD whose activity is regulated by AraC and the inducer L-arabinose. The target construct is on
a single-copy F-plasmid. The tagging construct is on a medium-copy vector. (B) Figurative description of the waiting time for the first RNA
production (t0) and intervals between subsequent productions (�t). Images are taken once per minute for 2 h. (C) Example of E. coli cells expressing
MS2d-GFP and target RNA. GFP-tagged RNA molecules are marked by circles. (D) Time course of total intensity of spots in a cell (circles) and
monotone piecewise-constant fit (line).

6546 Nucleic Acids Research, 2013, Vol. 41, No. 13

 at T
am

pere U
niversity of T

echnology L
ibrary on July 28, 2016

http://nar.oxfordjournals.org/
D

ow
nloaded from

 



gene, we observe similar trend in activity over time in the
native promoter and in the one on the F-plasmid
(Supplementary Figure S3).

We next compare expression levels of the target gene,
when assessed by independent methods, for two induction
levels, namely, 0.1 and 1% L-arabinose (Supplementary
Methods). In Supplementary Figure S4A and B, we
show the temporal variation after induction in mean
numbers of MS2d-GFP–tagged RNA molecules in cell
populations and in the fluorescence intensity of RFP
measured by plate reader, respectively.

The plate reader measurements of mRFP1 levels, 2 h
after induction in liquid culture, show a fold change of
1.67 times when L-arabinose is increased from 0.1 to
1%. The MS2d-GFP in vivo detection method shows a
fold change of 1.74 between these same conditions,
showing that the results from the two methods are in ac-
cordance. From this and the previous experiment, we also
conclude that the MS2d-GFP tagging method accurately
detects RNA production of the target gene, and that the
target gene behaves similarly to the natural system.

We also assessed for what range of inducer concentra-
tions is the target gene under full induction. We measured
with the plate reader its expression for varying inducer
concentration, 2 h after induction. From Supplementary
Figure S5, maximum induction is achieved for 1% arabin-
ose. Here onwards, unless stated otherwise, we use this
concentration to assess the kinetics of RNA production
under the control of PBAD.

First RNA and intervals between consecutive RNA
molecules in individual cells

From the time-lapse images acquired with confocal mi-
croscopy, after induction, we measure in each cell both
t0 and subsequent values of �t. t0 is expected to include
the time for arabinose to enter the cell via the intake mech-
anism, the time to find the promoter and release the re-
pressor and also the time for the recruitment of the RNA
polymerase and subsequent production of the first target
RNA. The latter process includes events such as the closed
and the open complex formation at the promoter region,
as well as the elongation time. Both the elongation time
and the time for MS2d-GFP to bind to a target RNA are
expected to be negligible in comparison with the duration
of the intake and of transcription initiation (8,12,31).
Meanwhile, �t should depend only on the events in tran-
scription initiation (37).

The distribution of values of the waiting times, t0, is
shown in Figure 2A. Cells were induced in the gel with
fresh media and 1% arabinose. The distribution is broad,
as the waiting times spread through the measurement time
and has a mean of 3071 s.

The distribution of intervals between consecutive
productions of target RNA molecules (�t) is shown in
Figure 2B. This production is a sub-Poissonian process,
as the normalized variance (s2/m2) of the distribution is
0.37. Similar conclusions were obtained from measure-
ments of the in vivo kinetics of RNA production under
the control of Plac/ara-1 and PtetA (9,10).

The distributions in Figure 2A and B differ signifi-
cantly. We verified this with a statistical testing of
equality of two empirical distributions, the
Kolmogorov–Smirnov (K–S) test. We obtained a
P-value of 2.8� 10�18, much smaller than 0.05, which
allows rejecting the null hypothesis of similarity. We
conclude that in the case of PBAD and the arabinose
intake mechanism, the time of intake of inducers affects
significantly both mean and standard deviation of RNA
numbers in individual cells, long after induction. Finally,
note that the difference between the distributions of t0 and
�t provides evidence that the activity of PBAD changes
significantly with induction. Otherwise, these two distribu-
tions should not differ significantly, as they would both
result, e.g. from spurious transcription events alone.
One recent study (12) also focuses on the in vivo induc-

tion kinetics of PBAD. This study uses measurements of
GFP levels in cell populations, whose expression is
controlled by PBAD (inserted into a medium-copy vector)
and a model to extrapolate the mean activation time of the
promoter, after induction. Assuming a threshold for GFP
levels to consider the promoter as active, the mean appear-
ance time of GFP after induction was �960 s. By consider-
ing several features of the measurement system, including
the mean maturation time of GFP, a value was then
extrapolated for the expected activation time of the
promoter, namely, �250 s. This does not include the
time for transcription to be completed, once the closed
complex is formed. This study thus predicts a faster
mean initiation time than what our direct measurements
indicate (�3000 s). Two main reasons exist for this differ-
ence. First, in the mutant used previously (12), the
chromosomal araBAD operon is deleted, avoiding
the negative feedback mechanism, which likely fastens
the response time significantly. Additionally, gene expres-
sion was assessed from a medium-copy vector, which
should respond much faster than the single-copy vector
system used here, as its response time depends on the
fastest of the response times of several promoter copies.
Thus, we find that the results reported previously (12) and
ours are in agreement. For example, while observing mean
waiting times one order of magnitude longer, we do
observe RNA molecules appearing in some of the cells
within a time scale of 200–400 s after induction.
Therefore, provided the usage of a multi-copy vector
instead of the single-copy vector used here, we expect
mean waiting times one order of magnitude smaller
and thus in agreement with the measurements described
previously (12).

Correlations between consecutive processes

To study whether the durations of the processes of intake
and of transcription initiation are correlated, we first
assessed whether consecutive intervals of �t in individual
cells are correlated. We measured the Pearson correlation
from 101 pairs of consecutive intervals, and found it to be
0.16. We obtained a P-value of 0.11, assuming no correl-
ation as the null hypothesis, which implies that we cannot
prove that the correlation is significant. This is in agree-
ment with previous studies of Plac/ara-1 kinetics, which also
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indicate inexistence of correlation between durations of
consecutive intervals between RNA productions (8).
We next assessed whether the distributions of t0 and

values of �t (Figure 2A and B) are correlated. Note that
t0 and the �t are of similar order of magnitude as the
measurement period. This introduces artificial correlations
between t0 and �t of individual cells, as, e.g. a cell with a
large t0 is expected to exhibit smaller than average �t
values, as larger intervals would not be detected during
the measurement period as likely as in cells with smaller
values of t0. To remove these artificial correlations
between t0 and �t of individual cells, in this assessment,
we only considered RNA productions for a certain
window size (Supplementary Methods and Supplementary
Figure S6). This window is set so as to maximize the
number of data points that can be extracted from the
measurements.
From the windowed data, we calculated the Pearson

correlation between t0 and �t values in individual cells
to be �0.15. We calculated a P-value of 0.18 assuming
no correlation as the null hypothesis, which implies that
we cannot prove that the correlation is significant. This
result is in line with (12), which reports a lack of correl-
ation between initiation of protein expression and subse-
quent rate of protein synthesis in individual cells.

Dynamics of induction and of transcription initiation
under different induction schemes

The distinctiveness of the distributions of t0 and �t of
PBAD, as assessed by the K–S test, suggests that they
are, partially, the result of different processes. Although
t0 ought to depend on the kinetics of intake of arabinose
and on the first transcription initiation event, �t values
ought to depend mostly on the kinetics of transcription
initiation events alone.
These assumptions arise from the following. First,

in vitro and in vivomeasurements (26,38) suggest that tran-
scription initiation (including closed and open complex
formation) is a long-duration, multi-step process, usually
taking 102–103 s in bacterial promoters (10,25,26,37,38).
Other events that need to occur before the appearance

of a target RNA because of the tagging of the MS2d-
GFP are not expected to affect �t significantly. These
are transcription elongation and the tagging by multiple
MS2d-GFP. Elongation of the target RNA was measured
to take only tens of seconds (31). Also, the tagging occurs
at a rate that makes the RNA visible during elongation or
shortly after (31).

To test the two assumptions, we measured the distribu-
tions of t0 and �t for another promoter, Plac/ara-1, in two
conditions. Plac/ara-1 can be induced either by IPTG or by
arabinose (as PBAD), or by both inducers simultaneously
(9). According to our assumption, the distribution of t0 of
PBAD is expected to be similar to that of Plac/ara-1 when the
latter is induced by arabinose, because of depending on
the same intake mechanism, whereas it should differ sig-
nificantly when Plac/ara-1 is induced by IPTG, given the
different intake mechanisms of IPTG.

We measured the distributions of t0 and �t for Plac/ara-1

when induced by IPTG alone and when induced by
arabinose alone (Table 1). We used the same concentra-
tion of arabinose as when inducing PBAD. The IPTG con-
centration used is the one required for maximum
induction of Plac/ara-1 (33). Results in Table 1 follow the
windowing procedure described earlier in the text. The
table shows mean, standard deviation and square of the
coefficient of variation (m2/s2) of t0 and of �t for the two
promoters, each of which in two induction schemes.

We first assessed the distinctiveness of the distributions
of t0 and �t by the K–S test, for each promoter in each
condition (Table 2). In all cases, these two distributions
differ in a statistical sense. This is in agreement with the
assumption that although both �t and t0 depend on the
kinetics of initiation at the promoter, only t0 depends on
the kinetics of intake of inducers.

We next performed statistical tests to assess the distinct-
iveness between the induction kinetics (t0) of the two pro-
moters (Table 3), when subject to the same inducer and
when subject to different inducers. Also, we compared the
effects of a different inducer concentration in the case of
PBAD. From Table 3, when PBAD and Plac/ara-1 are induced
with 1% arabinose, they exhibit distributions of t0 that
cannot be distinguished. However, when Plac/ara-1 is
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Figure 2. Kinetics of the intake and production. (A) Probability density distribution of waiting times (m=3071 s, s=1711 s) for the first RNA to be
produced in cells induced by 1% L-arabinose (354 data points). (B) Probability density distribution of intervals between transcription events for PBAD

when induced by 1% L-arabinose (m=1672 s, s=1012 s) (347 data points).
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induced with IPTG, the resulting t0 distribution is statis-
tically distinguishable from that of PBAD, when induced by
either 0.1 or 1% arabinose. It is also distinct from its own
t0 distribution when induced by 1% arabinose. This stat-
istically significant difference supports the hypothesis that
the distributions of t0 are dependent on the kinetics of the
intake system of the inducers, and that these differ for
IPTG and arabinose.

Finally, we observed that the distributions of t0 of PBAD,
when induced by 0.1% and by 1% arabinose, are distinct.
This is expected as the time for inducers to ‘first reach the
promoter’ ought to depend on the inducer’s
concentration.

Kinetics of the intake process

The intake time of an inducer, here named ‘tdiff’, differs
from t0 in that it does not include the time for the first
transcription initiation event to occur. Because of this, tdiff
cannot be measured directly with the MS2-GFP–tagging
method. We thus estimate the mean and variance of the
distribution of values of tdiff by subtracting the means and
variances of the �t distribution from the t0 distribution.
This method is based on the fact that we were unable to

establish the existence of a correlation between the values
of t0 and �t. Given this, and as they are, at most, weakly
correlated (Pearson correlation of �0.15), we assume that
they are independent so as to be able to estimate the
standard deviation of the duration of the intake process
alone (note that the mean of this quantity can be estimated
as described later in the text, regardless of the existence of
dependence).
The estimated mean and a standard deviation of tdiff are

similar for PBAD and for Plac/ara-1, when induced with 1%
arabinose. Namely, in both cases, we obtained a mean of
�1400 s and a standard deviation of �1100 s. This is
expected, given the usage of the same intake mechanism
and inducer concentration. Importantly, when Plac/ara-1 is
induced by IPTG, the standard deviation of tdiff is much
smaller (�700 s), whereas the mean is similar to when
induced by arabinose (�1400 s). This suggests that the
intake of arabinose is a noisier process (concerning the
uncertainty of the intake time) than the intake of IPTG.
Finally, we find that in the case of PBAD, the concentration
of arabinose affects the mean of tdiff significantly, as it
equals �2000 s for 0.1% arabinose.

Effect of the intake process on the temporal cell-to-cell
diversity in RNA numbers

Because of being stochastic and thus variable in duration
from one event to the next (i.e. it differs from one cell to
the next), the intake process impacts on the diversity in
RNA numbers of a cell population. This impact should
decrease with time, after induction. We estimated the time
during which the effect is tangible for each measurement
condition. For this, we assume that values of t0 depend
mostly on the intake of arabinose and on the first tran-
scription initiation event at the start site of PBAD.
Meanwhile, the distribution of intervals between consecu-
tive RNAs is assumed to depend solely on the kinetics of
transcription initiation (8,10,37).
The events determining �t as well as t0 are modelled as

d-step processes, each step with an exponentially
distributed duration (Supplementary Methods) (37).
From this assumption, it is possible, for a given number
of steps, to find the duration of each step that best fits the
measurements. We assume transcription initiation to be a
three-step process, namely, the closed complex formation,
the open complex formation and promoter escape (27,38),
as evidence suggests that these are the most rate-limiting
steps in normal conditions, i.e. the ones most contributing
to the intervals between production of consecutive RNA
molecules (26). This assumption also relies on recent

Table 1. Measurements of t0 and �t

Promoter Inducer No. of samples (�t) m�t (s) s�t (s) s2/m2 No. samples (t0) mt0 (s) st0 (s) s2/m2

PBAD 1% arabinose 102 1440.6 532.8 0.14 84 2885.0 1159.8 0.16
PBAD 0.1% arabinose 78 1475.4 481.2 0.11 70 3519.4 1236.2 0.12
Plac/ara-1 1% arabinose 149 1516.5 516.0 0.12 125 2832.5 1184.6 0.17
Plac/ara-1 1mM IPTG 485 1314.4 576.0 0.19 286 2697.0 913.6 0.11

The table shows the mean (m), the standard deviation (s) and the normalized variance (s2/m2) of the measured distributions of t0 and �t.

Table 3. P-values of the Kolmogorov–Smirnov test between t0
distributions for each promoter and induction condition

PBAD

1% arab
PBAD

0.1% arab
Plac/ara-1

1% arab
Plac/ara-1

IPTG

PBAD 1% arab 1
PBAD 0.1% arab 5.93� 10�4 1
Plac/ara-1 1% arab 0.8533 1.10� 10�4 1
Plac/ara-1 IPTG 0.0126 4.49� 10–12 0.0049 1

For P< 0.05, it is generally accepted that the hypothesis that the two
distributions are the same should be rejected.

Table 2. P-values of the Kolmogorov–Smirnov test between t0 and

�t distributions for each promoter and induction condition

Promoter Inducer P-value

PBAD 1% arabinose 2.83� 10�18

PBAD 0.1% arabinose 4.06� 10�21

Plac/ara-1 1% arabinose 2.48� 10�26

Plac/ara-1 1mM IPTG 3.32� 10�72

For P< 0.05, it is generally accepted that the hypothesis that the two
distributions are the same should be rejected.
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studies (37) that indicate that assuming this number of
steps suffices to generate distributions that cannot be dis-
tinguished, in a statistical sense, from measurements with
accuracy and quantity of data similar to the measurements
reported here. Finally, we assume the intake to be a
two-step process, namely, the binding of extracellular
arabinose to an uptake protein and, once bound, its trans-
location to the cytoplasm (12). The combination of the
two processes (intake followed by transcription initiation)
is, consequently, assumed to be a five-step process.
Assuming these numbers of steps and stable conditions

(e.g. induction level), we searched for models that fit the
distributions accurately enough so that the K–S test does
not find differences between model and measurements.
The P-values of these tests are shown in Supplementary
Table S1 and show that in all but one case, it is possible to
find a model that cannot be distinguished from the empir-
ical distribution, in a statistical sense.
The case for which we could not find a model that fits

the measurements is that of PBAD at 0.1% arabinose in-
duction. This may be due to lack of sufficient data or
because the model is unsuitable. Future studies are
required to assert this. One explanation may be that, in
this case, the distribution of intake times results from two
distinct kinetics, one being the productions under induc-
tion and the other being spurious productions by pro-
moters in the ‘non-induced’ state.
Given the models aforementioned and provided a rate

of RNA degradation, it is possible to estimate the time it
takes for the mean RNA numbers of a model cell popu-
lation to reach equilibrium, as this time depends solely on
the rate of degradation of RNAs and t0. We do not have
measurements of the degradation rate of the target RNA,
as the tagging with MS2d-GFP ‘immortalizes’ it for the
duration of the measurements (32). Instead, the models in
Figure 3 assume an RNA degradation rate of 5min�1,
which is within realistic intervals for E. coli (1).
From all of the aforementioned data, we estimated the

mean times for RNA numbers to reach near-equilibrium,

as well as the Fano factor of this quantity since the start of
the simulations. Results are shown in Figure 3, as
estimated for each of the models. Also shown is an esti-
mation that assumes the model of transcription initiation
of PBAD when induced by 1% arabinose, coupled with an
infinitely fast intake.

In all cases, reaching equilibrium in mean RNA
numbers takes >1 h, except when assuming infinitely fast
intake, in which case the time to reach equilibrium is <0.5
h. Thus, for a time length as long as 1–2 h, the intake
process has a non-negligible contribution on the mean
and the on the cell-to-cell diversity in RNA numbers of
the cell populations. From Figure 3A, one also observes
different shapes in the curves of Plac/ara-1 when induced by
IPTG (dashed line) and when induced by arabinose
(dotted line), because of differing intake kinetics.

From Figure 3B, the contribution of the intake kinetics
on the cell-to-cell variability in RNA numbers is also sig-
nificant. For example, the kinetics of intake causes an
increase in the Fano factor in the initial moments not ob-
servable in the case of infinitely fast intake.

We also tested models of PBAD induced by 1% arabin-
ose (normal and infinitely fast intake) with other RNA
degradation rates (Supplementary Figure S7), within real-
istic intervals (1). Aside from assessing the degree of
dependency on the intake time and degradation rate,
one also observes from the figure that although the
latter determines the rate at which the system reaches equi-
librium, the former acts as a delay towards reaching the
numbers at equilibrium. Further, one can see that
the intake step adds diversity to the RNA numbers in
the cells, during the transient to reach equilibrium.

DISCUSSION

We measured, at the single-cell level, how long it takes for
the first RNA under the control of PBAD to be produced,
followed the introduction of the inducer in the media.
Also, we measured the subsequent intervals between
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Figure 3. Mean and Fano factor of transient times for different models of intake and subsequent RNA production kinetics. Mean (A) and Fano
factor (B) of RNA numbers as obtained by CME models of activation and expression. The models shown are that of Plac/ara-1 with 1mM IPTG
(dashed line), Plac/ara-1 with 1% arabinose (dotted line), PBAD with 1% arabinose (dash-dotted line) and PBAD with 1% arabinose and infinitely fast
intake (solid line).

6550 Nucleic Acids Research, 2013, Vol. 41, No. 13

 at T
am

pere U
niversity of T

echnology L
ibrary on July 28, 2016

http://nar.oxfordjournals.org/
D

ow
nloaded from

 



consecutive RNA productions. From the intervals
between transcription events, we determined that RNA
production under the control of PBAD is a sub-
Poissonian process. Two recent studies reached similar
conclusions for Plac/ara-1 and PtetA, for all induction con-
ditions tested (9,10). We hypothesize that this may be a
common phenomenon because of the kinetic properties of
the process of transcription initiation in bacteria, in par-
ticular, because of its multi-stepped nature.

From the distributions of the time, it takes for the
appearance of the first RNA in each cell when under
the control of PBAD and of Plac/ara-1, for different induc-
tion conditions, we assessed the effect of the kinetics of
the intake process on the mean and cell-to-cell diversity
in RNA numbers of cell populations. Relevantly, this
effect was found to be tangible for a long period after
induction. Also, we verified that different intake mech-
anisms differ significantly not only in mean but also
in the degree of variability of the intake time, and
that this has a non-negligible effect on RNA population
statistics.

Given the aforementioned data, and considering that
natural environments are fluctuating, we expect the
kinetics of cellular intake mechanisms to have a significant
effect on the degree of phenotypic diversity of cell popu-
lations. Finally, we expect the methodology used here to
assess the in vivo kinetics of intake of arabinose and of
IPTG to be applicable to any gene of interest. Such studies
should provide valuable insight into the adaptability of
prokaryotic organisms to environmental changes and
stress. They should also provide a better understanding
of the observed cell-to-cell phenotypic diversity in E. coli
when in fluctuating environments.
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Supplementary Data are available at NAR
Online: Supplementary Table 1, Supplementary Figures
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Supplementary Methods

Chemicals

Bacterial cell cultures were grown in two media, namely Luria-Bertani (LB) and M63. The chemical
components of LB broth (Tryptone, Yeast extract and NaCl) were purchased from LabM (UK). For
M63 media, the following components were used: 2 mM MgSO4.7H20 (Sigma-Aldrich, USA), 7.6 mM
(NH4)2SO4 (Sigma Life Science, USA), 30µM FeSO4.7H2O (Sigma Life Science, USA), 1 mM EDTA
(Sigma Life Science, USA), 60 mM KH2PO4 (Sigma Life Science, USA), Glycerol 0.5 % (Sigma Life
Science, USA), and Casaminoacids 0.1 % (Fluka Analytical, USA). Isopropyl -D-1-
thiogalactopyranoside (IPTG), L-(+)-Arabinose and anhydrotetracycline (aTc) used for induction of the
cells and the antibiotics (100 mg/ml kanamycin and 35 mg/ml chloramphenicol) were purchased from
Sigma-Aldrich (USA). Agarose (Sigma Life Science, USA) was used for the microscopic slide gel
preparation.

Bacterial Strain

Cloning and expression experiments were performed in E. coli DH5 -PRO strain (Clontech; identical
to DH5 -Z1 (31). The strain information is: deoR, endA1, gyrA96, hsdR17(rk-mk+), recA1, relA1,
supE44, thi-1, (lacZYA-argF)U169, 80 lacZ M15, F-, -, PN25/tetR, PlacIq/lacI,  and SpR. Frag1A:
F-, rha-, thi, gal, lacZam, acrAB::kanR, PN25/tetR, PlacIq/lacI, and SpR. Frag1B: F-, rha-, thi, gal, lacZam,
PN25/tetR, Placiq/lacI, and SpR. The PN25/tetR, Placiq/lacI, SpR cassette was transferred from DH5 PRO to
Frag1 to generate Frag1B by P1 transduction. The acrAB:kanR cassette was transferred from
KZM120 to Frag1B, so as to generate Frag1A.



Construction of the pMK-BAC vector

To construct the pMK-BAC (PBAD-mRFP1-96 binding site (96 BS) array, the following plasmids were
used: a plasmid with mRFP1 plus 96bs array region in the BAC vector, originally designed and
generously provided by Prof. Ido Golding (Plac/ara-1- mRFP1-96 bs) (32). To amplify the construct
containing  the  AraC  and  pBAD  promoter  region  from  the  pGLO  vector  (Biorad),  a  primer  set  was
designed as follows:

Ara_AatII-Fw-5´CCTAAGACGTCATCGATGCATAATGTGCC 3´
Ara_AatII-Rv-5´CCTTGATGACGTCATGTATATCTCCTTCTTAAAGTTA3´

The target BAD promoter region along with AraC coding region from the pGLO vector was amplified
and inserted into the pIG-BAC vector by standard molecular biology techniques. The construct was
verified by sequencing with the appropriate primers and transformed into the E. coli DH5 -PRO strain
carrying the bacterial expression vector pPROTET.E (Clontech) coding for MS2d–GFP. For more
details see Supplementary Figures 1 and 2.

Plate reader experiment

The mean uorescence of RFP under the control of PBAD was measured with a microplate fluorometer
(Fluoroskan Ascent, Thermo Scienti c). 200 ml of cells at OD600  0.5 were induced with 0.1 % or 1
% L-arabinose and placed on 96 well microplate. From this, cells were measured for 2 hours for
relative uorescence levels of mRFP1 protein (excitation and emission wavelengths were 584 nm and
607 nm, respectively). The cell density was kept identical in all wells of the plate for all conditions.

Quantitative PCR for mean mRNA quantification

The change in the rate of transcription of genes araB and mRFP was studied using qPCR. E. coli
DH5 -PRO cells containing the constructs were grown as described in the section describing the
microscopy  measurements.  Cells  were  grown  overnight  at  30°C  with  aeration,  diluted  into  fresh
medium and allowed to grow at the appropriate temperature of the experiment until an optical density
of OD600  0.3-0.5 was reached. For the experiment, 5 ml of cells were pre-incubated with 100 ng/ml
of aTc to induce the expression of MS2d-GFP. 1 % L-arabinose was used for induction of the BAD
promoter, 30 minutes after induction, the first sample was taken. From then onwards, samples were
taken at an interval of 60 minutes. Rifampicin was added to the samples immediately, so as to prevent
further transcription and the cells were fixed with RNA protect reagent immediately followed by
enzymatic lysis using Tris-EDTA lysozyme buffer (pH 8.3). RNA was purified from each sample by
RNeasy mini-kit (Qiagen). The total RNA was separated by electrophoresis through a 1 % agarose gel
and stained with SYBR Safe DNA Gel Stain. The RNA was found intact with discreet bands for 16 S
and 23 S ribosomal RNAs. To ensure purity of the RNA samples, they were subject to treatment with
DNase  free  of  RNase,  to  remove  residual  DNA.  The  yield  of  RNA  obtained  was  0.4  –  0.6  mg/ml.
Approximately 40 ng of RNA was used for cDNA synthesis using iSCRIPT reverse transcription super
mix (Biorad) according to the manufacturer’s instructions.



Quantification of cDNA was performed by real-time PCR using SYBR-green supermix with primers
for  the  amplification  of  target  and  reference  genes  at  a  concentration  of  200nM.  Primers  specific  to
AraB (Forward: 5' GGTACTTCCACCTGCGACAT 3', Reverse: 5' CAACCTGACCGCAAATACCT
3') and mRFP genes (Forward:  5' TACGAC GCCGAGGTCAAG 3' and Reverse:  5'
TTGTGGGAGGTGATGTCCA  3')  were  designed  using  PRIMER3  (39),  the  length  of  the  amplicon
for the target and reference were maintained at 90bp. The sequence of the primers for the reference
gene 16S rRNA (EcoCyc Accession Number:  EG30090) (Forward: 5' CGTCAGCTCGTGTTGTGAA
3'  and  Reverse:  5'  GGACCGCTGGCAACAAAG  3')  and  the  primers  were  obtained  from  Thermo
Scientific. The level of 16s rRNA was used to normalize the expression data of each target gene. 10 ng
of cDNA was used as a template. The cycling protocol used was 94 °C for 15 s, 51 °C for 30 s, and 72
°C for 30 s, up to 39 cycles. The amplification was monitored in real time by measuring the
fluorescence intensities at the end of each cycle. The experiment was performed in triplicates along
with the No-RT and no template controls. The volume used for each reaction was 25 µl in low-profile
tube strips in a MiniOpticon Real time PCR system (Biorad).  The Cq values were obtained from the
CFX ManagerTM Software and the fold change of expression of the target gene was analysed by
normalizing against the reference gene according to the Livak method (40). See Supplementary Figure
3 for the results.

Normalization between samples of the distributions of time intervals

The observation time for the production of RNAs is two hours. In some cells, the intervals between
transcription events ( t) are of this order of magnitude. This causes shorter intervals to be ‘favored’.
This  is  more  likely  to  occur  in  cells  where  the  waiting  time for  the  first  RNA to  be  produced  (t0) is
longer, since the remaining observation time is shorter. This introduces an artificial anti-correlation
between t0 and t in individual cells. Similar correlations are introduced by different division times as
well, i.e., shorter division times hamper the collection of longer t samples.

Thus, prior to determine if any real correlation exists between t0 and t in individual cells, it is
necessary to remove these artificial sources of anti-correlation due to the limits in the measurement
period. For this, in all cells, all intervals between consecutive RNAs were collected only for a time
window of size tc after the previous production. The value of tc is identical in all cells. This causes the
probability of appearance of the next RNA molecule during that period to be uniform for all cells, if
the underlying process is in fact identical in all cells.

This restriction in the collection of values of t is made when assessing correlations between t0 and t
and when comparing these two distributions between conditions. When imposing the restriction, we
thus consider only cells that produce at least 2 RNA molecules during their life time and measurement
period. The value of tc was selected so as to maximize the number of data points collectable from the
data sets. Here, tc was set to 39 minutes (see Supplementary Figure S6).



Fitting the empirical distributions to a sum of d-exponential variates

The arabinose intake mechanism can be described by a single Michaelis-Menten function (41). Since
the backward reaction of the intake process is slower than the forward reaction (12), the intake process
is modeled, roughly, by a sequence of non-reversible reactions. Interestingly, we found from the
measurements and the inference procedure, evidence of two steps at this stage (exponential in
duration), which is in agreement with the number of forward steps assumed in other studies for this
process (12). Finally, transcription initiation, which follows the intake process, can also be modeled by
a 3-step exponential model according recent in vivo measurements (9, 10). Thus, we fit the measured
distributions of t0 to a 5-step exponential model.

To fit the empirical distribution with a sum of d-exponential variates (of possibly unequal rates), we
select the exponential rate parameters , … ,  such that the Kolmogorov-Smirnov (K-S) statistic is
minimized. That is, parameters are selected as = arg max ,…, sup |F (x) G(x)|, where F (x)
is the cumulative distribution function (CDF) of a sum of d exponentials with parameters =

, … , ), and G(x) is the CDF of the empirical distribution.

F ,…, (X) = ((1 e )
L

L L

The parameter values  are found using a nonlinear numerical optimizer. This method is convenient,
since if the K-S test was rejected for the parameters , such a test would also be rejected for any other
set of parameters  in this family of fitted distributions, indicating that these distributions are
inappropriate models of the data. The results of the fitting are shown in Table S1.

As a final note, the model assumed above can be considered as the simplest possible, i.e., each step is

an elementary reaction of the form
cA B ,  with a constant probability of occurring per unit  time.

This entails that the distributions of intervals between steps are exponential (42). Notably, the inferred
distributions and the experimental data are statistically indistinguishable by the K-S test, which implies
that there is no evidence to assume that the model is wrong (see Table S1).

CME solution

To estimate the effect of the intake on the cell-to-cell diversity in RNA numbers we made use of direct
integration of the Chemical Master Equation (CME) of the model described in the previous section,
using the Finite State Projection algorithm (43). This method truncates the infinite state space of the
CME such  that  the  amount  of  probability  outside  the  truncated  region  is  negligible.  In  all  cases,  we
truncated the state space at 20 RNA molecules. This number sufficed for this space to contain virtually
all of the total probability in the system. The probability mass vector at each time moment is then
solved by numerically integrating the truncated CME. From this distribution over time, we calculate
mean, variance, and Fano factor of RNA molecules of a model at each moment.



Supplementary Figures

Figure S1. Plasmids used for the pMK-BAC construction. The pMK-BAC(PBAD-mRFP1-96bs)
plasmid was engineered by linking the amplified region, containing the PBAD promoter and the araC
gene, obtained from pGLO, to the pIG-BAC expression vector, without the lac/ara-1 promoter,
obtained from pIG-BAC(Plac/ara-1- mRFP1-96 bs)-V.

Figure S2. Split gels of the plasmid construction. (A) The PCR fragment of 1347bp amplified from
pGLO with the appropriate primers. (B) Lanes containing pIG-BAC-V without the Plac/ara-1 promoter
region (10849bp), and the pIG-BAC-V expression plasmid (11502bp. (C) The pMK-BAC plasmid
(12196bp) containing the araC-PBAD amplified fragment inserted to the BAC expression vector, and
the pIG-BAC-V (11502bp). Note the black arrows indicating the bands.



Figure S3. Q-PCR of the native and of the target gene. Q-PCR of RNA expression of the native,
integrated AraB gene and of the mRFP1 probe in the F-plasmid, as a function of time, when subject to
induction by 1% L-arabinose in liquid culture. The standard deviation bars are from three independent
experiments.
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Figure S4. MS2-GFP measurement of RNA numbers compared with Plate reader results. (A) RNA
numbers over time measured in vivo with the MS2-GFP method for 0.1 % and 1 % L-arabinose. Mean
and standard deviation of RNA numbers in individual cells were calculated for each sample separately.
Error bars show the standard error of the mean from independent measurements (3 measurements) (B)
Fluorescent intensity of RFP over time for 0.1 % and 1 % L-arabinose as measured by Plate reader.
Error bars show the standard error of the mean obtained from 8 wells.

Figure S5. Gene expression as measured by Plate Reader. Comparison of different inducer
concentrations by plate reader measurements, 2 hours following induction. Maximum induction is
achieved with 1 % L-arabinose. Error bars show the standard error of the mean obtained from 8 wells.
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Figure S6. Normalization of the data. The values of t0 and the corresponding values of the first t in
each  cell.  The  diagonal  line  is  the  total  observation  time (120  min).  Vertical  and  horizontal  (tc = 39
min) lines define the intervals that meet the requirements for un-biasedness.
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Figure S7. Models with different degradation rates. The degradation rate was set to the following
values: 0.1 min-1, 0.111 min-1, 0.125 min-1, 0.143 min-1, 0.167 min-1, 0.2 min-1, 0.25 min-1, 0.333 min-1,
0.5 min-1. In the figures, only the highest and the lowest values are marked. Mean RNA numbers
shown for (A) PBAD with  1  %  Arabinose  and  for  (C)  PBAD with 1 % Arabinose and infinitely fast
intake. Fano factors of RNA numbers are shown for (B) PBAD with 1 % Arabinose and, (D) PBAD with
1 % Arabinose and infinitely fast intake.
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Supplementary Table

p-value for t0 p-value for t
PBAD 1 % arabinose 0.2613 0.8930

PBAD 0.1 % arabinose 0.0020 0.5728
Plac/ara-1 1 % arabinose 0.1759 0.3826
Plac/ara-1 1 mM IPTG 0.1155 0.2413

Table S1. Results of the K-S fitting. Asymptotic p-values of the Kolmogorov-Smirnov goodness-of-fit
test when fitting the empirical distribution with a sum of 5-exponential variates in the case of t0 and of
3-exponential variates in the case of t. We compare these p-values with a standard value of 0.05.
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a b s t r a c t

Many pairs of genes in Escherichia coli are driven by closely spaced promoters. We study the dynamics

of expression of such pairs of genes driven by a model at the molecule and nucleotide level with

delayed stochastic dynamics as a function of the binding affinity of the RNA polymerase to the

promoter region, of the geometry of the promoter, of the distance between transcription start sites

(TSSs) and of the repression mechanism. We find that the rate limiting steps of transcription at the TSS,

the closed and open complex formations, strongly affect the kinetics of RNA production for all promoter

configurations. Beyond a certain rate of transcription initiation events, we find that the interference

between polymerases correlates the dynamics of production of the two RNA molecules from the two

TSS and affects the distribution of intervals between consecutive productions of RNA molecules. The

degree of correlation depends on the geometry, the distance between TSSs and repressors. Small

changes in the distance between TSSs can cause abrupt changes in behavior patterns, suggesting that

the sequence between adjacent promoters may be subject to strong selective pressure. The results

provide better understanding on the sequence level mechanisms of transcription regulation in bacteria

and may aid in the genetic engineering of artificial circuits based on closely spaced promoters.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Genes of Escherichia coli differ widely in expression kinetics
(Taniguchi et al., 2010) due to, among other factors, the diversity
of promoter sequences driving their expression. The regulation of
expression levels is usually exerted during transcription initia-
tion, a highly complex, multi-stepped process that starts with the
binding of the RNA polymerase (RNAp) to the promoter region,
followed by DNA unwinding and stabilization of the closed
complex, assembly of the clamp/jaw on downstream DNA, for-
mation of the open complex, and promoter escape (Browning and
Busby, 2004; Saecker et al., 2011; Hsu, 2002). Only after, can RNA
synthesis begin.

In vitro studies of the kinetics of initiation of several promoters
in E. coli suggest that this process can have up to three sequential
steps: formation of a closed complex, isomerization, and forma-
tion of the open complex (Saecker et al., 2011; Buc and McClure,
1985; McClure, 1985). Their duration varies between promoters,

even when the sequences only differ slightly (Lutz et al., 2001;
Singh et al., 2011), and are tightly regulated by repressing and
activating molecules, whose bindings are, in general, in the
promoter region.

The genome of E. coli contains various sites with closely spaced
transcription start sites (TSSs). The geometry of these promoters
with closely spaced TSSs can be tandem (same direction of
elongation), divergent (directions of elongation are opposite, in
a back-to-back fashion), or convergent (directions of elongation
are opposite, in a front-to-front fashion) (McClure, 1985; Beck and
Warren, 1988). Other sources of diversity between these promo-
ters with closely spaced TSSs are the distance, in number of
nucleotides, between the two TSSs and the location of the
transcription factor binding sites (TFBS). Here, isolated TSSs are
referred to as unidirectional promoters.

A recent survey suggests that approximately 15% of the
promoters in E. coli are closely spaced (Gama-Castro et al.,
2010). The same configurations have been found in quantity in
other organisms, also exhibiting structural diversity at various
levels (Beck and Warren, 1988; Häkkinen et al., 2011).

The kinetics of expression of genes driven by closely spaced
promoters remains relatively unstudied, particularly in prokar-
yotes. In these organisms, it is yet unknown to what extent is the
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production of RNA molecules affected by possible interference
between RNA polymerases (RNAps). In Sneppen et al. (2005) an
analytical model was proposed to study the impact of transcrip-
tional interference on mean expression levels. The model includes
three mechanisms of interference, namely, occlusion (passing
RNAps block access to the promoter), collisions between elongat-
ing RNAps, and ‘‘sitting duck’’ interference. Given the features of
their model, the analysis focused on study of mean expression
rates and, regarding this feature of the kinetics, the results agreed
with measurements from convergent promoters (Callen et al.,
2004).

While there is little study of the effects of proximity of TSSs in
prokaryotes, there is some information available from studies in
eukaryotes. In Wang et al. (2011) the dynamics of a stochastic
model of closely spaced promoters was analyzed. The model used
accounted for chromatin remodeling by switching the promoter
state between ON and OFF via stochastic, first order reactions.
Gene expression was modeled as a single step event. The results
suggest that the orientation and distance between TSSs affect
noise in RNA and proteins numbers. It is noted that this model
assumes a priori that distance and other topological features (not
modeled explicitly) have effects on the correlation between the
expression of the two genes, thus on both genes’ mean expression
and noise, rather than determining these effects from the
structure.

Another work studied the effects of genetic and epigenetic
properties of promoters on expression variability in budding
yeast (Woo and Li, 2011) from genome-wide datasets of gene
expression and nucleosome occupancy. The authors suggest that,
for this organism, divergent TSSs tend to have lower expression
variability than tandem TSSs and that this variability, for both
configurations, tend to decrease with decreasing distance. These
results are somewhat in disagreement with those of Wang et al.
(2011) for distances between TSSs shorter than 300 nucleotides.
Finally, in Ebisuya et al. (2008) experimental evidence was
reported that, in eukaryotes, transcription initiation appears to
exert a ‘‘ripple effect’’, that is, the induction of expression of a
gene tends to stimulate the expression of neighbor genes. The
authors suggest that this mechanism may be advantageous for
coordinated expression of genes participating in similar functions.
Since chromatin dynamics and DNA methylation may play a role
in this effect, and given several other differences in the mechan-
isms of gene expression, it is unknown if the effects of TSSs
proximity is similar in prokaryotes and eukaryotes, although it is
likely that the proximity does play a role in the expression
kinetics of closely spaced genes in both cases. Due to that, models
must be made at the nucleotide level so as to study, among other
features, interferences in the expression dynamics.

Here, using the delayed stochastic simulation algorithm
(delayed SSA) (Roussel and Zhu, 2006) to drive the dynamics,
we model promoters at the nucleotide level and simulate the
kinetics of transcription, one RNAp at a time. One of the novelties
of this study, allowed by the model used, is the quantification of
the effects of changes in promoters, at the nucleotide level, on the
kinetics of RNA production. Also, we account for the duration of
rate limiting steps at the TSS, such as isomerization and the open
complex formation, which varies from one event to the next.

Following the description of the model and comparison of its
predictions to measurements, we first study the kinetics of the
binding of RNAps to the promoter sequence. Next, we study the
dynamics of RNA production as well as the degree of correlation
between consecutive choices of directions of elongation as a
function of the geometry. Finally, we study the kinetics of
expression and its regulation by repression by occlusion as a
function of the positioning of the TFBS, among other variables. In
the end, we present our conclusions and address the following

questions: what are the effects of the rate limiting steps at the
TSS, the closed and open complex formations, on the kinetics of
RNA production for various promoter configurations? Are there
abrupt changes in the kinetics of RNA production with nucleotide
distance between TSSs? To what extent does the proximity
between two TSSs correlate the dynamics of RNA production
under their control?

2. Methods

Transcription in prokaryotes is both a stochastic process (Arkin
et al., 1998) and sparse in time (Taniguchi et al., 2010; McClure,
1985), which imposes the use of Monte Carlo methods to simulate
it, such as the stochastic simulation algorithm (SSA) (Gillespie,
1977). Additionally, the process of initiation contains several rate
limiting steps. Usually, there appear to be two major rate limiting
steps, the closed and the open complex formations (McClure,
1985; Lutz et al., 2001). The first includes the finding of the
promoter region and diffusion of the RNAp along the DNA
template until reaching the TSS and forming of the closed
complex. The second includes a few isomerization steps until
the open complex is formed (deHaseth et al., 1998).

Given the above, we use the delayed SSA (Roussel and Zhu,
2006) to drive the kinetics of the models since, unlike the original
SSA (Gillespie, 1977), it allows delayed events. In these, once the
reaction occurs and the reactants are removed from the vessel of
reactions, the products are kept on a wait list for a predetermined
amount of time, and only after are made available for reactive
events. To implement the delayed SSA and simulate the models
described below we use the simulator SGNSim (Ribeiro and
Lloyd-Price, 2007). An example of the implementation of one
the models that can be simulated by SGNSim is provided in
supplementary material. All models are described in detail in the
supplementary material as well.

The models of promoters, namely, their nucleotide structure,
as well as various kinetic rate constants, are extracted from
measurements. We extracted the sequences of known and pre-
dicted divergent and convergent closely spaced promoters in
E. coli from the RegulonDB database (version 7.0) (Gama-Castro
et al., 2010). The distributions of nucleotide length between TSSs
are shown in Fig. 1. The bulk of the distribution is below 200
nucleotides in length (88.8% for convergent and 61.8% for diver-
gent). Mean distances are 108.4 and 225.7 for convergent and
divergent promoters, respectively. In all models below, the dis-
tances between TSS are set within these realistic intervals.

The model of transcription, the set of possible reactions and
events, along with the stochastic rate constants are described in
supplementary material. The first step towards the production of
an RNA molecule is the binding of the RNAp to the DNA template.
The RNAp can then diffuse one nucleotide at a time in a direction
chosen initially at random. Provided long time intervals, it is
believed that diffusion RNAps can change direction. However,
these changes are not common events, that is, for short distances
(of tenths of nucleotides) evidence suggests that the direction of
diffusion does not change (Sakata-Sogawa and Shimamoto, 2004;
Gorman and Greene, 2008). Nevertheless, we note that this
assumption (if wrong) likely does not affect the results signifi-
cantly, due to the much higher speed of diffusion (600 nuc/s) and
disassociation (0.3 s�1) in comparison with the other possible
events, such as those at the TSS and during elongation.

The RNAp can unbind from the template at any step. If there
are multiple RNAps on the template, there can be collisions. In
that case, one of the RNAps falls off the template (randomly
chosen). In convergent promoters, elongating and diffusing RNAps
can collide (Callen et al., 2004). Since the elongating RNAp is more
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tightly bound to the template (Callen et al., 2004), the diffusing
RNAp (or an RNAp at the TSS) is removed from the template. If
two elongating RNAps collide, either one or both are removed
from the sequence (50% chance of each case).

Once the diffusing RNAp finds the TSS oriented in the same
direction as its movement, several events take place. First, the
closed complex is formed. This is followed by isomerization, and
then the open complex formation (deHaseth et al., 1998). The
duration of isomerization and of the open complex formation are
randomly generated at each event from an exponential distribu-
tion whose means are set in accordance with in vitro measure-
ments (Buc and McClure, 1985)(see supplementary material).
Once the open complex is formed, either elongation begins and
the TSS is released or a short, incomplete, transcript is produced
and the RNAp returns to the TSS (Hsu, 2002). Once the TSS is
cleared another diffusing RNAp can occupy it. As a side note, the
assumption that the RNAp only engages the TSS oriented in the
same direction as its direction of diffusion has not been experi-
mentally validated. Instead, it is a hypothesis made here that
relies on the fact that the RNAp molecule is not symmetric and
thus it is reasonable to assume that it can only recognize a TSS
sequence in one direction.

The last stage is elongation. Within the promoter sequence,
elongation is modeled at the nucleotide level to account for the
interference between RNAps. Once this region is cleared, the rest
of the process is modeled by a single step delayed event. The time
length of this process is generated at each occurrence from a
Gamma distribution whose mean is given by the product between
the expected time for the RNAp to elongate from one nucleotide
to the next and the number of nucleotides of the sequence.

The model allows repression by one or more TFs, which can
bind to existing TFBSs. Depending on the DNA region occupied by
the repressor; one can model repression by steric occlusion or by
DNA looping (i.e. preventing binding of RNAps). When a diffusing
RNAp collides with a repressor, it is released from the template,
decreasing the rate of production of transcripts. Elongating RNAps
are not released by such collisions instead they remain paused
until the repressor unbinds (Lopez et al., 1998).

In Fig. 2 we represent two models of closely spaced promoters.
Locations are designated by the position relative to the TSS at

position þ1: positions to the left are negative and to the right are
positive (position 0 does not exist, by convention). In Fig. 2A, a
divergent promoter is represented. The TSSs are at �151 and þ1.
The gene to the left can only be transcribed by RNAps diffusing in
the left direction, and the one to the right can only be transcribed
by RNAps diffusing to the right. Regions of elongation (which the
RNAp can also percolate by diffusion) are represented in black,
while regions where only diffusion occurs are in gray. Elongating
RNAps are represented with an elongating RNA chain, not present
in diffusing RNAps. If a repressor is bound (in this case the TFBS is
between �140 and �120), it blocks diffusing and elongating
RNAps. It also prevents binding of RNAps in that region. In Fig. 2B
is shown a convergent promoter with overlapping elongation
regions. TSSs are at þ152 and þ1.

3. Results

3.1. Mean RNA numbers at near-equilibrium and the rate of binding

to the promoter region

All parameters values of the model, including RNA degradation
rates (Bernstein et al., 2002), are from in vitro measurements
except for the rate constant of association of the RNAp to the
promoter region (kbind). There is evidence that the RNAp can bind
to any nucleotide in the promoter region and that the binding rate
to this region is higher than in other regions, but exact values are
unknown (Singer and Wu, 1987).

To test with the model what values for kbind result in realistic
mean RNA numbers at near-equilibrium obtained from genome
wide measurements (Taniguchi et al., 2010), we vary kbind and
measure mean RNA numbers at near-equilibrium for convergent,
divergent, and unidirectional promoters. In all models, the length
of nucleotides of the binding region of the RNAp is 200 nucleo-
tides. In the two former models, the two TSSs are 150 nucleotides
apart from each other.

Results are shown in Fig. 3 and each data point is calculated
from 50 concatenated time series, each 105 s long, sampled every
10 s. There are 28 RNAps available (Bremer et al., 2003) and RNA
degradation rate is 0.36 min�1 (Bernstein et al., 2002). Simulations
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Fig. 1. Number of closely spaced promoters in E. coli. Number of closely spaced promoters with various numbers of nucleotides between the two TSSs for (A) divergent

promoters and (B) convergent promoters. Black bars are experimentally verified promoters; wider gray bars are predicted promoters (Gama-Castro et al., 2010).
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are initialized without RNA molecules but the transient to reach
near-equilibrium is negligible, given the length of the series.

Mean RNA numbers at near-equilibrium are within realistic
intervals (Taniguchi et al., 2010) for all values of kbind and
promoter arrangements (Fig. 3). Lower values correspond to
weakly expressed genes, while higher values correspond to more
strongly expressed ones. However, expression is not subject to
repression in these simulations, while in E. coli, weakly expressing
genes usually have such behavior due to the presence of repressor
molecules. Due to this, we consider the most realistic values of
kbind are likely to values beyond 10�5 s�1. Interestingly, the rate
of saturation (due to the existence of the rate limiting steps, the

open and closed complex formations) is kbind�10�4 s�1. We thus
estimate realistic values to be between 10�5 and 10�4 s�1.

Singer and Wu, (1987) estimated the in vitro rate of non-specific
association of RNAp to circular DNA to be 4.6�104 M�1 s�1 (per
nucleotide). From this, one can estimate the value for kbind by dividing
the measured value by the expected volume of E. coli (10�15 L)
(Sundararaj et al., 2004) and the Avogadro constant. It results in a
value for kbind of 0.75�10�4 s�1 per nucleotide, thus within the
interval of the estimation (between 10�5 and 10�4 s�1). Here
onwards we set kbind to 0.75�10�4 s�1, unless stated otherwise.

Also, the kinetics of RNA numbers differs with the geometry of
the promoter (Fig. 3). Provided identical kinetic rate constants for
the various models of promoters including, e.g., binding regions
for RNAps of the same length, same duration for processes such as
the open complex formation, etc., we find that unidirectional
promoters have higher mean RNA numbers, as the production is
not affected by occlusion and collisions between RNAps traveling
in opposite directions. The decrease in mean RNA numbers for
increases in kbind beyond �10�4 s�1 in divergent promoters is
due to the increased interference between diffusing RNAps. This is
less frequent in convergent promoters as elongating RNAps
remove many diffusing RNAps while percolating the DNA tem-
plate in the outer regions.

3.2. Binding kinetics of RNA polymerases to promoter regions

To study the dynamics of binding of RNAps to promoters, we
measured the fraction of times each of the nucleotides of a
divergent promoter is bound by the center of a previously free
RNAp (50 simulations, each 105 s long) (Fig. 4), when kbind is set to
0.75�10�4 s�1 and when is set to 10 and 100 times smaller.
Simulations are long enough so that increasing the duration of the
binding would not alter the results significantly.

From Fig. 4, the fractions of bindings per nucleotide are not
uniform across the template, except for kbind/100. This is due to
the rate limiting steps at the TSSs (closed complex formation,
isomerization, open complex formation, and abortive initiations)
and the non-negligible footprint of the RNAp. The intermediate
regions between the TSSs are those most available for new RNAps
to bind to. The discontinuities are less pronounced as kbind is
decreased, since the regions where the rate limiting steps occur
are not so often occupied.
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To verify this, we next set the rates of closed and open
complex formations and of isomerization to values identical to
the rate of diffusion of the RNAp. The rate of abortive initiation is
set to zero. The resulting distribution of fraction of binds to each
nucleotide for standard values of kbind (data not shown) becomes
identical to that of kbind/100 shown in Fig. 4. Additionally, to show
the dependence of the discontinuities in the distributions on the

footprint of the RNAp, in Fig. 5 we show the results for divergent
promoters with increasing distances between TSSs.

From Fig. 5 it is visible how the shapes of the distributions
depend on the ratio between the footprints of the RNAps when
diffusing and the length of the binding region. These distributions
only become uniform-like if this ratio is very large or if the
promoter region is smaller than twice the footprint length. The
same conclusions are valid for convergent promoters (data not
shown).

3.3. Dynamics of RNA production in closely spaced promoters of

different geometries

To determine how the geometry of a promoter affects the
dynamics of RNA production, we now compare the distributions
of intervals between the productions of consecutive RNAs from
one of two TSSs for differing geometries (in all models this
distribution is identical for the two RNAs, unless stated other-
wise). In all models the binding region is 200 nucleotides. Results
are shown in Fig. 6 and the tails of the distributions are shown in
inset for each case (except Fig. 6F, where it is within the range of
120 s) and differ significantly in length.

Models A–C are divergent, differing in the distance between
the two TSS. In A the distance is 200, in B is 150 and in C is 65 (can
only contain one RNAp at a time). As the distance increases, the
mean and standard deviation of the intervals decrease due to the
decrease in the number of collisions between elongating and
diffusing RNAps, and the consequent reduction of the width of the
distribution. Model D is also divergent, identical to A, but without
the rate limiting steps at the two TSS and all steps, including
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elongation, closed and open complex formation and isomeriza-
tion, occur at the same speed as diffusion (abortive initiation is
not modeled). In comparison to A, the mean of the intervals is
much smaller as the distribution becomes exponential-like, due
to the absence of the rate limiting steps, as predicted in Ribeiro
et al. (2010).

Model E is a convergent promoter with 100 nucleotides
between the two TSSs. In comparison to A, RNA production is
reduced and noisier. The distribution of intervals increases in
mean and standard deviation due to the interference between
elongating RNAps traveling in opposite directions. Finally, model
F, unidirectional, behaves as a divergent promoter with a config-
uration such that there are no collisions between elongating and
diffusing RNAps (i.e. model A).

In general, the kinetics of transcript production is similar in all
closely spaced promoters. The steps that most shape the distribu-
tions are the rate limiting steps at the two TSS. However, the
mean and standard deviation of the distributions of intervals
between productions of RNAs depends, to some extent, on the
relative positions of the two TSSs and the promoter’s geometry.

In closely spaced promoters the dynamics of transcripts
production from the two TSSs are dynamically correlated by
interferences between diffusing and elongating RNAps (i.e. colli-
sions). This can be verified by calculating the autocorrelation of
the time series of RNAs’ production, although collisions may not
be the only source of correlations. If the autocorrelation is null,
there is no effect of the interferences between RNAps on the
production of transcripts. If the autocorrelation is positive, it
implies that once one of the two types RNAs is produced, the
promoter is biased by the interferences to produce the same type

of RNA in the next event. If the autocorrelation is negative, the
opposite is more likely. The autocorrelations were calculated for
models A–F, and for an additional model of two, non-interacting,
unidirectional promoters. The calculations are done for several
lags (lag 1 corresponds to correlations between the present choice
of RNA produced and the next one) and confirm the above
hypothesis (Fig. 7).

First, from Fig. 7A, there is a negative correlation between
consecutive production events, but this correlation is not propa-
gated for longer lags. The correlation depends on the existence of
rate limiting steps, as seen by comparing with Fig. 7D (model
without rate limiting steps). When a TSS is occupied by an RNAp,
it remains occupied until the RNAp begins a successful elongation
event. Due to that, it is more likely that the next RNA to be
produced will be from the other TSS (since this TSS may or not be
occupied at the same time, the negative autocorrelation is not
‘‘perfect’’, i.e. equal to �1). The same reason explains the small
positive correlation between choices for lag of 2. On the other
hand, if there are no rate-limiting steps (model D), there are no
correlations between consecutive choices of which RNA to pro-
duce, since the system is virtually memoryless.

If the distance between TSSs is decreased (Fig. 7B) both the
autocorrelations at lag 1 and at lag 2 decrease, since the number
of RNAps that can be bound to it at any moment is smaller, thus
decreasing the probability that one successful transcription event
at a TSS will be followed by another event at the other TSS.

As the distance between the two TSSs is even further decreased so
that only one RNAp can be between the two TSS at any moment,
there is an abrupt change in the kinetics of transcription (Fig. 7C). In
this configuration, if one of the two TSS loaded with RNAp, going
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through the open complex formation, the other TSS cannot be loaded
by an RNAp, since the region between the two TSS is too small to
allow diffusing RNAps to reach that TSS. Once the open complex is
completed, the RNAp elongates along the template and removes from
the template any RNAp diffusing in the opposite direction, making it
more likely that the next TSS to be occupied to be the one from where
the elongating RNAp is coming from. This leads to a very strong
positive correlation of consecutive choices (Fig. 7C). In the next
section, it is shown how strongly dependent this phenomena is of
the distance between the two TSS. Finally, Fig. 7D shows that, in the
absence of rate limiting steps and overlapping divergent configura-
tion, there are no correlations between consecutive choices.

In Fig. 7E, we observe a phenomenon similar to that in Fig. 7C.
In convergent geometries it is more likely that one elongation
event from one TSS is followed by another such event from the
same TSS. The effect is not as strong as in model C because here
another elongating event can start at the other TSS while the
RNAp coming from the first TSS is elongating. When two elongat-
ing RNAps collide, they have identical probabilities of being
removed from the sequence, aborting RNA production.

Finally, in Fig. 7F we show the correlations between consecu-
tive transcripts production from two independent unidirectional
promoters. The similarity between this figure and Fig. 7A shows
how negative correlation emerges due to the rate limiting steps,
regardless of the geometry of the promoter.

3.4. Distance between TSSs

We now study how changing the distance between TSSs may alter
the dynamics of RNA production. Fig. 8 shows the degree of
correlation between consecutive choices of direction of elongation

(at lag 1, i.e. between consecutive events) for convergent (J) and
divergent (&) promoters with varying nucleotide length between the
two TSSs. In all cases, the binding region of the RNAp is 300
nucleotides long.

Results from Fig. 8 show that the distance between the TSSs
strongly affects the correlation between consecutive choices of
direction of elongation in divergent promoters. For distances smaller
than �110 nucleotides there is a strong positive correlation between
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consecutive choices. As the distance is further increased, there is an
abrupt change and the choices become anti-correlated. This transition
corresponds to the change in the structure from overlapping to not
overlapping. When overlapping (o110 nucleotides), the RNAp at a
TSS, when elongating, clears the other TSS from any RNAp. For larger
distances, the correlation is negative because of the rate limiting steps
at the TSS and because no longer does an elongating RNAp interfere
with the activity of the other TSS.

In convergent promoters, there is interference between the
activities of the two TSSs for all distances, as elongating RNAps
can clear the other promoter from any RNAp. This interference
increases with distance because the longer the time that it takes
for the elongating RNAp to pass by the other TSS, the longer will
be the interval during which no successful transcription event can
arise from this other TSS. The small peak at the 35 nucleotides
between TSSs is due to the fact that at such a distance, the RNAp
at one TSS impedes RNAps to reach the other TSS. When the
distance becomes large enough, both TSSs can have an open
complex event at the same time (one initiated before the other).
In this event, it is possible for the open complex that initiated at a
later stage is completed first, and, in that case, it will clear the
other TSS once elongation begins.

The correlations in Fig. 8 affect the mean RNA numbers at near
equilibrium (Fig. 9). In divergent promoters, in general, the higher
is the positive correlation, the smaller is the mean number of
RNAs at near-equilibrium. In convergent promoters, the relation-
ship between correlation and mean RNA numbers is the opposite
for small distances between the two TSSs. In both geometries, the
stronger is kbind, the stronger are the correlations (both positive
and negative ones) (data not shown). Finally, beyond a certain
length, further increases in length no longer change mean RNA

levels significantly. This is due to other rate limiting steps, such as
the open complex, that limit further increases in RNA production.

In convergent promoters, as the distances between the two
TSS increase, there is strong increase in mean RNA numbers when
the distance becomes large enough for having the two TSS
simultaneously occupied by an RNAp. Further increases in
distance between the TSSs decrease mean RNA numbers due to
the increase in number of interferences and collisions between
elongating RNAps.

3.5. Repression by occlusion

The most common mechanism of repression of transcription is
steric occlusion, which blocks the access of RNAps to a specific
region of the promoter (McClure, 1985). Depending on the
location of the binding site, it affects different stages of initiation,
from closed complex to open complex formation, preventing
elongation initiation (Sanchez et al., 2011; Garcia et al., 2010).
Different repressors occupy different number of nucleotides.
Blocking large portions of the DNA usually requires DNA looping
(Carey et al., 1991; Lewis et al., 1996; Horton et al., 1997).

Steric occlusion can, in theory, block transcription completely
since, provided a very large number of repressors the expected
time for one of them to bind to the DNA is virtually zero,
hampering transcription events. The only case where complete
repression is not achievable is if there is sufficient space between
the region occupied by the repressor and the TSS for an RNAp to
bind. In this scenario, as the number of repressor molecules
increase, the rate of RNA production would decrease only until
a plateau of minimum expression rate.
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Here, we first investigate the kinetics of transcription of
unidirectional promoters subject to a repressor as a function of
the number of repressors and the location of the binding site. We
model promoters with the repressor’s binding site centered at
positions þ1, þ12, and þ37. In all cases, the repressor occupies
21 nucleotides centered at the binding position.

When diffusing, an RNAp occupies 55 nucleotides (McClure,
1985). The first rate limiting step begins when the RNAp reaches
the TSS. During isomerization, the footprint of the RNAp increases
to 75 in the downstream direction implying that it now occupies
the 20 nucleotides following the TSS. After promoter escape, the
release of the s factor reduces the footprint to 25 nucleotides.
Thus, when repressors bind at þ1 it blocks the closed complex
formation, at þ12 it allows the closed complex but blocks the
open complex formation, and at þ37, it allows initiation but
blocks elongation.

To model repression we introduce in the model the reactions
for binding and unbinding of repressors. The ratio between the
rates of these two reactions has been estimated for several
repressor molecules (So et al., 2011). Here, on average, we set
these rates’ values so that a repressor is bound to its binding site
approximately 80% of the time (see supplementary material).

The model assumes that RNAps cannot, by any means, dis-
lodge repressors, i.e., the kinetics of unbinding of the repressor
from the DNA only depends on the kinetic rate of unbinding. If an
RNAp is occupying the binding region of the repressor, the

repressor cannot bind. To assess the strength of repression we
define a repression factor as the ratio between mean RNA
numbers at near-equilibrium when no repressors are present
and when a certain number of repressors are present. Fig. 10
shows how this quantity varies with the position of the binding
site and with the number of repressors. The rates of binding and
unbinding are identical in all cases.

From Fig. 10, in all cases, increasing the number of repressors
increases the repression factor, which also depends on the
location of the binding site. Binding sites at the TSS or right after
it (at þ12 or þ37) provide equally efficient repression for small
number of repressors. For large number of repressors, repression
is stronger if the open complex is blocked (at þ12). Repressing
the closed complex is the least efficient since binding of RNAps to
the template is a fast process, and thus able to compete with the
binding of repressors.

When blocking the open complex formation at þ12, repres-
sors only compete with isomerization. In these conditions,
increasing the number of repressors steadily decreases the rate
of RNA production. Increasing the number of repressors blocking
promoter escape leads to more complex changes. In small
amounts, repressors only delay the movement of elongating
RNAps but do not actually prevent elongation; thus, they have a
limited effect in RNA production. Only when the speed of binding
of repressors (due to increased number of repressors) overcomes
the speed of elongation do further increases in repressors num-
bers lead to additional decreases in the production of RNA
molecules. In this regime, RNAps are prevented from leaving the
TSS as the template is virtually always occupied by a repressor.

Next, we test how the positions of the binding sites of the
repressors determine the effects on the kinetics of transcription of
convergent and divergent promoters. Results are shown in
Table 1, where it is visible that by placing the repressor closer
to one of the two TSS it is possible to bias to kinetics of RNAs
production in both convergent and divergent promoters. For
example, placing a repressor at �65 in a convergent promoter
(TSSs at þ1 and þ150) only reduces the expression from the TSS
at þ1 (right). The overall production of both RNA molecules can
also be affected, as in unidirectional promoters. For example, a
repressor at þ36 in convergent promoters or at �35 in divergent
promoters decreases the overall expression by approximately 60%
and 40%, respectively. Finally, decreasing the overall expression
without biasing the production of the two RNAs is also possible.
For that, the binding site ought to be located close to the midpoint
between the two TSSs, or two repressors can be placed at
symmetric positions from one another.

It has been suggested that the relatively small distance
between TSSs may facilitate the co-regulation of gene expression
in both directions (McClure, 1985). This would imply, for exam-
ple, facilitating the simultaneous repression or activation of
transcription from the two genes, which in other words, implies
that the expression levels of the two genes ought to be correlated.
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Table 1
Repression in closely spaced promoters.

Convergent Left Right Divergent Left Right

No repressor 1 1 No repressor 1 1

�65 1 (elong.) 0.3 (closed) þ15 0.8 (diff.) 0.38 (open)

þ15 0.8 (elong.) 0.26 (open) �35 0.9 (diff.) 0.6 (closed)

þ36 0.6 (elong.) 0.17 (esc.) �75 0.56 (diff.) 0.55 (diff.)

þ75 0.25 (elong.) 0.25 (elong.) �35, �115 0.4 (closed) 0.4 (closed)

Mean RNA numbers relative to the basal level of overlapping promoters with 150 nucleotides between TSSs. Binding regions are 300 nucleotides long and repressors

occupy 21 nucleotides. The type of repression, determined by the location of the binding site, is indicated. In convergent promoters, TSSs are at þ1 (controlling the gene at

the right side) and þ150 (controlling the gene at the left). In divergent, TSSs are at �150 (left) and þ1 (right). In all cases, there is only one repressor in the cell except in

the last case for divergent promoters, where there are two repressors, since there are two binding sites.
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We next study how repression may correlate the two time series
of RNA numbers under the control of the two TSSs.

We start by modeling two identical unidirectional promoters
in the same cell and under the control of same repressor. The
number of repressors is set to 100 and, thus, the correlation is null
for all lags (data not shown). This implies that any correlations in
closely spaced promoters are not originated by the rate limiting
steps. If the number of repressors was from one to a few, a
spurious anti-correlation would appear, as the repression of one
TSS would diminish the chance of repression of the other at the
same time.

Next, we model pairs of closely spaced promoters. We simu-
late the models and compute the correlation between temporal
choices for all lags. In all cases, the binding site of the repressor is
at midpoint between the two TSS, so as to not generate spurious
correlations due to biases in the expression levels. One model is a
divergent (& in Fig. 11) and the other is a convergent promoter
(J in Fig. 11). The models were simulated both with (in black in
Fig. 11) and without repressors (in gray in Fig. 11).

From Fig. 11, comparing the models with and without repres-
sors it is visible that, for both the divergent and the convergent
promoter, the mutual repression mechanism correlates, in a
positive fashion, the consecutive choices of production of RNAs.
In the convergent, the correlation goes from almost null to
positive, while in the overlapping divergent promoter it decreases
the inherent negative correlation.

In non-overlapped divergent promoters, repression also
increases the inherent negative correlation (data not shown). This
occurs if there are two binding sites and two distinct repressor
molecules (one for each TSS) each of which with a binding site, or
if the binding sites overlap, causing the repression of one to
hamper the repression of the other TSS. This suggests that
complex repression mechanisms, via the use of multiple repres-
sors and binding sites configurations, likely allow various degrees
of correlation between the transcription kinetics of adjacent
genes driven by closely spaced promoters.

3.6. Comparison between the model’s predictions and measurements

of cell–cell heterogeneity

From the simulations described above, particularly the inter-
vals between the productions of consecutive RNA molecules, one

can conclude that unidirectional and divergent promoters with a
large distance between TSSs (i.e., non-overlapping) will generate
the least noisy time series of RNA numbers. The amount of noise
in the RNA numbers over time can be assessed by the square of
the coefficient of variation, CV2, of the time intervals between
consecutive RNA productions (Pedraza and Paulsson, 2008) whose
distributions are shown in Fig. 6. Specifically, the distributions
from non-overlapping divergent promoters, namely A and B, have
CV2 values equal to 0.34 and 0.38, respectively, while the
unidirectional promoter F has a CV2 of 0.34. On the other hand,
the divergent overlapping promoter C and the convergent pro-
moter E have CV2 of 3.97 and 0.84, indicating much higher noise
in the kinetics of RNA production.

These results can, to some extent, be compared to measurements
of gene expression dynamics in E. coli. Recently, a quantitative
system-wide analysis of protein and mRNA expression was carried
out in individual cells with single-molecule sensitivity using a
yellow fluorescent protein fusion library for E. coli (Taniguchi
et al., 2010). From this data, we flagged the divergent and con-
vergent promoters for comparison. In particular, we compared our
predictions regarding noise in transcript production between closely
spaced promoters (divergent and convergent) versus unidirectional
TSSs with the measurements of the cell-to-cell diversity in RNA
numbers from these two sets of promoters. We found no significant
differences in the kinetics of RNA production between these two
sets of genes from the data in Taniguchi et al. (2010). Further, we
found no correlation between the distance between TSSs and the
noise levels in bidirectional promoters from the same data. In
supplementary material we show the calculations that were made
to determine the possible differences in the kinetics of RNA
production as well as to determine possible correlations between
distances and noise levels.

However, we note that the measurements of cell-to-cell diversity
in RNA numbers in Taniguchi et al. (2010) are not the most
informative of noise in transcription. Evidence suggests that com-
plex mechanisms of RNA degradation (see e.g. Yarchuk et al., 1992;
Taniguchi et al., 2010) may significantly affect the cell-to-cell
diversity in RNA numbers. Another mechanism that may affect the
cell-to-cell diversity in RNA numbers in a population is errors in the
partitioning of RNA molecules in cell division. Stochasticity in this
process will enhance the diversity even when the partitioning is
unbiased (Huh and Paulsson, 2011a, 2011b). If biases exist, this
effect will have an even stronger impact on the levels of diversity of
RNA numbers (Lloyd-Price et al., 2012). Such biases are likely to
exist and may vary from one RNA sequence to the next, particularly
given the recent evidence that the location of the RNA molecules in
E. coli is far from arbitrary (Llopis et al., 2010).

Finally, it is of relevance to note that the mean RNA levels in the
measurements reported in Taniguchi et al. (2010) are between
�10�3 and �5 molecules per cell, as assessed by RNA-seq, and
between �10�2 and �5 per cell, as assessed by FISH. This suggests
very small rates of RNA production in optimal growth conditions for
most genes (the genes were not subject to any artificial induction).
From our model predictions, for such rates of RNA production, one
does not expect observable differences in the kinetics of RNA
production between bidirectional and unidirectional promoters or
with different distances between TSSs (see Fig. 9).

To test whether promoter geometry affects, to some degree,
the fluctuations in RNA numbers, it is necessary to measure time
intervals between the consecutive productions of RNA molecules,
e.g. using an MS2-GFP-based RNA tagging technique (Fusco et al.,
2003; Golding et al., 2005). Such measurements have already
been reported for the lar promoter in Kandhavelu et al. (2011).
Using this technique, we must engineer genes with promoters
with different geometries followed by an elongation region that
codes for MS2-GFP binding sites. These genes ought to be driven
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by promoters strong enough, when induced, so that the produc-
tion rates are sufficient to allow detection of differences in the
stochasticity of the production mechanism. Note that, with this
method, one can detect RNA molecules as soon as they are
produced (Golding and Cox, 2004), implying that production rates
of the order of 4–10 RNAs per hour may suffice to detect
differences in the kinetics of production of RNAs under the control
of promoters with different geometries.

4. Conclusions

We studied the dynamics of expression of pairs of genes driven
by closely spaced promoters within realistic intervals of para-
meter values for E. coli. For that, we used a delayed stochastic
model that mimics transcription initiation in E. coli, one RNAp and
one nucleotide at a time. From the simulations, in general, we find
that changing the sequence between the two TSS and the kinetics
of the closed and open complex formation at each TSS allows
pairs of genes with overlapping promoters to have widely diverse
kinetics of RNA production, and complex dynamics of RNA
production not easily achievable by sets of genes that interact
via transcription factors alone.

In general, the rate limiting steps at the two TSSs are
responsible for a degree of anti-correlation between consecutive
choices of which of the two RNAs are transcribed next. The
blocking of a TSS by an RNAp during the rate limiting steps
(isomerization and open complex formation) makes more likely
the choice of the other RNA to be produced next. However, if the
distance between the two TSS is below a certain number of
nucleotides, the opposite occurs.

The simulations showed that the sequence of the promoter
(nucleotide length, kinetics of rate limiting steps, etc.) signifi-
cantly affects the dynamics of RNA production. In that sense, this
dynamics is sequence dependent and thus subject to selection. If
the kinetics of RNA production is subject to selection, the
arrangement of closely spaced promoters is also subject to
selection, since promoters with different geometries were shown
to have widely diverse kinetics of RNA production. Further, given
the observed ranges of variability in the distributions of intervals
between the productions of consecutive RNA molecules as a
function of the configuration of the promoter, it is expected,
provided first order degradation rates of RNA molecules, that cell-
to-cell diversity in RNA numbers may range from sub- to supra-
poissonian as a function of the kinetics of transcription initiation.
We verified this (data not shown) by calculating the Fano factor in
RNA numbers in different cells at near equilibrium.

One interesting outcome of the results is that they provide a
means to, from the behavior analysis, define the meaning of
‘closely spaced promoter’ which, at the moment, still has a rather
loose definition. From Figs. 8 and 9, regarding divergent promo-
ters, we observe a sharp behavioral change (in mean and correla-
tion) when the distance between TSSs increases from 100 to 200
nucleotides. Provided future experimental validation of this
result, this may allow define as ‘closely spaced’ promoters, for
this geometry, those that are separated by less than 100 nucleo-
tides. In the case of convergent promoters there is a strong change
in the mean RNA levels (Fig. 9) when the nucleotides distance
increases beyond 25 nucleotides and thus this distance could be
used as a means to define closely spaced convergent promoters.

As a side note, the discrete nature of the probabilities of
binding of the RNAp to the nucleotides close to the two TSS
may be of significance. It suggests that the location of binding
sites for repressors and activators relative to the TSSs is likely to
be far from random, as the location will determine the overall
probabilities of freely diffusing RNAps to reach either TSS.

The study of the effects of repressors showed that these can be
a means to achieve complex patterns of behaviors, not possible
otherwise. Their effect depends on the geometry of the promoter
and on the length of the sequences between the two TSS. Further,
it depends on the location of the binding sites. For example,
placing the binding site between the two TSSs, but closer to one of
them, biases the mean expression levels of the genes. Finally,
depending on these parameters, repression by occlusion can
correlate or anti-correlate the two RNAs levels.

Our results show that repression at different stages of tran-
scription can lead to similar as well as distinct kinetics of RNA
numbers, depending on several factors such as the number of
repressor molecules in the cell. In general, for the same number of
repressors and binding affinity, the effects on RNA production
differ with the stage of transcription that is repressed. Recent
observations are in agreement. When Schlax et al. (1995) studied
the repression kinetics they concluded that the most probable
down-regulation mechanism is the inhibition of closed complex
formation. However, the diversity of regulatory mechanisms and
broad distribution of locations of binding sites of repressors
relative to the TSSs (Garcia et al., 2010) suggests that, repression
occurs at different stages in different genes, including during the
promoter escape.

It is of interest to compare our results regarding repression
with those of Wang et al. (2011) from a single step stochastic
model of eukaryotic gene expression. In this work, the authors
postulate that, in divergent promoters, the expression of one gene
facilitates the expression of the other by preventing chromatin
compaction. In our case, a similar effect takes place, in that the
expression of one of the genes tends to prevent the binding of the
repressor between the TSSs, provided close proximity between
the TSS and the repressor binding site.

Much effort has been given to the engineering of artificial
genetic circuits (Elowitz and Leibler, 2000; Gardner et al., 2000).
E. coli is one of the model organisms used in these studies. Most
circuits engineered so far rely on commonly used promoters, such
as lac, tet, and ara (McClure, 1985). These are used because their
sequences are well characterized and the regulatory molecules
are known (Lutz et al., 2001). So far, little attention has been given
to the panoply of native promoters in E. coli and other organisms.
A genome-wide characterization of the kinetics of the endogen-
ous promoters in E. coli is likely to show that there is a much
wider range of dynamical behaviors than those observed so far.
A more complete survey of the state space of dynamical behaviors
at the promoter level will aid the engineering of novel circuits
that will be able to perform far more complex dynamical
behaviors than what is presently possible. The applicability of
these circuits will thus be much enhanced. Additionally, if these
circuits can be engineered so as to be more tightly coupled with
the native genetic networks, they can make use of the native
regulatory mechanisms of the dynamics of expression in the host
cells. Our study aimed to aid in this effort by assessing the range
of dynamical behaviors possible by varying the geometry and
structure of closely spaced promoters. Finally, we hypothesize
that the multitude of regulatory steps of the dynamics of RNA
production not only partially explains the observed diversity of
kinetic behavior of genes in E. coli, but it also suggests that
different mechanisms can be used to attain similar kinetics of
RNA production, thereby allowing for the emergence of neutral
evolutionary pathways.
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L., Solano-Lira, H., Jimenez-Jacinto, V., Weiss, V., Garcı́a-Sotelo, J.S., López-
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1. Stochastic Model of Closely Spaced Promoters at the Nucleotide Level 

The delayed stochastic model of transcription initiation at the nucleotide level includes 

the non-specific binding of RNA polymerase (RNAp) to the DNA, search by diffusion 

for transcription start sites (TSSs), rate limiting steps leading to the open complex 

formation at the TSS, abortive initiations and productive elongation. In addition, it 

accounts for changes in the footprint of the RNAp while diffusing, at the TSS and when 

elongating [1-3]. When referring to closed complex formation, we mean the steps that 

occur after the finding of the TSS, but prior to the start of the open complex formation 

[1,4]. 

Most reactions in the model are instantaneous, i.e. once the two reacting molecules meet 

and react, the product is released instantaneously. Instantaneous reactions are represented 

as: 
kA+B C . In this reaction, when A and B meet according to the rules of the 

stochastic simulation algorithm (SSA) [5], molecule C is produced instantaneously. The 

expected time for A and B to meet is determined by the propensity of this reaction at each 

moment, given by the product of k, the number of A molecules and the number of B 

molecules [5]. 

Some reactions need to account for the time the process takes to occur, once initiated. 

Such delays in the release of products are represented as follows: 
 kA+B C 

. 

When this reaction occurs, C is placed on a waitlist and only made available for further 

reactions after  seconds have elapsed.  can be generated randomly from any desired 

distribution each time the reaction is chosen to occur. Such delayed events are only 

introduced when the time that the process takes to occur is sufficiently long to affect the 

kinetics of the system. Finally, note that in some reactions, not all necessary reactants for 

the occurrence are consumed by the reaction. Substrates that are not consumed are 

indicated by an (*). 

The model of transcription has four main components: RNAps, repressor molecules when 

existing, and DNA and RNA sequences, modeled at the nucleotide level. The promoter 

sequence contains TSSs and binding sites (BS) for repressors. This model can be coupled 

to the model of transcription and translation elongations at the nucleotide and codon level 

proposed in [6]. For simplicity, here we only present the model of initiation. The 

reactions, stochastic rate constants and time delays, are shown in Table S1. Variables 

used in reactions are shown in Table S2.  
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RNAps freely diffusing in the cell are allowed to bind to any nucleotide of the promoter 

region, provided that it is free. This occurs via reaction (1). The strand to which it binds 

determines the direction of diffusion, which does not change until the RNAp unbinds the 

DNA template. The RNAp can unbind via reaction (2) at any stage of difusion. 

The model accounts for the footprint of the RNAp at each stage. Ranges of nucleotides 

are denoted in square brackets, e.g. U[start,end]. Footprint studies [3,7,8] indicate that a 

bound RNAp, while diffusing, occupies ~55 nucleotides. Such occupied nucleotides are 

named On, where n denotes its number, while Un stands for the n
th

 unoccupied nucleotide. 

To refer to a position of an RNAp we use the nucleotide where its active center is at, 

while the range occupied by the RNAp is referred to as [n-ΔD, n+ ΔD], where ΔD = 27.  

Once an RNAp binds to the DNA, it diffuses on the template one nucleotide at a time, 

provided that the nucleotides are available (3). If the path is blocked by another RNAp or 

a repressor, it will eventually dissociate from the DNA strand via (2) [4]. 

When the RNAp finds the specific TSS, a chain of events takes place such as the closed 

complex formation (4) and isomerization (5) [1,2]. At this stage, the RNAp structure 

changes and occupies more nucleotides (~75) [8,9]. Next, the open complex formation 

occurs (6) [10]. 

The model accounts for collisions between elongating complexes (EC) and diffusing 

RNAps (8) and between two ECs (9). The former causes diffusing RNAps to disassociate 

from the DNA and the latter disassociates one or both ECs from the DNA. In collisions 

between ECs and diffusing RNAps (8), the EC remains in the template and the diffusing 

RNAp dissociates from the template. A similar reaction models collisions between 

diffusing RNAps (7), where one or both RNAps dissociate from the template. Finally, we 

model the “sitting duck” mechanism (10) [11]. When an EC collides with a promoter 

complex (e.g. open complex), since the EC is tightly bound to the DNA, the complex is 

removed. 

Reaction (11) models the formation of elongating complexes, while (12) models the 

initial steps in elongation, during which the RNAp “scrunches” the DNA [12,13] until 

enough energy is accumulated for the RNAp to escape the promoter (14). Prior to this, 

abortive initiation events (13) can occur, which causes the RNAp to return to the open 

complex state. We set the rate of abortive initiations to 4.2 s
-1

 to be within the ranges 

reported in [14]. 

For simplicity we only allow escape after the scrunching of the 12th nucleotide, although 

this differs from gene to gene, and from one event to the next [15]. As soon as the RNAp 

escapes the promoter (14), productive elongation events can occur (15). Also, the TSS 

becomes available for other RNAps.  
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During elongation, the EC (named En in the model) occupies 25 nucleotides [3,16]. The 

range is represented as [n-ΔE, n+ ΔE], where ΔE=12. Elongation (16) is modeled as a 

delayed reaction, with the delay for the production of a RNA molecule following a 

Gamma distribution (resultant from the composition of many sequential exponential 

distributions with the same mean). In (16), k equals the number nucleotides and θ, the 

rate of elongation, equaling 42 s
-1

 per nucleotide [17]. Finally, reaction (17) models RNA 

degradation as a single step reaction [18]. 

Repression is modeled via (18). It can compete with RNAp binding and, once the 

repressor is bound, it blocks the RNAp movement. Dissociation of the repressor from the 

template is modeled by (19). The footprint of the repressor is [n-Δrep, n+Δrep], where Δrep 

is 10, within realistic intervals of footprints of repressors in E. coli [19]. The rate 

constants for the reactions associate with repression are from [20]. 

 

Table S1. Reactions modeling transcription initiation, elongation, RNA degradation, 

repression and unrepression. Reactions, rate constants (in s
-1

), and delays (in s) used to 

model transcription initiation, elongation, repression, and RNA degradation. Parameter 

values were obtained from measurements in E. coli [4,10-14,17,18,20].
 
 

Event Reaction 
Rate constant 

and delays 

Binding (1) 
D D

b
[n-Δ , n+Δ ] n

k
RNAp + U O  kb = 0.000075 s

-1
 

Unbinding (2) 
D D

f
n [n-Δ , n+Δ ]

k
O RNAp + U  kf = 0.3 s

-1 

Diffusion (3) 
D D

m
n n+Δ +1 n+1 n-Δ

k
O + U O + U  km = 660 s

-1 

Completion of closed complex 

(4) D

c
TSS+Δ c  

k
O RP  kc = 0.5 s

-1 

Isomerization (5) i
c [TSS+1, TSS+19] i+ 

k
RP U RP  ki = 0.095  s

-1
 

Open complex formation (6) o
i o  

k
RP RP  ko = 2 s

-1 

Collisions between diffusing 

RNAps (7) 
D

D D

m
n+2Δ 1 n

[n-Δ , n+Δ ]

+ 

+ 

k
*O O

U RNAp

 
 km = 660 s

-1 
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Collisions between diffusing 

and elongating RNAps (8) 
E

D D

m
n 2Δ 1 n

[n Δ ,n Δ ]

+ 
k

*E O

U RNAp

 

 





 km = 660 s
-1

 

Collisions between elongation 

RNAps (9) 

el

E

E E

n+2Δ +1 n

[n-Δ , n+Δ ]

+ 

+ 

k*E E

U RNAp


 kel = 42 s

-1
 

Collision between RNAps 

elongating and at the promoter 

(10) 

el

E D

el

E D

TSS-Δ c [TSS, TSS-2Δ ]

TSS i o TSS-12

[TSS+Δ , TSS-2Δ ]

+ ,

+ 

k*E RP U

k*E RP /RP /E
U



  kel = 42 s
-1 

Transcription complex 

formation (11) 
el

o TSS
kRP E  kel = 42 s

-1 

Initial elongation (Scrunching) 

(12) 
el/4

TSS+n TSS+n+1
kE E  

kel = 42 s
-1

,        

n ≤ 12 

Abortive initiation (13) a

TSS+n o 
kE RP  ka = kel/10 s

-1 

TSS clearance (14) 
el

E

D

TSS+12 TSS+Δ 12

TSS+13 [TSS+12, TSS+2Δ +12]

+  

+

kE U

E U
   kel = 42 s

-1 

Elongation (15) el

E En n+Δ n+1 n-Δ+ +
kE U E U  

kel = 42 s
-1

,  

n ≥ 13 

RNA production (16) 
el

last

last E last

n el el

[n -2Δ , n ]

 + 

+ 

kE RNA(τ ) RNAp(τ ) 

U


 

kel = 42 s
-1

 

el = G(ex, kel
-1

)      

ex = no. nuc.  

Degradation (17) dkRNA  kd = 0.006 s
-1 

Repression (18) r

rep rep[n-Δ , n+Δ ] n + 
kRep U R  kr = 0.0167 s

-1
 

Unrepression (19) u

rep repn [n-Δ , n+Δ ] + 
kR Rep U  ku = 0.004 s

-1 
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Table S2. Description of the variables used in the model of gene expression. 

Variable Description 

Un

 
Free nucleotide at location n 

On

 
Occupied nucleotide at location n 

En

 

Elongation complex (EC) at location n 

Rn Nucleotide occupied by repressor at location n 

U[start, end]

 Ranges of nucleotides are denoted in square 

brackets 

ΔD

 Half-range occupied by the RNAp in diffusion. 

Total range is [n-ΔD, n+ ΔD], where ΔD = 27 

ΔE

 Half-range occupied by the RNAp in elongation. 

Total range is [n-ΔE, n+ ΔE], where ΔE=12 

*
 

Indicates substrates not consumed in the reaction 

RNAp
 RNA polymerase 

RPc
 

Closed complex 

RPi
 

Isomerized complex 

RPo
 Open complex 

TSS
 

Transcription start site 

Rep Repressor molecule 

RNA(τel)
  

RNA substrate is released with delay (el) 

The models are simulated by the SGNSim Simulator [21]. This simulator and the manual 

for its usage can be found in: http://www.cs.tut.fi/~sanchesr/SGN/SGNSim.html. 

SGNSim makes use of a reactions file, where the rate constants, the initial amount of 

each substance, and the chemical reactions of the model are specified. An example of 

such a reactions file is provided in a text file named “Reactionsfile_bidirectional.g”. In 

this example, a divergent promoter with 150 nucleotides between TSSs is modeled and 

the two TSS locations are at nucleotides 51 and 200. 

 

2. Statistical Analysis 
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It is possible to compare our predictions regarding noise in transcript production between 

closely spaced promoters (divergent and convergent) and unidirectional TSSs with 

measurements of the cell-to-cell diversity in RNA numbers from these two sets of 

promoters. Namely, we assessed from the data in (Taniguchi et al, 2010) whether the 

noise levels in RNA numbers, as measured by the square of the coefficient of variation 

(CV
2
), differed between closely spaced promoters and the others. By closely spaced 

promoters we refer to pairs of promoters that are less than 500 nucleotides apart.  

We thus assessed the null hypothesis (that the sets originate from the same distribution) 

by the two-sample Kolmogorov-Smirnov (K-S) test (Matlab 2007a). The samples sizes 

are 38 for closely spaced promoters and 99 for unidirectional promoters. Setting  to 

0.01, the K-S test confirms the goodness of fit between the two sample distributions (p-

value equal to 0.67). Thus, we conclude that there are no significant differences in the 

kinetics of RNA production between these two sets of genes from the data in (Taniguchi 

et al, 2010). 

Next, we assessed whether there is any correlation between the distance between the two 

TSSs and the observed noise in RNA numbers, as measured by the CV
2
 of the RNA 

numbers in individual cells. For this, we selected all pairs of promoters’ separated by less 

than 500 nucleotides and calculated the Pearson correlation between the length and the 

CV
2
 values. The Pearson correlation coefficient of -0.1004 is indicative that these 

measurements do not detect a strong correlation between the distance between TSSs and 

the CV
2
. 
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Abstract

Background: In prokaryotes, transcription and translation are dynamically coupled, as the latter starts before the
former is complete. Also, from one transcript, several translation events occur in parallel. To study how events in
transcription elongation affect translation elongation and fluctuations in protein levels, we propose a delayed
stochastic model of prokaryotic transcription and translation at the nucleotide and codon level that includes the
promoter open complex formation and alternative pathways to elongation, namely pausing, arrests, editing,
pyrophosphorolysis, RNA polymerase traffic, and premature termination. Stepwise translation can start after the
ribosome binding site is formed and accounts for variable codon translation rates, ribosome traffic, back-
translocation, drop-off, and trans-translation.

Results: First, we show that the model accurately matches measurements of sequence-dependent translation
elongation dynamics. Next, we characterize the degree of coupling between fluctuations in RNA and protein levels,
and its dependence on the rates of transcription and translation initiation. Finally, modeling sequence-specific
transcriptional pauses, we find that these affect protein noise levels.

Conclusions: For parameter values within realistic intervals, transcription and translation are found to be tightly
coupled in Escherichia coli, as the noise in protein levels is mostly determined by the underlying noise in RNA
levels. Sequence-dependent events in transcription elongation, e.g. pauses, are found to cause tangible effects in
the degree of fluctuations in protein levels.

Background
In prokaryotes, both transcription and translation are
stochastic, multi-stepped processes that involve many
components and chemical interactions. Several events in
transcription and in translation [1-8] are probabilistic in
nature, and their kinetics are sequence dependent. One
example is sequence-dependent transcriptional pausing
[1]. When they occur, these events can affect the degree
of fluctuations of RNA and protein levels. Since noise in
gene expression affects cellular phenotype, sequence
dependent noise sources are subject to selection [9,10]
and are thus evolvable [7]. Recent evidence suggests that
these noise sources may be key for bacterial adaptability
in unpredictable or fluctuating environmental conditions
[11,12].

To better understand the evolvability of bacteria, it is
important to understand how fluctuations in RNA levels
propagate to protein levels. Transcription and transla-
tion are coupled in prokaryotes, in that translation can
initiate after the formation of the ribosome binding site
region of the RNA, which occurs during the initial
stages of transcription elongation. The extent to which
sequence-dependent events in transcription elongation
affect the noise in RNA, and consequently protein levels
is largely unknown. Due to this, it is also not yet well
understood how phenotypic diversity is regulated in
monoclonal bacterial populations.
Two recent experiments have given a preliminary

glimpse at the dynamics of production of individual pro-
teins [13] and RNA molecules [14] in vivo in bacteria.
However, as of yet, there is no experimental setting to
simultaneously observe the production of both RNA and
proteins at the molecular level. Further, in the afore-
mentioned experiments [13,14], the rate of gene expres-
sion was kept very weak, as otherwise the number of
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molecules would not be easily quantifiable. This implies
that they cannot be used to study the effects of events
such as the promoter open complex formation [15]. The
present shortcomings of these techniques enhance the
need for realistic models of gene expression in
prokaryotes.
Several measurements have shed light on the

dynamics of transcription and translation elongation
[16,17], and revealed the occurrence of several stochastic
events during these processes, such as transcriptional
pauses [2,4]. The kinetics of RNA and protein degrada-
tion are also better known [18]. These measurements
allowed the recent development of realistic kinetic mod-
els of transcription at the nucleotide level [5,19] and
translation at the codon level [20]. These models were
shown to match the measurements of RNA production
at the molecule level [6,21] and of translation elongation
dynamics at the codon level [20]. In this regard, it was
shown that measurements of sequence dependent trans-
lation rates of synonymous codons could be modeled
with neither deterministic nor uniform stochastic
models [20], thus the need for models with explicit
translation elongation. Similarly, transcription elongation
also needs to be modeled explicitly to accurately capture
the fluctuations in RNA levels for fast transcription
initiation rates [5,19,22].
Here, we propose a model of transcription and trans-

lation at the nucleotide and codon level for Escherichia
coli. The model of transcription is the same as in [5],
and includes the promoter occupancy time, transcrip-
tional pausing, arrests, editing, premature termination,
pyrophosphorolysis, and accounts for the RNAp
footprint in the DNA template. The model of translation
at the codon level proposed here is based on the codon-
dependent translation model proposed in [20], which
includes translation initiation, codon-specific translation
rates and the stepwise translation elongation and activa-
tion. The model also accounts for the ribosome’s foot-
print in the RNA template as well as the occupancy
time of the ribosome binding site. Here, beside these
features, we further include the processes of back-trans-
location, drop-off, and trans-translation. Finally, we
include protein folding and activation, as well as degra-
dation, modeled as first-order processes, so as to study
fluctuations in the protein levels.
The dynamics of the model follow the Delayed

Stochastic Simulation Algorithm [19,23] and is simu-
lated by a modified version of SGNSim [24]. While the
most relevant innovation is the coupling between realis-
tic stochastic models of transcription and translation at
the nucleotide and codon levels, which allows the study
of previously unaddressed aspects of the dynamics of
gene expression in prokaryotes, this introduces a level of
complexity that required simulation capabilities that

SGNSim did not possess. Namely, the simulator is
required to create and destroy compartments at run
time within the reaction vessel, where a separate set of
reactions can occur.
We start by validating the dynamics of translation

elongation in the model. Next, using realistic parameter
values extracted from measurements, we address the
following questions: how different are the distributions
of time intervals between translation initiation events
and between translation completion events, i.e., how
stochastic is translation elongation? To what extent do
fluctuations in temporal RNA levels propagate to tem-
poral protein levels, and what physical parameters con-
trol this propagation of noise between the two? Finally,
we investigate whether transcriptional pauses have a sig-
nificant effect on the dynamics of protein levels.

Results and discussion
Dynamics of transcript production
Given the number of chemical reactions per nucleotide
in the model and that one gene can have thousands of
nucleotides, the dynamics are considerably complex. To
illustrate this, we show examples of the kinetics of
multiple RNAps on a DNA strand within a short time
interval, and the dynamics of multiple ribosomes on one
of the RNA strands as it is transcribed. Parameter values
were obtained from measurements in E. coli for LacZ
(see methods section), since the dynamics of transcrip-
tion and translation have been extensively studied for
this gene. LacZ has 3072 nucleotides and its transcrip-
tion is controlled by the lac operon.
In this simulation, transcription is not repressed.

Thus, provided that the promoter is available for tran-
scription, the expected time for a transcription event to
start is approximately 2.5 s, given the value of the rate
constant of reaction (1) in Table 1 and that there are 28
RNAp molecules available in the system [15]. The
promoter open complex formation step, with a mean
duration of 40 s [25] and a standard deviation of 4 s
[21] is the major limiting factor of transcription events
in these conditions.
Figure 1A shows, for a time window of 400 seconds,

the positions (y-axis) over time (x-axis) of several RNAp
molecules on the DNA template. In real time, this simu-
lation takes ~30 s, on an Intel Core 2 Duo processor.
Transcription elongation is visibly stochastic, with
events such as arrests (e.g. at t = ~450 s), ubiquitous
pauses and pyrophosphorolysis. Several collisions
between RNAp molecules are also visible, caused in part
by these events. Note that one RNAp never overtakes
another on the template.
Figure 1B shows the distribution of the time intervals

between transcription initiation events, which is Gaus-
sian-like, due to the open complex formation step. The
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longer tail on the right side of the distribution is mainly
due to the contribution of the time it takes for the
RNAp to bind to the template, a bimolecular reaction
whose expected time to occur follows an exponential
distribution with a mean of 2.5 s [26,27].
Figure 1C shows the distribution of time intervals

between transcription completion events in the same
simulation as Figure 1B. This distribution is strikingly
different from that of Figure 1B due to the stochastic
events in transcription elongation. Pauses, arrests and
other stochastic events cause the distribution to be
bimodal due to the bursty dynamics (many short inter-
vals and some long intervals). When these probabilistic
events occur to some RNAp molecules, they significantly
alter the distances in the strand between consecutive
RNAps. For example, when one RNAp pauses, its dis-
tance to the preceding RNAp increases, while the dis-
tance to subsequent RNAps shortens, allowing
completion events to be separated by intervals shorter
than the promoter delay.

Dynamics of production of proteins
Figure 2A exemplifies the dynamics of ribosomes on one
RNA strand. Stochastically, the transcription elongation
process of this particular mRNA was halted at t = 50 s
for a long period, and was thus selected to illustrate
how long pauses in transcription affect the dynamics of
translation of the multiple ribosomes on the RNA
strand. The solid gray region in the bottom left part of
the figure corresponds to the as-of-yet untranscribed
sequence of the mRNA. When the RNAp pauses or is
arrested (e.g. at t = 50 s), ribosomes accumulate in the
region of the mRNA preceding the leading edge of tran-
scription. Stochasticity in the translation elongation pro-
cess is also visible. However, this process, modeled with
realistic parameter values, appears to be less stochastic
than transcription elongation, in that the stepwise elon-
gation of ribosomes on the RNA template is more uni-
form than that of the RNAps on the DNA template.
This is especially visible after the effects of the long
arrest disappeared (at t > 230 s), at which point the

Table 1 Reactions modeling transcription

Event Reaction Rate constant Ref.

Initiation and promoter complex formation (1) Pro + RNAp
kinit−−→ RNAp • Pro(τoc)

kinit = 0.015
τoc = 40 ± 4

[21]

Promoter clearance (2) RNAp • Pro + U[1,�RNAp+1]
km−→ O1 + Pro km = 114 [37]

Elongation (3) An + Un+�RNAp+1
km−→

On+1 + Un−�RNAp + UR
n−�RNAp

km = 114 [37]

Activation (4) On
ka−→ An

ka = 114, n>10,
ka = 30, n≤10

[37]

Pausing (5)
On

kp

�
1/τp

Onp

kp = 0.55
τp = 3

[2]

Pause release due to collision (6) Onp
+ An - 2�RNAp−1

0.8km−−−→ On + An - 2�RNAp−1i km = 114 [38]

Pause induced by collision (7) Onp
+ An - 2�RNAp−1

0.2km−−−→ Onp + On - 2�RNAp−1p

km = 114 [38]

Arrests (8)
On

kar

�
1/τar

Onar

kar = 0.00028
τar = 100

[5]

Editing (9)
On

kec

�
1/τc

Oncorrecting

kec = 0.008
τc = 5

[2]

Premature termination (10)
On

kpre−→ RNAp + U[n - �RNAp,n + �RNAp]
kpre = 0.00019 [39]

Pyrophosphorolysis (11)
On + Un−�RNAp−1 + UR

n−�RNAp−1
kpyro−−→

On−1 + Un+�RNAp−1

kpyro = 0.75 [40]

Completion (12)
Anlast

kf−→ RNAp + U[nlast ,nlast - �RNAp]
kf = 2 [41]

mRNA degradation (13) R
kdr−→ ∅ kdr = 0.011 [13]

Chemical reactions, rate constants (in s-1), and time delays (in s) used to model transcription initiation, elongation, and termination. Parameter values were
obtained from measurements in E. coli, mainly for LacZ. References are reported in the column Ref.
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distributions of time intervals between consecutive ribo-
somes at the start and at the end of translation elonga-
tion do not differ significantly.
Figure 2B shows the distribution of intervals between

translation initiation events. Since there is no significant
delay in translation initiation (as the one due to the pro-
moter open complex formation), this distribution is
exponential-like. Figure 2C shows the corresponding dis-
tribution of intervals between translation completion
events (grey bars), given the presence of a sequence
dependent arrest site at nucleotide 1850. This distribu-
tion, while resembling that of Figure 2B, shows more
short time intervals, due to the long arrest in transcrip-
tion elongation. For comparison, we also show a distribu-
tion of intervals between translation completion events
drawn from cases without the sequence dependent arrest
in transcription (solid black line). The difference between
the two distributions illustrates how events in transcrip-
tion elongation (e.g. a sequence dependent arrest site)
can significantly affect the dynamics of translation.

Comparing the dynamics of the model of translation with
measurements
Recently, the real-time expression of a lac promoter was
directly monitored in E. coli with single-protein

resolution [13]. The proteins were found to be produced
in bursts (i.e. several proteins being produced from each
RNA), with the distribution of intervals between bursts
fitting an exponential distribution, while the number of
proteins per burst followed a geometric distribution
[13]. These distributions were measured for a gene that
was kept strongly repressed and for which the ribosome
binding site (RBS) was engineered so that translation
was also very weak [13]. Under these conditions, our
model reproduces these dynamics (data not shown).
Nevertheless, we note that it is possible to match these
measurements with a simpler model than the one pro-
posed here, where transcription and translation are
modeled as single step events [21,23].
We next compare the kinetics of translation in our

model with measurements of the translation elongation
speed in three engineered E. coli strains designed to
enhance queue formation and traffic in translation [17].
Each strain contains a different mutant of LacZ. The
pMAS23 strain corresponds to the wild-type lacZ. The
other two sequences differ in that a region of slow-to-
translate codons was inserted (~24 in pMAS-24GAG
and ~48 in pMAS-48GAG). The speed of protein chain
elongation was measured by subjecting the cells to a
pulse of radioactive methionines, and then measuring
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Figure 1 Kinetics of RNA polymerases on the DNA strand. (A) Example of the kinetics of multiple RNAp molecules on the DNA template
over 400 s. Note that, on several occasions, the RNAp molecules pause and that one RNAp never overtakes another on the DNA template. (B)
Distribution of time intervals between consecutive transcription initiation and (C) completion events. Data is from 57 000 initiation events.
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the level of radioactivity in cells of each population,
every 10 s after the pulse. Each strand contained 23
methionines, spread out unevenly on the DNA
sequence, causing the incorporation curve to be non-
linear.
Given that they differ in the nucleotide sequence, it

was hypothesized that the translation elongation speed
of the three strands would differ, as the speed of incor-
poration of an amino acid depends on which synon-
ymous codon is coding for it [17]. The cells where
translation is faster will thus be expected to have higher
levels of radioactivity in the translated proteins, as more
labeled amino acids have been incorporated in a fixed
time interval. If the translation speeds of the three
strands were identical, they would exhibit identical levels
of radioactivity at the same point in time.
To model this, we simulate the transcription and

translation processes of the three sequences [17]. We
model the incorporation of radioactive methionines at
the same locations as in these sequences. The three
model strands differ only in sequence, as in the

measurements. During the simulations, we measure the
number of incorporated radioactive methionines at the
same points in time as in the experiment. Results of our
simulations and of the measurements [17] are shown in
Figure 3, showing good agreement between model and
measurements.

Propagation of fluctuations in RNA levels to protein
levels
We simulate the model for varying effective rates of
transcription initiation (denoted keff). This rate is deter-
mined by the basal rate of transcription initiation (kinit),
which sets the binding affinity of the RNAp to the tran-
scription start site, and by the strength of repression of
transcription. Thus, to vary keff, we vary the number of
repressor molecules present in the system. Three sets of
simulations are performed, differing in rate of transla-
tion initiation (ktr). This rate is one of the kinetic para-
meters of the model, thus can be changed directly, and
not by indirect means as keff. In E. coli genes, this rate is
believed to be determined by the RBS sequence [28].
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Figure 2 Kinetics of ribosomes on an RNA strand. (A) Example of the kinetics of several ribosomes along an mRNA template that suffered an
arrest at nucleotide 1850, from the moment the ribosome binding site is formed to the degradation of the mRNA. The continuous gray region
in the bottom left corresponds to the untranscribed sequence of the mRNA. (B) Distribution of time intervals between consecutive translation
initiation events. (C) Distribution (grey bars) of time intervals between consecutive translation completion events given the presence of a
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mRNA and protein degradation rates are set so that the
mRNA and protein mean levels are identical for all
cases, allowing us to study how the level of noise in
mRNA and protein levels changes.
For each set of values of keff and ktr we perform 100

independent simulations. Depending on these rates, the
mean time to reach steady state differs. Each case is
simulated for long enough to reach steady state and for
an additional 100 000 s after that. The time series of the
100 simulations for each set of parameter values is con-
catenated into one time series, from which the noise is
quantified by the square of the coefficient of variation,
CV2 (variance over the mean squared) [29]. This num-
ber of long simulations is necessary to properly sample
the system due to the stochasticity of the underlying
processes.
In Figure 4, we first show the CV2 of mRNA time ser-

ies for varying keff. Noise decreases as keff increases due
to the promoter open complex formation step [6]. With-
out this event, the distribution of time intervals between
transcription initiation events would be exponential, and
the CV2 would not vary. However, with this step, if the
expected time for an RNAp to bind to the free promoter
is faster than the duration of the promoter open com-
plex formation, then the distribution of time intervals
becomes Gaussian-like [6].
No measurements have yet been made to study

experimentally the relation between the noise in mRNA
levels and the corresponding protein levels. Neverthe-
less, it is possible to create a robust estimate, provided
reasonable assumptions on the nature of the underlying
processes [8]. Our model allows for a direct assessment,
and it additionally includes realistic events such as
RNAp and ribosome traffic, in transcription and

translation elongation, which are not included in the
aforementioned estimations [8]. Figure 5 shows the
noise (CV2) in protein levels, for varying keff and three
values of ktr. The data was obtained from the same
simulations used to generate the results in Figure 4.
In general, we find that increasing keff decreases the

noise in protein levels due to the decrease of noise in
mRNA levels. Increasing ktr increases the noise in pro-
tein levels, due to the increased size of the bursts in the
protein level [8,29]. This finding has not yet been
experimentally validated by direct means.
An interesting observation from Figures 4 and 5 is

that, for keff < 5 × 10-4 s-1, as keff is increased, the noise
in protein levels decreases significantly, while the noise
in RNA levels does not noticeably change. This is due
to the decrease in mean protein burst size, i.e., the
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mean number of proteins produced from each RNA
molecule, as both keff and the degradation rate of RNA
molecules are varied.
From these results, we conclude that the degree of

coupling between transcription and translation is likely
to be a key determining factor of the noise in protein
levels. This can be verified by computing the normalized
maximum correlation between time-series of protein
and mRNA levels for each set of parameter values (Fig-
ure 6). Comparing Figures 5 and 6, we see that higher
correlation values are obtained for the regime of higher
noise in the protein levels. This implies that the princi-
pal source of this noise is the fluctuations in RNA levels.
The correlation value is largely determined by the

rates of mRNA and protein degradation and production.
For example, both increasing the mRNA degradation
rate and/or decreasing the protein degradation rate
increases the time averaging constant of the mRNA
fluctuations, and thus decreases the correlation between
mRNA and protein levels. In general, if the mean
mRNA and protein levels and kept unchanged by tuning
their degradation rates accordingly, the correlation
between RNA and protein time series can be increased
by lowering the mRNA production rate and/or increas-
ing the protein production rate.

Effects of transcriptional pauses on the fluctuations in
protein levels
Recent work [1] reported that long transcriptional
pauses enhance the noise in mRNA levels. We next
investigate to what extent the fluctuations in RNA levels
caused by long transcriptional pauses propagate to

protein levels. Long sequence-dependent pauses
[16,30,31] in transcription elongation may cause the
ribosome to stall in the mRNA chain. This will likely
cause subsequent ribosomes to accumulate in the pre-
ceding sequence. When the RNAp is spontaneously
released from the pause [31], translation of the stalled
ribosomes likely resumes but the distribution of inter-
vals between them will differ significantly from what it
would have been without the pause event. Consequently,
the protein production is likely to become burstier,
especially if the long pause site is located near the end
of the sequence. An increase in burstiness ought to
increase the noise in protein levels.
To verify this, we perform two simulations. We intro-

duce a long-pause sequence with mean pause durations
of 500 s in one case, and 100 s in the other (both values
are within realistic intervals [30]). In both cases, we set
the probability that an RNAp will pause at that site to
70% (identical to the value for his pause sites [16]).
Measuring the protein noise levels, we find that the

CV2 is ~5% higher for the 100 s pause site and ~10%
higher for the 500 s pause site, in comparison to the
same sequence without any sequence specific long-
pause site. These relative differences can be biologically
relevant in that such a change may, in some cases, cause
the degree of phenotypic diversity of a monoclonal cell
population to change.
The effects of several pause sites on the same strain

are cumulative, namely, the higher the number of pause
sites, the higher the noise in RNA levels [32]. Combined
with the present results, this leads us to the conclusion
that the sequence-dependent transcriptional pausing
mechanism likely exists to allow a wide variation of
both RNA and protein noise levels.

Conclusions
We proposed a new delayed stochastic model of prokar-
yotic transcription and translation at the single nucleo-
tide and codon level, where the processes of
transcription and translation are dynamically coupled in
that translation can initiate immediately upon the for-
mation of the ribosome binding site region of the nas-
cent mRNA. Simulations of the model’s dynamics show
that, within realistic parameter values, the protein noise
levels are determined, to a great extent, by the fluctua-
tions in the RNA levels, rather than from sources in
translation, in agreement with indirect measurements
[14], as translation elongation was found to be less sto-
chastic than transcription elongation. Specifically, the
distributions of intervals between translation initiation
and translation completion events only differ signifi-
cantly if the sequence possesses long sequence-depen-
dent pauses or clusters of slow-to-translate codons. The
sequence dependence of several mechanisms that can
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act as generators of strong fluctuations in RNA levels
[15], the propagation of these fluctuations to protein
levels, and the ability of fluctuations in protein levels to
affect cellular phenotype [33], suggest that these
mechanisms may be evolvable.
As a previous study has suggested [8], the translation

initiation rate was found to be key in determining the
degree of coupling between the fluctuations in RNA and
protein levels, if one assumes that the degradation rate
of the proteins is changed accordingly to maintain their
mean level unchanged. Varying this sequence-depen-
dent, and thus, evolvable parameter [28] within realistic
ranges gave a widely varying degree of coupling between
the fluctuations in RNA and protein levels. It is there-
fore not necessarily true that noisy production of RNA
molecules results in noisy protein levels. Interestingly,
while decreasing the coupling between transcription and
translation by decreasing the rate of translation initia-
tion causes the protein levels to become less noisy, it
also takes longer for a change in RNA levels to be fol-
lowed by the protein levels. This suggests that to be
able to change rapidly in response to, e.g., environmen-
tal changes, the levels of a protein will be necessarily
noisier.
Confirming previous studies [1,5,8,19], we found that

the distributions of time intervals between transcription
initiation and completion events differ significantly and
that the faster the rate of transcription initiation events,
the more they differ. This implies that in the regime of
fast transcription, both the transcription and translation
elongation processes need to be modeled explicitly and
coupled, if one is to match the mean and fluctuations in
the protein levels at the molecular level. This is of rele-
vance, since bursts in protein levels may trigger many
processes, such as phenotypic differentiation [33,34]. A
final justification for using the model proposed here is
the complexity of the process of gene expression in E.
coli, and the fact that many events therein may or may
not affect the temporal RNA and protein levels signifi-
cantly, depending on their specific sequence-dependent
features. Such effects, due to the complexity of the sys-
tem, are not easily predictable without performing expli-
cit numerical simulations.
The model proposed here includes several features not

included in previous models such as a gradual degrada-
tion event that can be triggered while the RNA is still
being transcribed. As its parameter values were
extracted from measurements, it should be useful in the
study of several aspects of the dynamics of gene expres-
sion in prokaryotes that cannot yet be measured directly
and to explore the state space of gene expression
dynamics by varying any of the physical variables within
realistic ranges.

However, the present model does not yet account for
known effects of ribosomes on the dynamics of tran-
scription elongation. These might need to be included
in future developments of the proposed model as recent
results [27,35] suggest that the rate of translation elon-
gation can affect the rate of transcription elongation,
due to possible interactions between the ribosome that
first binds to the mRNA and the RNAp transcribing it.
Possible effects may include facilitating the release of
paused RNAp’s, which could affect the degree of the
contribution of pauses to the noise in RNA and thus
protein levels. We do not exclude the possibility that
the contrary may occur in specific cases, that is, that the
paused state of the RNAp may cause pauses in the ribo-
some translational dynamics, which would amplify the
effect of transcriptional pauses on the fluctuations of
protein levels. Whether the pause is ubiquitous or due
to loop formations in the nascent RNA may affect the
results of the interaction as well. Provided experimental
evidence on the nature and consequences of these inter-
actions, once included in the model, we may be able to
test, among other things, whether long transcriptional
pauses located in an attenuator system provide an addi-
tional layer of control over premature transcription ter-
minations, and thus over RNA and protein noise levels.

Methods
Model of transcription, one nucleotide at a time
We model the dynamics of gene expression as in [23].
This model was shown [21] to match the dynamics of
RNA and protein production at the single molecule
level [13]. The dynamics of the system of chemical reac-
tions is driven by the delayed stochastic simulation algo-
rithm (delayed SSA [19]) so as to include events whose
time of completion once initiated is non negligible, in
that it affects the dynamics of production of RNA and
protein molecules. Specifically, several steps in gene
expression, such as the promoter open complex forma-
tion, are time consuming [36]. To include these events
when simulating gene expression, the delayed SSA was
proposed [19].
All simulations are executed by an extended version of

SGNSim [24] to allow multiple coupled chain elongation
processes to run in parallel on each elongating RNA
strand. The extension consists in providing the simula-
tor with the ability to introduce new chemical reactions
at run time (that is, those corresponding to the transla-
tion of each individual RNA strand).
The delayed stochastic model of transcription at the

nucleotide level [5] includes the promoter occupancy
time, pausing, arrests, editing, premature terminations,
pyrophosphorolysis, and accounts for the RNAp foot-
print in the DNA template [2]. Additional reactions
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model the stepwise forward movement and activation of
the RNAp, pausing and unpausing of the RNAp due to
collisions with adjacent RNAps, release of the promoter
when the RNAp begins elongation, and error correction.
The reactions, stochastic rate constants and time

delays, are shown in Table 1 and described in detail in
[5,37-41]. Here, Pro stands for the promoter region,
RNAp for the RNA polymerase, and RNAp·Pro for the
promoter region occupied by an RNAp. An, On and Un

stand for the nth nucleotide when activated, occupied,
and unoccupied, respectively. Ranges of nucleotides are
denoted such as U[start, end], denoting a stretch of unoc-
cupied nucleotides from indexes start to end. Onp, Onar

and Oncorrecting are used to represent a paused, arrested, or
error correcting RNAp at position n. On the template,
each RNAp occupies (2ΔRNAp+1) nucleotides, where
ΔRNAp = 12. These nucleotides cannot be occupied by
any other RNAp at the same time. UR

n denotes tran-
scribed ribonucleotides which are free (i.e., not under
the RNAp’s footprint). These transcribed ribonucleotides
are created in a separate part of the simulation (denoted
by the R superscript), one separate set per RNA strand,
so that we can simulate the translation of all individual
RNA molecules independently and simultaneously.
We use a delayed reaction event to model the first

step in transcription, the promoter closed and open
complex formation (1). These processes could instead
be modeled by a set of non-delayed, consecutive, reac-
tions [42]. We use a delayed reaction as it was shown to
accurately model the dynamics of this process
[19,21,23]. The duration of this step likely varies from
one event to the next, but while values for the mean
duration are known, as of yet, there are no exact mea-
surements of the standard deviation. Nevertheless, it is
likely small compared to the mean, given the very small
standard deviations of promoter activity [25]. For these
reasons, we set the promoter delay, τoc, as a random
variable, following a normal distribution with a mean of
40 s and a standard deviation of 4 s, whose value is ran-
domly drawn each time a transcription event occurs.
Once the first nucleotide is occupied via reaction (2),

stepwise elongation can begin (3). Also, as soon as the
promoter is released, a new transcription initiation
event can occur. Following each elongation step (3), an
activation step occurs (4), which is necessary for the
RNAp to move along the template to the next nucleo-
tide. The following events compete with stepwise elon-
gation: pausing (5) and (7), released via (5) or (6),
arrests and their release (8), editing (9), premature ter-
minations (10), and pyrophosphorolysis (11).
At the end of the elongation process, the RNAp is

released (12). mRNA degradation is modeled, for simpli-
city, as a first order reaction (13). When (13) occurs, the

first few ribonucleotides of the RNA are immediately
removed from the system, preventing any new transla-
tion event [43]. Thus, we model the degradation process
such that it begins in the vicinity of the RBS and then
gradually cuts the mRNA as it is being released from
the ribosomes. This allows the translating ribosomes to
complete protein production before the whole mRNA is
degraded. When the final ribosome unbinds from the
RNA, the rest of the RNA strand, denoted by R in reac-
tion (13), is destroyed.
If the model of RNA degradation was such that some

of the ribosomes on the RNA template fell off when
degradation begins (i.e. due to endonucleatic cleavage of
the RNA chain at a random position [43]), one conse-
quence would be the reduction of the mean protein
burst size as these RNAs would contribute far fewer
proteins than if the ribosomes were allowed to finish
translating. This would likely result in a reduction of
protein noise levels. Alternatively, the ribosome occu-
pancy of the ribosome binding site might determine
mRNA longevity [28]. In this case, for the same mean
burst size, the noise is expected to increase since large
bursts will get larger and small bursts will get smaller,
likely increasing protein noise levels. We opted not to
include these additions to the degradation model since
they are not yet well characterized [43].
Finally, we note that in present model we do not add

an explicit reaction for abortive initiation of transcrip-
tion [44]. This could be done by adding a reaction (2b)
which would compete with reaction (2). Its rate, kab,
would be set so as to match the fraction of abortive
initiations after the formation of the promoter open
complex [44]:

RNAp • Pr o
kab−→ Pro + RNAp (2b)

For simplicity, we opted not to include this reaction in
the simulations, and instead set a value for the rate of
transcription initiation that matches realistic rates of
RNA production. From the point of view of RNA pro-
duction, since (2b) competes with reaction (2), it would
be dynamically equivalent to decrease the rate of tran-
scription initiation in (2) to account for the fraction of
abortive initiations.
The model of transcription and the reaction rates in

Table 1 are described in greater detail in [5]. Parameter
values were obtained from measurements in E. coli,
mainly for LacZ.

Model of translation, one codon at a time
The stochastic model of translation at the codon level
includes initiation (14) and stepwise translocation
(codon incorporation) (15-17) followed by activation
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(18). Reactions competing with translocation are back-
translocation (19), drop-off (20), and trans-translation
(21). The process ends with elongation completion (22),
followed by protein folding and activation (23). Protein
degradation (24) is included to allow us to study fluctua-
tions in protein levels at steady state. All reactions and
rate constants are presented in Table 2 [45-47]. Here,
Rib denotes a free ribosome complex in the cellular
medium, while RibR denotes a ribosome bound to a spe-
cific RNA strand. Similar to ΔRNAp, ΔRib denotes the
ribosome’s footprint in the RNA template. Each ribo-
some occupies (2ΔRib+1) ribonucleotides, where ΔRib =
15 [20]. UR

n , OR
n and AR

n are the ribonucleic equivalents
of Un, On and An. UR

n denotes an unoccupied ribonu-
cleotide, while OR

n denotes that a translating ribosome is
currently positioned at ribonucleotide n. Similarly, AR

n
denotes that a ribosome has created peptide bond for
the peptide coded by the codon at position [n-2,n],
where n is a multiple of 3 (n = 3, 6, 9,...). Since different
codons are translated at different rates, the activation
reaction has a codon-specific rate [17]. Specific rates
were set for four codons, while the remaining ones fall
into three different classes [20], A, B and C, whose rates
are denoted ktrans{A, B, C}.
Translation has three main phases: initiation, elonga-

tion and termination. It begins with the binding of the
ribosome complex to the mRNA strand. During elonga-
tion, the amino acids, determined by the RNA sequence,

are added to the elongating peptide chain. Termination
is the final step, as specific release factors detach the
peptide and the RNA chain from the ribosome. E. coli
has specific translation factors for each phase: initiation
factors IF1, IF2 and IF3, elongation factors EF-G, EF-Tu
and EF-Ts and three release factors RF1, RF2 and RF3
[48]. These are not explicitly modeled, as they exist in
abundance under normal conditions.
The binding of the ribosome to the ribosome binding

site (RBS) of the RNA starts with the binding of the 30S
ribosomal subunit to the nascent mRNA. After that,
fMet-tRNA binds to the P-site forming a 30S complex.
The 50S ribosome subunit attaches to it, forming the
70S initiation complex [48]. This process is modeled as
a single step reaction (14). The next ribosome can only
to bind after the preceding one has moved away from
the RBS. This implies that the initiation of two consecu-
tive translation events is separated by a non-negligible
time interval.
Translation elongation occurs through successive

translocation-and-pause cycles [3]. Translocation
includes three steps (15-17), after which there is a pause
(18), during which the bond between amino acids is
formed. The time that (18) takes to occur accounts for
this pause, which is much longer than the time for (15-
17) to occur [3].
The genetic code contains two mechanisms for redun-

dancy: some tRNAs can be charged with the same

Table 2 Reactions modeling translation

Event Reaction Rate constant Ref.

Initiation (14) Rib + UR
[1,�Rib+1]

ktrans init−−−−→ OR
1 + RibR ktrans_init = 0.33 [20]

Stepwise translocation (15-17) AR
n−3 + UR

[n+�Rib−3,n+�Rib−1]
ktm−→ OR

n−2

OR
n−2

ktm−→ OR
n−1

OR
n−1

ktm−→ OR
n + UR

[n−�Rib−2,n−�Rib]

ktm = 1000 [3]

Activation (18)
OR

n
ktrans{A,B,C}−−−−−→ AR

n
ktransA= 35, ktransB= 8,
ktransC= 4.5

[20]

Back-translocation (19) OR
n + UR

[n−�Rib−2,n−�Rib]
kbt−→

AR
n−3 + UR

[n+�Rib−3,n+�Rib−1]

kbt = 1.5 [51]

Drop-off (20)
OR

n

kdrop−−→ Rib + UR
[n - �Rib,n+�Rib]

kdrop = 0.000114 [45]

Trans-translation (21) R
ktt−→ [RibR]Rib ktt = 0.000052 [46]

Elongation completion (22)
AR

nlast

ktrans f−−−→ Rib + UR
[nlast ,nlast - �Rib] + Pprem

ktrans_f = 2 [20]

Folding and activation (23)
Pprem

kfold−−→ P
kfold = 0.0024 [47]

Protein degradation (24) P
kdec−→ ∅ kdec = 0.0017 [47]

Chemical reactions and rate constants (in s-1) used to model translation initiation, elongation, and termination, as well as protein folding and activation, and
protein degradation. Parameter values were obtained from measurements in E. coli, mainly for LacZ. References are reported in the column Ref.
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amino acid, and a single tRNA can recognize more than
one codon due to a “wobble” effect in position three of
the anti-codon [48]. The net effect is that multiple
codons code for the same amino acid. These codons are
called synonymous codons. Synonymous codons read by
the same tRNA have been shown to translate at signifi-
cantly different rates [17], implying that our model must
incorporate per-codon translation rates for reaction (18),
rather than per-tRNA or per-amino acid rates. Only a
few of these translation rates have been measured
directly [17] but indirect assessment is available [20]. In
our case, we assume normal cellular conditions, includ-
ing an abundance of charged tRNA, implying that we do
not need to model the tRNA explicitly.
Since each codon is translated at a different rate, the

codon frequency also needs to be accounted for expli-
citly [49]. In the model, the sequence can either be ran-
domly generated or selected from a known gene. In the
former case, the sequence is randomly generated
according to the known statistical frequency of each
codon in E. coli.
The competing reactions of stepwise translation elon-

gation are back-translocation (19), drop-off (20) and
trans-translation (21), which are explicitly modeled.
Back-translocation generally occurs when the tRNA has
not yet locked into the peptide chain, causing the ribo-
some to move backwards on the mRNA template to the
position of the previous codon. While the occurrence of
back-translocation has been observed and can be pro-
moted by certain antibiotics [50-52], its exact causes
remain somewhat unknown. Nevertheless, the kinetic
rates for translocation and back-translocation have been
measured under various conditions [51]. Alternatively,
the ribosomes can randomly dissociate from the RNA,
in a process called drop-off, modeled by reaction (20).
The overall rate of drop-off has been measured in [45],
from which we have inferred a per-codon rate.
Trans-translation is the process by which the ribosome

is released from the RNA template after stalling, which
can occur for a variety of reasons, such as the incorpora-
tion of an incorrect codon, premature mRNA degradation,
or spontaneous frameshifting [53]. Trans-translation is
executed by the tmRNA that, together with SmpB and EF-
Tu, binds to the A-site of the ribosome and releases it
from the mRNA [53]. Once the ribosome is released, the
mRNA is degraded. In the model, stalling followed by
trans-translation can occur spontaneously with a given
probability at any codon via reaction (21). When this reac-
tion occurs, the RNA strand is immediately destroyed in
the simulation, and all translating ribosomes are released
back into the cellular medium, denoted in reaction (21) by
[RibR]Rib, where [RibR] denotes the number of ribosomes
bound to the RNA at that moment.

Translation elongation continues until the STOP
codon is reached (22), after which RF1 or RF2 binds
and releases the ribosome together with RF3 [48]. These
are not modeled explicitly in the model. Its kinetic rate
is higher than initiation, preventing queuing near the
stop codon [20]. Reaction (22) is followed by folding
and activation (23), modeled as a first order process for
simplicity [21]. The rate of this reaction is set to model
the maturation time of GFP, as most measurements of
protein expression at the single cell level use this pro-
tein. Pprem denotes the unfolded protein, while P
denotes the complete activated protein, which can then
degrade via reaction (24).
Given the above, we note that the dynamics of tran-

scription and translation are sequence dependent in the
present model in the following ways. First, the model
allows the insertion of, e.g., arrests or sequence specific
pauses at a specific nucleotide (exemplified in the last
section of the results section). In general, since the rates
of all possible events are defined uniquely for each
nucleotide, any event may be set to have a distinct pro-
pensity at a specific nucleotide rather than a constant
rate for all nucleotides. Translation elongation is, in the
same manner, sequence dependent, with the additional
feature that the rates of elongation in this case are
always codon dependent.
The chemical reactions and rate constants (in s-1) used

to model translation initiation, elongation, and termina-
tion, as well as protein folding and activation and pro-
tein degradation are in Table 2. Parameter values were
obtained from measurements in E. coli, mainly for LacZ.

Quantifying the correlation between protein and mRNA
levels
Protein levels do not respond instantaneously to changes
in the number of mRNA molecules in the system since
new proteins take time to synthesize after a new mRNA
is produced, and excess proteins take time to degrade
after an mRNA has been degraded. Instead, the fluctua-
tions in protein levels result from a time averaging of
the fluctuations in mRNA levels [8]. The degree to
which fluctuations propagate from RNA to protein
levels depends on various parameters, the most relevant
being the ratio between the degradation rates of the
proteins and RNAs. Changing this ratio is likely to affect
the degree of correlation between the RNA and protein
time series.
To assess the extent to which fluctuations in RNA

levels are propagated to protein levels, we compute the
normalized discrete cross-correlation [54] between the
time series of RNA and protein numbers. The normal-
ized cross-correlation function r for m pairs of time ser-
ies (x and y) of discrete signals of length n is given by:
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r [τ ] =

N∑
l=1

n−τ∑
k=1

(
xl[k] − mx1,...,N[1,...,n−τ ]

) (
yl[k + τ ] − my1,...,N[1+τ ,...,n]

)

((n - τ ) N − 1) sx1,...,N[1,...,n−τ ]sy1,...,N[1+τ ,...,n]

(25)

where τ Î {0,..., n-1} is the lag, and mw and sw are the
sample mean and sample standard deviation of w,
respectively, defined by:

mw1...N[i...j]
.=

1
(j − i + 1)N

N∑
l=1

j∑
k=i

wl[k] (26)

sw1...N[i...j]
.=

√√√√ 1
(j − i + 1)N − 1

N∑
l=1

j∑
k=i

(
wl[k] − mw1...N[i...j]

)2 (27)
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